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Preface

Astrophysics is a highly important part of the modern vision of the world
around us. Over the past century, it has transformed the very foundation and
basic philosophical concepts on the fundamental laws of nature controlling
the structure and evolution of the Universe. One can recall such fascinating
astrophysical discoveries as the expansion of the Universe and more recently
the accelerated expansion; dark matter and dark energy and so on. This is
why astrophysics is studied in hundreds of universities throughout the world;
astrophysical courses are taken by students with highly diverse backgrounds,
often concentrating on disciplines lacking a direct connection to astrophysics.

This textbook considers primarily those astrophysical and space plasma
phenomena, in which electromagnetic interactions play a primary or at least
essential role. This textbook has been written based on graduate and un-
dergraduate courses and seminars on “cosmic electrodynamics,” “magneto-
hydrodynamics,” “plasma astrophysics,” and “radiative processes in astro-
physics” that the authors have taught to many generations of students at
State Polytechnic University (St. Petersburg, Russia) and New Jersey In-
stitute of Technology (Newark, New Jersey, USA), cumulatively, over more
than half a century, in conjunction with the authors’ astrophysical studies
in the field of theoretical astrophysics, including plasma astrophysics, cos-
mic rays, solar wind, solar flares, supernova remnants, performed mainly at
the above universities, Ioffe Institute (St. Petersburg, Russia), and National
Radio Astronomy Observatory (Charlottesville, Virginia, USA). Jointly, we
have a long history of teaching these sciences in Russia and the USA, and
at some point we felt more and more strongly a deficit of appropriate text-
books to teach our students, which led us to substitute journal papers for
use in teaching. We know that many of our colleagues teaching these courses
experience similar feelings, so we decided to convert our research and teach-
ing experience to a modern, concise textbook on cosmic electrodynamics and
magnetohydrodynamics.

A driver of the textbook writing was, therefore, our willingness to share
our teaching experience with our peers and supply them with a textbook
representing a core, self-contained reading source, much needed to facilitate
delivering undergraduate and graduate courses to students concentrating in
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Preface

the field of astrophysics, solar/stellar Physics, and space physics. The field of
cosmic electrodynamics is exceptionally broad, which implies that there is no
hope to describe this science field fully and comprehensively within a single
textbook. Therefore, it is highly important to clearly formulate the concept
of material selection and the approach to depth of presentation.

First of all, we are going to make the case that modern cosmic electrody-
namics is a science dealing with a highly nonlinear, nonstationary, turbulent
conducting fluid (plasma) in conditions of strong energy release manifesting
itself in fast fluid motions, strong magnetic field amplification, and energetic
particle generation. We made an attempt to sort out and include only a “fun-
damental” theory, although not necessarily the “old” one: in many cases we
include relatively recent discoveries and developments if we had a good reason
to believe that they are reliable and potentially broadly applicable or science
transforming.

Furthermore, in application of the theory we restricted ourselves in most
cases to analytical solutions of the specific problems discussed: it is the an-
alytical solutions and order-of-magnitude estimates made with them that
develop our understanding of sophisticated natural phenomena. Even though
we fully appreciate numerical methods and corresponding results and widely
use them in our everyday research, we believe that analytical study (solutions
and estimates) is the key in developing students’ physical understanding and
intuition, which is needed to create the science vision, to dig up what is hid-
den behind observations, and, in particular, to set up sophisticated numerical
simulations as well as sort out and interpret their results.

The textbook presents fundamental concepts of the science illustrated by
numerous examples of astrophysical applications of the theory. In doing so
we try to combine classical concepts with their new developments and clearly
demarcate what is well established and what is still under debate. We at-
tempt to present the live science and illustrate how apparently complicated
phenomena can be addressed and understood both qualitatively and quan-
titatively using well-known physics principles and equations applied under
appropriate approximations and simplifications. For this purpose a limited
number of astrophysical examples are considered in greater detail than it
might be expected for most textbooks. In many cases we specifically address
the points of agreement or disagreement between the theory and astrophysical
observations, employing the latest observational data and modern theory.

The textbook delivers the most essential equations, ideas, and models
widely used in modern astrophysics (see the chapter titles as a guide) in the
order of increasing complexity of the material: it begins with basic concepts
and linear processes including linear eigenmodes (Chaps. 1–3), then consid-
ers instabilities, weak and strong nonlinearity, and turbulence (Chaps. 4–6),
and finally addresses key astrophysical problems of particle acceleration and
transport, magnetic field generation, and electromagnetic radiation including
self-consistent nonlinear models (Chaps. 7–12). Later chapters extensively use
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Preface

the material given in earlier chapters. We tried to avoid the opposite cross-
referencing of later chapters, but it was not always possible, which once again
illustrates that various astrophysical phenomena are tightly connected. Many
topics are presented with a full theoretical completeness, although in other
cases derivations are truncated or fully omitted depending on the availabil-
ity of the required theory in complementary reading on the subject (Melrose
1980; Kulsrud 2005; Somov 2006, 2007). For example, the highly important
topic of magnetic reconnection is described very briefly, given that it is very
well described by Kulsrud (2005) and Somov (2006, 2007).

One of the main focuses of the textbook is detailed application of the the-
ory to astrophysical phenomena. Obviously, we cannot apply all the presented
theory to all astrophysical objects and phenomena; thus, we apply some of
the theory to some objects/phenomena in such a way to eventually touch
upon most (if not all) of the diverse astrophysical objects including stellar
interior and atmosphere, solar/stellar flares and winds, interstellar medium,
supernova explosions, neutron stars, superbubbles, supernova remnants, pul-
sar wind nebulae, active galactic nuclei, and gamma-ray burst sources. It may
seem that having so many diverse objects implies necessarily that they can
be described only superficially given a limited book volume. Nevertheless,
this is not the case: many phenomena are presented in all essential detail
and a number of cutting-edge examples of comprehensive data analysis and
interpretation are given. Complementarily, in most of the cases the derived
equations and equation sets are general enough to be immediately used in
scientific research work without further consulting original journal papers.
This implies that the textbook will be highly useful well beyond the target
audience (undergraduate and graduate students)—for active researches in
astrophysics, space physics, and, perhaps, geophysics.

To easily learn the textbook, the basic knowledge obtained in general
mathematics and physics courses is desirable along with a general astro-
physics course. However, understanding of our book does not require any
special knowledge beyond that; e.g., the most essential information from
plasma physics is given in the textbook itself, although a more specialized
and detailed information can be learned from Melrose (1980) and Kulsrud
(2005). The book has a long list of recommended bibliography, which can
be helpful for both students and researchers as a guideline for deeper study
of a topic. The reference list, however, is incomplete: in most cases we in-
cluded the monographs, textbooks, and review articles, which we actually
used in our work on the topic. Not surprisingly, the reader can notice many
sources published in Russian, given that this is the main language of both
co-authors of the book. Citation of original papers is limited to the cases
when we explicitly use the corresponding paper in devising a topic or in case
of a few “classical” science-transforming papers. No paper has been ignored
intentionally.
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Finally, the authors are happy to sincerely thank our colleagues and
collaborators V. Abramenko, A. Altyntsev, T. Bastian, M. Bietenholz, A.
Bykov, D. Gary, P. Goode, E. Kontar, A. Kuznetsov, V. Melnikov, G. Nita,
K. Platonov, J. Stone, A. Tsygan, D. Yakovlev, and V. Yurchishin for their
help, highly important discussions, or sharing their observational data, as
well as funding agencies NSF, NASA, Russian Ministry of Education and
Science, and RFBR, which have partly been supporting our research in the
areas closely related to this textbook. We are highly grateful to Professor
B. Somov, who reviewed the entire textbook and came up with a number
of highly valuable comments, which helped to significantly improve the final
manuscript.

Newark, NJ G.D. Fleishman
St. Petersburg, Russia I.N. Toptygin

viii



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Notations (Conventions) . . . . . . . . . . . . . . . . . . . . . . . . xix
Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

1 General Information About Cosmic Media and Approaches
to Their Analysis 1
1.1 Terrestrial, Solar, and Astrophysical Plasmas . . . . . . . . . 1
1.2 Single-Particle Motion, Drifts, and Adiabatic Invariants . . . 8

1.2.1 Particle in Constant Uniform Magnetic
and Electric Fields . . . . . . . . . . . . . . . . . . . . 9

1.2.2 Averaging over the Fast Motions: Drifts . . . . . . . . 12
1.2.3 Adiabatic Invariants. The Particle Energy Change

in Drift Approximation . . . . . . . . . . . . . . . . . 15
1.3 Kinetic Theory and MHD Approximation . . . . . . . . . . . 17

1.3.1 Microscopic Description of Plasma . . . . . . . . . . . 18
1.3.2 Statistical Representation of Plasmas . . . . . . . . . . 19
1.3.3 Magnetohydrodynamic Description

of Collisional Plasmas . . . . . . . . . . . . . . . . . . 22
1.3.4 Ohm’s Law in a Partially Ionized Collisional

Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3.5 Plasma in a Weak Magnetic Field . . . . . . . . . . . 31
1.3.6 Plasma in a Strong Magnetic Field . . . . . . . . . . . 36
1.3.7 Dissipative Kinetic Coefficients . . . . . . . . . . . . . 39
1.3.8 Collisionless Plasma . . . . . . . . . . . . . . . . . . . 41

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Answers and Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 47

2 Magnetohydrodynamics of the Cosmic Plasma 53
2.1 Hydrodynamic Equations of the Neutral Gas . . . . . . . . . 53

2.1.1 General Properties . . . . . . . . . . . . . . . . . . . . 54
2.2 MHD Equations . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.2.1 Magnetic Pressure and Magnetic Tensions . . . . . . . 58
2.2.2 Ideal MHD Equations . . . . . . . . . . . . . . . . . . 58
2.2.3 Quiescent Prominence Model . . . . . . . . . . . . . . 59

ix



Contents

2.3 Diffusion, Reconnection, and Freezing-in . . . . . . . . . . . . 61
2.3.1 Diffusion of the Magnetic Field . . . . . . . . . . . . . 61
2.3.2 Freezing-in of the Magnetic Field

and Magnetic Reconnection . . . . . . . . . . . . . . . 62
2.3.3 Stationary Configurations . . . . . . . . . . . . . . . . 64

2.4 Linear Modes in MHD . . . . . . . . . . . . . . . . . . . . . . 65
2.4.1 Basic Equations and MHD Dispersion Relation . . . . 66
2.4.2 Dispersion and Polarization of Linear Modes . . . . . 67
2.4.3 Damping of MHD Waves . . . . . . . . . . . . . . . . 72

2.5 Solar and Stellar Winds . . . . . . . . . . . . . . . . . . . . . 74
2.5.1 Basic Observational Data About the Solar Wind . . . 75
2.5.2 Parker’s Model of the Solar Corona Expansion . . . . 77
2.5.3 Magnetic Field in a Cavity Filled by a Stellar

Wind . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Answers and Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 88

3 Plasma Dispersion: Linear Modes in the Plasma 93
3.1 Eigenmodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.1.1 Principal Values and Eigenvectors
of the Maxwellian Tensor . . . . . . . . . . . . . . . . 95

3.1.2 Dispersion Relations for the Eigenmodes
of an Anisotropic and Gyrotropic Medium . . . . . . . 98

3.1.3 Principal Values and Eigenvectors
of the Maxwellian Tensor and Their Relation
to the Eigenmodes of the Medium . . . . . . . . . . . 99

3.2 Cold Plasma Approximation . . . . . . . . . . . . . . . . . . . 101
3.2.1 General Case . . . . . . . . . . . . . . . . . . . . . . . 101
3.2.2 Hydrogen Plasma . . . . . . . . . . . . . . . . . . . . . 103
3.2.3 Asymptotic Behavior of the Eigenmodes . . . . . . . . 106
3.2.4 Multi-component Plasma . . . . . . . . . . . . . . . . 108

3.3 Kinetic Approach to Collisionless Plasma . . . . . . . . . . . 112
3.3.1 Dielectric Tensor and Resonant Particles . . . . . . . . 112
3.3.2 Maxwellian Plasma . . . . . . . . . . . . . . . . . . . . 115
3.3.3 Wave Damping in Equilibrium Plasma . . . . . . . . . 119
3.3.4 Bernstein Modes . . . . . . . . . . . . . . . . . . . . . 121

3.4 Collisional Plasma . . . . . . . . . . . . . . . . . . . . . . . . 122
3.4.1 General Case . . . . . . . . . . . . . . . . . . . . . . . 122
3.4.2 High-Frequency Case . . . . . . . . . . . . . . . . . . . 124
3.4.3 Ion Cyclotron Resonances . . . . . . . . . . . . . . . . 125
3.4.4 Low-Frequency Case . . . . . . . . . . . . . . . . . . . 127

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Answers and Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 129

x



Contents

4 Wave–Particle and Wave–Wave Interactions 139
4.1 Two-Stream Instabilities . . . . . . . . . . . . . . . . . . . . 139

4.1.1 Excitation of Plasma Waves by Electron Beams . . . . 140
4.1.2 Weibel Instability . . . . . . . . . . . . . . . . . . . . 143

4.2 Quasilinear Approximation . . . . . . . . . . . . . . . . . . . 145
4.2.1 General Treatment . . . . . . . . . . . . . . . . . . . . 145
4.2.2 Saturation of Instabilities due to Wave–Particle

Interactions . . . . . . . . . . . . . . . . . . . . . . . . 149
4.3 Plasma Nonlinearity and Wave–Wave Interactions . . . . . . 150

4.3.1 Three-Wave Interactions and Nonlinear
Scattering on Particles . . . . . . . . . . . . . . . . . . 151

4.3.2 Wave Turbulence in a Plasma . . . . . . . . . . . . . . 155
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Answers and Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 161

5 Nonlinear MHD Waves and Discontinuities 163
5.1 Simple MHD Waves . . . . . . . . . . . . . . . . . . . . . . . 163

5.1.1 Entropy Simple Waves . . . . . . . . . . . . . . . . . . 165
5.1.2 Alfvén Simple Waves . . . . . . . . . . . . . . . . . . . 166
5.1.3 Fast and Slow Simple Waves . . . . . . . . . . . . . . 167
5.1.4 Turnover of the Simple Wave . . . . . . . . . . . . . . 168

5.2 Dissipation and Dispersion Effects: Solitons . . . . . . . . . . 169
5.2.1 Burgers Equation . . . . . . . . . . . . . . . . . . . . . 170
5.2.2 The Korteweg–de Vries Equation . . . . . . . . . . . . 172
5.2.3 KdV Solitons . . . . . . . . . . . . . . . . . . . . . . . 176

5.3 Discontinuities in the Plasma . . . . . . . . . . . . . . . . . . 179
5.3.1 Local Properties and Classification . . . . . . . . . . . 179
5.3.2 Magnetic Reconnection . . . . . . . . . . . . . . . . . 182
5.3.3 MHD Discontinuities in IPM . . . . . . . . . . . . . . 185

5.4 MHD Shock Waves . . . . . . . . . . . . . . . . . . . . . . . . 186
5.4.1 Local Properties . . . . . . . . . . . . . . . . . . . . . 186
5.4.2 The Front Structure of a Shock Wave . . . . . . . . . 189
5.4.3 Measurements of Shock Wave Parameters . . . . . . . 194
5.4.4 Collisionless Shock Waves . . . . . . . . . . . . . . . . 195
5.4.5 Evolutionarity of Discontinuities . . . . . . . . . . . . 197

5.5 Supernova Explosions and Evolution of Its Remnants . . . . . 198
5.5.1 Strong Explosion: Sedov Solution . . . . . . . . . . . . 198
5.5.2 Magnetic Field in Strong Explosion Region . . . . . . 201
5.5.3 Stages of the Supernova Remnant Shock

Evolution . . . . . . . . . . . . . . . . . . . . . . . . . 204
5.6 Strong Explosion in an Inhomogeneous Medium, Kompaneets

Solution, and Superbubble Blowouts . . . . . . . . . . . . . . 208
5.6.1 Point Explosion in a Stratified Atmosphere . . . . . . 209
5.6.2 Superbubble Blowout . . . . . . . . . . . . . . . . . . 211

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Answers and Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 214

xi



Contents

6 Instability of MHD Motion and Astrophysical MHD
Turbulence 217
6.1 Gravitational Instability . . . . . . . . . . . . . . . . . . . . . 219
6.2 Convective Instability . . . . . . . . . . . . . . . . . . . . . . 222

6.2.1 Necessary Condition of Convection: Stationary
Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

6.2.2 Convection in a Weakly Compressible Fluid . . . . . . 224
6.2.3 Convection in the Laboratory and Astrophysics . . . . 228

6.3 Instability of Contact Discontinuity with Magnetic Field
(Rayleigh–Taylor Instability) . . . . . . . . . . . . . . . . . . 231

6.4 Instability of Tangential Discontinuity with Magnetic Field
(Kelvin–Helmholtz Instability) . . . . . . . . . . . . . . . . . 235

6.5 Thermal Instability . . . . . . . . . . . . . . . . . . . . . . . . 237
6.6 Turbulence and Correlation Tensor Formalism . . . . . . . . . 240

6.6.1 Physical Picture of Turbulent Motion . . . . . . . . . 240
6.6.2 Averaging of Turbulent Parameters

and Correlation Tensors . . . . . . . . . . . . . . . . . 241
6.7 The Theory of Turbulence by Kolmogorov and Obukhov . . . 245
6.8 Weak MHD Turbulence in Incompressible Conducting Fluid

with Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . 248
6.8.1 Weak MHD Turbulence Below the Diffusive Scale . . . 249
6.8.2 Iroshnikov–Kraichnan Model of Weak Alfvénic
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Chapter 1

General Information About Cosmic
Media and Approaches to Their Analysis

The main scope of this textbook includes those physical phenomena, where
electromagnetic interactions, occurring in various astrophysical objects, play
a dominant or at least essential role. The emphasis is given to relatively tenu-
ous collisionless plasmas such as solar and stellar atmospheres, interplanetary
medium, various phases of the interstellar medium (ISM) and extended galac-
tic objects, and intergalactic plasma, while we do not specifically address
dense, collisionally dominated, plasmas such as stellar interiors and other
compact objects, although effect of collisions such as collisional dissipation
or viscosity is widely considered throughout the book.

Even with this constraint, relevant plasma parameters, such as the num-
ber densities of the neutral atoms na, ions ni, and electrons ne [cm−3], the
temperature T [K], and the magnetic field B [G], vary within very broad
ranges. The characteristic orders of magnitudes of the involved parameters
can be taken from Table 1.1.1 We have to note, however, that most of the as-
trophysical parameters are not well defined and known typically to an order of
magnitude, rather than precisely measured. In addition, many of the plasma
parameters vary in space and time. Thus, the parameters given in the Ta-
ble can only be used for ballpark estimates, which, nevertheless, is a very
important first step in studying any given phenomenon.

1.1 Terrestrial, Solar, and Astrophysical Plasmas

Parameters of cosmic and astrophysical objects are known to vary within
very broad limits, which makes it difficult to formulate any universal

1For more data see monographs (Pikel’ner 1966; Akasofu and Chapman 1974,
1975; Allen 1976; Kaplan and Pikel’ner 1979; Spitzer 1981; Marochnik and Suchkov
1984) and numerous modern papers.

G.D. Fleishman and I.N. Toptygin, Cosmic Electrodynamics, Astrophysics
and Space Science Library 388, DOI 10.1007/978-1-4614-5782-4 1,
© Springer Science+Business Media New York 2013
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1.1 Terrestrial, Solar, and Astrophysical Plasmas 3

characteristics and properties applicable throughout all the astrophysical
objects. We, nevertheless, can note some typical properties valid for many
astrophysical objects. They are large spatial scales, relatively low densities,
and strong energy release. The strong energy release, in particular, leads to
ionization of individual atoms via numerous ionization processes, while the
recombination is then very slow because of low densities in the objects. Even
though the density can be very low, the mean free paths of the particles are
frequently much smaller than the source size; therefore, the charged particles
behave collectively, rather than follow individual independent trajectories,
as they would in the vacuum.

Therefore, the astrophysical media are typically in the state of plasma—
a collective of interacting charged particles. Moreover, we will see that even
in many dense and compact objects, this is also the case. This is because
more ionization processes, compared with typical laboratory conditions, are
involved. In an equilibrium gas with temperature T the degree of thermal
(collisional) ionization α is given by approximate Saha (1920) equation

α2

1− α2
=

2gi
ga

(2πme)
3/2

h3
(kBT )

5/2

P
exp(−I/kBT ), (1.1)

where α = ni/(ni + na) is the ratio of ionized atoms to the total number
of atoms, P is the total gas pressure, I is the energy of ionization, ga is the
statistical weight of the atom’s ground state (ga = 2 for hydrogen), and gi
is the statistical weight of the ion (=1 for proton). In this form the formula
is valid for a three-component gas consisting of neutral atoms, singly ionized
ions, and electrons—in particular, for partly ionized hydrogen. Note that
because of large pre-exponential factor in Eq. (1.1) the gas becomes noticeably
ionized at a temperature kBT much smaller than I. In astrophysical media
other mechanisms driven by powerful short-wave electromagnetic radiation
and energetic charged particles (cosmic rays, CRs) make a major contribution
to ionization rate of the astrophysical plasmas.

Astrophysical plasmas are different from each other provided by variation
of their parameters within exceptionally broad limits (Zasov and Postnov
2006). For example, the number density varies within more than 40 orders
of magnitude, from 10−8 cm−3 in the intergalactic medium to more than
1038 cm−3 in the neutron stars; the characteristic energy of individual charged
particles varies within more than 20 orders of magnitude, from less than
10−2 eV (100K) in relatively cool objects to about 1020 eV in highest energy
CRs; the magnetic field varies within more than 20 orders of magnitude, from
10−7G in extended objects to 1015G in the neutron stars.

Accordingly, depending on the given parameter regime, the plasma can
be a classical Maxwellian one—equilibrium nongenerate and nonrelativistic,
although it can be highly non-equilibrium, degenerate, relativistic, or even
ultrarelativistic, as can be seen from the diagram shown in Fig. 1.1, as well
as it can be weakly or strongly magnetized.
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Figure 1.1: Plasma parameter diagram shows parameter regions, where the astrophys-
ical gas is mainly neutral, ionized, relativistic, or quantum degenerate. A few types of
astrophysical sources are placed in their corresponding parameter regions. For compari-
son, typical laboratory devices are shown by red abbreviations: LGD for laboratory glow
discharge; TFE for today fusion experiment; and FRG for the fusion reactor goal.

As a vivid example, we touch upon structure of the Sun depicted in
Fig. 1.2. The inner part of the Sun consists of the core, where nuclear fusion
supplies the Sun (and the solar system including the Earth) with energy,
and the radiative and convective zones, where this energy is transferred to
the solar surface, the photosphere, and then radiated away into interplan-
etary space. The solar atmosphere above the photosphere consists of rela-
tively cool chromosphere and hot and highly inhomogeneous corona. It is the
corona that generates and drives numerous powerful phenomena including
solar flares and coronal mass ejections (see Fig. 1.3), having major effects on
the interplanetary space (space weather) and the Earth (e.g., spectacular po-
lar lights produced as a result of solar charged particle penetration into the
Earth’s atmosphere; see Fig. 1.4), which accelerate plasma to produce solar
wind, etc. The complexity of the corona is primarily related to the magnetic
field, which, being produced by subphotospheric motions, forms numerous
loops in the corona, filled by multitemperature plasmas and so detectable
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Figure 1.2: The structure of the Sun (courtesy of SOHO/synthetic artist view consor-
tium. SOHO is a project of international cooperation between ESA and NASA).

Figure 1.3: CME and its interaction with the Earth’s magnetic field (courtesy of
SOHO/synthetic artist view consortium. SOHO is a project of international cooperation
between ESA and NASA).

due to emission at certain atomic lines (sensitive to a given narrow temper-
ature range) as narrow arch-like structures, Fig. 1.5.
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The plasma complexity and nonuniformity is typical for astrophysical
sources. As a further example we can point to highly inhomogeneous images
of supernova remnants (SNRs); see Fig. 1.6. In addition to the complex spatial
structure, some SNRs also display high temporal variability due to activity
of the compact central object—neutron star or black hole; see Fig. 1.7.

Before going to a more detailed analysis of the astrophysical plasma prop-
erties we introduce a few the most basic parameters characterizing the most
general properties of the plasma. The first of them are the plasma tempera-
ture, T , which can be different for different plasma particles, e.g., electrons,
Te, and protons, Tp, and the plasma density, n (ne and np). Because of very
different masses, the electrons and protons with the same temperature have
very different thermal velocities

vTi =

(
3kBTi
mi

)1/2

, (1.2)

where i is the sort of the particle (i = e for the electrons and i = p for
protons) with vTe = 6.74× 105

√
Te[K] [cm/s] and vTp = 1.57× 104

√
Tp[K]

[cm/s].
Then, we introduce a so-called electron plasma frequency,

ωpe =

(
4πe2ne
me

)1/2

, (1.3)

Figure 1.4: The polar lights after a large solar flare (courtesy of Dr. V.F. Melnikov).

which is a resonant frequency of the electron component of the plasma; sim-
ilarly, other plasma frequencies can be introduced for other plasma species.
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Figure 1.5: Coronal loops observed in UV range of the spectrum by the TRACE instru-
ment (credit: TRACE team).

Figure 1.6: Images of crab nebula in optical (credit: STScI hubble space telescope) and
X-ray (credit: Chandra team) ranges.

Having defined the plasma frequency and thermal velocity, one can introduce
a parameter vTe/ωpe with the dimension of scale; the corresponding param-

eter defined as rDe =
(
kBTe

4πe2ne

)1/2
is called the Debye radius, which plays a

fundamental role in many plasma properties. In particular, the dimension-
less plasma parameter, ζe = ner

3
De, shows how many electrons reside in a

sphere with the Debye radius, which is a measure of the plasma ideality.
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Figure 1.7: Quickly moving structures (wisps) in the crab nebula (credit: STScI hubble
team. Bietenholz et al. (2004); reproduced by permission of the AAS).

Finally, we introduce some parameters related to the magnetic field,
which is frequently present in the plasma volume. The cyclotron frequency
(or gyrofrequency) is defined as

ωBi =
eiB

mic
, (1.4)

which depends on the particle mass mi and charge ei. Accordingly, this fre-
quency is different for electrons ωBe = 1.76× 107(B [G]) [rad/s] and protons
ωBp = 9.58× 103(B [G]) [rad/s], although it does not depend on the particle
velocity. The radius of particle rotation in the magnetic field, called the Lar-
mor radius, does depend on the particle momentum as rL = cp⊥/(eiB). Now
we remind some properties of the single-particle motion in external fields,
and then proceed to description of the plasma properties within the MHD
and kinetic theories.

1.2 Single-Particle Motion, Drifts,
and Adiabatic Invariants

The force F acting on a particle with a charge e (positive or negative), which
is moving with a velocity v in an electromagnetic field E,B, is given by the
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Lorentz formula
F = eE +

e

c
v ×B. (1.5)

The changes of the momentum

p = mγv, γ =
1√

1− v2/c2
(1.6)

and the energy
E = mγc2 =

√
m2c4 + c2p2 (1.7)

of the particle per unit time are given by

dp

dt
= eE +

e

c
v ×B,

dE
dt

= v ·F = ev ·E. (1.8)

Here c is the speed of light (in vacuum), and the particle energy includes the
rest energy. The magnetic field produces no work on the particle, since the
force associated with it is always perpendicular to the particle velocity.

1.2.1 Particle in Constant Uniform Magnetic
and Electric Fields

Motion in Uniform Magnetic Field

We consider here a simple case B = const, while E = 0. The second of
equations (1.8) shows that the particle energy and the absolute value of its
momentum does not change given that the electric field E is absent: E =
E0 = const, p = p0 = const. We introduce a new independent variable
τ = t/γ = mc2t/E0 (the proper time of the moving particle) so that dτ = dt/γ
and obtain the following equations for the transverse and parallel components
of p:

dp⊥
dτ

= ωBp⊥ × e‖,
dp‖
dτ

= 0, ωB =
eB

mc
, (1.9)

where e‖ = B/B is the unit vector and ωB is the cyclotron frequency. We
find p‖ = p‖0 = const and search for solution of the first equation in the form

p⊥(τ) = p⊥0 cosωBτ + Cp⊥0 × e‖ sinωBτ (1.10)

with initial condition p⊥(0) = p⊥0 and indefinite constant C. Substitution
of (1.10) in (1.9) yields C = 1. Particle trajectory is defined from the equation
dr/dτ = p/m and has the form

r(τ) =
p⊥0

mωB
sinωBτ +

p⊥0 × e‖
mωB

(1 − cosωBτ) +
p‖0
m
τ + r0. (1.11)

From expressions (1.9) to (1.11) it follows that the vector of particle
momentum rotates around the direction of the magnetic field, remaining
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constant in absolute value. Angular velocity is ωB (if we use the proper time)
and has smaller (energy-dependent) value

Ω =
ωBmc

2

E0 =
ωB
γ
, (1.12)

if the laboratory time is used. The particle moves along spiral trajectory with
the step H = 2πv‖0/|Ω| and radius

rg⊥ =
cp⊥
|e|B , (1.13)

which is called Larmor radius or gyroradius.

Motion in Uniform Electric Field

We consider now motion of a charged particle with an initial momentum
p0 belonging the xy-plane in an electric field E (or, more generally, in the
presence of a force F = eE) directed along y-axes, while no magnetic field
is present. Equation of motion (1.8) receives the form for the momentum
components:

dpx
dt

= 0,
dpy
dt

= eE, (1.14)

which can be explicitly integrated to yield

px= p0x, py = eEt+ p0y, p
2 = p20 +2eEtp0y+(eEt)2 = p20x + (eE)2(t− t0)

2,

(1.15)

where t0 = −p0y/(eE).
Now we apply relativistic relation E2/c2 = m2c2 + p2 to find the particle

energy E . One can see that a charged particle experiences an infinite accel-
eration (unlimited gain of energy) as it moves in a uniform constant electric
field

γ2 = γ20 + (eE/mc)2(t− t0)
2, (1.16)

where γ = E/mc2 is the particle Lorentz factor and γ0 is the Lorentz factor
at t = t0.

Then to find the particle trajectory we note that from Eq. (1.6) the
particle velocity is expressed via particle momentum and Lorentz factor,
v ≡ dr/dt = p/(mγ), so equations of the trajectory components receive
the form

dx

dt
=

px
mγ

=
px

m
√
γ20 + (eE/mc)2(t− t0)2

,

dy

dt
=

py
mγ

=
eE(t− t0)

m
√
γ20 + (eE/mc)2(t− t0)2

, (1.17)
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which are explicitly integrated to yield the trajectory in the parametric form

x =
p0xc

eE
arcsinh

eE(t− t0)

mcγ
+ x0,

y =
mc2

eE

√
γ20 + (eE/mc)2(t− t0)2 + y0, (1.18)

where (x0; y0) represent the particle coordinates at t = t0. Expressing
the time from the first equation and substituting it into the second equa-
tion in (1.18) give rise to the following (catenary) equation of the particle
trajectory:

y − y0 =
mc2γ0
eE

[
cosh

(
eE(x− x0)

p0c

)
− 1

]
. (1.19)

The nonrelativistic asymptote of this equation is, apparently, a parabolic
trajectory:

y − y0 =
eE(x− x0)

2

2mv20
. (1.20)

For arbitrary constant non-electric force the obtained solutions apply after
substitution eE → F .

Motion in Crossed Fields

We consider now the crossed uniform fields, E �= 0, E ⊥ B, and E < B. The
last condition is fulfilled in most astrophysical objects owing to shielding of
electric field by free plasma charges. Curiously, it is possible to describe the
particle motion in the crossed fields by the above solution obtained for the
motion in the uniform magnetic field. To do so we transit from the laboratory
reference frame S to a moving one S′, in which the electric field E′ = 0 and
only magnetic field B′ �= 0 remains. Such reference frame does exist because
the field Lorentz invariants

B2 − E2 = inv, E ·B = inv (1.21)

can be fulfilled as long as E < B. If E > B, a system S′′ exists, in which
B′ = 0, E′ �= 0. The particle is accelerated unlimitedly, while when E = B,
the system with E = 0 or B = 0 is absent.

Denote the velocity of S′ relative to S as vE and use the Lorentz trans-
formations for electromagnetic field components:

E′
‖ = E‖, E′

⊥ = γE(E⊥ + vE ×B/c), γE = (1− v2E/c
2)−1/2; (1.22)

B′
‖ = B‖, B′

⊥ = γE(B⊥ − vE ×E/c). (1.23)

Indices ‖, ⊥ denote here components relative to the velocity vE (in contrast
to previous usage of the subscripts).
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We see from (1.22) that condition E′ = 0 can be satisfied, if E · vE = 0,
while B × vE �= 0. The component of vE along B may be arbitrary. We
choose the condition B · vE = 0 and then find from (1.22)

vE =
c

B2
E ×B. (1.24)

Lorentz transformation gives electromagnetic vectors in S′ reference frame:

E′ = 0, B′ = γE

(
1− E2

B2

)
B =

√
B2 − E2

B

B
. (1.25)

We can now use the above solution, Eq. (1.10), in S′ system:

p′(τ) = p′
⊥0 cosω

′
cτ + p′

⊥0 × e‖ sinω′
cτ +p′

‖0, E ′ = E0, ω′
c = eB′/mc = e

√
B2 − E2/mc.

(1.26)

Here the indices ‖, ⊥ are again used relative to the common direction of
B and B′. The values τ and ω′

c are relativistic invariants. The solution in
the laboratory system S may be obtained by Lorentz transformation (we use
here transformation formulae in terms of 3D vectors) of momentum p′ and
energy E from S′ back to S:

E = γE(E ′ + p′ · vE), p = p′ +
γEE ′

c2
vE +

(γE − 1)p′ · vE
v2E

vE . (1.27)

We note that the dependence of the particle energy and momentum on
the proper time is rather complicated even for a particle moving in the ho-
mogeneous fields. If fields are inhomogeneous and/or nonsteady, then the
problem has typically no exact solution and so approximate methods are
needed.

1.2.2 Averaging over the Fast Motions: Drifts

Generally, the picture of charged particle motion in inhomogeneous and
varying in time electromagnetic fields is extremely complicated because
of nonlinearity of the equations of motion. However, this picture can be
significantly simplified if the magnetic field is strong and varies slowly in space
and time, while the electric field is weak. In this case the effects of the electric
field, the spatial inhomogeneity, and temporal variability of the magnetic
field can be taken into account with the perturbation theory. Indeed, motion
of the particle can be described as a superposition of fast and slow compo-
nents. The first one is fast rotation of the particle around direction of local
magnetic field lines with the cyclotron frequency ceB/E , while the second one
contains a slow displacement of the quasi-circular particle orbit. The center
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around which the particle gyrates (the guiding center) travels along the
magnetic field line and is also slowly drifting across it under the influence of
the electric field and inhomogeneity of the magnetic field. The transverse and
longitudinal momenta of the particle change their absolute magnitude slowly.

The approximation corresponding to this picture of the particle motion
is called the guiding center or drift approximation, and the motion of the
guiding center transverse to the magnetic field lines is called drift. Equation
of motion in the drift approximation can be derived by averaging the exact
equations of motion over the fast rotation of particles around the magnetic
field line.

We start from averaging of exact solution (1.27) over the period T =
2π/ω′

c of the proper time. From (1.26) we find

p′
⊥ =

1

T

∫ τ0+T

τ0

p′
⊥(τ)dτ = 0, p′‖ = p′‖0

and obtain from (1.27) and (1.24) averaged values of the particle energy and
momentum in the laboratory system:

E = γEE ′, p‖ = p′‖0 = p‖0, p⊥ =
γEE ′

c2
vE . (1.28)

We then can express the smoothed velocity vc of particle guiding center in
terms of the averaged values:

vc =
c2p⊥
E +

c2p‖
E = vE + v‖. (1.29)

It consists of the velocity v‖ along the magnetic field and electric drift
velocity vE (1.24) across the magnetic and electric fields. Electric drift veloc-
ity (1.24) does not depend on the charge, mass, and energy of the particle.
Nevertheless, expression (1.29) cannot be applied to neutral particles since
they do not participate in Larmor rotation so the averaging over rotation has
no sense for such particles. In cosmic media E � B typically, so the electric
drift velocity is nonrelativistic, vE � c, γE ≈ 1; the guiding center velocity
along magnetic field v‖c ≈ v‖0 coincides with the particle velocity.

The drift across the magnetic field can be caused by forceF of any nature
acting to the particle. We introduce an effective electric field, equivalent to a
given force Eeff = F/e, which will enable us to extend the solutions obtained
for the electric field to other, non-electric, forces. Specifically, using expres-
sion (1.24), we find the drift velocity corresponding to the given force F :

vd =
c

eB2
F ×B. (1.30)

If F = mg is the gravitation force, we obtain the gravitation drift velocity

vg =
mc

eB2
g ×B. (1.31)
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Here g is the acceleration due to gravity. Gravitation drift depends on the
particle charge and mass unlike the electric drift.

Let us consider a few more examples of the particle drift. Adopt that
electric and gravitation fields are absent, the absolute value of magnetic field
B = const, but its force lines are slightly curved, e‖ �= const. The curvature
radius R of the force lines is large in comparison with the particle Larmor
radius rg, R
 rg . In zeroth approximation the particle moves along a curved
force line with velocity v‖ and so experiences action of the centripetal force

Fc = −
Ev2‖
c2R

n, (1.32)

needed to link the particle to the curved field line, where n is the orth of main
normal. We use equation n/R = (e‖ ·∇)e‖ known from differential geometry,
where e‖ is the tangent orth. From expression (1.30) and the above equation
we find the centrifugal drift velocity

vdc = v‖rg‖e‖ × (e‖ · ∇)e‖. (1.33)

It is the first-order effect relative to the small parameter rg/R:

vdc ≈ v‖rg‖/R� v‖. (1.34)

A similar effect is the transverse (gradient) drift, related to a change
of the magnetic field absolute value. Let us adopt B = Be‖, e‖ = const,
while B depends weakly on transverse coordinates only. The particle energy
is conserved; the motion transverse to the magnetic field is described by
equation

v̇⊥ = Ω× v⊥, Ω = −ecE B. (1.35)

Here B is the magnetic field at the point, in which the particle is instantly
located. We represent radius-vector of this point as a sum rc + r of guiding
center radius-vector rc and running particle radius-vector r relative to the
guiding center.

With the accuracy of the first order we have B(rc+r) ≈ B(rc)+(r⊥ ·∇)
B(rc), which we substitute into Eq. (1.35) to obtain the following approxi-
mate equation of motion

v̇⊥ = Ω× v⊥

(
1 +

(r⊥ · ∇)B

B

)
. (1.36)

Magnetic field B is everywhere taken at the guiding center point. The small-
ness parameter is the ratio of the gyroradius to inhomogeneity scale L of the
magnetic field, rg/L� 1.

We then represent the particle velocity as the sum v⊥ = v⊥0+v′
⊥, where

v⊥0 = ṙ⊥0 is the velocity in homogeneous field B(rc) and v′
⊥ is the small
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correction, caused by field inhomogeneity. In the second parenthetical term
in (1.36) we substitute nonperturbed values v⊥0 and r⊥0 for v⊥ and r⊥, use
expression v̇⊥0 = Ω× v⊥0, and find

v̇′
⊥ = Ω× [v′

⊥ + v⊥0(r⊥0 · ∇B)/B].

After averaging over the cyclotron period we have v̇
′
⊥ = 1

T [v
′
⊥(t + T )−

v′
⊥(t)] ≈ 0 to the first-order accuracy and, thus, obtain the transverse drift

velocity
vdt = v⊥0 + v′

⊥ = −(v⊥0(r⊥0 · ∇B))/B. (1.37)

Here r⊥0 = rg⊥(e1 sinΩt + e2 cosΩt) is the particle radius-vector in the
homogeneous magnetic field, rg0 = cp⊥/eB. After the averaging over time
we find the gradient drift velocity

vdt =
v⊥rg⊥
2B

e‖ ×∇B, (1.38)

which depends on the particle charge and energy.
The full velocity of the particle guiding center (1.29) to the first order

of accuracy is determined simply by adding up the obtained values of (1.24),
(1.31), (1.33), and (1.38):

vc = ṙc = v‖e‖+
c

B2
E×B+

mc

eB2
g×B+v‖rg‖e‖×(e‖ ·∇)e‖+

v⊥rg⊥
2B

e‖×∇B.
(1.39)

1.2.3 Adiabatic Invariants. The Particle Energy Change
in Drift Approximation

The adiabatic invariants are the approximate integrals of particle motion.
They exist, if the electromagnetic field changes smoothly in space and slowly
in time during particle cyclotron rotation period T (Landau and Lifshitz 1969;
Sagdeev et al. 1988), which, for E � B, requires the following inequalities
ωT � 1 and rg � R to be fulfilled, where ω is the frequency of the magnetic
field B variation in time and R is the scale of the magnetic field change in
space.

Adiabatic invariant I is defined as

I =
1

2π

∮
pdq, (1.40)

where p, q are canonic variables (Landau and Lifshitz 1969). The integra-
tion is over the quasiperiod of Larmor rotation (in weakly inhomogeneous
and variable field the particle motion is not strictly periodic, but almost pe-
riodic). Adiabatic invariant (1.40), calculated with exact p, q, experiences
small oscillations. But the averaging over the oscillation period leads to a
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constant value, which conserves with high, often exponential, accuracy dur-
ing many periods. For actual calculation of integral (1.40) we have to use
zeroth approximation, assuming the field is constant, and then, after finding
explicit dependence I(B), insert actual field having weak coordinate and time
dependence.

Let us assume the magnetic field B(r, t) to change weakly in time and
space and the electric field to be small, E � B, and calculate the adiabatic
invariant in S′ system of the particle guiding center. The canonical variables
p′ and q′ are taken in zeroth approximation. For the canonic coordinate q we
consider the azimuthal angle, q′ = α′, which determines the particle position
at the Larmor orbit. The particle velocity has only azimuthal component
v′ = v′e′α, v′α = r′g⊥α̇

′. The generalized momentum can be determined by
means of the Lagrange function, p′α = ∂L/∂α̇′, where

L = −mc2
√
1− v ′2

c2
+
e

c
v′ ·A′−eϕ′ = −mc2

√
1− r′2g⊥α̇′2

c2
+
e

c
A′
αr

′
g⊥α̇

′−eϕ′.

(1.41)
The differentiation gives

p′α = E ′r′2g⊥α̇
′ + (e/c)A′

αr
′
g⊥, α̇′ =

ceB′

E ′ . (1.42)

Integral (1.40) contains, therefore, two terms:

∫ 2π

0

E ′r′2g⊥α̇
′dα′ =

2πe

c
r′2g⊥B

′ (1.43)

and

∫ 2π

0

A′
αr

′
g⊥dα

′ =
∮

A′ · dl′ =
∫
(∇×A) · ndS = πr′2g⊥B

′, (1.44)

where the Stokes theorem has been used.
From Eqs. (1.40), (1.43), and (1.44) we find the adiabatic invariant in the

guiding center system:

I ′ =
3e

2c
r′2g⊥B

′ =
3ep ′2

⊥
2cB′ . (1.45)

The observer system S moves along the field B′ with velocity v‖ (recall that
in this calculation the field is constant so no drift is present), and we have
B = B′, p⊥ = p′⊥. Thus, we find the adiabatic invariant in the observer
system:

I =
p2⊥
B

= inv. (1.46)
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It is possible to find more particle adiabatic invariants in electromagnetic
field; see problems to this chapter.

If the field is homogeneous, but slowly changing in time, we have p‖ =

const and from (1.46) p⊥(t) = p⊥(0)
√
B(t)/B(0), particle energy changes

in time according to the B(t) change E2(t) = c2p2⊥(t) + c2p2‖ + m2c4. The
fact that the particle energy changes during its motion in the magnetic field
seems to be in apparent contradiction with a statement made earlier that the
magnetic field produces no work on charged particles. The solution of this
“paradox” is that the evolving magnetic field induces an electric field, which,
in its turn, produces the work on the particle, so the particle energy changes
as described.

If the field does not depend on time, but is nonuniform in space, we have
E = const in agreement with the fact that constant magnetic field produces
no work. The angle ϑ between field direction and particle momentum (pitch
angle) changes during the particle motion: sinϑ =

√
B(r)/B(0) sinϑ0; this

effect leads to mirroring of the particle from regions with strong magnetic
field.

Finally we calculate increase of particle energy in the drift approximation.
The full particle velocity is the sum of guiding center velocity (1.39) and the
rotation velocity ṙ⊥ around the guiding center. The instantaneous rate of

particle energy change
˙̃E is described by the following equation:

˙̃E = eE · (vc + ṙ⊥). (1.47)

This equation should be averaged over the cyclotron period T = 2πE/ecB:

Ė = T−1
∮ ˙̃Edt. The first term, eE · vc, contains only smooth values and is

not affected by the averaging. The second term gives

T−1

∮
eE · ṙ⊥dt = eT−1

∮
eE · dr⊥ = −(e/2)v⊥rg⊥e⊥ · (∇×E). (1.48)

The final result is

Ė = eE · vc − 1

2
ev⊥rg⊥e⊥ · (∇×E). (1.49)

The particle energy change includes effects of the first and second orders
relative to small parameters E/B and rg/L. All values in right-hand side
of the latter equation are taken in guiding center point. Equations (1.39),
(1.46), and (1.49) form a complete set for describing particle motion in the
drift approximation. For more details about the drift theory we refer to the
article by Sivukhin (1965) and to the book by Somov (2006).

1.3 Kinetic Theory and MHD Approximation

We have considered motions of single particles in external fields, but the real
plasmas contain huge numbers of interacting charged and neutral particles;
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thus, our treatment has to be accordingly generalized to account these huge
numbers. A straightforward way of doing so is just to solve that big number
of equations of each particle motion complemented by Maxwell equations for
the accompanying fields.

Until recently such approach seemed to be entirely impractical, because
there was no way to solve this system of equations analytically either exactly
or approximately. Nowadays, however, rapid development of fast powerful
computers has started to allow approaching such solution through so-called
particle-in-cell (PIC) simulations, which compute solutions of a large number
(of the order of a million) of the microscopic equations of motion.

Although the PIC simulations have already provided a number of inter-
esting and important results about microscopic behavior of the charge parti-
cle ensembles, the parameter space, which can be consistently included in the
PIC simulations, is highly restricted (small volumes, short time scales, and
limited number of particles). Therefore, to apply the PIC results to real astro-
physical plasmas requires scaling of the simulation parameters by many orders
of magnitude—a highly nontrivial task, which can easily overlook important
physical effects. Below we concentrate on “classical” statistical treatment of
the plasma.

1.3.1 Microscopic Description of Plasma

A consistent description of charged particles in classical kinetic theory may
be achieved by using a microscopic distribution function of particles—the
phase density of the particles. The state of a system of charged particles is
completely described by their generalized coordinates and momenta (r, p)
and by the electromagnetic field in the considered volume. We introduce the
phase density for each kind a of the involved particles as

Fa(r, p, t) =

Na∑
i=1

δ[r − ri(t)]δ[p− pi(t)], (1.50)

where Na is the total number of these particles and ri(t) and pi(t) are the
coordinates and momenta of the ith particle. The microscopic distribution
function determined in this way satisfies the continuity equation in the six-
dimensional phase space defined by the particle coordinates and momenta:

∂Fa
∂t

+ v · ∂Fa
∂r

+Fa · ∂Fa
∂p

= 0, (1.51)

where F = ṗ is the force acting on the particle. The force consists of both
electromagnetic Lorentz force and any non-electromagnetic forces (f ) such
as gravity and short-acting forces between neutral atoms:

ṗ = eaE(r, t) +
ea
c
v ×B(r, t) + f . (1.52)
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We assume for now that the type of the particle a, with electric charge ea,
does not change during interaction. Inelastic processes of ionization, atomic
and ionic excitation, and so on require quantum theoretical calculations and
may be included later in the scheme developed below. Electromagnetic field
in Eq. (1.52) is described by the Maxwell equations:

∇×E = −1

c

∂B

∂t
, (1.53a)

∇×B =
4π

c
(j + jext) +

1

c

∂E

∂t
, (1.53b)

∇ ·E = 4π(ρ+ ρext), (1.53c)

∇ ·B = 0. (1.53d)

The sources of the self-consistent microscopic electromagnetic field in
Eq. (1.53), the charge and current densities, are defined by the phase density
as follows:

ρ(r, t) =
∑
a

ea

∫
Fa(r,p, t)d

3p, (1.54a)

j(r, t) =
∑
a

ea

∫
vFa(r,p, t)d

3p. (1.54b)

The charge density ρext(r, t) and current density jext(r, t) that are ex-
ternal to the system under consideration must be defined separately, along
with the non-self-consistent part of the force f .

Hence, provided that the external forces and external sources are known,
the evolution of particle systems can be fully described by the system of
equations for the microscopic distribution function and the electromagnetic
field strengths. This description of charged particles is equivalent to the exact
solution of the dynamical problem, and so it depends on huge body of data
on the initial coordinates and momenta of all Na particles, as well as on
the initial field state. For problems in cosmic electrodynamics, as well as for
macroscopic problems in general, the data on the initial conditions is, as a
rule, unavailable, and a statistical representation is frequently used in place
of the excessive dynamic treatment.

1.3.2 Statistical Representation of Plasmas

For a proper statistical treatment one has to average phase density (1.50)
and the electromagnetic fields over an ensemble of macroscopically equivalent
systems having different initial conditions. However, this function is incon-
venient for full statistical description of the particle system. Straightforward
averaging of function (1.50) over the statistical ensemble yields statistical
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one-particle distribution function (1.58) derived below. The one-particle dis-
tribution function allows calculating macroscopic charge and current densi-
ties (1.54), but it is insufficient to calculate, e.g., the mean energy of particle
pair interaction in physical system. Such values must be calculated from two-
particle statistical distribution function (1.59), which, of course, can also be
obtained from microscopic phase density (1.50) but less straightforwardly
than the one-particle statistical distribution function. Below we introduce a
microscopically equivalent but more convenient N -particle distribution func-
tion F (N):

F (N)(r1,p1; . . . rN ,pN ; t)

=
1

N1! . . .Na! . . .

∑
P

δ[r1−r1(t)]δ[p1−p1(t)] . . . δ[rN−rN (t)]δ[pN−pN (t)].

(1.55)

Here the summation includes all transpositions of identical particles, and the
number of vectors (r,p) is equal to the total number of particles N =

∑
aNa

in the system where a denotes sort of the plasma particles. Averaging of this
N -particle distribution function over the ensemble of initial conditions, which
we denote by the angle brackets, results in N -particle statistical distribution
function

D(r1,p1; . . . rN ,pN ; t) = 〈F (N)(r1,p1; . . . rN ,pN ; t)〉, (1.56)

giving rise to a most complete statistical treatment of the problem.
The statistical distribution function D is a microscopic one, and it pro-

vides the most detailed information in a probabilistic sense. The probability
of each particle to reside in their own element d 3rd 3p of the phase space at
a time t is given by

dW = D(r1,p1; . . . rN ,pN ; t)d 3r1d
3p1 . . . d

3rNd 3pN . (1.57)

The statistical distribution function D satisfies the continuity equation in the
6N -dimensional phase space of the entire system, and it takes into account all
possible correlations among particles and fields. For many problems, however,
it is sufficient to use a simpler and less detailed representation of the system,
which is achieved by introducing the one-particle distribution function

f
(1)
a (r1,p1, t) = Na

∫
D(r1,p1; . . . rN ,pN ; t)d 3r2d

3p2 . . .d
3rNd 3pN = 〈Fa(r1,p1, t)〉,

(1.58)

the two-particle distribution function

f
(2)
a (r1,p1;r2,p2; t) = Na(Na − 1)

∫
D(r1,p1; . . . rN ,pN ; t)d 3r3d

3p3 . . .d
3rNd 3pN

= 〈Fa(r1,p1, t)Fa(r2,p2, t)〉, (1.59)
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and all higher-order many-particle distribution functions. But in this case the
correlation of separate particles is partially or entirely neglected.

The one-particle and two-particle functions f
(1)
a and f

(2)
a are the most

frequently used. In particular, one-particle distribution function provides in-
formation on practically all of the macroscopic parameters of the system.
A self-consistent recipe for obtaining the chain of coupled equations for the
many-particle distribution functions derived from the continuity equation for
the function D(r1,p1; . . . ; t) was proposed by Bogoliubov (1946). Derivation
of the kinetic equation for the one-particle distribution function is frequently
based on truncating the chain of coupled equations for the many-particle
functions, that is, on system closure. This closure depends essentially on the
type of interaction between particles, on the degree of deviation of the system
from equilibrium, on the particle density, etc.

In plasmas that are only weakly out of equilibrium, characterized by
the temperature T and the density of charged particles n, the correlation
effects are small provided that the interaction energy of the particles is small
compared with the kinetic energy

e2n1/3/T ≈ (nr3D)
−2/3 � 1, (1.60)

where rD = (T/4πne2)1/2 is the Debye radius . Plasmas of this kind can be
described by the self-consistent field approximation. Including the lowest-
order correlation effects, we get the kinetic equation

∂f
(1)
a

∂t
+ v · ∂f

(1)
a

∂r
+Fa · ∂f

(1)
a

∂p
=
∑
b

St(f (1)
a , f

(1)
b ). (1.61)

The collision operator St is discussed below. The force Fa given by Eq. (1.52)
is determined for this equation by the mean self-consistent fields, which satisfy
Maxwell equations (1.53). These equations become macroscopic and describe
the mean self-consistent field if the microscopic phase density is replaced by

the one-particle statistical distribution function f
(1)
a for the field sources in

Eq. (1.54):

ρ(r, t) =
∑
a

ea

∫
f (1)
a (r,p, t)d 3p, (1.62a)

j(r, t) =
∑
a

ea

∫
vf (1)

a (r,p, t)d 3p. (1.62b)

The collision operator at the right-hand side of Eq. (1.61) changes the
distribution functions for interactions occurring inside the Debye sphere. The
collision integrals are most often used in the form given by Landau or by
Balescu–Lenard (Silin 1971; Klimontovich 1972; Akhiezer et al. 1975). We will
not consider the explicit structure of this operator here. A detailed discussion
of its properties and the corresponding transfer coefficients in a plasma can
be found in Somov (2006).
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1.3.3 Magnetohydrodynamic Description
of Collisional Plasmas

Electromagnetic processes in a plasma are called collisional, if their charac-
teristic frequencies ω are small compared with collisional frequencies νab of
the plasma particles. By analogy with this condition, the spatial scales λ of
processes under consideration must be large compared with the mean free
paths Λab of the plasma particles:

ω � νab, λ
 Λab. (1.63)

Processes with the opposite inequalities are called collisionless. Most often,
one simply refers to a collisional and collisionless plasma.

In collisional plasmas, such as the interior regions and atmosphere of
stars and Sun, the solar chromosphere, and the ionosphere of the Earth,
the macroscopic parameters vary slowly both during the intervals between
Coulomb collisions and over distances exceeding the mean free path of the
particles, so that the solution of the kinetic equation (1.61) is close to a local
Maxwellian distribution

f (1)
a (r,p, t) = na(r, t)[2πmaTa(r, t)]

−3/2 exp

{
− [p−mau

(a)(r, t)]2

2maTa(r, t)

}
+ δf (1)

a .

(1.64)

Here the macroscopic parameters na, Ta, and u(a) (particle number density,
temperature in energy units, and macroscopic velocity of the a-component

of the plasma) vary in space and time. The deviation δf
(1)
a is small com-

pared with the Maxwell term in Eq. (1.64) and is expressed using the gradi-
ents of macroscopic parameters: its calculation with the use of Eq. (1.61) en-
ables one to determine the kinetic transfer coefficients for a collisional plasma
(Braginskii 1965).

The macroscopic (equilibrium) plasma parameters are connected with

the distribution function f
(1)
a by the following expressions:

na(r, t) =

∫
f (1)
a (r,p, t)d 3p, (1.65a)

u(a)(r, t) =
1

na

∫
vf (1)

a (r,p, t)d 3p, (1.65b)

Ta(r, t) =
ma

3na

∫
(v − u(a))2f (1)

a (r,p, t)d 3p, Pa(r, t) = na(r, t)Ta(r, t),

(1.65c)

Π
(a)
αβ (r, t) = ma

∫
(v − u(a))α(v − u(a))βf

(1)
a (r,p, t)d 3p− Pa(r, t)δαβ ,

(1.65d)
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q(a)(r, t) =
1

2
ma

∫
(v − u(a))(v − u(a))2f (1)

a (r,p, t)d 3p. (1.65e)

Here Pa is scalar partial pressure of a-component, δαβ is the Kronecker

tensor, and Π
(a)
αβ is the viscous stress tensor. The vector q(a) is the heat

flux density carried by particles of type a.
We note, that in the equilibrium equations (1.65) require the conditions

∫
δf

(1)
a (r,p, t)d 3p = 0,

∫
vδf

(1)
a (r,p, t)d 3p = 0,

∫
(v −u(a))2δf

(1)
a (r,p, t)d 3p = 0

(1.66)

for the perturbation function δf
(1)
a to be fulfilled. As they must hold in any

spatial place at any time, conditions (1.66) are equivalent to the require-

ment δf
(1)
a = 0. However, the dissipative processes (e.g., viscosity and heat

conduction2) driving the system toward the equilibrium come into play only
when the distribution function differs from the local Maxwellian function,

i.e., δf
(1)
a �= 0 giving rise to na(r, t) = na(r, t) + δna(r, t), u(a)(r, t) =

u(a)(r, t)+δu(a)(r, t), and Ta(r, t) = T a(r, t)+δTa(r, t); see in Kogan (1967)
and Silin (1971) for greater detail.

The set of equations for macroscopic parameters can be obtained from
kinetic equation (1.61). However, microscopically derived and so more pre-
cise collision integrals in the forms of Landau or Balescu–Lenard are very
complicated. For the sake of simplicity, we use model Bhatnagar–Gross–
Krook (BGK) collision integral (Bhatnagar et al. 1954; Gross and Krook
1956; Ginzburg and Rukhadze 1975):

St(f (1)
a , f

(1)
b ) = −νab(f (1)

a − naΦab). (1.67)

Here νab = τ−1
ab are phenomenological parameters (effective collision frequen-

cies), T = Ta = Tb = · · · is the temperature, which we suppose common for
all plasma components, and

Φab(r,p, t) = [2πmaT (r, t)]
−3/2 exp

{
− [p−mau

(b)(r, t)]2

2maT (r, t)

}
. (1.68)

In the model BGK integral, the collision frequencies are not consistently de-
rived; instead, they are estimated to an order of magnitude from a qualitative

2Hereafter we define the dissipative processes as those leading to the entropy
increase; see Eq. (1.129). From this perspective the heat conduction is classified as a
dissipative process even though no energy transformation process into the thermal
energy is apparent during the heat conduction. In fact, however, it is a potential work,
which could have been done as a result, e.g., of a Carnot cycle applied to the system,
that is transferred to the thermal energy. Another example of a similar irreversible
dissipative process is mixing up of two different gases.
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physical consideration. It is within the required accuracy, because in the ma-
jority of astrophysical problems plasma parameters are known only to an
order of magnitude; thus, this simplification of the collision integral is well
justified.

We use collision integral (1.67) in Eq. (1.61) to obtain the equations
describing balance of particles, momentum, and energy. We multiply left-
hand and right-hand sides of Eq. (1.61) sequentially by 1, ma(v − u(a)), and
ma(v−u(a))2 and integrate over d 3p. As a result we obtain the set of equa-
tions in quasi-hydrodynamic approximation:

∂na
∂t

+∇ · nαu(a) = 0 (1.69)

—continuity equations;

nama

[
∂u(a)

∂t
+ (u(a) · ∇)u(a)

]
α

= eana

(
E +

1

c
u(a) ×B

)
α

−∇αPa −∇βΠ
(a)
αβ − nama

∑
b

(u(a) − u(b))α

τab

(1.70)

—equations of medium motion

3

2
na

(
∂T

∂t
+u(a) · ∇T

)
+Pa∇ ·u(a)+∇ · q(a)+Π

(a)
αβ∇βu

(a)
α =

1

2
nama

∑
b

(u(a)−u(b))2

τab

(1.71)

— equations of heat transfer. Here

Π
(a)
αβ = − Pa∑

b νab

(
∇βu

(a)
α +∇αu

(a)
β − 2

3
δαβ∇ ·u(a)

)

+
nama∑

b νab

∑
b

νab

(
(u(a) −u(b))α(u

(a) −u(b))β − 1

3
δαβ(u

(a) − u(b))2
)

(1.72)

— viscous stress tensor;

q = − 5Pa
2ma

∑
b νab

∇T +
nama

2
∑
b νab

∑
b

νab(u
(a) − u(b))2(u(a) − u(b)) (1.73)

— heat flux density.
Calculations of collision frequencies have been made by Spitzer (1962),

Braginskii (1965), Alfven and Fälthammar (1963) and Baranov and Kras-
nobaev (1977) etc. We list below (see Sect. 1.3.7) the necessary kinetic coef-
ficients for MHD equations.
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Equation of motion (1.70) contains electric E and magnetic B fields.
Thus, we must complement Eqs. (1.69)–(1.73) by Maxwell equations neglect-
ing the displacement current, c−1∂E/∂t. This term is small compared with
the conductivity current j if the frequency ω of the electromagnetic field is
small such as ωE � j. This condition is fulfilled for relatively slow MHD
processes. We, thus, have the following set of the Maxwell equations:

∇ ·B = 0, ∇×B =
4π

c
(j + j ext), ∇×E = −1

c

∂B

∂t
. (1.74)

Here j is the electric current produced by the plasma particles (e > 0 is
adopted),

j = e(niu
(i) − neu

(e)), (1.75)

jext is the external current. Since a plasma is supposed to consist of collec-
tively interacting charged and neutral particles, the inclusion of an external
current needs some more clarification. Although, as a model of this current,
one can always imagine well-isolated current-carrying wires embedded by a
plasma; this example has little practical importance, while a current com-
posed of free particles identical to the plasma particles is indistinguishable
of the internal plasma current and so must not be treated as an external
current. A practically important situation, when the concept of the external
current makes sense, is when the current is formed by a particle popula-
tion distinct from the plasma particles, e.g., distinct nuclei or ions (including
different ionization state) or higher-energy (nonthermal) population of the
same particles. In some cases, the population forming the external current
cannot itself be described within the MHD approximation (as is often true for
nonthermal particles), and requires a more general kinetic treatment, while
its effect on the main plasma can still be accounted within the MHD ap-
proach. Maxwell equations then allow calculating-the magnetic field, if we
have specified the dependence between current j and electromagnetic field,
i.e., generalized Ohm’s law.

1.3.4 Ohm’s Law in a Partially Ionized Collisional
Plasma

In this section we examine partly ionized collisional plasmas, following
Pikel’ner 1966; Bykov and Toptygin 2007. We consider the three-component
medium (electrons e, ions i, neutral atoms a) and use Eqs. (1.69)–(1.70). The
momentum conservation law leads to the relationship between the collision
frequencies:

mbnbνbc = mcncνcb. (1.76)

In the subsequent discussion we adopt a single-fluid model and consider
the conditions when in zeroth approximation all three components move as
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an aggregate continuum medium. We therefore introduce the bulk velocity u
of the medium

u =
nimiu

(i) + namau
(a) + nemeu

(e)

nimi + nama + neme
, u(i,a,e) = u+ v(i,a,e) (1.77)

and take into account the equality

nimiv
(i) + namav

(a) + nemev
(e) = 0 (1.78)

and the inequalities me � mi, v
(i,a) � u, v(e) ∼ u.

Substituting expression (1.78) in Eqs. (1.69) and (1.70) and neglecting the
terms of the second-order smallness allows writing down equations of motion
for three components of the medium. Equations for the heavy components
are

nimi

[
∂u

∂t
+(u · ∇)u

]
+nimi

[
∂v(i)

∂t
+(u · ∇)v(i)+(v(i) · ∇)u

]

= eni

(
E +

1

c
u×B

)
+
eni
c

v(i) ×B−∇Pi + ηi

(
Δu+

1

3
∇(∇ · u)

)

−nimi
v(i) − v(e)

τie
− nimi

v(i) − v(a)

τia
, (1.79)

nama

[
∂u

∂t
+ (u · ∇)u

]
+ nama

[
∂v(a)

∂t
+ (u · ∇)v(a) + (v(a) · ∇)u

]

= −∇Pa + ηa

(
Δu+

1

3
∇(∇ ·u)

)
− nama

v(a) − v(e)

τae
− nama

v(a) − v(i)

τai
.

(1.80)

The equation for electrons is simplified using the inequality me � mi:

0 = −ene
(
E+

1

c
u×B

)
− ene

c
v(e) ×B −∇Pe+ηe

(
Δu+

1

3
∇(∇ · u)

)

−neme
v(e)−v(i)

τei
− neme

v(e) − v(a)

τea
. (1.81)

Here everywhere e > 0. We omit viscosity term in the last equation, because
ions and neutral atoms dominate in the momentum transfer. The terms of
order v(i,a)/u also neglected in dissipative terms containing the dynamic vis-
cosity ηi,a in Eqs. (1.79) and (1.80).

We next take into account the quasineutrality of the medium and intro-
duce the total mass density

ρ = nimi + nama (1.82)
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and the electric current density (1.75)

j = eni(v
(i) − v(e)), (1.83)

as well as the total pressure P = Pe+Pi+Pa and the total viscosity η = ηe +
ηi + ηa. Term-by-term summation of Eqs. (1.79)–(1.81) yields the equation
of motion of the medium as a whole:

ρ

[
∂u

∂t
+ (u · ∇)u

]
=

1

c
j ×B −∇P + η

(
Δu +

1

3
∇(∇ · u)

)
. (1.84)

From Eq. (1.69) we obtain the continuity equation

∂ρ

∂t
+∇ · ρu = 0. (1.85)

The friction forces between plasma components do not enter Eq. (1.84) by
virtue of conditions (1.76).

We specify now the conditions when a multicomponent fluid can be de-
scribed by means of the one-fluid model. The characteristic frequencies ω of
processes under consideration must be small compared with the reverse times
τ−1
ab between collisions of all distinct components. The lengths λ of waves must
be large compared with the mean free paths Λab between collisions

ω � τ−1
ab , λ = 2π/k 
 Λab (1.86)

for both a = b and a �= b. The meaning of this conditions for a �= b is
that collisions between different particles are numerous over the time interval
2π/ω, which ensures that motions of all plasma components are identical.
In particular, the neutral component adjusts itself to motion of the charged
components, if 2π/ω 
 τia, τea. In the opposite case the neutral particles
do not have sufficient time of interaction with charges to respond to rapid
changes of the electromagnetic field. Neutral and charged particles move in-
dependently in this case, so, the one-fluid description is inapplicable to such
“fast” processes. Conditions (1.86) also ensure smallness of deviations from
the local equilibrium in every component.

Let us derive a generalized Ohm law from the above equations. To do
so we neglect the last dissipative term on the right-hand side of Eq. (1.84),
which is assumed to be small. The combination ∂u/∂t+(u · ∇)u is then ex-
pressed from Eq. (1.84), where the terms of the form ∂v(i,a)/∂t+(u ·∇)v(i,a)

have already been discarded. For these approximations to be valid it is es-
sential that the frequencies ω of the involved oscillations are low compared
with collisional frequencies τ−1

ab , and the wavelengths are long compared with
the particle transport mean free paths Λb = vTb/

∑
c τ

−1
bc , where vTb are

the thermal velocities. Then, we introduce the mass fraction of the neutral
component

F =
nama

nama + nimi
≈ na
na + ni

, (1.87)
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assuming only one sort of singly ionized atoms in the plasma, so that ma ≈
mi. We also assume that the ratio between the number densities of ions
and neutral atoms persists in the collisional plasma in the presence of low-
frequency oscillations, i.e., n′

a/n
′
i = na/ni and F = const, where n′

i,a are
perturbed number densities.

Then, from Eqs. (1.78) and (1.83), we express the electron and neutral
component velocities, v(e) and v(a), in terms of the current density and the
ion velocity v(i) using the smallness of the mass ratio me/mi � 1:

v(e) = v(i)− j

eni
, v(e)−v(a) ≈ v(i)

F
− j

eni
, v(i)−v(a) ≈ v(i)

F
. (1.88)

Term-by-term summation of Eqs. (1.79) and (1.81), with the above sim-
plifications, yields the relation between the ion velocity and electric current:

v(i) ≈ F 2τia
nimic

j ×B +
Fmeτia
enimiτea

j. (1.89)

In what follows, in addition to me/mi � 1, we discard the small terms of the
order of (me/mi)

1/2 � 1. The ratio meτia/miτea = mevTeΛia/mivTiΛea =
(me/mi)

1/2σea/σia ≈ (me/mi)
1/2, where σia,ea denote the cross sections for

collisions between charged and neutral particles, has the same order of magni-
tude and the corresponding terms are safely discarded as well. By eliminating
the velocity v(i) from Eq. (1.79) with account of relations (1.88), we arrive at
generalized Ohm’s law—the relationship between the electromagnetic field,
the current, and the hydrodynamic parameters of the medium:

E+
1

c
u×B+

1

eni
∇[(1−F )P −Pi] =

j

σ
+

1

niec
j×B+

F 2τia
nimic2

B× (j×B).

(1.90)
The pressure gradient also enters this relationship and so produces an

additional effective electric field. The quantity

σ =
e2niτe
me

, where τe =
τeiτea
τei + τea

(1.91)

is the plasma conductivity with the account of neutral atoms in the ab-
sence of an external magnetic field, which can be called the classical Drude
conductivity, as it is analogous to arbitrary conducting medium (Drude
1900a,b).

In a “cold” plasma, wherein the pressure P can be neglected, Ohm’s law
takes the form

E +
1

c
u×B =

j

σ
+

1

niec
j ×B +

F 2τia
nimic2

B × (j ×B). (1.92)
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If the electric current j = j‖ + j⊥ is separated into two components
parallel and perpendicular to the magnetic field B, Ohm’s law can be
presented as

E +
1

c
u×B =

j‖
σ

+
B

niec
j × e‖ +

j⊥
σeff
⊥
, (1.93)

where e‖ = B/B, and

1

σeff
⊥

=
1

σ
+

1

σC
, σC =

nimic
2

F 2B2τia
, (1.94)

where the second term, specified by the ion contribution, σC , is called the
Cowling conductivity.

Hence, it follows that the quantities σ, σeff
⊥ play the roles of the effective

longitudinal and transverse conductivities of a partially ionized magnetized
plasma. The relationships inverse to Eq. (1.93) have the form

j‖ = σE‖, j⊥ = σ⊥

(
E⊥+

1

c
u×B

)
−σ⊥Bσ

eff
⊥

ecni

(
E × e‖−Bc u⊥

)
,

(1.95)

where

1

σ⊥
=

1

σeff
⊥

[
1 +

(
Bσeff

⊥
ecni

)2
]
. (1.96)

Note that

E +
1

c
u×B = E′ (1.97)

is the electric field in co-moving system; thus, we can transform Eq. (1.95) to
the form

j = σ̂′E′ −E′ ×G, (1.98)

where σ̂′ = (σ⊥, σ‖) is the diagonal tensor, while vector G is determined by

G =
σ⊥σeff

⊥
ecni

B (1.99)

and describes gyrotropy of the medium. The sum σ′
αβ − eαβγGγ = σαβ is

the electroconductivity tensor of partly ionized plasma and so the sum δαβ +
i(4π/ω)σαβ = εαβ is the electric permeability tensor, which determines the
electric induction vector D′, if the electric field depends on time as E′(t) =
E′e−iωt and the frequency ω is small, ω � σ⊥, σ‖:

D′
α = εαβE

′
β . (1.100)
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In the absence of the neutral component,

F 2τia = 0, σeff
⊥ = σ = σS = e2niτei/me, σ

−1
⊥ = σ−1(1 + ω2

Beτ
2
ei), (1.101)

where σS is the Spitzer conductivity calculated in Sect. 1.3.7, Eq. (1.149),
σ⊥ is the Pedersen conductivity, and σH = σ⊥ωBeτei is the corresponding
Hall conductivity, so we have a well-known relation for the electric current

j = σE′
‖ +

σ

1 + ω2
Beτ

2
ei

E′
⊥ − σωBeτei

1 + ω2
Beτ

2
ei

E′ × e‖, (1.102)

where ωBe = eB/mec is the electron cyclotron frequency. An estimate of
characteristic time τei of e-i collisions, entering here, is given below by ex-
pression (1.148).

Electric current (1.102) in fully ionized hydrogen plasma is almost solely
produced by the electron plasma component j ≈ je. When na = 0, the
ion current ji = eniv

(i), according to Eq. (1.78), is linked to the electron
current by

ji = −me

mi
eniv

(e) =
me

mi
je =

me

mi
j, (1.103)

i.e., it contains a very small factor me/mi and so does not enter the total
current produced by both charged components.

It is curious to consider another limiting case of a weakly ionized plasma:

1− F � F, ni = ne � na. (1.104)

Adopt that the number densities of the charged components are sufficiently
small to ensure

τei 
 τea, τia (1.105)

that means that the collisions between electrons and ions are inessential.
The collision times of the electrons and ions with neutrals can be estimated as

τea ≈ (vTenaσea)
−1, τia ≈ (vTinaσia)

−1, and τea/τia ≈ (me/mi)
1/2,

(1.106)

if the cross sections of the charged particle collisions with neutrals are
comparable, σea ≈ σia. Assume also that the charged particles are strongly
magnetized:

ωBeτea 
 1, ωBiτia 
 1. (1.107)

In our case of weak ionization, equalities (1.88) yield v(a) ≈ 0. This
means that the neutral component moves with the bulk velocity u, while
electrons and ions, whose contributions to the total momentum of the fluid
are inessential under condition (1.104), have some mean velocities v(e) and
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v(i) relative to this neutral background. Equation (1.91) with account of
Eq. (1.105) yields the longitudinal electron conductivity

σe =
e2neτea
me

≡ σe‖. (1.108)

The corresponding ion conductivity has, apparently, the form

σi‖ =
e2niτia
mi

(1.109)

and, accordingly,

σe‖/σ
i
‖ ≈ (me/mi)

1/2 
 1. (1.110)

The ion current makes, therefore, a small contribution to total longitudinal
current (1.95) because of σi‖ smallness. However, in the case of weakly ionized

plasma this smallness is much weaker ∼ (me/mi)
1/2 than in the case of fully

ionized plasma, where it is ∼ (me/mi).
Let us transform Eq. (1.94) with account of Eqs. (1.108) and (1.107):

1

σeff
⊥

=
1

σe‖
(1 + ωBeτeaωBiτia) ≈ (ωBiτia)

2

σi‖
≈ 1

σi⊥
. (1.111)

Here σeff
⊥ ≈ σi⊥ [cf. transverse conductivity in Eq. (1.102)]. Remarkably, in

this case, the transverse current is specified by ions (Cowling conductivity),
not by electrons. Electron conductivity is described by σe⊥ = σe‖/(ωBeτea)

2,

so σe⊥/σ
i
⊥ ≈ (me/mi)

1/2 � 1 and, thus, the electron transverse current is
small compared with the ion transverse current.

The gyration vector in the Hall current [see Eqs. (1.98) and (1.99)] can
here be transformed as follows:

G ≈ Gi ≈ − σi⊥
ωBiτia

e‖. (1.112)

Again, the ion contribution dominates over the electron one; their ratio is
Gi/Ge ≈ (mi/me)

1/2. Therefore, the relative roles of the electrons and ions
in creation of the electric current is essentially dependent on the plasma
ionization an composition as well as on the direction and value of the external
magnetic field.

