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Preface

This is a book about fascination. A fascination which had hit me in 1996, when I
got a position as student assistant in the workgroup of Prof. Purwins and started to
upgrade a numerical solver of two-dimensional reaction-diffusion systems to three
spatial dimensions. We were heading for self-organized localized structures of three-
component reaction-diffusion systems. Due to their particle-like characteristics,
we called them quasi-particles and later on renamed them to dissipative solitons.
The simulations and theoretical investigations surprised us again and again with
complexity on the one hand and general mechanisms on the other, such that we
were heading for detecting them experimentally, which finally succeeded.

After finishing my doctoral thesis on this topic, the fascination did not seem to
falter and I was very happy that my proposition for a book on Dissipative Solitons in
Reaction-Diffusion Systems to appear in Springer’s Synergetics Series was accepted.
I have always been inspired by books in this field through my studies, so it is a great
honor for me to contribute to this series.

The central idea of this book is to give an overview, introduce important concepts
and methods, and follow them, wherever possible, down to concrete results, both
numerically and experimentally, which allows for weaving all the important details
and general methods to a broad view on dissipative solitons in reaction-diffusion
systems.

Therefore, this book should attract not only the experienced scientist, who
is interested in self-organization phenomena and might become inspired to new
research directions, but also the student, who likes to learn how to investigate
complex systems. And somehow, I hope, that this book transfers my fascination
to other people.

Ortenberg (Baden) Andreas W. Liehr
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Foreword

This book by Andreas W. Liehr is a valuable addition to the Springer Series in
Synergetics.

Indeed, the experimental and theoretical study of the spontaneous (“self-
organized”) formation of structures in physical, chemical, and other systems is
still a lively subject in modern science. This book focuses its attention on reaction-
diffusion systems, where it masters to build a bridge between basic concepts and
concrete results by a combination of analytical and numerical approaches. This and
its clear style make the book not only most valuable for scientists and graduate
students, but at least some of its chapters may form an excellent basis for courses
on physical/chemical nonequilibrium systems.

I have read this text with great pleasure, and I am sure its readers will share my
impression.

Stuttgart, Hermann Haken
February 2013
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Chapter 1
Introduction

How the leopard got its spots

Proud and handsome in his beautiful coat, the hyena went
loping through the jungle. Suddenly he stopped, gazing down at
the tortoise who stood in his way looking up at him plaintively.
“Hyena, I am in need of your help. I cannot reach the fruit of
this tree, but if you were to shake the branches. the fruit would
fall down. Will you help me?”

“I’ll do even more than you ask,” replied the hyena. “I’ll take
you to the fruit!” Seizing the tortoise between his strong teeth,
he jumped up into the tree and put the tortoise down in a fork of
branches high above the ground. Then he leaped down again,
laughing diabolically at the tortoise’s plight before
disappearing into the jungle.

Afraid to move, clinging to the branch, the tortoise stayed up
there for hours, while the sun slowly dipped over to the west,
lengthening the shadow of the tree. Every time he looked down
at the ground far below, he felt dizzy and terrified, but he had to
keep his eyes open for he knew that help wouldn’t come from the
skies. At last, with darkness falling and despair growing, the
tortoise saw a leopard padding past the tree and cried for help.
The leopard leaped gracefully into the tree and brought the
[frightened tortoise back to the ground. At his request the
leopard shook the branches so that the fruit fell to the ground
for the tortoise to eat.

The leopard didn’t wait to be thanked and was gliding into the
gathering darkness when the tortoise called him back.
“Leopard, listen to me before you go. You have been very good
to me, and I would like to do something for you in return. If you
let me paint black spots all over your tawny coat, you will be
admired throughout the jungle. Come in the morning when the
sun gives us light.”

The leopard’s dull coat was completely transformed by the black
spots that the tortoise painted in with care and artistic skill.

A.W. Liehr, Dissipative Solitons in Reaction Diffusion Systems, Springer Series 1
in Synergetics 70, DOI 10.1007/978-3-642-31251-9_1,
© Springer-Verlag Berlin Heidelberg 2013



2 1 Introduction

And just as the artist had predicted, when the leopard
swaggered through the jungle he was followed by the admiring
glances of the other animals.|. . .]

A fairy tale of the Bantu speaking people of Africa. Retold after
a version known from the South African tribes Zulu, Xhosa,
Basuto, Bechuana, Herero, and Shangaan [1.1].

Abstract The chapter introduces the topic of structure formation, and gives a
literature survey to reaction-diffusion systems. It closes with a short guideline how
to read the book.

1.1 Structure Formation

The oldest evidence for the interest of mankind in structures and patterns in nature
is given by the fairy tales of African tribes explaining the beautiful coat patterns of
leopards (Fig. 1.1a) and zebras by fantastic events in the past [1.1, 1.12]. These coat
patterns are fascinating because of their regular but individual structure showing
the high order of a pattern, which has been organized by itself. Comparable regular
structures can also be found in the inanimate world: Examples are cloud streets
(Fig. 1.1d) or convection cells of heated fluid layers (the famous Rayleigh-Bérnard
experiment [1.13], Fig.1.1g). In all three cases the structures are macroscopic
phenomena resulting from the cooperative interaction of many subsystems, which
in case of physical systems can be identified as molecules of atmosphere or fluid
generating the pattern in an ongoing process. In case of the coat patterns, the
subsystems are phenomenologically connected with so-called morphogens deter-
mining the coat pattern at a time within the embryonic development of the mammal
[1.14]. The phenomenon of the spontaneous development of regular structures in
dynamical systems by the cooperative interaction of many subsystems is called
self-organization and is investigated with the methods of synergetics [1.15, 1.16].
The rich variety of systems being treated with the methods of synergetics are also
summarized as complex systems [1.17,1.18].

Structures do not only arise close to thermodynamic equilibrium but also far
away from it. In the latter case, a flux of energy or matter is essential for the develop-
ment and preservation of the structure. Far away from thermodynamic equilibrium,
the dynamics of a system are described by nonlinear evolution equations. Therefore,
the increase of a control parameter beyond a critical value — the so-called bifurcation
point — can result in symmetry breaking, which is observable as a transition from the
disordered state into an ordered one. These structures are characterized by a balance
between non-linearity and dissipation, which stabilizes the structures against small
perturbations. Spatial temporal [1.19] and spatiotemporal structures arising far away
from thermodynamic equilibrium are called dissipative structures [1.20].
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Fig. 1.1 Examples for spatial and spatiotemporal structures. Sub-figures show patterns (first
column), spirals (second column) and localized structures (third column) as examples from animate
world (first row), inanimate nature (second row) and experiment (third row) (a) leopard [1.2], (b)
amoeba [1.3], (¢) nerve pulse on squid axon [1.4], (d) cloud streets [1.5, p. 29], (e) spiral galaxy
M83 [1.6], (f) picture of unusual lightning close to the ground [1.7], which was later on identified
as ball lightning [1.8, p. 57f], (g) convection pattern in silicon oil [1.9], (h) spirals in the Belousov-
Zhabotinsky-Reaction [1.10], (i) filaments in semiconductor gas-discharge system [1.11]

Well-known examples for spatiotemporal order are spiral-like structures: formed
by the amoeba of the slime mould dictyostelium discoideum (Fig.1.1b), spiral
galaxies (Fig. 1.1e), or spiral waves in the famous Belousov-Zhabotinsky reaction
(Fig. 1.1h). Spirals are generic structures in excitable media. They can be charac-
terized by an autocatalytic or self-enhancing process, a following refractory phase
and spatial coupling by diffusion. For example, in the Oregonator-model [1.21] of
the Belousov-Zhabotinsky reaction, two autocatalytic processes compete with each
other, because the reaction product of one process is the reagent of the other process
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and the refractory phase starts as soon as the resources of the respective process
are used up. By taking diffusion into account, which is relevant in all chemical
systems, the Belousov-Zhabotinsky reaction is a typical example for a reaction-
diffusion-system. Even for galactic dimensions the mechanisms of excitable media
are applied. Here, the interstellar dust emitted from the atmosphere of earlier
condensed stars enhances the probability of the condensation of new stars, whereas
the heating of interstellar dust by developed stars inhibits the occurrence of further
condensation processes [1.22], which might explain the formation of certain spiral
galaxies of Sc-type [1.23, 1.24]. Therefore, these types of spiral galaxies can be
understood as giant pendants of the spirals being observed on earth.

On Earth, the spiral-like structures of slime mould dictyostelium discoideum
result from the need to survive. If food, warmth or humidity are lacking, the
amoebae will exhale a cyclic adenosine monophosphate (cAMP) signal. This
messenger spreads by diffusion and stimulates the receptors of neighbored amoebae
which themselves exhale an increased amount of cAMP until their receptors become
non-sensitive for a certain time and their cAMP output decays [1.25]. Here, we
find the typical characteristics of an active medium: An autocatalytic process in the
form of cAMP secretion, a rest period in the form of desensitization of receptors,
and, moreover, diffusion. This yields a formation of cAMP-waves spreading from
a center and results in spiral-like structures of amoebae (Fig. 1.1b), which travel
against the gradient of cAMP concentration (chemotaxis). In the center of the spiral,
the amoebae pile up to a fruiting body of 10*~10° amoebae whose spores can survive
the disadvantageously environmental condition. As the amoebae can act completely
independently of each other in more favorable conditions, the discussed aggregation
process is not only a nice example for the formation of spiral-like structure in
animated nature but also an example where evolution has led to self-organization
processes in order to increase the survival of a species.

This slightly extensive discussion of different systems regarding self-organization
illustrates the universality underlying structure formation: Systems showing
structure formation are very different with respect to their interacting subsystems
as well as the spatial and temporal scales on which formation occurs. However,
in many cases, it is possible to identify basic principles (e.g. the mechanism of
excitable (active) media) which in turn enable an elementary understanding of the
observed phenomena.

In this respect, this book focuses on localized self-organized structures, which are
observed in systems that are far away from thermodynamic equilibrium. The most
famous and important example in this context is given by nerve pulses (Fig. 1.1c).
Modelling these localized structures also leads to the concept of reaction-diffusion-
systems [1.26—1.29]. A spectacular and not yet completely understood phenomenon
of self-organized localized structures in inanimate nature is the occurrence of ball
lightning (Fig. 1.1f), which is in contrast to the manageable current filaments in
semiconductor gas-discharge-systems (Fig. 1.11). These structures are particularly
suitable for the investigation in laboratories, because the experimental setup is easy
to handle and non-equilibrium states relax after changes of control parameter on
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a time scale of millisecond, whereas transients (e.g. in hydrodynamic or chemical
systems) decay on a time scale of minutes.

Current filaments are solitary structures with distinctive characteristics
of particles, like scattering, the formation of bound states, as well as the generation
and annihilation of particles [1.30]. Such objects are called dissipative solitons
[1.31, 1.32], which resembles the analogy to localized waves in conservative
systems, so-called solitons, occurring as surface waves on water [1.33] or solutions
of Sine-Gordon or nonlinear Schrédinger equation [1.34]. However, as a unique
nomenclature hasn’t been accepted, different notations like puls [1.35], spot [1.36]
or autosoliton [1.37] can be found in the literature.

This book focuses in particular on dissipative solitons in spatially extended
systems, which are observed in reaction-diffusion systems with two inhibiting
components. While one inhibitor reacts slowly on changes of the activator, the
second one follows changes of the activator quickly. Therefore the slow inhibitor
destabilizes the localized structure and triggers the propagation of the dissipative
soliton and might be called the driving inhibitor. On the other hand the fast inhibitor
inherently stabilizes the shape of the activator peak and is called the stabilizing
inhibitor. In the course of the book the complex dynamics of dissipative solitons
enabled by one activator and two inhibitors are investigated by large scale numerical
computations being accomplished by theoretical and experimental investigations,
which lead to a comprehensive understanding of dissipative solitons in reaction-
diffusion systems.

1.2 A Very Short Literature Survey

1.2.1 Self-organization and Localized Structures

The variety of self-organization phenomena in animate and inanimate nature is
reflected by the rich variety of publications on this topic. Therefore, a comprehend-
ing survey can hardly be found and I can only outline the connection between some
publications, that are, at least from my point of view, important and interesting.

An excellent introduction to the topic of structure formation is given in the book
of Ball [1.38], the review article of Cross and Hohenberg [1.39] and the textbooks of
Nishiura [1.40] and Hoyle [1.41]. The fundamental methods of synergetics are intro-
duced by Haken [1.15, 1.16], while the fundamentals of reaction-diffusion systems
are discussed by Fife [1.42] and Smoller [1.43]. Conceptually, the application range
of synergetics covers all sciences and fields of research [1.17,1.18], such as: biology
[1.14,1.44-1.48], chemistry [1.49-1.53], sociology [1.54], optical systems [1.55—
1.57], semiconductors [1.58, 1.59], hydrodynamical systems [1.60], liquid crystals
[1.61], granular media [1.62], and gas discharge systems [1.63, 1.64]. This book
focuses on localized structures far away from thermodynamic equilibrium [1.65].
Examples are nerve pulses [1.29, 1.66], pulses in electrical networks [1.28, 1.67],
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oscillons in granular media [1.68, 1.69], concentration drops of chemical reagents
[1.70-1.73], solitary structures on parametrically driven liquid films [1.74], dissipa-
tive solitons in optical systems [1.75], filaments in semiconductors [1.76, 1.77] and
gases being powered by microwaves [1.78], and current filaments in gas discharge
systems [1.30, 1.79-1.83]. While the dissipative solitons of optical systems are used
for real applications, e.g. to optical communication networks [1.84], applications
concerning self-organized computation are in a period of development [1.85-1.87].
Examples include the computation of Voronoi diagrams [1.88, 1.89] or solving the
optimal path problem [1.90,1.91]. It has also been suggested that dissipative solitons
might be used for the transportation of micro-freight [1.92] or act as bits of storage
elements [1.75,1.93-1.95]. A broader overview on dissipative solitons in different
kind of systems can be found in the book edited by Ankiewicz and Akhmediev
[1.96,1.97] and the review of Purwins et al. [1.65].

The investigation of dissipative solitons in reaction-diffusion systems started
in the middle of the last century and was carried out simultaneously with the
investigation of other dissipative structures in reaction-diffusion systems, such as
fronts, patterns and spirals. At this point, it is appropriate to outline the connections
and differences of these four structure categories.

1.2.2 Spirals

Spirals are a generic structure of excitable media [1.98], which — although being
spatially extended — have an identifiable center [1.99]. From this point of view,
they can be investigated in the context of localized structures [1.100, 1.101].
Thus, with patterns, spirals share the property of spatial extension, while, with
dissipative solitons, they share the property of localization. Slightly curved spiral
arms propagate with a velocity that is proportional to the local curvature. This shows
an elementary connection to front propagation in two-dimensional media [1.102].
In the context of this book, spirals typically occur from moving dissipative solitons,
which are not stabilized by a global or local feedback.

1.2.3 Pattern

Physical/chemical pattern typically emerge from homogeneous media that are desta-
bilized by a spatial modulation [1.103]. Therefore, they consist of basic structure
elements like spots or stripes that are uniformly distributed. If a system exhibits
co-existence of two different basic structures, the transition between differently
patterned domains will be interpreted in terms of a front formalism [1.104]. The
same holds for the transition between a pattern and a homogeneously oscillating
domain, the so-called Hopf-domain [1.105, 1.106].



1.2 A Very Short Literature Survey 7

Patterns can also emerge from a homogeneous system being destabilized by a
critical nucleus, from which a pattern starts spreading [1.107] until the domain is
completely covered by the pattern. This pattern front can be stopped by suitable
feedback mechanisms [1.108], so that the periodic structure coexists with the
homogeneous part of the domain as a stable state of the system. Frequently, one
observes hexagonal ordered states being build from continuously attaching and
separating single dissipative solitons [1.30, 1.80, 1.109], which indicates that such
clusters can be identified as crystalline phases of dissipative solitons [1.110].

1.2.4 Fronts

Fronts connect two different stable states of a system and are a generic structure
of bistable media. In the case of excitable bistable media, fronts can connect to
each other, so that dissipative solitons [1.111] or more complicated structures like
three-dimensional rings and knots are formed [1.112]. Such complex structures
require the non-monotonical relaxation of fronts against the homogeneous ground
states of the system [1.31]. These oscillating tails result into a distance depending
interaction between fronts that is either repulsive or attractive. The alternating sign
of the interaction causes well defined distances with vanishing interaction, which
enable the formation of stable bound states of fronts.

Because fronts are basic localized structures in one-dimensional bistable sys-
tems, they are of special interest for investigating the dynamics of localized
dissipative structures [1.113—1.123]. In this context, the ansatz of Bode [1.124] is of
special importance, because, close to the onset of propagation, his approach enables
the description of front dynamics on the basis of a reduced set of degrees of freedom,
which can be identified as amplitudes of unstable modes and coupled neutral modes.

1.2.5 Dissipative Solitons

Already, in the first experimental investigations on front dynamics in bistable
chemical systems, assumptions were considered that the observations could be
related to the phenomenon of nerve conduction [1.125]. As a corollary to the
measurements of Hodgkin and Huxley [1.26], the scientists FitzHugh [1.27] and
Nagumo [1.28] developed a model in form of a two-component reaction-diffusion
system explaining nerve pulses as non-equilibrium structures formed from an
autocatalytic component (activator) and an inhibiting component (inhibitor). In
this model, the pulse itself is generated by a finite excitation of the homogeneous
ground state of the system, which relaxes to the characteristic shape of the pulse.
For the first time, there was a simple mathematical model available, which was
based on field equations and enables (analytically or by means of computer simu-
lations) the investigation of the dynamics of dissipative solitons. Further extensive
investigations were triggered by McKean’s suggestion to simplify nonlinearities as
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piecewise linear function [1.126], which enables the exact calculation of the shape
and existence of dissipative solitons as well as their instabilities [1.127,1.128]. The
larger part of investigations concerning dissipative solitons concentrates on one-
dimensional reaction-diffusion systems [1.37, 1.129-1.134], because in this case
the dissipative solitons can be easily stabilized by an inhibiting control field and
elementary interaction phenomena like scattering [1.135, 1.136], the formation of
bound states [1.137] or the generation of dissipative solitons [1.107, 1.138] can be
analytically treated.

Furthermore, complex stationary structures in two- or three-dimensional systems
can be investigated on the basis of an activator-inhibitor model [1.112, 1.139].
Complications will come into play if one considers a propagating dissipative soliton
as solution of a two-dimensional reaction diffusion system. This happens, because
the structure moves due to a relative shift of its activating and its inhibiting
component. As a consequence, the localized structure is not always stabilized
perpendicular to its direction of motion. Only in extreme parameter regimes,
where numerical solutions are difficult to obtain, it can be analytically shown that
propagating dissipative solitons exist as stable solutions of two-component, two-
dimensional, reaction-diffusion systems [1.140]. In order to provide a stabilization
of moving pulses in higher dimensional systems, some authors prefer a global
feedback [1.141, 1.142]. This approach has the disadvantage of preventing only
symmetric perturbations like the simultaneous growth or shrinkage of all dissipative
solitons, but cannot prevent asymmetric perturbations like the growth of one pulse
and the shrinkage of another one. This problem can be solved by taking into
account another inhibiting component, which has a short relaxation time and a large
diffusion constant [1.143, 1.144]. This additional inhibitor acts as a local feedback
mechanism. Consequently, the model system can be treated in terms of a three-
component reaction-diffusion system. Models of this type are not only investigated
with regard to localized structures [1.145-1.149] but also with regard to wave
instabilities of homogeneous basic states [1.104, 1.150]. Often it is convenient to
discuss the stability and dynamics of dissipative solitons on basis of numerical
solutions. Specialized algorithms for solving the reaction-diffusion systems of this
book are presented in [1.151] and [1.152, Chap 4].

1.3 How to Read This Book

There are several approaches for reading this book, which might depend on the
focus or background of the reader. However, the introduction is the best starting
point for all of them. The second chapter is devoted to the experimental evidence
of dissipative solitons in continuously driven systems with strong dissipation.
The chapter covers spatially extended chemical reactions and semiconductor-gas-
discharge systems and gives an illustrative overview on the observations undertaken
in the last two decades. Although the first two chapters act as a kind of motivation
for the following chapters, they can be easily skipped, if the reader is more interested
in a more theoretical point of view.
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The third chapter discusses the basic mechanisms of reaction-diffusion systems
leading to the formation of localized structures. It is written as a practical guide to
the most basic mechanisms of reaction-diffusion systems obtained since Turing’s
revolutionary concept. Therefore, this chapter might be considered as good starting
points for students becoming acquainted with the topic.

Scientists, with interests in the foundations of dynamics and interaction of
dissipative solitons, will find Chaps. 4 and 5 of interest. In Chap. 6 the theoretical
considerations of the foregoing chapters are related to experimental observations.

A variety of generation and annihilation phenomena is discussed in Chap.7
on the basis of simulations, which are discussed, wherever possible, in the context
of the basic mechanisms introduced in Chap. 3. The book closes with a summary on
the most important findings discussed in this book.

References

1.1. F. Stuart, The Magic Horns. Folk Tales from Africa, 2nd edn. (Addison-Wesley, Reading,
1976)

1.2. M.L. Nguyen, North china leopard (panthera pardus japonensis) seen through the glass of
its cage. From the zoological garden of the Jardin Des Plantes in Paris. online (2006). http://
commons.wikimedia.org/wiki/File:Panthera_pardus_japonensis_JdP.jpg

1.3. C. Weijer, in The Self-Made Tapestry. Pattern Formation in Nature, ed. by P. Ball (Oxford
University Press, Oxford, 1999), p. 71. Published with kind permission of the author

1.4. A.L. Hodgkin, Biol. Rev. Camb. Philos. Soc. 26(4), 339 (1951). Figure 1.1c published with
kind permission of Cambridge University Press

1.5. R. Scorer, Clouds of the World. A Complete Colour Encyclopedia, 1st edn. (Lothian,
Melbourne, 1972)

1.6. E.O. for Astronomical Research in the Southern Hemisphere. VIt commissioning data now
publicly available. ESO Press Release 18/99, URL: http://eso.org/outreach/press-rel/pr-
1999/pr-18-99.html (1999). Figure 1.1e published with kind permission of ESO Public
Affairs Department

1.7. R.E. Holzer, E.J. Workman, J. Appl. Phys. 10, 659 (1939). Figure 1.1f published with kind
permission of American Institut of Physics. Copyright (1939)

1.8. S. Singer, Nature of Ball Lightning (Plenum, New York, 1971)

1.9. E.L. Koschmieder, Adv. Chem. Phys. 26, 177 (1974)

1.10. E. Goro, On the Nature of Things. The Scientific Photography of Fritz Goro (Aperture, New
York, 1993). Figure 1.1h published with kind permission of Thomas Goreau

1.11. H. Willebrand, Strukturbildung in lateral ausgedehnten Gasentladungssystemen. Disserta-
tion, Institut fiir Angewandte Physik, Westfilische Wilhelms-Universitdt Miinster (1992).
Figure 1.1i published with kind permission of the author.

1.12. W.L. Paye, M.H. Lippert, Why Leopard has Spots. Dan Stories from Liberia (Fulcrum,
Colorado, 1998)

1.13. A.V. Getling, Rayleigh-Bénard Convection. Structures and Dynamics. Advanced Series in
Nonlinear Dynamics, vol. 11 (World Scientific, Singapore, 1998)

1.14. 1.D. Murray, Mathematical Biology (Springer, Berlin, 1993)

1.15. H. Haken, Synergetics. An Introduction. Nonequilibrium Phase Transitions and Self-
Organization in Physics, Chemistry and Biology. Springer Series in Synergetics, vol. 1,
3rd edn. (Springer, Berlin, 1983)

1.16. H. Haken, Advanced Synergetics. Instability Hierarchies of Self-Organizing Systems and
Devices. Springer Series in Synergetics, vol. 20, 2nd edn. (Springer, Berlin, 1987)


http://commons.wikimedia.org/wiki/File:Panthera_pardus_japonensis_JdP.jpg
http://commons.wikimedia.org/wiki/File:Panthera_pardus_japonensis_JdP.jpg
http://eso.org/outreach/press-rel/pr-1999/pr-18-99.html
http://eso.org/outreach/press-rel/pr-1999/pr-18-99.html

10

1.17

1.18.
1.19.
1.20.
1.21.
1.22.
1.23.
1.24.
1.25.

1.26.
1.27.
1.28.
1.29.

1.30.
1.31.
1.32.
1.33.

1.34.

1.35

1.36.

1.37.

1.38.

1.39.
1.40.

1.41.

1.42.

1.43.

1.44.

1.45

1.46.

1.47.

1.48.

1.49

1 Introduction

. ET. Arecchi, Complexity in Science: Models and Metaphors, in The Emergence of

Complexity in Mathematics, Physics, Chemistry and Biology, ed. by B. Pullman. Pontificiae

Academiae Scientiarum Scripta Varia, vol. 89 (Princeton University Press, Princeton, 1996),

pp. 129-160

S. Solomon, E. Shir, Europhys. News 34(2), 54 (2003)

A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations (Wiley, New York, 1995)

1. Prigogine, Structure, Dissipation and Life (North-Holland, Amsterdam, 1969), pp. 23-53

R.J. Field, R.M. Noyes, J. Chem. Phys. 60(5), 1877 (1974)

D. Cartin, G. Khanna, Phys. Rev. E 65, 016120 (2001). doi: 10.1103/PhysRevE.65.016120

L. Smolin, Galactic disks as reaction-diffusion systems (1996), arXiv:astro-phy/9612033

L. Smolin, Philos. Trans. R. Soc. Lond. A 361, 1081 (2003). doi: 10.1098/rsta.2003.1185

A.EM. Marée, From pattern formation to morphogenesis. Multicellular coordination in

dictyostelium discoideum. Dissertation, Faculteit Biologie, Universiteit Utrecht. (2000),

http://www.iam.ubc.ca/~stan/Thesis/

A.L. Hodgkin, A.F. Huxley, J. Physiol. 117, 500 (1952)

R. FitzHugh, Biophys. J. 1, 445 (1962)

J. Nagumo, S. Arimoto, S. Yoshizawa, Proc. IRE 50, 2061 (1962)

C. Koch, Biophysics of Computation. Information Processing in Single Neurons. Computa-

tional Neuroscience (Oxford University Press, New York, 1999)

Yu.A. Astrov, H.-G. Purwins, Phys. Lett. A 283, 349 (2001). doi: 10.1016/S0375-9601(01)

00257-2

M. Bode, H.-G. Purwins, Phys. D 86, 53 (1995)

C.I. Christov, M.G. Velarde, Phys. D 86, 323 (1995)

J.S. Russell, in Report of the fourteenth meeting of the British Association for the

Advancement of Science. York 1844, London (1845), pp. 311-390, Fig. XLVII-LVII

M. Remoissenet, Waves Called Solitons: Concepts and Experiments, 3rd edn. (Springer,

Berlin, 1999)

. C. Elphick, E. Meron, E.A. Spiegel, SIAM J. Appl. Math. 50(2), 490 (1990)

D. Haim, G. Li, Q. Ouyang, W.D. McCormick, H.L. Swinney, A. Hagberg, E. Meron, Phys.

Rev. Lett. 77(1), 190 (1996)

B.S. Kerner, V.V. Osipov, Autosolitons. A New Approach to Problems of Self-organization

and Turbulence. Fundamental Theories of Physics, vol. 61 (Kluwer, Dordrecht, 1994)

P. Ball, The Self-made Tapestry. Pattern Formation in Nature (Oxford University Press,

Oxford, 1999)

M.C. Cross, P.C. Hohenberg, Rev. Mod. Phys. 65(3), 851 (1993)

Y. Nishiura, Far-From-Equilibrium Dynamics, Translations of Mathematical Monographs,

vol. 209 (American Mathematical Society, Providence, 2002)

R.C. Hoyle, Pattern Formation. Introduction to Methods, 2nd edn. (Cambridge University

Press, Cambridge, 2007)

P.C. Fife, Mathematical Aspects of Reacting and Diffusing Systems. Lecture Notes in

Biomathematics, vol. 28 (Springer, Berlin, 1979)

J. Smoller, Shock Waves and Reaction Diffusion Equations, 2nd edn. (Springer, New York,

1994)

A.T. Winfree, When Time Breaks Down: The Three-Dimensional Dynamics of Electrochem-

ical Waves and Cardiac Arrhythmias (Princeton University Press, Princeton, 1987)

. A.J. Koch, H. Meinhardt, Rev. Mod. Phys. 66(4), 1481 (1994)

E. Mosekilde, O.G. Mouritsen (eds.), Modelling the Dynamics of Biological Systems.

Nonlinear Phenomena and Pattern Formation (Springer, Berlin, 1995)

W. Alt, A. Deutsch, G. Dunn (eds.), Dynamics of Cell and Tissue Motion. Mathematics and

Biosciences in Interaction (Birkhduser, Basel, 1997)

H. Meinhardt, Int. J. Bifurc. Chaos 7, 1 (1997)

. Y. Kuramoto, Chemical Oscillations, Waves and Turbulence. Springer Series in Synergetics,
vol. 19 (Springer, Berlin, 1984)


arXiv:astro-phy/9612033
http://www.iam.ubc.ca/~stan/Thesis/

References 11

1.50

1.51.
1.52.
1.53.
1.54.
1.55.
1.56.
1.57.
1.58.
1.59.
1.60.
1.61.
1.62.

1.63.

1.64.

1.65.

1.66.
1.67.
1.68.

1.69

1.70.

1.71.

1.72.

1.73

1.74.
1.75.
1.76.
1.77.

1.78.
1.79.
1.80.
1.81.
1.82.

1.83

1.84.

. R.J. Field, M. Burger (eds.), Oscillations and Traveling Waves in Chemical Systems (Wiley,
New York, 1985)

R. Kapral, K. Showalter (eds.), Chemical Waves and Patterns. Understanding Chemical
Reactivity, vol. 10 (Kluwer, Dordrecht, 1995)

A. de Wit, Adv. Chem. Phys. 109, 435 (1999)

G. Ertl, Adv. Catal. 45, 1 (2000)

W. Weidlich, G. Haag, Concepts and Models of a Quantitative Sociology. The Dynamics of
Interacting Populations. Springer Series in Synergetics, vol. 14 (Springer, Berlin, 1983)
M.A. Vorontsov, W.B. Miller (eds.), Self-organization in Optical Systems and Application
in Information Technology, 2nd edn. (Springer, Berlin, 1998)

E.T. Arecchi, S. Boccaletti, P. Ramazza, Phys. Rep. 328(1-2), 1 (1999)

T. Ackemann, W. Lange, Appl. Phys. B 72, 21 (2001)

K. Aoki, Nonlinear Dynamics and Chaos in Semiconductors (Institute of Physics Publish-
ing, Bristol/Philadelphia, 2001)

E. Scholl, Nonlinear Spatio-Temporal Dynamics and Chaos in Semiconductors. Cambridge
Nonlinear Science Series, vol. 10 (Cambridge University Press, Cambridge, 2001)

T.E. Faber, Fluid Dynamics for Physicists, 2nd edn. (Cambridge University Press, Cam-
bridge, 1997)

A. Buka, L. Kramer (eds.), Pattern Formation in Liquid Crystals. Partially Ordered Systems
(Springer, Berlin, 1996)

G.H. Ristow, Pattern Formation in Granular Materials. Springer Tracks in Modern Physics,
vol. 164 (Springer, Berlin, 2000)

H. Engel, E-J. Niedernostheide, H.-G. Purwins, E. Scholl, Self-organization in Activator-
Inhibitor-Systems: Semiconductors, Gas-Discharge and Chemical Media (Wissenschaft-
und Technik-Verlag, Berlin, 1996)

H.-G. Purwins, Yu.A. Astrov, 1. Brauer, in The 5th Experimental Chaos Conference,
Orlando, 28 June — 1 July 1999, ed. by M. Ding, W.L. Ditto, L.M. Pecora, M.L. Spano
(World Scientific, Singapore, 2001), pp. 3-13

H.-G. Purwins, H.U. Bodeker, S. Amiranashvili, Adv. Phys. 59(5), 485 (2010). doi: 10.
1080/00018732.2010.498228

A.L. Hodgkin, Biol. Rev. Camb. Philos. Soc. 26(4), 339 (1951)

A. Scott, Active and Nonlinear Wave Propagation in Electronics (Wiley, New York, 1970)
P.B. Umbanhowar, F. Melo, H.L. Swinney, Nature 382(6594), 793 (1996)

. C. Crawford, H. Riecke, Phys. D 129, 83 (1999)

H.H. Rotermund, S. Jakubith, A. von Oertzen, G. Ertl, Phys. Rev. Lett. 66(23), 3083 (1991).
doi: 10.1103/PhysRevLett.66.3083

K.J. Lee, W.D. McCormick, J.E. Pearson, H.L. Swinney, Nature 369, 215 (1994). doi:
10.1038/369215a0

V.K. Vanag, I.R. Epstein, Chaos 17(3), 037110 (2007). doi: 10.1063/1.2752494

. D.G. Miguez, V.K. Vanag, I.R. Epstein, Proc. Natl. Acad. Sci. USA 104(17), 6992 (2007).
doi: 10.1073/pnas.0611438104

O. Lioubashevski, H. Arbell, J. Fineberg, Phys. Rev. Lett. 76(21), 3959 (1996)

B. Schépers, M. Feldmann, T. Ackemann, W. Lange, Phys. Rev. Lett. 85, 748 (2000)
Yu.A. Astrov, Semiconductors 27(11-12), 1084 (1993)

V.V. Bel’kov, J. Hirschinger, V. Novak, F.-J. Niedernostheide, S.D. Ganichev, W. Prettl,
Nature 397(4), 398 (1999)

Y.H. Ohtsuki, H. Ofuruton, Nature 350, 139 (1991)

F.-J. Niedernostheide, B.S. Kerner, H.-G. Purwins, Phys. Rev. B 46, 7559 (1992)

Yu.A. Astrov, Yu.A. Logvin, Phys. Rev. Lett. 79(16), 2983 (1997)

I. Miiller, E. Ammelt, H.-G. Purwins, Phys. Rev. Lett. 82, 3428 (1999)

I. Brauer, M. Bode, E. Ammelt, H.-G. Purwins, Phys. Rev. Lett. 84(18), 4104 (2000)

. S. Nasuno, Chaos 13(3), 1010 (2003)

J. Martensson, A. Berntson, IEEE Photonics Technol. Lett. 13(7), 666 (2001)



12

1.85

1.86.

1.87.

1.89.

1.90.

1.91.
1.92.
1.93.
1.94.
1.95.
1.96.
1.97.
1.98.
1.99.
1.100.
1.101.
1.102.
1.103.
1.104.
1.105.

1.106.
1.107.

1.108

1.109.
1.110.

1.111.

1.112.

1.113

1.114.
1.115.

1 Introduction

. A. Adamatzky, Computing in Nonlinear Media and Automata Collectives (Institute of
Physics Publishing, Bristol, 2001)

A. Adamatzky, Chaos, Solitons Fractals 21(5), 1259 (2004). doi: 10.1016/j.chaos.2003.12.
068

A. Adamatzky, in Unconventional Programming Paradigms. Lecture Notes in Computer
Science, vol. 3566 (Springer, Berlin, 2005), pp. 33-46. doi: 10.1007/11527800_3

. A.L. Zanin, A.W. Liehr, A.S. Moskalenko, H.-G. Purwins, App. Phys. Lett. 81(18), 3338
(2002). doi: 10.1063/1.1518775

B. de Lacy Costello, A. Adamatzky, N. Ratcliffe, A.L. Zanin, A.W. Liehr, H.-G. Purwins,
Int. J. Bifurc. Chaos 14(7), 2187 (2004). doi: 10.1142/S021812740401059X

J.A. Sepulchre, A. Babloyantz, L. Stells, in Proceedings of the International Conference on
Artificial Neural Networks, ed. by T. Kohonen, K. Makisara, O. Simula, J. Kangas (Elsevier,
Amsterdam, 1991), p. 1265

A. Mikhailov, K. Showalter, Phys. Rep. 425(2-3), 79 (2006). doi: 10.1016/j.physrep.2005.
11.003

T. Ichino, T. Asahi, H. Kitahata, N. Magome, K. Agladze, K. Yoshikawa, J. Phys. Chem. C
112(8), 3032 (2008). doi: 10.1021/jp7097922

P. Coullet, C. Riera, C. Tresser, Chaos Interdiscip. J. Nonlinear Sci. 14(1), 193 (2004). doi:
10.1063/1.1642311

A. Kaminaga, V.K. Vanag, LR. Epstein, Angew. Chem. Int. Ed. 45, 3087 (2006). doi:
10.1002/anie.200600400

H.-G. Purwins, AIP Conf. Proc. 993(1), 67 (2008). doi: 10.1063/1.2909178. http://link.aip.
org/link/?APC/993/67/1

A. Ankiewicz, N. Akhmediev (eds.), Dissipative Solitons. Lecture Notes in Physics
(Springer, Berlin, 2005)

N. Akhmediev, A. Ankiewicz (eds.), Dissipative Solitons: From Optics to Biology and
Medicine, Lecture Notes in Physics, vol. 751 (Springer, Heidelberg, 2008). doi: 10.1007/
978-3-540-78217-9

E. Meron, Phys. Rep. 218(1), 1 (1992)

D. Barkley, Phys. Rev. Lett. 72(1), 164 (1994)

J. Schiitze, O. Steinbock, S.C. Miiller, Nature 356(6364), 45 (1992)

S. Komineas, F. Heilmann, L. Kramer, Phys. Rev. E 63(011103), 1 (2000)

A.S. Mikhailov, Foundations of Synergetics 1. Distributed Active Systems. Springer Series
in Synergetics, vol. 51 (Springer, Berlin, 1990)

A.M. Turing, Phil. Trans. R. Soc. B 237, 37 (1952)

E.M. Nicola, M. Or-Guil, W. Wolf, M. Bir, Phys. Rev. E 65(055101), 1 (2002)

G. Heidemann, M. Bode, H.-G. Purwins, Phys. Lett. A 177, 225 (1993)

M. Or-Guil, M. Bode, Phys. A 249 (1998)

P. Coullet, C. Riera, C. Tresser, Phys. Rev. Lett. 84(14), 3069 (2000)

. A'W. Liehr, M. Bode, H.-G. Purwins, in High Performance Computing in Science and
Engineering 2000. Transactions of the High Performance Computing Center, Stuttgart
(HLRS) 2000, ed. by E. Krause, W. Jager (Springer, Berlin, 2001), pp. 425439

Yu.A. Astrov, Phys. Rev. E 67(035203(R)), 1 (2003)

M.C. Rottger, Numerische Untersuchungen zur reduzierten Dynamik dissipativer Solitonen
in einem dreikomponentigen Reaktions—Diffusions—System. Master’s thesis, Institut fiir
Angewandte Physik, Westfilische Wilhelms—Universitdt Miinster (2003)

M. Bode, Beschreibung strukturbildender Prozesse in eindimensionalen Reaktions—
Diffusions—Systemen durch Reduktion auf Amplitudengleichungen und Elementarstruk-
turen. Dissertation, Institut fiir Angewandte Physik, Westfilische Wilhelms-Universitit
Miinster (1993)

A. Malevanets, R. Kapral, Phys. Rev. Lett. 77(4), 767 (1996)

. A. Hagberg, E. Meron, Chaos 4(3), 477 (1994)

A. Hagberg, E. Meron, Nonlinearity 7, 805 (1994). doi: 10.1088/0951-7715/7/3/006

M. Bode, A. Reuter, R. Schmehling, H.-G. Purwins, Phys. Lett. A 185, 70 (1994)


http://link.aip.org/link/?APC/993/67/1
http://link.aip.org/link/?APC/993/67/1

References 13

1.116
1.117

1.118.
1.119.
1.120.
1.121.
1.122.

1.123

1.124.
1.125.
1.126.
1.127.
1.128.

1.129

1.130.

1.131.
1.132.

1.133

1.134.
1.135.
1.136.

1.137.
1.138.

1.139

1.140.
1.141.
1.142.
1.143.
1.144.

1.145.
1.146.
1.147.
1.148.
1.149.
1.150.
1.151.

1.152.

. G. Flitgen, K. Krischer, Phys. Rev. E 51, 3997 (1995)

. G. Haas, M. Bir, 1.G. Kevrekidis, P.B. Rasmussen, H.H. Rotermund, G. Ertl, Phys. Rev.
Lett. 75, 3560 (1995)

A. Malevanets, A. Careta, R. Kapral, Phys. Rev. E 52(5), 4724 (1995)

P. Schiitz, M. Bode, V.V. Gafiichuk, Phys. Rev. E 52, 4465 (1995)

R.D. Benguria, M.C. Depassier, Phys. Rev. E 77(6), 1171 (1996)

A. Hagberg, E. Meron, Phys. Rev. Lett. 78(6), 1166 (1997)

M. Sheintuch, O. Nehkamkina, Phys. Rev. E 63(056120), 1 (2001)

. Y. Morita, H. Ninomiya, Sugaku Expos. 23, 213 (2010)

M. Bode, Phys. D 106(3-4), 270 (1997)

R. Luther, Zeitschrift fiir Elektrochemie 12, 596 (1906)

H.P. McKean Jr., Adv. Math. 4, 209 (1970)

S. Koga, Y. Kuramoto, Prog. Theor. Phys. 63(1), 106 (1980)

T. Ohta, M. Mimura, R. Kobayashi, Phys. D 34, 115 (1989)

. J. Rinzel, J.B. Keller, Biophys. J. 13(12), 1313 (1972)

R. Dohmen, Entwicklung von Modellgleichungen zur Beschreibung nichtlinearer Systeme
und Untersuchung der Losungsvielfalt mit analytischen und numerischen Mitteln. Disser-
tation, Institut fiir Angewandte Physik, Westfilische Wilhelms-Universitidt Miinster (1991)
C. Elphick, G.R. Ierley, O. Regev, E.A. Spiegel, Phys. Rev. A 44(2), 1110 (1991)

C. Elphick, A. Hagberg, B.A. Malomed, E. Meron, Phys. Lett. A 230(1-2), 33 (1997)

. V.V. Osipov, Phys. D 93, 143 (1996)

H. Hempel, I. Schebesch, L. Schimansky-Geier, Eur. Phys. J. B 2, 399 (1998)

T. Ohta, J. Kiyose, M. Mimura, J. Phys. Soc. Jpn. 66(5), 1551 (1997)

S.I. Ei, M. Mimura, M. Nagayama, Phys. D 165(3-4), 176 (2002). doi: 10.1016/
S0167-2789(02)00379-2

M. Or-Guil, I.G. Kevrekidis, M. Bir, Phys. D 135, 154 (2000)

Y. Nishiura, D. Ueyama, Phys. D 130, 73 (1999)

. C.P. Schenk, P. Schiitz, M. Bode, H.-G. Purwins, Phys. Rev. E 57(6), 6480 (1998)

L.M. Pismen, Phys. Rev. Lett. 86(15), 548 (2001)

K. Krischer, A. Mikhailov, Phys. Rev. Lett. 73(23), 3165 (1994)

T. Ohta, Phys. D 151(1), 61 (2001)

C.P. Schenk, M. Or-Guil, M. Bode, H.-G. Purwins, Phys. Rev. Lett. 78, 3781 (1997)

A. Doelman, P. van Heijster, T. Kaper, J. Dyn. Differ. Equ. 21(1), 73 (2009). doi: 10.1007/
s10884-008-9125-2

M. Suzuki, T. Ohta, M. Mimura, H. Sakaguchi, Phys. Rev. E 52(4), 3645 (1995)

R. Woesler, P. Schiitz, M. Bode, M. Or-Guil, H.-G. Purwins, Phys. D 91(4), 376 (1996)

M. Or-Guil, M. Bode, C.P. Schenk, H.-G. Purwins, Phys. Rev. E 57(6), 6432 (1998)

Y. Nishiura, T. Teramoto, K.I. Ueda, Chaos 13(3), 962 (2003)

Y. Nishiura, T. Teramoto, K.I. Ueda, Phys. Rev. E 67(056210) (2003)

A.M. Zhabotinsky, M. Dolnik, L.LR. Epstein, J. Chem. Phys. 103(23), 10306 (1995)

A.W. Liehr, A.S. Moskalenko, M.C. Rottger, J. Berkemeier, H.-G. Purwins, in High Perfor-
mance Computing in Science and Engineering '02. Transactions of the High Performance
Computing Center Struttgart (HLRS) 2002, ed. by E. Krause, W. Jdger (Springer, Berlin,
2003), pp. 48-61

A.W. Liehr, Dissipative Solitonen in Reaktions-Diffusions-Systemen. Dissertation, Institut
fiir Angewandte Physik, Westfélische Wilhelms-Universitidt Miinster (2003)



Chapter 2
Experimental Observations

An experiment is a device to make Nature speak intelligibly.
After that one has only to listen.

George Wald [2.1]

Abstract Starting points for getting acquainted with the phenomena of dissipative
solitons are chemical reaction diffusion systems and a planar semiconductor-gas-
discharge system. These systems exhibit dissipative solitons in the form of self-
organized localized concentration spots and current density filaments, respectively.
The chapter discusses the experiments and concentrates on the phenomena being
directly related to the particle-like characteristics of dissipative solitons in spatially
extended systems. These are the dynamics of single dissipative solitons, their mutual
interaction by scattering and formation of bound states, as well as generation and
annihilation processes. Due to the focus of the book, only continuously driven
experiments are considered.

2.1 Chemical Systems

2.1.1 Overview

Since the first successful experimental realization of Turing patterns in a reaction-
diffusion system in the beginning of the 1990s, which was undertaken by de Kepper
and coworkers in the chlorite-iodate-malonic-acid (CIMA) system [2.2], the number
of systems showing stationary patterns has increased significantly and the focus of
research has changed to the control of spatio-temporal structure formation [2.3,2.4].
Nearly at the same time another important experimental observation was reported,
namely the self-organization of localized concentration spots in a surface reaction
[2.5]. These dissipative solitons propagate in a lateral extended system and interact

A.W. Liehr, Dissipative Solitons in Reaction Diffusion Systems, Springer Series 15
in Synergetics 70, DOI 10.1007/978-3-642-31251-9_2,
© Springer-Verlag Berlin Heidelberg 2013
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Fig. 2.1 Propagating and interacting dissipative solitons observed as concentration peaks of
atomic oxygen adsorbed on the (110) face of a platinum crystal under steady-state conditions
of catalytic CO oxidation. Regions with increased oxygen concentration appear dark. (a) Two
PEEM images recorded with a time interval of 3.0s from a 130 X 70 wm?-region of the crystal,
(b) sequence of seven PEEM images recorded with a time interval of 1.1s from a 10 X 30 jum?
slice showing the merging and splitting of two interacting dissipative solitons. Parameters: po, =
35mPa, pco = 10mPa, T = 485K, fcx, = 20 ms (Reprinted figure with permissions from [2.5])

in a characteristic way with each other (Sect. 2.1.2). However, although the majority
of papers on structure formation in chemical systems consider spatially extended
systems, reports on dissipative solitons in these systems are rarely found. The reason
is twofold: In the case of the dissipative solitons observed in the ferrocyanide-
iodate-sulphite reaction [2.6] some experimental details were not obvious and it
took more than a decade to reproduce the original observations (Sect.2.1.5). In
the majority of other systems an external stabilization is either needed in the
form of an external feedback (Sect.2.1.3) or by boundary conditions, e.g., by
constraining the active area to a ring-like geometry [2.7]. In the latter scenario
the resulting dissipative solitons are comparable to nerve pulses (Fig. 1.1c), which
have only one degree of freedom and therefore can only interact with each other
in a very confined way. A completely different approach for stabilizing dissipative
solitons in spatially extended reaction-diffusion systems has been demonstrated by
the Brandeis group, which performs the Belousov-Zhabotinsky reaction in nano
structured batch reactors (Sect. 2.1.4).

2.1.2 Catalytic Oxidation of CO on Pt(110)

The first dissipative solitons to be observed in a spatially extended reaction-diffusion
system have been reported by Rotermund et al. [2.5]. They conducted experiments
on the catalytic oxidation of carbon monoxide on the (110) face of a single crystal of
platinum placed inside an ultra high vacuum system and monitored the experiment
with a photoemission electron microscope (PEEM) [2.8]. The image contrast of this
microscope results from the different dipole moments of the adsorbate complexes
0.4 and COyq, such that oxygen covered areas appear dark, while those covered
by CO are gray (Fig.2.1). In particular, Rotermund et al. observed concentration
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peaks of atomic oxygen propagating with a uniform velocity of 3.2 £ 0.2 um/s
along the crystallographic (100) direction of the Pt(110) substrate. These dissipative
solitons exhibit a characteristic bell-shaped intensity profile, which is elongated
perpendicular to the direction of motion (Fig. 2.1a).

Due to their parallel direction of motion only head-on collisions between
dissipative solitons are observed which normally lead to the extinguishing of one
of the dissipative solitons. However, one also observes the mutual annihilation of
both dissipative solitons or the merging and subsequent splitting of the intermediate
state (Fig.2.1b).

