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Supervisor’s Foreword

Physics of the strong interaction at finite temperature and/or baryon density is one
of the most interesting topics in modern nuclear and particle physics. At tem-
peratures greater than 1012 K, nuclei dissolve into a plasma of quarks and gluons,
known as quark–gluon plasma: our universe started from such an extreme state of
matter, and experimental efforts are currently being undertaken to create the
quark–gluon plasma by using the relativistic heavy-ion collisions at the RHIC
(Relativistic Heavy Ion Collider) and at LHC (Large Hadron Collider). For baryon
densities greater than 1012 kg/cm3, nuclei dissolve into a degenerate Fermi system
of quarks, so-called quark matter. This exotic matter may be formed in the central
core of the neutron stars.

The theoretical basis for describing the quark–gluon plasma and the quark
matter is provided by quantum chromodynamics (QCD), specifically the color
SU(3) gauge theory for the strong interaction. Due to its highly non-perturbative
nature, solving QCD analytically is one of the most challenging problems in
modern mathematical physics. On the other hand, Monte Carlo simulations of
QCD formulated on a space–time lattice, referred to as lattice QCD, have become
a powerful tool for solving QCD numerically. However, lattice QCD simulations
at finite baryon density are extremely difficult because of the notorious ‘‘sign
problem’’ caused by the complex QCD action at finite baryon chemical potential;
this sign problem has been preventing us from making progress in ‘‘dense QCD’’
for many years.

The present thesis by Dr. Takuya Kanazawa introduces a novel way to derive
non-perturbative and accurate results in dense QCD. Taking two-color QCD (color
SU(2) gauge theory) as a primary example, Dr. Kanazawa has studied the eigenvalue
distribution of the Dirac operator by formulating and solving a new non-Hermitian
chiral random matrix theory (ChRMT). In particular, he shows that the ChRMT with
weak non-Hermiticity can be mapped to two-color QCD with small chemical
potential, and the ChRMT with strong non-Hermiticity can be mapped to the BCS
regime of two-color QCD at high density. The spontaneous symmetry-breaking
pattern of dense two-color QCD plays a key role in proving such correspondence.
The approach developed by Dr. Kanazawa and his colleagues offers a theoretical
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framework not only for a deeper understanding of the sign problem in QCD and
QCD-like theories but also for new insights into QCD phases from low density to
high density. Also, the present thesis contains a transparent description of dense
QCD and its relation to chiral perturbation theory and chiral random matrix theory,
making it a good introductory monograph for students and researchers who are
interested in this field.

It is with the greatest pleasure that I introduce Dr. Takuya Kanazawa’s work for
publication in the Springer Theses series. His work was nominated as an outstanding
Physics Ph.D. Thesis of the Fiscal Year 2010 by the Department of Physics,
Graduate School of Science, the University of Tokyo.

Tokyo, March 2012 Tetsuo Hatsuda
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Chapter 1
Introduction

It was in 1897 that J. J. Thomson made experiments which led to the discovery of the
electron: the first elementary particle discovered in nature. After a century we now
understand that all visible material in our Universe is composed of a few kinds of
elementary particles, called quarks, leptons and gauge bosons. The Standard Model
of particle physics is by now firmly established as the theory of elementary particles.
It is a gauge theory based on the gauge group U(1) × SU(2) × SU(3). While the
U(1)×SU(2) sector takes care of the electromagnetism and the weak force, the SU(3)

sector, called Quantum Chromodynamics (QCD), describes the strong interactions
that act between quarks and gluons. The Lagrangian of QCD is given by1

LQCD =
N f∑

f =1

ψ f (iγ
μDμ − m f )ψ f − 1

4
Fa
μνFaμν (1.1)

Dμ ≡ ∂μ + igAa
μT a, a = 1, 2, . . . , N 2

c − 1 (1.2)

Fa
μν = ∂μAa

ν − ∂ν Aa
μ + g f abc Ab

μAc
ν , (1.3)

where T a and f abc denote the generators and the structure constants of SU(Nc),
respectively. The integers N f and Nc specify the number of flavors and colors; in
reality N f = 6 and Nc = 3 . Usually we can neglect the contribution of heavier
flavors (c, b, t) so that N f = 3 or even 2 is a good approximation to the reality.
Despite its simplicity Eq. (1.1) gives rise to incredibly diverse phenomena, such as
the emergence of numerous bound states (pions, Kaons, vector mesons, baryons and
atomic nuclei), chiral anomaly, asymptotic freedom, gluon condensate, spontaneous
chiral symmetry breaking, and color confinement.

The asymptotic freedom [1, 2] is a property that the gauge coupling g, which
depends on the energy scale under consideration as a result of renormalization,
flows to zero at asymptotically high energy. This salient feature of QCD provided us
with the opportunity to test QCD by making predictions on high-energy scattering

1 Electromagnetic interactions are neglected.
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2 1 Introduction

processes using perturbation theory and comparing with experiments. On the other
hand, g grows large at low energy where weak coupling methods are doomed to
failure; phenomena such as bound state formation and symmetry breaking never
occur within perturbation theory. Instead, we nowadays carry out massive computer
simulations of QCD on a discrete lattice (called lattice QCD), and thereby succeeded
in revealing various non-perturbative aspects of QCD from first principles. It has to
be noted, however, that numerical simulations do not necessarily entail a physical
understanding of the subject.

Chiral symmetry and its breaking are one of the central ingredients in low-energy
QCD. When all quark masses are tuned off, the Lagrangian Eq. (1.1) is invariant
under

SU(N f )L × SU(N f )R × U(1)B × U(1)A, (1.4)

where U(1)A is explicitly broken by chiral anomaly. In vacuum the chiral conden-
sate 〈ψ̄RψL + ψ̄LψR〉� − (240 MeV)3 develops, which breaks the symmetry as
SU(N f )L ×SU(N f )R → SU(N f )V . This spontaneous breaking of chiral symmetry
is still poorly understood from a theoretical perspective owing to the strong coupling
nature of QCD, but it has been confirmed in lattice simulations (see e.g., [3]). It gives
rise to N 2

f −1 massless Nambu–Goldstone bosons (pions) and large dynamical mass
for quarks, which is independent of the current quark masses m f in Eq. (1.1). Those
light pions dominate the infrared dynamics of QCD and particularly serve as a source
of the attractive interaction between nucleons, which in turn leads to the formation of
atomic nuclei. The chiral symmetry breaking therefore plays a major role in making
our world appear as we see now.

It has been well known since the seminal work of Banks and Casher [4] that the
magnitude of the chiral condensate 〈ψ̄ψ〉 in the chiral limit is linked to the density of
near-zero eigenvalues of the Euclidean Dirac operatorγμDμ. That the spectral density
indeed tends to a nonzero value near the origin has been explicitly demonstrated in
a recent lattice simulation [5], as shown in Fig. 1.1. It is by now established that the
way the thermodynamic limit is approached in the low end of the Dirac spectrum is
described by Chiral Random Matrix Theory (ChRMT) [6]. ChRMT is one of rare
examples in QCD where non-perturbative results can be obtained exactly. In ensuing
chapters we will review this subject in much greater detail.

The purpose of this thesis is to argue that a similar theoretical scheme can be
developed for the Dirac operator in QCD with Nc = 2 (called two-color QCD)
at large quark number density. To clarify how unexpected this extension is, let us
review qualitative differences between QCD at zero density (vacuum) and QCD at
high density:

1. At zero density the strong coupling effect is essential, while at high density the
running coupling g reduces to zero owing to the asymptotic freedom, and it is the
existence of the Fermi surface that plays a key role in various non-perturbative
phenomena of dense QCD,

2. The patterns of spontaneous breaking of global symmetries are totally different
in QCD vacuum and at high density, and
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3. The eigenvalues of the Euclidean Dirac operator become complex in the presence
of nonzero quark chemical potential μ. Consequently the statistical measure
of the path integral is no longer positive definite, signaling the notorious sign
problem.

Nonetheless it is possible to generalize various theoretical apparatuses originally
developed for zero density QCD to the high density BCS regime. Let D(μ) denote
the Euclidean Dirac operator at nonzero chemical potential μ. In this thesis, the
following generalizations of seminal works in the literature are completed:

• Chiral Lagrangian at μ< �QCD [7, 8]
=⇒ Chiral Lagrangian at μ� �QCD … Sect. 3.2.1

• Partition function in the ε-regime at μ ∼ 1√
V4 Fπ

[9, 10]

=⇒ Partition function in the new ε-regime at μ� �QCD … Sect. 3.2.2

• ChRMT for the eigenvalues {λn} of D(μ) in the microscopic domain
(

|λn| ∼ 1

V4|〈ψ̄ψ〉|
)

at μ ∼ 1√
V4 Fπ

[11–13]

=⇒ ChRMT for the eigenvalues λn of D(μ) in the new microscopic domain(
|λn| ∼ 1√

V4�2

)
at μ� �QCD … Sects. 3.3 and 3.4

• Analysis of the sign problem in the ε-regime at μ ∼ 1√
V4 Fπ

[14, 15]

=⇒ Analysis of the sign problem in the new ε-regime μ� �QCD … Sect. 3.5

• The “three-fold way” of ChRMT at μ ∼ 1√
V4 Fπ

[16]

=⇒ A new “three-fold way” of ChRMT at μ� �QCD … Chap. 4

It is impressive that in the ε-regime so many non-perturbative results can be obtained
exactly. This tractability is due to the fact that the infinitely many degrees of freedom
of quantum fields decouple dynamically in the ε-regime, leaving behind only a finite
number of degrees of freedom that can be studied analytically.

Several comments are in order.

Why Two Colors Instead of Three Colors?

We would like to address a possible criticism: Why Nc = 2? Why not work on
Nc = 3? The reasons will be spelled out in the following chapters and here we
present a brief summary of them. First, contrary to Nc = 3 QCD which faces a
severe sign problem at μ �= 0, two-color QCD is amenable to lattice simulations at
any μ (as long as the masses are pairwise degenerate). Hence there is a hope that our

http://dx.doi.org/10.1007/978-4-431-54165-3_3
http://dx.doi.org/10.1007/978-4-431-54165-3_3
http://dx.doi.org/10.1007/978-4-431-54165-3_3
http://dx.doi.org/10.1007/978-4-431-54165-3_3
http://dx.doi.org/10.1007/978-4-431-54165-3_3
http://dx.doi.org/10.1007/978-4-431-54165-3_4
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analytical results can be tested on the lattice directly. Such a comparison will serve
as a useful check of simulation algorithms and will prompt further developments in
this field. Secondly, two-color QCD and Nc = 3 QCD share the important physics
of Cooper pairing near the Fermi surface at high density, even though Nc = 2 is
theoretically much simpler than Nc = 3 (e.g., because the quark pair of the former
does not break gauge symmetry). Thus one can expect that from a thorough analysis
of dense two-color QCD we will learn at least certain universal aspects of dense
Nc = 3 QCD. And last, but not least, our analysis of dense two-color QCD permits a
straightforward generalization to other QCD-like theories, as is elucidated in Chap. 4.
In this sense our current treatment is more general than it appears at first sight.

The extension to dense Nc = 3 QCD is a highly challenging attractive problem
begging for a solution. This is left for future work.

Matrix Models as a Phenomenological Model of QCD

While this thesis is mainly concerned with ChRMT as an exact theory of the QCD
Dirac spectrum in the microscopic domain, the ChRMT has been also used as a
phenomenological mean-field model of QCD at finite temperature and density. In
this context, the universal correspondence of ChRMT to the ε-regime QCD is lost,
but we can learn about qualitative features of the QCD phase diagram. The reader
interested in this direction is referred to a recent review [17].

Subsequent Progress

As we will discuss in the main text, the high-density regime and the low-density
regime of dense two-color QCD are described by distinct low-energy effective the-
ories, because the patterns of symmetry breaking are different. This observation
triggers a question about the physics at intermediate densities. In [18] it was shown,
on the basis of the putative BEC-BCS crossover scenario, that the three regimes
of dense two-color QCD with high, intermediate, and low density, respectively, are
governed by three distinct effective theories, with overlapping domains of validity.
The relation between those theories was analyzed in detail and found to be totally
consistent with each other. Eventually it was shown that the scheme of the present
thesis can be successfully extended to all densities.

Furthermore, we also succeeded in extending the universal correspondence
between ChRMT and the Dirac spectrum in QCD to a novel correspondence be-
tween ChRMT and the singular value spectrum of the Dirac operator [18]. The key
observation in this work is that the singular value spectrum can be probed through the
addition of the diquark sources in place of usual quark masses. Important results such
as the Banks–Casher relation, the Smilga–Stern relation and the Leutwyler–Smilga
sum rules, for the Dirac eigenvalues are now all generalized to the case of the Dirac
singular values.

http://dx.doi.org/10.1007/978-4-431-54165-3_4
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Fig. 1.1 Spectral density of
the Dirac operator measured
in a lattice QCD simulation.
(Reprinted from [5]. Copy-
right(2012) with permission
from Elsevier)
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Since these developments substantially widen and deepen the framework proposed
in this thesis, one may view this thesis and [18] as comprising a single integrated
research. The reader interested in this thesis is therefore highly recommended to take
a look at [18] as well.

This thesis is organized as follows. In Sect. 2.1 we will explain the motivation
to look into QCD at nonzero μ and review past studies on the phase diagram of
QCD. In Sects. 2.2 and 2.3 we will review important features of two-color QCD and
ChRMT. In Chap. 3 a thorough investigation is given into various properties of the
Dirac spectrum in dense two-color QCD: we will construct a low energy effective
theory of Nambu–Goldstone bosons at high density, and use it to derive spectral sum
rules for the complex eigenvalues of the Euclidean Dirac operator. In Sect. 3.3 we
introduce a non-Hermitian random matrix ensemble and argue that it belongs to the
same universality class as the Dirac operator in dense two-color QCD. In Sect. 3.4
the new ChRMT is solved exactly and microscopic spectral densities are obtained in
the limit where the matrix size tends to infinity. It is discovered that the microscopic
spectrum is quite sensitive to the detuning of mass parameters. In Sect. 3.5 we evaluate
the severity of the sign problem in the ε-regime of dense two-color QCD on the basis
of the universal correspondence to the new ChRMT. It is observed that, as we detune
the masses, the expectation value of the sign of the fermion determinant drops to
zero, signaling a severe sign problem. Chapter 4 discusses possible extensions of our
analysis on two-color QCD (β = 1) to other QCD-like theories, namely QCD with
isospin chemical potential (β = 2) and QCD with fermions in a real representation of
the gauge group (β = 4) where β is the so-called Dyson index. Chapter 5 is devoted
to summary and conclusions. In appendices we clarify mathematical conventions of
this thesis and present technical details of the calculations that have been omitted in
the main text.

http://dx.doi.org/10.1007/978-4-431-54165-3_2
http://dx.doi.org/10.1007/978-4-431-54165-3_2
http://dx.doi.org/10.1007/978-4-431-54165-3_2
http://dx.doi.org/10.1007/978-4-431-54165-3_3
http://dx.doi.org/10.1007/978-4-431-54165-3_3
http://dx.doi.org/10.1007/978-4-431-54165-3_3
http://dx.doi.org/10.1007/978-4-431-54165-3_3
http://dx.doi.org/10.1007/978-4-431-54165-3_4
http://dx.doi.org/10.1007/978-4-431-54165-3_5
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Chapter 2
QCD with Chemical Potential
and Matrix Models

In this chapter we review QCD at finite temperature and density, QCD with the gauge
group SU(2) (also called ‘two-color QCD’), and finally chiral random matrix theory
for chiral symmetry breaking in QCD. They form the basis of later developments in
this thesis.

2.1 Phases of QCD

2.1.1 Overview

Quantum Chromodynamics (QCD) at nonzero temperature (T ), quark chemical
potential (μ) and/or external fields (e.g., a magnetic field) is known to exhibit a
rich phase structure, which is relevant to various fields of physics including the inter-
nal structure of compact stars, early universe and relativistic heavy-ion collisions
(see [1–12, 40] for reviews and [13–16] for books). We quote two conjectured QCD
phase diagrams in Fig. 2.1. Despite the notable simplicity of the QCD Lagrangian,
our understanding on the QCD phase diagram is still limited for various reasons.
First of all, QCD is a strongly coupled theory and understanding its non-perturbative
behavior theoretically is a hard problem even at zero temperature and density. Even in
the region with an asymptotically high density or temperature where the running cou-
pling gets small due to asymptotic freedom, the physics is not literally perturbative:
the spatial Wilson loop exhibits an area law even above the deconfinement tempera-
ture, while the Fermi surface of quasi-free quarks at high density is unstable toward
a formation of Cooper pairs (reviewed in more detail below). Second, experimental
observation of quark matter is fairly limited, especially at low temperature and high
density. Signatures from compact stars so far have not been sufficient to constrain the
QCD phase diagram. Third, the lattice QCD, which has been so successful in gain-
ing insight into QCD at finite temperature as a first-principle formulation of QCD,
is afflicted with the so-called sign problem once a nonzero quark chemical potential

T. Kanazawa, Dirac Spectra in Dense QCD, Springer Theses, 7
DOI: 10.1007/978-4-431-54165-3_2, © Springer Japan 2013
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is turned on, making the Monte Carlo importance sampling ineffective (see [17–20]
for reviews). A general solution to the sign problem, if any, is yet to be discovered,
and up to now Monte Carlo simulations of QCD at finite density have been limited
to a region of small chemical potential.

A powerful method to look into QCD at finite temperature and density is to
use effective models such as the Nambu-Jona-Lasinio model [21–23] as well as its
extension [24, 25], which encode chiral symmetry and its spontaneous breakdown
correctly. The parameters in the model are a priori unknown and are so tuned that the
model reproduces experimental data at T = μ = 0. Although theoretical uncertainty
remains regarding the T - and μ-dependence of such parameters, we are able to
gain various insights into the many body physics of QCD by using those models
as a testing ground of theoretical ideas. Other methods include Ginzburg-Landau
approaches, linear sigma models, random matrix models, instanton liquid models,
strong coupling expansion on the lattice, chiral perturbation theories, the high-density
effective theory, and AdS/CFT-inspired models. Nowadays it is even attempted to
use ultra-cold atomic gases to mimic dense quark matter [26]. These directions
complement each other, covering a wide range of the QCD phase diagram.

In addition to the conventional hadronic phase at low density and tempera-
ture and the quark-gluon plasma (QGP) realized at high temperature [27], many
phases of QCD have been suggested from various approaches mentioned above,
including the neutron superfluid phase, the proton superconducting phase, diverse
color-superconducting phases, the meson condensed phase, the gluon condensed
phase, the meson current phase, the inhomogeneous chiral symmetry broken phase,
and the quarkyonic phase; the superconducting phases may be further classified
into the 2SC phase, the Color-Flavor-locked (CFL) phase, the crystalline Fulde-
Ferrell-Larkin-Ovchinikov phase, etc. This list will elongate if we incorporate the
external magnetic field. (See [28] and references therein.)

In the next section we will review basic features of color superconductivity and
the so-called “Color-Flavor-Locked (CFL) Phase” which is believed to be realized
in the high density limit of three-flavor QCD. It will be important for our analysis in
later chapters.

2.1.2 Color Superconductivity and the CFL Phase

The Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity [29–31] is a mile-
stone in the history of theoretical physics [32]. Not only did it explain properties of
superconducting metals quantitatively, it also helped people realize the possibility
that symmetries respected by the underlying Hamiltonian could be broken spon-
taneously by the ground state: a first encounter with the concept of Spontaneous
Symmetry Breaking (SSB). It led Nambu and Jona-Lasinio to the idea of sponta-
neous chiral symmetry breaking in QCD [33, 34]. Later the idea of SSB was also
exploited in an essential way in the construction of the Standard Model for elec-
troweak interactions [35–37].
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The theoretical underpinning of BCS theory is the so-called Cooper instability:
the Fermi surface of free electrons becomes unstable once a net attractive interaction
is turned on. For simplicity let us assume T � 0 from here on. Suppose adding a
pair of electrons on top of the Fermi sphere. The energy increase is given by 2μ−U
with U > 0 the interaction energy between the two electrons,1 hence the change in
the grand potential reads δ� ≡ δ(E − μN ) = (2μ − U ) − 2μ = −U < 0. The
true ground state turns out to be characterized by a condensation of Cooper pairs,
consisting of two electrons with opposite momenta on the Fermi surface. The ground
state wave function has a definite phase, but an indefinite particle number, thus the
U(1) gauge symmetry is broken (or more properly, ‘hidden’). Understanding the state
of a superconducting metal this way, one can explain many of its pivotal features,
such as the Meissner effect and the generation of a gap in the electron spectrum.

An interesting point is that an arbitrarily weak attraction can trigger this qual-
itative change in the ground state, in marked contrast to fermionic systems at zero
density, where the attraction must exceed a nonzero threshold value to cause the
pairing. This difference is essentially due to the fact that the density of states is
non-vanishing at zero energy in the presence of the Fermi surface.

Where does the net attraction between electrons come from? The Coulomb interac-
tion is repulsive, even if screened by positive background charges in solids. However
the electrons also interact with phonons, arising from the quantization of lattice vibra-
tion, and the net interaction is obtained only if the attraction mediated by phonons
overcomes the Coulomb interaction. This picture is believed to be correct at least in
conventional superconductors, while the origin of attraction is still elusive in exotic
high-temperature superconductors.

These ideas for non-relativistic electrons are essentially valid for relativistic fermi-
ons as well. In some sense the situation is simpler in QCD than in solids, because the
gauge interaction in QCD could be attractive by itself. Consider QCD with asymp-
totically large quark chemical potential (μ � �QCD) at T � 0. The Fermi surface
of quasi-free quarks (due to the small running coupling g) would be unstable if there
is a net attractive interaction between quarks. As a crude estimate one can look at
the one-gluon exchange process. The color structure of a scattering amplitude of two
quarks, for general Nc, reads

(T A)ab(T A)cd = − Nc + 1

4Nc
(δabδcd − δadδbc) + Nc − 1

4Nc
(δabδcd + δadδbc) , (2.1)

where {T A} (A = 1, . . . , N 2
c − 1) are the generators of SU(Nc) in the fundamental

representation and a, b, c, d ∈ {1, . . . , Nc}. Therefore attraction occurs in the anti-
symmetric channel, namely in the 3̄ channel of 3 ⊗ 3 = 6 ⊕ 3̄ for Nc = 3. More
intuitively, the color flux emanating from the 3̄ diquark is obviously smaller than that
from two 3 quarks, hence a lower energy. The estimate based on one-gluon exchange
is not reliable for lower densities, but other studies such as those based on instantons
also imply that the 3̄ channel is energetically favored. The ground state of dense

1 We neglect the dependence of μ on the total number of particles.
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quark matter is therefore an aggregate of 3̄ diquarks. Since it breaks the SU(3) gauge
symmetry spontaneously, this phenomenon is referred to as color superconductivity
[38, 39].

What about the Lorentz indices of quarks? It is most natural to assume an
s-wave pairing, since then all quarks near the Fermi surface can contribute to the
pairing symmetrically. It leaves us with two possibilities, 〈qCγ5q〉 and 〈qCq〉 for
the diquark condensate, corresponding to the positive and negative parity respec-
tively, with C ≡ iγ2γ0 the charge conjugation matrix. They are not distinguished by
one-gluon exchange interaction, but instanton interaction favors the positive parity
[40–42]. The diquark condensate will be dominantly formed in the J P = 0+ channel
even if the instanton effects are quantitatively weak.

The specialty of QCD is that the quarks also have a flavor index, which makes
the QCD phase diagram much richer than that of ordinary metals. According to the
Pauli exclusion principle the wave function of diquark must be antisymmetric under
the exchange of the quarks. Since the color and Lorentz indices are antisymmetric,
the flavor indices must also be antisymmetric. The ground state of QCD at large μ
therefore depends on N f in an essential way.

Color superconductivity leads to (at least) three fundamental consequences:

• (Part of) gluons acquire mass.
• (Part of) quarks acquire mass, namely the BCS gap �.
• Chiral symmetry may be broken spontaneously, depending on N f .

The earliest studies on color superconductivity based on perturbative one-gluon
exchange gave a value of � that was so small that there seemed to be little chance
to observe the effect of color superconductivity in astrophysical scenes. Since then
this field of research has remained dormant for more than a decade (but see e.g.,
[43]), until late 1990s when studies based on non-perturbative instanton interaction
reported that a significantly larger � could be realized at modest densities reachable
in the interiors of compact stars [40, 44].

There is yet another mechanism which enhances � as compared to the naïve
BCS estimate � ∼ μe−1/g2

. In dense medium, color electric forces are subject to
Debye screening by quarks, but (static) color magnetic forces are not, to all orders
in perturbation theory. Therefore the magnetic forces remain long-ranged. Using a
renormalization-group argument around the Fermi surface, Son gave an estimate of
� that takes into account the unscreened magnetic interaction [45]

� ∼ μ

g5
exp

(
− 3π2

√
2g

)
. (2.2)

Thus � gets arbitrarily large at asymptotically large μ, even though the interaction
will be arbitrarily weak due to asymptotic freedom! It is clear that � � μ at large μ.
Equation (2.2) is confirmed by other methods [46–49]. The apparent gauge depen-
dence of (2.2) is expected to disappear when all the sub-leading corrections are
properly incorporated. It is exciting that we are able to compute the value of observ-
able from QCD directly, rather than from simplified effective models. At high but
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not asymptotically high densities, this leading-order expression will not be literally
reliable, only serving as an order estimate.

A leading-order estimate on the diquark condensate reads 〈qq〉 ∼ μ2�/g. At
first sight it seems that a non-vanishing 〈qq〉 condensate is at odds with the general
principle that a local symmetry cannot be spontaneously broken [50]; a local sym-
metry is not a true symmetry of the Hilbert space but merely reflects a redundancy
in our description of the nature, hence no ‘breaking’. Therefore a gauge dependent
condensate in a particular gauge bears physical relevance only if it is used for the cal-
culation of a gauge-invariant quantity, such as a four-quark condensate 〈q̄q̄qq〉 and
a six-quark condensate 〈qqqqqq〉 ∼ 〈(uds)(uds)〉 that serves as an order parameter
for the U(1)B symmetry breaking.

The details of pairing and the symmetry breaking pattern depend on N f . For QCD
it is phenomenologically sufficient to consider N f ≤ 3, i.e., the light quarks u, d
and s. For N f = 2 (u and d) with degenerate masses and densities, the diquark
condensate

〈q f
a qgb 〉 ∼ Cγ5 εab3 ε

f g with a, b ∈ {1, 2, 3} and f, g ∈ {1, 2} (2.3)

develops. This is the so-called two-flavor color-superconducting (2SC) phase
[40, 44]. The gauge symmetry SU(3)C is broken spontaneously to SU(2)C and five
of the gluons become massive. No global symmetry is broken in this phase: chiral
symmetry is obviously intact, while the U(1)B symmetry survives as a combination
of the original U(1)B and T 8, the eighth generator of SU(3)C . As is clear from (2.3)
the quarks in the third color do not participate in the pairing. The existence of these
gapless modes does not contradict the ’t Hooft anomaly matching condition [51].
This phase is relevant at relatively low densities, where s quark does not participate
in the dynamics. This picture will be changed to some extent, once the electric charge
neutrality and the β-equilibrium are imposed (see [52] for a review on 2SC).

For N f = 3 various studies suggest that the most favored pairing will be

〈q f
a qgb 〉 ∼ Cγ5 ε

f ghεabh . (2.4)

This phase breaks local SU(3)C together with the global symmetries in such a way
[53]

U(1)B × SU(3)C × SU(3)R × SU(3)L → Z2 × SU(3)C+R+L , (2.5)

where SU(3)C+R+L stands for the vectorial subgroup of the three SU(3)’s on the
LHS. All gluons are Higgsed and acquire a mass of order � [54–57]. Furthermore
the chiral symmetry breaking gives rise to eight Nambu-Goldstone bosons. Although
the diquark (2.4) breaks the U(1)em group for electromagnetism, it survives albeit
rotated, by combining with T 8 of SU(3)C . This ‘rotated photon’ is unscreened
in this phase. The intriguing fact is that the right and left chiral symmetries are
locked to each other through the color indices of quarks. This phase is termed as the
“Color-Flavor-Locked (CFL) phase” [53]. It reminds us of the B phase of the super-
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fluid helium 3, where the spin and the orbital rotations are locked. Precisely speaking,
a diquark condensate in the color- and flavor-symmetric channel (6S, 6S), which is
neglected in (2.4), could be nonzero because after SSB (2.5) no symmetry prohibits
it from being generated. A perturbative calculation found that the gap in this channel
is suppressed by an additional factor of g [58].

The pattern of chiral symmetry breaking in the CFL phase is identical to that of
the QCD vacuum; this analogy can be sophisticated further, including the matching
of symmetries and spectrums, culminating in the conjecture of “quark-hadron con-
tinuity” [59]. It suggests that the CFL phase in the high-density limit of N f = 3
QCD might be continuously connected to the low-density hypernuclear matter. The
continuity also takes care of the confinement: since the quarks in the CFL phase
have integer charge under the rotated electromagnetism and the spectrum contains
no massless gluons, it may be regarded as a confining phase! This observation is a
non-trivial example of the general wisdom that no order parameter can distinguish
the confinement phase from the Higgs phase when the spectrum contains a particle
that transforms non-trivially under the center of the gauge group [60, 61]. Whether
or not this continuity does really occur on the QCD phase diagram has to be studied
by dynamical calculations, not only by symmetries. Despite serious efforts so far, it
is still under a debate (see [62–64] for recent works).

Color superconductivity for N f > 3 and N f = 1 were investigated in [58] and in
[65, 66], respectively. The former is more or less for an academic interest, whereas
the latter is relevant to the dynamics of strange quark at lower densities [67].

The existence of the BCS phase in QCD is firmly established only at low T and
high μ. When the temperature is increased, thermal fluctuations tend to destroy the
BCS pairing and the phase transition typically occurs at Tc ≈ �. On the phase
diagram, the CFL phase at T � 0 will transmute into the QGP phase at high T , after
experiencing a series of phase transitions [68, 69].

Finally we will comment on chiral anomaly for U(1)A and instantons at finite den-
sity. As is well known, the flavor-singlet axial current has a non-vanishing divergence
at μ = 0,

∂μ Jμ5 = − N f g
2

32π2 ε
αβγδF A

αβF A
γδ. (2.6)

This relation can be extended to μ �= 0 through an explicit calculation of the triangle
diagram [70]. Zero-mode solutions at μ �= 0 were constructed explicitly in [71].
Does it mean that the chiral anomaly is independent of μ? The answer is No. Since
this relation holds at the operator level and has nothing to do with the physical states
for which expectation values of observables are calculated, we must do dynamical
calculations to see the behavior of anomaly and instantons at μ �= 0.

Physically one can expect that the electric fields inside instantons are subject to
Debye screening due to condensed quarks. Another simple reason for the suppression
of instantons is that the contribution of a instanton comes with a factor e−1/g2

, which
gets arbitrarily small in the high-density limit due to asymptotic freedom. According
to detailed perturbative calculations [72], the instanton density for size ρ at large μ
is given by
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n(ρ,μ) ∼ n(ρ, 0)e−N f μ
2ρ2

. (2.7)

Therefore the infrared problem associated with large instantons at μ = 0 is removed
by the screening factor e−N f μ

2ρ2
, making semi-classical calculations at large μ

tractable. It is misleading, however, to say based on (2.7) that the instanton effects are
suppressed exponentially at largeμ. In calculating physical observables one typically
faces an integral of the form

∫ ∞
0 dρ ρ#n(ρ,μ) ∼ ∫ ∞

0 dρ ρ#′
e−8π2/g(ρ)2

e−N f μ
2ρ2

.
Once the ρ-integration is done, with the running of g(ρ) taken into account, one finds
a negative power of μ, not an exponential. Important instanton-induced observables,
such as the η′ mass and the chiral condensate in the CFL phase, are found to be sup-
pressed at large μ by inverse powers of μ; see [73–76] for more details. It is worth
stressing that both the asymptotic freedom and the Debye screening are essential in
these calculations.

The estimate (2.7) is not trustworthy at moderate densities. The μ-dependence of
anomaly-induced interaction at low μ is difficult to compute theoretically, but can
nonetheless have a qualitative impact on the QCD phase diagram [25, 77, 78].

To gain insight into the QCD ground state at low μ one often uses effective models
of QCD, such as the NJL model, but they are prone to several problems. First, finding
the ground state of a many-body system is a hard problem even in the NJL model; one
picks up a particular state, plug it into the model to calculate its ground state energy,
and check if it is lower than those of the other states tested before. By this procedure
one can never guarantee that the tested state is more stable than any other possible
state. Secondly, the determination of the phase boundaries is a quantitative problem
in its nature; if there are many local minima in the grand potential (corresponding to
different symmetry breaking patterns), we face a genuinely quantitative problem of
determining which minimum has the lowest energy. Symmetry principle is not helpful
in this regard. Any uncertainties in the effective model, e.g., the (T,μ)-dependence
of coefficients, may potentially lead to a sizable change in the phase structure. This
is a dangerous situation. It seems that a fundamentally new approach is needed for
further developments in this field.