1.3.5 Plasma in a Weak Magnetic Field

Relationships (1.90)–(1.102) show that the inclusion of both the magnetic
anisotropy of conductivity and neutral particles substantially complicates
the electric current-to-electromagnetic field coupling and enhances its non-
linearity. We therefore derive here the system of equations in simplified forms,
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but with inclusion of an external current jext, which is typically ignored in
standard MHD (Alfvén 1942; Elsasser 1950; Syrovatskii 1958).3

Consider highly collisional case, ωBeτei � 1, where no neutral particles
are present, F = 0. Ohm’s law takes then the following simple form:

j = σ

(
E +

1

c
u×B

)
. (1.113)

Assuming σ = const, Eq. (1.53a) with Eq. (1.53b) yields the induction
equation

∂B

∂t
= ∇× (u×B) + νmΔB − 4πνm

c
∇× jext. (1.114)

Here

νm =
c2

4πσ
(1.115)

is the collisional magnetic diffusivity (called also the magnetic viscosity).
Then, Eq. (1.114) must be complemented by the continuity equation

∂ρ

∂t
+∇ · ρu = 0, (1.116)

equation of motion

ρ

[
∂u

∂t
+ (u · ∇)u

]
=

1

c
(j+jext)×B−∇P +η

(
Δu+

1

3
∇(∇ · u)

)
(1.117)

and the heat transfer equation, which is obtained below in this section.
The first term in the rhs of Eq. (1.117) represents Ampère’s force

fA =
1

c
(j + jext)×B (1.118)

applied to both internal plasma current j and external current jext. Inclu-
sion of the latter one into the equation assumes that there is a strong cou-
pling between this external current and the plasma. This coupling may gen-
erally be provided by either frequent Coulomb collisions of external particles
with thermal ones or their interactions via macroscopic (self-consistent) and
turbulent electromagnetic fields. Consequently, strong coupling may happen
in both collisional and collisionless plasma. Turbulent fields are discussed in

3For various aspects of MHD, the reader can also consult classical textbooks
and monographs by Alfven (1950), Cowling (1957), Alfven and Fälthammar (1963),
Pikel’ner (1966), Landau and Lifshits (1982), as well as from the most recent, modern
textbook by Somov (2006, 2007).
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greater detail in Chap. 4. In such a case Ampère’s force is determined by the
full current j + jext and using Eq. (1.53b) can be represented as

fA =
1

4π
(∇×B)×B. (1.119)

In the case of weak coupling, however, the external current has no direct effect
on the plasma, so the corresponding term must be excluded from Ampère’s
force:

fA =
1

4π
(∇×B)×B − 1

c
jext ×B. (1.120)

Let us derive now the heat transfer equation from Eqs. (1.71) to (1.73).
Taking into account condition (1.60) (the energy of particle interaction is
small compared with the kinetic energy), we designate

3

2
(ni + ne)T = ρε, w = ε +

P

ρ
, P = (ni + ne)T, (1.121)

where ε is the specific (per the mass unit) internal energy and w is the specific
enthalpy (the heat function). In the one-fluid model of fully ionized plasma
considered here, we use the approximations

|u(i) − u(e)| � u, (me/mi)
1/2 � 1, τei|∂uα/∂xβ | � (me/mi)

1/2.

(1.122)

Here, the first of inequalities (1.122) is the condition of the one-fluid descrip-
tion. The second one has been used for simplification of generalized Ohm’s
law (1.90). The third inequality allows simplifying Eq. (1.71) and discarding
the last terms in the rhs of expressions (1.72) and (1.73) compared with rhs
of Eq. (1.71). The relaxation time τei is estimated in Sect. 1.3.7. After the
indicated approximations we obtain the heat flux density in the form

q = qe + qi ≈ qe ≈ −χ∇T, χ =
5Pτei
8me

=
5PkBτei
8me

, (1.123)

and viscous stress tensor

Παβ = Π
(i)
αβ +Π

(e)
αβ ≈ Π

(i)
αβ ≈ −ρν

(
∂uα
∂xβ

+
∂uβ
∂xα

−2

3
(∇ · u)δαβ

)
, ν=

Pτei
2ρ

.

(1.124)

Here χ is the heat conductivity, which is derived from Eq. (1.73) using
obvious relations Pe = P/2 and νee + νei ≈ 2νei = 2/τei. First equality for χ
in Eq. (1.123) is written for the temperature measured in energy units [erg],
while the second for the temperature measured in [K]. The first of Eqs. (1.123)
expresses the Fourier law of heat conductivity.
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After adding equations (1.71) for electrons and ions term by term, use of
continuity equations (1.69) and relation between the electric current density
and component velocities j = eni(u

(i) −u(e)), we obtain the energy balance
equation:

∂(ρε)

∂t
+∇ · (ρwu)−u · ∇P=∇ · (χ∇T )+ρν

(
∂uα

∂xβ
+
∂uβ

∂xα
−2

3
(∇ · u)δαβ

)
∂uα

∂xβ
+
j2

σ
.

(1.125)

Let us reformulate now the previous equation in terms of specific entropy s
(per the mass unit). From the thermodynamic relations

dw = Tds+
dP

ρ
, dε = Tds+

Pdρ

ρ2
, (1.126)

we obtain

dP = ρdw − ρTds, ∇P = ρ∇w − ρT∇s, ∂ε

∂t
= T

∂s

∂t
− P

ρ2
∇ · ρu

and find

∂(ρε)

∂t
+∇ · (ρwu)− u · ∇P = ρ

∂ε

∂t
+
P

ρ
∇ · ρu+ ρTu · ∇s

= ρT

(
∂s

∂t
+ u · ∇s

)
= T

(
∂(ρs)

∂t
+∇ · (ρsu)

)
.

Finally we obtain the heat transfer equation in terms of entropy:

ρT

(
∂s

∂t
+u · ∇s

)
= ∇ · (χ∇T ) + ρν

(
∂uα

∂xβ
+

∂uβ

∂xα
− 2

3
(∇ ·u)δαβ

)
∂uα

∂xβ
+

j2

σ

(1.127)

or in equivalent form

∂(ρs)

∂t
+∇ · ρsu =

˙̃
S, (1.128)

where
˙̃
S is the density of entropy sources:

˙̃
S = ∇ · χ∇T

T
+
χ(∇T )2
T 2

+
ρ ν

2T

(
∂uα
∂xβ

+
∂uβ
∂xα

− 2

3
(∇ · u)δαβ

)2

+
νm
4πT

(
∇×B − 4π

c
j ext

)2

. (1.129)
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The first two terms in the rhs describe the entropy variation due to
thermal conduction. It must be noted that these two terms are essentially
different from each other. Indeed, the first one is sign alternating and, thus,
can provide either increase or decrease of the entropy at the given location
due to heat redistribution driven by the thermal conduction. The second
one is positively defined and so results in the entropy increase only indica-
tive that the heat conduction is essentially irreversible process. The next
term describes the entropy increase due to the viscosity, while the last term
describes the Joule heating of medium. In Eq. (1.129) only the “direct” Joule
entropy increase is included, which is related to the plasma current j, while
the contribution of external current j ext is supposed to be small, so the term
4πj ext/c is subtracted. This requires that the conductivity of the external
current is much larger than for the internal plasma current. For example,
one can imagine a highly conducting well-isolated current-carrying wire in
a plasma as a vivid model of such external current. A more practical astro-
physical example, however, is a current produced by highly nonthermal (e.g.,
relativistic) particle population. The Coulomb losses of ultrarelativistic par-
ticles are small, so the plasma heating by this external current is extremely
low, although their contribution to plasma dynamics (including generation of
magnetic field or return currents (see Sect. 7.1.3) whose Joule dissipation is
essential) can be significant or even dominant. In many cases in astrophysics,
however, the nonthermal particle population can, nevertheless, participate in
energy dissipation via the Coulomb losses, ionization, radiative losses, and
wave–particle interactions. In particular, solar flares represent a vivid ex-
ample where Coulomb losses of nonthermal particles are significant. Indeed,
most of the nonthermal flare energy resides in nonrelativistic and mildly rel-
ativistic particles, whose Coulomb losses in dense coronal loops or in the
chromosphere result in strong plasma heating, which is routinely observed
via flare-stimulated evaporation of the chromospheric plasma and via ther-
mal SXR emission from the flare-heated coronal plasma.

The system of equations (1.113)–(1.120) is still complicated, and it al-
lows some further simplifications in special cases. For example, in the “cold”
plasma, T → 0, P → 0, ν → 0, the system of equations contains Eqs. (1.114)
and (1.116) and simplified equation of the plasma motion

ρ

[
∂u

∂t
+ (u · ∇)u

]
=

1

4π
(∇×B)×B. (1.130)

Then, in non-dissipative (“ideal”) plasma ν → 0, νm → 0, χ → 0, T =
const; local thermodynamic equilibrium approximation yields

∇P =
∂P (ρ, s)

∂ρ
∇ρ′ = c2s∇ρ′, s = const, (1.131)
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here s is the specific medium entropy and cs = (∂P/∂ρ)
1/2
s is the sound

velocity. The system of equations reads

∂B

∂t
= ∇× (u×B), (1.132a)

ρ

[
∂u

∂t
+ (u · ∇)u

]
=

1

4π
(∇×B)×B −∇P, (1.132b)

P = P (ρ, s), s = const (1.132c)

and Eq. (1.116).
External current drops out from the induction equation in the last case.

This phenomenon is explained by shielding of electric charges in a plasma.
Indeed, the shielding is perfect in the ideal plasma with infinite conductivity,
so the external current is entirely neutralized by free plasma charges. This
neutralization is only partial, however, if the conductivity is finite.

1.3.6 Plasma in a Strong Magnetic Field

Let us consider now the case of rare collisions and strong magnetic field,
ωBeτei 
 1. Since the nonlinearity and complexity of the equations are very
high, analytical methods can only be used for a limited class of problems
including linearized equations. In what follows we use the notations U =
U0 + u for the velocity, B = B0 + b for the magnetic field, and ρ = ρ0 + ρ′

for the plasma density and suppose u, b, and ρ′ are the values of the first
order of smallness. Zero-order values are constant: U0 = const, B0 = const,
and ρ0 = const. In the first order we have

e‖ =
B

B
≈ e0 +

b⊥
B0

, e0 =
B0

B0
. (1.133)

After linearization of Eqs. (1.84), (1.85), and (1.90) we obtain the follow-
ing set of equations:

∂b

∂t
+(U0 · ∇)b−B0[(e0 · ∇)u−e0∇ · u] = νmΔb− (νeff − νm)∇× (∇× b)⊥

− cB0

4πeni
(e0 · ∇)(∇× b) +

4πνm
c

∇× j ext +
4π

c
(νeff − νm)∇

×
[
j ext
⊥ −

j ext
‖
B0

b⊥

]
+
B0

nie
((e0 · ∇)j ext − e0∇ · j ext). (1.134)

∂u

∂t
+ (U0 · ∇)u = − 1

ρ0
∇P +

B0

4πρ0
(∇× b)× e‖, (1.135)

∂ρ ′

∂t
+U0 · ∇ρ ′ + ρ0∇ · u = 0. (1.136)
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Here the subscript ⊥ denotes a direction, perpendicular to vector B0;

νm =
c2

4πσ
, νeff =

c2

4πσeff
⊥

(1.137)

are the Coulomb magnetic diffusivity and the effective magnetic diffusivity,
respectively, with the account of the neutral component. The quantity σeff

⊥
is given by (1.94), in which B = B0. Note that the terms proportional to
(νeff − νm) can play a role of additional sources of the magnetic field due to
the neutrals forming νeff . This apparently unexpected conclusion turns to be
evident if we recall that the neutrals reduce the plasma conductivity and so
the neutralization of an external current becomes less perfect and the residual
electric current produces additional magnetic field; the mentioned terms drop
out from Eq. (1.134) when the neutral component makes little contribution
and so νeff = νm.

To make more lucid the complicated structure of Eq. (1.134), we rewrite it
for a special case of an incompressible medium in a simplified geometry, when
the plasma current j and the external current j ext are directed transversely
to the field B0:

∂b

∂t
+ (U0 · ∇)b = (B0 · ∇)u+ νeffΔb− c

4πeni
(B0 · ∇)(∇× b)

+
4πνeff
c

∇× j ext +
1

eni
(B0 · ∇)j ext. (1.138)

This equation has the same form as that describing the magnetic field in
fully ionized plasma, differing from it only by the value of effective magnetic
diffusivity in place of Coulomb one. The ratio

νeff
νm

=
σ

σeff
⊥

= 1 +
F 2B2

0τiaσ

nimic2
= 1 + F 2(ωBiτia)(ωBeτei), (1.139)

where ω
Bi, e = eB0/mi, ec are the cyclotron frequencies, can be very large in

many important cases (see Table 1.2), even when the number density of the
neutrals is small. If νeff/νm 
 1, the contribution of neutral component is
highly significant.

The contribution of the Hall terms (i.e., the third and the fifth in the rhs
of Eq. (1.138)) to Eq. (1.138) is defined by the ratio

cB0

4πeniνeff
≈ 1

F 2ωBiτia
. (1.140)

For F 2ωBiτia 
 1 the Hall term plays a minor role. However, it prevails over
all the remaining terms within the parameter regime defined by inequalities
νeff/νm 
 1 and F 2ωBiτia � 1.
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Dissipative processes lead to damping of mechanical motion and magnetic
field and so increase the entropy. The damping may be characterized by the
quantity Q, the power density of heat release, that is the dissipation of energy
per unit volume over unit time. The dissipation consists of hydrodynamic and
electromagnetic components. We consider here the latter one—the Joule’s
heat QJ. If no external current is present, the change of the magnetic field
energy, which can be explicitly derived from the Maxwell equations (with the
use of differential equality ∇ · (E ×B) = B · (∇ × E) − E · (∇ ×B)), has
the form

∂

∂t

B2

8π
=

1

4π
B · ∂B

∂t
= − c

4π
B · (∇×E) = −∇ · γ −E · j, (1.141)

where γ = (c/4π)E × B is the flux density of the electromagnetic energy.
The heating of the medium is described by the last term, from which we have
yet to subtract the mechanical work of Ampère’s force:

QJ = E · j − 1

c
(j ×B) · u = E′ · j, E′ = E +

1

c
u×B. (1.142)

This result shows that the medium heating is determined by electric field
E′ and electric current j′ ≈ j in the co-moving system. We, thus, obtain
from (1.93)

QJ =

(
j‖
σ

+
B

niec
j × e‖ +

j⊥
σeff
⊥

)
· j =

j2‖
σ

+
j2⊥
σeff
⊥
. (1.143)

If σeff
⊥ � σ, the dissipation of perpendicular current is very strong in

comparison with parallel one. This effect is caused by ion collisions with
neutral atoms. But if neutral atoms are absent, we have from (1.101) σeff

⊥ = σ
and in fully ionized plasma

QJ =
j2

σ
. (1.144)

We obtain an apparently unexpected result: the Joule’s heat does not depend
on the strong magnetic field. The trick is that the dissipation is caused by e-i
collisions, whose rate depends on the particle number density and tempera-
ture but does not depend on the external magnetic field.

Another approach to describing a tenuous plasma in a strong magnetic
field has been proposed by Chew et al. (1956): the CGL approximation.
Specifically, they entirely neglect the Coulomb collisions and use the ion gy-
roradius for the particle mfp, which must be small compared with other avail-
able scales to render the hydrodynamic approximation valid. However, the
gyromotion bounds the particle motion transverse to the magnetic field only,
while not in the longitudinal direction. Thus, for the CGL approximation to
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be valid, an extra condition is required that would reduce the third moment
of the distribution function over velocity and bound pressure transfer along
the magnetic field. If this is fulfilled, then the MHD set of equations receives
the form (Chew et al. 1956):

ρ
du

dt
= ∇P̂+ 1

4π
(∇×B)×B+

1

4πc2

[
∂

∂t
(u×B)×B

]
+

1

4πc2
(u×B)∇·(u×B),

(1.145a)

(∇P̂ )α = ∇βPαβ = ∇β [P‖e‖αe
‖
β + P⊥(δαβ − e‖αe

‖
β)], (1.145b)

∂ρ

∂t
+∇ · (ρu) = 0,

∂B

∂t
= ∇× (u ×B), (1.145c)

d

dt

(
P‖B2

ρ3

)
= 0,

d

dt

(
P⊥
ρB

)
= 0,

d

dt
=

∂

∂t
+ (u · ∇). (1.145d)

No dissipative process is included, thus, the total energy W of the physical
system considered is conserved:

W =
1

2

∫ {
ρu2 + (2P⊥ + P‖) +

B2

4π
+

1

4πc2
(u×B)

}
d 3r = const. (1.146)

Noteworthy, this approach allows an anisotropy of the kinetic pressure due
to overall system anisotropy driven by the strong magnetic field.

1.3.7 Dissipative Kinetic Coefficients

We make now approximate analytical estimates and evaluations of basic ki-
netic coefficients in the set of above equations following mainly the reviews
by Brandenburg and Subramanian (2005) and Bykov and Toptygin (2007).

Consider the Coulomb magnetic diffusivity formed by electron–ion colli-
sions. For single-charged ions considered here the Coulomb cross section can
be approximated by

σei ≈ π

(
e2

mev2e

)2

ln ΛC, (1.147)

where lnΛC = 5 − 20 = const is the Coulomb logarithm. This quantity
defines relative role of “distant” collisions (with small angles of deflections).
For thermal particles mev

2
e ≈ T .

Characteristic time between collisions is estimated as

τei ≈ 1

niσeivTe
≈ T 3/2m

1/2
e

πe4ni ln ΛC
; (1.148)

thus, Eq. (1.91) applied to the case of the Coulomb collisions between elec-
trons and ions yields a so-called Spitzer conductivity

σ = σS =
e2neτei
me

≈ T 3/2

πe2m
1/2
e ln ΛC

, (1.149)



40 1 General Information and Approaches

which depends on the particle number density very weakly—only via lnΛC.
More exact calculation (Lifshitz and Pitaevskii 1981) leads to a numeric co-
efficient 0.6 instead of 1/π in Eq. (1.149). It is easy now to find the magnetic
diffusivity, νm = c2/4πσ. For astrophysical applications it is often convenient
to present such formulae in “natural” units, which gives an immediate idea
about the order of magnitude of the involved measure. Substitution of the
required constants and typical parameters into (1.149) then yields (Branden-
burg and Subramanian 2005)

νm ≈ 104
(

T

106K

)−3/2
ln ΛC

20
cm2s−1. (1.150)

The kinematic viscosity is caused by the momentum transfer, where ions
(and neutral atoms, if present) play an important role. Therefore, the coeffi-
cient ν, related to the Coulomb collisions, may be estimated as

ν ≈ vTilii ≈ vTi
niσii

≈ T 5/2

πnim
1/2
i e4 ln ΛC

. (1.151)

Here lii ≈ 1/niσii is the mean free path between ion collisions and σii is given
by expression (1.147) with change of mev

2
Te ≈ T by miv

2
Ti ≈ T .

Lifshitz and Pitaevskii (1981) perform more precise calculations and find
a slightly different numerical coefficient of 0.4 instead of 1/π in Eq. (1.151);
Brandenburg and Subramanian (2005) present this expression in the following
convenient “astrophysical” form:

ν ≈ 6.5× 1022
(

T

106K

)5/2 ( ni
1 cm−3

)−1 20

ln ΛC
cm2s−1. (1.152)

For completeness, using Eqs. (1.73), (1.123), and (1.148), let us present in a
similar form the thermal (heat) conductivity coefficient χ

χ ≈ 9× 108
(

T

106K

)5/2
20

lnΛC
erg cm−1s−1 K−1 (1.153)

and, taking into account that for the fully ionized hydrogen ideal gas cpρ =
5kBne, where cp = 2γkB/[(γ− 1)mp] erg/g·K is the specific heat and ρ is the
mass density, the thermal diffusivity coefficient κ = χ/(cpρ)

κ ≈ 1.3× 1024
(

T

106K

)5/2 ( ne
1 cm−3

)−1 20

lnΛC
cm2s−1. (1.154)

The mean collision time of charged particles with the neutrals can be
estimated as
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τia ≈ 1

naσiavTi
, τea ≈ 1

naσeavTe
, (1.155)

where σia ≈ σea � 10−14 cm2. The results of calculation for some typical
cases are given in Table 1.2.

As is clear from Table 1.2, in all the cases considered, except for the solar
photosphere, the contribution of the neutral component is quite significant
even when the fraction of neutral atoms is smaller than that indicated in the
table. This is highly significant for many applications including particle ac-
celeration processes near the shock fronts, where the degree of ionization may
be enhanced due to heating of the medium. Important role of neutral compo-
nent in many electromagnetic processes in Galaxy was noted by Piddington
(1954), Cowling (1957) and Pikel’ner (1966).

1.3.8 Collisionless Plasma

A plasma can be consistently considered as collisionless if frequency ω of
analyzed processes is large compared with the collision frequencies νab of
plasma particles, while wavelength λ is small compared with the mean free
paths Λab of the plasma particles:

ω 
 νab, λ� Λab, (1.156)

which is opposite to inequalities (1.63). Under conditions (1.156) we can
discard the collision integral St(fa, fb) in Eq. (1.61) and use the collisionless
kinetic equation:

∂fa
∂t

+ v · ∂fa
∂r

+Fa · ∂fa
∂p

= 0 (1.157)

(superscript (1) of the function f
(1)
a is omitted here for brevity). This equa-

tion in application to fully ionized plasma is called the Vlasov equation.
Along with Maxwell equations (1.53) it allows describing the electromag-
netic phenomena in collisionless plasma in approximation of self-consistent
electromagnetic field. Macroscopic parameters can, thus, be calculated with
the distribution function and expressions (1.65).

Equilibrium Distribution Function of Collisionless Plasmas

Apparently, to apply those equations we have to specify the steady-state dis-
tribution function of the collisionless plasma. Recall, that in the collisional
case, we obtain the Maxwellian distribution function from requirement of
vanishing the binary Boltzmann collision integral in the equilibrium. In the
collisionless case, however, this consideration does not necessarily apply be-
cause no collision integral enters the rhs of Eq. (1.157). Thus, there is no
unique solution for the steady-state distribution function of the collisionless
plasma.
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One possibility is a plasma, which is only slightly collisionless, or colli-
sionless for a given high-frequency process, while collisional for other essential
processes (typically—lower frequency phenomena). Clearly, for such cases,
the equilibrium distribution is still Maxwellian to which the plasma returns
over a corresponding relaxation time after a perturbation.

But what if the plasma is “truly” collisionless—i.e., the collisional relax-
ation time is much longer than any competing characteristic time of interests,
including, perhaps, the system lifetime? Will the Maxwellian distribution still
remain relevant to this plasma? A general answer to this question is “NO”
since the Maxwellian distribution does not represent a unique steady-state
solution of the collisionless kinetic equation (although it is still a solution).

Another approach to derive the steady-state distribution is a maximiza-
tion of the system entropy based on the second law of thermodynamics. Clas-
sical statistics tells us that the entropy

S1 = −kB
∑
i

pi ln pi, (1.158)

where pi is a probability for a system to occupy a state i, kB is the Boltzmann
constant, is an extensive measure, i.e., the entropy of the whole system adds
up of the entropies of its macroscopic constituents:

S1(A+B) = S1(A) + S1(B). (1.159)

Maximizing the classical entropy leads again to the Maxwellian distribution.
However, the extensivity of the entropy is based on the idea that the en-

ergy dissipation is a local process involving binary interaction of neighboring
particles, but no distant interaction or correlation is involved. In collision-
less plasma the situation can be essentially different: since the true collisions
between particles are negligible, all the interactions are mediated by electro-
magnetic waves excited in the plasma self-consistently. Thus, long-distance
and collective interactions and correlations may become crucial, leading to
the necessity of a non-extensive statistics for the collisionless plasma.

One version of the non-extensive statistics is based on the Tsallis en-
tropy concept (Hasegawa et al. 1985; Tsallis 1999; Leubner 2004; Hasegawa
2006; Treumann and Jaroschek 2008; Tsallis 2009). In place of classical en-
tropy (1.159), a modified non-extensive expression

Sq(A+B) = Sq(A) + Sq(B) + (1 − q)Sq(A)Sq(B) (1.160)

is introduced leading to a generalized Tsallis entropy

Sq = kB

1−∑
i

pqi

1− q
, (1.161)
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where q is a measure of the system non-extensivity; a special case of q = 1
yields the classical entropy S1.

It can be demonstrated (see Problem 1.12) that maximization of the
Tsallis entropy leads to a so-called kappa distribution (which is given below
in a form applicable for both nonrelativistic and relativistic plasmas)

N(γ)dγ = Anorm
γ
√
γ2 − 1

θ3/2
(
1 + γ−1

(κ−3/2)θ

)κ+1 dγ; γ =
E
mc2

;

∫
N(γ)dγ = ntot,

(1.162)

where κ = 1/(1 − q), Anorm is the normalization factor providing that
ntot is the number density of a given sort of the particles, in place of the
Maxwellian distribution. When κ→ ∞, the kappa distribution transforms to
the Maxwellian distribution with temperature kBT = mc2θ, while for small
κ the distribution consists of a quasi-Maxwellian core smoothly merged to a
quasi-power-law tail, whose hardness is determined by the κ value.

Although no full understanding of the status of the non-extensive statis-
tics in general and non-Maxwellian steady-state distributions in particular
has yet been established, we emphasize that this problem is highly important
for modern astrophysics and has potentially far-reaching consequences, e.g.,
for theories of particle acceleration, transport, and electromagnetic emission.

In particular, routine in situ measurements of the distribution functions
in the solar wind (see Sect. 2.5.1) reveal the kappa distributions even during
the most quiet periods of the solar wind state. The measured index κ is not
unique and different for the regions of the slow and fast wind, which raises a
fundamental question of what plasma processes and parameters control the
shape of the steady-state distribution in collisionless plasmas.

Furthermore, in the presence of an external magnetic field, the steady-
state distribution can be anisotropic, so Eq. (1.65c) requires a correction. As
a result of the anisotropy, the temperature and the pressure of collisionless
plasma become anisotropic relative to the magnetic field: T‖ �= T⊥, P‖ �= P⊥.
In this case the pressure tensor Pαβ has the form

Pαβ = P⊥δαβ + (P‖ − P⊥)eαeβ, (1.163)

where e = B/B.
If the magnetic field is strong enough for the gyrofrequency ωBa =

eB/mac to be much larger than the frequency of the process under con-
sideration and for the Larmor radius rga = cpa/eB of the particle to be
small compared with the typical scale over which the magnetic field changes,
then the equations can be averaged over the particle’s fast rotation in the
magnetic field in a way similar to that applied to a single-particle motion
in Sect. 1.2.2. This averaging yields the guiding center approximation (drift
approximation), which is described in more detail, e.g., in Sect. 7.5 and by
Sivukhin (1965) and Kulsrud (1983).
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Transfer Processes Mediated by Turbulence (Anomalous
Processes)

It is necessary to bear in mind that numerous sources of energy are present
in cosmic medium. They excite plasma instabilities and generate stochas-
tic (turbulent) electromagnetic fields of different scales. Macroscopic random
electromagnetic fields may scatter charged particles and lead to their random
wandering. In such a case Eq. (1.157) cannot be used directly, if stochastic
fields are present, because the force F becomes a stochastic quantity, so only
statistical measures make sense. Therefore, Eq. (1.157) must be averaged over
the realizations of the turbulent fields. As a result of averaging, Eq. (1.157)
receives a form with an effective nonbinary “collision integral” which is even-
tually provided by the stochastic electromagnetic fluctuations in place of true
collisions.

Such statistical approach is especially important and valuable for the de-
scription of superthermal, including relativistic, cosmic plasma component
(cosmic rays). The motion of fast charged particles in a cosmic plasma de-
pends strongly on the magnetic and electric fields. The energy of cosmic ray
particles considerably exceeds that of thermal particles, so that Coulomb col-
lisions with a thermal plasma can be neglected as we have already pointed
out in Sect. 1.3.3. The interaction of cosmic rays with magnetic fields depends
essentially on the relation between the energy densities of the cosmic rays and
the thermal plasma. If the energy density of the cosmic rays is small then
the back reaction of the cosmic rays on the plasma can be neglected in the
first approximation, and one can consider the diffusion of fast particles in
specified regular and stochastic fields. The evolution of cosmic rays can be
described by a one-particle distribution function f(r,p, t), satisfying (1.157).

In some cases (e.g., when the particles are accelerated by strong shocks),
the energy density of cosmic rays can reach the energy density of hydromag-
netic motion and thermal plasmas. In this situation, one should take into
account the back-reaction of the cosmic rays on the thermal plasma, which is
usually done by means of the hydrodynamic approximation. It is often neces-
sary to take into account the gradient of energetic particles pressure and the
Ampère force, created by electric current produced by the energetic particles
as well as numerous kinetic and MHD instabilities giving rise to ensembles
of the plasma eigen-waves, which in their turn can affect the distribution of
the charged particles via anomalous (i.e., non-collisional) transfer processes.

Problems

1.1 Plot trajectories of relativistic charged particle moving in uniform elec-
tric, magnetic, and crossed fields; see Sect. 1.2.1. Consider various initial con-
ditions.
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1.2 A charged particle moves in a uniform magnetic field B. Plot projections
of its trajectory onto the planes (p0⊥, e‖), (p0⊥×e‖), e‖, and (p0⊥,p0⊥×e‖).

1.3 Make similar plots of trajectory projections for a particle moving in
crossed uniform fields E ⊥ B, E � B. Consider various ratios between the
initial particle velocity v0 = c2p0/E0 and its drift velocity vE .

1.4 Analyze cases of charged particle motion in presence of E ⊥ B and
E ≥ B. Show that the relation E = B is carried out in all inertial reference
frames. Show that if E > B, the particle is accelerated unlimitedly and its
velocity approaches the velocity of light c.

1.5 Show by direct calculation that the quantity p2⊥/B is an adiabatic in-
variant for the case of a magnetic field B(t) which is uniform and constant
in direction, but with a magnitude that varies slowly. To do so evaluate the
electric field and integrate the equation describing variation of the transverse
particle momentum p⊥ with time, assuming that during a single cyclotron
period the particle trajectory can be considered to be a circle coinciding with
the electric field lines.

1.6 A system of identical noninteracting particles is in a uniform magnetic
field B and has an isotropic momentum distribution. All particles have the
same energy E0. Afterwards the magnetic field increases adiabatically to a
magnitude nB. Find the angular distribution dw(ϑ) and the mean square of
the particle energy E2 in the final state.

1.7 Use the fact that the quantity I = p2⊥/B is invariant to prove that in drift
approximation the magnetic flux through the orbit of the cyclotron rotation
of the particle as well as the magnetic moment of a nonrelativistic particle
that is produced by its cyclotron rotation are conserved. What additional
conditions are necessary for the magnetic moment of a relativistic particle to
be conserved?

1.8 A particle moves in a weakly nonuniform constant magnetic field. By
using the fact that the quantity I = p2⊥/B is invariant and the energy con-
servation law, show that in the drift approximation a force F acts upon the
particle in the direction of the magnetic field lines, and find the magnitude
of the force. Express it in terms of the magnetic moment of the cyclotron
rotation of the particle.

1.9 The Earth’s magnetic field in a certain volume around the Earth (in
which the solar wind effect is negligible) can be approximated by the field of a
point dipole with magnetic moment μ = 8.1×1015 [T m3]= 8.1×1025 [G cm3].
A proton with kinetic energy K = 50MeV moves at a given time through
the plane of the magnetic equator at a distance of two Earth radii from the



1.3 Kinetic Theory and MHD Approximation 47

center of the Earth at right angles to the magnetic lines of force. Find the
motion of the guiding center of the proton in the drift approximation. After
what time τ will it perform a full turn around the Earth? What is the Larmor
radius rg of the proton? The Earth’s radius is r∗ = 6, 380km and its mass
M = 6× 1024 kg.

1.10 A proton is in the plane of the geomagnetic equator (see the previous
problem) at a distance r from the center of the Earth and its momentum
makes an angle α with the direction of the magnetic field lines.

(a) Neglecting the gravitational field show that the guiding center of the
proton will not only move along the magnetic lines of force but will
also undergo an azimuthal drift. Find the angular drift velocity ωd,
and express it in terms of r and the geomagnetic latitude λ.

(b) Find the value of geomagnetic latitude λm corresponding to the mirror
points where the particles are reflected in the Earth’s magnetic field.

(c) Find conditions under which the proton can precipitate on the Earth’s
surface.

1.11 Obtain Maxwellian distribution for collisional plasma from kinetic
equation with the collisional integral in the Boltzmann form.

1.12 Obtain kappa distribution for collisionless plasma from maximizing the
Tsallis entropy.

1.13 Runaway Electrons. Electrons in a fully ionized plasma participate
in the random thermal motion and have a regular flow velocity due to external
uniform electric field E. Using approximate approach employed in Sect. 1.3.7
evaluate dependence of the mean drag force F on the flow velocity u assum-
ing that the friction is produced by electron collisions with immobile ions.
Demonstrate that the force F has a maximum as a function of u and esti-
mate this maximum Fmax. How the electron gas behaves in electric field E
depending on either E < Fmax/e or E > Fmax/e ?

Answers and Solutions

1.4 If E = B, the equality E′ = B′ follows from relativistic invari-
ants (1.21). If E > B, a reference frame exist, in which B′ = 0, E′ �= 0. This
system moves with velocity V = E × B/cE2. The particle is accelerated
unlimitedly in this system. According to (1.27), unlimited acceleration takes
also place in the initial (laboratory) system.
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1.6 dw(ϑ) = n1/2 sinϑdϑ
2[1 + (n− 1) cos2 ϑ]3/2

, E2 = 2n+ 1
3 E2

0 − 2(n− 1)
3 m2c4.

In the nonrelativistic case for the average kinetic energy T in the final state
we have T = (2n+ 1)T0/3, T0 = p20/2m.

1.7 The quantity γμ is the adiabatic invariant for a relativistic particle,
where γ =

√
1− v2/c2 and μ = p⊥v⊥/2B is the magnetic moment. If the

kinetic energy of the particle is conserved, we have γ = const and so μ =
const. The later relation is satisfied for a nonrelativistic particle, for which
γ ≈ 1, even when its energy is not conserved.

1.8 F = −(μ · ∇B), where μ = e‖p⊥v⊥/2B is the magnetic moment pro-
duced by the rotation of the particle.

1.9 Only gradient and gravitational drifts exist under conditions considered.
Gravitational drift is very small: GmM/3Kr < 10−8. The guiding center of
a proton moves uniformly along a circle of radius r = 2r∗ which lies in the
equatorial plane. The angular velocity is

ωd =
3cKr

eμ
− GmMc

eμ
,

where G is the gravitational constant; ωd ≈ 0.24 rad/s, rg ≈ 260km, and
T ≈ 26 s.

1.10 (a) If we evaluate the products e‖×∇B and e‖×(e‖ ·∇)e‖ for the field
of a magnetic dipole, we find from Eq. (1.39) that motion across the magnetic
field lines reduces to azimuthal drift for which the distance from the Earth’s
center and the latitudinal angle are specified by the guiding center motion
along the line of force, the equation of which is r = r0 cos

2 λ, where r0 is
the distance in the equatorial plane of the line of force to the center. As we
neglect the gravitational field the particle energy remains constant.

On using the well-known expressions for the field strength of a magnetic
dipole and also Eqs. (1.39) and (1.46) we find the angular velocity of the
azimuthal drift:

ωd =
(vd)φ
r

= −3cpvr0 sin
2 φ(1 + sin2 λ)

2eμ cos2 λ(1 + 3 sin2 λ)
− cpvr0 cos

3 λ(3 sin2 λ− 1)

eμ(1 + 3 sin2 λ)
,

where p and v are the proton momentum and velocity.
(b) By using Eq. (1.46), we find the condition determining λm > 0:

cos6 λm

(1 + 3 sin2 λm)1/2
= sin2 α.

The particles move in the region −λm ≤ λ ≤ λm.
(c) The proton will reach the Earth’s surface provided r0 cos

2 λm ≤ r∗, where
r∗ is the radius of the Earth’s sphere.
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1.11 If the equilibrium state is achieved due to binary collisions between gas
particles, the kinetic equation can be written in the Boltzmann form df/dt =
St f , where df/dt is the full derivative over time and St f =

∫
w(f(p′)f(p′

1)−
f(p)f1(p1))dp1dp

′dp′
1 is the binary collisional Boltzmann integral, where

w is the corresponding collision probability. In the equilibrium df/dt = 0,
so the collisional integral must also vanish, i.e., we require f(p′)f(p′

1) =
f(p)f1(p1), i.e., ln f(p′) + ln f(p′

1) = ln f(p) + ln f1(p1). Combining this
condition with the energy conservation at a collision, E ′ + E ′

1 = E + E1, we
conclude that ln f(p) ∝ E and, thus, f(p) ∝ exp(−E(p)/E0). The minus sign
is needed to avoid divergence at the infinity. The constant E0 is a characteristic
energy of the considered gas, which is proportional to its temperature; the
pre-exponential coefficient can be determined from normalization.

1.12 Study papers (Leubner 2004; Hasegawa 2006; Treumann and Jaroschek
2008; Tsallis 2009).

1.13 The mean collision time τei is the mean time of the electron flow
momentum loss due to collisions with ions; thus, the mean friction force can
be estimated as

F =
meve
τei

, τei =
1

niσeive
(1)

Using Eq. (1.147) for the Coulomb cross section σei we find (the minus sign
reflects the braking nature of this force)

F = −πe
4niΛC

me

ve
v3e
. (2)

A remarkable property of this Coulomb friction is its decrease with the ve-
locity increase (decreasing friction).

Let us average Eq. (2) over all possible electron velocities. To do so we
adopt ve = u+vT , where vT is the thermal (random) speed, while u is a flow
velocity acquired due to the electric field. If u � vT we can adopt v3e ≈ v3T
in the denominator of Eq. (2). In the numerator, however, we cannot discard
u compared with vT = 0. Thus, we obtain

F = −πe
4niΛC

me

u

v3T
∼ u, (3)

where the thermal speed is v2T ≈ T/me.
For u
 vT we can discard the thermal velocity everywhere so ve ≈ u to

obtain

F = −πe
4niΛC

me

u

u3
, F ∼ 1/u2. (4)
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Figure 1.8: Dependence of the Coulomb friction force F = F/Fmax on the charged
particle flow velocity u/vTe illustrating the phenomenon of runaway electrons.

Therefore, the force reaches a maximum at u ≈ vT , where both Eqs. (3) and
(4) give an estimate of the same order of magnitude:

Fmax ≈ πe4niΛC

mev2T
. (5)

Approximate shape of the function F(u) is given in Fig. 1.8.
If the electric field applied to the plasma is somewhat small, E < ED =

Fmax/e, then the drag force exceeds the accelerating electric force eE at
some u so no further acceleration will happen and standard Ohm’s law will
be valid. In the opposite case, E > ED, the accelerating electric force exceeds
the drag force all the way; thus, the electrons can be infinitely accelerated.
This phenomenon is commonly called the runaway electrons. Estimate of
the critical electric field (Dreicer field) demarcating the regimes of Ohm’s
law and runaway electrons can be written in the form

ED ≈ eΛC

4r2D
, where rD =

√
T

4πnie2
(6)

is the Debye radius. It should be noted that even for a “sub-Dreicer” field
E < ED some fraction of electrons from a distribution tail having veloc-
ity higher than the thermal velocity, v > vT

√
ED/E, can be accelerated

and form a runaway population. It should be noted, however, that a strong
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electric current implied by presence of a significant runaway population is al-
most certainly unstable (see Chap. 4 and Sect. 7.1); it generates various waves
and oscillations, which form “anomalous resistivity” quenching this regular
electron acceleration at some stage.



Chapter 2

Magnetohydrodynamics of the Cosmic
Plasma

2.1 Hydrodynamic Equations of the Neutral Gas

Table 1.1 shows that the cosmic media can have very different properties as
their parameters vary within exceptionally broad ranges. In particular, the
gas ionization can vary from almost zero (neutral media, e.g., clouds of cold
neutral hydrogen) to almost unity (fully ionized plasma). It is worthwhile,
therefore, to start with a simpler case of equation set for the neutral gas.
We assume that the reader is familiar with the hydrodynamics (HD) funda-
mentals, so we just remind the equations and briefly discuss the meaning of
the terms entering them without going into the detail too deeply. The relation
of HD to the kinetic theory has been outlined in Sect. 1.3.

Two basic HD equations (see Sect. 1.3.3) are the continuity equation

∂ρ

∂t
+∇ · ρu = 0 (2.1)

and equation of motion

ρ

(
∂u

∂t
+ (u·∇)u

)
= −∇p+ f + ηΔu +

η

3
∇(∇·u), (2.2)

where ρ(r, t) is the mass density, u(r, t) is the macroscopic velocity, f is the
volume force applied to the medium (e.g., gravitation force), and p is the gas
pressure. Everywhere below we will consider “simple” media, which can be
correctly described by a single viscosity coefficient, η. In case of “complex”
media composed of the particles with essential role of the internal degrees
of freedom, e.g., dust particles, a so-called second viscosity (Landau and
Lifshitz 1966) may come into play; very few papers consider this effect in
the astrophysics context, so we entirely neglect the second viscosity in this
book. If the usual (first) viscosity is also neglected, Eq. (2.2) reduces to Euler

G.D. Fleishman and I.N. Toptygin, Cosmic Electrodynamics, Astrophysics
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54 2 Magnetohydrodynamics of the Cosmic Plasma

equation (2.7b); see below. If the liquid is incompressible, ρ = const, and
so ∇·u = 0, then the last term in Eq. (2.2) drops out from the equation
and it reduces to the Navier–Stokes equation. These equations must be
complemented by the equation of state

p = p (ρ, s), (2.3)

where s is the specific entropy (entropy per unit mass); hereafter we call
it entropy for brevity.

When energy dissipation occurs in the gas studied, the entropy increases,
which is described by the equation

ρT

(
∂s

∂t
+ (u·∇)s

)
= Παβ∇βuα +∇ · (χ∇T ), (2.4)

where

Παβ = η

(
∂uα
∂xβ

+
∂uβ
∂xα

− 2

3
(∇·u)δαβ

)
(2.5)

is the tensor of viscous tensions [cf. Eq. (1.72)] and T is the temperature
in energy units. The specific entropy s has the dimension of reverse mass; thus,
the full entropy of the entire physical system S =

∫
ρs dV is dimensionless.

If the temperature is measured in Kelvin [K], the full entropy must be mul-
tiplied by Boltzmann constant kB ≈ 1.38× 10−23 J/K ≈ 1.38× 10−16 erg/K.
Here the coefficient of the dynamic viscosity η and coefficient of the heat
conductivity χ are assumed to be known. In principle, these coefficients
can be calculated within the physics kinetics; see Sect. 1.3.7, where these
coefficients are estimated for a collisional plasma.

For closure of equation set (2.1)–(2.5) we must either express the
temperature T (ρ, s) via the density and the entropy or express the en-
tropy s(ρ, T ) via the density and the temperature by using thermodynamic
relations and the equation of state, then the number of equations becomes
equal to the number of unknowns. In practice, however, the thermodynamic
relations are unknown for an arbitrary medium. Nevertheless, for the tenuous
gas considered here, the approximation of rarefied (“ideal”) gas is sufficient
for most of the practical applications.

2.1.1 General Properties

Let us discuss some global properties of the HD equations. Set of equations
(2.1)–(2.5) is nonlinear in a general case and so very complicated. To obtain
an analytical solution of the equations requires some simplifying assumptions
and approximations to be made. One of the approximations frequently used
in the astrophysical studies is the approximation of ideal HD, when the dis-
sipative processes can be discarded. The applicability of this approximation
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is not guarantied and so must be justified in each given case. A necessary
condition for the ideal HD to work is the inequality

R =
ul

ν

 1, (2.6)

where u is the typical velocity value, l is the characteristic scale of the ve-
locity variation, and ν ≡ η/ρ is the kinematic viscosity. The dimensionless
parameter R is called the Reynolds number; it plays a very important role
in HD.

If inequality (2.6) is fulfilled and the temperature gradient is small or
evanescent, then we can completely neglect the dissipative terms in Eqs.
(2.1)–(2.5). Apparently, the entropy is constant in this case, while the set of
HD equations simplifies to the form:

∂ρ

∂t
+∇(ρu) = 0, (2.7a)

∂u

∂t
+ (u·∇)u = −1

ρ
∇p+ 1

ρ
f , (2.7b)

ds

dt
≡ ∂s

∂t
+ (u·∇)s = 0, p = p (τ, s). (2.7c)

Equation (2.7c) for the entropy describes its constancy in every moving
macroscopic element of the medium; the derivative d/dt = ∂/∂t + (u·∇)
is called the material derivative. If the medium is uniform in the begin-
ning, Eq. (2.7c) can be replaced by the condition of the global constancy of
the entropy:

s = const. (2.8)

It is worthwhile to keep in mind that the HD (or, more appropriately,
the gas dynamics, GD)1 can only be applied to the substances in the state
of the local thermodynamic equilibrium. Stated another way, this means that
one can define small macroscopic volume elements (with a linear scale l) in
each of which the particles have equilibrium (e.g., Maxwellian) distribution
with almost constant density, velocity, and temperature within each element.
The gradients of these measures as well as their time variations must be
small, i.e., the following inequalities must hold:∣∣∣∣Λf

∂f

∂x

∣∣∣∣� 1,

∣∣∣∣ τf
∂f

∂t

∣∣∣∣� 1, or l 
 Λ, Δt
 τ, (2.9)

where f is any of the ρ, T, and u values; Λ is the mean free path of the
particles between collisions; τ is the mean time between the collisions; and Δt
and l are the macroscopically small intervals. Even with these simplifications,
the HD equations remain nonlinear and, thus, highly sophisticated.

1The term GD is more appropriate in our case because the astrophysical media
represent typically a gas (neutral or ionized) phase rather than a fluid, which would
imply use of the term “hydro” (water).
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2.2 MHD Equations

The phenomena in the gas phase and the set of equations describing them
are even more complicated if the medium possesses electric conductivity σ
and contains the magnetic field B. The magnetic field can be generated by
both external sources and by the electric current j of the medium. Unlike the
magnetic field, significant large-scale electric field in the conducting medium
is absent in most cases (although not always) because of its shielding by the
free electric charges.

The presence of the electric current and the magnetic field requires to
modify the set of equations (2.1)–(2.5) in several ways, which converts it to
a set of the MHD equations. The MHD is well suited for description of
quasistationary electromagnetic phenomena in moving conducting plasma,
either fully or partially ionized. It is worthwhile to emphasize that various
plasma components (i.e., ions, electrons, neutrals, dust particles) must move
together, composing a single “fluid”. Apparently, there are plenty natural
phenomena when the electron and the ion components behave differently.
Moreover, the plasma can contain many components, like ions of various
elements in different ionization states, neutrals (atoms and molecules), rela-
tivistic particles and antiparticles, and the dust particles. To highlight this
the classical MHD is frequently called the one-fluid MHD, in contrast to
two-fluid or multi-fluid MHD, which consider the electrons, ions, and other
available components as distinct fluids interacting with each other. The gen-
eral multi-fluid approach is described in Sect. 1.3.3. Below we will return to
considering corresponding generalizations of the one-fluid MHD as needed in
appropriate chapters of this book. We start, however, from the phenomena
allowing correct treatment within the standard one-fluid MHD.

As mentioned (see Sect. 1.3.3) the MHD description is an approximation
to a more precise kinetic treatment of the plasma. Complementary, the MHD
theory represents a generalization of the standard HD to the case of the
conducting fluid; here we discuss how this generalization can be performed.
To convert the HD into MHD equations, we first have to add the volume
Ampère force

fA =
1

c
j ×B, (2.10)

to equation of motion (2.2) and the Joule losses

Q =
j2

σ
(2.11)

to equation of the entropy balance (2.4). Second, we have to add the entire
set of the Maxwell equations in the form

∇×B =
4π

c
j, ∇ ·B = 0,

∂B

∂t
= −c∇×E, (2.12)
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where, unlike Sect. 1.3.3, we do not consider the external current jext.
We have already taken into account inequalities (2.9), which must hold for
the magnetic field like for the standard HD variables in Sect. 2.1, i.e., we
discarded the displacement current from the first equation in set (2.12) since
it is small compared with the conductivity current in the slow phenomena
described within the MHD approach.

Eliminating electric current j from Eq. (2.10) with the use of the first of
equations (2.12), we obtain MHD equations containing the magnetic field:

ρ

(
∂u

∂t
+ (u·∇)u

)
= −∇p+ f +

1

4π
[∇×B]×B + ηΔu+

η

3
∇(∇·u),

(2.13a)

ρT

(
∂s

∂t
+ (u·∇)s

)
= η

(
∂uα
∂xβ

+
∂uβ
∂xα

− 2

3
(∇·u)δαβ

)
∇βuα +∇ · (χ∇T )

+
νm
4π

[∇×B]2 (2.13b)

from original HD equations (2.2) and (2.4) complemented by Eqs. (2.10)
and (2.11). Note that the first term in the rhs of Eq. (2.13b) can be ex-
pressed via viscous stress tensor Παβ (2.5). Remaining equations (2.1), (2.3),
and (2.5) keep the original form and so we just add them to Eq. (2.13) toward
the closed MHD equation set.

The equations obtained so far do not compose the closed system yet, since
the magnetic field is still undefined within it. To calculate the magnetic field
we have to eliminate the electric field from Maxwell equations (2.12) with the
use of Ohm’s law—the relation between electric current and electromagnetic
field. In a general case this law is very complicated (so-called generalized
Ohm’s law; see Sect. 1.3.4); we first consider the simplest case of Ohm’s law.
The motion of a conductor with a nonrelativistic speed u� c in the presence
of magnetic field B gives rise to an additional electric field u × B/c in the
conductor (see the Lorentz transformation, Landau and Lifshitz 1960). Thus,
Ohm’s law takes the form

j = σ

(
E +

1

c
u×B

)
, (2.14)

where σ is the electric conductivity. This expression is valid when the
magnetic field is relatively weak; otherwise the conductivity becomes es-
sentially anisotropic [i.e., σ is a tensor rather than a scalar; see expressions
(1.102)] and when there are no currents produced by the conductor nonunifor-
mity (related to gradients of temperature or density). Current density (2.14)
is the same in both the conductor (moving) and laboratory (rest) reference
systems to the first order over u/c.

Let us make further transformations required to derive the equation
for the magnetic field. First, express the electric field E from Eq. (2.14),
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E = j/σ − u×B/c, and substitute it into the third equation of set (2.12),
the induction equation. Then, the use of the relation

ΔB = − c

4π
∇× j, (2.15)

which follows from the first two equations of set (2.12), gives rise to equation
linking the magnetic field with the motion of the medium:

∇·B = 0,
∂B

∂t
= ∇× [u×B]+νmΔB, νm =

c2

4πσ
= const. (2.16)

The quantity νm is called the magnetic diffusivity or magnetic viscosity.
Thus, finite conductivity gives rise to a dissipative process—the Joule dissi-
pation of the magnetic field.

2.2.1 Magnetic Pressure and Magnetic Tensions

Consider now a few concepts and ideas, which follow from the full MHD sys-
tem and so are the most widely applicable. First, we note that the magnetic
Ampère force entering (2.13a) can be equivalently expanded onto two terms
[∇×B]×B = −∇B2/2+ (B·∇)B with the use of the corresponding equiv-
alence of the vector analysis. As a result, part of the magnetic force reveals
itself as the gradient of a magnetic pressure pm = B2/8π, which adds up
to the kinematic gas pressure p:

∂u

∂t
+ (u·∇)u = −1

ρ
∇
(
p+

B2

8π

)
+

1

4πρ
(B·∇)B

+ νΔu+
ν

3
∇(∇·u) + 1

ρ
f , (2.17)

while the other part forms the magnetic tensions (B·∇)B/4πρ, which have
a nonzero value only when the magnetic field lines have a curved shape. Direct
comparison of Eqs. (2.16) and (2.17) shows that the magnetic diffusivity νm
plays the same role for the magnetic field as the kinematic viscosity ν plays
for the hydrodynamic velocity u.

2.2.2 Ideal MHD Equations

Ideal MHD equation set similar to set (2.7a) in the standard HD can be
derived by neglecting the dissipative terms throughout the MHD equation
system:

∂ρ

∂t
+∇(ρu) = 0, (2.18a)

∂u

∂t
+ (u·∇)u = −1

ρ
∇
(
p+

B2

8π

)
+

1

4πρ
(B·∇)B +

1

ρ
f , (2.18b)



2.2 MHD Equations 59

∂s

∂t
+ (u·∇)s = 0, p = p (ρ, s), (2.18c)

∂B

∂t
= ∇× [u×B], ∇·B = 0. (2.18d)

Apparently, this system is valid if the MHD parameters vary slowly in space
and time and when the dissipation is weak. The electric field in this case
can be expressed via the magnetic field and the medium velocity. Indeed,
adopting σ → ∞ in Eq. (2.14) and assuming the current density j to remain
finite we immediately obtain

E = −1

c
u×B. (2.19)

2.2.3 Quiescent Prominence Model

Figure 1.2 offers an idea of a prominence often observed in the solar corona.
In fact, prominences represent relatively cool, T ∼ 104 K, and dense n ∼ 1010–
1011 cm−3 partly ionized condensations (filaments) with the size exceeding
1010 cm, which can live high in the corona remarkably long, up to a few
months, without immediate falling onto the photosphere, although the gravi-
tational force would imply so. Kippenhahn and Schlüter (1957) noted that in
certain magnetic configurations the gravitational force can be entirely com-
pensated by the magnetic forces considered above. Let us consider a simple
one-dimensional model of a quiescent prominence proposed by Kippenhahn
and Schlüter (1957).

Specifically, we adopt that all relevant variables depend only on coordi-
nate x: ρ(x), p(x), and Bz(x), while other magnetic field components, Bx and
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Figure 2.1: Left: Kippenhahn–Shclüter solution for the vertical magnetic field, pressure,
and the field line structure. Right: a cartoon of the prominence/filament formation due
to coronal condensation and corresponding magnetic field line distortion; see Aschwanden
(2005) for more detail.
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By and temperature T , are constant. In a steady state the lhs of Eq. (2.18b)
is, apparently, zero; thus, projections of the rhs onto x and z axes yield

∂
∂x

(
p+ B2

8π

)
= 0, (2.20a)

Bx

4π
∂Bz(x)

∂x
− ρg = 0, (2.20b)

where g is the free-fall acceleration. To solve the first of these equation we
have yet to specify boundary conditions at the infinities, for which we adopt

p|x→±∞ = 0; Bz|x→±∞ = ±Bz0, (2.21)

then, integration of Eq. (2.20aa) yields

p(x) =
B2
z0 −B2

z(x)

8π
. (2.22)

Now we have to express the mass density ρ entering Eq. (2.20ab) via the gas
pressure using the ideal gas equation of state:

p = 2nekBTe; ne = ρ/meff , (2.23)

where meff is the mean mass of the coronal ions; thus, ρ = pmeff/(2kBTe).
Substituting this density into Eq. (2.20), then using solution (2.22) for

the pressure, and noting that the constant combination 2kBTe/(gmeff) has a
dimension of length (which is, in fact, the pressure scale height of a steady
atmosphere, λp = 2kBTe/(gmeff) = 4.6 × 109(Te/1 MK) cm), we obtain a
closed form of equation for the magnetic field component Bz(x):

B2
z0 −B2

z(x)

2λp
−Bx

∂Bz(x)

∂x
= 0, (2.24)

whose solution has an analytical form:

Bz(x) = Bz0 tanh

(
xBz0
2λpBx

)
; (2.25)

accordingly, the pressure distribution receives the form:

p(x) =
B2
z0

8π
cosh−2

(
xBz0
2λpBx

)
. (2.26)

This solution illustrated by Fig. 2.1 implies that the magnetic pressure
and the magnetic tensions are capable of compensating the gravitation force
acting from the Sun to the coronal material. In particular, it can support
some overdense coronal condensations observed in the form of bright promi-
nences above the limb or as dark, compared with the photosphere, elongated
filaments on the solar disk. Some of the observed filaments are indeed quies-
cent and can be approximately described using the presented Kippenhahn–
Schlüter solution, while others are unstable eruptive structures, which are,
apparently, not steady-state objects, so their description requires a dynamical
approach; see Aschwanden (2005) for greater detail.
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2.3 Diffusion, Reconnection, and Freezing-in
of the Magnetic Field

Consider the equations for the magnetic field in more detail. First of all
we note that two terms in the rhs of induction equation (2.16) have differ-
ent structure and so describe different physical phenomena. First of them
describes transport of the magnetic field by the plasma motion, while the
second one describes the Joule dissipation of the field. The order of magni-
tude estimate of the first to the second term ratio yields the dimensionless
parameter:

Rm =
ul

νm
, (2.27)

having the same structure as Reynolds number (2.6) and called themagnetic
Reynolds number. This estimate assumes that the characteristic scales of
magnetic field and velocity are the same and equal l.

2.3.1 Diffusion of the Magnetic Field

The type of solution of Eq. (2.16) depends essentially on the magnetic
Reynolds number. If Rm � 1 we can neglect any motion of the plasma and
so neglect the first term in the rhs of Eq. (2.16). Assume Rm � 1 and consider
the problem of the magnetic field evolution in the infinite uniform conducting
medium. Adopt that at t = 0 there is a magnetic field B(r, 0) = B0(r) in
the medium and find its evolution afterward for t > 0.

To solve the equation let us include the initial condition in the equation
itself:

∂B

∂t
− νmΔB = B0(r)δ(t), B = 0 at t < 0. (2.28)

To make sure that Eq. (2.28) is equivalent to the original equation with the
initial condition, we integrate both sides of it over a small time interval,
(−τ,+τ). If τ → 0 then B(r, 0) = B0(r), because τΔB → 0 and so the
second term in the lhs vanishes. Unlike Eq. (2.16), equation (2.28) is inhomo-
geneous and thus it can be solved using the Green function method:

B(r, t) =

∫
G(r − r′, t− t′)B0(r

′)δ(t′)d 3r′dt′ =
∫
G(r − r′, t)B0(r

′)d 3r′,

(2.29)
where the Green function G(r − r′, t− t′) satisfies the equation

∂G

∂t
− νmΔG = δ(r − r′)δ(t− t′), G = 0 at t− t′ < 0. (2.30)

Equation (2.30) can easily be solved by expansion of the Green func-
tion into Fourier integral over spatial variable r− r′. Apparently, its Fourier
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transform Gk satisfies the equation

∂Gk
∂t

+ νmk
2Gk = δ(t− t′), (2.31)

which has the solution Gk(t− t′) = Θ(t− t′)e−νm(t−t′)k2 . The inverse Fourier
transform yields the Green function in the spatial and temporal domain:

G(r − r′, t− t′) =

∫
Gk(t− t′)eik·(r−r′) d 3k

(2π)3
=

Θ(t− t′)
[4πνm(t− t′)]3/2

exp

{
− (r − r′)2

4νm(t− t′)

}
, (2.32)

where Θ(t− t′) is the step function.
The structure of the exponent in Green function (2.32) shows explicitly

that in the MHD (quasistationary) approximation, the magnetic field in a
conducting medium propagates distance l over time Δt ≈ l2/4νm. This is
the very same law which describes the heat propagation or particle diffusion
in a classical medium at rest. Accordingly, we can interpret the obtained
solution as diffusion of the magnetic field ; this is why the coefficient νm is
called “magnetic diffusivity”. Considering an AC field with frequency ω, we
take Δt ≈ T/2 = π/ω, which gives rise to a characteristic scale L ≈ c/

√
σω,

providing an order of magnitude estimate of the skin depth of a conductor
into which an external AC field can penetrate.

2.3.2 Freezing-in of the Magnetic Field
and Magnetic Reconnection

Consider now the case of large Reynolds number, Rm 
 1, when we can
safely discard the Joule dissipation term:

∂B

∂t
= ∇× [u×B], ∇ ·B = 0. (2.33)

Let us show that under this condition the magnetic field has a remarkable
property of freezing-in in the well-conducting fluid, i.e., any field line remains
strictly linked with those macroscopic volume elements of the plasma, which
contained it originally. Stated another way, the magnetic field is transferred
along with the plasma motions; the magnetic field lines can change the length
and shape, but cannot intersect and move through each other.

To see this explicitly, consider two fluid particles (i.e., two macroscopi-
cally small-volume elements of the plasma), which are located in nearby posi-
tions with the coordinates r and r+δl with the velocities u and u+(δl·∇)u,
respectively. Apparently, over the time interval dt, the distance between the
particles changes by (δl·∇)udt; thus, this variation obeys the equation:

d

dt
δl = (δl·∇)u. (2.34)
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The lhs contains the material derivative as it describes variation of the dis-
tance between two moving particles.

Complementary, calculate the material derivative of the B/ρ ratio. This
derivative reads:

d

dt

B

ρ
=

1

ρ

dB

dt
− B

ρ2
dρ

dt
. (2.35)

The material derivative of the field B is obtained from Eq. (2.33) taking into
account the following transformation ∇× [u×B] = u(∇ ·B)−B(∇ · u)−
(u · ∇)B + (B · ∇)u = −(u · ∇)B + (B · ∇)u−B(∇ · u):

dB

dt
= (B·∇)u−B(∇·u). (2.36)

The material derivative of the density is obtained from continuity equa-
tion (2.1):

dρ

dt
= −ρ(∇·u). (2.37)

Combining equations (2.35)–(2.37), we find

d

dt

B

ρ
=

(
B

ρ
·∇
)
u. (2.38)

Equations (2.34) and (2.38) for the variables δl and B/ρ are identical.
Therefore, if these two fluid particles were originally connected by a field line,
i.e., the vectors δl and B/ρ were parallel to each other, they remain parallel
at all later times; thus, the particles remain linked to the same field line.
During the plasma motion, the magnitude B/ρ is changing proportionally
to the distance between the particles. In particular, the freezing-in property
guaranties conservation of the magnetic flux through arbitrary closed moving
contour composed of the fluid elements of the medium.

It is important to emphasize that the flux conservation holds for arbitrary
macroscopic motions and deformations of the contour compatible with the
condition Rm 
 1. This means that if in a fluid with overall large Reynolds
number there are inhomogeneous regions where the spatial gradients are ex-
traordinary large, the freezing-in condition can break down there allowing the
magnetic field to diffuse locally. Given that the field is freezing in the fluid
in the most of the volume, while diffuses only in some locally inhomogeneous
regions, this magnetic field dissipation process will macroscopically look like
a reconnection of magnetic field lines. Stated another way, dissipation of mag-
netic energy in a highly conducting fluid with large Reynolds numbers can
only occur in the form of magnetic reconnection, which requires some
strong local inhomogeneities to be present in the fluid.
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2.3.3 Stationary Configurations

Let us discuss briefly what requirements must be fulfilled to allow a stationary
MHD configuration—stationary plasma motion or stationary magnetic field
configuration. Stationary solution implies ∂/∂t = 0 in Eq. (2.13), so neglect-
ing the dissipative terms, one easily finds s = const from Eq. (2.13b), while
Eq. (2.13a) describes the force balance

ρ(u·∇)u = −∇p− 1

4π
B × [∇×B], (2.39)

i.e., the inertia force, ρ(u·∇)u, must be balanced by the pressure gradient
∇p and the Ampère force fA = −B × [∇ × B]/(4π); we do not consider a
gravitational force here for simplicity. The order of magnitude of each term
can be estimated if we introduce a characteristic scale of the spatial variation
of the involved parameters, ∇ ∼ l−1:

ρu2

l
≈ p

l
+
B2

4πl
, or ρu2 ≈ p+

B2

4π
. (2.40)

Consider the case of strong pressure, p 
 B2/(4π). Here one can ne-
glect the Ampère force in Eq. (2.39) in the first approximation, so the inertia
force of the plasma flow u(r) is balanced by the pressure gradient. Stated
another way, in a high-pressure plasma, the effect of the magnetic field on
the stationary plasma flow is minor and solutions of usual HD apply. The
magnetic field configuration then can be determined within the perturbation
theory for a given HD flow. In particular, the magnetic field, being frozen
in the plasma, is simply transferred with the predefined plasma motion. As
we will show, however, in Chaps. 6 and 8, such a weak magnetic field might
be kinematically amplified by plasma motions, so the stationary flows with
weak magnetic field are not necessarily stable.

The opposite case of strong magnetic field, B2/(4π) 
 p, is more
complicated. Indeed, if we neglect the pressure gradient in Eq. (2.39),
we arrive at two options: either the plasma flow is highly supersonic,
ρu2 
 p, or the magnetic field creates relatively small Ampère’s force,∣∣∣B × [∇ × B]

∣∣∣ � B2/l; ultimately, this condition requires that the electric

current j = c[∇×B]/(4π) is almost parallel to the magnetic field B.
The former case is thought to be realized in so-called Poynting-dominated

jets. Collimated supersonic (often relativistic) jets are widely detected or im-
plied in astrophysical sources including active galactic nuclei, quasars and
microquasars, and the gamma-ray burst sources; see Sect. 12.4. It is yet un-
clear, however, if those jets are pressure-dominated or Poynting-dominated.

The latter case, which is called the force-free field, because in the first
approximation the Ampère force must be zero here, seems to be relevant
to coronae of accretion disks and normal stars including the solar corona.
For the solar corona, for example, the sources of the coronal magnetic field
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are located at and beneath the photosphere, and so the magnetic pressure
can strongly dominate the kinetic pressure at the active regions above the
sunspots, where the photospheric field is highly enhanced compared with the
mean photospheric magnetic field. The corresponding magnetic configura-
tions are indeed routinely observed in the solar corona to be stationary and
to survive over a few solar rotations with very little evolution.

Currently, there is no reliable routine method to measure coronal mag-
netic fields. For this reason, different force-free extrapolations of the photo-
spheric magnetic fields, which are widely measured with the use of Zeeman
effect, are developed and used to deduce some information on the coronal
fields. Although the extrapolation techniques are very useful to get some
idea on the coronal fields, the extrapolated magnetic structures often do not
match any observed coronal structure. One of possible reason for those mis-
matches is that the magnetic field is in fact only approximately the force-free
field.

To quantify the accuracy of the force-free approximation, assume that
the plasma obeys the ideal gas equation of state, Eq. (2.23), p = 2nT , where
temperature T is measured in energy units (T = kBT [K]), and introduce the
plasma beta parameter

β =
4πp

B2
=

8πnT

B2
=
wT
wB

, (2.41)

where wT = nT and wB = B2/(8π) are the densities of the thermal and
magnetic energies, respectively. Thus, for the magnetic-dominated (low beta)
plasma, the Ampère force equals zero not equivalently but to the accuracy

of β only:
∣∣∣B × [∇×B]

∣∣∣ ∼ βB2/l, which may have noticeable effect on the

accuracy of the force-free photospheric extrapolations. To get a better feeling
about the numbers involved, let us estimate the plasma beta in the solar
corona—in and outside an active region. Outside active regions we can adopt
the typical values B ∼ 1G, n ∼ 108 cm−3, and T ∼ 1MK, which yields
an estimate about one: β ∼ 0.4. In an active region above a sunspot, the
magnetic field can be much larger, B ∼ 100G or higher, and the plasma can
be denser, n ∼ 1010 cm−3, and hotter, T ∼ 3–10MK, so a small β � 10−2 is
typically expected.

Overall, we conclude that the magnetic configurations and plasma flows
can be essentially different in the pressure-dominated (β 
 1) and the
magnetic-dominated (β � 1) plasmas—this is, in fact, relevant to both sta-
tionary and nonstationary cases.

2.4 Linear Modes in MHD

An arbitrary perturbation in a plasma can be expanded over any full system
of orthogonal functions. The most convenient set of such functions, however,
is the set of linear eigenmodes of the medium. Indeed, for a small-amplitude
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perturbation, the amplitudes of the individual eigenmodes composing it are
also small; thus, the superposition principle valid for the linear systems ap-
plies and so the individual eigenmodes do not interact with each other. Even
for larger-amplitude perturbations the representation over the eigenmode su-
perposition is frequently very useful, since, for a small nonlinearity, the non-
linear interactions of the linear eigenmodes can be taken into account by the
perturbation theory. The role of the linear modes is also very important to
study plasma instabilities. Therefore, we discuss now the MHD eigenmodes
of the plasma.

2.4.1 Basic Equations and MHD Dispersion Relation

To study small-amplitude MHD waves in a fully ionized plasma (low-
frequency plasma eigenmodes, j ext = 0), we have to analyze the corre-
sponding linearized set of equations. We start with a non-dissipative case

(νm = νeff = 0,
˙̃
S = 0) and use Eqs. (1.134)–(1.136) keeping the Hall term

in Eq. (1.134). We represent the macroscopic plasma parameters in the form
U = U0+u, s = s0+s

′, etc., where the index 0 designates the unperturbed
values of quantities which do not depend on coordinates and time; small per-
turbations will be considered in the linear approximation only. Linearizing
the system of MHD equations with these notations yields

∂s′

∂t
+U0 · ∇s′ = 0,

∂ρ′

∂t
+U0 · ∇ρ′ + ρ0∇ · u = 0, (2.42a)

∂u

∂t
+ (U0 · ∇)u +

1

ρ0
∇p+ 1

4πρ0
B0 × (∇× b) = 0, P = P0 + p(s′, ρ′),

(2.42b)
∂b

∂t
+(U0·∇)b+B0(∇·u)−(B0·∇)u+

c

4πeni
(B0·∇)(∇×b) = 0, ∇·b = 0.

(2.42c)
We search for solutions of this system having the form of plane monochro-

matic waves s′ ∝ exp(ik · r − iωt) and obtain the set of algebraic equations:

ω′s′ = 0, ω′ρ′ − ρ0k · u = 0, (2.43a)

ω′u− k

ρ0

(
p+

b ·B0

4π

)
+

k ·B0

4πρ0
b = 0, p = c2sρ

′ +
(
∂P

∂s

)
ρ0

s′, (2.43b)

ω′b+ (k ·B0)u−B0(k · u)− i
ck ·B0

4πeni
k × b = 0, k · b = 0, (2.43c)

where c2s = (∂P/∂ρ)0 is the square of the unperturbed sound velocity; ω′ =
ω − k · U0 is the frequency in the co-moving system, which experiences a
Doppler shift relative to its frequency in the laboratory reference frame. Sys-
tem (2.43) is a set of linear homogeneous equations and so it has a nontrivial
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solution only when the determinant of the system is zero. Neglecting the Hall
term, the determinant is derived, e.g., in Somov (2006):

ω′2[ω′2 − (kvA)
2][ω′4 − k2(c2s + v2A)ω

′2 + k2c2s(kvA)
2] = 0,

where vA = B0/
√
4πρ0 is the Alfvén speed. This equation can have four

nonnegative roots, describing four linear MHD modes, which we consider be-
low in more detail. In what follows, complementary to Somov (2006) analysis,
we derive properties of the small-amplitude waves directly from the full
system (with the Hall term) without explicit use of the determinant.

2.4.2 Dispersion and Polarization of Linear Modes

Hydrodynamics Case: B0 = 0

Let us start from a simpler case, when no magnetic field is present in the
plasma; vA = 0. Then, the terms containing vA drop out from the dispersion
relation, which reduces to

ω′6(ω′2 − k2c2s) = 0.

Evidently, this dispersion equation describes two distinct eigenmodes,
corresponding to two its different solutions: ω′ = 0 and ω′2 = k2c2s.

Entropy and Vortex Perturbations If we suppose in Eq. (2.43) that
B0 = 0 and s′ �= 0, we obtain ω′ = 0, i.e., ω = k · U0. This means that
entropy perturbations are motionless relative to the plasma and propagate
with the velocity of the medium motion, U0. Also, k · u = 0, k · b = 0, and
p = 0, but the density perturbation ρ′ �= 0 and it is defined by s′.

Note that the root ω′ = 0 is triple degenerate, since it originates from
equation ω′6 = 0. Therefore, two more eigenmodes must be present. Indeed,
for ω′ = 0, the system (2.43) allows having nonzero values of the components
u⊥ and b⊥ transverse to k. Thus, in the general case k× b �= 0 and k×u �=
0, so, in addition to the entropy perturbation, there are two more vortex
perturbations traveling with the plasma velocity, namely ∇× b and ∇× u.
In the absence of B0, they are independent from each other and from the
perturbation of s′. It is interesting that even though no regular magnetic
field is present in this case, the small perturbations of the magnetic field
still can exist in the form of eddies (∇ × b), which is a direct consequence
of the fact that our linearized equations were obtained from more general
MHD equations rather than from standard HD equations; in the latter case
no magnetic perturbation would enter the linearized equations at all.

Sound Waves For s′ = 0, perturbations oscillate with ω′ �= 0. If, as before,
B0 = 0 then for ω′ �= 0, it follows from Eq. (2.43) that b = 0 and u⊥ = 0,
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but the perturbations u‖ and ρ′ satisfy

ω′ρ′ − ρ0ku‖ = 0, c2skρ
′ − ρ0ω

′u‖ = 0, (2.44)

which describes sound waves with the dispersion law

ω ′ 2 = (csk)
2, ω = ±csk + k ·U0. (2.45)

MHD Case: B0 �= 0

Entropy Perturbations in a Magnetic Field For s′ �= 0 and k ·B0 �= 0
we find from Eq. (2.43) that ω = k ·U0 and thus

(
p+

b ·B0

4π

)
k − k ·B0

4π
b = 0. (2.46)

Vector k is orthogonal to b, so Eq. (2.46) is equivalent to two equations:

(k ·B0)b = 0, p+
b ·B0

4π
= 0. (2.47)

If b = 0, (k · B0) �= 0, we have from Eqs. (2.47) and (2.43) u = 0, p = 0.
Perturbations of the density and entropy are connected to each other by the
condition p = 0.

If b �= 0, (k · B0) = 0, we obtain from Eq. (2.47) that perturbations of
the full pressure are zero:

p+
b ·B0

4π
= 0,

but in the general case ρ′ �= 0 and p �= 0. It is easy to check that the vortex
perturbations, ∇ × b and ∇ × u, can exist now independently from s′ and
from each other. The simplest example of the entropy’s perturbation is the
transfer of heated cloud by medium motion.

Alfvén Waves Now we consider perturbations in which s′ = 0 and ρ′ =
0 but ω′ �= 0. Constancy of mass density is the main generic attribute of
the Alfvén waves. It follows from Eq. (2.43) that b · B0 = 0; i.e., b ⊥ B0.
Since b ⊥ k as well, the perturbations are polarized, in the sense that b is
perpendicular to the plane (k,B0). The amplitudes u and b satisfy

u = − k ·B0

4πρ0ω′ b, k · u = 0, (2.48a)

ω′b+ (k ·B0)u− i
c (k ·B0)

4πeni
k × b = 0, k · b = 0. (2.48b)
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Excluding the velocity u from Eq. (2.48b), we obtain

[
ω ′ 2 − (k ·B0)

2

4πρ0

]
b− i

c ω ′(k ·B0)

4πeni
k × b = 0 (2.49)

and further

k × b = −i c ω ′k2(k ·B0)

4πeni(ω ′ 2 − ω2
A)

b, ω2
A =

(k ·B0)
2

4πρ0
. (2.50)

From last two equalities we find dispersion equation

ω ′ 2 − ω ′ ω
2
Ak

ωBik‖
− ω 2

A = 0, (2.51)

where ρ0 ≈ mini and ωBi = eB0/mic is the ion cyclotron frequency.
The solution of Eq. (2.51) is

ω ′ = ωA[ξ ±
√
1 + ξ2], where ξ =

ωAk

2ωBik‖
=

(k · vA)k

2ωBik‖
. (2.52)

Here the parameter ξ = vAk/2ωBi is expressed via the Alfvén velocity:

vA =
B0√
4πρ0

. (2.53)

It is small, ξ � 1, if k � 2ωBi/vA and λ = 2π/k 
 vA/πωBi = λc. Note
that parameter ξ is a result of accounting of the Hall current in the MHD
equations. The scale λc is often small compared with other characteristic
scales in astrophysics, which allows neglecting the corresponding Hall term.
For example, in the “warm” phase of galactic disk λc ≈ 3 × 107 cm is even
smaller than the gyroradius of thermal protons, ≈108 cm, for T ≈ 1 eV, B0 ≈
3 μG; thus for certain plasmas the Hall term can be safely neglected in the
entire range of the MHD applicability (recall that the MHD treatment is only
correct if the wavelength is larger than the proton gyroradius).