Since the first reports of this phenomenon, the investigations on dissipative
solitons on excitable surface reactions have been quite extended, such that a huge
variety of additional phenomena like the refraction of dissipative solitons crossing
the border from a domain consisting of pure platinum to a gold covered platinum
domain [2.9], the merging of two dissipative solitons to a single one in the course
of the catalytic reduction of NO with CO on a Pt(110) surface [2.10] or the
propagation of dissipative solitons on polycrystalline platinum under atmospheric
pressure [2.11] have been reported.

2.1.3 The Belousov-Zhabotinsky Reaction

The most important chemical reaction for the invention of self-organized spatio-
temporal dynamics has been discovered in the 1950s by Belousov [2.12]. He
observed that in a closed system the cerium-catalyzed bromate oxidation of citric
acid undergoes a large number of oscillations before reaching thermodynamic
equilibrium. Later on Zhabotinsky repeated Belousov’s experiments, replacing
the citric acid substrate by malonic acid and substituting the oxidation-reduction
indicator ferroin (tris(1,10-phenanthroline)iron(Il)) for the cerium catalyst, leading
to the well-known blue-red colour changes [2.13].

Investigations of the spatio-temporal dynamics of the Belousov-Zhabotinsky
(BZ) reaction started in the early 1970s of the last century with the observation
of travelling concentration waves in quasi-two-dimensional layers of unstirred
BZ reactant mixtures [2.14-2.16]. These waves typically appear in form of blue
fronts, targets or spirals (Fig.1.1h) embedded into the red background of the
reduced catalyst. Replacing ferroin by the photosensitive catalyst Ru(bipy)%+
(tris(2,2'-bipyridyl)ruthenium(II)) [2.17] opened the way towards controlling pat-
tern formation in the BZ reaction [2.3,2.4].

The experimental setup is straight forward [2.18,2.19]: A thin layer of silica gel
in which the light sensitive catalyst is immobilized is cast onto a microscope slide
and mounted inside of a reactor that is continuously fed with fresh, catalyst-free
BZ solution (Fig.2.2a). Images ¢ (x, t) of the chemical pattern are recorded by a
CCD camera and are converted into a feedback signal in form of an 30 x 20 mm?
image, which is projected through a 460 nm bandpass filter onto the gel. Because
the excitability of the medium decreases with increasing light intensity the feedback
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Fig. 2.2 Experimental setup for the observation of dissipative solitons in the BZ reaction [2.18].
(a) The feedback is realized as computer generated image being projected onto the reactor. (b) The
feedback image consists of an initiation zone (A), a reaction zone (B) with adapted gray level,
and a surrounding boundary (C') which confines the dissipative solitons. Typical parameters of the
experiment are given in Fig. 2.3

image consists of three different zones (Fig. 2.2b): a dark initiation zone (label A),
a reaction zone of 20 x 12mm? with adapted gray level (label B), and a boundary
with high intensity (label C). The dissipative solitons are initiated in the dark zone
and are allowed to propagate into the reaction zone, to which they are confined due
to the high intensity of the boundary zone. The gray-level of the reaction-zone is
chosen proportional to the area covered by the observed dissipative soliton, such
that the illumination intensity @ () of the reaction zone is given by

D(t+ A) =K1+ K2 / ¢(x,t)dx. (2.1)
{xlp(x.)=¢r}

Here parameter «; determines the offset illumination within the reaction zone, k;
is the feedback parameter, and ¢ is the threshold used for separating the localized
structure from the homogeneous background.

The experiments show, that self-organized localized structures form which are
not confined by the boundary of the reaction zone but exhibit a well defined shape
that is elongated perpendicular to the direction of motion (Fig.2.3). Varying the
feedback parameter k| reveals, that the size of the dissipative solitons decreases
with increasing illumination parameter «;. This is due to the fact, that a higher
illumination intensity excites a larger amount of the ruthenium catalyst, leading to an
increased reaction rate of the excited catalyst with bromomalonic acid. This reaction
produces bromide, which acts as inhibitor for the autocatalysis [2.17]. The same
mechanism controls the size of the dissipative solitons, because a small increase of
its shape would lead via the feedback loop (2.1) to an increase of the illumination
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Fig. 2.3 Propagating dissipative solitons in a photosensitive BZ-medium with optical feedback
[2.18]. The images show, that the size of the dissipative solitons decrease with increas-
ing illumination intensity (2.1) (a) k; = —0.0744 mW/cm?, (b) k; = —0.0248 mW/cm?, (c)
k1 =0.0248 mW/cm?, (d) k; = 0.0744 mW/cm?. The interval between the superimposed snap-
shots is 40s. Composition of catalyst free BZ-solution: [NaBrOs], =0.28 M, malonic acid
[MA], = 0.05M, bromomalonic acid [BrMA], = 0.165 M, sulfuric acid [H,SO,], = 0.36 M. The
silica gel medium (0.3 X 20 x 30 mm?) was prepared by acidifying an aqueous solution of 10 %
(w/w) Na,SiO; and 2.0 mM Ru(bpy)§+ with H,SOy. Temperature T =19.0°C, displayed area
7.78 X 6.53 mm?. Feedback: A, =2s, ik, =37.5mW/ecm*, ¢r = 1.1{¢(x,1)),. For additional
parameters see [2.18]

and a reduced excitability of the active medium. On the other hand a small decrease
of its shape would lead to a decrease of the illumination and an increased excitability
allowing for the growth of the dissipative soliton.

On basis of this experimental setup it has been shown, that dissipative solitons
can form due to stochastic resonance [2.20], exhibit oscillatory cluster patterns
[2.21], and are propelled in unexcitable BZ-media by periodic forcing [2.22]. It has
also been demonstrated, that dissipative solitons can be guided on complex paths
[2.23] and can interact via interaction potentials superimposed to the illumination
mask [2.24,2.25].

2.1.4 The Belousov-Zhabotinsky-Aerosol OT-Microemulsion
System

The fact, that the BZ reaction is capable of showing spatio-temporal structure
formation raises the question, whether this system is capable of developing periodic
patterns. These so-called Turing patterns need two requirements: A continuous
flow of matter and an inhibitor diffusing faster than the activator [2.26]. The first
condition has been realized in the late 1980s by the invention of the continuously
fed unstirred reactor (CFUR) [2.27]. The second condition was first realized,
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not in the BZ reaction, but in the chlorite-iodide-malonic acid (CIMA) reaction
[2.2,2.28,2.29]. These experiments were carried out in a gel CFUR allowing for
a continuous supply of fresh reactants. Furthermore de Kepper et al. used starch
as indicator, which forms a reversible complex with iodide, the activator for the
autocatalytic reaction, and iodine, an intermediate produced in the reaction. Due to
their size, these complexes stuck every now and then in the pores of the gel, which
effectively reduces the diffusion rate of the activator. On the other hand the inhibitor,
chlorite, can diffuse unhindered through the gel, leading to significantly larger
diffusion rates compared to the activator and thus fulfilling Turing’s condition [2.4].

In an aqueous solution of a typical BZ-reaction the diffusion rates of the activator,
the radical BrO3, and the inhibitor, Bry, are all on the order of 2- 107> cm? s !, thus
Turing patterns cannot form. An answer to this problem has been found by Vanag
and Epstein, who mixed the BZ reactants with a reverse microemulsion of water, oil,
and the surfactant sodium bis(2-ethyl-hexyl)sulfosuccinate, the so-called aerosol OT
(AOT), realizing the BZ-AQOT reaction [2.30]. The reverse microemulsion consists
of droplets of water surrounded by a monolayer of AOT floating in a sea of oil.
The water droplets of this ternary mixture have a diameter of several nanometers
and diffuse with a rate of (107°~10"7)cm?s™! [2.4]. Because the polar species
and thus the activator are mainly confined to the water droplets, while for certain
conditions the dominant species of the oil phase is the inhibitor Br,, which diffuses
with a rate of 2 - 10> cm? s™!, the inhibitor diffuses 10-100 times faster than the
activator allowing for the formation of Turing-patterns [2.30]. Having in mind that
the BZ reaction involves at least ten different reactions [2.31], which are reduced
to five chemical steps in the Oregonator model [2.32], it becomes clear that the
given description of the BZ-AOT reaction is quite simplified. Therefore additional
mechanisms like the effect of a second fast diffusing activator are considered in
order to interpret phenomena like accelerating waves [2.30]. A comprehensive
overview of the phenomena observed in the BZ-AOT system can be found in [2.33].

In order to observe structure formation phenomena in the BZ-AOT system the
microemulsion is prepared as a 1.5M solution of AOT in octane. One part of the
microemulsion is mixed with aqueous solutions of H,SO4 and malonic acid and
the second part is mixed with aqueous solutions of the catalyst and sodium bromate.
Equal volumes of each microemulsion are mixed and filled into a cylindrical batch
reactor of diameter 20 mm and height 0.1 mm. This reaction layer is illuminated by
a 40 W tungsten lamp whose light is filtered by a 450 nm interference filter. The
patterns forming in the reactive layer are observed by a CCD camera. Due to the
batch configuration the pattern typically persists for 1-3 h.

Two important control parameters determine the structure formation of the
system: The droplet fraction and the reactivity. Both parameters cannot be tuned
within a running experiment but can be varied from experiment to experiment. An
overview of the experimental phenomena observed for varied droplet fraction
and varied reactivity is shown in [2.30, 2.33]. The droplet fraction is directly
related to the diffusion rates of the chemical species and increasing the droplet
fraction basically leads to a transition from stationary to dynamic structures.
On the other hand the excitability of the BZ-AOT system results from the ratio
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Fig. 2.4 Dissipative solitons in the BZ-AOT reaction. White areas correspond to a large con-
centration of the oxidized catalyst (Ru(bpy)§+). (a) Self-organized rings. (b) Structures ini-
tialized by inhomogeneous illumination. Parameters: (a) Composition of aqueous BZ-solution:
[NaBrOs], = 0.2M, malonic acid [MA], =0.25M, catalyst [Ru(bpy)?r}o =4.2mM, sulfuric
acid [H,SOy4), =0.25 M. Droplet fraction ¢4 =0.41, temperature T =23.5°C, displayed area
5.1 x 3.75 = mm?, for additional parameters see [2.36]. (b) Composition of aqueous BZ-solution:
[NaBrOs], = 0.25M, malonic acid [MA], =0.1M, catalyst [Ru(bpy)?r}o =4.0mM, sulfuric
acid [H,S04], = 0.3 M. Droplet fraction ¢4 = 0.45, initial illumination intensity /o = 28 mW/cm?,
illumination intensity after removing the mask I = I/5, temperature T = 24.0 °C, displayed area

7.7 x 5.8 = mm?, for additional parameters see [2.35]. Figures published with kind permission of
LR. Epstein

between activation and inhibition steps, which can be parameterized by the ratio
opz = [H2S04][NaBrO;]/[MA] [2.33]. While the monotonic state of the system is
stable for small values of opz, one observes spontaneous formation of stationary
structures for 0.01 < oz < 0.09 and complex spatio-temporal dynamics for larger
values of opz [2.33, Fig. 5.3].

Dissipative solitons in form of localized stationary structures can be observed in
the BZ-AOT system close to the transition from the monotonic to the periodically
structured state (Fig. 2.4). They are observed as regions of locally increased concen-
tration of the reduced catalyst taking the form of spots, concentric rings, or strings of
well-defined width. In any case, the dissipative solitons have to be created by some
kind of finite perturbation. This might be either dust particles [2.34] triggering the
formation of concentric rings (Fig.2.4a) or an inhomogeneous illumination. In the
example shown in Fig. 2.4b the inhomogeneous illumination has been realized as a
mask showing a smiley and a vertical bar [2.35]. Due to the light sensitivity of the
catalyst, the masked regions exhibit a larger reactivity, leading to the spontaneous
formation of a Turing-pattern in the region masked by the vertical bar as well
as localized spots and strings of well-defined width in the regions shaded by the
smiley mask. After removing the mask, the self-organized structures persist up to
an hour, while the strings decompose into chains of localized spots still resembling
an outline of the initial image. The vanishing of the localized structures is caused
by consumption of the reactants due to the batch configuration of the experiment.

As mentioned above the BZ-AOT system exhibits complex spatio-temporal
dynamics for larger values of opz. In contrast to the well-known phenomena of
autowaves or spirals known from other reaction-diffusion systems, some of the cor-
responding structures observed in the BZ-AOT system are segmented. For example
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one observes dash waves, segmented circular waves, segmented spirals, and fronts
of bubbles [2.33]. From these observations one might suggest that the BZ-AOT sys-
tem is a promising candidate for investigating the interaction of dissipative solitons
in chemical reaction-diffusion systems without applying an artificial interaction by
inhomogeneous illumination. In the BZ-AOT system such experiments could be pre-
pared by initiating two or more dissipative solitons due to a transient inhomogeneous
illumination similar to the example discussed in Fig. 2.4a. After removing the mask,
the temperature of the system could be increased in order to increase the reactivity
of system, which might lead to a drift-bifurcation of the dissipative solitons.

2.1.5 Ferrocyanide-lodate-Sulphite (FIS) Reaction

From the historical point of view, the first oscillating chemical reaction showing
dissipative solitons in form of localized concentration spots is the ferrocyanide-
iodate sulphite (FIS) reaction [2.6]. The autocatalytic mechanism of this reaction
is the hydrogen ion driven oxidation of hydrogen sulfite, which is inhibited by the
hydrogen ion consuming oxidation of ferrocyanide. Therefore the spatial structures
of the system can be easily visualized by using a pH indicator. Because the FIS
reaction only oscillates in an open system, the continuous supply of reactants has to
be provided by using a continuously stirred tank reactor (CSTR) [2.37], which was
invented for generating Turing patterns in the CIMA reaction [2.38]. In the original
setup of the Austin group, the reactor consists of a thin poly(acrylamide) gel layer
of width d = 0.2 mm and diameter D = 22 mm which is fed via diffusion by the
reactants from the reservoir [2.6,2.37].

From theoretical considerations it is well known that the diffusivity of the
autocatalytic species needs to be smaller than the diffusivity of the inhibitory species
in order to obtain stationary self-organized patterns [2.26]. Though this topic has
not been considered in the original papers of the Austin group recent investigations
show that a critical concentration of weak acid functions with low mobility is
needed in order to observe stationary reaction-diffusion patterns in the FIS reaction
[2.39,2.40]. Due to the fast protonation equilibrium, these functions considerable
decrease the diffusivity of the hydrogen ions. In the experiments of Szalai and
de Kepper this condition is realized by impregnating a disk of agarose gel with
20 mM poly(acrylate). The authors of these recent investigations assume that the
same condition was realized in the original experiments of the Austin group by the
hydrolysis of the poly(acrylamide) gel due to the degradation of amide functions to
carboxylate functions in alkaline aqueous solutions.

In both cases the reactor is illuminated with orange light and concentrations spots
of high pH are indicated by bromothymol blue, which changes from yellow to blue
as the pH increases from 6.0 to 7.6. While the first report on stationary patterns in
the FIS reaction discussed lamellar structures resulting from front-front interactions
[2.37], a later paper [2.6] shows that increasing the concentration of ferrocyanide
beyond the lamellar regime leads to the formation of concentrations spots of low pH,
which undergo a subsequent process of replication by division (self-replication) and
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Fig. 2.5 Self-replication of dissipative solitons observed in the ferrocyanide-iodate-sulphite
reaction. Blue and red regions represent states of high and low pH, respectively. The false
colour representation has been created from grayscale images recorded in reflected
light with a CCD camera. Concentrations of reagents fed in the reservoir of the
reactor: [NalO3], =75.0mM, [Na,SOs3],=89.0mM, sulfuric acid [H;SO4],=3.6mM,
[NaOH], = 0.25 mM, [K4Fe(CN), - H,OJ, =36.4mM. Input flow rate 86.4ml/h, temperature
of the reactor 30 °C, edge length of the displayed area Lq=7mm, diameter of the reaction
volume D = 22 mm, height of the reaction volume d = 0.4 mm, sampling frequency fi., =4 min
(Reprinted by permission from Macmillan Publishers Ltd: Nature [2.42], copyright 1994)

Fig. 2.6 Breathing dissipative solitons in the FIS reaction. Dark and light regions represent
states of high and low pH, respectively. The images have been recorded by a CCD camera from
the light transmitted through the reactor. Concentrations of reagents fed in the reservoir of the
reactor: [KIO3], = 75.0mM, [Na,SO;], = 89.0mM, sulfuric acid [H,SO4], = 3.09mM,
[K4Fe(CN)6 . H20]0 = 20.0mM, [poly(acrylate)], = 2.0 mM. Temperature of the reactor 30 °C,
diameter of the reaction volume D = 18 mm, height of the reaction volume d=0.75mm, (a)
sampling frequency f., = 8min, (b) sampling frequency f., = 4min, edge length of the
displayed area Ly = 3.5 mm (Reprinted with permission from [2.40])

annihilation due to overcrowding (Fig. 2.5). A similar phenomenon is observed for
the semiconductor-gas-discharge system (Fig.2.12) which has been characterized
by Astrov and Purwins as spatio-temporal chaos [2.41].

In a subsequent paper the Austin group investigated the spatial bistability of
the system systematically by varying the flow rate, the gel thickness, and the
concentration of ferrocyanide and reported the observation of breathing domains
of low pH concentration and breathing dissipative solitons in the form of high pH
concentration spots embedded in a low pH concentration domain [2.43]. After
realizing the crucial role of charged polymers for the differentiation between
the diffusivity of the activating and the inhibiting species the Bordeaux group
investigated the bistability of the spatially extended FIS reactor and repeated
the original experiments of breathing dissipative solitons (Fig.2.6). Furthermore



24 2 Experimental Observations

discharge gap

semiconductor
‘ glass electrode

J

/‘)
o ||— D

light source and optics camera system

gold layer

illuminated area

"
Ro ITO layer
Up

Fig. 2.7 Experimental setup of the semiconductor gas-discharge system [2.52]. The graphics does
not show the cryostat, in which the semiconductor electrode is located. Typical parameters of the
system are documented in Figs. 2.8-2.20

they investigated the three-dimensional structure of the observed structures and
documented the formation of one-dimensional dissipative solitons due to the
interaction of reaction fronts [2.40].

It can be expected that after clarifying the experimental details of the FIS
reaction, this system will lead to many new experiments on the dynamics of
dissipative solitons in chemical reaction-diffusion systems.

2.2 Planar Semiconductor Gas-Discharge Systems

2.2.1 Experimental Set-Up

The experimental system discussed in this section is a variant of the device, which
has originally been developed for the fast conversion of infrared light into the visible
spectrum [2.44-2.51]. The heard of the experiment is a discharge gap, which is build
from two planar electrodes (Fig. 2.7). For the experiments discussed in this book the
discharge gap is typically filled with nitrogen at pressure p, = 100 — 500 hPa. One
of the electrodes consists of a high ohmic semiconductor like GaAs(Cr), Si(Zn),
Si(Pt) or Si{Au) of width asc = 0.25 — 1.0 mm. The other electrode is a glass
substrate coated with indium tin oxide (ITO), which is transparent for visible light.
The high ohmic electrode is contacted by a gold layer. Typically the high and low
ohmic electrodes are wired as cathode and anode, respectively. In some experiments
the semiconductor electrode is located inside of a cryostat and is cooled down to
Tsc = 100K. In contrast to the infrared converter, which typically has a discharge
gap of width d = 0.1 mm, the pattern forming system has a discharge gap of width
d = 0.4 — 1.4 mm. The gas discharge system is driven by a DC voltage Uy. In some
experiments the current / in the discharge gap is limited by a series resistor Rj.
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The specific conductivity osc of the semiconductor can be controlled by an
external light source via the internal photo effect. The diameter of the illuminated
semiconductor area is typically D ~ 20 mm.

If the applied DC voltage U, exceeds a critical value U, the discharge
ignites. Therefore the critical value is called ignition voltage. The emitted light
is proportional to the local current density [2.53] and can be observed as luminance
distribution ¢ (x, ¢) through the transparent electrode. Of course the luminance can
also be recorded by camera systems. Depending on the investigated phenomena
the exposure time .y, varies between 0.4 and 20 ms and the sample frequency frep
varies between 50 Hz and 2 kHz. Typical control parameters of the experiment are
the supply voltage U, and the specific conductivity osc of the semiconductor.

This experiment shows a huge variety of different structure formation phe-
nomena, which range from Turing-patterns [2.53-2.55], spirals [2.56], and zigzag
destabilized structures [2.57, 2.58] to current density filaments [2.59-2.62] and
filament chains [2.63]. Thereby the observed current density filaments exhibit
pronounced particle-like properties like their mutual interaction (Sect.2.2.5) and
the generation and annihilation of particles (Sect.2.2.3). Under certain experimen-
tal conditions one can observe an oscillation of the homogeneous background
discharge, which triggers an oscillation of the current density filaments [2.64].
However, the following portrayal concentrates on experimental configurations with
stationary background discharges.

2.2.2 Observation of Current Density Filaments

Dissipative solitons in form of current density filaments as observed in semicon-
ductor gas-discharge systems are localized three-dimensional structures with two
dimensions being given by the lateral expansion of the electrodes and a vertical
dimension being given by the finite width of the discharge gap (Fig.2.7). The
structuring of the filaments in the vertical direction becomes more and more
complex with increasing discharge gap [2.65, S. 56ff]. The increase of complexity
can be explained by the formation of the positive discharge column and Faraday’s
dark space. However, for most experimental setups the discharge gap d is small
compared to the diameter D of the active area (d/D ~ 1072), such that the
current density filaments can be regarded as two-dimensional structures. In this
case the emitted luminance is integrated over the vertical dimension thus becoming
a two-dimensional luminance distribution. Therefore current density filaments are
recognized as areas of locally increased luminance typically exhibiting a bell-shaped
profile. These solitary objects only exist due to a continuous flow of energy and are
classified as dissipative solitons.

Because the discharge is disturbed by thermal fluctuations and discharge noise
[2.49] the shape of the filaments is noisy, too. However, for experiments without
oscillatory instabilities and spatiotemporal uncorrelated noise the fluctuations can
be averaged out from a series of snapshots as described by Gurevich et al. [2.66].
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Fig. 2.8 Averaged luminance distribution of dissipative solitons in form of current density
filaments [2.52]. (a) Current density filament with bell-shaped profile averaged from 1,000
snapshots. (b) Current density filament with oscillatory tails averaged from 1,000 snapshots.
Parameters: (a) Uy =2.74kV, ps¢c =4.95MQ - cm, Ry =20MQ2, I =46 A, semiconductor
GaAs(Cr), pn, = 280hPa, Tsc = 105K, D = 17mm, d =250 um, asc = 1.0 mm, fey, = 20 ms,
Jrep =50Hz. (b) Uy = 3.9kV, psc = 3.05MQ-cm, Ry = 4.4MQ, I = 200 wA, semiconductor
GaAs(Cr), pn, =280hPa, Tsc = 100K, D = 17mm, d =500 um, asc = 1.0 mm, fy, = 20 ms,
Jfrep =50Hz

An example of a bell-shaped luminance distribution of an experimentally observed
filament is shown in Fig.2.8a. For some experiments this method is also capable
of visualizing the oscillatory tails of current density filaments [2.52], which usually
are not visible within the background noise. A corresponding example is given in
Fig.2.8b.

2.2.3 Generation and Annihilation Phenomena

The particle-like character of dissipative solitons becomes obvious from the fact,
that they are generated or annihilated as a whole. Therefore current density filaments
are the smallest elementary building block from which more complex bound or
unbound states are formed. In general generation and annihilation phenomena occur
either due to a variation of control parameters or due to interaction processes with
other dissipative solitons or the domain boundary. In the following sections both
scenarios are discussed by means of representative experimental examples.

2.2.3.1 Controlling the Specific Conductivity of the Semiconductor

An important mechanism for generating dissipative solitons is the Turing-
mechanism, which is a spatial instability leading to the spontaneous structuring of
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Fig. 2.9 Evolution of a Turing-pattern to an assemble of particle-like structures due to an increase
of the specific conductivity of the semiconductor [2.59]. Subfigures (a) and (b) show Turing-
patterns with small and large amplitude, respectively. Subfigures (c¢)—(e) show the dissolving of
the hexagonal structure and the transition to a liquid-like state, which is characterized by the
mutual interaction of the current density filaments, while a certain short-range order is preserved. In
order to realize a high specific resistivity of the Si{Zn)-semiconductor, the system has been cooled
down to a temperature of Tsc = 90 K. The series of images (a)—(e) corresponds to an increase
of the specific conductivity of the semiconductor from oy = 0.8 - 1078 t0 4.0 - 1078 (Q cm) ™!,
Uy = 2.9kV, Ry = 41 M, pn, = 260hPa, D = 20mm, d = 500 um

the domain (Sect.3.3.2). In the semiconductor gas-discharge system the Turing-
instability can be triggered by a variation of the specific conductivity of the
semiconductor as shown by Astrov and Purwins [2.59]. In this experiment the
increase of the conductivity destabilizes a homogeneous gas discharge into a
hexagonal Turing-pattern with small amplitude (Fig.2.9a), which evolves into
a hexagonal pattern with large amplitude if the specific conductivity of the
semiconductor is increased even further (Fig. 2.9b). With ongoing stepwise increase
of the control parameter the rigid arrangement of the cluster dissolves, which is
accompanied by more and more localized structures dissolving from the cluster
(Fig.2.9c—e). Thereby single current density filaments behave like individual,
mutually interacting particles of a liquid state. For example elastic scattering
between two current density filaments or the formation of transient bound states
can be observed [2.59, p. 352], which indicates the existence of a certain short range
order between the current density filaments.

The experiment also shows, that the number of current density filaments fluctu-
ates. For example single filaments vanish after collisions with the boundary of the
active (illuminated) area of the semiconductor. At the same time the reduction of
the number of filaments boosts the generation of new filaments by two- or many-
particle-processes (cf. Fig. 2.13).

A completely different phenomena is observed, if the experiment is performed
without a series resistor [2.41, Fig. 5]. In this case the global current is not restricted,
such that increasing the specific conductivity while keeping the supply voltage fixed
leads to an increase of the amplitude of the current density filament. Therefore the
spatial period of the pattern grows until the filaments finally become unstable and
start to split and merge spontaneously which is characterized as spatio-temporal
chaos [2.41].

2.2.3.2 Controlling the Supply Voltage

An important feature of the semiconductor gas-discharge system is its multi-
stability, which is reflected by an hysteresis of the current-voltage-characteristics.
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Fig. 2.10 Current-voltage-characteristic of the self-completion scenario [2.55]. Parameters: No
series resistor, px, = 168 hPa, D = 20mm, d = 1.0mm, agc = 1.0 mm

Such kind of hysteresis is e.g. reported by Astrov and Logvin [2.55], who observe
the generation of new current-density filaments due to a self-completion scenario.
From the theoretical point of view this observation is very important, because it is
the experimental evidence of an effect predicted by Gierer and Meinhardt [2.67],
which can be regarded as one of the generic mechanisms for generating dissipative
solitons (cf. Sect. 7.1.3).

In order to summarize the observation of Astrov and Logvin [2.55] their recorded
current-voltage-characteristics is reprinted in Fig. 2.10. Its tags (A)—(F) refer to the
six phases of the experiment:

(A) If the supply voltage Uj is below the ignition voltage U, the gas discharge will
not ignite. In this phase the gas is in a dielectric state.

(B) If the supply voltage U is increased above the ignition voltage U, a self-
sustained homogeneous discharge will evolve, which is reflected by an nearly
linearly increasing global current /.

(C) At the critical voltage Uy, the homogeneous discharge is spontaneously desta-
bilized to a hexagonal Turing-pattern composed of current density filaments.
This pattern formation is accompanied by a switch of the current-voltage-
characteristic to its high-current branch.

(D) Decreasing the supply voltage Uy leads to the successive extinguishing of single
current density filaments which is accompanied by a decrease of the discharge
current /. Tuning the supply voltage even below the critical value Ugqwy leads
to the vanishing of the last current density filament and the system returns to its
zero current branch (A).

(E) If the supply voltage is not decreased below the critical value Ugown, such that
one current density filament (Fig. 2.11a) still remains, and the supply voltage is
increased, the global current increases, too.
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Fig. 2.11 The self-completion scenario observed from Astrov and Logvin [2.55]. (a)—(f) Lumi-
nance distribution emitted from the discharge gap for step-wise increased supply voltage U at
branch (F) of the current-voltage-characteristic shown in Fig.2.10. The width of the depicted
luminance distribution is 14 mm. Parameters: U, ~ 3.2kV, no series resistor, py, = 150hPa,
d = 1.4mm, asc = 450 pum, fex, = 40 ms. For additional parameters see [2.55]

(F) Further increase of the control parameter above the critical value of Uy
leads to the generation of new current density filaments, which is reflected by a
switch of the characteristic to the high current branch. Note, that the remaining
current density filament acts as a kind of seed, because the newly generated
filaments ignite on its oscillating tail forming a hexagon of one central and six
surrounding filaments (Fig. 2.11b—d). Additional filaments ignite on the edges
of the hexagonal grid (Fig. 2.11e, f), such that a cluster of hexagonally ordered
current density filaments evolves.

A similar generation process of current density filaments due to the measurement
of a current-density-characteristic has been reported by Becker and Ammelt [2.65,
2.68,2.69]. Though, it does not show the spontaneous formation of a Turing-pattern
or a hexagonal cluster, but the successive ignition of current density filaments
on rather arbitrary locations on the gas discharge plane, which most likely is
caused by inhomogeneities of the semiconductor [2.65, S. 44]. Therefore the related
current-voltage-characteristic cannot be regarded as generic. However, simulations
of the self-completion scenario on isotropic domains (Sect. 7.1.3) indicate, that the
experiment performed by Astrov and Logvin also had some kind of inhomogeneities
e.g. due to an inhomogeneous illumination of the semiconductor. Otherwise it would
not be possible to observe the successive ignition of current density filaments.

The increase of the supply voltage can also trigger a completely different gen-
eration phenomenon, the so-called self-replication, which is reported by Striimpel
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Fig. 2.12 Generation of current density filaments due to self-replication, which has been triggered
by an increase of the supply voltage [2.41]. In order to realize a high specific resistivity of the
Si(Pt)-semiconductor, the system has been cooled down to a temperature of Tsc = 77K. Uy =
1.9kV, Ry = 41MQ, pn, = 210hPa, D = 22mm, d = 350 pm, Lg = 4.25mm, f, = 500 s

[2.70, p.99], Astrov and Purwins [2.41]. It is characterized by the spontaneous
division of a dissipative soliton as depicted in Fig.2.12. The series of snapshots
shows the transition from three to four current density filaments due to a splitting
process. The division obviously results from an intrinsic instability of the dissipative
solitons, which becomes visible as lateral contraction of the localized structures.
In simulations a similar effect is induced by a spatial inhomogeneity (Sect. 7.3.3).
However, the fact that self-replication of dissipative solitons has also been observed
in other self-organizing semiconductor gas discharge systems [2.70, 2.71] and
chemical systems (Fig. 2.5) reflects the generic nature of the phenomenon.

2.2.3.3 Generation by Interaction

Interaction processes between dissipative solitons can also trigger the ignition
of new particle-like structures. This effect is e.g. observed for ensembles of
propagating dissipative solitons, which have been created by an increase of the
specific conductivity of the semiconductor, if the global current is restricted due to a
series resistor (cf. Fig. 2.9). For such configuration Astrov and Purwins report [2.59],
that two or three current density filaments are able to generate another filament,
if their distance drops below a characteristic critical value (Fig.2.13). The newly
generated dissipative soliton is also a stable entity and instantly starts to interact
with its neighboured dissipative solitons. However, this interaction does not trigger
a chain reaction due to the series resistor which restricts the global current. On
the other hand the ignition of new dissipative solitons due to interaction processes
becomes more likely, if other current density filaments have been annihilated, e.g.
due to an interaction process with the boundary of the active area.

Obviously this so-called replication process bears some similarity to the later
state of the self-completion phenomena (Fig.2.11c—f) at which the additional
filaments ignite in a characteristic distance to the already existing ones. Indeed
both phenomena can be related to the same mechanism, viz. the superposition of
oscillating tails of the localized structures (Sect. 7.4.2).
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Fig. 2.13 The replication of current density filaments due to the interaction of two (a) or three
(b) and (c) dissipative solitons [2.59]. The arrow indicates the generated filament. Parameters
correspond to Fig.2.9¢e

2.2.3.4 Annihilation by Interaction

Complementary to the generation of current density filaments is their annihilation,
which is observed in two different variants: Annihilation by fading and annihilation
by merging. While the latter is clearly identified as a two-particle process the fading
of filaments occurs typically in significant distance to other filaments [2.70, S. 102],
such that mutual interaction with other dissipative solitons can be neglected. If the
fading occurs close to the boundary of the active area a collision with the boundary
is most likely the cause of the annihilation.

In order to give an illustrative example of the rarely observed merging of current
density filaments, Fig.2.14 visualizes an experimental observation of Bodeker
[2.72,2.73]. The subfigures shows negatives of the luminance distribution in order
to present the details of the process with optimal contrast. Two current density
filaments approach each other (Fig.2.14a) and merge to a transient state with high
local current density (Fig. 2.14b, ¢). This transient state decays to a single dissipative
soliton in the range of milliseconds (Fig.2.14d), such that the number of dissipative
solitons effectively has been reduced by one.

Note, that the system is not stable in the presented scenario, if only one
current density filaments exists. Therefore a new filament will shortly ignite after
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Fig. 2.14 Annihilation by merging. The snapshots are negatives of the luminance distribution
recorded by Bodeker [2.72, p. 38]. (a) Approaching current density filaments. (b) and (¢) Merging
of current density filaments to transient state. (d) Reconfiguration to single current density filament.
Parameters: Ly = 8mm, Uy = 3.8KV, psc = 4.14MQ - cm, Ry, = 20 M, semiconductor
GaAs(Cr), pn, = 290hPa, Tsc = 100K, D = 17mm, d = 500 um, asc = 1.0mm,
texp = 0.4ms, frop = 2kHz

an annihilation has occurred. A similar interplay between generation and annih-
ilation has been observed in the many-particle system presented in Fig.2.9e. Here
annihilation is mainly caused by collisions with the boundary of the active area and
therefore can be regarded as annihilation by fading.

2.2.4 Dynamics

For certain experimental parameters only a single or a few current density filaments
exist within the active area of the semiconductor gas-discharge-system. If the elec-
trodes have been prepared with sufficient homogeneity, the current density filaments
will move on irregular paths indicating a significant influence of noise. However,
the experimenter will quickly observe, that for some experimental parameters the
filaments seem to be less influenced by noise than for other parameter sets.

In order to visualize these differences the position p(¢) of the current density
filaments has to be extracted from a set of recorded luminance distributions
¢(x,1;). For this purpose a threshold ¢t is chosen, which separates the luminance
distribution ¢ (x, t) into a subarea {¢(x,?)|p(x,t) > ¢r} of increased luminosity,
which indicates the existence of a current density filament, and the embedding
background discharge [2.74]. Having this threshold ¢ at hand the position p(¢)
of the dissipative soliton can be computed from

/ x ¢(x,t)dx
_ AxlpG.)=¢r}
p(t) = T s (2.2)

{x|p(x.1)=¢1}
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Fig. 2.15 Dynamics of current density filaments [2.61]. The subfigures show a snapshot of the
luminosity emitted from the discharge gap. Superimposed to the false colour representation of
the luminosity are trajectories of the localized structures. (a) Trajectory of the current density
filament for 31 s. Parameters: Uy = 3.60kV, psc = 2.02MQ -cm, Ry = 10MQ, I = 116 pA,
semiconductor GaAs(Cr), pn, = 280hPa, Tsc = 100K, D = 17mm, d = 550pum,
asc = 1.0mm, f, = 20ms, f; = 50Hz. (b) Trajectory of the current density filament for
39s. Parameters from Fig. 2.8a

If several dissipative solitons exist simultaneously on the active area the threshold
has to assure, that each localized structure i can be assigned a unique position p; (¢).
For the experimentally recorded trajectories presented in this work the analysis has
been performed by the programs FilaCount and FilaTrace [2.75].

Two typical filament trajectories p(¢) are visualized in Fig.2.15a, b. Each
subfigure shows a snapshot of the luminance distribution ¢ (x, y) with the corre-
sponding filament trajectory. They visualize the different types of motion observed
experimentally. While the trajectory of Fig.2.15a is characterized by frequent
random changes of the direction of motion, the trajectory of Fig.2.15b represents a
relative smooth motion with less frequent changes of the direction of motion.

These observations lead to the question, whether the qualitative differences of
the dynamics of current density filaments are caused by an intrinsic property of the
self-organized structures. This question is considered in Sect.6 by introducing a
stochastic time series analysis, which is capable of separating the deterministic and
the stochastic part of the dynamics.

2.2.5 Interaction Processes with Conservation of the Number
of Dissipative Solitons

Up to now the particle-like character of dissipative solitons has been discussed
on basis of experimental results, which show the generation or annihilation of
these self-organized entities as a whole in the course of two- or many-particle
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Fig. 2.16 Scattering of two dissipative solitons [2.52]. Numbers reference the respective snap-
shots. (a) Trajectories p; (¢) extracted from the recorded luminance distribution. The symbols are
enumerated with respect to the snapshot from which the positions have been extracted. (b) Time
series of particle distance dy, (1) = | p2(t)— p1(t)|. Parameters: Uy = 3.7kV, psc = 1.52MQ-cm,
Ry = 4.4MQ, I = 300pA, semiconductor GaAs(Cr), pn, = 270hPa, Tsc = 100K,
D =20mm, d = 500 um, asc = 1.0mm, tey, = 20ms, frep = 50Hz

interactions. Another important aspect of their particle-like properties is the ability
to interact with each other while the number of interacting dissipative solitons is
preserved. The following sections document this ability on basis of experimentally
observed scattering events (Sect.2.2.5.1), the formation of transient bound states
(Sect.2.2.5.2), the dynamics of rotating bound states (Sect.2.2.5.3), and many
particle phenomena (Sect.2.2.5.4). These observations act as motivation for the
theoretical considerations conducted in Chap. 5.

2.2.5.1 Scattering

A good example for demonstrating the particle-like character of dissipative solitons
are scattering processes, where the motion of individual dissipative solitons is
affected by the attractive or repulsive interaction of other dissipative solitons
without being captured in transient bound states. In such scenarios the dissipative
solitons approach each other up to a distinct distance, such that the merging of
dissipative solitons cannot occur. Note, that the scattering distance is a typical
characteristic of interaction processes for a chosen set of experimental parameters.
Such kind of interaction is shown in Fig.2.16 as trajectories p;(¢) and p,(¢) of
their luminance distribution (Fig.2.16a), which have been computed from (2.2).
Additionally Fig. 2.16b shows the distance dy,(¢) = | p2(t)— p1(¢)| of the interacting
dissipative solitons. The symbols of both plots are enumerated with respect to the
number of the recorded luminance distribution, from which the positions have been
extracted. Despite the fluctuations it can be seen from the plots, that the dissipative
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Fig. 2.17 Transient bound state of two dissipative solitons [2.52]. (a) Trajectories p; () computed
from the respective luminance distributions. Black and dark gray lines indicate trajectories of the
first 35s, where the dissipative solitons are considered as being bound. Light gray lines indicate
trajectories for ¢t > 35s. (b) Distance dy, () of the dissipative solitons. Parameters: Uy = 3.1kV,
psc = 4.19MQ -cm, Ry = 4.4MQ, I = 170 LA, semiconductor GaAs(Cr), pn, = 280hPa,
Tsc = 100K, D = 20mm, d = 450 um, asc = 1.0mm, f.x, = 50ms

solitons approach each other up to a closest distance at the 14th snapshot, when the
mutual repulsion enforces a change of direction, such that the dissipative solitons
veer away from each other.

2.2.5.2 Transient Bound States

One of the most astonishing property of current density filaments is the fact, that
they are able to build bound states. These are characterized by a distinct binding
distance between the bound filaments. In most cases the bound state decays within a
short time interval after its formation into two independent filaments due to external
fluctuations. A typical example for such kind of bound state is shown in Fig.2.17
on basis of two particle trajectories (Fig.2.17a) and the evolution of the distance
between these solitary objects (Fig.2.17b). The plotted trajectories start at positions
A and B corresponding to t = 0 in Fig.2.17b, when the bound state already has
formed. Obviously the dynamics act on two different time scales: A fast time scale
reflecting the stochastic dynamics of the individual dissipative soliton and a slow
time scale on which the bound state propagates. Fluctuations of the fast time scale
become visible in Fig.2.17b as short term fluctuations of the distance between
the dissipative solitons. Within the first 37 s of the recording the binding distance
fluctuates around a mean value of (2.2 &+ 0.3) mm. Contrary to this obviously
stabilized binding is the break-up of the bound state at ¢ ~ 37s, which leads to a
rapid separation of the filaments (Fig.2.17b). Only the beginning of this separation
is shown in Fig. 2.17a, which covers approximately the first 40 s of the distance plot.
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Fig. 2.18 Rotating bound state of two dissipative solitons observed in the semiconductor gas-
discharge system [2.62]. The images show the luminance distributions of the counterclockwise
rotating structure covering approximately a rotation of 180°. Parameters: Ly = 9mm, Uy =
1.9kV, psc =22.2MQ -cm, Ry = 5MQ, I = 3.2 1A, semiconductor Si{Zn), pn, = 200 hPa,
Tsc = 90K, d = 0.8mm, agc = 1.0mm, D = 20 mm, fe,, < 0.01s

The stabilized binding on the one hand and the rapid increase of distance on
the other hand indicate a special kind of interaction, which changes from attraction
to repulsion in dependency of the interaction distance. Historically such kind of
interaction had been an important attempt for explaining the complex structures
found in inanimate nature since the eighteenth century [2.76, 2.77], which had
only been discarded due to the success of modern physics at the beginning of
the twentieth century. However, in dissipative systems this is the most important
type of interaction between self-organized structures, which is discussed in detail in
Chap. 5.

2.2.5.3 Rotating Structures

In Sect.2.2.3 the self-completion scenario has been introduced, which is suitable
for generating small clusters of dissipative solitons. This mechanism has been
applied for generating a rotating cluster of two dissipative solitons by starting with a
propagating current density filament and increasing the supply voltage until a second
filaments ignites in direct neighbourhood to the first one. The resulting structure is
shown in Fig. 2.18. Obviously the two current density filaments form a bound state,
which rotates counterclockwise. Further increase of the supply voltage results in
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Fig. 2.19 Dynamics of the a

rotating bound state depicted g 6r /
in Fig. 2.18 [2.62]. Gray i
vertical lines indicate the = 4

correlations between the
different time series. They 2
mark significant b
discontinuities of the
dynamics within one half
period of rotation. (a)
Projection of position p(t) 2L . L . L . L
of the upper right dissipative c
soliton depicted in Fig.2.18a

on the x-axis. (b) Distance

dy () between the rotating

dissipative solitons. (c)

Projection of the center p.(t) d 4
of the bound state on the
x-axis. (d) Angular velocity
w(t) of the bound state

a(

dp(t)/mm

¢(t)/mm

w(t)/s
<\

t/s

the ignition of additional current density filaments and a much more complicated
dynamics of the resulting cluster, which should not be discussed here. The detailed
examination of the observed dynamics is visualized in Fig.2.19. The discussion
starts with the time series of the x-coordinate of the upper right dissipative soliton
depicted in Fig.2.18a. In Fig.2.19a its x-coordinate has been plotted for five
rotations. The curve shows a repeated pattern with significant deviations from the
sinusoidal form. Notably, the deviations are replicated for each rotation, which
indicates the influence of spatial inhomogeneities.

The time series of the distance d} () between the dissipative solitons is shown in
Fig. 2.19b for the same time interval. The distance dp(¢) fluctuates characteristically
around the mean distance of (2.836 &+ 0.093) mm with half the period observed for
x(t). This is caused by the fact, that both dissipative solitons are identical and are
identically influenced by the spatial inhomogeneities.

Defining the center p.(1) = (xc(¢), yc(¢))T of the bound state as the midpoint
of the connecting line between the centers of both luminosity distributions, another
characteristic time series x.(¢) can be examined (Fig.2.19c). Its curve shows the
same periodicity as the distance dy(?) and a fine structure, which is obviously cor-
related to the fine structure of x(¢). Additionally one observes, that the fluctuations
of the center of the cluster are accompanied by strong fluctuations of the angular
velocity w(t) of the cluster (Fig.2.19d).

The observation indicates, that bound states of dissipative solitons do not need
to be transient (Sect.2.2.5.2) but also exist as stable states. However, in the
presented scenario the dynamics of the rotating bound state is strongly influenced
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t=0s t=28s t=10s t=23s

Fig. 2.20 Many particle system with constant number of dissipative solitons [2.55]. (a)-
(d) Snapshots of the luminance distribution for constant parameters: Uy = 1,900 V, pn, = 130 hPa,
Tsc 90K, d = 0.8 mm, asc = 1.0mm, D = 20 mm, for additional parameters see [2.55]

by spatial inhomogeneities, which are presumably located at the semiconductor. The
inhomogeneities excite internal degrees of freedom such that the binding distance is
not constant.

Note, that the distance between both dissipative solitons is small compared to the
distance of the filaments to the boundary of the active area, such that the boundary
does not stabilize the structure or influences its dynamics. This is in contrast to
the observation of rotating hexagonal patterns on circular domains as reported for
combustion experiments [2.78,2.79] or ac-driven gas-discharge systems [2.80], for
which the rotational dynamics is determined by the circular shape of the domain
and the related breaking of symmetry. However, rotating bound states of dissipative
solitons, which are not stabilized by the boundary of the system, are for example
observed for oil droplets on a bath of silicon oil which is oscillated vertically
[2.81-2.83].

2.2.5.4 Many Particle Phenomena

In Sect. 2.2.3.1 a many particle phenomena has been introduced, where the number
of dissipative solitons varies due to repeated generation and annihilation processes.
Comparable results are also obtained for experimental parameters without gener-
ation and annihilation processes of dissipative solitons. In these cases the number
of dissipative solitons is constant, but the ordering of the clusters varies due to the
stochastic dynamics of the system.

An example for such kind of phenomena is show in Fig.2.20. The figure
shows four snapshots of the luminosity distribution emitted from 39 current density
filaments, which have been generated due to a self-completion scenario (Sect. 2.2.3).
However, the number of dissipative solitons is constant, because the system
parameters are not changed and does not permit the annihilation or generation of
particles due to interaction processes.

The series of snapshots shows a cluster of hexagonally ordered current density
filaments, which is not rigid but allows for the relocation of single dissipative
solitons at the boundaries of the cluster. On the time scale of several seconds the
consecutive process of detaching and reconnecting of single dissipative solitons
leads to the restructuring of the cluster. Astrov and Logvin interpret this observation
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as noise induced evaporation and condensation of individual dissipative solitons

[2.55], at which the hexagonally ordered state is identified as condensed phase.
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Chapter 3
Modeling

The discreteness just results as a structure from the laws ruling
the reality. By no means these laws are completely understood,
but a probably correct analogy from physics of rigid bodies
might be the occurrence of partial tones — e.g. of a bell — from
the finite size of the bell and the laws of elasticity not at all
being discontinuous.

Erwin Schrodinger, 1952,
translated from a voice recording [3.1].

Abstract The goal of this chapter is the exploration of fundamental aspects for
structure formation in reaction-diffusion systems. In other words: What is the
minimal requirement for structure formation? Therefore the considerations start
with discussing the dynamics resulting from a cubic non-linearity which leads to
the concept of bifurcations and bistability. Taking spatial coupling into account one
finds periodic structures and stationary fronts. Extending the nonlinearity by means
of a driving term new phenomena like trigger fronts and critical nuclei are explored.
The stabilization of critical nuclei by global feedback leads to the introduction of a
second component and the well-known phenomena of extended activator-inhibitor
systems: Turing-patterns, localized solutions with exponentially and oscillatory
decaying tails as well as the formation of Voronoi-diagrams. Finally, a second
inhibitor is introduced and simple dissipative soliton solutions are discussed.

3.1 One-Component Systems with Symmetric Potential

3.1.1 Local Bistability

A typical property of nonlinear systems is the parameter dependent occurrence of
bi- and multi-stability. In this context bistability means, that a dynamic system has
got two attractors [3.2, p.28]. In the most simple case these attractors correspond

A.W. Liehr, Dissipative Solitons in Reaction Diffusion Systems, Springer Series 43
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to stable stationary states of the system, which can be switched in between by
sufficient large perturbations. Multi-stability occurs, if more than two attractors
exist. These phenomena are observed in a broad variety of nonlinear systems: e.g.
rest positions of nonlinear torsional oscillators [3.3], membrane activity of olfactory
bulb mitral cells [3.4], concentration density of reagents, [3.5,3.6], optical properties
of nonlinear media [3.7], current density characteristics of gas-discharge-systems
[3.8] and semiconductor devices [3.9-3.12].