We would like to summarize Sect. 2.1. QCD at nonzero temperature and density
is full of interesting phases. The global as well as local symmetries of QCD are
either spontaneously or explicitly broken in various ways, which makes the determi-
nation of phase boundaries and critical points a highly challenging problem. Only
at sufficiently high density do we have a solid understanding of called quark mat-
ter: a color superconducting state, called the Color-Flavor-Locked (CFL) phase. At
moderate densities the coupling grows and a microscopic approach to QCD is not
viable in general, except on the μ = 0 axis where lattice QCD simulation does not
suffer from the sign problem. Theoretical understanding of the intermediate density
region between the hadronic phase and the color-superconducting phase remains an
unsolved challenging problem.
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2.2 Two-Color QCD at Low Density

2.2.1 Basics

In this section we review basic features of Nc = 2 QCD at finite density and explain
the motivation to investigate this theory. (The focus of discussions below is on the
low-density region. For asymptotically large density we will have different physics,
see Chap. 3 Sect. 3.2.)

As a means of sidestepping the severe sign problem in lattice QCD at finite density,
several QCD-like theories have been investigated numerically and theoretically. The
primary advantage of studying them is that they are free from the sign problem
even at finite density (for at least a particular choice of parameters in the theory)
so that a direct comparison between numerical results and analytical predictions
is feasible. Their list includes QCD with imaginary chemical potential [79], QCD
with isospin chemical potential [80, 81] and QCD with quarks in a real or pseudoreal
representation of the gauge group [82].2 (The NJL model is also simulable at nonzero
density [85, 86].) While being interesting on their own, these theories also serve as
theoretical laboratories for new ideas and methods developed for the dense quark
matter; they allow us to check predictions of effective models by comparison with
lattice data, test new simulation algorithms for lattice QCD, etc.

In particular, QCD for gauge group SU(2) with quarks in the fundamental rep-
resentation (2), which is commonly called “two-color QCD”, is one of the theories
with pseudoreal fermions mentioned above. It has been intensively studied by various
methods:

• Lattice simulations [87–107],
• The NJL model [108–113] and the PNJL model [114],
• Chiral perturbation theories [82, 115–124],
• Dressed-rainbow gap equation [125]
• The instanton liquid model [71, 126],
• Instanton-based calculations at high density [44, 74, 75],
• Linear sigma models [127, 128],
• The strong-coupling limit on the lattice [129–136],
• Random matrix models [137–140].

Before delving into technical details, let us list unique properties of two-color
QCD which distinguish it from ordinary three-color QCD:

2 [Mathematical footnote] In representation theory, a representation is called real if the entries of
the matrices expressing the group elements are real. A representation is called pseudoreal if it is
isomorphic to its complex conjugate but it cannot be expressed as real matrices [83, 84]. Examples
of pseudoreal representation include 2 of SU(2), 20 of SU(6), the fundamental representation of
Sp(2n), and the spinor representation of Spin(8n − 3), Spin(8n − 4) and Spin(8n − 5) for n ∈ N.
(Spin(n) is the universal cover of SO(n).)

http://dx.doi.org/10.1007/978-4-431-54165-3_3
http://dx.doi.org/10.1007/978-4-431-54165-3_3
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(1) All color-singlet excitations are bosons.
(2) Spontaneous breaking of flavor symmetry occurs, but in an exotic way.
(3) Some of the pions are charged under the baryon number (= ‘baryonic pion’).
(4) At high density it is not a color superconductor but a superfluid.
(5) Sign problem is absent at nonzero μwhen N f is even and the quark masses

are pairwise degenerate.

These properties are not mutually independent but are more or less related to each
other at a deeper level as we review below. The basic group-theoretical fact is that
the fundamental representation 2 of SU(2) is isomorphic to its complex conjugate,
2̄, as seen from

σ2(−σ∗
a)σ2 = σa , a = 1, 2, 3. (2.8)

Using (2.8) as well as formulas in the Appendix A.1, one can prove the anti-unitary
symmetry of the Euclidean Dirac operator D(μ) ≡ γμDμ − μγ0 :

D(μ)∗ = P−1D(μ)P for P ≡ γ5Cτ2 , (2.9)

where τ2 is the color generator and Dμ ≡ ∂μ + igAa
μτa . Using this symmetry we

obtain

det[D(μ) + m]∗ = det[P−1{D(μ) + m}P] = det[D(μ) + m] (2.10)

∴ det[D(μ) + m] ∈ R (2.11)

The positivity of the measure is ensured from (2.10) when N f is even and the masses
are pairwise degenerate. This is why a direct lattice simulation is feasible for two-
color QCD even at nonzero density.

Using (A.18) in the Appendix A.1 one finds

N f∑

f =1

ψ̄ f γμDμψ f =
N f∑

f =1

(
ψ∗

R
ψ∗

L

)T

f

(
0 1
1 0

) (
0 −iσμDμ

iσ†
μDμ 0

) (
ψR

ψL

)

f
(2.12)

= i

N f∑

f =1

(
ψ∗

R
ψ∗

L

)T

f

(
σ†
μDμ 0
0 −σμDμ

)(
ψR

ψL

)

f
, (2.13)

with σμ ≡ (i1,σ1,σ2,σ3). (σa and τa act on the spinor and the color indices,
respectively.) Equation (2.12) is clearly invariant under U(N f )R ×U(N f )L . Defining
ψ̃R ≡ σ2τ2ψ

∗
R and using (2.8) one finds
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Table 2.1 The symmetries of two-color QCD [123]. In the first two lines, U(1)B is contained in
SU(2N f ) and Sp(2N f ), respectively. (Z2N f )A is the anomaly-free subgroup of the axial U(1)A
symmetry. In the last two lines, even N f is assumed

N f∑

f =1

ψ̄ f γμDμψ f ∼= i

N f∑

f =1

(
ψ̃∗

R
ψ∗

L

)T

f

(−σμDμ 0
0 −σμDμ

)(
ψ̃R

ψL

)

f

(2.14)

= −i

2N f∑

F=1

�
†
FσμDμ�F , for �F ≡

(
ψ̃R

ψL

)

f

, (2.15)

where ∼= stands for an equality up to a total derivative. Therefore the action is actually
invariant under the larger flavor group U(2N f ) = U(1)A × SU(2N f ). Note that
U(1)B ⊂ SU(2N f ). This special symmetry of massless quarks in two-color QCD is
called the Pauli-Gürsey symmetry [141, 142]. This extended flavor symmetry also
shows up in QCD with quarks in an arbitrary pseudoreal or real representation of the
gauge group, and two-color QCD is just a special case.

The flavor-diagonal mass term can be written as

m

N f∑

f =1

ψ̄ f ψ f = −1

2
m

2N f∑

F, G=1

�T
Fσ2τ2(I2N f )

FG�G + h.c., (2.16)

where we introduced a 2N f × 2N f antisymmetric flavor matrix

I2N f ≡
(

0 −1N f

1N f 0

)
. (2.17)

Equation (2.16) is invariant only under Sp(2N f ) ⊂ SU(2N f ).3 The symmetries of
two-color QCD are summarized in Table 2.1.

There is yet another possible external source term. Since the diquarks in two-color
QCD are color singlet (unlike in QCD), one can add a diquark source of the form

3 The symplectic group is defined as Sp(2n) = {g ∈ U(2n) | gT I2ng = I2n}. We adopt a convention
in which Sp(2) ∼= SU(2).
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− j

2

N f∑

f,g=1

ψT
f Cγ5iτ2(IN f )

f gψg + h.c. = j

2

2N f∑

F,G=1

�T
Fσ2τ2

(
i IN f 0

0 i IN f

)

FG
�G ,

(2.18)
where C is the charge conjugation matrix and τ2 is a color generator. In (2.18) it
is tacitly assumed that N f is even. (In is defined only for even n.) The case of odd
N f (not treated in [82, 116]) calls for a separate analysis; due to the Pauli principle
we must have an antisymmetric flavor matrix, and any antisymmetric matrix of odd
dimension has (at least) one zero eigenvalue. Thus one of the flavors disappears from
the diquark pairing (2.18) and makes the symmetry breaking more complicated. We
henceforth assume that N f is even.

Such a source is useful to investigate the diquark condensation in lattice simula-
tions. One can show that (2.18) breaks the flavor symmetry explicitly as SU(2N f ) →
Sp(2N f ). This is the same as what the mass term (2.16) does. Indeed, the mass term

�T I2N f � and the diquark source �T
(

IN f 0
0 IN f

)
� transform into each other under

the action of SU(2N f ). Therefore adding a mass term alone is equivalent to adding
a diquark source alone, except that the diquark source breaks the exact U(1)B sym-
metry, while the mass term breaks the anomalous U(1)A symmetry.

It is important to note that the equivalence does not hold at μ �= 0 because the
SU(2N f ) symmetry is explicitly broken by μ (cf. Table 2.1). In [143] it was shown
that the diquark source is a useful probe for the singular value spectrum of the Dirac
operator at μ �= 0. Although this is an intriguing discovery, we will be mainly
concerned with the case of vanishing diquark source in the remainder of this thesis
for the simplicity of exposition.

It was argued in [144, 145] that, in the chiral limit, the chiral condensate

〈∑N f
f =1 ψ̄ f ψ f 〉 would develop and break the symmetry spontaneously as4

SU(2N f ) → Sp(2N f ). (2.19)

This claim was ‘proven’ in [146]; the argument goes as follows. Using a Vafa-Witten
type arguments [147] one can show that Sp(2N f ) is not spontaneously broken. Since
Sp(2N f ) is a maximal subgroup of SU(2N f ), the symmetry must be either broken
to Sp(2N f ) or be unbroken at all. Then ’t Hooft anomaly matching condition comes
into play. Since color confinement in two-color QCD forbids color-singlet composite
fermions, one cannot use them to produce SU(2N f ) global anomalies of elementary
quarks. Thus the symmetry must be spontaneously broken.5

This formal proof is suggestive but not rigorous because of serious loopholes
in the original Vafa-Witten argument [148–150]; operators composed of fermion
bilinears invalidate the proof. However the symmetry breaking pattern (2.19) has

4 They take the limit m → +0 with j ≡ 0. If another possible limit j → +0 with m ≡ 0 is taken,
the diquark condensate will be formed, rather than the chiral condensate.
5 For real quarks a special care is needed [146], as gluons may screen quarks to form color-singlet
massless fermions.
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Table 2.2 The ‘three-fold way’ of chiral symmetry breaking in QCD with N f Dirac fermions in
various representations [144, 151, 152]

Color representation Symmetry breaking Examples
of quarks pattern

Pseudoreal SU(2N f ) → Sp(2N f ) Fundamental rep. of SU(2)

Complex SU(N f )R × SU(N f )L → SU(N f )V Fundamental rep. of SU(N > 2)

Real SU(2N f ) → SO(2N f ) Adjoint rep. of SU(N )

been checked so far by numerous direct lattice simulations, putting (2.19) on a firm
ground.

In Table 2.2 we summarize the patterns of spontaneous chiral symmetry breaking
for three classes of fermions in 4-dimensional gauge theories.

2.2.2 Why ChPT is Worth Doing

Here and in the next section we would like to give a brief review of the studies of
two-color QCD based on the chiral perturbation theory (ChPT) [82, 116]. The reason
is twofold: first, it is solely based on the symmetries of the microscopic Lagrangian
and gives a model-independent description of the low-energy dynamics. Second, it
constitutes important preliminary knowledge for my original work presented in a
later chapter of this thesis.

First of all, what is ChPT? Since there exists vast literature on this topic (see e.g.,
[153–156] for reviews and [157] for a book), We would only summarize important
features. The chiral symmetry breaking (ChSB) SU(N f )R ×SU(N f )L → SU(N f )V

in three-color QCD in the chiral limit (for not too large N f ) at zero temperature and
baryon density has been established firmly by experiments and lattice simulations
[158]. Regarding this, there are (at least) three questions to ask:

1. Why does ChSB occur?
2. How does ChSB occur?
3. What can we predict based on the fact of ChSB?

In a nutshell, ChPT is a framework that addresses the final question. Currently we do
not yet know the answer to the first question; ChSB is not proven from first principles
even today.6 While the origin of ChSB is an important and still active area of research,
we will not tackle this issue in the rest of this thesis. Regarding the second question,
we will review the approach called Chiral Random Matrix Theory in the next section.

ChPT is a kind of Effective Field Theory (see [161–165] for reviews). The idea
of effective theory method is to simplify the theory by integrating out all degrees of
freedom except those that are relevant in the energy scale of interest. This strategy

6 There are special cases where ChSB is proven with mild assumptions; see [159, 160].
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works especially well when there is a hierarchy in the spectrum, and it typically hap-
pens in theories with spontaneous breaking of global symmetries, where the Nambu-
Goldstone (NG) bosons are far lighter than other massive particles. In rare cases
the procedure of integrating-out can be done explicitly (e.g., the Euler-Heisenberg
Lagrangian), but it is technically too involved in general. Then we have to make max-
imal use of symmetries to constrain the form of the effective theory. In three-color
QCD, the low-energy effective Lagrangian of pions based on a nonlinear realization
of chiral symmetry reads7

L = F2
π

4
tr[∂μU †∂μU ]+�0 Re tr[MU ]+. . . , U ∈ SU(3), M = diag(mu, md , ms),

(2.20)
where the dots stand for other terms allowed by symmetries. Even without explicit
calculations one can learn about the dynamics of pions from (2.20); e.g., owing to
the absence of non-derivative terms at M = 0 the interactions between pions must
become arbitrarily weak in the low-energy limit. The low energy theorems of this kind
have played a quite important role as verifications of our understanding of pions as the
NG bosons of chiral symmetry breaking. Later it was even extended to incorporate
massive particles such as baryons and vector mesons, achieving reasonable agreement
with experiments.

To sort out infinitely many possible terms, one uses the Weinberg’s power counting
rule [166, 167], according to which

∂μ ∼ 1

L
∼ O(p), m ∼ O(p2) , (2.21)

and align terms according to the power of p. (L denotes the linear size of the box. The
momentum is discretized in units of 1/L .) This is an explicit meaning of saying that
ChPT is a low-energy expansion in terms of external momenta and small external
fields (masses, temperature, etc.). Since higher-order vertices in the number of pions
are suppressed by inverse powers of �QCD, or more precisely 4πFπ(∼1 GeV), the
dimensionless expansion parameter of ChPT is p/4πFπ .

It is obvious that ChPT is perturbatively non-renormalizable. Nevertheless ChPT
is renormalizable at any fixed order of the p-expansion. The divergences from one-
loop diagrams of O(p2) vertices are absorbed by tree diagrams of O(p4) vertices,
and the divergences from two-loop diagrams of O(p2) vertices are absorbed by
one-loop diagrams of O(p4) vertices and tree diagram of O(p6) vertices, etc.

One might wonder why on earth the effective Lagrangian (2.20), containing infi-
nitely many low-energy constants such as fπ and �0, could have a predictive power.
The answer is that this expansion must be terminated at a specific order of p which
is high enough to calculate the observable of interest with the desired accuracy. The
number of necessary low-energy constants is no longer infinite, thus one can fix them
by comparison with experimental data. Then one can use them to compute infinitely
many kinds of scattering amplitude; the theory indeed has a predictive power, up to
a specified accuracy.

7 We neglect electromagnetic interactions and the Wess-Zumino-Witten term.



20 2 QCD with Chemical Potential and Matrix Models

Above the intrinsic cutoff scale �QCD, ChPT is no longer effective, because

• Particles other than pions (such as vector mesons) begin to participate in the dynam-
ics, or alternatively,

• At p � �QCD or M � �QCD the contributions from higher order terms are not
suppressed, thus invalidating the perturbative expansion itself.

One might wonder what if we use a renormalizable linear σ model instead of the
non-renormalizable chiral Lagrangian (2.20). Actually the chiral symmetry warrants
that their predictions are indistinguishable at the leading order, both governed by the
low-energy constants Fπ and �0. The difference emerges if sub-leading contributions
are taken into account. To see this, note that in the linear σ model, the renormaliz-
ability guarantees that only finite number of parameters are involved, whereas more
and more parameters show up at higher orders in the chiral Lagrangian. The linear σ
model then gives rise to nontrivial constraints between low-energy constants which
are not fulfilled by the observed values; it is too restrictive [168].

2.2.3 ChPT for Two-Color QCD at Small μ

Let us now turn to the application of ChPT to two-color QCD. The spontaneous flavor
symmetry breaking (2.19) by nonzero 〈ψ̄ψ〉 produces NG bosons. Their number is

dim SU(2N f ) − dim Sp(2N f ) = (2N f )
2 − 1 − 2N 2

f − N f (2.22)

= 2N 2
f − N f − 1. (2.23)

The coset SU(2N f )/Sp(2N f ) is parametrized by

� = U I2N f U T with U ∈ SU(2N f ) , (2.24)

where the antisymmetric flavor matrix I2N f is defined in (2.17). Since � is manifestly
invariant under the change of variables U → UY for ∀Y ∈ Sp(2N f ), � indeed
parametrizes the degrees of freedom in the coset SU(2N f )/Sp(2N f ). Based on
symmetry arguments, one can write down the leading-order effective Lagrangian at
μ = 0, with both the mass term and the diquark source, as

L = F2

2
tr[∂μ�†∂μ�]+ mG Re tr[I2N f �]+ jG Re tr

[(
i IN f 0

0 i IN f

�

)]
. (2.25)

The Gell-Mann−Oaks−Renner relation is obtained by expanding � around I2N f to
second order as

m2
π =

√
m2 + j2 G

F2 , (2.26)

where G ≡ |〈ψ̄ψ〉0|
2N f

with 〈ψ̄ψ〉0 the chiral condensate at m = μ = 0.
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In three-color QCD, ChPT does not explicitly depend on μ, since the pions
∼ψ̄γ5ψ carry no baryon charge. The partition function at T = 0 is independent
of μ, up to a critical μc above which a nonzero baryon density develops. Here μc is
order of one-third of the baryon mass, ∼300 MeV.

In two-color QCD, the situation is quite different. The Lagrangian at j = m = 0
reads

N f∑

f =1

ψ f (γμDμ − μγ0)ψ f = −i�†(σμDμ + iμB)� (2.27)

≡ −i�†σμ(Dμ + μBμ)� , (2.28)

where we introduced a 2N f × 2N f baryon-charge matrix

B ≡
(

1N f 0
0 −1N f

)
, (2.29)

and a four-vector Bμ ≡ (B, 0, 0, 0). Therefore the quark chemical potential explicitly
breaks the flavor symmetry down to the usual one:

SU(2N f ) → SU(N f )R × SU(N f )L . (2.30)

It indicates that μ appears in ChPT as an explicit symmetry breaking field. To see
this, we shall use the fact that (2.27) is actually invariant under a local SU(2N f )

transformation [116] under which

� → V �, Bμ → V BμV † + 1

μ
V∂μV † for V ∈ SU(2N f ) . (2.31)

This local symmetry should carry over to the effective theory. For simplicity, set
j ≡ 0. Applying this requirement to (2.25), one gets

L = F2

2

(
tr[∇μ�†∇μ�] + 2m2

πRe tr[I2N f �]
)

, (2.32)

∇μ� ≡ ∂μ� + μ(Bμ� + �BT
μ ). (2.33)

Surprisingly, the coefficients of μ-dependent terms are uniquely fixed by the local
symmetry alone. No new low-energy constant appears up to the second order in μ.
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Table 2.3 Mean field predictions for condensates in two-color QCD

Phase 〈ψ̄ψ〉 〈ψψ〉
μ < mπ/2 〈ψ̄ψ〉0 0

μ > mπ/2 〈ψ̄ψ〉0

(
mπ

2μ

)2

〈ψ̄ψ〉0

√

1 −
(

mπ

2μ

)4

This expression can be regarded as the leading-order terms within a counting scheme
[119, 120]

∂μ ∼ μ ∼ O(p) and m ∼ j ∼ O(p2) . (2.34)

The mean field approximation to (2.32) (i.e., without kinetic terms) reveals that a
second-order superfluid phase transition occurs at μc ≡ mπ/2. For 0 ≤ μ < mπ/2
the Lagrangian L takes minimum at � = I2N f , while for μ ≥ mπ/2 the minimum
moves away from I2N f , as a function of μ. The order of the transition and the value
of μc remain unchanged even at next-to-leading order [119]. This transition is caused
by the Bose-condensation of baryonic pions. The quantum critical point μc moves to
zero in the chiral limit: the existence of a light particle charged under U(1)B brings
the superfluid transition down to a much lower μ!

This superfluid phase transition has been verified in a number of effective mod-
els, such as the (P)NJL models, strong-coupling expansion on the lattice and random
matrix models. It occurs universally in any models that incorporate the flavor sym-
metry (or the Pauli-Gürsey symmetry) as well as its breaking correctly.

By differentiating the vacuum energy by m or j one can derive the μ-dependence
of the chiral condensate and the diquark condensate. The mean field result [82] is
shown in Table 2.3.

An interesting feature here is that 〈ψ̄ψ〉 goes to zero then the chiral limit is taken
at fixed μ > 0, in contrast to three-color QCD where it tends to a nonzero value. Note
also that the square sum 〈ψ̄ψ〉2 +〈ψψ〉2 does not depend on μ; the chiral condensate
‘rotates’ into the diquark condensate.

The inclusion of j �= 0 will render the superfluid transition a crossover. Usually
j �= 0 is employed in lattice simulations to suppress infrared fluctuations in the
superfluid phase and to make the algorithm ergodic.

The analysis was extended to finite temperature [120] via the 1-loop contribution
of pions. It was found that the superfluid transition is second order for lower T and
first order for higher T , in units of mπ . Therefore there must be a tricritical point
on the phase diagram. It was also seen in lattice simulations. Figure 2.2 shows a
schematic phase diagram from [96].

However, this tricritical point has never been found in past calculations based on
chiral effective models. This apparent failure of model calculations seems to be due to
the fact that, as emphasized in [111], the mean-field approximation for chiral models
only includes quasifermionic modes but fails to include thermal NG excitations. To
improve this, we will have to go beyond the mean-field approximation, see [113] for
an analytical attempt in this direction for the NJL model.
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The parameter-free predictions in Table 2.3 have been tested by many lattice
simulations, and the agreement is generally good at small μ (see e.g., [96]). The
μ-independence of 〈ψ̄ψ〉2 + 〈ψψ〉2 was also verified to a good accuracy. At larger
μ, however, the agreement is less impressive, because the subleading contributions
in ChPT are no longer negligible. Actually 〈ψψ〉 continues rising beyond 〈ψ̄ψ〉0,
instead of converging to it, at higher μ.

Even without the sign problem it is a nontrivial challenge to investigate the high
density region using lattice QCD: when μ becomes comparable to the cutoff scale
∼1/a (a: lattice spacing), the discrete nature of the lattice shows up. As the quark
number density per site approaches the maximum value ∼N f Nc allowed by the Pauli
principle, quarks are essentially freezed, and the theory resembles pure Yang-Mills
theory. To overcome this we need to achieve both a large volume and a small lattice
spacing.

We finally note that the symmetry breaking patterns are modified for staggered
fermions [90]. The N flavors of staggered fermions in the fundamental (2) or adjoint
(3) representation of SU(2) exhibit following patterns of spontaneous chiral symme-
try breaking by 〈q̄q〉:

fundamental: U(2N ) → O(2N ) adjoint: U(2N ) → Sp(2N ) . (2.35)

Therefore the symmetries of fundamental and adjoint fermions are reversed. This
peculiar fact has been known for long [169–171]. It is unclear if the correct pattern
of symmetry breaking will be restored in the continuum limit. We are aware of no
study confirming this restoration.

2.3 Chiral Random Matrix Theory

2.3.1 Dirac Spectrum and ChPT

In this section we review past studies on the Dirac spectrum in three-color QCD at
T = μ = 0. As is well known, the current quark mass m f acts as an external source
for ChSB. It helps the theory pick up one of the degenerate ground states related
by global chiral transformations. The fact that even infinitesimal m f can have finite
impact on the macroscopic scale, combined with the representation of the partition
function in terms of Dirac operator eigenvalues {iλn}n ,8

Z({m f }) ≡
∫

[d Aμ]
∫

[dψ̄][dψ] e
− ∫

d4x

{∑N f
f =1 ψ̄ f (D+m f )ψ f + 1

2 tr[F F]
}

(2.36)

8 Here we assume that the system is in a finite Euclidean torus of volume V4 = L3/T � L4 with
a proper UV cutoff. In our convention the eigenvalues of the Euclidean Dirac operator are purely
imaginary (∀λn ∈ R).
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=
∫

[d Aμ]
N f∏

f =1

∏

n

(iλn + m f ) e− 1
2

∫
d4x tr[F F] ≡

〈 N f∏

f =1

∏

n

(iλn + m f )

〉

N f =0

,

(2.37)

suggests that there should be a condensation of small Dirac eigenvalues. Otherwise
the effect of small masses would be completely overwhelmed by large Dirac eigen-
values. The time-honored relation due to Banks and Casher [172] indeed reveals a
direct connection between the spectral density of Dirac eigenvalues and the chiral
condensate in the chiral limit:

〈ψ̄ψ〉 = − lim
λ→0

lim
m→+0

lim
V4→∞

π

V4
ρ(λ; m) , (2.38)

where

ρ(λ; m) ≡
〈
∑

n

δ(λ− λn)

〉

N f

(2.39)

defines the Dirac spectral density with respect to the weight (2.36) and the LHS
stands for the chiral condensate in the chiral and infinite-volume limit. The meaning
of ρ is such that the quantity ρ(λ; m) dλ counts the number of eigenvalues contained
in the interval [λ,λ+ dλ]. We have ρ(λ) = ρ(−λ) owing to the chiral symmetry.

In this formula the order of limits is essential. If we take the chiral limit before
the thermodynamic limit, one finds ρ(λ → 0) = 0, meaning that the symmetry
is never broken spontaneously in a finite volume. We call lim

V4→∞ ρ(λ; m)/V4 the

macroscopic spectral density, to distinguish it from another limit of ρ defined later.
Since this relation is important in many of the later analyses in this thesis, let me

review its derivation briefly. First of all, let ν ∈ Z denote the number of exact zero
modes of the Dirac operator (i.e., the winding number) in a given gauge configuration.
Then

−
∫

d4x 〈ψ̄ f ψ f 〉 = ∂

∂m f
log Z({mg}) (2.40)

= 1

Z({mg})
∂

∂m f

〈 N f∏

g=1

⎧
⎨

⎩m|ν|
g

∏

λn>0

(λ2
n + m2

g)

⎫
⎬

⎭

〉

N f =0

(2.41)

=
〈|ν|〉N f

m f
+

〈
∑

λn>0

2m f

λ2
n + m2

f

〉

N f

, (2.42)

∴ − 〈ψ̄ψ〉 =
〈|ν|〉N f

V4m
+ 1

V4

∫ ∞

0
dλ

2m

λ2 + m2 ρ(λ; m) , (2.43)
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where we dropped the subscript f in the last line for simplicity. Let us take the ther-
modynamic limit with m fixed. Owing to the central limit theorem 〈ν2〉 ∼ V4,
so that the first term disappears in this limit. In the second term, one can use

lim
m→+0

2m

λ2 + m2 = πδ(λ) to show

lim
m→+0

lim
V4→∞〈ψ̄ψ〉 = −π

∫ ∞

0
dλ δ(λ) lim

m→+0
lim

V4→∞
ρ(λ; m)

V4
(2.44)

= −π lim
λ→0

lim
m→+0

lim
V4→∞

ρ(λ; m)

V4
, (2.45)

which completes the proof. We can give a meaning to this relation even for V4 < ∞
if the condition V4|〈ψ̄ψ〉|m � 1 is satisfied. To see this, first note that ρ(0) ∼
V4|〈ψ̄ψ〉| indicates that the eigenvalue spacing in the low-end of the spectrum is

roughly given by
1

V4|〈ψ̄ψ〉| . If the above inequality is satisfied, the eigenvalues are

densely distributed near zero, and one can give a well-defined meaning to the spectral
density; namely it makes sense to replace the sum in (2.40) by the integral (2.42).
Therefore tendency toward the chiral symmetry breaking can be observed even in
a finite volume provided V4|〈ψ̄ψ〉|m � 1, as pointed out by Leutwyler and Smilga
[151].

The above derivation, especially the step from (2.42) to (2.44), assumes that m
is much shorter than the typical scale on which ρ(λ; m) varies substantially. It is
instructive to see why this condition is necessary. Suppose we have

lim
V4→∞

ρ(λ; m)

V4
=

{
�λ/m for 0 < λ < m ,

� for m ≤ λ ,
(2.46)

for some constant � > 0. It then follows that
∫ ∞

0
dλ

2m

λ2 + m2 lim
V4→∞

ρ(λ; m)

V4
=

(π
2

+ log 2
)

� , (2.47)

for arbitrary m. This value is not equal to lim
λ→0

lim
m→+0

lim
V4→∞π

ρ(λ; m)

V4
= π� . The

point is that the replacement

lim
m→+0

(
2m

λ2 + m2 lim
V4→∞

ρ(λ; m)

V4

)
→

(
lim

m→+0

2m

λ2 + m2

) (
lim

m→+0
lim

V4→∞
ρ(λ; m)

V4

)

(2.48)

is not necessarily correct. Because the function
2m

λ2 + m2 (when integrated over λ)

receives the dominant contribution from the regionλ ≈ m, it follows that the function

lim
V4→∞

ρ(λ; m)

V4
must be constant over this region, for (2.48) to be valid. This condition
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is clearly violated in the above counter-example (2.46). In reality, it is known that
the Dirac spectral density does not exhibit such a pathology, and the Banks-Casher
relation is confirmed on the lattice with a proper account of finite volume effects
[158].

Why such a condensation of zero modes occurs is an intrinsically dynamical
problem. One of the scenarios argued in the literature states that the QCD vacuum is
a liquid of instantons; the exact zero modes associated with each (anti-)instanton are
slightly lifted owing to the their overlap, resulting in a nonzero spectral density near
zero (see [173, 174] for reviews). However there seems to be no definitive consensus
about the origin of ChSB.

Since the work of Banks and Casher, there has been plenty of works regarding the
spectral density. It was Smilga and Stern [175] who was the first to derive the form
of the macroscopic spectral density for λ > 0 in the chiral limit. Their result reads

lim
m→+0

lim
V4→∞

ρ(λ; m)

V4
= − 1

π
〈ψ̄ψ〉 + 〈ψ̄ψ〉2(N 2

f − 4)

32π2 N f F4
π

|λ| + o(λ) . (2.49)

Since the LHS must be symmetric forλ ↔ −λ this result shows that the macroscopic
spectral density has a cusp-like singularity at λ = 0 for N f > 2. Precisely speaking,
this result is valid in the regime

1

V4|〈ψ̄ψ〉| � m � λ � �QCD with
1

�QCD
� L . (2.50)

The second condition is necessary to suppress the contribution of heavy hadrons
(with masses ∼ �QCD) to the partition function: e−L�QCD � 1.

To derive (2.49), Smilga and Stern first calculated the infrared singularity of the
scalar susceptibility

K ab(m) ≡
∫

d4x
∫

d4 y 〈ψ̄taψ(x)ψ̄tbψ(y)〉 {ta} = su(N f ) (2.51)

in the limit m → 0 by using ChPT, and then deduced the existence of the term ∝ |λ|
in (2.49) based on the spectral representation of K ab(m). (See [176] for an alternative
derivation.)

On the other hand, for λ � �QCD the Dirac spectrum is governed by the pertur-
bation theory rather than ChPT, resulting in the asymptotic behavior

lim
V4→∞

ρ(λ; m)

V4
∼ Nc

4π2λ
3 . (2.52)

We do not precisely know how these distinct behaviors of the macroscopic spectral
density are related to each other at λ ≈ �QCD. We note also that this part of the
macroscopic spectral density does not affect the derivation of the Banks-Casher
relation, as long as the UV cutoff (such as the lattice spacing a) is removed after the
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chiral limit. The correct order of limits is, therefore, ‘First, the thermodynamic limit
V4 → ∞. Secondly, the chiral limit m → 0. And Thirdly, the continuum limit
a → 0.’

Later a more systematic method of obtaining the Dirac spectral density was devel-
oped [177–179] based on the partially quenched chiral perturbation theory (pqChPT)
[180, 181]. (This method is also called the supersymmetric method, although it has
nothing to do with the spacetime supersymmetry.) The extension of (2.49) to the case
of nonzero sea quark masses was achieved in this framework [177]. (See [156, 182]
for reviews.) Below we outline the essential idea of this method, since it becomes
necessary in the next section where we identify the relationship between ChPT and
ChRMT.

Let us consider the partition function of QCD with N f flavors of fermionic quarks
of mass m, one fermionic quark of mass mv and one bosonic quark of mass m′

v:

Z N f +1|1(m, mv|m′
v) =

〈
detN f (D + m)

det(D + mv)

det(D + m′
v)

〉

N f =0
. (2.53)

Since the bosonic quark does not obey the theorem of spin and statistics, it cannot
be seen as a physical entity; it should be regarded as a mathematical device. Then

〈
tr

1

D + mv

〉

N f +1|1
= ∂

∂mv

logZ N f +1|1(m, mv|m′
v). (2.54)

By putting mv = m′
v on both sides, we can erase the ratio of determinants in (2.53).

The result is therefore

〈
tr

1

D + mv

〉

N f

= ∂

∂mv

logZ N f +1|1(m, mv|m′
v)

∣∣∣∣
mv=m′

v

(2.55)

≡ V4�v(m; mv). (2.56)

The LHS is called the resolvent of the Dirac operator. It is nothing but the chiral
condensate for a valence quark of mass mv . What is important here is that mv is now
an independent parameter: we can change it while keeping the sea quark mass m
fixed. This is the advantage of introducing a bosonic quark in the intermediate step.