Neglecting the small parameter ξ in Eq. (2.52) for k � 2ωBi/vA we obtain
simpler dispersion law for the Alfvén waves:

ω ′ = ±|k ·B0|√
4πρ0

= ±|k · vg|, (2.54)

where vg = ±vA is the group velocity of the Alfvén waves. Its phase velocity is

vph = ±B0| cos θ|k√
4πρ0k

, (2.55)
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where θ is the angle between k and B0. According to Eqs. (2.48a) and (2.54),
the velocity u and the magnetic field b in the Alfvén wave are connected by
a simple dependence:

u = ∓ b√
4πρ0

. (2.56)

The minus sign in this formula refers to the same sign for ω ′ and k · vA,
and the plus sign refers to different signs for their values. In Alfvén waves
the curls ∇×u and ∇× b are not independent and both propagate with the
Alfvén velocity relative to the plasma.

If the medium contains a significant portion of neutral atoms, the Alfvén
velocity depends on the entire mass density ρ ≈ nimi + nama only for the
wavelengths λ > Λia, where Λia is the mean free path of the ions relative to
collisions with the neutrals. In the case λ < Λia the motion of charged com-
ponent is only weakly coupled with the motion of neutral atoms, so the true
one-fluid description of the medium is not possible. The Alfvén waves with

λ� Λia

may exist in the charged subsystem only, and the Alfvén velocity will be
determined by the ion mass density alone, ρ ≈ nimi.

Magnetic Sound For s′ = 0 but ρ′ �= 0 we find from Eq. (2.43) that

ω ′ρ′ − ρ0k · u = 0, k · b = 0, (2.57a)

c2skρ
′ − ρ0ω

′u+
k(B0 · b)

4π
− (k ·B0)b

4π
= 0, (2.57b)

(k ·B0)u−B0(k · u) + ω ′b = 0. (2.57c)

We again neglect here the Hall current, which is valid at low frequencies.
Excluding the perturbation ρ′ and multiplying Eqs. (2.57b) and (2.57c) by
e0 = B0/B0, we obtain two equations for the parallel components u‖ and b‖:

c2sk
2B0k‖

4πρ0(ω ′ 2 − c2sk
2)
b‖ − ω ′u‖ = 0, (2.58a)

ω ′ 2 − c2sk
2 − v2Ak

2

ω ′ 2 − c2sk
2

ω ′b‖ +B0k‖u‖ = 0. (2.58b)

Exclusion of u‖ leads to dispersion equation

ω ′ 4 − ω ′ 2(c2s + v2A)k
2 + c2sv

2
Ak

4 cos2 θ = 0, (2.59)

where θ is the angle between B0 and k. We find phase velocities v = ω ′/k of
the fast and slow magnetosonic modes from biquadratic Eq. (2.59):

v2f,s =
1

2

[
c2s + v2A ±

√
(c2s + v2A)

2 − 4c2sv
2
A cos2 θ

]
. (2.60)
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Directions of the vectors b and u can easily be found from the above
equations: b belongs to the plane (k,B0) and perpendicular to the vec-
tor k. The vector u belongs to the same plane, but in general it has both
components parallel and perpendicular to k.

Transverse Propagation For B0 �=0 and k ⊥ B0, Eq. (2.43) allows both
entropy perturbations (s′ �= 0), considered above, and perturbations of the
MHD parameters independent of the entropy variations. For s′ = 0, the only
nonzero component of u is that parallel to k, as for normal sound waves. As
follows from Eq. (2.43), the magnitudes ρ′ and k · u satisfy

ω ′ρ′ − ρ0k · u = 0, −c
2
sk

2ρ′

ρ0
+

(
ω ′ − v2Ak

2

ω ′

)
k · u = 0. (2.61)

From this, we determine the dispersion law for the transverse sound:

ω ′ = ±k(c2s + v2A)
1/2. (2.62)

The perturbations of the magnetic field are parallel to B0 and proportional
to the density perturbations:

b = B0
ρ′

ρ0
. (2.63)

Thus, for transverse propagation, besides the entropy perturbations, it is
possible to have only waves of the usual sound type, in which the velocity of
the plasma is parallel to the direction of propagation. The sound velocity cs
is replaced by (c2s + v2A)

1/2, i.e., it is renormalized by the magnetic field.

Longitudinal Propagation For k ‖ B0 the system yields two types of
wave in addition to the entropy perturbations: usual sound wave, described
by Eqs. (2.46) and (2.47), on which the magnetic field has no influence, and
MHD waves with u and b perpendicular to both directions k ‖ B0. Excluding
velocity

u⊥ =
(kB0)

4πρ0ω ′ b

from vector equations (2.43), we obtain

(ω ′ 2 − ω2
A)e0 × b+ i

(kB0) ck ω
′

4πeni
b = 0, (2.64)

where ωA is given by Eq. (2.50). Equation (2.64) can be written for the mag-
netic field components (bx, by), b = exbx + ieyby in the form

C1bx−C2by = 0, C2bx−C1by = 0, C1 = ω ′ 2−ω2
A, C2 =

(kB0) ck ω
′

4πeni
.

(2.65)
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The determinant of this set of linear equations equals zero if C2
2 = C2

1 , i.e.,
by = ±bx. This means that two MHD waves have the circular polarizations
with opposite directions of rotation. The dispersion equation for MHD waves
has the form

(ω ′ 2 − ω2
A)

2 = ω ′ 2ω2
A

(
ck

ωpi

)2

, ω2
pi =

4πe2ni
mi

. (2.66)

The waves have the frequencies ω ′ ≈ ωA = ±kB0/
√
4πρ0, if contribution of

the Hall current is small: (ck/ωpi)
2 � 1.

The Full Set of Linear Modes With the account of the condition
k · b = 0, the last of equations (2.43) yields two equations when projected on
the axes perpendicular to k. The projection along k gives the identity 0 = 0.
Together with the expression of p in terms of ρ′ and s′, Eqs. (2.43) allow
determining the following seven quantities: s′, ρ′, u, and two components of
b. In the general case, as we have seen, there are seven different (and linearly
independent) solutions: (1) entropy, (2) two Alfvén, (3) two fast, and (4) two
slow magnetosonic waves, where the solutions differing in the sign of ω ′ are
considered as different solutions. These solutions comprise the full system
of linear eigenmodes over which any small perturbation can be expanded
(Akhiezer et al. 1975).

Any perturbation of the MHD parameters leads to generation of one
or another MHD mode, and therefore the excitation of modes in cosmic
conditions may be highly diverse depending on the object. Sources of the
MHD waves can include mechanical motions of the plasma, rapid transfor-
mations of energy (outbursts), hydrodynamic instabilities (convection), heat-
ing (solar and stellar winds), rotations, and so on. Secondary MHD modes
are often generated by nonlinear interactions of MHD waves with each other
or with different kinds of nonlinear perturbations (e.g., with shock waves).
MHD modes may also be excited by external currents in the plasma, in-
duced by external sources. Finally, there are purely kinetic mechanisms for
excitation of MHD waves connected with the nonequilibrium distribution
function of a plasma component. For example, strong nonequilibrium rela-
tivistic component (cosmic rays) is capable of generating MHD waves in the
cosmic medium.

2.4.3 Damping of MHD Waves

We consider the most important conditions, when the MHD modes are long
living, i.e., γ � ω ′, where γ is the wave damping rate. To investigate the
MHD wave damping we use Eq. (1.129). The first term on the right-hand side
of Eq. (1.129) is sign alternating and, therefore, goes to zero when averaged
over the volume larger than λ3 = (2π/k)3. Systematic thermal dissipation Q
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per unit volume is described by the positive quadratic terms in Eq. (1.129):

Q = T Ṡ =
χ(∇T )2

T
+

1

2
ρ0ν

(
∂uα
∂xβ

+
∂uβ
∂xα

− 2

3
(∇ · u)δαβ

)2

+
νm
4π

(∇× b)
2
‖ +

νeff
4π

(∇× b)
2
⊥ . (2.67)

The thermal dissipation includes three distinct dissipative processes: heat
conductivity, viscosity, and Joule heating.

The damping rate γ, which describes a weak damping of the plane
monochromatic waves in stationary plasma, can be calculated from

γ = Q/2w, (2.68)

where w is the density of the wave energy; the bar over it indicates the
mean amplitude over the period. The magnitude of γ describes exponential
damping of MHD parameters when all the wave sources are off, e.g., u =
u0 exp(−γt) or w ∝ exp(−2γt) for quadratic measures like the energy density.

Another kind of damping measures is the absorption coefficient per unit
path length of the wave propagation:

α = Q/q, (2.69)

where q is the mean absolute value of the wave energy flux. This value
characterizes exponential decrease of the wave amplitude in space, u =
u0 exp(−αz), as the wave propagates from the source. Here, we select the
z-axes along the direction of the energy flux q. The general expressions for
energy density and energy flux density are well known (Landau and Lifshitz
1966; see also Sect. 1.3.3):

w = ρ

(
1

2
u2 + ε

)
+
B2

8π
, (2.70a)

q = ρu

(
1

2
u2 + ε+

P

ρ

)
+

1

4π
B × (u×B), (2.70b)

where ε is the internal energy per unit mass and ε+P/ρ is the enthalpy. This
energy flux does not include the dissipative terms.

It is now easy to apply these general formulae to derive the damping
rates of the MHD waves; we list the final results only for the sake of brevity.

Sound Waves: B0 = 0

γs =
1

2
k2
[
4

3
ν +

χ

ρ
(c−1

V − c−1
P )

]
, (2.71)

where cV and cP are the specific heats at constant volume and pressure,
respectively. The absorption coefficient per unit path length is αs = γs/cs,
where cs is the group velocity of the sound wave.
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Alfvén Waves

γA =
1

2
(νk2 + νmk

2
⊥ + νeffk

2
‖). (2.72)

If neutral atoms are present, the damping is primarily accounted for by the
high effective collisional viscosity. This takes place for k2‖/k

2
⊥ 
 νm/νeff .

In the absence of the neutral component (νm = νeff) we obtain standard
expression γA = (ν + νm)k2/2.

Magnetosonic Waves For simplicity we suppose c2s � v2A, omit the kine-
matic viscosity and the heat conductivity, while take into account the mag-
netic diffusivity, which yields

γf =
1

2
νeffk

2, γslow =
c2s
2v2A

νeffk
2
⊥. (2.73)

If k⊥ → 0, expression (2.73) gives γslow → 0 in this approximations. In fact,
the slow magnetosonic wave converts here to the usual sound wave and so
damping rate Eq. (2.71) applies.

2.5 Solar and Stellar Winds

Plasma motions allowing the MHD description are highly typical for the
astrophysics context. Many objects (typically, those with fast rotation) form
accretion disks and produce collimated flows of the plasma—astrophysical
jets; others produce more isotropic winds. We emphasize that both these
kinds of the plasma outflows are very common. The jets are observed or
implied in galactic microquasars, in active galactic nuclei, quasars, blazars,
and gamma-ray burst sources; see Sect. 12.4. In many cases the plasma moves
with relativistic or even ultrarelativistic speed in these jets.

More isotropic winds are typical for galaxies and normal stars (e.g.,
Fig. 1.3), although neutron stars produce ultrarelativistic “pulsar winds” in
some cases, resulting in a phenomenon of pulsar wind nebulae (e.g., Figs. 1.6
and 1.7 and Sect. 12.3). As a simpler example, we consider here nonrelativistic
winds of the normal stars.

The idea of stellar/solar wind had been around well before the space era;
however, it was not clear if the corpuscular flows from stars are sporadic or
persistent. Direct measurement of the persistent corpuscular flow from the
Sun was performed in Greenhouse’s experiment on board Sputnik “Luna-2”
in 1959 and then confirmed by satellite Mariner-2 measurements. Soon af-
ter this fundamental discovery, the stellar winds were detected (indirectly)
from stars of spectral types O and B during the 1960s of the twentieth cen-
tury. It was established that many (most of the) hot massive (M � 10M�)
high-luminosity stars produce their winds with a very large mass loss rate
(Lozinskaya 1992). For example, for the Wolf–Rayet (WR) and Of stars the
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mass loss rate is about Ṁ ≈ (10−5–10−4) M�/year; thus, the star can lose
a considerable fraction of its mass over time of the order of 106 years that
is very modest time compared with other astronomic timescales. For exam-
ple, the Earth are known to exist about 4.5 × 109 years, while the Sun has
been shining even longer. The stellar wind speeds were found to range within
u ≈ (1–4)×103 km/s. This implies a major deposition of the wind energy into
the interstellar medium: with the above values one can easily estimate that
the stellar wind energy deposition over the star lifetime, ∼106 years, is around
(0.1–10)×1051 erg, which is comparable with the energy released during the
supernova explosion occurring at the end of the massive star evolution.

Thus, the stellar wind is not a minor effect; rather it can have numerous
dynamical and evolutionary implications. For example, the rapid mass loss,
(10−5–10−6)M�/year, affects the star evolution itself including the end of
its evolution—supernova explosion, and the supernova remnant expansion—
which occurs in a “preprocessed” circumstellar cavity filled by the stellar wind
rather than in an average interstellar medium. That strong stellar winds affect
the interstellar medium by the deposition of energy and chemical elements
and disturbing its dynamics parameters, including the ISM magnetic field.
Given that the massive stars are not randomly distributed in the Galaxy, but
correlated within so-called OB associations, the stellar winds from different
stars can interact with each other and merge into a powerful velocity field
additionally enhanced by supernova explosions within the association. These
interacting winds form a bubble (also called “superbubble”) with a linear
scale up to a few hundred pc, which is bounded by a cooler supershell ex-
panding as a single object due to cumulative pressure produced by the winds
and explosions. We will be returning to these phenomena below in the book.

Although hundreds of stars with high luminosity L within (5 × 102–5 ×
107)L� were observed to produce the winds with the mass rate within Ṁ ≈
10−9M�/year and Ṁ ≈ 10−4M�/year, the mass losses in the form of the
wind are also typical for stars with much weaker luminosity. For example,
observations favor winds from much less luminous stars, e.g., cool massive red
giants (Ṁ ≈ 10−6M�/year, u ≈ 10 km/s), from nuclei of planetary nebulae
with the speed (2–3)×103 km/s (which is 3–4 times larger than the gravitation
runaway velocity) and the mass loss rate Ṁ ≈ (4× 10−9–7× 10−7)M�/year,
and, finally, from the closest to the Earth star, the Sun.

2.5.1 Basic Observational Data About
the Solar Wind

The solar wind is one of the main constituents which, along with eruptive
phenomena and electromagnetic radiation from the Sun and planets, deter-
mines physical conditions in the circumsolar space (Fig. 1.3). The solar wind
is a more or less stationary and isotropic plasma flow, which is launched in the
upper corona of the Sun and transfers magnetic fields of solar origin. The first
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indications of some corpuscular flow outward the Sun in interplanetary space
were obtained in the nineteenth century (e.g., see Brandt 1970 for a review).
The persistent character of the solar wind was experimentally established by
Biermann (1951, 1952) via investigation of the behavior of comet tails. This
result was further confirmed indirectly by observations of modulation of the
galactic cosmic rays and by data on geomagnetic activity and auroras.

Direct measurements of the interplanetary plasma parameters became
possible in the space era by Earth-orbiting satellites and also by interplane-
tary spacecraft missions. They provide quasi-continuous measurements of the
interplanetary plasma physical parameters in various locations of the space.
Remarkably, the parameters of the solar wind, the particle number density,
abundances, velocity, and temperature experience significant temporal and
spatial variations. Nowadays, the running combination of the involved IPM
parameters and their drivers are collectively called the “space weather”(Gary
and Keller 2004).

The measurements at the Earth orbit give the solar wind velocity (mass
velocity) u between ≈ 300 and≈ 700km/s (the mean value is≈ 400km/s; the
highest values of ≈ 2,000km/s are measured in association with sequences
of largest solar flares, e.g., in November 2003); the ion number density ≈
5 cm−3; the flux density of positive ions 2×108 cm−2s−1 and the temperature
Tp ≈ 3 × 104–6 × 105 K (the mean value is 1.5 × 105K) for protons and
Te ≈ 1.5 × 105 for electrons. The number density of He++ ions (the α-
particles) is usually around 4–5% of the proton number density. The number
of neutral atoms is insignificant. The magnetic field is measured to be highly
variable and typically to belong the range (1–10)×10−5Gwith the mean value
of B ≈ 5 × 10−5G. Solar wind is a supersonic flow, whose Mach numbers
M = u/vTi and MA = u/vA have values 8–10.

The numbers allow estimating typical values of the solar wind kinetic
energy density nimiu

2/2 ≈ 10−9 erg cm−3 and the magnetic energy density
B2/8π ≈ 10−10 erg cm−3 near the Earth orbit, so the kinetic energy of the
hydrodynamic flow exceeds the magnetic energy by a factor of ten. This al-
lows neglecting the electromagnetic forces and considering the solar wind as
a purely hydrodynamic flow to the first approximation. But before applying
the HD we have to check if condition (2.9) Λii � r is fulfilled, where r is helio-
centric distance and Λii is the ion mean free path. We have Λii = 1/niσii and
use the Coulomb cross section σii ≈ π(e2/miv

2
Ti)

2 ln ΛC ≈ π(e2/Ti)
2 ln ΛC

obtained for the thermal plasma (see Sect. 1.3.7). It is then convenient to
express the mean free path Λii in astronomical units (1 AU ≈ 1.49×1013 cm):

Λii ≈ 0.7× 10−9T 2
i /ni, (2.74)

where the temperature and the number density are in Kelvin and cm−3,
respectively.

Adopting the coronal values ni = 2 × 108 cm−3 and Ti = 2 × 106K for
the height at which the solar wind is launched, we obtain Λii ≈ 2 × 108 cm
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� R� ≈ 7× 1010 cm; thus, the hydrodynamic description is applicable here.
However, at the Earth orbit, we have Ti ≈ 105K and ni ≈ 5 cm−3. Formula
(2.74) gives Λii ≈ 1AU in this case, i.e., Λii ≈ r, so the space plasma is
collisionless and the hydrodynamic approach seems to fail. Nevertheless, as
we have discussed in Sect. 1.3.8, the anomalous processes can strongly reduce
the particle mean free path in the collisionless plasma compared with that
determined by the Coulomb scattering only. Fluctuations of interplanetary
magnetic field and plasma waves developed due to different plasma instabil-
ities make the particle trajectories tangled and the velocities more isotropic,
and so reduce their mean free paths, which ensures broader applicability of
the HD/MHD approach than it could be anticipated. Complementary, the
effective mean free path of solar wind protons was measured from experi-
mental data about its distribution function (see, e.g., the first data reported
by Brandt et al. 1973; Marsch et al. 1982a,b). The anomalous mean free path
varies depending on the IPM state and was found to be well below 0.1AU
in many cases. This remarkable finding justifies approximate applicability of
the standard HD equations to describe the solar wind at 1AU and farther
away from the Sun.

It should be emphasized, however, that for the number densities and
temperatures typical for the interplanetary plasma, the mean free path of
particles with respect to Coulomb collisions is rather large and often exceeds
1AU. Thus, the particle distributions are not necessarily isotropic, and par-
ticle distribution functions are not necessarily Maxwellian (see Sect. 1.3.8).
In agreement with this expectation, the measured steady-state distribution
function of the solar wind particles is typically well described by a kappa
distribution, rather than a Maxwellian. The thermal energies of electrons
and ions (i.e., the electron and ion effective temperatures) are often differ-
ent. This means that the solar wind is seldom (never) in a state of a true
thermodynamic equilibrium.

We note that the Sun loses an extremely small part of its mass in the
form of the solar wind. The discussed parameters of the solar wind allow
estimating the entire mass flow from the Sun: JM = 4πr20umini ≈ 1019 g/year
≈ 10−14M�/year, where r0 = 1AU, M� ≈ 2 × 1033 g is the solar mass.
During the Sun lifetime (<1010 years) the solar wind has taken out total of
only 10−4M� if we adopt that the flow parameters are more or less constant
over this time.

2.5.2 Parker’s Model of the Solar Corona
Expansion

Let us apply, following Parker (1963), the HD equations to understand the
phenomenon of the solar wind. We start with analysis of the hydrostatic
(∂/∂t = 0 and u = 0) equilibrium of a spherically symmetric fully
ionized hydrogen atmosphere to which the equation of state, Eq. (2.23),
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P (r) = 2ni(r)T (r) of a tenuous gas applies. Neglecting electromagnetic
forces, Eq. (2.2) requires that the pressure gradient is balanced by the
gravitation force:

d

dr
2niT +

GM�mini
r2

= 0, (2.75)

where G ≈ 6.67× 10−8 cm3g−1s2=6.67× 10−11m3kg−1s2 is the gravitational
constant. Integration of this equation yields

ni(r)T (r) = ni(r0)T (r0) exp

[
−GM�mi

2

∫ r

r0

ds

s2T (s)

]
. (2.76)

Remarkable conclusions about the hydrostatic equilibrium can be derived
from analysis of the rhs of the equation. Indeed, if the temperature T (r) de-
creases with r faster than r−1 then the exponent index decreases infinitely at
r → ∞ and, thus, ni(r)T (r) → 0 at the infinity. Stated another way, this tells
us that the stellar atmosphere has a finite size and a hydrostatic equilibrium
is achievable.2 The only way of the atmosphere dissipation here is gravitation
runaway of higher-energy particles from a “tail” of the steady-state distribu-
tion, which is beyond the HD applicability region.

However, if the temperature decreases slower than r−1 then the exponent
index in Eq. (2.76) has a finite value at arbitrarily large r, which implies a
finite pressure at the infinity. Since a finite gas amount (stellar atmosphere)
cannot be distributed over an infinite volume with a finite density, we arrive
at a conclusion that no hydrostatic equilibrium is possible in this case; thus,
a HD expansion with some u(r) �= 0 must appear.

Let us consider this expansion assuming the motion to be stationary
(∂/∂t = 0 as before). We use the equation of mass conservation

ni(r)u(r)r
2 = ni(r0)u(r0)r

2
0 , (2.77)

where r0 is the stellar radius at the base of corona, and the equation of motion

miniu
du

dr
+

d

dr
2niT +

GM�mini
r2

= 0. (2.78)

Full solution of the problem requires also an energy transfer equation. How-
ever, the fundamental science question of the mechanisms of the solar wind
heating (and, more generally, of the corona heating) is highly sophisticated
and has not yet been fully understood, which will be discussed in greater de-
tail later. Now, to make a qualitative progress, we adopt a simple power law
for the temperature dependence on r without assuming a specific mechanism
of the corona heating.

2It must be noted that such hydrostatic equilibrium is not necessarily stable: for
example, it can be convectively unstable if the temperature gradient is large; see
Chap. 6.
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It is convenient to introduce two characteristic proton velocities, the ther-
mal speed (which is also the “isothermal” speed of sound)

vT (r) = [2T (r)/mi]
1/2 (2.79)

and the runaway velocity from r0

ve = (GM�/r0)1/2 = const. (2.80)

With this notations Eq. (2.78) receives the form

u
du

dr

(
1− v2T

u2

)
= R(r), (2.81)

where

R(r) = −r2 d

dr

v2T
r2

− v2er0
r2

. (2.82)

We consider the case when the atmosphere is strongly coupled with the
star v2e 
 v2T (r0) 
 u2(r0) at the level r = r0, while the temperature T
monotonously decreases with r slower than r−1, i.e., T (r) = T0(r/r0)

ε−1,
0 < ε < 1, T (∞) → 0. For r → r0 we have R(r) < 0 because v2e 
 v2T .
Nevertheless, the first term in the rhs of Eq. (2.82) is positive and decreases
slower than r−2. Therefore, a “critical layer” r = rc exists, where R(rc) = 0,
with R(r) > 0 at r > rc and R(r) < 0 at r < rc. Since at the corona base,
r = r0, the expansion is weak, u2 � v2T , then both values entering Eq. (2.81),
1 − v2T /u

2 and R(r), are negative, so du/dr > 0 is positive, i.e., the gas is
being accelerated by the pressure gradient.

Consider what can happen to the flow farther away from the star. If,
(1) during the gas acceleration, the flow velocity u reaches the value of vT
somewhere at r < rc then du/dr → ∞ at vT = u according to Eq. (2.81),
while the flow velocity is directed toward the star at larger r (see curve 1 in
Fig. 2.2). Such solutions seem to be inconsistent with the adopted stationarity
of the flow and so require account of the time derivative in Eq. (2.2). If (2) the
equality vT = u is not achieved at r < rc, then the derivative du/dr becomes
negative at r > rc, and the gas motion remains subsonic at the entire space
decaying gradually at large distance from the star. Such solutions (see curve
2 in Fig. 2.2) are called the stellar breeze to distinguish from supersonic solar
wind. Finally, (3) if the expansion velocity u reaches the thermal velocity vT at
the very same layer rc, where R(rc) = 0 (curve 3 in Fig. 2.2), then the stellar
wind becomes supersonic at r > rc, where it keeps accelerating. This solution
does correspond (qualitatively) to the solar wind actually observed in the
IPM. For any given temperature profile, one can plot dependences of u and
other relevant parameters on r numerically.

We must emphasize, however, that even though the model considered
uncovers the fundamentals behind the solar wind phenomenon, it remains
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Figure 2.2: Solutions for the plasma outflow from a star: (1) double valued and so
unphysical flow; (2) subsonic stellar breeze; and (3) supersonic stellar wind. In this example
the critical radius rc = 2r0.

highly idealized and incomplete. In particular, it ignores the magnetic field,
the star rotation, the difference between electron and ion temperatures, de-
parture from the thermodynamic equilibrium, all kinds of inhomogeneity,
nonstationarity, and heating mechanisms, all of which can have major effect
on the solar wind properties. For example, eruptive processes in the solar
corona often give rise to ejections of large massive plasma clouds (so-called
coronal mass ejections, CMEs), which have huge effect on the space weather
at the Earth orbit.

A fundamental question of an additional plasma heating, which is vital
for the solar wind phenomenon, deserves more discussion. We have already
noticed that to allow for the solar wind acceleration, the plasma temperature
must not decrease too rapidly with r. In fact, as we are going to show below,
an additional energy deposition is critically needed for the gas to overcome
the gravitation force and acquire a supersonic speed.

To make this clear we note that according to Eq. (2.77) the density of
expanding plasma obeys the law:

ni(r) = ni(r0)
u(r0)r

2
0

u(r)r2
. (2.83)

If no energy deposition is present, the gas expands adiabatically:

T = T0(ni/ni0)
γ−1, (2.84)

with the ratio of specific heats γ = 5/3 for a single-atom gas. Thus, the
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temperature decreases as

T ∼ u−(γ−1)r−2(γ−1), (2.85)

i.e., ∝ r−4/3 for a constant expansion velocity and even faster for an acceler-
ated expansion, which is in all the cases faster than a limiting temperature
profile ∝ r−1 obtained from Eq. (2.76).

Let us estimate the required heat deposition based on the energy bal-
ance consideration (Parker 1979). The gravitation energy density per unit
volume is

Φ(r) = −GM�mini
r

. (2.86)

The energy, which is spent for the gas to overcome the gravitation field and
to accelerate the gas, is the enthalpy, which accounts the work of the pressure
force:

w = ε + P =
2γ

γ − 1
niT. (2.87)

Here ε = niT/(γ − 1) is the internal energy density. The ratio

w

|Φ(r0)| =
5Tr0

GM�mi
≈ 0.43 (2.88)

is less than one for r = r0 ≈ 0.7 × 1011 cm and T ≈ 2 × 106K and so is
insufficient to produce the wind. Therefore, to overcome the gravitation and
to accelerate then gas up to 400 km/s an additional energy Q must indeed be
deposited. In place of explicit account of the energy sources, we describe this
energy deposition by using the polytropic equation instead the adiabatic one:

T = T0(ni/n0i)
α−1, (2.89)

where α is the polytropic index. For α < γ comparison of Eq. (2.89) with
adiabatic equation (2.84) reveals that for the same gas expansion ni/n0i,
the temperature is larger for polytropic process than for the adiabatic pro-
cess. Therefore, this does account for an additional heat deposition into the
gas, with the heat efficiency defined by the polytropic index; apparently, no
information on the physical mechanisms of the plasma heating is available
in Eq. (2.89) within this treatment.

We can now introduce an effective enthalpy weff accounting for the
additional heat deposition in the form of Eq. (2.87) with the polytropic index
α in place of the adiabatic index: γ

weff =
2α

α− 1
niT. (2.90)
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The required polytropic index then can easily be estimated from the energy
conservation per particle at the corona base and far away from the Sun in a
region of the supersonic wind:

2α

α− 1
T0 − GM�mini

r0
=

miu
2(r)

2
. (2.91)

Here we neglected the expansion velocity at the corona base and neglected
thermal energy and gravitation potential far away from the Sun. Substitution
of the mean solar wind speed u(r) = 400 km/s and typical coronal parameters
yields α ≈ 1.14; Parker (1979) proposed 1.0 < α < 1.3 as the most plausible
range for the polytropic indices. Equation (2.91) also tells us that for low
coronal temperature

T0 <
(α− 1)GmiM�

2αr0
, (2.92)

the expansion is impossible and the corona remains static.
Let us touch upon possible mechanisms of the additional heat deposition

into the expanding plasma. Generally, there are absorption of the solar ra-
diation flux, standard heat conductivity, losses of nonthermal particle pop-
ulation, and dissipation of various plasma/MHD waves, which are efficiently
generated in the convective zone of the Sun and then transferred outward to
the corona. First three mechanisms are easy to take into account; it turns that
all they are insufficient to provide the required plasma heating. We, therefore,
forced to conclude that the primary source of the heat is the wave dissipa-
tion. However, it is extremely difficult to quantitatively check this conclusion
because the theory of wave generation, propagation, and damping is very
complicated and in addition depends on poorly known details of the solar at-
mosphere structure and relevant physical conditions. We will consider some
of the related processes and phenomena below in this book; however, the cur-
rent state of the science is yet unable to fully describe the phenomenon of the
solar wind and in particular—reliably identify the sources and mechanisms
of the additional corona heating.

The discussed simplest model of the uniform corona expansion suggests
that the solar wind overcomes the sound speed and becomes supersonic at
around rc ≈ 10r�. Accordingly, at the Earth orbit, the plasma flow is highly
supersonic and superalfvenic. We note that a very interesting physics takes
place at those regions where such a supersonic flow interacts with an obstacle.
A practically important and actively studied example of this is the interaction
of the solar wind with the Earth’s magnetosphere (Fig. 1.3), which results in
a variety of observable manifestations including the polar lights (Fig. 1.4).

Then, as the wind propagates farther away from the Sun, the ISM
surrounding the solar system starts to affect and modify the solar wind
(see, e.g., Hundhausen 1972; Baranov and Krasnobaev 1977). Indeed, if the
interstellar medium pressure were absent, the solar wind speed would remain
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approximately constant, of the order of 400km s−1; its number density would
fall with distance as r−2, and the temperature would also decrease as de-
scribed. Hence, the solar wind would become more and more supersonic.
However, in the real situation, the solar wind is slowed down by the inter-
stellar medium and, therefore, the supersonic regime should give a way to a
subsonic one at some distance from the Sun, which is accompanied by the
appearance of a termination shock.

A rough estimate of the shock position rsh may be obtained from
the requirement of balance between the solar wind dynamic pressure and
interstellar medium pressure:

nimiu
2 ≈ (na + 2ne)T +

B2

8π
+ PCR, (2.93)

where PCR is the cosmic ray (relativistic particles) pressure, na is the number
density of neutral atoms in interstellar medium, ne is the electron number
density in interstellar medium, and T is its temperature. Substituting ni =
niEr

−2, where niE ≈ 5 cm−3 and rTsh is the distance in AU, and other
parameters adopted above, we obtain rTsh ≈ 100AU.

A number of space missions have been launched toward the anticipated
bounds of the solar system years ago to determine where those bounds are
and what are the physical conditions there. The first reliable detection of the
termination shock occurred on December 14, 2004, by a spacecraft Voyager 1
at the distance 94AU from the Sun. It took around 30 years for the spacecraft,
launched on 1977, to path through the solar system. Later, Voyager 2 having
a different trajectory detected the termination shock at the distance 84AU
on August 30, 2007. In fact, Voyager 2 detected the termination shock a few
times: this is because the position of the termination shock is changing in
time in response to short-term variations of the solar activity. It is supposed
that the shock position also experiences systematic changes back and forth
following the 11 years cycle of the solar activity. According to the measure-
ments made by Voyagers 1 and 2, the solar wind velocity near the heliospheric
shock wave was approximately 380 km/s, and the ratio u1/u2 = ρ2/ρ1 ≈ 3
at the front.

2.5.3 Magnetic Field in a Cavity Filled
by a Stellar Wind

Consider now another important constituent of the solar wind, the mean mag-
netic field. Specifically, let us apply dissipation-free induction equations (2.33)
to calculate the magnetic field structure in a volume filled by solar or stellar
wind within a simple model. Here, we adopt that the plasma is launched
isotropically from a spherical surface of the radius a, rotating around a central
axes with constant angular velocity Ω. The stellar wind speed u is constant
and has radial direction. At the spherical surface there is a magnetic field,
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which is described by the function B(a, ϑ, α) = B0(ϑ, α) in the reference
frame rotating together with the star, where α is the azimuth angle in the
plane transverse to the rotation axes. The energy density of the plasma mo-
tion exceeds significantly the energy density of the magnetic field; thus, we can
neglect the magnetic field effect on the plasma motion. Using the freezing-in
condition we find here the magnetic field distribution (dependence of the mag-
netic field on the coordinates and time) in the region r > a in the laboratory
(rest frame) system.3

To solve this problem we first project vector equation (2.38) to the axes
r and substitute u = ur/r, u = const, which yields the equation for Br:

∂Br
∂t

= −2u

r
Br − u

∂Br
∂r

. (2.94)

Solution of this equation is an arbitrary function of independent variables
r − ut, ϑ, and α divided by r2:

Br(r, ϑ, α, t) =
1

r2
F (r − ut, ϑ, α). (2.95)

The boundary condition has evidently the form

Br
∣∣
r=a

= B0r(ϑ, α+Ωt) =
1

a2
F (a− ut, ϑ, α), (2.96)

where the argument α + Ωt in B0r originates from the transition from the
rotating frame to the laboratory rest frame; therefore

F (a− ut, ϑ, α) = a2B0r(ϑ, α+Ωt)

and solution (2.95) reads

Br(r, ϑ, α, t) =
(a
r

)2
B0r

(
ϑ, α− (r − a)Ω

u
+Ωt

)
. (2.97)

In a similar way, we find two remaining components of the magnetic field:

Bϑ =
a

r
B0ϑ

(
ϑ, α− (r − a)Ω

u
+Ωt

)
, (2.98a)

Bα =
a

r
B0α

(
ϑ, α− (r − a)Ω

u
+Ωt

)
. (2.98b)

3The model considered here was proposed by Parker (1959) to describe the in-
terplanetary magnetic field produced by the solar plasma flows composing the solar
wind.
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Figure 2.3: Two oppositely directed magnetic field lines illustrating the Parker model
of the IPM magnetic field at the scale of the Earth (left) and Jupiter (right) orbits. The
planet orbits are shown by dashed color circles (the orbit eccentricities are neglected) for
Mercury (grey), Venus (violet), Earth (bold blue; the planet itself is shown by blue circle;
not in scale), Mars (red), and Jupiter (brown).

Using Maxwell equation ∇ ·B = 0 and Eq. (2.97) gives rise to the following
useful relationship between components of the vector B0:

−aΩ
u

∂B0r

∂α
sinϑ+

∂

∂ϑ
(B0ϑ sinϑ) +

∂B0α

∂α
= 0.

For example, if B0ϑ = 0 then Bϑ = 0 during the entire field evolution, and

B0α =
aΩ

u
B0r sinϑ+ f(ϑ).

If we further adopt f(ϑ) = 0, we then obtain

Bα(r, ϑ, α, t) =
a2Ω

ur
B0r

(
ϑ, α− (r − a)Ω

u
+Ωt

)
sinϑ. (2.99)

Equations (2.97) and (2.99) show that the azimuth component of the
magnetic field decreases with r much slower, as ∝ r−1, than the radial
component does, as ∝ r−2. Thus, even if the radial component of the mag-
netic field dominates at the star surface, the azimuth component dominates
farther away from the star, which gives rise to the spiral shape of the mean
interplanetary magnetic field.

Parker applied this model to describe the interplanetary magnetic field
of the solar wind (Fig. 2.3). The original Parker’s model adopts Bϑ = 0,
while Br and Bα are described by Eqs. (2.97) and (2.99). Measurements of
the interplanetary magnetic field indicate the presence of a slowly varying
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component, which indeed has an approximately spiral structure and inter-
sects the Earth orbit at an angle of 45◦. The average magnetic field near the
Earth orbit is close to 5× 10−5G, though the measured values are scattered
very strongly. At low heliographic latitudes the spiral field consists of several
sectors with mutually opposite magnetic field directions. The radial compo-
nent varies with distance as r−2, in good agreement with the Parker model.
However, the agreement is much poorer for the azimuthal component, which
displays the dependences from Bα ∼ r−1.23 to ∼ r−1.1 between 1 and 5AU.
The component Bϑ < 10−5G was also observed near the Earth orbit.

The magnetic field structure unlike the solar wind itself is not spheri-
cally symmetric. Given that the magnetic energy density is one–two orders
of magnitude smaller than the kinetic energy of the solar wind, thus, a rela-
tively weak deviation of the solar wind from the spherically symmetric flow
can have major effect on the magnetic field structure. Even though obser-
vations do often reveal significant departure of the measured magnetic field
from the Parker’s one, the overall agreement is, nevertheless, remarkably good
especially if one takes into account the number of the simplifications adopted.

Problems

2.1 Using the Faraday induction law and dissipation-free equations (2.28),
prove that the magnetic flux through arbitrary closed contour remains con-
stant regardless contour motions and deformations.

2.2 Adopt stationary equilibrium of the conducting fluid in a magnetic field.
Demonstrate that the vectors of the magnetic field B and the current density
j are tangent to the surfaces p(r) = const.

2.3 Adopt that electric current J flows along a hot plasma cylinder with
radius a and a nonuniform current density j(r) (z-pinch). Find stationary
solution P (r) for the plasma pressure under the condition that this pressure
is compensated by the magnetic pressure produced by this electric current
itself. Write down a relation linking the total electric current of the pinch
and the pinch pressure integrated over pinch cross section.

Adopt then that the plasma is isothermal and obeys the ideal gas equa-
tion of state [Eq. (2.23)]. Express current J via the plasma temperature T and
the total number of the plasma electrons (or ions) N per unit length of the
cylinder. Calculate the current assuming N ≈ 1015 ions/cm and T ≈ 108K—
the parameters typical for the nuclear fusion studies; see Fig. 1.1.

2.4 Determine equilibrium condition for the plasma cylinder with radius a, in
which the electric current has only azimuth component jα(r) (so-called theta
pinch). The outside pressure is small and can be discarded compared with the
pinch pressure. Is it possible to ensure equilibrium using some distribution of
the magnetic field produced by external sources?
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2.5 The magnetic field is called the force-free field (Sect. 2.3.3) if the density
of Ampère’s force is zero everywhere: j × B/c = 0. To ensure this, it is
apparently necessary and sufficient that the electric current is directed along
the field lines everywhere.

(a) Show that the force-free field B satisfies the equation set:

∇×B = αFFFB, B·∇αFFF = 0,

where αFFF (r) is arbitrary differentiable scalar function (including
constant).

(b) Derive a force-free field dependent on r only in cylindrical coordinates
for αFFF = const.

(c) Is it possible to have a finite energy of the force-free field for αFFF =
const?

(d) Prove that αFFF = const for any force-free field along any field line.

2.6 Consider modification of MHD eigenmodes in a plasma permitted by a
nonpotential force-free magnetic field and calculate the corresponding kinetic
helicity density defined as hk = 〈u(r, t) · ∇ × u(r, t)〉.
2.7 Adopt that a stationary velocity field u = (ux(y, z), 0, 0) holds in a con-
ducting fluid (shear motion). The initial condition at t = 0 for the magnetic
field is B0 = (0, B0y(y, z), B0z(y, z)). Apply dissipation-free approximation
(νm → ∞) to derive the field at t > 0.

2.8 A stationary differential rotation (i.e., various fluid layer rotate with
different velocities) with an angular velocity Ω = ezΩ(r, ϑ), where r, ϑ are
the spherical coordinates, holds in a conducting fluid. Originally, the mag-
netic field is poloidal, i.e., it belongs to meridian planes: at t = 0, B =
(B0r(r, ϑ), B0ϑ(r, ϑ), 0). Calculate the magnetic field at t > 0 neglecting the
dissipation in the plasma.

2.9 Derive equation (2.98).

2.10 Plot dependences of u and other relevant parameters of the Parker’s
stellar wind on r numerically for different temperature profiles.

2.11 Find the form of interplanetary magnetic field force lines in Parker’s
model (see Sect. 2.5.3). Calculate magnetic field value and the angle θ be-
tween force line and radial direction at the Earth orbit. The solar radius is
a = 0.7 × 106 km; the mean magnetic field at the solar surface B0 ≈ 1G;
the radius of Earth orbit r0 ≈ 1.5 × 108 km; the angular velocity of solar
rotation Ω = 2.7 × 10−6 rad/s; solar wind velocity u = 300km/s (slow solar
wind).
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2.12 Demonstrate that the solution for the magnetic field in stationary radial
stellar wind (see Sect. 2.5.3) has the form

Br(r, ϑ, α, t) = F

(
α− (r − a)Ω

u
+Ωt

)(a
r

)2
2 cosϑ,

Bϑ(r, ϑ, α, t) = p
∂

∂α
F

(
α− (r − a)Ω

u
+Ωt

)
a2Ω

ur
sinϑ,

Bα(r, ϑ, α, t) = q F

(
α− (r − a)Ω

u
+Ωt

)
a2Ω

ur
2 sinϑ cosϑ.

Here p and q are constants, which satisfy the condition p+q = 1, and F is an
arbitrary function, specified by the boundary conditions at the solar surface.

Answers and Solutions

2.2 In the static equilibrium (u = 0) and in the absence of non- electro-
magnetic, forces the equilibrium condition reads ∇p = j × B/c. Thus the
vectors B and j are transverse to the pressure gradient and so tangent to
the isobaric surfaces.

2.3 The magnetic field has one component:

Bϕ ≡ B(r) =
4π

cr

∫ r

0

rj(r) dr.

Integrating the equilibrium condition, which follows from Eq. (2.13a) for u=0
with the boundary condition p

∣∣
r≥a= 0, we obtain

p (r) =
1

8π

∫ a

r

1

r2
d

dr
(r2B2) dr, (1)

where B = (4π/cr)
∫ r
0 rj(r) dr at r < a and B = 2J/cr at r > a. To link

the total current with the pressure we integrate Eq. (1) over full transverse
section and apply the relation aB(a) = 2J/c, which yields

∫ a

0

p (r)2πr dr =
J2

2c2
. (2)

Assuming that the plasma is an equilibrium ideal gas with a given tem-
perature T (in units of energy), we adopt p = 2n(r)T and then Eq. (2) yields

J = 2c
√
NT. (3)
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Substitution of required numbers into (3) results in J = 7.5× 104A. In prac-
tice the plasma is often non-isothermal, with the electron temperature ex-
ceeding the ion temperature. To maintain the equilibrium the current must
grow in time, because the current results in the increase of both temperature
and pressure. In addition, the pinch can become unstable relative to kink or
sausage mode instabilities.

2.4 The magnetic field inside the cylinder has one component Bz(r) ≡
B(r) = (4π/c)

∫ a
r jϕ(r)dr. The equilibrium inside the cylinder requires con-

stancy of the full pressure:

p (r) +
B2(r)

8π
= const.

Outside the cylinder without any medium we have p = 0 and the magnetic
field generated by the azimuth current is zero, B = 0; thus, the internal
pressure can only be balanced by a magnetic pressure produced by a field
directed along the cylinder axes, whose value at the side surface of the cylinder
is B0 =

√
8πp (a). The magnetic field inside the cylinder is always smaller

than the external field:

B2

8π
=
B2

0

8π
− p;

thus, the plasma is a diamagnetic.

2.5 (b) B(r) = B0 · (0, J1(αFFF r), J0(αFFF r)), where Jn(x) is the Bessel
function.

2.6 To investigate properties of weakly damping linear modes we neglect the
dissipative terms entirely in MHD Eqs. (2.13) and (2.16). Then, for simplicity,
we only consider the helicity originating from the magnetic field twist (the
corresponding pseudoscalar is formed by the dot product of the polar vector
j and the axial vector B: j · B, while no other polar vectors are explicitly
considered) and so we neglect the kinetic pressure and the external force
assuming that their contribution to the helicity is smaller; so the equations
read

∇·B = 0,
∂B

∂t
= ∇× [u×B], (2.100a)

ρ

(
∂u

∂t
+ (u·∇)u

)
=

1

4π
[∇×B]×B. (2.100b)

Now, to describe the small-amplitude linear modes satisfying these equa-
tions, we have to linearize them adopting B = B0 + b for the magnetic field
and adopting b and u to be the first-order oscillating values of an MHD
mode. Importantly, that upon substitution of B = B0 + b into Eq. (2.100b)
we have to take into account that in the nonpotential force-free field ∇×B0 =
αFFFB0 �= 0 unlike cases of a uniform field or nonuniform potential field,
which yields
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∂b

∂t
= (B0 · ∇)u− (u · ∇)B0,

∂u

∂t
=
αFFF
4πρ

B0 × b+
1

4πρ
(∇× b)×B0.

(2.101)

Within the eikonal approximation (i.e., adopting the wavelengths of the
eigenmodes to be small compared with the source inhomogeneity scale) we
can write b = bωe

iψ(r)−iωt and a similar for u, which yields equations for the
corresponding complex amplitudes:

b = (i/ω)[i(B0 · ∇ψ)u− (u · ∇)B0], (2.102a)

u =
iαFFF
4πρω

B0 × b− 1

4πρω
[(b ·B0)∇ψ − (B0 · ∇ψ)b]. (2.102b)

Let us solve these equations to the first-order accuracy over the small
parameter αFFF /|∇ψ| � 1. In the zeroth-order approximation we have

b = − 1

ω
(B0 · ∇ψ)u, u = − 1

4πρω
(B0 · ∇ψ)b, (2.103)

which yields the eikonal

∇‖ψ = ±ω/vA, vA = B0/
√
4πρ. (2.104)

It is easy to see that in the zeroth approximation these perturbations are
identical to the purely alfvénic modes for which the conditions b · ∇ψ =
0, u · ∇ψ = 0, b ·B0 = 0, and u× b = 0 are satisfied.

Since we use the complex amplitudes, the bilinear terms like ab must
be computed as (1/2)�〈ab∗〉, where in addition to averaging over the period
T = 2π/ω we also average over the random phases of Fourier harmonics:

〈bμb∗ν〉 = (1/2)〈b2ω〉(δμν − e‖μe
‖
ν). (2.105)

In the zeroth over αFFF approximation, the kinetic helicity parameter is
zero: 〈u · (∇× u∗)〉 = 0.

Now, taking into account the first order over |αFFF /∇ψ| terms, Eq. (2.102b)
yields

u = − 1

4πρω
(B0 · ∇ψ)b +

1

4πρω
[iαFFFB0 × b+ (b ·B0)∇ψ], (2.106)

where b ·B0 �= 0 and

∇× u = − i

4πρω
(B0 · ∇ψ)(∇ψ × b)

+
i

4πρω
[−∇ψ × (b · ∇)B0 + b× (B0 · ∇)∇ψ + b× (∇ψ · ∇)B0].

(2.107)
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These two expressions allow calculating the kinetic helicity density:

1

2
�〈u · (∇× u∗)〉 = 1

4
αFFF v

2
A

〈b2ω〉
B2

0

, (2.108)

which is nonzero any longer; it is proportional to the magnetic field force-free
parameter αFFF and the wave intensity 〈b2ω〉.

2.7

Bx(y, z, t) =

(
B0y

∂ux
∂y

+B0z
∂ux
∂z

)
t, By = B0y, Bz = B0z.

2.8

Bα(r, ϑ, t) = sinϑ

(
rB0r(r, ϑ)

∂Ω

∂r
+B0ϑ

∂Ω

∂ϑ

)
t, Bϑ = B0ϑ, Br = B0r.

2.11 The field lines have a Archimedean spiral shape:

r =
u

Ω
(α− α0), α0 = const,

θ = arctan
r0Ω

u
≈ 56◦; B ≈ 4.5× 10−5 G.



Chapter 3

Plasma Dispersion: Linear Modes
in the Plasma

Dispersion of a medium is provided by a response of the particles composing
the medium to an external electromagnetic field applied to the medium. To
study the dispersion quantitatively we have to derive macroscopic equations
describing averaged electromagnetic fields in the medium. To do so we start
from microscopic Maxwell equations (1.53) complemented by electric charge
density (1.54a) in the form

ρ = e

∫
(Zfi − fe)d

3p, (3.1)

explicitly accounting only electrons and one sort of ions with charge Z and
electric current (1.54b) in the corresponding form

j = e

∫
(Zfi − fe)vd

3p, (3.2)

where fi and fe are the distribution function of the ions and electrons, re-
spectively and e is the (positive) charge of proton. These electric charge and
current densities represent the mentioned plasma response to the external
field. To describe this response macroscopically it is sufficient to introduce a
polarization vector P such as

j =
∂P

∂t
; ρ = −∇ ·P . (3.3)

These relations ensure that the continuity equation

∂ρ

∂t
+∇ · j = 0 (3.4)

is fulfilled equivalently.

G.D. Fleishman and I.N. Toptygin, Cosmic Electrodynamics, Astrophysics
and Space Science Library 388, DOI 10.1007/978-1-4614-5782-4 3,
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Substitution of ρ and j into Eq. (1.53) yields set of the macroscopic
Maxwell equations:

∇×B =
1

c

∂D

∂t
+

4π

c
jext, (3.5a)

∇ ·D = 4πρext, (3.5b)

∇×E = −1

c

∂B

∂t
, (3.5c)

∇ ·B = 0, (3.5d)

where

D = E + 4πP (3.6)

is the displacement vector that could be more consistently called the
electric induction in analogy with magnetic induction. Note that this new
displacement vector enters only two first (inhomogeneous) Maxwell equations,
while two homogeneous equations remain unchanged compared with the vac-
uum case. In what follows we assume that there is a linear relation between
vectors E and D; any nonlinear terms (if present) are assumed to be added
to the external charge and current densities.

It is then convenient to apply a Fourier transform to the Maxwell equa-
tions, which yields for the Fourier components:

ik ×Bω,k = − iω
c
Dω,k +

4π

c
jextω,k, (3.7a)

ik ·Dω,k = 4πρextω,k, (3.7b)

k ×Eω,k =
ω

c
Bω,k, (3.7c)

k ·Bω,k = 0. (3.7d)

Let us obtain an equation for the electric field. First, we write down a
general linear relation between the electric and displacement vectors:

Dα(ω,k) = εαβ(ω,k)Eβ(ω,k), (3.8)

which is equivalent to

jα(ω,k) = σαβ(ω,k)Eβ(ω,k) with εαβ = δαβ +
4πi

ω
σαβ . (3.9)

Then, we eliminate the magnetic field vector from Eq. (3.7a). To do so
we apply the cross product k× to Eq. (3.7c) and expand the double cross
product containing the electric field k × [k × E] = k(k · E) − Ek2, which
yields

c2

ω2
(kαkβ − k2δαβ + εαβ)Eβ = −4πi

ω
jextα . (3.10)
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This equation is convenient to rewrite in a compact form

TαβEβ = −4πi

ω
jextα , (3.11)

where we introduced a so-called Maxwellian tensor:

Tαβ = εαβ − c2k2

ω2

(
δαβ − kαkβ

k2

)
. (3.12)

Now we can proceed to the analysis of the plasma dispersion and properties
of the linear eigenmodes of the medium.

3.1 Eigenmodes of Anisotropic and Gyrotropic
Media: General Case

3.1.1 Principal Values and Eigenvectors
of the Maxwellian Tensor

In many cases electromagnetic phenomena are convenient to consider in the
system of orthogonal unit vectors, in which the Maxwellian tensor is di-
agonal in form. In particular, this allows a consistent inclusion of spatial
dispersion in the generation of quasitransverse modes and enables investi-
gating the polarization of these modes. It is noteworthy that a dispersive
medium, in principle, always exhibits absorption proportional to the anti-
Hermitian part of the complex dielectric tensor. This fact follows explicitly
from the Kramers–Kronig dispersion relations. However, absorption may be
rather weak in certain frequency ranges. It is precisely these “transparency
windows” that we have in mind below adopting a Hermitian dielectric tensor.

Let us define a natural reference frame in which the Maxwellian tensor is
diagonal. We take into consideration that the Hermitian property of the per-
mittivity tensor εαβ(ω,k) implies that the tensor Tαβ(ω,k) is also Hermitian.
As is known from linear algebra, the principal values λ(m)(ω,k) (m = 1, 2, 3)

of a Hermitian tensor are real, while its eigenvectors b(m)(ω,k) are generally
complex and mutually orthogonal:

b(m)∗(ω,k) · b(m)(ω,k) = 1, b(m)∗(ω,k) · b(n)(ω,k) = 0 if m �= n.

(3.13)

Both principal values and eigenvectors should be calculated from the system
of algebraic equations

Tαβbβ = λbα, α = 1, 2, 3. (3.14)

The principal values must obey a cubic algebraic equation, which is obtained
by setting the determinant of system (3.14) to zero:

|Tαβ − λδαβ | = 0. (3.15)
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Once Eqs. (3.14) and (3.15) are solved, the tensor Tαβ obtained from the
Maxwell equations and its inverse tensor can be expressed in terms of the
real principal values and the complex eigenvectors:

Tαβ(ω,k) =

3∑
m=1

λ(m)(ω,k)b(m)
α (ω,k)b

(m)∗
β (ω,k), (3.16)

(T̂−1)αβ =

3∑
m=1

1

λ(m)(ω,k)
b(m)
α (ω,k)b

(m)∗
β (ω,k). (3.17)

On multiplying these tensors we explicitly make sure that these two tensors
are inverse to each other:

Tαβ(ω,k)(T̂
−1)βν(ω,k) = b(1)α b(1)∗ν + b(2)α b(2)∗ν + b(3)α b(3)∗ν = δαν .

The last equality follows from the completeness property of the Hermitian
tensor eigenvectors.

It is important that the eigenvectors b(m)(ω,k) in an anisotropic medium
are essentially dependent on the frequency and the wave vector, implying this
case to be essentially different from the cases of vacuum or isotropic media.
In an isotropic medium, polarization degeneracy takes place, enabling one to
arbitrarily select the electromagnetic wave polarization vectors in the plane
perpendicular to the wave vector. Thus, the same eigenvector basis can be
selected for perturbations with any frequencies for a given direction k. As a
result, eigenvectors with different frequencies and wave numbers, not only
with equal ones, turn out to be mutually orthogonal in an isotropic medium:

b(m)(ω, k,κ) · b(n)∗(ω′, k′,κ) = 0 for m �= n, (3.18)

where κ = k/k is a unit vector in the direction of wave propagation.
Polarization degeneracy arises from the symmetry of an isotropic medium
about rotations by any angle in the plane perpendicular to the vector κ.
In an anisotropic medium, this symmetry is nonexistent in the general case
(although it may take place relative to preferred directions), and the or-
thogonality of the eigenvectors of the Maxwellian tensor is ensured only for
coinciding sets of ω and k [see expressions (3.13)].

Let us now express the eigenvector components in terms of the real basis
vectors of a Cartesian coordinate system. Consider for definiteness the eigen-
vector which corresponds to the first principal number λ = λ(1). Then, by

multiplying tensor (3.16) by b
(1)
β , we obtain, in view of expressions (3.13), the

equation

Tαβb
(1)
β = λ(1)b(1)α , (3.19)

which is conveniently rewritten as

T̃αβb
(1)
β ≡ (Tαβ − λ(1)δαβ)b

(1)
β = 0. (3.20)
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Equation (3.20) always has a solution, because by definition of the principal
value the determinant Δ̃ of the tensor T̃αβ is always equal to zero. Writing
equation (3.20) so as to solve it for the components we arrive at

T̃11b
(1)
1 + T̃12b

(1)
2 + T̃13b

(1)
3 = 0, (3.21a)

T̃21b
(1)
1 + T̃22b

(1)
2 + T̃23b

(1)
3 = 0. (3.21b)

We do not give the third equation, because it is a linear combination of these
two owing to the zero value of the determinant Δ̃. In these equations we
express the y- and z-components of vector b(1) in terms of the x-component

b
(1)
1 to obtain

b
(1)
2 =

T̃21T̃13 − T̃23T̃11

T̃12T̃23 − T̃13T̃22
b
(1)
1 , (3.22a)

b
(1)
3 =

T̃12T̃21 − T̃11T̃22

T̃12T̃23 − T̃13T̃22
b
(1)
1 . (3.22b)

Noting that the combinations of the T̃αβ tensor components in the numerator
and denominator of Eq. (3.22) are the algebraic adjuncts of the elements of
the third row of tensor T̃αβ : Δ̃31 = T̃12T̃23 − T̃13T̃22, Δ̃32 = T̃21T̃13 − T̃23T̃11,

and Δ̃33 = T̃11T̃22 − T̃12T̃21, we represent Eqs. (3.22) in a compact form:

b
(1)
2 =

Δ̃32

Δ̃31

b
(1)
1 , b

(1)
3 =

−Δ̃33

Δ̃31

b
(1)
1 . (3.23)

This allows writing the vector b(1) in the form of a decomposition into
the real unit vectors of the initial Cartesian coordinate system:

b(1) = C(Δ̃31ex + Δ̃32ey − Δ̃33ez), (3.24)

where the constant C is determined from the condition that the vector b(1)

is normalized to unity, so that

b(1) =
(Δ̃31ex + Δ̃32ey − Δ̃33ez)√
|Δ̃31|2 + |Δ̃32|2 + |Δ̃33|2

. (3.25)

The two other eigenvectors, b(2) and b(3), are expressed in a similar manner,
but the tensor T̃αβ should, in place of λ(1), contain the principal values λ(2)

and λ(3), respectively.



98 3 Plasma Dispersion

3.1.2 Dispersion Relations for the Eigenmodes
of an Anisotropic and Gyrotropic Medium

The dispersion relations and polarization vectors eβ(ω,k) of the eigenmodes
should be calculated from the system of homogeneous equations

Tαβ(ω,k)eβ(ω,k) = 0, α = 1, 2, 3. (3.26)

The solvability condition for this system of equations requires its determinant
to vanish:

Δ(ω,k) = |Tαβ(ω,k)| = 0. (3.27)

The Hermitian tensor εαβ = ε′αβ + iε′′αβ has a symmetric, ε′αβ = ε′βα, real
part and an antisymmetric, ε′′αβ = −ε′′βα, imaginary part. The latter may be
written in terms of the gyration pseudovector gα:

εαβ = ε′αβ + ieαβγgγ . (3.28)

We take into consideration that the tensor determinant is invariant under
spatial rotations and select the coordinate axes along the mutually perpen-
dicular principal axes of the symmetric tensor ε′αβ ; we denote the tensor ε′αβ
principal values as ε1, ε2, and ε3. With the axes selected, the tensor Tαβ
takes the form

T̂ =

⎛
⎝ ε1 − n2(1 − κ21) ig3 + n2κ1κ2 −ig2 + n2κ1κ3

−ig3 + n2κ1κ2 ε2 − n2(1− κ22) ig1 + n2κ2κ3
ig2 + n2κ1κ3 −ig1 + n2κ2κ3 ε3 − n2(1− κ23)

⎞
⎠ , (3.29)

where n = ck/ω is the refractive index.
By equating the determinant Δ to zero we find the refractive indices for

the eigenmodes of the medium under consideration. Upon the determinant
expansion the terms proportional to n6 cancel out and the equation in n2

takes on the form

an4 − [ε1(ε2 + ε3)κ
2
1 + ε2(ε1 + ε3)κ

2
2 + ε3(ε1 + ε2)κ

2
3 + (κ · g)2 − g2]n2

+ ε1ε2ε3 − ε1g
2
1 − ε2g

2
2 − ε3g

2
3 = 0,

a(ω,k) = ε1κ
2
1 + ε2κ

2
2 + ε3κ

2
3. (3.30)

Equation (3.30) is a generalization of the Fresnel equation, well known in
crystal optics, to the case of a gyrotropic medium (see Born and Wolf 1999).
The quantity a(ω,k) = εαβκακβ is the permittivity longitudinal relative to
the vector k: a = εl(ω,k).

If Eq. (3.30) is treated as a quadratic equation in the explicitly appearing
quantity n2, it is easy to find two roots n2

1 and n2
2 of this equation. This

enables writing the Maxwellian tensor determinant (3.27) as a product of
three factors:
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Δ = a(n2 − n2
1)(n

2 − n2
2) = 0; (3.31)

setting any of these factors to zero leads to correct dispersion relations for
possible eigenmodes.

The convenience of writing the determinant in the form of expression
(3.31) manifests itself when the spatial dispersion is nonexistent, i.e., when
the quantities ε1, ε2, ε3, and g depend on ω only, while not on the absolute
value |k|. Then, the relationships n2 = n2

1,2 turn out to be solutions of the
dispersion equation, so that in each direction (for a given κ) two waves can
propagate through the medium with two, generally different, phase velocities
v1,2 = c/n1,2. Here, n1,2(ω,κ) are the positive solutions of the biquadratic
equation (3.30), which depend only on the frequency and the propagation
direction of the corresponding wave. The roots n2

i may be negative in some
frequency ranges. For a Hermitian permittivity tensor, this signifies damping
without dissipation, i.e., the absence of the corresponding mode. The solution
a = 0 corresponds to the oscillating modes of the medium, whose properties
are independent of the magnitude of the wave vector (as long as the spatial
dispersion is discarded); the electric vector in these modes is directed along
the vector κ, i.e., the oscillations are longitudinal.

In the presence of spatial dispersion, the relations a = 0 and n2 = n2
1,2

are equations for determining the refractive indices rather than solutions of
the dispersion equation, because a and n1,2 are themselves functions of n.
That is why, in principle, there is nothing to limit the number of eigenmodes,
which are solutions of these equations. To determine the refractive indices in
this case requires specifying the explicit dependence of the dielectric tensor
on ω and k.

3.1.3 Principal Values and Eigenvectors
of the Maxwellian Tensor and Their Relation
to the Eigenmodes of the Medium

Let us determine the link between the quantities introduced in the foregoing
and the electromagnetic eigenmodes of an anisotropic medium. We will use
the tensor expressed via its principal values (3.16) to find the determinant in
the form

Δ(ω,k) = λ(1)(ω,k)λ(2)(ω,k)λ(3)(ω,k). (3.32)

Condition (3.27) that the determinant is equal to zero implies that at least
one of the principal values of the tensor should vanish:

λ(m)(ω,k) = 0, m = 1, 2, 3. (3.33)

Equations (3.33) give the dispersion relations ωσ(k) for the eigenmodes of the
medium. The number of these modes in the presence of spatial dispersion is
unlimited in the general case.
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Both forms of the determinant Δ(ω,k)—expressions (3.31) and (3.32)—
represent it in the form of three factors. This leads to a temptation to identify
the principal values λ(m) of the Maxwellian tensor with the factors a, (n2 −
n2
1), and (n2 − n2

2). But this identification would be incorrect, because two
other requisite relations

λ(1) + λ(2) + λ(3) = T11 + T22 + T33,

λ(1)λ(2) + λ(1)λ(3) + λ(2)λ(3) = Δ11 +Δ22 +Δ33 ≡ Δii, (3.34)

would be violated in this case, which becomes evident when determinant
(3.15) is expanded. We return to the determination of the principal values
λ(m) in Chap. 9.

Now let us determine the relation between the polarization vector
eσ(ω,k) of a given eigenmode and the eigenvectors b(m)(ω,k) of the
Maxwellian tensor. By substituting expression (3.16) for Tαβ(ω,k) in the
homogeneous equation (3.26), we arrive at

λ(1)b(1)α (b(1) · eσ) + λ(2)b(2)α (b(2) · eσ) + λ(3)b(3)α (b(3) · eσ) = 0, (3.35)

where the arguments (ω,k) of variables λ(m), b(m), and eσ were omitted for
brevity.

Consider for definiteness the mode which corresponds to the condi-
tion λ(1)(ω,k) = 0 (there may be several such modes). In this case,
ω = ωσ(k), λ(2)(ωσ,k) �= 0, and λ(3)(ωσ,k) �= 0 (note that if two
eigenvalues vanish together, e.g., λ(1) = 0 and λ(2) = 0 then there is no
unique choice for the polarization vectors e(1) and e(2) indicative of polar-
ization degeneracy). Then, equality (3.35) will be fulfilled only provided the

polarization vector eσ(ωσ,k) is orthogonal to the eigenvectors b(2)(ωσ,k)

and b(3)(ωσ,k). This means that the polarization vector eσ(ωσ,k) simply
coincides (as long as both are normalized to unity) with the eigenvector

b(1)(ωσ,k) of the Maxwellian tensor Tαβ(ω,k). Attention must be drawn

to the fact that the other two eigenvectors, b(2)(ωσ,k) and b(3)(ωσ,k), do
not represent polarization vectors of any eigenmodes of the medium. They
would turn into polarization vectors only under the conditions λ(2)(ω,k) = 0
or λ(3)(ω,k) = 0, respectively, i.e., when the dispersion law for the eigen-
mode with the same number is fulfilled, while not in an arbitrary case. In
particular, the polarization vectors of the ordinary and extraordinary modes
(see Sect. 3.2) with the same frequency propagating through an anisotropic
medium in the same direction are nonorthogonal, because they differ in wave
vector magnitude (due to the difference in the refractive indices).

Eventually, we showed that the polarization vectors of the eigenmodes of
a medium are constructed from three eigenvectors b(m)(ωσ,k), m = 1, 2, 3
of the Maxwellian tensor by assigning their arguments ω and k the values
corresponding to the dispersion relation ω = ωσ(k) for the corresponding
eigenmode.
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Finally, let us obtain the explicit form of the polarization vectors of the
electromagnetic eigenmodes in a given anisotropic medium. For an eigen-
mode, say, with number 1, we have λ(1) = 0, and therefore the tensor T̃αβ
reduces merely to the Maxwellian tensor Tαβ . Therefore, the polarization

vector e(1) is expressed similarly to b(1) in terms of the algebraic adjuncts of
the Maxwellian tensor (i.e., in terms of the quantities Δab without a tilde):

e(1) =
Δ31ex +Δ32ey −Δ33ez√|Δ31|2 + |Δ32|2 + |Δ33|2

, (3.36)

which follows from formula (3.25) on substituting into it λ(1) = 0 and taking
into account in the remaining terms the dispersion law corresponding to this
condition. The polarization vector e(2) of the second eigenmode is expressed
similarly to expression (3.36) but under the condition λ(2) = 0 and with
the dispersion law corresponding to this condition. It may turn out that the
polarization vectors are more convenient to decompose over other sets of
algebraic adjuncts, for instance

e(1) =
−Δ11ex +Δ12ey +Δ13ez√|Δ11|2 + |Δ12|2 + |Δ13|2

=
Δ21ex −Δ22ey +Δ23ez√|Δ21|2 + |Δ22|2 + |Δ23|2

. (3.37)

3.2 Cold Plasma Approximation

3.2.1 General Case

Having the general formalism describing dispersion of arbitrary anisotropic
and gyrotropic medium developed, let us proceed to the treatment of the
cosmic plasma. A typical ingredient of the astrophysical plasma is a magnetic
field, so we consider the dispersion of the magnetized plasma at the first place.
We start with a simple cold plasma approximation within which we adopt
that each plasma component a (e.g., electrons and any kind of available ions)
can be described by a single velocity va defined by the equation of motion

∂va

∂t
=

ea
ma

E +
ea
mac

[va × (B0 + b)], (3.38)

where va, ea, and ma are the velocity, charge (positive or negative), and mass
of the particles of the sort a, E and b are small perturbations of the external
electromagnetic field, and B0 is an external uniform magnetic field. These
single-particle equations are explicitly derived from fluid motion equation
(1.70) by discarding the temperature dependent and collisional terms at the
rhs and nonlinear (inertial) term (va ·∇)va at the lhs. To work consistently in
the linear approximation we must also discard the second-order term eav

a×
b/mac. The adopted approximation implies b� B0 and va � vph, where vph
are the typical phase velocities of the relevant waves; the particle thermal
speeds must be small compared with all other involved velocities.
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Fourier transform of this equation yields:

iωvaα +
ea
mac

eαβγv
a
βB0γ = − ea

ma
Eα. (3.39)

Assuming that B0 is directed along the z-axes (apparently, the gyration
vector introduced by Eq. (3.28) has only one z-component in this case, g =
g3ez ≡ gez) and solving Eq. (3.39) for the velocity components we find

vax =
ea(iωEx − ωBaEy)

ma(ω2 − ω2
Ba)

, (3.40a)

vay =
ea(iωEy + ωBaEx)

ma(ω2 − ω2
Ba)

, (3.40b)

vaz =
iea
maω

Ez , (3.40c)

where ωBa = eaB0/(mac) is the gyrofrequency of the a particles.
Now, to obtain the dielectric permeability tensor, we take into account the

Fourier component of Eq. (3.3), i.e., Pα = ijα/ω, where the electric current
jα is defined by the particle velocities

jα =
∑
a

eanav
a
α. (3.41)

Then, combining Eqs. (3.6) and (3.8), we find for the dielectric tensor com-
ponents:

ε11 = ε22 = ε1, ε1 = 1−
∑
a

ω2
pa

ω2 − ω2
Ba

, (3.42a)

ε12 = −ε21 = ig; g = −
∑
a

ω2
paωBa

ω(ω2 − ω2
Ba)

, (3.42b)

ε33 = ε3, ε3 = 1−
∑
a

ω2
pa

ω2
, (3.42c)

where ω2
pa = 4πe2ana/ma is the plasma frequency of the ath plasma species,

while all other components of the dielectric tensor are zeros.
Because the system is symmetric around the z-axes, we can adopt that

the wave vector of a wave under study belongs to the xz plane without any
loss of generality with κ1 = sin θ, κ2 = 0, and κ3 = cos θ, where θ is the
angle between the wave vector and the magnetic field. Within the adopted
geometry and notations, general dispersion relation (3.30) simplifies for the
cold plasma case to have the form
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a(ω)n4 + b(ω)n2 + c(ω) = 0, (3.43)

a(ω) = ε1 sin
2 θ + ε3 cos

2 θ, (3.44a)

b(ω) = −[ε1ε3(1 + cos2 θ) + (ε21 − g2) sin2 θ], (3.44b)

c(ω) = ε3(ε
2
1 − g2). (3.44c)

Here, the dielectric tensor components depend only on ω, while not on k;
accordingly, the coefficients a, b, and c do not depend on the absolute value of
the wave vector. Therefore, for the cold plasma, the spatial dispersion plays
no role and Eq. (3.31) represents solutions for the possible plasma modes, i.e.,

n2
1,2 =

−b(ω)±√b2(ω)− 4a(ω)c(ω)

2a(ω)
. (3.45)

The third root, a(ω) = 0, represents a cold plasma approximation of a longi-
tudinal plasma wave dispersion, whose correct treatment requires taking the
spatial dispersion (i.e., the thermal plasma motion) into account.

3.2.2 Hydrogen Plasma

Let us consider the fully ionized electron–proton plasma as a simplest, while
practical, example. Keeping explicitly the electron and proton contributions
to dielectric tensor components (3.42) we obtain

ε1 = 1− ω2
pe

ω2 − ω2
Be

− ω2
pp

ω2 − ω2
Bp

, g = − ω2
peωBe

ω(ω2 − ω2
Be)

− ω2
ppωBp

ω(ω2 − ω2
Bp)

,

ε3 = 1− ω2
pe + ω2

pp

ω2
(3.46)

where ω2
pe = 4πe2ne/me and ω

2
pp = 4πe2np/mp are the squares of the electron

and proton plasma frequencies, ωBe = eB0/(mec) and ωBp = epB0/(mpc)
are the electron and proton gyrofrequencies. Note that when ep = −e, the
electron charge is negative and so two terms in g have opposite signs. In
particular, this implies that if a plasma is composed from positive and neg-
ative charges with the same mass (e.g., electron–positron plasma), then the
gyration vector vanishes and so no gyrotropy is present in such a plasma. In
the electron–proton plasma there is a strong gyrotropy because the masses
of the electron and proton differ by three orders of magnitude. However, at
low frequencies, ω � ωBp, these two contributions to g almost cancel each
other out, because ω2

pp/ωBp ≡ −ω2
pe/ωBe for the neutral plasma ne = np; in

a charged plasma with ne �= np this compensation does not take place and
the gyrotropy of the charged plasma increases at very low frequencies where
the neutral plasma is not at all gyrotropic.