The extensive experimental observations show, that the combination of local
bistability and spatial coupling leads to spatiotemporal structures, such that bistable
systems are hopeful candidates for structure formation phenomena. However, it will
be shown that bistability is not stringently necessary for structure formation, if the
structures are stabilized by competing processes (e.g. Sect. 3.3).

Because the bistability of a system, first of all, is determined by its inherent
nonlinearity, we are starting with the following local dynamics:

= Au—u’. (3.1

Here, i is the derivative with respect to time . The local dynamics defined by this
cubic nonlinearity is visualized in Fig. 3.1a as phase space portrait. In this diagram
the change it of quantity u is plotted as function of the respective state u of the
system. Thus the quantity u increases for iz > 0, which is implied by horizontal right
arrows and will decrease for it < 0 (horizontal left arrows). Between these regions
(2 = 0), the system is stationary such that the undisturbed system will stay in these
states for all times. Therefore these states are called fixed points of the dynamics.
The phase space portrait (Fig. 3.1a) visualizes that for A < 0 one stationary state
exists at uy = 0, while for A > 0 two additional stationary states appear.

The stability of these stationary states can be considered in terms of classical
mechanics if the dynamics are interpreted as over-damped motion of a particle
which is located at u and moves according to potential

1

Ve(u) = — / S (un)duy, = — /0 ) S (un)duy, = —%uz + 1“4 3.2)

(Fig.3.1b). For this approach it is assumed that the inertia of the particle is small
compared to the friction force and to the force related to the potential [3.13, p.30].
For A < 0 the potential has a global minimum at u; = 0 and therefore is a stable
fixed point of the dynamics (gray curve in Fig. 3.1b). On the other hand the potential
exhibits a local maximum at u for A > 0 corresponding to an unstable fixed point
(black curve in Fig.3.1b). According to this considerations small perturbations %
of fixed point u§ will increase for A > 0. For A < 0 perturbations will decrease
such that the fixed point u will be approached asymptotically for 1 — oco. It is
said that the stationary state u; is asymptotically stable for A < 0 and unstable for
A > 0. Note, that the maximum of the potential at u; = 0 for A > 0 is flanked by

two local minima ugt = £/, which denote two asymptotically stable fixed points
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Fig. 3.1 Local dynamics exhibiting supercritical pitchfork bifurcation. Gray and black curves
refer to the mono-stable and bistable case, respectively, while the separatrix is plotted by dotted
curves. (a) Cubic characteristic f(u) (3.1) with horizontal vectors indicating the direction of
phase flow for the mono-stable (gray vectors) and the bistable case (black vectors). (b) Potential
Ve(u) (3.2) of the local dynamics. Local minima and maxima refer to stable and unstable states,
respectively. (c¢) Bifurcation diagram showing the stationary state as function of the control
parameter A. The vertical line separates qualitatively different solutions in parameter space. Solid
and broken curves refer to stable and unstable solutions of f(u) (3.1)

such that the system can be switched between these stable states by sufficient large
perturbations. Thus depending on parameter A the discussed system is mono-stable
(A < 0) or bistable (A > 0).

The transition of a system with one stationary state to a system with three
stationary states is a qualitative change of its dynamics. Close to the stationary
solution u; = 0 this qualitative change becomes most obvious. While the phase
flow drives the system towards the fixed point uj = 0 for A < 0, it veers away from
the vicinity of uj = 0 for A > 0 and is driven towards one of the evolved stationary

states ugt = ++/A. Such a change of phase space topology is called bifurcation.
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The special case discussed here is called supercritical pitchfork bifurcation due
to the pitchfork-like bifurcation diagram depicted in Fig. 3.1c. This graph shows
the stationary states of the system as function of control parameter A. The critical
parameter A, = 0 at which the newly evolved solutions u(ﬂf branch is called
bifurcation point. It divides the different phase space topologies in parameter space.

At the beginning of this section it has been mentioned that bistability of the local
dynamics is a sufficient prerequisite for observing structure formation phenomena
in spatially extended systems. Therefore we are setting A = 0.8 for the examples of
the following sections.

3.1.2 Spatial Bistability

In order to investigate the influence of local bistability on spatially extended systems
we are taking diffusive processes into account. Diffusion is one of the most basic
mechanisms of spatial coupling, which has been investigated in the in the eighteenth
century in the context of heat transfer and therefore had played a crucial role in
developing the theory of partial differential equations [3.14]. For this purpose we are
complementing (3.1) with the term D, Au. Here parameter D, denotes a diffusion
constant and A the Laplacian in R":

i = DyAu+ Au—u’ (3.3)

with # = u(x,t) and x € R". The homogeneous solutions of (3.3) are derived from
the solutions of the local dynamics as u (x) = u? = 0 and uf (x) = uf = £v/A.
Now, we are seeking stationary solutions #(x) = 0 of (3.3) and assume that the
gradient Vu(x) vanishes in all directions despite of e,. This leaves us with one
spatial dimension: u(x) = u(x). Thus (3.3) reduces to the differential equation of
an undamped oscillator

D, = -+ i’ (3.4)

The mechanical equivalent of this model is a chain of nonlinear torsional oscillators
having an unbalanced mass at their top and being coupled by torque springs, which
is a variation of the experimental setup reported by B. Denardo et al. [3.15]. If the
weight of the unbalanced mass exceeds a critical value the oscillators won’t reside
at their top position anymore but are held by the torque springs at the left or right
hand side of the top position.

Interpreting the x-coordinate as time the solutions of (3.4) can be interpreted as
dynamics of a particle with mass D, moving in potential

V(i) = %ﬁz — la‘*. (3.5)

An example of this potential for A = 0.8 and D, = 5-107° is depicted in

Fig.3.2a. The oscillator equation (3.4) has a continuous family of solutions with

. 2 . o
energy eigenvalues 0 < Eg < % resembling periodic structures. These structures
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Fig. 3.2 Stationary periodic solutions of the one-dimensional oscillator (3.3). (a) Potential V;(u)
(3.5) (black curve) and total energy Eg of periodic structures in the harmonic limit Egp, = 0.1 %
(light gray line) and in the non-harmonic limit Eg, = 0.9999% (dark gray line). (b) Numerical
solutions of oscillator (3.3) for the initial conditions #(0) = 0 and &’ (0) = +/2Eg/D,,. The light

gray curve corresponds to the harmonic limit with total energy Eg, and the dark gray curve to the
non-harmonic limit with total energy Eg ,. Parameters: A = 0.8, D, = 5 - 107

can be interpreted as undamped oscillations being harmonic for £ — 0 (light gray
curve in Fig. 3.2b). However, these periodic structures are not stable against small
perturbations neither in the harmonic nor in the non-harmonic limit [3.16, p. 84ff].

Let’s take a closer look at the amplitude and frequency characteristics of
the oscillating solutions. The total energy Eg of these solutions are the sum of
the potential energy V;(u) (3.5) and a gradient dependent part Egrq = %(ﬁ’ )2.
The amplitude & of these solutions is given by the total energy Eg:

i = i(Eg) = 2\ A — VA2 — 4Eq. (3.6)

The spatial period v of the structures can be computed analytically by Baumann’s
approach [3.17, p. 35ff] as function of the amplitude i respectively the total energy

Egto
i(Eg)*—4) u(Eg)
4\/ D, #(EG)2—8% K (SA—IZ(Eg))
i(Eg)?
8

v(Eg) = (3.7)

A_
2

with K(x) denoting the complete elliptic integral of first kind [3.18]. By plotting the
spatial period v as function of the total energy (Fig. 3.3a) it becomes obvious that
the spatial period v(Eg) diverges for a certain value of Eg > 0 while it converges
for Eg — 0. From the nominator of (3.7) and amplitude (3.6) follows that the
spatial period diverges for Eg — %2. The limit Eg — 0O of the opposite direction
can be calculated from & — 0 and K(x)|,_,, = 5 to the value of v(EG)|g o =

27/ D,/ A which corresponds to the period of a torsional oscillator with moment
of inertia D,, and torsion coefficient A.
/12

The divergence of the spatial period v(Eg) in the limit Eg— 5 leads

to an infinitely extended transition +vA— — /A respectively —+v/A — +/A.
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Fig. 3.3 Stationary solutions of the nonlinear equation of motion (3.4) in one-dimensional
systems. (a) Spatial period v (3.7) plotted as function of total energy Eg. The harmonic limit

is given for Eg — 0. (b) Analytical solution up(x) (3.8) of (3.4) for Eg — %. Parameters:
A=08D,=5-10"

The corresponding structure is a so-called front resembling a continuous transition
in space between the two fixpoints u(j)E which are reached asymptotically for
x — =oo. Concerning this limit the nonlinear equation of motion (3.4) can be
solved analytically

uf(x) = £+ tanh x,/zg (3.8)

(cf. [3.19, 3.20]). Note, that due to the translational invariance of the system an
infinite family of solutions {up(x — x¢)|xo € R} exists. An example of a front
located at xo = 0 is shown in Fig.3.3b. The spatial region covering most of the
transition from ++/A — F+/A can be calculated from the intersection of tangent
g(x) = xup(0) with the asymptotes ++/A at x;5 = +,/2D,/A. The distance
between these intersection points is 24/2D, /A which can be considered as length
scale of the front.

In indefinitely large systems of type (3.3) fronts are quite robust against
perturbations, which most likely will lead to a shift of the front. This effect is more
thoroughly discussed in Sect.4.2.1. However, due to their stability fronts respec-
tively their analytical solution (3.8) are quite useful for checking the correctness of
numerical simulations. For example consider (3.3) on a indefinitely one-dimensional
domain being parameterized by spatial variable x, then the position x; and the
initial condition

+/4, for x < xo
FV/A, for x > x

forx e R

u(x,0) = (3.9)

can be chosen, such that the numerical solution of (3.3) should relax to the front
up(x — xo) (3.8) located at xj.
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Fig. 3.4 Radial-symmetric stationary solutions of the one-component reaction-diffusion equa-
tion (3.10). (a) Potential V;(iz) (3.5) (black curve) and total energy Eg = Vi(u) + D, (i')? /2 (light
gray curve) of the damped three-dimensional oscillation depicted in (b). The latter shows numeric
approximations of two stationary radially symmetric solutions in R? (black) and in R3 (light gray).
Both solutions of (3.10) were computed with a Runge-Kutta scheme [3.22, p. 1095] for the interval
r e [ﬁ, %] and initial conditions "‘(1_0;00) =1 - ﬁ u’(m) = 0. Parameters: A = 0.8,
D,=5-10"°

3.1.3 Spatial Bistability in Extended Systems

Solutions of the one-component reaction-diffusion-system (3.3) discussed in the
previous section also represent solutions on n-dimensional domains if the gradient
of these solutions vanishes in (n — 1) spatial directions and therefore are quasi one-
dimensional. Non-trivial stationary solutions of (3.3) on two- and three-dimensional
domains are discussed under the assumption of certain boundary conditions by
Alfimov et al. [3.21]. They show that the stabilizing effect of the domain boundaries
enables localized solutions. Here, we are not limiting the domain size and are
focusing on radial symmetric solutions in R”. Therefore the one-component n-
dimensional reaction-diffusion-system (3.3) is transformed to a polar (n = 2)
respectively a spherical coordinate system (n = 3):

n—1

D, (ﬁ”(r) + ;/(r)) + Ai(r) —u(r)> =0 (3.10)

r
with #/(r)],—o = 0. Due to the radial symmetry of the considered solutions the
angular dependency vanishes and the coordinate r parameterizes the distance to the
origin of the coordinate system. The resulting ordinary differential equation (3.10)
can be interpreted as oscillatory equation of a particle having mass D, which moves
in potential V;(u) (3.5). The friction %E/ (r) vanishes for the one-dimensional case
(n = 1), such that (3.10) becomes (3.4).

Solutions of the damped oscillator equation (3.10) can be calculated numerically
for finite domains with r €]0,00[ (Fig.3.4b). Starting from initial conditions
u(ry) € ]—«/X A [ \{0} and ' (ry) = 0 these solutions exhibit damped oscillations
due to energy dissipation. For » — oo the oscillations relax against 0 (Fig. 3.4a).
Because the friction depends on the dimension of the system the oscillations
decay in three-dimensional systems twice the fast than in two-dimensional
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systems (Fig.3.4b). Concerning the spatiotemporal dynamics of (3.3) nor the
two-dimensional stationary solutions neither the three-dimensional stationary
solutions (Fig. 3.4) are stable, because both relax for r — oo against the unstable
fixed point uj = 0 of the local dynamics (3.1).

3.2 One-Component Systems with Unsymmetric Potential

3.2.1 Local Bistability

In the foregoing section we have seen, that there are no stable localized solutions
of the one-component reaction-diffusion (3.3) with symmetric potential (Fig.3.4)
which are embedded into one of the stable homogeneous ground states u(ﬂf. On
the other hand such types of solutions can be regarded as prototypes of dissipative
solitons in reaction-diffusion systems. Therefore we are seeking prerequisites of
the field equations enabling localized solutions being embedded into a stable
homogeneous state.

A hint is given by the localized solutions of the two- and three-dimensional
systems (Fig. 3.4) which decay to the unstable homogeneous state ;. In order to
enable a relaxation of localized solutions to a stable ground state u(ﬂf the dissipation
of energy resulting from the dimension depending friction (cf. Fig. 3.4a) has to be
balanced by a potential difference.

The postulation of an unsymmetric potential can be fulfilled by adding a real
constant «x; to (3.3) breaking the point symmetry of the cubic nonlinearity (cf.
Fig.3.5a, b):

i = DyAu+ Au—u’ + Ky (3.11)

with # = u(x,t) and x € R". This equation describes according to Schldgl a simple
chemical reaction mechanism [3.23]. Its local dynamics

w(t) = Au(t) —u(t)® + «y (3.12)

has a co-dimension-2-bifurcation point at (Ac, k1.c)T = 0 which can be visualized
by the nullcline {u(A, k1)|(A, k1)T € R?} (Fig. 3.6) defined by

Aug —ul + k1 =0 (3.13)

as stationary states of the local dynamics (3.12). The special case xk; =0 is a
pitchfork bifurcation. Its branches are indicated in Fig.3.6 as solid and broken
curves with the unstable branch being masked in parts by the folded nullcline.
For k1 # 0 one finds disturbed pitchfork bifurcations, an example of which is plotted

in Fig. 3.6 for k; = —1. Note, that the pair of stable-unstable solutions branch for
A>0at
A3
Kie = iz(g) (3.14)
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Fig. 3.5 One-dimensional solutions of the one-component reaction-diffusion-system (3.11) with
unsymmetric potential (3.17). The diagrams on the left hand side characterize the system for
—Kic < k1 < 0(3.14), while the right hand side shows characteristic solutions for 0 < k; < k¢
(3.14). The column in between refers to the figures of the special case x; = 0 of the symmetric
potential V;(u) (3.5). (a) and (b) Shifted characteristic f (u)+ k. (¢) and (d) Potential Vys(u) (3.17)

2
of the spatially extended system (3.16) (black curve) with total energy Vus(ugt) + D, (%uét) /2
(light gray lines) of the critical nuclei ugt (3.19) depicted in subfigures (e) and (f). (¢) and (d)
Also show the total energy Vis(ugr) + D, (%M(F)z /2 (dark gray lines) of the moving fronts (3.25)

depicted in subfigures (g) and (h). Parameters: A = 0.8, D, = 5- 107>, k; = —0.1 (left column),
k1 = 0.1 (right column)

due to saddle-node-bifurcations. Figure 3.6 also shows the projection of the saddle-
node bifurcation points onto the up = 3 plane which reveals the characteristic cusp-
like shape pointing to the co-dimensions-2-bifurcation point (Ac,«1.c)T = 0. Due
to its shape the co-dimension-2 bifurcation is called cusp-bifurcation.
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Fig. 3.6 Nullcline of the cusp-bifurcation visualized as set of solutions {uo}¢; «,)T3er2 for the
local dynamics (3.12) of the Schlogl-model. For the special case x; = 0 the branches of the
pitchfork-bifurcation are indicated as solid and broken curves (cf. Fig.3.1c). The intersection at
k1 = —1 shows a disturbed pitchfork-bifurcation with its characteristic saddle-node-bifurcation
occurring at (A, k)T = (3-2723, —1)T (3.14). The set of all saddle-node-bifurcation points (3.14)
is the so-called cusp curve. Its projection on the uy = 3 plane visualizes the characteristic cusp-
shape of the curve with the co-dimension-2-bifurcation point at (Ac, k1)’ = 0

In parameter space the cusp curve (3.14) separates the monostable parameter
interval |k m| > |k1c| from the bistable parameter interval |«;p| < |Kk1c|. In this
parameter interval Eq. (3.12) exhibits three stationary solutions uy < u} < ug . The
fixed points

6(F2)5A F (F2)I R, k)3
6R(A. k1) (3.15a)

with  R(A,x1) = /7292 — 10843 — 27k,

are stable and the fixed point

uf =uf (i) =+

_ 12241 +iV3)R(A, k)3
QR(A,k1))*

uy = uj (A, k1) (3.15b)

is unstable. The stable state of the saddle-node bifurcation is u(‘f for k1 > 0 and
uy for k1 < 0. If a variation of parameters crosses the cusp curve and therefore
changes the dynamics from bistability to monostability the system will suddenly
switch to the only remaining state, which is called cusp catastrophe [3.24, 3.25].
The same scenario holds for the spatially extended system (3.11) because the fixed
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points ui and u} (3.15) of the local dynamics (3.12) are stable uf(x) = uF

respectively unstable uj(x) = uj homogeneous solutions of the one-component
reaction diffusion system (3.11).

3.2.2 Critical Nuclei and Trigger Fronts in One-Dimensional
Systems

The section starts with considering stationary solutions of the spatially extended
system (3.11) which exhibit vanishing gradients in all but one spatial direction. For
these solutions the one-component reaction-diffusion system reduces to a nonlinear
oscillator equation

D" = =i+ i® — Kk (3.16)

with # = u(x). In analogy to (3.4) solutions of (3.16) describe stationary states of a
chain of coupled nonlinear torque oscillators. However, this time the rest position is
not located vertically above the axis of rotation (k; = 0) but deviates slightly from
the top position (x; # 0) even if no unbalanced mass is attached (A = 0, Fig. 3.6).

Interpreting the spatial coordinate as time coordinate Eq.(3.16) can be
interpreted as undamped motion of a particle with mass D, moving in the
unsymmetric potential

“ A 1
Vis(u) = *()Luh — uﬁ + k1) duy = Euz - Zu4 + KU (3.17)

Ll[)

(Fig.3.5c, d). Note, that for the special case k; = 0 the potential Vis(u) (3.17)
simplifies to the symmetric potential V;(«) (3.5) (Figs. 3.2a and 3.4a).

In case of bistability 0 < |k1| < |k1c| (3.14) the unsymmetric potential V(1)
has got two relative maxima V, (u(‘)F ) # Vis(ug) (Fig.3.5¢, d). From the foregoing
section it is known, that solutions of (3.16) with total energy

0 < Eg < min Vis(ui) = min{Vys(ug), Vis (i)} (3.18)

are unstable periodic structures. Divergence of the spatial period occurs for Eq —
min Vus(u(ﬂf) which leads to the solution

£)2 _
uf (x) = uf — 3g)” — A (3.19)

uE £ /L — (uF)?) cosh %x

representing a localized stationary structure (Fig.3.5e, f) of the one-dimensional

one-component reaction-diffusion system (3.11) [3.26,3.27]. This solution corre-

sponds to a homoclinic orbit (ugt, ddx ugc) in phase space. Due to the translational
invariance of the system (3.19) defines an indefinitely large family of localized

solutions {ugIE (x = X0) }xoer}-
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Concerning the one-dimensional time-dependent solutions # = u(x,?) of the
one-component reaction-diffusion system

= D" + lu—u’ + K (3.20)

the localized solution usjE (x) (3.19) is unstable, because it resembles a separatrix in
solution space [3.28]. It separates the attractor of the stationary homogeneous state

uy = argmin Vus(ugt) (3.21)

from the attractor of trigger fronts (Fig.3.5g, h) switching the system dynamically
into the dominating homogeneous state

u; = argmax Vus(ug[). (3.22)

The latter is determined by the largest relative maximum V,(ug) of the potential
Vius(u) (3.17). Depending on parameter «; the following relation holds:

+ .
k> 0,
ug = 1" = (3.23)
U K < 0.

The instability of the homoclinic orbit usjE (x) (3.19) is also confirmed by Bode [3.29,
p. 791f], who investigated the interaction of fronts by a perturbation approach and
found an unstable locking state such that the resulting two-front-structure can be
interpreted as critical nucleus.

Trigger front solutions of (3.20) can be calculated analytically by considering

e s . . . . . .
solutions u = u(x’,t), which propagate with relative velocity ¢ in a co-moving

frame x” = x —cgt. For ¢ = ¢f the moving solutions u become stationary solutions
/7
ugr = ugr(x’) of

Doy = —crulle — Vi (uep). (3.24)
By adapting a standard front u;" (x) (Fig.3.3b) to the respective k;-dependent

homogeneous states uat and ug (3.15) and inserting this ansatz into (3.24) the
following solution is deduced:

up(x — cpt) = + 9 tanh
er( Fl) 5D,

+ — + - +_ -
uy + ug uy —u uy —u,
2 2

(x — th):| (3.25a)
[3.29, p. 60]. Here velocity cF is determined by the loss of energy
+

ug +o00
/ crutyg duge = cF/ (”21:)2 dx = Vis(ugd) — Vas(up) (3.25b)

0 -
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resulting from the asymptotic movement (Fig.3.5c, d) from the higher relative
potential maximum to the lower one:

Vis(ug) — Vas(ug) 3 =
cp = us(fgo) us(uo) > 2D,,u8‘ (3.25¢)
S5 g e 2

Therefore the direction of movement is determined for a standard front u;' by the
sign of the unstable homogeneous stationary solution u;.

For further reading on the dynamics and interaction of fronts, consider the
literature on entire solutions [3.30-3.34].

3.2.3 Critical Nuclei and Trigger Fronts in Two- and
Three-Dimensional Systems

In contrast to the solutions of the one-dimensional field equation (3.20) trigger fronts
and critical nuclei cannot be computed analytically for two- or three-dimensional
systems (3.11) in generic cases. They can only be determined if the problem reduces
to a quasi one-dimensional systems for gradients vanishing in all but in one direction
of the Cartesian coordinate system. However, formally it can be shown that stable
structures cannot exist on convex domains with no-flux boundary conditions [3.35].
Hassan and Zanette [3.36] confirm this result for a three-dimensional Schlogl-model
with piecewise linear characteristic. The authors also show that localized structures
can be stabilized by Albedo- or Dirichlet-boundary conditions if the domain is
large enough. On more complex domains with partially concave boundaries, e.g.
on barbell shaped domains, fronts can be stabilized if the channel connecting the
half domains is considerably thin [3.27, p. 35ff], such that the field equations can be
reduced to a one-dimensional system with inhomogeneous diffusion.

Numerical solutions show that for two- and three-dimensional systems a critical
nucleus exists [3.37] which separates in phase space the attractors of the non-
dominant homogeneous state and a radial-symmetric trigger front. An example of
which is shown in Fig. 3.7.

From a geometrical point of view the propagation velocity of weakly curved
trigger fronts in two- and three-dimensional systems is not constant, but depends on
their local curvature Kr. Therefore the propagation velocity sums up to the velocity
of planar fronts cp (3.25¢) and a curvature dependent term [3.38, p. 27f]:

n—1
¢(Kg) =cg+ D,Kg = cp +

D.. (3.26)
F

Here variable Rg denotes the radius of curvature of the n-dimensional radial
symmetric trigger front. Experimentally this effect has been observed in 1951 by
Markstein for the propagation of two-dimensional flame fronts [3.39].
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Fig. 3.7 The critical nucleus in Schlogl’s model solved on a three-dimensional domain.
(a) Intersection u(x, 0.5, 0.5) of two different three-dimensional solutions (black and gray curves)
of the field equation (3.11) plotted for the snapshots ¢ € {0, 60, 135,195} (black curves) and
t € {15,120, 165} (gray curves). Black curves visualize a simulation, for which the initial
conditions have been chosen slightly larger and broader than the critical nucleus. Therefore the
snapshots show a trigger front extending uniformly into all spatial directions. Gray curves are
snapshots of a simulation starting from an initial condition which has been chosen to be slightly
smaller and thinner than the critical nucleus. In this case the localized excitation relaxes to the non-
dominant state ug (3.21). (b) Isosurfaces u(x, y,z) = 0 of the extending trigger front at # = 300
and the respective initial condition, which is visible as sphere in the center of the domain. At
t = 300 the trigger front has already reached the boundaries of the domain and where it has been
partly relaxed to the dominant state u; (3.22). Parameters: A = 0.8, D, = 5- 1072, k; = 0.15,
2=1[01P34,=001,4, =1

In order to investigate the parameter regime enabling the existence of critical
nuclei in two- and three-dimensional systems of Schldgl’s model the respective
field equation (3.11) is transformed into a polar respectively a spherical coordinate
system. Considering stationary radial symmetric solutions the partial differential
equation reduces to an ordinary differential equation:

n—1

r

D, (u”(r) + u/(r)) + Au(r) —u(r)’ + k1 =0 (3.27)
with u/(r)|,—, = 0. Here the independent variable r denotes the radial coordinate
and parameter n the dimension of the considered domain. The friction term ”l;,lu’ (r)
of (3.27) leads to a stable focus (i ,0)T in phase space e, x e, of radially
symmetric solutions [3.27, p.42]. Therefore stationary localized solutions exist,
which asymptotically reach the intermediate ground state u; as damped spatial
modulations for r — oo (cf. Fig.3.4b). Because the ground state u is not stable
with respect to the local dynamics, all stationary solutions converging for r — o0
against u; are unstable, too.

The stability range of the stable focus is confined by a separatrix in phase
space, which starts close to the highest local maximum of the potential and reaches
asymptotically the lower local maximum min Vus(ugt) for r — oo (Fig.3.8b—e).
From the considerations of the previous section it is known, that the separatrix
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Fig. 3.8 The critical nucleus in Schldgl’s model. (a) Amplitude its = max us(r) — minus(r) of
the critical nucleus ug(r) plotted as function of parameter «;. (b) and (c) Potential V,s(u) (3.17)
with total energy Vys(us) + D, (ug)2 /2 of the critical nuclei depicted in (d) and (e), which have
been computed as numerical solutions of the one-component field equation (3.27). Gray curves
in subfigures (a)—(e) denote solutions on one-dimensional domains n = 1, dotted curves the case
n = 2, and dashed curves the case n = 3. Parameters: A = 0.8, D, = 5- 107>, k; = —0.15 (left
column), k1 = 0.15 (right column), 2 = [0.01,0.1], A, = 0.01, no-flux boundary condition

does only exist if the system is bistable 0 < |k|| < ki (3.14). In the respective
parameter regime the amplitude g = (maxus — minug) of the one-dimensional
critical nucleus increases monotonically for decreasing |« | (gray curve in Fig. 3.8a),
because the friction term of (3.27) vanishes for n = 1 and the change of amplitude
directly depends on the shift of the potential maxima. Note, that in phase space of
one-dimensions solutions the homoclinic orbit of the separatrix transforms into a
heteroclinic orbit for |«;| — 0, which represents a stationary front in state space
(Fig.3.3).
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In contrast, the amplitudes of two- and three-dimensional separatrixes are nearly
constant for small absolute values of parameter k; (Fig.3.8a). The cause of this
effect becomes apparent if the total energy Vys(us) + D, (u)?/2 of the separatrixes
is related to the potential (Fig.3.8b, c): Increasing |«;| leads to minor changes
of |Vus(ug' — Vis(ug )| which in two- and three-dimensional systems is balanced
by friction Du”l—flu/s (r). Therefore the amplitude of the separatrixes changes only
negligible. In state space this effect is balanced by diverging diameters of the critical
nuclei.

Figure 3.8a also shows that the three-dimensional critical nuclei are broader
than their two-dimensional counterparts. Furthermore they exhibit larger amplitudes
close to the critical control parameter k| . (3.14) of the bistable regime. Both effects
relate to the friction which is twice as large in three-dimensional systems than in
two-dimensional systems.

3.2.4 Stabilization of Localized Structures by Global Feedback

The critical nuclei discussed in the previous sections are typical examples for
localized structures with a parameter dependent size (Fig.3.8) which are not
stabilized by a control mechanism. Therefore small perturbations lead either to the
extinction or the expansion of the structure (Fig. 3.7).

Consequently, a mechanism, which controls the size of a localized structure,
has to regulate the front propagation. In case of the discussed one-component field
equation (3.11) the propagation is caused by a potential difference leading to a finite
front velocity cp (3.25c¢) respectively ¢(Kr) (3.26). Because the difference of the
local maxima is determined by driving parameter « it is convenient to control this
parameter with respect to the size of the stabilized structure. On a finite domain
£2 this suggest the substitution of parameter x| by an effective control parameter
Kl,eff(u) with

K2
K1 eff(u) =X — — uds$2 (328)
’ 121 Je

and x;, k, being positive real feedback constants. Note, that the feedback integral
fQ u d£2 is normalized to the size of the domain ||$2|. In experimental systems
respectively electrical networks such type of feedback is realized as global series
resistor (Fig.3.23). By substituting parameter «; in field equation (3.11) with
K1 eff(u) a field equation with global feedback is deduced:

K2

0= D,Au+ Iu—u®+x — u
1221l Je

ds2 (3.29)

with u = u(x,t) and x € £2 C R” forn = 1,2, 3. Concerning one- and two-
dimensional domains this equation describes phenomenologically a lateral extended
gas discharge system with metallic electrodes and global series resistor, which is
used as device for voltage stabilization [3.40, p. 173f].
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Fig. 3.9 Formation of a stationary localized structure from a critical nucleus. The numerical
solution of the one-component field equation with global feedback (3.29) is obtained for the
same initial condition which has been used for demonstrating the front propagation on a three-
dimensional domain (Fig.3.7). (a) Snapshots of intersection u(x,0.5,0.5,¢;) of field u(x,?)
at t; = 0,30,...,600. The curves are darkened for increasing time ¢;. The latest snapshot
shows a stationary structure exhibiting a diameter of 0.72 length units. (b) Time series of the
effective control parameter « og(u) (3.28) with diamonds indicating the snapshots of subfigure
(a). Parameters: A = 0.8, D, = 5-107°, 5 = 0.15 + ”’;2—2” [Q u(x,0)ds2 = —0.629, k, = 1.0,
R=[0,174,=001,4, =1

In order to understand the effect of global feedback (3.28) on the dynamics of
front propagation it is useful to choose suitable initial conditions and compare a
simulation of (3.29) with a respective solution obtained from (3.11). Therefore the
simulation depicted in Fig.3.7 is repeated with identical initial conditions u(x, 0)
but modified field equation (3.29). Therefore we have to adapt the parameters
documented in Fig. 3.7 to the new field equation. For a given initial condition u(x, 0)
we claim k| = K efr (u(x, 0)) and get

=i+ —2 | ux,0)de. (3.30)
1221 Jo

The respective simulation is documented in Fig. 3.9a as set of consecutive snapshots
showing the intersection of field u at x = (x, 0.5, O.S)T. The diagram reveals that
the front comes to a standstill and a stationary localized structure is formed. We also
observe that the homogeneous ground state which surrounds the localized structure
decreases with advancing simulation time.

This effect is related to the increasing size of the structure which decreases
control parameter k| ¢ (Fig. 3.9b). While the effective control parameter would have
relaxed to zero in a one-dimensional system, it approaches k| ¢f(u, 600) = 0.01875
in the present three-dimensional system. This is due to the fact that the propagation
velocity c(KFp) (3.26) of weakly curved trigger fronts is the sum of the propagation
velocity cg (3.25¢) of planar fronts and a curvature correction 2D,/ Rg. Thus the
stationary structure (Fig.3.9a) forms due to an equilibrium between intrinsic and
curvature induced front propagation. Perturbations increasing or decreasing the size
of the localized structure would induce a positive respectively a negative front



60 3 Modeling

propagation such that the perturbations decline. Note, that the direction of front
propagation respectively the sign of the propagation velocity depends on the front
type, that is up (3.8) in the presented three-dimensional simulation (Fig. 3.9a) and
u;' in the one-dimensional scenario as discussed by Bode [3.29, p. 72f].

While the discussed global feedback mechanism is able to stabilize single
localized structures, it fails in stabilizing several localized structures. For example
an anti-symmetric perturbation decreasing the size of one structure while increasing
the size of another one without changing the feedback term « ¢ (3.28) cannot be
compensated because it is not perceived by the control mechanism. Consequently,
the shrinking structure would vanish after dropping below a critical size [3.41].

3.3 Two-Component Reaction-Diffusion Systems

3.3.1 Transition from Global to Local Feedback

Because the global feedback mechanism of the one-component field equation (3.29)
is not suitable for the stabilization of several stationary structures [3.41] we are
looking for a mechanism acting individually on every localized structure. This can
be achieved by replacing the global feedback mechanism by a local one. Following
this idea we consider solutions u = u(x, t) of (3.29) on a one-dimensional domain
§£2 C Roflength L:

L./2
K
l)t:Duu”+Au—u3+x1—L—2 / u dx (3.31)
X
—Ly/2

withx € 2 = [—%1, %&] and u = u(x,t). Here the feedback integral is weighted
by a constant which is the inverse domain length L, = ||$2||. Factually field u(x, ¢)
is averaged and the feedback acts homogeneously on the systems dynamics.

In order to gain a feedback regarding field u at a specific position x = x( more
prominently than at the remaining points y € £2\x( the weighting constant 1/L
is replaced by a weighting function G(x, y) in the kernel of the feedback integral.
For this weighting function it is postulated that it decreases asymptotically with
increasing distance |xo — y| to position x¢. Additionally the feedback integral is
changed to a convolution integral by integrating over y € £2:

Ly/2
i(x,t) = Dy (x, 1) +Au(x, ) —u(x, 1)’ +Kk1—k4 / G(x, pu(y,t) dy. (3.32)

—L,/2

Note, that the parameters »; and k, have been formally substituted by «; and «4. For
an infinite system the kernel
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Fig. 3.10 Green’s function as solution of (3.34) on an infinite domain §2, (black curve) and for a
finite domain £2;, of length L, = 1 (gray curves). The figure illustrates that Green’s function g(x)
(3.33) evaluated on an infinite domain and the one computed for a finite domain (3.35) cannot be
discriminated within plotting accuracy if the diffusion constant D,, < L, is chosen significantly
smaller than the size of the domain. With increasing constant D,, Green’s function (3.35) for the
finite domain converges to 1/L,, which corresponds to the normalization factor of the global
feedback integral (3.28)

G ) = glx — 2 = Nlﬁ exp (— 'xﬁ)_x') (3.33)

is an appropriate choice (Fig. 3.10).

The decay of the weighting function is determined by parameter D,, > D,,
which corresponds to a diffusion constants because the kernel g(|x — y|) (3.33) is
Green’s function which solves the differential equation

D,g"(x) — g(x) = =8(x) (3.34)

with x € R and source term §(x) being given by Dirac’s function [3.42, p. 130].
From this equation the weighting function g(|x — y|) can be computed for a finite
domain of length L, with no-flux boundary conditions g’(x)| _ L = 0:

gx) = 2~/_ [cosh (F) coth (2«/D7) + smh( ) (1- 29H(x))] (3.35)

with 6y (x) denoting Heaviside’s function. From (3.35) follows that g(x) converges
for D,, — oo against the limit 1/L,, which corresponds to the shadow system
introduced by Nishiura [3.43]. Considering the re-substitution x; = «; and k, = k4
it follows that field equation (3.29) exhibiting a global feedback is a limit of field
equation
Ly/2
i(x, 1) = D" (x, 1)+ Au(x, t)—u(x, 1) +x1—ky / g(x—yxDu(y,r) dy (3.36)
—Ly/2
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featuring a local feedback. With respect to spatially extended systems of more than
one spatial dimension (3.36) can be formulated as system of two coupled field
equations:

i = DyAu+ Au—u’ —kaw + k1, (3.37a)
0=D,Aw+u—w (3.37b)

with u = u(x,t),w = w(x,t) and x € 2 < R" forn = 1,2,3. Here, the
local feedback integral has been replaced by a feedback field named w which reacts
without time delay on changes of field u. Therefore (3.37) can be regarded as special
case of a two-component reaction-diffusion system exhibiting a component w acting
on a fast time scale Ty with % = % and |0] < 1:

i= D,Au+ Au—u® — kaw + k1, (3.38a)
Ow = D, Aw + u — w. (3.38b)

This system of equations reduces to (3.37) for 6 — 0. However, (3.38) is very
instructive for understanding the reaction kinetics of the two components u and w.
An local increase of component w(x() at point xo € £2 always decreases itself
and field u(x) due to the negative sign of component w in (3.38a) and (3.38b).
Therefore the component w is called inhibitor. On the other hand a local increase
of u(xy) increases field w(x) and triggers an autocatalytic process that increases
u(xo)if £ (u(xo)) = A — 3u(xo)? > 0 is fulfilled. Due to this property component
u is called activator and system (3.38) is named activator-inhibitor-system. In the
following section we investigate solutions of (3.38) in the limit of & — 0, such that
we are dealing with a reaction-diffusion system featuring a fast inhibitor (3.37).

3.3.2 The Turing-Instability

Homogeneous stationary solutions solutions uy = wy of the two-component system
(3.37) are given by the cubic equation

(A — kg)uo — uy +ky = 0. (3.39)

In contrast to the nullcline (3.13) of the local dynamics (3.12) of the one-component
field equation (3.11) the cubic equation (3.39) exhibits an effective control parame-
ter Aegr = A — Ky, such that a variation of parameter k4 leads to an effective change
of the cubic nonlinearity. Therefore the fixed points uy = wy of (3.37) are computed
via substituting A = A in (3.15). Given this substitution the bistability condition
0 < |«1| < |k1c| (3.14) holds, too. One can also apply the stability considerations on
basis of the potential approach V" (u)|u=u, = —V,{(4)|u=u, > 0 (3.17) as visualized
in Fig. 3.1b.
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The stability of the homogeneous solutions uy(x) = wo(x) = up = wo with x €
R is analyzed by Turing’s approach [3.44]. Here the dynamics of small fluctuations
of wave number k € R perturbing the homogeneous solutions are considered:

iy (x, 1) = (g’;gi) . (3.40)

Substituting (u, w)T = (uo, up)" + @, (¢) into (3.37) and linearizing the nonlinear
characteristic f(u) = Au — u® around the homogeneous solution

f (1o + Axe™) ~ f(uo) + f(uo) Axe™™ (3.41)

leads to the following dynamics of the perturbation amplitudes:

Ar() _ (—Duk* + flwo)  —k4 Ax (1)
( 0 ) - ( 1 —D,k* — 1) (Bk(t))' (3-42)

This system of equations can be simplified by solving the second equation with
respect to amplitude By (t) = Ay (t)/(D,k? + 1) and substituting the result into the
first equation

K4

Ak(l) = (f/(’/io) — D, k* — 1+—Dwkz

) Ak (2). (3.43)

From this relation it becomes clear, that perturbations of wave number k are fading
away if

f(uo) < DK> + ﬁ = fr(k) (3.44)

is fulfilled. Violating this stability criterion by f’(uo) = fr(k) enables the destabi-
lization of the homogeneous state by fluctuations of critical wave number

K4 1
ke = - 3.45
Dqu Dw ( )

(Fig.3.11). Note, that on a finite domain £2 the amplitude of a perturbation increases
if at least one of the domain dimensions L. € {L, L,, L.} is a multiple of the half
critical wavelength A, = 27/ k. such that

L.=n—=n— (3.46)

if fulfilled for n € N. The same consideration holds for perturbations of the
wave number interval becoming unstable for f’(up) > fr(k). Now consider a
homogeneous system violating the stability criterion (3.44) where the perturbation
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Fig. 3.11 Neutral curve of Turing’s instability. (a) Neutral curve fr(k) = f'(uo) (3.44)
determining the critical wave number k.. (b) Semilogarithmic plot of the critical wave number k.
(3.45). In this scenario the largest critical wave number is destabilized for D,, = 411()—4“. Parameters:

Dy=5-10"%ks= 1.0

cannot increase because all dimensions of the domain are smaller than L. (3.46). In
this scenario the homogeneous system will switch spontaneously to a periodically
structured state if one of its dimensions is enlarged above the critical size (3.46).
This kind of spatial destabilization has been predicted by Turing [3.44] in his
famous work on morphogenesis. Experimental verification of the Turing-instability
has been found in electric networks [3.45, 3.46], gas discharge system [3.47-3.50]
and chemical systems [3.51, 3.52] with the latter also showing three-dimensional
Turing-structures [3.53]. Practical implications of the Turing instability exist for
semiconductor systems, e.g. thyristors can be destroyed by the instability [3.54].

3.3.3 Stationary Solutions

In analogy to the strategy applied in Sects.3.1.2 and 3.2.2 for identifying local-
ized solutions this section starts with the investigation of stationary solutions of
(3.37) on a one-dimensional domain §2 C R. For stationary solutions #(x) =

(a(x), v"v()c))T = (i, w)T Eq. (3.37) transforms to

0 = D" + At — it® — kW + K1, (3.47a)
0=DwW +u—w. (3.47b)
Concerning solutions of these equations a functional §(u, w, p,g) = § can be

deduced by defining gradient dependent variables

7 := D,il, (3.48a)
G = —ks D, W (3.48b)

[3.29, p. 100ff], which hold the following relations
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0 1
o, _ 0.1
== ok
ad 1
W = Tg:_ ) q,
4 fallw (3.492)
P=——F =kw—di+ir’ —«i,
ou
q_/ = ——_S=K4V_V—K4ljl
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_ 1 2 1 2 A—Z K4_2 1_4 __ _
§ = 2D,,p 2K4qu +§u —i—?w Zu Kquw + K1l
(3.49b)

1, 1
2D," " 24D,

G + Viit, ).

By interpreting the dimensional coordinate x as time coordinate § becomes a
Hamilton-functional describing the dynamics of a particle moving in potential
Vi(u, w). Note, that in contrast to classical mechanics one summand of the kinetic
energy is always negative due to the negative inertia defined in (3.48b). This
variational approach for determining non-trivial stationary solutions of reaction-
diffusion systems has been introduced by Bode in [3.29] and has been formalized
on basis of skew-gradient systems [3.55, 3.56].

Homogeneous solutions of two-component system (3.47) are attractors of the
four-dimensional phase space spawned by e, ey, e 5, and e;. In phase space these
attractors are the points (ugt, ugt, 0,0)T which are determined by the fixed points
uT = wif of the local dynamics (3.39) and definition (3.48). For

D D,k
"ty < — 24 o |2 3.50
fli) < =5 =2 [ (3:50)

the attractors are asymptotically stable fixed points of the spatial dynamics (3.49)
while they are asymptotically stable foci for

Du 2 DMK3
D, D,

< flufy) < frlke). (3.51)

which is visualized in Fig.3.12. Here the upper limit fr(k.) of condition (3.51)
depends on the critical wavelength k. (3.45) of the Turing-nullcline fr(k)
(3.44). Concerning localized structures, condition (3.51) means that they exhibit
characteristic oscillations while decaying to the homogeneous ground state. If
(3.50) holds, they will decay monotonically against the homogeneous ground state.
This behavior can also be shown for two- and three-dimensional structures if a
corresponding perturbation approach is considered [3.27,3.57].
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Fig. 3.12 Spatial decay characteristic of localized structures visualized as function of diffusion
constant D,, and slope f’(ug) of the nonlinearity evaluated at the homogeneous ground state
[3.72]. The dark shaded area refers to solutions decaying oscillatory to the homogeneous ground
state (3.51). The light shaded area corresponds to solutions decaying monotonously to the ground
state. Diamonds mark parameters for the structures depicted in Fig. 3.13. Systems with parameters
located above the solid curve fr(k.) violate condition (3.44) such that the respective homogeneous
solutions u( are unstable against periodic perturbations of wavelength k =~ k.. Parameters:
D, =510k, =10

In case of bistability the two-component system (3.37) exhibits front solutions
which correspond to heteroclinic orbits in four-dimensional phase space. For k; = 0
these fronts are stationary and undergo a non-equilibrium-Ising-Bloch-bifurcation
[3.19, 3.58] to propagating fronts for k; # 0. The direction of propagation is
determined by the dominance rule. It states that the front propagation extends the
homogeneous state which dominates the dynamics by inclosing the largest area
between the respective branches of the nullclines (Fig. 3.13a, b).

From the dominance rule follows that two separated fronts will approach each
other if they are enclosing the not dominating homogeneous ground state. In
this context separation implies a distance being large with respect to the length
scale of the fronts (Fig.3.3b). The interaction of slowly propagating fronts is
discriminated into two groups: For fronts declining monotonously against the
enclosed homogeneous ground state the interaction is entirely repulsive. If the
fronts decline in an oscillatory manner against the enclosed homogeneous ground
state they will experience a repulsive or attractive interaction depending on the
distance between them [3.59]. From this observation follows that fronts which
approach each other slowly can form a front-front-pair (Fig. 3.13c, d). Note, that for
purely repulsive interaction there is one distinct distance at which the momentum
of propagation and the repulsive interaction vanishes. On the other hand front-pairs
forming in the oscillatory parameter regime can lock in different positions due to the
fact that there are several points at which the alternating interaction vanishes and the
repulsive interaction increases with decreasing distance between them. However, in
every case the local repulsion has to be large enough in order to compensate the
intrinsic front propagation.
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Fig. 3.13 Nullclines of the two-component system and localized solutions for k; = £0.1. (a) and

(b) Nullclines of the local dynamics of the two-component system (3.37): Fronts propagate into
the direction which extends the homogeneous ground state (u(:)t, w(:)t )T claiming the largest area
enclosed by the nullclines (shaded areas). (¢) and (d) Stationary solutions corresponding to the
nullclines depicted in (a) and (b). The oscillating tails of these solutions (cf. diamonds in Fig. 3.12)
are just weakly pronounced and cannot be discriminated with respect to the plotting accuracy. Due
to the symmetry of the cubic nonlinearity the localized structures of subfigures (¢) and (d) are
related by i, —01 = —ily,=—o.1. Parameters: D, = 5-107°, D,, = 5-107%,1 = 1.6, x; = %0.1,
Ky =1.0,2=100,05],A, =5-107

Such front-front-pairs are localized solutions of (3.47) and are represented in
phase space by a homoclinic orbit which starts from the dominant homogeneous
ground state and approaches the same state asymptotically. Note, that in contrast to
the heteroclinic orbit of trigger fronts a homoclinic orbit does not reach the state
corresponding to the non-dominant homogeneous solution. We conclude, that in
general bistability of the local dynamics is not needed in order to form localized
stationary solutions. An example for this statement is given in Fig.3.14 showing
a two-dimensional localized structure u(x) = (Et(x),v'v(x))T = (ie,w)" of a
monostable system (Fig. 3.14b). The solution has been computed from

0 = D, Al + Aii — i® — kaW + k1. (3.52a)
0=D,Aw+u—w, (3.52b)
with parameters given in the caption of Fig.3.14. Note, that in contrast to (3.47)

the diffusion operator is represented by a Laplacian. The oscillating tails of
the simulated structure are clearly visible in the surface plot (Fig.3.14a) of the
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Fig. 3.14 Localized structure with prominent oscillating tails simulated on a two-dimensional

domain. (a) Surface plot of distribution u(x, y). (b) Nullclines of the local dynamics showing a

monostable system. (¢) Intersection taken at the center of the localized structure. Parameters of

(3.52): D, =1.1-107% D, =9.64-107*, 1 = 0.71, ks = 1.0, k; = —0.1, A, =2.5-1073,
= [0, 2], no-flux boundary condition

activator distribution u(x, y) and its intersection (Fig.3.14c) taken at the center
of the structure. Note, the similarity of Fig.3.14a with the experimental results of
luminance distributions observed for current density filaments (Fig. 2.8).

The stationary solution introduced in this section can be regarded as dissipative
soliton, because they are stable against small perturbations [3.60] and act as basic
module for more complex structures [3.61].