The resolvent carries all information on the spectral density. Namely, we have

1

V4
ρ(λ; m) = 1

V4

〈
∑

n

δ(λ− λn)

〉

N f

(2.57)

= − 1

2π

1

V4
lim
ε→+0

〈
∑

n

(
1

−i(λ− λn) − ε
− 1

−i(λ− λn) + ε

)〉

N f

(2.58)
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= − 1

2π

1

V4
lim
ε→+0

〈
tr

1

D − (iλ+ ε)
− tr

1

D − (iλ− ε)

〉

N f

(2.59)

= − 1

2π
lim
ε→+0

{�v(m;−iλ− ε) − �v(m;−iλ+ ε)} . (2.60)

Similar formulae exist also for general k point spectral correlation functions (k > 1),
which involves Z N f +k|k instead of Z N f +1|1. Therefore the problem of computing
the spectral density boils down to the question of valence quark mass dependence of
chiral condensate. It follows if we can compute the valence quark mass dependence
of the partition function Z N f +k|k . For mv � �QCD this can be achieved by ChPT,
but a novel feature as compared to the usual ChPT (2.20) appears: the pattern of
chiral symmetry breaking is

Gl(N f + k|k)R ⊗ Gl(N f + k|k)L → Gl(N f + k|k)V , (2.61)

which involves graded groups (also known as ‘supergroups’). (There is a subtlety in
the correct identification of the coset; see the original references.) Approximating the
partition function by the theory of pions originating from (2.61), one can compute
�v and ρ(λ; m) order by order in the low-energy expansion.

2.3.2 The ε-Regime of ChPT

It has been known for long that the usual “p-expansion” (2.21) gets in trouble when
the chiral limit is approached in a fixed volume. According to this scheme we must
have V4|〈ψ̄ψ〉|m = O(1/p2) � 1,9 implying that the perturbative expansion loses
its convergence when m is so small that V4|〈ψ̄ψ〉|m = O(1), which is called the
ε-regime of QCD [151, 183]. The origin of infrared singularity in the p-expansion
in the chiral limit can be easily seen in the following way. When we expand the chiral
Lagrangian (2.20) around the tree-level vacuum U = 1 to second order in the pion
field U = exp(iπ(x)/Fπ), we find the kinetic term ∼ (∂μπ)2 + (�0m/F2

π )π2. Since
in the chiral limit m → 0 the zero-momentum modes disappear from this expression,
the integral for zero modes is not Gaussian, and we have to treat the zero mode as a
collective coordinate:

U (x) ≡ U exp(iξ(x)/Fπ) , U : zero mode, ξ(x) : nonzero mode. (2.62)

Gasser and Leutwyler [183] proposed to reorganize the perturbative expansion
based on what is called the ε-counting (see Table 2.4). In this scheme all Feynman
diagrams that exclusively contain zero modes are on the same order. They are summed
up exactly, after which the expansion suffers from no infrared singularity at all. At
the leading order of the ε-expansion, the QCD partition function becomes

9 〈ψ̄ψ〉 is inserted to make the combination dimensionless.
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Table 2.4 Comparison of two expansions in ChPT. The counting of the chemical potential μ is
included for completeness.

• p-expansion [167]
— Counting: ∂μ ∼ ξ(x) ∼ 1/L ∼ T ∼ μ ∼ O(p), m ∼ O(p2)

— Rapid convergence if V4|〈ψ̄ψ〉|m � 1
• ε-expansion [151, 183]

— Counting: ∂μ ∼ ξ(x) ∼ 1/L ∼ T ∼ O(ε), μ ∼ O(ε2), m ∼ O(ε4)

— Rapid convergence if mπL � 1

(There also exist other schemes, e.g., the δ-regime [184] and the intermediate expansion proposed
by Damgaard and Fukaya [185])

Z(M) =
∫

SU(N f )

[dU ]
∫

[dξ] exp

(
V4�0 Re tr[MU ] −

∫
d4x tr[(∂μξ)2]

)
× [1 + O(ε2)],

(2.63)
where [dU ] stands for the Haar measure of SU(N f ).

If we take the limit V4 → ∞ and m → 0 with fixed V4�0m, the leading order
expression becomes exact, and remarkably the quark mass dependence of the parti-
tion function is simply given as

Z(M) =
∫

SU(N f )

[dU ] exp (V4�0 Re tr[MU ]) . (2.64)

The infinite-dimensional path-integral has now reduced to an ordinary integral which
one can calculate explicitly! Without invoking a systematic ε-expansion one can also
reach this expression in the following way: when the condition

1

�QCD
� L � 1

mπ
(2.65)

is satisfied, contributions of heavier hadrons to the partition function is negligible,
while the pion zero modes dominate the other modes with nonzero momentum, as
is clear from the propagator

Gπ(x) = 1

V4

∑

nμ∈Z4

eixμnμ/L

m2
π + (nμ/L)2 � 1

V4m2
π

. (∵ mπ � 1/L .) (2.66)

Therefore the kinetic term in the chiral Lagrangian can be simply dropped, yielding
(2.64).

This scheme can be extended to the partially quenched case (i.e., in the presence
of bosonic quarks), enabling us to determine the valence quark mass dependence
of the chiral condensate. Based on the resolvent method reviewed in the previous
section, one can then derive the spectral density in the ε-regime. This is called the
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microscopic spectral density, which we denote by ρs to distinguish it from the
macroscopic spectral density ρ. To summarize,

• The macroscopic spectral density ρ(λ) can be derived from pqChPT in the p-
regime, for 1

V4�0
� m, λ � �QCD .

• The microscopic spectral density ρs(λ) can be derived from pqChPT in the ε-

regime, for m, λ � F2
π√

V4�0
≡ ET .10

The threshold energy ET is called the Thouless energy in relation to mesoscopic

physics. In the domain
1

V4�0
� λ � F2

π√
V4�0

where both expansions are applicable,

it was confirmed that they indeed give identical results [177]. See Fig. 2.3 for a
schematic illustration of the Dirac spectrum.

It was Leutwyler and Smilga who showed that the ε-regime partition function
(2.64) (without bosonic quarks) is useful to gain insight into the effect of the gauge
field topology on the microscopic spectral correlation functions [151].11 Let us out-
line their work. As is well known, gauge field configurations with finite action can
be classified into sectors with different winding numbers ν ∈ Z. The QCD vacuum
is a superposition of those states, the so-called θ-vacua, which is characterized by a
parameter θ (≈ 0 in reality). Taking this into account, we have in place of (2.64)

Z(θ, M) =
∫

SU(N f )

[dU ] exp
(

V4�0 Re tr[eiθ/N f MU ]
)

(2.67)

≡
∞∑

ν=−∞
eiνθZν(M), (2.68)

Zν(M) ≡
∫

U(N f )

[dU ] (detU )ν exp
(

V4�0 Re tr[MU †]
)

(2.69)

∝ (detM)ν
(

1 + (V4�0)
2

4(N f + |ν|) tr[M† M] + O(M4)

)
. [ν ≥ 0] (2.70)

For ν < 0 the prefactor is to be replaced by (det M†)−ν .
On the other hand, the spectral representation of the partition function reads

Zν(M) =
∫

[d Aμ]ν det

(
D + 1 − γ5

2
M + 1 + γ5

2
M†

)
e− 1

2

∫
d4x tr[F F] (2.71)

10 This condition follows from (2.65) applied to the pion mass composed of valence quarks.
11 Here we are reviewing the stuff backward in time, since [151] was done before [177, 178].
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∝ (detM)ν

〈
∏

λn>0

det(λ2
n + M M†)

〉

N f =0, ν

(2.72)

∝ (detM)ν

〈
∏

λn>0

det

(
1 + M M†

λ2
n

)〉

N f ,ν

(2.73)

where 〈. . . 〉N f ,ν denotes the average taken over gauge field configurations with a
fixed topology ν and N f flavors of massless quarks.

By comparing the IR expression (2.70) with the UV expression (2.71) order by
order, Leutwyler and Smilga derived novel spectral sum rules for the microscopic
Dirac eigenvalues, e.g.,

〈
∑

�n>0

1

�2
n

〉

N f ,ν

= 1

4(N f + |ν|) . [�n ≡ V4�0λn] (2.74)

This is consistent with the indication from the Banks-Casher relation that the scale
of smallest Dirac eigenvalues is set by 1

V4�0
. This is the characteristic scale in the

ε-regime. Comparing this to a naïve perturbative estimate ∼1/L one recognizes that
the strong gauge interaction pushes nonzero eigenvalues toward the origin substan-
tially.

Such spectral sum rules give us far more information than the Banks-Casher
relation about spectral correlations of smallest Dirac eigenvalues: e.g., one can learn
the effect of nonzero ν, one can infer the behavior of near-zero modes when the
thermodynamic limit is approached, etc. This way one can see a smooth crossover
from a small volume where chiral condensate vanishes to a large volume where a
nonzero density ρ(0)/V4 �= 0 develops.

There are a few supplementary remarks. (I) These sum rules can also be derived
for N f = 1, for which the chiral condensate is not an order parameter of symmetry
breaking and no pions appear [151]. (II) All spectral sum rules (including (2.74))
can be generalized to nonzero sea quark masses (V4�0m �= 0). They are called
the massive spectral sum rules [186]. (III) The sum rules are based on the leading
order of the ε-expansion. In realistic cases with V4 < ∞ and m > 0, there are
corrections in general. (IV) The original analysis of Leutwyler and Smilga [151]
which was mostly restricted to fermions in the complex representation of the gauge
group was generalized by Smilga and Verbaarschot [115] to fermions in real and
pseudoreal representations, which exhibit SSB patterns different from the usual one
(see Table 2.2). For pseudoreal fermions (pertinent to two-color QCD), the partition
function in the ε-regime readily follows from the mass term in (2.25):

Z(θ; m) =
∫

SU(2N f )/Sp(2N f )

[d�] exp
(

V4Gm Re tr[eiθ/N f I2N f �]
)

, (2.75)
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The massless spectral sum rules are obtained by expanding the ν-th component Zν
of Z(θ; m) in powers of m and matching with the UV expression thereof. The result
reads 〈

∑

�n>0

1

�2
n

〉

N f ,ν

= 1

2N f − 1 + |ν| . [�n ≡ V4Gλn] (2.76)

How restrictive are those spectral sum rules? While the microscopic spectral cor-
relation functions are verified to reproduce the Leutwyler-Smilga sum rules, the
converse is not true. It was explicitly shown by Verbaarschot using ChRMT [187]
that different spectral densities satisfy identical spectral sum rules for N f = 1 [187].
Another counter-example occurs in QCD with nonzero chemical potential, which
will be reviewed later. The bottom line is that we must introduce bosonic quarks in
order to derive not only sum rules but also the full spectral correlation functions.

However, there is a useful method that gives same results as those of pqChPT in
the leading order of the ε-expansion. The method, called the chiral random matrix
theory, is mathematically far easier to handle than pqChPT. We will review it in the
next section.

2.3.3 Chiral Random Matrix Theory

Random matrix theory (RMT) has found numerous applications within and outside of
physics, e.g., in nuclear physics [188], mesoscopic condensed matter physics [189,
190], quantum gravity [191], number theory [192], econophysics [193], wireless
communications [194], and many more; see [195, 196] for books.

Underlying the applicability of RMT to diverse quantum systems is an empirical
fact that statistical fluctuations of energy levels on the scale of one average level
spacing are universal, in the sense that they are solely determined by symmetries of
the system. A proposed condition for RMT to be applicable to a specific quantum
system is nowadays called as the BGS conjecture, which posits that the energy level
correlations of a quantum system should be described by RMT when the classical
limit of the system is chaotic [197]. There have been numerous studies on this topic;
see e.g., [198] and references therein for recent developments.

In comparing physical energy levels with those from RMT it is mandatory to per-
form a procedure called unfolding on the physical spectra, by which its average level
spacing becomes unity everywhere on the spectrum. More explicitly we transform
the dimensionful {En}n to dimensionless {�n}n using the formula

�n ≡
∫ En

0
d E ρ(E), (2.77)

where ρ(E) is the average spectral density. Let us now consider the Dirac operator
spectra {λn}n near zero-virtuality in QCD. According to the Banks-Casher relation
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(2.38) we have ρ(0) = V4|〈q̄q〉|, hence

�n =
∫ λn

0
dλ ρ(λ) (2.78)

≈ ρ(0)λn = V4|〈q̄q〉|λn . (2.79)

Interestingly this dimensionless combination is what appears in the Leutwyler-
Smilga spectral sum rules reviewed in the previous section. It is therefore natural
to ask if the distribution of unfolded Dirac eigenvalues {�n}n are universal. This
question was answered in the affirmative by Verbaarschot and his collaborators
[152, 199, 200], who showed that the distribution of near-zero Dirac eigenvalues
are indeed universal, in the sense that it is solely determined by chiral symmetry and
its spontaneous breaking in QCD. Furthermore it followed that spectral correlations
in QCD Dirac spectra may be derived from a RMT with the correct symmetries of
QCD but is simple enough to solve analytically. This is called chiral random matrix
theory (ChRMT). Since then it has been extended and consolidated significantly (see
[201–205] for reviews).

In this section we summarize basic features and main achievements of ChRMT.
ChRMT is a zero-dimensional model of QCD with the same global symmetries as
QCD. The partition function of ChRMT for QCD at T = μ = 0 is defined by

Z N f ,ν({m f }) =
∫ ∏

i, j

dWi j

N f∏

f =1

det(D + m f 12N+ν)e−Nα2 tr[W W †] (2.80)

where α is a numerical constant and

D =
(

0 W
−W † 0

)
, (2.81)

which mimics the Dirac operator in QCD with chiral symmetry: {γ5, D} = 0. W is
a matrix of size N × (N + ν). Then the 2N + ν eigenvalues of D appear in N pairs
with opposite sign (λ, −λ) plus |ν| zero eigenvalues, implying that ν corresponds
to the topological charge of gauge fields in QCD. There exist three ensembles in
ChRMT, corresponding to three classes of chiral symmetry in QCD in Table 2.2:

• β = 1 · · · Chiral Gaussian Orthogonal Ensemble (ChGOE)
Elements of W : real, ChSB: SU(2N f ) → Sp(2N f )

• β = 2 · · · Chiral Gaussian Unitary Ensemble (ChGUE)
Elements of W : complex, ChSB: SU(N f ) × SU(N f ) → SU(N f )

• β = 4 · · · Chiral Gaussian Symplectic Ensemble (ChGSE)
Elements of W : quaternion real, ChSB: SU(2N f ) → SO(2N f )

The parameter β, called the Dyson index, counts the number of degrees of free-
dom per each matrix element. The three classes are sometimes called the three-fold
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way in QCD, borrowing the terminology for the classical Dyson-Wigner ensem-
bles (GOE, GUE and GSE) [206].12 A similar classification is known for QCD in
three-dimensions [209].

Their connection to QCD shows up in the large-N limit of the partition function
(2.80). The large-N limit can be taken in 5 steps:

(1) Rewrite the determinants as exponentials by introducing auxiliary Grassmann
variables,

(2) Integrate out Gaussian matrix elements, which yields four-fermion terms,
(3) Bilinearize the four-fermion terms by a Hubbard-Stratonovich transformation,
(4) Integrate out Grassmann variables,
(5) Take the large-N limit in the saddle-point approximation.

The result, for the β = 2 class, reads [199]

Z N f ,ν({m f }) ∼
∫

U(N f )

[dU ] (det U )ν exp[NαRe tr[MU ]]. (2.82)

This is identical to the finite-volume partition function in the ε-regime (2.67). There-
fore the dimensionless parameters in ChRMT can be related to physical masses and
eigenvalues in QCD as follows:

Nαm f

∣∣∣
ChRMT

⇐⇒ V4�0m f

∣∣∣
QCD

, (2.83)

Nαλn

∣∣∣
ChRMT

⇐⇒ �n ≡ V4�0λn

∣∣∣
QCD

, (2.84)

where {λn}n are the eigenvalues of D in (2.81). The identical dependence of the
partition functions on quark masses has an important consequence: all spectral sum
rules by Leutwyler and Smilga for Dirac eigenvalues in the ε-regime of QCD are
satisfied by {λn}n in ChRMT. It is an impressive piece of evidence that the microscopic
spectral correlation functions

ρs(�1, . . . , �n) ≡ lim
V4→∞

1

(V4�0)n
ρ

(
�1

V4�0
, . . . ,

�n

V4�0

)
(2.85)

in QCD are universal and can be equally calculable in ChRMT. It was rigorously
shown in [210, 211] that the partition function of ChRMT with both fermionic and
bosonic quarks is equivalent to that of pqChPT in QCD in the ε-regime. Since the
latter is a generating functional of all spectral correlation functions, it proves that the

12 It was shown by Zirnbauer [207] that there are 10 symmetry classes in total for Hermitian
random matrix ensembles, which are in one-to-one correspondence with the Riemannian symmetric
superspaces (see [208] for a review). The three of them are the Wigner-Dyson ensembles, another
three of them are the chiral ensembles described above, and the other four are the so-called the
Bogoliubov-de Gennes ensembles.
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microscopic correlation functions obtained from ChRMT are identical to those from
pqChPT! This is practically important, because the computations in ChRMT can be
done with the help of a number of mathematical techniques developed in the field
of RMT over half a century, while the integration over a graded coset in pqChPT is
highly complicated and intricate.

A caveat to this equivalence between QCD and ChRMT is that ChRMT is only
equivalent to the leading order of the ε-expansion in QCD; the contributions of
pions with nonzero momentum are not taken into account in ChRMT. While the
leading order contribution dominates the partition function in the limit V4 → ∞
with V4�0m f fixed, it is no longer true in a large but finite volume. Those finite-
volume effects are not universal, i.e., they do not map to 1/N contributions on the
ChRMT side. One has to rely on pqChPT to compute subleading effects.

Our discussion is summarized schematically in Fig. 2.4. In QCD or any other
theory such as Instanton Liquid Model (ILM) that exhibits ChSB, the low-energy
physics is described by an effective theory of pions (= (pq)ChPT). If the quark mass
is so small that the Compton wavelength of pions is much larger than the size of the
box, the physics is dominated by pions’ zero modes (= the ε-regime of (pq)ChPT).
The partition function in this limit is also reproduced by ChRMT, if we take the
limits N → ∞ and m f → 0 with Nm f fixed. This is the theoretical foundation of
universality.

Several supplementary remarks are in order.

• While the Dirac operator spectrum is not directly observable, it can be easily
measured in lattice QCD simulations. By fitting analytical formula obtained from
ChRMT to lattice data, one can extract the value of low energy constants (such
as �0 and Fπ) with a good precision. Namely, ChRMT allows one to obtain
quantities in the thermodynamic limit from data obtained in simulations in a finite
volume. In addition the predictions from ChRMT serve to check new algorithms
in simulations, since we already know that ChRMT is the exact theory of QCD in
a specific limit.

• In (2.80) the weight of matrix elements is chosen to be Gaussian without loss of
generality, because it has been proven that the spectrum of random matrices in the
microscopic limit is insensitive to details of the probability distribution function
[212]. This kind of robustness does not exist for the macroscopic spectrum; e.g.,
the famous semicircle law due to Wigner is known to hold only for a limited class
of distribution functions.

• The Dirac eigenvalues in the “bulk” of the spectrum, i.e., away from the origin,
also allows a description in terms of RMT [213]. Chiral symmetry is not relevant
in the bulk. The origin of universality in this case is not ChSB; it is suspected to
be due to quantum chaos.

• While ChRMT has been reviewed above as an exact theory of QCD in a finite
volume, there are more phenomenological applications of ChRMT to the QCD
phase diagram [214, 215]. It is similar in spirit to Ginzburg-Landau analyses, in
the sense that only symmetries of QCD are taken into account.
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Summarizing above, we learned that

1. The way the thermodynamic limit is approached in the low end of the Dirac
spectrum is universal.

2. ChRMT is a convenient mathematical tool to calculate statistical correlations of
microscopic Dirac eigenvalues.

3. Analytical predictions from ChRMT are useful in extracting low energy constants
from data obtained in lattice simulations which is inevitably done in a finite
volume.

Finally let us just outline how to compute the spectral correlation functions in
ChRMT. At least three strategies are known: the method of (skew-)orthogonal poly-
nomials, the replica trick and the supersymmetric method. The supersymmetric
method is technically tantamount to pqChPT; one adds bosonic and fermionic valence
quarks to the RMT partition function and derive the resolvent of the Dirac opera-
tor by differentiating the partition functions w.r.t. the valence quark mass [211]. On
the other hand, the replica trick [216, 217] is technically simpler but is known to
give exact results in the ε-regime only when it is combined with the Toda lattice
equation [218, 219]. While it reveals the meaning of the ChRMT partition function
as a τ -function of the Toda hierarchy, it leaves much to be desired, at least in two
aspects. First, it is shown to work only for β = 2. The relevance of the Pfaff hier-
archy to β = 1 and 4 is conjectured [220–223], but remains to be clarified. Second,
the method produces the spectral density correctly but it remains unclear how the
higher-point functions could also be derived within this approach.

In the literature of (Ch)RMT, the most popular among three seems to be the
method of (skew-)orthogonal polynomials; in this approach one typically proceeds
as follows [195]:

(I) Change variables from the matrix elements Wi j to the eigenvalues of D,
{λn}N

n=1. Compute the Jacobian associated with this transformation to finally
arrive at the eigenvalue representation of the partition function

Z =
∫ N∏

n=1

dλn PN (λ1, . . . ,λN ), (2.86)

where PN is the joint probability distribution function of N eigenvalues.

(II) Express PN in terms of orthogonal polynomials (β = 2) or skew-orthogonal
polynomials (β = 1, 4). Use their (skew-)orthogonality to integrate out N − k
eigenvalues, which leaves behind the k-point correlation function

R(k)
N (λ1, . . . ,λk) ≡ N !

(N − k)!
∫ N∏

n=k+1

dλn PN (λ1, . . . ,λN ). (2.87)

It is known that the resultant k-point function can be expressed as a determinant
for β = 2 with a kernel KN
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R(k)
N (λ1, . . . ,λk) = det

1≤i, j≤k

[
KN (λi , λ j )

]
, (2.88)

and a quaternion determinant (or, equivalently, a pfaffian) for β = 1 and 4.
This beautiful property of (Ch)RMT implies that infinitely many correlation
functions are governed by just a single kernel!

(III) Take the microscopic limit:

ρ(k)
s (�1, . . . , �k) ≡ lim

N→∞
1

N k
R(k)

N

(
�1

N
, . . . ,

�k

N

)
. (2.89)

Quite recently, Kieburg and Guhr invented a new method that clarifies the origin of
the determinantal structure for β = 2 and a pfaffian structure for β = 1 and 4 [224,
225]. It was shown that these structures are rooted in the form of the probability
weight PN and have nothing to do with the (skew-)orthogonal polynomials. Their
formulae will be used in a later chapter of this thesis.

2.3.4 ChRMT at μ �= 0

Since the invention of RMT, it has long been the ensembles of Hermitian matrices
with real eigenvalues that attracted most attention because of the Hermiticity con-
straint on a physical Hamiltonian. Mathematical theory of non-Hermitian random
matrix ensembles with complex eigenvalues was pioneered by Ginibre [226], who
introduced three Gaussian ensembles with real, complex and quaternion matrix ele-
ments, respectively, but without any further symmetry constraints. However, at that
time it lacked a physical application and seemed to be an academic exercise. The sit-
uation has changed dramatically over the last two decades; the non-Hermitian RMT
now enjoys a number of fruitful applications, ranging from dissipative quantum maps
[227, 228], asymmetric neural networks [229, 230], open quantum systems [231]
to flux depinning in superconductors [232, 233] and QCD at finite chemical poten-
tial [204]. A classification of non-Hermitian random matrix ensembles was given in
[234, 235].

In this section we will briefly review the extension of ChRMT to μ �= 0. The
quark chemical potential μwas first introduced to ChRMT by Stephanov [236], who
defined the model

Z N f ,ν(μ; {m f }) =
∫

C

∏

i, j

dWi j

N f∏

f =1

det[D(μ) + m f 12N ]e−N tr [W W †], (2.90)

where

D(μ) =
(

0 W + μ1N

−W † + μ1N 0

)
(2.91)
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mimics the QCD Dirac operator at nonzero quark chemical potential. The effect of
μ �= 0 is to make D(μ) not anti-Hermitian. The eigenvalues spread over the complex
plane, instead of being localized on the imaginary axis. Using this model he gave a
solution to the puzzle that quenched lattice simulations predict a ‘wrong’ behavior
for the chiral condensate at nonzero chemical potential. His explanation was that the
quenched limit does not correspond to the n → 0 limit of detn(D(μ)+ m) but to the
n → 0 limit of | det(D(μ)+ m)|2n , i.e., QCD with n quarks and n conjugate quarks.
The latter is often called the phase-quenched QCD. The discrepancy of lattice results
and physical expectation is due to the condensation of a bound state of a quark and a
conjugate quark. As a result of this, the chiral condensate at fixed μ vanishes in the
chiral limit, in quenched QCD, similarly to two-color QCD at low μwhere the chiral
condensate rotates to a diquark condensate (reviewed in Sect. 2.2.3). This explains
why quenched approximation is not a good approximation to QCD at μ �= 0.

The computation of spectral functions in the microscopic limit for this model,
where Nμ2, Nm f and Nλn are fixed in the large-N limit, is hampered by the μ-
term which breaks invariance under a unitary transformation W → U W V †. Only
the quenched spectral density was derived in [219] by a supersymmetric method.
Osborn proposed to replace the unit matrix multiplying μ by an independent random
matrix [237]:

Z N f ,ν(μ; {m f }) =
∫

C

∏

i, j

d Pi j d Qi j

N f∏

f =1

det[D(μ)+ m f 12N+ν]e−Nα2 tr[P P†+Q Q†],

(2.92)
with

D(μ) =
(

0 P + μQ
−P† + μQ† 0

)
. (2.93)

Since the deformation does not change the global symmetry of the model, it is
expected based on universality that both models will give identical microscopic
correlations of Dirac eigenvalues. Equations (2.90) and (2.92) are called as the one-
matrix model and the two-matrix model, respectively. Osborn solved the model for
β = 2 using the method of biorthogonal polynomials. Later it was shown that same
results can be obtained from the replica limit of the Toda lattice equation [238].
Osborn et al. revealed that the sign problem for the unquenched case (N f > 0) is
reflected in a domain of strong oscillation in the microscopic spectral density, and
argued that the oscillation is essential to obtain a nonzero chiral condensate in the
chiral limit [239–241].

The large-N limit of (2.92) with most general chemical potentials {μ f } f reads
[242]

Z N f ,ν({μ f }; {m f }) ∼
∫

U(N f )

[dU ] (det U )ν exp
(

2NαRe tr[MU ] − N tr[U, B][U†, B]
)

,

(2.94)
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with M = diag(m f ) and B = diag(μ f ) . This form is identical to the zero momen-
tum chiral Lagrangian of QCD [243] if we identify

Nαm f

∣∣∣
ChRMT

⇐⇒ V4�0m f

∣∣∣
QCD

, Nμ2
∣∣∣
ChRMT

⇐⇒ V4 F2
πμ

2
∣∣∣
QCD

. (2.95)

Therefore by fitting the lattice data to the exact spectral density of ChRMT one can
extract both the chiral condensate and the pion decay constant in the infinite volume.
It was successfully done in a quenched simulation [244]. In contrast, checking the
unquenched results in ChRMT by lattice QCD has been hampered by a severe sign
problem. Exact predictions of ChRMT might be useful to check new algorithms in
lattice QCD at nonzero chemical potential.

For a flavor-symmetric chemical potential (B ∝ 1N f ) the partition function Zν
and the spectral sum rules for Dirac eigenvalues are entirely independent of μ. It is a
result of the fact that pions do not carry a baryon number. It does not contradict the
nontrivial μ-dependence of the microscopic spectral density, since the latter does not
derive from the chiral Lagrangian but from the partially quenched chiral Lagrangian
which includes additional quarks of both fermionic and bosonic statistics.

The two-matrix model (2.92) for β = 4 was introduced in [245] and was solved
in [245, 246]. The point is that the anti-unitary symmetry of the Dirac operator in
ChGSE persists in the presence of μ �= 0. As a result, the theory has no sign problem
even at μ �= 0. The exact solution was compared with the result of unquenched
simulations and showed excellent agreement [247]. See [204] for a review. The
extension to β = 1 will be considered in a later chapter.

We finish this section by introducing a mathematical terminology. First of all, any
N ×N matrix J can be written as J = H1+i H2 with two Hermitian matrices H1 and
H2. Suppose the matrices H1 and H2 are identically and independently distributed;
e.g., according to exp{−N tr(H2

1 + H2
2 )}. Regarding the eigenvalue distribution of

the matrix H1 + iu H2 with u a real deformation parameter, several distinct regimes
are known in the large-N limit [248, 249]:

• The Hermitian limit: N → ∞ with u = 0.

The eigenvalues are localized on the real axis and spaced with an average spacing ∼
O(1/N ).

• The limit of weak non-Hermiticity: N → ∞ with u ∼ O(1/
√

N ).

The eigenvalues are distributed in the vicinity of the real axis and has a tiny
imaginary part of magnitude O(1/N ). Their average spacing along the real axis
is still O(1/N ).

• The limit of strong non-Hermiticity: N → ∞ with u ∼ O(1).

The eigenvalues spread over the complex plane. Their average distance is
O(1/

√
N ). The special case u = 1 is called the limit of maximal non-Hermiticity,

since the matrix H1 + i H2 is composed of an equal fraction of Hermitian and
anti-Hermitian components.
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Fig. 2.1 Conjectured phase diagrams of QCD at finite temperature and baryon chemical potential.
(Left reprinted from [11] with permission from IOP. Right reprinted from [28]. Copyright(2012) by
the American Physical Society)
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Fig. 2.2 A schematic phase diagram of two-color QCD for even N f for j = 0 and m small.
(Reprinted from [96]. Copyright(2012) with permission from Elsevier). The thick [thin] solid line
denotes the first [second] order phase transition line. The dashed line denotes a crossover associated
with chiral symmetry restoration

It is the limit of weak non-Hermiticity where one can observe a crossover behavior of
the eigenvalue distribution between Hermitian and non-Hermitian limits. See [250]
for a review.

Recalling that the chemical potential in QCD is scaled as μ ∼ O(1/
√

N ) in
(2.95), it corresponds to the limit of weak non-Hermiticity. Then, what is the physical
meaning of the limit of strong non-Hermiticity in ChRMT? We will address this
question in Chap. 3 Sect. 3.3.

http://dx.doi.org/10.1007/978-4-431-54165-3_3
http://dx.doi.org/10.1007/978-4-431-54165-3_3
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Fig. 2.3 A schematic land-
scape of the Dirac spectrum.
The smallest eigenvalues
∼ O(1/V4�0) obey the statis-
tics of ChRMT. The interval
between ET and �QCD is sub-
ject to ChPT in the p-regime.
The eigenvalues larger than
�QCD obey perturbative QCD

ChRMT

Fig. 2.4 A schematic illus-
tration of relations between
QCD and ChRMT
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Chapter 3
Dirac Operator in Dense QCD

This and the next chapter constitute the main part of this thesis. In this chapter, we
will show that exact analysis of the Dirac operator is possible in the high density BCS
phase of QCD for two and three colors, where the symmetries are spontaneously bro-
ken by the diquark condensate 〈qq〉, rather than by the conventional chiral condensate
〈q̄q〉. In Sects. 3.1 and 3.2 we define and analyze the ε-regime at high density. We
will show a novel link between the spectrum of low-lying Dirac eigenvalues and the
BCS pairing gap. In Sects. 3.3 and 3.4 we introduce and solve ChRMT for two-color
QCD at nonzero chemical potential. We will analyze in detail the dependence of the
microscopic Dirac spectrum on the quark masses and the chemical potential. Finally
in Sect. 3.5 we analyze the sign problem based on the exact results in the previous
section.

3.1 Dense QCD in a Finite Volume

In this section we demonstrate exact analysis for the Dirac operator in Nc = N f =
3 QCD at asymptotically large quark chemical potential μ in a large but finite volume
[1]. This is a direct extension of the work by Leutwyler and Smilga at μ = 0 [2]
reviewed in Chap. 2 Sect. 2.3.2. The exact results in two limits (μ = 0 and μ →
∞) impose strong constraints on the possible Dirac spectra and provide important
insights to the properties of QCD at finite μ.

As reviewed in Chap. 2 Sect. 2.1.2, the ground state of Nc = N f = 3 QCD at high

density is characterized by the diquark pairing 〈(qL)
j
bC(qL)k

c〉 ∼ εabcεi jk[d†
L ]ai and

〈(qR)
j
bC(qR)k

c〉 ∼ εabcεi jk[d†
R]ai where i, j, k (a, b, c) are the flavor (color) indices,

and C is the charge conjugation matrix. The remarkable feature here is that chiral
symmetry is dynamically broken as a result of the color-flavor locking (CFL) even
though 〈q̄q〉 = 0. The symmetry breaking pattern of the CFL phase at asymptotically
large μ is
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SU(3)C × U(1)A × U(1)B × SU(3)R × SU(3)L → (Z2)R × (Z2)L × SU(3)C+R+L , (3.1)

where compared to (2.5) the U(1)A symmetry is added here to incorporate the anom-
aly suppression at asymptotically largeμ (see Chap. 2 Sect. 2.1.2). The (Z2)R×(Z2)L

symmetry reflects the fact that we can change the sign of the left-handed or right-
handed quark fields independently. As a result, we have 8+1+1 Nambu–Goldstone
(NG) modes associated with the breaking of chiral symmetry, U(1)A and U(1)B

symmetries, which we will refer to as πa , η′ and H , respectively. In the following,
we will not consider H since its dynamics decouples.