To get an idea of the plasma dispersion we first consider asymptotic
behavior of the dielectric components and indices of refraction at small and
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large frequencies as well as zeros and discontinuity points. Clearly, as ω → ∞,
ε1 ≈ ε3 → 1, and g → 0; while as ω → 0, ε1 ≈ ω2

pp/ω
2
Bp, ε3 = −ω2

pe/ω
2,

and g ≈ ω2
ppω/ω

3
Bp, so that g � ε1 � |ε3|. As we will see below, the high-

frequency behavior of the dielectric tensor is primarily specified by the elec-
tron contribution, while the proton contribution is dominant at low frequen-
cies, where two of three dielectric tensor components are specified by the
protons. Then, the dielectric tensor components have discontinuities at both
electron and proton gyrofrequencies. However, the refractive index is contin-
uous there because the resonance factors in the numerator and denominator
cancel out. In place, it can have discontinuities at the points, where a = 0,
because it enters the denominator of Eq. (3.45). As has been said, equation
a = 0 defines the plasma eigenfrequencies, i.e., those frequencies at which
electrostatic oscillations (or electrostatic waves if the spatial dispersion is in-
cluded) can exist. Thus, the refractive indices can have a discontinuity at the
frequencies of plasma resonances. It is easy to see that the equation a = 0,
being a cubic equation over ω2 for the electron–proton plasma, has three
positive roots; see Problem 3.1. Solving Eq. (3.45) for n2

1,2 when a → 0, we
find n2

1 ≈ −b/a → ∞ and n2
2 → −c/b, i.e., only one of the two roots is

discontinuous when a → 0. Then, zeros of the refractive indices are defined
by equation c(ω) = ε3(ε

2
1 − g2) = 0, which, neglecting the ion contribution,

yields

ω
(1)
0 =

√
ω2
pe + ω2

Be/4 + |ωBe|/2,
ω
(2)
0 = ωpe,

ω
(3)
0 =

√
ω2
pe + ω2

Be/4− |ωBe|/2. (3.47)

The quantitative shape of the dispersion curves is given in Fig. 3.1. Three
resonances at the corresponding discontinuity points can easily be identified
in the n2(ω) plots; two of them are not resolved in the overall plot, although
are better seen at the zoom-in panels. The right column shows the dispersion
curves for five wave modes of this plasma. The lowest-frequency modes, the
Alfvén mode and the fast mode, have linear dispersion laws (constant phase
speed) at the low frequencies, while deviate from these laws at higher fre-
quencies. When ω → ωBp, the Alfvén mode becomes almost electrostatic
ion-cyclotron mode (where the frequency has almost no dependence on the
wave number), while for the fast mode the dispersion changes first to a
parabolic (ω ∝ k2, this part of the fast mode is frequently called the whistler
mode) and then to a constant at another, lower-hybrid, resonance frequency;
the fast/whistler mode is called the lower-hybrid mode here. At the higher
frequencies the role of protons is minor and the dispersion of the higher fre-
quency modes is entirely specified by the electron contribution, the bottom
panel of Fig. 3.1. There are three modes: Z-mode, which becomes the upper-
hybrid mode at large k, and two “free-space” modes, the ordinary (O)-mode
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Figure 3.1: Dispersion of the electrically neutral electron–proton plasma: refractive in-
dices (left) and frequency vs wave number (right). Overall view is given in two top
panels, with three zoom-ins below. The accepted parameters are the number density
np = ne = 1010 cm−3, B = 100G, and θ = 60o.
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Dispersion curves
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Figure 3.2: Dispersion of the electrically charged electron–proton plasma. The accepted
parameters are the same as in Fig. 3.1 but ne = 1.01 · np.

with the low-k cutoff frequency ω
(2)
0 = ωpe and the extraordinary mode with

the cutoff frequency ω
(3)
0 . The free-space modes are the only wave modes

that can escape from the plasma and be detected by a remote observer (e.g.,
at the Earth or at the free space). All other wave modes, although play an
important role for the plasma dynamics, can only be implied indirectly, by
numerous effects they produce in the source or along the radiation path.

There are not more than two wave modes at the same frequency; some
frequency ranges allow only one or no modes. It is interesting to see how the
low-frequency plasma dispersion changes for electrically charged plasma. Fig-
ure 3.2 displays that if the electron to proton density mismatch is only one
percent, the low-frequency behavior of the dispersion curves changes dras-
tically: no fast mode is possible at the low frequencies; the Alfvén mode is
available but the phase speed of the Alfvén mode increases as the frequency
decreases. In most of the cases, however, the plasma neutrality is held with
very high precision and the mentioned effects of the plasma non-neutrality
play typically no role.

3.2.3 Asymptotic Behavior of the Eigenmodes

Although full equation (3.45) for the refractive indices is easy to analyze, it
is often convenient to make estimates with simplified expressions, which can
be obtained under certain conditions in certain frequency ranges. First, at
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high frequencies, one can safely discard the proton contribution and retain
only the electron contribution, which yields

n2
σ = 1− 2v(1− v)

2(1− v)− u sin2 θ + σ
√D , (3.48)

where

D = u2 sin4 θ + 4u(1− v)2 cos2 θ, u =
(ωBe

ω

)2
, v =

(ωpe

ω

)2
, (3.49)

σ = −1 for X-mode and σ = +1 for O-mode. At the asymptotically high
frequencies both refractive indices approach the free-space value one, resulting
in the free-space wave dispersion ω = kc.

The polarization vectors of the waves in the reference frame with z-axes
along the magnetic field and the wave vector k in the (xz)-plane have the form

eσ = (ex, ey, ez) =
(Tσ cos θ + Lσ sin θ, i,−Tσ sin θ + Lσ cos θ)√

1 + T 2
σ + L2

σ

(3.50)

with the parameters Tσ and Lσ defined as

Tσ =
2
√
u(1− v) cos θ

u sin2 θ − σ
√D , (3.51)

Lσ =
v
√
u sin θ + Tσuv sin θ cos θ

1− u− v + uv cos2 θ
. (3.52)

Electromagnetic waves can propagate in a plasma if their frequency ex-
ceeds the cut-off frequency, ω > ωcσ, where

ωcO = ωpe, ωcX =
ωBe

2
+

√
ω2
pe +

ω2
Be

4
. (3.53)

More simplified cases for dispersion of X-, O-, Z-, and whistler modes
are considered in problems to this chapter, while here we touch upon the
low-frequency case. Within the previous chapters we often used MHD ap-
proximation and fluid dynamics equations. Here we are going to demonstrate
that the linear MHD modes can be derived from the considered here plasma
dielectric tensor. Specifically, we consider low frequencies ω � ωBp, vA � c,
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and cs � vA, where vA and cs are the Alfvén and sound speeds. From
Eq. (3.42) we find

ε1 ≈ c2

v2A
, ε3 ≈ −ω

2
pe

ω2
, g ≈ c2ω

v2AωBp
� ε1, |ε3| 
 ε1. (3.54)

Discarding the terms g2/ε21 � 1 in Eq. (3.44) we obtain the refraction indices
of two MHD modes:

n2
1,2 = ± c2

2v2A

(
1

cos2 θ
− 1

)
+

c2

2v2A

(
1

cos2 θ
+ 1

)
=

{
c2/(v2A cos2 θ)
c2/v2A

.

To identify these two modes with familiar MHD modes we note that
n = ck/ω = c/vph, where vph is the phase speed of the mode; thus, the
upper solution corresponds to the Alfvén waves, whose phase velocity (2.55)
has the absolute value of vA| cos θ|. The Alfvén wave is nonexistent for the
transverse propagation θ → π/2. The second (lower) solution corresponds to
the fast mode since vf = vA when cs → 0 (provided that Te → 0 in the cold
plasma), cf. Eq. (2.60). The polarization vectors can easily be obtained based
on Sect. 3.1. The slow mode is apparently nonexistent in the cold plasma.

3.2.4 Multi-component Plasma

We have found that at low frequencies the properties of the plasma wave
modes are primarily specified by the ion contribution to the plasma disper-
sion, which are the protons in case of the electron–proton plasma. In a reality
the astrophysical plasma consists of many different ions according to their
abundances and, on top of that, there can be various ionization states of the
same isotope. Even though the number density of a given ion can be low, it
can give a dominant contribution around its own gyrofrequency, because it is
different for different ions. Consider, as a vivid example, a plasma containing
helium ions in addition to the hydrogen ions (protons).

In this case Eq. (3.42) will contain additional terms describing helium
contribution to the dielectric tensor components. To quantify this contribu-
tion we have to make assumptions about the helium isotopic abundance and
ionization state. To be specific, we assume the number density of He4 to
be 8.3%1 of the hydrogen density. Figure 3.3, top, displays the case when
the helium is singly ionized (HeII), no twice-ionized HeIII ions are present.
We see that one more resonance appears related to the HeII gyrofrequency,

1This solar helium abundance is somewhat higher than the primordial abundances
produced at the Big Bang nucleosynthesis, namely 76% of proton and 24% of helium
by mass (roughly 7% by the number density) with only traces of heavier elements
(e.g., Rowan-Robinson 2004). We note that even higher abundance of helium and
heavier elements can be produced by the nucleosynthesis in star interior or due to
electromagnetic separation in nonstationary processes (e.g., solar flares).
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Figure 3.3: Dispersion of the electrically neutral e− p−He4 plasma: refractive indices
(left) and frequency vs wave number (right) for various ionization states: 100% single-
ionized HeII (top row), 50% single-ionized HeII and 50% double-ionized HeIII (second
row), 95% double-ionized HeIII (third row), and 100% double-ionized HeIII (bottom
row). Solar abundance nHe = 0.083np is assumed, other parameters are as in Fig. 3.1.
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which is ωBp/4. The second row in this figure displays the dispersion in
the case when there are equal proportions of both helium ionization states,2

HeII and HeIII. Now, a third resonance appears corresponding to the HeIII
gyrofrequency, ωBp/2, the widths of both resonances are comparable to each
other. The next row displays the case when 95% of the helium is fully ionized
(HeIII) and only 5% is singly ionized (HeII). Positions of the resonances are
the same as before; however, the width of the HeII resonance is much nar-
rower now, and eventually, it is not present at all at the bottom plot, where
all helium is HeIII.

The right column displays how the dispersion curves ω(k) change between
these cases. It must be noted that the behavior of these curves is qualitatively
different from the case of one-component electron–proton plasma. First, the
number of the modes is different: we have now either four or three modes
(in place of two) depending on the helium ionization state. Two of them
have linear dispersion ω ∝ k for k → 0 and so can still be called the Alfvén
and fast modes at these small k; other modes have a finite cutoff frequency
when k → 0. However, the Alfvén and fast modes have a different behav-
ior at large k, where they smoothly transit to helium ion-cyclotron modes
(almost flat regions of the dispersion curves). The highest frequency wave
mode (that which becomes the whistler mode at even higher frequencies)
is now not the fast mode at the low frequency; in place, it approaches the
proton ion-cyclotron frequency as k → 0. Stated another way, the presence
of helium (or other ions) makes the very long-wavelength proton–cyclotron
waves possible in contrast to the one-component plasma.

The number of the wave modes increases and the whole picture becomes
even more complicated if we take into account presence of He3 along with
typically more abundant He4. There are, for example, He3-rich solar flares
in which the He3 abundance is greatly enhanced (see Sect. 11.2.2 for greater
detail), so this example can be of practical importance. Now, because of no-
ticeably smaller mass of He3 compared with He4, their ion gyrofrequencies
(ωBp/3 and 2ωBp/3) are distinctly different from those for He4. Here the total
number of the resonances can be as large as five, which yields the total of up
to six wave modes, see Fig. 3.4. A few of them can be called hybrid He–He
or He–p modes because their frequencies are about one ion gyrofrequency
at k → 0, while about another ion gyrofrequency at k → ∞ with more or
less sharp transition from one to another in between. The narrower the res-
onance in the left panel the flatter the corresponding dispersion curve in the
right panel. The width of each resonance is determined by the abundance of
the corresponding ion. For the ideal case of the cold plasma considered here,
any small admixture of an ion results in its own resonance and in an addi-
tional wave mode. In practice, the thermal motion of the plasma particles and

2As is adopted in astronomy we use Roman numbers to indicate the atom ion-
ization state—I for neutral atom, II for singly ionized ion, III for twice-ionized ion,
etc.
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Figure 3.4: Dispersion of the electrically neutral e− p−He4 −He3 plasma. Refractive
indices (left) and frequency vs wave number (right) for various ionization states: 100%
single-ionized HeII (top row), 75% single-ionized HeII and 25% double-ionized HeIII
(second row), 25% single-ionized HeII and 75% double-ionized HeIII (third row), and
100% double-ionized HeIII (bottom row). The number density of He3 is assumed to be
one tenth of that of He4, other parameters are as in Fig. 3.3.
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Coulomb collisions lead to broadening of the resonances, so less pronounced
resonances produced by less abundant ions disappear and make no notice-
able contribution to the plasma dispersion. The question of a particular ion
importance must, therefore, be addressed with a more complete kinetic ap-
proach, than the simplified cold plasma approximation. It is worthwhile to
note that other (than H and He) ions can provide more cyclotron resonances
and, thus, produce even more wave modes at the low-frequency range, while
they have no effect on the high-frequency range, which is primarily defined
by the electron contribution.

3.3 Kinetic Approach to Collisionless Plasma

3.3.1 Dielectric Tensor and Resonant Particles

The cold plasma approximation considered above ignores entirely the thermal
motion of the plasma particles. A more complete, kinetic treatment relies on
the particle distribution functions fi and fe, entering Eqs. (3.1) and (3.2),
determined from corresponding kinetic equations, which for a nonrelativistic
case can be written as3

∂f

∂t
+ v · ∂f

∂r
+

e

m
E · ∂f

∂v
+

e

mc
[v × (b+B0)] · ∂f

∂v
=

(
∂f

∂t

)
col

. (3.55)

Here, as in Sect. 3.2, E and b are small electromagnetic perturbations
dependent on coordinates and time, B0 is the external uniform magnetic
field, and the rhs account for collisions between particles. If characteristic
energies of the chaotic particle motion are large then Coulomb cross sections
are accordingly small because they are reciprocal to the kinetic energy square
(see Sect. 1.3.7) so the relaxation time τrel needed to approach to the plasma
steady state can be remarkably large. Specifically, if the period 2π/ω of the
field variation is small compared with τrel, the collisions between the plasma
particles can be discarded by setting the rhs of Eq. (3.55) to zero, which is
the case of collisionless plasma; see Sect. 1.3.8. Moreover, even without any
external field perturbation (E = b = 0), the particle collisions will play only
a minor role over time periods much shorter than τrel, so the time variation
of the distribution function due to collisions can be discarded by setting
∂f0/∂t ≈ 0. The subscript “0” is used for the distribution function without
external perturbations. For spatially uniform plasma we have additionally
∂f0/∂r = 0; thus, the steady-state distribution function obeys the equation

e

mc
[v ×B]

∂f0
∂v

= −ωB ∂f0
∂φ

= 0, (3.56)

3Here, unlike Chap. 1, we use velocity v as an argument of distribution function
f , with normalization condition n0 =

∫
fd 3v.
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whose solution is an arbitrary function of two variables, v‖ and v⊥, the lon-
gitudinal and transverse to the magnetic field components of the particle
velocity:

f0 = f0(v‖, v⊥). (3.57)

This is a quasi-steady-state function but not necessarily the Maxwellian one.
Approaching the full equilibrium can only happen over time Δt > τrel when
the distribution function approaches the Maxwellian with a temperature T :

f0 = n0

( m

2πT

)3/2
exp

(
−mv

2

2T

)
, (3.58)

where n0 is a mean density of the given particles. It must be noted that
energy exchange between electrons and ions is a slow process because of big
difference in their masses. Therefore, at some stage of the relaxation, both
electrons and ions can become Maxwellians but with different temperatures
Ti �= Te, which can become equal much later.

The dielectric tensor εαβ is convenient to express via the conductivity
tensor σαβ taking into account Ohm’s law (3.9). Consider a monochromatic
plane wave in the form E, b ∝ exp(ik · r − iωt). Then, the current den-
sity stimulated by this external field can be expressed via correction to the
distribution function

δf(r,v, t) = f(r,v, t)− f0(v‖, v⊥) = δf(v) exp(ik · r − iωt),

proportional to the external field: j =
∑∫

evδfd 3v, where the summation
is performed over all plasma components, i.e., the electrons and all available
ions.

This function δf is determined from the linearized equation (3.55):

− i(ω−k ·v)δf + e

mc
[v×B0] · ∂δf

∂v
= − e

m
E · ∂f0

∂v
− e

mc
[v×b] · ∂f0

∂v
, (3.59)

from which the magnetic field b can be removed using the Maxwell’s equation
b = (c/ω)k×E. Eventually, we will obtain linear relation (3.9) between the
electric current and the electric field, whose coefficients do represent the com-
ponents of the conductivity tensor (and, accordingly, the dielectric tensor).

The actual analytical implementation of the outlined calculations is very
cumbersome and labor consuming, but there is no simpler way to achieve
this goal. The full kinetic treatment of the plasma dispersion is available in
many textbooks (e.g., Akhiezer et al. 1975; Aleksandrov et al. 1984; Lifshitz
and Pitaevskii 1981; Melrose 1980). Here, we only mention main milestones
of full derivation following mainly Akhiezer et al. (1975) and discuss some
of the relevant physical effects.
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The dielectric permeability tensor may be described in the form

εαβ = δαβ+

s=∞∑
s=−∞

∑
a

4πe2a
maω2

{∫
d3v

(
ω−k‖v‖
v⊥

∂fa
∂v⊥

+k‖
∂fa
∂v‖

)

Π
(s)
αβ(v)

ω−sωBa − k‖v‖ + iγ
− b0αb

0
β

∫ (
fa+

v2‖
v⊥

∂fa
∂v⊥

)
d3v

}
, (3.60)

where

Π
(s)
αβ(v) =

⎛
⎜⎝

s2ω2
Ba

k2x
J2
s iv⊥ sωBa

kx
JsJ

′
s v‖ sωBa

kx
J2
s

−iv⊥ sωBa

kx
JsJ

′
s v2⊥J

′2
s −iv‖v⊥JsJ ′

s

v‖ sωBa

kx
J2
s iv‖v⊥JsJ ′

s v2‖J
2
s

⎞
⎟⎠ , (3.61)

Js(λ) and J ′
s(λ) = dJs/dλ are the Bessel function and its derivative over

the argument λ = kxv⊥/ωBa and b0 is the unit vector along the magnetic
field B0.

The imaginary part iγ (γ → 0) in the denominator (3.60), even
though (infinitely) small, is highly important. Indeed, expanding the fraction
according to Sokhotsky rule

1

ω − sωBa − k‖v‖ + iγ
→ P

ω − sωBa − k‖v‖
− iπδ(ω − sωBa − k‖v‖), (3.62)

we find that the dielectric tensor εαβ = ε′αβ+ε
′′
αβ is not Hermitian any longer

but contains an anti-Hermitian part

ε′′αβ = −i
∑
a

∞∑
s=−∞

4πe2a
maω2

∫
d3v

(
ω − k‖v‖

v⊥
∂fa
∂v⊥

+ k‖
∂fa
∂v‖

)

Π
(s)
αβ(v)δ(ω − k‖v‖ − sωBa), (3.63)

whose property is ε
′′∗
αβ = −ε′′βα, in contrast to the Hermitian part originating

from the integral principal value, which is symmetric ε
′∗
αβ = ε

′′
βα. It is the

anti-Hermitian part that is responsible for energy exchange between electro-
magnetic field and plasma. The energy density Q absorbed by the plasma (or
transmitted from the plasma to the field) per unit time, averaged over the
field period, has the form

Q = − iω

8π
ε
′′
αβE

∗
αEβ (3.64)

(Toptygin 2005). Positive Q means the absorption of the energy by the
plasma, while negative Q means the energy is transferred from the plasma
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and so amplifies the electromagnetic field. The delta-function entering (3.63)
indicates that this energy exchange is mediated by resonance particles whose
longitudinal velocity obeys the equation

v‖ =
ω − sωBa

k‖
, s = 0,±1,±2 . . . (3.65)

The resonance with s = 0 is called the Cherenkov resonance because it is
analogous to the Vavilov–Cherenkov effect of wave emission (or absorption)
by fast particles in media. Other resonances s �= 0 are called cyclotron or
gyroresonances because they take place at multiples of the gyrofrequency
corrected by the Doppler shift produced by the longitudinal motion of the
particle:

ω = sωBa + k‖v‖. (3.66)

The equations given above are valid for arbitrary distribution function
of the form (3.57), in particular, to the kappa distributions presented in
Sect. 1.3.8. For distributions which do not strongly depart from equilibrium
ones, electromagnetic waves are absorbed by the collisionless plasma. This
phenomenon was discovered by Lev Landau for Langmuir oscillations in
1946 (so-called Landau damping, see Problem 3.5). However, nonequilibrium
plasma distributions can and do amplify electromagnetic waves, which we
will consider later (Chap. 10) in more detail.

In addition to the wave dispersion, the Hermitian part ε′αβ of the dielec-
tric tensor also specifies the energy density w and the flux of energy density
γ of the electromagnetic waves in the dispersive media:

w =
1

16π

(
∂

∂ω
(ωε′αβ)E

∗
αEβ +B∗ ·B

)
, (3.67)

γ =
c

16π

(
E ×B∗ +E∗ ×B − ω

c

∂ε′αβ
∂k

E∗
αEβ

)
. (3.68)

Both values are written for a monochromatic wave and averaged over
its period 2π/ω. Apparently, it was assumed that wave dissipation is weak,
|ε′′αβ | � |ε′αβ |. Note that “generalized” Poynting vector (3.68) takes into
account spatial dispersion; the last term in Eq. (3.68) accounts for energy
flux related to the plasma waves with B = 0.

3.3.2 Maxwellian Plasma

In some cases the integration of Eq. (3.60) [including Eq. (3.63)] can only
be made numerically; other cases allow approximate or exact analytical
integration. One of the important practical cases, where the analytical inte-
gration is possible, is the case of the Maxwellian plasma (Akhiezer et al. 1975):
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εαβ = δαβ +
∑
a

ω2
pa

ω2

{
i
√
πza0

∞∑
s=−∞

w(zas )M
(s)
αβ + 2za20 bαbβ

}
, (3.69)

where

M
(s)
αβ =

⎛
⎜⎝

s2

xa
As(xa) isA′

s(xa)
√
2/xasz

a
sAs(xa)

−isA′
s(xa)

s2

xa
As(xa)− 2xaA

′
s(xa) −i√2xaz

a
sA

′
s(xa)√

2/xasz
a
sAs(xa) i

√
2xaz

a
sA

′
s(xa) 2za2s As(xa)

⎞
⎟⎠ ,

(3.70)

w(zas ) = exp(−za2s )

⎛
⎜⎝ k‖

|k‖|
+

2i√
π

zas∫
0

exp(t2)dt

⎞
⎟⎠ ≈

{
1 +

2izas√
π
, zas � 1

exp(−za2s ) + i√
πzas

(1+ 1
2za2

s
), zas	1,

(3.71)

As(xa) = e−xaIs(xa) ≈
{ 1−xa

s!

(
xa

2

)s
, xa � 1

1√
2πxa

(1 + 1−4s2

8xa
), xa 
 |s2 − 1/4|,

(3.72)

Is(xa) is the modified Bessel function, A′
s(xa) = dAs(xa)/dxa,

zas = (ω − sωBa)/(
√
2k‖va), va =

√
Ta/ma,

√
xa = kxva/ωBa. (3.73)

Now we can analyze dispersion of the Maxwellian plasma. Generally,
the account of the particle thermal motion results in three different physical
effects: modification of the cold plasma modes, damping of these modes,
and appearance of new modes, which were not possible in the cold plasma
(i.e., in a plasma without spatial dispersion). In a normal (nonrelativistic)
plasma, modification of the cold plasma modes is typically important only
where the corresponding refractive index is large compared with unity. As an
example we consider how the wave dispersion changes around high-frequency
plasma resonances (i.e., lower- and upper-hybrid frequencies). We start from
the case when the dissipation in unimportant, which requires the following
inequalities:

(kρa sin θ)
2 � 1, |zas | 
 1, for s = 0,±1,±2 . . . (3.74)

to be fulfilled, where ρa = va/|ωBa| is the thermal Larmor radius of
particles a. Making appropriate expansions of the Bessel functions and
the error function w and entirely neglecting all the dissipative terms, we find
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the dielectric tensor components in the form

ε11 = ε1 −
∑

a

ω2
pak

2v2a
ω2 − ω2

Ba

[
ω2 + 3ω2

Ba

(ω2 − ω2
Ba)

2
cos2 θ +

3 sin2 θ

ω2 − 4ω2
Ba

]
, (3.75a)

ε22 = ε1−
∑

a

ω2
pak

2v2a
ω2−ω2

Ba

[
ω2 +3ω2

Ba

(ω2−ω2
Ba)

2
cos2 θ+

ω2+8ω2
Ba

ω2(ω2−4ω2
Ba)

sin2 θ

]
, (3.75b)

ε33 = ε3 −
∑

a

ω2
pak

2v2a
ω4

[
3 cos2 θ +

ω2 sin2 θ

ω2 − ω2
Ba

]
, (3.75c)

ε13 = −∑a

2ω2
pak

2v2a
(ω2 − ω2

Ba)
2
sin θ cos θ, (3.75d)

ε23 = i
∑
a

ω2
paωBak

2v2a(3ω
2 − ω2

Ba)

ω3(ω2 − ω2
Ba)

2
sin θ cos θ, (3.75e)

ε12 = ig − i
∑
a

ω2
paωBak

2v2a
ω(ω2 − ω2

Ba)

[
3ω2 + ω2

Ba

(ω2 − ω2
Ba)

2
cos2 θ +

6 sin2 θ

ω2 − 4ω2
Ba

]
, (3.75f)

where ε1, g, and ε3 are the corresponding cold plasma components (3.42).
Note that the dielectric tensor remains Hermitian because we entirely ne-
glected all dissipative contributions.

When ω is around one of the hybrid frequencies, the correction to the
coefficient a(ω) in dispersion equation (3.43) is the most important compared
with the corrections to b(ω) and c(ω); with this correction it reads

(a(ω)− β2
en

2a1(ω))n
4 + b(ω)n2 + c(ω) = 0, (3.76)

where βe = ve/c,

a1(ω) =
ω2
pe

ω2

[
3 cos4 θ +

6ω6 − 3ω4ω2
Be + ω2ω4

Be

(ω2 − ω2
Be)

3
cos2 θ sin2 θ

+
3ω4 sin4 θ

(ω2 − ω2
Be)(ω

2 − 4ω2
Be)

]
, (3.77)

with other coefficients defined by Eq. (3.44).
Now dispersion equation is the cubic one [rather than quadratic Eq. (3.43)]

over n2, which means that there can be three (rather than two) different
roots and, thus, three different waves. However, those three roots are not
necessarily all real positive numbers, so the number of propagating modes
can be smaller than three. To estimate the refractive indices we note that
one of them is about unity by the absolute value, n2 ≈ −c(ω)/b(ω), and the
spatial dispersion has a minor effect on it. Two other roots are large, so they
can be estimated by neglecting the term c(ω), which is of the order of unity:

n2 =
a(ω)±√a2(ω) + 4a1(ω)b(ω)β2

e

a1(ω)β2
e

. (3.78)
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Figure 3.5: Dispersion of the waves around lower- and upper-hybrid resonances, two dif-
ferent cases. Parameters adopted: plasma density ne = 1010 cm−3, plasma temperature
T = 1MK, θ = 60◦, and magnetic field either B = 100G (left column) or B = 200G
(right column). Horizontal lines in bottom panels show the level of hybrid frequencies.

Two different cases are possible depending on the parameter combina-
tions: there can be or not be a solution exactly at a hybrid frequency. The first
case, which happens when a1(ω) > 0, is shown in the left column of Fig. 3.5.
Here, one of solutions (3.78) is positive, while the other is negative for both
lower- and upper-hybrid resonances. The positive refractive index remains
finite (although rather large compared with unity) in contrast to cold plasma



3.3 Kinetic Approach to Collisionless Plasma 119

approximation, where it goes to infinity at the hybrid frequencies. Now the
frequency slowly increases with k, crossing the hybrid frequency level at some
point; in the cold plasma case it approached the hybrid frequency from be-
low asymptotically remaining always smaller than it. The second case, right
column of Fig. 3.5, is only possible when the frequency of the wave is between
gyro- and double gyrofrequency, which can only happen for the upper-hybrid
wave (middle panel). Here, both roots contain two discontinuous branches;
no wave is possible at ω = ωuh. There is a frequency range at ω < ωuh, where
two waves with the same frequency are possible. In terms of frequency depen-
dence on k this means that initially the frequency increases with k (normal
dispersion) and then it decreases with k (abnormal dispersion). At ω > ωuh
there can be only one positive root, which results in the third wave mode at
the bottom right panel above the upper-hybrid frequency.

3.3.3 Wave Damping in Equilibrium Plasma

The modes presented can propagate in the plasma only if their damping is
small, which requires that the wavelength is large compared with the Debye
radius and Larmor radius. In a collisionless plasma, the fundamental reason
for the wave dissipation (and, accordingly, of the nonzero anti-Hermitian part
of the dielectric tensor) is their interaction with resonant particles, whose
velocity coincides with the wave phase velocity.

Consider damping of high-frequency modes in a plasma. Assuming xe �
1 and |zes | 
 1 for s = 0,±1 . . . we get the dielectric tensor components in
the form:

ε11 = ε22 = ε1 +
∑
s�=0

2iσs, ε12 = ig −
∑
s�=0

2σs, ε33 = ε3 + 2iσ0, ε13 = ε23 = 0,

(3.79)

where

σs =

√
π

8

ω2
pe

ωk‖ve

n2x
|s|−1
e

2|s||s|! exp(−z2s), σ0 =
√
π
ω2
pe

ω2
z30 exp(−z2s) (3.80)

with zs ≡ zes and xe ≡ xa(v
e) defined by Eq. (3.73), where relation k = ωn/c

can be substituted, while ε1, g, and ε3 are the cold plasma components of
the dielectric tensor.

When the wave damping is small, we can find the damping coefficients
by iterations, neglecting the dissipation entirely in the zeroth approximation,
which yields the real cold plasma refractive indices. Next iteration yields the
absorption index (the imaginary part of the refraction index)

γ =

∞∑
s=−∞

γs, (3.81)
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where

γ0 = σ0
n4 cos2 θ − ε1(1 + cos2 θ)n2 + ε21 − ε22

2c(ω) + b(ω)n2
, (3.82a)

γs = σs
n4 sin2 θ − ε3(1 + cos2 θ)n2 + 2(ε1 − ε2)(ε3 − n2 sin2 θ)

2c(ω) + b(ω)n2
, (3.82b)

where dielectric tensor components (3.42) and coefficients b and c (3.44)
are defined in the cold plasma approximation (only electron contribution
is important).

We see that for the free-space (O and X) modes the damping coefficients
at the cyclotron harmonics (so-called gyroabsorption) are small compared
with unity, γs ∝ β2s−3

e , and exponentially small beyond the absorption con-
tour defined by the factor exp(−z2s). Nevertheless, in the astrophysical con-
dition, the gyroabsorption can be important because the wave absorption is
proportional to the ray path length through the source, which can be very
large. Let us make an estimate of the gyroabsorption in the case of solar
corona. The absorption coefficient can be estimated as the product of γs and
the wave number k ∼ ω/c. Taking T = 107 K, we find βe ≈ 0.04, so γ2 ∼ 0.04,
γ3 ∼ 3 × 10−5, and γ4 ∼ 3 × 10−8; then adopting ω ∼ 3 × 1010 s−1 we ob-
tain k ∼ 1 cm; thus the absorption length, Lga,s ∼ 1/(kγs), is about 25 cm,
3 × 104 cm, and 3 × 107 cm for the second, third, and fourth gyroharmon-
ics, respectively. This means that in the solar corona the gyroabsorption is
always important at the second harmonics, typically important at the third
harmonics, and can even be important at the fourth harmonics.

The wave damping around lower- and upper-hybrid resonances requires
additional consideration. First, as the frequency approaches the hybrid fre-
quency, the refractive index increases, so the highest order over n2 terms
in the numerator and denominator makes the dominant contribution to the
damping coefficients (3.82):

γ0 = σ0
n2 cos2 θ

b(ω)
, (3.83a)

γs = σs
n2 sin2 θ

b(ω)
, (s �= 0). (3.83b)

These expressions are only valid until n2 � β−1
e , otherwise, the refraction

index must be determined based on the kinetic treatment (3.78). The cor-
responding damping coefficients are easy to derive, taking into account that
for n2 
 1 anti-Hermitian contribution to coefficient a(ω) only is important:

a(ω) → ã(ω) = a(ω)− β2
en

2a1(ω) + 2iσ0 cos
2 θ +

∑
s�=0

2iσs sin
2 θ, (3.84)

where a1(ω) is defined by Eq. (3.77); other coefficients are taken in the cold
plasma approximation. Eventually, the damping coefficients receive the form
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γ0 = σ0
cos2 θ

2β2
ea1(ω)n

2 − a(ω)
, (3.85a)

γs = σs
sin2 θ

2β2
ea1(ω)n

2 − a(ω)
, (s �= 0). (3.85b)

When n2β2
e is small, we can neglect the term 2β2

ea1(ω)n
2, so Eq. (3.85)

reduces back to Eq. (3.83) if one takes into account that n2 ≈ −b(ω)/a(ω).
For larger k ∼ 1/rd the Cherenkov damping (3.85a) of the electrostatic waves
becomes very strong, so the wave is being damped on the length of the order
of the Debye length; a comparably strong gyro-damping (3.85b) occurs when
the wavelength approaches the Larmor radius of the thermal electrons.

3.3.4 Bernstein Modes

Let us, finally, consider new wave modes, which are only possible in the hot
plasma, but were entirely not possible in the case of cold plasma. In fact, now
the full dispersion equation is a transcendental one, which allows generally
an infinite number of different solutions. Even though some of these solutions
can be strongly damped, the number of remaining (propagating) wave modes
remains infinite. We have already seen that the thermal motion of the plasma
particles affects primarily the wave dispersion around the plasma resonant
frequencies, so, not surprisingly, the new waves also appear close to electron
and ion cyclotron or hybrid frequencies; there are both quasitransverse (elec-
tromagnetic) and longitudinal (electrostatic) waves. Although many kinds of
these waves can be important in the astrophysics context, we consider here
only one example of the electron cyclotron waves propagating transverse to
the magnetic field, θ = π/2, (Gross 1951; Bernstein 1958) commonly called
the electron Bernstein modes.

For the case of θ = π/2 the dispersion equation for the longitudinal
electrostatic waves a(ω) = 0 receives the form

a(ω) = ε11 = 1− ω2
pe

ω

∞∑
s=−∞

s2

xe
As(xe)

1

ω − s|ωBe| = 0, (3.86)

which does not contain any imaginary part, so there is no collisionless damp-
ing of these waves irrespectively on their wave number value.

The wave dispersion cannot be given in the closed form ω = ω(k),
because Eq. (3.86) has no explicit solution. However, asymptotic solution
for small or large xe can be obtained by expansion of the function A(xe)
at small and large xe, respectively. Straightforward analysis reveals that at
small xe the Bernstein mode frequency is close to either s|ωBe|, s ≥ 2, or

ωuh =
√
ω2
pe + ω2

Be, while at large xe, it is close to s|ωBe|, s ≥ 1. The overall

shape of the dispersion curves obtained numerically from Eq. (3.86) is shown
in Fig. 3.6. The mode dispersion differs depending on whether the wave fre-
quency is larger or smaller than the upper-hybrid frequency at small xe.
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Dispersion of Bernstein Modes
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Figure 3.6: Dispersion of the electron Bernstein modes. The accepted parameters are:
ne = 1010 cm−3, B = 75G. Levels of the first to eights gyro harmonics are shown by
thin solid lines; the level of the upper-hybrid frequency is shown by the dashed line.

For the case of small frequencies, the frequency decreases all the way from
l|ωBe| to (l− 1)|ωBe| with the xe increase, while for the case of large frequen-
cies it behaves non-monotonically increasing from l|ωBe| and then decreasing
back to the same l|ωBe|. In a special case when the frequency is equal to
ωuh it goes up and then decreases to the closest gyroharmonics; see Fig. 3.6.
More wave modes of the hot plasma can be obtained from the analysis of the
full dispersion equation, see Akhiezer et al. (1975); in some cases relativistic
corrections close to the resonance frequencies can be highly important to
correctly describe the wave dispersion and/or excitation.

3.4 Collisional Plasma

So far, in this chapter, we only considered dispersion of a plasma entirely
neglecting the true dissipation, i.e., a collisionless plasma. In the collisionless
plasma the anti-Hermitian part of the dielectric tensor is defined by kinetic
interaction between the waves and resonant particles, which is typically only
important at a close proximity of the plasma resonance frequency while get-
ting very small (frequently, exponentially small) otherwise. Collisional damp-
ing, being determined by the true dissipation, behaves differently: it maintains
a finite value at any frequency, although can become anomalously large at
the resonance frequencies.

3.4.1 General Case

A self-consistent way of Coulomb collisions inclusion into the plasma
dispersion is taking into account the collisional integrals in kinetic equations
(1.61) for different plasma species, contributing to the induced plasma
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currents of the interest. This way is highly complicated and not needed given
the limited accuracy of the input parameters in astrophysical conditions.
A practical way is to describe the collisional integrals in BGK approximation
[“lifetime” approximation; see Eq. (1.67)]:

St(fa, fb) ≈ νabδfa = δfa/τab, (3.87)

where δfa is the departure of the distribution function from the steady-state
one, Eq. (1.68), τab = 1/νab is the relaxation time (lifetime); and νab is the
effective collision frequency of the particles a with particles b. This form of
the collision integral, while relatively simple, retains fundamental properties
of the true collision integral such as conservation of the particle number,
momentum, and energy. In particular, this ensures that collisions with par-
ticles of the same kind (i.e., electron–electron or proton–proton) do not con-
tribute to the momentum variation, thus, make no contribution to the plasma
current; and, accordingly, the dielectric tensor.

In the elementary phenomenological theory, this is equivalent to inclusion
of the corresponding friction forces −νab(va − vb) (with the condition b �= a,
which ensures that the momentum exchange only happens between distinct
plasma components) into equation of motion (3.38). For a two-component
hydrogen plasma, Eq. (3.38), thus, receives the form

− iωmev
e = −eE −meωBev

e × e0 −meνe(v
e − vi), (3.88a)

− iωmiv
i = +eE +miωBiv

i × e0 +meνe(v
e − vi). (3.88b)

Here νe ≡ νei is a phenomenological parameter describing the rate of
electron–proton collisions, which are to be determined based on kinetic the-
ory (see, e.g., Sect. 1.3.7). Note that the form of these two collisional terms
ensures the total momentum conservation of the plasma. In what follows we
use Eq. (3.88) to calculate the electric current density assuming the plasma
to be quasineutral:

j = −enve + envi = env, v = vi − ve, (3.89)

where n = ne = ni is the electron and ion number density. Adding two
Eq. (3.88) up we obtain

− iω[(mi +me)v
i +mev] = miωBiv × e0, (3.90)

where the term mev
i, which is second order small over me/mi, can safely

be discarded. Thus, Eqs. (3.89) and (3.90) yield a relation between the ion
velocity vi and the current velocity v:

vi =
me

mi
v + i

ωBi

ω
v × e0. (3.91)
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Now, let us divide Eq. (3.88a) by me, Eq. (3.88b) by mi, and subtract
one from the other. Discarding all terms which are always small by me/mi

compared with the retained terms, and multiplying by en we obtain

(−iω + νe)j + ωBej × e0 − ωBenev
i × e0 =

e2n

me
E, (3.92)

where we have yet to eliminate the ion velocity vi using Eq. (3.91) to obtain
the link between the electric current and electric field:

(−iω + νe)j + ωBej × e0 + i
ωBeωBi

ω
j⊥ =

e2n

me
E. (3.93)

Projecting this equation onto Cartesian axes x, y, and z and solving for
the components jx, jy, and jz, we apply Eq. (3.9) to calculate the dielectric
tensor components:

εxx = εyy = ε1, ε1 = 1− ω2
pe(ω

2 − ωBeωBi + iωνe)

(ω2 − ωBeωBi + iωνe)2 − ω2ω2
Be

, (3.94a)

εxy = −εyx = ig; g =
ω2
peωBeω

(ω2 − ωBeωBi + iωνe)2 − ω2ω2
Be

, (3.94b)

εzz = ε3, ε3 = 1− ω2
pe

ω(ω + iνe)
. (3.94c)

It is remarkable to note that unlike Eq. (3.42), the dielectric tensor components
described by Eq. (3.94) do not represent sums of independent plasma compo-
nents even in a limiting case of νe → 0. This apparent discrepancy originates
from the total momentum conservation (always resulting in a nonzero ion
velocity) taken into account here, while ignored in Sect. 3.2.1. Nevertheless,
as we will see below, the main terms of the dielectric component expansion at
any frequency range are consistent within both approaches. Note also that,
here, unlike Sect. 3.2.1, we adopted e > 0 and, accordingly, ωBe > 0.

3.4.2 High-Frequency Case

At high frequencies, ω2 
 ωBeωBi, we can entirely neglect the ion contribu-
tion to obtain:

ε1 = 1− ω2
pe(ω + iνe)

ω[(ω + iνe)2 − ω2
Be]

, (3.95a)

g =
ω2
peωBe

ω[(ω + iνe)2 − ω2
Be]

, (3.95b)

which allows to straightforwardly compute dispersion of high-frequency
plasma modes; see Problem 3.9.
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The collisional damping coefficients can easily be found at the wave
transparency windows, i.e., where the wave damping is small. In this case, the
imaginary part of the refractive index can be found by iterations; see Prob-
lem 3.9. To make those expressions practical we have to specify the effective
collision frequency; specifically, for the electron-ion collisions (see Sect. 1.3.7)
we have:

νe ≈ νei ≈ πe4ne ln ΛC

T
3/2
e m

1/2
e

, (3.96)

where lnΛC is the Coulomb logarithm. In particular, for the free-space modes,
the absorption coefficient (damping per unit wave path) reads

κ ≈ 9.8 · 10−3 n2
e

nT
3/2
e f2

(24.6 + ln(Te/f)), cm−1 (3.97)

where f = ω/2π in Hz, ne in cm−3, Te in K (here Te > 2 ·105K), and n is the
refractive index of the wave, (Dulk 1985). Even in the case of small damping
coefficient compared with the corresponding refractive index, Imn �Ren,
this absorption can be highly important because its effect is proportional to
the wave path length in the astrophysical object, which can be very large.
For example, in the solar corona for T ∼ 3 · 106K, ne ∼ 1010 cm−3, and
ω ∼ 2ωpe, we find ld = 1/κ ∼ 109 cm comparable with typical scale of the
solar coronal loops.

3.4.3 Ion Cyclotron Resonances

At lower frequencies, ω2 � ωBeωBi, we can apparently neglect the frequency
compared with the electron gyrofrequency. Then, neglecting the term ∝ ν2e
in the denominator and taking into account ω2

pe/ωBe = ω2
pi/ωBi, we find:

ε1 = 1− ω2
pi(ω

2
Bi − i ωBi

ωBe
ωνe)

ω2
Bi(ω

2 − ω2
Bi + 2i ωBi

ωBe
ωνe)

, (3.98a)

g = − ω2
piω

ωBi(ω2 − ω2
Bi + 2i ωBi

ωBe
ωνe)

. (3.98b)

If we neglect the collisions entirely here, we obtain the ion contributions of the
collisionless plasma described by Eq. (3.42), although in the presence of colli-
sions the dielectric tensor components still contain the electron gyrofrequency
in the imaginary contributions. In fact, the ratio of the gyrofrequencies is
simply me/mi; noting that the ion-electron collision rate νie = νeime/mi, we
express the dielectric tensor component via ion parameters only:

ε1 = 1− ω2
pi(ω

2
Bi − iωνie)

ω2
Bi(ω

2 − ω2
Bi + 2iωνie)

, (3.99a)

g = − ω2
piω

ωBi(ω2 − ω2
Bi + 2iωνie)

. (3.99b)
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Figure 3.7: Dispersion of the collisional p − He plasma. The accepted parameters are:
np = 1010 cm−3, B = 100G, nHe4 = 0.083np , nHe3 = 5 · 10−4np, 15% of He is
single ionized, and 85% of He is twice ionized; Te = 5 · 105 K (left panel) and Te =
2 · 106 K (right panel). Significant temperature- and abundance-dependent suppression
of the resonances related to He3 is seen clearly, while those related to protons and He4

are almost unaffected.

So far, we adopted that we have only one sort of ions, the protons.
In the presence of other, less abundant, ions, estimating the proton effec-
tive collision rate needs further attention. Indeed, as we see [this considera-
tion agrees with Eq. (1.76)], the effective rate of the proton–electron collisions
νpe = meνep/mp � νep is very small because of large mismatch in the masses
of the involved particles. This means that collisions of the protons with other
ions, primarily Helium, even less abundant than electrons while much heav-
ier, can make a dominant or comparable contribution to the proton effective
scattering rate

νpHe ≈ 4π(eeHe4II)
2nHe4II ln ΛCp

T
3/2
p m

1/2
p

+
4π(eeHe4III)

2nHe4III ln ΛCp

T
3/2
p m

1/2
p

, (3.100)

where nHe4II , nHe4III , eHe4II , and eHe4III are the number densities and
charges of the single- and twice-ionized ions of He4

ln ΛCa =

{ ln(rdTa/ze
2), ze2/�va 
 1

ln(rd
√
maTa/�), ze2/�va � 1.

(3.101)

For the typical astrophysics abundances of He4 the proton collisions with
electrons are only responsible for ∼ 10−20% of the νp ≈ νpe+νpHe depending
on the Helium ionization state. In particular, the proton effective collision rate
is not always a decreasing function of temperature: indeed, in the temperature
range where almost all HeII experiences the second ionization and becomes
HeIII, the collision rate increases with temperature, because the number of
higher charged HeIII ions increases rapidly with the temperature.
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In a multicomponent plasma the effect of Coulomb collisions can also be
important at low frequencies at the regions of He (or other minor component)
resonances. Specifically, the collisions can suppress some of the ion cyclotron
modes related to less abundant ions, like the ions of He3, although the He4

ion cyclotron modes survive in the presence of collisions in most practical
cases; see Fig. 3.7. For other (than protons) ions the main contribution to the
effective collision rates comes from the collisions with other ions, primarily
the most abundant protons. The corresponding collision rates are easy to
calculate from the proton collision rate on a particular ion, e.g.,

νpHeIII ≈ 4π(eeHe4III)
2nHe4III ln ΛCp

T
3/2
p m

1/2
p

, (3.102)

and using Eq. (1.76), which yields:

νHeIIIi ≈ 4π(eeHe4III)
2np ln ΛCp

T
3/2
p m

1/2
p

mp

mHe4
, (3.103)

which is by factor z2mp/mHe4 different from νpHeIII ; to roughly account
other ions’ contribution one can use ne− znHe4III instead of np; however the
corresponding corrections are typically beyond the current accuracy in the
astrophysics.

3.4.4 Low-Frequency Case

Now consider the low-frequency range, ω � ωBi, where the MHD waves
(Sects. 2.4 and 3.2.3) can exist under certain conditions. Neglecting all small
terms with ω we find the dielectric tensor components:

ε1 = 1− ω2
pe

iωνe − ωBeωBi
, (3.104a)

g =
ω2
peωBeω

(iωνe − ωBeωBi)2
, (3.104b)

whose behavior is highly dependent on which, real or imaginary, term
dominates in the denominators. If ωνe � ωBeωBi the real parts dominate
and neglecting the imaginary contributions we have ε1 ≈ 1+ω2

pe/(ωBeωBi) =
1 + c2/v2A, where vA is the Alfvén speed as usual; g ≈ c2ω/(v2AωBi) � ε1
in full agreement with Eq. (3.54), Sect. 3.2.3. Here propagating MHD Alfvén
and fast modes exit, whose relatively weak damping is controlled by the
anti-Hermitian part (dependent on νe) of the dielectric tensor.

In the opposite case, ωνe 
 ωBeωBi, the external magnetic field drops out
of the dielectric tensor making the Alfvén velocity irrelevant to electromag-
netic phenomena in the plasma with strong Coulomb dissipation. No alter-
nating electromagnetic field can propagate through such fluid; if a wave with
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frequency ω falls onto a plasma boundary it can only enter there into a nar-
row layer with thickness of the order of the plasma skin scale δ ≈ c/

√
2πσω,

where σ is the Drude conductivity, Eq. (1.91). A critical Alfvén velocity below
which the Alfvén waves cannot exist due to strong collisional dissipation is
estimated from the equality ωνe = ωBeωBi as (Alfven and Fälthammar 1963)

v2Acr ≈ c2
ω

4πσ
. (3.105)

At these low frequencies, ω � ωBi, the plasma conductivity is often used
along with (instead of) the dielectric tensor. Projecting Eq. (3.93) onto Oz
we find

jz = σ0(ω)Ez , σ0 =
e2n

me(νe − iω)
, (3.106)

which transforms to the Drude formula, Eq. (1.91), as ω → 0. As long as
ω � νe the electric current obeys Ohm’s law with the constant Drude con-
ductivity, while at ω 
 νe (but still ω < ωpe) the real part of the dielectric
permeability that reduces for a scalar ε0 (provided that vA < vAcr)

ε0 = 1 + i
4πσ0
ω

= 1− ω2
pe

ω2 + iωνe
(3.107)

turns negative and the plasma response interferes with the external wave and
efficiently quenches it.

Problems

3.1 Calculate frequencies of plasma resonances from equation a = 0. This is
a cubic over ω2 equation for the electron–proton plasma; thus, it has three
positive roots. Consider different asymptotic forms of these frequencies.

3.2 Analyze dispersion and polarization of high-frequency (magneto-ionic)
O- and X-modes in various special cases: (a) longitudinal propagation, θ=0;
(b) transverse propagation, θ = π/2; (c) arbitrary propagation, ωBe �
ωpe; (d) arbitrary propagation, ωBe 
 ωpe; (e) arbitrary propagation, ω 

ωBe, ωpe.

3.3 Analyze dispersion and polarization of Z-mode in various special cases:
(a) longitudinal propagation, θ = 0; (b) transverse propagation, θ = π/2; (c)
arbitrary propagation, ωBe � ωpe; (d) arbitrary propagation, ωBe 
 ωpe.

3.4 Analyze dispersion and polarization of the whistler mode in the same
special cases.
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3.5 Calculate complex dielectric tensor of fully ionized, uniform, unmag-
netized isotropic collisionless Maxwellian plasma with temperature T and
number densities ne = ni = n.

3.6 � Determine the frequency ωl of longitudinal oscillations of the collisionless
plasma using the dielectric tensor (including the imaginary part) found in
Problem 3.5 adopting kvTe � ω. Calculate the density w of electromagnetic
energy, its dissipation rate Q, and the density γ of the energy flux.

3.7 Consider quasi-equilibrium state when both electrons and ions are
Maxwellian but with different temperatures Ti �= Te (which can stay relatively
long because of slow energy exchange between electrons and ions provided
by large difference in their masses). Use the outcome of Problem 3.5 to
find the longitudinal dielectric permeability for an “intermediate” case when
si = ω/kvTi 
 1, while se = ω/kvTe � 1. Find frequency and damping rate
of the longitudinal oscillations of these non-isothermal plasma. Specify the
conditions where the damping is weak.

3.8 Calculate dielectric tensor in a magnetized plasma with account of the
electron-ion collisions (see Sect. 3.4) in the basis of “cyclic” unit vectors

e±1 = ∓ 1√
2
(ex ± iey) ≡ ∓ 1√

2
(e1 ± ie2), e0 = ez = e3. (3.108)

Find transformation rule between the tensors in the standard Cartesian and
cyclic coordinate basis.

3.9 Calculate high-frequency dispersion relation in a magnetized plasma
with account of the electron-ion collisions; see Sect. 3.4.2.

3.10 Calculate absorption index and damping rate of Alfvén waves in a
magnetized plasma with account of the electron-ion collisions; see Sect. 3.4.4.
Compare the results obtained with those derived from MHD approach,
Sect. 2.4.3. If the results are different, explain origin of this difference.

3.11 Calculate dielectric permittivity tensor and dispersion relations of
low-frequency (ion-cyclotron/hybrid) modes in a magnetized multicompo-
nent plasma (Sect. 3.2.4) with account of the electron-ion and proton-ion
collisions.

Answers and Solutions

3.1 Let us sort the solution ω2
i such as ω1 > ω2 > ω3. The two highest

frequencies are primarily specified by the electron contribution and called
the upper- and lower-hybrid frequencies, ωUH = ω1 and ωlh = ω2. Neglecting
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the ion contribution in equation a = 0 and solving for ω2
i , we find (Akhiezer

et al. 1975)

ω2
1,2 =

ω2
pe + ω2

Be

2
±
√
(ω2

pe + ω2
Be)

2 − 4ω2
peω

2
Be cos

2 θ

2
.

At θ → 0 we have ωUH = max(ωpe, |ωBe|) and ωlh = min(ωpe, |ωBe|), while
at θ → π/2: ωUH =

√
ω2
pe + ω2

Be and ωlh = ωpe|ωBe| cos θ/
√
ω2
pe + ω2

Be; the

latter is valid when cos2 θ 
 me/mi.
In the dense plasma case, ωpe 
 ωBe the above expressions simplify to

ω2
UH ≈ ω2

pe + ω2
Be sin

2 θ; ωlh = |ωBe| cos θ, (3.109)

while in the strong magnetic field case, ωpe � ωBe

ω2
UH ≈ ω2

Be + ω2
pe sin

2 θ; ωlh = ωpe cos θ. (3.110)

The third frequency is about the ion cyclotron frequency, ω3 ≈ ωBi(1 −
me tan

2 θ/(2mi)) if cos2 θ 
 me/mi. If this condition is not fulfilled, the
frequencies ω2,3 � ωBe; discarding the correspondingly small terms, we find

ω2
2,3 =

ω2
pe cos

2 θ + ω2
pi + ω2

Bi ±
√

(ω2
pe cos

2 θ + ω2
pi + ω2

Bi)
2 − 4(1 + Y 2)ω2

piω
2
Bi cos

2 θ

(2 + 2Y 2)
,

where Y = ωpe/ωBe, which implies that ωlh remains finite at θ → π/2, while
ω3 goes to zero. One can further simplify the general expression for ω2

2,3 in
various asymptotic parameter regimes (Akhiezer et al. 1975).

3.2 All asymptotic forms of the refractive indices at high frequencies are
derived from Eq. (3.48).

(a) θ = 0: n2
σ = 1−ω2

pe/[ω(ω+σ|ωBe|)]; from Eq. (3.50) it is easy to find
that the waves are circularly polarized.

(b) θ = π/2: n2
O = 1 − ω2

pe/ω
2 and n2

X = 1 − ω2
pe(ω

2 − ω2
pe)/[ω

2(ω2 −
ω2
pe−ω2

Be)]. O-mode is linearly polarized along the external magnetic
field; X-mode is elliptically polarized in the plane transverse to the
external magnetic field; recall, there is an electric field component
along the wave vector.

(c) ωBe � ωpe: here a quasilongitudinal approximation, u sin4 θ �
4(1− v)

2
cos2 θ, can be used for most propagation directions: n2

σ =

1− ω2
pe

ω2

(
1− σ |ωBe|

ω cos θ
)
. The polarization is almost circular.
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(d) ωBe 
 ωpe: n
2
σ = 1− 2ω2

pe

2ω2−ω2
Be sin

2 θ+σ
√
ω4

Be sin
4 θ+ω2

Beω
2 cos2 θ

≈ 1.

(e) ω 
 ωBe, ωpe. Case (c) applies here, so depending on the accuracy

requirement we obtain: n2
σ ≈ 1− ω2

pe

ω2

(
1− σ |ωBe|

ω cos θ
)
≈ 1− ω2

pe

ω2 ≈ 1.

3.3 Z-mode is a lower-frequency extension of the X-mode. Thus, equations
from the previous solution for σ = −1 apply here in the corresponding avail-
able parameter regimes, for example, case (e) is not possible here.

3.4 The whistler mode is the high-frequency continuation of the fast
magnetoacoustic mode at ω 
 ωBi (while ω < |ωBe|). If ω � ωcr ≡
4ω2

pe cos
2 θ/(ωBe sin

4 θ), then (for σ = 1)

n2
w = 1 +

ω2
pe

ω(|ωBe| cos θ − ω)
.

Solving this dispersion relation for ω, we find

ω =
|ωBe|c2k2 cos θ
ω2
pe + c2k2

.

Note that if ωpe 
 ωBe then ω � ωcr is valid everywhere in the quasi-
longitudinal range of the angles. Thus, at high frequencies, ω → ωlh ≈
|ωBe| cos θ and the whistler mode becomes the lower-hybrid quasilongitudi-
nal mode. If ωpe � ωBe then there is a frequency region ω 
 ωcr, where
n2
w = (ω2 − ω2

pe)/(ω
2 − ω2

pe cos
2 θ); thus, the whistler wave becomes the

lower-hybrid wave anyway; see Solution 3.1. At lower frequencies, ω � |ωBe|
these expressions simplify to

n2
w ≈ ω2

pe

ω|ωBe| cos θ , ω =
|ωBe|c2k2 cos θ

ω2
pe

.

3.5 Let us calculate the plasma current

j =
∑∫

evδf d 3p, (1)

stimulated by a weak external field with given k and ω, where δf is a
nonstationary part of the distribution function proportional to the external
field; the summation is performed over all available kinds of charges (although
we only consider explicitly electrons and singly ionized ions). The perturba-
tion δf is determined from Eq. (3.59) with B0 = 0. The collisionless plasma
is convenient to be considered as a limiting case of a collisional one (with
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seldom collisions); therefore, we include in Eq. (3.59) the collisional integral
in a simple form St[f ] = −νδf , where ν is a small rate of collisions between
the given particles and all other kinds of particles, cf. Sect. 3.4; here, in the
collisionless case, its form is unimportant since it will anyway be adopted to
vanish at a final stage of manipulations. Thus, we obtain

(−iω + ik · v + ν)δf = − e

m
E · ∂f0

∂v
− e

mc
[v × b] · ∂f0

∂v
. (2)

For Maxwellian distribution (3.58) the derivative over velocity is straight-
forwardly calculated

∂f0
∂v

= −mv

T
f0, [v × b]·∂f0

∂v
= 0. (3)

Substitution of all these into Eq. (2) yields

δf(v) =
me(E·v)f0(v)
T (ν + ik·v − iω)

. (4)

It must become transparent now, why retaining the small collision frequency
ν > 0 is convenient even in the fully collisionless case: the denominator of
the above expression never reaches zero for any real (physically meaningful)
values of k, v, and ω; thus Eq. (4) and everything derived from it are mathe-
matically correct. Substitution of Eq. (4) into Eq. (1) yields the linear relation
in the form of Ohm’s law:

jα = σαβ(k, ω)Eβ , (5)

where the tensor of complex conductivity has the form

σαβ(k, ω) =
∑ e2

T

∫
vαvβf0(v)

ν + ik·v − iω
d 3v. (6)

According to Eq. (3.9) this tensor is linearly linked with the dielectric
tensor by

εαβ(k, ω) = δαβ + i
4πσαβ(k, ω)

ω
. (7)

Now, we take into account the isotropy of the analyzed plasma, which
implies that only the wave vector k can enter the dielectric tensor εαβ . Thus,
the most general tensor form of the dielectric tensor εαβ is

εαβ(k, ω) = ε l(k, ω)
kαkβ
k2

+ ε t(k, ω)

(
δαβ − kαkβ

k2

)
, (8)

where ε l and ε t are two scalar functions, which can be called the longitudinal
and transverse permeability, respectively.
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Let us isolate these two invariant values ε l and ε t from the tensor εαβ :

ε l = 1 + i
∑ 4πe2

ωT

∫ v2‖f0(v)

ν + ikv‖ − iω
d 3v, (9)

ε t = 1 + i
∑ 2πe2

ωT

∫
v2⊥f0(v)

ν + ikv‖ − iω
d 3v. (10)

Here, the velocity components parallel and transverse to vector k are explic-
itly defined.

The forthcoming integration over transverse velocity components in
Eqs. (9) and (10) is easy to perform using the explicit form of the Maxwellian
distribution, which results in

ε l(k, ω) = 1 + i
∑ 4πne2

m

1√
2πkvTω

∫
e−x

2/2x2dx

x− s− iν′
, (11)

ε t(k, ω) = 1 + i
∑ 4πne2

m

1√
2πkvTω

∫
e−x

2/2dx

x− s− iν′
, (12)

where vT =
√
T/m is the thermal speed, s = ω/kvT > 0, and ν′ = ν/kvT > 0

are dimensionless frequencies. Use of Sokhotsky rules yields

x2

x− s− iν′
= x

[
1 +

s

x− s− iν′

]
= x+ s+

s2

x− s− iν′
. (13)

The integration with x+s is tabular. Then, the latter integration is performed
using the equivalence

1

ν′ + i(x− s)
=

∫ ∞

0

e−(ν′−is+ix)t dt,

which takes place owing to ν′ > 0. We further have

∫ ∞

−∞

e−x
2/2dx

x− s− iν′
= i

∫ ∞

0

dt e−(ν′−is)t
∫ ∞

−∞
e−(x2+2xit)/2dx

= i
√
2πe−s

2/2

{√
π

2
+ i

∫ s

0

eu
2/2du

}
.
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The following notations are convenient:

Z(s) = X(s)− iY (s), where X(s) = se−s2/2

∫ s

0

eu
2/2du, Y (s) =

√
π

2
s e−s2/2,

(14)

whose real part is expressed via the error integral (Abramowitz and Stegun
1964).

Using notations (14) along with plasma frequency definition, we obtain
final expressions for the longitudinal and transverse dielectric permeability
for any ω and k:

ε l(k, ω) = 1−
∑ ω2

p

(kvT )2
[Z(s)− 1], (3.111a)

ε t(k, ω) = 1−
∑ ω2

p

ω2
Z(s). (3.111b)

The summation is performed over electrons and all available ion species. It is
worthwhile to recall that the plasma frequencies ωpe and ωpi and the thermal
velocities vTe and vTi are different for the electrons and ions because of mass
(and, perhaps, temperature) difference.

Note that both εl and εt have [according to Eq. (14)] the imaginary parts
proportional to Y (s). Those imaginary parts determine the dissipation of
electromagnetic energy in the collisionless plasma (Landau damping).

3.6 Consider εl(k, ω) when s = ω/kvT 
 1:

εl ≈ 1− ω2
pe

ω2

(
1 +

3k2v2Te
ω2

)
+ i

√
π

2

ωω2
pe

k3v3Te
e−ω

2/2k2v2Te , (1)

where the ion contribution is discarded since ω2
pi = (me/mi)ω

2
pe � ω2

pe and
si 
 se. Note, that even though the imaginary part is exponentially small,
it results in qualitatively new effect, the electromagnetic energy dissipation.

First, neglect the imaginary part entirely by adopting ε′′l (k, ω) ≈ 0, then

ω2
l (k) ≈ ω2

pe + 3(kvTe)
2, w =

1

8π
|E|2 =

1

4π
E2(t), γ =

3vTe
8π

kvTe
ωl

k

k
|E|2.

(2)
Here, the electron plasma component oscillates relative to ions holding

at rest. The total energy density of these Langmuir oscillations is twice of
the electric energy density; the second half of the energy density comes from
potential energy of Coulomb interaction between electrons and ions. The
energy flux is nonzero due to the account of spatial dispersion in spite of
nonexistence of the magnetic field and, thus, absence of the standard Poynting
vector. The energy is transferred here by the thermal electron motion.
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At the second stage, let us include the imaginary part ε′′l (k, ω), which
gives rise to a small imaginary part of the oscillation frequency ωl(k) describ-
ing the Landau damping. Adopting ωl = ω′

l + iγ, |γ| � ω′
l, we find ω′

l from
the equation ε′l(k, ω) = 0 which yields familiar result (2). Then, the small
imaginary part is obtained from the equation

εl(k, ωl) ≈ εl(k, ω
′
l) + iε′′l (k, ω

′
l) +

∂ε′l(k, ω)
∂ω

∣∣∣∣
ω=ω′

l

iγ = 0, (3)

with the imaginary part ε′′l from Eq. (1). We obtain

γ(k) = − ε′′l (k, ω
′
l)

∂ε′l(k, ω)/∂ω|ω=ω′
l

= −
√
π

8

ωpe

(krD)2
e−1/4(krD)2−3/2, (4)

where rD =
√
T/8πne2. If ω′

l/kvTe = 1/
√
πkrD 
 1 the Langmuir wave

damping is exponentially small. This is apparently related to proportionally
small number of electrons in the Maxwellian tail having the velocities com-
parable with the phase velocity vph = ω/k of the longitudinal wave. The
dissipation power of the energy density is given by Eq. (3.64), which here
receives the form

Q =
ω′
l

8π
ε′′l (k, ω

′
l)|E(t)|2. (5)

Now |E(t)|2 = E2
0e

−2γt with the initial value of the electric field E0. The
quantities w and γ with account of the wave dissipation are given by same
expressions (2) with ωl substituted by ω′

l. The mean square of the electric
field |E|2 entering (2) decays with time accordingly.

3.7 In the specified parameter regime we have

ε′l(k, ω) ≈ 1 +
ω2
pe

k2v2Te
− ω2

pi

ω2

(
1 +

3k2v2Ti
ω2

)
,

ε′′l (k, ω) ≈
√
π

2

(
ωω2

pe

k3v3Te
+

ωω2
pi

k3v3Ti
e−ω

2/2k2v2Ti

)
. (1)

Assuming the imaginary part ε′′l to be small, obtain the real and imagi-
nary parts of the frequency like in the previous problem:

ω ′ 2
l (k) ≈ ω2

pi

[
1 + 3k2r2Di

(
1 +

1

k2r2De

)](
1 +

1

k2r2De

)−1

, (2)

γ(k) ≈ −
√
π

8
· mi

me
· ω

′ 4
l (k)

k3v3Te

{
1 +

√
mi

me

(
Te
Ti

)3/2

exp

[
−ω

′ 2
l (k)

2k2v2Ti

]}
. (3)



136 3 Plasma Dispersion

Here we introduced the electron and ion Debye radii rDe, i =
√
Te, i/4πne2

and assume the plasma to be strongly non-isothermal: Te 
 Ti. Under this
condition along with inequalities prescribed in the statement of the problem,
Eqs. (2) and (3) yield |γ| � ω ′

l .
For the long waves, i.e., krDe � 1 and krDi � 1, the formulae simplify to

ω ′
l (k) ≈ vsk, vs =

√
Te
mi

(
1 +

3Ti
Te

)
,

γ ≈ −kvs
√
πme

8mi

{
1 +

√
mi

me

(
Te
Ti

)3/2

exp

(
−3

2
− Te

2Ti

)}
. (4)

These longitudinal (potential) waves are called the ion-sound waves, be-
cause their dispersion law is similar to that for the sound waves in a gas.
The velocity of the ion-sound waves vs is specified primarily by the electron
temperature, while the ion mass.

In the opposite short-wave case (krDe 
 1, but still krDi � 1,) we obtain
weakly damped ion plasma oscillations (similar to the electron plasma or
Langmuir oscillations):

ω ′
l (k) ≈ ωpi,

γ ≈ −
√
πme

8mi
· ωpi

k3r3De

{
1 +

√
mi

me

(
Te
Ti

)3/2

exp

(
−3

2
− 1

2k2r2Di

)}
. (5)

3.8 Equation (3.91) in cyclic basis reads

vi±1 =

(
me

mi
± ωBi

ω

)
v±1. (1)

Accordingly, the conductivity has the form

σ± =
e2n

me[νe − i(ω ± ωBe) + iωBeωBi/ω]
, (2)

where the term containing the ion cyclotron frequency in the denominator
accounts for ion motion. When ω 
 ωBi, this term can be discarded. The di-
electric tensor components have the form

ε±1 = 1− ω2
pe

ω2 + iωνe ± ωωBe − ωBeωBi
. (3)

When ω � ωBi, we have

ε±1 = 1− ω2
pe

iωνe − ωBeωBi
. (4)
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The same results can be obtained from the solution in usual Cartesian
basis obtained in Sect. 3.4. To do so the vectors and tensors obtained there
must be transformed from one frame to the other. This transformation of the
Cartesian basis vectors into cyclic ones is performed using the unitary matrix

Û =

⎛
⎝ −1/

√
2 0 −i/√2

0 1 0

1/
√
2 0 −i/√2

⎞
⎠ ,

⎛
⎝ e+1

e0
e−1

⎞
⎠ = Û

⎛
⎝ ex

ez
ey

⎞
⎠ , (5)

where standard matrix multiplication rules (row by column) must be applied.

The matrix Û is a unitary one since it satisfies the required condition Û−1 =
Û †, where Û † is the Hermit conjugate matrix. Transformation of the Carte-
sian dielectric tensor ε̂ to the cyclic basis is performed using the formula
ε̂ c = Û ε̂Û †, where the Cartesian axes are numbered according to Eq. (5).
Note that in the cyclic basis the dielectric tensor has a diagonal form, where
only nonzero components are ε+1, ε0, and ε−1.

3.9 In the presence of dissipation the refraction index is a complex number,
ñσ = nσ+ iησ, where nσ is the real part, which we will still call the refractive
index, while ησ is the imaginary part called the absorption index. To find
ñσ we have to solve characteristic equation (3.43) whose coefficients a, b,
and c Eq. (3.44) must be calculated using the dielectric tensor components of
collisional plasma, Eqs. (3.95) and (3.94c), which yields [cf. Eq. (3.48)]

ñ2
σ = (nσ + iησ)

2 = 1− 2v(1− v + iν)

2(1 + iν)(1− v + iν)− u sin2 θ + σ
√
D̃
, (3.112)

where

D̃ = u2 sin4 θ+4u(1−v+iν)2 cos2 θ, u =
(ωBe

ω

)2
, v =

(ωpe

ω

)2
, (3.113)

ν = νe/ω. In a practically important case, when the dissipation is small,
ν � 1, we can expand Eq. (3.112) over ν powers, which yields Eq. (3.48) for
the refraction index and

ησ =
νv

nσ

u2 sin4 θ − σ
√D [u sin2 θ + 2(1− v)2

]
σ
√D

[
2(1− v)− u sin2 θ + σ

√D
]2 , (3.114)

where the determinant D = D̃|ν=0 is defined by Eq. (3.49). In particular, at
high frequencies in the quasilongitudinal approximation, we have

ησ =
νv

nσ(1 + σ|√u cos θ|)2 . (3.115)



138 3 Plasma Dispersion

3.10 Hint: Use the same approach as in the previous solution to find the ab-
sorption index of the Alfvén waves. Then find the damping rate and compare
the results with Eq. (2.72).

3.11 Hint: Complement the set of Eqs. (3.88) by a third equation for ions
of a given sort, say He,

−iωmHev
He = +zeE +mHeωBHev

He × e0 +meνe(v
e − vHe)

+mpHeνHe(v
i − vHe),

add corresponding friction forces between electrons and helium and between
protons and helium in the rhs of Eqs. (3.88). Then, take into account plasma
neutrality, ne = np+znHe and momentum conservation of these three plasma
components, compose the current velocity analogous to Eq. (3.89) and electric
current and express it via electric field. Then, solve for the electric current
components and find the required conductivity and permittivity tensors.



Chapter 4

Wave–Particle and Wave–Wave
Interactions

In Chap. 3 we have discussed how plasma responds to an external (weak)
electromagnetic perturbation, which results in a specific wave dispersion and
damping. This damping is linear, i.e., proportional to the wave amplitude and
there is no change in the plasma distribution function other than small oscil-
lations proportional to the wave amplitude. Apparently, this treatment has
a limited applicability: it can only be valid until the wave amplitude is small
enough to keep all nonlinear effects negligible. In contrast, a large-amplitude
wave will definitely affect the plasma distribution, while in an ensemble of
waves different waves will interact with each other nonlinearly, resulting, e.g.,
in wave spectrum modification and new mode generation. Processes of the
first kind are called wave–particle interactions, while of the second kind—
wave–wave interactions. Below we consider some essentials of these interac-
tions most relevant within the context considered in this textbook.

4.1 Two-Stream Instabilities

A key condition for a nonlinearity to come into play is the presence of large-
amplitude waves in the plasma. In some cases such waves can arrive at a
considered plasma volume from outside, which is often the case in laboratory
experiments with interaction of high-power laser signals with a substance. In
contrast, in the astrophysical sources, such powerful electromagnetic waves
are produced within the source due to one or another instability, when the free
energy required to generate a powerful electromagnetic field comes from an
excessive energy of unstable nonstationary plasma particle distributions. In
practice, most of the relevant instabilities can be classified as either streaming
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(two-stream, beam) instability, when a nonzero particle flow is involved, or
loss-cone instabilities when particle anisotropy plays a dominant role while
the presence of particle flow is not essential.

4.1.1 Excitation of Plasma Waves by Electron Beams

Here we start from a simple example of a beaming instability driven by a
unidirectional monoenergetic beam of electrons (Akhiezer and Fainberg 1949;
Bohm and Gross 1949a,b; Akhiezer and Fainberg 1951; Buneman 1958). Like-
wise examples of multi-component plasmas discussed in Sect. 3.2.4, here the
beam electrons represent a distinct component in addition to the background
electrons and ions. Therefore, the corresponding contribution must be added
to the plasma dielectric permeability, which normally results in appearance
of new wave modes; see Sect. 3.2.4.

For simplicity, we neglect the magnetic field and consider a cold plasma at
high frequencies with the dielectric permeability obeying Eq. (3.42c), where
the ion contribution can be discarded. To find a contribution from the electron
beam with the number density n′ streaming with a velocity u in z direction,
we can use Eq. (3.38) but with an extra term, u∂va/∂z, related to the beam
streaming (and neglecting the magnetic field contribution). Dispersion rela-
tion for the Langmuir waves reads εl(ω, k) = 0; thus, taking into account
both beam and background electron contributions, we can write

εl = 1− ω2
pe

ω2
− ω′2

pe

(ω − kzu)2
= 0, (4.1)

where ω′2
pe = 4πn′e2/me is the plasma frequency related to only beam elec-

trons.
This dispersion relation is an equation of fourth power over frequency;

so it specifies four different (longitudinal) wave modes. Assuming the beam
is tenuous, n′ � ne, we first look for “resonant” wave modes, kz ≈ ωpe/u,
i.e., search waves with the dispersion ωj = kzu + ηj , where j is the number
of the mode and |ηj | � |kzu|, which yields equation for η:

η3 + (1− ωpe/kzu)ωpeη
2 − ωpeω

′2
pe/2 = 0. (4.2)

At the resonance, until |η| 
 |ωpe − kzu|, we can neglect the second term in
Eq. (4.2), so it takes a simple form η3 = ωpeω

′2
pe/2, which has three solutions:

η = ξ(ωpeω
′2
pe/2)

1/3; ξ =
3
√
1 =

(
1;

−1 + i
√
3

2
;
−1− i

√
3

2

)
. (4.3)

Remarkably, that one of these modes grows exponentially (since E ∝
exp[−iωt]) with the growth rate

γ =

√
3

24/3

(
n′

ne

)1/3

ωpe, (4.4)
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which is very large even for a relatively tenuous beam because it is pro-
portional to (n′/ne)1/3. This means that all the beam electrons contribute
to the wave amplification coherently; otherwise one would expect a linear
proportionality, γ ∼ n′/ne.

Farther from the resonance, while still |η| � |ωpe−kzu|, two wave modes
defined by Eq. (4.1) represent slightly modified Langmiur waves with ω1,2 =
±ωpe[1+ω

′2
pe/(2(kzu∓ωpe))], while two other modes have frequencies around

kzu; using again ωj = kzu+ ηj , |ηj | � |kzu|, we find

η = ± ω′
pe√

1− (ωpe/kzu)2
. (4.5)

Apparently, the short-length waves with kz > ωpe/u are stable, while the
long waves with kz < ωpe/u are unstable because in this case η contains a
square root of a negative value; the corresponding growth rate is

γ =
ω′
pe√

(ωpe/kzu)2 − 1
∼ ω′

pe =

(
n′

ne

)1/2

ωpe. (4.6)

Again, the growth rate is relatively large being proportional to (n′/ne)1/2

(not to (n′/ne)1), although it is smaller than the growth rate of the resonant
waves described by Eq. (4.4).

This strong (coherent) amplification of plasma waves by an electron beam
is primarily related to the assumption of monoenergetic (cold) beam, whose
thermal velocity scatter is negligible. To evaluate applicability of this assump-
tion we have to use the dielectric permeability components calculated with the
account of electron temperature, which is done, for the background plasma
particles, in Problem 3.5; a similar contribution with ω → ω′ = (ω − ku)
comes from a “hot” beam with the streaming velocity u and some thermal
velocity v′ =

√
T ′/me. It is straightforward to show (see Problem 4.1) that

the hot beam dispersion reduces to the cold beam dispersion if ω′/(kv′) ∼
|η|/(kv′) 
 1, which requires v′ � (ne/n

′)1/3u for the resonant case with
growth rate (4.4) and v′ � (ne/n

′)1/2u for the nonresonant case with growth
rate (4.6). Otherwise, the kinetic approach, described in Sect. 3.3 in the linear
approximation, is needed.