3.3.4 Delayed Inhibition

A very import class of reaction-diffusion systems are of activator-inhibitor type with
the latter acting on a time-scale 75 being slower than the time-scale of the activator.
In order to discriminate temporally delayed inhibition from the fast inhibition
discussed in Sect.3.3.1 the relation between both time-scales is set to % = l
with T > 1 and a new field v = v(x, t) is introduced, such that the modified verswn

of (3.38) reads
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iw= D,Au+ f(u) —r3v + Ky, (3.53a)
w=D,Av+u—v (3.53b)

with f(u) =Au — u’. In order to understand the effect of slow inhibition on
the stability of one-dimensional homogeneous solutions u(x) = v(x) = up = vy the
approach outlined in Sect.3.3.2 is considered. Therefore the dynamics of small
fluctuations uy (x, ¢) (3.40) perturbing the homogeneous state of a one-dimensional
system are considered. Denoting the amplitude of fluctuations perturbing the homo-
geneous activator field with A, (¢) and the amplitude of fluctuations perturbing the
homogeneous inhibitor field with By (¢) the following set of differential equations is
derived:

Ax(t) _ —Dk* + f'(ug) —ks A . A1)
(Bk(t)) N ( 1 _ka:—i-l) (Bk(t)) = Q(Bk(t))' (3.54)

T

Note, that in contrast to the dynamics of perturbations deduced from (3.38)
the time derivative of the inhibitor perturbations does not vanish and the stability
considerations have to apply the determinant criterion

detD >0 (3.55a)

and the trace criterion
traceD < 0 (3.55b)

[3.13]. From the determinant criteria follows that the homogeneous state ug is
unstable against small perturbations of wave number k if the Turing-condition

K
(o) < Dok + H—;kz =: fo (k) (3.56a)

is violated. Obviously this condition is the same as the one being found for the
two-component system with fast inhibition (3.44). This is reasonable because the
Turing-instability is a spatial phenomenon which is independent of the time-scale
the feedback mechanism is acting on. On the other hand this time-scale is relevant
for oscillatory instabilities induced by violating the trace criterion

1 —_—

(o) < (Du + DT) K4+ — = fu(k). (3.56b)

3
The corresponding Hopf-modes can be excited for 7 > 1/ f'(ug) leading to oscilla-
tions of the homogeneous ground state.

Time-delayed inhibition also influences the velocity of front propagation. It is
observed, that an increase of time-scale parameter t increases the propagation



70 3 Modeling

a b
100
80
= « 60
g g
= = 40§
20
0
-1.0 0.0 1.0 -1.0 0.0 1.0
position = position =
d u(x, t) e vz, t)
150 Y ( 150
100 100
g 3
=] =
~ 50 © 50
0 0 0.6
-06-03 00 03 06 -06-03 00 03 06
position x position =

Fig. 3.15 Propagating and breathing dissipative solitons in two-component reaction-diffusion
systems [3.64, Fig. 2.9]. Parameters of (3.53): D, = 0.01, A = 4.67, x; = —1.126, k3 = 3.33,
2 = [—1.5,1.5], periodic boundary condition. (a)-(¢) D, = 1.5-1073, t = 4.0, (d)—(f)
D,=4.67-107%7t=5.0

velocity of fronts. In addition, the direction of front propagation does not depend
on the dominance rule anymore for sufficient large values of 7 [3.62].

In systems with more than one spatial dimension the propagation velocity
depends on the local curvature of the front [3.63] just as in one-component
systems (Sect.3.2.3). Time-delayed inhibition also causes the destabilization of
localized stationary structures. In one-dimensional systems this leads to so-called
pulses (Fig. 3.15a—c) or breathing domains (Fig. 3.15d—f). Concerning experimental
systems the most-prominent representatives are nerve pulses (Fig. 1.1c), or breath-
ing spots in the FIZ reaction (Fig.2.6). On domains with more than one spatial
dimension the transition from stationary to moving structures is accompanied by an
uncontrolled enlargement of the structure in the directions being perpendicular to
the direction of motion. In two-dimensional systems such kind of destabilization
leads to the formation of running planar fronts or spirals (Fig.3.16). However,
mechanisms stabilizing the shape of a structure while enabling directed propagation
via time-delayed inhibition are discussed in detail in Sect.3.4. Here, we continue
with the application of front propagation for the self-organized formation of
Voronoi diagrams.
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Fig. 3.16 Typical destabilization of a propagating localized structure in a two-component
reaction-diffusion system [3.42, p. 78]. Either the localized solution vanishes (bottom) or expands
to a spiral (fop). The images are false-color representations of the inhibitor superimposed by a
contour plot of the activator for u(x, y) = 0. Parameters of (3.53): ¢ = 25.0, D, = 1073,
D, =125-1073,1 = 2.0, k1 = —0.775, k3 = 1.0, 2 = [0,2.3]%, Ax = 0.026, Ar = 0.035,
cyclic boundary conditions

3.3.5 Voronoi-Diagrams

An applied example for the self-organization of localized structures is the solution
of the nearest neighbor problem, which is visualized by so-called Voronoi-diagrams.
These diagrams describe the spatial tessellation of a domain with respect to a given
set of reference points, such that each part comprises one reference point and all
other points of the domain which are closer to this certain reference point than to all
other reference points [3.65,3.66].

In two-component systems Voronoi-diagrams can be easily formed by applying
the mechanisms of front-propagation and interaction discussed in the previous
section. In order to illustrate the self-organized solution of the nearest neighbor
problem we choose the two-component reaction-diffusion system (3.53) with time-
delayed inhibition and a set of reference points (Fig.3.17a) on a quadratic domain
£2 which is repeated cyclically.

The simulation depicted in Fig.3.17 shows a bistable reaction-diffusion system
being in the non-dominant ground state. By sufficiently large perturbations located
at the reference points of the nearest neighbor problem the system can be switched
into the dominant ground state (Fig.3.17a). From these local excitations trigger
fronts spread across the domain (Fig. 3.17b) approaching each other. Note, that due
to the topology of the domain the fronts apparently propagate across the domain
boundaries whereby leaving the domain on one side and entering it on the facing
site. Due to their slow propagation velocity the colliding fronts do not merge but
form front-front-pairs which follow the intersections of the domain defined by the
nearest neighbor problem (Fig. 3.17c—e). Altogether the front-front-pairs reproduce
the directly computed Voronoi-diagram very well (gray lines in Fig. 3.17), although
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there are slight deviations due to the interaction of front-triples and the minimization
of local front curvatures (Fig. 3.17f).

The five stationary structures forming in the course of the simulation can
be regarded as localized structures, because their position is well defined with
respect to the reference points of the nearest neighbor problem. Such structures
and their process of formation are well known from chemical systems [3.67, 3.68].
It illustrates the fact, that within the same system localized stationary structures
with very different shapes can coexist. In the present example the individual shape
of a structure forms mainly due to the interaction with its neighbored structures
building a super-structure with well-defined properties (Fig. 3.17f). However, this
kind of structure formation is possible, because perturbations of a certain size
switch the system locally into a different state. Concerning one-component systems
these so-called critical nuclei have been discussed in view of initiating trigger
fronts (Sect.3.2.2-3.2.4). Concerning two-component systems we are continuing
the discussion with respect to critical nuclei of dissipative soliton.

3.3.6 Critical Nuclei of Dissipative Solitons

In one-component reaction-diffusion systems (3.11) critical nuclei are unstable
stationary solutions (Fig. 3.8), which are embedded into the non-dominant ground
state. For appropriate perturbations they either decay towards the non-dominant
ground state or initiate trigger-fronts switching the system dynamically into the
dominating ground state (Fig. 3.7). The same type of critical nuclei exists in bistable
two-component reaction-diffusion systems as well as a different type, which is
embedded into the dominant ground state and for appropriate perturbations decays
to the surrounding ground state or relaxes to a stable localized solution. Because the
latter type of critical nuclei plays a crucial role for the understanding of generation
mechanisms of dissipative solitons with distinct oscillating tails, it is investigated
on basis of the following system of equations

it = DyAu+ A— 1 — k3w 4+ 0 — —2— | udeq. (3.57a)
120l Jog

™ = DyAv +u—v, (3.57b)

with u = u(x,1), v = v(x,t) and x € 2o = [—%,%] X [—%,%] Note,
that this reaction-diffusion system is an extension of (3.53) derived by substituting
parameter x; by an effective control parameter ;¢ (3.28) introducing a global

feedback.
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Due to the fact that critical nuclei are radial symmetric solutions of (3.57), the
latter is transformed to polar coordinates

0 10 d 1 92
—u:Du[ ( )+ i|u+/\u—u3—/c3v+x1

ot ror \"ar) T 202
e aQ (3.58a)
j— ur 0, . a
1821 J oo
ad 10 0 1 9
‘CEU—DU |:;a—r (ra—r)—i—ﬁw}v—}—u—v, (358b)

withu = u(r,¢,1), v = v(r,¢,1) and (r,¢)" € 2, = [O, %] x [0, 27]. For radial
symmetric stationary solutions # = u(r) the equations simplify to

2 19 8k, (3
0=D,|—+-——|u+ri—i’ — k30 — u rdr, 3.59
(3r2+r8r)u+ U—u — K30+ x Lifo u rdr ( a)
02 10
=D,|—+-——|v+u—v .59b
0 (8r2 rar)v+u v (3.59b)

with boundary condition %ﬁ‘rzo = 0. In order to discriminate critical nuclei from

stable localized structures the numerical solutions #(r) of (3.59) are tested on their
sensibility to perturbations of type

i(r.g.1) =Y ity(r.1) cos(iu). (3.60a)

n=0

Because the perturbation i, (r, t) is assumed to be continuous and differentiable,
the additional boundary conditions

d
P uo(r,t)],—o = 0 and (3.60b)

r
ft#(r,t)‘r:() =0forpu=1,2,... (3.60c¢)
have to be fulfilled [3.42, p. 27]. The perturbation composes from a breathing mode

(n = 0), a Goldstone-mode (;+ = 1) and higher deformation modes (i > 2), which
are exemplarily pictured in Fig. 3.18. Inserting

u(r,¢,t) =u(r) +u(r,¢,1) (3.61)
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Fig. 3.17  Self-organization of a Voronoi-diagram on a two-dimensional domain with cyclical
boundary condition [3.67]. Light areas correspond to high values of activator field u, dark areas
to low values. Grey lines show the tessellation of the domain with respect to the reference points
marked in (a) as perturbations of the homogeneous activator field. (b)—(e) These perturbations
initiate trigger fronts propagating across the domain until their interacting with other trigger fronts
forms the spatial tessellation of the domain. (f) Due to the interaction of closely neighbored front-
front-pairs the stationary diverges slightly from the Voronoi-diagram computed via a conventional
algorithm (grey lines). Parameters: D, = 2- 1074, D, = 9.64-107*, 1 = 2,k; = 0.1, k3 = 1,
T = 1.1, 2 = [0, 1], cyclic boundary condition, A, = 0.01, A, = 0.01

into (3.58) while linearizing the cubic term around « leads to the following set of
equations

3 - 82 1 3 n2 - -2\ ~ ~
§MM:DM[W+;a—r—ﬁ}uM+(A,_3M)MM_K3UM+}(1
- ﬁ ity rds2s, (3.62a)
o 26
q . 9’ 19 n?]. ..
‘L’Evu =D, I:W-F;g—ﬁ} Vy + Uy — vy (3.62b)

These equations are linearized to
i, =D (@), (3.63)

introducing the linear operator D (i). Of course this linear equation can be
formulated as eigenvalue equation
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v F,=Dw)F, (3.64)

with eigenmode F,, =u,,. Therefore a stationary solution is stable against pertur-
bations of eigenmode F, if the respective eigenvalue v, holds Rv, < 0. The
global stability of a stationary solution is determined by the first 4 = 1,...,n
eigenmodes [3.69, 3.70]. Examples for numerically computed eigenmodes F,, are
shown in Fig. 3.18.

This stability analysis is carried out with the following set of parameters

D,=6-10, D, =6-107% 1 =0.8, % = —1.58,
Ky =5k3=1, =10, 2=1[0,0.5], A, =0.01

(3.65)

whereby the existence and stability of localized solutions is investigated for varied
parameter ;. The chosen parameters define a monostable reaction-diffusion system
of which the homogeneous ground state uy = vy is the real solution of (A — ky —
k3)u — u® + x; = 0 solving for uy = —0.2978. At the Turing-bifurcation point
1. = —1.58 the homogeneous ground state can be destabilized by perturbations
of wave number k. = 60 which follows from (3.45) by substituting parameter D,,
with D, and parameter k4 with k3.

The existence and stability of localized stationary solutions for varied control
parameter x; is visualized in Fig. 3.19. The diagram shows the amplitude i (%) =
(max u—min &) of the activator distribution as function of the control parameter. Due
to the subcriticality of the Turing-bifurcation the unstable localized solutions (dotted
curve) branch backwards from the bifurcation point. The amplitude of these local-
ized structures increases with decreasing control parameter x; until the critical value
1 =x1ps = — 2.3 is reached which is a saddle-node bifurcation point from which
a branch of stable and unstable solutions emerge. For »; < x; ps localized solutions
of (3.59) don’t exist. The activator amplitude i of the stable stationary solutions
(solid curve) increases with increasing control parameter »; until the stability is lost
at x; ~ —1.71. At x; ~ —1.64 these unstable structures vanish for the benefit of
periodic structures with large amplitudes. From the two localized solutions found in
the parameter range —2.3 < %1 5 —1.64 the smaller one can be identified as critical
nucleus of the larger one by solving the time-dependent field equations (3.53) with
the perturbed critical nucleus as initial condition.

Due to the fact that the amplitude of the critical nucleus becomes very small
in the vicinity of the Turing-bifurcation point »; . a homogeneous system can be
destabilized by small localized perturbations in favor of localized structures with
large amplitudes for »; < ;.. In this scenario the perturbation has to be slightly
larger and broader than the critical nucleus. However, these dissipative solitons
featuring large amplitudes are also unstable due to the vicinity of the Turing-
bifurcation point respectively »; 3, —1.64. Their instability can be explained by the
distinct oscillatory tails of the localized structures which compete with the critical
nuclei, such that new dissipative solitons are likely to ignite from the oscillating
tails of the first one. A quantitative validation of this explanation is discussed in
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Fig. 3.18 Eigenmodes F,, of dissipative soliton with monotonic tails [3.71, Fig. 7.2]. Figures show
the real part of the activator component. (a) © = 0 Breathing mode. (b) 1 = 1 Goldstone mode.
(¢) o = 2.(d) 1 = 3. Parameters of (3.57): D, = 4.7-1073, D, = 0.01, A = 4.67, % = —1.04,
ky = 0.0, k3 = 3.33

Sect. 7.4.2 where the generation mechanisms of dissipative solitons are regarded in
greater detail.

From the two-component reaction-diffusion system with local feedback it is
a small step to three-component reaction-diffusion systems if the transition from
global to local feedback (Sect.3.2.4) is carried out once more. These systems are
interesting because they enable the investigation of the dynamics and interaction of
several moving dissipative solitons.

3.4 Three-Component Reaction-Diffusion Systems

3.4.1 Propagating Dissipative Solitons

From experimental observations it is known (Chap.2), that dissipative solitons
do not only exist as stationary structures, but are found to be moving entities in
the majority of observations. Concerning reaction-diffusion systems a mechanism
for imposing dynamic instabilities is delayed inhibition. In case of homogeneous
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Fig. 3.19 Amplitude of activator peaks #(x);; = (max # — min ) computed in the vicinity of a
subcritical Turing-bifurcation for a two-component reaction-diffusion system with global feedback
(3.59) [3.72, p. 81]. The amplitude is plotted as function of control parameter x;. Solid curves refer
to stable solutions, dotted curves to unstable solutions. Parameters from (3.65)

solutions delayed inhibition triggers harmonic oscillations if the stability criterion
f'(uo) < fu(k) (3.56b) is violated. But how does delayed inhibition act on localized
structures? Consider a localized one-dimensional stationary solution &z = u(x)
of the two-component reaction-diffusion system (3.53) on a periodic domain and
assume, that the time scale constant t is larger than one. In this case the inhibitor
field reacts slowly on local perturbations of the activator field, such that its
stabilizing effect is reduced. In this situation the localized structure is sensible to
perturbations breaking the mirror symmetry of the structure. For example shifting
the peaks of activator and inhibitor distribution slightly against each other induces
a propagating dissipative soliton: Due to the slow response of the inhibitor the
activator peak is able to expand to the side exhibiting a lower inhibitor concentration.
Of course this effect might lead to the destruction of the localized structure, but if the
inhibitor is only moderately slower than the activator the inhibitor peak will at least
be able to follow the activator peak leading to a continuously propagating dissipative
soliton. In this respect the inhibitor has a stabilizing effect on the propagating
structure. In one-dimensional systems such propagating dissipative solitons are
called pulses [3.73-3.77].

On two-dimensional domains £2 C RR2 the transition from a localized stationary
dissipative soliton to a propagating one cannot be realized on basis of (3.53),
because the inhibitor stabilizes the dissipative soliton only in the direction of
motion but not perpendicular to it. Therefore the activator either spreads or shrinks
perpendicular to the direction of motion which typically leads to the formation of
spirals or the vanishing of the structure (Fig.3.16). In this scenario propagating
dissipative solitons can only be stabilized by periodic inhomogeneities, e.g. in form
of sparse spatial discretization [3.78], or in the limit of extreme time scale separation
[3.79,3.80], which renders the computation of numerical solutions difficult, or by
including global feedback (3.57) [3.81], which in general is only suitable for finite
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domains. However, in case of several possibly interacting dissipative solitons global
feedback mechanisms are also problematic, because the feedback integral is not
sensible to perturbations enlarging one dissipative soliton and shrinking another one
by the same amount of activator. This leads to the successive vanishing of localized
structures until only one large dissipative soliton remains [3.41, 3.82]. However,
simulations show [3.83], that global feedback is able to stabilize several dissipative
solitons at least temporarily, if the initial conditions are constructed from a single
propagating dissipative solitons being properly relaxed.

Following the considerations of Sect.3.3.1 the global feedback mechanism is
replaced by a local feedback mechanism

i(x,1) = DyAu(x, 1) + Au(x,t) —u(x. 1)’ —i3v(x,1) + ky
~i [ gx = putenax. (3.660
2
w(x,t) = DyAv(x,t) + u(x,t) —v(x,t), (3.66b)
with g(x — x) denoting Green’s function. Of course this two-component reaction-

diffusion system with local feedback can be formulated as three-component
reaction-diffusion system by introducing a feedback field w = w(x) with D,, > D,:

i= D, Au+ du—u — k30 — kaw + K4, (3.67a)
W= D,Av+u—v, (3.67b)
0=D,Aw~+u—w. (3.67¢)

Its homogeneous solution #y = (i, Vo, wo) " with ug = vy = wp can be computed
by substituting parameter A in (3.15) with (A — k3 — k4). Considering the same
substitution for «; . (3.14) also the bistability criterion 0 < |k;| < |kj.| holds.
The homogeneous solution ) is stable against perturbations of wave number k (cf.
Sect. 3.3.2), if in accordance to (3.44) and (3.56a) the determinant criterion

fuo) < frlk) + 1;‘# = fok) + ﬁ (3.684)

and the trace criterion (3.56b)

K4

f/(MO) < fu(k) + H-—Dwkz

(3.68b)
hold. While the violation of the determinant criterion (3.68a) triggers a Turing-
instability (cf. Sect.3.3.4) violating the trace criterion (3.68b) enables a wave
instability [3.42, p. 14ff] which e.g. is observed in chemical systems [3.84].
Increasing the time-scale parameter t of the inhibitor equation (3.67b) over
a critical value 7. [3.85, 3.86] destabilizes stationary localized solutions of the
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three-component reaction-diffusion systems dynamically such that the structures
become unstable against perturbations breaking their mirror symmetry and start
to propagate continuously with a well defined velocity. This so-called onset of
propagation is discussed in the following chapter. However, for the stabilization of
propagating structures it is generally not necessary that the feedback field w reacts
instantaneously on perturbations of the activator field if its response is fast enough
in order to prevent a breathing instability [3.42, p.49]. Therefore system (3.67) can
be expanded to the more general case of a second inhibitor acting on time scale 1/6:

i = DyAu+ Mu—u’ — k30 — kaw + k1, (3.69a)
0 = DyAv +u—v, (3.69b)
Ow = D,Aw+u—w (3.69¢)

with u = u(x,t), v = v(x,t),w = w(x,t) andx € 2 C R" forn = 1,2,3.
Note, that the time scale of the activator u is set to 1 and acts as reference time scale
for the inhibitors. Choosing the relation between the time-scalesto0 < 0 <1 <7<t
renders the inhibiting field v being slower than the inhibiting field w such that v
is called slow inhibitor while w is called fast inhibitor [3.82,3.86]. However, due
to the their role in forming dissipative solitons the notion driving inhibitor v and
stabilizing inhibitor w is also appropriate.

In order to explain the difference between the inhibiting components of (3.69)
a uniformly propagating dissipative soliton is presented in Fig.3.20. It shows
combined surface plots of fields u, v, and w as solution of

i=D, %%+%22+33h—22)u+/\u—u3—/c3v—/c4w+/c1, (3.70a)
=Dyt L+ By Py v, (3.70b)
0 = Dy(tL + 2+ P yw - u—w, (3.70¢)

which is derived by transforming (3.69) into a cylindrical coordinate system and
taking into account that a propagating dissipative soliton has a rotational symmetry
with respect to its direction of motion. Therefore the angular dependency of fields
u, v and w vanishes if the i-coordinate is chosen as symmetry axes. Figure 3.20
illustrates that the activator distribution u(r, i) (red) of the propagating dissipative
soliton is distorted with respect to its direction of motion which is in contrast to
the radial symmetry of a stationary structure (Fig.3.14a). In the current example
the significant distortion results from the large offset between the excitation of the
activator field u (red) and the driving inhibitor field v (green). Due to its large
time scale constant (t = 48) the driving inhibitor reacts with a significant delay to
changes of the activator field. It also degrades much more slowly than the activator
and therefore has an extended tail. In contrast to this observation is the excitation of
the stabilizing inhibitor field w (blue surface in Fig. 3.20) which surrounds the entire
activator excitation completely whereby providing an accompanying stabilization
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Fig. 3.20 Three-dimensional propagating dissipative soliton simulated in a cylindrical coordinate
system [3.87]. Due to the rotational symmetry of the structure with respect to its direction of motion
the angular component ¢ vanishes (3.70). The components u, v, and w are shown as red, green and
blue surfaces. The figure suggests, that the localized excitation of the activator field u is pushed
by the following excitation of the slow inhibitor field v while being stabilized by the surrounding
excitation of the fast inhibitor w. Therefore the inhibiting fields v and w might be attributed driving
and stabilizing inhibitors, respectively. Parameters: t = 48.0,6 = 0.5, D, = 1.5- 107% D, =
1.86-107%, D, = 9.6- 1073, 1 = 2.0, k; = —6.92, k3 = 8.5, k4 = 1.0, 2 = [0,0.466] X

[0,0.932], %u(r, M lr=0.r, = 0,u(r,h) =0 = u(r,h)|p=p,, Ax = 0.0155, At = 0.01

feedback. This of course is only possible because the stabilizing inhibitor is able to
react with negligible delay on changes of the activator field due to its small time
scale constant (8 = 0.5).

The difference between a propagating dissipative soliton being simulated with
parameters far from the onset of propagation and a propagating dissipative soliton
close to the onset of propagation becomes clear by comparing the figure discussed
before with Fig.3.21. Here the time scale parameter t is chosen to be slightly
supercritical with respect to the onset of propagation. Additionally the slow inhibitor
field does not diffuse (D, =0) such that the excitations of activator and slow
inhibitor fields are identical but slightly shifted with respect to the direction
of motion. Due to its large diffusion constant and its small time scale constant the
stabilizing inhibitor surrounds the peaks of the activator and the driving inhibitor.
Note, that the fast inhibitor only degrades the activator field but interacts with the
slow inhibitor field indirectly via the activator.

Due to vicinity of the onset of propagation and the resulting weak symme-
try breaking the dissipative soliton depicted in Fig.3.21 propagates slowly. The
dynamics and interaction of this kind of dissipative solitons and their transition
from stationary to propagating structures are thoroughly discussed in the following
two chapters. This ultimately leads to a stochastic time series analysis technique
enabling the identification of the onset of propagation and the interaction law of
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Fig. 3.21 Slowly propagating dissipative soliton visualized as surface plots of its components.
Due to the fact that the time scale parameter 7 is just slightly super critical with respect to the onset
of propagation of the dissipative soliton its radial symmetry is barely broken. The only visible
hint is the intersection of the surfaces of activator and slow inhibitor fields close to the center of
the dissipative soliton. The components u, v, and w are shown as red, green and blue surfaces,
respectively. Note, that the dissipative soliton is seen from the inside, such that the excitation of
the driving inhibitor field seems to be head on concerning the direction of motion. Instead, it
just shields the leading excitation of the activator field. Parameters: D, = 1.3 - 1074, D, = 0,
D, = 9.64-107% 1 = 095, k3 = 025, k4 = 1.0, 7 = 401,60 = 0.1, ks, = —0.08,
£2 = [0,0.44] x [0,0.88], Ba—ru(r, M=o, = 0, u(r,h)|p=0 = u(r,h)lh=r,, Ax = 0.0147,
A, = 0.01

dissipative solitons experimentally. Dissipative solitons far away from the onset
of propagation which are known to undergo generation and annihilation processes
via interaction processes are topic of the seventh chapter closing the overview on
dissipative solitons in reaction-diffusion systems.

3.4.2 Complex Dissipative Solitons

From previous sections it is know that, in the vicinity of the Turing-bifurcation
dissipative solitons exhibit oscillatory tails (Fig. 3.14). In certain parameters regions
the amplitude of these tails increases, such that a ring is formed which surrounds the
central filament (Fig. 3.22a). Notably, these systems also exhibit the standard type
of dissipative solitons, such that the interaction between both types can be examined
numerically [3.42]. The investigations show, that the target-like dissipative solitons
propagate more slowly than the standard type and that the central filament of the
target structure is likely to become unstable for slightly increased velocities.

For a different parameter set another class of solitary structures can be observed,
which can be described as ring-like dissipative solitons (Fig.3.22b). These struc-
tures are constructed from the intersection of a single dissipative soliton which
is projected onto a circle of a certain diameter. Due to its curvature the ring
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Fig. 3.22 Dissipative solitons with complex internal structure [3.42]. The subfigures show
intersections of the complex dissipative solitons which are accompanied by inlays visualizing
the spatial activator distribution of the structures. Parameters: (a) D, = 6.46 - 107>, D, = 0,
D, = 566-107% 1 = 184, k3 = 1.0, k4 = 10,7 = 0,0 = 0, x;, = —0.102,
() D, =137-1074, D, =0,D, = 2731073, 1 =25,k = 1.0, x4 = 1.0, 7 = 0,
0 =0,k =-—0.32

either extends or shrinks. In the latter case the shrinking can be stopped by the
repulsion of approaching ring fronts, such that a stationary structure forms. Like the
target-like dissipative soliton the ring-like structure can propagate and interact with
co-existing ordinary dissipative solitons. In this context simulations show, that the
ring-like dissipative soliton pertains its stability within a larger parameter region at
least compared to the target-like dissipative soliton. It also is much more robust
in interaction processes with simple dissipative solitons, in which most likely a
vibrational mode is excited [3.42].

The existence of these ring-like dissipative solitons is also interesting from the
experimental point of view, because similar structures are e.g. observed in the
BZ-AOT system [3.88].

3.4.3 Phenomenological Context

Due to its very general ansatz the three-component reaction-diffusion system (3.69)
is considered as phenomenological model for three very different experimental
systems: the BZ-AOT reaction (Sect.2.1.4), the semiconductor-gas discharge sys-
tem (Sect.2.2), and an electrical network of nonlinear oscillators. In case of the
BZ-AOT reaction [3.89, 3.90] the activator is associated with the radical BrO3,
while the stabilizing and driving inhibitors can be identified as Br, (oil soluble) and
Br™ (water soluble), respectively. In this context three-component reaction-diffusion
system is applied for simulating the interaction of continuously propagating and
jumping dissipative solitons on one-dimensional domains [3.91] as well as jumping
waves in spatially extended systems [3.90].
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boundary (Circuit diagram Rd I . Ce
adapted from [3.57, p. 10]) 'uJ- i =

db

ap

In case of the semiconductor-gas discharge system the three-component reaction
diffusion system has been applied for investigating the dynamics and interaction of
current density filaments [3.92-3.94]. In this system the self-activation is caused
by avalanche multiplication of charged carriers in the gas, while the voltage drop
at the high-ohmic electrode plays the role of the (driving) inhibitor [3.92, 3.95].
Surface charges on the electrodes have an inhibitory role, too, as it diminishes the
electric field in the gas [3.96]. Due to the low mobility of the surface charges, their
distribution can be nonuniform giving rise to the observable filamentary structure of
the discharge.

There also is a hypothetical setup founding on the self-organization phenomena
observed for electrical networks of nonlinear oscillators [3.97,3.98]. The elements
of these circuits basically consist of an RC-element and a nonlinear resistor
connected in series with an inductance. The elements of each layer are coupled
laterally to the neighbored elements via resistors, such that spatiotemporal structure
formation phenomena in one-dimensional systems [3.46, 3.62, 3.99, 3.100] and
two-dimensional systems [3.101] can be observed. An extension of this setup has
been originally discussed by Or-Guil, who proposed an additional layer of RC-
elements realizing a second inhibitory component [3.102, p. 135]. One element E; ;
of the two-dimensional network is shown in Fig. 3.23. A detailed description of the
nonlinear resistor and its spatial coupling is given by Schmeling [3.103].

The state of each element E; ; is defined by current /; ; and the voltage dropping
at the RC-elements:
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Ll;; :%(li—l,j + L1y i1+ L — 41 ;) — S )
1

N;.N; (3.71a)
~US = U + Uy — R Z li j,
i.j

. 1 US.

G _ G G G G G i

CaUyj —R_DG(Ui—Lj Uiy YU+ U —4U5) + 1y — Re
(3.71b)

“H I ow H H H H y

CuU;; :R_DH(Ui—l,j T U U Ui —4U5) + 1 — Ru
(3.71¢)

withi =1,...N;and j =1...N;.

In these equations the local coupling of neighboured network elements is reflected

by the difference terms, while the global coupling of all oscillators is reflected
by sum Z,N;N/ I; ; in (3.71a). In order to investigate these 3N;N; differential
equations the following normalization in introduced:

Lij(t) — 1 US (ts) = UC
uj Zui,j(t)zjf, Vi Zvi,j(l)Z%,
_ (3.72)
U,'I:Ij (te) - UH RI
wg =g = L=

Here currents / and / are chosen with respect to the nonlinear resistor S (/) [3.103,
p. 171f], while the remaining quantities are coupled by

US = Rgl, US = Rgl,
. . i} (3.73)
UY = Ryl, UY = Ryl.

Substituting (3.72) in (3.71) while accounting for (3.73), and introducing normal-
ization constants

yA? S(Tu; j(t) + 1)
D, = "=, Ui ) = ———t
RgA? RG R C
Dv = —G X’ T = —G -G

Rpg L
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RyA? RuR;C
D, = ~HEx g — RufiCu
Rpn L
U 1 N;N;R
Ky = = — ——(Rg + Ru + NiN;Ry), 1= —1=C (3.74)
I IR Ry
Kr = RG s — RH
3 = RI s 4 = R[
leads to the following system of differential equations:
. wi—1j iy + i1+ i1 — 4
it :Du i—1.j i+1,j 1A]2 1 i,j+1 i,j “l‘f(ui,j)
N;i,N; (3753)
K2
—K3V;j — K4wij + K1 — Ui,
/ / NN, 2 iy

i.j
Vi1 + Vit +Vij—1 + Vi1 —4vi
A%
Wit + Wit1j + Wij—1+ Wi j+1—4w;;
A7
withi =1,...N;and j =1,...N;.

w0 =D, +uij—vij, (3.75b)

9\;\1,‘,]' = DW

+ Ui j —wij (375C)

Note, that the normalization (3.74) introduces a length interval A, such that
the difference terms in (3.75) can be interpreted as approximation of the two-
dimensional Laplace-Operator [3.104, p. 15ff]. Furthermore the global feedback
approximates the integral of # on domain £2 with [|$2]| = N;N;. Therefore (3.75)
becomes a three-component reaction-diffusion term with global feedback

it = DyAu+ f(u) — K30 — Kaw + K1 — i/udsz, (3.76a)
1221l Je

= D,Av+u—v, (3.76b)

Ow = D, Aw + u — w. (3.76¢)

Consequently, for f’(u) > 0 and k3, k4 > 0 the considered setup can be regarded as
analog processor for three-component reaction-diffusion systems.
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Chapter 4
Dynamics

It is interesting that bifurcation introduces in a sense “history”
into physics.

Ilya Prigogine, Nobel lecture 1977 [4.1].

Abstract The dynamics of dissipative solitons are introduced by discussing the
destabilization of localized structures breaking their mirror symmetry. In this
context the central concept of critical modes is introduced and discussed on basis
of single dissipative solitons and their basic bound states. These considerations lead
to analytic expression for the drift- and rotational velocities of the structures in the
vicinity of the bifurcation point. In particular we will discuss the fact, that under
certain circumstances bound states of dissipative solitons propagate uniformly while
unbound dissipative solitons are stationary. Finally, the dynamics of dissipative
solitons in the vicinity of the drift-bifurcation are deduced.

4.1 Bifurcations

It is a well known phenomena that stationary dissipative solitons in reaction
diffusion systems can undergo a transition to different kinds of dynamic states
[4.2-4.7]. Namely, they are able to change their shape periodically, which is
called breathing, or they start to move with well defined velocity, which is called
propagation. An extension of the latter is the rotation of bound states of dissipative
solitons. However, all cases have in common, that close to the bifurcation point the
shape of the dissipative solitons only slightly deviates from the stationary state. With
increasing excitation of the relevant modes the shape transforms more and more
until the structure as a whole either collapses (Fig.3.16) or develops to a regular
structure (Fig.7.5).

A.W. Liehr, Dissipative Solitons in Reaction Diffusion Systems, Springer Series 91
in Synergetics 70, DOI 10.1007/978-3-642-31251-9_4,
© Springer-Verlag Berlin Heidelberg 2013



92 4 Dynamics

In order to characterize these bifurcations in parameter space we are starting with
a two-dimensional stationary dissipative soliton solving (3.69) for

D, =008, D,=D,=1,1=2,k =—033,
K3 =ks=051=0=0. .1

The stability of this localized solution with respect to angular perturbation
modes (3.60a) is analyzed for (7,60) € [0,30] x [0,30] (Fig.4.1a). Note, that
parameter set (4.1) effectively reduces the three-component reaction-diffusion
system (3.69) to a two-component system (3.38) because the identity of diffusion
constants D,, D,,, and coupling constants k3, k4 leads to identical distributions of
inhibiting components v and w. The result of this analysis is depicted in Fig. 4.1a
which shows the O-isoclines of eigenvalues related to destabilization modes © = 0
and ;& = 1 in T—f—parameter—space. First of all it is evident that the isoclines are
symmetric to the angle bisector, which is caused by the indifference of the inhibiting
components.

The diagram also shows a clear order of bifurcations: Starting with small time
constants 7,6 < 1 and increasing one of them first of all destabilizes the © = 0
modes causing a breathing of the dissipative soliton if the structure is subject to
noise, while the 4 = 1 mode is destabilized for larger values of the time scale
constants [4.8—4.10].

In a second scenario we are qualifying for a full three-component system by
switching the inhibitor distribution v to a copy of the activator distribution (D, = 0)
and adapting the reaction terms:

D,=008,D,=0,D,=1,A=3, ky = —0.33,
Kks=ks=1,1=60=0. 4.2)

By increasing the time constant t of inhibitor v the latter becomes a time-delayed
copy of the activator distribution. In this scenario the order of bifurcations is
identical to the previous one, if the time scale constants of both inhibitors are small
and the time scale constant 6 of the diffusing inhibitor w is increased (Fig.4.1b).
This is reasonable, because this scenario resembles the situation discussed in
Fig.4.1a. However, if the time-scale constant 6 of the diffusing inhibitor w is small
and the time-scale constant t of the non-diffusing inhibitor is increased the order
of bifurcations change. As a consequence the stationary dissipative soliton first of
all becomes unstable with respect to the propagation mode (dashed line, inlay of
Fig.4.1b) and only for larger values of 7 becomes additionally unstable for the
breathing mode (solid line, inlay of Fig. 4.1b). This is exactly the case discussed in
the following sections in order to understand the so-called drift-bifurcation from a
theoretical point of view and derive the dynamics of propagating dissipative solitons
in the vicinity of the drift-bifurcation point.
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Fig. 4.1 Nullclines of eigenvalues v,, for 4 = 0, 1,2, 3. Examples of the respective eigenmodes
are depicted in Fig. 3.18. Stable dissipative solitons exist in the lower left corner of the diagrams.
Figures annotated from [4.11, p. 49]. Parameters: (a) from (4.1), (b) from (4.2)

4.2 Shape-Preserving Destabilizations

It is a well known phenomenon, that, under certain circumstances, stationary
structures of dissipative systems undergo a transition to propagating structures
due to a change of system parameters. Concerning spatially periodic patterns
this bifurcation is reported for periodically destabilized flame fronts [4.12], two-
dimensional flame patterns [4.13], parametrically driven surfaces of liquids [4.14],
Rayleigh-Bénard convection in cylinders [4.15,4.16], the printer’s instability [4.17-
4.19], and hexagonal patterns of current density filaments in ac-driven gas-discharge
systems [4.20].

For a large variety of systems a general understanding of this dynamic desta-
bilization can be established by means of symmetry considerations [4.21-4.23],
which in most cases enable an abstract classification of the occurring bifurcations.
In contrast to this more general approach the following sections address the problem
of quantifying the instability by directly examining the unstable modes of the
structures. This ansatz enables not only the identification of bifurcation points but
also the computation of propagation velocities close to the bifurcation point. While
the dynamics of propagating patterns are highly influenced by the geometry of
the considered domain the following considerations focus on localized structures
which are separated from the domain boundaries such that the deduced dynamics is
independent of the domain geometry.

4.2.1 Goldstone-Mode

For localized solutions of one-component reaction-diffusion systems (3.3) with
symmetric potential it has been pointed out in Sect. 3.1.2, that all fronts u;' (x) (3.8)
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Fig. 4.2 Displacement of front ug (x) by 8. The displaced front ug (x +68x) (dashed green
LMI’VE) can be constructed from front ug (x) (solid black curve) by adding a Goldstone-mode

qu (x) (black dashed curve), which is weighted by the displacement 6,. The resulting front
(red dotted curve) agrees in the scope of the approximation §, << 1 very well with the directly
shifted front (green dotted curve). Parameters: A = 0.8, D, = 5-107°,8, = 5-1073

shifted by £6, € R are stationary solutions of the system (3.3). This is due to the
translational invariance of the system. In a more general notation this relation can
be written as

Duf(x +8) =F (uf (x +8,)) =0 (4.3)
if the right hand side of (3.3) is substituted by the nonlinear operator F (u). In order
to check the validity of this mathematical statement the first order series expansion
of the displaced front uf} +(x + 8,) around the original front ug +(x) is computed for
S < 1t

Ut (x + 85) & ut (x) + s 2ugt (x). (4.4)
Note, that the term
A A
Sxut (x) = 8, N sech? | x ) 4.5)

is composed from the so-called Goldstone-mode iu+ (x) and the displacement §,.
Literally speaking, (4.4) means that a front ug (x) can be displaced by a small
distance &, by adding a respective perturbation in form of the Goldstone-mode
Lu (x) (Fig. 4.2).

In order to understand the influence of the Goldstone-mode on the stability of
the stationary solution, approximation (4.4) is inserted into (4.3) and the first order
series expansion is computed:
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0=F (ul}"(x + SX))
~ F (uf (x) + 8xugt (x))
~ F (u}}F (x)) +68,D (u:-' (x)) %ug (x), (4.6)

here operator D (u;' (x)) denotes the Fréchet-derivative of operator F(u) evaluated
at u; (x). Because F (u;' (x)) is zero, just as well as I (u;' (x + SX)), (4.6) can only

be fulfilled if

D (uff (x)) %u;'(x) D Du%u;’ (x)+k%u;'(x)—3 (uf (x))2 %u;" (x) =0 (4.7)

holds, which can be checked by inserting u;' (x) (3.8) in (4.7). From a more abstract
point of view this means, that the Goldstone-mode %uf{ (x) is an eigenmode of the
linear operator D (u;F (x)) with zero eigenvalue and therefore does not influence the
stability of the front.

These stability considerations also apply for partial differential equations

3u =F (V,u,k) 4.8)
ot
with F (V,u, k) being a nonlinear operator acting on the m components of field
u=u(x)= (ux),..., um(x))T defined for x € R”". Furthermore, it is assumed
that the solutions of (4.8) depend on parameter vector k and at least one stationary
solution u(x;k) = wu exists. In this case the dynamics of slightly perturbed

stationary solutions # = u + & is determined by the dynamics of the eigenmodes of
the linear operator D(u; k), that is

%a = D(i; k)i (4.9)

If the considered system (4.8) furthermore exhibits continuous symmetries with
respect to a coordinate transformation x; — x; + 8y, with §y, € R and the stationary
solution additionally depends in a non-trivial way on the coordinate x;, then

Gy, = 2 (4.10)
B.X,'

is a Goldstone-mode of u# and therefore an eigenmode of the linear operator D (u; k)
with eigenvalue 0:

D(it, )Gy, = 0. @.11)

Because the Goldstone-modes are characterized by a discrete eigenvalue, they are
different from Goldstone-bosons which have a continuous spectrum of eigenvalues
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whose smallest eigenvalue is equal to zero [4.24, p. 151]. Note, that (4.11) is a
special case of eigenvalue equation (3.64) with | = G,. In general, the complex
eigenfunctions F, of (3.64) can be computed numerically for ¢ = 0,2,3,...
(Fig.3.18) and e.g. for vy = Ziw describe the bifurcation point of the breathing
instability [4.5].

4.2.2 Propagator-Mode

The Goldstone-modes discussed in the foregoing section do not cause a destabi-
lization of stationary solutions u due to their neutrality concerning the dynamics
of small perturbations. On the other hand such a destabilization can occur if
an additional mode exactly matches the Goldstone-mode Gy, at a certain critical
representative k. of control parameter vector k. In this scenario we are dealing with
a degenerated eigenvalue problem, such that the eigenbasis has to be expanded by a
generalized eigenmode P, in order to describe the eigenvalue problem completely.

For this purpose the generalized eigenmode P, of linear operator D(u, k) with
eigenvalue v; is computed with the ansatz

(D(@, k) — vi1)*P,, =0, (4.12)

whereby 1 denotes the unity operator. By inserting the degenerated eigenvalue v; =
0 of the Goldstone-mode Gy, the following relation is deduced

D(ut, k)* Py, = D(t, k) D(it, ko) Py, = 0. (4.13)

Because of (4.11) this equation is only fulfilled if the linear operator D(u, k)
applied to the generalized eigenmode P,, exactly returns the Goldstone-mode G,

D, k) Py, = Gv. . (4.14)

Therefore, exciting the generalized eigenmode P,, of a localized structure u
permanently generates the corresponding Goldstone-mode Gy, and results into a
continuous shifting of stationary solution # in direction e ;. This scenario describes
a drift-bifurcation occurring at k = k. [4.3]. Note, that these considerations even
hold for arbitrary directions ey, = r € R" as long as G, = %u # 0, which is
discussed in Sect. 4.2.4.

Because the presented formalism has been basically developed in the context
of front propagation (cf. [4.25]) the name propagator-mode for the generalized
eigenmode P, is well established. However, in the present context it is used
for arbitrary excitable modes of localized structures leading to a translational or
rotational motion.
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While the analytical representation of the propagator mode has not to be known
in order to discuss drift- and rotational-bifurcations, it is essentially needed for
investigating the dynamics of dissipative solitons close to the onset of propagation.
Note, that (4.14) does not define the propagator mode uniquely (cf. [4.25, S. 275]).
Because of the neutrality of the Goldstone-mode all elements of {Py, +aG,, |a € R}
act as propagator mode. Therefore we have a certain degree of freedom to choose
an appropriate analytical representation of the propagator mode (cf. Sect. 4.3.3).

4.2.3 Complementary Modes

In order to understand the prerequisites ensuring the solvability of (4.14) a comple-
mentary Goldstone-mode is introduced [4.26, S. 42]. It is defined as eigenmode Qi,.
of operator DT (i, k) with eigenvalue zero:

D' (@, k)G! = 0. (4.15)

Note, that operator D (i, k) is adjoined to linear operator D(i, k.). By introducing
a scalar product (-|-) as integration over domain £2 and projecting (4.14) onto the
complementary Goldstone-mode Qi,. leads to the following calculation:

(G11Gy) = (] 1D@. k) Py,)
= (G1,10x) = (D' (@. k)G, |Py,)
= (GL1G,) = 0. (4.16)

Therefore the bifurcation point k. at which the propagator-mode P,, matches
the Goldstone-mode G,, can be computed analytically by solving (4.14) if the
Goldstone-mode G, is orthogonal to the complementary Goldstone-mode gIl. .

In order to evaluate the solvability condition (4.16) the complementary
Goldstone-mode gjl. has to be known. In case of the three-component reaction-
diffusion system (3.69) it derives from the fact that the linear operator D(u, k)
can be decomposed into a diagonal invertible parameter matrix M (k) and a self-
adjoined operator L(u, k¢) [4.27]:

D@, k) = M(ke)L(u, kp). 4.17)

The parameter matrix M (k) depends on the critical parameter k. but not on the
stationary solution #, while the linear operator £(&, k¢) depends on the stationary
solution and on all non-critical parameters kg Note, that the Goldstone-mode
Gy, (4.11)is an eigenvector of L(u, k¢) with eigenvalue zero.

By substituting definition (4.17) into the eigenvalue equation of the complemen-
tary Goldstone-mode (4.15)
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0 =D (@ )G}, = (M(ke) L@, 1))" G, = L{@ 1) M (k)G (4.18)

we find, that the eigenvalue equation of the complementary Goldstone-mode (4.15)
is solvable within the scope of the discussed scenario (4.17) if the product of
parameter matrix M (k.) and complementary Goldstone-mode gil. results in the
Goldstone-mode:

M(k)G] = Gy, (4.19)

Therefore the complementary Goldstone-mode QL can be analytically expressed in
terms of Gy,

Gl = M(k) "Gy, (4.20)

Because the Goldstone-mode G, of a known stationary solution # can be computed
by differentiation of the solution with respect to coordinate x;, the complementary
Goldstone-mode has not to be computed numerically which is the case for more
arbitrary cases of the linear operator D(u, k) (e.g. [4.28,4.29]).

Furthermore the critical point k. in parameter space, at which the propagator-
mode Py, (4.14) destabilizes the stationary structure # to a propagating one, is
determined by the solvability condition (4.16), because k. contributes via the
parameter matrix M (k) to the computation of the complementary Goldstone-mode
Gl 4.20).

For the deduction of dynamic equations another complementary mode, the
complementary propagator mode 73;,. is needed. It is defined correspondingly to
the definition of the complementary Goldstone-mode (4.15) by

D' (. k)Pl =G . 4.21)

In Sect.4.2.2 it has been mentioned, that the propagator mode is not defined
uniquely. The same holds for the complementary propagator mode, because all
elements of {PI,. + ag}:i la € R} act as complementary propagator mode.

4.2.4 Drift- and Rotational-Bifurcation

Already in the foregoing chapter the existence of localized stationary solutions
of three-component reaction-diffusion system (3.69) have been discussed. These
dissipative solitons exhibit rotational symmetry and pronounced oscillatory tails
in the vicinity of the Turing-bifurcation. It has been shown by Schenk et al.
[4.30], that the oscillating tails mediate attractive or repulsive interaction between
neighbored dissipative solitons, such that they can arrange in several well defined
distances. Two examples of dissipative solitons being bound in different binding
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Fig. 4.3 Typical stationary bound states in a two-dimensional reaction-diffusion system. The plots
show the configurations with the first (subfigures (a) and (c)) and second (subfigures (b) and
(d)) smallest binding distances. Each configuration is shown as surface plot of activator u(x, y)
respectively u(x’, y’) (upper row) and as intersection of the activator distribution u(x) (black
curve) and stabilizing inhibitor distribution w(x) (dashed curve) along the longitudinal axis of
the bound state (lower row). For the intersections the coordinate system is transformed, such that
the center of the structure is located at the origin of the coordinate system and the longitudinal axis
of the stationary bound state is parallel to the x-axis of the coordinate system. The intersection of
the driving inhibitor v is not shown because it is identical to the activator distribution for parameter
set (4.22) and T = 3.04. Solutions computed on domain £2 = [0, 1]> with no-flux boundary
condition, A, = 5-1073,and A, = 0.1

distances are shown in Fig.4.3 as solutions of the three-component reaction-
diffusion system (3.69) with parameters

D,=11-10"% D, =0, D, = 9.64-107%, 1 = 1.01,
k1 =—-01,k3=03,ks=1,7=332,0=0. (4.22)

Note, that this parameter set represents the limit of a two-component reaction-
diffusion system with local feedback (3.66) which prevents us from dealing with the
breathing instability of the single dissipative soliton [4.3] and later on will enable the
deduction of reduced dynamics (Sect.5.2.1). However, numerical stability analysis
shows (Fig. 4.1), that for D,, > D, and t > 6 > 0 the drift destabilization occurs
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before the breathing instability if ¢ or 6 are chosen as control parameter. Therefore,
we will consider the more general case 6 # 0 for the following analysis and discuss
the limit & — 0 wherever appropriate.