In the CFL phase, all gluons as well as quarks acquire masses ∼� � �QCD
(Chap. 2 Eq. (2.2)), hence it is viable to construct an effective theory for NG bosons
in the CFL phase which is valid at energies well below the BCS gap �. Let us
introduce

�̃ = exp(iπaT a/ fπ) ∈ SU(3), V = exp(2iη′/(
√

6 fη′)) ∈ U(1) (3.2)

with fπ ( fη′) the pion (η′) decay constant. Now we can constrain possible mass terms
based on a symmetry principle. Owing to the (Z2)R × (Z2)L symmetry the leading
mass term in the effective theory appears at O(M2).1 Terms allowed by symmetries
are

V (tr M�̃†)2 + h.c., V tr(M�̃†)2 + h.c., and tr[M�̃†] tr[M†�̃]. (3.3)

This is the best one can learn from symmetries alone. However, for sufficiently
large density we can use weak coupling methods to determine the coefficients in the
effective theory. The leading-order result thereby obtained reads [3–6]

LEFT = f 2
π

4
tr[∇0�̃∇0�̃

† − v2
π∂i �̃∂i �̃

†]

+3 f 2
η′

4

(
∂0V∂0V ∗ − v2

η′∂i V∂i V ∗)

+3�2

4π2

{
V (tr M�̃†)2 − V tr(M�̃†)2 + h.c.

}
, (3.4)

where vπ (vη′) is the pion (η′) velocity, and the covariant derivative including the
effective chemical potential (Bedaque-Schäfer term [7]) is given by

∇0�̃ = ∂0�̃ + i

(
M M†

2pF

)
�̃ − i�̃

(
M† M

2pF

)
(3.5)

1 Precisely speaking, this symmetry is slightly violated by nonzero chiral condensate generated
by instanton effects. At asymptotically large μ it is negligibly small and one can neglect it in the
following.
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with the Fermi momentum pF . The quantities fπ and fη′ can be computed pertur-
batively at μ � �QCD as [3–6]

f 2
π

p2
F

= 21 − 8 log 2

36π2 and
f 2
η′

p2
F

= 3

8π2 . (3.6)

The coefficient �2 (the square of the BCS gap) of the mass term Eq. (3.4) is derived
from a mass term in the microscopic theory; see the Appendix A.2 for a brief summary
of the procedure. While the Lagrangian shown above is the leading order term, it is
known that terms in the effective Lagrangian have a generic form [8]

L ∼ f 2
π�2
(
∂0 − i M M†/(2pF )

�

)n (
∂

�

)m
(

M M

p2
F

)p

. (3.7)

We proceed to define the microscopic domain (or the ε-regime) of the CFL phase
as follows. Consider QCD on a four-dimensional torus of size V4 = L × L × L × β
with β = 1/T ∼ L . The microscopic domain of QCD at μ = 0 is specified by

1

�QCD

 L 
 1

m�

(cf. Chap. 2 Eq. (2.65)), where m� denotes the mass of pions

at μ = 0 and �QCD characterizes the mass scale of non-NG modes (e.g., the ρ
meson mass mρ) [2]. Analogously, the microscopic domain of the CFL phase can be
defined as

1

�

 L 
 1

mπ, η′
, (3.8)

where mπ, η′ is the mass of NG modes associated with the symmetry breaking at high
μ: (3.1). The first condition in (3.8) follows by comparing the contribution to ZEFT
of NG modes, e−mπ, η′ L , to that of the other heavier particles, e−�L . This condition
vindicates the use of the CFL effective theory. The second condition in (3.8) means
that the Compton wavelength of the pions is much larger than the linear size of the
box, so that the CFL effective Lagrangian can be truncated to its zero momentum
sector. This condition is automatically satisfied at sufficiently high μ, even with a
finite quark mass, since �/μ 
 1 in mπ, η′ ∼ �m/μ (see (3.4) . Note also that, in
the domain (3.8), the temperature T is low enough for the CFL phase to be realized:
T 
 Tc ∼ � with Tc being the critical temperature of the color superconductivity.

The QCD partition function involves a sum over the integer topological charge
ν. At μ � �QCD, however, the topological susceptibility is highly suppressed as
〈ν2〉 ∝ (�QCD/μ)8 [9, 10], thus we can focus on the topological sector ν = 0 alone.

Therefore the partition function for the CFL phase in the ε-regime is given by

http://dx.doi.org/10.1007/978-4-431-54165-3_2
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Table 3.1 Summary of results at μ � �QCD [1] compared with those at μ = 0 [2]:
order parameters, the corresponding source terms, and the linear spacing of eigenvalues δλn ,
respectively

Order parameter Source δλn

μ � �QCD �2 ∝ |d†
L dR |/μ4 m2 ∝ 1/

√
V4

μ = 0 〈q̄q〉 m ∝ 1/V4

ZEFT(M) =
∫

U(3)

[d�] exp

(
3

4π2 V4�
2
{
(tr M�†)2 − tr(M�†)2

}
det� + c.c.

)
,

(3.9)

where � ≡ �̃V ∈ U(3). We have neglected the effect of the effective chemical
potential, (3.5). (If one includes it, (3.9) would be expanded in terms of not only
(V4�

2)2O(M4) but also V4O(M4). In the domain �−1 
 L , however, the latter is
negligible). We have also neglected a term of the form tr[M M†] since it does not
contain the pion fields, but there is a subtlety on this; see the Appendix A.3 for a
careful discussion. ZEFT is normalized to be 1 in the chiral limit. It is worth noting
that M2 acts as a source for �2.

Owing to the property of � ∈ U(3),
{
(tr M�†)2 − tr(M�†)2

}
det � =

2detM tr[M−1�], (3.9) turns out to be of the same form as the conventional ε-regime
partition function at μ = 0 and ν = 0, (2.69), but with M replaced by (det M)M−1

and the chiral condensate replaced by �2. This is a novel correspondence between
the color superconducting phase and the hadronic phase, and may have relevance
to the idea of their continuity [11]. In Table 3.1, main results at μ � �QCD are
compared with the results at μ = 0 in [2].

Exploiting this correspondence and the exact result at μ = 0 in [12], the integral
(3.9) can be computed analytically. In particular, in the flavor symmetric case M =
m1, we have

ZEFT(m) = det
0≤i, j≤2

[
I j−i (x)

]
, (3.10)

where Iν(x) is the modified Bessel function and x = 3V4�
2m2/π2.

For a generic mass matrix, (3.9) may be expanded in powers of M followed by
the group integral over U(3), resulting in

ZEFT(M) = 1 + 3

8π4 (V4�
2)2
{
(tr M† M)2 − tr(M† M)2

}
+ O(M8) . (3.11)

Next, we turn to the microscopic expression of the QCD partition function. Let
{iλn}n (λn ∈ C) denote the eigenvalues of the Euclidean Dirac operator D(μ). The
chiral symmetry {D(μ), γ5} = 0 ensures that if iλn is an eigenvalue of D(μ), so is
−iλn . The QCD partition function with ν = 0 can be expressed as

http://dx.doi.org/10.1007/978-4-431-54165-3_2
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ZQCD(M) =
〈

det

(
D(μ) + 1 − γ5

2
M + 1 + γ5

2
M†
) 〉

N f =0
(3.12)

=
〈 ∏

Re(λn)>0

det(λ2
n + M† M)

〉

N f =0
. (3.13)

Normalizing ZQCD to 1 in the chiral limit, we find

ZQCD(M) =
〈〈
∏

Re(λn)>0

det

(
1 + M† M

λ2
n

)〉〉
, (3.14)

where 〈〈O〉〉 =
∫

[d A] Oe−Sg
(∏

n

λ2
n

)3/∫ [d A]e−Sg
(∏

n

λ2
n

)3
is the average of

O over all gauge configurations in the chiral limit, with Sg being the action of the
gluon field.

Using the relation det[1 + ε] = 1 + tr ε+ 1

2

{
(tr ε)2 − tr[ε2]

}
+ O(ε3), one can

expand the QCD partition function (3.14) in powers of the quark mass matrix M .
Then one obtains the spectral sum rules for the Dirac eigenvalues iλn by matching
this expansion against (3.11). After a rescaling zn ≡ √

V4�λn we find

〈〈
∑

n

′ 1

z4
n

〉〉
=
〈〈(
∑

n

′ 1

z2
n

)2〉〉
= 3

4π4 , (3.15)

〈〈
∑

n

′ 1

z2
n

〉〉
=
〈〈
∑

n

′ 1

z6
n

〉〉
=
〈〈(
∑

n

′ 1

z2
n

)3〉〉

=
〈〈(
∑

n

′ 1

z2
n

)(
∑

n

′ 1

z4
n

)〉〉
= 0 , etc., (3.16)

where the summation
∑′ is over zn satisfying Re(zn) > 0 and |zn| �

√
V4�

2

(|λn| � �). These relations are highly nontrivial, since the averaged sums of inverse
powers of complex λn take real values. The vanishing of the spectral sum rules in
(3.16) is physically rooted in the (Z2)L × (Z2)R symmetry of the diquark pairing
at large μ. The above results should be compared with the spectral sum rules at
μ = 0 [2], e.g., (2.74), where the second inverse moment of {iλn} is nonzero and the
eigenvalues are normalized by the chiral condensate rather than �2.

At first sight, the above results are counter-intuitive in the following sense. Since
the iλn are the eigenvalues of the Dirac operator γνDν+γ0μ for asymptotically large
μ, one naively expects λn ∼ μ, and the inverse moments of the eigenvalues should
decrease for larger μ. But our exact results imply exactly the opposite2!—What we

2 � diverges as μ → ∞, see Chap. 2 Eq. (2.2).
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have overlooked is the existence of the Fermi surface. The typical momentum is
comparable to the Fermi momentum, hence γνDν is not necessarily small compared
to γ0μ. Delicate cancellations between these two terms lead to the above nontrivial
sum rules.

In terms of the spectral density ρ(λ) ≡
〈〈∑

n

δ2(λ − λn)

〉〉
,3 the first sum rule

(3.15) may be written as

1

V4�2

∫

C+

d2z

z4 ρ

(
z√

V4�

)
= 3

4π4 , (3.17)

where C+ = {z : Re(z) > 0} and d2z ≡ d(Rez)d(Imz). This implies the existence
of the microscopic limit of the spectral density,

ρs(z) ≡ lim
V4→∞

1

V4�2 ρ

(
z√

V4�

)
. (3.18)

This is a novel generalization of the microscopic spectral density defined at μ = 0
(→ 2.85). From (3.18), we find that the microscopic spectral density at large μ is
governed by the color superconducting gap �, rather than the chiral condensate.
Equation (3.18) also shows that the linear spacing of eigenvalues δλn near the origin
on the complex λ-plane depends on the volume as δλn ∝ 1/

√
V4. Compared to

δλn ∝ 1/V4 at low μ [2] and δλn ∝ 1/V 1/4
4 in a free theory, the near-zero Dirac

spectrum is deformed substantially owing to the interplay of gauge interactions and
the Fermi surface.

Can we expect that the results obtained in the ε-regime at large μ would be
universal, i.e., determined solely by symmetries and their breaking pattern? If so, it
will be presumably possible to construct a random matrix theory for the CFL phase
and use it to compute the microscopic spectral density ρs explicitly, as was done at
μ = 0 [13, 14]. Alternatively the supersymmetric approach [15, 16], after properly
extended to incorporate color superconductivity, might be useful.

However we can envisage a difficulty in this direction. As noted in (3.3), there
are three mass terms at O(M2) that are consistent with symmetries, and one cannot
determine their relative coefficients based on symmetries alone. To address this issue
one needs detailed information on the UV dynamics of QCD, such as the fact that
the one-gluon exchange interaction between quarks is repulsive in the 6 channel
but attractive in the 3̄ channel. It would therefore be mandatory to input a certain
amount of UV information besides the pattern of symmetry breaking, in constructing
a suitable random matrix model. Even if it could be done, we still have to invent a
method to handle a four-quark condensate within RMT, since a gauge invariant
order parameter of the CFL phase at the lowest order in fields is the four-quark
condensate. Having a nonzero four-quark condensate, 〈(qq)†qq〉 �= 0 in the absence

3 Definition: δ2(z) ≡ δ(Re z)δ(Im z).
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of the diquark condensate, 〈qq〉 = 0, 4 seems to imply that this phase cannot be
captured in the mean field approximation (cf. [17]). ChRMT is, however, a theory
of chiral symmetry breaking in the mean field approximation, because it is a zero-
dimensional model, hence no “fluctuation”. This point seems to be the main difficulty
of ChRMT in the application to the CFL phase.

To bypass this difficulty we shall look into another theory in the next section
whose ground state is characterized by a color-singlet diquark condensate and has a
unique O(M2) term. It is two-color QCD.

3.2 Dense Two-Color QCD

In this section we will determine the pattern of spontaneous symmetry breaking in
two-color QCD at high baryon density and use it to construct the chiral Lagrangian
of light NG fields. Then we will define the ε-regime at high density and derive novel
spectral sum rules of Dirac eigenvalues. These results can in principle be checked
in future lattice simulations, since two-color QCD has no sign problem even at
μ �= 0 (for pairwise degenerate masses). These findings were originally reported in
[18, 19]. The description in this section will be terse when overlapping with the
previous section.

3.2.1 Symmetry Breaking and Chiral Lagrangian

We reviewed two-color QCD at low density in Chap. 2 Sect. 2.2. The point was that an
enlarged flavor symmetry is spontaneously broken. When current quark masses are
nonzero, the NG modes acquire small masses. Because some of them have nonzero
baryon number, there is a second order superfluid phase transition at μ = mπ/2,
where U(1)B is spontaneously broken by the formation of color-singlet diquark
condensate 〈ψψ〉. The ground state can be seen as a system of weakly interacting
tightly bound molecules (diquarks). The chiral condensate gradually rotates into
the diquark condensate as μ increases further. All of these can be analyzed by the
leading-order ChPT as long as μ ∼ mπ 
 �QCD is satisfied.

It is however nontrivial to understand the physics in the region of intermediate
density. When μ/mπ � 1, ChPT based on the ansatz SU(2N f ) → Sp(2N f ) is no
longer reliable, since the original symmetry SU(2N f ) is badly broken by nonzero
μ (recall Table 2.1). Consequently, part of pions acquire large masses and become
unstable against decaying processes π → q + q and π → q + q̄ [20]. Therefore
we must go beyond the ChPT based on the ansatz SU(2N f ) → Sp(2N f ) to study
the phase structure of two-color QCD at intermediate densities. So far quite a few
studies have been performed based on NJL-type models [20–24], mainly aiming at
understanding a qualitative change of the system from a dilute Bose condensate

4 It acquires a nonzero expectation value once the gauge fixing is performed.
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Table 3.2 Qualitative differences in the physics of two-color QCD at large and small μ (taken from
[18]).

μ 
 �SU(2) μ � �SU(2)

Chiral symmetry Spontaneously broken Spontaneously broken
m2
π ∝ m ∝ m2

Instantons Abundant Suppressed
U(1)B symmetry Intact Spontaneously broken
U(1)A symmetry Anomalous Spontaneously broken
η′ Heavy Light
Condensate 0 � 〈ψψ〉 
 |〈ψ̄ψ〉| 0 � |〈ψ̄ψ〉| 
 〈ψψ〉
Mass gap (quarks) ∼�SU(2) ∼� � �SU(2)

Mass gap (gluons) ∼�SU(2) ∼�′
SU(2) 
 �SU(2)

m denotes the (degenerate) current quark mass. N f is assumed to be even. See text for further
explanations

of tightly bound molecules at low density to a weakly coupled BCS superfluid
of overlapping Cooper pairs at high density [25]. It is a relativistic analogue of
a phenomenon called BEC-BCS crossover in condensed matter physics [26–28].
A basic observation here is that there is no global order parameter that distinguishes
the two regimes. In dense two-color QCD, lattice simulations have been performed
vigorously and the results there indicate that indeed the system seems to undergo a
qualitative change at intermediate densities [29, 30]. It is even argued that the quarks
as well as gluons may experience a deconfinement transition at finite critical chem-
ical potential, but it is still elusive. It should be noted that the existence of gluons
is a unique feature of dense two-color QCD compared to usual non-relativistic sys-
tems, and further efforts will be necessary from both theoretical and numerical sides
to grasp the whole picture of two-color QCD in the transition region. In Table 3.2
main characteristics of the two regimes are summarized (discussed in greater detail
below).

At asymptotically high density, however, physics is less elusive. The attractive
interaction in the color antisymmetric channel between quarks causes the rearrange-
ment of the Fermi surface, resulting in the condensation of Cooper pairs and the
opening of a gap � in the quasiparticle spectrum. Because Pauli principle forces the
diquark wave function to be antisymmetric under simultaneous exchanges of color,
flavor and spinor indices, we have

〈ψψ〉 ≡
〈
εab(ψ

T
a )i Cγ5(IN f )

i jψ
j
b

〉
�= 0 , (3.19)

where C is the charge-conjugation matrix, a, b (i, j) are color (flavor) indices, respec-
tively, and the antisymmetric flavor matrix I is defined in (2.17). We assumed s-wave
condensation here, as it makes maximum use of the Fermi surface. At sufficiently
high density 〈q̄q〉 � 0 owing to the huge energy gap (∼μ) for q̄ .

Besides the scalar diquark condensate ψT Cγ5ψ in (3.19), there is in principle
also a pseudo-scalar diquark condensate ψT Cψ. Although the two are not distin-
guished by a single-gluon exchange interaction, it has been shown [31, 32] that the

http://dx.doi.org/10.1007/978-4-431-54165-3_2
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instanton-induced interaction favors the former. Based on this observation we also
neglect the latter condensate in the following.

It is interesting that the diquark condensate (3.19) which is deduced from the BCS
mechanism at high density has the same quantum numbers as that in the low-density
region (Chap. 2 Sect. 2.2.3). The SU(2) gauge symmetry is not broken in either cases.
This continuity of symmetry is the theoretical underpinning of the suspected BEC-
BCS crossover [25].

Above we tacitly assumed that N f is even, because the case of odd N f requires
a careful treatment due to the same reason as in Chap. 2 Sect. 2.2.3. All the analysis
below rests on the assumption that N f is even. We also assume N f < 11 to ensure
asymptotic freedom.

By the diquark condensate (3.19) global symmetries of the Lagrangian are spon-
taneously broken as (→ Table 2.1)

SU(N f )L × SU(N f )R × U(1)B × U(1)A → Sp(N f )L × Sp(N f )R , (3.20)

where we treat U(1)A as an exact symmetry at high density.
The case of N f = 2 is special since SU(2) = Sp(2): there are only two NG

bosons (H and η′) from the breaking of U(1)B × U(1)A. For N f = 4 and larger,
the spectrum contains additional NG bosons π whose masses are lifted by a nonzero
current quark mass. Their total number is

2(N 2
f − 1) − 2(N 2

f /2 + N f /2) = N 2
f − N f − 2 . (3.21)

We now turn to the construction of the low-energy effective Lagrangian associated
with the symmetry breaking pattern (3.20). We introduce dimensionless color-singlet
N f × N f matrix fields DL and DR , where N f is even and > 2 (the case N f = 2
will be considered separately). In terms of the quark fields, they can be expressed as

(DL)i j ∼ (ψT
L )i Cψ j

L , (DR)i j ∼ (ψT
R )i Cψ j

R . (3.22)

Under SU(N f )L × SU(N f )R × U(1)A × U(1)B the quarks transform as

ψL → ei(α+β)gLψL , ψR → e−i(α−β)gRψR , (3.23)

where gi ∈ SU(N f )i (i = L , R) and the phases α and β are associated with the
U(1)A and U(1)B rotations, respectively. Thus

DL → gL DLg
T
L e2i(α+β) , DR → gR DRg

T
R e−2i(α−β) . (3.24)

It is convenient to split the fields into U(1) parts A, V and the rest,

DL ≡ �L A†V , DR ≡ �R AV , (3.25)

http://dx.doi.org/10.1007/978-4-431-54165-3_2
http://dx.doi.org/10.1007/978-4-431-54165-3_2
http://dx.doi.org/10.1007/978-4-431-54165-3_2
http://dx.doi.org/10.1007/978-4-431-54165-3_2
http://dx.doi.org/10.1007/978-4-431-54165-3_2


60 3 Dirac Operator in Dense QCD

so that

�i → gi�ig
T
i (i = L , R) , A → Ae−2iα , V → V e2iβ . (3.26)

The mass term ψ̄L MψR + ψ̄R M†ψL is invariant if we treat the mass matrix M as a
spurion field and let

M → gL Mg†
Re2iα . (3.27)

The effective Lagrangian composed of �L , �R , A, V , and M should be invariant
under (3.26) and (3.27). There is no invariant combination that contains an odd
number of factors of M , in contrast to (2.32) at low density where the effective
Lagrangian contained a term linear in M . This difference can be understood as
follows. As N f is even, we can take gL = −1 and gR = 1 (or gL = 1 and gR = −1),
under which M transforms as M → −M while �L , �R , A, and V remain unchanged.
Therefore M must appear in even powers. The point is that the chiral condensate
〈ψ̄LψR〉 is negligible at large μ; otherwise a NG field �̃ ∼ ψ̄LψR would appear that
transforms under gL = −1 as �̃ → −�̃ so that odd powers of M could appear in
the Lagrangian in combination with �̃.

At O(M2) the real-valued invariant combination is uniquely found to be

A2 tr[M�R MT �
†
L ] + c.c. (3.28)

No mass term appears for V reflecting the fact that U(1)B is not violated by a nonzero
quark mass. �L and �R , which are decoupled from each other in the chiral limit,
are now coupled by M . Replacing �L ,R by �T

L ,R does not yield new invariants.
This is because the diquark condensate is formed in a flavor antisymmetric channel,
i.e., �T

L ,R = −�L ,R . In addition, we have ��† = −��∗ = 1N f and det � = 1
for � ∈ SU(N f )/Sp(N f ), which also greatly reduces the number of nontrivial
invariants.

We conclude that the effective Lagrangian in the Minkowski spacetime, to lowest
order in the derivatives and the quark masses, and assuming N f > 2 and even, is
given by5

L = f 2
H
2

{
|∂0V |2 − v2

H |∂i V |2
}

+
N f f 2

η′
2

{
|∂0 A|2 − v2

η′ |∂i A|2
}

+ f 2
π

2
tr
{
|∂0�L |2 − v2

π|∂i �L |2 + (L ↔ R)
}

− c�2
{

A2 tr[M�R MT �
†
L ] + c.c.

}
.

(3.29)

Here, fH , fη′ , and fπ are the decay constants of H , η′, andπ, respectively, and the v’s
are the corresponding velocities originating from the absence of Lorentz invariance

5 The Wess-Zumino-Witten term is necessary for completeness of the theory, but it is irrelevant to
the ensuing analysis and neglected in the following.

http://dx.doi.org/10.1007/978-4-431-54165-3_2
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in the medium. The coefficient c is calculable using the method of [6] and found to be

c = 3

4π2 . (3.30)

The detailed derivation of (3.30) is given in the Appendix A.2. Note that L has no
dependence on the CP-violating θ-parameter. The effective chemical potential of
O(M2) (the so-called Bedaque–Schäfer term in the CFL phase of three-color QCD,
(3.5) is omitted here since it is suppressed by ∼ 1/μ at large μ. Also, its contribution
to the finite-volume partition function starts at O(M4), which is sufficiently small
compared to the leading O(M2) term.

From (3.29) we can derive a mass formula for π in the flavor-symmetric case M =
m1N f . For this purpose, we define the NG fields πa

i (i = L , R, a = 1, . . . , (N 2
f −

N f )/2 − 1) corresponding to the coset space SU(N f )i/Sp(N f )i as6

�i = Ui IN f U T
i = U 2

i IN f , Ui = exp

(
iπa

i Xa

2
√

N f fπ

)
, [i = L , R] (3.31)

where IN f is defined in Chap. 2, Eq. (2.17) while the Xa are the generators of the coset
SU(N f )/Sp(N f ) satisfying the normalization tr[Xa Xb] = N f δ

ab and the relation
Xa IN f = IN f (Xa)T . Since the mass term in (3.29) mixes πL and πR , it is necessary
to diagonalize the mass matrix for πa

L ,R to obtain the genuine mass eigenvalues by
setting

�a = 1√
2
(πa

L + πa
R) , �̃a = 1√

2
(πa

L − πa
R) . (3.32)

The resulting mass formula for �a and �̃a reads

m�a = 0 , f 2
πm2

�̃a = 4c�2m2 . (3.33)

The massless modes �a correspond to simultaneous rotations of πa
L and πa

R in the
same direction, while the massive modes �̃a correspond to rotations in the opposite
direction (a similar discussion can be found in [33]).7 For the massive modes �̃a ,
(3.33) has exactly the same form as the expression derived in [4], except for the
numerical factor of c. However, our “pions” for two colors are two-quark (qq) states,
while those for three colors are four-quark (q̄q̄qq) states [4].

Similarly, we can also derive a mass formula for the η′ boson associated with
the spontaneous breaking of U(1)A. We again assume the flavor-symmetric case
M = m1N f . The η′ field is defined by

6 For N f = 2, U I2U T = (det U )I2 = I2 is constant, in accordance with the isomorphism
SU(2) ∼= Sp(2).
7 If the quark masses are non-degenerate, the �a modes acquire masses.

http://dx.doi.org/10.1007/978-4-431-54165-3_2
http://dx.doi.org/10.1007/978-4-431-54165-3_2
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A = exp

(
i

η′
√

N f fη′

)
. (3.34)

Expanding to second order in terms of the η′ field in (3.29) yields

f 2
η′m2

η′ = 4c�2m2 . (3.35)

Since fπ,η′ ∼ μ [4] we obtain from (3.33) and (3.35) the relation

m�,η′ ∼ m�

μ
. (3.36)

Next, we consider the simpler case N f = 2 [34]. In this case, no exact symmetry
is spontaneously broken by the diquark condensate (3.19), and only the breaking of
U(1)A is relevant. The first line of (3.29) requires no change while the second line
is replaced by

− c′�2
{
(det M)A2 + c.c.

}
with c′ = 3

2π2 . (3.37)

The above value of c′ corrects the value of 4/3π2 given in [34].8

Finally let me discuss the behavior of SU(2) gluons at high density. In two-color
QCD, the diquark condensate (3.19) is a color singlet, so the SU(2) gluons do not
acquire a mass through the Higgs mechanism, in contrast to the CFL phase where
the gluons also acquire a rest mass of O(�). The absence below � of particles
charged under SU(2) indicates that the medium is transparent for SU(2) gluons, so
that neither Debye screening nor Meissner effect occur [35]. For these reasons, the
low-energy dynamics of gluons is simply described by the Lagrangian of SU(2) pure
Yang-Mills theory. It has been found [36] that the confinement scale of in-medium
SU(2) gluons is considerably diminished from the value ∼�SU(2) at μ = 0 to

�′
SU(2) ≡ � exp

(
−2

√
2π

11

μ

g�

)

 �SU(2) (3.38)

due to the polarization effect of the diquark condensate. Since μ/g� is large, it
follows that gluons become almost gapless at asymptotically large μ. However, as
long as their coupling to NG bosons is small enough, one can neatly discard gluons
from the chiral Lagrangian of NG bosons.

8 We thank Thomas Schäfer for a communication on this point.
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3.2.2 Finite-Volume Analysis

Microscopic Domain

In this subsection we introduce the ε-regime (or the microscopic domain) of dense
two-color QCD. In the following, we will neglect the H boson as well as gluons since
they decouple from the dynamics of the other NG bosons and give no contribution
to the light quark mass dependence of the partition function.

Let us study two-color QCD in a Euclidean four-dimensional torus of size L ×
L × L × β ≡ V4 with β = 1/T ∼ L . The ε-regime is where the zero-momentum
modes of NG bosons dominate the partition function [37]. In the present setting, this
regime is defined by the inequalities

1

�

 L 
 1

m�,�̃,η′
, (3.39)

where m�,�̃,η′ is the mass of the NG bosons (�, �̃, η′) at largeμ. The first inequality,
1/� 
 L , means that the contribution of heavy non-NG bosons to the partition
function can be neglected. The second inequality guarantees that the box size is
much smaller than the Compton wave length of the NG bosons, so that the functional
integral over NG boson fields reduces to the zero-mode integral over the coset space

SU(N f )R × SU(N f )L × U(1)A

Sp(N f )R × Sp(N f )L
.

Massless Spectral Sum Rules

In this subsection we determine the dependence of the finite-volume partition func-
tion on the light quark masses and use it to derive a set of exact spectral sum rules
for the eigenvalues of the Dirac operator D(μ). Let us first consider N f ≥ 4 (the
case N f = 2 will be discussed separately). Since the symmetry breaking pattern
SU(n) → Sp(n) is the same as at μ = 0 we can directly borrow calculational tools
from [38]. The finite-volume partition function in the high density ε-regime (3.39)
is given by

Z(M) =
∫

U(1)A

[d A]
∫

SU(N f )L /Sp(N f )L

[d�L ]
∫

SU(N f )R/Sp(N f )R

[d�R ] exp
[
cV4�2

{
A2 tr[M�R MT �

†
L ] + c.c.

}]

(3.40)

=
∫

U(1)A

[d A]
∫

SU(N f )L

[dUL ]
∫

SU(N f )R

[dUR ] exp
[
−cV4�2

{
A2 tr[MUR IN f U T

R MT U∗
L IN f U†

L ] + c.c.
}]

.

(3.41)
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In going from the first to the second line of (3.41), we have used � = U IN f U T as in
(3.31), but for computational convenience we have chosen U ∈ SU(N f ) rather than
U ∈ SU(N f )/Sp(N f ). The integral over U is independent of the additional degrees
of freedom we have introduced because U IN f U T = IN f for U ∈ Sp(N f ).

From the invariance property of the Haar measure, (3.41) can be expanded as

Z(M) = 1 + c2 tr M† M + c(1)
4 (tr M† M)2 + c(2)

4 tr(M† M)2 + O(M6) . (3.42)

However, all terms of O(M4k−2) (k = 1, 2, . . .) vanish because of the U(1)A inte-
gral. In particular c2 = 0, so the first nontrivial coefficients are c(1)

4 and c(2)
4 , both

proportional to (cV4�
2)2. To figure out their proportionality constants, we use the

formulas given in [[38], Eqs. (4.11)–(4.17)],

∫

U(2N )

[dU ] exp
(

tr[YU I2N U T ] + c.c.
) = 1 + 2

2N − 1
tr[Y †Y ] + O(Y 4) , (3.43)

which holds for any 2N × 2N antisymmetric matrix Y . Comparison of (3.41)
and (3.43) suggests the substitutions U → AUR , N → N f /2, and Y →
−cV4�

2 MT U∗
L IN f U †

L M (Y is antisymmetric). We thereby obtain

Z(M) =
∫

SU(N f )L

[dUL ]
{

1 − (cV4�2)2 2

N f − 1
tr[M†UL IN f U T

L M∗ · MT U∗
L IN f U†

L M]
}

+ O(M8)

= 1 + (cV4�2)2 2

(N f − 1)2

{
(tr M† M)2 − tr(M† M)2

}
+ O(M8) . (3.44)

We note in passing that the above combination (tr[M† M])2 − tr[(M† M)2] also
appeared in the previous section for the CFL phase, (3.11). The above expansion
is to be matched later against the one derived directly from the fundamental QCD
Lagrangian.

As a special case, let us consider the case of a flavor-symmetric mass term M =
m1N f with real m. Now one of the two SU(N f ) integrals (which corresponds to the
integral over the massless modes �a in (3.33)) trivially drops out, leaving

Z(m) =
∫

U(N f )

[dU ] exp
[
−cV4�

2m2
(

tr[U IN f U T IN f ] + c.c.
)]

. (3.45)

A small consistency check can be done using (3.43) in (3.45) to obtain (3.44) with
M = m1N f . This expression is of the same form as the one atμ = 0 [[38], Eq. (4.11)],
which can be rewritten as a pfaffian [[38], Eq. (5.13)]). By the same token (with the
replacements x → 4cV4�

2m2, ν → 0, and 2N f → N f , respectively, in [[38],
Eq. (5.13)]) we readily obtain the simple expression9

9 A pfaffian of an n × n antisymmetric matrix X (for even n) is defined as

http://dx.doi.org/10.1007/978-4-431-54165-3_4
http://dx.doi.org/10.1007/978-4-431-54165-3_4
http://dx.doi.org/10.1007/978-4-431-54165-3_4
http://dx.doi.org/10.1007/978-4-431-54165-3_5
http://dx.doi.org/10.1007/978-4-431-54165-3_5
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Z(m) = 1

(N f − 1)!! Pf(A) , (3.46)

where A is an N f × N f antisymmetric matrix with entries

Apq ≡ (q − p)Ip+q(4cV4�
2m2) , p, q = − N f − 1

2
, . . . ,

N f − 3

2
,

N f − 1

2

(3.47)
and Ip+q denotes a modified Bessel function. Moreover an analytical closed formula
for (3.41) for generic quark masses is available if we use the formula by Kieburg and
Guhr [39] (Sect. 3.4.2).