In the kinetic case there is no need to separate the beam and background
electrons; we can assume that both components are described by a single
distribution function f(p). The dielectric tensor εαβ is linked with this dis-
tribution function by Eq. (3.60), which according to Eq. (3.62) contains both
real and imaginary parts, see Eq. (3.63). Use of the mentioned equations al-
lows considering instabilities for any wave mode of the magnetized plasma;
general dispersion relation (3.27) receives now the form

Δ(ω + iγ,k) = Δ′ + iΔ′′ = 0, (4.7)
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which determines both the dispersion and damping/growth of the given
waves.

Consider again the beaming instability of longitudinal waves. Dispersion
relation for the longitudinal waves reads

εl ≡ κακβεαβ = ε′l + iε′′l = 0. (4.8)

Assuming the wave growth/damping rate to be small compared with the
wave frequency, we can solve Eq. (4.8) by iterations, which yields

ε′l = 0; γ = −ε′′l/(∂ε′l/∂ω). (4.9)

Then, consider for simplicity a plasma without magnetic field. In this case
instead of Eq. (3.60) we obtain1

εαβ = δαβ +
4πe2

ω

∫
vα

ω − kv + iγ

∂f(p)

∂pβ
d3p, (4.10)

which yields the imaginary part of the longitudinal dielectric permeability in
the form

ε′′l = −4π2e2

ω

∫
v‖
∂f(p)

∂p‖
δ(ω − k‖v‖)d3p. (4.11)

Now, neglect the effect of spatial dispersion and unstable part of electron
distribution on the real part of dielectric permeability, i.e., ε′l = 1− ω2

pe/ω
2,

and taking into account that in the Langmuir waves ω ≈ ωpe, we can find
the damping (growth) rate of the Langmuir waves:

γ =
ωpe

2
ε′′l = −2π2e2

∫
v‖
∂f(p)

∂p‖
δ(ω − k‖v‖)d3p. (4.12)

The presence of δ-function in Eq. (4.12) indicates that the wave decay or
growth is provided by resonant particles with v‖ = ω/k‖. The direction of the
energy transfer (from waves to particles or from particles to waves) is solely
determined by the distribution function derivative at the resonant region.
For stationary distributions, including the Maxwellian one, this derivative is
negative everywhere; thus, all waves experience damping and no wave ampli-
fication occurs. This damping (called the Landau damping) is not related
to collisions between particles, i.e., it is invertible in time.

Indeed, if there is a region where the distribution function increases as
the parallel momentum increases (which is only possible for non-isotropic
distributions, see Lifshitz and Pitaevskii 1981, Sect. 30), the corresponding
resonant waves become amplified and their energy increases at the expense
of the resonant electrons’ free energy. Formally, within the linear theory, this
energy amplification will take place infinitely long. Therefore, very soon, in a
few e-folding times, the wave energy will exceed the free energy of unstable

1Equation (4.10) can be obtained as a limiting case B → 0 of Eq. (3.60), which
is a complicated task. Straightforward derivation based on the kinetic equation of a
free plasma is much easier.
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electrons amplifying the waves, which cannot happen in reality. This appar-
ent contradiction implies that large energy of the growing waves becomes
dynamically important very soon and, thus, starts to modify the originally
unstable electron distribution toward a more stable one to eventually quench
the instability. On top of that, in case of large-amplitude waves, nonlinear
wave–wave interactions can further complicate the whole picture. We will
consider some of these processes below in this chapter.

4.1.2 Weibel Instability

The considered above two-stream instability represents only one example of
many possible instabilities driven by particle beams. In 3D geometry, both
longitudinal and transverse waves can be amplified by beams, in particular,
random magnetic field can be generated due to filamentation (Weibel) insta-
bility. To understand the origin of this instability imagine that a fluctuation
magnetic wave is superimposed on a beam transverse to its motion. Then, the
Lorentz force acting from this wave on the beam particles will displace some
of them towards others, thus, forming filaments of the beam particles. These
small-scale current filaments can, in certain conditions, e.g., for a relativis-
tic beam, amplify this fluctuating field, which results in the corresponding
instability.

Let us consider a simple model illustrating the essence of this “trans-
verse” instability, which requires an anisotropy of the particle distribution
but not necessarily a net particle flow. Specifically, following Fried (1959), we
adopt a very simple, anisotropic monoenergetic electron distribution function
describing two identical counter-streaming electron beams propagating along
y axes (e.g., in case of interaction of two identical shock waves):

f0(v) ∝ δ(vx)δ(v
2
y − a2)δ(vz) (4.13)

and analyze how an initial small fluctuation of magnetic field taken in the
form

B = (0, 0, Bz), Bz = B0e
ikx (4.14)

will evolve. The adopted magnetic field produces the Lorentz force in x di-
rection resulting in x component of the electron velocity δvx = −aωBeδt for
vy = ±a, where ωBe is the positive electron gyrofrequency. To the first-order
accuracy over B0 we can write

∂〈vxvy〉
∂t

= −a2 eBz
mc

, (4.15)

where the angular brackets < vxvy > denote averaging over particle distri-
bution (4.13).
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The electric current associated with the magnetic field B0 is specified by
Ampère’s law (2.12), jy = −(ikc/4π)Bz. On the other hand, jy = −enevy ,
so taking the time derivatives yields

∂Bz
∂t

= −4πie

kc

∂(nevy)

∂t
. (4.16)

The time derivative in the rhs of Eq. (4.16) can be expressed via x-derivative
of ∂(nevxvy)/∂x using equation of motion (1.70) together with discontinuity
equation (1.69):

∂(nevy)

∂t
= −∂(nevxvy)

∂x
. (4.17)

Now, substituting Eq. (4.17) into Eq. (4.16) and taking into account that
∂2(nevxvy)/∂x∂t ≈ ne∂

2(vxvy)/∂x∂t to the first-order approximation, we
obtain the second derivative over time

∂2Bz
∂t2

= −4πiene
kc

∂2(vxvy)

∂x∂t
, (4.18)

where we use the time derivative specified by Eq. (4.15) and then take x
derivative of the magnetic field, which yields

∂2Bz
∂t2

=
ω2
pea

2

c2
Bz. (4.19)

Thus, we obtain that any perturbation of the considered type will grow with
time indicating a corresponding instability of these quasistationary transverse
perturbations. This independence on the wave vector of the perturbation is, of
course, an artifact of our oversimplified treatment. In particular, the growing
magnetic field implies an associated electric field. Furthermore, in the reality,
the electron distribution is supposed to be more complicated than has been
adopted above. For example, allowing some motion along x and z axes, e.g.,
f0(v) ∝ δ(v2x − b2)δ(v2y − a2)δ(v2z − b2), and taking into account the electric
field, we can find the dispersion relation

ω4 − (k2c2 + ω2
pe)ω

2 − k2(a2 − b2)ω2
pe = 0, (4.20)

which has one unstable solution for

k <
ωpe

a

√
(a/b)2 − 1. (4.21)

Apparently, during the instability development, the magnetic field in-
creases along the lines, where kx = mπ/2; the associated electric current
density will apparently concentrate along these same lines so forming current
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filaments, so this instability is also called a filamentation instability. Es-
timate (4.19) implies that the filamentation instability can become especially
strong for relativistically moving electrons when (a/c)2 ≈ 1, which is, in par-
ticular, the case of collimated relativistic jets observed from active galactic
nuclei and implied in the sources of cosmological gamma ray bursts.

The considered Buneman and Weibel instabilities represent two extremes
of strictly longitudinal or strictly transverse instabilities. In many cases there
are also oblique mixed-mode instabilities where the wave vector does not co-
incide with the beam velocity vector, so both electric and magnetic fields are
generated. Interestingly, that the final picture of the unstable modes and their
evolution is highly dependent on details of the source structure and physi-
cal conditions. Currently, essential information of the streaming instabilities
is obtained from sophisticated computer modelings including particle-in-cell
(PIC) simulations.

4.2 Quasilinear Approximation

As we have seen, the linear solution describing exponential growth of unstable
waves is intrinsically limited; apparently that fast growth must be somehow
saturated to avoid unphysical conclusions like infinitely large energy accu-
mulated by the growing waves. An upper bound of this energy is set up by
available free energy of the resonant electrons. However, the solution will in
fact strongly deviate from the linear one much earlier than the wave energy
approaches the particle free energy. In this section we consider the lowest-
order nonlinear effects in the wave–particle interactions. Specifically, we adopt
that the main effect is modification of the particle distribution function by
the growing wave spectrum, while discarding any nonlinear wave–wave in-
teractions. This approach is commonly called quasilinear approximation or
quasilinear theory.

4.2.1 General Treatment

Let us consider effect of plasma waves on the mean distribution function
of electrons. To more transparently demonstrate the key physics behind the
quasilinear theory we analyze here a relatively simple case of a free (unmag-
netized) plasma and take into account only one wave mode, the longitudinal
Langmuir waves. The distribution function of the plasma electrons satisfies
standard collisionless kinetic equation

∂f

∂t
+ v

∂f

∂r
+ eEL

∂f

∂p
= 0, (4.22)

where EL(r, t) is the electric field in Langmuir waves. Then, adopt that the
electron distribution function consists of two terms—averaged f0 and fluctu-
ating δf components, f = f0 + δf ; recall, we already used this presentation
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in Chap. 3 to calculate the linear plasma response δf needed to determine
the plasma dielectric tensor. In the linear theory, however, we considered the
averaged component to be a given fixed function. In contrast, here we are
going to account the effect of the waves on this averaged distribution func-
tion unlike the linear theory. To do so, we substitute the adopted form of
the distribution function (the subscript ‘0’ is omitted below for brevity) into
Eq. (4.22), which yields

∂f

∂t
+ v

∂f

∂r
+ eEL

∂δf

∂p
+
∂δf

∂t
+ v

∂δf

∂r
+ eEL

∂f

∂p
= 0. (4.23)

Averaging of this equation over the wave ensemble yields

∂f

∂t
+ v

∂f

∂r
= −e

〈
EL

∂δf

∂p

〉
. (4.24)

Here, unlike the linear treatment, there appears a rhs dependent on the wave
electric field; discarding this term leads to a constant and uniform solution for
the mean distribution function. Therefore, a new effect is related to this new
term in the rhs. To explicitly determine this term we subtract the averaged
equation from the exact one:

∂δf

∂t
+ v

∂δf

∂r
= −eEL

∂f

∂p
−
[
eEL

∂δf

∂p
−
〈
eEL

∂δf

∂p

〉]
. (4.25)

The difference between the exact and averaged second-order terms in the
square brackets describes nonlinearity of the plasma response, which we ne-
glect within the quasilinear approach. After discarding these terms this equa-
tion receives a simple form:

∂δf

∂t
+ v

∂δf

∂r
= −eEL

∂f

∂p
, (4.26)

whose solution is convenient to find using the Green function method. Equa-
tion for the Green function G(r,p, t; r′,p′, t′) accounting the initial condition
included in the rhs reads

∂G

∂t
+ v

∂G

∂r
= δ(r − r′)δ(p− p′)δ(t− t′). (4.27)

The rhs simply shows that at t = t′ we have r = r′ and p = p′; the
Θ-function is related to the casuality principle. Finding the Green function
is trivial:

G(r,p, t; r′,p′, t′) = δ(r − v(t− t′)− r′)δ(p− p′)Θ(t− t′). (4.28)

Then, solution of inhomogeneous equation (4.26) for δf is straightforwardly
expressed via the Green function:

δf(r,p, t) = −
∫

dr′dp′dt′G(r,p, t; r′,p′, t′)eEL
∂f(r′,p′, t′)

∂p′ . (4.29)
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Now, substituting this solution into Eq. (4.24) for the averaged distribution
function f , we obtain a closed form of equation for f , which does not include
the fluctuating component δf any longer:

∂f

∂t
+v

∂f

∂r
= −e2

〈
EL,α

∂

∂pα

∫
EL,β

〉
G(r,p, t; r′,p′, t′)

∂f(r′,p′, t′)
∂p′β

dr′dp′dt′.

(4.30)

Averaging over the wave ensemble denoted in Eq. (4.30) by the angular brack-
ets gives rise to appearance of the corresponding correlator of the Langmuir
wave electric field. Integrating over the space and momentum with the use of
the corresponding δ-functions and changing variables t− t′ = τ , we obtain

∂f

∂t
+ v

∂f

∂r
= e2

∂

∂pα

∞∫
0

dτKαβ(vτ, τ)
∂

∂pβ
f(r − vτ,p, t− τ), (4.31a)

Kαβ(r, τ) = 〈EL,α(r1, t1)EL,β(r2, t2)〉 , r = r1 − r2, τ = t1 − t2.
(4.31b)

To further simplify Eq. (4.31a) we note that the time variable τ is related
to the periods of the corresponding Langmuir waves, while we are interested
in the electron distribution evolution over much longer time, when the Lang-
muir wave energy density changes noticeably due to a relatively weak ampli-
fication, γ � ω. Thus, in the regime of weak amplification, we can neglect
this dependence of f on τ and, in addition, adopt that the mean distribution
function is spatially uniform; then we find

∂f(p, t)

∂t
=

∂

∂pα
Dαβ

∂

∂pβ
f(p, t), (4.32)

where

Dαβ = e2
∞∫
0

dτKαβ(vτ, τ) (4.33)

is the electron diffusion coefficient in the momentum space.
Equation (4.12) for the wave growth rate contains a wave–particle reso-

nant condition described by the δ-function, which means that only a certain
fraction of electrons satisfying the resonant condition contributes to the wave
amplification. From this perspective it would be reasonable to anticipate that
the amplified waves affect primarily the same resonant electrons, which, how-
ever, is not evident from the diffusion coefficient in form (4.33). To show the
resonant nature of the electron momentum diffusion explicitly, let us use the
Fourier representation of the electric field correlation tensor:

Kαβ(r, τ) =

∫
dkdωe−i(ωτ−kr)Kαβ(k, ω), (4.34)
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where

Kαβ(k, ω) =
kαkβ
k2

|E|2kδ(ω − ω(k)) (4.35)

is a longitudinal (along k) tensor, |E|2k is the spectral density of the Langmuir
wave electric field, and ω(k) ≈ ωpe for the Langmuir waves. Substitution of
Eqs. (4.34) and (4.35) into Eq. (4.33) and integration over dτ and dω give
rise to

Dαβ = πe2
∫
dk
kαkβ
k2

|E|2kδ(ω(k)−kv) = 4π2e2
∫
dk
kαkβ
k2

WL(k)δ(ω(k)−kv),

(4.36)

which explicitly contains the same resonant δ-function as Eq. (4.12) for the
growth rate confirming the resonant nature of the considered wave–particle
interaction. The second equality replaces the electric field spectral density by
the Langmuir wave energy density WL(k) = ∂(ωε′l/∂ω)|E|2k/8π ≈ |E|2k/4π.

Apparently, Eq. (4.32) with constant momentum-space diffusion coeffi-
cient (4.36) is valid for the case of a fixed, constant spectrum of the Langmuir
turbulence. However, if the Langmuir waves are generated by the unstable
electron population, then the turbulence energy is a function of time,WL(k, t)
defined by

dWL(k, t)

dt
= −2γWL(k, t), (4.37)

where the growth rate γ is supposed to be determined from Eq. (4.12) where a
time-dependent electron distribution function f(p, t) must be used instead of
the constant one f(p). Thus, the system composed of two coupled equations
(4.32) and (4.37) represents a closed set of equations specifying consistent
evolution of electrons and waves driven by the resonant wave–particle inter-
actions.

In a more general case of the magnetized plasma and an arbitrary (i.e.,
not necessarily longitudinal) mode the derivation is fundamentally similar,
although lengthy (Akhiezer et al. 1975; Melrose 1980). It results in the same
set of coupled equations (4.32) and (4.37), whose coefficients, however, are
different as they depend on the magnetic field and a given wave mode. It
is often convenient to use the cylindrical coordinate system with the z-axes
along the uniform magnetic field, given that only two components of the
particle momentum, p‖ and p⊥, enter the equation because the distribution
function does not depend on the azimuth angle ϕ. In this coordinate system
the momentum diffusion equation receives the form
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∂f(p, t)

∂t
= πQ2

∑
σ

∞∑
s=−∞

∫
d3k

1

p⊥
R̂

[
p⊥|Eσ|2k

∣∣∣∣e
σ
xs

|λ| Js(|λ|) + iηαe
σ
yJ

′
s(|λ|)

+
eσzp‖
p⊥

Js(|λ|)
∣∣∣∣
2

(R̂f(p, t))

]
δ(ωσ(k)− s|ωBα| − k‖v‖), (4.38)

where Q is the charge of considered particles, eσα is α component of the
polarization vector of the wave σ, ηα = Q/|Q| is either −1 or 1 depending
on the sign of the electric charge Q, ωBα = QB/(McγQ) is the relativistic
gyrofrequency of the particle, γQ is the Lorentz-factor of the particle Q,

R̂ =

[(
1− k‖v‖

ωσ(k)

)
∂

∂p⊥
+

k‖v⊥
ωσ(k)

∂

∂p⊥

]
, (4.39)

and summation over σ implies account of all available modes of the magne-
tized plasma. Accordingly, Eq. (4.38) must be supplied by equations for all
involved wave modes

dW σ(k, t)

dt
= −2γσW σ(k, t), or, equivalently,

d|E|2σ(k, t)
dt

= −2γσ|E|2σ(k, t),
(4.40)

whose frequencies and growth rates can be straightforwardly found by itera-
tions from general dispersion relation (3.27) written in the form of Eq. (4.7)
and assuming γσ � ωσ:

Δ′ = 0; γσ = −Δ′′/(∂Δ′/∂ω)|ω=ωσ . (4.41)

In principle, the presented set of equations allows calculating evolution of the
particle distribution functions and wave energy densities in the quasilinear
approximation, which often requires numerical computations. These quasi-
linear equations represent a foundation for analysis of electromagnetic insta-
bility saturation, e.g., for saturation of the electron cyclotron maser emission
responsible for many kinds of coherent radio emission from astrophysical
sources including solar radio spikes considered below in Sect. 10.3.

4.2.2 Saturation of Instabilities due to Wave–Particle
Interactions

Let us consider now main properties of the quasilinear evolution qualita-
tively. For simplicity, start with the Langmuir wave instability driven in a
free plasma by a 1D electron beam. As we have seen, for the beam instabil-
ity to develop, the 1D electron distribution function must contain a region
raising with p‖, which is often called “bump-on-tail” and this instability is
called “bump-on-tail” instability; see Sect. 4.1.1.
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First, we address a stationary solution of the quasilinear system by an-
alyzing corresponding stationary equations (4.32) and (4.37) with d/dt = 0.
The latter implies that either γ = 0 or WL(k, t) = 0, i.e., either the growth
rate or the wave energy density vanishes at the stationary case. Then the
stationary solution WL(k, t) = 0 implies that all the waves are absorbed by
the electrons, so there is no instability at the final stage, which means that
∂f/∂p‖ < 0 everywhere. The other solution, γ = 0, is different. Now the
wave energy can have finite (large) level; the condition γ = 0 ensures that
this level does not change in time. Apparently, see Eq. (4.12), this can only
happen when ∂f/∂p‖ ≡ 0 in the region of the original bump-on-tail, where
initially ∂f/∂p‖ > 0, which is commonly called the plateau formation.

Note that these two possible stationary solutions for the wave energy rep-
resent also stationary solutions for the electron distribution function. Indeed,
if WL(k, t) = 0, then Dαβ(p, t) = 0 as well resulting in df/dt = 0. For the
other solution WL(k, t) �= 0 and, thus, Dαβ(p, t) �= 0; however, ∂f/∂p‖ ≡ 0
in the resonant region, implying again df/dt = 0.

In the case of magnetized plasma there are two similar stationary so-
lutions; however, instead of 1D plateau, a so-called generalized plateau can
develop, when the condition R̂f = 0 is fulfilled. Microscopically, however, the
situation here is much more complicated: there are more wave modes and
more resonances (Cherenkov and cyclotron). In particular, the saturation
process now can have a few stages, corresponding to quasilinear evolution of
these different wave modes excited due to different resonances. The detailed
time evolution of the quasilinear relaxation process is highly dependent on
the initial conditions, e.g., initial distribution function of the unstable parti-
cles and plasma parameters, and will differ substantially for the beam, loss
cone, ring, etc. particle distributions, as well as on particle source, loss, and
wave escape (Treumann 2006; Kuznetsov and Vlasov 2012).

4.3 Plasma Nonlinearity and Wave–Wave Interactions

In addition to the quasilinear wave–particle interactions the waves can in-
teract with each other due to plasma nonlinearity. There are generally two
kinds of nonlinear processes: wave coalescence or decay and stimulated wave
scattering on the plasma particles. To understand the idea of the wave–wave
interactions it is convenient to use quantum language and introduce the num-
ber of quasiparticles or plasmons as

Nσ(k) =
W σ(k)

�ωσ(k)
, (4.42)

where �ωσ(k) is energy of a single plasmon. Using this language it is simple
to evaluate if a given three-wave process of the wave coalescence or decay

σ′ ↔ σ′′ ± σ, (4.43)
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where σ′′, σ′, and σ are three different waves, is possible at all. Indeed,
conservation of the energy and momentum requires that

k′ = k′′ ± k; ωσ
′
(k′) = ωσ

′′
(k′′)± ωσ(k), (4.44)

where the dispersion laws, e.g., ω = ωσ(k), are taken into account.

4.3.1 Three-Wave Interactions and Nonlinear
Scattering on Particles

Linear plasma dispersion relation (3.8) used earlier is apparently the first
term of a more exact nonlinear dispersion relation

Dα(ω,k) = εαβ(ω,k)Eβ(ω,k) + δDα(ω,k), (4.45)

where εαβ is the standard dielectric permeability tensor, while

δDα(ω,k) =

∫
dω1dk1εαβγ(ω,k;ω1,k1)Eβ(ω − ω1,k − k1)Eγ(ω1,k1)

+

∫
dω1dk1dω2dk2εαβγδ(ω,k;ω1,k1;ω2,k2)Eβ(ω−ω1,k−k1)

Eγ(ω1−ω2,k1−k2)Eδ(ω2,k2)+ . . . (4.46)

Substituting nonlinear material equation (4.45) into Maxwell equations like-
wise in Chap. 3, we obtain

TαβEβ = −δDα, (4.47)

where, compared with Eq. (3.11), the nonlinear plasma response vector δDα

enters instead of external electric current, (4πi/ω)jextα .
It is easy to write a formal solution of Eq. (4.47), which is similar to

Eq. (3.11),
Eβ(ω,k) = −Aβν(ω,k)δDν(ω,k), (4.48)

where Aαβ(ω,k) = (T̂ (ω,k)−1)αβ is a tensor inverse to the Maxwellian one
(the inverse tensor for short), Eqs. (3.16) and (3.17); see Chap. 9 for more
detail. To derive equations for energy densities, we multiply Eq. (4.48) by
E∗
α(ω

′,k′) and average the obtained equation over periods and random phases
of waves. The random phase approximation is valid when the instability spec-
tral bandwidth Δω is much larger than the linear growth rate of this unstable
wave γσ, Δω 
 γσ, which is typically the case in astrophysics conditions;
opposite relation holds in laboratory laser experiments with coherent signals.

In the rhs of Eq. (4.48) there are combinations of up to four amplitudes
of electric field. To perform the averaging we use the following evident ex-
pressions for the first and second correlators:

〈Eα(ω,k)〉 = 0; 〈Eβ(ω,k)E∗
α(ω

′,k′)〉 = Kαβ(ω,k)δ(ω − ω′)δ(k − k′),
(4.49)
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Kαβ(ω,k) = (EβE∗
α)ω,k is the spectrum of the wave electric field, e.g.,

Eq. (4.35) in case of Langmuir waves. The third-order correlator, as any other
odd-order amplitude combination, vanishes for zero-order amplitudes of the
electric field, 〈E0

α(ω,k)E
0
β(ω

′,k′)E0
γ(ω

′′,k′′)〉 = 0. However, since we take
into account terms up to the fourth order over the field amplitude, we have
to write down the amplitudes more accurately, taking into account the plasma
nonlinearity; in the first order from Eq. (4.48) we find

Eα(ω,k) = E0
α(ω,k)−Aαν(ω,k)

∫
dω1dk1ενβγ(ω,k;ω1,k1)

× Eβ(ω − ω1,k − k1)Eγ(ω1,k1). (4.50)

Therefore, the third-order correlator gives a contribution of the same order
over the field amplitude as the fourth-order correlator. Then, straightforward
but somewhat lengthy manipulations yield the nonlinear equation for the
wave spectrum:

∂

∂t

∂ωTh
αβ

∂ω
Kαβ(ω,k) −

∂

∂r

∂ωTh
αβ

∂k
Kαβ(ω,k) = 2iωεaαβ(ω,k)Kαβ(ω,k)

+ωIm

∫
dω′dk′ [A∗

αβ(ω,k)Sανμ(ω,k;ω
′,k′)S∗

βδπ(ω,k;ω
′,k′)Kμπ(ω

′,k′)Kνδ(ω
′′,k′′)

+2Aνδ(ω
′′,k′′)Sανμ(ω,k;ω′,k′)S∗

δβπ(ω
′′,k′′;ω,k)Kμβ(ω

′,k′)Kαπ(ω,k)

−2Vαβγδ(ω,k;ω
′,k′)Kβδ(ω

′,k′)Kαγ(ω,k)
]
, (4.51)

where the superscripts h and a denote the hermitian and antihermitian com-
ponents of a tensor, respectively, ω′′ = ω − ω′, k′′ = k − k′, the nonlinear
response tensors Sαβγ and Vαβγδ are defined by nonlinear permittivities as
follows:

Sαβγ = εαβγ(ω,k;ω
′,k′) + εαγβ(ω,k;ω

′′,k′′), (4.52a)

Vαβγδ = εαβγδ(ω,k;ω + ω′,k + k;ω′,k′) + εαβδγ(ω,k;ω + ω′,k + k;ω,k),
(4.52b)

Typically, a main contribution to the wave–wave interactions comes from the
first nonlinear response tensor, Sαβγ , while the second one, Vαβγδ, is less
important and is not discussed further in any detail.

Now it is convenient to express the electric field spectrum Kαβ(ω,k) via
the energy density of the given wave mode, W σ(k), which contains both
electromagnetic energy and kinetic energy of the plasma particle oscillations
involved:

Kαβ(ω,k) =
∑
σ

Kσ
αβ(ω,k) = 4π

∑
σ

W σ(k)Rσe
σ∗
α eσβδ(ω − ωσ(k)), (4.53)

where eσα is the polarization vector component of a given wave mode σ, ωσ(k)
is the corresponding eigen-frequency,

Rσ =

(
∂ωεl

∂ω

)−1

ω=ωl

or Rσ =

(
2nσ

∂nσε
l

∂ω

)−1

ω=ωσ

, (4.54)
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for the longitudinal (originating from dispersion relation εl = 0) and all
other waves, respectively. The presentation in terms of the wave-mode energy
density W σ(k) instead of Kσ

αβ(ω,k) is especially helpful when the electric
field energy density constitutes only a minor fraction of the entire wave energy
density, e.g., for the MHD modes.

Substitution of expression (4.53) into Eq. (4.51) shows that, in contrast
to the linear theory, the wave modes are not independent any longer; instead,
evolution of a given wave mode is defined by evolution and wave–wave interac-
tions of all other wave modes. To obtain meaningful equations for the energy
density evolution of a given wave mode, we have yet to specify the nonlinear
response tensors and the explicit form of inverse tensor. The full derivation
can be found elsewhere, see Tsytovich (1970), Pustovalov and Silin (1972),
Melrose (1980) and other books on plasma physics or plasma astrophysics;
here we give the results for some simple cases, which will be considered below
in more detail. For example, in a cold magnetized plasma for a process sat-
isfying ω/k 
 vTe, ω

′/k′ 
 vTe, and ω
′′/k′′ 
 vTe, the nonlinear response

tensor is

Sαβγ = i
e

m

ω2
pe

ωω′ω′′

[
k′ν
ω′′ χαγ(ω)χνβ(ω

′′)+
k′′ν
ω′ χαβ(ω)χνγ (ω

′)− kν

ω′ χαβ(ω
′′)χνγ(ω

′)

− kν

ω′′ χαγ(ω
′)χνβ(ω

′′)−k′ν
ω

χγβ(ω
′′)χαν(ω)− k′′ν

ω
χβγ(ω

′)χαν(ω)

]
, (4.55)

where, as usual, e and m are the electron charge and mass,

χ11 =χ22 =
1

1−u ; χ12 =χ∗
21=

−i√u
1−u ; χ33=1; χα3 =χ3α = 0; u=

ω2
Be

ω2
.

(4.56)

If, in addition, the frequency ω′′ is small, ω′′ � ω′, ω, which is, e.g., the case
of a high-frequency wave scattering on a low-frequency wave with a small
change of the (high) frequency, we can neglect all terms having ω or ω′ in
denominators in the square brackets, which yields

Sαβγ = −i e
m

ω2
pe

ω2ω′′2χαγ(ω)k
′′
νχνβ(ω

′′). (4.57)

In another important parameter regime, ω′′/k′′ � vTe, while still ω/k, ω′/k′


 vTe, we have:

Sαβγ = i
ek′′

mω2

δεeβν(ω
′′, k′′)k′′ν
k′′

χαγ(ω), (4.58)

where δεeβν(ω
′′, k′′) = (εeβν − δβν) is the partial electron dielectric perme-

ability accounting for the spatial dispersion (thermal motion of the plasma
electrons).
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The wave–wave processes imply a raise or decay of the wave energies in-
volved and so arise due to antihermitian part of the inverse tensor Aαβ(ω,k).
As we saw in Chap. 3, in the absence of dissipation, both Maxwellian and
inverse tensors are hermitian; thus the only antihermitian contribution to the
inverse tensor can come from zeros of the Maxwellian tensor, which repre-
sent poles of the inverse tensor, Eqs. (3.17), (3.32) and (3.33). These poles
(resonances), as has been explained in Chap. 3, correspond to various plasma
eigenmodes; therefore, the nonlinear processes originating from this resonant
part of the inverse tensor describe nonlinear interactions between various
wave modes, i.e., wave–wave interactions. However, if we take onto account
the collisionless dissipation of the wave on the thermal particles (Landau
damping), another, nonresonant contribution component of the inverse ten-
sor, proportional to the antihermitian part of the dielectric tensor, can come
into play. In this case only two waves are involved into the interaction, the
original one and the final (scattered) one and the background particles, whose
role is to absorb the initial wave and then to produce the final wave. For this
reason, this kind of process is called stimulated scattering of waves on par-
ticles. The main nonresonant term of the inverse tensor expansion has the
form

Aαβ(ω,k) = i
kαkβ
k2

δε′′i (ω,k)
|εl(ω,k)|2 , (4.59)

where δε′′i (ω, k) is the imaginary part of the ion dielectric permeability and
εl(ω, k) is the longitudinal permeability. Substitution of Eqs. (4.53) and (4.59)
along with the nonlinear response tensor into Eq. (4.51) allows finding varia-
tion of the wave energy density due to the stimulated scattering on ions:

d(s)

dt
W (k)=8πW (k)R(k)

∫
dk′W (k′)R(k′)

Sαβγ(ω,k;ω
′,k′)Sνμπ(ω′′,k′′;ω′,k′)eπ(ω,k)e∗α(ω,k)eγ(ω′,k′)e∗μ(ω′,k′)A∗

βν(ω
′′,k′′),

(4.60)

where the superscript (s) stands for “scattering”; d/dt = ∂/∂t+ vg∂/∂r, vg
is the wave group velocity.

Account of the resonant part of the inverse tensor describes various wave
coalescence and decay processes:

d(c)

dt
W (k) = − 4π2ω(k)

∫
dk′

∞∫
−∞

dω′Q
[
ω(k)signγ(ω,k)W (k′)W (k′′)

− ω′′signγ(ω′′,k′′)W (k)W (k′)− ω′signγ(ω′,k′)W (k)W (k′′)
]

× [δ(ω′ − ω′(k′))δ(ω′′ − ω′′(k′′)) + δ(ω′ + ω′(−k′))δ(ω′′ + ω′′(−k′′))

+ δ(ω′ − ω′(k′))δ(ω′′ + ω′′(k′′)) + δ(ω′ + ω′(−k′))δ(ω′′ − ω′′(−k′′))
]
,

(4.61)
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where γ(ω,k) is the imaginary part of the corresponding wave, and the core
Q has the form:

Q ≡ |Sαβγ(ω,k;ω′,k′)e∗α(ω,k)e
∗
β(ω

′′,k′′)eγ(ω′,k′)|2R(k)|ω=ω(k)R(k′)R(k′′).

(4.62)

Note, that in many cases, the plasma dielectric tensor derived within the cold
plasma approximation, εαβ = δαβ − (ω2

pe/ω
2)χαβ , applies; for corresponding

wave modes it is convenient to use Maxwell equation in the form of Eq. (3.12)
to obtain

χαβkβ =
ω2

ω2
pe

kα (4.63)

and

χαβeβ =
ω2

ω2
pe

[
(1− n2

σ)eα + n2
σ

(k · e)kα
k2

]
. (4.64)

We will be returning to the wave coalescence and scattering in astrophysical
conditions below.

4.3.2 Wave Turbulence in a Plasma

Consider longitudinal plasma waves, i.e., the Langmuir waves in the case
of free plasma, upper- or lower-hybrid waves in case of cold magnetized
plasma, or other potential waves (e.g., Bernstein modes) in case of hot plasma.
Although all kinds of resonant and nonresonant processes are possible for
these waves, the stimulated scattering of the plasma waves on thermal ions
dominates in most of the cases, so the equation for the plasma wave energy
density receives the form

dWl(k, t)

dt
= −2γlWl(k, t) + 2γsWl(k, t), (4.65)

where γl is the quasilinear growth/damping rate and

γs =−4πe2ωl(k)

m2ω4
pe

Rl(k)

∫
k′′2dk′Wl(k

′, t)Rl(k
′)(κ·κ′)2

δε′2e (ω′′,k′′)δε′′i (ω
′′,k′′)

|εl(ω′′,k′′)|2 ,

(4.66)

where κ = k/k, is the stimulated scattering contribution derived for the
plasma waves from Eq. (4.60).

Although the nonlinear term is rather complicated we can make a num-
ber of general conclusions based on it. First of all, we note that sign of this
term is primarily specified by a convolution ofWl(k

′) and δε′′i (ω
′′,k′′), which

is proportional to ω′′ = ω − ω′, see Problems 3.5 and 3.6. This means that
the process of the stimulated scattering of waves on thermal ions results in
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a decrease of the wave frequency. Therefore, an elementary process of the
stimulated scattering on thermal ions can be understood as absorption of
an initial wave at a given frequency ω′ followed by an immediate emission
of another wave with a frequency ω = ω′ − ω′′ < ω′, i.e., the wave energy
decreases by a small value �ω′′ after any single scattering episode, which
implies the corresponding energy loss of the wave. Note, that this damping
is different from a more usual collisional or collisionless (Landau) damping,
which remains exponentially small for the plasma waves with the wavelength
much larger than the Debye shielding radius. Here, the two waves, with fre-
quencies ω and ω′, produce a “beat” oscillation due to plasma nonlinearity
at a much lower frequency ω′′ and this beating wave is absorbed (via the col-
lisionless Landau damping) by the thermal ions. The corresponding process
is sometimes called the nonlinear Landau damping.

Although in terms of spectral evolution the stimulated scattering is al-
ways directed toward lower frequencies, this spectral “drift” can have var-
ious implications for the spectral energy density evolution in the k-space
depending on the specific dispersion of the given wave mode. Indeed, for the
Langmuir waves in a free plasma, the dispersion relation does not depend on
k direction; therefore, the scattering results in a corresponding decrease of
the absolute k value, whose directions isotropize, so a more or less isotropic
Langmuir turbulence can be expected.

The situation is qualitatively different in a magnetized plasma, where a
large number of longitudinal wave mode is possible, although we consider
two modes only, the lower- and upper-hybrid waves, which is sufficient for
illustration. For a lower-hybrid (l h) wave in a plasma with ωBe � ωpe we
have ωlh ≈ ωBe cos θ, Eq. (3.109), where θ is the angle between the magnetic
field and the wave vector. Apparently, the condition ω(k) < ω′(k′) translates
here to cos θ < cos θ′, which implies a drift of the lower-hybrid waves toward
transverse to the magnetic field direction, i.e., without other competing pro-
cesses, the lower-hybrid turbulence would accumulate around π/2 and form
a highly anisotropic narrow pancake distribution.

In contrast, the upper-hybrid waves obey the dispersion ωuh ≈√
ω2
pe + ω2

Be sin
2 θ, Eq. (3.109), i.e., the same condition ω(k) < ω′(k′) trans-

lates here to sin2 θ < sin2 θ′, which now implies an opposite drift of the
upper-hybrid waves toward the magnetic field direction. This means that the
upper-hybrid waves tend to form a 1D distribution of the wave vectors along
the magnetic field direction. Apparently, account of the spatial dispersion
results in corresponding terms in the wave dispersion containing the absolute
value of the wave vector, so the exact path of the wave spectrum evolution
will include both drifts—the angular and along the k value, whose relative
importance depends on a given parameter combination.
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Let us consider a stationary solution of Eq. (4.65), which is set up by
d/dt = 0 implying that the quasilinear damping/growth rate is compensated
by the nonlinear scattering rate,

γl = γs. (4.67)

It is clear that the set of coupled equations, Eqs. (4.38) and (4.65), cannot
have a stationary solution other than W = 0. Indeed, any other solution for
the wave energy density would imply a plateau formation in the distribution
function thus, γl = 0 and then γs = 0, which requires W = 0. However, for a
given fixed particle distribution function [e.g., when the distribution function
variation due to the quasilinear diffusion, Eq. (4.38), is compensated by an
unspecified build up process, which means that a term for a particle source
must be added in that equation], a stationary solution of Eq. (4.65) defined
by Eq. (4.67) is possible.

Nevertheless, as we show below, such a stationary solution is not of
practical use because it cannot be stable. Adopt that W = W0(k) is a
stationary solution defined by Eq. (4.67). Then, adopt that a small per-
turbation δW0(k, t) is superimposed on this stationary solution, W (k, t) =
W0(k) + δW0(k, t), which also implies γs = γs0 + δγs = γl + δγs(k, t). Sub-
stitution of this spectral energy density and the nonlinear growth rate into
Eq. (4.65) and cancelation of equal terms with the account of Eq. (4.67) yields

dδW (k, t)

dt
= 2δγs(k, t)W0, (4.68)

where the second-order term is discarded. Here the nonlinear scattering rate
δγs is specified by δW via integration (4.66). As we have discussed, Eq. (4.66)
is sign alternating because it contains a first power of ω′′; thus, some of
possible perturbations δW will result in a positive growth rate at a region of
k-space occupied byW0(k), which means that the stationary spectral density
of the waves W0(k) is unstable. Therefore, all stable solutions of Eq. (4.65)
are nonstationary.

Let us now consider what kind of nonstationary solution we can ex-
pect. To do so we assume that the waves are generated by resonant par-
ticles in a limited region of the k-space, where γl is negative, the reso-
nant region, and introduce the wave energy density in this resonant region,
w(t) =

∫
res

W (k, t)dk. Initially, while the nonlinear term is small, this wave
energy density experiences an exponential growth. After some time, the non-
linear term becomes important and the nonlinear scattering of the waves
starts to transfer the wave energy toward smaller frequencies, which implies
a decay of w(t). Sooner or later the wave energy leaves the resonant re-
gion, i.e., the nonlinear term starts to enhance the energy density outside the
resonant region, which we call a nonresonant region and introduce the corre-
sponding nonresonant energy density w∗(t) =

∫
nonres

W (k, t)dk. Integrating
Eq. (4.65) over the resonant and nonresonant regions respectively, we obtain
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two approximate equations for w(t) and w∗(t) (Zaitsev and Stepanov 1975;
Stepanov 1980; Zaitsev and Stepanov 1983):

dw

dτ
= γ̄w − ζww∗ dw∗

dτ
= −γ̃w∗ + ζww∗ (4.69)

where γ̄ is a characteristic (positive) growth rate in the resonant region,
γ̄ = −2〈γl〉res > 0, γ̃ = 2〈γl〉nonres > 0 is the effective damping rate in
the nonresonant region, ζ is the characteristic absolute value of the core of
nonlinear term (4.66). Order of magnitude estimate of the core accounting
the explicit form of dielectric permittivity components entering Eq. (4.66)
yields

ζ ∼ 0.1
ωpe

nekBT
, (4.70)

where nekBT is the plasma thermal energy density. Equation (4.69) rep-
resents a set of the Lotka–Volterra equations, known originally from a
“predator–prey” interaction problem, whose properties are well studied. It is
known, in particular, that this system allows periodic solutions, which can be
visualized by closed trajectories around a singular stationary center-like point
w0 = γ̃/ζ and w∗

0 = γ̄/ζ at the plane w vs w∗, see Fig. 4.1. Small-amplitude
(sinusoidal) oscillations arise when the departure of the energy densities from
the stationary solution is small, the oscillation period is

τ =
2π√
γ̄γ̃
. (4.71)

For large-amplitude oscillations the period depends on the wave energy

τ =
1

γ̃
ln

w

nekBT
∼ 1

γ̃
ln

γ̄

ζw∗(t = 0)
. (4.72)

Although the approximation used to reduce the original integro-differential
nonlinear equation to the Lotka–Volterra set of two coupled differential equa-
tion seems to be too crude, it, nevertheless, correctly describes qualitative
behavior of the wave energy density. To show this, Fig. 4.2 presents two ex-
amples of numerical solutions of original integro-differential equation (4.65)
with nonlinear scattering rate (4.66) for two different nonstationary initial
distribution functions of fast electrons (Korsakov and Fleishman 1998).

The type of solution depends substantially on the resonant region, i.e.,
eventually, on the initial particle distribution. The first of them provides a
relatively narrow resonant region, Fig. 4.2a, which results in oscillatory solu-
tion for the plasma wave energy density W (Fig. 4.2b) in qualitative agree-
ment with simplified Lotka–Volterra description of the nonlinear evolution of
the wave energy density. Most of the plasma wave energy density is concen-
trated in the narrow frequency range Δω/ωpe ≈ 2.5% and the bandwidth
becomes even smaller, ≈1%, after transition to oscillatory part in Fig. 4.2b.
Figure 4.2c displays logarithmic derivative of W over the time; flat regions
of this curve correspond to exponential growth or decay of W .
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Figure 4.1: Phase portrait representation of solutions of the Lotka–Volterra equations.
For small deviations of the resonant and nonresonant energy densities from their steady-
state values w and w∗ the phase trajectory is circular indicative of small-amplitude si-
nusoidal oscillations of the energy densities. As the deviations increase (bigger distance
from the center to the curve), the phase portrait deviates from the circular one stronger
and stronger, so the oscillations become highly nonlinear with time profile strongly dif-
ferent from the sinusoidal one. The regime of irregular pulsations (obtained from the
integro-differential equation) can be represented by the outmost wavy curve.

Let us quantitatively compare the numerical results with the predictions
of the simplified Lotka–Volterra approach discussed above. The numerical
period, determined directly from the plot, equals to

τ = 365γ−1
0 . (4.73)

Apparently, here we deal with a large modulation regime, so the correspond-
ing Lotka–Volterra oscillation period is defined by Eq. (4.72), i.e., it is recip-
rocal to the effective damping rate of the waves in the nonresonant region.
Note that the effective damping rate is supposed to deviate from the maxi-
mum damping rate in the nonresonant region because only a limited spectral
range marked by numbers 1–4 in Fig. 4.2a takes part in the nonlinear wave
transformation. In contrast, the effective growth rate, γ̄, is well defined by
the maximum growth rate, γmax = 4.3 · 10−2γ0 for this run. Now, to es-
timate the effective damping rate, we consider the logarithmic derivative
shown in Fig. 4.2c, where the positive and negative flat regions of the loga-
rithmic derivatives have comparable absolute values, which implies γ̃ ≈ γ̄.
Substituting the maximum growth rate γmax for γ̃ in Eq. (4.72) we obtain

τ ∼ γ̃−1 ln 107 ∼ 20γ−1
max = 375γ−1

0 , (4.74)
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Figure 4.2: (a) k-plane with the region of positive growth rate (thick hatching) for a
first particle distribution, curves of constant frequency are shown by solid lines; nonlinear
wave transformation mainly occurs in regions 1–4; the following dimensionless variables

N = kde, τ = γ0t, γ0 = πωpe
nb

n0
are used, W is normalized to W0 =

√
2π5/2 m2

e
v2

Te

e2ωpe

nb

n0
,

ωpe

ωBe
= 5, so the isotropic expression (see Problem 3.5) for imaginary part of ion dielectric

permeability can be used; (b) Time dependence of the plasma wave energy density, (c)
The logarithmic derivative; (d–f) The same for the second particle distribution; nonlinear
wave transformation mainly occurs in regions 1–5; (Korsakov and Fleishman 1998).

in remarkable agreement with numerical result (4.73). Thus, we can correct
a poorly defined expression for the oscillation period, Eq. (4.72), to a well-
defined one

τ =
1

γmax
ln

γmax

ζw∗(t = 0)
. (4.75)

In the second case, Fig. 4.2d, there is a much broader instability re-
gion, so the nonlinear wave interaction becomes more complicated. As a
result the plasma wave energy density does not oscillate periodically, while
displays irregular pulsations, Fig. 4.2e. Figure 4.2f shows the corresponding
logarithmic derivative with a rather complicated (nonexponential) shape of
each peak containing overexponential growth phase. This irregular regime is
qualitatively different from oscillating one; it cannot be obtained from the
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simplified Lotka–Volterra system. However, one can still use Eq. (4.75) to
roughly estimate average time between the neighboring peaks in Fig. 4.2e.

The real plasma turbulence composed of high-frequency potential modes
in a magnetized plasma can be even more complicated as it includes various
wave modes such as upper- and lower-hybrid waves, Bernstein modes, and
lower-frequency ion-sound waves if the ion temperature is much lower than
the electron temperature. In this case a number of coalescence processes can
become essential, in particular, scattering of Langmuir waves on ion-sound
waves. Since the ion-sound wave frequency is much lower than that of the
Langmuir waves, this process is somewhat similar to the stimulated scattering
on thermal ions, although its nonlinear scattering rate can strongly exceed
that for the stimulated scattering. Nevertheless, the discussed above regimes
of periodic or irregular oscillations are highly typical for plasma wave tur-
bulence and widely employed for interpretation of solar and stellar coherent
radio bursts, see examples in Chap. 10 below.

Problems

4.1 Consider the beam instability for a “hot” beam, with account of the
thermal scatter of the beam electrons (v′Te). Determine conditions when the
thermal scatter can be discarded. Find the wave growth rate for a “warm”
beam, when resonant and nonresonant contribution of the beam to the di-
electric permittivity are comparable to each other.

4.2 Use Eq. (4.42) and derive equation for the three-wave processes in terms
of plasmon numbers Nσ(k) from Eq. (4.61) for the energy density. Prove that
the total number of the involved plasmons is conserved.

Answers and Solutions

4.1 Use longitudinal dielectric permittivity described by Eq. (3.111a) with
the account of functions Z(s) for the main plasma and Z(s′) for the beam
electrons (where s′ = (ω − ku)/kv′Te) given by Eq. (14) from Problem 3.5.
For a hot beam the imaginary contribution (function Y (s′)) will dominate.
In this case, assuming the growth rate is small compared with the frequency,
one finds γres =

√
π/8(ω′

pe/kv
′
Te)

2ωpe. Comparison of the resonant and non-
resonant beam contributions to the dielectric permittivity suggests that the
resonant contribution dominates only for rather weak (tenuous) beams until
γmax � kv′Te; otherwise, when γmax 
 kv′Te the resonant contribution can be
discarded and “HD” approximation of cold monoenergetic beam performed in
Sect. 4.1.1 applies. For a warm beam we, thus, have γmax ∼ kv′Te. To obtain a
more accurate answer one has to retain both resonant and nonresonant beam
contributions to the dielectric permittivity and solve for γ. Note that the
nonresonant instability appears to be much stronger than the resonant one.



Chapter 5

Nonlinear MHD Waves
and Discontinuities

Linear waves considered in Chap. 2 describe perturbations with small am-
plitudes. In the astrophysical conditions, however, a strong energy release
gives often rise to large-amplitude perturbations, which cannot be fully ac-
commodated by the linear theory and so require non-linear treatment. In
this chapter we consider a number of important examples of the nonlinear
waves—simple waves, solitons, and discontinuities—with the use of exact or
approximate analytical methods.

5.1 Simple MHD Waves

Here we obtain a family of exact MHD solutions, called the simple waves,
under the following simplifying assumptions:

1. The dissipation can be neglected entirely: ν = 0, νm = 0, and χ = 0.

2. One-dimensional geometry, all dependent variables depend on x and t
only.

3. All macroscopic parameters u(ϕ), B(ϕ), ρ(ϕ) . . . are single-valued
functions of a combination ϕ(x, t) of the coordinate and time. Equiv-
alently, all but one macroscopic parameters can be treated as func-
tions of this last parameter. If the functions become multivalued at
some point, the solution becomes invalid. As an example, linear plane
monochromatic waves represent a special case of the simple waves with
ϕ(x, t) = kx− ωt.

G.D. Fleishman and I.N. Toptygin, Cosmic Electrodynamics, Astrophysics
and Space Science Library 388, DOI 10.1007/978-1-4614-5782-4 5,
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The adopted conditions ensure the simple waves to satisfy a system of or-
dinary nonlinear differential equations with a single independent variable. In
some cases, this equation set can be integrated analytically. The first math-
ematician who studied similar solution within standard HD was Bernhard
Riemann.

From equation ∇ ·B = 0 and assumption that the solution depends on
x coordinate only, we deduce

Bx = const. (5.1)

Let us transform the equations using the prime (′) mark for the derivative
over ϕ (e.g., u′x denotes derivative of ux, the x-component of the velocity u,
over ϕ). For example, for the continuity equation, we have

∂ρ

∂t
+ ux

∂ρ

∂x
+ ρ

∂ux
∂x

= ρ′
(
∂ϕ

∂t
+ ux

∂ϕ

∂x

)
+ u′xρ

∂ϕ

∂x
= 0.

We note that any macroscopic variable is constant (at a given time) at sur-
faces x = const, at which, in particular,

ϕ(x, t) = const, (5.2)

and which moves along axes Ox. The velocity of the planes dx/dt =
(∂x/∂t)ϕ = vph can apparently be called the phase velocity, as it is anal-
ogous to the phase velocity of the plane monochromatic waves. Taking the
derivative of Eq. (5.2), we obtain

∂ϕ

∂t
= −vph ∂ϕ

∂x
, (5.3)

which reduces the continuity equation to the form

ρ′v − u′xρ = 0, (5.4)

where v = vph − ux is the propagation speed of the simple wave in the co-
moving reference frame. Other equations can be transformed in a similar way,
which in projection to the axes yields

u′xv − p′/ρ− (ByB
′
y +BzB

′
z)/4πρ = 0, (5.5a)

u′yv +BxB
′
y/4πρ = 0, (5.5b)

u′zv +BxB
′
z/4πρ = 0, (5.5c)

B′
yv − u′xBy + u′yBx = 0, (5.5d)

B′
zv − u′xBz + u′zBx = 0, (5.5e)
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s′v = 0, (5.5f)

p = p(s, ρ). (5.5g)

Condition (5.1) and nonlinear equations (5.4) and (5.5) compose a closed
set of equations for the problem considered. We proceed now to analysis of
various kinds of the simple MHD waves.
Note that if v �= 0 then Eq. (5.5f) yields s′ = 0, i.e., s = const; thus, the
simple waves with nonzero phase velocity represent motions with constant
entropy. This allows to introduce the sound speed

cs =

√(
∂p

∂ρ

)
s

(5.6)

and substitute p′ = c2sρ
′ into Eq. (5.5a). Equation (5.6) describes a local sound

speed value in the plasma without magnetic field. Note that the sound speed
depends on local density and so varies within a simple wave in a general case.

5.1.1 Entropy Simple Waves

Let us start from the waves with a variation of the entropy, s′ �= 0. In this
case Eq. (5.5f) yields

v ≡ ve = 0, (5.7)

which means that the entropy wave is at rest in respect to the fluid and can
only be transferred by the fluid motions.

Within the Hall MHD there are two kinds of the entropy waves; see
Sect. 2.4.2. In the first kind of the entropy simple waves Bx �= 0, and so the
equations consequently give rise to the equalities u′x = 0, B′

y = B′
z = 0, u′y =

u′z = 0, and p′ = 0; therefore, the corresponding parameters are constant in
this wave. The plasma density experiences variations linked with the entropy
variations by Eq. (5.5g) and constrained by the condition p = const. Thus,
when the dissipative processes are negligible, the shape of the entropy wave
does not change, while the wave itself represents a heated or cooled region
moving together with the plasma. In the real conditions, the heat conduction
(diffusion of the heated particles) gives rise to a slow dissipation of the entropy
excitation.

The second kind of the entropy wave takes place for Bx = 0; in this case
Eqs. (5.4) and (5.5a) require constancy of the longitudinal speed and the total
pressure

ux = const, p+
B2

8π
= const; (5.8)

the derivatives u′y and u′z can be arbitrary.
Two described cases are closely connected with the corresponding linear

entropy perturbations [see Eqs. (2.46) and (2.47)]. The first case, Bx �= 0,
leads to b = 0, u = 0, and p = 0 in the linear theory and to By = B0y
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and Bz = B0z in the considered here nonlinear theory, so this two cases
are entirely coincident with each other. In the second case, Bx = 0, in linear
approximation, we have B = B0+b; thus, Eq. (5.8) yields B2 ≈ B2

0+2b·B0,
and so p + b · B0/4π = const − B2

0/8π = const′ in full agreement with
Eq. (2.47).

5.1.2 Alfvén Simple Waves

The Alfvén simple waves include those plasma motions in which both the
entropy and the density are constant:

ρ = const. (5.9)

Now, Eqs. (5.4)–(5.5a) yield

ux = const, B2
y +B2

z ≡ B2
⊥ = const, (5.10)

while Eqs. (5.5b)–(5.5e) split into two identical pairs

u′yv +
BxB

′
y

4πρ
= 0, u′yBx +B′

yv = 0 (5.11)

and similar equations for u′z and B
′
z . Equation (5.11) specify the Alfvén speed

of this simple wave relative to the plasma

v ≡ vAx = ± |Bx|√
4πρ

. (5.12)

This velocity is constant, which follows from Eqs. (5.1) and (5.9). The Alfvén
simple wave is evanescent for Bx = 0, because this condition is compatible
only with uniform solution of the equations u = const and B = const.
Equation set (5.11) and the identical set for u′z, B′

z give rise to the rela-
tionship between the velocity u of the medium and the magnetic field in the
simple Alfvén wave:

u = ∓ B√
4πρ

. (5.13)

The integration constant is selected in such a way to provide u = 0 for
B = 0. The minus sign must be selected if the signs of Bx and vAx are
the same, while the plus sign corresponds to the case when their signs are
opposite.

An exact partial solution for the Alfvén simple wave has the form of
the plane, circularly polarized, monochromatic wave propagating along the
uniform magnetic field:

By = B⊥ cos k[x− (vAx+ ux)t], Bz = B⊥ sink[x− (vAx + ux)t]. (5.14)
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For arbitrary propagation angle of the simple Alfvén wave to the uniform
magnetic field B0, however, no exact analytical solution is known. Approxi-
mate solution, valid for the small amplitude wave (see Sect. 2.4.2 for greater
detail), is linearly polarized and has the form

b(r, t) = b0 cos(k·r − ωAt), (5.15)

where k is the wave vector,

ωA = ± |k·B|√
4πρ

(5.16)

is the Alfvén wave frequency, and the amplitude b0 is transverse to the ex-
ternal field B0. Condition (5.10) requiring constancy of the absolute value
of the magnetic field is fulfilled in this case to the first order over the small
value b0/B0. The amplitude b0 is transverse to the wave vector k as well.
Since the phase velocity of the Alfvén wave is constant (because both the
magnetic field and the plasma density are constant), the shape of this wave
does not change during propagation.

5.1.3 Fast and Slow Simple Waves

Consider now those solutions of Eqs. (5.4)–(5.5g), which have s=const, ρ′ �=0,
and v �= ve, vAx. The corresponding small-amplitude waves are called the
magnetosonic waves. Note that selecting the reference frame in which uz = 0
and Bz = 0 simplifies the equation set by transforming equations (5.5c) and
(5.5e) into equivalences. The remaining set of four equations (5.4)–(5.5b) and
(5.5d) has a nontrivial solution when the phase velocity has the form

v2 ≡ v2f, s =
1

2

{
c2s + v2A ±

√
(c2s + v2A)

2 − 4c2sv
2
Ax

}
, (5.17)

where

vA =
B√
4πρ

(5.18)

is the pseudovector of the Alfvén speed.
Comparison of formulae (5.17) and (5.12) shows that for any value of the

magnetic field and the sound speed, the following inequalities are fulfilled:

0 ≤ v2s ≤ v2Ax ≤ v2f , v2s ≤ c2s ≤ v2f , (5.19)

|vAx| = ωA/k = |k·vA|/k. The last two inequalities clarify the names of the
waves considered—fast or slow compared with the ordinary sound waves in
the medium without magnetic field.

Substitution of vf or vs into the equation set allows to integrate it. The
integration is rather complicated in the general case; therefore, we consider
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a simpler case of the transverse to the magnetic field propagation of the
simple wave, i.e., Bx = 0, B2

y = B2. In this case only the fast wave survives:

vf = ±(c2s + v2A)
1/2, vs = 0. It is convenient to take the density as the

independent variable ϕ, then Eqs. (5.4)–(5.5b) yield

uy = const,
dux
dρ

=
vf
ρ
,

dB2

dρ
= 8πv2A. (5.20)

Taking into account definition (5.18) of the Alfvén speed, integration of the
last equation gives rise to

B = B0
ρ

ρ0
, (5.21)

where B0 is the magnetic field value at ρ = ρ0 (i.e., in the unperturbed region
of the plasma). Equation (5.21) means in fact the freezing-in of the field into
the fluid. Applying it along with equation of state (5.5g), we find dependence
of vf on ρ, which allows to integrate the second equation in Eq. (5.20):

ux(ρ) =

∫ ρ

ρ0

vf (ρ)

ρ
dρ, (5.22)

where we adopt ux(ρ0) = 0. Taking into account (∂x/∂t)ρ = vf (ρ) + ux(ρ)
we obtain the solution

x = [vf (ρ) + ux(ρ)]t+ f(ρ), (5.23)

which implicitly specifies the dependence ρ(x, t). The function f(ρ) can then
be determined from the initial condition ρ(x, 0) = F (x).

5.1.4 Turnover of the Simple Wave

Relation (5.22) is remarkable as it tells us that the velocity of the fluid in
the simple wave depends on the density. Consider the outcome of this de-
pendence in more detail. For the tenuous gas at constant entropy we have
p = p0(ρ/ρ0)

γ , where γ is the ratio of specific heats (or the index of the
Poisson adiabat, e.g., γ = 5/3 for a single-atom gas); thus

c2s =

(
∂p

∂ρ

)
s

= c2s0

(
ρ

ρ0

)γ−1

(5.24)

and then using Eq. (5.21), we obtain

d|ux|
dρ

=
1

ρ

[
v2A0

ρ

ρ0
+ c2s0

(
ρ

ρ0

)γ−1
]
> 0.
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Figure 5.1: Stages of simple wave turnover and shock front formation. The wave front
steepens with time and a very sharp front is formed at t = t0. Afterwards, the solution
becomes multi-valued (dashed curve in panel c) and so unphysical.

This inequality tells us that the absolute velocity value increases as the
density increases. Therefore, the profile ux(x) changes its shape as the wave
propagates; specifically, the leading edge sharpens, while the trailing edge
smoothes. This process is well described by the solution obtained until a
nearly vertical region is formed at the leading edge (Fig. 5.1), since then
the simple wave solution becomes inapplicable any longer. The reason for
that is large gradient of the velocity, which calls for account of formerly
neglected dissipative processes: the viscosity, the heat conduction, and the
Joule dissipation. This dissipative processes give rise to formation of a shock
front—a narrow region with strong dissipation and large gradients (“jumps”)
of the macroscopic parameters—at the leading edge of the strong simple
wave. The formal simple wave solution becomes multiply defined after the
turnover. Note that the wave turnover is a property of the fast and slow
waves; in contrast, the Alfvén and entropy waves cannot overturn because
in the Alfvén wave the density is constant, while the entropy wave does not
propagate relative to the fluid.

5.2 Dissipation and Dispersion Effects: Solitons

The performed analysis of the one-dimensional simple waves does not take
into account any kind of dissipation in the fluid. Nevertheless, the dissipation
can have major effect on the fluid motion especially when and where strong
spatial gradients of the plasma parameters develop; for example, as has been
mentioned in Sect. 5.1.4, the dissipation can prevent the simple wave front
overturn. In many cases both nonlinearity and dissipation can be treated
as small effects, which often enables quantitative treatment of these effects.
Frequently, HD or MHD equations can be reduced, for a specific problem,
to one or another classical nonlinear equation; in such cases well-developed
theory of those equations can be successfully used.
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5.2.1 Burgers Equation

We start with considering the HD equations (see Sect. 2.1) and derive an
approximate equation describing the spreading of a weak nonlinear one-
dimensional wave propagating along the Ox axis, taking into account the
energy dissipation (dissipative kinetic coefficients are adopted constant for
simplicity):

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0, (5.25a)

∂u

∂t
+ u

∂u

∂x
= −1

ρ

∂p

∂x
+

4ν

3

∂2u

∂x2
, (5.25b)

∂s

∂t
+ u

∂s

∂x
=

χ

ρT

∂2T

∂x2
. (5.25c)

Since both the nonlinearity and the dissipation are considered to be small
effects, we neglect the term containing the viscous tension tensor in the rhs
of Eq. (2.4), proportional to (∂u/∂x)2, that is, of the third order of smallness,
to obtain Eq. (5.25c). Transforming Eq. (5.25a) using the equation of state
ρ = ρ(p, s), we find

∂ρ

∂t
+ u

∂ρ

∂x
=

(
∂ρ

∂p

)
s

(
∂p

∂t
+ u

∂p

∂x

)
+

(
∂ρ

∂s

)
p

(
∂s

∂t
+ u

∂s

∂x

)
. (5.26)

Substituting Eq. (5.26) into Eq. (5.25a) and taking into account Eq. (5.25c)
and (∂ρ/∂p)s = 1/(∂p/∂ρ)s, we get

∂p

∂t
+ u

∂p

∂x
+ ρ

(
∂p

∂ρ

)
s

∂u

∂x
= − χ

ρT

(
∂p

∂ρ

)
s

(
∂ρ

∂s

)
p

∂2T

∂x2
. (5.27)

The right-hand side of Eq. (5.27) has the first order of smallness over
dissipative value (5.25c), when the second derivative is calculated in dissipa-
tiveless (s = const) linear approximation

∂2T (s, p)

∂x2
=

(
∂T

∂p

)
s

∂2p

∂x2
.

We then use the thermodynamic identity1

1This is derived as follows:

Tc−1
V =(∂sT )V =1/ρ=(∂sT )ρ=

∂(s, p)

∂(s, ρ)

∂(T, ρ)

∂(s, p)
=(∂ρp)s[(∂sT )p(∂pρ)s−(∂pT )s(∂sρ)p]

=Tc−1
P −(∂ρp)s(∂pT )s(∂sρ)p.
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T

(
1

cV
− 1

cP

)
= −

(
∂ρ

∂s

)
p

(
∂p

∂ρ

)
s

(
∂T

∂p

)
s

,

where cV and cP are the corresponding specific heats. Using these equations
we bring Eq. (5.27) to the form

∂u

∂x
+

1

ρ

(
∂ρ

∂p

)
s

(
∂p

∂t
+ u

∂p

∂x

)
=

χ

ρ20c
2
s

(
1

cV
− 1

cP

)
∂2p

∂x2
(5.28)

with the unperturbed values ρ0 and c2s = (∂p/∂ρ)s on the rhs.
We now eliminate the variables u and ρ from Eqs. (5.25b) and (5.28) and

obtain one equation. It will contain only the variable part of the pressure
p′ = p− p0 and the unperturbed values. On the lhs of this equation, we have
to take into account only the terms up to the second order of smallness, as
has already been done on the rhs.

We seek a solution that changes slowly in the co-moving reference frame,
which allows simplifying the equations. To explore this we adopt the following
dependence of the solution on spatial and temporal variables: p′(x− cst, εx),
where ε is a small parameter (provided the nonlinearity and dissipation are
small). Thus, the operator (∂/∂x+c−1

s ∂/∂t) is of the order of ε and therefore

∂/∂t ≈ −cs∂/∂x, (∂/∂x− c−1
s ∂/∂t) ≈ 2∂/∂x. (5.29)

We assume in the second-order terms the same links between small per-
turbations as those valid in the linear theory, i.e., for small amplitude sound
waves:

u ≈ csρ
′

ρ0
≈ p′

csρ0
, ρ ≈ ρ0+

p′

c2s
,

1

ρ

(
∂ρ

∂p

)
s

=
1

c2sρ0
− p′

c4sρ
2
0

− ρ0

(
∂2V

∂p2

)
s

p′.

Using this relations, we find

u
∂u

∂x
+

1

ρ

∂p

∂x
≈ 1

ρ0

∂p′

∂x
,

1

ρ

(
∂ρ

∂p

)
s

(
∂p

∂t
+ u

∂p

∂x

)
≈ 1

c2sρ0

∂p

∂t
+ csρ0

(
∂2V

∂p2

)
s

p′
∂p′

∂x
.

We then write Eqs. (5.25b) and (5.28) in the form

∂u

∂t
+

1

ρ0

∂p′

∂x
=

4ν

3csρ0

∂2p′

∂x2
,

∂u

∂x
+

1

c2sρ0

∂p′

∂t
= −csρ0

(
∂2V

∂p2

)
s

p′
∂p′

∂x
+

χ

c2sρ
2
0

(
1

cV
− 1

cP

)
∂2p′

∂x2
.
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Differentiating the first of these equations over x and the second over t
and then subtracting the results with account approximations (5.29) we get

(
∂

∂x
− 1

cs

∂

∂t

)(
∂

∂x
+

1

cs

∂

∂t

)
p′ ≈ 2

∂

∂x

(
ac2s

∂2p′

∂x2
− b

cs
p′
∂p′

∂x

)
, (5.30)

where a and b are constant coefficients, which account for the dissipation
(both viscosity and thermal conductivity) and nonlinearity:

a = 2−1c−3
s [4ν/3 + χV (c−1

V − c−1
P )], b =

c2s
2V 2

(
∂2V

∂p2

)
s

. (5.31)

Therefore, we see that Eq. (5.30) turns to an equivalence if the following
equation is satisfied:

∂p′

∂t
+ cs

∂p′

∂x
+ bp′

∂p′

∂x
,= ac3s

∂2p′

∂x2
. (5.32)

Finally, we demonstrate that this equation can be reduced to a well-known
canonic Burgers equation. To do so we introduce new independent variables
t and ξ = x − cst and a new unknown function P (ξ, t) = bp′(x, t). Then
Eq. (5.32) is transformed to

∂P

∂t
+ P

∂P

∂ξ
= κ

∂2P

∂ξ2
, κ = ac3s, (5.33)

which is the Burgers equation. It is worthwhile to note that many other
phenomena can be described by means of the Burgers equation (Whitham
1974; Gurbatov et al. 1983), which makes the analysis of its solution much
more widely applicable than the specific HD problem considered in this
section.

5.2.2 The Korteweg–de Vries Equation

Besides nonlinearity and dissipation, wave propagation in a plasma may be
affected by dispersion effects, i.e., the dependence of the wave phase velocity
on the wavenumber. Let us consider the role that they play, taking nonlinear
waves in a cold magnetized fully ionized plasma, with βe,i = 8πne,iTe,i/B

2 �
me/mi (which implies either very strong magnetic field or very cold and/or
tenuous plasma), as an example. We use the set of equations for two-fluid
MHD; see Chap. 1, Eqs. (1.69) and (1.70), and Maxwell equations:

nimi

[
∂u(i)

∂t
+ (u(i) · ∇)u(i)

]
= eni

(
E +

1

c
u(i) ×B

)
− nimi

(u(i) − u(e))

τie
,

(5.34a)
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neme

[
∂u(e)

∂t
+(u(e) · ∇)u(e)

]
= −ene

(
E+

1

c
u(e)×B

)
−neme

(u(e) − u(i))

τei
,

(5.34b)

∂ni,e
∂t

+∇ · ni,eu(i,e) = 0, (5.34c)

∇×B =
4π

c
j, j = e(niu

(i) − neu
(e)), (5.34d)

∇×E = −1

c

∂B

∂t
, ∇ ·B = 0. (5.34e)

For processes whose frequencies satisfy the condition ω � ωpi, we may
ignore the separation of charges and take ne = ni = n. Further we introduce
the mass velocity u ≈ u(i) + (me/mi)u

(e). Adding Eqs. (5.34a) and (5.34b)
term by term, using Eq. (5.34d), and ignoring terms of order me/mi, we
obtain, like in Sect. 1.3.4, the one-fluid plasma motion equation

∂u

∂t
+ (u · ∇)u =

1

4πnmi
(∇×B)×B. (5.35)

We then divide Eq. (5.34a) by mi and Eq. (5.34b) by me, add up the
equations obtained, and take into account the following approximate equali-
ties (see Sect. 1.3.4):

u(i)

mi
+

u(e)

me
≈ u− j/en

me
, u(e) ≈ u− j

en
,

where j = en(u(i)−u(e)) to obtain finally generalized Ohm’s law in the form

E+
1

c
u×B =

j

σ
+

1

niec
j ×B +

me

e2

[
∂

∂t

j

n
+(u · ∇)

j

n
+
1

n
(j · ∇)u− 1

n
(j · ∇)

j

n

]
.

(5.36)

Unlike Sect. 1.3.4 we have taken into account here the small terms of the
order of me/mi. They lead to the dispersion corrections and are gathered in
the square brackets of Eq. (5.36). But working in the cold plasma approxi-
mation, we omit all the terms containing the pressure and viscosity from ee
and ii collisions of the order of me/mi. Only the interaction between two
different components, e and i, is taken into account. No terms of the order
of (me/mi)

1/2 are present here.
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Using Eqs. (5.34d), (5.34e), and (5.36), we obtain an equation for the
magnetic field:

∂B

∂t
= ∇× (u ×B) + νmΔB − c

4πne
∇× [(∇×B)×B]

−mec

e2
∇×

[
∂

∂t

j

n
+ (u · ∇)

j

n
+

1

n
(j · ∇)u)− 1

en
(j · ∇)

j

n

]
.

(5.37)

To study weakly nonlinear motions in a plasma, taking into account the
dispersion and dissipation, we first consider the linearized set of equations.
Adopting that b = B −B0 and u are small and proportional to exp(−iωt+
ik ·r) and selecting the Ox axis to lie along k and B0 to belong the xz plane,
we obtain a set of algebraic equations for by and bz, having excluded u:

by

[
ω2

(
1 +

c2k2

ω2
pe

)
− (k · vA)

2 − iνmk
2

]
+ bz

iω ck(k · vA)

ωpi
= 0, (5.38a)

− by
iω ck(k · vA)

ωpi
+ bz

[
ω2

(
1 +

c2k2

ω2
pe

)
− k2v2 − iνmk

2

]
= 0. (5.38b)

As ωpe, ωpi → ∞ and νm → 0, we get the dispersion laws ω = ±vAk cos θ
and ω = ±vAk for the Alfvén and fast magnetosonic waves, respectively.
Below, we consider only the nonlinear generalization of the fast magnetosonic
wave. In the approximation

ck � ωpi, νmk
2 � ω, θ 
 ck/ωpi, (5.39)

we find the dispersion relation

ω(k) = vAk − μk3 − 1

2
iνmk

2, where μ = vA
c2

2ω2
pi

(
me

mi
− cot2 θ

)
, (5.40)

where μk3 and νmk
2 are small corrections. This means that the scales of

motion are relatively large and that the longitudinal propagation is excluded.
We now obtain a closed equation for the magnetic field component bz.

Note that bx = 0 owing ∇ · b = 0, and by � bz in a magnetosonic wave
owing to the smallness of the dispersion correction according to Eq. (5.38a).
Therefore, bz represents the main component of the wave magnetic field.
Multiplying Eq. (5.40) by bz, we then write the equation obtained in the
form

[−iω + vAik + μ(ik)3]bz =
1

2
νm(ik)2bz.

On transforming to the space–time representation, we have

∂bz
∂t

+ vA
∂bz
∂x

+ μ
∂3bz
∂x3

=
1

2
νm

∂2bz
∂x2

. (5.41)
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This equation describes a wave propagating in a positive direction of
the Ox-axes. It, however, does not include any nonlinearity yet. To account
nonlinear terms of the lowest order (quadratic nonlinearity), the term ∇ ×
(u×B) must be calculated more accurately. Specifically, it will add the term
−ez · ∇× (u(1) × b+u(2) ×B0) to lhs of Eq. (5.41), where u(1) and u(2) are
corrections, proportional to bz and b2z, respectively.

We turn to Eq. (5.35) and write it to the accuracy of the second-order
terms as

∂(u(1) + u(2))

∂t
=

1

4πnmi

[(
ex × ∂b

∂x

)
×B0 +

(
ex × ∂b

∂x

)
× b

]
− u(1)x

∂u(1)

∂x
.

(5.42)

Making replacement
∂/∂t ≈ −vA∂/∂x, (5.43)

which follows from Eqs. (5.40) and (5.41) when the dispersion and dissipation
are discarded, we find

u(1) = − (ex × b)× e‖√
4πnmi

,

where e‖ = B0/B0. In calculating u(2), we ignore the small component by:

u(2) = [ex(1 + sin2 θ)− ez sin θ cos θ]
b2z
2B0

.

Having calculated ∇× (u(1) × b+u(2) ×B0) and adding it to the rhs of
Eq. (5.42), we get a nonlinear equation instead of Eq. (5.41):

∂bz
∂t

+ vA
∂bz
∂x

+
4vA sin θ

B0
bz
∂bz
∂x

+ μ
∂3bz
∂x3

= κ
∂2bz
∂x2

, (5.44)

where we have introduced κ = νm/2 for simplicity. This equation can be
further simplified by introducing a new independent variable ξ = x−vAt and
a new unknown function w(ξ, t) = 4vA sin θbz/B0:

∂w

∂t
+ w

∂w

∂ξ
+ μ

∂3w

∂ξ3
= κ

∂2w

∂ξ2
. (5.45)

In the absence of dispersion (μ = 0), this equation receives the form of
the Burgers equation:

∂w

∂t
+ w

∂w

∂ξ
= κ

∂2w

∂ξ2
, (5.46)

which was obtained in previous section in the frame of the standard HD.
Here, however, both w and ξ depend on magnetic field, so the meanings of
w and ξ are different from those in Sect. 5.2.1.
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If the dissipation is absent (κ = 0) then we obtain the Korteweg–de
Vries (KdV) equation

∂w

∂t
+ w

∂w

∂ξ
+ μ

∂3w

∂ξ3
= 0. (5.47)

It was first obtained by Korteweg and de Vries (1895) for gravity waves in
a fluid confined in a channel with finite depth. However, it has been found
during the last few decades that the applicability of the KdV equation is much
wider. Besides the waves in fluids, it describes nonlinear waves in plasmas
under various conditions, waves in anharmonic crystal lattices, and may be
applied to quantum theory as well. When both dispersion and dissipation are
present, full Eq. (5.45) can be referred to as Korteweg–de Vries–Burgers
(KdVB) equation.