The exclusion of internal degrees of freedom is also applied to the considered
bound states, which are regarded as rigid structures. This assumption definitely
holds for the undisturbed stationary structure and uniformly propagating structures
in the direct vicinity of the drift-bifurcation point. While the assumption of rigid
bound states is dropped later on (Chap. 5), it is consequently used for the following
considerations and leads to the interpretation of a bound state as singular structure
breaking the translational and rotational symmetry of the investigated system (3.69).
Therefore the bound states do not only have Goldstone-modes of translation
but also Goldstone-modes of rotation, such that a stationary bound state can be
destabilized to an uniformly moving or a uniformly rotating structure. In the
following sections these drift-, respectively rotational bifurcation is investigated by
means of bound states of dissipative solitons (Fig. 4.3) observed as solutions of the
two-dimensional three-component reaction-diffusion system (3.69). Of course the
presented formalism can easily be generalized to structures of higher dimensional
systems.

Having a stationary localized structure u at hand (Fig. 4.3) we start by linearizing
the underlying reaction-diffusion system (3.67) according to ansatz (4.9). The next
step is to choose a suitable control parameter which destabilizes the stationary solu-
tion at a certain critical value . to a propagating one and perform the decomposition
of the linear operator (4.17). For this purpose the time scale parameters t or 0 are
suitable candidates, since stationary structures # do not depend on them for v < 7
and 6 < 0.. Therefore the linear operator D(i, k) is decomposed into a parameter
matrix

1 0 0
M@0 =[0-L o, (4.23)
0 0 —K%o

which depends on the time scale parameters but not on the stationary solution #, and
a solution-dependent operator

D,,,A + A— 317!2 —K3 —K4
L. ky) = —k 3Dy A + K3 0 (4.24)
—Ky4 0 _K4DWA + K4,

which does not depend on the time-scale parameters. Now, we are free to choose one
of the time-scale parameters as control parameter and for historical reasons decide
in favor of 7 [4.3].

By substituting parameter matrix M(z, ) (4.23) in (4.20) and evaluating the
solvability condition (4.16) with respect to (4.10) the bifurcation point 7., at which
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the Goldstone-Mode G,, is generated by the respective propagator-mode P, (4.14)
is computed to

(GE2) -kt {(277?)
K3 ((%5)2> '

(4.25)

Texi =

Here (-) comprises integration over the domain. The variable x; determines the type
of the considered bifurcation. Choosing x; from the Cartesian coordinates x or y
results in bifurcation points of drift-bifurcations destabilizing the structure with
respect to an uniform motion in direction of e or e, respectively. Choosing x; to
the angle ¢ of a polar coordinate system whose origin is located at the center of the
structure results in the bifurcation point of a rotational-bifurcation. In this scenario
the structure is destabilized to uniform rotation. Note, that the radial coordinate o of
the polar coordinate system is not considered, because the related Goldstone-mode
G, refers to internal degrees of freedom [4.31], which are neglected in the following
considerations in order to simplify matters. Furthermore, it is most convenient to
shift the Cartesian reference frame, such that the longitudinal axis of the structure is
parallel to the x-axis (Fig.4.3c, d).

How does this bifurcation scenario apply to a single stationary soliton u as
discussed by Or-Guil et al. [4.3]7 Again, we consider a polar coordinate system
whose origin is located at the center of the structure and compute the angular
derivative aiﬁ of the dissipative soliton. Due to its rotational symmetry (Fig. 3.14)
the angular derivative vanishes and therefore the Goldstone-mode Gy of rotation
does not exist and a rotational bifurcation cannot happen. The rotational symmetry
also induces, that all translational propagator-modes {P, cos ¢y + P, sin ¢y|¢o €
[0, 27]} become unstable at T = 7., = 7., and an arbitrary one can be exited which
initiates uniform propagation along (e cos ¢y + e, sin ¢) for v > 7.

The situation is completely different, if the stationary structure @ is not radi-
ally symmetric (Fig.4.3). These kind of structures exhibit a Goldstone-mode G,
corresponding to the rotational degree of freedom and additional Goldstone-modes
referring to propagation along the longitudinal axis G, and the lateral axis G, of the
stationary structure (Fig.4.4). In order to compare the values of these bifurcation
points defined by (4.25) the case of a bound state propagating into an arbitrary
direction (e cos ¢y + e sin¢) with ¢y € [0, 27r] should also be considered. The
latter scenario implies the excitation of a propagator-mode P, which generates
a Goldstone-mode being a linear combination of Goldstone-modes G, and G,.
Defining this Goldstone-mode as

G. =aG, + bg, (4.26)

with @, b € R and inserting this ansatz into solvability condition (4.16) while taking
into account that the unsymmetric terms vanish

d-la-\_/a>
(i) = (&7

%5) - (%w)%w> —o0, (4.27)
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Fig. 4.4 Goldstone-modes (4.10) of a single dissipative soliton and a pair of dissipative solitons
being bound in the smallest possible binding distance. The subfigures show gray-scale images
of the respective activator distributions 3%1_4 (4.10). (a) Activator distribution of Goldstone-mode
(Gicospy + G, singyy) with ¢y = % computed for a single dissipative soliton. This mode

V31

corresponds to a translation into direction e = (=5-, 7). Note, that due to the rotational symmetry
of the single dissipative soliton additional translational Goldstone-modes exist for ¢y € [0, 27]. (b)
Activator component %ﬁ of the translational Goldstone-mode G, referring to a translation along
the longitudinal axis of the bound state. (¢) Activator component 3112 of translational Goldstone-
mode G, corresponding to a translation along the lateral axis of the bound state and (d) activator

distribution %ﬁ of the rotational Goldstone-mode G,4. Parameters from (4.22)

the bifurcation point 7, can be expressed by means of the bifurcation points 7.,
and 7 :
y

Te, = a2<(%5)2> T, + b2<(%6)2> Te, -

(o) + (o) " (o) + g or)

(4.28)

If the stationary structure does not exhibit radial symmetry but mirror symmetry,
the bifurcation point ., is always located in between the bifurcation points 7., and
Tc,. It follows that for T > 7., not only the longitudinal propagator-mode P, but
also a continuous band of linear combinations (4.26) of lateral and longitudinal
propagator-modes can be excited.

In order to discuss the order of the drift- and rotational-bifurcations on basis
of a concrete example, we choose D, = 0 resulting in # = v for a stationary
solution u. Furthermore the time-scale parameter 6 is chosen to 6 = 0.8, such that
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Table 4.1 Bifurcation points 7., (4.29) and form factors Q, (4.44) for different configurations
of mirror-symmetric bound states of two dissipative solitons. The values of the first two rows refer
to the images presented in Fig. 4.3a, b, respectively

T, Tc, Tc¢ Q X Q b Q [
First bound state 3.0359 3.0364 3.0314 1934.7 1942.5 13.88
Second bound state 3.0397 3.0398 3.0393 1988.6 1996.7 47.34
Third bound state 3.0408 3.0409 3.0409 2002.6 2004.2 104.2

Note, that the bifurcation point 7. of a single dissipative soliton is located at t. = 3.0399 for the
chosen parameters, which are taken from (4.22) with § = 0.8

neutral modes are destabilized before non-neutral modes become unstable. Now the
bifurcation points 7., (4.25) with x; = x, y, ¢ can be computed by

f.:i—eﬁ@ (4.29)
Cxi K3 K3 ((%ﬁ)2> .

For two dissipative solitons in the closest possible bound state (Fig.4.3a) one
finds the bifurcation points 7., = 3.0359, T, = 3.0364, and 7, = 3.0314
(Table 4.1). Therefore, by increasing the control parameter t the first propagator-
mode becoming unstable is the rotational propagator-mode G, followed by the
longitudinal propagator mode G, and the continuous family of propagator-modes
Ge (4.28). The hierarchy of bifurcation points is visualized in Fig.4.5. Here, the
value of 7., is plotted as function of arctan g for the structure presented in Fig. 4.3a.
Also shown are the bifurcation points 7., < 7, < T,, which are represented by
horizontal lines, because they do not depend on parameters a and b (4.25). Having in
mind, that the propagator-mode with the smallest bifurcation point can most easily
be excited, the bound states will most likely start to rotate.

Of course, this also holds for bound states with the second smallest binding
distance (Table 4.1). Admittedly for increasing binding distances the values of the
bifurcation points ., Te, and T, Move closer, until their interaction is negligible
and the respective bifurcation points cannot be discriminated from the bifurcation
point of a single dissipative soliton at 7. = 3.0399.

From (4.29) it becomes clear, that the bifurcation points of drift- and rotational-
bifurcation are identical for  — 0:

1
Te =T, = Tey = Ty = —- (4.30)
) P

Therefore the bifurcation points discussed by OrGuil et al. [4.3] cannot be discrim-
inated and the dynamics of a bound state at 7 > t. depends at the same time on the
longitudinal-, lateral-, and rotational-propagator-mode as well as on their coupling
among each other [4.26,4.32-4.34]. In case of mirror symmetric bound states this
coupling results into an instability of the propagation into the lateral direction.
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Fig. 4.5 Relation between the bifurcation points of propagation for a bound state of two
dissipative solitons. The solid curve shows the continuous family of drift-bifurcation points
7., (4.28) as function of arctan %' The dashed lines indicate the bifurcation points s < Te, < Ty

Parameters from (4.22) with A, = 1.25- 1072, ((:£0)?) = 2.236, ((;37)?) = 2.062, and 7.,
from Table 4.1 '

Consequently a bound state moving along its lateral axis will always change to a
longitudinal translation or rotation if it is subject to fluctuations.

4.2.5 Translational and Rotational Velocities

In this section we are deriving the translational and rotational velocities ¢y, of a
self-organized structure (e.g. Fig.4.3) which propagates uniformly for v > 7,
into direction of e, [4.27]. Therefore, the corresponding vector field u(x,t) is
transformed in a coordinate system moving parallel to the x;-axis with velocity cy;, :

~ ~
u(x,t) = u(x; —cqt,xy,t) = u.

(4.31)
Here vector x; comprises all spatial variables exclusive x;. Transforming (4.8) to
the co-moving frame

J ~

0~ A~
Eu = ¢y, o, u—+ F(u;k) (4.32)

>
and considering stationary solutions u of this equation leads to

do A
—Uu

+ F(u;k)=0. (4.33)

i ax;
1

Its solutions are structures which propagate uniformly with velocity ¢y, into
direction e,,. Starting from this ansatz the uniform propagation velocity ¢, can
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be computed in the vicinity of the bifurcation point k. by projecting (4.33) onto the
complementary Goldstone-mode (4.20)

At X o
Gy =M (k)7 —u. (4.34)
. ox;

Having this very general approach in mind we compute the angular velocity ¢y
of a bound state of two dissipative solitons (Fig.4.3) which rotates uniformly for
T > 1,. For this purpose the respective vector field u is transformed to a co-rotating
polar coordinate system

w(x.1) =u(p—cyt.r.t) =1. (4.35)

This ansatz is inserted into the three-component reaction-diffusion system (3.69)
Ao

~
and evaluated for the stationary solution # = (i, v, w)":

S SIS T S

0=c¢%u+DMAu +Au—u K30 — KaWw + K71, (4.36a)
@

0=¢ 5 + (D, AT+ 0 )/r, (4.36b)

0= E¢%W + (DWM +a- »'V)/e. (4.36¢)

Following the described approach, (4.36) is projected onto the respective com-
plementary Goldstone-mode (4.34). By integration of parts all unsymmetric terms
vanish such that the angular velocity ¢y is determined by

& (((%Eﬂ - m((%%f} - 9/<4<(%3)2>) =0. (4.37)

This equation always has a trivial solution ¢4 = 0, which corresponds to the

stationary solution u = g|5¢:0 of the resting coordinate system. Additionally, it has
solutions depending on the time-scale parameters t and 6. In order to understand
these solutions, we are investigating the case of an inhibitor, which does not diffuse,
because in this case the activating component can be expressed in terms of the not
diffusing inhibitor. Without loss of generality and in accordance with the foregoing
examples (cf. Fig.4.3) we choose D, = 0 and derive the following expression for
the stationary activator component in the co-rotating frame from (4.36b):

LA 438
cr%v (4.38)

N}

C|(3

Inserting this term into (4.37) and performing some elementary transformations one
finds
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2 2 <(l¢%)> 1 K4 w
0=27((3520)’) v EZ e el
v v

¢ 12((32 )2> K3 Kg((%

ke
which obviously has a quadratic term giving two non-trivial solutions of ¢4. These
are the angular velocities of clockwise and counterclockwise rotation. Because

53
the stationary solution # of the co-rotating frame are generally not known, we
evaluate (4.39) in the vicinity of the rotational bifurcation T &~ ., (4.25) for which
only stationary structures with ¢4 = 0 or slowly rotating structures with |¢s| < 1

A
exist. Therefore, we assume u ~ v from (4.38) and estimate the stationary solution
N

u of the slowly co-rotating frame by the stationary solutions # of the resting

53
coordinate system: # &~ u. Consequently (4.39) simplifies to

2
‘L'C¢

0=yt <( 0 > [c‘; K—3Q¢(r . z%)] . (4.40)

Here variable Q4 denotes a so-called form factor

Q=12 "1 (4.41)

which is computed from the stationary activator distribution z. Example form factors
for the bound states shown in Fig. 4.3 are listed in Table 4.1. According to (4.40) two
new real solutions bifurcate at T = 5 from the trivial solution branch ¢4 = 0, such
that the considered bound state is either stationary or rotates for t > 7., clockwise
or counterclockwise with angular velocity

_ K
Zp(r) = £ ﬁ(c — 7)) (4.42)
Co

Having the stability considerations of Sect.3.1.1 in mind we conclude, that the
stationary state ¢, = 0 is stable for 7 < 7, and becomes unstable at the bifurcation
point T = T, at which the stable solutions (4.42) branch off.

According to the described ansatz the translational velocities are computed to

() == (t — ) (4.43)

K3
C’Cl QXI

where x; = x denotes longitudinal propagation of the bound state and x; = y lateral
propagation. Corresponding to (4.41) the respective form factor Q,, is given as
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(4.44)

- —((%,ﬁ)z)'

The qualitative change of the discussed system is characterized by the fact that
the stationary solution is rendered unstable while additional dynamic solutions
become relevant. This qualitative change of topology is classified as drift-pitchfork-
bifurcation [4.35]. However, in the following section this bifurcation is abbreviated
as drift- or rotational-bifurcation (cf. [4.27,4.36])).

Of course (4.43) is also valid for a single dissipative soliton. In this case the form
factor Q = O, = Q, (4.44) can either be evaluated with respect to an arbitrary
Cartesian coordinate or the radial coordinate of a polar coordinate system

3 / :O (r(&i? + L) ar
0== oo ’
! / r(%ﬁ)z dr

0

which takes the radial symmetry into account.

Simulations of the three-component reaction-diffusion system (3.69) verify the
theoretical prediction, that a stationary bound state will be destabilized by noise
to a uniformly rotating one, if time scale parameter t is chosen larger than t,.
Furthermore the simulations of a bound state consisting of two dissipative solitons
confirm, that the angular velocity ¢, in the vicinity of the bifurcation point 7,
increases with the square root of the distance (t — t.,) of control parameter t from
the bifurcation point (Fig.4.6). The same holds for the longitudinal velocity .,
of the bound state. In accordance with the foregoing considerations (Fig.4.5) the
translation becomes possible for significantly larger values of the control parameter
T> T, > T, Although the translation into the lateral direction of the bound state
is also possible for T > 7, (cf. Table 4.1) the related velocities are not shown in
Fig. 4.6 due to the inherent instability of this propagation mode [4.26,4.32,4.33],
such that the equilibrium velocity of the lateral motion cannot be determined from
simulations with adequate accuracy.

Note, that in addition to the discussed destabilization scenario which is charac-
terized by an unchanged shape of the considered structure also a bifurcation due
to a change of shape can occur. Concerning one-dimensional systems this kind of
bifurcation has been shown e.g. by Osipov [4.37] on basis of the FitzHugh-Nagumo-
model [4.38,4.39], and by Hempel et al. [4.40] on basis of the Rinzel-Keller-model.
For the three-component reaction-diffusion system this kind of drift-bifurcation
will occur, if the change of a control parameter leads to change of shape of the
considered structure and therefore by means of the respective form factor to a
change of the bifurcation point (4.29) [4.41,4.42]. For three-component reaction-
diffusion systems with modified coupling terms a change of chape can induce a
rotational motion even for a single dissipative soliton, if a 4 = 2 mode (Fig. 3.18c)
is destabilized [4.34].

(4.45)
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Fig. 4.6 Rotational- and drift-bifurcation of a dissipative soliton molecule in first bound state
(Fig.4.3a). Both the theoretically deduced velocities (/ines) and the velocities obtained from
simulations of the field equations (symbols) are squared and plotted as function of the control
parameter 7. The bound state is stationary for t < ¢ , and is able to rotate for T > T, " while the
stationary state is unstable. For t > . also longitudinal translation is possible. The propagation
velocities increase with the square of the distance between control parameter t and the respective
bifurcation point. Parameters from (4.22) with 6 = 0.8 (Figure reproduced from [4.27])

Despite of the prediction of the drift- and rotational-velocities of dissipative
solitons’ bound states the presented investigations clarify, that individual dissipative
solitons can have quite different properties than their bound states. For example
for 6 = 0.8 and 7., < 7 < 7. a bound state of dissipative solitons can exhibit
uniform rotation or translation (Table 4.1) while separated dissipative solitons are
stationary. This effect resembles a kind of synergetic dynamics which e.g. have been
observed in a.c.-driven gas-discharge systems with high ohmic barrier [4.43]. Bode
interpreted this phenomenon as pair effect [4.44, S. 46ff].

4.3 Equations of Motion

In order to describe the dynamics of dissipative solitons by equations of motions
we are considering a three-component reaction-diffusion system in the limit 6 —
0 (3.66) on a one-dimensional domain:

Lu(x, 1) =Dy Lu(x, 1) + f (ulx, 1)) —k30(x, 1) + &y
— Ky / g(x — Yu(x. )dy, (4.462)
2
r%v(x,t) :Dv%:zv(x,t) 4+ u(x,t) —v(x,1), (4.46b)

£ (u(x, 1)) =Au(x, 1) —u(x,1)? (4.46¢)
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with g(x — y) denoting Green’s function. Assuming, that for a certain set of
parameters a stationary solution & exists, its equations of motion are derived in four
steps:

. Transformation to homogeneous state uy = 0,
. Specify complementary modes,

. Perturbation ansatz,

. Projection onto complementary modes,

. Reduced dynamics.

[ I S OSI \ R

4.3.1 Transformation to Homogeneous State uy = 0

In order to account for infinite domains the considered reaction-diffusion system is
transformed to a system with homogeneous state uy = 0 by introducing

un(x, 1) = u(x, 1) —ug with un (x, 1) = (un(x,1), va(x,2))7. (4.47)

Inserting u(x) = un(x) + uo into the cubic nonlinearity f(u) (4.46¢) leads to the
following expression:

[ (un(x) + o) = f(uo) + [ (uo)un(x) — 3uottn(x)* — un(x)°. (4.48)

Therefore (4.46) can be rewritten to

B ttn(x, 1) =D un(x,1) + f(o)ttn(x, 1) + N (un(x, 1)) — K300(x, )

— K4 / g(x — Pua(y, )dy, (4.49a)

2
t%vn(x, t) :Dv%jzvn(x, 1) + un(x,t) — vn(x,1), (4.49b)
N (un(x, 1)) = — 3ugun(x, 1)> — uy(x,1)>. (4.49¢)

Note, that the offset parameter x| has not been diminished, but still influences the
system via the homogeneous state uy = up(k;) (3.15).
Introducing the linear operator £ with

£ur.) = Dufute.) + £ Galeute.) —s [ e puGrndx 450)

where g(-) denotes Green’s function (3.33). Renaming u,(x,7) tou = u(x,t) leads
to the following one-dimensional reaction-diffusion system

Q;IQ;

u= Lu—k3v+ N(u), (4.51)

t

|

TV =u—0. (4.52)

)

t

with homogeneous ground state uy = 0.
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4.3.2 Specify Complementary Modes

Concerning a stationary state # = (i, v) the system can be linearized to

Vi = D@ =0 (4.53)

with linear operator

"(17 —_—
D) = Mo (£ N0 ) (4.54)
—K3 +K3
and parameter matrix
1 0
M(r) = (0 _L)' (4.55)
TK3
At the drift-bifurcation point . (4.25) the Goldstone-mode
grin(x)
gx(x) = g - (4.56)
e u(x)
of D(u; 7) is accomplished by propagator-mode
Pi(x) = 0 (4.57)
* — - gei(x) '

[4.10,4.45]. From this equation follows that the propagator mode P, (x) can be inter-
preted as displacement of the inhibitor distribution against the localized activator
distribution. This displacement is negative, such that an excitation of propagator-
mode P, (x) with positive amplitude leads to a structure propagating with positive
velocity. Therefore the activator distribution of a propagating dissipative soliton is
always located ahead of the inhibitor distribution.

Concerning the adjoined operator D (iz; 7) the complementary Goldstone-mode
deduces from solvability condition (4.16) respectively (4.20) to

T Aeii(x)
Gl(x) = ) (4.58)
— e u(x)
and the complementary propagator mode is chosen to
195
Pix) = <K3 axou(x)) ‘ (4.59)

With these critical modes at hand we can start to deduce the dynamics of dissipative
solitons.
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4.3.3 Perturbation Ansatz

Recalling the ansatz of Sect.4.2.5 concerning the computation of equilibrium
velocities close to the vicinity of the drift-bifurcation, we are starting with a
stationary dissipative soliton & in a co-moving frame. Additionally, we account for
perturbations on three different time scales 7}, T, and T5:

u(x,t) =a(x — p(Ty, 15, T3)) — exza(T1, To) P (x — p(Th, T»., T3)) +

) , (4.60)
+€r(x,T)) + € R(x)

with time scales
Ti = €'t, (4.61)

propagator mode Py (x) (4.57) and propagator mode amplitude o (71, 7>). Note,
that the factor k3 has been introduced for historical reasons in order to match the
perturbation ansatz presented in [4.45]. In (4.60) corrections of order ©? are denoted
r(x,Ty) and R(x).

Inserting the definition of propagator mode Py (x) (4.57) leads to the following
ansatz

u(x, 1) =i(x = p(T1, >, T3)) + €’ ru(x, T1) + € Ry(x), (4.62)
v(x,t) :L_t(x — p(T1, 15, T3)) + ea(T, Tz)%ﬁ(x — p(T1, Ty, T3))
+ ezrv(x, T)) + 63Rv(x). (4.63)
Introducing a critical parameter T by
2

ET=1—1 (4.64)

and inserting (4.62) and (4.64) into (4.50) while expanding the nonlinearity
N(u) (4.49¢) up to O(e*) leads to the following equations

Pl ? + € 0 + € ? +€
——Uuj€e— — € — T—ry
o on P TRl T ot 0T,

d
= Lu+ N(u) — k3u — €k300—1u
ox

+ 2Lr, + 2N/ (W)r, — €231y
+ LR, + €N (W)R, — €’ k3R, (4.65)
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(GZ%JF‘C) _iﬁ ei +ézi +€3i _ézia_e?’ia
T\ n T T et T Y T o

2 d 0 d
- ) 2 3 4 3
_Wu {6 oca—Tlp+e aa—T2p+6 oca—TSp} + € —rU:|

_ _ 0 _
= u+62ru+63Ru—u—eaa—u—62rv—63Rv. (4.66)
X
For reasons of simplicity the arguments of u, p, «, r,, 1y, R,, and R, have

been omitted. Because these equations have to be fulfilled for all time-scales
simultaneously, we are sorting them by orders of €:

o(1) :
0 (Lﬁ + N(()ﬁ) - fcgﬁ) ’ (4.67a)
O(e) :
0
P ) g ("3“) 2 (4.67b)
_-[ca—Tlp ox — ox
0(e%)
ag"zp i_ _ 0 a—zljt
9 = 2
P+ e ox 4 0x
! (17 _
_ (c + N'@) 1613) (r) _D (r) (4.67¢)
f_c _T_L Iy Iy
0(e®)

3 ks T
_ (c N :Kf) (2) b (2) 4.670)

with D denoting the linear operator (4.54) at the bifurcation point.

4.3.4 Projection onto Complementary Modes

While O(1) (4.67a) represents the stationary system and is obviously fulfilled,
Egs. (4.67b)—(4.67d) are evaluated by projecting them onto the complementary
Goldstone-mode G (4.5 8) and complementary propagator mode Pi (4.59).
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Projection of O(¢) (4.67b) onto 73;:
S Ay 9 7
pi| TP wt) - <7>; ("3“ %“)> =0
—‘Cca—Tlp ﬁu — ﬁlzt
= 2\ 9 K30 0
_u —_— —_— =
ox or, 7T
= 0 = K3 (4.68)
o1, P T e ‘
Projection of O(¢) (4.67b) onto gi (4.58):
3 9 - -
gr|| ™y = —<g* (”3“ %“» =0
I\ = 3 P 5l AN
= 2\ + 0 2\ (k3 +a) =0
— — e—p|—{|=—u o+o)=
3 o, T o P ox :
d 1+ k3
—p= 4.69
= 8T1 P 1+ Tc “ ( )
Comparing this equation with (4.68) determines the bifurcation point
1
.= —, (4.70)
K3

because (4.69) basically evaluates the solvability condition (4.16). Projection of
0(e?) (4.67¢) onto Py (4.59):
(7))
ry

J J -
—n P U
<7’~’I (_i Do 0,8z 0 8_2—)>=<7’~I
P U TR & U G P 5o

@y 18 \\ 9 r
- _ t u
= —— (| = =P = . 4.71
K3 <(8xu) > asz <gV (rv)> ( )
The right hand side equals to zero because of Fredholm’s alternative such that
d

—p=0. 4.72
on,? (4.72)
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Projection of O(€?) (4.67c) onto gI (4.58):

i) =0. 4.73)

- 32 _ .
Because the term <%uaa7u> equals to zero, Eq. (4.73) results into

d
Za=0 474
o, " =" (79

The equations of third order (4.67d) do no need to be projected onto 73}: (4.59) in
order to calculate % P, because the resulting term can be neglected as highest order,
when all terms are consolidated up to O(€?).

Projection of O(e?) (4.67d) onto gi (4.58) while taking (4.68), (4.70), and (4.72)
into account:

<

0 J -
P i .
T 9 J = 0 J = d J = d 9° =
i P U TIn P gt TR g —gn P ogau

R, (4.15)

)
U2 (e o) (a2 2o 20 @)
—u - —U\|\ =Ty — =T |)= .

ax 0 ax \oT, AT,

From (4.67¢) it is known that

o ad_ 9 0 a9 Ty Ty

o 9. 9 9. 0 0 , 476
o ot T T Yan Pt T L T % (4.76)

Taking the results from the previous calculations (4.68), (4.70), (4.72), and (4.74)
into account and solving for r, leads to

) 0% _
ry =r,—o Wu, 4.77)

from which the 7T;-derivative is calculated:
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9 9 L P
B Iy 478
P P A I (4.78)

By substituting this equation into (4.75) and carrying out the partial integration the
dynamics of o on time scale 7, are derived:

PN L

—o = T30 — K30 T
()

T = tiGa — i3 Q0 (4.79)
with O, being the form factor defined in (4.44).

4.3.5 Reduced Dynamics

After evaluating (4.67) by the projection technique the relevant terms from
first (4.68) and third order (4.79) are collected:

ad
ea—Tlp = €Kz, (4.80a)
3 0 32,2 3 3
€ a—Tza = e TKi0 — e k30 . (4.80b)

Returning to the original time scale and substituting the definition of the critical
parameter 7 (4.64), while taking the bifurcation point t.. (4.70) into account leads to
the following dynamics:

P = €Kk3a, (4.81a)

1
€ = e/c§ (t — —) o — k30,00, (4.81b)
K3

The final step consists of substituting e by « in order to derive the reduced
dynamics of a one-dimensional dissipative soliton, which is

P = K3, (4.82a)

1
@ = «? (f — ;) o — 30,0, (4.82b)

Of course this calculation can be carried out for dissipative solitons on n-
dimensional domains by which the general form of the reduced dynamics is derived

b=:3(c=2)p—2p%. (4.83)
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These ordinary differential equation describes the dynamics of a particle with unity
mass and velocity dependent friction. The equation also reflects the drift-bifurcation
scenario for the limit 6 — 0 (Sect.4.2), which describes the qualitative change of
dynamics from damped to uniform motion due to a change of sign in term (t — %).
Therefore the stationary state p = 0 is unstable for T > 1/k3 and the uniform
motion with intrinsic velocity p = ¢, (4.43) is the preferred state. Therefore, an
arbitrary excitation cg = % p(0) of the propagator mode will decay to the respective
equilibrium value ‘

a=-L1é, (4.84)

K3

as

2
cg/Kk3T — 1 57!

a(r) = .
\/ez’(sz”QOlé + 62’(3t(K3‘L’ —1- QO[%)

(4.85)

This analytical solution of (4.83) can be regarded as test scenario for checking
the implementation and validity of numerical solutions obtained from (4.83) or the
corresponding field equations.
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Chapter 5
Interaction of Slow Dissipative Solitudes

Now the law of forces is of this kind; the forces are repulsive at
very small distances, & become indefinitely greater & greater,
as the distances are diminished indefinitely, in such a manner
that they are capable of destroying any velocity, no matter how
large it may be, with which one point may approach another,
before ever the distance between them vanishes. When the
distance between them is increased, they are diminished in such
a way that at a certain distance, which is extremely small, the
force becomes nothing. Then as the distance is still further
increased, the forces are changed to attractive forces, these at
first increase, then diminish, vanish, & become repulsive forces,
which in the same way first increase, then diminish, vanish &
become once more attractive; & so on, in turn, for a very great
number of distances, which are all still very minute; [. ..]

P. Rogerio Josepho Boscovich, 1763 [5.1],
cited from [5.2].

Abstract The following section accounts the interaction of slowly propagating
dissipative solitons by means of a particle ansatz and a nonlinear perturbation
analysis. This approach results into a reduction of the field dynamics to the
position and excitation of the respective propagator mode where the interaction
between dissipative solitons can be regarded approximately as classical central
force. Starting from the reduced dynamics, scattering and the formation of bound
states are investigated and compared to solutions of the underlying reaction-
diffusion system, which shows good agreement between field and particle model.
Also on basis of the reduced dynamics and under consideration of internal degrees
of freedom the dynamics of rotating bound states are investigated which leads to the
description of centrifugal forces and related distance dependent angular velocities.
The chapter finishes with some general considerations on many-particle systems of
dissipative solitons.

A.W. Liehr, Dissipative Solitons in Reaction Diffusion Systems, Springer Series 119
in Synergetics 70, DOI 10.1007/978-3-642-31251-9_5,
© Springer-Verlag Berlin Heidelberg 2013
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5.1 Formation of Bound States

Systematic investigations on the formation of bound states of dissipative solitons
started in the late eighties of the last century [5.3, S. 919f], when Elphick et al.
investigated the formation of so-called wave-trains [5.4-5.6]. In this context OrGuil
et al. were able to show on basis of a modified Barkley-model [5.7], that bound
states of one or more propagating dissipative solitons can form, if the interaction
is not monotonous and exhibits at least one relative maximum [5.8]. In contrast to
these investigations are dissipative solitons with purely repulsive interaction which
have been investigated by Ohta [5.9,5.10] and Ei et al. [5.11]. While the phase
dependency of interacting breathing dissipative solitons is reported by the working
group of Nishiura [5.12], the following considerations concentrate on the interaction
of propagating dissipative solitons without breathing mode destabilization.

While experimental evidence for the formation of bound states has been given
in Sect. 2.2.5, we are starting to investigate the phenomenon on basis of the three-
component reaction-diffusion system and continue by deducing the equations of
motion for interacting dissipative solitons in the vicinity of the drift-bifurcation
(Sect.5.2). The presented approach builds upon a projection technique which had
been introduced by Bode in order to describe the influence of inhomogeneities on
the dynamics of trigger fronts [5.13]. It extends the ansatz of Sect. 4.3 by considering
two dissipative solitons interacting on an n-dimensional domain, which is subject to
spatial inhomogeneities [5.14]. The resulting order parameter equations constitute a
so-called reduced dynamics (Sect.5.2.1). Like in classical mechanics, a dissipative
soliton would only change its direction of motion if a certain force is applied. Due
to the dissipative nature of the investigated system we are dealing with a generalized
type of interaction force which mediates the influence of parameter inhomogeneities
(Sect. 5.2.2) and inherently the interaction between dissipative solitons (Sect. 5.2.3).
The following sections address the elementary bound states of dissipative solitons
(Sect.5.2.4), and the validity of the reduced dynamics (Sect.5.2.5), as well as
scattering (Sect. 5.3), rotating bound states (Sect. 5.4) and the dynamics of complex
bound states (Sect.5.5). Finally, a small essay on many particle properties of
dissipative solitons is given (Sect. 5.6).

The first example for the formation of bound states on basis of the three-
component reaction-diffusion system shows a head-on collision on a three-
dimensional domain. The initial condition is composed from two dissipative
solitons, which are located at positions p; and p»:

pr=pi+d e, (5.1a)

The particles are separated by distance d = 0.8 and move towards each other, which
implies anti-parallel propagator mode amplitudes

o] = —0) || €y. (Slb)
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Fig. 5.1 Formation of a propagating bound state in a three-dimensional reaction-diffusion system.
(a) Space-time-diagram of the evolving activator intersection u(x(y),t) with x(y) = (0, y,0)T
taken along the symmetry axis of the system. (b) and (c) Snapshots of the three-dimensional
activator-distribution plotted as isosurfaces of u(x) = —0.1. The colouring of the surfaces has
been chosen with respect to the local concentrations of the slow inhibitor. Red and blue indicate low
and high inhibitor concentrations, respectively. The direction of motion of the dissipative solitons is
indicated by arrows. In order to enhance the spatial perception, shadows of all objects are projected
onto the base of the domain. Parameters from (5.2)

Taken the cylindrical configuration of the initial condition into account the three-
component reaction-diffusion system (3.70) is solved with the following parameters:

D,=13-10"*, D, =0, D, = 9.64-107%, 1 = 0.95, k; = —0.08,
K3 =025 ky=1,1=401, 60 =001, A, =0.0148, Ar = 0.01,
2 =]0,0.52] x [0, 2.08] (5.2)

which provide stable propagating dissipative solitons with oscillating tails (cf.
Fig.3.21).

The result of the simulation is visualized in Fig.5.1a as space-time diagram,
which shows the formation processes as gray-scale image. The spatial coordinate
of the image is the symmetry axis e, | d of the initial condition (5.1), such that
the evolution of activator distribution u(x,¢) with x = (0, y,0)T results into the
depicted space-time diagram with light and dark gray shading referring to low
and high activator concentrations, respectively. Therefore, the homogeneous ground
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state can be identified as smooth gray area, whereas the centers of the dissipative
solitons are visible as black regions, which are surrounded by the characteristic
undershooting (white) of the localized activator distributions. At the beginning of
the simulation the dissipative solitons move with their intrinsic velocity ¢, (4.43)
towards each other (Fig. 5.1a). Note, that the reciprocal slope of these curves reflects
the velocity of the dissipative solitons.

A snapshot of the approaching dissipative solitons is shown in Fig.5.1b as
isosurface of the activator distribution u(x) = —0.1 at + = 100. The shading
of the isosurfaces indicates the concentration of the slow inhibitor with red and
blue corresponding to low and high inhibitor concentrations, respectively. It can be
clearly seen, that the dissipative solitons exhibit a low v-concentration at their front.
As has been discussed in Sect. 3.4 the shift between activator peak and slow inhibitor
peak is the cause of the ongoing propagation. The direction of motion is indicated
by arrows.

The space-time diagram (Fig. 5.1a) shows, that the dissipative solitons approach
each other up to a distance of d ~ 0.16 (+ = 400), whereupon they are repelled
due to their repulsive interaction and their distance increases. However, their mutual
attraction prevents the break off, such that a bound state of two dissipative solitons
has formed. The space-time diagram also shows, that the distance oscillation decays,
which is caused by the fact, that the corresponding eigenmode of the bound state is
subcritical [5.15, S. 88ff]. Instead the applied noise of amplitude R = 107> leads
to an excitation of the propagator mode, which has to be a longitudinal translation
mode due to the cylindrical symmetry of the scattering problem (5.1), which has
been explicitly factored into the simulated field Eq. (3.70). In this simulation the
bound state starts to propagate uniformly into the direction of the y-axis (Fig.5.1a,
t € [2,300;2,500]). The travelling bound state is exemplary visualized at t = 2,250
in Fig. 5.1c as isosurface of the activator distribution. Its shading shows that the slow
inhibitor distribution is shifted with respect to the activator distribution against the
direction of motion. Such kind of propagating dissipative solitons can be regarded
as three-dimensional analogon to wave-train solutions known from one-dimensional
reaction-diffusion systems [5.8].

5.2 Equations of Motion

5.2.1 Reduced Dynamics

Having in mind, that a reaction-diffusion system with two well separated dissipative
solitons can be constructed by superposition of two stationary dissipative solitons,
we are going to describe their dynamics by means of a particle approach
representing each dissipative soliton by its position p; and the amplitude «; of
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appropriate propagator modes (Sect. 4.3.3). Additionally, spatial inhomogeneities
k1(x) are introduced by means of a spatial mean i;:

K1 = K1(x) = ki + (k1(x) — k) = ki + ki(x) = ki + ky (5.3)
————

=1 (x)=k1

with k1 denoting the deviation from the spatial mean ;. Substituting this definition
into the three-component reaction-diffusion system (3.69) for the limit D,, — 0 and
0 — 0 (3.66) leads to

i(x,t) =D, Au(x,t) + Au(x, 1) —u(x,1)® — k3v(x, 1) + i) + &1 (x)
— K4 /Q g(x —xu(x,dx, (5.4a)
0(x,t) =Dy Av(x,t) +u(x,t) —v(x,1). (5.4b)
By substituting x; with i; and A with (A — k3 — k4) in (3.15) the inhomogeneous
reaction-diffusion system (5.4) is transformed, such that its homogeneous ground

state uy equals to zero (Sect.4.3.1). Omitting the arguments of u, v and k; for
reasons of simplicity leads to

Du=Lu—13v+ Nu) + &y, (5.5a)
TgU=u—v (5.5b)

with nonlinear operator N(u) given by (4.49c). Equation (5.5a) also introduces the
linear operator £

L= Dydu+ f' (o 1) u — ks /Q g(x — X)u(0dx (5.50)

as generalization of (4.50) with g(-) denoting Green’s function (Sect. 3.3.1).

This reaction-diffusion system is well formulated for the following analysis
because the activator (5.5a) mainly describes the stationary structures# = (i1, 1)T =
(,u)T, while the inhibitor (5.5b) covers their propagation. In this context only
radially symmetric stationary structures are considered, whose existence and
stability is a prerequisite for the following analysis.

Linearizing the two-component reaction-diffusion system (5.5) around a
stationary solution u = (u, u) leads to the operator D(u; t) (4.54). The respective
Goldstone-modes

gx,- (x) = (5.6)

a -
_Txi”(x)
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have been discussed in Sect. 4.3. Additionally, at the drift-bifurcation point 7, = é
the propagator-modes

0
P (x) = ) 5.7

exist in form of neutral eigenmodes. Similarly for the adjoined operator DT (it; 1),
the complementary Goldstone-mode is given by

R ()
Gy (x) = . (5.8)
rxl_u(x)

and the complementary propagator mode is chosen to
19 -
——u(x

In order to model the dynamics in the vicinity of a supercritical drift-bifurcation
at . = %, a bifurcation parameter 7 is introduced as

2T =1—1 (5.10)

where ¢ corresponds to the ratio of the diameter of a dissipative soliton and the
distance between the interacting solitons. Additionally, it is assumed, that the
spatially depending perturbation &y scales as &%} .

By introducing time scales T,, = ¢t with m = 1, 2,3 the position p; € R" of
the ;™ dissipative soliton is given as p; = p; (71, T, T3). In this respect p; is the
displacement vector describing the shift of a stationary dissipative soliton from the
origin to its position, such that the respective vector field is given as &; = u(x — p;).
Also for each dissipative soliton its 7-dimensional propagator mode P(x — p;) and
the respective propagator mode amplitude o; = &;(71,7T,) € R" are taken into
account:

u(x,t) =u(x — p(T1. T, T3)) — exza (Ty, T)P(x — p1(T1, T2, T3)) +
i(x — pa(T1, Tr, T3)) — exzaz(T1, T))P(x — po(T1, T2, T3)) +
e2r(x, Ty) + € R(x). (5.11)
Here, the components of P(-) are given by (5.7) and corrections of order O? and
O3 are denoted r(x, T;) and R (x), respectively. Note, that the factor k3 has been

introduced for historical reasons in order to match the perturbation ansatz presented
in [5.14], which is revealed by inserting the propagator mode definition (5.7)
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into (5.11), omitting the arguments on the right hand side of the equation and writing
the components of vector field u separately:

u(x, Ty, Tr, Ts) = ity + itr + €*ry + 3Ry, (5.12a)
v(x, Ty, T, T3) = it + ity + o Vity + eas Vi, + €21, + &> R,,. (5.12b)

In order to derive dynamical equations for p; and «; on a two-dimensional
domain, ansatz (5.12) is inserted into field Eq.(5.5) and the resulting equations
are projected onto eigenmodes Qi (x — p1), gj (x — py) (5.8) and PI (x — p1),
77; (x — p1) (5.9). Similarly, equations for the second dissipative soliton are
derived by projection onto eigenmodes gj (x — p2), Q; (x — p2) and PI (x — p2),
P} (x — po).

An important point for the evaluation of the substitution is the treatment of the
nonlinear term

N (u(x, Ty, T, T3)) = N(it; + ity + €*r, + €R,). (5.13)

Following an ansatz of Elphick et al. [5.5], the nonlinearity N () (4.49¢) is expanded
as polynomial

o0
Ny + ity + &7ry + £ R) = Y _aj(iiy + it + 7, + £°R,)/ . (5.14)
j=0

Note, that coefficients ag and a; vanish due to the nature of N(u) (4.49¢c). Therefore
the projection of D (u, 7.) onto eigenmodes gij (5.8) and PIT,X]A (5.9) basically
leads to terms of type

(gin|iiy) = O™, (5.15)

Their order results from the fact, that the localized structures basically decay
exponentially and are of order O(¢?) for |x| > |p> — pi]. In this respect & — 0
describes the limit of large distances between the interacting dissipative solitons.
The evaluation of polynomial (5.15) and its rearranging concerning all terms up to
third order leads to

N +ity + &1 + € R,) = N(i) + N(io)+
N/(’jtl)(’jtZ + 82ru + 83Ru) + N/(IZZ)(’}I + gzru + €3Ru)s (516)

which is referred to as weak coupling in quantum mechanics [5.16, S. 76f]. Note,
that the first two terms of this expansion depend on the undisturbed stationary
solution, while the interaction between the dissipative solitons is governed by the
third and fourth term, which are of the same order as the inhomogeneity k. Taking
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all substitutions and expansions into account, system (5.5) will take the following
form for the first dissipative soliton, if its terms are sorted with respect to their order
in g [5.14]:

O(e):
0 =(55 p1 — k3a1) - Viay, (5.17a)
0 =(%p1 — Kk301) - Vidy. (5.17b)
O(?):
(L + N' (i) ry — K3y = —N/g(zul)az — &y — 5% p1 - Vi, (5.17¢)
iiﬁﬂz%ﬂyV%—ﬂ%pyVM—ay(H@Q%po. (5.17d)
O():

(L4 N'(u1)) Ry — k3R, =k305 - Vit — %Pl - Vi

3 9 _ (5.17e)
+ 57 "u = g7 P2 Vi,
—Ru — R 0 — o2 - P) -
o :a—n(x1~vul+z——c.v”2_mpl'vul
+ %rv —o - (H(L_tl)a—?zm) - %K3%pl - Vi (5.17)
- %PZ - V.
Here, H (i) denotes the Hessian matrix
92 - 2 -
R
mm:<%f%%)' (5.18)
m“i ay_2“"

In spite of the fact, that the terms of order O(e?) depend on the second order
perturbation r, and r,, they need not be calculated explicitly. Instead the deriva-
tive of (5.17d) with respect to 7} is computed, resolved for r, and substituted
into (5.17e)—(5.17f). By projecting these equations onto eigenmodes g;x/ (5.8)

and PIT,X/ (5.9) and returning to the original time scale ¢ the following dynamics
is derived:

P =301 — Wps(d) + W (p1), (5.19a)

a1 =1 (v &) o1 — 3 Qccfoes — Wos(d) + Wi (p1). (5.19b)

i3
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The dynamics of the second particle is computed in the same way to

Py = k302 + Wps(d) + W, (p2), (5.19¢)

@ =3 (v = L) @2 — s 0o + Wos(d) + Wi, (p2) (5.19d)

with @; = |e;|. Here Q denotes a form factor as given by (4.45), Wps(d) the
interaction between the dissipative solitons separated by distance

d =|d| =|p2— pil, (5.1%)

and W, (p) the influence due to an inhomogeneity located at p. Just as the form
factor Q, the interaction terms are computed from the activator u of a stationary
radial symmetric structure u

<va|,zl>
We (p1) = —( (5.19f)

(F)*)
(Vﬁ1|N/(L_t1)L_t2> d d
e F@)5.

Due to the radial symmetry of the dissipative solitons the interaction F(d) can
be interpreted as distance dependent central force which acts in direction of the
displacement vector d /d between the dissipative solitons.

In order to generalize the reduced dynamics (5.19) to several interacting dis-
sipative solitons, the interaction field W pg(d) (5.19g) describing the two-particle
interaction has to be extended to a many-particle field W;(py,..., pn), such that
for N interacting dissipative solitons the dynamics of the i th particle becomes

Wos(d) = (5.199)

pi :K3ai_m(pls---spN)+WKl(pi)’ (5203)

@ =3 (v = L) — 100 = Wi(pr,.... px) + Wi (p1). (520b)

The many-particle interaction W;(p1, ..., pn) can be approximated by superposi-
tion of the two-particle interaction as

N
Pj—Di
Wipr,....pn) =Y Fp; — pi)—— (5.20¢)
j=1 |Pj _Pi|
J#i

[5.15, S. 70]. This many-particle interaction is the basis of Sects. 5.5 and 5.6 which
discuss systems with more than two interacting dissipative solitons.
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5.2.2 Inhomogeneous Systems

In many cases spatial inhomogeneities of reaction-diffusion systems can be
modelled in terms of parameter inhomogeneities like the ones introduced in (5.3).
In the context of the reduced dynamics the effect W, (p) of the inhomogeneities
is determined by (5.19f) from the field representation «j(x) of the parameter
inhomogeneity and the stationary dissipative soliton u.

An application of this approach is the investigation of the influence of coarse
spatial discretization on the dynamics of dissipative solitons observed in numerical
solutions of the field Eq. (5.19). Modelling the spatial discretization as lattice of
perturbations in terms of the reduced dynamics shows, that the direction of motion
of the dissipative solitons is deflected towards the symmetry axes of the lattice
[5.15, S. 106ff]. This phenomenon is frequently observed for numerical solutions
computed on coarsely discretized domains. In addition Bode et al. have shown,
that slowly propagating dissipative solitons are not only scattered at parameters
inhomogeneities of Gaussian shape but also can be captured on circular paths [5.14,
S. 57ff]. Also to mention is the work of Ward et al. [5.17] who derived a reduced
dynamics for the description of pinning effects. Intensive investigations on the
interaction of dissipative solitons with localized inhomogeneities have also been
presented by Nishiura et al. [5.18-5.21].

In contrast to the aforementioned approaches we are going to neglect parameter
inhomogeneities throughout the following sections of the book. Therefore we
choose k1 = 0, such that W, (p) = 0 follows from (5.19f).

5.2.3 Interaction Law

Within the scope of the reduced dynamics (5.19), the distance dependent interaction
of radially symmetric dissipative solitons is characterized by the central force
F(d), which in turn is computed via (5.19g) from the stationary solution & of
the considered structure. Because the reduced dynamics (5.12) is only valid for
sufficiently separated dissipative solitons, the interaction force F(d) is basically
determined by the decay characteristics of the dissipative solitons against the
homogeneous ground state, which surrounds the interacting structures.