Having determined the light quark mass dependence of the partition function, we
can now derive spectral sum rules for two-color QCD at large μ. Let us define

〈O〉 ≡
∫

[DA] O
(∏

n

′
λ2

n

)N f
e−Sg

/∫
[DA]

(∏

n

′
λ2

n

)N f
e−Sg , (3.48)

where
∏′

n (and later
∑′

n) denotes the product (sum) over all eigenvalues λn with
Re λn > 0, and Sg ≡ ∫ d4x Fa

μνFa
μν/4 is the gluonic action. Because of the pseudo-

reality of SU(2), the measure in (3.48) is real and positive definite (for even N f ).
We now compare the finite-volume partition function (3.44) with the expression

thereof in terms of Dirac eigenvalues {iλn}, as in the previous section, which leads
to the spectral sum rules

〈∑

n

′ 1

λ2
n

〉
=
〈∑

m<n

′ 1

λ2
mλ

2
n

〉
=
〈∑

n

′ 1

λ6
n

〉
= 0 , (3.49)

〈∑

n

′ 1

λ4
n

〉
= 9

4(N f − 1)2π4

(
V4�

2
)2

, for N f ≥ 4, even. (3.50)

We can derive infinitely many sum rules if we continue the expansion in terms of
masses to arbitrarily higher orders.

The spectral sums appearing in (3.49) and (3.50) are real-valued. However they
are real-valued even before the average over gauge fields, because of the the pseudo-
reality of SU(2): if λ is an eigenvalue of D(μ), so is λ∗. Combined with the chiral
symmetry {γ5,D(μ)} = 0, this implies that the Dirac eigenvalues in dense two-color
QCD occur in quadruplets (λn,λ

∗
n,−λn,−λ∗

n). When λn coincides with ±λ∗
n , the

quadruplet degenerates into a doublet of exactly real or purely imaginary eigenvalues.
Summarizing, all nonzero Dirac eigenvalues in dense two-color QCD are classified

Pf(X) = 1

2n/2(n/2)!
∑

σ

sgn(σ)Xσ(1)σ(2) . . . Xσ(n−1)σ(n),

where the sum runs over all permutations σ of 1, 2, . . . , n. Note that this definition differs by a
factor of 1/2n/2 from [[38]Eq. (A.8)].
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into three types: quadruplets of complex eigenvalues (λn,λ∗
n,−λn,−λ∗

n), doublets
of exactly real eigenvalues (λn,−λn) ∈ R, and doublets of purely imaginary eigen-
values (λn,−λn) ∈ iR. This complicated structure of the spectrum is a distinctive
feature of the β = 1 symmetry class.

As a next step let us define the spectral density

ρ(λ) =
〈∑

n

δ2(λ− λn)

〉
, (3.51)

Unlike in the CFL phase, this is a positive-definite function since the path-integral
measure in the chiral limit of two-color QCD is non-negative definite. (The case of
nonzero masses will be considered in Sect. 3.2.2).

With ρ(λ), (3.50) may be expressed as

1

(4cV4�2)2

∫

C+
d2λ

ρ(λ)

λ4 =
∫

C+
d2z

ρV4
s (z)

z4 = 1

4(N f − 1)2 (3.52)

with C+ ≡ {w ∈ C | Re w > 0} and

ρV4
s (z) ≡ π2

3V4�2 ρ

(
πz√

3V4�2

)
, (3.53)

where the numerical factor 4c = 3/π2 has been included in the definition to simplify
some analytical results in Sect. 3.2.2. Equation (3.52) suggests the existence of the
microscopic spectral density defined by

ρs(z) ≡ lim
V4→∞ ρV4

s (z). (3.54)

Since the sum rule (3.52) is determined solely by the symmetry breaking pattern
induced by the diquark condensate,10 we expect that (3.54) is a universal function,
i.e., fully determined by the global symmetries and independent of the details of UV
interactions.

Our conjecture is corroborated by various facts known at μ = 0 [40]:

• The Leutwyler-Smilga sum rules are satisfied to good accuracy by the Dirac eigen-
values computed in the instanton liquid model, a phenomenological model of QCD.

• The microscopic spectral correlation functions derived from ChRMT satisfy the
Leutwyler-Smilga sum rules at μ = 0 exactly.

• The microscopic spectral correlation functions from ChRMT have been verified
in a number of lattice QCD simulations.

It is thus natural to expect that the way the thermodynamic limit of the spectral
density near zero is approached is universal at large μ, too. Further insights would

10 Note that the mass term at O(M2) is unique, in contrast to the CFL phase (cf. p. 66).
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be obtained if we could construct the appropriate ChRMT, a topic we address in the
next section.

It is interesting to ask how the vanishing sum rules (3.49) can be understood in
terms of the symmetries of the distribution of eigenvalues. We turn to the spectral
density ρ(λ). It satisfies ρ(λ) = ρ(λ∗) = ρ(−λ) = ρ(−λ∗), but this is not enough
to prove the vanishing of sum rules. We now show that (3.49) follows automatically
if ρ(λ) also satisfies ρ(λ) = ρ(iλ):

∫
d2λ

ρ(λ)

λ4k−2 =
∫

d2λ
ρ(iλ)

(iλ)4k−2 = −
∫

d2λ
ρ(λ)

λ4k−2 = 0 . (3.55)

In the next section we show that the exact microscopic spectral density obtained from
ChRMT does indeed possess this property in the chiral limit (→ cf. (3.126)).

We finally consider N f = 2. From (3.37) the partition function in the ε-regime
is found to be

Z(M) =
∫

U(1)A

d A exp
{

V4c′�2
[
(det M)A2 + c.c.

]}
= I0(2V4c′�2| det M |) .

(3.56)

Comparing (3.56) with the spectral representation of Z(M), we again find the van-
ishing sum rules (3.49) as well as

〈
∑

n

′ 1

λ4
n

〉
= 9

4π4

(
V4�

2
)2

, (3.57)

which again hints at the existence of the universal microscopic spectral density (3.54).
Note that (3.57) is actually the same as (3.50) with N f = 2. In other words, the
analysis for N f ≥ 4 pertains to N f = 2 if we set �L = �R = I2 (corresponding to
the trivial coset space SU(2)/Sp(2)) and UL = UR = 12 in (3.41) and (3.44).

Massive Spectral Sum Rules

It is known that the massless spectral sum rules atμ = 0 due to Leutwyler and Smilga
can be generalized to the massive case by an appropriate rescaling of masses [13],
and that the double-microscopic spectral correlations (called so because masses and
eigenvalues are rescaled simultaneously as the volume is taken to infinity) derived
from ChRMT reproduce these sum rules [41–43]. Here we show that the new spectral
sum rules derived at large μ in the chiral limit can be generalized to the massive case
in a similar fashion. Such an extension may prove useful in future lattice simulations,
because massless fermions are computationally quite expensive.

For simplicity we consider N f = 2 with masses m1 and m2. According to the
last section, the partition function in the ε-regime reads
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Z = I0(αm1m2) with α = 3V4�
2

π2

= 1

N
∫

[DA]
∏

n

′[
(λ2

n + m2
1)(λ

2
n + m2

2)
]
e−Sg , (3.58)

where N is a mass-independent normalization factor. In the remainder of this section
we will denote the expectation value with respect to this measure by 〈〈· · · 〉〉.

Differentiation of Z by the masses yields massive spectral sum rules, e.g.,11

∂

∂(m2
1)

log Z =
〈〈∑

n

′ 1

λ2
n + m2

1

〉〉
= (αm2)

2

4

I0(αm1m2) − I2(αm1m2)

I0(αm1m2)
,

(3.59)

1

Z

∂2 Z

∂(m2
1)∂(m2

2)
=
〈〈∑

n

′ 1

λ2
n + m2

1

∑

k

′ 1

λ2
k + m2

2

〉〉
= α2

4
, (3.60)

1

Z

∂2 Z

∂(m2
1)

2
=
〈〈∑

n � = k

′ 1

(λ2
n + m2

1)(λ
2
k + m2

1)

〉〉

= (αm2)
4

96

3I0(αm1m2) − 4I2(αm1m2) + I4(αm1m2)

I0(αm1m2)
. (3.61)

For degenerate masses (m1 = m2 ≡ m), Z = I0(αm2) so that

1

Z

∂2 Z

∂(m2)2 =
〈〈

− 2
∑

n

′ 1

(λ2
n + m2)2

+ 4
(∑

n

′ 1

λ2
n + m2

)2〉〉= α2

2

I0(αm2) + I2(αm2)

I0(αm2)
. (3.62)

In the massless limit (3.59)–(3.62) are consistent with the massless sum rules (3.49)
and (3.57), as they should be. In terms of rescaled dimensionless variables,

zn ≡ λn

√
3V4�2

π
, mi ≡ mi

√
3V4�2

π
, (3.63)

(3.59)–(3.62) become

〈〈∑

n

′ 1

z2
n + m2

1

〉〉
= m2

2
4

I0(m1m2) − I2(m1m2)

I0(m1m2)
, (3.64)

〈〈∑

n

′ 1

z2
n + m2

1

∑

k

′ 1

z2
k + m2

2

〉〉
= 1

4
, (3.65)

〈〈∑

n �=k

′ 1

(z2
n + m2

1)(z2
k + m2

1)

〉〉
= m4

2
96

3I0(m1m2) − 4I2(m1m2) + I4(m1m2)

I0(m1m2)
, (3.66)

11 We repeatedly used the identities I ′
n(x) = [In−1(x) + In+1(x)]/2 and In(x)/x = [In−1(x) −

In+1(x)]/2n.
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〈〈
−
∑

n

′ 1

(z2
n + m2)2

+ 2
(∑

n

′ 1

z2
n + m2

)2〉〉 = I0(m2) + I2(m2)

4I0(m2)
. (3.67)

It is surprising that the right-hand side of (3.65) is independent of the masses.
We now define the double-microscopic spectral density for even N f by

ρ
(N f )
s (z; {mi }) ≡ lim

V4→∞
π2

3V4�2 ρ

(
πz√

3V4�2

)∣∣∣∣
mi =mi

√
3V4�2

π fixed
. (3.68)

From (3.65) and (3.67) we can derive a formula fulfilled by the massive spectral
density for N f = 2:

∫

C+
d2z

ρ
(2)
s (z; m, m)

(z2 + m2)2 = I0(m2) − I2(m2)

4I0(m2)
. (3.69)

In Sect. 3.4 we will derive ρ
(N f )
s (z; {mi }) analytically based on the exact mapping to

ChRMT.
For larger N f the explicit expressions become increasingly involved. For N f = 4

with equal masses, we have

〈〈∑

n

′ 1

z2
n + m2

〉〉
= 2I0(m2)I1(m2) − 3I1(m2)I2(m2) + I2(m2)I3(m2)

4Z
, (3.70)

where
Z = 3I0(m2)2 − 4I1(m2)2 + 3I2(m2)2 . (3.71)

Analogously,

〈〈
−
∑

n

′ 1

(z2
n + m2)2 + 4

(∑

n

′ 1

z2
n + m2

)2〉〉= 2I 2
0 + I 2

1 − 2I 2
2 + I 2

3 − I0 I2 − 2I1 I3 + I2 I4

8Z
.

(3.72)
One can check that the massless sum rules (3.49) and (3.50) are reproduced cor-

rectly in the chiral limit. Many more sum rules can be derived from the partition
function for different fermion masses although we do not work out them explicitly.
We only mention that the sum rules corresponding to different masses satisfy non-
trivial consistency conditions as some of the masses are sent to infinity, owing to
decoupling [41].
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3.3 ChRMT for Dense Two-Color QCD: Construction

In the last section it was shown that

1. Dense two-color QCD at high density (with even N f ) exhibits a symmetry
breaking pattern

SU(N f )L × SU(N f )R × U(1)B × U(1)A → Sp(N f )L × Sp(N f )R, (3.73)

which differs from the one at low density, SU(2N f ) → Sp(2N f ), owing to the
large explicit symmetry breaking due to μ. The diquark condensate itself has the
same quantum numbers in both limits.

2. The ε-regime at high density can be defined, based on the static part of the chiral
Lagrangian descended from (3.73). The relevant scale involved is the BCS gap
�, playing the role of 〈q̄q〉 at low density.

3. The Leutwyler-Smilga-type spectral sum rules for Dirac eigenvalues indicate that
the Dirac eigenvalue distribution on the scale O(1/

√
V4�2) will be universal

and allow for a description by chiral random matrix theory (ChRMT).

In this section we will argue, following [44], that

ZRMT({m f }) ≡
∫

R

∏

i, j

d Ai j d Bi j

N f∏

f =1

det

(
m f 1N A

BT m f 1N+ν

)
e−N tr[AAT +B BT ],

(3.74)

is the sought-after ChRMT that corresponds to dense two-color QCD with even N f . 12

Here A and B are real N × (N + ν) matrices and {m f } are dimensionless mass
parameters. The pivotal properties of ZRMT are as follows:

(i) The Dirac matrix D ≡
(

0 A
BT 0

)
has |ν| exact zero modes, respects chiral

symmetry {γ5,D} = 0, and is maximally non-Hermitian in the sense that off-
diagonal blocks fluctuate independently (cf. p. 47).

(ii) If λ is an eigenvalue of D, so are −λ,λ∗ and −λ∗.
(iii) ZRMT({∀m f = 0}) is invariant under U(N f ) × U(N f ), which is broken spon-

taneously down to Sp(N f ) × Sp(N f ) in the large-N limit.

The property (i) suggests that ν corresponds to the topological charge in QCD. Since
the topological susceptibility is strongly suppressed at high density [10, 46] one can
set ν = 0.

The property (ii) follows from the off-diagonal block structure and the reality of D.
It is implied that all nonzero eigenvalues come either in quadruplet (λ,−λ,λ∗,−λ∗)

12 The model (3.74) is not new. It corresponds to class 2P in Magnea’s mathematical classification
of non-Hermitian random matrix ensembles, see ([[45] Table 2]). What is new is the realization that
(3.74) describes dense two-color QCD.

http://dx.doi.org/10.1007/978-4-431-54165-3_2
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with λ ∈ C \ R or in doublet (λ,−λ) with λ ∈ R. This property is the hallmark of
the Dirac spectrum in two-color QCD, as explained in the last section (cf. page 41).

The property (iii) may be seen as follows. Let us rewrite ZRMT({∀m f = 0}) as
follows:

ZRMT({0}) =
∫

[d A]detN f /2
(

0 A
−AT 0

)
e−N tr[AAT ]

×
∫

[d B]detN f /2
(

0 B
−BT 0

)
e−N tr[B BT ]. (3.75)

Each of the two factors on the RHS is equal to the (massless) partition function of the
Chiral Gaussian Orthogonal Ensemble (ChGOE) at μ = 0 for N f /2 flavors (see
(2.80) and (2.81)), for which the flavor symmetry breaking pattern in the large-N limit
is known to be U(N f ) → Sp(N f ) [47, 48].13 Thus we can immediately conclude
that ZRMT exhibits the symmetry breaking U(N f ) × U(N f ) → Sp(N f ) × Sp(N f ),
which agrees with (3.73).

To figure out the precise correspondence between the RMT parameters and the
physical masses, we study the large-N limit of ZRMT explicitly. Following the
procedure reviewed in Chap. 2 Sect. 2.3.3, we are led to

ZRMT(M)=
∫

C

∏

i< j

d Ki j d Li j e−N tr[K K †+L L†] Pf N
(

L† −M∗
M† K

)
Pf N
(

K † −MT

M L

)
, (3.76)

where K and L are N f × N f complex antisymmetric matrices and M denotes the
mass matrix, as usual. Here ν = 0 is assumed. This is an exact transformation.

Since K and L are antisymmetric they can be brought to the standard form
K = U�U T with U ∈ U(N f )/[Sp(2)]N f /2 and � a real antisymmetric matrix
with �k,k+1 = −�k+1,k ≥ 0 and all other matrix elements zero (likewise for L).
For infinitesimal ‖M‖, the integration over � can be estimated with a saddle-point
approximation whereas the integration over U is soft and has to be done exactly.
A short calculation shows that the saddle point is located at � = IN f /

√
2 with

IN f ≡
(

0 −1N f /2

1N f /2 0

)
(defined in Chap. 2 Eq. (2.17)). Since U enters ZRMT only

in the form U IN f U T , the integration manifold can be enlarged to U(N f ). Thus

13 To avoid confusion: On page 41 the pattern is denoted as SU(2N f ) → Sp(2N f ) because U(1)A
is not regarded as an exact symmetry there.

http://dx.doi.org/10.1007/978-4-431-54165-3_2
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http://dx.doi.org/10.1007/978-4-431-54165-3_2
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ZRMT(M) ∼
∫∫

U(N f )

[dU ] [dV ] Pf N

(
1√
2
(V IN f V T )† −M∗

M† 1√
2
U IN f U T

)

× Pf N

(
1√
2
(U IN f U T )† −MT

M 1√
2

V IN f V T

)

∼
∫∫

U(N f )

[dU ] [dV ] exp
(− 2N Re tr[MU IN f U T MT V ∗ IN f V †]) , (3.77)

where we expanded the exponent to the first nontrivial order in M . This is identical
to the finite-volume partition function at large μ, (3.41), if we identify

Nm2
f

∣∣∣
RMT

⇐⇒ 3

4π2 V4�
2m2

f

∣∣∣
QCD

. (3.78)

The fact that ZQCD in the ε-regime and ZRMT have identical quark mass dependence
implies that the Leutwyler-Smilga-type spectral sum rules descending from the Tay-
lor expansion thereof, are identical for the Dirac eigenvalues of QCD and for the
eigenvalues of the random matrix D in RMT. This strongly suggests that (3.74) is
the right ChRMT for dense two-color QCD, paving the way toward a quantitative
understanding of the Dirac spectrum at largeμ. A full proof of the equivalence, which
would also establish the equality of all spectral correlation functions, requires the
usage of the partially quenched effective theory, which is deferred to future work.

It should be stressed that the model (3.74) differs intrinsically from earlier phe-
nomenological applications of RMT to dense QCD [49–54]. In these approaches,
the corresponding low-energy effective theory was formulated on the basis of the
symmetry breaking pattern at μ = 0 [55], and μ was considered as a small
perturbation. On the other hand, the low-energy effective theory corresponding
to (3.74) is formulated in terms of NG bosons parameterizing the coset space
SU(N f ) × SU(N f )/(Sp(N f ) × Sp(N f )), respecting the pattern of spontaneous
symmetry breaking induced by the BCS-type diquark condensation at high density,
with a vanishing chiral condensate. Consequently our model includes no external
parameter that stands for μ: (3.74) depends on μ only implicitly through � (cf.
� ∼ μe−1/g [56]).

Our model (3.79) corresponds to two-color QCD at high density, and cannot be
used at small μ. For this purpose we must use another random matrix model

ZRMT
N f ,ν (μ̂, {m f }) =

∫

R

∏

i, j

dCi j d Di j

N f∏

f =1

det

(
m f 1N C + μ̂D

−CT + μ̂DT m f 1N+ν

)
e−2N tr[CCT +DDT ] ,

(3.79)

where C and D are real N × (N +ν) matrices and μ̂ is a parameter corresponding to
the physical chemical potential μ. This model was introduced in [57] as an extension
of Osborn’s two-matrix model of three-color QCD (2.92) to two colors. It is called

http://dx.doi.org/10.1007/978-4-431-54165-3_2
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the chiral real Ginibre ensemble because it can also be seen as a chiral extension of
the real Ginibre ensemble. It should be emphasized that it is not a phenomenological
model of two-color QCD but is expected to be an exact theory of universal spectral
correlations in the low end of the Dirac spectrum. In [58] all spectral correlation
functions of this model for N f = 0 have been worked out in full details. However,
a precise understanding of the link between the model (3.79) and two-color QCD
at low μ has not been given so far. Below we will show that (3.79) indeed reduces
to two-color QCD in the ε-regime at small μ in the limit of weak non-Hermiticity
(N → ∞ with N μ̂2 and Nm f fixed).14 This correspondence does not come as a
surprise since we already know the link between three-color QCD at low μ and the
weak limit of Osborn’s model, as reviewed in Chap. 2 Sect. 2.3.4.

In the following discussion N f is not restricted to be even. Assuming 0 ≤ μ̂ ≤ 1,
and following the procedure reviewed in p. 42, we find

ZRMT
N f ,ν

(μ̂, M) =
∫

C

∏

i, j

d Ki j d Li j d Pi j e−8N tr[K K †+L L†+2P P†]

× Pf N

( √
1 + μ̂2L† −√1 − μ̂2 PT − 1

2 M∗
√

1 − μ̂2 P + 1
2 M†

√
1 + μ̂2 K

)

× Pf N+ν
( √

1 + μ̂2 K † −√1 − μ̂2 P∗ − 1
2 MT

√
1 − μ̂2 P† + 1

2 M
√

1 + μ̂2L

)
, (3.80)

where K , L and P are complex N f × N f matrices, with K and L being antisym-
metric. This is an exact transformation. We define

D ≡
(

K † −P∗
P† L

)
and M ≡

(
0 −MT

M 0

)
. (3.81)

For both μ̂2 and M treated as infinitesimal parameters, the saddle point is located at
μ̂ = 0 and M = 0, i.e., D = U I2N f U T /4 with U ∈ U(2N f ). Taylor expansion in
μ̂2 yields

Pf

( √
1 + μ̂2 K † −√1 − μ̂2 P∗ − 1

2 MT
√

1 − μ̂2 P† + 1
2 M

√
1 + μ̂2L

)

∼ det U exp
(

4μ̂2 tr[DBT D†B] + 4 tr[D†M]
)
, (3.82)

where we used D†D = 12N f /16 and introduced the 2N f × 2N f baryon charge

matrix B ≡
(

1N f 0
0 −1N f

)
. Isolating the U(1) part by U → Ueiθ/2N f we find

14 See p. 39.

http://dx.doi.org/10.1007/978-4-431-54165-3_2
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ZRMT
N f ,ν

(μ̂, M) ∼
∫

[dθ] eiνθ
∫

SU(2N f )

[dU ] exp
(1

2
N μ̂2 tr[U I2N f U T BT (U I2N f U T )†B]

+ 2N Re tr[eiθ/N f U I2N f U T M†]
)

. (3.83)

The exponent in this partition function exactly reproduces the static part of the
chiral Lagrangian at small μ (2.32) obtained from symmetry principles, upon the
identification

1

2
N μ̂2
∣∣∣
RMT

⇐⇒ V4 F2
πμ

2
∣∣∣
QCD

and (3.84)

2Nm
∣∣∣
RMT

⇐⇒ V4 F2
πm2

π = V4|〈ψ̄ψ〉|m f

2N f

∣∣∣∣
QCD

, (3.85)

where in the last equality the Gell-Mann–Oakes–Renner relation was used. A similar
analysis was given in [[54], Eq. 4.15] based on the one-matrix formulation.

We have described two different matrix models that correspond to the high density
and the low density of two-color QCD respectively. Unexpectedly, (3.79) reduces to
(3.74) when ν = 0 and μ̂ = 1.15 It is intriguing that a single ChRMT, (3.79), can
describe two extreme cases, μ � �QCD and μ ∼ mπ 
 �QCD, that have totally
distinct patterns of spontaneous symmetry breaking, by two different choices of the
parameter (μ̂ ∼ O(1/

√
N ) and μ̂ = 1, respectively) and two different mappings of

the random-matrix quark masses to the physical quark masses (rescaling by |〈ψ̄ψ〉|
and �, respectively).

A brief comment is in order concerning odd N f . With μ̂ = 1, assuming M =
m1N f for simplicity, and allowing for ν �= 0 again, we find for the pfaffians in the
integrand of (3.76)

Pf N
(

L† −M∗
M† K

)
Pf N+ν

(
K † −MT

M L

)
(3.86)

∝ detN/2(m∗21N f + L† K ) · det(N+ν)/2(m21N f + L K †) .

Since K (or L) is an antisymmetric matrix of odd size, at least one of its eigenvalues
must be zero, and evidently the same holds for L† K and L K †. Thus ZRMT

ν (1, M) ∝
|m|2N mν , and hence the model with odd N f seems to have an ill-defined chiral limit,
with a divergent chiral condensate:

1

N

∂

∂m
log ZRMT

N f ,ν
(1, M) ∝ 1

m
→ ∞ as m → 0 . (3.87)

15 The large-N limit with O(1) non-Hermitian parameter is called the limit of strong non-Hermiticity
in the conventional classification (p. 47).
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Therefore the limit of strong non-Hermiticity cannot be taken for odd N f . Further
analysis on the high density limit of odd N f two-color QCD is left for future work.

In addition to the mass term, we could also add a diquark source term ∝ jψψ to
the model (3.74). It can be shown that the partition function at N � 1 then contains
a term linear in j , resulting in a non-vanishing diquark condensate in this model.
The addition of the diquark source term enables us to probe the spectral correlations
of the singular values of the Dirac operator [59].

By now the physical value of (3.79) is made clear: the large-N limit of strong
(weak) non-Hermiticity gives us information on the low-lying Dirac eigenvalues at
high (low) density. Next important task is to solve the model in both limits and derive
the universal spectral density of Dirac eigenvalues explicitly. It is carried out in the
next section.

3.4 ChRMT for Dense Two-Color QCD: Solution

Many years ago Ginibre introduced three ensembles of non-Hermitian random matri-
ces, classified by β = 1, 2 and 4. The case β = 1, the Gaussian ensemble of real
asymmetric matrices, turned out to be the most difficult one because the joint eigen-
value distribution function is not absolutely continuous; for finite N , there is always
nonzero probability of finding real eigenvalues in addition to complex eigenvalues
occurring in complex conjugate pairs. The complete solution of all real and com-
plex eigenvalue correlations was obtained only recently by several groups [60–65].
Among others, Sommers and Wieczorek [60, 65] developed an elegant approach
which we tentatively call the variational approach, but it was not ‘closed’ in itself,
because they used Edelman’s preceding result to calculate the kernel from which all
eigenvalue correlations follow. Later Akemann, Phillips and Sommers [57] pointed
out that the calculation of the kernel is reduced to that of an expectation value of
a product of two characteristic polynomials. With this breakthrough the variational
approach has become a closed, self-contained framework.

In [57, 58] the chiral extension of real Ginibre ensemble was given, with its
potential application to two-color QCD at nonzero chemical potential. In the chiral
real Ginibre ensemble, nonzero spectral density emerges not only on the real axis
but also on the imaginary axis, in addition to the pairwise complex eigenvalues.
In [57] the expectation value of characteristic polynomials was calculated for the
chiral extension. In [58] the joint probability distribution function of eigenvalues
was determined, and by combining these results within the variational approach,
Akemann et al. obtained all eigenvalue correlation functions for the quenched case,
at both limits of weak and strong non-Hermiticity. (To be precise, they encountered
a subtle problem of convergence for the spectral density of real and pure imaginary
eigenvalues, which was left unsolved). It is notable that they first determined the joint
probability distribution function for the square of eigenvalues, and then converted it
to that of the eigenvalues. In this way they managed to handle the chiral real Ginibre
ensemble analogously to the real Ginibre ensemble.
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The goal of this section is to achieve the generalization of the results in [58, 66]
to N f > 0 in the large-N limit. We will obtain the microscopic spectral density in
the large-N limit of both the weak and strong non-Hermiticity, which corresponds
to the low and high density limit of two-color QCD as shown in the last section.
Our treatment essentially hinges on a mathematical formula by Kieburg and Guhr
[39, 67] which enables us to calculate the large-N partition function for an arbitrary
number of flavors.

3.4.1 Spectral Density at Finite N

For a technical reason we first rewrite the partition function (3.79) in terms of new
variables

τ f = 2
√

Nm f , A = 2
√

N (C + μ̂D), B = 2
√

N (C − μ̂D) and η± = 1 ± μ̂2

4μ̂2 ,

(3.88)

with which we obtain

ZRMT
N f ,ν

(μ̂, {τ f }

=
∫∫

[d A] [d B]
N f∏

f =1

det

(
τ f 1N A
−BT τ f 1N+ν

)
e− 1

2 η+ tr(AAT +B BT )+ 1
2 η

− tr(ABT +B AT )

(3.89)

=
( N f∏

f =1

τνf

)∫∫
[d A] [d B]

N f∏

f =1

det(τ2
f 1N + ABT )e− 1

2 η+ tr(AAT +B BT )+ 1
2 η

− tr(ABT +B AT ).

(3.90)

The integral for A and B is over N × (N + ν) real matrices. The prefactor
∏N f

f =1 τ
ν
f

may be omitted, because it drops out in all expectation values.
Let zk = xk + iyk ∈ C (k = 1, . . . , N ) denote the N eigenvalues of ABT . They

are related to the 2N nonzero eigenvalues {�1,−�1, . . . , �N ,−�N } of the Dirac
matrix

D(μ̂) ≡
(

0 A
−BT 0

)
= 2

√
N

(
0 C + μ̂D

−CT + μ̂DT 0

)
, (3.91)

as
zk = −�2

k . (3.92)



3.4 ChRMT for Dense Two-Color QCD: Solution 77

We will first derive the spectral density for {zk} and then convert it to the spectral
density of {�k}. Since ABT is a real matrix, all eigenvalues must be either complex-
conjugate pairs or unpaired exactly real eigenvalues. This observation is important in
all developments in the following. Denoting the joint probability distribution function
of {zk} by d�N ,ν we have, by definition,

ZRMT
N f ,ν

(μ̂, {τ f }) =
∫

d�N ,ν

N f∏

f =1

N∏

k=1

(τ2
f + zk) . (3.93)

Note that d�N ,ν does not depend on N f and the masses. In [58] it was determined
to be

∫
d�N ,ν = cN

N∏

k=1

∫

C

d2zk wν(μ̂, zk)

N∏

i< j

(zi − z j )

×
[N/2]∑

n=0

({ n∏

l=1

(−2i)δ(x2l−1 − x2l)δ(y2l−1 + y2l)�(y2l−1 > 0)

}

(3.94)

× �(x1 > x3 > · · · > x2n−1)�(x2n+1 > x2n+2 > · · · > xN )

× δ(y2n+1) . . . δ(yN )

)
,

where

wν(μ̂, z) = |z|ν/2eη−zgν(μ̂, z) , (3.95)

gν(μ̂, z) = 2K ν
2
(η+|z|) for z ∈ R , (3.96)

[gν(μ̂, z)]2 = [gν(μ̂, z∗)]2

= 2
∫ ∞

0

dt

t
e−2η2+t (x2−y2)− 1

4t K ν
2

(
2η2+t (x2 + y2)

)

× erfc(2η+
√

t |y|) for z ∈ C , (3.97)

cN = (μ̂-independent factor) × (2μ̂)−N (N+ν)η−N (N+ν−1)/2
+ . (3.98)

Here n and N − 2n denote the number of complex-conjugate pairs and the number
of real eigenvalues, respectively. In (3.94), �(· · · ) is defined to be 1 when · · · is true
and 0 otherwise. In what follows, we denote the expectation value with respect to
ZRMT

N f ,ν
(μ̂, {τ f }) by 〈 〉N f .

The determinants can be absorbed into the measure d�N ,ν with a replacement
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wν(μ̂, z) → wN f ,ν(μ̂, z) ≡ wν(μ̂, z)

N f∏

f =1

(τ2
f + z) . (3.99)

Therefore, roughly speaking, the generalization of the quenched result [57, 58, 66]
to N f > 0 consists of replacing wν by wN f ,ν .

The spectral density is defined as usual. Because the measure (3.94) has δ-peaks
along the real axis, the spectral density consists of two parts:

RN f ,ν(μ̂; z) ≡
〈 N∑

i=1

δ2(z − zi )
〉

N f
(3.100)

= RC
N f ,ν

(μ̂; z) + δ(y)RR
N f ,ν

(μ̂; x) , z ≡ x + iy . (3.101)

RC
N f ,ν

is the spectral density for complex eigenvalues ∈ C\R, whereas RR
N f ,ν

is that
for exactly real eigenvalues ∈ R. This two-piece structure is a distinctive feature
of the (chiral) real Ginibre ensemble (β = 1) and is not seen in the other classes
(β = 2, 4).

By definition, RC
N f ,ν

(μ; z) is obtained from (3.93) by tuning one of the eigenvalues
to the given z ∈ C\R. Then one of the other eigenvalues is automatically tuned to

z∗. Without losing generality one can assume, say, zN−1
!= z and zN

!= z∗. Then

N∏

k=1

wN f ,ν(μ̂, zk)

N∏

i< j

(zi − z j ) =
N−2∏

k=1

wN f ,ν(μ̂, zk)

N−2∏

i< j

(zi − z j )

× wN f ,ν(μ̂, z)wN f ,ν(μ̂, z∗)(z − z∗)
N−2∏

�=1

(z� − z)(z� − z∗) .