The KdV equation derived above describes nonlinear waves in a cold
plasma, in which c2s � v2A. If the thermal energy and magnetic energy are of
the same order of magnitude, the linear and nonlinear waves damp rapidly
as a result of resonant interaction with thermal ions (Landau damping) ex-
cept for transverse and longitudinal (relative to magnetic field) directions of
propagation. Transverse propagation is described by KdV equation as be-
fore, while the longitudinal propagation is described by another equation.
It is called the nonlinear Shrödinger’s equation with the derivative in cubic
term:

∂u

∂τ
+ i

∂2u

∂ξ2
+

∂

∂ξ
(u|u|2) = 0. (5.48)

Here τ = ωBit/2, ξ = x/rA − ωBit, u = (by + ibz)/B0(1 − β)1/2, ωBi =
eB0/mic, rA = vA/ωBi, and β = c2s/v

2
A. The condition u � 1 must be

carried out; see Vainshtein et al. (1993) for greater detail.

5.2.3 KdV Solitons

On the basis of KdV equation, we now consider a few types of nonlinear waves
in a cold plasma, ignoring dissipation. We concentrate on stationary waves,
i.e., perturbations depending on coordinate and time only via a combination
x − uwt, where uw = const is the wave velocity. These waves do not change
their shape during propagation, and are, thus, distinct types of nonlinear
perturbations. They exist due to interplay and balance of two effects: non-
linearity, acting toward persistent deformation of the wave front and to its
eventual “overturning” (see Sect. 5.1), and dispersion, which causes spreading
of the wave packet. These two effects may balance each other and so result
in formation of stationary wave structures.

For the mathematical analysis of stationary nonlinear waves in the ab-
sence of dissipation, we turn to Eq. (5.44), assuming κ = 0, and introduce
h(x, t) = 4vA sin θ bz/B0:

∂h

∂t
+ vA

∂h

∂x
+ h

∂h

∂x
+ μ

∂3h

∂x3
= 0. (5.49)
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We seek a solution in the form h(x − uwt). Introducing a new independent
variable ξ = x− uwt, we transform Eq. (5.49) to the form

(−Δu h+
1

2
h2 + μh

′′
)′ = 0, Δu = uw − vA, (5.50)

where the prime indicates the derivative over ξ. Integrating Eq. (5.50) we ob-
tain an equation similar to one of a particle motion in the classical mechanics:

μh
′′
= K +Δu h− 1

2
h2 = −∂W

∂h
, (5.51)

where K is the constant of integration and

W (h) =
1

6
h3 − 1

2
Δu h2 −Kh (5.52)

is the “potential energy” of the “particle,” which depends on its “generalized
coordinate” h, while ξ plays the role of time. The constant K may easily
be taken equal to zero by the replacement h → h+ h0. This replacement in
Eq. (5.49) means a transition to the reference system moving with a speed
vA + h0. In what follows we take K = 0.

Exploring the mechanical analogy, it is easy to perform the integration.
Using the integral of the “energy” μh

′2/2 +W (h) = E = const, we write a
solution of Eq. (5.51) in the quadrature:

∫
[P (h)]−1/2dh = ± ξ

(3μ)1/2
, (5.53)

where
P (h) = 6E + 3Δu h2 − h3 (5.54)

is a cubic polynomial. Solution (5.53) makes physical sense only for P (h) ≥ 0
and finite h; moreover, the condition based on KdV equation applicability is
even more stringent: it correctly describes nonlinear waves in a cold plasma
only when |h| � vA. Then, in Eq. (5.53), we ignore the integration constant,
which can always be done by appropriate choice of the origin of the coordinate
ξ. The solution is written for μ > 0, which, in accordance with Eq. (5.40),
corresponds to a negative correction to the linear dispersion law.

We consider here the case E = 0 when integral (5.53) can be expressed in
terms of elementary functions. If h ≥ 0, then the condition P (h) = h2(3Δu−
h) ≥ 0 requires Δu > 0 and 0 ≤ h ≤ 3Δu. In this case,

∫
[P (h)]−1/2dh =

1√
3Δu

ln

√
3Δu+

√
3Δu+ h√

3Δu−√
3Δu− h

and the solution takes the form

h(x, t) = 3Δu cosh−2[(Δu/4μ)1/2(x− uwt)]. (5.55)
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This solution corresponds to a solitary wave—a soliton. In this case, it
represents a “hump” of the magnetic field, rising above the background by
the value bz = Bz − B0 = B0h/4vA sin θ and propagating with the speed
uw = vA+Δu. The perturbations in the plasma velocity and density depend
on the perturbation in the magnetic field through MHD formulae (5.34c)
and (5.35). The quantity Δu, which is the soliton velocity excess compared
with the linear magnetoacoustic wave velocity vA, is related to the amplitude
h0 by

h0 = 3Δu. (5.56)

The soliton width

δ = 2
√
μ/Δu = 2

√
3μ/h0 (5.57)

is inversely proportional to the square root of the amplitude. For a soliton
propagating across the magnetic field (α = π/2),

δ =
c

ωpe

(
3B0

2b0

)1/2

,

where b0 is the height of the magnetic “hump” and the plasma skin scale
aD = c/ωpe determines the typical length of dispersion.

For h < 0, the condition P (h) ≥ 0 is satisfied when h ≤ −3|Δu|. In this
case, ∫

[P (h)]−1/2dh = − 2√
3Δu

arctan(|h|/3Δu)1/2, (5.58)

and the soliton takes the form

h(x, t) = −3Δu tan2[(Δu/4μ)1/2(x− uwt)].

This solution is unbounded and so unphysical.
We now construct a soliton for a positive dispersion correction (μ < 0).

Returning to Eq. (5.49), we make the change μ = −|μ| and h = −h:

−∂h
∂t

− vA
∂h

∂x
+ h

∂h

∂x
+ |μ|∂

3h

∂x3
= 0.

We again seek a solution in the form h(x− uwt) and obtain Eq. (5.50) in the
form (

−Δu h+
1

2
h
2
+ |μ|h

′′
)′

= 0, (5.59)

where Δu = vA − uw now. The problem is, thus, reduced to the previous
case, μ > 0, and the solution is described by the function

h(x, t) = −3Δu cosh−2
[
(Δu/4|μ|)1/2(x − uwt)

]
, (5.60)

where Δu > 0 and h ≤ 0. This soliton represents a magnetic well (i.e., a
rarefaction soliton), and is slow; its velocity uw = vA −Δu is less than that
of a small-amplitude magnetoacoustic wave.
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5.3 Discontinuities in the Plasma

The physical picture of the magnetosonic wave leading edge sharpening and
the discontinuity formation is rather typical for many kinds of the fluid mo-
tions in astrophysical objects. In fact, the discontinuities are a natural out-
come of the ideal (dissipation-free) MHD equations. The discontinuities can
result from the evolution of originally smooth excitation or from singular
initial or boundary conditions (recall a piston instantly starting to move, as
a vivid example). In the reality, all the discontinuities have a finite nonzero
width, defined by dissipative processes. This width, however, is often small
compared with other characteristic scales. Thus, if one is not specifically in-
terested in the processes inside the discontinuity, it can be treated as infinitely
narrow layer.

P1 P2

B2B1

u1 u2

21

21

Figure 5.2: Local plane of an MHD discontinuity.

5.3.1 Local Properties and Classification

The local properties of stationary discontinuities can be investigated based
on the conservation laws of basic physical measures—mass, momentum, and
energy—supplemented by the boundary conditions for electromagnetic vec-
tors. We adopt that the discontinuity is locally plane and select a reference
frame with one axes directed along the normal to the plane (Fig. 5.2). Con-
sider two additional planes, 1-1 and 2-2, located at both sides of the discon-
tinuity at positions, where the dissipative processes and so dissipative terms
in the equations can be discarded, even though they can be essential inside
the transition layer (somewhere between planes 1-1 and 2-2), where MHD
parameters have large gradients.
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The conservation laws applied to a stationary discontinuity give rise to
equations

δ(iαnα) = 0, δ(Pαβnβ) = 0, δ(qαnα) = 0, (5.61)

where symbol δ denotes the jump of the corresponding parameter in paren-
theses at the transition from plane 2-2 to 1-1, e.g., δin = in2 − in1; n is the
unit vector normal to the discontinuity surface; i, Pαβ , and q are the flux
densities of the mass, momentum, and energy, respectively:

i = ρu, Pαβ = pδαβ + ρuαuβ − 1

4π
BαBβ +

1

8π
B2δαβ, (5.62a)

q = ρu

(
u2

2
+ ε+

p

ρ

)
+

1

4π
B × [u×B]. (5.62b)

Here, in the momentum and energy fluxes, we hold both mechanical and elec-
tromagnetic terms, although entirely neglect the dissipation. In the expression
for the flux density of energy the term ε denotes the specific (i.e., per unit
mass) internal energy of the medium, while the last term, γ = cE×B/4π, is
the Poynting vector, where expression (2.25) for the electric field in a moving
fluid without dissipation has been used. Likewise, the magnetic terms in the
momentum flux density represent the magnetic part of the Maxwell tension
tensor.

Along with conservation laws (5.61) boundary conditions for the field vec-
tors must be fulfilled at the interface: continuity of the normal B component
and tangential E = −u×B/c component, i.e.,

δ(Bαnα) = 0, δ(uBαnα −Buαnα) = 0. (5.63)

Substitution of expressions (5.62) into conservation laws (5.61) and use of
boundary conditions (5.63) yield four equations for the MHD parameter
jumps at the interface:

inδ

(
ε+ pV +

i2nV
2

2
+
u2τ
2

+
V B2

τ

4π

)
− Bn

4π
δ(Bτ ·uτ ) = 0, (5.64a)

δp+ i2nδV +
δB2

τ

8π
= 0, (5.64b)

inδuτ − Bn
4π

δBτ = 0, (5.64c)

Bnδuτ − inδ(VBτ ) = 0. (5.64d)

Here indices n and τ denote the normal and tangential components to the
discontinuity plane, respectively; V = 1/ρ is the specific volume. Equalities
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(5.64) compose complete set of conditions at MHD discontinuities. We must
note that they remain valid in collisionless plasma with isotropic pressure if
local values of thermodynamic and hydrodynamic parameters can be defined
consistently, and so they are more general than the set of MHD equations.

Let us consider basic properties of the MHD discontinuities based on
jump conditions (5.64):

1. in = 0, Bn �= 0 (contact discontinuity); here δu = 0, δB = 0,
and δp = 0. Other parameters, the density, the temperature, chemical
composition, and other thermodynamic parameters can have arbitrary
jumps. Overall, the contact surface is a rest boundary of two fluids
when they are in mechanical equilibrium.

2. in �= 0, δV = 0 (Alfvén or rotational discontinuity). Equations
(5.64c) and (5.64d) yield

in = ± |Bn|√
4πV

, δuτ = ∓
√
V

4π
δBτ . (5.65)

After regrouping terms in Eq. (5.64a), cancelation of nonzero factor
in �= 0 results in

δε+ V δ

(
p+

B2
τ

8π

)
+

1

2

(
δuτ ±

√
V

4π
δBτ

)2

= 0. (5.66)

The third term is zero here because of Eq. (5.65); the second one is also
zero because of Eq. (5.64b) with δV = 0; thus, from Eq. (5.66) follows
δε = 0. Recall that any thermodynamic parameter of the uniform
fluid can be expressed as a single-valued function of two independent
variables, ε and V . Therefore, continuity of these two parameters pro-
vides that all thermodynamic parameters, including kinematic pres-
sure p, are continuous. Then, from Eq. (5.64b) follows δB2

τ = 0, i.e.,
the absolute value of the magnetic field is constant through the Alfvén
discontinuity like in the Alfvén simple wave. However, δBτ �= 0, which
means that the magnetic field vector B rotates by arbitrary angle at
the Alfvén discontinuity.

3. in = 0, Bn = 0 (tangential discontinuity); now the fluid velocity
and the magnetic field both have tangential components only; they can
have arbitrary jumps. Thermodynamic parameters of the fluid can also
display jumps with a constraint that the full pressure is continuous at
the interface:

δ

(
p+

B2
τ

8π

)
= 0. (5.67)
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If the fluid velocity is continuous through the interface, i.e., the two
fluids are at rest relative to each other, then the tangential discon-
tinuity becomes a variant of the contact discontinuity with full pres-
sure balance (5.67) fulfilled. In the magnetically dominated plasmas
(β � 1, see Sect. 2.3.3), e.g., in stellar coronae, the tangential disconti-
nuities are often called the current sheets, where an efficient release,
transformation, and dissipation of stored magnetic energy can occur
via a so-called magnetic reconnection—a highly important process
driving eruptive and flaring phenomena in the stellar/solar coronae,
heliosphere, planetary magnetospheres, and other cosmic objects.

5.3.2 Magnetic Reconnection

The MHD discontinuities considered here are stationary plasma objects.
However, it is necessary to keep in mind that the discontinuities and other
magneto-plasma structures are often unstable relative to small perturbations,
as considered in greater detail in Chap. 6. In such a case the unstable con-
figuration evolves to different states over finite time. Moreover, these ideal-
ized discontinuities are infinitely narrow infinite planes with some properties
abruptly changing at the interface between the two fluid volumes. However,
it is difficult to create an infinite interface in a reality. Indeed, a discontinuity
is likely to form, e.g., as a result of nonlinear evolution of a reasonably strong
propagating wave or in a collision of two plasma clouds with differently ori-
ented magnetic fields. What kind of the discontinuity is formed differs, other
conditions being equal, for high- and low-β fluids. Overall, if the wave or fluid
flow is kinetically dominated, while the magnetic field plays a secondary (pas-
sive) role, β 
 1, a shock wave is likely to eventually form; see Sect. 5.4.

For a magnetically dominated fluid, β � 1, the available magnetic field
is strong enough to stop an incident fluid flow, which can, however, bring
differently oriented magnetic fields into a close contact, so a tangential dis-
continuity will often form in the interaction interface between the inflow and
the magnetic “wall.” However, since the interaction region is finite, the in-
terface will occupy a finite area; such a finite tangential discontinuity is often
called a “current sheet” or “current layer.” Apparently, having a strong en-
ergy release in the low-β case requires that the magnetic energy (that is
supposed to make a dominant contribution to the fluid free energy) is some-
how dissipated into other kinds of the energy (kinetic, thermal, nonthermal,
and electromagnetic). The magnetic energy dissipation, as we pointed out in
Sect. 2.3.2, requires highly nonuniform regions to be present in the fluid such
as the current sheets, which, thus, play a highly important role in the energy
releases in the low-β plasmas.

Physics of current sheets and magnetic reconnection is discussed in detail
in many review papers and monographs (Syrovatskii 1981; Priest and Forbes
2000; Aschwanden 2005) as well as textbooks (Benz 2002; Somov 2006, 2007);
below we only give the main guidelines, definitions, and reconnection models,
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Petschek model

Slow shocks

Δ
δ

Figure 5.3: Conceptual view of a stationary (Sweet–Parker) magnetic reconnection in a
current sheet, left. Petschek reconnection model, right (Aschwanden 2005).

while the reader has to consult the cited sources for a more detailed infor-
mation. A classical view, Fig. 5.3, of the magnetic reconnection in a current
sheet includes fluid inflows (driven by unspecified external source) bringing
the oppositely directed magnetic field lines in a close contact. As soon as
the oppositely directed field lines approach each other closer and closer, the
magnetic field gradient increases accordingly and, at a certain stage, becomes
strong enough for the magnetic field diffusion, see Sect. 2.3.1, to affect the
field structure substantially. The plasma volume where the magnetic field
diffusion plays an important role is called the diffusion region. In the as-
sumed stationary conditions, the plasma inflows must be compensated by
some outflows maintaining the stationary distributions of the plasma density
and pressure.

Given that the magnetic field lines are oppositely directed at both sides
of the current sheet, there is a null layer where the magnetic field is zero
somewhere in the middle of the diffusion region. The pressure balance through
the diffusion region requires that

B2
1

8π
+ p1 = pnl =

B2
2

8π
+ p2, (5.68)

where the magnetic fields B1,2 and pressures p1,2 are shown in Fig. 5.3, while
pnl is the gas pressure at the null layer. This enhanced pressure drives the
outflows along the null layer. The magnetic field lines have a greatly enhanced
curvature where the outflows are launched from the diffusion region, which
implies an enhanced magnetic tension force; see Sect. 2.2.1. This magnetic
tension acts toward relaxation of the magnetic field lines into less curved
configuration suggesting an efficient mechanism of the magnetic-to-kinetic
energy conversion due to slingshot effect. Electric field associated with the
magnetic field in a moving fluid according to Eq. (2.19) is perpendicular to
the plane of the picture; it produces an electric current jnl in the null layer
in the same direction according to Ohm’s law:
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E0 =
v1B1

c
=
v2B2

c
=
jnl
σ
, (5.69)

which justifies the introduced term “current sheet.”
A classical Sweet–Parker reconnection model adopts that the current

sheet width Δ is much larger than its thickness δ, Fig. 5.3. A number of very
general conclusions can be drawn for this case. Let us start with estimating
the outflow plasma velocity in a stationary case (∂/∂t = 0) from Eq. (2.13a).
In the outflow region (i.e., outside the diffusion region) the plasma β is small,
so we can neglect the pressure term; then, neglecting the viscosity (assuming
the Reynolds number is large at the outflow region) and the external force f ,
we reduce Eq. (2.13a) to a simplified form ρ(v2·∇)v2 ≈ [∇ ×B] × B/(4π);
for an order of magnitude estimate, we replace ∇ → 1/L at both sides of the
equality, which immediately yields v2 ∼ vA.

Then, the mass flow continuity yields ρ1v1Δ = ρ2v2δ, which implies
v1 ∼ v2δ/Δ if ρ1 ∼ ρ2. Therefore, within the adopted assumption that Δ 
 δ,
the reconnection rateMr defined as the inflow Mach number, i.e., the ratio
of the inflow speed v0 ≈ v1 to the Alfvén speed in the inflow region (outside
the diffusion region)

Mr =
v0
vA

∼ δ

Δ
� 1, (5.70)

is small.
The thickness of the current sheet is easy to estimate from the condition

that the local Reynolds number, v1δ/νm, is of the order of unity; thus, δ ∼
νm/v1. Using Eq. (1.150) for the magnetic diffusivity and assuming a very
modest inflow speed of 102 cm/s, we obtain δ ∼ 1m; higher inflow speed
would result in a narrower current sheet. Substituting v1 ∼ vAδ/Δ obtained
above into v1δ/νm ≈ 1 and solving it for δ we find δ ≈ √νmΔ/vA, which
yields

v0
vA

∼ δ

Δ
≈
√

νm
vAΔ

=
1√L , (5.71)

where L is the Lundquist number defined as the magnetic Reynolds num-
ber calculated for the fluid velocity equal to the Alfvén speed. The inequal-
ity δ � Δ implies that the Sweet–Parker current sheet represents a highly
anisotropic structure with the thickness much smaller than the width if the
corresponding Lundquist number is large.

Finally, it is easy to estimate the magnetic energy release rate dEm/dt as
the fluid kinetic energy escaping with the outflow through the side boundary
of the current sheet. The kinetic energy density ρv22/2 ≈ B2

2/(8π) is trans-
ferred through the side area S = Δ · δ with the velocity v2 ∼ vA; thus

dEm
dt

≈ B2

8π
Δ · δ · vA ≈ B2

8π
Δ2 · v1 ≈ B2

8π

Δ2vA
L . (5.72)

Given that the Lundquist number is large in the corona, L ∼ 108–1012, the
magnetic energy release in the Sweet–Parker model is extremely slow and in
no way consistent with the required flare energy release rate.
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Apparently, the origin of this magnetic energy conversion inefficiency
is in uniformity of the Sweet–Parker current sheet along its width Δ. One
straightforward way to get rid of this uniformity is to consider the case when
Δ ∼ δ, so the spatial derivatives along both directions are of the same order
of magnitude and the diffusion region is much more compact and isotropic,
which is the case of Petschek reconnection model, Fig. 5.3, right. In such a
case, the reconnection rate can by much larger as it depends on the Lundquist
number only logarithmically, Mr ∼ π/(8 lnL) ∼ 10−2, implying the inflow
speed of v0 ∼ MrvA ∼ 106 cm/s and roughly 3–4 orders of magnitude more
efficient magnetic energy conversion mechanism.

X O X O X O

Magnetic field B

Magnetic field B

Figure 5.4: Structure of unstable current sheet: magnetic island formation due to tearing-
mode instability (Aschwanden 2005).

Another possible way of breaking the spatial uniformity along the current
sheet is a magnetic island formation due to tearing-mode instability (Fig. 5.4).
A transverse perturbation of magnetic field lines directed along the diffusion
region can grow in time with the growth rate dependent on the perturbation
wavelength. The wave with the wavelength of the order of the current sheet
thickness has the largest growth rate, or the shortest growth time, τtear ≈√
4δ3/(vAνm), which is of the order of 1ms for typical parameters of the

solar corona; thus a current sheet may become highly fragmented over a very
short time after its formation. Further evolution of such a fragmented current
sheet may involve coalescence of the magnetic islands as well as creation of a
highly turbulent region of the plasma driven by plasma outflows from multiple
reconnection events; see the cited sources for greater detail.

5.3.3 MHD Discontinuities in IPM

A natural laboratory, where the astrophysical plasma can be studied by di-
rect in situ measurements, is IPM. Accordingly, actual use of this laboratory
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started soon after the first satellites were launched into the space. A major
part of these studies is investigation of MHD discontinuities by observational
methods, which has been done since 1960s of twentieth century by a variety of
cosmic probes including missions of Mariners, Pioneers, and other. All discon-
tinuities detected in the interplanetary space are collisionless. The thickness
δ of the interface boundary is of order of 108–109 cm, i.e., dozens of the pro-
ton gyroradius. The Coulomb mfp Λi of the ions is of the order of 1013 cm,
i.e., Λi 
 δ. All types of the discontinuities predicted by the above theory
(contact, tangential, rotational, and shock waves; see below) are identified in
the interplanetary space, either qualitatively or quantitatively.

The detailed comparison of observational data with the theory is a very
complicated task. Indeed, as mentioned above, a “discontinuity” represents,
in fact, a layer of finite thickness and, therefore, is not very distinctly de-
fined. This difficulty may even be enhanced greatly by significant fluctua-
tions of the plasma parameters and magnetic fields in the solar wind near the
discontinuity which are not related directly to the MHD properties of the dis-
continuity. Furthermore, identification of any observed discontinuity requires
simultaneous determination of many parameters, particularly, the magnitude
and direction of the magnetic field, particle number density, pressure and its
anisotropy, electron and ion temperatures, and solar wind speeds on both
sides of the discontinuity. Within the mentioned uncertainties, the IPM dis-
continuities are confidently detected in space. A review of initial stage of
the interplanetary plasma study is given in monograph by Toptygin (1985).
Now the explorations and monitoring of the discontinuities in interplanetary
plasma represent one of the central topics within a relatively new discipline
called the space weather (Gary and Keller 2004).

5.4 MHD Shock Waves

5.4.1 Local Properties

A discontinuity with in �= 0, δV �= 0 is called the shock front. The shock
front together with related fluid inflows and outflows is called the shock
wave.

1. Let us first prove that there is a reference frame in which vectors
u1, u2, B1, B2 and the normal to the interface n all belong to one
plane (“complanarity theorem”).

When Bn �= 0 Eqs. (5.64c) and (5.64d) require that three vectors
δBτ = Bτ1−Bτ2, δ(VBτ ) = V1Bτ1−V2Bτ2, and δuτ = uτ1−uτ2
are parallel (or antiparallel) to each other. Since V1 �= V2, thenBτ1 and
Bτ2 are parallel, i.e., B1, B2, and n belong to one plane. Taking into
account that δuτ belongs to the same plane, we can select a reference
frame (provided that u1 is in the required plane) in which both vectors
u1 and u2 also belong to the same plane.
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For Bn = 0 we derive from Eqs. (5.64c) and (5.64d)

uτ1 = uτ2, V1Bτ1 = V2Bτ2. (5.73)

This means that B1, B2, and n belong to one plane. Then, because
the tangential velocity is continuous, we can easily select a reference
frame where it is zero. Thus, both velocities will be normally directed
at this reference frame, providing all considered vectors are in the same
plane.

2. Equation (5.64) give rise to Rankine–Hugoniot shock adiabat
equation

ε1− ε2+ 1

2
(p1+p2)(V1−V2)+ 1

16π
(V1−V2)(Bτ1−Bτ2)2 = 0, (5.74)

where the tangential field components are assumed collinear based
on the complanarity theorem. Index 2 marks the downstream values,
while 1 marks the upstream values.

3. MHD and thermodynamic parameters of the fluid have large gradi-
ents at the shock front region, which results in strong kinetic energy
dissipation. This heats the fluid as it moves through the front and, as
required by the second law of thermodynamics, the entropy increases:

s2 > s1, (5.75)

where s1 and s2 are the specific entropies upstream and downstream,
respectively. This condition together with thermodynamic inequalities

(
∂2V

∂p2

)
s

> 0,

(
∂V

∂T

)
p

> 0 (5.76)

gives rise to the following conditions:

p2 > p1, ρ2 > ρ1, (5.77)

i.e., the shock waves represent the waves of fluid contraction.

Now consider simplified cases with a special geometry.
In the parallel shock wave (Bn �= 0, Bτ1 = Bτ2 = 0) the magnetic field

is continuous and, accordingly, the tangential fluid velocity is continuous
as well as follows from Eqs. (5.64c) and (5.64d). Therefore, we can select a
reference frame in which the tangential velocity is zero. Then, the electric
field E = −u ×B/c vanishes in this reference frame. As the magnetic field
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does not affect the plasma motion along the field, the shock adiabat reduces
to the Rankine–Hugoniot adiabat for the shock in a unmagnetized fluid:

ε1 − ε2 +
1

2
(p1 + p2)(V1 − V2) = 0. (5.78)

The downstream to upstream density ratio can easily be found from this
equation. For the tenuous single-atom gas the internal energy is linked with
the pressure and specific volume by simple expression ε = pV/(γ − 1), γ =
5/3, which immediately yields

u1
u2

=
ρ2
ρ1

=
γ − 1 + (γ + 1)(p2/p1)

γ + 1 + (γ − 1)(p2/p1)
. (5.79)

The ratio p2/p1 specifies the strength of the shock wave. In a limiting case
of a very strong shock, p2 
 p1(γ + 1)/(γ − 1), we have

u1
u2

=
ρ2
ρ1

≈ γ + 1

γ − 1
= 4 (5.80)

for the tenuous nonrelativistic plasma; see Problem 5.8 for the relativistic
case. Further relations holding at the strong shock front can also easily be
found:

p2 ≈ 2ρ1u
2
1

γ + 1
,

T2
T1

≈ (γ − 1)p2
(γ + 1)p1

≈ 2(γ − 1)ρ1u
2
1

(γ + 1)2p1
, u1 − u2 ≈ 2u1

γ + 1
. (5.81)

In the perpendicular shock wave as follows from Eq. (5.73), there exists
a reference frame in which the plasma motion is normal to the shock plane
at its both sides. Thus, the electric field is parallel to the front plane and so
continuous:

E = −1

c
u1 ×B1 = −1

c
u2 ×B2. (5.82)

In this case the magnetic field is proportional to the density, B2/B1 = ρ2/ρ1.
The shock adiabat can here also be presented in the form of the Rankine–
Hugoniot adiabat (5.78), if one redefines the internal energy and pressure as
follows. In place of the kinetic pressure p we use the full pressure

p∗ = p+
b2

8πV 2
, (5.83)

while in place of ε we use the full density of the internal energy per unit mass:

ε∗ = ε+
b2

8πV
, (5.84)

linked with p∗ by relation p∗ = −(∂ε∗/∂V )s. Here, b = V1B1 = V2B2 is the
value continuous at the front.
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For a strong perpendicular shock wave in a tenuous plasma
(ε2 
 ε1, p2 
 p1) the shock adiabat takes the form

ρ2
ρ1

=
γ + 1

γ − 1
− B2

1

4πp2

(
ρ2
ρ1

− 1

)3

. (5.85)

The strongest compression ratio is the same (i.e., 4) as without magnetic
field. However, for finite values of p2, the compression is weaker than without
magnetic field, because some part of the free energy goes here to the magnetic
field increase.

The compression ratio is upper bounded by a finite value because the flow
energy is converted to the thermal motion (heating) of the plasma particles
downstream the front, so the increasing thermal pressure prevents stronger
gas compression. However, if there is an efficient mechanism capable of reduc-
ing the internal plasma energy downstream (emission of radiation or charged
particle acceleration), then the compression ratio increases given all other
conditions are equal.

5.4.2 The Front Structure of a Shock Wave

In the previous section we have considered the shock front as an ideal geo-
metric surface with zero thickness. But in fact the front is a finite transition
layer with large gradients of macroscopic parameters. The analysis of the
front structure in a general case is a difficult problem. We employ here the
Burgers equation (see Sect. 5.2.1) to describe a weak shock wave front.

Assume the shock wave to have a stationary structure, and seek a so-
lution of Eq. (5.32) in the form p′(ζ), where ζ = x − usht (with the shock
wave velocity ush). A stationary shock wave is an outcome of compensation
of two counter-acting effects—nonlinear sharpening of the wave front and
dissipation balancing the sharpening enhancement because the role of dissi-
pative effects increases as the spatial gradients increase. Nonlinearity without
dissipation causes steepening of the front and formation of a discontinuity
(see Sect. 5.1.4). This leads to appearance of short-wave harmonics in the
corresponding spatial spectrum. The dissipative effect suppresses harmonics
with large k more efficiently, since the coefficient of wave absorption due
to viscosity and thermal conductivity is proportional to k2 (see Sect. 2.4.3).
Dissipation without nonlinearity leads to diffusion spreading, i.e., unlimited
expansion of the transition region. Balance between these two effects may
allow the stationary nonlinear waves with a front of finite thickness in the
dissipative region to exist.
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Taking into account that ∂p′/∂t = −ush∂p′/∂ζ, we write Eq. (5.32) in
the form

d

dζ

[
(cs − ush)p

′ +
1

2
p

′ 2 − κ
dp′

dζ

]
= 0. (5.86)

Thus, it follows that

κ
dp′

dζ
=

1

2
p

′ 2 + (cs − ush)p
′ + const. (5.87)

The following boundary conditions for the perturbation p′ to the pressure
before the wave front p1 should be fulfilled:

dp′

dζ
=0, p′=0 as ζ → +∞,

dp′

dζ
=0, p′=Δp=p2−p1 as ζ → −∞,

(5.88)

where p2 is the pressure behind the front. Substituting Eq. (5.88) into
Eq. (5.87), we find that the constant is zero and

ush = cs +
1

2
bΔp. (5.89)

We rewrite Eq. (5.87) for the total pressure p = p1 + p′:

dp

dζ
=

b

2κ
(p− p1)(p− p2). (5.90)

Integrating this expression we obtain

p(ζ) =
1

2
(p1 + p2)− 1

2
(p1 − p2) tanh(ζ/δ). (5.91)

The pressure changes monotonically, and the thickness of the front

δ =
4κ

bΔp
=

2κ

ush − cs
(5.92)

decreases with increasing wave intensity, which is measured by the pressure
jump Δp or by excess of the front velocity over the sound velocity ush − cs.

By the order of magnitude the diffusion coefficient κ equals to the sum
ν+νth, where ν is the kinematic viscosity and νth is the coefficient of thermal
diffusivity (denoted as κ in Eq. 1.154). Each of them is of the order of the
product of the particle thermal velocity (or the sound velocity cs) with the
transport mfp Λ; thus, to the order of magnitude, we have

δ ≈ Λ/(M − 1), (5.93)
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where M = ush/cs is the Mach number. Extrapolating Eq. (5.93) to the case
M − 1 ≥ 1, we see that the front thickness of intense shock waves is of the
order of the transport mfp. This is a reasonable result, since at least a few
particle collisions are required to transform the energy of the plasma flow
into thermal energy behind the wave front. However, it should be kept in
mind that this estimate is highly uncertain. The mfp inside the front is not
a well-defined measure because of strong changes of the particle temperature
and number density there.

The results obtained apply actually to a single component gas as we have
not taken into account that the plasma is always a combination of several
(at least two) components and that me/mi � 1. This has a major effect
on the shock front structure in a plasma provided the energy exchange be-
tween ions and electrons is slow. Indeed, let us consider the plasma transition
through the shock front assuming the ion and electron temperatures to be

equal before the wave front: T
(1)
e = T

(1)
i . After traveling through the front

a distance of the order of the mean free path of the ion–ion collisions Λii
the ion temperature increases to T

(2)
i , since almost the entire energy of the

flux at M 
 1 is due to ions and a substantial part of it will be converted
into the thermal energy. The electron temperature at the same distance of

penetration into the front remains almost unchanged, T
(1)
e , since each elec-

tron acquires just a small portion of energy of order (me/mi)T
(2)
i . Behind

the wave front, the energies of electrons and ions become comparable at a
distance Λei ≈ τeivTe ≈ (mi/me)

1/2Λii 
 Λii. Therefore, the structure of
the front will be determined by two relaxation lengths: the ion path Λii and
the scale of equalizing electron and ion temperatures, (mi/me)

1/2Λii. The
shock-wave front becomes even more complicated in the presence of other
relaxation processes,2 e.g., radiative heat transfer, which is determined by
the free path length of the photon, Λr.

We have considered the parallel shock wave, when the magnetic field has
no effect on the HD motion of medium. The structure of the front in another
special case of a purely perpendicular shock wave can also be studied using
the Burgers equation. Introducing the total pressure p∗ = p + B2/8π, the
transverse linear mode velocity v⊥ =

√
c2s + v2A, and the small perturbation

p′∗ of the total pressure, we derive Burgers equation (5.38b)

∂p′∗
∂t

+ v⊥
∂p′∗
∂x

+ b∗p′∗
∂p′∗
∂x

,= a∗v3⊥
∂2p′∗
∂x2

(5.94)

with coefficients

2The structure of shock waves in a dense high-temperature plasma was studied
by Imshennik and Bobrova (1997).
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a∗ = 2−1v−3
⊥ [4ν/3 + νmv

2
A/v

2
⊥ + χV (c−1

V − c−1
P )/v2⊥], b∗ =

v2⊥
2V 2

(
∂2V

∂p2∗

)
s

(5.95)

from MHD equations (2.1), (2.13a), (2.13b), and (2.16).
The relation between Joule dissipation and thermal conductivity depends

on the relation between the sound velocity cs and the Alfvén velocity vA. The
structure of the total pressure profile in a weak perpendicular MHD shock
wave and the front thickness are described by Eqs. (5.91) and (5.92), with
apparent adjustment of the notations.

We note, however, that not yet considered effect of dispersion can signif-
icantly change the front structure. To illustrate this effect we employ KdV–
Burgers equation (5.44) for the analysis of the transverse shock front structure
in a cold plasma. We are going to demonstrate that the monotonic structure
of the shock wave (5.91) is replaced by an oscillatory structure owing to dis-
persion, which (depending on its sign) appears either behind or before the
shock front.

Writing Eq. (5.44) for h(x − usht), introduced in Sect. 5.2.3, we obtain
(prime denotes the differentiation over ξ = x− usht)

μh
′′ − κh′ = −∂W

∂h
= Δu h− 1

2
h2, (5.96)

which differs from Eq. (5.51) by presence of the dissipation term −κh′. Then,
Δu = ush − vA > 0 and the integration constant K = 0 in the effective po-
tential energy, Eq. (5.52). For the boundary condition we adopt that asymp-
totically before the front h → 0 and that behind the front h → Δh = const.
The parameter Δh controls strength of the shock wave. Taking ξ → −∞
in Eq. (5.96) (the region behind the front), we find the relation between the
parameters Δu and Δh:

Δh = 2Δu. (5.97)

We can draw a qualitative picture of the h behavior using the mechan-
ical analogy with oscillations of a particle in a potential well with friction
(Fig. 5.5). If μ > 0, the oscillations start from a state a at ξ → +∞ and
asymptotically approach h = 0 upfront the wave. In a time t, which corre-
sponds to ξ decrease, the oscillator reaches the state b, the peak of the first
maximum of the magnetic field, much resembling a soliton, provided that
dissipation is not large. Then infinite number of oscillations occurs (states
c, d, etc.) accompanied by the gradual amplitude decrease, until the oscil-
lator transits asymptotically to state f as ξ → −∞, corresponding to the
constant value h = Δh behind the wave front.

The oscillatory regime can further be quantitatively studied for the small
amplitude case by the linearization of Eq. (5.96). Consider the case of μ > 0.
In the prefront region we have h → 0 if ξ → +∞. At finite ξ we seek a
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Figure 5.5: (a) Schematic plot of effective potential energy for KDV soliton. (b) Illustra-
tion to the solution of the KDV–Burgers equation. Nonlinear oscillator starts from state
a and turns to state f after many oscillations. In the last state velocity is δu behind the
shock front.

solution in the form of h(ξ) = h1(ξ) = a1 exp(k1ξ) and linearize Eq. (5.96),
omitting quadratic term:

μh
′′
1 − κh′1 = Δu h1. (5.98)

We are interested in a bounded solution with �k1 < 0; therefore

k1 = − κ

2μ

(√
1 +

4μΔu

κ2
− 1

)
. (5.99)

Behind the front, where h → Δh for ξ → −∞, we seek a solution in the
form h(ξ) = Δh + h2(ξ) with h2 = a2 exp(k2ξ), �k2 > 0, and |h2| � Δh.
Linearized equation (5.96) then reads

μh
′′
2 − κh′2 +Δu h2 = 0. (5.100)

Substitution of the trial solution into Eq. (5.100) yields

k2 =
κ

2μ

(
1±
√

4μΔu

κ2
− 1

)
. (5.101)

Propagation constant has an imaginary part, if κ <
√
4μΔu. It is the case of

oscillation structure behind the front, Fig. 5.6a. If κ >
√
4μΔu, relaxation is

monotonic, with two relaxation lengths.
For μ < 0 (positive dispersion), the picture reverses: before the front,

there are oscillations under condition κ <
√
4|μ|Δu with the propagation

constant

k1 = − κ

2|μ|

(
1±
√

4|μ|Δu
κ2

− 1

)
. (5.102)
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Behind the front there is a smooth transition to the asymptote h2 = Δh, and

k2 =
κ

2|μ|

(√
1 +

4|μ|Δu
κ2

− 1

)
. (5.103)

The amplitudes a1,2 may be derived from the solution of the nonlinear
problem.

4

2

0

−3−4 −2 −1 1 2 −2 −1 0 1 2 3 40

μ>0 μ>0

h

4

2

−2

0

h

a b

Figure 5.6: Schematic plot of shock wave’s front oscillation structure. Oscillations are
excited by dispersion effect. (a) Negative dispersion; oscillatory structure behind the front.
(b) Positive dispersion; oscillatory structure before the front.

The width of the shock front is determined by the distance over which
oscillations damp out:

δ = 2

(
1

|�k1| +
1

|�k2|
)

=
4|μ|(1 + 4|μ|Δu/κ2)1/2
κ[(1 + 4|μ|Δu/κ2)1/2 − 1]

. (5.104)

This formula is applicable for any sign of the dispersion: μ < 0 or μ > 0. For
μ → 0 it agrees with Eq. (5.92). For κ � (4|μ|Δu)1/2 the width of the front
is independent of the shock-wave strength:

δ = 4|μ|/κ. (5.105)

The oscillatory structure of the shock-wave front is shown in Fig. 5.6. An
analytical solution of the KdV–Burgers equation at low damping but without
linearization was obtained by Gurevich and Pitaevskii (1987).

5.4.3 Measurements of Shock Wave Parameters

The shock waves are implied or detected in many astrophysical objects, in-
cluding supernovae and gamma-ray burst sources. However, direct measure-
ments of astrophysical shocks are only possible in IPM and were repeatedly
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made by space probes outside the Earth’s magnetosphere. The shocks have
the solar origin and moderate strengths. The typical parameters of the shocks
launched by eruptive solar flares or CMEs near the Earth orbit are the fol-
lowing (Hundhausen 1972):

Plasma speed ahead the front 390 km/s
Plasma speed behind the front 470 km/s
Shock velocity relative to a motionless observer 500 km/s
Shock velocity relative to upstream plasma 110 km/s
Max number (acoustic or Alfvenic) 2–3
Magnetic field enhancement at front 2–3
Propagation time from the Sun 55 h.

Shock fronts are not spherical, although the shock waves are launched as
bubble-like structures with significant curvature of the front; see, e.g., Fig. 1.3.
The front thickness did not exceed 2,000km in most cases, i.e., shock waves
are collisionless. But in rare cases of largest events, the solar eruptions create
very strong shocks. In events of 1959, 1960, 1972,. . ., 2003, and 2006 the shock
fronts velocities of 1,700–2,800km/s and Max numbers of several dozens were
recorded near the Earth’s orbit. Another important example of the shock
wave, accessible for direct measurements, is the Earth bow shock originating
as the solar wind flow collides with the terrestrial magnetic field. Finally,
with a number of spacecrafts launched years ago toward outer bounds of the
solar system, a termination shock demarcating the solar system and ISM
becomes accessible to the direct probing as well, as discussed in more detail
in Sect. 2.5.2.

5.4.4 Collisionless Shock Waves

On passing through the plasma, a soliton described by KdV equation or the
nonlinear Shrödinger equation does not alter the state of the medium (or
does so only in a reversible way). In fact, the collisional dissipation always
exists, even though it is small when collisions are rare. A strong energy dis-
sipation, however, is needed to form an MHD shock wave, so a shock wave
may propagate in the medium when the collisions play a significant role. The
state of the medium changes considerably over distances of the order of the
front width (several mfp lengths of the particles). The question arises if (and
how) it is possible for the shock waves to exist in a collisionless plasma? By
the “shock waves” we adopt the motions that change the state of the medium
irreversibly, with the change occurring over a distance much shorter than the
collisional mean free path of the particles.

Observational data (see, e.g., Sect. 5.4.3) indicate that such shock waves
do arise. Direct measurements of the magnetic field and the plasma parame-
ters from IMP spacecrafts reveal that strong perturbations of shock-wave type
occur rather frequently in IMP plasma. IMP shock waves near the Earth’s
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orbit often have the front widths of 500–1,000km and even 100 km, while
the mean free paths of electrons and ions with respect to Coulomb colli-
sions approach 1 AU ≈ 1.5 × 108 km. Comparison of that scales shows that
interplanetary shock waves are strongly collisionless and their thickness has
nothing to do with the collisional dissipation of energy and momentum of the
particles at the front. Hence, the question of the formation mechanism and
structure of collisionless shock waves arises. This question was first raised by
Roald Sagdeev, who developed the first theories of collisionless shock waves
(Sagdeev 1966).

In an ordinary shock wave, the state of the medium changes owing to
the dissipation of energy at the front, associated with viscosity, thermal con-
ductivity, and Joule heat release. In the absence of collisions, the state of the
medium may be changed owing to the wave oscillations excited at the front.
The shock adiabate connecting the states of the medium in the two regions
should incorporate the energy and momentum of both the plasma flows and
the oscillations. Dissipation of regular or stochastic oscillations may occur
much more efficiently through infrequent rare collisions than the dissipation
of the original nonlinear large-scale motion from which they have emerged.
Another possibility is the interaction of plasma particles with small-scale
stochastic electric and magnetic fields of oscillations (turbulence) that may
either be generated by these particles themselves or be of an external ori-
gin. This interaction leads to appearance of an anomalous transfer processes
(electrical conductivity, thermal conductivity, viscosity, Sect. 1.3.8), which
play the same role as processes caused by the particle collisions play in the
collisional case. These qualitative considerations imply motions that can be
treated as the shock waves in a collisionless plasma.

Models of quasiperpendicular and quasiparallel (relative to the regular
magnetic field) shock waves differ considerably from each other. Physical
considerations reveal that a sharp front is easier to form in the quasiper-
pendicular case: the particles cannot move freely in the direction of wave
propagation because of the magnetic field. The role of the free path may be
played by the Larmor radius of ions in the original regular magnetic field.
With quasiparallel propagation, the background magnetic field does not pre-
vent particles from spreading in the direction away from the front. In order
to form a sharp front, the generation of additional electric and/or magnetic
fields by the shock wave is necessary. These fields must create the required
excess plasma density behind the front.

Gurevich and Pitaevskii (1973) considered overturning of quasiperpen-
dicular simple wave in the absence of collisions. Dispersive effects cause the
appearance of oscillations at the steep part of the front. The region of oscilla-
tions expands with time. In the collisional case, a shock wave would be formed
right there, with strong energy dissipation at the front. In the case discussed,
the shock wave has a laminar structure: there exist regular oscillations over
the front region. This is valid, however, for rather weak shock waves only.
For stronger shocks, as the Mach number grows, the amount of ions reflected
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from the front grows as well. They create a multiflow current that is unstable
and causes turbulence; i.e., the shock front necessarily becomes turbulent for
large Mach numbers.

5.4.5 Evolutionarity of Discontinuities

As has been said some discontinuities can be unstable relative to small
perturbations. This means that they evolve to a new, more stable, state
over a finite time. For example, if a perturbation of the discontinuity raises
as eγt, γ > 0, it remains small during the time of the order of γ−1. Such
discontinuities along with the stable ones are called evolutionary dis-
continuities. Unlike evolutionary discontinuities there is a different class
of non-evolutionary discontinuities—those which disintegrate to a few
other discontinuities and/or waves in such a way that the perturbation is
instantly large as soon as new discontinuities are distinctly separated in
space. Non-evolutionary discontinuities are often produced by an external
driver, for example, by a collision of two massive plasma clouds, which results
in a plane interface boundary between them. Continuity conditions (5.61)
are not fulfilled at this boundary in a general case. Thus, this arbitrarily
non-evolutionary discontinuity will immediately disintegrate to a few evolu-
tionary discontinuities, contraction, and rarefaction waves, which obeys the
laws, established above in Sects. 5.3 and 5.4.

To address a question of evolutionarity one has to count the number of
equations derived from linearized boundary conditions at the interface and
the number of parameters describing a general (initially weak) disturbance
of the discontinuity: if these numbers coincide, then the equations uniquely
determine further evolution of the perturbation, so the discontinuity is evo-
lutionary. If the numbers are different, the discontinuity is non-evolutionary.
As the discontinuities are the natural outcome of the ideal (dissipativeless)
MHD, see Sect. 5.3, the problem of the discontinuity evolutionarity must also
be considered within the ideal MHD. Within dissipative MHD, the rotational,
tangential, and contact discontinuities do not represent true solutions of the
MHD equations, so the question of their evolutionarity is difficult to correctly
set up within the dissipative MHD.

Referring for a more detailed discussion to Landau and Lifshitz (1966)
and Somov (2006), we give here the shock wave evolutionarity conditions
(without derivation):

un1 > vf1, vf2 > un2 > vAn2 (5.106)

and

vAn1 > un1 > vs1, vs2 > un2, (5.107)

where vAn = |Bn|/√4πρ. The first type of the shock waves is referred to as
fast shock waves because in the limiting case of small-amplitude jumps they
propagate with the velocity vf1 ≈ vf2 of the fast magnetosound wave. The
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second type of the shock waves is called slow shock waves as they transform
to the slow mode in the small-amplitude limit. The tangential component
of the magnetic field increases at the front in the case of fast wave, while
decreases in the case of slow wave.

5.5 Supernova Explosions and Evolution
of Its Remnants

Strong energy release is typical for many kinds of the astrophysical objects.
Apparently, a significant fraction of the energy released is converted to the
mechanical energy of the plasma outflow. Recall some typical values of the
explosive energy releases in astrophysics: the solar flares can release up to
1032 ergs, nova explosions—up to 1046 ergs, and supernova explosions—up to
1052 ergs. It is many orders of magnitude above any energy release at the
Earth, e.g., thermonuclear bomb explosion with the trotyl equivalent of 1Mt
releases about 1023 ergs.

5.5.1 Strong Explosion: Sedov Solution

Let us consider the perturbation of an originally motionless uniform gas with
the density ρ0, pressure p0, and magnetic field B0, produced by a strong en-
ergy release E in a spatially localized region (Sedov solution for the point
explosion, considered by Sedov (1946), von Neumann in 1947, and Taylor in
1941; published in 1950); see Landau and Lifshitz (1966) and Sedov (1987). If
the explosion is strong then a strong shock wave is formed very close to the ex-
plosion point. This isotropic (spherical) shock wave (given the energy release
itself is isotropic and strongly exceeds the magnetic energy) is propagating
through the originally unperturbed gas. We consider here an initial stage of
this propagation while the pressure ps downstream satisfies the condition

ps 
 (γ + 1)(p0 +B2
0/8π)/(γ − 1), (5.108)

i.e., it is much larger than the total pressure in the unperturbed gas upstream
the shock. Under this assumption the shock wave is very strong, which en-
ables us to determine the expansion law Rs(t), where Rs is the radius of the
shock wave, from the dimension analysis. Under condition (5.108) the exter-
nal pressure is very small and so cannot affect the shock wave propagation.
Thus, only three dimensional parameters, ρ0, E, and t, remain, which can be
combined in a value Rs(t) having the dimension of length:

Rs(t) = β

(
Et2

ρ0

)1/5

. (5.109)

Here β is a dimensionless factor, which can be calculated by equating the
explosion energy and the energy of moving media driven by the explosion.
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Its value depends on the ratio of the specific heats γ: in simplest cases of
γ = 5/3 and γ = 7/5 one can find β = 1.148 and β = 1.033, respectively; β
will differ from those values if a substantial fraction of the explosion energy
is somehow lost, e.g., spent for particle acceleration. Equation (5.109) alone
yields the dependence of the front velocity us on time and the explosion
energy:

us(t) = Ṙs =
2Rs
5t

=
2βE1/5

5ρt3/5
. (5.110)

The problem of the gas state in the downstream (perturbed) region can
then be analytically solved if we neglect the dissipation—the viscosity and the
heat conduction. Taking into account the spherical symmetry of the solution,
we can transform the HD equation to the form

∂ρ

∂t
+
∂(ρu)

∂r
+

2ρu

r
= 0, (5.111a)

∂u

∂t
+ u

∂u

∂r
+

1

ρ

∂p

∂r
= 0, (5.111b)

∂

∂t

(
1

2
ρu2 +

p

γ − 1

)
+

1

r2
∂

∂r
r2u

(
1

2
ρu2 +

γ

γ − 1
p

)
= 0. (5.111c)

Here we have used the expressions p/(γ − 1) and γp/(γ − 1) for the internal
energy and enthalpy per unit volume, respectively.

This set of equations can be simplified by introducing dimensionless func-
tions, U , G, and Z, dependent on the “self-similar” dimensionless variable
s = r/Rs(t):

u(r, t) =
2r

5t
U(s), ρ(r, t) = ρ0G(s), p(r, t) =

4r2ρ0
25t2γ

Z(s). (5.112)

Substitution of these functions into Eq. (5.111) gives rise to cancelation of all
dimensional factors and yields the set of ordinary differential equations with
one independent variable ξ = ln s:

d lnG

dξ
=

1

1− U

(
dU

dξ
+ 3U

)
, (5.113a)

dU

dξ
=

3UZ − 3Z/γ − U(1− U)(5/2− U)

(1− U)2 − Z
, (5.113b)

d lnZ

dξ
=
γ − 1

1− U

dU

dξ
+

(3γ − 1)U − 5

1− U
. (5.113c)
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This set of equations must be complemented by boundary conditions at the
strong shock front, which can be derived from Eqs. (5.80) to (5.81):

U(1) =
2

γ + 1
, G(1) =

γ + 1

γ − 1
, Z(1) =

2γ

γ + 1
. (5.114)

Analytical solution of this system exists (Landau and Lifshitz 1966; Sedov
1987), but it is too cumbersome to present it here.

Figure 5.7 demonstrates the distributions of velocity, mass density, and
pressure in perturbed region behind the front. The dependence of the velocity
on the distance is not much different from the direct proportionality. The mass
density distribution shows formation of a shell structure behind the shock
front and sweeping the gas from the central part of the cavern. However,
the pressure at the center of explosion remains finite. This means that the
gas temperature is very high in the central region, so discarding the heat
conductivity is not correct there.
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Figure 5.7: Sedov solution for the gas parameter distributions inside the sphere perturbed
by a strong isotropic explosion. The gas pressure, density, and velocity are normalized by
their downstream values at the front.

The opposite limiting case of isothermal gas in the cavern (i.e., very large
heat conductivity) was considered by Korobeinikov (1956) and Solinger et al.
(1975). The authors analyze the point burst in a medium with inhomogeneous
mass density distribution specified by a single dimensional quantity ρ0(r) =
Ar−λ, 0 ≤ λ < 3. As in the uniform case, the radius of the shock front and
its velocity can be found from the analysis of dimensions:

Rs(t) = β(Et2/A)1/(5−λ), us(t) = Ṙs(t). (5.115)
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The case of λ = 2 corresponds to the spherical burst in the stellar wind
region.

5.5.2 Magnetic Field in Strong Explosion Region

Consider the strong explosion to occur in a homogeneous medium with a
uniform magnetic field B0. Here we consider a simple approximate model of
large-scale magnetic field in perturbed region behind the strong shock front
(Toptygin 2004). If the magnetic field is ignored, then the self-similar solu-
tions for an isotropic point-source explosion in a homogeneous or spherically
symmetric medium are spherically symmetric, i.e., the plasma velocity is per-
pendicular to the front. In the presence of a magnetic field, tangential velocity
components appear and obey boundary conditions in the co-moving frame of
the front; see Eqs. (5.64c) and (5.64d):

inδuτ − Bn
4π

δBτ = 0, Bnδuτ − inδ(VBτ ) = 0. (5.116)

Here in = ρ0us = us/V0 is the density of the mass flux through the front;
us is the velocity of the upstream plasma, whose magnitude is equal to the
velocity of the shock front relative to the stationary medium. Introducing
the Alfvén velocity vA = B/

√
4πρ0 and the Alfvén Mach numbers MAn =

us/vAn, MAτ = us/vAτ , we obtain an estimate of uτ/us ≈ (MAnMAτ )
−1

from the first equation in Eq. (5.116). Thus, the deviation from spherical
symmetry for a strong shock is small, M−2

A � 1. Neglecting this asymmetry,
we find the boundary conditions at the strong shock front

Bsn = B0
n, Bsτ = B0

τ

ρs
ρ0
, (5.117)

where the index s denotes the values of the quantities in the perturbed region
inside the spherical front. For a strong shock front in a plasma σ = ρs/ρ0 ≥ 4.
Values larger than 4 can be reached if a significant number of relativistic
particles (cosmic rays or electromagnetic quants) are involved.

As has been shown in Sect. 2.3, the regime of the magnetic field evolution
is controlled by the Reynolds number. The magnetic Reynolds number in
supernova remnants (SNR) is very large: Rm = ul/νm ≈ 109, if u ≈ 3 ×
108 cm/s, the scale length of the motion is l ≈ 1 pc, and the magnetic viscosity
is νm ≈ 1018 cm2/s (Ruzmaikin et al. 1988). Therefore, the dissipation-free
approximation may be used to calculate the field:

∂B

∂t
= ∇× (u×B), ∇×B = 0. (5.118)

Below, we assume that the velocity in the perturbed region (r < Rs(t),
where Rs(t) is the front radius) is directed radially and does not depend on
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the angles ur = u(r, t) and uϑ = uα = 0. Equation (5.118) may be written as

∂Br
∂t

=−u(r, t)
r2

∂

∂r
r2Br,

∂Bϑ
∂t

=−1

r

∂

∂r
ru(r, t)Bϑ,

∂Bα
∂t

=−1

r

∂

∂r
ru(r, t)Bα.

(5.119)

The general solution of these equations can be easily found if the function
u(r, t) is factorized: u(r, t) = p(r)q(t). Introducing new dependent variables,

br(r, t, ϑ, α) = r2Br(r, t, ϑ, α),

bϑ(r, t, ϑ, α) = rp(r)Bϑ(r, t, ϑ, α), bα(r, t, ϑ, α) = rp(r)Bα(r, t, ϑ, α),

(5.120)

and new independent variables

τ(t) =

∫
q(t)dt, s(r) =

∫
dr

p(r)
, (5.121)

we transform all Eqs. (5.119) to the same form

∂bi
∂τ

+
∂bi
∂s

= 0, i = r, ϑ, α. (5.122)

The solutions of these equations are arbitrary differentiable functions
bi(ϕ(r, t), ϑ, α) of the self-similar variable ϕ(r, t) = s(r)−τ(t). Of course, this
self-similar variable differs from the Sedov self-similar variable r/Rs(t). The
dependence of bi on ϕ can be determined from the boundary conditions if
the seed field is time independent. The dependence from ϑ and α can also be
determined from the boundary conditions along with the second equation of
system (5.118).

In Sedov approximation we adopt the shock front to be a sphere with the
radius Rs(t) (5.109). The velocity field behind the front of a blast wave can
be well fitted by a linear function of the radius (see Fig. 5.7):

u(r, t) = Ṙs(t)
μr

Rs(t)
, μ = 1− σ−1, (5.123)

which is just a simple approximation to the complicated Sedov solution. Here,
σ is the compression ratio of the matter at the front introduced above. If
relativistic particles are absent, then σ = (γ+1)/(γ− 1) = 4 and γ = 5/3. In
this case, μ = 2/(γ + 1) and behind the front the fluid velocity u(Rs(t), t) =
μṘs(t) is smaller than the front velocity Ṙs(t).

Using Eqs. (5.109) and (5.123), we obtain

p(r) = r, q(t) =
μṘs(t)

Rs(t)
, ϕ(r, t) = ln

(
r

Rμs (t)

)
. (5.124)
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Clearly, without loss of generality, we can take the following quantity as the
self-similar variable:

ξ(r, t) = expϕ(r, t) =
r

Rμs (t)
. (5.125)

We use Eqs. (5.120)–(5.125) and write the solution as

Bi(r, t, ϑ, α) =
1

r2
bi(ξ(r, t), ϑ, α). (5.126)

In the case of the uniform external magnetic field we have boundary
conditions (5.117):

Br(Rs(t), t, ϑ) = B0 cosϑ, Bϑ(Rs(t), t, ϑ) = −B0
ρs
ρ0

sinϑ, Bα = 0.

(5.127)
We then write the solution in the form

Br(r, t, ϑ) =
f(r/Rμs )

r2
B0 cosϑ, Bϑ(r, t, ϑ) = −ρsf(r/R

μ
s )

ρ0r2
B0 sinϑ,

(5.128)

and find the function f from boundary conditions (5.117): f(R1−μ
s ) = R2

s. It
means that f(x) = x2/(1−μ) and

f(r/Rμs ) =
r2/(1−μ)

R
2μ/(1−μ)
s

,

As a final result we have

Br(r, t, ϑ)=
(

r
Rs(t)

)2μ/(1−μ)
B0 cosϑ, Bϑ(r, t, ϑ)=− ρs

ρ0

(
r

Rs(t)

)2μ/(1−μ)
B0 sinϑ, r ≤ Rs(t). (5.129)

At σ = 4, we obtain μ = 3/4, 2μ/(1 − μ) = 6. Thus, the radial mag-
netic field is swept up from the explosion region together with the plasma;
attenuation factor is (r/Rs(t))

6. The tangential field is also swept up, but it
is enhanced at the front by a factor σ ≥ 4 compared with its unperturbed
value. Therefore, the tangential field dominates in the cavity. Solution (5.129)
is inapplicable to the central part of the cavity, because the heat conduction
and the ejection of mass ΔM from the star are discarded in the Sedov solu-
tion. It appears that Eq. (5.129) correctly describes the field at the distances
r > R0 ≈ (3ΔM/4πρ0)

1/3, when the swept-up mass is of the same order of
or larger than the ejected mass. We note that the performed analysis of the
magnetic field is purely kinematic, and so does not take into account any
mechanism of magnetic field generation (see Chap. 8).
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5.5.3 Stages of the Supernova Remnant Shock
Evolution

Although the described model of the spherically symmetric explosion is in-
complete and simplified, it is widely used in application to explosions in the
astrophysics, especially to the supernova explosions and SNRs, which are
often spherically symmetric in the first approximation. SNRs are highly non-
stationary hot bubbles (cavities) disturbed by a strong primary shock wave
produced by a stellar explosion with a total kinetic energy release of about
3×1050–1052 erg (Shklovskij 1976; Lozinskaya 1992). Let us outline some gen-
eral properties of SNe established by both observations and theory. Overall,
there are two distinct physical processes yielding the SN phenomenon.

I. Thermonuclear explosive burning of the carbon and oxygen (CO) nu-
clei in white dwarfs forms thermonuclear SNe Ia type. The nuclear
synthesis produces 56Ni, which then transforms to the iron through
the chain of β-decay transformations 56Ni →56 Co →56 Fe. The white
dwarfs do not contain the hydrogen nuclei because they entirely burned
out at an earlier stage of the star evolution. Accordingly, the white
dwarfs cannot have masses exceeding a so-called Chandrasekhar limit,
M ≈ 1.4M� for a nonrotating white dwarf. If the star accumulates a
slightly larger mass, perhaps due to accretion from a star companion,
the degenerate electron gas responsible for maintaining the hydrostatic
equilibrium within the star volume cannot balance the gravitational
force any longer and support the star matter against collapse. Thus,
the ion number density and temperature grow, which results in the
thermonuclear explosion of the star material.

According to Nadyozhin and Imshennik (2005) explosion of a white
dwarf with M ≈ 1.4M� produces ≈ 0.6M� of 56Ni nuclei, the explo-
sion energy Eexp ≈ 1051 erg is the difference between binding energies
of the final products of the synthesis (primarily, 56Ni) and original
carbon–oxygen mixture. Full emitted electromagnetic energy is esti-
mated to be a minor fraction of the explosion energy, Erad ≈ 6 ×
1049 erg. Almost all (remaining) energy is spent to ejection of the stel-
lar mass outward to the ISM; no compact remnant is created. The ini-
tial velocity of the outgoing plasma is u0 =

√
2Eexp/M ≈ 8×108 cm/s.

The SNe Ia forms a highly uniform group of objects with almost iden-
tical properties; in particular, their peak intensities (maximum abso-
lute magnitude of about −19.3) are the same with the accuracy better
than 10%, and so they are often used as “standard candles” in cosmol-
ogy providing reliable measurement of the corresponding distances. In
particular, careful analysis of these standard candles at various cos-
mological distances resulted in a remarkable discovery of accelerated
expansion of the Universe (Nobel Prize in physics, 2011).
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II. Core-collapse SNe (types Ib, Ic, and II) explode as a result of
gravitational collapse of the star due to breaking of internal balance
at some stage of thermonuclear burning. Such events are more di-
verse than the type Ia SNe and are subdivided onto a few classes
depending of how much hydrogen survived until the explosion. The
corresponding light curves are controlled by the plasma heating by
the shock wave, the hydrogen recombination, and, at a later stage, by
the β-decay 56Ni →56 Co →56 Fe, where originally the mass of the
radioactive 56Ni is about (0.02–0.2)M�. The shock wave originates at
an interface between the iron core with the mass ofMFe = (1.2–2)M�,
which collapses to a neutron star, and the ejected shell carrying the
remaining mass of the star progenitor. The total energy of a core-
collapse SN consists of the following ingredients: (1) a main fraction of
(Eνtot ≈ (3 − 5)× 1053) erg escapes with neutrinos and antineutrinos
of all kinds (e, μ, and τ). This energy is huge; it is about 10–15%
of the neutron star rest energy, MFec

2. In contrast, the electromag-
netic energy is “only” around 1049–1050 erg. The mechanical energy of
the explosion is about 1051 erg and contained originally in the kinetic
energy of the shock wave.

Note that the SN explosion identified by numerous flash-like manifes-
tations observed throughout the entire electromagnetic spectrum is infre-
quent phenomenon projected to human being lifetime. In our Galaxy one
such event is estimated to occur once every 30–100 years; in addition, many
of the explosions in the galactic disk are invisible as their optical emission is
absorbed by dense gas–dust clouds concentrating to the galactic plane. The
youngest SNRs (from historical SN explosions) in our Galaxy are hundreds
to thousands years old. The youngest nearby SNR is SNR 1987A in a satellite
galaxy—Large Magellanic Cloud. Exceptional importance of this event is evi-
dent given that it is the only nearby explosion occurred at the cosmic era and
so observed by numerous modern ground- and space-based instruments via
all the electromagnetic spectrum and also at the neutrino domain. Just prior
to the explosion it was a blue supergiant star with the radius of R ≈ (30–
60)R� and mass M ≈ (10–30)M�. The parameter uncertainties are related
to both lack of observational data and also uncertainties of internal structure
evolution of massive stars (Imshennik and Nadezhin 1989; Filippenko 1997;
Woosley and Bloom 2006; Smartt 2009):

To better understand the phenomenon of the SN explosion, we point out
the most important effects missing from the Sedov solution.

• In addition to large energy the SN explosion ejects a large amount of
stellar mass comparable with the solar mass, ΔM ≈ (0.1-10)M�. The
most massive stars exploding as type II SN eject a few dozens of M�.
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• Non-adiabatic processes are related to radiation of electromagnetic
emission and acceleration of charged particles up to relativistic ener-
gies. This gives rise to temperature decrease downstream and, accord-
ingly, to the compression increase (σ = ρ2/ρ1 > 4) there.

• There are further numerous processes affecting the SNR evolution:
deviation from spherical symmetry, inhomogeneity of ISM, MHD and
plasma instabilities.

According to these notes, the SNR evolution is typically categorized into
four stages: (1) free expansion stage; (2) Sedov stage; (3) radiative stage, and
(4) stage of dense cold shell.

1. Free expansion stage. The ejected stellar shell is initially much denser
and hotter than the surrounding ISM; thus, the deceleration of the ejecta is
initially small and so it moves out almost steadily with the initial velocity
u0, which is determined by the ejected mass ΔM and kinetic energy E of
the explosion:

u0 = (2E/ΔM)1/2. (5.130)

For the adopted above characteristic values we easily estimate u0 ≈ (3 −
10)× 108 cm/s; in particular, u0 ≈ (3− 5)× 108 cm/s for SN 1987A. This
stage of the evolution lasts until the swept-out ISM mass has become equal
to the ejected mass: ΔM ≈ (4πR3

aρ0/3). This estimate allows evaluating
the “transition” radius (when this stage ends and gives a way to the Sedov
stage) Ra ≈ 3ΔM/4πρ0 and typical free expansion time ta ≈ Ra/u0. For
ΔM ≈ 1 ×M�, E ≈ 1051 erg we have u0 ≈ 109 cm/s, Ra ≈ 2–10pc, and
ta ≈200–1,000 years depending on the ISM number density. Overall, the
estimates yield that the free expansion stage lasts around hundreds years
and the expansion radius a few parsec.

2. Sedov stage. The larger the swept-out mass the better the Sedov’s
solution applicability to the actual SNR expansion: after a few ta the
SNR expansion is well described by the self-similar Sedov theory given in
Sect. 5.5.1. During the first and the second stages the radiative losses are
only a minor fraction of the ejecta kinetic energy [of the order of 10−3 for
SN 1987A according to Imshennik and Nadezhin (1989)]. At the adiabatic
(Sedov) stage the temperature downstream the front can be estimated
according to Eq. (5.81) as

Ts =
γ − 1

(γ + 1)2
miu

2
s. (5.131)

To account the actual ISM chemical composition it is typically adopted
mi ≈ 1.2mp, which can be called a “standard” ISM composition.
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Then, using Eqs. (5.110) and (5.111a), we obtain the downstream
plasma temperature as a function of SNR radius:

Ts =
4β5(γ − 1)

25(γ + 1)2
E

n0iR3
s

. (5.132)

Apparently, the temperature rapidly decreases as the radius increases,
i.e., the plasma cools down and the radiative losses go up, due mainly
to heavy ion line emission. Detailed calculations of the plasma emissivity
with a realistic radiative loss function suggest that the radiative losses
become significant when Tr ≈ (5 − 6) × 105K; thus, cooling down this
temperature demarcates the transition to the third, radiative, stage of the
SNR explosion. As long as the temperature is larger than Tr, a less efficient
free–free contribution (see Chaps. 9 and 10) to the emissivity dominates
making the radiative losses insignificant.

Further generalizations, including charged particle acceleration at the
SNR shocks, will be considered in this book later, after the required mi-
croscopic treatment has been introduced. In some cases, at least, the role
of the accelerated particle can be rather essential, which is eventually de-
termined by the energy fraction accumulated by the relativistic particles
during the acceleration. We can roughly neglect the accelerated particle
effect if this energy fraction does not exceed 1%.

3. Radiative stage. The radius of this new transition to the radiative stage
Rr can be estimated from Eq. (5.132) by substitution Tr to the lhs of the
equality. For n0i = 1 cm−3, E ≈ 1051 erg, γ = 5/3, and β ≈ 1.15 we ob-
tain Rr ≈ 25 pc. Further SNR expansion strongly deviates from the Sedov
solution, since the adiabatic approximation breaks down; therefore the
third stage of the SNR evolution can be studied based on model assump-
tions and/or computer simulations. Here we use simple semiquantitative
estimates to outline some essentials of the radiative SNR stage.

4. Stage of dense cold shell. After the radius Rr has been reached,
a thin dense cold shell surrounding the region filled with heated gas
is rapidly formed. Almost the entire mass of the raked-up gas is con-
tained in this shell. The pressure inside the shell is close to a uni-
form one, because the speed of sound is relatively high, but decreases
with time due to the remnant expansion. The dependence of the pres-
sure on the remnant radius can be estimated in a snowplough model
(Blinnikov et al. 1982). Denoting the internal energy of the remnant as

ET =
4πR3p

3(γ − 1)
, (5.133)

we write the condition of its adiabatic expansion in the form

ĖT = −4πR2pṘ. (5.134)



208 5 Nonlinear MHD Waves and Discontinuities

These equations are obtained assuming that a considerable part of the
gas internal energy is lost during the radiative cooling [more than half,
according to Blinnikov et al. (1982)] and subsequent radiation losses are
small. But the shell continues to expand and sweep out the interstellar
medium. In this approximation, from Eqs. (5.133) and (5.134) we obtain

ET = ET0

(
Rr
R

)3(γ−1)

, (5.135)

where ET0 is the internal energy of the remnant after the stage of efficient
radiative cooling. To find this energy requires a numerical calculation of
the radiative cooling. From Eqs. (5.133) and (5.135) we have the depen-
dence p ∝ R−3γ ≈ R−5 after radiative cooling.

To calculate the time dependence of the remnant radius, we take into
account the balance of mass and the balance of momentum of the cold shell
(neglecting the small mass of the central part):

M =
4

3
πR3ρ0,

d

dt
(MṘ) = 4πR2p. (5.136)

Combining the above equations, we can easily find the asymptote of the
radiative stage of expansion of the SNR:

R(t) =

(
147ET0R

2
r

8πρ0
t2
)1/7

, R(t) > Rr. (5.137)

The ultimate radius of SNR—at the stage when it is completely assimilated
by the ISM—is several dozens of parsecs.

5.6 Strong Explosion in an Inhomogeneous Medium,
Kompaneets Solution, and Superbubble Blowouts

Another, more powerful example of rapidly expanding objects—expanding
superbubbles (surrounded by a cold dense supershell) from OB associations—
is congestions of stars, containing a few dozens of young hot stars capable of
exploding as supernovae. To estimate a typical size of these objects we have
to take into account that in place of an instant explosion, the mutual energy
deposition from stellar winds and multiple supernova explosions results in
roughly steady-state mechanical luminosity LSB driven the expansion. Thus,
we have to replace E = LSBt in Eq. (5.115), which yields Rs(t) ∝ t3/5 (in
place of Rs(t) ∝ t2/5) for the superbubble expansion in the uniform ISM.
Substitution of all required values into Eq. (5.115) yields the estimate

Rs(t) ≈ 270[pc]

(
L38t

3
7

n0

)1/5

, (5.138)
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where L38 = LSB/(10
38 erg s−1) and t7 = t/(107 year). We conclude that

the superbubbles occupy a region of hundreds pc, much larger than that of
a single SNR. Thus, the inhomogeneity of the Galaxy (disk–halo structure)
starts to substantially affect the expansion, so one-dimensional spherically
symmetric solution is insufficient to describe this more complicated physical
phenomenon, which calls for more sophisticated two-dimensional treatment
of the bubble expansion in the nonuniform ISM.

5.6.1 Point Explosion in a Stratified Atmosphere

Consider a spherically symmetric point explosion occurring in a plane-
stratified gas with exponential density distribution

ρ(z) = ρ0 exp(−z/Z0). (5.139)

Here, unlike the Sedov case, the solution cannot be found based on self-similar
dimension analysis because we have now three dimensional parameters in-
volved: the midplane density ρ0, the exponential scale height Z0, and the
explosion energy E0. However, after Kompaneets (1960), we can find an ap-
proximate solution by adopting a number of natural simplifications: (1) bulk
of the mass is concentrated in a thin expanding shell and (2) the pressure
inside the bubble is uniform and equals to

pin = (γ − 1)
λE0

Ω
, (5.140)

where γ is the ratio of the specific heats, λ is a fraction of the explosion energy
converted to the internal energy of the bubble gas, and Ω is the expanding
bubble volume:

Ω(t) = π

z2∫
z1

r2(z, t)dz, (5.141)

where r = r(z, t) is the (yet to be specified) equation of the shock surface;
the integration is performed between the bottom and top points of the bub-
ble. Having in mind a strong shock, we neglect the undisturbed gas pressure,
which with the Rankine–Hugoniot conditions yields the evolution of the nor-
mal (to the front) component of the expansion velocity

un(z, t) =

√
(γ + 1)pin(t)

2ρ(z)
, (5.142)

where the ambient density is specified by Eq. (5.139).
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If we define the equation of the shock surface in the form f(r, z, t) ≡
(r − r(z, t)) = 0 then, apparently,

df

dt
=
∂f

∂t
+ uz

∂f

∂z
+ ur

∂f

∂r
. (5.143)

Taking into account that arbitrary vector normal to the surface can be
written as

bn = nzbz + nrbr = (br + bz∂r/∂z)/|∇f |,
where

|∇f | =
√(

∂f

∂r

)2

+

(
∂f

∂z

)2

≡
√
1 +

(
∂r

∂z

)2

(5.144)

we find

un(z, t) = −∂f/∂t|∇f | . (5.145)

Introducing a new variable

τ =

t∫
0

√
(γ2 − 1)λE0

2ρ0Ω(t′)
dt′. (5.146)

in place of time t, equating two expressions (5.142) and (5.145) for the shock
velocity, and using Eq. (5.144), we obtain the equation for the shock front
evolution in implicit form

(
∂r

∂τ

)2

− exp(z/Z0)

[
1 +

(
∂r

∂z

)2
]
= 0. (5.147)

This equation can be solved by variable separation to yield

∂r

∂τ
= ξ,

∂r

∂z
= ±

√
ξ2 exp(−z/Z0)− 1, (5.148a)

r = ξτ ±
z∫

0

√
ξ2 exp(−z/Z0)− 1dz + b(z), (5.148b)

∂r

∂ξ
= τ ±

z∫
0

ξ exp(−z/Z0)√
ξ2 exp(−z/Z0)− 1

dz +
∂b(z)

∂ξ
, (5.148c)

where ξ is a parameter and function b(ξ) is specified by initial conditions of
the explosions. In particular, for the isotropic explosion considered here it is
zero, b(ξ) = 0. Then, we can eliminate the ξ parameter to obtain the shape
of the front in the form

r = 2Z0 arccos

{
1

2
exp

(
z

2Z0

)[
1− τ2

4Z2
0

+ exp

(
− z

Z0

)]}
. (5.149)
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This Kompaneets solution can be generalized to the cases of more com-
plicated density profiles and to a persistent (including time-dependent) me-
chanical luminosity in place of instant explosion considered above (see the
problem section). We use the Kompaneets solution below to qualitatively
understand the phenomenon of superbubble blowouts and their role in the
disk–halo connections in the Galaxy.