In order to illustrate this behaviour Fig. 5.2 shows two typical dissipative solitons
with monotonous (5.2a) and oscillatory (5.2b) decay characteristics. The respective
interaction forces are plotted in Fig.5.2c, d as solid curves. The force F(d),
which corresponds to the monotonously decaying dissipative soliton, increases
with decreasing distance d between two solitons and reflects purely repulsive
interaction. This can be clarified on basis of the reduced dynamics (5.19b) if a one-
dimensional domain hosting two approaching dissipative solitons is considered. We
neglect inhomogeneities and assume that both dissipative solitons are significantly
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Fig. 5.2 Distance dependent interaction of dissipative solitons. (a) and (b) Stationary dissipative
solitons as solutions of the three-component reaction-diffusion system (3.69). Due to the neglected
diffusion of the slow inhibitor (D, = 0) its distribution is identical with the distribution of the
activator u(x) = v(x). (¢) and (d) Interaction force F(d) (black curves) and interaction potential
Vaw(d) (gray curves) according to (5.19g) and (5.24) of the dissipative solitons depicted in
subfigures (a) and (b). Solid and open symbols indicate stable and unstable binding distances.

Parameters (a) and (¢): D, = 8.0-107>, D, =0, D,, = 1073, 1 = 3.0, x; = —0.1, k3 = 1.0,
kg = 1.0, 2 = [0,1.2], no-flux boundary condition, A, = 5- 1073, Parameters (b) and (d):
D,=50-10"°,D,=0,D, = 964-1073, 1 = 1.71,x; = —0.15, k3 = 1.0, ks = 1.0,

2 = [0, 1.2], no-flux boundary condition, A, = 2.5+ 1073

separated and initially approach each other with their equilibrium propagation
velocity p;(fy) = k3a and p,(fy) = —k3, such that (5.19b) reduces to

@ = —Wos(d) = —F(d). (5.21)

In this situation a positive interaction F'(d) decreases the propagator mode ampli-
tude o) and the propagation velocity p; (5.19a). The same holds for the second
dissipative soliton such that both localized structures are decelerated due to their
repulsive interaction.

One should be aware, that the interaction law and therefore the reduced dynamics
become invalid if the distance d between the centers of the interacting dissipative
decreases beyond a critical threshold such that the shape of the structures changes
significantly. This would render the perturbation ansatz (5.12) invalid. Concerning
dissipative solitons with monotonous decay characteristics this critical distance d,
can be estimated from the distance d,,;, between the center of the dissipative soliton
and its first local minimum as

3
¢ X Zdmin- 22
d 2a’ (5.22)
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In most cases this estimation will also hold for dissipative solitons with oscillatory
tails. However, if these tails are strongly pronounced it might be necessary to choose
the second or third local minimum instead of the first one in order to prevent the
replication of dissipative solitons (Sect. 7.3.1).

The dissipative soliton displayed in Fig. 5.2b represents a localized structure with
weak pronounced oscillatory tails, such that the scope of application of the reduced
dynamics can be estimated from (5.22) to d. & 0.1. The corresponding interaction
force is plotted in Fig. 5.2d as black curve, which shows the characteristic oscillatory
decay characteristics. Due to the alternating sign of the interaction F(d) its roots
F(d)|,—; = 0 separate attractive (F(d) < 0) and repulsive (F'(d) > 0) regions. At
these distinguished distances d = d the interaction between the dissipative solitons
vanishes, which allows for the formation of bound states. The resulting elementary
binding states are discussed in following section.

From the historical point of view, it might be noted that oscillatory interaction
laws have already been discussed in the eighteenth century by Boscovich [5.1] in
the context of first atomistic theories (cf. citation on p. 119). Although this theory
was common to scientists in the nineteenth century it has fallen into oblivion due to
the success of quantum mechanics [5.22].

5.2.4 Bound States

Dissipative solitons with oscillatory tails which bind in distinguished distances
d = d dueto F(d)|,_; = 0 and do not change their relative position to each other
can be regarded as elementary bound states of dissipative solitons (cf. Fig.4.3).
In contrast to rigid bound states there also exist dissipative soliton molecules with
internal degrees of freedom, which are discussed in Sect. 5.5. However, the relative
simple structure of the reduced dynamics (5.19) enables the discussion of the
stability of dissipative soliton-molecules.

For this purpose the reduced dynamics (5.19) are simplified by comparing the
order of magnitudes of the occurring terms [5.16, S. 106]. It follows, that the
interaction term of (5.19b) determines the dynamics of the propagator mode o
significantly, while the dynamics of the position p (5.19a) is much less influenced by
the interaction term. Therefore the reduced dynamics can be formulated in analogy
to classical mechanics as dynamics of two point-like particles with unity mass:

b=k (c=L) b - Lpib — s F@)L, (5.23a)
by =13 (v = L) ha— 2P3br + K3 F(@)%, (5.23b)
Now the interaction can be formulated as potential

oo oo

wa(d) = —/—K3F(dh) ddh = K3 / F(dh) ddh. (524)
d d
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The velocity dependent driving respectively friction term can be interpreted as
kinetic energy

p
i == [ (& (c= &) - 202) dm
0

_%3 (, _ KL}) P+ 25 (5.25)

which leads to the following representation of the dynamics:

m=—%wwn—mmwx (5.262)
Py = —BVI(P2) + GV (d). (5.26b)

In this notation, a prime denotes the first derivative with respect to the argument.
Considering the system in close vicinity of the drift-bifurcation point (7 < %) one
finds that all terms of the kinetic energy V4 (p) (5.25) are positive. In analogy to
the pitchfork-bifurcation the resulting stationary solutions are determined by the
parabolic potential, such that the only solution p =0 is globally stable (Sect. 3.1).
In this case the stability of the bound state is completely determined by the
interaction potential Vi (d) (5.24). Typical interaction potentials are plotted in
Fig.5.2c, d as gray curves. These considerations clarify, that dissipative solitons
with monotonously decaying tails repel each other, because increasing their distance
d by 8d decreases their potential energy by (Vyw(d + 8d) — Vyw(d)) (Fig.5.2c).
On the other hand the interaction potential Vi, (d) of oscillatory interaction is
characterized by a series of less pronounced local extremes (Fig.5.2d) each one
determining a stationary binding distance. From the potential representation (5.26)
follows, that a bound state, whose binding distance refers to a local maximum of
Vww(d), is unstable, while a binding distance corresponding to a local minimum of
Vaw(d) refers to a stable bound state.

This consideration also holds beyond the drift-bifurcation, which implies T > 713
Here, the stability of a bound state has to be given for interaction potential
Vaw(d) (5.24) as well as the kinetic energy V,(p) (5.25). Due to 7 > Kls the
kinetic energy (5.25) has a negative quadratic term and has become a double well
potential , which has a local maximum at p = 0 and two relative minima at
p = =£c, (4.43). Therefore, a dissipative soliton travelling with its intrinsic velocity
Cy is stable, while its steady state is unstable. If the dissipative solitons of the bound
state propagate in parallel directions p, || p,, the stability of stationary solutions
of (5.26) are determined by the stability of each of the potentials Vi, (d) and Vy(p)
(Fig.5.3). Consequently, four different cases can be discriminated: The bound state
is stationary (p = 0, upper row in Fig.5.3), or propagates uniformly (p = =*c,,
lower row of Fig.5.3), its localized structures reside in an unstable binding state



132 5 Interaction of Slow Dissipative Solitudes
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Fig. 5.3 Qualitative stability considerations of dissipative solitons propagating in parallel. Each
scenario is represented by the respective kinetic energy and interaction potential defined in
Egs. (5.25) and (5.24). The curves have been computed for the d1ss1pat1ve soliton shown in
Fig.5.2b. (a) p = 0, V! (d) > 0.() p =0,V/)(d) <0.(c) p==xcy, V) (d) > 0. (d)
p = =xc\, V] (d) <0

v/ (d) > 0 (left column of Fig.5.3), or an stable binding state V (d) < 0
(right column of Fig. 5.3). Consequently, the reduced dynamics of two dissipative
solitons beyond the drift-bifurcation has stable solutions, which can be interpreted
as uniformly propagating bound states. These are characterized by translational
velocity ¢y (4.43) and binding distances d; with (F(d;) = 0) A (F'(d;) < 0)
(Fig.5.3d).

The attentive reader will notice, that these bound states have already been
discussed in Sect.4.2, where also rotating bound states have been taken into
account. The difference between translating and rotating bound states can also be
explained with respect to the reduced dynamics: While for translating bound states,
both the translational and the interaction terms of the reduced dynamics have to
vanish separately, for rotating bound states these terms have to balance each other.
Therefore, the binding distance depends on the intrinsic velocity of the involved
dissipative solitons, which will be discussed in detail in Sect. 5.4.2.

Finally, it has to be remarked, that the reduced dynamics (5.19) of radial
symmetric solutions does not take into account, that due to the broken rotational
symmetry, the translational and rotational modes of a bound states are coupled. It
can be shown, that only the motion in direction of the longitudinal axis of the bound
state is stable, which can be shown by solutions of the field Eq.(3.69) [5.15, S.
93]. This effect can be reproduced by reduced dynamics, if the dissipative soliton
molecule is regarded as rigid structure exhibiting an additional rotational degree of
freedom [5.16,5.23,5.24]. While this ansatz gives reliable predictions in the vicinity
of the drift-bifurcation, it shows significant deviations at larger intrinsic velocities
due to the negligence of the internal degree of freedom (cf. Sect. 5.4.2).
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Fig. 5.4 Deriving the interaction of dissipative solitons from particle-particle interaction. (a)
Position p(t) = p.(t) of two dissipative solitons, which form a bound state due to a head-
on collision similar to the one presented in Fig.5.1. (b) Comparison of interaction F(d) (black
curve), which has been computed from (5.19g) on basis of high resolution simulations of stationary
dissipative solitons, and sampled interaction F(dy,) (red crosses), which has been computed
from (5.31) on basis of the inflection points p(ty) of the trajectories shown in subfigure (a).
Parameters from (4.22) with t = 3.335, 2 = [0,2]%, A, = 5-1073, A, = 0.01

5.2.5 Checking the Reduced Dynamics

The distance dependent interaction F(d) of dissipative solitons is of vital impor-
tance for the validity of the reduced dynamics (5.19). Because this law is not directly
derived from the parameters of the reaction diffusion system, but is computed from
its stationary solutions according to (5.19g), inaccuracies e.g. due to insufficient
spatial discretization have to be ruled out. Of course, the most elegant way is to
compute the interaction law directly from simulations of the partial differential
equations instead of comparing scattering trajectories.'

Starting point is a molecule formation process due to a head on collision similar
to the one presented in Fig.5.1. This scenario is replicated for the evaluation of
interaction law (5.19g) (Fig. 5.7) by setting up the initial condition

pio= (04,00, ;o= (cc(r)/k3,0)7,

(5.27)

Pro= (04,007, @y = (=E.(1)/3,0)".
with © = 3.335 from stationary dissipative solitons. Figure 5.4a shows the solutions
of the field equations as time series of the position of the dissipative solitons. Due
to the small intrinsic velocity of the interaction dissipative solitons the equilibrium
state of the bound state to be formed is the second closest configuration dpy =
0.308 to which the particles relax in an out of phase oscillation. Describing this

!Historically, the presented method had been developed because the angular velocities (Sect. 5.4.2),
which had been predicted by the interaction law published in [5.14, Eq.(28)], could not be
confirmed by solutions of the full dynamics. The reason was a simple typo, which has been
corrected in an erratum [5.25].
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molecule formation in a center of mass coordinate system with respect to the
reduced dynamics (5.19) and choosing the dissipative soliton at position p(t) = %,
its propagator mode amplitude «(¢) is given from (5.19a) as

_ PO —FQ@2p@))
- = _

a() (5.28)

Inserting this equation into (5.19b) reveals the acceleration /() of the particle:

) = Fp1) = k2 (r = L) [FQ p) - p)] +
CIFQ@p@) — pOF +2F' 2 p(1)) p(1). (5.29)

This analytical expression can be simplified by taking into account, that the
dissipative solitons change their direction of motion recurrently, while relaxing
to the stationary bound state. For each turning point #,, the propagation velocity
p(ty) vanishes (p(ty) = 0). Taking into account, that the distance d, of the
dissipative solitons at the inflection point is given by dy =2p(ty) Eq.(5.29) can
be simplified to

Bl = EF(d)? =i (T = 2 ) F(dy). (5.30)

Due to the fact, that the interaction F(d) appears as second order term in the
course of deriving the reduced dynamics (5.17) the cubed interaction term F(dy,)?
of (5.30) can be neglected in comparison to the acceleration j, which is of first order.
Therefore, one gets the following expression for the interaction of the dissipative
solitons at the turning points:

p(tw)

=gy

(5.31)

Of course the turning points as well as the corresponding accelerations can be
extracted from the trajectories of the interaction process, such that an estimation
{(dwo, F(dwo)),...,(dwn, F(dyn))} of the interaction F(d) is computed from
the set of turning points {(¢w.0, p(two)) ..., twn, P(twn))}-

Applying this analysis to the trajectories of the relaxation process depicted in
Fig.5.4a and comparing the resulting interaction F(dy, ;) (red crosses in Fig. 5.4b)
with the corresponding continuous interaction F(d) (5.19g) of the reduced dynam-
ics (black curve in Fig.5.4b), which has been computed from high-resolution
simulations of stationary dissipative solitons, the correspondence between both
interactions is found to be excellent. This example may be regarded as confirmation
that the interaction law between dissipative solitons can be derived at least in parts
from simulations of the field equations if the dissipative solitons are sufficiently
slow and particle generation processes can be neglected.
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5.3 Scattering

The most often observed interaction between slowly propagating dissipative solitons
is scattering. This is caused by the fact, that a major class of dissipative solitons
does not exhibit oscillatory tails, and even dissipative solitons with pronounced
oscillatory tails do need to approach each other with optimal impact condition in
order to form bound states. This has been shown e.g. by Bode et al. [5.14, Fig. 4]
and will be discussed extensively in the following section.

Here, we are going to compare the trajectories of two scattering dissipative
solitons on behalf of simulations of the field equations and the reduced dynam-
ics (5.19) for a three-dimensional setup. It is important to note, that the simulated
field equations do not match the limit case of the reduced dynamics exactly, because
the fast inhibitor stabilizes the activator with a small delay:

D,=4.67-1073, D, =0, D,, = 1072, A = 5.67, k; = —1.126,
k3= 1.0, ky =3.33, T = 1.03, § = 0.01, 2 = [0,2.25]%,
no-flux boundary condition, A, = 2.8 - 1072, A = 1073, (5.32)

For these parameters the dissipative solitons exhibit only weak oscillatory tails.
Therefore, they behave to most extent repulsively and are well suited for the
investigation of scattering processes. In order to visualize results of the simulation,
isosurfaces of the activator u(x) = —1.0 (red) and the slow inhibitor v(x) = —1.0
(green) are shown in Fig. 5.5a—c, while the isosurface of the fast inhibitor is omitted.
The depicted isosurfaces are nearly spherical, such that each dissipative soliton
looks like a two-coloured sphere. This is due to the missing diffusion of the slow
inhibitor does not diffuse and the close vicinity of the drift-bifurcation point, which
causes only a weak symmetry breaking of the localized structures. The isosurface of
the fast inhibitor would be centered around the activator and would either be hidden
by the isosurface of the activator or would shield it.

In the beginning of the simulation both dissipative solitons propagate to the
center of the domain with one soliton moving parallel to the y-axis and one moving
parallel to the z-axis (Fig. 5.5a). Additionally, both dissipative solitons are displaced
with respect to the x-axis, such that they do not move in the same plane. In the
course of the scattering the dissipative solitons reach a minimal distance at 1 ~ 64
(Fig.5.5b). Due to their repulsive behaviour they are deflected and continue their
uniform propagation (Fig. 5.5¢).

As mentioned before, the parameters of the field equation do not match the
limit case of the reduced dynamics (5.5), because the time-scale parameter 6 of
field w is not zero but is set to 6 = 0.01 (5.32). Therefore, we are not dealing
with a two-component reaction-diffusion system with local feedback, which is the
limit case covered by the reduced dynamics, but with a three-component reaction-
diffusion system also realizing a local feedback. Consequently, this simulation can
be regarded as exemplary check to which extent reaction-diffusion systems, which
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Fig. 5.5 Scattering of two dissipative solitons in a three-dimensional system. (a)—(c) Isosurfaces
of activator u(x) = —1.0 (red) and slow inhibitor v(x) = —1.0 (green) for three snapshots of
the simulation. Vectors point into the direction of motion. The projection of the isosurfaces onto
the base of the domain enhances the spatial orientation. (d) Trajectories of the dissipative solitons
computed from the activator distributions of the individual dissipative soliton and from the reduced
dynamics. The curves cannot be discriminated with respect to the plotting accuracy. (e) Time series
of the distance d(t) between the scattering structures from solution of the reduced dynamics and
the field equations. Parameters of the reduced dynamics (5.19): Q = 235, F(d) as given by (5.33).
Parameters of the field Eq. (3.69) as given by (5.32)

deviate from the limit case of the reduced dynamics in other parameters than the
bifurcation parameter 7, are still covered by the particle dynamics (5.19). In order
to solve the reduced dynamics numerically, the interaction between the dissipative
solitons has been computed by means of (5.19g) for a discrete set of distances
{d;} and the resulting set of distance-interaction tuples {(d;, F;(d;))} has been
approximated by the following function

F(d) = —33¢71478 ¢05(6.77(d — 0.622)). (5.33)

Furthermore the form factor Q (4.44) has been computed to Q = 235. Simulating
the trajectories p;(¢) and p,(¢) of the dissipative solitons for the described scattering
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process by means of the reduced dynamics and comparing them with the trajectories
inferred from the solutions of the field equations shows no deviations with respect
to the plotting accuracy (Fig.5.5d). Only by comparing the time series d(¢) of the
distance between the dissipative solitons reveals a small deviation (Fig. 5.5¢), which
builds up with reaching the interaction region.

Because this deviation is quite small and can hardly be discriminated from
numerical errors e.g. due to the spatial discretization of the domain, the discussed
scenario of a fast reacting inhibitor field w (8 = 0.01) can be regarded as valid
approximation to the limit case of the reduced dynamics (8 — 0).

5.4 Rotating Bound States

5.4.1 Formation of Rotating Bound States

It is know from experimental observations obtained in semiconductor-gas discharge
systems, that dissipative solitons can form transient bound states (Fig.2.17) due
to soliton-soliton interaction. It is also observed, that dissipative solitons emerge
as rotating bound states in the course of self-completion-scenarios (Sect.2.2.5.3).
While the dynamics of rotating bound states are discussed in Sect.5.4.2, the
following section investigates interaction processes leading to their formation in
two-dimensional systems.

One thing is sure, if a reaction-diffusion system features slowly propagating
dissipative solitons with oscillatory tails, rotating bound states will form under
suitable initial conditions. This holds true even for weakly pronounced oscil-
latory tails. In this scenario only the propagation velocity has to be reduced
significantly (Sect.5.4.2). On the other hand, the formation of rotating bound
states of dissipative solitons is much more likely, if the oscillatory character of
their tails is pronounced. Therefore, we are investigating the formation of bound
states on basis of parameter set (4.22), which already has been proven useful
in the context of the rotational bifurcation (Sect.4.2). For these parameters, the
form factor Q (4.44) is computed from a single dissipative soliton (Fig.4.4a)
to Q = 1,950. The interaction F(d;) (5.19g) is computed for a discrete set of
distances {d;|1 <i < N Ad;) =d; + 107} with dy=0. The resulting set of
tuples {(d;, F(d;))|1 <i <N Adjyy = d; + 107} is interpolated by

F(d) = —S8200—¢™ 1574 cos(43.15(d — 0.199)) (5.34)
[5.25]. This interaction holds for dissipative solitons like the one depicted in
Fig.4.4a. Note, that the interaction depends on the spatial discretization, but
interpolation (5.34) has been proven sufficient for the following considerations
(Sect.5.2.5).

Two aspects have to be taken into account for the formation of bound states:
The intrinsic velocity of the interacting particles and their initial position to each



138 5 Interaction of Slow Dissipative Solitudes

other. The intrinsic velocity can be regarded as a measure for the power of their
intrinsic drive, which is mobilized for overcoming the repulsion of the interacting
counterpart. Variations of the intrinsic velocity ¢,(t) (4.43) can be most easily
achieved by changing the time scale parameter v (3.69) of the slow inhibitor,
because the form factor Q (4.45) and the interaction law F(d) (5.19g) do not depend
on t in the vicinity of the drift-bifurcation t ~ 7, (4.30) but on the stationary
activator distribution u.

For the following simulations the scattering parameter £ is introduced, which
quantifies the shift of two dissipative solitons approaching each other with anti-
parallel velocity vectors from a reasonable distance. This configuration is described
by the following initial condition:

pio=(-04,6" ag=(C:(1)/k3,0)",
Pro=(04,-5", aro=(—¢.(1)/k3,0) . (5.35)

The relatively large initial distance d > 0.8 between the dissipative solitons ensures,
that the particles do not interact at the beginning of simulation.

Solving the reduced dynamics (5.19) for the initial conditions (5.35) with t and
& chosen from the two-dimensional parameter interval t x § = [z.,3.51] x [0, 0.2]
leads to a set of trajectories, which are analyzed with respect to constant binding dis-
tances and non vanishing angular velocities. Both quantities indicate the formation
of a rotating bound state, which is indicated in Fig. 5.6a by gray areas, while white
areas refer to parameter sets for which scattering occurs. The formation of rotating
bound states is observed for two parameter sets By and By;. Note, that B; does not
touch the §¢ = 0-axis, because this special case is a head-on collision, which leads
to the formation of translating bound pairs (cf. Fig. 5.1).

In order to understand the difference between solutions of parameter sets By and
By a parameter tuple (7, &) has been chosen from both sets. For each tuple initial
conditions for the field Eq.(3.69) have been created from a stationary dissipative
soliton by applying the respective initial condition of the reduced dynamics (5.35)
to ansatz (5.12) withe = 1,r, = 0,r, = 0, R, = 0, and R, = 0. The initial
condition reflecting (z,§) = (3.35,0.02) is depicted in Fig.5.6b as gray scale
image of the difference between the initial concentrations of activator u# and slow
inhibitor v. Dark areas indicate that the local activator concentration is larger than
the respective concentration of the slow inhibitor, light areas reflect the opposite
relation between both fields. The image visualizes not only the spatial arrangement
of the dissipative solitons with respect to each other, but also the excitation of their
propagator modes at the beginning of the simulation. Figure 5.6b is completed by
two pairs of trajectories showing the paths of the interacting dissipative solitons,
which have been extracted from solutions of the field Eq.(3.69). The pairs of
trajectories correspond to initial conditions chosen from By and By and visualize
the formation of two different types of rotating bound states: One bound state with
binding distance d; = 0.164 and one with dj; = 0.320. These binding distances are
slightly larger than the roots of interaction function F(d) (5.34) at dp; = 0.163 and
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Fig. 5.6 Formation of rotating bound states in a two-dimensional reaction-diffusion system [5.26].
(a) Simulations of the reduced dynamics (5.19) with Q@ = 1,950 and interaction F(d) given
by (5.34) for varied parameters t and & (5.35). Gray areas indicate the formation of rotating bound
states. (b) Initial conditions of the field Eq. (3.69) for (z,&) = (3.35,0.02) € B; visualized as
difference of activator and slow-inhibitor distribution. Dark and light areas indicate an activator
concentration being higher and lower than the respective slow inhibitor concentration. The plotted
pairs of trajectories are computed from solutions u(x, ) of the field Eq. (3.69) resulting into the
bound states depicted in subfigures (c) and (d). (c¢) Activator distribution of a bound state with
distance d; = 0.164 at t = 4-103. This bound state has formed from the initial condition depicted
in subfigure (b) and rotates counterclockwise with a uniform angular velocity of w; = 5.44-1073.

(d) Activator distribution of a bound state with distance dy = 0.320 shown at t = 12 - 103,
The bound state has formed from initial condition (z,§) = (3.35,0.174) € By and rotates
counterclockwise with a uniform angular velocity of wy = 2.90 - 10~3. Parameters according

to (4.22) with 2 = [—1, 1]?, no-flux boundary condition, A, = 5-107> and A, = 0.1

don = 0.308 due to centrifugal forces, which are discussed in greater detail in the
following section.

Snapshots of the activator distributions u(x, ), which correspond to the trajec-
tory pairs depicted in Fig. 5.6b are shown in Fig.5.6c, d as gray scale images. The
bound state with smallest binding distance (Fig. 5.6c) has formed from the initial
condition shown in Fig.5.6b with (7,&) = (3.35,0.02) € B;. Bound states of
this type can only form if the dissipative solitons are fast enough to overcome
the repulsive interaction F(d) > 0 appearing at distances 0.235 < d < 0.308
(cf. Fig.5.7). On the other hand the dissipative solitons must not propagate too fast
(r > 3.494), because the corresponding centrifugal forces cannot be compensated
by the mutual attraction of the dissipative solitons. Note, that for the considered
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parameters (4.22) and © g 3.41 the validity of the reduced dynamics is limited.
Its predictions are still qualitatively valid for interaction distances d Z, 0.162, but
in case of many-particle interactions, the conservation of the number of particles
does not hold anymore for distances smaller than d < 0.162, which is discussed in
Sect.7.3.1.

The bound state shown in Fig. 5.6d is an example for dissipative solitons rotating
with binding distance dy;. The attraction between these dissipative solitons is much
smaller than the attraction, experienced by dissipative solitons rotating with binding
distance dj, because the oscillations of F(d) (5.34) decay exponentially. Therefore,
the bound state of second type will only form if the dissipative soliton propagate
slowly (r < 3.353). The dissipative soliton molecule presented in Fig.5.6d has
been simulated with initial conditions (5.35) and (z,§) = (3.35,0.174) € By.
In this scenario the dissipative solitons are fast enough to overcome the repulsive
interaction F(d) > 0 at 0.308 < d < 0.380 (Fig.5.7) and slow enough to be
captured by the mutual attraction F(d) > 0 at binding distance dj.

Figure 5.6a also reveals, that within a small parameter interval t € Aty =
[3.350, 3.352] the formation of both types of bound states is possible. This bistability
is verified by simulations of the field Eq.(3.69), which have been carried out for
7 = 3.35 and values of £ according to By and By; (Fig. 5.6b—d).

5.4.2 Dynamics of Rotating Bound States

The simulations performed in the context of investigating the formation of rotating
bound states in two-dimensional systems on basis of the reduced dynamics (5.19)
have shown (Fig.5.6), that each binding type exhibits a certain upper limit for
the intrinsic velocity ¢, of its dissipative solitons. Therefore, dissipative solitons
propagating with an intrinsic velocity beyond this limit cannot form a rotating
bound state. A similar scenario is observed in two-dimensional systems whose
ground state is disturbed by a Gaussian-shaped parameter inhomogeneity [5.14].
Such inhomogeneities are also capable of capturing dissipative solitons and forcing
them onto circular paths if the dissipative solitons are sufficiently slow, otherwise the
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localized structure is simply scattered by the inhomogeneity. Both effects are caused
by the propagation mechanism of dissipative solitons, which induces a certain
momentum resulting from the shift between localized activator distribution and its
counterpart of the slow inhibitor. In contrast to the inertia implied by Newtons first
axiom [5.27] the velocity of the dissipative solitons cannot be tuned continuously,
but has a well defined value, which is determined by the self-organized shift between
activator and inhibitor distribution. However, in Newtons classical mechanics and
the discussed dissipative system the direction of motion of the considered objects
can only be changed by external influences. Concerning the simulations showing
dissipative solitons propagating on a curved path the directional inertia implies,
that the observed acceleration due to the continuous change of direction has to
be caused by an attractive force, which in analogy to classical mechanics leads to
the concept of centripetal and centrifugal forces. In the following paragraphs these
concepts are deduced for the considered dissipative system on basis of the reduced
dynamics (5.19).

For this purpose we are considering a two-dimensional reaction-diffusion system
exhibiting a continuously rotating bound state (Fig.5.6c). On basis of the reduced
dynamics (5.19) such type of structure is described by eight dynamical equations
consisting of two positions p; and p,, and two propagator mode amplitudes o; and
a;. Each p, a-pair describing the dynamics of one of the bound dissipative solitons.
Due to the equilibrium velocity of dissipative solitons, the center p = %( P+
Pp2) of the rotating bound state has to be stationary in a two-dimensional system.
Therefore the dynamics are covered by the distance vector d = p, — p; (5.19),
the sum of the propagator mode amplitudes e+ = &; + a7, and the difference

between them oo = &, — o1, which leads to the following set of equations:
d =k3a_ +2F(d)4, (5.36a)
@ =K3 (‘C - %) oy — % (A +o?)ay. (5.36b)
=i (- L)a =82 (@3 +a2) e +2F(d)5. (5.36¢)

Note, that these equations are based on the assumptions, that the dissipative solitons
cannot be distinguished and the symmetry of the bound states implies that the
length of the propagator mode amplitudes is identical «; = a,. Note, that the
assumption of indistinguishability prevents stability considerations, which need a
more complicated set of equations as discussed in [5.16,5.23,5.24].

The relevant degrees of freedom can be reduced even further by introducing the
variables ¢; = d?, ¢ = &3, q3 = o2, g4 = da_, and ¢(q1) = F(d) which leads
to the following set of equations:

41 =2k3q4 + 4¢(q1)q1. (5.37a)

i =23 (1= L) 02— L @ + 99 . (5.37b)
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g3 =213 (T - —> 43— 22 (@2 + 43) 3 + 46(q1)qs. (5.37¢)
44 =Kk3q3 + 2¢(q1)q1+
K3 (f - —) g4 — 22 (g2 + 43) 44 + 26(q1)qs- (5.37d)
Bound states are stationary solutions § = (g1, ...,44)T = 0 of (5.37). Here, one

has to consider two scenarios ¢(q1) = F(d) = 0 and ¢(q;) = F(d) # 0. While
the first case leads to moving bound states characterized by

4
dol piay—o» @ = 5" (z - i}) .2 =0, and door_ = 0, (5.38)

the second case leads to rotating bound states

2/(%(1’ - ’37)

dr|F(d,)=Fz(dr) with Fz(d,) = —W, (5.39a)
ol =da_ =—2F(d)dy, (5.39b)
af = 0. (5.39¢)

Note, that the moving bound state has parallel propagator mode amplitudes a%r =
44> with each dissipative soliton driven by its equilibrium propagator mode
amplitude & (4.84). Furthermore, the relative position of the dissipative solitons
to each other is arbitrary as long as their distance qualifies for vanishing interaction
and their propagator mode amplitudes are parallel. However, simulations show, that
the only stable configuration is given by the wave-train configuration, meaning
one particle follows the other. In contrast to the moving bound state, the rotating
bound state exhibits antiparallel propagator mode amplitudes (5.39c) and a well
defined angle between the axis d of the bound state and anti-parallel propagator
modes «— (5.39b). The angle depends on the diameter d, of the circle on which the
dissipative solitons propagate, which is defined by the equilibrium given in (5.39a).
In analogy to classical mechanics, a centrifugal force Fz(d) resulting from the
curved path of propagation has to be compensated by a centripetal force F(d),
which is the mere interaction F(d) between the dissipative solitons.

An example for the graphical solution of (5.39a) is depicted in Fig.5.7, where
the centrifugal force Fz is plotted for two different values of 7. Intersections
of interaction F(d) and centrifugal force Fz(d) denote force equilibria and are
solutions of (5.39a), defining the distance d, between the rotating dissipative solitons
for the respective time-scale parameter r. Note, that decreasing the time-scale
parameter 7 close to the limit of the drift-bifurcation point 7. (4.30) flattens the
curve of the centrifugal force Fz(d) (5.39a), such that the number of possible bound
states increases due to successive saddle-node bifurcations. On the other hand, there
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Fig. 5.8 Binding distances of rotational bound state. Black curves are predictions of the reduced
dynamics (5.39a). Diamonds indicate mean binding distances derived from simulations of the field
equations (Table 5.1). Gray horizontal lines reference the binding distance of stationary bound
states and the maximal possible rotating state. Parameters from (4.22) with 2 = [0, 1], 1.25 -
1073 <A, <500-1073, 4, =0.1

do not exist any rotating bound states composed of fast dissipative solitons, which
are characterized by comparatively large values of 7. In these cases the attractive
interaction cannot compensate the centrifugal force.

The stability of rotating bound states with rotational distance d; (5.39a) follows
from the consideration, that small deviations |d.| < 1 leading to smaller distances
d= = d, — d. have to be compensated by an increasing centrifugal force

F(d™) > Fz(d™), (5.40a)

in order to increase the rotational distance. For deviations leading to larger rotational
distances d~ = d; + d. the attractive interaction has to increase in order to decrease
the distance

F,(d”) > F(d™). (5.40b)

If these conditions are not fulfilled, the rotating bound state is unstable and small
deviations will not decay but increase even further.

The evaluation of the equilibrium (5.39a) for varying time scale parameters t
reveals all potential binding distances d; of rotating dissipative solitons. In Fig. 5.8
the binding distances of the two smallest configurations 0.1627 < d; < 0.194 =:
dcy (cf. Fig.5.6¢) and 0.3025 < d; < 0.332 =: d.q (cf. Fig.5.6d) are plotted as
function of t. In this diagram black curves denote binding distances d, deduced
from the force equilibrium (5.39a) with solid and dashed curves indicating stable
and unstable configurations (5.40). Furthermore horizontal gray lines have been
drawn referencing the binding distances of stable stationary states do; and dou
(solid lines) and largest rotating states d.1 and d. 1 (dotted lines). Dashed curves
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Table 5.1 Influence of the spatial discretization A, on the binding distance d; and the angu-
lar velocity w of two-dimensional rotating dissipative soliton-molecules in smallest possible
configuration. The simulations have been performed for r =3.38. While increasing the spatial
discretization due to decreasing the discretization length A, from 5- 1072 to 1.25 - 107> changes
the mean binding distance d; and the mean angular velocity @ only slightly, while the amplitude
of the observed oscillations decreases by a factor of 6.5 concerning the binding distance and 3.5
concerning the angular velocity. Note, that discretization induced oscillations are also observed for
the formation of rotating bound states documented in Fig. 5.10b. Parameters from Fig. 5.8

A, d, c;,/(;, 1) o/w

5.00-1073 1.679-107! 9.1-10—° 8.97-1073 7.5-107*
2.50-1073 1.680- 107! 2.4-107° 8.99-1073 1.8-107*
1.25-1073 1.680-107! 1.4-107° 8.99-1073 2.1-107*

indicate unstable solutions. The plot is accomplished by binding distances extracted
from numerical solutions of the field Eq. (3.69), which are indicated by diamonds.

Due to a relatively strong interaction in the vicinity of dj 1, the rotational distance
dy deviates only slightly from the rotational distance of the stationary bound state
for t 5 3.36. Simulations of the second rotational state dy show significant larger
binding distances compared to the stationary state. This tendency culminates in a
backwards saddle-node-bifurcation for the critical binding distance d.j; = 0.352 at
which the bound state vanishes. The reason is the comparatively weak interaction
in the vicinity of the second stationary binding distance dyy; (Fig.5.7). On the other
hand the strong interaction stabilizing the first rotational state allows for significant
deviations from do; only for T % 3.36 and ensures the existence of this rotational
state for a large range of time scale parameters % < © 5 3.48, which has been
verified on basis of field simulations. »

Comparing the binding distances of rotating bound states derived from solutions
of the field equations (diamonds in Fig.5.8) with predictions of the reduced
dynamics (curves in Fig.5.8) shows an excellent agreement in the vicinity of the
drift bifurcation, which does not depend on the spatial discretization of the field
equations (Table 5.1). Significant deviations are visible for T Z 3.47 for which
rotational distances obtained from field solutions tend to reach the critical rotational
binding distance d. for smaller values of 7 than predicted by the reduced dynamics
on basis of equilibrium (5.39a).

The angular velocity w of a rotating bound state follows from Eqgs. (5.36a)
and (5.39) to

Cld{o) 25— [0dX() + 4
D=0 T 0RO+ - 1)

4 (5.41)

with d;(t) given by (5.39a). This relation is visualized in Fig. 5.9 for the scenario
presented in Fig. 5.8. The graph shows the angular velocity (5.41) deduced from the
two-particle ansatz (5.36) as black curves with solid and dashed lines referring to
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Fig. 5.9 Angular velocity of rotating bound states composed from two dissipative solitons. Gray
curves: Angular velocity ¢, (4.42) of the one-particle approach deduced in the context of the
rotational bifurcation. Solid black curves: Angular velocity w (5.41) of the stable states (5.40).
Dashed black curves: Angular velocity (5.41) of the unstable configuration. Diamonds: Angular
velocity obtained from solutions of the field Eq. (3.69). Parameters from Fig. 5.8

stable and unstable solutions, respectively. In retrospect to the rotational bifurcation
(Sect.4.2.5), the plot also includes the angular velocities ¢4 (4.42) deduced from
the related one-particle ansatz as gray curves. Diamonds refer to solutions of the
three-component reaction-diffusion system (3.69).

According to the considerations of the rotational binding distances (Fig.5.9) the
angular velocities are plotted for the first and second bound state. Bound states of
the second kind exhibit much smaller angular velocities compared to bound states
of the first kind, which is obvious, because the same intrinsic velocity induces
a longer time of circulation if the circumference is extended. This bound state
does only exist for relatively slow dissipative solitons, which is in agreement with
Fig.5.8. Consequently, a rotating bound state of the second kind will break up if
the time scale parameter t is increased about t > 3.352. While this effect is well
covered by the two particle ansatz (5.36), it is not reflected by the one-particle
approach (Sect. 4.2.5), which considers the bound state as rigid object. Concerning
the rotating bound state of the first kind the prediction of angular velocities of the
one-particle approach according to (4.42) agrees for a larger interval of time scale
parameters (% <t 5 3.39) with the two-particle approach and the solutions of the
field equations. This coincides with the parameter range observed for approximately
constant binding distances in Fig. 5.8.

With increasing distance to the drift-bifurcation point 7. (4.30), the angu-
lar velocity @ of rotating bound states obtained from simulations of the field
equations deviates considerably from the square-root trend predicted by the one-
particle approach (4.42). In parts, this effect is reproduced by the two-particle
approach (5.41) of the reduced dynamics (5.36), which also shows significant
deviations for larger values of . In this parameter region the reduced dynamics
fail, because the assumption of a point-to-point interaction does not hold anymore.
Interestingly, the maximal possible angular velocity of the rotating bound state as
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obtained from the field equations (diamonds) coincides approximately with the
unstable branch of the angular velocity obtained from the two-particle approach
(dashed curve). To what extent this observation is a particularity of the investigated
parameter set (4.22) and agrees with reaching the maximal rotational distance at
v = 3.493 (Fig.5.8) has to be clarified by further investigations.

5.4.3 Formation of Spiralling Bound States

In three-dimensional systems, bound states of dissipative solitons exhibit a much
more complex dynamics than wave train-like solutions (Sect.5.1) or rotating
bound states (Sect. 5.4.2) observed in two-dimensional reaction-diffusion systems.
Therefore, we are going to discuss a three-dimensional reaction-diffusion system
with dissipative solitons, which do not move within the same plane.

The three-component reaction-diffusion system is solved for parameters, which
have been successfully applied for the investigation of the formation of bound states
in two-dimensional systems (cf. Fig.5.6). Solving the reaction-diffusion equations
for the parameter set (4.22) leads to localized solutions with form factor Q = 1,375
and an oscillatory interaction, which is well approximated by the following function

F(d) = —3.865-1072 e 2% co5(45.81(d — 0.2180)). (5.42)

Note, that the time scale parameter 7 of the slow inhibitor is chosen to © = 3.36
for the construction of the initial condition as well as for the simulation. The initial
condition consists of two dissipative solitons approaching each other with intrinsic
velocity ¢, = k3. The first dissipative soliton propagates to the center of the domain
starting from distance % The second dissipative soliton would pass the center of the
domain in distance &, if interaction could be neglected. Additionally, its direction
of motion is shifted by angle ¢ with respect to the direction of motion of the first
dissipative soliton. If the first dissipative soliton propagates along the x-axis and the
second one parallel to the x-y-plane, the following initial condition is constructed:

pio=(—£.0,0). a0 = (£,0,0),
5 ] i —, (5.43)
P20 = (—=35c08¢,—35sing, —§), ar9= (;—'; cos @, ;—; sing, 0).
The geometrical relation of interaction parameters ¢ = %71 and £ = 0.208 as
well as the respective isosurfaces of activator u for u(x) = —0.1 are shown in

Fig.5.10a. For this scenario parameter & has been chosen such that two dissipative
solitons being separated by d = & would experience maximal attraction with respect
to (5.42) without violating the scope the reduced dynamics.

Solving the three-component reaction-diffusion system (3.69) for the initial
condition depicted in Fig.5.10a leads to a rotating bound state of two dissipative
solitons, which are spiralling in a screw like motion across the cyclically continued
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Fig. 5.10 Formation of a spiralling bound state. The activator isosurfaces depicted in (a) and (c)
have been computed for u(x) = —0.1 and are coloured with respect to the local concentrations
of the slow inhibitor v. Red and blue indicate low and high inhibitor concentrations, respectively.
Arrows point into the direction of the propagator mode amplitudes. (a) Initial conditions defined by
(5.43)for§ = 0.6, = gn, & = 0.208. (b) Evolution of particle distance d(t). Black curves refer
to solutions of the reduced dynamics (5.19), while red curves have been computed from solutions
of the field Eq. (3.69). (c) Initial and final state of the system presented on the cyclically continued
domain. Also shown are the trajectories of the centers of the dissipative solitons. Black curves and
dots denote solutions of the reduced and field equations, respectively. Parameters from (4.22) with
T = 3.36, 2 = [—0.6,0.6]%, cyclic boundary condition, A, = 0.01, A, = 1.0, Q = 1,375, F(d)
from (5.42)

domain. The distance between the dissipative solitons is nearly constant, although
the distance computed from the activator centers of the field solution exhibits an
oscillation of small amplitude (red curve in Fig.5.10b), which is caused by the
spatial discretization of the system. The amplitude of the distance oscillation is
approximately one order of magnitude smaller than the discretization length A, .



148 5 Interaction of Slow Dissipative Solitudes

The influence of the spatial discretization on the amplitude of the observed distance
oscillations is discussed in Table 5.1 on page 144 in greater detail.

The dynamics of the formation process and the following spiralling propagation
is visualized in Fig. 5.10c. The graph shows isosurfaces of the activator distribution
for u(x) = —0.1 rendered for the initial condition (Fig.5.10c, left hand side) and
after 5,000 time steps (Fig. 5.10c, right hand side). Additionally, the trajectories of
the centers of the dissipative solitons are plotted. While dotted curves correspond
to solutions of the field equations with each dot representing a snapshot, the black
curves result from the positions p;(¢) and p,(¢) as given by the solutions of the
reduced dynamics. The trajectories show that the dissipative solitons propagate
perpendicular to the plane of rotation, such that the trajectories form a double
helix. While the trajectories resulting from the field Eq.(3.69) and the particle
dynamics (5.19) agree very well at the beginning, the small deviations accumulate in
the course of the simulation. It occurs, that the trajectories referring to the localized
solutions of the field equations are bended into the direction of smaller x- and
z-coordinates, while the direction of the angular momentum does not change in the
particle model (5.19). This difference is accounted to the spatial discretization of
the domain.

The projection of the double helix onto the bottom of the domain shows that
the width of the slopes extends slightly in the course of the motion (Fig.5.10c).
This effect is caused by a small but continuous acceleration of the molecule
center. Continuing the simulation on basis of the reduced dynamics (5.19) up to
t = 10° reveals that the velocity of the center of the bound state relaxes to the
intrinsic velocity ¢, while the angular velocity is declining. The result is a bound
state propagating perpendicular to its molecule axis d. From simulations of two-
dimensional systems it is known, that this type of motion is not stable [5.15, S.
95], which has been confirmed in [5.16,5.23, 5.24], where the dynamics of rigid
bound states is discussed by means of its translational and rotational degrees of
freedom. Transferring this ansatz to rigid bound states in three-dimensional systems
will clarify the stability of the dynamical state described in this subsection.

5.5 Complex Bound States

Already in two-dimensional systems, bound states composed of three or more
dissipative solitons show complex dynamics, which depend sensitively on the
system parameters. The most simple example in this context is given by a bound
state of three dissipative solitons. The stationary state of this system has been
investigated by Schenk et al. [5.28, Fig. 5c], who showed that the dissipative solitons
form a bended chain. It is characterized by an obtuse angle of 160° = £ p;pop2
between the outer particle at p; and p, and the central one being located at py.
Considering the parameter limit of the reduced dynamics such kind of bound
states can be destabilized due to a rotational bifurcation occurring at T = . (4.30).
For weakly excited propagator mode amplitudes the rotation is uniform, such that
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Fig. 5.11 Example for the complex dynamics of a bound state composed of three dissipative
solitons as observed as solution of the field Eq. (3.69). Red curves represent trajectories of the
central dissipative solitons, green and blue curves correspond to the outer dissipative solitons. (a)
Activator concentration at ¢ = 3,500 and trajectories for ¢t € [0, 3500]. (b) Activator concentration
at ¢t = 3,000 and trajectories for t € [0, 3000]. Parameters from (4.22) with £2 = [0, 2] x [0, 2],
cyclic boundary condition, A, = 5-1073, A, = 0.1

the outer particle propagates on a nearly circular path around the geometric center
P: = %(po + p1 + p») of the bound state. Due to the angled configuration of
the bound state the geometric center is not identical with the position po of the
central dissipative soliton po # p,. Therefore, the central particle also propagates
on a circular path. This scenario is visualized in Fig. 5.11a as solution of the three-
component reaction diffusion system (3.69) simulated for parameter set (4.22).
Note, that the trajectory of the central dissipative soliton po(¢) (red curve in
Fig.5.11a) is significantly influenced by the spatial discretization of the domain.

Increasing the time scale parameter slightly from ¢ = 3.34 (Fig.5.11a)to v =
3.36 (Fig. 5.11b) changes the equilibrium dynamics of the bound states qualitatively.
This is surprising, because from the two-particle bound state one would anticipate
a correspondingly small increase of the angular velocity (Fig.4.6). But now the
trajectory po(¢) of the central dissipative soliton describes a looped trochoid or
hypotrochoid:

A hypotrochoid is the curve traced out by a point either within or without the circumference
of a circle which rolls without sliding on a fixed circle in the same plane, the rolling circle
touching the inside of the fixed circle. [5.29, p. 93]

This definition hits the mark, but have a look at Fig.5.12 which visualizes the
construction. First of all, we have got two circles, a large one with diameter Rg
and a small one with diameter r. In Fig. 5.12 the small circle rolls inside the larger
one with angular velocity w. The trochoid itself is traced by point P, which in our
example is fixed in distance a = CP to the center C of the small circle. Denoting
the difference between the circle radii as parameter » = Rg — rg the hypotrochoid

P@) = (Px ), Py (t))T can be parameterized by
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Fig. 5.12 Construction of a trochoid [5.31]. A trochoid is a plane curve P (¢), which e.g. can be
constructed by tracing out point P being attached to the center C of a circle, while the same circle
rolls without sliding within a larger one being centered at point M. Note, that the same trochoid
can be constructed by a circle rolling outside the larger one. However, the characteristic looped
form of the displayed trochoid is caused by choosing parameter a to a = %rK > rg. This type of
trochoid is also called hypotrochoid. Observing a hypotrochoid as curve P (¢), its distance p(f) to
the center M of the large circle is an important measure for estimating the parameters of the curve
on basis of its extremes p— and p4

P.(t) =bcos(w- (t —ty)) + acos (rkw -(t — to)) + M., (5.44a)
K
Py(t) =bsin(w- (t —ty)) —asin (rﬁw -(t— to)) + M, (5.44b)
K

with M = (Mx, My)T representing the center of the larger circle [5.30, S.319].

In the scenario described before (Fig.5.11) not the complete hypotrochoid P (¢)
but a sample of snapshots p(ty),..., p(ty) with t;;; = t; + A, is observed. From
this time series, the current distance p(#;) to the center M of the large circle can be
computed by

p(i) = (p(t) - M)z. (5.45)

Here, M is an estimation of the larger circle’s position

A

1 N
M= (M)= =3 pt). (5.46)
1

which can be averaged from recorded positions p(#;) if their number N is
sufficiently large. Now, the minimal distance p~ = b — a and the maximal distance
pT = b + a can be estimated as arithmetic means:
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Fig. 5.13 Successive bifurcations of a complex bound state due to variations of time scale
parameter  [5.31]. The diagrams shows fingerprints p; (7) and ,07' () (5.45) of the trajectories
described by the central dissipative soliton (j = 0, red symbols) and one of the outer dissipative
solitons (j = 1, blue symbols). The discontinuities of the curves and their derivatives indicate
secondary and tertiary bifurcation points occurring at ., ~ 3.349 and 1., ~ 3.422. For
T, < T < T, the measures pT and p~ cannot be distinguished due to the uniform rotation of
the bound state. Parameters from (4.22) with F(d) given by (5.34), O = 1,950, and A, = 0.05

p™ = (p(t)| p(t;) Z p(tis1) A p(ti) Z plti—) At = To) (5.47)

if the bound state is relaxed for > Tp. Obviously, the quantities p* and p~ allow
for the characterization of observed or simulated hypotrochoids, because parameters
a, b, w, rg, and Ry of (5.44) can be estimated from these quantities [5.31].