(3.102)

Therefore, up to a multiplicative constant, we have

RC
N f ,ν

(μ; z)∼wN f ,ν(μ̂, z)wN f ,ν(μ̂, z∗)(z − z∗)
〈 N−2∏

�=1

(z� − z)(z� − z∗)
〉

N f
. (3.103)

Here comes an important observation: the characteristic polynomial on the RHS may
be cast into the form

〈 N−2∏

�=1

(z� − z)(z� − z∗)
〉

N f
= 1

(
√−z

√−z∗)ν
〈

det
[√−z12N+ν −

(
0 A

−BT 0

)]

× det
[√−z∗12N+ν −

(
0 A

−BT 0

)]〉

N f
, (3.104)
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which is nothing but the partition function with N f + 2 flavors! Therefore

RC
N f ,ν (μ; z) ∼ |z − z∗|

wN f ,ν (μ̂, z)wN f ,ν (μ̂, z∗)

|z|ν
ZRMT

N f +2,ν (μ̂, {τ f })
∣∣∣
τN f +1=√−z, τN f +2=√−z∗

ZRMT
N f ,ν (μ̂, {τ f }) .

(3.105)
By the same token we find for the real spectral density

RR
N f ,ν (μ; x) ∼

wN f ,ν (μ̂, x)
√−xν

∫

R

dt
wN f ,ν (μ̂, t)

√−tν
|x−t |

ZRMT
N f +2,ν (μ̂, {τ f })

∣∣∣
τN f +1=√−x, τN f +2=√−t

ZRMT
N f ,ν (μ̂, {τ f }) .

(3.106)
We note that this structure of spectral densities, being proportional to the ratio of
Z N f and Z N f +2, is quite generic [68].

Thus, the spectral densities in the large-N limit will follow if we could evaluate
the asymptotic form of the partition functions for generic N f .16 In the next section
we will present analytic formulae for those partition functions.

3.4.2 The Finite-Volume Partition Function

In this section we will provide a closed expression for the partition function, which
will be used later in the derivation of the microscopic spectral density in the large-N
limits of weak and strong non-Hermiticity.

According to a remarkable mathematical theorem by Kieburg and Guhr [39], a
partition function of a random matrix ensemble can be written as a pfaffian if its joint
eigenvalue distribution function has a “factorization property” [39]. Since (3.93) does
fulfill this condition, it follows that the partition function of our model can be written
as a pfaffian. The explicit formula depends on the parity of N f . For even N f , we

have

ZRMT
N f ,ν

(μ̂, {τ f }) = CN ,N f ,ν(μ̂)

Pf
1≤i, j≤N f

[
(m2

j − m2
i )ZRMT

2,ν (μ̂, {τi , τ j })
]

�N f (τ
2
1 , . . . , τ2

N f
)

, (3.107)

with CN ,N f ,ν(μ̂) a mass-independent factor and �N f (τ
2
1 , . . . , τ2

N f
) ≡ ∏N f

i> j (τ
2
i −

τ2
j ).

17 Since we are mainly interested in the mass dependence of ZRMT
N f ,ν

, we may
simply write (3.107) as

16 For finite N , the massive partition functions were obtained in [66] with the aid of skew-orthogonal
polynomials. However we do not consider finite N , since the universal correspondence of ChRMT
to QCD emerges only in the large-N limit.
17 It should not be confused with the BCS gap �.
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ZRMT
N f ,ν

(μ̂, {τ f }) ∼
Pf

1≤i, j≤N f

[
(τ2

j − τ2
i )ZRMT

2,ν (μ̂, {τi , τ j })
]

�N f (τ
2
1 , . . . , τ2

N f
)

. (3.108)

Note that this formula is trivially satisfied for N f = 2.

The partition function for odd N f reads [39]

ZRMT
N f ,ν (μ̂, {τ f }) ∼

Pf

⎡

⎢⎣
0

{
ZRMT

1,ν (μ̂, τ j )
}

1≤ j≤N f{
− ZRMT

1,ν (μ̂, τi )
}

1≤i≤N f

{
(τ2

j − τ2
i )ZRMT

2,ν (μ̂, {τi , τ j })
}

1≤i, j≤N f

⎤

⎥⎦

�N f (τ2
1 , . . . , τ2

N f
)

.

(3.109)

Therefore the limiting form of the partition functions for generic N f at large N
will follow if it is known for N f = 1 and 2 . Let us define

Z(N f ,ν)
w (γ, {κ f }) ≡ lim

N→∞, weak
ZRMT

N f ,ν
(μ̂, {τ f }) (3.110)

Z(N f ,ν)
s ({τ f }) ≡ lim

N→∞, maximal
ZRMT

N f ,ν
(μ̂, {τ f }) (3.111)

where each limit stands for the large-N limit of weak and maximal non-Hermiticity,
respectively.

Large-N Limit at Maximal Non-Hermiticity: μ̂ = 1, τ f ∼ O(1) and ν = 0

Considering a physical application to dense two-color QCD, it is enough to consider
even N f and ν = 0. At large N the partition function reduces to (3.77), and especially

Z(N f =2,0)
s (τ1, τ2) ∼ I0(τ1τ2) . (3.112)

Substituting this into (3.108), we find

Z
(N f ,0)
s ({τ f }) ∼

Pf
1≤i, j≤N f

[
(τ2

j − τ2
i )I0(τiτ j )

]

�N f (τ
2
1 , . . . , τ2

N f
)

. (3.113)
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Large-N Limit at Weak Non-Hermiticity: Nμ̂2 ∼ √
Nτ f ∼ O(1)

Let us define rescaled variables κ f ≡ 2
√

Nτ f and γ ≡ √
2N μ̂ . In the large-N

limit of weak non-Hermiticity, (3.79) reduces to (3.83) for arbitrary N f . For N f = 1
the μ̂-dependent part factorizes (∵ U I2U T = I2 for U ∈ SU(2)), so that

Z
(N f =1,ν)
w (γ,κ) ∼ e−γ2/2 Iν(κ) . (3.114)

While it is rather difficult to evaluate the coset integral for Z
(N f =2,ν)
w (γ, {κ1,κ2})

directly, we can exploit the weak kernel in [[58], Eq. (2.32)], to derive

Z
(N f =2,ν)
w (γ, {κ1,κ2}) ∼ 1

κ2
1 − κ2

2

∫ 1

0
ds s2e−2γ2s2

{
κ1 Iν+1(sκ1)Iν(sκ2)−(κ1 ↔ κ2)

}
.

(3.115)

Plugging (3.114) and (3.115) into (3.108) and (3.109), the partition function for
arbitrary N f can be obtained. It can be verified that in the limit γ → 0 known
formulae at μ̂ = 0 [69] are reproduced, as expected.

3.4.3 Microscopic Spectral Density at Maximal Non-Hermiticity:
μ̂ = 1

Main Results

In this limit we take N to infinity with {τ f } and {�k} kept finite. Namely we do not
have to rescale the eigenvalues for the Dirac operator (3.91).

Using (3.113) in (3.105) and (3.106), we immediately obtain the microscopic
spectral density for complex and real eigenvalues:

ρ
(N f ,C)
s (z) ≡ lim

N→∞ RC
N f ,0(1; z) (3.116)

= 1

32π
|z − z∗|wN f ,0(1, z)wN f ,0(1, z∗)H

N f
s (

√−z,
√−z∗) ,

(3.117)

ρ
(N f ,R)
s (x) ≡ lim

N→∞ RR
N f ,0(1; x) (3.118)

= 1

64π

wN f ,0(1, x)√−x
ν

∫

R

dt
wN f ,0(1, t)√−t

ν |x − t |H N f
s (

√−x,
√−t) ,

(3.119)

http://dx.doi.org/10.1007/978-4-431-54165-3_2
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where we have defined

H
N f
s (α,β) =

1
�N f +2(τ2

1 ,...,τ2
N f

,α2,β2)
Pf

1≤i, j≤N f +2

[
(τ2

j − τ2
i )I0(τi τ j )

]∣∣∣∣
τN f +1=α, τN f +2=β

1
�N f (τ2

1 ,...,τ2
N f

)
Pf

1≤i, j≤N f

[
(τ2

j − τ2
i )I0(τi τ j )

] .

(3.120)
The normalization constants are fixed through matching with the quenched result

[58]; namely we impose the condition that ρ
(N f ,C)

s,Dirac (�) → 1
π as |�| → ∞.

The microscopic spectral densities for Dirac eigenvalues are then obtained via
(3.92) as

ρ
(N f ,C)

s,Dirac (�) = 4|�|2ρ(N f ,C)
s (−�2) for �2 ∈ C \ R , (3.121)

ρ
(N f ,R)

s,Dirac (�) = 2|�|ρ(N f ,R)
s (−�2) for �2 ∈ R . (3.122)

Note that both � ∈ R and � ∈ iR are included in the latter case. Due to the reality
of the Dirac matrix,

ρ
(N f ,C)

s,Dirac (�) = ρ
(N f ,C)

s,Dirac (−�) = ρ
(N f ,C)

s,Dirac (�∗) = ρ
(N f ,C)

s,Dirac (−�∗) . (3.123)

As a consistency check, let us confirm that the obtained spectral densities exhibit
the decoupling of heavy flavors [41, 70]. Because N f is assumed to be even, one
cannot decouple an odd number of flavors and at least two flavors must decouple. If
τN f −1 and τN f go to infinity, a bit of algebra shows that

H
N f
s (α,β) → 1

(τN f −1τN f
)4 H

N f −2
s (α,β) . (3.124)

Using this, one can readily show the decoupling of the heavy two flavors:

ρ
(N f ,C/R)

s,Dirac (�) → ρ
(N f −2,C/R)

s,Dirac (�) . (3.125)

This procedure can be iterated until N f = 0 is reached, and the final result coincides
with the known result at N f = 0 [58], as it should.

In the chiral limit (∀τ f = 0) there is a symmetry

ρ
(N f ,C/R)

s,Dirac (�) = ρ
(N f ,C/R)

s,Dirac (±i�) . (3.126)

Actually this property has been conjectured on p. 81 to account for the vanishing
of the spectral sum rules in the chiral limit. It is gratifying to see that it is indeed
satisfied.
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Figures

For N f = 2 we plotted the microscopic spectral density of complex, real and purely
imaginary eigenvalues in Figs. 3.1, 3.2 and 3.3. Because of the symmetry (3.123)
it is enough to plot for the first quadrant (Re� > 0 , Im� > 0). Owing to the
Vandermonde determinant in (3.94), the complex eigenvalues repel each other, which
in particular implies that � ↔ �∗ and � ↔ −�∗ repel each other, resulting in the

vanishing of ρ
(N f ,C)

s,Dirac (�) along the real and imaginary axis.
For degenerate masses (τ1 = τ2) the fermion determinant is positive definite

and so is the spectral density. The spectrum is smooth and closely resembles the
result for N f = 0 [58]. When we gradually increase |τ1 − τ2| from zero, the sign

problem emerges, and ρ
(N f =2,C)

s,Dirac starts to show a rapid oscillation inside an ellipse
with an enormous amplitude. (Were it not for the sign problem, the spectral density
cannot take a negative value!) This phenomenon is quite analogous to what has been
observed in three-color QCD at V4μ

4 
 1 [71–73] despite different symmetries. In
Sect. 3.5.1 we will show how to understand the elliptical domain of oscillation in a
simple way.

On the other hand, the spectral density on the real axis ρ
(N f =2,R)

s,Dirac (x) looks more
smooth. It changes sign twice for unequal masses, reflecting the indefinite sign of the

measure. The spectral density on the imaginary axis ρ
(N f =2,R)

s,Dirac (i x) is hardly affected
by the mass parameters.

The figures obtained can naturally be looked upon as the superposition of the
‘quenched’ contribution and the ‘unquenched’, strongly oscillating contribution

localized in an elliptical domain. Indeed ρ
(N f ,C)

s,Dirac (z) is, by definition, already written
as a sum of such two pieces. To see this, one should expand the pfaffian in (3.117).

3.4.4 Microscopic Spectral Density at Weak Non-Hermiticity:
Nμ̂2 ∼ O(1)

Main Results

At weak non-Hermiticity, N f is not restricted to be even, and ν can take arbitrary

integer values. In this limit we take N to infinity while keeping κ f = 2
√

Nτ f and

γ = √
2N μ̂ finite. The Dirac eigenvalues {�k} also have to be rescaled in the same

way as {τ f }, namely ξk = 2
√

N�k is kept fixed.

Introducing the squared eigenvalues sk = −ξ2
k we shall proceed in two steps as

in the last section: we first derive the spectral density for {sk}, and then convert it to
the spectral density of {ξk}. With the new variables the fermion determinant in (3.93)
reads
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Fig. 3.1 ρ
(N f =2,C)

s,Dirac (�) for (τ1, τ2) = (2, 2) (left) and (2, 4.5) (right)

Fig. 3.2 ρ
(N f =2,C)

s,Dirac (�) for (τ1, τ2) = (2, 7) (left) and (2, 12) (right). (The values outside the range
[−0.5, 0.5] are clipped for a better visibility of the figure)
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x

Fig. 3.3 Left: ρ
(N f =2,R)

s,Dirac (x) for (τ1, τ2) = (2, 2) (full line) and (3, 4)(dashed line). Right:

ρ
(N f =2,R)

s,Dirac (i x) for (τ1, τ2) = (2, 8) (full line) and (3, 4) (dashed line)
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N f∏

f =1

(τ2
f + zk) =

N f∏

f =1

(
κ2

f

4N
+ sk

4N

)
∝

N f∏

f =1

(κ2
f + sk) . (3.127)

The rescaled form of wν(μ̂, z) is given in [58]. Therefore from (3.105) we obtain for
s ∈ C\R

ρ
(N f ,C)
w (γ; s) ≡ lim

N→∞
1

(4N )2 RC
N f ,ν

( γ√
2N

; s

4N

)
[s = p + iq] (3.128)

= |q|
64πγ2 e

p
4γ2 Gν(γ, s)

N f∏

f =1

|κ2
f + s|2 H

N f ,ν
w (γ;√−s,

√−s∗) ,

(3.129)

Gν(γ, s) ≡ lim
N→∞ gν

( γ√
2N

,
s

4N

)2 (
gν ⇒ (3.97)

)
(3.130)

= 2
∫ ∞

0

dt

t
exp
[

− (p2 − q2)t

32γ4 − 1

4t

]
K ν

2

(
(p2 + q2)t

32γ4

)
erfc

(√
t |q|

4γ2

)
.

(3.131)

The normalization constant was fixed through matching with the result for N f = 0
[58].

The new function H
N f ,ν
w (γ;α,β) originates from (3.114) and (3.115) plugged

into (3.108) and (3.109). It is defined as below:

• For even N f :

H
N f ,ν
w (γ;α,β)

=

1
�N f +2(κ

2
1,...,κ

2
N f

,α2,β2)
Pf

1≤i, j≤N f +2

[
Hν(γ, {κi ,κ j })

]∣∣∣∣
κN f +1=α,κN f +2=β

1
�N f (κ2

1,...,κ
2
N f

)
Pf

1≤i, j≤N f

[
Hν(γ, {κi ,κ j })

] ,

(3.132)

• For odd N f :
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H
N f ,ν
w (γ;α,β)

=

Pf

⎡

⎢⎣
0

{
Iν(κ j )

}

1≤ j≤N f +2{
− Iν(κi )

}

1≤i≤N f +2

{
Hν(γ, {κi ,κ j })

}

1≤i, j≤N f +2

⎤

⎥⎦

κN f +1=α,κN f +2=β
�N f +2(κ2

1, . . . ,κ2
N f

,α2,β2)

×

⎧
⎪⎨

⎪⎩
1

�N f (κ
2
1, . . . ,κ2

N f
)

Pf

⎡

⎢⎣
0

{
Iν(κ j )

}

1≤ j≤N f{
− Iν(κi )

}

1≤i≤N f

{
Hν(γ, {κi ,κ j })

}

1≤i, j≤N f

⎤

⎥⎦

⎫
⎪⎬

⎪⎭

−1

,

(3.133)

where (cf. (3.115))

Hν(γ, {κ1,κ2}) ≡ −
∫ 1

0
du u2e−2γ2u2

{
κ1 Iν+1(uκ1)Iν(uκ2) − (κ1 ↔ κ2)

}
. (3.134)

Finally, using sk = −ξ2
k , we arrive at the microscopic spectral density for {ξk}:

ρ
(N f ,C)

w,Dirac(γ; ξ) = 4|ξ|2ρ(N f ,C)
w (γ;−ξ2) for ξ2 ∈ C \ R . (3.135)

The microscopic density of exactly real and purely imaginary Dirac eigenvalues
is much harder to compute. To get it one has to compute

ρ
(N f ,R)
w (γ; x) ≡ lim

N→∞
1

4N
RR

N f ,ν

( γ√
2N

; x

4N

)
for x ∈ R , (3.136)

but it happens that, if we substitute the large-N limit of the partition functions
into (3.106), the integral does not converge. It means that the large-N limit and
the integration

∫
R

dt do not commute. (This problem does not occur in the strong
non-Hermiticity). This intricacy is not due to the chemical potential because the
same problem arises even at μ̂ = 0 [47]. Through a highly complicated calculation,

ρ
(N f ,R)
w (γ; x) and ρ

(N f ,R)

w,Dirac(γ; ξ) for N f = 0 and 1 have been obtained by M. J.
Phillips [74, 75]. His result for N f = 0 reads

ρ
(N f =0,R)

w,Dirac (γ; ξ) ≡ 2|ξ|ρ(N f =0,R)
w (γ;−ξ2) (3.137)

= −2|ξ|Gw(−ξ2,−ξ2) for ξ2 ∈ R , (3.138)
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where

Gw(x, x ′) ≡ − ĥw(x ′)
[ sgn(x ′)]ν/2

{(
(−i)ν

∫ 0

−∞
dy + 2

[ sgn(x ′)]ν/2

∫ x ′

0
dy

)
Kw(x, y)ĥw(y)

− 1

32
√
π

[
− 1

γ
e−γ2

Jν (
√

x) + 2γν

	
(
ν+1

2

)
∫ 1

0
ds e−γ2s2

sν+2

×
(√

x

2
E 1−ν

2
(γ2s2) Jν+1(s

√
x) − γ2s

(
E −1−ν

2
(γ2s2) − E 1−ν

2
(γ2s2)

)
Jν (s

√
x)

)]}
.

(3.139)

Here we have defined

ĥw(x) ≡ ex/8γ2
2K ν

2

( |x |
8γ2

)
, (3.140)

En(x) ≡
∫ ∞

1
dt t−n e−xt , (3.141)

Kw(u, v) ≡ 1

256πγ2

∫ 1

0
ds s2e−2γ2s2

{√
u Jν+1(s

√
u)Jν(s

√
v) − (u ↔ v)

}
.

(3.142)

I skip the derivation because it is too extensive to be reproduced here.
In Sect. 3.5 we will use (3.138) and (3.139) to analyze the sign problem.

Figures

The microscopic spectral density of complex eigenvalues for N f = 1 in the limit
of weak non-Hermiticity is plotted in Figs. 3.4, 3.5, 3.6 and 3.7 for multiple values
of the winding number (ν), the chemical potential (γ) and the quark mass (κ). As
we increase γ a region of strong oscillation appears gradually, reflecting the sign
problem in N f = 1 theory. It is observed that the oscillation gets milder when κ or ν
is increased at fixed γ. This is consistent with the observation in [76] for three-color
QCD. Qualitatively, the microscopic spectrum of two-color QCD at low density is
quite similar to that of three-color QCD, except for the apparent distinction that the
complex spectral density in two-color QCD has no imaginary part, and vanishes in
the vicinity of the real and imaginary axis.

3.5 Sign Problem in Dense Two-Color QCD and ChRMT

3.5.1 Structure of the Dirac Spectrum

As we have seen in the previous section, for certain ranges of the parameters
the unquenched microscopic spectral density of complex eigenvalues consists of
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Fig. 3.4 ρ
(N f =1,C)

w,Dirac (
√

0.2; ξ) with ν = 0 for κ = 0 (left) and for κ → ∞ (right), i.e., the quenched
limit

Fig. 3.5 ρ
(N f =1,C)

w,Dirac (1.8; ξ) (left) and ρ
(N f =1,C)

w,Dirac (2.5; ξ) (right) with ν = 0 and κ = 0. (In the right
figure, the values outside the range [−0.02, 0.02] are clipped for a better visibility of the figure)

a smooth flat part plus a circular domain of rapid oscillation with large amplitude. At
strong non-Hermiticity with N f = 2, this oscillation occurs when quark masses are
not degenerate. At weak non-Hermiticity with N f = 1, the oscillation grows as we
increase μ. These are exactly the cases afflicted with a severe sign problem. Indeed,
were it not for the sign problem the spectral density must be positive definite and
an oscillation between positive and negative values cannot take place. Therefore this
behavior can be seen as a barometer of the sign problem in the underlying theory.

In this subsection we present a simple method to deduce the oscillatory behavior
from the exact formula of the spectral density. Although we will focus on the case
N f = 2 at maximal non-Hermiticity (corresponding to two-color QCD in the high
density BCS phase) for simplicity, our methods are by no means limited to this
particular case.
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Fig. 3.6 ρ
(N f =1,C)

w,Dirac (3.5; ξ) with κ = 0 for ν = 0 (left) and ν = 3 (right). (The values outside the
range [−0.01, 0.01] are clipped for a better visibility of the figure)

Fig. 3.7 ρ
(N f =1,C)

w,Dirac (3.5; ξ) with ν = 0 for κ = 15 (left) and κ = 20 (right)

First, we assume 1 
 τ f and 1 
 Re � to simplify the exact expression (3.121)

for ρ
(N f =2,C)

s,Dirac (�). In this limit the ε-regime is continuously connected to the p-
regime. For such large parameters one can replace the modified Bessel functions in
(3.117) and (3.120) by their asymptotic forms. Expanding the pfaffian of (3.120) and
only retaining the leading exponential factors, we obtain

ρ
(N f =2,C)

s,Dirac (�) ∼ e−|�|2−τ1τ2(e|�|2+τ1τ2 + eτ1�+τ2�
∗ + eτ1�

∗+τ2�) (3.143)

= 1 + e−|�|2−τ1τ2+τ1�+τ2�
∗ + e−|�|2−τ1τ2+τ1�

∗+τ2� . (3.144)

If Re(−|�|2 − τ1τ2 + τ1� + τ2�
∗) > 0 , the second and the third terms are expo-

nentially greater than 1. Conversely, if Re(−|�|2 − τ1τ2 + τ1� + τ2�
∗) < 0 , they

are exponentially suppressed. The boundary between the two domains is given by

{� ∈ C | Re(−|�|2 − τ1τ2 + τ1� + τ2�
∗) = 0} . (3.145)
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Fig. 3.8 ρ
(N f =2,C)

s,Dirac (�) with
(τ1, τ2) = (2, 10). (The values
outside the range [−0.5, 0.5]
are clipped for a better vis-
ibility of the figure). The
boundary of the oscillating
region agrees with (3.146)

With � ≡ x + iy we find that this set is nothing but the circle

(
x − τ1 + τ2

2

)2

+ y2 =
(
τ1 − τ2

2

)2

, (3.146)

which reduces to a single point when τ1 = τ2.

• Outside this circle, (3.144) is dominated by the first term and consequently

ρ
(N f =2,C)

s,Dirac (�) is roughly constant; Nothing dramatic occurs. If τ1 = τ2 this is
true for all � ∈ C.

• Inside the circle,

ρ
(N f =2,C)

s,Dirac (�) ∼ e−|�|2−τ1τ2+τ1�+τ2�
∗ + c.c. (3.147)

= 2 exp

[(
τ1 − τ2

2

)2

−
(

x − τ1 + τ2

2

)2

− y2
]

cos[(τ1 − τ2)y] .

(3.148)

This is an oscillatory function. The amplitude is O(1) at the circumference and grows

larger in the interior of the circle, taking the maximal value exp
[( τ1−τ2

2

)2]
at the

center of the circle. The ripplets are parallel to the x axis and its wavelength along
the y axis is given by 2π

|τ1−τ2| . The number of peaks of the wave inside the circle,
denoted as Npeaks, is roughly equal to

Npeaks ≈ |τ1 − τ2|
/ 2π

|τ1 − τ2| (3.149)

= |τ1 − τ2|2
2π

. (3.150)

Now we compare our analytical estimates with the exact plot of ρ
(N f =2,C)

s,Dirac (�) given
in Fig. 3.8. The masses are set to (τ1, τ2) = (2, 10). (In this figure the plot is cut off
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by hand for a better look of the plot). The sharp boundary between the oscillating
region and the flat smooth region in Fig. 3.8 shows good agreement with our analytical
estimate (3.146): (x−6)2+y2 = 42 for this case. Moreover Fig. 3.8 shows roughly 10
waves inside the circle, in good agreement with our prediction Npeaks ≈ 64/2π �
10.2. Thus our leading-order analytical estimate gives an accurate account of the
global structure of the spectral density, even for masses that do not satisfy τ f � 1.

As we know (cf. (3.105)) the complex spectral density ρ
(N f ,C)

s,Dirac (�) is proportional

to the partition function with two additional flavors Z(N f +2)
s ({τ f },�,�∗), and this

is where the factor e|�|2+τ1τ2 + eτ1�+τ2�
∗ + eτ1�

∗+τ2� in (3.143) originates from.
These terms express three patterns of the diquark pairing, namely {(1, 2), (3, 4)},
{(1, 3), (2, 4)} and {(1, 4), (2, 3)}, respectively. The

{
first

second and third
pairings

are dominant in the ground state when � is

{
inside

outside
the circle (3.146). Therefore

the envelope of the oscillatory domain on the microscopic spectrum is nothing but

the line of phase transition in Z(N f +2)
s ({τ f },�,�∗)!

The extension of this analysis to N f ≥ 4 at maximal non-Hermiticity will be
completely straightforward. On the other hand, because of the additional parameter
γ = √

2N μ̂ the extension to the limit of weak non-Hermiticity will be less trivial.

3.5.2 Average Sign Factor

Introductory Remarks

In this subsection we study the severity of the sign problem by looking at the average
sign of the Dirac determinant. The definition of such an average is not unique, and we
will use the following guiding principles to define an average that behaves reasonably:

• The average should be bounded by 1 from above.
• Starting at 1 for μ̂ = 0 (or degenerate masses) the average should be a decreasing

function of μ (or the mass difference).

Let us illustrate the problem of finding a proper definition using the case of three-
color QCD, which has been well studied in the RMT framework [76–80]. If we
denote the complex phase of det[D(μ)+m] by eiθ, the authors proposed to compute

〈
e2iθ〉QCD3

N f
≡
〈

det[D(μ) + m]
det[D(μ) + m]†

〉QCD3

N f

, (3.151)

which gives the expectation value of twice the phase in the case that the determinant
is complex. Had we chosen the opposite ratio on the right-hand side instead, this
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would naively have led to 〈e−2iθ〉N f . However, for N f = 1 we have in three-color
QCD

〈
det[D + m]†

det[D + m]
〉QCD3

N f =1
=

〈det[D + m]†〉QCD3
N f =0

〈det[D + m]〉QCD3
N f =0

= 1 , (3.152)

because the expectation value in denominator and numerator (also called charac-
teristic polynomial) is equal and μ-independent [81]. Obviously the average sign
factor defined this way fails to capture the sign problem. The lesson learned from
here is that using expectation values w.r.t. a measure which is not positive definite is
fallacious because they do not allow for a probabilistic interpretation.

In two-color QCD, the determinant has no complex phase but only sign. An
ambiguity exists regarding how to define the average sign factor. Let us see a possible
bad choice for the average sign. Due to the obvious inequality

〈 |det[D + m]| 〉N f =0 ≥ 〈 det[D + m]〉N f =0 (3.153)

we have

〈 sgn det[D + m]〉N f =1 =
〈 |det[D + m]|

det[D + m]
〉

N f =1
≥ 1 , (3.154)

and hence a ratio of this kind, which would have been the natural generalization of
(3.151), can be ruled out.

To guarantee that such an unphysical behavior does not occur, we should employ
a positive definite measure. Our definition of the average sign for two-color QCD,
which we will use throughout this section, is

p(N f )(μ̂; {τ f }) ≡
〈

sgn

N f∏

f =1

det[D(μ̂) + τ f ]
〉

||N f ||
, (3.155)

where the average is computed in a sign-quenched theory denoted by ‖N f ‖ (i.e., only
the absolute values of the determinants appear in the measure). We recall that in the
strong limit we always need N f to be even. Below we will consider two particular
cases, the limit of weak non-Hermiticity with one flavor, where

p
(N f =1)
w (γ;κ) = lim

N→∞, weak
p(N f =1)(μ̂; τ ) , (3.156)

with κ = 2
√

Nτ and γ ≡ √
2N μ̂ fixed (cf. p. 94), and the limit of maximal

non-Hermiticity with two flavors, where

p
(N f =2)
s (τ1, τ2) = lim

N→∞, maximal
p(N f =2)(μ̂; {τ1, τ2}) , (3.157)
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Fig. 3.9 Average sign for N f = 1 at weak non-Hermiticity. Left: κ = 0 (blue line), κ = 6 (red
thick line) and κ = 15 (black dashed line), all for ν = 0. Right: ν = 0 (blue line), ν = 10 (red
thick line) and ν = 20 (black dashed line), all for κ = 0

with τ f fixed and μ̂ = 1.

Average Sign at Low Density

Let us consider the case N f = 1 in the limit of weak non-Hermiticity. Although the
sign-quenched partition function does not permit a field-theoretical interpretation
like QCD with nonzero isospin chemical potential, it is still possible to compute it
as a mathematical entity by RMT. In the Appendix A.4.3 we derive

Z(N f =‖1‖, ν)
w (γ,κ)≡ lim

N→∞, weak

〈∣∣ det[D(μ̂) + τ ]∣∣〉N f =0

∼ −γ eγ
2/2 Gw(−κ2,−κ2)

ĥw(−κ2)
, (3.158)

where Gw and ĥw are defined in (3.139) and (3.140), respectively. This result essen-
tially follows from the quenched real spectral density. Combining it with (3.114),

Z(N f =1, ν)
w (γ,κ) ∼ e−γ2/2 Iν(κ)

we obtain the average sign factor in the weak limit,

p
(N f =1)
w (γ;κ) = Z(N f =1, ν)

w (γ,κ)

Z(N f =‖1‖, ν)
w (γ,κ)

∼ −e−γ2
Iν(κ)ĥw(−κ2)

γ Gw(−κ2,−κ2)
. (3.159)

The normalization of p
(N f =1)
w (γ;κ) can be uniquely determined from p

(N f =1)
w

(0;κ) = 1.

In Fig. 3.9 we depict how p
(N f =1)
w (γ;κ) depends on γ for several values of κ and

ν. We observe that the onset of the sign problem is delayed as κ or ν is increased,
a feature which is in common with three-color QCD [77, 76]. In Fig. 3.10 we plot
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Fig. 3.10 Average sign for N f = 1 and ν = 0 at weak non-Hermiticity. The curves correspond to
κ = 4 (black), κ = 8 (blue), κ = 16 (red), κ = 32 (magenta), and κ = 64 (orange)

the average sign against a rescaled variable γ/
√
κ/2. In physical units, it is equal

to μ/(mπ/2), where mπ denotes the mass of the Nambu–Goldstone (NG) bosons
in the vacuum.18 Interestingly, the sign problem looks almost absent for μ < mπ/2
while it deteriorates rapidly for μ > mπ/2. In particular, we observe a convergence
of the curves to a step function in the thermodynamic limit. This apparent jump
of the average sign is quite intriguing, compared to the average phase factor in the
microscopic limit of three-color QCD [77, 78]: the latter changes smoothly from 1
to 0 in the limit κ → ∞.

Since the γ-dependence of Z(N f =1, ν)
w is explicit in (3.114) (being of oscillatory

nature), it must be Z(N f =‖1‖, ν)
w that is responsible for the apparent jump of the

average sign. While it seems that the N f = ‖1‖ theory is similar to the N f ≥ 2
theory in that both undergo a transition at μ = mπ/2, a comparison of the order of
the transition needs further investigation.

Finally we comment on a lattice simulation using one flavor of staggered fermions
in the adjoint representation of SU(2) [82, 83]. This theory belongs to the same
symmetry class as N f = 1 two-color QCD with fundamental fermions. In [82, 83]
this theory was simulated by two different algorithms, Hybrid-Monte-Carlo (HMC)
and Two-Step-Multi-Boson (TSMB). The HMC algorithm is non-ergodic in this
case and actually simulates a different theory, namely the one-flavor sign-quenched
theory. The authors of [82, 83] report that the sign-quenched theory simulated by
HMC seems to undergo a phase transition at μ = mπ/2, while the correct one-flavor
theory simulated by TSMB exhibits no singularity at all. These results are consistent
with ours. However, the observables considered here and in [82, 83] are different so
that a direct comparison is difficult.