5.6.2 Superbubble Blowout

Let us analyze the behavior of Kompaneets solution (5.149) of the point
isotropic explosion in a plane-stratified gas of the galactic disk above the
mid-plane. Specifically, consider first how the top and bottom points of the
blast wave move after the explosion. To do this we put r = 0 in solution
(5.149), which yields

exp

(
− z1,2
2Z0

)
= 1∓ τ

2Z0
. (5.150)

Apparently, this equation has a real solution only for 0 ≤ τ < 2Z0; τ = 0
corresponds to t = 0, while τ → 2Z0 implying exp(−z1/2Z0) → 0 and, thus,
z1 → ∞ corresponds to a finite t defined by Eq. (5.146). Stated another way,
this means that the top end of the expanding shell reaches the infinity over
a finite time, which implies an infinite shock acceleration toward decreasing

Figure 5.8: Example of numerical simulation results for a superbubble (mechanical lu-
minosity 1.1× 1038 erg s−1) blowout from the galactic disk with exponential atmosphere
described by Eq. (5.139) with ρ0 = 2.11 × 10−24 g cm−3 and Z0 = 100 pc (Mac Low
et al. 1989); reproduced by permission of the AAS. The point-like energy source is lo-
cated 70 pc above the galactic plane. The model is presented for the time frames (a) 3.83
MY, (b) 5.02 MY, (c) 5.89 MY, and (d) 6.87 MY. The analytical Kompaneets solu-
tion described by Eq. (5.149) is shown in the left part of each plot by inner part of the
thick hatched curve. The remarkable overall agreement between analytical and numerical
results is clearly seen. At later times the numerical solution starts to deviate from the
analytical one due to development of the Rayleigh–Taylor instability; see Chap. 6 for more
detail.



212 5 Nonlinear MHD Waves and Discontinuities

density due to the density gradient—the atmospheric blowout. The other
(bottom) end point of the shock propagates downward the distance

z2 = −2Z0 ln 2 (5.151)

over the same time, i.e., the shock cannot penetrate deeper than a certain
depth defined by Eq. (5.151) toward the increasing density. Likewise, the
shock spreading in r-direction is bounded: for ∂r/∂z = 0 Eq. (5.150) yields

rmax = 2Z0 arccos
τ

2Z2
0

. (5.152)

Substituting τ = 2Z0 into Eq. (5.152) we find the largest accessible value
rc = πZ0, which, likewise z2, does not depend on the deposited energy at all.
This is because whatever energy is deposited into the explosion, most of it
escapes the explosion region toward direction of the largest density gradient.
However, the deposited energy affects the physical time t needed for the
blowout—the larger the energy deposition the faster the blowout occurs.

The considered effect of the superbubble blowouts has exceptionally
strong effect on the interactions between the galactic disk and halo, in
particular, on the transport of the energy and momentum to the halo; it
controls the particle number density, the chemical composition, ionization
state distribution, and magnetic field generation in the halo. For this reason
the superbubble blowouts have been thoroughly studied numerically in 2D
and 3D (including the ISM magnetic field effect) configurations. Although
those advanced numerical studies reveal a lot of details about the expansion
and the blowouts including a number of MHD instabilities (subject of the
next chapter), the overall behavior of the expansion and the blowouts is
described by the Kompaneets solution remarkably well; see Fig. 5.8.

Problems

5.1 Obtain solutions (5.10) and (5.11) for the small-amplitude Alfvén wave
by linearization of the dissipation-free MHD equations (2.18).

5.2 Calculate the damping rate γ of the plane small-amplitude Alfvén wave
if the kinematic viscosity ν and magnetic diffusivity νm of the fluid are known.
Adopt that the damping rate is small compared with the wave frequency.

5.3 Consider the fast and slow simple waves in the small-amplitude approxi-
mation. Use equation set (2.18) in the linearized form. Determine orientation
of vectors k, u, b, and B0, where the last two vectors represent the magne-
tosonic wave amplitude and external uniform field, respectively.
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5.4 � Analyze variation of the perpendicular fast simple wave shape, con-
sidered in Sect. 5.1.3, produced by the dependence of the phase velocity
on the fluid density. Adopt the initial, at t = 0, simple wave shape to be
ux(x, 0) ≡ u(x, 0) = u0/ cosh(x/h), where u0 = cs0 = vA0 is equal to both
sound speed cs0 and Alfvén speed vA0 in the undisturbed fluid. Apply nu-
meric computation to derive the velocity u(x, t) for t > 0. Plot the magnetic
field B(x, t) for t = 0 and t > 0. Find the time frame t∗ at which the simple
wave solution breaks down (i.e., the solution is single valued for t < t∗, while
multiple valued afterwards, t > t∗). Adopt the adiabatic equation of state
p(ρ) = p0(ρ/ρ0)

γ for the fluid considered.

5.5 � Describe the general solution of Burgers equations (5.33) in homo-
geneous boundless medium. The initial condition is P (ξ, 0) = P0(ξ), where
P0(ξ) is a given function.

Hint: Reduce the nonlinear Burgers equation to the linear equation of
the heat conductivity by means of the nonlinear substitution P (ξ, t) =
−2κ∂ξ lnϕ(ξ, t), where ϕ(ξ, t) is a new unknown function.

5.6 Consider an initial perturbation occupying a narrow region: P0(ξ) =
Aδ(ξ) (see the above problem). Here P0 has a dimension of velocity, while A
of the product of velocity and length. Dimensionless value R = A/2κ is the
Reynolds number. Find the profile of perturbation for t > 0 and analyze the
limiting cases R � 1 and R 
 1.

5.7 Derive the following relations at the front of parallel shock wave in a
rarefied gas in terms of Mach number M = u1/cs1 > 1:

ρ2
ρ1

=
u1
u2

=
(γ + 1)M2

(γ − 1)M2 + 2
,

p2
p1

=
2γM2

γ + 1
− γ − 1

γ + 1
,

T2
T1

=
[2γM2 − (γ − 1)][(γ − 1)M2 + 2]

(γ + 1)2M2
.

5.8 Determine conditions which must be fulfilled at the ultrarelativistic
shock front.

5.9 A spherical star explosion takes place in a stellar wind region with
nonuniform mass density ρ0 ∝ r−2. Magnetic field in the stellar wind re-
gion is given by Parker’s model; see Problem 2.10. Calculate magnetic field
after the burst, if the magnetic field does not depend on α, constants p = 0
and q = 1. The dependence Rs(t) ∝ t2/3 is given by Eq. (5.115). The velocity
of ejected plasma is large compared with stellar wind velocity uw.
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5.10 Generalize the Kompaneets solution for the following cases:

1. Density profile with nonzero asymptote: ρ(z) = ρ0 exp(−z/Z0) + α.

2. Hybrid density profile: ρ(z) = ρ0 exp(−z/Z0) + ρ1 exp(−z2/Z2
1 ).

3. Off-center point explosion in a radially stratified gas.

4. Constant mechanical luminosity.

Answers and Solutions

5.5 Let us perform the substitution step by step. Making it in the first
term ∂P/∂t, we obtain ∂ξ[−2κ∂t lnϕ + P 2/2− κ∂ξP ] = 0. At the next step
∂ξ[ϕ

−1(−∂tϕ + κ∂2ξϕ)] = 0. This implies that ∂tϕ − κ∂2ξϕ = ϕdF/dt, where
dF/dt is an arbitrary function of time. Further substitution

ϕ(ξ, t) = Φ(ξ, t) expF (t) (1)

transforms this equation to the form of heat transfer equation for Φ:

∂tΦ = κ∂2ξΦ. (2)

Since F (t) and P (ξ, t) are independent, we can adopt Φ → ϕ and use Eq. (2)
to specify the function ϕ.

A general solution of Eq. (2) can be built up with the Green function
method likewise in Sect. 2.3.1:

ϕ(ξ, t) =
1√
4πκt

∫ ∞

−∞
exp

{
− (ξ − η)2

4κt
− 1

2κ

∫ η

0

P0(η
′)dη′

}
dη. (3)

5.6 Based on Eq. (3), previous solution, we write the Burgers equation so-
lution in the form

P (ξ, t) =

∫∞
−∞[(ξ − η)/t]e−G/2κdη∫∞

−∞ e−G/2κdη
, (1)

where

G(ξ, η, t) =
(ξ − η)2

2t
+

∫ η

0

P0(η
′)dη′. (2)

The solution does not depend on lower limit of the integral, so it can be
selected arbitrarily; we make the following selection:

∫ η

+0

P0(η
′)dη′ =

{
0, η > 0,

−A, η < 0.
(3)
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Now, the integral in the numerator of (1) can be taken, so the solution takes
the form

P (ξ, t) =

√
κ

t

(eR − 1)e−ξ
2/4κt

√
π + (eR − 1)

∫∞
ξ/

√
4κt

e−η2dη
, R =

A

2κ
. (4)

If R � 1, we keep only the first term in the denominator and obtain

P (ξ, t) =

√
κ

πt
Re−ξ

2/4κt =
A√
4πκt

e−ξ
2/4κt, (5)

i.e., this is a typical solution of the heat transfer equation. Stated another
way, the dissipation dominates the nonlinearity in the Burgers equation.

If R 
 1, we introduce a new independent dimensionless variable ζ =
ξ/
√
2At and write down an exact solution of (2) in the form

P (ξ, t) =

√
2A

t
g(ζ, R), g(ζ, R) =

eR − 1

2
√
R

e−ζ
2R

√
π + (eR − 1)

∫∞
ζ
√
R
e−η2dη

.

(6)
Then, use the condition R 
 1:

g(ζ, R) ≈ 1

2
√
R

eR(1−ζ2)
√
π + eR

∫∞
ζ
√
R e

−η2dη
. (7)

For ζ < 0 we have ∫ ∞

ζ
√
R

e−η
2

dη ≈
∫ ∞

−∞
e−η

2

dη =
√
π,

i.e., g ≈ (1/2
√
R)e−Rζ

2 → 0 for R→ ∞.
If ζ > 0, then ∫ ∞

ζ
√
R

e−η
2

dη ≈ e−Rζ
2

2ζ
√
R

and (7) yields

g(ζ, R) ≈ ζ

1 + 2ζ
√
πReR(ζ2−1)

. (8)

This approximation gives rise to a simple dependence g(ζ, R) ≈ ζ if 0 < ζ < 1,
R 
 1. Eventually, returning to initial variables, we obtain a triangle wave
with a discontinuity at ξ =

√
2At:

P (ξ, t) ≈
{
ξ/t for 0 < ξ <

√
2At,

0 for ξ < 0, ξ >
√
2At.

(9)

At the vicinities of ξ = 0 and ξ =
√
2At there are narrow (for R 
 1)

transition regions; see Whitham (1974) for greater detail of the solution.
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5.8 The jump conditions are found based on continuity of the fluxes of en-
ergy (wγ2β), momentum (wγ2β2+p), and particles (nγβ), where the enthalpy
w = ε+ p, energy density ε, and pressure p are measured in the fluid frame;
the Lorentz factor γ = 1/

√
1− β2 is defined by the corresponding velocity β

assuming c = 1. The strong shock means that p2/n2 
 p1/n1; the gas pres-
sure is related to the energy density as p = (γ̂ − 1)(ε− ρc2) = (γ̂ − 1)(ε− ρ)
as c = 1, where 4/3 ≤ γ̂ ≤ 5/3 is the effective ratio of specific heats. Denot-
ing the Lorentz factor of the downstream fluid measured in the “laboratory”
frame where the upstream fluid is immobile as γ2 and that of the shock front
as Γ, again in the laboratory frame, we find for an arbitrary strong shock
wave

ε2
n2

= γ2
w1

n1

n2

n1
=
γ̂2γ2 + 1

γ̂2 − 1

Γ2 =
(γ2 + 1)[γ̂2(γ2 − 1) + 1]2

γ̂2(2− γ̂2)(γ2 − 1) + 2
.

Now, for an ultrarelativistic shock wave, Γ 
 1, the above jump conditions
simplify to

p2 =
ε2
3

=
2

3
Γ2w1; n′

2 = 2Γ2n1 γ22 =
1

2
Γ2,

where n′
2 = γ2n2 is the downstream density measured in the laboratory

(upstream gas) frame. For a cold upstream gas w1 = ρ1c
2, for a relativistic

gas w1 = p1. Self-similar spherical and some other solutions can be obtained
from a deeper analysis; see Blandford and McKee (1976).

5.9 For r < Rs(t),

Br(r, ϑ, t) =
(a
r

)2
B0r(a, ϑ), Bα(r, ϑ, t) =

ρsa
2Ω

ρ0uwr

(
r

Rs(t)

)3

B0r(a, ϑ) sinϑ,

Bϑ = 0.

5.10 Study papers by Mac Low and McCray (1988) and Bisnovatyi-Kogan
and Silich (1995).



Chapter 6

Instability of MHD Motion
and Astrophysical MHD Turbulence

Let us define the stable states as such medium motion or rest states, in which
small random perturbations of macroscopic parameters do not increase, while
they can oscillate with some damping rate and so eventually dissipate. In as-
trophysics, however, there are numerous examples of the states, which are
not stable. Instead, an instability takes place in many cases: small random
perturbations of the macroscopic parameters rise at the expense of either
mechanical or magnetic energy.

Broadly speaking, instability, in most of the cases, is an attribute of the
systems obeying nonlinear equations. For most of the linear systems the the-
orems of solution uniqueness are proved. Therefore, if the functions obeying
the linear system (describing the phenomenon under study) are obtained
and initial and boundary conditions are fulfilled, then the functions obtained
represent the solution of the problem, and it is the only solution.

In contrast, nonlinear equations have frequently many solutions, and the
theorem of solution uniqueness does not take place here in a general case.
To verify if a solution can really describe the system, one must check if the
solution is stable or not. Unstable states can only take place over a limited
(frequently—rather short) time interval, then the system leaves this unstable
state toward a (more) stable state, which can be strongly different compared
with the initial unstable state.

Apparently, these qualitative considerations must not be overstated.
In what follows (e.g., Chaps. 8 and 12) we consider many solutions of linear
equations that describe unbounded rise of certain measures such as the
magnetic field or an MHD wave amplitude. However, such unstable solutions
just indicate that the original linear equation set is only an approximation
to the reality, where some overall essential physics has reasonably been ne-
glected for relatively small amplitudes, while it becomes significant at a later
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218 6 Instability of MHD Motion and Turbulence

stage of the evolution, when the amplitudes become large and so use of the
corresponding nonlinear theory is required. Of course, nonlinear equations are
not
necessarily unstable; they often can have stationary solutions describing
stable states of a given physical system.

The importance of the unstable states in astrophysics can hardly be over-
stated. It is the instabilities that drive the evolution of the nonstationary
Universe. It is the instabilities that are giving rise to the variety of natural
forms of matter including the very life, which we observe by all means of our
sense organs and scientific instruments and observatories. Thus, the study of
instabilities is one of the mainstreams in both theoretical and observational
astrophysics.

A standard approach to the analysis of instabilities is the method of
small perturbations. The idea of this method is simple and straightforward.
First, we add small perturbations to the macroscopic parameters describing
the obtained stationary state of the system. At the second step the nonlin-
ear set of equations is linearized. Third, we solve the linearized equations for
the small perturbations to determine imaginary parts of the frequencies of
the linear oscillations. Fourth, we determine if there is any oscillation with a
positive imaginary part of the frequency—those positive imaginary parts are
the growth rates of the unstable perturbations. These exponentially growing
solutions are valid over relatively short time intervals (order of a few inverse
growth rates); thus, they cannot tell what is the final state of the system when
the instability is over due to saturation of the instability. It is worthwhile to
note here that if this analysis confirms the stability of the solution, it is not
guaranteed that the solution will also be stable against finite (large) pertur-
bations; however, this is a subject of a separate (and much more complicated)
analysis.

Alternatively, an energy method is often applied to study instabilities.
The core of this method is calculation of the energy variation for a small
departure of the system from the given state. If this variation is negative
(in the first nonzero approximation) then the system is unstable. This method
is used, as an example, in solution to Problem 6.4 at the end of this chapter.

This chapter discusses only a minor fraction of the instabilities, typically
those which are essentially affected by the electromagnetic field, although
apparently we cannot ignore a primary force acting at astrophysics scales,
the gravity force. Gravitation is the main interaction controlling the global
Universe structure. The gravitation and related instabilities play a key role
in global evolution of observed region of the Universe, including galaxies and
galaxy clusters, stellar associations, isolated stars, and planetary systems.
Thus, it seems natural to start the instability analysis from those associated
with the gravity.
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6.1 Gravitational Instability

Initially the idea of a gravitational instability was put forward by Isaac
Newton in 1692, soon after he had discovered the gravitation law (1687).
Nevertheless, the math treatment of the instability had to await the twentieth
century when James Jeans (and his followers) considered this instability first
within the nonrelativistic Newton theory and then within Friedman’s theory
of expanding Universe based on the general relativity. Below we consider
simple versions of the instability, while more complete treatment can be
found elsewhere (Zel’dovich and Novikov 1971; Weinberg 1972); elementary
introduction into relativistic theory of gravitation is given by Beskin (2009a).

The gravitational instability is easy to qualitatively understand. Suppose
there is an initially uniform distribution of the gravitating matter, charac-
terized by a density ρ = const and a pressure p0 = const, in which a density
enhancement ρ+ ρ′ with a spatial scale λ randomly appears. Then, the force
attracting the surrounding matter to this condensation increases approxi-
mately by GΔM/λ2 ≈ Gρ′λ3/λ2 = Gρ′λ per unit mass. However, the oppo-
sitely directed force produced by the increased pressure inside the condensa-
tion also grows: neglecting the heat conductivity this force is proportional to
ρ−1∂p′/∂r ≈ c2sρ

′/ρλ, where cs is the sound speed. For the instability it is
essential that these two competing forces depend differently on the condensa-
tion size. This implies that for a large condensation the gravity dominates so
the condensation grows, while small condensations relax to original state due
to elastic force supplied by the pressure gradient. The critical condensation
size λJ ≈ cs/

√
Gρ, above which the gravitational instability can develop, is

known as the Jeans length.
These qualitative evaluations can be confirmed and further developed

quantitatively. Consider here the propagation of small perturbations in a
conducting fluid taking into account the self-gravity and the magnetic field.
Adopt that initially the fluid is immobile and homogeneous over the scales
much larger than the perturbation under study. Neglecting all dissipative
terms, the equation set reads

∂ρ

∂t
+∇ · ρu = 0, Δφ = −4πGρ, (6.1a)

∂u

∂t
+ (u·∇)u = −1

ρ
∇p+∇φ+

1

4πρ
[∇×B]×B, (6.1b)

∂B

∂t
= ∇× (u×B), (6.1c)

where φ(r, t) is the gravitation potential, so the acceleration vector in the
gravity force is g = ∇φ.

Then, we discard the weak dependence of the mean values ρ0, p0, φ0,
u0 = 0 and B0 on time and spatial coordinates. The perturbations ρ′(r, t),
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p′(r, t), u′(r, t) = u(r, t), and b(r, t) are assumed to be first-order small
values. The linearized set of equations takes the form

∂ρ′

∂t
+∇ · ρ0u = 0, Δφ′ = −4πGρ′, (6.2a)

∂u

∂t
= − c2s

ρ0
∇ρ′ +∇φ′ + 1

4πρ0
[∇× b]×B0, (6.2b)

∂b

∂t
= ∇× (u×B0). (6.2c)

We seek a solution of Eq. (6.2) in the form of plane monochromatic waves,
i.e., ρ′ ∝ exp(ik · r − iωt), which yields algebraic equation set. Exclusion of
the variables ρ′, φ′, and b yields

(ω2 −Ω2
A)u+ΩAvA(k ·u)− (Ω2

J + v2Ak
2)
k(k · u)
k2

+ΩAk(u · vA) = 0. (6.3)

Here

Ω2
J = c2sk

2 − 4πGρ0, ΩA =
|k ·B0|√

4πρ0
, vA =

B0√
4πρ0

. (6.4)

Investigation of the eigenmodes is reasonable to start from a simpler case
of zero magnetic field, vA = 0 and ΩA = 0; Eq. (6.3) reduces to

ω2u− Ω2
J

k(k · u)
k2

= 0, (6.5)

which implies that the perturbations are longitudinal along k and their
frequency is

ω = ±ΩJ = ±
√
c2sk

2 − 4πGρ0. (6.6)

For large wave numbers the negative term under the square root is negligible,
so this mode corresponds to usual sound waves ω ≈ ±csk. However, the
smaller the wave number the stronger the gravitation field effect so that for

k < kJ =

√
4πGρ0
cs

or λ > λJ =
2π

kJ
= cs

√
π

Gρ0
(6.7)

the gravitational (Jeans) instability appears. The growth rate γ = cs
√
k2J−k2

is apparently upper bounded by the value γmax ≈ cskJ .
The presence of magnetic field complicates the wave properties; however,

the instability threshold stays unchanged. To see this, we collapse Eq. (6.3)
onto the directions of k (axes Ox), B0 × k (Oy), and k × (B0 × k) (Oz),
respectively, and obtain

(ω2 − Ω2
A)uy = 0, (6.8a)

(ω2 − v2Azk
2 − Ω2

J)ux + ΩAkvAzuz = 0, (6.8b)

ΩAkvAzux + (ω2 − Ω2
A)uz = 0. (6.8c)



6.1 Gravitational Instability 221

The first of them describes the Alfvén mode in which ω = ±ΩA and
the velocity u is transverse to the plane formed by the vectors k and B0.
The gravity has no effect on this mode. Two remaining equations describe
magnetosonic wave modified by the gravity. They have a nontrivial solution
if the determinant of these equations is zero:

ω4 − ω2(Ω2
J + v2Ak

2) + Ω2
AΩ

2
J = 0. (6.9)

Solutions ω2
1 and ω2

2 of this biquadratic equation obey the conditions

ω2
1 + ω2

2 = Ω2
J + v2Ak

2, ω2
1ω

2
2 = Ω2

AΩ
2
J . (6.10)

The latter one tells us that one of the frequencies, ω1 or ω2, becomes
imaginary if the Jeans condition Ω2

J < 0 is fulfilled. If k · B0 = 0 and,
thus, ΩA = 0, we have from Eq. (6.9) ω2 = Ω2

J + v2Ak
2. The Jeans insta-

bility appears for small wave numbers satisfying k < [4πGρ/(c2s + v2A)]
1/2.

Therefore, the magnetic field does not stabilize the gravitational instability.
Furthermore, it has been proved that rotation of the object as a whole does
not stabilize the instability either.

Jeans condition (6.7) has been obtained for a medium, which is at rest
initially. However, the theory of expanding Universe proposed by Alexander
Friedman (1922), which has been observationally confirmed by Edwin Hubble
(1929) and by ample body of modern astrophysical observations, calls for
investigation of the gravitational instability based on general relativity, at
least at large cosmological scales where this expansion is a key property of
the Universe. This is evidently beyond the scope of our textbook.

Thus, to better understand the essence of the instability at smaller scales
(where we can ignore effects of the general relativity), let us estimate the
Jeans scale considering the Galaxy as a uniform fluid and using typical
parameters of ISM in the galactic disk: ρ0 ≈ 10−24 g, cs ≈ 3 × 106 cm/s,
G ≈ 7× 10−8 cm3/g s2; we obtain λJ ≈ 7 kpc. Thus, the Jeans scale is com-
parable with the galactic scales and noticeably exceeds the disk thickness.
This implies that the gravitational instability has no effect on the observed
spatial structure of the Galaxy. Although we included the baryon mass den-
sity ρ0 only, even for the dark matter with 10 times larger density the Jeans
scale remains too large to play a role in the Galaxy.

This conclusion is only valid for initially uniform distribution of the mat-
ter. However, if some density clumps (produced by another mechanism) pre-
exist in the matter distribution, the gravitation can enhance these inhomo-
geneities, which results in formation of dense self-gravitating objects includ-
ing, e.g., normal stars. The gravitation instability can be enhanced by the
large-scale shock waves (e.g., from SN explosions) or density waves (forming
the Galaxy spiral arm structure) (see (Rohlfs 1977) for more detail).
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6.2 Convective Instability

Convection, i.e., fluid mixing due to macroscopic mechanical motions of the
fluid stimulated by nonuniform heating along the gravitation or/and inertia
force, plays an important role in planetary (including the Earth) atmospheres,
interior of the Sun and many other stars, and other astrophysical objects. In
particular, the convection can efficiently transfer the heat due to macroscopic
motion of the overheated fluid elements, accompanied by the mass and inter-
nal energy transfer. A more standard, microscopic heat transfer described by
a Fourier law q = −χ∇T in the simplest case is driven by the particle diffu-
sion and so does not contain the macroscopic fluid transfer. Here we consider
fundamentals of this phenomenon.

6.2.1 Necessary Condition of Convection: Stationary
Case

Let us start from a relatively simple model of a plane region of a fluid with the
height h, heated from below, so the temperatures T1 and T2 are held at the
fluid boundaries (Fig. 6.1). The solution of this problem under the Fourier
law condition is simple and well known: a linear profile of temperature is
established eventually:

T (z) = T1 − βz, where β =
T1 − T2

h
(6.11)

is the temperature gradient, while the heat flux is qz = βχ. Gravitation
does not affect noticeably the diffusion of the heated particles, so there is
no macroscopic motion. However, the gravitation substantially affects the
mechanical equilibrium of the fluid; the stability condition is apparently

dp

dz
= −ρg. (6.12)

If the temperature gradient is large, the equilibrium can break down,
which results in a macroscopic instability. Indeed, consider a small fluid ele-
ment, which lifts randomly from a level z up to the level z + dz, where the
fluid temperature is lower (Fig. 6.1). If this fluid element lifts up adiabati-
cally, its temperature change is small; thus its density appears to be smaller
than the equilibrium density at the level z + dz, so the element will hold
rising up due to the Archimedes force. During this lifting the pressure in the
element assimilates quickly (with the sound speed) with the external pressure,
while the temperature does not assimilate, because the diffusion is a slower
process. Thus, spontaneous vertical fluid flows appear that immediately give
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Figure 6.1: Lifting of an element of matter at convection.

rise to horizontal flows (according to continuity equation), which means the
convective mixing of the nonuniformly heated fluid.

Having the phenomenon of convection clarified qualitatively, let us pro-
ceed to quantitative consideration. Adopt that the pressure and specific en-
tropy are p and s at the level z, while p′ and s′ = s+ (ds/dz)dz at the level
z+dz. The specific volume of the rising fluid element at the level z is V (p, s),
while at the level z + dz is V (p′, s). The necessary condition of the element
to further lifting up is

V (p′, s)− V (p′, s′) ≈ −
(
∂V

∂s

)
p

ds

dz
dz > 0, (6.13)

i.e., the density of the lifting element is smaller than one of surrounding fluid
(its specific volume is respectively larger).

Then, a thermodynamic relation yields(
∂V

∂s

)
p

=
T

cp

(
∂V

∂T

)
p

=
TV

cp
α > 0

(the latter equality assumes that the fluid expands during heating; α is
the volumetric thermal expansion coefficient), which gives rise to inequality
ds/dz < 0 formulating the necessary condition of the convective instability.
Let us transform this inequality considering the entropy s(T, p) as a function
of temperature and pressure:

ds

dz
=

(
∂s

∂T

)
p

dT

dz
+

(
∂s

∂p

)
T

dp

dz
=
cp
T

dT

dz
−
(
∂V

∂T

)
p

dp

dz
< 0. (6.14)

Finally, incorporating Eq. (6.12), we obtain

dT

dz
< − gT

cpV

(
∂V

∂T

)
p

≡ dT

dz

∣∣∣∣
s

. (6.15)
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The rhs expression is the adiabatic temperature gradient, i.e., a gradient
in the element involved in the heat-isolated lifting. Thus, the convection can
develop if the real gradient, produced by the heat sources, exceeds dT/dz|s
by the absolute value.

Let us evaluate the adiabatic temperature gradient in terrestrial condi-
tions for the air or water. For the air within the ideal gas approximation
we have (T/V )(∂V/∂T )p = 1 and cp ≈ 107 erg/(gK), while for the water
α ≈ 2× 10−4K−1 and cp ≈ 4.19× 107 erg/(gK). Thus, we obtain

dT

dz

∣∣∣∣
air

≈ 10−4 K/cm =
1 K

100 m
;

dT

dz

∣∣∣∣
w

≈ 1.4× 10−6 K/cm ≈ 1 K

7 km
.

In fact, condition (6.15) can underestimate the threshold value of the
density gradient above at which the convection becomes possible. This hap-
pens if the adiabatic approximation breaks down (the element is not well
thermally isolated from the surrounding fluid). Furthermore, the start of the
uplifting can be slowed down by the fluid viscosity, which was neglected in
this simplified (stationary) consideration. On top of this, in the astrophysics
conditions, there is a magnetic field; atom ionization and ion recombination
affect the plasma state, as well as nuclear transformations in a dense and hot
plasma, e.g., in the stellar interiors. Modern astrophysical studies pay a lot
of attention to account effect of all these phenomena on the convection.

6.2.2 Convection in a Weakly Compressible Fluid

We turn here to the dynamic case and start from the general MHD set of
equations given in Chap. 2 (Sect. 2.2), which are gathered together below:

∂ρ

∂t
+∇ · ρu = 0, (6.16a)

ρ

(
∂u

∂t
+ (u·∇)u

)
= −∇p− ρgez +

1

4π
[∇×B]×B + ηΔu

+
η

3
∇(∇·u), (6.16b)

ρT

(
∂s

∂t
+ (u·∇)s

)
= η

(
∂uα
∂xβ

+
∂uβ
∂xα

− 2

3
(∇·u)δαβ

)
∇βuα +∇ · (χ∇T )

+
νm
4π

[∇×B]2, (6.16c)

∇·B = 0,
∂B

∂t
= ∇× [u×B] + νmΔB. (6.16d)

These equations include both gravitation and magnetic force, as well as all
dissipative effects.
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We now linearize these equations adopting that the velocity u and per-
turbations of other values p′, b = B − B0, θ, and ρ′ are small, so they
can be accounted within the first-order approximation. The value θ(r, t) is a
small perturbation to the linear (with the height) temperature profile given
by Eq. (6.11). The incompressibility means that the fluid density does not
depend on the pressure, which itself changes only weakly throughout the
system

ρ(p, T ) ≈ ρ(p, T1) +

(
∂V

∂T

)
p

(T + θ − T1) = ρ0 +Δρ+ ρ′,

Δρ = −ρ0α(T − T1), ρ′ = −ρ0αθ.
(6.17)

Here

ρ0 = ρ(p, T1), α = − 1

ρ0

(
∂ρ

∂T

)
p

=
1

V

(
∂V

∂T

)
p

(6.18)

is the (already introduced in Sect. 6.2.1) volumetric thermal expansion co-
efficient. Then, Δρ is the density change associated with the temperature
gradient produced by the external source. This component of the gravitation
force is to be balanced by pressure gradient, Eq. (6.11), while ρ′ is a small
density perturbation.

In what follows we take into account dependence of the density on tem-
perature in the Archimedes force only. In all other terms we adopt a constant
density ρ = ρ0 (so-called Boussinesq approximation). Although this approxi-
mation is not fully self-consistent, it is justified by the fact that the correction
to the Archimedes force gives the main effect, while only a small correction
for all other terms.

The linearized system then takes the form

∇ · u = 0, (6.19a)

∂u

∂t
= − 1

ρ0
∇p′ + νΔu+ αgθez +

1

4πρ0
[∇× b]×B0, (6.19b)

∂θ

∂t
= βu · ez + κΔθ, (6.19c)

∂b

∂t
= ∇× [u×B0] + νmΔb. (6.19d)

All small quadratic terms containing viscosities are discarded from Eq. (6.16c).
The lhs is transformed using the fluid incompressibility:

∂s(T, ρ)

∂t
=

(
∂s

∂T

)
ρ

∂θ

∂t
, ∇s(T, ρ) =

(
∂s

∂T

)
ρ

∇T =

(
∂s

∂T

)
ρ

β,
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where β is again the temperature gradient. As we have assumed the constant
density, the pressure change can also be discarded:(

∂s

∂T

)
ρ

≈
(
∂s

∂T

)
p

=
cp
T
. (6.20)

Then, introducing the thermal diffusivity (a “temperature conduction co-
efficient”) κ = χ/(cpρ0) in place of the thermal conductivity (heat con-
ductivity) χ we arrive at Eq. (6.19c).

For the boundaries at z = 0 and z = h we use the Rayleigh bound-
ary conditions, i.e., they are free but their shape is constant (account of
the boundary deformation complicates the calculations severely; see, e.g.,
Sects. 6.3 and 6.4). Adopt that constant temperatures T1 and T2 are held at
the boundaries; thus

θ|z=0 = θ|x=h = 0. (6.21)

The external magnetic field B0 = const is assumed uniform and trans-
verse to the boundaries. Inside the fluid, there can be electric currents produc-
ing additional magnetic field both inside and outside the fluid. The boundary
conditions for the electromagnetic field require the continuity of the magnetic
field normal component and the electric field tangential component at the
boundaries, which can be written down in the form of Eq. (5.63).

Consider a two-dimensional (2D) motion in the plane (x, y). Normal com-
ponents of the velocity vanish at the boundaries:

uz|z=0 = uz|z=h = 0. (6.22)

Conditions for the tangential components follow from vanishing of the viscous
tension tensor at the free boundaries:

Πxz = η

(
∂ux
∂z

+
∂uz
∂x

)
z=0,h

= 0.

Combining this with Eq. (6.22), we obtain

∂ux
∂z

∣∣∣∣
z=0

=
∂ux
∂z

∣∣∣∣
z=h

= 0. (6.23)

For a 2D velocity field it is convenient to transform the set of Eq. (6.19)
using a flow function φ(x, z, t) (e.g., Landau and Lifshitz 1966, Sect. 10) and
the vector potential A = A(x, z, t)ey of the magnetic field. The velocity field
and the magnetic field are then expressed as follows:

u = ∇× (eyφ), b = ∇×A. (6.24)

Now Eq. (6.19a) is satisfied equivalently; applying the operator ∇× to
Eq. (6.19b) with the velocity expressed via the flow function, Eq. (6.24), we
obtain

∂

∂t
Δφ = αg

∂θ

∂x
+ νΔΔφ − B0

4πρ0

∂

∂z
ΔA. (6.25)
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Equation (6.19c) reduces to

∂θ

∂t
= β

∂φ

∂x
+ κΔθ. (6.26)

Finally, the equation for the vector potential takes the form

∂A

∂t
= B0

∂φ

∂z
+ νmΔA. (6.27)

Using Eq. (6.24) it is easy to check that Eq. (6.27) yields correct equations
for the magnetic field b components.

Let us seek solutions of Eqs. (6.25)–(6.27) in the form of real functions
satisfying the boundary conditions for the velocity and temperature:

φ = φ0e
−γt sin(πnz/h) sinkx, (6.28a)

θ = θ0e
−γt sin(πnz/h) coskx, (6.28b)

A = A0e
−γt cos(πnz/h) sinkx. (6.28c)

Here k is an arbitrary wave number of standing waves in the fluid, γ is
their damping rate, n = 1, 2, . . . are integer numbers, and φ0, θ0, and A0 are
unknown wave amplitudes. The very presence and efficiency of the convective
instability are specified by the sign and magnitude of γ, which has to be
calculated as a function of k, n, and other parameters of the problem by
equating the equation set determinant to zero.

As usual, start from a simplified case of zero magnetic field, B0 = 0 and
A = 0. We introduce a dimensionless wave number q = kh and substitute trial
solution (6.28a) and (6.28b) into Eqs. (6.25)–(6.27), which yields algebraic
equations

[γh2 − κ(π2n2 + q2)](π2n2 + q2)φ0 + αgqh3θ0 = 0, (6.29)

βqhφ0 + [γh2 − κ(π2n2 + q2)]θ0 = 0. (6.30)

Then introduce two more widely used dimensionless measures—Rayleigh
number and Prandtl number:

Ra =
αβgh4

νκ
, Pr =

ν

κ
, (6.31)

and the dimensionless damping rate γ′ = γh2/ν.
The determinant of the equation set has the form

γ ′2Pr − γ′(1 + Pr)(π2n2 + q2) + (π2n2 + q2)2 − q2Ra = 0 (6.32)
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and has two solutions for the damping rate:

γ′ =
(1 + Pr)(π2n2 + q2)

2Pr
±
√

(1− Pr)2(π2n2 + q2)2

4Pr2
+

q2Ra

(π2n2 + q2)Pr
.

(6.33)

When the fluid is heated from below we have Ra > 0, and both roots are
real. The perturbations grow if the Rayleigh number is large enough to make
one of the roots negative. The critical value of the Rayleigh number Rac is
determined from the condition γ′(Rac) = 0:

Rac = (π2n2 + q2)3/q2. (6.34)

To find the smallest Rayleigh number giving rise to the instability requires
finding a minimum of Eq. (6.34) as a function of q for n = 1, which yields
Ramin = 27π4/4 ≈ 657.5. In case of rigid (instead of free) boundaries the
critical Rayleigh number increases, Ramin ≈ 1707.8. The condition for the
convective instability reads Ra > Rac.

Note that the condition obtained is substantially different from Eq. (6.15).
In particular, it depends on the viscosity and heat conductivity and also
strongly depends on the fluid height h, in which the convection is being
developed. Stated another way, Eq. (6.15) offers a necessary condition for
the convective instability, while a more complete consideration resulted in
Eq. (6.34) clarifies what else (rather than the temperature gradient) and how
can affect the convection. Note that this estimate remains a qualitative one,
since it can be severely modified by account of discarded here effects as source
nonuniformity, specific boundary conditions, and, in many cases, the external
magnetic field.

Analysis of the dispersion equation in the presence of magnetic field, i.e.,
with account of Eq. (6.28c), has to be done numerically. However, the critical
Rayleigh number has a relatively simple form:

Rac =
(π2n2 + q2)3

q2
+
v2Ah

2π2n2

ννm

(
1 +

π2n2

q2

)
. (6.35)

As might have been expected the magnetic field acts toward stabilization of
the instability that now happens at larger Rayleigh numbers than without the
field. The (partial) stabilization effect is easy to understand: the conducting
fluid mixing results in magnetic field line mixing, which means the magnetic
energy increase.

6.2.3 Convection in the Laboratory and Astrophysics

The solution of the Rayleigh problem (1916, without magnetic field) given
in the previous section explains well the Bénard experiments (1900) of the
convection in a layer of mineral oil heated from below in a frying pan.
Visualization of the fluid flows (achieved by adding aluminium filings into the
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oil) proved that the convective Bénard cells—right hexahedrons in which the
heated oil uplifts in the center of the cell and moves down on their borders—
appear after reaching the critical Rayleigh number (Raexp = 1700± 51 for a
pan with a cover) (Fig. 6.2).

Figure 6.2: Cartoon illustrating convective cells in Bénard experiment and a single
hexahedron cell with the convective upcoming flow in the central part and returning
down flows at the borders.

The hexahedron structure of the convective cells was found to be con-
trolled by the surface tension of the liquid. The importance of this experi-
ment goes far beyond the convection problem itself: it proves that an order
(a regular macroscopic motion in this instance) can originate from initially
chaotic state in an open nonstationary physical system. Further increase of
the Rayleigh number above the critical value results in departure of the con-
vective cell shape from the regular one; highly above-the-threshold convection
becomes turbulent (chaotic).

As has been said the convection is present at the outer layer of the sun
and stars. A number of structures are observed at the photosphere and chro-
mosphere, including granules, supergranules, giant structures, and chromo-
spheric network, which are produced under joint action of solar convection
and solar magnetic field. The largest convective speed is reached at the top of
the convective zone and estimated as 2 km/s. In particular, the photospheric
solar granulation as that nicely seen in Fig. 6.3 (outside the sunspot um-
bra) displays almost regular structure similar to the Bénard cells (although
not of a perfect hexahedron shape), while the cells disappear in the sunspot
umbrae because of already mentioned stabilizing effect of the magnetic field
(note that the sunspot magnetic field can reach 3,000G, while the typical
photospheric field beyond active regions is about 1G). There is fragmented
structure of convective elements within the sunspot penumbrae, which in-
dicates magnetic field inhomogeneity and so excess of the magnetic energy,
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Figure 6.3: A sunspot observed with NST. Left: white light image containing dark
umbra surrounded by a penumbra with elongated fibrils. The sunspot is embedded into
the photosphere granulation structure indicative of the subphotospheric convection. Right:
Hα image of the same sunspot with the field of view moved up and left to better show
chromospheric “jets” (dark narrow arch-like structures) revealing dynamics of the low
atmospheric layers (courtesy by Dr. Phil Goode and BBSO team).

which can be released in some conditions (phenomenon of solar flare). As a
result of the flare the penumbra often decays implying more uniform mag-
netic field structure after the magnetic energy release in agreement with naive
expectations.

Quantitative use of the obtained simplified solutions in the real stellar
conditions requires extreme caution, since we did not consider many ingredi-
ents important for the stellar conditions. In fact, the convection in Sun and
stars is much more complicated phenomenon than in the laboratory. The most
essential distinctions making the quantitative treatment of the stellar con-
vection extremely difficult are as follows: (1) the solar plasma can hardly be
considered incompressible; (2) the plasma composition varies with height due
to ionization and recombination of the hydrogen, helium, and other elements;
eventually, the degree of ionization changes from almost 100% at the bottom
of the convective zone to ∼10−3 in the photosphere; (3) an important role
is played by the turbulent viscosity νt and radiative heat conductivity χr,
which differ from the dissipative kinetic coefficients described by Eqs. (1.152)
and (1.153); and (4) the star is highly nonuniform with the depth: the plasma
density changes by 6–7 orders of magnitude, while the magnetic field by 3–4
orders of magnitude in the solar convection zone, which occupies roughly 30%
of the solar radius. As a result, the convective zone includes many convective
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layers with the cell size varying with the depth; this size decreases toward
the photosphere (see Spruit et al. 1990 for greater detail). In the massive
stars, the surface convective zone is rather narrow. However, they contain
relatively large convective core where nuclear reactions of the carbon cycle
take place, which, in their turn, affect the convection in the stellar cores.
Stated another way, convection is closely tied up with stellar structure, and
one cannot solve for one without the other, which does not favor finding
meaningful analytic solutions. Instead, the stellar structure equations are ei-
ther solved using “mixing length theory” to model convection, or convection
is studied using 3D numerical simulations.

6.3 Instability of Contact Discontinuity with Magnetic
Field (Rayleigh–Taylor Instability)

Consider now the stability of contact discontinuity separating two conducting
fluids with different densities ρ1 and ρ2. Adopt that the fluids are in a gravi-
tational field (with the acceleration vector g) and in a uniform magnetic field
B; both fields are transverse to the boundary between the fluids. Consider
approximation of incompressible and dissipationless medium (ρ1 = const,
ρ2 = const, ν = 0, and νm = 0). As has been explained we apply the
small perturbation method—introduce small variations b, u, p, and ζ to
the originally unperturbed values B, u = 0, P , and z = 0. The value ζ
describes shape of the perturbed boundary z = ζ(x, y, t) between these two
fluids (Fig. 6.4). Now we will search the velocity perturbation in the class of
potential functions.

Let us write down the linearized set of equations (as has been said,
dissipation is discarded):

∇ · u = 0, ρ
∂u

∂t
= −∇p− 1

4π
B × [∇× b] + ρg,

∂b

∂t
= (B · ∇)u. (6.36)

Let us start from a contact discontinuity without any normal magnetic field
component. Expressing the fluid velocity via scalar potential φ we obtain

u = ∇φ(x, y, z, t), �φ = 0, (6.37)

so the equation of motion for uz-component gives rise to

∂p

∂z
= −ρ ∂

∂z

(
∂φ

∂t
+ gz

)
, (6.38)

whose integration is straightforward:

p = −ρ
(
∂φ

∂t
+ gz

)
+ P0. (6.39)
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Figure 6.4: Schematic plot of disturbed surface ζ(x, t); the original undisturbed surface
obeys an equations z = 0.

Here P0 denotes the pressure at the undisturbed boundary, which is appar-
ently the same for both upper and lower fluids. Other parameters (except for
g and B) are different at these two fluids.

At the disturbed discontinuity surface z = ζ(x, y, t) boundary conditions
(5.61) must be fulfilled and absence of the fluid flux through the boundary
in′ = 0 must be taken into account. Then, the vertical velocities in both fluids
can be rewritten using equation of the boundary surface, which is common
for both fluids:

u1z = u2z =
dζ

dt
=
∂ζ

∂t
+ (u · ∇)ζ ≈ ∂ζ

∂t
. (6.40)

With the accuracy to the first-order terms retained in Eq. (6.40) this condition
can be applied to the undisturbed surface, z = 0.

The second boundary condition at the distorted surface can be found by
equating the pressure on both sides of the discontinuity:

ρ1

(
∂φ1
∂t

+ gζ

)
= ρ2

(
∂φ2
∂t

+ gζ

)
. (6.41)

Differentiating over the time and using Eqs. (6.37) and (6.40) we find

ρ1

(
∂2φ1
∂t2

+ g
∂φ1
∂z

)
= ρ2

(
∂2φ2
∂t2

+ g
∂φ2
∂z

)
. (6.42)

This equality contains only the first-order terms and can be applied to the
undistorted surface z = 0.
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The scalar potential φ obeys Laplace equation (6.37). We search for
solution in the form of plane monochromatic waves propagating along the
unperturbed boundary:

φ1 = A exp(kz + ikxx+ ikyy − iωt), z < 0;

φ2 = C exp(−kz + ikxx+ ikyy − iωt), z > 0, k =
√
k2x + k2y. (6.43)

Using Eq. (6.40) we find C = −A; then Eq. (6.42) yields the dispersion
equation for the small perturbations:

ω2 =
ρ1 − ρ2
ρ1 + ρ2

gk. (6.44)

If ρ1 > ρ2 (denser medium is located below) the contact boundary is stable
against the perturbations with arbitrary k, while an instability takes place if
more tenuous medium is located below (ρ1 < ρ2).

Unfortunately, the developed approach cannot be used in the presence of
a vertical magnetic field, because the fluid flow becomes nonpotential in this
case. Indeed, if we write down equation for the magnetic field bz perturbation
via the potential,

bz =

∫ t

−∞
B
∂2φ

∂z2
dt′, (6.45)

and substitute the potential from Eq. (6.43) into the last equation, we notice
that the continuity condition of bz breaks down at the boundary, which
implies inapplicability of the method.

A stabilizing effect of the vertical magnetic field on the contact disconti-
nuity is considered by Chandrasekhar (1961), who obtained a cubic dispersion
equation for small perturbations:

n3 + 2k(
√
α1 +

√
α2)n

2 + k(2k + α1 − α2)n− 2k2(
√
α2 −√

α1) = 0, (6.46)

where n = iω and α1,2 = ρ1,2/(ρ1+ ρ2); ω and k are dimensionless frequency
and wave number, measured in units (g/VA) and (g/V 2

A), respectively; VA =

B/
√
4π(ρ1 + ρ2) is the modified Alfvén velocity.

The free term of Eq. (6.46) is negative if α2 > α1. This means that the
product of three roots of Eq. (6.46) is positive and iω has at last one positive
root for any finite value of the magnetic field B. We conclude that the vertical
magnetic field does not stabilize an otherwise unstable discontinuity.

The case of a magnetic field parallel to the discontinuity can be studied
somewhat easier. Let us calculate components of the momentum flux tensor
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using the relations for undisturbed field components in the “primed” reference
frame (Fig. 6.4), whose axes are expressed via original Cartesian axes:

ex′ = ex + ez
∂ζ

∂x
, ey′ = ey + ez

∂ζ

∂y
, ez′ = ez − ex

∂ζ

∂x
− ey

∂ζ

∂y
. (6.47)

Then, we obtain for the field components

Bz′ = bz −Bx
∂ζ

∂x
−By

∂ζ

∂y
, Bx′ = Bx + bx, By′ = By + by (6.48)

and for the tensor components

Πz′z′ = p+ B2

8π + 1
4πB · b, Πx′z′ = − 1

4πBx

(
bz −Bx

∂ζ
∂x −By

∂ζ
∂y

)
,

Πy′z′ = − 1
4πBy

(
bz −Bx

∂ζ
∂x −By

∂ζ
∂y

)
. (6.49)

It is convenient to take time derivatives of the tensor component matching

conditions Π
(1)
α′z′ = Π

(2)
α′z′ , α

′ = x′, y′, z′ at z = ζ,

∂

∂t
Π

(1)
α′z′ =

∂

∂t
Π

(2)
α′z′ , α′ = x′, y′, z′, (6.50)

to eliminate ζ using Eq. (6.40). For α′ = z′ using Eqs. (6.37), (6.39), and
(6.48) we obtain

−ρ2
∂2φ2

∂t2
−ρ2g

∂φ2

∂z
+B·(B ·∇)∇φ2 = −ρ2

∂2φ2

∂t2
−ρ2g

∂φ2

∂z
+B·(B ·∇)∇φ2, z = 0.

(6.51)

Equations with α′ = x′, y′ give identities 0 = 0. Using scalar potentials
(6.43), we obtain from Eq. (6.51) the dispersion equation

ω2 =
ρ1 − ρ2
ρ1 + ρ2

gk +
(B · k)2

2π(ρ1 + ρ2)
. (6.52)

Again, for ρ2 > ρ1, the instability cannot be stabilized by a uniform magnetic
field: perturbations with wave vectors transverse to the magnetic field k ⊥ B
will grow, because corresponding plasma displacement does not disturb the
magnetic field lines.

This instability can take place in a plasma, which is supported from
below by the magnetic pressure (Fig. 6.5). Adopt that the fluid density ρ2
and kinetic pressure p2 are larger above than below p2 > p1, but the total
pressures are the same: p2 + B2

2/8π = p1 + B2
1/8π. The magnetic field lines

are transverse to the figure plane. This equilibrium is unstable because any
small random fluid contraction leads to the pressure increase and the corre-
sponding plasma element will move further down. The magnetic lines being
freezed in the plasma redistribute in the space without conjunctions and rar-
efactions, i.e., without the magnetic energy change. The potential energy in
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Figure 6.5: Rayleigh–Taylor instability. The dense fluid falls downwards.

the gravitation field, however, decreases, which corresponds to a more stable
state. This consideration, however, relies essentially on the assumption of a
uniform magnetic field, while a real nonuniform 3D magnetic field can effi-
ciently stabilize the instability. As a vivid example, we can mention magnetic
arcades supporting dense and cool prominences in the solar corona as those
considered in Sect. 2.2.3.

The discussed phenomenon is known as Rayleigh–Taylor instability.
It can also develop under inertia force if a boundary moves as a whole with
acceleration and if in the reference frame (moving together with the bound-
ary) the inertia force is directed from denser medium toward more tenuous
one. For example, a complicated filamentary structure of the Crab Nebula
seen in the optical range is often interpreted in terms of the Rayleigh–Taylor
instability.

6.4 Instability of Tangential Discontinuity with
Magnetic Field (Kelvin–Helmholtz Instability)

We investigate now stability of tangential discontinuity in incompressible
conducting fluid. The fluid density, velocity, and magnetic field are all differ-
ent at both sides of the boundary. Gravitation and dissipation are discarded.

Let us denote the unperturbed values as v, B, P , while their small
perturbations as u, b, p, respectively. Perturbed surface of the discontinuity
is described by yet unknown equation z = ζ(x, y, t). Then, introduce the
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Alfven speed vA = B/
√
4πρ and a similar speed corresponding to the

magnetic field perturbation w = b/
√
4πρ. The linearized equations take the

form

∇ · u = ∇ ·w = 0,
∂w

∂t
+ (v · ∇)w = (vA · ∇)u,

∂u

∂t
+ (v · ∇)u = −1

ρ
∇p−∇(vA ·w) + (vA · ∇)w. (6.53)

Boundary conditions at tangential discontinuity z = ζ require equality of
full pressures p+ (B + b)2τ ′/8π and vanishing the normal component of the
magnetic field (B+ b)n′ = 0. Linearizing these conditions and making trans-
formation from local (“primed”) reference frame to original Cartesian one,
like in the previous section, we get

δ(p+ ρvA ·w) = 0, wz − (vA · ∇)ζ = 0 for z = 0. (6.54)

Taking divergence of the last equation (6.53) we find equation for the pressure
perturbation:

Δ(p+ ρvA ·w) = 0. (6.55)

From this equation we can easily conclude that one can search for the small
perturbation solution in the form

u,w, p ∝ exp(±kz + ikxx+ ikyy − iωt), ζ ∝ exp(ikxx+ ikyy − iωt),

(6.56)

where k =
√
k2x + k2y, while the signs ± in the exponent relate to the regions

z < 0 and z > 0, respectively.
Excluding the velocity u from Eq. (6.53) using Eq. (6.56), we obtain

[(ω − (k · v)2 − (k · vA)
2]w = −1

ρ
(k · vA)(k ∓ ikez)(p+ ρvA ·w). (6.57)

Then, consider the projection of Eq. (6.57) on axes Oz and apply bound-
ary conditions (6.54). This yields the following dispersion relation for small
perturbations:

ρ1(ω − k · v1)
2 + ρ2(ω − k · v2)

2 = ρ1(k · vA1)
2 + ρ2(k · vA2)

2, (6.58)

which is a quadratic equation for the frequency aω2+bω+c = 0. The condition
for the roots to be real is evidently the inequality b2 − 4ac ≥ 0, which can be
written down in the form

Tαβkαkβ ≥ 0. (6.59)

Here, tensor Tαβ (α, β = 1, 2) has the form

Tαβ = ρ1v
(1)
Aαv

(1)
Aβ + ρ2v

(2)
Aαv

(2)
Aβ − ρ1ρ2

ρ1 + ρ2
vαvβ . (6.60)
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Having quadratic form, Eq. (6.59), nonnegative for arbitrary real components
kα, kβ requires two inequalities Tαα > 0, |Tαβ| ≥ 0 to be fulfilled (i.e., both
trace and determinant of the tensor must be nonnegative). These conditions
can be expressed through the magnetic field vector:

B2
1 +B2

2 ≥ 2πρv2, [B1 ×B2]
2 ≥ 2πρ([v ×B1]

2 + [v ×B2]
2), (6.61)

where v = v1 − v2, ρ = ρ1ρ2/(ρ1 + ρ2), which determine the conditions
for the tangential discontinuity stability in the presence of magnetic field
(Sergei Syrovatskii 1953). As is clear from these conditions, a sufficiently
strong magnetic field stabilizes the tangential instability. This is why numer-
ous long-living tangential discontinuities are widely observed in interplane-
tary medium by instruments onboard space missions.

Without magnetic field, the tangential discontinuity is unstable in
incompressible fluid. Indeed, the dispersion relation for small perturbations
in this case takes the form

ω = kv
ρ1 ± i

√
ρ1ρ2

ρ1 + ρ2
, (6.62)

where v = |v1 − v2| is unperturbed shear velocity at the boundary. Clearly,
a growing solution always exists. Thus, if the instability takes place, random
perturbations growing at the boundary smooth it out into a turbulent region
filled by random plasma motions.

6.5 Thermal Instability

In a stable uniform fluid any fluctuation of the temperature/density will be
rapidly smoothed out by the heat conduction. In many cases, however, the
heat conduction is slow owing to relatively low density of astrophysical plas-
mas and so can be inefficient to maintain the plasma uniformity. In place, the
radiative heat conduction can play a dominant role instead of the molecular
heat conduction, which can lead to a radiative thermal instability (Field’s
instability).

The physics leading to this instability is easy to understand. Consider a
random contraction of a gas. The contraction implies higher density and so
more frequent collisions between the particles composing the plasma (atoms,
molecules, ions, and electrons). If a fraction of atoms, molecules, and partly
ionized ions is significant, the enhanced collision rate will excite more of
these particles onto higher quantum levels; the exited particles will then ra-
diate the excess energy out, which implies an enhanced energy losses by
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this volume element and, thus, progressive cooling and further contraction.
Whether this happens or not depends eventually on how the radiative loss of
the given plasma depends on temperature.

To quantify this instability, let us consider Eq. (2.13b) of the heat transfer,
where initially we neglect the heat conduction, macroscopic velocity, and
magnetic field but add unknown heating EH and cooling ER functions, so
Eq. (2.13b) receives the form

ρT
∂s

∂t
= EH − ER. (6.63)

Then, we assume that pressure of the gas remains constant (its equalization
occurs with the sound speed and so very fast) and using Eq. (6.20) we
find ∂s/∂t = (∂s/∂T )p ∂T/∂t = (cp/T )∂T/∂t, which yields equation for
temperature T :

cpρ
∂T

∂t
= EH − ER. (6.64)

The radiative loss function ER depends on the plasma chemical compo-
sition and ionization states and so a very complicated one in a general case.
However, to clarify the essence of the instability under study, we can adopt
a power-law dependence of ER on T , which is often presented in the form

ER = n2
eΛ(T ) = aρ2Tα, (6.65)

where Λ(T ) is a so-called radiative loss function (Aschwanden 2005).
Apparently, the power-law parametrization can only be approximately valid
in a restricted range of the temperature variation. Substituting Eq. (6.65)
into Eq. (6.64) and dividing by ρ, we obtain

cp
∂T

∂t
= h− aρTα, (6.66)

where h = EH/ρ. The heating function is specified by the sources of the
plasma heating and so cannot be determined from the first principles.
We note, however, that to have a stationary distribution of the temperature
(and density) requires ∂T/∂t = 0 and so h(r) = aρ0(r)T

α
0 (r), where the

density is linked to the temperature by the ideal gas equation of state, i.e.,
ρ = meffp0/(kBT ), where meff is the mean mass of the plasma particles
and p0 = const is the plasma pressure. Substituting all these values into
Eq. (6.66) we obtain the equation for the temperature variation:

cp
∂T

∂t
= aρ0T

α
0

(
1− Tα−1

Tα−1
0

)
, (6.67)
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whose linearization in the form T = T0 + δT gives for the small perturbation

cp
∂δT

∂t
= −(α− 1)aρ0T

α−1
0 δT. (6.68)

Apparently, the condition of the thermal instability reads α < 1; in this case
the solution of Eq. (6.68) δT = δT0 exp(βt), where β = −(α− 1)aρ0T

α−1
0 /cp,

will grow with time.
Note that evolution of the negative and positive temperature fluctuations

δT0 can be essentially different. For definiteness, consider the case of the solar
corona, where the condition α < 1 holds roughly at T � 105K. This means
that negative temperature fluctuations δT0 < 0 will grow, i.e., the given
volume element will cool down to roughly T ∼ 105K (Aschwanden 2005),
where the condition α < 1 is no longer valid, which implies formation of
coronal condensations, perhaps, in the form of prominences and relatively
cold and dense coronal loops.

In the other case, δT0 > 0, temperature of the volume element keeps go-
ing up, while the radiative cooling becomes less and less efficient, which could
imply an infinite heating of this volume element. In fact, no infinite heating
happens because the thermal conduction rapidly raising with the tempera-
ture, χ = χ0T

5/2, Eq. (1.153), comes into play soon, so the temperature must
be determined from a more general equation:

cpρ
∂T

∂t
= EH − ER +∇(χ∇T ), (6.69)

where the radiative loss term can eventually be discarded for a high tempera-
ture. The relative importance of the radiative losses and the heat conduction
can be estimated from the corresponding times

τrad =
cp

aρ0T
α−1
0

(6.70)

and

τcond =
L2ρ0cp

χ0T
5/2
0

=
L2

κ
, (6.71)

where κ is the thermal diffusivity defined by Eq. (1.154); in the solar corona
the heat conduction typically dominates for T � 1MK. The solar corona is
magnetized and the heat conduction transverse to the magnetic field is very
slow, so the scale L in the above estimate relates to the length of the loop
along the magnetic field; thus, longer loops are supposed to be hotter all other
conditions being equal. We conclude that a thermally stationary solar corona
would consist of relatively hot loops with T ∼ a few MK and cold loops
with T ∼ 105K as well as even cooler prominences (when the corresponding
heating function is insufficient to heat the loop up to T � 105K). Real corona,
however, is a highly dynamic, variable object.
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Table 6.1: Parameters of two-phase ISM

Parameter Cloud Intercloud medium
Temperature T 70 K 7,000K

Hydrogen number density nH 20 cm−3 0.2 cm−3

Electron number density ne 0.05 cm−3 0.02 cm−3

Gas pressure nT 1,400K cm−3 1,400K cm−3

The Field’s instability takes place in various astrophysical environments.
In particular, it is likely responsible for fragmentation of the ISM gas onto
two phases—cold clouds and warm diffuse gas. Not surprisingly, parameters of
these two phases of ISM (Kaplan and Pikel’ner 1979) (see Table 6.1) are differ-
ent from those in the solar corona. Distribution of these cold clouds over their
scales a has the form Ncl(a)da ∼ a−2.6da within 0.75pc < a < 5 pc (Cowie
and Songaila 1986); the clouds can be strongly nonspherical. As the clouds
are formed due to contraction of the original diffuse phase volume element,
the 100-fold density contrast between the clouds and the warm phase implies
that the mean distance between clouds is roughly five times larger than the
cloud size. In fact, the ISM structure is much more complicated than implied
by the two phase model as it is a highly dynamic nonstationary system; in
addition it includes various kinds of HII regions, atomic hydrogen clouds (HI
regions and shells), and hot cavities. The latter are produced by correlated
SN explosions (see Sect. 5.6) and fill a relatively large fraction (∼50%) of
the galactic disk volume by a hot (∼106K) tenuous (∼3 × 10−3 cm−3) fully
ionized plasma, called the coronal phase in analogy with the comparably hot
solar corona.

6.6 Turbulence and Correlation Tensor Formalism

6.6.1 Physical Picture of Turbulent Motion

In practice, almost any kind of the gas or fluid motion can become unstable
when the fluid velocity is sufficiently high. A number of specific examples of
MHD instabilities have been considered in previous sections of this chapter.
In an unstable state of fluid motion, small random perturbations of velocity,
field, and other parameters grow in time, until nonlinear and dissipative pro-
cesses stabilize them at some new level, stable in given conditions. Therefore,
in an unstable fluid, the velocity and other parameters behave irregularly,
their magnitudes (and directions of vectors) experience chaotic fluctuations
at a given spatial location, and the fluctuating velocity is not necessarily
small compared with mean (regular) flow velocity. Such a complicated irreg-
ular motion is called turbulent motion in contrast to laminar motion, when
variations of the velocity in space and time are regular.
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Transition to the turbulent motion happens at sufficiently large value of
dimensionless Reynolds number R = ul/ν introduced in Sect. 2.1. Here u
is a typical fluid velocity, l is a typical scale at which it noticeably varies,
and ν is the kinematic viscosity. The Reynolds number quantifies the ratio of
nonlinear inertial term in the equation of motion to dissipative term. Critical
value Rc of the Reynolds number, above which the laminar motion loses
its stability and turbulence arises, can be rather large. For example, for the
water flow in the circular pipes, Rc ≈ 103−104, depending on the pipe surface
quality and uniformity of the input flow.

Here we will typically consider a so-called developed turbulence, when
many macroscopic degrees of freedom are excited in the fluid and there are
motions (vortices, waves, inhomogeneities, etc.) in a broad range of scales.
To achieve this state requires that the Reynolds number to be much larger
than the introduced above critical value Rc, at which the laminar–turbulent
transition occurs. Such very large Reynolds numbers are indeed typical for
geophysics and astrophysics conditions because the characteristic scales are
often large there. For example, in the Earth’s atmosphere in a town with big
buildings (l ≈ 100m), wind speed u ≈ 20m/s, and the air kinematic viscosity
ν ≈ 0.15 cm2/s, we obtain R = ul/ν ≈ 108. In the molecular clouds residing
in the galactic disk (Ruzmaikin et al. 1988; Vainshtein et al. 1993) observa-
tions give u ≈ 106 cm/s, l ≈ 10 pc ≈ 3 × 1019 cm, the temperature around
100K, and molecule number density around 100 particles/cm3. This, using
Eq. (1.151), yields ν ≈ 0.8 × 1017 cm2/s for σ ∼ 10−14 and, correspondingly,
R ≈ 4× 108.

If the gas is not ionized, then in the subsonic regime (u � cs) eddy
motions of various scales represent the main structural elements of the tur-
bulence. For u � cs the sound waves and the shock fronts become significant
constituents of the turbulent motion. In a conducting fluid or plasma, the
turbulent motion is much more complicated because in this case the turbu-
lent pulsations can be produced by whole variety of the waves, which can
exist in a given medium, including the linear and nonlinear MHD waves.

6.6.2 Averaging of Turbulent Parameters
and Correlation Tensors

To describe a random field of turbulent velocities, some averaged measures
characterizing the field must be specified. For equilibrium systems such av-
eraging is typically performed over the statistical ensemble of equilibrium
states (Gibbs’s ensemble). However, turbulent media are highly nonequilib-
rium, so the macroscopic velocity probability distributions are generally un-
known. In practice, the way of averaging in such media must be closely linked
with the way how the corresponding parameters are measured. Frequently,
instruments perform averaging of a measured parameter in time. The interval
Δt of theoretical averaging must be taken in such a way to exceed all main
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periods of the turbulent pulsations, which ensures that all the pulsations are
smoothed out:

〈u(r, t)〉 ≡ 1

Δt

Δt/2∫
−Δt/2

u(r, t+ t′)dt′ = u0(r, t), (6.72)

and thus the mean velocity u0(r, t) becomes a regular function of position
and time, which varies only slowly over time Δt. Then, the difference

u′(r, t) = u(r, t)− u0(r, t) (6.73)

can be called pulsating velocity, whose mean is zero by definition, 〈u′〉 = 0.
However, a two-point correlation tensor, being a quadratic form of the random
function, is evidently nonzero:

Uαβ(r1, t1; r2, t2) =
1

Δt

Δt/2∫
−Δt/2

u′α(r1, t1 + t′)u′β(r2, t2 + t′)dt′. (6.74)

A complete description of the random field of turbulent velocities requires
specifying infinite sequence of multipoint correlation tensors of all higher
ranks. Indeed, any functional form 〈F [u′(r, t)]〉, which can be expanded in
a power series over components u′(r, t), can exactly be expressed via such
set of tensors. This complete treatment of turbulence is exceedingly com-
plicated and impractical in most cases. Fortunately, in many cases, a good
approximate treatment can be achieved by using only two measures—the av-
eraged velocity and the second-rank correlation tensor. For example, density
of kinetic energy of incompressible turbulent fluid has the form

wk(r, t) =
1

2
ρ{u20 + Uαα(r, t; r, t)}, (6.75)

where ρ is the mass density.
We will often consider a stationary turbulence, whose averaged measures

do not vary over time. This means, in particular, that Uαβ can only depend on
the time difference t = t1− t2 but not on T = (t1 + t2)/2. If the random field
is also uniform in space, i.e., the averaged (but not instantaneous!) measures
do not depend on coordinates, then the radius vectors r1 and r2 enter to Uαβ
only in the combination r = r1 − r2. Thus, correlation tensors of stationary
uniform turbulence depend on the differences of the variables only:

Uαβ(r1, t1; r2, t2) = Uαβ(r1 − r2, t1 − t2). (6.76)

For r = 0 and t = 0 the trace Uαα(0, 0) = 〈u′2〉 > 0 gives averaged square
of the pulsation velocity. But for t→ ∞ we have

Uαβ(0, t) = 〈u′α(r, t1)u′β(r, t2)〉 ≈ 〈u′α(r, t1)〉〈u′β(r, t2)〉 = 0 (6.77)
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because any correlation between the pulsation components will disappear if
they are separated by a sufficiently large time interval; thus, the velocities can
be averaged separately, which gives zero result. A characteristic time τc over
which the tensor Uαβ has a noticeably nonzero value is called the correlation
time or the coherence time of the velocity components. A formal definition
of the correlation time (applicable for any random variables) is obviously

τc =
1

Uαβ(0, 0)

∫ ∞

0

Uαβ(0, t)dt, Uαβ(0, 0) �= 0. (6.78)

Similarly, we can define the correlation length or coherence length Lc along
arbitrary unit vector e direction:

Lc =
1

Uαβ(0, 0)

∫ ∞

0

Uαβ(se, 0)ds; (6.79)

therefore

Uαβ(r1 − r2, 0) → 0 for |r1 − r2| 
 Lc. (6.80)

Here we often assume that the turbulence is statistically isotropic and
correlation length is the same in any direction.

Although probability distributions of velocities and other macroscopic
parameters are generally unknown for nonequilibrium turbulent systems, a
formal averaging over ensemble is still possible similarly to the equilibrium
case. Consider a large (ideally—infinite) number of isolated systems, which
are macroscopically equivalent to an original system. Such set of equivalent
systems is called statistical ensemble or simply ensemble. Since the velocity
components are random, their values u′α, u

′′
α, . . . in equivalent points of space

at the same time are generally different: u′α(r, t) �= u′′α(r, t) �= u′′′α (r, t) �= . . . .
The value averaged over ensemble (statistical average) is just the arithmetic
mean

〈u(r1, t1)u(r2, t2)〉 = lim
N→∞

u′(r1, t1)u′(r2, t2) + u′′(r1, t1)u
′′(r2, t2) + · · ·

N
,

(6.81)

where N is the total number of the systems in the ensemble. In many
turbulent systems the values averaged over ensemble coincide with those
averaged over time provided the averaging interval is large enough. Such
systems are called ergodic systems.

For the stationary random fields the ergodicity condition (Monin and
Yaglom 1965) requires that the correlation decreases relatively rapidly with
time:

lim
Δt→∞

1

Δt

∫ Δt

0

Uαβ(0, t)dt = 0.

The statistical averaging is commonly used for theoretical treatment of the
random fields.
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One of the key turbulence characteristics is distribution of the turbulence
pulsations energy over scales λ (or over the corresponding reciprocal values,
k = 2π/λ). In a neutral medium without any magnetic field (i.e., when the
kinetic energy is the only form of the turbulence energy) this distribution is
given by a Fourier transform of the second-order velocity correlation tensor
taken at the same moments of time:

Uαβ(r1 − r2, 0) =

∫
Ũαβe

ik·(r1−r2)
d 3k

(2π)3
. (6.82)

The turbulence energy E per unit mass is given by the tensor trace

E =
1

2
Uαα(0, 0) =

1

16π3

∫
Ũαβ(k)d

3k. (6.83)

If, in addition to spatial uniformity, the turbulence is also isotropic (i.e.,

there is no preferred direction in the medium), the spectral tensor Ũαβ(k) can
be fully composed of the components of vector kα and invariant unit tensors
δαβ and eαβγ . Let us first construct a spectral tensor from the symmetric
tensors δαβ and kαkβ/k

2 only. This spectral tensor is evidently fully defined
by specifying two scalar functions A(k) and B(k):

Ũαβ(k) = A(k)δαβ +B(k)
kαkβ
k2

. (6.84)

In incompressible medium we can apply the condition∇·u = 0 in the Fourier
presentation to find B(k) = −A(k); thus, Eq. (6.84) receives a simple form:

Ũαβ(k) = A(k)

(
δαβ − kαkβ

k2

)
. (6.85)

Spectral tensors Eqs. (6.84) and (6.85) can easily be integrated over angles
of vector k to express energy, Eq. (6.83), in a form of single integral over the
wave vector modulus:

E =

∫ ∞

0

dE

dk
dk, where

dE

dk
=

k2

4π2
(3A(k) +B(k)) (6.86)

is the spectral density of turbulence energy per unit mass and unit range
of the wave numbers. If typical velocity of the turbulent pulsations u is sub-
sonic, then effects of fluid compression are small, of the order of u/cs � 1;
therefore, the spectral density is well defined by a single scalar function, which
can easily be found from Eq. (6.86) by adopting B = −A:

dE

dk
=

k2

2π2
A(k). (6.87)

Distribution of the turbulent energy over the scales (or wave numbers)
often affects other phenomena, linked to the turbulence in one or another way,
for example, acceleration and transport of charged particles and generation
and propagation of electromagnetic emission.
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6.7 The Theory of Turbulence by Kolmogorov
and Obukhov

A complete quantitative theory, which would compute the turbulence
correlation tensors and distributions of energy over scales, is currently
unavailable. However, semiquantitative analytical and numerical models
applicable to a variety of more or less simple cases do exist (Monin and
Yaglom 1965; Frisch 1995; Frick 2003). We consider a number of these
models starting with perhaps the most illustrative, while well-tested, model
proposed by Kolmogorov (1941) and Obukhov (1941) for developed uniform,
isotropic, and stationary turbulence of incompressible neutral (not ionized)
fluid. The foundation of the model is as follows:

1. A turbulence-producing energy source generates motions with the spa-
tial scales specific to this given source; a characteristic scale of these
(energy-containing) motions we denote as L and call it the external scale
of the turbulence, which is of the order of the correlation length Lc in-
troduced above. In fact, in this range of largest scales, the turbulence is
typically inhomogeneous and anisotropic. In the considered here station-
ary case, all the energy deposited into the medium must dissipate and
transform to the fluid heating. According to Kolmogorov’s hypothesis the
intensity of the turbulence source can be well characterized by a single
parameter—averaged over volume and time energy ε = const deposited
per unit mass of the fluid per unit time. It is ε that specifies intensity of
turbulent pulsations [see Eq. (6.90)].

These two values, L and ε, complemented by the third (the only
dissipative) parameter, the kinematic viscosity ν, which is discussed be-
low in more detail, compose the full set of the input parameters in the
Kolmogorov–Obukhov theory. It looks unbelievable, while highly exciting,
that such a small number of the input parameters allows to firmly outline
the theoretical frame for that complicated physical phenomenon as the
HD turbulence. This theory is capable of calculating key quantitative mea-
sures of the turbulence and has met solid experimental (in the laboratory)
and observational (in geophysics and astrophysics) justifications.

2. Most of the turbulence energy is associated with eddy motions with scale
of about L, which form energy-containing range of scales (and correspond-
ing wave numbers around k0 = 2π/L; see Fig. 6.6). In case of developed
turbulence we have L 
 ν/u, and so dissipation of the kinetic energy at
the energy containing range is insignificant. Instead, the main effect evac-
uating the deposited energy from this energy-containing scale is breaking
down of larger eddies onto smaller ones, which is possible owing to non-
linear interaction in the fluid described by the nonlinear fluid dynamic
equations. These process, called the turbulence cascading, occurs in a
broad range of spatial scales down to some small scale l (internal scale of
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Figure 6.6: Spectrum of developed turbulence in the Kolmogorov–Obukhov theory.

the turbulence), at which the dissipation starts to play a role. Remarkably,
between L and l, the main process driving the turbulence properties is the
nonlinear cascade of ALL deposited energy ε received from the source from
large-scale to small-scale motions. Since the main nonlinear term (u ·∇)u
responsible for the cascading is provided by the inertia force du/dt, the
range of scales L � λ � l is called the inertial range. The nonlinear eddy
breaking ensures isotropy of the turbulent eddies; thus, at least at the
scales λ � L the turbulence becomes locally uniform and isotropic, even
though the large-scale motions can be nonuniform and anisotropic.