Simulating the discussed bound state on basis of the reduced dynamics (5.19)
and fingerprinting the observed trajectories by the discussed measures p* reveals,
that the drift-rotational bifurcation occurring at 1 = 7. = 3.3 is followed by a
secondary and a tertiary bifurcation occurring at ., ~ 3.349 and 1., ~ 3.422,
which are indicated by discontinuities of p(fl (r) and dd—f oy (r) (Fig.5.13).

After the rotational and before the secondary bifurcation the bound state rotates
uniformly, such that the quantities p™ and p~ cannot be distinguished either for
the central nor the outer particles (. < 7 < 7, in Fig.5.13). The circular tra-
jectories of the uniform rotation are exemplary depicted in Fig. 5.14a for t = 3.34.
Consequently, the amplitude of the propagator modes of the rotating dissipative
solitons are constant (Fig.5.15a). Note, that the propagator mode amplitudes of
the outer particles are close to their equilibrium state ¢, while the propagator
mode amplitude of the central particle is only slightly excited, because this particle
propagates on a much smaller orbit than its neighbours. However, the propagator
mode amplitudes of the outer dissipative solitons are not exactly excited to their
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a b c
T =334 T=23.36 T =345

Fig. 5.14 Trajectories of a complex bound state composed of three dissipative solitons based on
simulations of the reduced dynamics [5.31]. The subfigures show the positions of the dissipative
solitons at the end of the time interval for which the trajectories have been plotted. Vectors are
proportional to the respective propagator mode amplitudes. (a) Circular trajectories plotted for
2,800 time steps. (b), (¢) Trochoidal trajectories plotted for 1,875 time steps. Note, that the
trochoids described by the outer particles in subfigure (a) have changed to hypotrochoids in
subfigure (¢). Parameters from Fig.5.13
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Fig. 5.15 Time series of the absolute propagator mode amplitudes for the dissipative solitons
depicted in Fig. 5.14 [5.31]

equilibrium state, but particle No. 2 is slightly excited above the equilibrium level,
while particle No. 1 is slightly less excited (Fig.5.15a). This corresponds to the
observation that particle No. 2 experiences a slightly larger acceleration towards the
central dissipative soliton than particle No. 1 does (Fig.5.16a).

After the secondary bifurcation, the propagator mode amplitudes oscillate inhar-
moniously with the outer dissipative solitons being opposite in phase with respect to
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Fig. 5.16 Time series of interaction F(|p;(t)— p;(t)|) = F(dj; () between the three dissipative
solitons building the bound state depicted in Fig.5.14 [5.31]

the equilibrium propagator mode amplitude ¢ (Fig. 5.15b). In this parameter regime
between the secondary and the tertiary destabilization 7., < T < 7, the propagator
mode amplitudes of the outer dissipative solitons are excited either too much or
too little compared to «. Fig. 5.15b shows, that the overexcited state relaxes much
quicker, than the under excited state of the other outer particle. Consequently, the
outer dissipative soliton which has already relaxed to its equilibrium state is much
faster than the other one. The latter is pushed from behind and accelerates while
the pushing dissipative soliton decelerates. In Fig. 5.15b the exchange of propagator
mode excitation happens at «; = a» ~ @. Due to the cyclic dynamics of the outer
dissipative solitons the propagator mode amplitude of the inner particle oscillates
twice as much as the outer ones. Its propagator mode amplitudes maximizes, if
one of the outer dissipative solitons has relaxed to its equilibrium propagator mode
amplitude.

After the tertiary destabilization T > 7., (Fig.5.14c), all dissipative solitons
of the bound state still show cyclic dynamics. Furthermore, the frequency of the
central particle is still twice as large as the frequency of the outer particles, which
retain their phase shift of one half cycle. Note, that one cycle of the outer particles
can be discriminated into four phases: A long phase exhibiting a strongly excited
propagator mode amplitude o; > @ (i = 1,2), two successive short phases with
weak o; < & (i = 1,2) and strong propagator mode excitation, and a long phase of
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weak excitation. The absolute propagator mode amplitude of the central particle
reaches its maximum &, when the propagator modes of both outer particles are
weakly excited (¢;, < @) at the same time. This relatively strong excitation of
the central dissipative soliton’s propagator mode amplitude is the reason for the
qualitative difference of the dynamics beyond and before the tertiary bifurcation,
which leads to the different types of hypotrochoids described by the positions of the
dissipative solitons (Fig. 5.14b, c).

The described secondary bifurcation is also observed for spirals. In these systems
it is the tips of the spirals which bifurcate from circular propagation to meandering
paths [5.32,5.33]. Barcley explains this transition on basis of a Hopf-bifurcation
[5.34], whose modes interact with the eigenmodes of the euclidean symmetry. In
case of the bound state, the bifurcation occurs at T ~ 1, &~ 3.3458. For this
value of control parameter t we know from investigations of two-particle bound
states (Fig. 5.8 and 5.9), that two interacting dissipative solitons cannot bound with
second closest binding distance, due to their large intrinsic velocity, which cannot
be compensated by the attractive interaction. Concerning the bound states of three
dissipative solitons, this means, that the outer particles do not propagate anymore
in a monotonic radial symmetric interaction field centered around the molecules
geometric center (cf. Fig.5.16a, b). They rather propagate within the relatively
strong attraction of the central dissipative soliton, while the sign of their mutual
interaction changes with their spatial orientation to each other. The frequency of
this alternation corresponds to the amplitude of a Hopf-mode, whose interaction
with the Goldstone-modes of the euclidean symmetry leads to the meandering of
the central dissipative soliton.

This consideration also clarifies, why an ongoing increase of time-scale parame-
ter 7 results into a tertiary bifurcation. Apparently, the propagator mode amplitudes
of the outer dissipative solitons can be excited so much, that they enter a region
of repulsion concerning the central dissipative soliton. E.g. the local maximum of
absolute propagator mode amplitude o () in Fig. 5.15¢ coincides with each second
relative maximum of F(do;(¢)) in Fig.5.16¢c. The resulting push between outer
and central particle is the reason of the qualitative difference between the molecule
dynamics before and after the tertiary bifurcation.

5.6 Many-Particle Dynamics

In the semiconductor-gas-discharge system, one frequently observes configurations
with many interacting dissipative solitons. One of the most interesting scenarios in
this context is the observation of phase equilibria between a cluster of dissipative
solitons and free dissipative solitons (Sect.2.2.5.4). If the number of dissipative
solitons in such scenarios is preserved, the generalized reduced dynamics (5.20)
can be applied for investigating the underlying mechanisms, which has extensively
been done by Réttger [5.31] and Bodeker [5.35]. Due to its complexity, this topic
deserves a book on its own and only the most remarkable results are summarized.



5.6 Many-Particle Dynamics 155

largest cluster of dissipative solitons

® ® o F® S o0

& 61 © oo p ‘l?‘ -
: O°UQ8 ° Q 3 L
; 04 °
o © o .t%

a
‘@Q&’U .°O§Q&> & ¢ 9
[e]

';'@a& ®
5090 dr@ Q. o®§)° gﬁl 0.
a, t=10-10° b,t=1.1-106 c,t=12-10°
o ° 6 '%p Il Q ety Qo
e é%0 o0 % d
°° '
()

[o

® a © % °
&g o o & o ° % .
g ° 4 ° Q% -

e, t=14-10° f,t=15-10° g t=16-106 h t=17-10°

Fig. 5.17 Simulation of many-particle system under the influence of noise [5.31]. The subfigures
show snapshots of system (5.48). Circles indicate the positions p;(¢) of the dissipative solitons
while the attached vectors indicate the direction of the respective propagator mode amplitudes
a; (). In subfigure (a) the dissipative solitons of the largest cluster are shaded in dark gray, while
the remaining dissipative solitons are shaded in light gray. The shading is held fixed for subfigures
(b)-h, such that the time series shows an ongoing mixing of the dissipative solitons. Parameters:
T = 3.34, Q = 1,950, F(d) according to (5.34), N = 81, 2 = [—2,2]?, periodic boundary
condition, A, = 0.1, R =2.2-10"*

In order to account for the influence of noise the equations of propagator
mode (5.20b) of the generalized reduced dynamics (5.20) are extended by an
additive noise term RI:

kzot; — Wi(pi,....pN) + Wi (i), (5.48a)

pi

o2 i 2

@ = K3 (T - g) o —3Qa;a; —Wi(p1,...,py) + Wi (pi) + RT
(5.48b)

with W;(p1,..., pn) given by (5.20c), while R and I" denoting a noise amplitude
and Langevin-force, respectively (Sect. 6.1). The numerical solver for these equa-
tions is described in Sect. 6.3.

The simulation series starts with a cluster of 81 dissipative solitons which are
arranged in a hexagonal grid and the resulting 324 ordinary differential Eq. (5.48)
are solved with respect to parameter set (4.22) leading to the two-particle interaction
F(d) according to (5.34) and form factor Q = 1,950. The noise amplitude has
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Fig. 5.18 Compression wave in bulk of dissipative solitons [5.31]. The bulk is subject to a head-
on collision with the domain boundary, where it sticks due to the no-flux boundary condition.
The snapshots were taken with 500 time steps in between. The dissipative solitons are colored
with respect to their propagator mode amplitude, with green indicating the equilibrium state and
blue referring to small propagator mode amplitudes. Parameters: © = 3.36, Q = 1,950, F(d)
according to (5.34), N = 121, 2 = [-2,2]%, A, = 0.1

been chosen to R = 2.2 - 107*. Time scale parameter 7 is set to 3.34. The result
of the simulation is shown in Fig.5.17. After a relaxation time of 10° some of
the dissipative solitons are dissolved from the cluster (Fig.5.17a) and propagate in
small clusters or as unbounded particles through the surrounding area. The largest
remaining cluster consists of 34 dissipative solitons, which have been marked by
dark shading in Fig.5.17a. The following snapshots have been taken with 10°
time steps in between, while the dark shading of the dissipative solitons marked
in Fig.5.17a has been held fixed. The time series shows, that the size of the
largest cluster is approximately preserved, while light shaded dissipative solitons
continuously integrate into the large cluster and dark shaded dissipative solitons
dissolve into the surrounding area (Fig.5.17b—h). These processes obviously have
reached some kind of equilibrium which is similar to the experimental observation
discussed in Sect.2.2.5.4.

A cluster of dissipative solitons, which does only change slightly for small noise
amplitudes, dissolves completely due to an increase of the noise amplitude [5.31].
For large noise amplitudes the system still exhibits small clusters of dissipative
solitons. This short-range order associates a liquid state, which is clearly distin-
guishable from the hexagonally ordered solid state of large clusters. Therefore, the
noise induced transition reported by Rottger can be interpreted as phase transition
and the example discussed in Fig. 5.17 represents a phase equilibrium of a solid and
a liquid phase.

Another example for many particle interaction is shown in Fig.5.18. Here a
bulk of 121 hexagonally ordered dissipative solitons has collided with the domain
boundary, where it sticks due to the no-flux boundary condition. A compression
wave is propagating through the cluster of dissipative solitons switching the dis-
sipative solitons from equilibrium propagator mode amplitude (green) to vanishing
propagator mode excitation (blue). The wave propagates approximately one order of
magnitude faster than the individual dissipative soliton and the cluster of dissipative
soliton as a whole could propagate [5.31].
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Chapter 6
Dynamics and Interaction of Experimental
Dissipative Solitons

We now know that science cannot grow out of empiricism alone,
that in the construction of science we need to use free invention
which only a posteriori can be confronted with experience as to
its usefulness.

Albert Einstein, 1932 [6.1],
translation cited from [6.2, p. 14].

Abstract Encouraged by the successful description of the dynamics and interaction
of dissipative solitons by means of the particle approach, the concept is applied to
experimentally observed dissipative solitons. Because the deterministic dynamics
of dissipative solitons is superimposed by stochastic processes, a stochastic time
series analysis is discussed, which enables not only the measurement of the drift-
bifurcation but also the interaction between dissipative solitons.

6.1 Stochastic Time Series Analysis

Motivated by the particle description of dissipative solitons on basis of the reduced
dynamics (5.19), the question arises if the dynamics (Fig.2.15) and particle-
preserving interaction (Figs.2.16 and 2.17) of dissipative solitons observed in the
semiconductor-gas-discharge experiment also can be described in the scope of a
particle approach. Because the dynamics of experimentally observed dissipative
solitons is perturbed by strong fluctuations, this section discusses a method of
stochastic time series analysis, which has been introduced by Friedrich et al. for
separating the observed dynamics into its deterministic and its stochastic part
[6.3,6.4]. This method is adapted towards the analysis of two-dimensional particle
trajectories by means of a projection technique (Sect.6.2). The data analysis is
checked on basis of simulated particle trajectories and is applied to trajectories of
experimentally observed dissipative solitons (Sect. 6.3). The investigations show,

A.W. Liehr, Dissipative Solitons in Reaction Diffusion Systems, Springer Series 159
in Synergetics 70, DOI 10.1007/978-3-642-31251-9_6,
© Springer-Verlag Berlin Heidelberg 2013
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that the dynamics of experimentally observed dissipative solitons can always be
categorized to two qualitatively different types of propagation: Purely noise driven
dissipative solitons with over-damped intrinsic dynamics (Brownian motion) and
active Brownian motion, which is characterized by a finite equilibrium velocity
of the dissipative solitons being superimposed by noise. The transition between
both states can be observed due to variation of suitable control parameters and,
according to theoretical considerations (Sect. 4.2), is identified as drift-bifurcation
(Sect. 6.4). Furthermore, the stochastic data analysis method is extended towards
the measurement of the interaction of experimentally observed dissipative solitons.
These investigations reveal a distance dependent interaction law with alternating
sign (Sect. 6.5), which can be attributed to the oscillating tails of the dissipative
solitons in agreement with the theoretical considerations (Sect. 5.2.3).

An important class of stochastic systems consists of continuous n-dimensional
Markov-Systems, which are described by Langevin-equations:

q',-(t):h,-(q,t)—i—Rij(q(t),t)Fj(t), i=1,...,n. 6.1)

The dynamics of the n time-dependent quantities (ql(t), ey n (t))T = q(t) is
determined by a deterministic and a stochastic part. The deterministic part is
modelled by function & = (hy,...,h,)T, while the stochastic part is given as
product of noise amplitude matrix R(q,?) and fluctuating Langevin-force I". In
most cases, the latter is assumed to be §-correlated Gaussian noise with vanishing
mean:

(1)) =0, i=1,...,n, (6.2a)
(GO () =288t —1'), ij=1,....n. (6.2b)

Here (-) denotes the ensemble mean, while (6.2b) characterizes the fluctuations as
Gaussian white noise. Starting from this ansatz and having in mind the definition
of Stratonovich concerning stochastic integrals [6.5], the following relations can be
deduced for solution ¢ () of (6.1) [6.6,6.7]:

0
h@)+ Ry @5 —Ry @) = Jim = (i a) =0l 6

Al,iglo A q(t)=q
1 1
Ri(@)Rji(q) = 5 lim —((q:(t + A;) — i (1))-
2 A—0 A,( (6.4)
(G + 80— ;)"

i(=q

For practical reasons, it can be assumed, that Egs. (6.3) and (6.4) are also valid
for finite A;, if A, is smaller than the characteristic time-scale of the investigated
system [6.3,6.4] and greater than the correlation time of the noise [6.8]. In this case
the ensemble mean is replaced by the mean of ¢ (¢;) &~ ¢ of all observations at t; =
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Fig. 6.1 Illustration of the stochastic data analysis in one dimension [6.10]. The graph shows the
evolution of signal ¢(¢) which is determined by deterministic and stochastic dynamics. Signal ¢(¢)
is sampled to time series g; = ¢(#;). The differences Ag; = (g;+1 — q;) between successive
samples ¢; and g4 are shown as vectors with length Ag;. In order to estimate the deterministic
part of the dynamics, the interval [¢min, ¢max] i8S partitioned into three bins B;, i = 1,2, 3 of width
A, which are centered around ¢;. In the illustrated example, the averaging is shown for bin B,
as summation of all differences Aq; with ¢; € B, (black vectors) and subsequent division by the
number N; = 5 of summands. Dividing the result by A, gives an estimation of the deterministic
dynamics h(q)

to+i A;. Note, that the second term on the left hand side of (6.3) vanishes for additive
noise. The same holds for the interpretation of the Langevin-equation (6.2) in
terms of It6’s theory, which can be shown by considering generalized Stratonovich-
integrals [6.9].

In order to illustrate the practical application of this analysis technique Fig. 6.1
shows the evolution of signal

q(t) € [Qmim qmax] CcR. (65)

In the course of a simulated measurement, signal g(¢) is sampled at t; =ty + jA,;
with j = 0,...,10 leading to time series q; := ¢(t;). Because the series
has to be discretized for the analysis, interval [¢in, ¢max] 1S partitioned into three

non-overlapping subsets B; = [C}i - %,q,- + %[ fori = 0,1 and B, =

[52 - %, g> + %] Each subset is centered around ¢; and has width A,. In the

course of the discussion these subsets B; are called bins.

The algorithm of the analysis consists of the following steps: First of all scalar
gi = 0 and counter N; = 0 are initialized for each bin B;. Each sample ¢; is
assigned to the corresponding bin ¢; € B;, the respective counter N; is increased
by one, and scalar §; is increased by the difference (¢, +1 — ¢g;). After assigning all
elements of the time series to a bin, their mean (g, 1 —¢;) |qj B, is the quotient
of scalar ¢; and counter N;. The algorithm is visualized in Fig.6.1 by drawing
vectors of length (¢;4+1 — ¢q;) for each sample g;. In this example black vectors
mark samples belonging to bin B;. The average (g;+1 —¢;) |q,~ cB, is the sum of all
vectors belonging to bin B; divided by the number N; of accounted vectors.
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Assuming that the noise amplitude does not depend on ¢, the number of samples
is sufficiently large, and the discretization length A, is small compared to the time
scale of the deterministic dynamics /(g; ), the latter can be computed from (6.3) by
evaluating

(qj+1 —q/')lqjeBi

hd) ~ i (6.6)

The statistical error of the estimation is proportional to (N A,)_% [6.11].

6.2 Adaption to Two-Dimensional Trajectories

In order to model the motion of a particle in a two-dimensional system, one would
choose the position p(f) = (px, py)" of its center of mass. In a conservative system,
its dynamics are modelled by the following equation of motion:

p(1) = f(pQ)). (6.7)

Due to the fact, that the investigated semiconductor-gas discharge system is
dissipative, additional terms modelling dissipation and fluctuation have to be taken
into account:

b0 = f(p®) +h(p®). p() + R(p(1). p(1)) I (p(t).1). (6.8)

Here, quantity £ models the acceleration due to friction and internal degrees of
freedom, while RI" covers fluctuations being characterized by noise amplitude
matrix R. Due to the homogeneity of the investigated experimental system, term
f vanishes and the quantities A, R, and I' do not depend on position p.
Therefore, (6.8) simplifies to

p=1v="h@+Rw0)TO. (6.9)

In order to apply the analysis technique described in the foregoing section, (6.2)
has to be fulfilled. Of course, (6.2a) can always be fulfilled by taking an offset of
h into account. Furthermore, the validity of (6.2b) is approximately given, if the
correlation of the noise decays on a smaller time scale than the characteristic time
scale of the investigated dynamics [6.8].

At least for some experimental configurations, the measurement of the noise
amplitude matrix R on basis of (6.4) shows, that the noise amplitudes do not depend
on the velocity of the dissipative solitons [6.10]:

R(v) = R = const. (6.10)
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In these cases, the deterministic dynamics & (v) can be estimated on basis of (6.3).
Otherwise, if the experimental system is found to exhibit multiplicative noise, the
Langevin-equation (6.2) has to be interpreted by It6’s calculus, which requires a
different approach for deducing the following results [6.12] but does not alter the
resulting projection method.

For the following considerations, the final size of the experimental system
is neglected. Following from the O(2) symmetry of the system, the rotational
symmetry of /(v) is taken into account, such that (6.9) transforms to

b= h,(v)e, + R (1) 6.11)

for h(v) = h,(e)e, with e, = ;. The analysis of two-dimensional particle trajec-
tories on basis of (6.11) demands a large number of sampling points, in order to
gain a sufficiently accurate estimation of the deterministic dynamics. Therefore, it is
important to enhance the statistics by reducing the degrees of freedom of the system
by explicitly taking the radial symmetry of /& (v) into account. Consequently, (6.11)
is considered in polar coordinates

v\ [ hy(v) R cos ¢ R sin ¢ I
(¢)_( 0 )+(—§sin<p Jeosg )\ Iy ©12

with I' = (Fx, I’ y) while having Stratonovich’s interpretation in mind. Starting
from this ansatz, it can be shown that a solution 0(z) of (6.12) approximately fulfills
the following relation

hy(v) +

R? 1
W o 1+ A) = O 6.13)

v t

[6.10]. Alternatively the deterministic dynamics 4, (v) can be estimated from v(¢)
by using projection

hy(v) =

1 <(.3(r + A) —9(1)) - ﬁ(t)> (6.14)

Ay 0(t)

v(t)~v

Due to this projection, the bins, which have been introduced in the foregoing section,
transform to rings of middle radius ¢; and width A,.

6.3 Brownian and Active Brownian Motion

Although Eqgs. (6.13)—(6.14) have been deduced mathematically, it is not clear how
efficient the algorithm works for finite numbers of sampling points. Therefore,
it is important to test the suggested analysis technique on basis of a suitable
Langevin-equation, whose solution can be analyzed in turn with respect to (6.14).
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The comparison of the deterministic dynamics of the numerically solved Langevin-
equation and the result of the stochastic data analysis can be regarded as adequate
test of the method.

Starting point for constructing a Langevin-equation is the reduced dynamics of
single dissipative soliton (4.83) to which an additional noise term fulfilling (6.2) is
added:

p=K§(z—l)p—gp2p+Rr. (6.15)
K3 K3

Note, that the deterministic part of this equation exhibits the assumed rotational
symmetry (6.11) with respect to p = v, such that (6.14) can be applied. In order to
solve (6.15) numerically, the algorithm discussed by Risken is used [6.7, S. 60ff]. It
basically consists of Euler-steps

1
Vytl =V, + A I:/c32 (‘L’ — K—) v, — ngfvn:| + R\ Ay, (6.16)
3

3

with A, denoting the step size. Vector ¥, = (Vu.x» V. y)T contains Gaussian random
numbers with (y, ;) = 0 and (y,,iyw. ;) = 26;;8uw fori, j = x,y. The random
numbers are computed from a uniformly distributed pseudo random number p,, with
0 <, < land () = 3 by applying

Y A
Vi = \/M;(yu—z). (6.17)

Here variable M denotes a large integer, which has been chosen to M = 20
for the following simulations. Solutions of (6.15) are computed with parameter
set (4.22), which already has been used in the foregoing sections for the investigation
on the dynamics and interaction of dissipative solitons. From these investigations
it is known, that form factor Q (4.45) is Q = 1,950, while the transition from
stationary to intrinsically driven dissipative solitons occurs at 7. = 3.3 (4.30). In
order to give an impression of the influence of noise on the dynamics of dissipative
solitons Fig. 6.2a, b show trajectories for parameters beyond and before the drift-
bifurcation point, respectively. Due to the noise and the significant deviation of
parameter t from the drift-bifurcation point, the simulations cannot be compared
with solutions of the reaction-diffusion system (3.69). Nevertheless, the trajectories
show a significant qualitative similarity to the experimentally observed trajectories
of dissipative solitons shown in Sect. 2.2.4.

In order to test the stochastic time series analysis, the simulated trajectories are
regarded as primary data, from which the corresponding velocities are computed
with first order accuracy. In a second step the deterministic dynamics is estimated
on basis of (6.14). The results are shown in Figs. 6.3a and 6.4a. In these diagrams,
symbols represent the deterministic dynamics h,(v) as function of velocity v,
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Fig. 6.2 Trajectories of dissipative solitons simulated on basis of the Langevin-equation (6.15)
[6.10]. (a) Active Brownian motion of a dissipative soliton beyond the drift-bifurcation point t =
3.8 > 1. = 3.3. (b) Brownian motion of a dissipative soliton before the drift-bifurcation point
7 = 2.87 < 7. = 3.3. Parameters from (4.22) with 0 = 1,950, R = 3-10~*k3, A, = 0.05. Each
trajectory comprises 2 - 10° time steps

while dotted curves denote the counting rate N; of the corresponding bins. Note,
that the distribution of the counting rates is not equivalent to the solution Py of
the corresponding Fokker-Planck-equation. The difference can be regarded to the
nonlinear transformation of infinitesimal area elements from Cartesian to polar
coordinates

// dv,dv, = /fvdvdqb =2n/vdv, (6.18)

which has to be taken into account for the calculation of Pg.

Figures 6.3a and 6.4a also show the deterministic terms of (6.15) as solid
lines. Comparing these curves with the deterministic dynamics estimated from
the trajectories (crosses) clarifies, that the stochastic time series analysis estimates
the deterministic dynamics very well. The estimation is the better the higher the
counting rates of the respective bins are. As a rule of thumb, at least 10-20 events
have to be recorded for each bin to get an acceptable estimation.

The most important information to be extracted from the estimated deterministic
dynamics are the fixed points, which are easily identified as intersections of the
solid lines with the abscissae. These fixed points determine the equilibrium velocity
¢, of the dissipative solitons for the respective set of system parameters. Because the
tested time series analysis estimates these fixed points in both examples (Figs. 6.3a
and 6.4a) with high precision, one can conclude, that the proposed algorithm is
qualified for the analysis of experimentally observed trajectories of non-interacting
dissipative solitons.

Due to the qualitative similarity of the simulated trajectories (Fig.6.2) to the
recorded trajectories of dissipative solitons, which have been observed in the
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Fig. 6.3 Results of the stochastic time series analysis for trajectories reflecting active Brownian
motion [6.10]. Crosses indicate the estimated deterministic part /,(v) of the dynamics (6.14).
Dotted curves show the counting rates of the evaluated system states per bin. (a) Analysis of
the simulated trajectories depicted in Fig.6.2a for A, = 3.6 - 107>, The solid line shows the
deterministic part of the dynamics as defined by (6.15). The intersection of this curve with the
abscissa reflects the equilibrium velocity vo = ¢, (4.43) of the dissipative soliton. (b) Analysis
of the experimentally observed trajectory depicted in Fig.2.15a for A, = 0.5mms™". Here, the
solid line is the cubic polynomial defined in (6.15), whose parameters have been estimated by the
method of least squares from the estimated deterministic dynamics. For this fit only bins containing
more than ten samples have been taken into account. From this analysis follows that the observed
dissipative solitons exhibits an intrinsic velocity of ¢, ~ 11 mms™"

semiconductor-gas discharge system (Fig. 2.15), the latter are optimal observations
for applying the stochastic time series analysis to experimental data.

The first experiment to be analyzed is the one depicted in Fig. 2.15b, which has
been recorded for 62 s with a sampling rate of 50 frames per second. Computing the
velocity from the observed trajectory and applying the described analysis algorithm
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Fig. 6.4 Results of the stochastic time series analysis for trajectories reflecting Brownian motion
[6.10]. Crosses indicate the estimated deterministic part 4, (v) of the dynamics (6.14). Dotted
curves show the counting rates of evaluated system states per bin. The vanishing intrinsic velocity
of both cases characterize the trajectories as Brownian motion. (a) Analysis of the simulated
trajectories depicted in Fig. 6.2b for A, = 5.3 - 107>, The solid line visualizes the deterministic
part of the dynamics as defined by (6.15). (b) Analysis of the experimentally observed trajectory
depicted in Fig.2.15b for A, = 2mms~!. Here, the solid line is the cubic polynomial defined
in (6.15), whose parameters have been estimated by the method of least squares from the estimated
deterministic dynamics. For this fit only bins containing more than ten samples have been taken
into account. From this analysis follows that the observed dissipative solitons exhibits a vanishing
intrinsic velocity of ¢, &~ Omms™!

with 50 bins of width A, = 0.5mms™! to the time series reveals the deterministic
dynamics of the dissipative soliton (symbols in Fig. 6.3b). The counting rate of the
respective bins is shown as dotted curve. Motivated by the theoretically deduced
dynamics (4.83) of dissipative solitons, a cubic function has been fitted by the
method of least squares to the extracted deterministic dynamics whereby only
bins with sufficient large counting rates (N; > 10) have been taken into account.
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The resulting polynomial is plotted as solid line in Fig.6.3b. The intersection of
this curve with the abscissa at v9 ~ 11mms~! is the equilibrium velocity of
the observed dissipative soliton. The maximum of the counting rate distribution
is located close to this intersection, which is similar to the simulated scenario
(Fig. 6.3a) and indicates that the dissipative solitons propagates most of the time
with its equilibrium velocity (active Brownian motion). Without noise and in an
infinite system the dissipative soliton would propagate with finite constant velocity
vo for all times.

Quite different deterministic dynamics are expected to be revealed for the
measured trajectories shown in Fig. 2.15a, because the dissipative soliton is located
in a much smaller area of the experimental system although the trajectory has been
recorded for 72 s, which is significantly longer than the recording interval of the
trajectory discussed before (Figs.2.15b and 6.3b). This assumption is confirmed by
applying the analysis algorithm for 20 bins of width A, = 2mms™" to the observed
trajectory, which is documented in Fig. 6.4b. In this scenario, the acceleration of
the dissipative soliton is approximately proportional to its velocity and the constant
of proportionality is found to be negative. Therefore, the deterministic part of the
dynamics is purely damped (Brownian motion), which is qualitatively different to
the scenario discussed before (Fig.2.15a). Concerning the dynamics depicted in
Fig. 6.4b the damping constant can be estimated to ¢ = (37.6 & 1.5) s . It follows
that the dissipative soliton does not exhibit an intrinsic velocity and would stay
stationary for all times without the driving fluctuations. These trajectories represent
an Ornstein-Uhlenbeck-process, which is confirmed by computing the stationary
solution Py of the corresponding Fokker-Planck-equation from the counting rate
distribution, because Py is found to be a Gauss distribution with a central second
moment of 19.1 mms™!. Note, that the corresponding simulated scenario (Fig. 6.4b)
also corresponds to an Ornstein-Uhlenbeck-process.

Having in mind that the basis of the stochastic time series analysis (6.11)
has only been deduced from symmetry arguments, the qualitative similarities
between simulated and observed trajectories of dissipative solitons indicate that the
deterministic dynamics of both cases is given by the same fundamental law.

6.4 Drift-Bifurcation

Further investigations on the dynamics of single dissipative solitons for different
experimental setups reveal, that the deterministic dynamics can always be cate-
gorized as Brownian or active Brownian motion. Therefore, the question arises,
whether a transition between these qualitatively different dynamics corresponding
to the theoretically predicted drift-bifurcation (Sect.4.2) can be observed experi-
mentally.

Systematic investigations show that the drift-bifurcation can be observed exper-
imentally, if the specific resistance psc of the semiconductor is used as control
parameter. For this purpose, the experimental settings documented in Fig. 6.5 are



6.4 Drift-Bifurcation 169

400 T T T T T 7

I , 1
300 7 -
I , ]

L 4 -

7
I , 1
200 Eilr -
4
, ]

2 2. -2
vy /mm’- s
.

100

A 1
0.5 1.0 1.5 2.0 2.5
specific resistance psc/MQ - cm

Fig. 6.5 Dirift-bifurcation measured in the semiconductor gas-discharge system [6.13]. The
diagram shows the squared intrinsic velocity against bifurcation parameter pgc. The intersection of
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which is located at psc. = 1.3MSQcm. The inlays show exemplary trajectories of dissipative
solitons on the active area for parameters before and beyond the drift-bifurcation point. Parameters:
Up = 3,700V, Ry = 10MQ, p = 286mbar, Tsc = 105K, d = 750 pm, fo,p, = 0.02,
I =107 pA

chosen and trajectories of dissipative solitons have been recorded for each value
of control parameter psc. From each trajectory the intrinsic velocity vy has been
estimated by means of the stochastic time series analysis. Following the convention
of the theoretically deduced drift-bifurcation (Fig.4.6) the square of the intrinsic
velocity has been plotted as function of control parameter psc in Fig. 6.5. It shows
a supercritical drift-bifurcation occurring at psc. = 1.3 MQcm, which is charac-
terized by vanishing intrinsic velocity before the bifurcation point and quadratic
intrinsic velocity respectively linearly increasing squared intrinsic velocity beyond
the bifurcation point. Note, that the qualitative change of the deterministic part of
the dynamics cannot be seen by naked eye from the trajectories (inlays of Fig. 6.5).

Because this transition has been predicted by the three-component reaction-
diffusion system (3.69) for variations of time scale parameter 7 (Sect.4.2), the
question arises how the specific resistance psc is related to the time scale parameter
of the field equations. The answer to this question is found in the modelling of the
experiment by means of the equivalent circuit (Sect. 3.4.3). This phenomenological
model predicts a linear dependency (3.74) of the normalized time scale constants t
and 6 on the resistors Rg and Ry, which belong to the linear layers of the equivalent
circuit and are directly related to the specific resistivity. These resistors also
influence other parameters of the reaction-diffusion system. For example parameters
7, Dy, k1 and k3 of the three-component reaction-diffusion system depend on the
resistor Rg. Therefore, the transition from Brownian to active Brownian motion
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Fig. 6.6 Experimentally measured drift bifurcation due to a change of shape [6.15]. The externally
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due to a change of the specific resistivity of the semiconductor corresponds to a
four-dimensional path in the parameter space of the reaction-diffusion system. This
consideration indicates, that other drift-bifurcation scenarios are possible.

Systematic experimental investigations have shown, that a drift-bifurcation can
be accompanied by a change of the shape of the dissipative soliton (Fig. 6.6). Or,
from the theoretical point of view, are caused by the change of shape [6.14,6.15],
because the change of shape shifts the bifurcation point according to (4.29), which
results in a variation of the intrinsic velocity according to (4.43). Despite of the
different mechanisms enabling the drift-bifurcation, it is notably that the square of
the intrinsic velocity v3 always depends linearly on the bifurcation parameter in the
vicinity of the bifurcation point.

6.5 Interaction

Motivated by the measurement of the theoretically predicted drift-bifurcation, the
stochastic time series analysis is enhanced in order to investigate the interaction
of dissipative solitons for which the number of dissipative solitons is preserved,
e.g. scattering (Fig.2.16) and molecule formation (2.17). Having the particle
description (5.19) of the model system (3.69) in mind, the following assumptions
are taken:

1. Only mutual interaction is taken into account.

2. The interaction between experimentally observed dissipative solitons is modelled
by means of generalized central forces acting on their connecting line (cf.
Sect.5.2.3).
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3. The influence of the interaction on the velocity of the dissipative solitons is weak
and can be neglected (cf. Sect.5.2.4).

Starting from this assumptions (6.11) can be extended to the following form:

LiZPl | Rr), (6.19)

. p
v = hy(vi) - €y, — Fe(|Pj — DPi |)
|p j — Di |
with indices i,j = 1,2,i # j denoting different dissipative solitons. Starting
from (6.19) a new acceleration v; , can be introduced

j —Pi

. . P
Vin =V — hv(vi)ev,- = _Fe(lpj - pil)

+ RI; (1), (6.20)
lp; — pil

if the deterministic acceleration £, (v) is known for a certain system configuration.
Assuming, that (6.2) is valid for each type of noise source I7;, the interaction law
F.(d) can be estimated using

Fu(d) = — <ﬂ,,nu> . 6.21)
) = Pillljp,~p1=a
This equation can be simplified for practical applications to
Pj— Pi
Fold) ~ = ([0 + 40 = i) = Ay (e, | - 21 =20 (6.22)
2 = Pil* 5, —pii~a

with v; denoting the measured velocity of the i th dissipative soliton [6.12].

In order to measure the intrinsic dynamics /,(v) of dissipative solitons and
their interaction F.(d) for more than one dissipative soliton simultaneously, the
following algorithm can be applied: For a zeroth approximation of the intrinsic
dynamics £, (v) the interaction is neglected and the trajectories are analyzed on
basis of (6.14) for the complete time interval Ty for which the trajectories have
been recorded. Having an estimate for the intrinsic dynamics at hand, the zeroth
estimation of the interaction F,o(d) on basis of (6.22) can be performed. From
this interaction follows a critical interaction distance dc ¢, separating the regions of
negligible and considerable interaction F, g (d (Z)). Now the interaction F.(d) can
be estimated iteratively with variable k denoting the iteration step:

1. Starting from the interaction F —;(d (Z)) and the corresponding critical distance
dc r— of the last iteration (k — 1), the set Ty of all time intervals is determined
for which the interaction between the dissipative solitons can be neglected:

Ty = J{t: Fexm1(d0) ~ 0nd(1) > dejr} - (6.23a)

2. The intrinsic dynamics /, x (v) is estimated from velocities v; (¢) and v; (¢ + A;)
with {¢, (t + A,)} C T on basis of (6.14).
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Fig. 6.7 Interaction of dissipative solitons observed in the semiconductor-gas discharge exper-
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3. A new estimate of the interaction F j (d (t)) is performed on basis of (6.22).
4. From the estimated interaction Fe (d (t)) follows a critical distance dc,
such that the interaction between the dissipative solitons can be neglected for

d(t) > dcy:
dek = mtin {d(t) |Fe,k (d(t)) ~OAd(t) > dei—1 } . (6.23b)
5. The iteration converges if the critical distance dc ; does not change significantly

compared to the last iteration.

A typical distance dependent interaction F.(d) for experimentally observed
dissipative solitons showing the formation of transient bound states is shown in
Fig.6.7. In this diagram crosses denote the results of the data analysis. Like the
interaction of the model system (Fig. 5.7) the estimated interaction function exhibits
an alternating sign. Estimating the continuous representation

ar  _..a
F(d,a) = ———=e7 cos(az(d — ay)) (6.24)
Vd
to the experimental data gives the following interaction law

1387 mm3s—2

Fe(d) = - \/g

e 1217 g (528 mm ™! - (d — 1.604 mm)) ,

(6.25)

which has been plotted as gray curve in Fig. 6.7.
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In analogy to the considerations of Sect.5.2.3 regions with F.(d) >0 and
F.(d) <0 correspond to repulsive and attractive interaction, respectively. Therefore,
bound states exhibit binding distances dy with F.(dy) = 0 A F/(dy) < 0, which
are observed as transient states due to the influence of noise. For the discussed
experiment the binding distances are do; &~ 1.65 mm and dop ;1 ~ 2.85 mm with the
latter being the preferred binding distance. The statistical analysis of the trajectories
also shows that the minimal scattering distance typically undershoots do; and
don slightly, which is caused by the repulsive interaction affecting the dissipative
solitons for distances being slightly smaller than dy 1 or do 1. Experiments show that
the binding distances of experimentally observed dissipative solitons are determined
by the relative maxima of their oscillating tails [6.12], which is in agreement with
the model system (cf. Fig. 5.2b, d).
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Chapter 7
Generation and Annihilation

Most of an organism, most of the time, is developing from one
pattern into another, rather than from homogeneity into a
pattern. One would like to be able to follow this more general
process mathematically also. The difficulties are, however, such
that one cannot hope to have any very embracing theory of such
process, beyond the statement of the equations. It might be
possible, however, to treat a few particular cases in detail with
the aid of a digital computer. This method has the advantage
that it is not necessary to make simplifying assumptions as it is
when doing a more theoretical paper analysis. [. . .] The
essential disadvantage of the method is that one only gets results
for particular cases.

A.M. Turing, 1952 [7.1, 71pp].

Abstract On basis of an exemplary simulation campaign the transition from
particle conserving interaction to generation and annihilation phenomena is demon-
strated. The transition is controlled by the intrinsic velocity of the dissipative
solitons, which is adjusted by varying the time scale constant of the driving
inhibitor. The formation of bound states is observed for slow dissipative solitons.
With increasing propagator mode amplitude, the interaction processes are comple-
mented by generation through self-completion and finally by annihilation through
fading. These observations are the starting point for discussing the mechanisms
of generation and annihilation phenomena. Concerning annihilation processes the
mechanisms of fading and merging are introduced. The generation of dissipative
solitons occurs due to the formation of complex intermediate states, the division of
dissipative solitons (self-replication), Turing-destabilization of homogeneous sys-
tems, destabilization of single dissipative solitons (self-completion), and interaction
of two and more dissipative solitons (replication). Finally, the phenomena of self-
completion and replication are related to the superposition of oscillating tails which
leads to the formation of a critical nucleus.

A.W. Liehr, Dissipative Solitons in Reaction Diffusion Systems, Springer Series 175
in Synergetics 70, DOI 10.1007/978-3-642-31251-9_17,
© Springer-Verlag Berlin Heidelberg 2013
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7.1 Controlling Generation and Annihilation

7.1.1 Controlling the Propagation Velocity

The theoretical investigations on interaction processes of dissipative solitons in
reactions-diffusion systems have shown that processes with and without conser-
vation of the number of particles are commonly found [7.2-7.9]. The same holds
for experimental systems (Chap.2). Therefore, the question arises if the transition
between these qualitatively different interaction regimes can be controlled by
changing a characteristic property of the system. In this context, it is known from
the semiconductor-gas discharge experiments of Astrov and Purwins [7.10] that the
transition between both interaction regimes is controlled by the specific resistivity of
the semiconductor (Sect.2.2.3.1). In Chap. 4 it has been shown that this parameter
is related to the time-scale constant of the driving inhibitor triggering the drift-
bifurcation in three-component reaction diffusion systems. Therefore, the time scale
parameter T of model (3.69) has been chosen as control parameter for investigating
the transition between particle conserving interaction and generation-annihilation-
phenomena. For this purpose, the control parameter is increased significantly
beyond the vicinity of the drift-bifurcation which is in contrast to the simulations
discussed in Chap. 5.

Starting point is parameter set (4.22) for which the model system (3.69) exhibits
dissipative solitons with oscillating tails. The initial condition is constructed on basis
of ansatz (5.12) from a stationary dissipative soliton solution #: Two dissipative
solitons are placed close to the center of the domain (%, %)T € 2 = [0,1]? such
that the distance § = 0.1 of their localized activator distributions is smaller than the
distance of the first binding state dy; = 0.163 expected for a bound state. Addition-
ally, the respective distributions of the driving inhibitor are shifted by og = 5- 1073
with respect to the localized activator distributions such that the dissipative solitons
initially propagate perpendicular to the connecting line d of the localized activator
distributions in opposite direction. Choosing the axis d parallel to the x-axis of the
coordinate system and taking an additional shift of a half discretization length A, /2
into account, the following non-equilibrium initial condition is constructed:

) 1—8§—A, 1—AN\"T

ux,0)=ulx— ,
2 2

i 1+8—A, 1—A\"

ulx ) s ) Uuop,
.0) =[x — 1=8-4, 14, T
v(x, =ulx 3 s 5 o7}

1+8—A, 1—A, T
+ﬁ<x—( +2 2 2“—%))—“0. (7.1)
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Fig. 7.1 Displacement «(7) between localized activator and (driving) inhibitor distribution for
varied time scale parameter 7. (a) Relaxation of displacement «(¢) while the dissipative solitons
approach the domain boundaries from the initial configuration (7.1). For each time series the
displacement of both dissipative solitons is shown but cannot be discriminated with respected to
plotting accuracy. (b) The gray area shows the displacements o (¢) and a;(¢) for T = 3.56 while
the dissipative solitons interact with the domain boundary. (¢) Equilibrium displacement &(7) as
obtained from simulation (open symbols) and from reduced dynamics (filled symbols). Parameters
from Fig.4.3 with 2 = [0, 1], A, = 5- 1073, A, = 0.1, no-flux boundary condition

Here up = vp and u = v denote the stationary solutions of the homogeneous and
the solitary state for parameter set (4.22), respectively. The initial condition for the
second inhibitor w is not specified, because this component acts as local feedback
field due to & = 0 and can be directly computed by inverting Eq. (3.69¢). Note,
that shifting the initial configuration of the dissipative solitons by A, /2 against the
center of the domain breaks the rotational symmetry of the system. Consequently,
the dissipative solitons will approach the no-flux boundaries of the domain under
different angles and trigger different interaction scenarios while colliding with their
mirror particles.

Due to the small distance between the dissipative solitons the latter are repelling
each other F(d) > O|s<g<d,, (cf. Fig.5.7), such that solving the field equa-
tions (3.69) with initial conditions (7.1) and varied time scale constants 7 leads
to a rapid increase of the propagator mode amplitude «. Its evolution is visualized
in Fig.7.1a by estimating « as distance between the centers of localized activator
and localized (driving) inhibitor distributions according to the ansatz of the reduced
dynamics (5.12). Due to this increase the dissipative solitons do not form a stable
bound state but depart from each other while their propagator mode amplitudes
relax to the respective equilibrium state a(7) (Fig.7.1a, £ > 25). In the vicinity
of the drift-bifurcation (z 5 3.42) the equilibrium propagator mode amplitude
reproduces the results of the reduced dynamics & = Kisc_x very well (Fig.7.1c).
For © > 3.42 the distance o between localized activator and localized (driving)
inhibitor distribution is significantly smaller than the value predicted by the reduced
dynamics. Therefore this parameter regime can be characterized as far beyond from
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drift-bifurcation such that the reduced dynamics of the dissipative solitons (5.19)
can only give a qualitative description of the particle dynamics.

Because the dissipative solitons propagate due to relaxed activator-inhibitor dis-
placements @ () their collision with the domain boundary occurs with equilibrium
velocity ¢, (7). Therefore, these interactions can be regarded as characteristic for the
respective parameter set. In Fig. 7.2 six characteristic simulations are summarized
as space-time-trajectories of the localized activator distributions. In these diagrams
colours red and blue indicate the initial dissipative solitons, while the positions of
generated particles are indicated with green symbols.

In the vicinity of the drift-bifurcation (e.g. T = 3.35) the dissipative solitons
propagate slowly and cannot cross the repulsive interaction region of their mirror
particles. Therefore, only scattering is observed for the chosen configuration
(Fig.7.2a). In Sect.5.4.1 it has been shown that for the same parameter set but
different scattering geometries the formation of bound states is possible. However,
for the chosen scattering geometry (7.1) the dissipative solitons have to propagate
with an increased equilibrium velocity ¢, in order to form bound states. This
is demonstrated in Fig.7.2b for an increased time scale parameter t. Here, four
dissipative solitons (4-DS) form a bound state which consist of three mirror particles
and one of the initial dissipative solitons. Due to the boundary condition these bound
states are stationary. Without these restrictions a rotating bound state would form.

Increasing the time scale parameter up to t = 3.47 enables the generation
of dissipative solitons (Fig.7.2c). In this scenario, the oscillating tails of the red
dissipative soliton superimpose in the corner of the domain with the oscillating
tails of its mirror particles, which leads to the ignition of an additional dissipative
soliton (green). This particle is located in the (0, 0)T-corner of the domain such that
only one quarter of it extends into the domain. Consequently, the quarter particle is
stationary. After the generation, the initial dissipative solitons forms a propagating
bound state (2-DS) with one of its mirror particles and moves into the direction
of the (0, 1)T-corner where it forms a stationary bound state consisting of four
dissipative solitons. Rotational symmetric to these trajectories are the trajectories
of the blue particle and its product, which are not shown in Fig. 7.2¢c. Note, that this
generation is also observed for unbound dissipative solitons (Fig.7.10).

In contrast to the simulations shown in Fig.7.2b, ¢ exhibiting stationary 4-DS
bound states, the latter are unstable for ¢ > 3.47 (Fig.7.2d). The reason is a
supercritical Hopf-bifurcation occurring at tgeps &~ 3.47 [7.11, S. 84{f]. Therefore,
the 4-DS bound state starts to oscillate. For t = 3.53 the amplitude of these
oscillations increases such that the dissipative soliton is driven out off the attractive
interaction region and enters the repulsive interaction region of its neighbours and
the bound state breaks apart. Due to the boundary condition the break-up happens
synchronously with one of its mirror particles such that both dissipative solitons
form a bound state propagating along the edge of the domain towards the next
domain corner. Here the cycle of 4-DS formation and break-up continues.

For t < 3.53 the trajectories of the dissipative solitons are approximately
rotational symmetric with respect to the center of the domain due to the initial
condition (7.1). For t > 3.56 this point symmetry is not observed anymore.
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Fig. 7.2 Transition from interaction with conservation of the number of dissipative solitons to
generation and annihilation. The plots show the trajectories of the dissipative solitons in space-
time. Red and blue symbols indicate the initial dissipative solitons (7.1). Red and blue arrows point
into their direction of motion. Generated particles are indicated by green symbols. Plots (c) and (d)
show only the trajectory of one dissipative solitons for reasons of clarity. Parameters from Fig. 7.1

For example in case of t = 3.56 one dissipative soliton is trapped momentarily
at the (0,0)T-domain corner while the other particle is reflected at the opposite
corner. This deviation is reflected in Fig.7.1b by the deviating evolution of the
propagator mode amplitudes «; (¢). Taking a close look at the trajectories reveals
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that both dissipative solitons pass the corner of the domain in a distance with nearly
vanishing interaction. One dissipative soliton passes the corner of the domain in
the attractive interaction region, while the opposite dissipative soliton passes the
respective corner in the repulsive interaction region. This difference is caused by
a shift of —%(Ax, A,)T breaking the rotational symmetry of the initial condition
with respect to the domain center. Consequently, the dissipative solitons are either
attracted or repelled by their mirror particles.