18 Note that no NG mode appears in N f = 1 two-color QCD. The above mπ refers to the mass of
the NG modes that appear in N f ≥ 2 two-color QCD.
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Fig. 3.11 Average sign factor for N f = 2 at maximal non-Hermiticity (μ̂ = 1) with τ1 = 1 (left)
and τ1 = 4 (right), at ν = 0 (blue line), ν = 10 (red thick line), and ν = 20 (black dashed line)

Average Sign at High Density

Let us now consider the case N f = 2 in the limit of maximal non-Hermiticity
(μ̂ = 1). This theory is free from the sign problem if and only if the masses are
degenerate. Here we are interested in the severity of the sign problem for |τ1 − τ2|
nonzero. In the Appendix A4.4 we derive

Z(N f =‖2‖, ν)
s (τ1, τ2) ≡ lim

N→∞, maximal

〈∣∣ det[D(μ̂) + τ1] det[D(μ̂) + τ2]
∣∣
〉

N f =0

∼ |τ1τ2|ν∣∣τ2
1 − τ2

2

∣∣ f∞(−τ2
1 ,−τ2

2 ) , (3.160)

where f∞ is defined in the Appendix A.4.4. This result essentially follows from the
two-point correlation function of real squared Dirac eigenvalues. Combining (3.160)
with (3.113) for N f = 2,

Z(N f =2, ν)
s (τ1, τ2) ∼ I0(τ1τ2) ,

we obtain

p
(N f =2)
s (τ1, τ2) = Z(N f =2, ν)

s (τ1, τ2)

Z(N f =‖2‖, ν)
s (τ1, τ2)

= |τ2
1 − τ2

2 |
|τ1τ2|ν

I0(τ1τ2)

f∞(−τ2
1 ,−τ2

2 )
. (3.161)

This expression satisfies the normalization condition lim
τ2→τ1

p
(N f =2)
s (τ1, τ2) = 1.

In Fig. 3.11 we plot p
(N f =2)
s (τ1, τ2) as a function of τ2. The results indicate that

larger topology mitigates the sign problem but becomes less effective for heavier
masses. This phenomenon is easily understood if one recalls that a largeν that causes a
depletion of eigenvalues near the origin can smoothen the strongly oscillating domain
of the spectrum if the domain is close to the origin; since the domain moves away
from the origin for heavier masses, the smoothing by ν becomes less effective.
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As a result, the average sign turns out to be essentially independent of topology
for larger masses, where the sign problem becomes severe for |τ1 − τ2| � 2.5, as
can also be seen from Fig. 3.11. In physical units we have, using (3.78),

∣∣δmphys
∣∣ � 4.5√

V4�2
. (3.162)
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Chapter 4
Three-fold Way at High Density

4.1 Introduction

As we reviewed in Chap. 2, the patterns of chiral symmetry breaking in QCD at zero
density can be classified into three types (cf. Table 2.2) according to the color repre-
sentation of fermions. As noticed by Verbaarschot et al., there exist three symmetry
classes in the chiral gaussian ensemble of random matrices, in one-to-one correspon-
dence with the three types of symmetry breaking on the QCD side. They are called
ChGOE, ChGUE and ChGSE, associated with the Dyson index β = 1, 2 and 4,
respectively. This correspondence between Chiral random matrix theory (ChRMT)
and QCD is called the “three-fold way” after the well-known three classes in the
Wigner-Dyson ensemble. Although the inclusion of nonzero chemical potential (μ)
into this scheme has been attempted so far (see [1] for a review), the existing litera-
ture is entirely limited to the ε-regime at low density where μ must go to zero in the
thermodynamic limit in such a way that V4 F2

πμ
2 ∼ O(1).

In Chap. 3, we elucidated how to overcome this limitation: there exists a new non-
Hermitian ChRMT corresponding to the high-density BCS phase of two-color QCD
(with an even number of flavors). Moreover it can be shown in a straightforward
manner that the same ChRMT applies to all dense QCD-like theories with fermions
in a pseudoreal representation of the gauge group (β = 1).1,2

Our goal in this chapter is to generalize our scheme to the other two classes
of QCD-like theories at high density: QCD with complex fermions at high isospin
density (β = 2) and QCD with real quarks at high quark number density (β = 4). The
patterns of spontaneous symmetry breaking and associated ChRMTs are summarized
in Tables 4.1 and 4.2, respectively. We will show the correspondence of ChRMTs to
dense QCD-like theories through bosonization, as we did in Sect. 3.3. By doing this

1 See footnote 2 on p. 14 for the mathematical definition of real and pseudoreal representations.
2 For a generic pseudoreal representation we have to replace εab within the diquark pairing (3.19)
by a proper antisymmetric matrix of a given gauge group. However it does not affect the symmetry
breaking pattern (3.20) and the correspondence to the ChRMT (3.74).
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Fig. 4.1 The colormap plot of ρ2,ν(�) for τ = τ̌ = 5 with ν = 0 (left) and ν = 10 (right)

Fig. 4.2 The colormap plot of ρ2,ν(�) for (τ , τ̌ ) = (3, 6) (left) and (τ , τ̌ ) = (2, 8) (right) with
ν = 0. (The values outside the range [−0.6, 0.6] were clipped for a better visibility of the figure.)

we extend the “three-fold way” of matrix models at low density to the BCS superfluid
phase at high density. For β = 2 we also work out the microscopic spectral density
in the large-N limit exactly and find behaviors similar to two-color QCD (β = 1) as
the masses were varied.

4.2 QCD at Large Isospin Density (β = 2)

4.2.1 QCD Side

The theory we consider as a canonical example is SU(Nc) gauge theory with Nc≥3
colors and 2N f Dirac fermions in the fundamental representation of SU(Nc), with
chemical potential −μ for N f flavors (=u f ) and +μ for the other N f flavors (=d f ).
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Table 4.1 The ‘three-fold way’ of spontaneous symmetry breaking in QCD at high density with
N f Dirac fermions

For complex fermions (the real/pseudoreal fermions), the chemical potential for the isospin density
(for the quark number density) is considered. For pseudoreal fermions, N f is assumed to be even.
The U(1)A symmetry is restored at high density due to medium effects. Compare with the three-fold
way at zero density in Table 2.2

Table 4.2 The ‘three-fold way’ of ChRMT for QCD at high density

The blocks X and Y are independent gaussian random matrices. See the caption of Table 4.1 for
more details

This includes three-color QCD with 2N f = 2 at finite isospin chemical potential as
a special case. This theory, also known as the phase-quenched QCD [2], is free from
the sign problem for equal masses [3] and a direct lattice simulation is possible [4],
providing an opportunity to test theoretical predictions based on ChPT [5–10]. The
usefulness of ChPT in probing the phase diagram originates from the fact that, as in
two-color QCD, the global symmetry of this theory is explicitly broken by nonzero
chemical potential.

Ground State and Symmetry Breaking at μ � �

Let us denote the first N f flavors by u f ( f = 1, . . . , N f ) and the second N f flavors
by d f ( f = 1, . . . , N f ). First of all, the global symmetry of the Lagrangian at μ = 0
in the chiral limit is U(2N f )R × U(2N f )L . The nonzero μ breaks this symmetry
explicitly down to

G = U(N f )u R × U(N f )uL × U(N f )dR × U(N f )dL , (4.1)

with an obvious notation. At sufficiently high density and for small quark masses
m f � �, the Fermi surfaces of ū and d are degenerate and the attractive interaction
between them will lead to the formation of the bilinear condensate, owing to the BCS
mechanism [5, 6, 11, 12]:

http://dx.doi.org/10.1007/978-4-431-54165-3_2
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〈ū f γ5dg〉 ∼ μ2�

g
δ f g with � ∼ μ

g5
exp

(
−π2

g

√
6Nc

N 2
c − 1

)
, (4.2)

which breaks parity. While ūγ5d(= 0−) and ūd(= 0+) are not distinguished in
the one-gluon exchange interaction, the non-perturbative instanton-induced interac-
tion and nonzero quark masses favor ūγ5d over ūd and the degeneracy gets lifted
[13, 14]. We note that, for 2N f = 2, (4.2) has the same quantum numbers as the pion
condensate at low density. This observation hints at a continuous crossover from low
to high density [5, 6]. Since (4.2) is a color singlet, the ground state will be a BCS
superfluid in the confining phase, similarly to two-color QCD at high density; the
color superconductivity does not take place.

The condensate (4.2) breaks the symmetry G down to

H = U(N f )u R+dL × U(N f )uL+dR . (4.3)

The spontaneous symmetry breaking G → H gives rise to 2N 2
f NG modes with the

quantum numbers
ūγ5τ

Ad, d̄γ5τ
Au (4.4)

where {τ A} are the generators of U(N f ). The chiral anomaly can be ignored at
sufficiently large μ due to asymptotic freedom and the screening of instantons by
dense medium.

Since the measure of this theory is positive definite for equal masses, i.e.,

detN f (D(μ) + m) detN f (D(−μ) + m) = |det (D(μ) + m)|2N f > 0 , (4.5)

the method of QCD inequalities [15, 16] can be applied. Generalizing the argument
for the 2N f = 2 case in [5, 6] to generic N f is straightforward and one can verify
that the symmetry breaking driven by the condensate (4.2) is fully consistent with
the constraints from QCD inequalities.

For unequal masses, the Fermi surfaces of different flavors are not coincident and
the pairing (4.2) is not necessarily the most favored one. If the discrepancy of masses
is as large as

√
μ�, inhomogeneous phases will be realized [17]. In the present work

we avoid such exotic phases by always assuming ∀m f � �.

Chiral Lagrangian at High Density

The low-energy effective theory can be constructed via the so-called spurion analysis,
as in Sect. 3.2.1. We introduce coset fields which are related to the quark fields as

U f g
1 ∼ d f

L ūgR, U f g
2 ∼ u f

L d̄gR . (4.6)

http://dx.doi.org/10.1007/978-4-431-54165-3_3
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These fields live on the coset space G/H ∼= U(N f )×U(N f ) . Under a global unitary
transformation

u R → gu R u R (4.7)

uL → guL uL (4.8)

dR → gdR dR (4.9)

dL → gdL dL (4.10)

the coset elements transform as

U1 → gdL U1g
†
u R

, U2 → guL U2g
†
dR

(4.11)

while the mass matrix must transform as

M1 → guL M1g
†
u R

, M2 → gdL M2g
†
dR

(4.12)

to keep the mass term in the Lagrangian ūL M1u R + ū R M†
1 uL + d̄L M2dR + d̄R M†

2 dL

invariant.
Therefore the static part of the effective Lagrangian at O(M2) is uniquely deter-

mined to be
Lstat = −�2tr[M1U †

1 M2U †
2 ] + c.c. (4.13)

where � is a low energy constant of mass dimension 1. The sign was chosen so that
U1 = U2 = 1 is the ground state. There is no invariant term at O(M).

The constant terms tr[M†
1 M1] and tr[M†

2 M2] are neglected as they do not affect
the dynamics of the NG modes (see also the Appendix A.3). The effective chemical
potential of O(M2) (the so-called Bedaque-Schäfer term in the CFL phase of three-
color QCD [18]) is also dropped since it is suppressed by 1/μ at large μ.

Matching with HDET

We now show that the low energy constant � in Lstat is equal to � (the BCS gap) up
to a numerical constant through the matching with the high density effective theory
(HDET) [19, 20]. Although the procedure is essentially the same as in the two-color
case (Appendix A.2), there is a subtlety in the present case that calls for a separate
treatment. As discussed in the Appendix A.2 the mass term induces the following
four-fermion vertex in HDET [21]:

Lmass = g2

8μ4 (ψ† a
i,LCψ∗ b

j,L)(ψT c
k,RCψd

l,R)

×
[
(T A)ac(T

A)bd Mik M jl

]
+ (L ↔ R, M ↔ M†), (4.14)
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where i, j, k, l (a, b, c, d) are flavor (color) indices. Since this is derived for fermions
with equal chemical potential μ we cannot blindly apply it to the case of isospin
chemical potential. As a trick let us introduce a conjugate field of u f , say u f

c ,

u f
c = C(ū f )T ( f = 1, 2, . . . , N f ) (4.15)

with which the Lagrangian is cast into the form

L = ū[D(−μ) + M1 PR + M†
1 PL ]u + d̄[D(μ) + M2 PR + M†

2 PL ]d (4.16)

= ūc[DAF(μ) + M̃1 PR + M̃†
1 PL ]uc + d̄[D(μ) + M2 PR + M†

2 PL ]d . (4.17)

Here M̃1 ≡ MT
1 is the mass matrix for uc whereas DAF denotes the Dirac operator in

the anti-fundamental representation of the gauge group. The virtue of this rewriting
is that in the new basis, all quarks have a common chemical potential μ, so that we
can now use (4.14) to compute the shift of the ground state energy density δE due to
the mass term. Namely we obtain

δE ∝ g2

μ4

〈(
(u†

c)
a
i,LCd∗ b

j,L

)(
(uT

c )c
k,RCdd

l,R

)
(T̃ A)ac(T

A)bd(M̃1)ik(M2) jl

+ (L ↔ R, M ↔ M†)
〉

(4.18)

with T̃ A ≡ −(T A)∗ the color generator in the anti-fundamental representation.
Using

〈
(uc)

a
f Cdb

g

〉 ∝ δ f gδ
ab as well as (4.2) we find

δE ∝ g2

μ4

(
μ2�

g

)2

δi jδ
abδklδ

cd(T̃ A)ac(T
A)bd(M̃1)ik(M2) jl + c.c. (4.19)

= �2tr[M̃T
1 M2]tr[(T̃ A)T T A] + c.c. (4.20)

∝ −�2tr[M1 M2] + c.c. (4.21)

On the other hand, the chiral effective theory (4.13) evaluated at the ground state
(U1 = U2 = 1) gives δE = −�2tr[M1 M2] + c.c. The comparison shows that � is
equal to � up to a numerical factor, as claimed.

The ε-Regime

The ε-regime (or the microscopic domain) of this theory can be defined just as in two-
color QCD. The masses of the NG modes mNG are of order m f �/μ (cf. Eq. 3.36),
whereas the mass of the lightest non-NG particle is ∼ �. If the system is put in
a four-dimensional Euclidean box of size L × L × L × β ∼ L4 with β = 1/T
satisfying

http://dx.doi.org/10.1007/978-4-431-54165-3_3
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1

�
� L � 1

mNG
, (4.22)

then the zero-momentum modes of the NG modes will dominate the partition func-
tion. In this domain, the kinetic term of the effective theory drops out and the finite-
volume partition function is simply given by

ZQCD
2N f

(M1, M2) =
∫

U(N f )

[dU1]
∫

U(N f )

[dU2] exp
(

#V4�
2Re tr[M1U †

1 M2U †
2 ]
)

, (4.23)

where we are cavalier about the O(1) factor in the exponent. Since the U(1)A anomaly
is ignored, the partition function is independent of the θ angle (the replacement Mi →
Mi eiθ/N f is absorbed in the invariance of the Haar measure) and the topologically
non-trivial sectors of the gauge fields do not contribute to (4.23). The extension to
the intermediate density region where U(1)A anomaly is not negligible is discussed
in [22].

4.2.2 RMT Side

The ChRMT we consider is defined by

ZRMT
2N f ,ν

({m f }, {m̌} f }) =
∫

CN (N+ν)

[d P]
∫

CN (N+ν)

[d Q] e−N tr[P P†+Q Q†]

×
N f∏

f =1

det

(
m∗

f 1N P

Q† m f 1N+ν

) N f∏

g=1

det

(
m̌∗
g1N Q

P† m̌g1N+ν

)
,

(4.24)

where P and Q are complex N ×(N +ν) matrices (β = 2). The integer ν is arbitrary.
In the chiral limit, the determinants can be rearranged as

detN f

(
0 P

−P† 0

)
detN f

(
0 Q

−Q† 0

)
, (4.25)

which suggests (cf. Sect. 2.3.3) that the spontaneous symmetry breaking of this model
at large N must take place in such a way that

[U(N f )× U(N f )]P ×[U(N f )× U(N f )]Q → [U(N f )V ]P ×[U(N f )V ]Q . (4.26)

To our delight, this pattern exactly coincides with the symmetry breaking G → H
on the QCD side (see (4.1) and (4.3)); we are moving in the right direction!

http://dx.doi.org/10.1007/978-4-431-54165-3_3
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The σ-Model Representation: Matching with QCD

We define the N f × N f mass matrices M1, M2 by

M1 ≡ diag(m1, . . . , m N f ), M2 ≡ diag(m̌1, . . . , m̌ N f ). (4.27)

With the help of the fermionic variables u, ū, d, d̄ , the partition function can be
expressed as

ZRMT
2N f ,ν

(M1, M2) =
∫∫

[d P][d Q] e−N tr[P P†+Q Q†]
∫

d[u, ū, d, d̄]

× exp

[(
ū R

ūL

)(
M†

1 ⊗ 1N 1N f ⊗ P
1N f ⊗ Q† M1 ⊗ 1N+ν

)(
uL

u R

)

+
(

d̄R

d̄L

)(
M†

2 ⊗ 1N 1N f ⊗ Q
1N f ⊗ P† M2 ⊗ 1N+ν

)(
dL

dR

)]
. (4.28)

The exponent may be decomposed into three pieces: (P part) + (Q part) + (mass
terms). The ‘P part’ reads

− N Pi j P∗
i j + ū f

Ri Pi j u
f
R j + d̄ f

L j P∗
i j d

f
Li

= −N

(
Pi j − 1

N
d̄ f

L j d
f

Li

)(
P∗

i j − 1

N
ūgRi u

g
R j

)
− 1

N
(d̄ f

L ugR)(ūgRd f
L ) . (4.29)

Similarly the ‘Q part’ reads

− N Qi j Q∗
i j + ū f

L j Q∗
i j u

f
Li + d̄ f

Ri Qi j d
f
R j

= −N

(
Qi j − 1

N
ū f

L j u
f
Li

)(
Q∗

i j − 1

N
d̄gRi d

g
R j

)
− 1

N
(ū f

L dgR)(d̄gRu f
L ) . (4.30)

Now we integrate over P and Q and perform the Hubbard-Stratonovich transforma-
tion with the help of N f × N f complex auxiliary fields σ1 and σ2:

ZRMT
2N f ,ν

(M1, M2) =
∫

d[u, ū, d, d̄] exp
[

− 1

N
(d̄ f

L ugR)(ūgRd f
L ) − 1

N
(ū f

L dgR)(d̄gRu f
L )

+ ū f
R(M†

1 ) f gugL + ū f
L (M1) f gugR + d̄ f

R (M†
2 ) f gdgL + d̄ f

L (M2) f gdgR

]

(4.31)

=
∫

d[σ1,σ2]
∫

d
[
u, ū, d, d̄

]
exp

[
− N tr[σ†

1σ1 + σ†
2σ2]

+ σ
f g

1 (d̄ f
L ugR) − σ

f g∗
1 (ūgRd f

L ) + σ
f g

2 (ū f
L dgR) − σ

f g∗
2 (d̄gRu f

L )

+ ū f
R(M†

1 ) f gugL + ū f
L (M1) f gugR + d̄ f

R (M†
2 ) f gdgL + d̄ f

L (M2) f gdgR

]
(4.32)

=
∫

d[σ1,σ2]
∫

d
[
u, ū, d, d̄

]
exp

[
− N tr[σ†

1σ1 + σ†
2σ2]
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+

⎛

⎜⎜⎝

ū R

ūL

d̄R

d̄L

⎞

⎟⎟⎠

⎛

⎜⎜⎝

0 M†
1 ⊗ 1N 0 −σ†

1 ⊗ 1N

M1 ⊗ 1N+ν 0 σ2 ⊗ 1N+ν 0
0 −σ†

2 ⊗ 1N 0 M†
2 ⊗ 1N

σ1 ⊗ 1N+ν 0 M2 ⊗ 1N+ν 0

⎞

⎟⎟⎠

⎛

⎜⎜⎝

u R

uL

dR

dL

⎞

⎟⎟⎠

]

(4.33)

=
∫

d[σ1,σ2] e−N tr[σ†
1σ1+σ†

2σ2] detN+ν
(

M1 σ2

σ1 M2

)
detN

(
M†

1 −σ†
1

−σ†
2 M†

2

)
.

(4.34)

So far all transformations are exact. Next we take the large-N limit in which√
N‖M1,2‖ = O(1). The integral may be evaluated with the saddle point method.

Using the singular value decomposition for σ1,2, one finds that the saddle point
manifold is parametrized by unitary group elements:

σ1 = U1 ∈ U(N f ), σ2 = U2 ∈ U(N f ). (4.35)

Plugging this expression into (4.31) and expanding the determinant to the lowest
order we finally arrive at the σ-model representation of this ChRMT:

ZRMT
2N f ,ν

(M1, M2) ∼
∫

U(N f )

[dU1]
∫

U(N f )

[dU2] detν(U1U2) exp
(

2NRe tr[M1U †
1 M2U †

2 ]
)

.

(4.36)

In particular,

ZRMT
2,ν (m, m̌) ∼ Iν(2Nmm̌) . (4.37)

The random matrix partition function (4.36) at ν = 0 is exactly identical to the QCD
partition function (4.23) under the identification

√
V4�2m f

∣∣∣
QCD

⇐⇒ √
Nm f

∣∣∣
RMT

(4.38)

up to a numerical factor. The same mass dependence of ZQCD and ZRMT ensures that
all spectral sum rules are identical. This is a clear indication of spectral universality.

Microscopic Spectral Density

In the ε-regime, the spectral correlations of the Dirac eigenvalues in QCD can be
exactly mapped to ChRMT. In what follows, we outline the derivation of the micro-
scopic spectral density of the model (4.24) in four steps. This is a new result and is
not known in the literature.
For simplicity we assume ν ≥ 0 unless stated otherwise.
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• Step 1: We denote by {�2
k}N

k=1 the N eigenvalues of P Q†. The 2N +ν eigenvalues

of the matrix

(
0 P
Q† 0

)
then consist of ν exact zero eigenvalues and 2N nonzero

eigenvalues {�k,−�k}N
k=1. Using a mathematical result in [23] we can readily find

the so-called eigenvalue representation of this model:

ZRMT
2N f ,ν

(M1, M2) =
( 2N f∏

f =1

mν
f

) ∫

CN

N∏

k=1

d2�k

×
{
wν(�k)

N f∏

f =1

(m2
f − �2

k)(m̌
2
f − �∗2

k )
} ∣∣∣�N (�2)

∣∣∣
2

(4.39)

with
wν(�) ≡ |�|2ν+2 Kν(2N |�|2) (4.40)

and �N is the Vandermonde determinant.
• Step 2: Next, we wish to express the spectral density

R2N f ,ν(�) ≡
〈 N∑

i=1

δ2(� − �i )
〉

(4.41)

as a ratio of partition functions. By definition,

R2N f ,ν(�) = 1

ZRMT
2N f ,ν

(M1, M2)

( N f∏

f =1

m f m̌ f

)ν

×
∫

CN

N∏

k=1

d2�k

{
wν(�k)

N f∏

f =1

(m2
f − �2

k)(m̌
2
f − �∗2

k )
}

×
∣∣∣�N (�2)

∣∣∣
2 N∑

i=1

δ2(� − �i ) (4.42)

= N

ZRMT
2N f ,ν

(M1, M2)

( N f∏

f =1

m f m̌ f

)ν

×
∫

CN

N∏

k=1

d2�k

{
wν(�k)

N f∏

f =1

(m2
f − �2

k)(m̌
2
f − �∗2

k )
}

×
∣∣∣�N (�2)

∣∣∣
2
δ2(� − �N ) (4.43)
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= N

ZRMT
2N f ,ν

(M1, M2)

( N f∏

f =1

m f m̌ f

)ν
wν(�)

N f∏

f =1

(m2
f − �2)(m̌2

f − �∗2)

×
∫

CN−1

N−1∏

k=1

d2�k

{
wν(�k)(�

2 − �2
k)(�

∗2 − �∗2
k )

×
N f∏

f =1

(m2
f − �2

k)(m̌
2
f − �∗2

k )
} ∣∣∣�N−1(�

2)

∣∣∣
2

(4.44)

= N
1

|�|2ν wν(�)

N f∏

f =1

(m2
f − �2)(m̌2

f − �∗2)

×
ZRMT

2(N f +1),ν({M1,�}, {M2,�
∗})

ZRMT
2N f ,ν

(M1, M2)
, (4.45)

where the last step relies on the observation that

(�2 − �2
k)(�

∗2 − �∗2
k )

N f∏

f =1

(m2
f − �2

k)(m̌
2
f − �∗2

k )

=
{ N f +1∏

f =1

(m2
f − �2

k)(m̌
2
f − �∗2

k )
}∣∣∣

m N f +1=�, m̌ N f +1=�∗ (4.46)

is nothing but the fermion determinant for 2N f +2 flavors. This completes the second
step.
• Step 3: The next task is to express the partition function as a determinant. This can
be achieved with the method of Kieburg and Guhr [24]. Applying their theorem to
the integral (4.39) we readily obtain

ZRMT
2N f ,ν

(M1, M2) ∼
det

1≤ f, g≤N f

[
ZRMT

2,ν (m f , m̌g)
]

�N f (m
2)�N f (m̌

2)
. (4.47)

The overall multiplicative constant that does not depend on the masses is dropped.
• Step 4: Now we substitute (4.47) into (4.42). With a bit of algebra, we get

R2N f ,ν(�) ∼ 1

|�|2ν wν(�)

det
1≤ f, g≤N f +1

[
ZRMT

2,ν (m f , m̌g)
]∣∣∣∣

m N f +1=�, m̌ N f +1=�∗

det
1≤ f, g≤N f

[
ZRMT

2,ν (m f , m̌g)
]

(4.48)
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The final task is to take the N → ∞ limit to derive the universal microscopic limit
of the spectral density

ρ2N f ,ν
(�) ≡ lim

N→∞
1

2N
R2N f ,ν

(
�√
2N

)
(4.49)

= lim
N→∞

〈 N∑

i=1

δ2(� − √
2N�i )

〉
(4.50)

with τ f ≡ √
2Nm f and τ̌ f ≡ √

2Nm̌ f kept finite.

Using (4.37), we finally arrive at the main formula

ρ2N f ,ν
(�) = 2

π
|�|2 Kν(|�|2)

det
1≤ f, g≤N f +1

[
Iν(τ f τ̌g)

]∣∣∣∣
τN f +1=�, τ̌N f +1=�∗

det
1≤ f, g≤N f

[
Iν(τ f τ̌g)

]

(4.51)

which has not been known before. The method outlined above may be straight-
forwardly extended to the computations of higher-point correlation functions. The
overall normalization constant was fixed to 2/π by matching with ([25], Eq. (3.45))
(quenched result), namely we impose the condition that ρ2N f ,ν

(�) → 1
π as

|�| → ∞.
It is important to note that, unlike two-color QCD, there are no exactly real or

purely imaginary eigenvalues in this ChRMT.

Figures

The simplest case is obviously the case 2N f = 2, with masses (τ , τ̌ ):

ρ2,ν(�) = 2

π
|�|2 Kν(|�|2)

{
Iν(|�|2) − Iν(τ�∗)Iν(τ̌�)

Iν(τ τ̌ )

}
. (4.52)

In the chiral limit (τ , τ̌ → 0), ρ2,ν(�) is rotationally symmetric around the origin.
This is not true for two-color QCD (β = 1) and is a distinctive feature of this
ensemble (β = 2).

In Fig. 4.1 the plot of ρ2,ν(�) for equal masses is shown. (The spectrum in the
region Re� < 0 follows via chiral symmetry � ↔ −�.) The depletion of eigenval-
ues near � = τ and near the origin is clearly visible. The latter effect is pronounced
for ν = 10. Unlike two-color QCD, there is no repulsion of eigenvalues from the
real and imaginary axis.

http://dx.doi.org/10.1007/978-4-431-54165-3_3
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In Fig. 4.2 we show ρ2,ν(�) for unequal masses. The spectral “density” is no
longer positive definite and a circular domain of oscillation appears between τ and
τ̌ . This behavior was also seen in the spectrum of two-color QCD, see Sect. 3.5.

4.3 QCD with Real Quarks at Large Density (β = 4)

4.3.1 QCD Side

The theory we consider is a gauge theory with N f Dirac fermions in a real repre-
sentation of the gauge group (for example, the adjoint representation of SU(Nc) and
the vector representation of SO(Nc)).
This theory differs from two-color QCD (β = 1) in several respects:

(i) A color-singlet fermion may be formed from a quark and a gauge boson.
(ii) A color singlet diquark is symmetric under the exchange of two color indices,

in contrast to two-color QCD where the indices are antisymmetric. This leads to
a different pattern of global symmetry breaking.

(iii) The Dirac operator in this class of theories has a special anti-unitary symmetry

[γ5C K ,D(μ)] = 0 with (γ5C K )2 = −1, (4.53)

where K is the operator of complex conjugation. Consequently all nonzero eigen-
values of D(μ) appear in quadruplets (λn,−λn,λ∗

n,−λ∗
n). The eigenvector for

λn and that for ±λ∗
n are proven to be linearly independent [26]. This forbids the

existence of exactly real or purely imaginary eigenvalues, in contrast to two-color
QCD.

(iv) The quadruplet structure of the Dirac spectrum implies that the quark determinant
(for nonzero eigenvalues) is strictly positive:

det′ (D(μ) + m) =
∏

n

∣∣∣λ2
n − m2

∣∣∣
2

> 0 . (4.54)

Therefore this class of theories is free from the sign problem for any N f and for
arbitrary masses. This makes contrast with two-color QCD where even N f and
pairwise degenerate masses are necessary to have positive measure.

The most popular theory in this class seems to be the SU(Nc) gauge theory
with adjoint quarks. There is a vast literature on this subject and it is impossible to
cite all articles; see [7, 22, 26–30] and references therein. Recently SO(Nc) gauge
theories at finite density has also attracted interests, in relation to the so-called orbifold
equivalence at large Nc [12, 31, 32].

http://dx.doi.org/10.1007/978-4-431-54165-3_3
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Ground State and Symmetry Breaking at μ � �

Because a real representation is equivalent to its conjugate representation, a left-
handed spinor and the complex conjugate of a right-handed spinor can be arranged
into a single extended multiplet, as in two-color QCD (Sect. 2.2.1). Consequently
the global symmetry of the Lagrangian at μ = 0 in the chiral limit is enhanced
to U(2N f ) for N f Dirac fermions [28]. Adding nonzero μ breaks this symmetry
explicitly down to the conventional group

G = U(N f )R × U(N f )L . (4.55)

At sufficiently high density, the U(1)A anomaly may be neglected. The quasi-free
quarks will form Fermi surfaces and the attractive interaction in the color-singlet
diquark channel drives the system toward the condensation of Cooper pairs according
to the BCS mechanism:

〈
ψ

f T
a Cγ5 Eabψ

g
b

〉
∼ μ2�

g
δ f g, (4.56)

where E is a symmetric matrix in color space that is specific to the given real rep-
resentation of quarks. The color superconductivity does not take place; the system
is a BCS-type superfluid in the confining phase. Since the diquark pairing takes
place with the same flavor, this condensate will be sustained even for non-degenerate
masses. Thus, the ground state is only invariant under the smaller group

H = SO(N f )R × SO(N f )L . (4.57)

The SSB G → H gives rise to N 2
f + N f NG modes, which dominate the low-energy

physics near the Fermi surface.
Since the measure is positive definite for any μ the method of QCD inequalities

[15, 16] can be applied. One can show that the symmetry breaking pattern (4.56) is
indeed consistent with the constraints from QCD inequalities.

Chiral Lagrangian at High Density

The low-energy effective theory can be constructed by means of the spurion analysis.
The coset space on which the NG modes live is

G/H ∼= (
U(N f )/SO(N f )

)
1 × (

U(N f )/SO(N f )
)

2. (4.58)

The elements of
(
U(N f )/SO(N f )

)
i can be parametrized as �i = UiU T

i (i = 1, 2)

with Ui ∈ U(N f ) [27]. They are related to the quark fields as

�
f g

1 ∼ (ψR)
f
a C Eab(ψT

R )
g
b, �

f g
2 ∼ (ψL)

f
a C Eab(ψT

L )
g
b. (4.59)

http://dx.doi.org/10.1007/978-4-431-54165-3_2
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Under a global unitary transformation

ψR → gRψR (4.60)

ψL → gLψL (4.61)

the coset elements transform as

�1 → gR�1g
T
R , �2 → gL�2g

T
L (4.62)

while the mass matrix must transform as

M → gL Mg†
R (4.63)

to keep the mass term in the Lagrangian ψ̄L MψR + ψ̄R M†ψL invariant.
Therefore the static part of the effective Lagrangian at O(M2) is uniquely deter-

mined to be
Lstat = −�2tr[M�1 MT �

†
2] + c.c. (4.64)

where � is a low energy constant of mass dimension 1. The sign was chosen so that
�1 = �2 = 1 is the ground state. There is no invariant term at O(M).

The constant term tr[M† M] is neglected as it does not affect the dynamics of the
NG modes (see also the Appendix A.3. The effective chemical potential of O(M2)

(the so-called Bedaque-Schäfer term in the CFL phase of three-color QCD [18]) is
also dropped since it is suppressed by 1/μ at large μ.

Matching with HDET

We now show that the low energy constant � in Lstat is equal to � (the BCS gap) up
to a numerical factor, through the matching with HDET [19, 20]. The procedure is
just a rerun of arguments for β = 1 and 2. As noted in the Appendix A.2 the mass
term induces the following four-fermion vertex in HDET [21]:

Lmass = g2

8μ4 (ψ† a
i,LCψ∗ b

j,L)(ψT c
k,RCψd

l,R)

×
[
(T A)ac(T

A)bd Mik M jl

]
+ (L ↔ R, M ↔ M†) , (4.65)

where i, j, k, l (a, b, c, d) are flavor (color) indices. The color generators are in a
real representation of the gauge group. Plugging (4.56) into this formula we find the
shift of the ground state energy density δE due to the mass term to be



116 4 Three-fold Way at High Density

δE ∝ − g2

μ4

(
μ2�

g

)2

tr[MT M] + c.c. (4.66)

= −�2tr[MT M] + c.c. (4.67)

Matching with (4.64) yields � ∼ �, as claimed.