Increasing the time scale parameter even further leads to a new interaction
phenomena: The annihilation of dissipative solitons (Fig.7.2e). In this simulation
the dissipative solitons ignite a quarter particle while passing the domain corner,
which is either unstable and vanishes in the course of the interaction (green stars
in Fig.7.2e) or evolves to a quarter particle, which is indicated as green cylinders
appearing in the domain corners. The space-time trajectories show that a quarter
particle can be annihilated due to the collision with a 2-DS molecule propagating
along the domain boundary. In this case the quarter particle is literally quenched
between two 2-DS molecules approaching from opposite directions. However,
for larger propagation velocities one also observes the annihilation of dissipative
solitons in two particle processes at the domain boundary (Fig.7.2f). In such a
process both the dissipative soliton and its mirror particle are annihilated. For
T = 3.65 one observes that the interaction geometry leading to the annihilation of
a quarter particle (Fig. 7.2e) favours the annihilation of all incorporated dissipative
solitons.

The simulation campaign visualized in Figs.7.1 and 7.2 demonstrates that the
transition from interaction phenomena with conservation of the number of particles
to generation and annihilation of dissipative solitons can be realized by increasing
their propagation velocity. The simulations indicate that the transition is closely
related to the displacement of activator and driving inhibitor distributions, which is
discussed in detail in Sects. 7.2 and 7.3.

7.1.2  Generating Clusters from Scratch

In Sect. 3.3.2 the Turing instability has been introduced, which explains the spon-
taneous formation of periodical structures in a continuously driven, homogeneous
system. Under certain conditions these patterns are hexagonally ordered grids cov-
ering the domain completely. Inspired by the experimental observation reporting the
generation of clustered current density filaments in the course of a controlled Turing-
destabilization (Sect.2.2.3.1) this section is devoted to the theoretical investigation
of this phenomenon. In this context the system is controlled on two different
levels. First of all, there is the control of an experimental parameter triggering the
structure formation process and there is an inherent control due to the global resistor,
which restricts the overall current and therefore suppresses the ignition of additional
filaments.
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Therefore a two-component reaction-diffusion-system with global feed-
back (3.57) is investigated with the following parameters:

D,=6-10"° D, =6-107% 1 =08, k; = —1.575,
kr =5 k3=1 1=10 2 =101 A, =0.01, A, =0.05, (7.2)

no-flux boundary condition, u(x,0) = v(x,0) = 0.5.

For these parameters, the homogeneous state u(x) = v(x) = up = vp = —0.2978
is unstable against perturbations of wavelength v, = [0.0996,0.1101] due to a
Turing-bifurcation occurring at ;. = —1.580. At the bifurcation point the critical

wavelength is v, = i—” = 0.1047. Because the homogeneous state is still a solution

of the system for «; > k|, perturbations of amplitude R, = 10~%and R, = 10~
are applied to activator « and inhibitor v after each time-step.

A cluster of dissipative solitons is formed via a controlled Turing-instability
in four elementary steps, which are presented in Fig.7.3. First of all, activator
u and inhibitor v evolve a regular structure of small amplitude which exhibits a
characteristic wavelength of v ~ 0.1 (Fig.7.3b). The second phase starts with the
ignition of a localized structure, which is embedded into a hexagonal pattern of
small perturbations (Fig. 7.3e). These perturbations trigger the ignition of additional
spots in rapid sequence (3rd phase, Fig.7.3h) leading to a significant increase
of the activator integral (Fig.7.3g). Consequently, the effective driving parameter
k1.t (3.28) of the activator equation (3.57a) is decreased and the ignition of further
spots is stopped (Fig. 7.3j). Finally, the cluster of dissipative solitons expands (4th
phase, Fig. 7.3k) because the particles arrange themselves due to the laws of reduced
dynamics (Sect. 5.2.3).

To some extent, this mechanism allows for the controlled generation of dis-
sipative solitons, which is show in Fig.7.4. In order to obtain this series, the
simulation presented in Fig.7.3 has been repeated with varied control parameter
k1 >k1. = —1.580. The value of activator integral ”_;2” fQ u(t)ds2 as well as
the number of generated dissipative solitons have been recorded after relaxation
[7.13]. An increase of control parameter k; is compensated by a proportional
increase (0.192540.0019)k; of the activator integral (Fig.7.4a). In the vicinity
of the Turing-bifurcation point k; . < k; = —1.5 this increase is caused by the
generation of new dissipative solitons (Fig. 7.4b). The process saturates, because the
domain fills up completely with dissipative solitons, which form a hexagonal pattern
and cannot be regarded as individual dissipative solitons anymore. In this situation
an additional increase of the control parameter is compensated by an increase of
the amplitude of the pattern holding the linear relation between control parameter
k1 and activator integral m /. o u(r)ds2. Consequently, the system stabilizes

approximately at the same effective driving parameter /cflggf = —0.1067 £ 6.1 %.
Note, that its value is significantly smaller than the effective driving parameter
K{“é‘f‘} = (k1 — kaup) = —0.091 (3.28) of the homogeneous system at the Turing-

bifurcation point k.. From this observation follows that clusters of dissipative
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Fig. 7.3 Generation of a cluster of dissipative solitons due to a Turing-mechanism [7.12]. The
left column shows time series of activator integral ﬁ Jo u(t) d2 with diamonds referring to the
snapshots of activator u(x, y) (middle column) and intersections (right column) shown in each row.
The intersections u(§) (red curves) and v(§) (green curves) are parameterized along the red line

shown in the activator snapshots. The legend maps the activator amplitudes to the respective shades
of gray given in the snapshots. Parameters from (7.2)
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Fig. 7.4 Controlling the generation of dissipative solitons by global feedback. Symbols refer to
simulations. The leftmost symbol references the simulation shown in Fig. 7.3. (a) Activator integral
compensating the control parameter «;. For the investigated parameter set the integral depends
linearly on the control parameter, such that the systems stabilizes at «{"% = —0.1067 £ 6.1 %. (b)
Dependency of the number N(x;) of generated dissipative solitons on the control parameter k.
For k; > —1.4 the domain is covered by a hexagonal pattern of dissipative solitons. Parameters
from (7.2), data published in Full-Metadata Format [7.13,7.14]

solitons exhibit an instability in the vicinity of the Turing-bifurcation point, which
vanishes for ko < k{9 < k%, In the following section this observation is related
to the self-completion mechanism and the underlying mechanism is identified in
Sect. 7.4.2 as the nonlinear superposition of oscillating tails.

The presented mechanism cannot generate single dissipative solitons from
scratch but only clusters of dissipative solitons. This is due to the fact, that the
Turing-mechanism renders a homogeneous state unstable against a hexagonal triad
of wave vectors [7.15, 104pp]. If a localized structure ignites due to external noise
(Fig.7.3e) the coupling of these wave vectors leads to an increase of the pattern,
too. This perturbation leads to the ignition of additional dissipative solitons at the
oscillating tails of the initial one. The successive ignition of dissipative solitons
continues until the global feedback has decreased the effective control parameter
Kk1.eff (3.28) beyond the critical parameter /cflgf} such that the cluster becomes a stable
solution of the reaction-diffusion system.

7.1.3  Self-completion

The generation of dissipative solitons in the direct neighbourhood of existing ones is
called self-completion and has been reported for the first time in 1974 by Meinhardt
and Gierer for simulations of morphogenesis [7.16]. Experimentally, the phe-
nomenon of self-completion has been observed in a semiconductor-gas discharge
system (Sect.2.2.3). In order to understand the underlying mechanism a two-
component reaction-diffusion system with global feedback (3.57) is investigated
on a two-dimensional domain [7.12]. Parameters have been taken from the previous
section (7.2) but feedback has been increased (k; = 45.0). The initial condition
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Fig. 7.5 Self-completion in a two-component reaction-diffusion system with global feedback
[7.12]. Subfigures (a)-(e) show grayscale images of the activator distribution u(x, y) with light
and dark shades of gray refer to high and low activator concentrations, respectively. (f) Time series
of feedback integral “flz—“ Joud$2 with diamonds indicating the snapshots (a)—(e). Parameters
from (7.2) with k; = —14.4 and k, = 45.0

has been realized as single dissipative soliton and the driving parameter has been
adapted to k; = —14.4 such that the homogeneous system is stable (ke < K?.eff)
but the a single dissipative soliton is unstable (ke > Kffeff = —0.0973).

Snapshots of the simulation are shown in Fig.7.5 as grayscale images of the
activator distribution u(x,y) with light and dark shades of gray referring to
high and low activator concentrations, respectively. In Fig.7.5a the pronounced
oscillating tail of the initial soliton is visible as ring surrounding the activator
peak. In the course of the simulation this ring is modulated periodically (Fig. 7.5b).
These perturbations act as nuclei for the ignition of three new dissipative solitons
(Fig. 7.5¢), which is accompanied by an increase of the feedback integral (Fig. 7.5%).
The new dissipative solitons exhibit oscillating tails, which superimpose in a
nonlinear way leading to the ignition of further dissipative solitons (Fig. 7.5d). This
repeating process is stopped by the feedback integral which stabilizes the system at
/cfl‘e‘fsf/ = —0.1078 and establishes a cluster of 19 dissipative solitons surrounding the
initial one (Fig. 7.5e).

Note, that the wavelength characterizing the distance between the clustered
dissipative solitons does not change in the course of the formation. This is in
contrast to the process discussed in the previous section showing the formation of
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dissipative solitons from scratch. In the latter scenario the Turing-wavelength of the
perturbation pattern determines the initial distance, which later on evolves to the
relaxation wavelength of the oscillating tails.

7.1.4 Feedback Control

The preceding sections have shown that a destabilized system can stabilize itself
due to the generation of dissipative solitons if a feedback control with respect
to the average activator concentration is applied. Although parameters and initial
conditions of the investigated systems differ, they both stabilize at the same effective
driving constant k{l% & «{t with flty — ity = 1.1-107.

In the vicinity of the Turing-bifurcation, a hierarchy of bifurcation points with
1 h
ke < Kier < it (7.3)

exists and dominates the dynamics (Fig. 7.6) of homogeneous systems such that the

destabilization of a single dissipative soliton (ke > K‘liseff) or a homogeneous state
hom

(k1eff > k)'op) always leads to the generation of a cluster of dissipative solitons.
In both scenarios the initially generated dissipative soliton changes the solution
qualitatively, such that the next lower bifurcation point becomes relevant and renders
the new structure unstable. Consequently, several dissipative solitons are generated
until the feedback integral (3.28) stabilizes the system.

Although the hierarchy of bifurcation points has been demonstrated in a special
reaction-diffusion system, several aspects have also been observed in other systems.
For example Astrov and Logvin have simulated the self-completion of a dissipative
soliton in a semi-phenomenological reaction-diffusion system modelling the struc-
ture formation of semiconductor gas-discharge systems [7.18]. Coulett et al. discuss
the stability of a single dissipative soliton in the context of cluster instabilities
[7.19]. It follows, that all reaction-diffusion systems, which show the formation
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of hexagonal pattern due to a Turing destabilization of homogeneous states, also
exhibit single dissipative solitons and clusters of dissipative solitons in adjacent
parameter intervals.

7.2 Annihilation of Dissipative Solitons

7.2.1 Strong Repulsion

In the course of increasing the intrinsic velocity of dissipative solitons we have

already observed some annihilation processes (Sect. 7.1.1). These are characterized

by the fact that the cores of the interacting particles do not merge but simply fade

away. In order to understand the underlying mechanism, the head-on collision of two

fast dissipative solitons is simulated in a three-dimensional system (Fig.7.7). The
~

initial condition (5.1) is constructed from a dissipative soliton # propagating with
equilibrium velocity along the y-coordinate. Starting from a uniformly propagating
dissipative soliton, which is located into the center of a co-moving coordinate
system. the initial condition can be constructed as

5 £, -6 > L, +6
u(x,t)|,:0:u(x,y— y2 ,Z)—i—u(x, yz —y,z)—uo, (7.4)

with § = 1.2 specifying the initial distance between the interacting particles and
£, = 2.08 denoting the edge length of the system in y-direction.

The resulting annihilation is visualized in Fig. 7.7a as space-time plot of activator
intersection u(x (), t) along the symmetry axis x (y) = (0, y,0). In this image the
paths of the dissipative solitons appear as dark stripes surrounded by white borders
indicating the undershooting of the oscillating tails. Gray areas correspond to the
homogeneous background state. In the beginning of the simulation the dissipative
solitons propagate with equilibrium velocity ¢ = % = 41.693 - 1073 with
Ay /At denoting the reciprocal slope of the (black) activator stripes. Note, that the
dissipative solitons propagate twice as fast as the particles depicted in Fig.5.1a,
where a similar configuration leads to the formation of a bound state. A snapshot of
the approaching dissipative solitons is shown in Fig. 7.7b as activator iso-surface for
u = —0.1 at t = 128. The shading of the iso-surface reflects the local concentration
of the driving inhibitor with blue and red indicating high and low concentrations,
respectively. Of course the dissipative solitons propagate into the direction of the
lowest inhibitor concentration, which is indicated by arrows.

At t = 280 the dissipative solitons collide and their propagation is stopped
immediately (Fig.7.7a). Therefore, the activator peaks cannot escape their pushing
inhibitor peaks anymore and the displacement between localized activator and
inhibitor distributions diminishes. This is reflected in Fig. 7.7c by the dominating
bluish shading of the activator iso-surface and the decreased volume enclosed by
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Fig. 7.7 Annihilation of two dissipative solitons by fading. (a) Space-time diagram of activator
intersection u(x(y),t) with x(y) = (0, y,0). Dark and light colours indicate large and low
activator concentrations, respectively. The homogeneous background state is represented by a light
gray shading, while the dissipative solitons are black stripes with white borders. Subfigures (b) and
(c) show snapshots of the activator iso-surface for u(x) = —0.1 which is coloured with respect to
the local concentration of the driving inhibitor. Blue and red indicate a large and low concentration
of the driving inhibitor, respectively. Arrows indicate the direction of motion. In order to promote
spatial orientation, shadows of all objects are projected onto the base of the domain. Parameters
from (5.2) with t = 4.35

the iso-surface. At the same time, the activator peaks visible in the space-time plot
have turned gray, which indicates the shrinking of the activator peaks (Fig.7.7a).
This processes continues to such an extent that for a short period of time the
activator peaks become inverted and the local activator concentration decreases
beyond the homogeneous background state. Finally, the system relaxes completely
to the homogeneous state.

7.2.2 Weak Repulsion

A completely different type of annihilation is observed for dissipative solitons
exhibiting weak repulsion. In order to illustrate this scenario the three-component
reaction-diffusion system (3.69) has been solved on a three-dimensional domain
with the following parameter set [7.5]:
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Fig. 7.8 Annihilation of two dissipative solitons caused by weak repulsion [7.5]. Subfigures (a)—
(e) show iso-surfaces of activator u(x) = —0.5 and driving inhibitor v(x) = —0.5 with red
and green faces, respectively. Arrows indicate the direction of motion. In order to promote spatial
orientation shadows of all objects are charted onto the base of the domain. Subfigure (f) shows
the evolution of activator integral HITH f o i d§2 with diamonds indicating snapshots (a)—(e).
Parameters from (7.5)

D,=15-10"% D, =1.86-10"* D, =9.6-1073, 1 = 2.0,
K1 =—692, k=0, k3= 1.0, ks = 8.5, T =250, 6 = 1.0, (7.5)

2 =10,0.8° A, =0.085, A, =0.02.

Localized solutions of this system are characterized by a strongly diffusing stabi-
lizing inhibitor w and an extreme separation of time-scales concerning activator
u and driving inhibitor v. This leads to dissipative solitons exhibiting acorn-like
iso-surfaces (Fig.7.8a) which are in contrast to the radial-symmetric iso-surfaces
observed in systems without extreme time-scale separation (Fig.7.7).

The flat peak of the stabilizing inhibitor and the pronounced displacement
between the peaks of activator and driving inhibitor causes a weak repulsive inter-
action between the approaching dissipative solitons. They are slightly decelerated in
their head-on collision but are not stopped while approaching each other. Therefore,
the activator peaks of the dissipative solitons merge (Fig.7.8c) and are enclosed
by the following peaks of the driving inhibitor (Fig.7.8d). This configuration
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Fig. 7.9 Partial annihilation due to weak repulsion [7.23, p. 97]. The subfigures show contour
plots of activator # and driving inhibitor v for the respective half-values as thick and thin solid
lines, respectively. Gray scale images visualize the distribution of the stabilizing inhibitor w, arrows
indicate directions of motion. Parameters from (7.6)

is unstable due to the local excess of inhibitor and the merged structure fades
completely (Fig.7.8e). Note, that the activator of the merged state approximately
has the same size of a single dissipative soliton (Fig.7.8f) and therefore can be
considered as unstable dissipative soliton.

A completely different interaction is observed if dissipative solitons with weak
repulsion do not collide head-on. In this state it is likely that the dissipative solitons
merge to an unstable state, which evolves to a single dissipative soliton. This case
is visualized on basis of a simulation of the three-component system (3.69) and
parameter set

D,=155-10"% D, =1.93-107% D,, =5.0-107%, A = 2.0,
K1 =—8.72, kn =0, k3 = 8.45, ks = 1.0, T = 48.0, 6 = 0.0, (7.6)
2 =1[13,13P% A, =0.01, A, = 1.0.

from [7.11, p. 97]. Figure 7.9 shows gray-scale images of the stabilizing inhibitor,
which is complemented by half-value contour plots of the activator (thick lines)
and driving inhibitor (thin lines). Note, that the evolving dissipative solitons has the
same size than the initial ones. This is in contrast to the observations of Krischer
and Mikhailov [7.21], who stabilized the dissipative solitons not by an additional
component but by global feedback. In this case the dissipative soliton evolving from
a merged state has twice the size than a initial particle. Nishiura et al. investigate
the merging of dissipative solitons in a three-component variant of the Gray-Scott-
model and relate the annihilation to a so-called peanut scattor, which is an unstable
solution of the reaction-diffusion-system [7.22].

In higher dimensional systems partial annihilation by merging could also lead to
the generation of new dissipative solitons, which is discussed in Sect.7.3.2.



190 7 Generation and Annihilation

7.3 Generation of Dissipative Solitons

7.3.1 Strong Repulsion

Motivated by the experimental observation of current density filaments generating
a single dissipative soliton in the course of interaction (Fig. 2.13) a similar scenario
is simulated on basis of the three-component reaction-diffusion system (3.69). For
this purpose the interacting dissipative solitons have to propagate with large intrinsic
velocity (Fig. 7.2c). Furthermore, they have to exhibit pronounced oscillating tails in
order to feature self-completion (Sect. 7.1.3). However, because no global feedback
is considered and the investigated systems hold k¢ = k] < /cflgf} (Fig.7.6), two
or more dissipative solitons need to interact directly in order to generate further
dissipative solitons in a process called replication [7.24].

7.3.1.1 Replication in Two-Dimensional Systems

The following simulation demonstrates the replication of a dissipative soliton on
a two-dimensional domain for parameter set (4.22) with t = 3.47. After each
time step the solutions of activator # and driving inhibitor v are perturbed with
spatiotemporal uncorrelated noise of amplitude R, = 10~ and R, = 0.5-107°. The
noise amplitude has a uniform probability density distribution in order to accelerate
transients of unstable states.

The simulation is depicted in Fig.7.10 by means of four subsequent snap-
shots (middle column of Fig.7.10) visualizing the activator distribution u(r,¢) as
grayscale images with arrows indicating the velocity vectors of the dissipative
solitons. The snapshots are supplemented by intersections of activator u and
stabilizing inhibitor w along the symmetry axis x = 0.5 (right column of Fig.7.10).
This symmetry axis is indicated within the grayscale images of the middle column
as broken line. The intersections of the right column are combined with legends
mapping the grayscale of the middle column to the activator concentration of the
right column. The left column of Fig.7.10 shows the evolution of quantity i(t),
which indicates the conservation, annihilation and generation of dissipative solitons,
such that an increase of u(¢) by u(t = 0)/Np indicates the generation of an
additional dissipative soliton, if Ny is the number of initially existing dissipative
solitons. Therefore, u(t) ~ 1 refers to the conservation of the number Ny of initially
existing particles. The indicator #(t) is computed by:

(u(r,1) — up)*dr
i) = 22 (1.7
/ (u(r,0) — up)*dr
2
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Fig. 7.10 Replication of a dissipative soliton by interaction of four dissipative solitons [7.24]. The
resulting 5-soliton-cluster decays under symmetry breaking into a 2-soliton bound state and a 3-
soliton bound state. The figure shows four snapshots of the simulation (rows). Columns from left to
right: Evolution of indicator #(t) (7.7), activator distribution, grayscale legend, and intersections
of activator u and fast inhibitor w at x = 0.5. Diamonds in the indicator diagram reference the
snapshot. Arrows overlaying the activator distribution indicate the direction of motion. Parameters
from (4.22) with © = 3.47
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with ug corresponding to the homogeneous background state. Within these diagrams
a diamond indicates the time ¢ of snapshot u(r,t) and intersections u(0.5, y, t),
w(0.5, y,t) depicted in the same row.

The simulation starts with four dissipative solitons being positioned symmet-
rically to the central axes of the domain, which are defined by x = 0.5 and
y = 0.5. The dissipative solitons denoted with 1 and 3 propagate towards collision
point P;3 = (0.4,0.5), and dissipative solitons denoted with 2 and 4 move
towards collision point P4 = (0.6,0.5), such that close to P ;3 and P4 the
interacting particle form bound states (Fig.7.10e). Both bound states head for
the center of the domain where their tales overlap. The intersection in Fig.7.10f
shows the superposing oscillatory tails in detail. In the center of the domain a
local activator maximum is formed due to the influence of four dissipative solitons.
Additionally, two smaller maxima are created due to the superposition of the tails
of two dissipative solitons. This local increase of activator concentration causes
a deflection of initial dissipative solitons (Fig.7.10e) and the ignition of a fifth
dissipative soliton (Fig.7.10h), which is accompanied by an increase of indicator
u(t) (Fig.7.10g). The generated particle also exhibits oscillatory tails (Fig.7.101)
which interact with the neighbouring particles without the ignition of additional
dissipative solitons.

Finally, the symmetry with regard to the y = 0.5-axis is broken, which is shown
in Fig. 7.10k. Here the 5-soliton-bound state has decayed into a bound state consist-
ing of two dissipative solitons propagating towards the lower domain boundary and
a bound state consisting of three dissipative solitons propagating towards the upper
domain boundary. At the depicted snapshot the two-soliton bound state has already
reached the lower domain boundary, where due to the no-flux boundary condition
another replication occurs. In the same time the bound state consisting of particles
1, 2, and 5 has only reached the middle of the upper domain half.

In order to investigate the symmetry breaking and the velocity difference of the
two-soliton and the three-soliton bound state, we will take a closer look at the
dynamics. Therefore, in Fig.7.11 the evolution of two characteristic variables of
the dynamics are plotted for each dissipative soliton. One is the absolute value of
shift a(r) between the center of the activator peaks and corresponding peaks of
the driving inhibitor distribution v. The other is the angle ¢ (¢) of the direction of
motion, which is estimated from shift e(#) = (. (¢), @y (#)) such that

o (1) A sin ¢(t) = o ()

&(z) a(t) (7.8)

cos ¢(t) =

Additionally, Fig. 7.11a shows a grayscale image of the activator distribution u(x, y)
at t = 437.5 with the interacting dissipative solitons being numbered. The image
also shows contour lines of the activator u(x,y) = —0.2 at t = 17.5. Arrows
indicate the direction of motion.

In the beginning, dissipative soliton I propagates with an angle of —% from the
upper left quarter of the domain towards its collision point close to the middle of the
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Fig. 7.11 Dynamics of the interacting dissipative solitons presented in Fig.7.10 [7.24]. (a)
Time evolution of the absolute value of shift a(¢) between the centers of activator peaks and
corresponding peaks of driving inhibitor distribution. The inlay of subfigure (a) shows the activator
distribution u at t = 437.5 and contour lines of the activator u(x, y) = —0.2 att = 17.5. Arrows
denote directions of motion and numbers identify the individual dissipative solitons. (b) Evolution
of the angle ¢ (¢) of the direction of motion (7.8). The numbers within the grayscale image of (a)
and the numbered curves of (b) refer to the same dissipative solitons. That applies also to the line
styles of (a) and (b). Curves vanishing at the fop (bottom) and reemerging at the bottom (top) reflect
the periodicity of the inverse function used for the calculation of ¢ (¢)

domain. Dissipative solitons 2, 3, and 4 exhibit angles of —27”,27”, and %, respec-
tively (Fig.7.11b, ¢t € [0, 100]). The symmetry of the initial condition is reflected
in Fig.7.11a by the identity of |a(¢)| for ¢ € [0, 100]. This symmetric behaviour
persists even while dissipative solitons -4 are deflected by the replicated fifth
dissipative soliton such that their angles of propagation change signs (Fig.7.11a,
b, ¢ € [100, 340]).

After its generation, dissipative soliton 5 is stationary and therefore is an unstable
solution of system. Its propagator amplitude e (z) is just slightly excited and its
direction of motion changes rapidly (Fig.7.11b, ¢ € [250, 350]) until it relaxes at
¢ ~ 340 to an angle of 7. At this time the symmetry of the solution with regard to

the y = 0.5 axis is broken, such that the curves of |« (¢)| for the 1,2—bound state and
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the 3,4—bound state branch off. This process is caused by the noise being applied to
the system.

While the excitation of propagator mode a5 (blue curve in Fig.7.11a) and the
excitations of propagator modes a3 and a4 (solid red and overlaid broken black
curves) increase, dissipative solitons 1 and 2 are slowed down and the amplitudes
of their propagator modes decrease (solid green and overlaid broken black curves).
Obviously, the new dissipative soliton is located within a repulsive region regarding
particles 3 and 4, and within an attractive region concerning particles I and 2. The
repulsive interaction leads to a mutual acceleration of dissipative solitons 3, 4, and 5
which is even increased by the attractive interaction between dissipative solitons 1,2,
and 5. At the same time, dissipative solitons I and 2 are slowed down in the course
of pulling the fifth particle. The velocity vectors indicated in the grayscale image
of Fig.7.11a show an extreme case of this configuration at t = 437.5, for which
the propagator mode amplitudes of the 1,2—bound state are close to zero, while the
propagator mode of dissipative soliton 5 is strongly excited and, on the other hand,
pushes 1 and 2. It follows an alternating acceleration and deceleration of dissipative
solitons I, 2, and 5, which leads to a smaller average velocity of the 3-soliton-cluster
compared to the 2-soliton bound state.

The described scenario is very similar to the experimental observations reported
by Astrov and Purwins in 2001 (Fig. 2.13), where three dissipative solitons approach
each other and replicate a fourth one. This generation mechanism can be understood
in the context of the presented simulation, which explains the replication as a
result of the nonlinear superposition of oscillating tails. Experimental evidence for
oscillating tails of dissipative solitons has also been given in the d.c. gas-discharge
system (Fig. 2.8b).

7.3.1.2 Replication in Three-Dimensional Systems

In order to simulate the replication of dissipative solitons in three dimensions,
the following parameters have been chosen, which lead to solitary solutions with
oscillating tails:

D,=11-13-10"%, D, =0, D,, = 9.64-107°, 1 = 0.95,
k1 =—0.08, k3 =025 ks =1, t =45 60=0, (7.9)
2 =1[0,1.4]°, Ax =0.011, At = 1.0, periodic boundary condition.

Note, that the time scale constant t of the driving inhibitor exceeds the critical value
of . = 4.0 (4.30) significantly, such that the limit case of particle conservation is
not given anymore. The initial conditions have been set up from radial symmetric
stationary dissipative soliton solutions of parameters (7.9) such that three particles
are starting from the vertexes of an equilateral triangle with sides of length 0.8
(Fig. 7.12a). The peaks of the driving inhibitor for each dissipative soliton have been
shifted with respect to the respective activator peaks by 8.2 - 10~ length units such
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Fig. 7.12 Replication of dissipative solitons in a three-dimensional reaction-diffusion system
[7.25]. Subfigures (a)-(d) show iso-surfaces of activator u(x, y, z) = 0.0, which are coloured with
respective to the local concentration of the driving inhibitor. A large (small) inhibitor concentration
is indicated by blue (red). Vectors denote the direction of motion of the dissipative solitons, which
is approximated by the shift of the slow inhibitor v with respect to the activator « of the individual
dissipative soliton. Subfigure (e) shows the evolution of distance to the center of the initial particles.
The black curve refers to the initial dissipative solitons, the red and blue curve to the fourth and
fifth dissipative solitons, respectively. Parameters from (7.9)

that the motion of each dissipative soliton is directed towards collision point P, =
(0.75,0.58, 0.51)T. The peaks of the stabilizing inhibitors are centered around the

activator peaks.
In order to visualize the evolution of the field equations (3.69), Fig. 7.12 shows
four subsequent snapshots of activator iso-surfaces u(x, y,z) = 0.0, which are

coloured with respect to the concentration of the driving inhibitor concentration.
Here red (blue) indicates a high (low) inhibitor concentration, respectively. Arrows
indicate the direction of motion of the dissipative solitons. An overview of the
dynamics is given in Fig. 7.12e showing the distance d(¢) = | p(t) —ds(t)| between
the individual dissipative solitons and their center

a5(0) = 5(p1(0) + p2(0) + p(0). (7.10)

Black curves refer to the initial dissipative solitons, which coincide due to the choice
of the center ds(¢), whereas the dynamics of the generated particles is plotted with
red and blue curves.
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While relaxing to their equilibrium velocity, the dissipative solitons reach their
closest distance dp;, = 0.088 at t = 280 to their center ds(f) and a fourth
dissipative solitons ignites at a distance of d = 0.146 to ds(t = 280) (Fig.7.12b).
This event turns the direction of motion of the initial dissipative solitons parallel to
the z-axis. The distance between the particles relaxes in an oscillatory manner to a
steady state corresponding to minimal interaction (Fig.7.12e). During this process
the initial dissipative solitons come close together for another time (d = 0.110) and
a fifth particle ignites at a distance of d = 0.153 to center dg(¢) (Fig.7.12e). The
double pyramid cluster of five dissipative solitons continues to propagate parallel
to the z-axis and the particles relax towards an equilibrium distance of d = 0.118,
while the distance of the ahead and behind running dissipative solitons to the center
reaches an equilibrium distance of d = 0.145.

The simulation shows that several individual dissipative solitons can generate a
limited number of new dissipative solitons. The mechanism seems to be related to
the distance between the structures, because the replication mechanism only occurs
if the initial dissipative solitons come close to each other and overcome a critical
distance. If they form a bound state and relax to a steady configuration, which is
observed for # > 400 in the presented simulation, no replication phenomena occur.

7.3.2 Weak Repulsion

The partial annihilation of dissipative solitons due to weak repulsion (Fig. 7.9) offers
a natural way for generating dissipative solitons in higher dimensional systems if
the driving inhibitor v is too slow to prevent the bursting of the activator u into the
additional dimensions. This scenario is discussed on basis of a simulation, which
demonstrates the merging of two dissipative solitons to an intermediate state and the
emerging of two new dissipative solitons propagating perpendicularly to the original
plane of motion [7.5,7.20]. The respective parameter set is derived from (7.5) by
increasing the time scale constant of the driving inhibitor to T = 48.0. This leads to
a pronounced spreading of the driving inhibitor, which can be seen in Fig. 3.20 on
basis of an intersection and in Fig. 7.13a on basis of the iso-surfaces of the activator
(red) and the driving inhibitor (green). The iso-surface of the stabilizing inhibitor
is not shown, because it is centered around the localized activator distribution
(Fig. 3.20).

Due to the pronounced displacement between activator # and driving inhibitor v
the repulsion between the dissipative solitons is weak and they merge in the course
of a head-on collision (Fig.7.8b). Perpendicular to the original plane of motion
two new activator peaks emerge (Fig.7.8c) and evolve to independent particles
(Fig. 7.8d) exhibiting approximately the same shape as the original ones (Fig. 7.8e).

The evolution of the normalized activator integral |, o ﬁ ds2 is shown in
Fig.7.13f. Its initial value characterizes the two-particle state. In the course of merg-
ing the normalized activator integral oscillates around the value being characteristic
for a system hosting one dissipative soliton. After the emerging of two new particles
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Fig. 7.13 Formation of complex intermediate states due to weak repulsion [7.5]. (a)—(e) Iso-
surfaces of activator u(x) = —0.5 (red) and driving inhibitor v(x) = —0.5 (green). Arrows
indicate the direction of motion. In order to promote spatial orientation shadows of all objects

are projected onto the base of the domain. Subfigure (f) shows the evolution of activator integral

H}Z_I o i d§2 with diamonds indicating snapshots (a)—(e). Parameters from (7.5) mit = = 48,

2'=10,1]x[0,1.33] x [0, 1]

the measure starts to relax to the original value. Note, that the relaxation is not
finished at = 150, because the trailing tails of the localized activator distributions
still have not evolved their original form, which can be seen from comparing the
respective intersections [7.25, p. 54].

A more detailed view on the merged state is given in Fig. 7.14, which shows the
iso-surfaces of activator u(x,¢) = 0.8 fort € {26, 66, 88}. The surfaces are shaded
with respect to the local concentration of the driving inhibitor with red and blue
indicating low and high concentrations, respectively. The shading illustrates that the
structures propagate against the gradient of the driving inhibitor field. In this figure
the merged state appears as torus from which the new dissipative solitons evolve.

Similar phenomena of transient merging processes are also observed for other
types of self-organized solitary structures such like Hopf solitons. Concerning a
¢*-model with stabilizing Skyrme-term two-dimensional simulations of head on
collisions between two solitons show the merging and reemerging perpendicular
to the original direction of motions [7.26]. This might lead to the conclusion that
the described process is generic for self-organized solitary structures under the
precondition of weak repulsion.
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Fig. 7.14 Transient activator
torus [7.12]. Iso-surfaces
u(x) = 0.8 for the simulation
presented in Fig. 7.13 are
coloured with respect to the
local concentration of the
driving inhibitor with red and
blue indicating low and high
concentrations, respectively

7.3.3 Self-replication

The most frequently investigated generation mechanism of dissipative solitons in
reaction-diffusion systems is the so-called self-replication. It is characterized by the
splitting of a dissipative soliton into two independent structures, eventually under-
going further division processes. Experimentally, self-replication has been observed
for one- and two-dimensional semiconductor-gas discharge systems [7.27, 7.28]
and for concentration drops in the ferrocyanide-iodie-sulphite reaction (Sect. 2.1.5).
From the theoretical point of view this phenomenon has been investigated for
reaction-diffusion systems with cubic nonlinearity and additional drift term [7.29,
7.30] and for two-dimensional Gray-Scott systems [7.31]. Bode analyses the self-
replication of dissipative solitons on basis of division rules for one-dimensional
front-pairs [7.32, S. 105ff], while Nishiura and Ueyama explain the self-replication
mechanism by means of a hierarchic arrangement of saddle-node-bifurcations in the
vicinity of a Bogdanov-Takens-Turing bifurcation point [7.33]. The self-replication
of dissipative solitons triggered by a parameter inhomogeneity is discussed in the
following paragraphs.

For this purpose the homogeneous state of a three-component reaction-diffusion
system (3.69) has been overlaid by an inhomogeneity of Gaussian shape:

™ 2
—In(2) (x — (%, %) )

— 1234408
€(x) +08exp 1.932-102

(7.11)
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Fig. 7.15 Self-replication of dissipative solitons triggered by a spatial inhomogeneity [7.20]. (a)
Initial condition of driving inhibitor v, trajectories of dissipative solitons before and after self-
replication (solid and broken curves), and the half width of the inhomogeneity (7.11) (dotted
circle). (b) Snapshots of the first self-replication. Parameters: D, = 1.21-107%4, D, = 1.7-1073,
D, = 1.46-1072, 1 = 4.3,k from (7.11), kn = 0, k3 = 1.0, k4, = 8.0, T = 60.0, 6 = 0.0,
2 =100,1.0% A, =7.14-1073, A, = 0.1, periodic boundary condition

The inhomogeneity is located in the center of the domain and its half-width is
indicated in Fig. 7.15a as a dotted circle. The figure also shows the distribution of the
driving inhibitor as gray-scale image and the half-width contour line of the activator.
The trajectories indicate that the dissipative soliton is attracted by the inhomogeneity
and is drawn into its center. It crosses the maximum of the inhomogeneity, reverses
its direction of motion and crosses the maximum again. At the same time the
dissipative soliton starts to stretch perpendicular to its direction of motion, until
it separates into two independent particles. (Fig.7.15b). The dissipative soliton
indicated with I leaves the inhomogeneity (broken curve in Fig.7.15a), while the
second dissipative soliton stays within the inhomogeneity and undergoes three more
self-replications, until all particles leave the inhomogeneity.

The ability to create a number of dissipative solitons successively can be inter-
preted as prototype of a particle generator, which might become important in view
of particle based arithmetic [7.34]. In this context an important building part is a
particle generator, which has been realized in [7.35] by means of an inhomogeneity.

7.4 Mechanisms of Strong Interaction

7.4.1 Annihilation

From the investigations on the formation of bound states it is known, that a head-
on collision of dissipative solitons does not lead to annihilation in the vicinity of
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Fig. 7.16 Comparison of slow and fast dissipative solitons. The plot shows intersections of the
activator (solid curves) and inhibitor peaks (dotted curves) for a slow dissipative soliton (left hand
side) and a fast one (right hand side). In the vicinity of the drift-bifurcation the distributions
of activator u and driving inhibitor v can hardly be discriminated. The chart indicates, that a
dissipative soliton grows with increasing distance to the drift-bifurcation. Parameters from (5.2)

the drift-bifurcation (Fig. 5.1). The most obvious difference to the system discussed
in this chapter is the equilibrium propagation velocity which is twice as large for
T = 4.35 (Fig.7.8) compared to t = 4.01 (Fig. 5.1). In order to understand how this
parameter change influences the shape of the dissipative solitons the intersections
u(y) and v(y) of a slow and a fast dissipative soliton along their symmetry axis y
are shown in Fig. 7.16. Because the slow dissipative soliton has been obtained in the
vicinity of the drift-bifurcation the ansatz of the reduced dynamics (5.12) holds and
the distributions of activator and driving inhibitor can hardly be discriminated from
each other. The structure differs from a stationary solution only by the propagator
mode amplitude, which is hardly visible in the left hand side of Fig. 7.16 as small
displacement &« = o, e, between the peaks of activator and driving inhibitor. For
the fast dissipative soliton the displacement is clearly visible and obviously has led
to significantly increased amplitudes of the activator and inhibitor peaks (right hand
side of Fig.7.16). Therefore, also the amplitude of the oscillating tails is increased
and causes stronger attractive and repulsive interaction between the dissipative
solitons.

Due to their large velocity the dissipative solitons enter the strongly repulsive
interaction region of their collision partners very quickly and the activator peaks are
stopped nearly immediately. The driving inhibitor catches up and destabilizes the
structure because the large inhibitor peak diminishes locally much more activator
than the latter is able to produce. Due to the large time scale constant the inhibitor
adapts only slowly to the reduced activator concentration, which accelerates the
fading of the dissipative solitons even more.

This disequilibrium between self-activation and self-inhibition does not occur
for slowly propagating dissipative solitons in the vicinity of the drift-bifurcation,
because the shape of the pulses differs only negligibly from the stationary state,
which on the one hand is the prerequisite for the reduced dynamics and on the other
hand ensures the conservation of the number of particles.
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Fig. 7.17 Unstable rotating bound state of two dissipative solitons, which fills the domain with
generated dissipative solitons due to self-completion. The figures show iso-surfaces of activator
u(x,t) =0 which are shaded with respect to the local concentration of the driving inhibitor.
Blue and red indicate a large and low concentration, respectively. Parameters from (7.12) with
k= —0.071

7.4.2 Generation

The previous sections on self-completion (Sect.7.1.3) and on replication
(Sect.7.3.1) have shown that clusters of dissipative solitons can be destabilized in
the vicinity of the Turing-bifurcation, while single dissipative solitons still remain
stable (Fig.7.6). Concerning the strong interaction between dissipative solitons it
has been shown, that there is a critical distance between dissipative solitons. If
dissipative solitons undercut this critical distance, the generation of new dissipative
solitons will be triggered (Fig. 7.12). These generation processes have in common
that the involved dissipative solitons exhibit pronounced oscillating tails. Therefore
the question arises whether the oscillating tails are directly related to the underlying
generation mechanism?

In order to investigate this question the three-component reaction-diffusion
system (3.69) is solved on a three-dimensional domain for the following set of
parameters:

D,=13-10"% D, =0, D, =9.64-1073, 1 = 0.95,

k1 € [—0.08; —0.07], k3 =0.25, kg =1, T =4.01
(7.12)
6 = 0.01, £ = [0,1]*, no-flux boundary condition,

Ay =1.49-1072, A, = 0.05.

For these parameters dissipative solitons exist as stable solutions of the investigated
reaction-diffusion system, while rotating bound states of dissipative solitons become
unstable e.g. for k; = —0.071. In this case the domain is filled with dissipative
solitons due to a self-completion process (Fig.7.17). The border between the
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Fig. 7.18 Three-dimensional dissipative solitons with pronounced oscillating tails. (a) Stationary,
radial-symmetric solutions of activator u(r) for parameter set (7.12) with A, = 0.01. Stable and
unstable solutions are plotted with solid and broken lines, respectively. Black and gray curves
show solutions obtained for x; = —0.8 and x; = —0.7, respectively. The horizontal shift of these
solutions is caused from the dependency of the homogeneous state uy on k. (b) Iso-surface of
activator u(x,1)|;=9 = —0.177 for the initial condition of the simulation campaign summarized
in Fig. 7.19. The surface is coloured with respect to the local concentration of the driving inhibitor
v with red and blue denoting low and high concentrations, respectively. The torus results from the
superposition of oscillating tails. Parameters from (7.12) with k; = —0.071, T = 4.01

structured part of the domain and the homogeneous part can be modelled as
three-dimensional front, which does not propagate continuously like in Fig.3.7
but stepwise for every ignition of a new spherical shell of dissipative solitons.
In Fig.7.17b the latest dissipative solitons exhibit purely red shaded iso-surfaces,
because the respective activator peaks have formed but the inhibitor peaks have not
formed, yet. Note, that the front propagation is not stopped like the one visualized in
Fig. 3.9 because the simulations discussed in this section do not take global feedback
into account.

In order to investigate the difference between stable and unstable bound states
in relation to the respective stationary dissipative soliton solutions intersections of
activator u(r) have been plotted both for x; = —0.8 (black curves) and k; = —0.7
(gray curves) in Fig.7.18a. For both parameter sets the stable stationary solution
(solid curves) and the unstable stationary solutions (broken curves) the so-called
critical nuclei are shown. The figure demonstrates in analogy to Fig.3.19 that
the amplitude of the stable stationary solutions increases with increasing driving
parameter k|, while the amplitude of the critical nucleus decreases for increasing
driving parameter. Therefore, the difference in size between the stable stationary
solution and the respective unstable stationary solution increases for increasing
driving parameter. Furthermore, Fig. 7.18a indicates, that the difference between the
amplitude of the unstable stationary solution and the amplitude of the oscillating
tails of the stable stationary solution decreases for increasing driving parameter.
Having in mind that the critical nucleus is a separatrix in state space between the
homogeneous state and the dissipative soliton solution (Sect.3.3.6), one can con-
clude that the superposition of oscillating tails can more easily trigger the generation
of dissipative solitons if the amplitude of the respective critical nucleus is small.
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Fig. 7.19 Comparing the amplitudes of critical nuclei ii¢, (k1) and superimposing oscillating tails
U (k1) for varied driving parameter «. Both amplitudes have been reduced by the respective value
of the homogeneous ground state uy(k;). The initial condition for the simulation campaign is
depicted in Fig. 7.18b. On the left hand side of the vertical line the bound state is a stable solution
of the reaction-diffusion system. On the right hand side the bound state is unstable with respect to
self-completion. Parameters from (7.12)

In order to prove this assumption, a simulation campaign on basis of a rotating
bound state is undertaken for varied driving parameter «;. For such kind of structure
the largest superposition of oscillating tails occurs in the plane being perpendicular
to the axis of the compound. For a three-dimensional bound state this superposition
is a torus of increased activator concentration (Fig. 7.18b). In Fig. 7.19 the maximum
activator concentration i, of this torus is compared to the amplitude i, of the
critical nucleus for varied control parameter k. The parameter scan shows, that the
amplitude of the critical nucleus decreases for increasing control parameter, while
the amplitude of the activator torus increases for increasing control parameter, until
generation by self-completion is initiated for k; > —0.0711.

This parameter scan clarifies, that the superposition of oscillating tails can trigger
the generation of dissipative solitons, if the superposition grows up to the magnitude
of an unstable stationary dissipative soliton, the so-called critical nucleus. In case of
the replication scenario (Sect. 7.3.1) this condition is met by the superposition of the
oscillating tails of several dissipative solitons, if the interacting particles fall below
a critical distance. Otherwise the respective clusters are stable solutions. In case of
the self-completion scenario (Sect. 7.1.3) already the superposition of the oscillating
tails of two dissipative solitons triggers the generation process. Other possibilities
for meeting the critical nucleus criterion are given by localized perturbations due to
spatial inhomogeneities or instabilities of individual dissipative solitons.
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Chapter 8
Summary

Nature uses only the longest thread to weave her patterns, so
each small piece of her fabric reveals the organization of the
entire tapestry.

Richard Feynman [8.1]

Abstract Dissipative solitons in reaction-diffusion systems are self-organized
localized structures with particle-like properties: They are generated or annihilated
as entities, propagate with a well-defined stabilized velocity and are able to form
bound states with qualitative different properties compared to their constituents.

The following statements order the most important findings on dissipative solitons
with respect to this monograph:

Structure Formation: — Self-organization is evident in animate and inanimate
nature on nearly every spatio-temporal scale. Reaction-diffusion systems are a
prominent example of self-organized systems, because they exhibit all important
types of structure: Patterns, spirals and solitary structures, so-called dissipative
solitons (Chap. 1).

Experiment: Dissipative solitons in experimental systems show complex
dynamics including: propagation, formation of bound states, merging and
splitting, generation, annihilation, spatio-temporal chaos and certain phenomena
of condensed phases (Chap. 2).

Modelling: The scale of spatial coupling basically determines the size of localized
structures. The nonlinear dynamics of neighboured local states fosters structure
formation. Feedback control stabilizes solitary structures in dissipative systems.
Delayed feedback introduces uniform motion or oscillation (Chap. 3).
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Propagation: The transition between stationary and propagating dissipative
solitons is called drift-bifurcation. Bound states of dissipative solitons exhibit
qualitatively different dynamics compared to its separated constituents (Chap. 4).
The drift-bifurcation is evident in experimental systems as transition from
Brownian to active Brownian motion (Chap. 6).

Particle Conservation: ~ Slow dissipative solitons interact by scattering or the
formation of bound states. The latter is caused by alternating regions of attraction
and repulsion surrounding the dissipative solitons (Chaps. 5 and 6). The complex-
ity of their dynamics increases with the number of dissipative solitons involved
and the number of spatial dimensions of the system.

Far From Equilibrium Dynamics: The generation and annihilation of dissipative
solitons is induced by global or local changes of system parameters, such that the
system or its self-organized structures become unstable. Concerning dissipative
solitons, the instability might be subliminal and becomes evident only in the
course of interaction processes with other dissipative solitons (Chap. 7).

Dissipative solitons are local excitations of nonlinear continuous systems. By itself
they are also continuous entities, but their localization makes them distinguishable
and allows for the modelling of their dynamics and interaction by means of a
particle approach. Large ensembles of dissipative solitons may be described by field
equations modelling the evolution of the mean local particle density and the mean
local velocity. And here, the next level of localization occurs, e.g. trigger waves
propagating through the system.

From this point of view, we are exhibiting a hierarchy of modelling paradigms
for dissipative systems:

e The flux of matter or energy fosters the self-organized formation of structure,
which is modelled by field equations.

e Structure implicates the concept of localization and the dynamics of localized
entities, which is modelled by ordinary differential equations.

* Ensembles of localized entities are modelled by field equations, which again
may exhibit self-organization, such that the hierarchy is continued to the next
abstraction level.
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