The ε-Regime

The ε-regime (or the microscopic domain) for this class of theories can be defined
as in the cases of β = 1 and 2. The masses of the NG modes mNG are of order
m f �/μ (cf. Eq. (3.36)), whereas the mass of the lightest non-NG particle is ∼ �. If
the system is put in a four-dimensional Euclidean box of size L × L × L × β ∼ L4

with β = 1/T satisfying
1

�
� L � 1

mNG
, (4.68)

then the zero-momentum modes of the NG modes will dominate the partition func-
tion. In this domain, the kinetic term of the effective theory drops out and the finite-
volume partition function is simply given by

ZQCD
N f

(M) =
∫

U(N f )

[dU1]
∫

U(N f )

[dU2] exp
(

#V4�
2 Re tr

[
MU1U T

1 MT (U2U T
2 )†]) .

(4.69)

4.3.2 RMT Side

The ChRMT we consider is defined by

ZRMT
N f ,ν̄

(M) =
∫

HN (N+ν̄)

[dV ]
∫

HN (N+ν̄)

[dW ]
N f∏

f =1

det

(
m∗

f 1N V
W † m f 1N+ν̄

)
e−N tr[V V †+W W †]

(4.70)

where V and W are N × (N + ν̄) matrices whose elements are real quaternions
(β = 4). The integer ν̄ is arbitrary at this stage.

The determinant is invariant under U(N f ) × U(N f ). To check the symmetry
breaking pattern of this model, we take the chiral limit and rewrite the fermion part
as follows:

http://dx.doi.org/10.1007/978-4-431-54165-3_3
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N f∏

f =1

det

(
0 V
W † 0

)
= detN f V · detN f W (4.71)

= QdetN f

(
0 V
V † 0

)
QdetN f

(
0 W

W † 0

)
, (4.72)

where Qdet stands for the quaternion determinant [33]. The factor involving V is
exactly the fermion determinant inβ = 4 ChRMT for QCD with N f Majorana fermi-
ons at zero density [34], and likewise for the second factor involving W . Therefore
the pattern of SSB at large N must be [34]

U(N f ) × U(N f ) → SO(N f ) × SO(N f ) . (4.73)

This coincides with the SSB G → H on the QCD side. This observation offers a
quick check that this model should be the right ChRMT for dense QCD with real
quarks.

In what follows, we use the basis τμ := (1,−i �σ) for quaternions and view V

and W as ordinary 2N ×2(N + ν̄) matrices with complex entries. Then the “det” and
“tr” in (4.70) are to be interpreted as the determinant and the trace of such extended
matrices.

The σ-Model Representation: Matching with QCD

We shall derive the asymptotic form of ZRMT in the large-N limit. In the quaternion
basis, the elements of V and W may be written as

Vi j = Aμi jτμ and Wi j = Bμi jτμ , (4.74)

where A and B are N × (N + ν̄) real matrices. Then

ZRMT
N f ,ν̄

(M) =
∫ ∏

μ,i, j

d Aμi j d Bμi j

×
N f∏

f =1

det

(
m∗

f 12N Aμτμ
(Bντν)† m f 12(N+ν̄)

)
e−2N tr[AμAμT +BμBμT ] (4.75)

=
∫ ∏

μ,i, j

d Aμi j d Bμi j e−2N tr[AμAμT +BμBμT ]
∫

d[ψR,ψL , ψ̄R, ψ̄L ]

× exp

[(
ψ̄R

ψ̄L

)(
M† ⊗ 12N 1N f ⊗ Aμτμ
1N f ⊗ (Bντν)† M ⊗ 12(N+ν̄)

)(
ψL

ψR

)]
. (4.76)
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Aside from the mass term, the exponent consists of two pieces. The part containing
Aμ reads

− 2N (Aμi j )
2 + ψ̄

f
Ri Aμi jτμψ

f
R j

= −2N

(
Aμi j − 1

4N
ψ̄

f
Riτμψ

f
R j

)2

+ 1

8N
ψ̄

f
Riτμψ

f
R j ψ̄

g
Riτμψ

g
R j . (4.77)

Similarly the part containing Bν reads

− 2N (Bνi j )
2 + ψ̄

f
Li Bνj iτ

†
ν ψ

f
L j

= −2N

(
Bνj i − 1

4N
ψ̄

f
Liτ

†
ν ψ

f
L j

)2

+ 1

8N
ψ̄

f
Liτ

†
ν ψ

f
L j ψ̄

g
Liτ

†
ν ψ

g
L j . (4.78)

After integrating out Aμi j and Bμi j , we find for the partition function

ZRMT
N f ,ν̄

(M) =
∫

d[ψR,ψL , ψ̄R, ψ̄L ] exp
[
ψ̄

f
Ri M†

f gψ
g
Li + ψ̄

f
Li M f gψ

g
Ri

+ 1

8N
ψ̄

f
Riτμψ

f
R j ψ̄

g
Riτμψ

g
R j + 1

8N
ψ̄

f
Liτ

†
ν ψ

f
L j ψ̄

g
Liτ

†
ν ψ

g
L j

]
. (4.79)

We denote the two components of fermion fields as

ψR/L =
(
χR/L

λR/L

)
, ψ̄R/L =

(
χ̄R/L

λ̄R/L

)
(4.80)

and use the identity

3∑

μ=0

(τμ)
αβ(τμ)

γδ = 2(δαβδγδ − δαδδβγ) =
3∑

ν̄=0

(τ†
ν )αβ(τ†

ν )γδ (4.81)

to obtain

ZRMT
N f ,ν̄

(M) =
∫

d[λ, λ̄,χ, χ̄] exp
[

M f g(χ̄
f
Lχ

g
R + λ̄

f
Lλ

g
R) + M†

f g(χ̄
f
Rχ

g
L + λ̄

f
Rλ

g
L)

+ 1

4N
(λ̄

f
Rχ̄

g
R + λ̄

g
Rχ̄

f
R)(χ

f
Rλ

g
R + χ

g
Rλ

f
R)

+ 1

4N
(λ̄

f
L χ̄

g
L + λ̄

g
L χ̄

f
L )(χ

f
Lλ

g
L + χ

g
Lλ

f
L )
]
. (4.82)

The next task is to perform the Hubbard-Stratonovich transformation to bilinearize
the four-fermion vertices. Introducing N f × N f complex symmetric matrices σ1 and
σ2, we can rewrite the partition function as
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ZRMT
N f ,ν̄

(M) =
∫

d[σ1,σ2] e−N tr[σ†
1σ1+σ†

2σ2]
∫

d[λ, λ̄,χ, χ̄]

× exp
[

M f g(χ̄
f
Lχ

g
R + λ̄

f
Lλ

g
R) + M†

f g(χ̄
f
Rχ

g
L + λ̄

f
Rλ

g
L )

+(σ1)
f gλ̄

f
R χ̄

g
R + (σ†

1) f gχ
f
Rλ

g
R + (σ2)

f gλ̄
f
L χ̄

g
L + (σ†

2) f gχ
f
Lλ

g
L

]
(4.83)

=
∫

d[σ1,σ2] e−N tr[σ†
1σ1+σ†

2σ2]
∫

d[λ, λ̄,χ, χ̄]

× exp

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

χ̄R

λ̄R

χL

λL

χ̄L

λ̄L

χR

λR

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −σ1 M† 0
σ1 0 0 M†

−M∗ 0 0 σ†
2

0 −M∗ −σ†
2 0

0 −σ2 M 0
σ2 0 0 M

−MT 0 0 σ†
1

0 −MT −σ†
1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

χ̄R

λ̄R

χL

λL

χ̄L

λ̄L

χR

λR

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.84)

where the tensor products (⊗1N in the upper-left block and ⊗1N+ν̄ in the lower-right
block) were omitted for brevity. The integration over the grassmann variables leaves
us with pfaffians:

ZRMT
N f ,ν̄

(M) =
∫

d[σ1,σ2] e−N tr[σ†
1σ1+σ†

2σ2] Pf N

⎛

⎜⎜⎝

0 −σ1 M† 0
σ1 0 0 M†

−M∗ 0 0 σ†
2

0 −M∗ −σ†
2 0

⎞

⎟⎟⎠

× Pf N+ν̄

⎛

⎜⎜⎝

0 −σ2 M 0
σ2 0 0 M

−MT 0 0 σ†
1

0 −MT −σ†
1 0

⎞

⎟⎟⎠ . (4.85)

To evaluate these pfaffians we use the identity

Pf

(
A B

−BT D

)
= Pf D · Pf(A + B D−1 BT ) (4.86)

with A and D antisymmetric and even-dimensional. This leads us to

ZRMT
N f ,ν̄

(M) =
∫

d[σ1,σ2] e−N tr[σ†
1σ1+σ†

2σ2](det σ2)
N+ν̄(det σ†

2)N

× detN+ν̄ (σ†
1 + MT (σ2)

−1 M
)

detN
(
σ1 + M†(σ†

2)−1 M∗) . (4.87)

All transformations so far are exact. Now let us take N → ∞ keeping
√

N‖M‖ ∼
O(1). In this limit the integral may be evaluated with a saddle-point approximation.
With a bit of algebra, we find that the saddle point manifold can be parametrized as
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σ1 = U1U T
1 and σ2 = U2U T

2 with (U1, U2) ∈ U(N f ) × U(N f ). (4.88)

We then plug this into (4.87) and expand the determinant to the first nontrivial order,
obtaining

ZRMT
N f ,ν̄

(M) =
∫

U(N f )

[dU1]
∫

U(N f )

[dU2] detν̄(U∗
1 U †

1 U2U T
2 )

× exp
(

2N Re tr[MU1U T
1 MT U∗

2 U †
2 ]
)
. (4.89)

For ν̄ = 0, this expression is exactly the same as the QCD partition function (4.69)
in the ε-regime upon the identification (4.38). This ensures that all spectral sum rules
are identical between QCD and ChRMT, which is a strong indication of the spectral
universality: the spectral correlations of the Dirac operator in QCD may be computed
exactly by means of ChRMT.

Microscopic Spectral Density

The microscopic spectral correlation functions of this ChRMT have already been
worked out in [35, 36] from a purely mathematical interest. The distinctive feature
of the obtained spectral density, in comparison to β = 1 and 2, is that there is no
oscillatory domain on the spectrum even for non-degenerate masses. This is natural
in view of the absence of the sign problem in this model for arbitrary masses.
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Chapter 5
Conclusions

In this thesis, i extended the description of the Dirac spectrum in QCD vacuum
in terms of the low energy effective theory of Nambu-Goldstone (NG) bosons and
chiral random matrix theory (ChRMT), to the high density regime of a class of
QCD-like theories, taking two-color QCD as a primary example. We discovered a
novel correspondence between dense QCD and strongly non-Hermitian ChRMT,
and thereby elucidated how the BCS pairing of quarks and the resulting symmetry
breaking affect the distribution of small Dirac eigenvalues.

In Chap. 2 i have presented a quick introduction to the necessary background
of this research, namely the phase structure of QCD at finite temperature den-
sity (Sect. 2.1), chiral perturbation theory (ChPT) in two-color QCD (Sect. 2.2) and
ChRMT with chemical potential (Sect. 2.3), placing an emphasis on the universal
correspondence between ChPT in the ε-regime and ChRMT in the large-N limit of
weak non-Hermiticity.

In Chap. 3 and Sect. 3.1 i discussed the ε-regime of the color-flavor-locked (CFL)
phase, the ground state of QCD with three colors and three flavors at asymptotically
high density. The comparison between an effective low-energy finite-volume parti-
tion function and its microscopic expression in terms of Dirac eigenvalues, enabled
us to derive new Leutwyler-Smilga-type spectral sum rules of Dirac eigenvalues at
high density. These sum rules indicate that the BCS gap � of quarks is a typical
scale of statistical fluctuation of Dirac eigenvalues at high density, which makes an
interesting contrast to the QCD vacuum where it is the chiral condensate 〈q̄q〉 that
sets the scale of Dirac eigenvalues. In Chap. 3 and Sect. 3.2 we moved on to two-
color QCD and derived the effective theory of NG modes at high density, where the
chiral symmetry is spontaneously broken by a gauge invariant diquark condensate
〈qq〉. We then defined “ε-regime” in two-color QCD at high density and derived
nontrivial spectral sum rules for the Dirac eigenvalues. Our motivation to look into
two-color QCD originates from the fact that the notorious sign problem of QCD at
finite quark density, which makes conventional Monte Carlo techniques ineffective,
can be avoided in two-color QCD if the number of flavors is even and the quark
masses are pairwise degenerate. Our spectral sum rules therefore provide a new way

T. Kanazawa, Dirac Spectra in Dense QCD, Springer Theses, 123
DOI: 10.1007/978-4-431-54165-3_5, © Springer Japan 2013

http://dx.doi.org/10.1007/978-4-431-54165-3_2
http://dx.doi.org/10.1007/978-4-431-54165-3_2
http://dx.doi.org/10.1007/978-4-431-54165-3_2
http://dx.doi.org/10.1007/978-4-431-54165-3_2
http://dx.doi.org/10.1007/978-4-431-54165-3_3
http://dx.doi.org/10.1007/978-4-431-54165-3_3
http://dx.doi.org/10.1007/978-4-431-54165-3_3
http://dx.doi.org/10.1007/978-4-431-54165-3_3


124 5 Conclusions

to extract the BCS gap from the Dirac eigenvalue distribution measured in lattice
simulations. We also defined the microscopic spectral density of Dirac eigenvalues
in dense two-color QCD and argued, based on the obtained spectral sum rules, that
it should be universal, i.e., solely determined by global symmetries while entirely
insensitive to the ultraviolet dynamics of QCD.

To substantiate this claim, in Chap. 3 and Sect. 3.3 we introduced a strongly non-
Hermitian ChRMT and showed that it reproduces all spectral sum rules of Dirac
eigenvalues derived in Chap. 3 and Sect. 3.2. In Chap. 3 and Sect. 3.4 we carried out
an exact computation of the microscopic spectral density of the proposed ChRMT
for even number of flavors, (I) in the large-N limit of weak non-Hermiticity, which
is exactly mapped to two-color QCD at small chemical potential, as well as (II)
in the large-N limit of maximal non-Hermiticity, which is exactly mapped to the
high-density BCS superfluid phase of two-color QCD. We found that a strong oscil-
lation emerges in the spectral density in both limits when the sign problem is harsh.
A similar phenomenon has also been observed in three-color QCD at small chemical
potential [1, 2].

In Chap. 3 and Sect. 3.5 we evaluated the severity of the sign problem of dense
two-color QCD using ChRMT in two ways. First, we approximated the exact formula
of the microscopic spectral density of complex eigenvalues for N f = 2 at maximal
non-Hermiticity by leading exponential terms and showed that there are indeed two
regions on the spectrum separated by a circle, outside which the density is flat and
smooth while outside which the density oscillates with a small wavelength and a large
amplitude. Moreover we argued that the envelope of the oscillatory domain can be
interpreted as a line of first order phase transition in the theory with two additional
flavors. Secondly, we computed the average sign of the fermion determinant exactly,
as a function of μ in the limit of weak non-Hermiticity, and as a function of |m1−m2|
in the limit of maximal non-Hermiticity, with m1,2 the quark masses. In the former
case, we found that the sign problem for N f = 1 gets harsh when μ � mπ/2. In the
latter case, we found that the sign problem for N f = 2 worsens when |m1 − m2| �
4.5/

√
V4�2. In both cases we observed that the sign problem is milder in the sector of

larger topological charge, as independently found in [3] at small chemical potential
in three-color QCD. The novelty of our analysis is that we are the first to study the
sign problem in the BCS regime of dense QCD.

Finally, we showed in Chap. 4 that our analysis on two-color QCD can be gen-
eralized to three classes of dense QCD-like theories: QCD with pseudoreal quarks
at high baryon density (β = 1), QCD with complex quarks at high isospin density
(β = 2), and QCD with real quarks at high baryon density (β = 4), where the
words (pseudoreal/complex/real) refer to the property of the color representations of
quarks, whereas β stands for the usual Dyson index. Thus the “three-fold way” of
ChRMT discovered by Verbaarschot in QCD vacuum [4] has now been extended to
a drastically different regime, i.e., the weak-coupling BCS regime of high density
QCD.

As is the case with every scientific research, our work poses various future chal-
lenges. One may ask (I): “If we have two distinct low-energy effective theories for
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two-color QCD at low density and at high density, how can they be interpolated at
moderate density? Should we expect a phase transition in between?” And (II): “In
two-color QCD we can, in principle, add two kinds of masses: the ordinary Dirac
mass and the Majorana mass (i.e., the diquark source). What can we learn by adding
the latter?” These questions were investigated in [5] and were answered completely.
Regarding (I), we found that there are three effective theories for two-color QCD
at nonzero density. Each theory has its own domain of validity, and the overlap of
domains of validity naturally accounts for a crossover from one theory to another as
we increase the density. Thus a phase transition is not mandatory. As for (II), the
Majorana masses were found to be a probe of the singular value spectrum of the
Dirac operator. While the eigenvalues are related to the BCS gap �, the singular
values of the Dirac operator are related to the diquark condensate 〈qq〉. The reader
can find ‘further details in [5].

The extension of our theoretical framework to the realistic case of three-color QCD
at high baryon density is an important unsolved problem. One of the hallmarks of
this theory is that the SU(3) gauge symmetry is completely broken via the Anderson-
Higgs mechanism owing to the condensation of color-antitriplet diquarks. There are
several difficulties to be solved in the application of RMT to this phase; see the
discussion at the end of Chap. 3 Sect. 3.1. We defer this issue to future work. A direct
check of our analytical results via first-principle lattice QCD simulations is another
important direction to be pursued in the future.
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Appendix A

A.1 Convention

First, the Pauli matrices are defined as

�1 ¼
0 1

1 0

� �
;�2 ¼

0 �i

i 0

� �
;�3 ¼

1 0

0 �1

� �
: ðA:1Þ

In the four-dimensional Minkowski spacetime, we define

g„” ¼ diagð1;�1;�1;�1Þ ; „; ” ¼ 0; 1; 2; 3 ðA:2Þ

f�„; �”g ¼ 2g„” ; ð�0Þy ¼ �0; ð�iÞy ¼ ��i ðA:3Þ

�5 ¼ i�0�1�2�3 ðA:4Þ

�0 ¼
0 1

1 0

� �
; �i ¼

0 ��i

�i 0

� �
; �5 ¼

1 0

0 �1

� �
ðA:5Þ

C ¼ i�2�0 : The charge conjugation matrix ðA:6Þ

C ¼ C� ¼ �CT ¼ �C�1; CyC ¼ 1 ðA:7Þ

C�„C ¼ ð�„ÞT ðA:8Þ

LQCD ¼
XNf

f¼1

ˆf ði�„D„ � mf þ „�0Þˆf �
1
4

Fa
„”F

a„” ðA:9Þ

ˆ ¼ ˆy�0; D„ ¼ o„ þ igAa
„Ta; a ¼ 1; 2; . . . ; N2

c � 1 ðA:10Þ

In the four-dimensional Euclidean spacetime, we define

x0 ¼ �ixE
0 ; Aa

0 ¼ iðAEÞa0; �i ¼ ��i ¼ i�E
i ; ðA:11Þ
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where the subscript ‘E’ for Euclidean quantities will be omitted below for
simplicity. Then

f�„; �”g ¼ 2–„” ; ð�„Þ
y ¼ �„ ðA:12Þ

�0 ¼
0 1

1 0

� �
; �i ¼

0 �i�i

i�i 0

� �
; �5 ¼

1 0

0 �1

� �
ðA:13Þ

C ¼ i�0�2 ¼
��2 0

0 �2

� �
; C ¼ �C� ¼ �CT ¼ C�1; CyC ¼ 1 ðA:14Þ

C�„C ¼ �ð�„Þ
T ¼ ���„ ðA:15Þ

LQCD ¼
XNf

f¼1

ˆf ð�„D„ þ mf � „�0Þˆf þ
1
4

Fa
„”F

a
„” ðA:16Þ

ˆ ¼ ˆy�0; D„ ¼ o„ þ igAa
„Ta; a ¼ 1; 2; . . .; N2

c � 1 ðA:17Þ

The expressions for �0 and �i can be unified to

�„ ¼
0 �i�„

i�y„ 0

 !
for�„ ¼ ði1;�1;�2;�3Þ : ðA:18Þ

Note that the Dirac operator �„D„ is anti-Hermitian in our convention. With a
nonzero chemical potential, the operator Dð„Þ � �„D„ � „�0 is no longer anti-
Hermitian. Instead it satisfies

Dð„Þy ¼ �Dð�„Þ : ðA:19Þ

A.2 Microscopic Derivation of Mass Terms in the Effective
Theory

In this appendix we give the detailed derivation of the coefficient of the mass term
in the effective Lagrangian at high density, (3.4) and (3.29). For this purpose, we
calculate the shift of the vacuum energy due to the quark mass from the micro-
scopic theory (QCD), which should be matched against the result obtained from
the low-energy effective Lagrangian. The starting point is the mass term of the
microscopic theory given in [1],

Lmass ¼
g2

8„4
ðˆy a

i;L Cˆ� b
j;LÞðˆT c

k;RCˆd
l;RÞ ðTAÞacðTAÞbdMikMjl

h i
þ ðL$ R; M $ MyÞ ;

ðA:20Þ
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where i; j; k; lða; b; c; dÞ are flavor (color) indices and TA (A ¼ 1; . . .;N2
c � 1) are

SUðNcÞ color generators with normalization trðTATBÞ ¼ –AB=2 . Let us focus on
the case Nc ¼ 2 for concreteness. The diquark condensates dL and dR that are
antisymmetric in flavor and color can be written as

hˆT a
i;L Cˆb

j;Li ¼ eabIijdL ; hˆT a
i;R Cˆb

j;Ri ¼ eabIijdR ; ðA:21Þ

where I is defined in (2.17). The expectation values of dL and dR in the ground
state can be evaluated in weak coupling. Generalizing the result of [1] to arbitrary
Nc, we obtain

jdLj ¼ jdRj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6Nc

Nc þ 1

r
„2�

…g
: ðA:22Þ

Using (A.21), (A.22), and the Fierz identity

ðTAÞacðTAÞbd ¼ 1
2
–ad–bc � 1

2Nc
–ac–bd ; ðA:23Þ

the shift of the vacuum energy density due to the quark mass for Nc ¼ 2 is found
to be

–E ¼ 3�2

4…2
trðMIMT IÞ þ ðM $ MyÞ : ðA:24Þ

For Nf ¼ 2 we have Iij ¼ eij, and (A.24) reduces to

–ENf¼2 ¼ �
3�2

2…2
det M þ ðM $ MyÞ : ðA:25Þ

By comparing (A.24) or (A.25) with the vacuum energy obtained from the low-
energy effective Lagrangian (with §L ¼ §R ¼ I) or (3.37), the values of the
coefficients are found to be

c ¼ 3
4…2

; c0 ¼ 3
2…2

; ðA:26Þ

respectively, where c0 corrects the value of 4=3…2 given in [2].
In the CFL phase for Nf ¼ Nc ¼ 3, (A.21) must be replaced by

hˆT a
i;HCˆb

j;Hi ¼ ð–ai–bj � –aj–biÞdH ; ðH ¼ L; RÞ ðA:27Þ

and the ensuing analysis goes along the same lines as for Nc ¼ 2.
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A.3 tr½MMy� in the e-regime

As noted on Chap. 3 Sect. 3.1, the effective action of the CFL phase contains a
term tr½MMy�, which was overlooked in [3].1 This term is usually neglected in the
literature as it is independent of the Nambu-Goldstone fields and irrelevant to
dynamical properties of dense matter such as transport coefficients. However it
matters when we are interested in the quark mass dependence of the partition
function itself. The origin of this term is quite easy to understand: for a free quark,
the shift of the energy due to a current mass is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ m2

p
� jpj � m2

2jpj :
ðA:28Þ

This contribution comes from all quarks inside the Fermi sphere of volume
/ p3

F �„3. Therefore the total contribution would be of order

„3 � m2

2„
�„2m2 : ðA:29Þ

We can thus expect that there will be a term C„2tr½MMy� in the effective action at
high density, with C�Oð1Þ a numerical constant. Then (3.9) must be modified as

ZEFTðMÞ

¼
Z

Uð3Þ

½d§�exp
3

4…2
V4�2

n
ðtrM§yÞ2�trðM§yÞ2

o
det§þh.c.þCV4„

2trMMy
� �

:

ðA:30Þ

The expansion (3.11) must also be altered to

ZEFTðMÞ ¼ 1þ CV4„
2trMMy þ 3

8…4
ðV4�2Þ2

n
ðtrMMyÞ2 � trðMMyÞ2

o

þ 1
2
ðCV4„

2Þ2ðtrMMyÞ2 þOðM6Þ :
ðA:31Þ

Matching this expression with

ZQCDðMÞ ¼1þ trMyM
X

n

0 1

‚2
n

* +* +
þ ðtrM

yMÞ2 � trðMyMÞ2

2

X
n

0 1

‚4
n

* +* +

þ ðtrMyMÞ2
X
m6¼n

0 1

‚2
m‚

2
n

* +* +
þOðM6Þ ;

ðA:32Þ

1 Subleading terms like tr½ðMyMÞ2� are negligibly small compared to the leading one.
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yields the modified spectral sum rules (cf. (3.15) and (3.16)):

X
n

0 1

‚2
n

* +* +
¼ CV4„

2 ; ðA:33Þ

X
n

0 1

‚4
n

* +* +
¼ 3

4…4
ðV4�2Þ2 ; ðA:34Þ

X
m6¼n

0 1

‚2
m‚

2
n

* +* +
¼ 1

2
ðCV4„

2Þ2 ; etc. ðA:35Þ

The inclusion of tr½MyM� turned vanishing spectral sums into nonzero large values
( (A.33) and (A.35)). It is interesting, however, that (A.34) receives no
correction from the bulk term tr½MyM�, which guarantees that (3.17) is correct as it
stands.

These modified sum rules involve two scales: „ and � with ��„e�1=g 	 „.

While (A.33) suggests that the eigenvalues are Oð1=
ffiffiffiffiffiffiffiffiffiffi
V4„2

p
Þ, (A.34) implies that

they are Oð1=
ffiffiffiffiffiffiffiffiffiffiffi
V4�2
p

Þ. Which is the right scale?
This paradox can be resolved as follows. Let us start with the free Dirac

operator p � „�0. (The omission of the gauge interaction makes sense as a rough
approximation since the coupling constant is small at asymptotically high density
owing to asymptotic freedom.) Since the momentum of those quarks that
participate in the BCS pairing is typically Oð„Þ, it is in principle possible that the
combination p= � „�0 becomes much smaller than „ owing to a cancellation
between the two terms. From the consistency with (A.34), the cancellation is
expected to result in small Dirac eigenvalues of order Oð1=

ffiffiffiffiffiffiffiffiffiffiffi
V4�2
p

Þ. It is this scale
that arises from the BCS pairing at the Fermi surface.

On the other hand, quarks deep inside the Fermi sea do not participate in the
collective motion of Cooper pairs. They carry arbitrary momentum from 0 to „, so
that p= � „�0 can take all values up to Oð„Þ. Therefore, schematically, we will get
(in Euclidean spacetime)

X
n

0 1

‚2
n

* +* +
�V4

Z
dp0

Z
jpj\„

d3p
1

ðp0 þ i„Þ2 þ p2
� V4„

2 : ðA:36Þ

In this way we recover (A.33). We see that it is the 4-dimensional integral
R

d4p

that transmutes small 1=‚2
n� 1=„2into large V4„

2. Therefore it is erroneous to

conclude from (A.33) that the scale of eigenvalues is Oð1=
ffiffiffiffiffiffiffiffiffiffi
V4„2

p
Þ; rather, the

typical scale of eigenvalues associated with (A.33) is Oð„Þ.
It remains to explain why there is no contribution from ‘hard’ eigenvalues

�Oð„Þ to (A.34). Based on the same logic as above, we can estimate their
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contribution to be �V4„
4 � ð1=„Þ4�V4. This is negligibly small compared to the

RHS of (A.34) / V2
4 and may be safely dropped. (I conjecture that the term

tr½MMy� will not modify any of the nonzero spectral sum rules derived in the e-
regime. A proof remains to be given.) In this way the initial contradiction gets
completely resolved. The analysis pertains to dense two-color QCD as well.

The bottom line of this appendix is that, as long as the Dirac eigenvalues of
magnitude Oð1=

ffiffiffiffiffiffiffiffiffiffiffi
V4�2
p

Þ are concerned, the approach based on the effective
theory without the constant term tr½MMy� can be justified. Equations (A.33) and
(A.35) never signal the inconsistency of our approach.

A.4 Sign-Quenched Partition Functions

In two-color QCD the fermion determinant has no complex phase but only a sign,
so we shall introduce a ‘‘sign-quenched’’ partition function, in which det½Dð„Þ þ
m� is replaced by j det½Dð„Þ þ m�j, as a direct counterpart of the phase-quenched
partition function in three-color QCD. The purpose of this appendix is to derive
analytical expressions for such sign-quenched partition functions, first for finite N,
and later in the limits of both weak and strong non-Hermiticity. The results in this
appendix will be used in the main text for the analysis of the sign problem.

A.4.1 Main Result at Finite N

Let us begin with a formula for the probability measure, with zj � xj þ iyj ,

ZRMTðNÞ
Nf ;”

ð„̂; f¿ f gÞ ¼ cN

YNf

f¼1

¿”f
YN
k¼1

Z
C

d2zkw”ð„̂; zkÞ
���NðfzgÞ

��YN
j¼1

YNf

f¼1

ð¿2
f þ zjÞ

�
X½N=2�

n¼0

1
n!ðN � 2nÞ!

�Yn

i¼1

–2ðz2i�1 � z�2iÞ
�
–ðy2nþ1Þ 
 
 
 –ðyNÞ ;

ðA:37Þ

which is equivalent to (3.93) and (3.94) but is more convenient for our current
purpose. Also we made the N-dependence of ZRMT

Nf ;”
explicit on the LHS.

The weight function w”ð„̂; zÞ is defined in (3.95). The prefactor cN is given in
(3.98). We also define a ‘‘partially sign-quenched’’ partition function, which we
denote by
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ZRMTðNÞ
kN 0f kþNf ;”

�
„̂; f~¿kg

N 0f
k¼1; f¿ ‘g

Nf

‘¼1

	
; ðA:38Þ

as being identical to ZRMTðNÞ
N 0fþNf ;”

in (A.37) except that the fermion determinant is

replaced by

YN
j¼1

nYN 0f
h¼1

j~¿hj”
��~¿2

h þ zj

��YNf

f¼1

¿”f ð¿2
f þ zjÞ

o
: ðA:39Þ

After these prerequisites, we can now state our main result at finite N:

RR

Nf ;”
ð„̂; x1; . . .; xkÞ

¼ cN

cN�k

���kðfxgÞ
��Yk

i¼1

w”ð„̂; xiÞ
jxij”=2

YNf

f¼1

ð¿2
f þ xiÞ

ZRMTðN�kÞ
kkkþNf ;”

ð„̂; f
ffiffiffiffiffiffi
�x
p

g; f¿gÞ

ZRMTðNÞ
Nf ;”

ð„̂; f¿gÞ
:

ðA:40Þ

That is, one can calculate a partially sign-quenched partition function from the k-
point correlation function of real squared Dirac eigenvalues (and vice versa).
Below we give a proof of this formula for k ¼ 1. The generalization to k [ 1 is
then straightforward.

A.4.2 Proof: The k = 1 Case

By definition, we have

RNf ;”ð„̂;zÞ¼ cN
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ðA:41Þ

For 2nþ 1� ‘�N; –2ðz� z‘Þ in the last sum will yield –ðyÞ (with z � xþ iy),
hence
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Therefore
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A.4.3 The Large-N Limit of Weak Non-Hermiticity

Here we shall compute

ZðNf¼k1k; ”Þ
w ð�;•Þ � lim

N!1;weak



j det½Dð„̂Þ þ ¿�j

�
Nf¼0 ; ðA:44Þ

where the limit stands for the large-N limit of weak non-Hermiticity (cf. Chap. 3
Sect. 3.4.4), with
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2N
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N
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Putting Nf ¼ 0 and x ¼ �¿2 2 R in (A.43), we find
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In the weak limit, it follows from (3.138) that
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RR
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; ðA:47Þ

where ĥw is defined in (3.140). From (3.98), we have
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Collecting all results, we finally obtain (3.158),
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A.4.4 The Large-N Limit of Maximal Non-Hermiticity

Below we derive an analytical expression for
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where N goes to infinity with „̂ ¼ 1 and ¿ f fixed.
Putting „̂ ¼ 1; k ¼ 2;Nf ¼ 0; x1 ¼ �¿2

1, and x2 ¼ �¿2
2 in (A.40) we find
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ðA:51Þ

The factor cN�2=cN is independent of masses and may be dropped. According to
[4, Eq. (2.18)], the quenched two-point function for real squared Dirac eigenvalues
reads
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RR
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with
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ðA:53Þ

with KN;” given in [4, Eq. (2.20)] explicitly. We plug (A.52) into (A.51) to get
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where f1ðx1; x2Þ, defined as the large-N limit of fNðx1; x2Þ, can be computed with
the aid of the strong limit of KN;” given in [4, Eq. (2.30)]:
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64…
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p
Þ : ðA:54Þ

This completes the derivation of ZðNf¼k2k; ”Þ
s ð¿1; ¿2Þ .
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