3. A remarkable property of the Kolmogorov–Obukhov turbulence model is
that dependence of the velocity uλ on its scale λ at the inertial range can
be found from a simple, while rather general consideration. Adopt that
the eddy lifetime is of the order of its single rotation time τλ ≈ λ/uλ
(so-called strong turbulence). Energy of a single eddy (which is u2λ/2 per
unit mass) is transformed to smaller-scale motions over the time interval
τλ. This process must forward down all the energy ε, deposited by the
turbulence source per unit time:

ε ≈ u2λ
2τλ

≈ u3λ
λ
, (6.88)
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which on the order of magnitude yields the Kolmogorov–Obukhov law
giving dependence of the velocity on scale:

uλ ≈ (ελ)1/3 ∼ λ1/3, (6.89)

where uλ is in fact an rms value uλ = 〈u2
λ〉1/2 (the true mean is evidently

zero 〈uλ〉 = 0). Dependence (6.88) is valid on the order of magnitude up
to scale L; thus

ε ≈ u3

L
, (6.90)

where u is the rms value of the pulsation velocity, which is about the
maximum turbulence velocity. Apparently, this estimate does not include
the mean flow speed if present.

4. The internal scale l is specified by approximate balance of the inertial and
dissipative terms at this scale: l−1u2l ≈ νull

−2, which yields l ≈ ν/ul.
Using Eq. (6.89) we obtain

l ≈
(
ν3

ε

)1/4

. (6.91)

The scales λ < l form the dissipative range where the turbulence decays
(Fig. 6.6).

Finally, obtain from Eq. (6.89) the spectral energy density described by
Eq. (6.87). We have

λ = 2π/k, u2λ =

∫ ∞

k

〈u2k〉4πk2dk ≈ 4π〈u2k〉k3, (6.92)

which for the inertial interval yields

〈u2k〉 =
u2λ

4πk3
=

(
2πε

k

)2/3
1

4πk3
. (6.93)

This gives rise to the spectral energy distribution:

dE

dk
=

〈u2k〉
2

4πk2 = Cε2/3k−5/3, (6.94)

which represents the Kolmogorov–Obukhov law for the turbulence spectral
energy density in the inertial range. Note that the consideration performed
here is in fact an estimate rather than a theory. In particular, it does not de-
fine the normalization constant C, which therefore must be defined from an
external knowledge—more sophisticated theory, numerical modeling, or labo-
ratory experiment. Nevertheless, in spite of apparent simplicity and numerous
oversimplifications of the model, the Kolmogorov–Obukhov law was found to
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agree with many natural phenomena—atmospheric and ocean turbulence,
turbulence in galactic molecular clouds, “Big Power Law” (Sect. 6.10.2) in
the Galaxy, etc.

6.8 Weak MHD Turbulence in Incompressible
Conducting Fluid with Magnetic Field

In astrophysical conditions plasma moves eternally; the motion is typically
irregular. Even when there is a regular motion, like a differential rotation,
solar or stellar wind, and accretion, random motions superimpose on it. Thus,
the velocity represents a random field; the direction and magnitude of the ve-
locity change in a chaotic way. Nevertheless, there are various stable averaged
measures of the motion capable of reasonably detailed characterizing it.

A distinctive feature of the turbulence in astrophysics is presence of
random fields along with random motions. This is provided by excitation and
further amplification of originally weak magnetic perturbations by turbulent
fluid (dynamo-instabilities). In addition, the turbulence is always followed
up by enhanced energy dissipation, which typically implies breaking down
the scales of magnetic field and velocity. Eventually, the presence of charged
particles and electromagnetic fields significantly complicates the picture of
the astrophysical turbulence providing a remarkable diversity of its forms.

In a magnetized plasma many eigenmodes can be generated and persist,
such as electrostatic Langmuir and ion-sound waves, MHD Alfvén and mag-
netosonic waves, and whistlers. They can be produced by a number of mecha-
nisms involving kinetic plasma motions, particle beams, powerful radio emis-
sion, plasma currents, and numerous instabilities. Because of random way of
generation along with nonlinear interactions, the waves have typically ran-
dom phases and so form a random wave field. Such ensembles of weak waves
with random phases are called plasma turbulence(accordingly, depending on
the wave type forming the turbulence, we will distinguish Langmuir, Alfvén,
whistler etc turbulence). The turbulence is called weak in this case because
its main forming elements are linear plasma eigenmodes, weakly interacting
with each other owing to nonlinear effects. For example, spacecrafts prob-
ing interplanetary medium revealed that there are MHD turbulence com-
posed of Alfvén and fast magnetosonic waves, as well as MHD discontinuities
(see Sect. 5.3.3).

Here we consider a stationary spatial spectrum of weak MHD turbulence
within the ideas of the Kolmogorov–Obukhov theory and generalize it for
the case of MHD turbulence. However, the result of this generalization is
not unique because the magnetic field introduces anisotropy into the system
and more dimensionless parameters can be composed in this case. Indeed,
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in addition to ελ/u3, there are two more dimensionless parameters—〈u2λ〉/v2A
and λ‖/λ—the last one is related to the turbulence anisotropy. Thus, the
analysis of dimensions alone is insufficient to uniquely derive the turbulence
spectrum in the inertial range.

6.8.1 Weak MHD Turbulence Below the Diffusive Scale

We start from assumption of large Reynolds number R = uL/ν but weak
large-scale magnetic field B0, B

2
0/8πρ� u2/2, and small magnetic Reynolds

number Rm = uL/νm � 1, i.e., the magnetic Prandtl number is very small,
Pm = ν/νm = Rm/R � 1. In these conditions the turbulence anisotropy
is small, λ‖/λ ∼ 1, and effect of magnetic field on medium motion can be
ignored. Thus, in the induction equation, Eq. (2.16),

∂B

∂t
+ (U · ∇)B = (B · ∇)U + νmΔB; (6.95)

the turbulent velocity U can be considered as a given stochastic function,
determined by the Kolmogorov–Obukhov theory [see Eqs. (6.88) and (6.93)].
Thus, we solve the problem of small-scale (l � λ� L) and weak (bλ � B0)
magnetic field generation in incompressible medium with external magnetic
field B0 by a given strong Kolmogorov–Obukhov turbulence.

To start with we obtain an approximate equation for the small-scale
magnetic field bλ from Eq. (6.95). In the linear terms we change B to bλ. The
nonlinear terms are transformed according to (B ·∇)U → (B0 ·∇)uλ+(B0 ·
∇)u and (U ·∇)B → (u ·∇)B0+(u ·∇)bλ. Here u and B0 are the turbulent
velocity and magnetic field at the largest scale L. The estimate to the order of
magnitude with the account of Eqs. (6.88) and (6.89) gives |∂bλ/∂t| ∼ vAbλ/λ
and |(u · ∇)bλ| ∼ ubλ/λ. These terms are small vAλ/νm � 1, uλ/νm � 1
relative to the term νmΔbλ. The terms |(B0 · ∇)u| ≈ |(u · ∇)B0| ∼ uB0/L
are small by (λ/L)2/3 relative to |(B0 · ∇)uλ| ∼ B0uλ/λ ≈ B0(ελ)

1/3/λ ≈
(uB0/L)(L/λ)

2/3. Thus, we can keep two terms only in Eq. (6.95):

(B0 · ∇)uλ + νmΔbλ = 0. (6.96)

Fourier transform of Eq. (6.96) has the form

bk = i
k ·B0

k2νm
uk. (6.97)
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Squaring and averaging this equation over the angle between k and B0, we
obtain the spectral density of the magnetic turbulent energy (Golitsyn 1960,
1962):

dEB(k)

dk
=

〈b2k〉
8πρ

= CBR
2
m

v2A
L8/3k11/3

∼ k−11/3, (6.98)

where CB is a dimensionless constant.
Although the magnetic field just passively follows after the mechanical

motions described by the Kolmogorov–Obukhov theory, the mechanism of
the magnetic spectrum formation is strongly different from that of the ki-
netic energy spectrum. Indeed, there is no cascade of the magnetic fluctua-
tions; instead the velocity pulsations of a given scale give rise to magnetic
pulsations of the same scale, which quickly dissipate due to large magnetic
viscosity; this eventually results in much steeper magnetic than kinetic spec-
trum. An opposite situation takes place when the magnetic Prandtl number
is large (see Sect. 6.9.5).

6.8.2 Iroshnikov–Kraichnan Model of Weak Alfvénic
Turbulence

We turn now to the case of large magnetic Reynolds number of a turbulent
fluid with energy-containing scale L and velocity u at this scale permeated by
an external magnetic field B, with the magnetic energy density comparable
to the kinetic energy density:

B2

8π
≈ ρu2

2
. (6.99)

This, in particular, means that the fluid speed at the main scale is about
the Alfvén speed, u ≈ vA = B/

√
4πρ. Note that even if the magnetic field

was originally uniform, it will be randomized (with the largest scale of in-
homogeneity L) at the course of time due to freezing in the random plasma
motions.

Magnetic inhomogeneities, generated by turbulent motion, will then
represent a superposition of the corresponding small-amplitude eigenmodes
of the fluid. The eigenmodes of an incompressible magnetized fluid are the
Alfvén waves; note that independently on the wavelength λ, the turbulence
magnetic energy equals to the kinetic energy:

B2
λ

8π
=
ρu2λ
2

(6.100)

in both simple Alfvén wave and in small-amplitude Alfvén wave. Like in
the Kolmogorov–Obukhov model, the spectral flux of the turbulence en-
ergy toward smaller scales occurs owing to nonlinear generation of small-
scale modes. The Kolmogorov–Obukhov model can be generalized to the
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considered case by taking into account that the dissipation is negligible over
scales lm � λ� L, while the small-scale velocities are small compared with
the main-scale velocity (u2λ � u2 ≈ v2A).

In this section we adopt an assumption of the turbulence isotropy,
λ‖/λ ∼ 1, and expand the spectral flux of energy ε over the small parameter
〈u2λ〉/v2A:

ε ≈ a〈u2λ〉/v2A + b(〈u2λ〉/v2A)2 + · · · , (6.101)

which will result in the Iroshnikov–Kraichnan model of the weak Alfvénic
turbulence. The first term here describes the Alfven wave dissipation. The dis-
sipated energy consists of the absorbed kinetic energy ν〈u2λ〉/λ2 per unit mass
and a similar damping of the magnetic energy, νm〈B2

λ〉/4πρλ2 ≈ νm〈u2λ〉/λ2,
which implies the following estimate for the coefficient a ≈ (ν + νm)/v2Aλ

2.
In the inertial range (if present) the damping is small, so the second term in
expansion (6.101) must dominate there. The coefficient b, having the same
dimension as ε, can be composed of the scale λ and the Alfvén speed vA,
which does not depend on scale b = v3A/βλ, where β is a (unknown) dimen-
sionless coefficient. We, therefore, omit the first term in the inertial range, so
Eq. (6.101) reduces to

ε ≈ b
〈u2λ〉2
v4A

≈ 〈u2λ〉2
βvAλ

, 〈u2λ〉 ≈ (βεvAλ)
1/2, (6.102)

which specifies dependence of the turbulent velocity on its scale. Next, this
dependence can be straightforwardly used to derive distribution of the turbu-
lence energy over spectrum in the same way as was used to obtain Eq. (6.94):

dE

dk
≈ C(εvA)

1/2k−3/2, (6.103)

where C is a new dimensionless constant (different from that introduced
in the previous section). According to Eq. (6.99), the spectrum of magnetic
turbulence has the same form as the spectrum of kinetic energy (6.103).

Let us consider now the applicability and bounds of this inertial interval.
The expansion parameter in Eq. (6.101) is 〈u2λ〉/v2A ≈ (βεvAλ)

1/2/v2A ≈
(βλ/L)1/2, where expressions (6.90), (6.99), and (6.102) have been used.
The ratio of the first to the second terms in Eq. (6.101) is av2A/b〈u2λ〉2 ≈
lm(βL/λ3)1/2, where

lm ≈ ν + νm
vA

. (6.104)

The dissipation becomes comparable to the nonlinearity at

λ = λm ≡ (βl2mL)
1/3 ≈ L/R

2/3
∗ . (6.105)

Here R∗ = vAL/(ν + νm) is a “generalized Reynolds number” that depends
on the sum of the kinematic viscosity and magnetic diffusivity.
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We emphasize that the dissipation of the weak MHD turbulence is
controlled by both effects, viscosity and diffusivity. Although one of them
typically dominates the other, it would be incorrect to think that ν controls
the velocity dissipation only, while νm controls the magnetic field dissipation
only. In fact, energy equipartition (6.100) is fulfilled for the Alfvénic waves
when the damping rate is small (γ � ωA), and until it is small, kinetic and
magnetic energies are strongly coupled in the Alfvén wave and they decay
coherently with a single damping rate γ.

6.9 Anisotropic Turbulence: Critically Balanced
Cascade

Let us now critically revise the presented weak Alfvénic turbulence model.
We assumed above that the turbulence is isotropic and the corresponding
nonlinear interaction leading to the turbulence cascade is weak. We now
address these assumptions in more detail. Let us introduce an Alfvén time:

τA ∼ 1/ωA ∼ λ‖/vA, (6.106)

where λ‖ ∼ 1/k‖ [see the dispersion relation for the Alfvén waves, Eq. (2.54)],
ωA = ±vAk‖, and the kinematic time corresponding to a certain scale λ

τs ∼ λ/uλ. (6.107)

Apparently, the assumption of weak interaction implies that many wave
periods are needed to the wave energy to cascade further down, which requires
τs 
 τA. The cascading time τλ is τs/τA times longer than the kinematic time
since each uncorrelated interaction between the wave packets occurs only a
short time τA:

τλ ∼ τ2s
τA

∼ λ2vA
λ‖u2λ

. (6.108)

If we assume the turbulence isotropy and adopt λ‖ = λ, we immediately
obtain the results of Sect. 6.8. It turns, however, that the isotropy assumption
is difficult to justify.

Weak nonlinear interaction between waves can be consistently described
in terms of resonant three-wave and four-wave processes. For the lowest-order,
three-wave processes the conservation laws imply

k1 + k2 = k3, (6.109a)

ω1 + ω2 = ω3. (6.109b)

It was noted (Shebalin et al. 1983; Sridhar and Goldreich 1994) that these
conservation laws together with a very special (anisotropic) dispersion law
of the Alfvén waves ωA = ±vAk‖, where the wave frequency depends on
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the longitudinal component of the wave vector only, put severe constraints
on the nonlinear interaction of the Alfvén waves. Indeed, if we consider two
Alfvén waves with the same propagation direction, the sum of them repre-
sents a valid solution of the exact nonlinear (non-dissipative, incompressible)
MHD equations, which means no modification to the original waves and so
no cascading. The only interacting Alfvén waves are those propagating in
the opposite directions; for those waves the conservation laws along with the
dispersion law yield

k‖1 − k‖2 = k‖3, k‖1 + k‖2 = k‖3, (6.110)

with the only solution k‖2 = 0 and k‖1 = k‖3. This means that the Alfvén
wave energy does not cascade along k‖, so only transverse cascade can take
place. Account of the four-wave resonant interactions does not change this
conclusion (Sridhar and Goldreich 1994). We, therefore, have arrived at a
conclusion that the Iroshnikov–Kraichnan model of the isotropic Alfvénic
turbulence is self-contradictory and needs to be patched.

6.9.1 Developed Incompressible Turbulence

The first way of the weak turbulence model generalization is to adopt that
the turbulence is “developed”, i.e., other than Alfvén modes are present and
can participate in the cascading. In the incompressible case, however, only
static (motionless) vortex perturbations with k‖ = 0, ∇× b and ∇× u, and
the entropy excitations (with k‖ �= 0) can exit besides the Alfvén waves.
Since ωv = 0 for those perturbations, the resonance conditions cannot be
fulfilled in the three-wave processes like those considered above, in which one
of the Alfvén waves is substituted by a vortex/entropy perturbation. However,
the four-wave processes, where one of the wave is the static vortex/entropy
perturbation,

k1 + k2 + kv = k3, (6.111a)

ω1 + ω2 + 0 = ω3, (6.111b)

seem to be possible. Although these processes do participate in the trans-
verse momentum cascading, they have no effect on the longitudinal momen-
tum conservation, which again reduces to Eq. (6.109). Thus, the presence of
the motionless vortex perturbations, which are also the eigenmodes of the
incompressible magnetized fluid, is incapable of recovering the longitudinal
cascade in the Alfvénic turbulence spectrum. It seems that this conclusion
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remains valid until we take into account some corrections to the Alfvén wave
dispersion law, e.g., related to the Hall current corrections considered in
Sect. 2.4.2.

However, the standard entropy mode having k‖ = k2/2 is capable of
recovering the longitudinal cascade of the Alfvén turbulence according to
Eq. (6.111). It does not immediately mean, however, that the cascade is
isotropic in this case. We note that adding more eigenmodes implies more
parameters describing the turbulence: the vortex and entropy perturbations
require their own spectra to be consistently found within the same model,
which depends on the model and so may not have a unique solution.

6.9.2 Weak Anisotropic Alfvénic Turbulence
in Incompressible Plasma

Consider now the case of purely Alfvénic turbulence and take into account
the established absence of the parallel cascade. To explicitly do this, we have
to associate the longitudinal scale with the injection scale, λ‖ ∼ 1/k‖0, and,
accordingly, the cascading scale with the transverse scale, λ ∼ λ⊥. Then,
using Eq. (6.88), we find

u2λ ∼ (εvAk‖0)1/2λ⊥. (6.112)

Applying then Eq. (6.92), having d3k replaced by d2k⊥ = 2πk⊥dk⊥, we
obtain the spectral energy distribution of the weak anisotropic Alfvénic
turbulence:

dE(k⊥)
dk

∼ (εvAk‖0)1/2k−2
⊥ , (6.113)

which gives a solution for the weak anisotropic turbulence.
At this point we have yet to check if the solution is consistent with the

assumption of weak interaction τs 
 τA. To do so we substitute velocity
Eq. (6.112) into Eq. (6.107) and form the ratio

τA
τs

∼ ε1/4

(vAk‖0)3/4λ
1/2
⊥

� 1, (6.114)

which must be small for the weak interaction approximation to be applicable.
Solving this inequality for λ⊥, we find that the weak interaction approxima-
tion is only applicable down to a critical scale:

λcr ≈ ε1/2

(vAk‖0)3/2
. (6.115)

At the smaller scales, λ⊥ < λcr, which can be well within the inertial range if
the Reynolds number and the magnetic Reynolds number are large, the non-
linear wave interaction is not weak any longer. Stated another way, the
anisotropic weak cascade ultimately drives the turbulence toward the regime
of strong cascade, which requires further analysis.
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6.9.3 Critically Balanced Cascade

The idea of the critically balanced turbulence (Goldreich and Sridhar 1995)
is very simple: even if the cascade started as the weak one, after some time,
as the scale λcr, Eq. (6.115), has been reached and the characteristic times τA
and τs have become comparable to each other, τA ∼ τs, this equality holds
afterward. Then, using Eqs. (6.106) and (6.107) yields

λ‖/λ⊥ ∼ vA/uλ; (6.116)

this property is called the critical balance. As has been shown above, the
cascade of the Alfvénic turbulence itself drives the system to a state in which
condition (6.116) is fulfilled. In this state we have only one natural time scale,
τA ∼ τs ∼ τλ, which, together with Eq. (6.116), uniquely defines (by applying
the same consideration as in Sect. 6.7) the cascade properties including the
turbulence spectrum

dE

dk
∼ ε2/3k

−5/3
⊥ f

(
k‖

k
1/3
0 k

2/3
⊥

)
, (6.117)

which essentially recovers the Kolmogorov’s scaling law but in terms of k⊥
in place of k, while the factor f(x) reaching a peak value at about xmax ∼ 1
and having

∫
f(x)dx = 1 describes a weaker parallel cascade with effective

parallel scale:

λ‖ ∼ λ
2/3
⊥

λ
2/3
cr k‖0

. (6.118)

This consideration implies that the turbulence structural elements (eddies
or wave packets) are essentially anisotropic and become more and more
anisotropic for the respectively smaller scales. The obtained scalings must
hold at all scales below the critical scale λcr and above the dissipative scales
λν ∼ (ν3/ε)1/4 and λm ∼ (ν3m/ε)

1/4 determined by the viscosity ν and mag-
netic diffusivity νm, respectively. This inertial range does exist if the critical
scale is much larger than both dissipative scales. In terms of the Reynolds
numbers, this requirement implies R, Rm 
 (vA/u)

3, which is typically
fulfilled in the astrophysical conditions. The model of the critically balanced
turbulence is currently accepted as a standard model of astrophysical Alfvénic
turbulence in place of the isotropic weak turbulence model.

6.9.4 Turbulence in Unmagnetized Plasma

The cases considered above assume that the plasma is permitted by an
external magnetic field. However, we can consider a situation in which a
conducting plasma is free from the external magnetic field and so initially
isotropic; thus, the turbulence developing in such a fluid is also supposed to
be globally statistically isotropic and the above anisotropic cascade seems to
be invalid from this perspective.
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One possibility is that the MHD fluctuations at the largest scale are
isotropic but the cascade at smaller scales is driven by this large-scale field and
so is locally anisotropic. This model assumes that the smaller-scale dynamics
is dominated by larger-scale dynamics. Numerical simulations (Schekochihin
and Cowley 2007) reveal that this is not always the case. Instead, the isotropic
turbulence can often be dominated by a small-scale dynamo with most or
significant fraction of the energy residing at the small scales. We return to
the small-scale dynamo in the Chap. 8 when the magnetic field generation is
considered.

6.9.5 Turbulence Below the Viscous Scale

Classical inertial range is located above both characteristic dissipative scales
of the plasma—viscous λν and resistive λm. In astrophysical objects, however,
the kinematic viscosity is often much larger than the magnetic diffusivity,
oppositely to the case considered in Sect. 6.8.1. Indeed, using Eqs. (1.150)
and (1.152), we find the magnetic Prandtl number Pm:

Pm ≈ 6.5× 1018
(

T

106K

)4 ( ni
cm−3

)−1

; (6.119)

thus, typically λν 
 λm. This implies that although plasma motions strongly
decay below the viscous scale, the magnetic field can have much smaller-scale
structure here down to the resistive scale λm.
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Figure 6.7: Spectrum of turbulence below the viscous scale obtained in numerical mod-
eling by Cho et al. (2002), left panel. Corresponding spatial distributions of the fluid
velocity (smooth image in the middle) and magnetic field (having prominent small-scale
structure in the right) from Schekochihin and Cowley (2007).

Let us estimate the magnetic spectrum in this (dissipative inertial) range
of the spacial scales. To do so we note that because the motions below the vis-
cous scale are damped, we have to conclude that all the small-scale magnetic
structure is mediated by the fluid motion at the viscous scale:

b2λ/τν ≈ const, (6.120)
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where τν ∼ λ2ν/ν = const is a cascade time at the viscous dissipative scale λν .
Since τν = const, we immediately arrive at a conclusion that the magnetic
energy is equally distributed per each decade within this dissipative range
λν 
 λ
 λm, i.e.,

dEb(k)

dk
∝ k−1, (6.121)

which implies a considerable small-scale structure of the magnetic field below
the viscous dissipative scale.

Numerical modeling of the turbulence in this dissipative inertial range
(Cho et al. 2002; Schekochihin and Cowley 2007) shows that the magnetic
structures represent locally anisotropic elongated patterns, whose Fourier
spectrum roughly obeys scaling law (6.121) (see Fig. 6.7). Moreover, the cou-
pling between the magnetic field and plasma motion results in flattening
of the kinetic energy spectrum: in place of the exponential cut-off expected
for a neutral fluid below the viscous scale, the presence of the small-scale
magnetic structure gives rise to a power-law spectrum of the kinetic energy,
dE(k)
dk ∝ k−9/2, but with a rather steep slope. Exponential cutoff is formed

only below the resistive scale.

6.9.6 Turbulence in the Compressible Conducting Fluid

Consider the case of compressible fluid, when the turbulent velocities are
somewhat small, so that the characteristic Mach numbers are smaller than
one. In this case, at least at initial stages of the turbulence cascading, we can
adopt that the turbulence is composed of the MHD linear modes: the Alfvén
waves, the fast waves, and the slow waves. In a general case, one must also
take into account the static entropy modes, which are not considered here for
simplicity.

It is easy to estimate that the dispersion law of the slow mode is similar
to that of the Alfvén waves (the frequency is approximately proportional
to the parallel component of the wave vector, so it is sometimes called a
pseudo-Alfvénic mode). This results in a consideration similar to that for
the incompressible case, so the spectrum of the slow mode is formed under
condition of the critically balanced cascade, and the spectrum similar to
Eq. (6.117) is valid for the slow mode.

dEs
dk

∼ k
−5/3
⊥ fs

(
k‖

k
1/3
0 k

2/3
⊥

)
. (6.122)

The dispersion law of the fast mode is different: the frequency is de-
termined by the absolute value of the wave vector. This means that the
Iroshnikov–Kraichnan consideration applies for the fast mode, which brings
back their scaling law, but only for the fast mode:

dEf
dk

∼ k−3/2. (6.123)
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It is worthwhile to note that the presence of the fast and slow modes results
in fluctuations of the fluid density in addition to the velocity and magnetic
field. Stated another way, in a developed compressible turbulence, which in-
cludes many MHD eigenmodes, the spectra of the velocity, magnetic field, and
density are produced by different modes and so are not necessarily strictly
correlated. Different slopes of the fast- and slow-mode spectra imply that the
large-scale density fluctuations are determined by the slow mode, while the
small-scale end of the density fluctuation spectrum is by the fast mode.

However, as we have discussed in Sect. 5.1.4, evolution of the finite-
amplitude fast and slow modes necessarily results in the wave front steepening
and formation of discontinuities. The effect of the discontinuities including
the shock waves is especially pronounced in the case of the motions with
strong Mach numbers, which is considered in more detail in the next section.

6.10 Turbulence Composed of Shock Waves
and Discontinuities

In astrophysical conditions, main sources of the energy and momentum of
the turbulence are various large-scale motions of the gas flows and stellar
systems (rotation, density waves, accretion, etc.) as well as active processes
in stars, galactic nuclei, stellar associations (such as stellar winds, supernova
explosions, and collimated jets). If the energy release is sufficiently strong to
generate turbulent fluid motions with velocities larger that typical velocity of
linear modes in this fluid, i.e., the sound and Alfvén speeds, this supersonic
turbulence rapidly evolves to an ensemble of shock fronts and rarefaction
waves. Weak MHD waves (or weak sound waves and vortices if there is no
magnetic field) can be present between the shock fronts. The idea of the
supersonic turbulence was likely introduced by Solomon Pikelner when he
analyzed an old supernova remnant Cygnus Loop.

In a general case, other MHD discontinuities as well as various nonlinear
waves including solitons can be present in the supersonic turbulence along
with the shock waves. Overall, both the turbulence composed of strongly
interacting vortices at subsonic velocities (Sect. 6.7) and the supersonic tur-
bulence composed of the shock waves and other nonlinear structures can be
called strong turbulence in contrast to weak turbulence consisting of quasilin-
ear MHD modes (Sect. 6.8).

6.10.1 Model of Turbulence Formed by Supernova
Explosions

Since properties and dynamics of the strong turbulence depend significantly
on the energy-release nature and the source structure, there is no unique
model adequately describing the strong turbulence. We consider a relatively
simple HD model of the turbulence formation by shock waves at the galac-
tic disk. Main sources of energy are supernova explosions and cumulative
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effect of the stellar winds. The most powerful stellar winds are produced
by young O and B stars (concentrated in the galactic disk within so-called
OB associations), which explode at the end of their evolution as a supernova.
The stellar winds and supernova explosions produce primary strong shocks in
the disk (see Sects. 2.5, 5.5.3, and 5.6). These primary shocks then propagate
within nonuniform interstellar medium and interact with numerous clouds.
The clouds with typical scale about a few pc with a density much larger than
in diffuse interstellar gas can arise due to the thermal instability, discussed
in Sect. 6.5.

Propagation of the primary shock waves in a cloudy medium results in
efficient production of multiple secondary shock waves and accompanying
large-scale motions. The secondary shock waves, in contrast to the primary
ones, cannot be arbitrarily strong, e.g., within one-dimensional model with a
single-atom gas, the largest Mach number of a scattered (secondary) shock
is Mmax =

√
5.

Let us estimate the fluctuation spectra of the random velocity and other
parameters created by the secondary shock waves, which are not spherical
and have different values of the Max numbers μ. However, we consider here
a simple model in which all the secondary shock waves are the same, have
a spherical shape, a moderate Mach number M = μ, and a radius R(μ); as-
sume a purely random spatial distribution of the shocks without intersections.
Contrary to the consideration in the previous sections, here we calculate the
turbulence statistics by explicit account of its structural elements—the shock
waves.

Instantaneous velocity field within this model can evidently be
represented as

u(r) = v
∑
a

nag(|r − ra|/R). (6.124)

Here

v = cs
2(μ2 − 1)

μ(γ + 1)
(6.125)

is the gas velocity just downstream of the shock front in a reference frame in
which the center of the shock expansion is at rest, while the spherical front
with radius ra is expanding; na = (r− ra)/|r− ra| is a unit vector directed
from the center of sphere number a; g(r/R) is a dimensionless function de-
scribing the velocity field inside the sphere of the radius R, such as g = 0 for
r > R and g = 1 for r = R and g < 1 for r < R; exact form of this function
is generally unknown.

Taking spatial Fourier transform we obtain

uk = ik
4πvR2

k2

∫ 1

0

(
cos kRy − sinkRy

kRy

)
g(y)ydy

∑
a

eik·ra . (6.126)
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The turbulence energy density E per unit mass in a statistically uniform
system can be calculated as

E =
1

2
〈u(r) · u(r)〉 = 1

2

∫
〈u∗

k′uk〉ei(k−k′)·r d 3k

(2π)3
d 3k′

(2π)3
, (6.127)

where the averaging must be performed over random spatial locations of the
clouds (i.e., over the centers of secondary spherical shocks):

∑
a,a′

〈ei(k·ra−k′·ra′)〉 =
∑
a

∫
d 3ra
V

ei(k−k′)·ra +
∑
a �=a′

∫
d 3ra
V

ei(k·ra−k′·ra′)

=
(2π)3N

V
δ(k − k′) = (2π)3nclδ(k − k′). (6.128)

Here V is volume of the system, N is the total number of clouds, and ncl is
the number density of the clouds. The term with a �= a′ gives no contribution
if locations of different clouds are uncorrelated; thus, the spectral density of
the turbulence energy reads

E =

∫
dE

dk
dk,

dE

dk
= 8v2R4ncl

⎡
⎣

1∫
0

(
cos kRy − sin kRy

kRy

)
g(y)ydy

⎤
⎦
2

.

(6.129)

To calculate the spectrum we need to know function g(y), which is in fact
unknown for arbitrarily strong shock wave. Nevertheless, we can determine
asymptotes of the spectrum under some general assumption about analytical
properties of the functions entering the integral:

dE

dk
≈
{

(8C/9)v2R4ncl(kR)
4, kR� 1, C =

∫ 1

0
g(y)y2dy,

8v2R2ncl sin
2 kR/k2, kR
 1.

(6.130)

This spectrum contains a fluctuating component at kR 
 1. Frequently
one is interested in a smooth component of this spectrum, which can be
determined by averaging of Eq. (6.130) over a finite interval Δk of the wave

numbers such as Δk 
 R−1. Making this averaging sin2 kR = 1/2 we obtain
the smoothed spectrum in the form

dE

dk
≈ 4v2R2ncl/k

2, kR 
 1, kδ � 1. (6.131)

Here, in the last inequality, we introduced thickness δ of a separate shock
front, which is typically specified in astrophysical objects by collisionless pro-
cesses (see Sect. 5.4.4). The spectral range kR � 1 in Eq. (6.130) is gov-
erned by gradual variation of the velocity at the rarefaction regions, while
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the dependence dE/dk ∼ k−2 is produced by sharp velocity jumps at the
shock fronts. The model considered is purely hydrodynamic one; however, in
the presence of magnetic field the asymptotes of the magnetic energy spec-
trum have the same shapes as Eq. (6.130). Interestingly, in the interplanetary
medium the magnetic turbulence is often observed to have the spectral index
about 2. Typically such cases occur when many tangential and Alfvén discon-
tinuities were present in the analyzed region of the interplanetary medium.
According to our analysis, the spectrum ∝ k−2 is in fact a natural outcome
of the magnetic field jumps at the discontinuities.

In a more realistic case the secondary shock waves can have different
Mach numbers μ and various R(μ) and v(μ). This calls for additional aver-
aging of Eq. (6.130) over all possible μ. Furthermore, interaction of the shock
waves with each other and with the clouds, as well as other available sources,
produces quasilinear MHD modes, which contain a considerable fraction of
the turbulence energy and so affect the overall turbulence spectra. The whole
problem is highly nonlinear because all these modes experience nonlinear in-
teractions with each other and also transform at the shock fronts of different
strength. If the main nonlinear transformation effect is the linear MHD mode
conversion at sharp shock front of the shock wave ensemble, then equations
for the energy density of the transverse (w = T ), longitudinal (w = S), and
entropy (w =W ) modes take the form

∂wi(k, t)

∂t
+
∂Πiα(k, t)

∂kα
=
∑

γijwj(k, t), (6.132)

where the transformation coefficients represent a 3×3 matrix (Vainshtein
et al. 1993) such as γTT > 0, while γSS , γWW < 0. Therefore, only the
transverse (vortex or Alfvén) mode is directly enhanced by the shock fronts,
while the longitudinal (sound or magnetosound) and entropy modes both de-
cay at the fronts. Then, γST , γWT > 0, which implies that the transverse
mode converts partly to the sound and entropy modes and so supplies their
energy densities. Eventually, the set of coupled equations for the correspond-
ing energy densities receives the form

∂T (k, t)

∂t
+
∂ΠT (k, t)

∂k
= (γTT + γST − γdT )T (k, t)− γSTT (k, t) + γTSS(k, t),

(6.133a)

∂S(k, t)

∂t
+
∂ΠS(k, t)

∂k
= (γSS − γdS)S(k, t) + γSTT (k, t), (6.133b)

∂W (k, t)

∂t
= (γWW − γdW )W (k, t) + γWTT (k, t) + γWSS(k, t), (6.133c)

where only the most essential terms are retained; the terms containing γdw de-
scribe the standard dissipative damping of the waves. The nonlinear spectral
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fluxes of the transverse and longitudinal modes are assumed isotropic and
can be estimated as

ΠT (k, t) ≈ k5/2T 3/2(k, t)

ρ1/2
, ΠS(k, t) ≈ csk

k2S2(k, t)

k0SS0
, (6.134)

where cs is the sound speed, while the corresponding term can safely be
discarded for the entropy mode (Vainshtein et al. 1993). The transformation
coefficients can be estimated as

γTT ∼ 2π

3

R3
0P

(μ∗ − 1)2
, γST ∼ csk0, (6.135)

where R0 is the largest radius of available spherical shock waves, P is the
rate of shock wave generation, μ∗ is the Mach number of the weakest shock
wave, (μ∗−1) � (1−3)×10−2, and k0 ∼ 2π/Lmax with Lmax being the main
scale of the turbulence which is about the mean distance between the fronts.

It is worthwhile to note that the total energy density of the modes in-
cluded in Eq. (6.133) is not conserved: it is supplied by the shock wave en-
semble energy density implying that the shock wave ensemble decays while
amplifying the turbulent modes. Accordingly, the amplification of the vortex
mode at the fronts and its conversion to the sound mode there play a role of
the turbulence source, which energy is then transferred along the spectrum to
smaller scales due to the nonlinear spectral fluxes; eventually, the stationary
spectra of these modes, neglecting the dissipation, receive the form

T (k) =
γ2TTρ

4k30

[
1−
(
k0
k

)2/3
]2(

k0
k

)5/3

, k0 ≤ k < kd, (6.136a)

S(k) = S0

(
k0S
k

)3/2

, S0 � γST
csk0

γ2TT ρ

(27)3/2k30
, k0S � 4k0/3 ≤ k < kd,

(6.136b)

W (k) = − γWT

γWW
T (k)− γWS

γWW
S(k), (6.136c)

where |γWT /γWW | � 1, |γWS/γWW | � 1, so the entropy mode produced by
the linear mode conversion at the shock fronts makes a minor contribution to
the turbulence spectra. In fact, the entropy mode, e.g., in the form of dense
clouds, is produced by other mechanisms including the thermal instability
considered in Sect. 6.5.

Thus, the resulting turbulence spectral index is not necessarily constant
along the spectrum: since the large-scale spectrum related to the shock fronts
is rather sharp, ∝ k−2, the smaller-scale part of the spectrum is dominated
by smooth MHD perturbation resulting in a flatter spectra [Eq. (6.136)];
for more detail see Chap. 10 in (Vainshtein et al. 1993). In contrast, if no
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discontinuity ensemble is present, the mode conversion occurs at the spatial
gradients formed by the turbulence spatial inhomogeneity itself. Apparently,
in the lowest order of the perturbation theory one expects the corresponding
“cross-terms” to have a form γTSS(k, t) = −γSTT (k, t) = αS(k, t)T (k, t) for
conversion processes with small variation of the wave number, where α is a
nonlinear interaction constant, which is typically small compared with unity,
α ∼ (0.01− 0.1)ω/(nkBT ) (cf. Sect. 4.3.2).

6.10.2 About Interstellar Medium Turbulence

MHD turbulence represents currently an exceptionally broad interdisciplinary
field of science—in the physics and chemistry laboratories, geophysics, and
astrophysics. For example, origin of the turbulence in the Galaxy and in galac-
tic objects and study of its statistical measures are of primary importance
for many specific issues: for generation and transport of magnetic fields, pro-
duction and propagation of high-energy particles (cosmic rays), emission of
nonthermal electromagnetic radiation throughout the entire electromagnetic
spectrum from radio waves to gamma rays, plasma mixing in the interstellar
medium and transport of chemical elements synthesized inside young massive
stars and deposited to the Galaxy by supernova explosions, and many more
important phenomena.

Currently, there is ample observational evidence in favor of presence
of the turbulence in various phases of the interstellar medium at various
scales, at least between 108 cm and 1020 cm. Given this huge range of scales,
the observational means with which to study the turbulence vary with the
subrange of scales analyzed. For example, dispersion of gas velocities in molec-
ular clouds favors the turbulence with a power-law spectrum with index
around the Kolmogorov–Obukhov value at scales of the order of dozens of
parsecs. In contrast, fluctuations of thermal electron density at relatively
small scales, λ ≈ 108 cm and above, are measured from radio scintillations,
since the fluctuations of thermal electron number density and magnetic field
affect dispersion of electromagnetic waves and propagation of radiation giving
rise to scintillation of compact sources such as pulsars and quasars.

Strong indirect evidence in favor of turbulence with intermediate scales
comes from data on energetic particles—cosmic rays. The point is that their
distribution function at energies E � 106GeV has a very weak anisotropy,
with the relative value ∼ 10−3. A currently adopted (and indeed the most
plausible) interpretation for this small anisotropy is due to angular scattering
of the particles by resonant magnetic inhomogeneities—waves with the length
of the order of particle’s Larmour radius rg = E/eB, which, given the Galactic
magnetic field strength B ∼ 3× 10−6G, corresponds to the scales λ � 1 pc.

Globally, the data are consistent with a single power-law spectrum of
galactic turbulence with the energy density dE/dk ∼ k−ν in an exceptionally
broad range of spatial scales, 1020 > λ > 108 cm, with 1.4 ≤ ν ≤ 1.8 (“Big
Power Law”). On the other hand, observations point to a remarkable spatial
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nonuniformity of the turbulence distribution in the Galaxy. This nonunifor-
mity is provided by both inhomogeneous distribution of the main sources of
energy and differences of excitation, dispersion, and dissipation of the MHD
perturbations in different phases of interstellar medium.

Turbulent fluctuations of macroscopic parameters affect substantially the
astrophysical plasmas. This includes formation of stars, ISM structure, disk–
halo connection, etc. In particular, the turbulence spectrum shape affects
greatly the acceleration of nonthermal particles in the Galaxy. Modern data
confirm a long-living hypothesis that the cosmic rays are accelerated by the
galactic supernova remnants (see Sect. 12.1 for more detail). Remarkably, an
efficient, consistent with observations, particle acceleration at the SNR shocks
is only possible if a turbulence with a very flat and broad spectrum is created,
perhaps much flatter than most of the spectra considered above (and much
flatter than the observed averaged turbulence spectrum in the Galaxy). Over-
all, the modern cosmic electrodynamics is largely the physics of highly turbu-
lent plasma, which is illustrated by numerous examples throughout the book.

6.11 Turbulent Magnetic Diffusivity

To illustrate importance of turbulence effect on astrophysical plasma
properties, let us calculate an effective magnetic diffusivity of a turbu-
lent fluid. We consider an incompressible fluid and adopt some given
collisional diffusivity νm = c2/4πσ and correlation tensor of the turbulent
velocity:

Ũαβ(k) = A(k)

(
δαβ − kαkβ

k2

)
. (6.137)

Let us define an exact (fluctuating) magnetic field asH, whose averaged value
is 〈H〉 = B and use exact MHD equations (2.16):

∇ · H = 0,
∂H
∂t

= ∇× [u×H] + νmΔH. (6.138)

Since statistical averaging over ensemble is commutative with differentiation
over coordinates and time, the averaged equations take the form

∇ ·B = 0,
∂B

∂t
= ∇× 〈u×H〉+ νmΔB. (6.139)

To close the system the combination 〈u×H〉 must be expressed via averaged
values—mean magnetic field B and correlation tensor of the turbulent veloc-
ities. To do so we explicitly introduce a fluctuating (turbulent) component
of the magnetic field, b(r, t) = H(r, t) − B(r, t), and use Eqs. (6.138) and
(6.139) to derive equation describing this component:
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∂b

∂t
− νmΔb = ∇× [u×B] +∇× [u× b]−∇× 〈u× b〉, (6.140)

where condition 〈u〉 = 0 has been applied.
This equation is nonlinear and is difficult to solve in a general case.

To find a model solution of Eq. (6.140) one has to make an assumption
about the difference between the true and averaged second-order terms,
∇× [u × b]−∇× 〈u× b〉, which generally requires knowledge about higher-
order correlation tensors than the second-order one we adopt to be known.
Thus, as a simplest approximation, we adopt that even both of the second-
order terms can be large, the difference between them is small and can be
discarded from the equation. We emphasize that this approximation (quasi-
linear approach developed in Sect. 4.2) is a more precise one than standard
(naive) theory of perturbations, which assumes that any second-order form,
composed of the small first-order values u and b, is small by itself. Now,
Eq. (6.140) is a linear equation and so can be solved by the Green function
method:

b(r, t) =

∫ t

−∞
G(r − r′, t− τ)(B · ∇)u(r′, τ)d 3x′dτ

−
∫ t

−∞
G(r − r′, t− τ)

∂B

∂x′β
uβ(r

′, τ)d 3x′dτ, (6.141)

where G is the Green function, whose explicit form is specified by Eq. (6.147).
Effective regions of integration over coordinates and time here are evidently
of the order of corresponding correlation scale and time, l and τc, of the
given turbulent velocity field. The magnetic field B(r, t) averaged over the
turbulent pulsations is, by definition, a smoothly varying function at these
scales and times. Therefore, factors containing the slowly varying vector B
can be taken out from the integrals:

b(r, t) = Bβ

∫ t

−∞
G(r − r′, t− τ)

∂u

∂x′β
d 3x′dτ

− ∂B

∂xβ

∫ t

−∞
G(r − r′, t− τ)uβ(r

′, τ)d 3x′dτ. (6.142)

Now, we can multiply this equation by a component of the turbulent
velocity and then average it:

〈uαbμ〉 = Bβ

t∫
−∞

G(r − r′, t− τ)〈uα(r, t)∂uμ(r
′, τ)

∂x′β
〉d 3x′dτ

− ∂Bμ
∂xβ

t∫
−∞

G(r − r′, t− τ)〈uα(r, t)uβ(r′, τ)〉d 3x′dτ. (6.143)
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The first integral represents a polar third-rank tensor, which does not depend
on coordinates. For statistically uniform and isotropic turbulence [like that
described by correlation tensor (6.137)] it is equivalent to zero, because there
is no intrinsic tensor with required symmetry in such a fluid; antisymmetric
pseudotensor eαβγ could only be used for a gyrotropic turbulence, which is
beyond the case under consideration, which will be thoroughly considered in
Chap. 8. The second integral is a symmetric second-rank tensor, so it can be
represented in the form

∫ t

−∞
G(r − r′, t− τ)〈uα(r, t)uβ(r′, τ)〉d 3x′dτ = νtδαβ , (6.144)

where νt is a scalar, which can straightforwardly be calculated for a given
correlation tensor 〈uα(r, t)uβ(r′, τ)〉; finally we obtain:

〈u(r, t)× b(r, t)〉 = −νt∇×B. (6.145)

Substitution of Eq. (6.145) into the second of Eq. (6.139) yields closed aver-
aged equation for the mean magnetic field:

∂B

∂t
= (νt + νm)ΔB, (6.146)

where νt is the turbulent magnetic diffusivity. The derived equation has the
same form as the standard equation for magnetic field in a dissipative fluid
at rest. However, the presence of the turbulent motions enhances the mag-
netic diffusivity compared with the standard case: full magnetic diffusivity
consists now from two contributions νtot = νm+νt, the standard (collisional)
diffusivity νm and the turbulent diffusivity νt, which depends on νm via the
Green function.

The microphysics of these diffusivity increase is easy to understand.
Indeed, the dissipation is described by a second-order derivative ΔB;
the stronger the spatial variations of B the larger the derivative and so
the stronger the dissipation; thus the dissipation is the most efficient for
the smallest-scale magnetic field. In our case, the turbulent motions reshape
the magnetic field lines, breaking down the magnetic field onto smaller-scale
regions of the order of the turbulence scales, so the magnetic field becomes
a smaller-scale one. The small-scale field as explained experiences more ef-
ficient Joule dissipation, and so the small-scale magnetic energy transforms
to the thermal energy faster than without the turbulent motions.

Let us now estimate the turbulent diffusivity in some simple cases. We
use the Green function of a three-dimensional isotropic diffusion equation,
which contains the collisional diffusivity νm:

G(r − r′, t− τ) =
1

[4πνm(t− τ)]3/2
exp

{
− (r − r′)2

4νm(t− τ)

}
. (6.147)
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We adopt the turbulence correlation scale l and correlation time τc ≈ l/u,
where we denote u ≡ 〈u2〉1/2 for brevity. Thus, in integral (6.144) the char-
acteristic scale of integration is |r − r′| ≈ l, while the characteristic time of
integration is t − τ ≈ τc ≈ l/u. As we will see the estimate of the turbulent
diffusivity differs depending on how large or small the magnetic Reynolds
number is.

1. The first case, νmτc 
 l2, or Rm = ul/νm � 1, is the case of small
magnetic Reynolds number Rm. Here the exponential factor in the
Green function is about unity; thus, integral (6.144) can be estimated
as the integrand multiplied by effective interval of integration, which
yields

νt ≈ u2

3

1

[4πνmτc]3/2
l3τc =

1

3
ul

(
ul

4πνm

)3/2

. (6.148)

We see that νt/νm < R
5/2
m � 1 and the turbulent diffusivity consti-

tutes only a small correction to the collisional magnetic diffusivity.
This means that the turbulent diffusivity can be calculated within the
perturbation theory in case of small magnetic Reynolds numbers.

2. The second case, νmτc � l2, or Rm 
 1, is the opposite to the first
case. The Green function is very narrow in this case and so can be
replaced by a δ-function in the r-space, G(r − r′, t − τ) ≈ δ(r − r′).
Then, Eq. (6.144) immediately yields

νt ≈ 1

3
〈u2〉τc. (6.149)

It is remarkable that now νt 
 νm and so the formal perturbation the-
ory is inapplicable. Nevertheless, as we argued, the approximation used
is more precise than the standard perturbation theory and estimate
(6.149) is often correct; we will widely use it in our analysis, although
we will also consider more sophisticated approximations when this one
turns out to be an oversimplification of the reality (see, e.g., Chap. 8).
Furthermore, the analysis performed shows that non-helical turbu-
lence as that described by symmetric tensor (6.137) cannot generate
a large-scale magnetic field but only enhances its dissipation. As will
be demonstrated later (Chap. 8) this conclusion is no longer valid for
a helical (gyrotropic) turbulence, which does generate the large-scale
magnetic field under certain conditions.

Problems

6.1 Calculate the critical temperature difference ΔT = T1 − T2 in terms
of layer thickness for water and air under the standard Earth’s conditions.
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Find the layer thickness for which the critical temperature difference is 1K.
Kinetic coefficients for air and water are νa = 0.15 cm2/s, νw = 0.01 cm2/s,
Pra = 0.733, and Prw = 6.75. Values of thermal expansion coefficient α are
given in Sect. 6.2.1.

6.2 Describe the dispersion equation for convective instability accounting the
magnetic field. Investigate the dispersion dependencies by numerical meth-
ods. Calculate the dependence of the minimal Rayleigh number from the
magnetic field. Use parameters of the solar photosphere.

6.3 Fulfill calculations and obtain the dispersion dependence (6.52) for
contact discontinuity with the tangential magnetic field.

6.4 The planar contact discontinuity separates vacuum and conductive
incompressible fluid with the mass density ρ and the surface tension coef-
ficient α. The acceleration due to gravity force g and electric field E are
directed along the normal to the discontinuity plane. Find value E, which
leads to instability of discontinuity relative to small perturbations (Toncs
effect). Find wave numbers of unstable modes.

Hint: Use the energy principle: compare energies of perturbed and unper-
turbed systems and find the conditions of minimal energy for the distorted
interface.

6.5 Magneto-Rotational Instability, MRI. Consider a (accretion) disk
composed of conducting plasma permitted by a magnetic field rotating
around a gravity center (e.g., a star or a black hole). Find condition for the
rotation to be stable.

6.6 (a) Prove that the Kolmogorov turbulence spectrum W (k) can be
derived from a model nonlinear equation describing energy transfer along
the spectrum, using phenomenological continuity equation with a source

∂W

∂t
+
∂Π

∂k
= εδ(k − k0)

and with a nonlinear energy flux density along the spectrum Π(k) =
C−3/2k5/2W 3/2(k), where C is the Kolmogorov’s constant (Kovasznay 1948).
Obtain solution of this equation for a stationary case, using boundary con-
dition W (k) = 0 for k < k0. Make sure that Π(k) = ε = const at k > k0. (b)
Note that in fact the nonlinear energy flux density represents a vector Πα
in the k-space and its divergence ∂Πα/∂kα must enter Eq. (6.132) instead of

∂Π/∂k. In the isotropic case the divergence has the form (1/k2)∂(k2Π̃)/∂k.

Find the functional form of Π̃ yielding the correct Kolmogorov spectrum;
analyze what is the difference between these two solutions.
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6.7 Using model equation from the previous problem and adopting the non-
linear spectral fluxes for the fast and slow magnetosonic waves in the form
Πf (k) = Afk

3W 2
f (k) and Πs(k) = Ask

4W 3
s (k), respectively, where Af and

As are some constants, obtain stationary spectra for these modes. Make sure
that Π(k) = ε = const at k > k0. Consider various relations between Af and
As and plot the spectra of the composite turbulence composed of slow and
fast magnetosonic waves.

6.8 Critically balanced turbulence considered in Sect. 6.9.3 is anisotropic;
thus, the nonlinear spectral fluxes along k‖ and k⊥ are different from each
other. Consider the divergence in cylindrical coordinates, (1/k⊥)∂(k⊥Π⊥)
/∂k⊥+∂Π‖/∂k‖, and determine the spectral fluxes needed to obtain the tur-
bulence spectrum described by Eq. (6.117). Is this combination of the spectral
fluxes unique? Prove that the relation Π‖ = (2k‖/3k⊥)Π⊥ holds.

6.9 In accordance with the result of Sect. 6.11 the turbulence of a conductive
fluid increases the magnetic diffusivity, νtot = νm+νt. This means the change
of effective medium kinetic coefficients. If a motionless fluid has the electric
conductivity σ and the magnetic permeability μ = 1, the corresponding tur-
bulent fluid has different values for these coefficients: σeff and μeff �= 1. Find
the values of σeff and μeff �= 1 in terms of σ, νm, and νt.

Hint: Use Maxwell’s equations in quasistationary approximation and bound-
ary conditions for tangential components E and B at the boundary between
motionless and turbulent media.

Answers and Solutions

6.1 hair ≈ 4.9 cm; hw ≈ 0.5 cm.

6.4 Adopt the disturbed discontinuity interface in the form

z = ζ(x, y) = l sink1x sin k2y, l � 2π/k1, 2π/k2. (1)

The gravitation energy of a small mass element dm = ρdxdydz is gzdm.
Integrate it over dz from 0 to ζ and then over the entire discontinuity surface
S; we find variation ΔUg of the gravitation energy produced by the discon-
tinuity distortion. When integrating over the undisturbed surface of the dis-
continuity we adopt that the wavelengths of the perturbations λ1,2 = 2π/k1,2
are small compared with its linear scales and replace all terms like sin2 α by
their means, 1/2. This yields ΔUg = ρgl2S/8.
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Variation of the surface energy is determined by ΔUs = αΔS, where ΔS
is the surface variation:

ΔS =

∫ ⎧⎨
⎩
√
1 +

(
∂ζ

∂x

)2

+

(
∂ζ

∂y

)2

− 1

⎫⎬
⎭dxdy ≈ l2k2S

8
. (2)

Thus, we have ΔUs = αl2k2S/8, where k2 = k21 + k22 .
The variation of electrostatic energy can apparently be calculated as

ΔUe =

∫
dxdy

∫ ∞

ζ

dz
E2 − E2

8π
, (3)

where E is the electrostatic field above the distorted surface. The electrostatic
potential ϕ satisfies to the Laplace equation and the boundary condition at
a conductive surface ϕ|z=ζ = 0, as well as condition ϕ|z→∞ = −Ez far away
from the surface. For kl � 1 the equation and the boundary conditions are
fulfilled for the potential ϕ(x, y, z) = −Ez+Eζ(x, y) exp(−kz), which yields
the electric field above the distorted surface E = −∇ϕ; then the energy
variation reads ΔUe = −E2l2S/32π k.

The full energy variation is

ΔU = ΔUe +ΔUs +ΔUg =
l2S

8

{
ρg + αk2 − E2

4π
k

}
. (4)

Apparently, the surface is unstable (i.e., the amplitude of the wave increases)
if the wave growth gives rise to decrease of the full energy of the system, i.e.,
ΔU < 0. The demarcation magnitude of the electric field is defined by

E2

4π
=
ρg

k
+ αk. (5)

Minimizing the rhs over k, we find kc =
√
ρg/α and, thus, obtain the

minimum electric field value, E2
c = 8π

√
ρgα, for which the condition ΔU = 0

is satisfied. For E > Ec, there is a wave number region in which the in-
stability condition ΔU < 0 is fulfilled, namely k1 < k < k2, where k1,2 =

E2/8πα∓√(E2/8πα)2 − k2c .

6.5 Consider two fluid elements (1 and 2) located at different radial
distances r1 and r2 > r1 from the star and linked by a magnetic flux
tube. Adopt that the first one rotates faster (as is the case for a Keplerian
disk). Then, the magnetic flux tube will be stretched in such a way to slow
down the first fluid element and accelerate the second one. Thus, the first
element loses the angular momentum and pushed toward the star, while
the second element increases the angular momentum and pushed away from
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the star, which will act to further separate the fluid elements and enhance the
magnetic tension. According to this consideration the stability condition is

∂Ω2(r)

∂r
> 0,

where Ω(r) is the angular velocity distribution in the disk. The MRI
instability plays an important role in astrophysics (Balbus and Hawley
1991; Balbus 2003; Mikhailovskii et al. 2009; Lominadze 2011), in particular,
in the angular momentum transfer out from the accretion disk.

6.6 (a) W (k) = Cε2/3k−5/3Θ(k − k0), where Θ is the step function.

(b) Π̃(k) ∝ k1/2W 3/2(k).

6.7 Wf (k) ∝ k−3/2, Ws(k) ∝ k−4/3.

6.8 For example, Π⊥ = Ak
3/2
⊥ W 3/2(k‖, k⊥)/k‖, Π‖ = (2A/3)k

1/2
⊥ W 3/2

(k‖, k⊥), where A is a constant.

6.9 Quasistationary electromagnetic field in motionless conductor with the
magnetic (μ �= 1) properties is described by the Maxwell equations:

∇×E = −1

c

∂B

∂t
, ∇×H = −4π

c
σE, ∇×B = 0, B = μH. (1)

On the boundary separating two conductors, or a conductor and a dielectric,
the field components must satisfy the boundary conditions

B1n = B2n, H1τ = H2τ , E1τ = E2τ . (2)

From Eq. (1) in the case of a homogeneous medium we find

ΔB =
4πμσ

c2
∂B

∂t
. (3)

In the turbulent medium after the averaging of electromagnetic field over the
turbulent ensemble we find Eq. (6.146):

∂B

∂t
= (νm + νt)ΔB, νm =

c2

4πσ
. (4)

We describe it in form (3) and substitute μ → μeff and σ → σeff . This leads
to the relation

μeffσeff =
σ

1 + νt/νm
. (5)
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In order to determine μeff and σeff separately, we consider the boundary
z = a between non-turbulent motionless plasma in the layer 0 ≤ z ≤ a
(μ = 1, σ) and turbulent plasma in region z > a (μeff , σeff). At the boundary
z = 0 we assume an oscillating magnetic field H(t) = H0e

−iωt with ω =
const. The value a is large compared with the thickness of the skin layer
δ = c/

√
2πμσω. In this approximation the magnetic fields have the following

amplitudes:

H1(z) = H0e
−(1−i)z/δ1 , z < a, δ1 =

c√
2πσω

,

H2(z) = H1(a)e
−(1−i)(z−a)/δ2 , z > a, δ2 =

c√
2πμeffσeffω

. (6)

The condition H1(a) = H2(a) is fulfilled; the condition E1(a) = E2(a) leads
to algebraic equation

c

4πσ

dH1

dz

∣∣∣∣
z=a

=
c

4πσeff

dH2

dz

∣∣∣∣
z=a

, (7)

from which we find μeff = σeff/σ. Using Eq. (5), we obtain

μeff =
1√

1 + νt/νm
, σeff =

σ√
1 + νt/νm

. (8)

Therefore, the turbulence strongly decreases the effective values μeff and
σeff if νt 
 νm. Turbulent region has μeff < 1 and so it possesses the diamag-
netic properties: an external magnetic field is weaker in turbulent region.



Chapter 7

Particle Transport in Turbulent Cosmic
Media

Transport of particles, either charged or neutral, either micro- or macroscopic,
plays a fundamental role for many phenomena in astrophysics including dis-
tribution of heavy elements released by supernova explosions, dust particle
distribution and evolution, propagation of energetic particles away from their
sources, and many more. The particles under study can either be dynamically
important for the entire system or play a passive role. In the latter case they
form a “passive admixture,” whose behavior can often be described in a “test
particle” approximation.

The passive particle population can be composed either from particles
different from the main plasma component (e.g., He ions in the electron–
proton plasma) or the same kind (i.e., electrons and protons) if they compose
a distinct group of particles away from equilibrium with the main plasma.
Examples of such groups include fast electrons in Maxwellian plasma or a
quasi-neutral plasma “cloud” (density concentration or rarefaction) embed-
ded in a more uniform background plasma. Below we consider various effects
related to particle transport in cosmic plasma.

7.1 Free-Streaming Particle Transport

Let us consider a question of how a test particle with a given charge, mass, and
velocity propagates through a source with a linear scale L and volume V ∼
L3. As we will see below the answer depends essentially on the amount and
sort of the test particles participating in the motion and on the background
source properties. Apparently, the simplest case of the particle transport is a
free streaming, when no external force affects the particle motion noticeably.

G.D. Fleishman and I.N. Toptygin, Cosmic Electrodynamics, Astrophysics
and Space Science Library 388, DOI 10.1007/978-1-4614-5782-4 7,
© Springer Science+Business Media New York 2013

273



274 7 Particle Transport in Turbulent Cosmic Media

7.1.1 Time of Flight

When a particle with a velocity v propagates freely through a volume with
linear scale L, the time needed for the particle to cross the entire source is
called the time of flight, τtof , which is apparently equal to

τtof = L/v. (7.1)

In astrophysical observations we often deal with time-interval measurements;
in these cases a time-of-flight distance can be introduced corresponding to
the measured time as Ltof = vτ . This simple time of flight estimate is often
helpful as it gives an idea of a minimum time needed for the particle to cross
the source, i.e., the shortest possible escape time from (or residence time in)
the source; any transport regimes imply a time longer than L/c.

Moreover, even this simple transport regime can happen in astrophys-
ical sources. As an example, we consider HXR emission from solar flares.
In a standard flare scenario, the fast electrons are produced somewhere at
an acceleration region (see Chap. 11) in the corona, then propagate down
to an emission site along the coronal magnetic field lines, and die in the
dense chromospheric plasma producing HXR emission via Bremsstrahlung
(see Chap. 9). A HXR light curve consists typically from a gradual compo-
nent and fast time structure (multiple short peaks) superimposed on it; this
latter fine structure could be produced by individual electron beams freely
streaming from the acceleration region down to the emission site. If so, the
higher-energy electrons arrive first, while lower-energy electrons will be pro-
gressively delayed relative to the higher-energy ones. Since HXR emission is
produced by a non- or weakly relativistic electrons, the electron arrival delay
will be translated to the energy-dependent delay of different HXR channels
roughly proportional to the square root of energy E; one can see that the
time-of-flight model curves in Fig. 7.1 fit nicely the measurements implying
the time-of-flight transport regime of the elementary electron beams in (some)
solar flares.

7.1.2 Limiting Alfvén Current

The considered above free streaming involves macroscopically large number
of electrons and so implies electric current associated with the electron flow.
It turns out, however, that it is extremely difficult to support a noticeably
strong electric current in either vacuum or plasma for a number of reasons.
First, consider an electric current in a vacuum (or very tenuous plasma).
According to Ampére’s law, electric current I produces a magnetic field B ∼
I/(cR), where R is the typical transverse scale of the particle beam forming
the current. This magnetic field, in its turn, will affect the motion of the beam
particles attempting to turn them around via the magnetic Lorentz force.
The characteristic scale of the corresponding particle motion is apparently
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Figure 7.1: Examples of the time delays between temporal fine structures in various
HXR energy channels (positive td = L(1/v0−1/vi) means the signal at channel i arrives
earlier than a reference signal in channel 0; the lowest-energy channel in this case) in
a number of solar flares and fits with time-of-flight delays. The estimated time-of-flight
distances and corresponding χ2 are shown in each panel (Aschwanden 2005).

the Larmor radius in this self-generated magnetic field, RL = βγ(mc2/eB).
Obviously, the beam cannot freely propagate and will be stopped by the self-
generated magnetic field at a distance equal or shorter than the beam width
if RL ≤ R; thus, the equality, RL = R defines a limiting Alfvén current:

IA = βγ
mc3

e
= 5.1× 1013βγ statA = 17βγ kA. (7.2)

Note that the limiting Alfvén current is very low, many orders of
magnitude lower than the implied HXR producing current in solar flares.
To overcome this difficulty and allow a strong total current to propagate
a large distance it must either split onto huge number of narrow current-
carrying filaments (so that the current in each filament is below the Alfvén
limit, but the neighboring filaments are sufficiently far away for their mag-
netic field to significantly decrease and have no effect on other filaments) due
to filamentation instability (see Chap. 4) or drive a return current composed
of the background plasma particles to significantly reduce the net current in
the system. Apparently, there can be parameter regimes fully inconsistent
with a streaming beam propagation; in these cases the original distribution
function of the beam particles changes strongly, e.g., the isotropization of
the charge particles occurs and results in diffusive regimes of their transport.
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7.1.3 Return Currents

Let us now consider the mechanism and some consequences of the return
current generation in response to the external beam current; for definiteness
we are talking on an electron beam. Apparently, when an ensemble of moving
external electrons enters a plasma volume, their charge attempts to produce
an additional electric field, while their current to produce an additional mag-
netic field. For example, for a solar flare with volume ∼ 1028 cm3 filled with
the thermal plasma with n0 ∼ 1010 cm−3 and fast electron acceleration rate
F (> 10 keV) ∼ 1036 electrons/s the implied charge separation is huge: all
background electrons are being accelerated and evacuated down to the chro-
mosphere over a couple of minutes (a very modest flare duration). This charge
separation, if real, would mean a proportionally huge unrealistic electric field.
The corresponding electric current would imply a strong magnetic field, up
to 105G, which is 2–3 orders of magnitude larger than the original coronal
magnetic field at the flare site. In the reality, however, nothing like this hap-
pens because the conducting plasma reacts almost instantly on the external
beam in such a way to compensate both extra charge and current as fully as
possible and so decrease generation of the fields as much as possible.

To explicitly separate the processes of the charge and current neutraliza-
tion, respectively, it is convenient to represent each vector of the problem in
the form R = RL+RT , where RL is a potential (irrotational), ∇×RL = 0,
while RT is a solenoidal, ∇ ·RT = 0, part of the vector R; this expansion is
always possible if both the source and circulation densities are zero at infinity
(van den Oord 1990).

Specifically, the Maxwell equations, Eq. (1.53), take the form

∇ ·EL = 4πe(ni − nb − ne), ∇×EL = 0, (7.3a)

∇ ·ET = 0, ∇×ET = − 1
c
∂BT

∂t , (7.3b)

∇ ·BT = 0, ∇× jT = −∇× jbT + c
4π

(
−ΔBT + 1

c2
∂2BT

∂t2

)
. (7.3c)

The equation for jT is straightforwardly derived from Maxwell equation
(1.53b) by applying operator ∇× to it and regrouping the terms. Other
conditions on the electric current density have apparently the form

∇ · jL = e
∂ne
∂t

, ∇× jL = 0, ∇ · jT = 0. (7.4)

In addition, the current density satisfies generalized Ohm’s law (see Sect. 1.3.4),
which we derive here from the background electron equation of motion as-
suming the ions to be immobile:

∂v

∂t
+ (v · ∇)v = − e

m
E − e

mc
v ×B − νeiv, (7.5)

which, being multiplied by −ene, yields generalized Ohm’s law in the form

∂j

∂t
+ v(∇ · j) + (j · ∇)v =

ω2
pe

4π
E − e

mc
j ×B − νeij. (7.6)
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In the general nonlinear case the electrostatic (irrotational) and induc-
tive (solenoidal) components are coupled; however, in a linearized problem,
they are fully independent. Below we discuss the linear case, which is still
very complicated and the corresponding manipulations are cumbersome. To
further simplify generalized Ohm’s law, we neglect the Hall term in the rhs
(in addition to the nonlinear terms in the lhs), i.e.

∂j

∂t
=
ω2

pe

4π
E − νeij. (7.7)

Note that in a stationary case
∂j
∂t ≈ 0, Eq. (7.7) yields standard Ohm’s law,

j = σE with σ =
ω2

pe

4πνei
; apparently, this form of Ohm’s law can only be used

after a few collisional times since the beam has arrived.
Solution of the presented set of equations including Ohm’s law described

by Eq. (7.7) depends essentially on the properties of the fast electron beam.
Consider a given 1D flow of electrons with a fixed number density and velocity
in the direction of the axes z with some radial distribution. In this case
the equations for the fields are convenient to replace by equations for the
scalar and vector potentials and solve them in the cylindrical coordinate
system (van den Oord 1990). The approximate solution (retaining, however,
all essential physics) for t > 0, i.e., after the beam arrival, can be given in
the form

ne = ni − nb + nbe
−t/2τei cosωpet, (7.8a)

jnet,z = jb

[
1 + e−t/2τei cosω

pe
t− e−t/τd

]
, (7.8b)

Ez = − 4π

ωpe

jb

[
e−t/2τei sinωpet+

νei
ωpe

e−t/τd
]
, (7.8c)

Bφ =
4πR

c
jb

[
1− e−t/τd

]
, (7.8d)

where R is the transverse scale of the beam, τd = (4πσ/c2)R2 is the typical
time of the magnetic diffusion across the beam (cf. magnetic diffusivity intr-
oduced by Eq. (2.16), and τei = 1/νei. Using numerical values typical for solar
coronal flux tubes, we find

τd ≈ 6.1× 1015ne,10R
2
9τei s, (7.9)

where ne,10 = ne/(10
10 cm−3) and R9 = R/(109 cm), which means that the

magnetic field evolves on time scales much longer than the collisional time
scale.

Let us discuss implications of the given solution for the plasma response
to the given beam current. First, Eq. (7.8a) shows that strong Langmuir os-
cillations at the plasma frequency are excited upon the beam front arrival.
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These oscillations, however, collisionally damp on the time scale of electron-
ion collision time τei. Therefore, the charge neutralization is established only
after a few collision times; at this relatively late stage standard Ohm’s law
can be used, although its generalized form Eq. (7.7) must be used at the
initial stage, t � τei, which is evident from Eq. (7.8c). Finally, given the mag-
netic diffusion time, Eq. (7.9), is huge, the net electric current is almost zero
after a few collision times and remains at that level a very long time, t ∼ τd,
Eq. (7.8b). Accordingly, the solenoidal magnetic field, Bφ, is very small during
entire this stage.

We conclude that a given (weak) fast electron beam is being fully neu-
tralized by both charge and current at a relatively short, collisional, time
scale. Then, for τei � t� τd, Eq. (7.8c) yields

E = −jb/σ, (7.10)

which is similar to standard Ohm’s law (with the same conductivity σ) but
contains the minus sign in the rhs. It is remarkable because the beam electrons
have a much lower Coulomb cross section than the thermal electrons, which
would imply entirely different link between their current and the electric
field. However, because of the full compensation of the beam current by the
background plasma return current, we have j = −jb, which being combined
with Ohm’s law for the background plasma, results in Eq. (7.10). This fact
has further implications for the beam dynamics. Indeed, although direct Joule
losses of the beam current are very low, the Joule losses of the return plasma
current are significant so the return current experiences the energy losses.
To keep the net zero current, the energy must continuously be transferred
from the beam to the (decaying) return current, which implies corresponding
energy losses of the beam. These energy losses are not accounted by the above
solution obtained within a given (unchanged) beam assumption.

Relaxing this assumption can in many cases lead to a significant modifica-
tion or even qualitative change of the whole picture of the beam propagation
in the plasma. In addition to the mentioned quasi-joule energy losses, the
beam electrons will be decelerated by electric field (7.10) or the beam can
be modified by the Langmuir oscillations it generates in the plasma, which
can result in modification of the beam distribution over energy and/or pitch-
angle. In particular, in case of fast isotropization, a diffusive propagation of
fast electrons is expected instead of the unidirectional flow considered above.
Furthermore, the turbulent magnetic diffusivity can strongly change the time
scale of the magnetic field evolution and so significantly change the picture
of the return current formation. Finally, in case of strong beams, the num-
ber density of available plasma electrons can turn to be too low to fully
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compensate the beam current, so some of strong two-stream instabilities will
come into play and affect the beam strongly over a very short time scale (see
Chap. 4). Some of the mentioned effects are considered below in this chapter.

7.2 Diffusion of an Admixture in a Steady Plasma

The (test) particles of a passive component with a number density n(r, t)
perform random walks relative to the medium at rest due to collisions with
the main population particles; in case of small macroscopic test particles this
random walk is commonly called the Brown motion. This random walk
of a given particle is quantified by two parameters: rms velocity v and mfp
Λ, which is the length of the particle trajectory over which direction of the
particle motion changes noticeably (i.e., by an angle about 1 rad). In a general
case this angle can be accumulated over many elementary collisions if each of
the collisions results in a small-angle deflection of the particles (like in case
of far Coulomb collisions).

In many cases, however, the problem is to describe the flow density i(r, t),
produced by a macroscopically large number of the test particles with a
number density n(r, t), rather than a single particle. This flow density in an
immobile isotropic medium is described by Fick’s law for the admixture
diffusion

i(r, t) = −κ∇n(r, t), (7.11)

where κ is the diffusion coefficient of the test particles. Fick’s diffusion law is
explicitly analogous to Fourier law (1.123) q = −χ∇T for the heat conduc-
tion. The diffusion coefficient is connected with the test particle velocity and
the mfp:

κ =
1

3
vΛ. (7.12)

This relation can be derived from either elementary considerations (see Prob-
lem 7.1) or, more consistently, from kinetic or hydrodynamic equations con-
sidered in Sect. 1.3. The diffusion coefficient becomes a tensor in case of
anisotropic medium. Diffusion coefficients of ions and atoms can be calculated
via effective cross section of the test particles on the background particles.

Let us start from a simple case when the diffusing component
(the admixture) is composed of nonrelativistic particles with charge q and
mass mr. These particles diffuse in a steady-state quasi-neutral plasma and
have a temperature T = const same as the main plasma. If, at a certain
initial time frame, the admixture is distributed non-uniformly, nr(r, t), this
nonuniformity will yield a diffusion flow acting to smooth the nonuniformity
out. Let us calculate this flow using equation similar to Eq. (1.79) but with
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explicit account that the plasma is a steady state and at rest, i.e., within
notations of Sect. 1.3.4, we have u = ve = vi = va = 0 and, accordingly,

nrmr
∂ur
∂t

= −∇Pr + qnr
c

ur ×B − nrmrνrur, (7.13)

where νr is the full frequency of collisions between the admixture particles
and all the particles of the main plasma:

νr = νri + νre + νra = τ−1
ri + τ−1

re + τ−1
ra = τ−1

r . (7.14)

These effective collision frequencies (or, equivalently, reciprocal values of the
mean free times) play a role of the most important kinetic coefficients. Partial
pressure of the tenuous admixture gas has the form Pr = n(r, t)T and, for
T = const, so the pressure gradient reduces to the gradient of the number
density, ∇Pr = T∇nr(r, t).

Upon a sufficiently long time Δt to fulfill νrΔt
 1, the lhs of Eq. (7.13)
becomes small compared with the last term at the rhs, so one can discard
the derivative ∂ur/∂t. This allows to approximately solve Eq. (7.13) for the
admixture diffusive flow ir = nrur:

ir = −κ̂′∇nr + g ×∇nr. (7.15)

Here

κ̂′ =

⎛
⎝ κ⊥ 0 0

0 κ⊥ 0
0 0 κ‖

⎞
⎠ , κ‖ =

Tτr
mr

, κ⊥ =
κ‖

1 + (ωBrτr)2
, ωBr =

qB

mrc

(7.16)
is the symmetric part of the diffusion tensor, while the gyration vector

g =
κ‖ωBrτr

1 + (ωBrτr)2
B

B
(7.17)

describes the antisymmetric (Hall) part of the tensor.
The effective collision frequency νr can be expressed via the thermal

speed of the test particles vTr and their full mfp Λr, taking into account
collisions of the particles with all plasma components: νr = vTr/Λr. Defining
the characteristic speed of the test particles from 3T/2 = mrv

2
Tr/2, Eq. (7.16)

yields the following diffusion coefficient:

κ‖ =
1

3
vTrΛr. (7.18)

If the effective collision frequency is dominated by a single plasma component,
say ions, then Λr = Λri. The mfp Λri for the thermal particles is estimated
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Table 7.1: Coulomb particle mfps in astrophysical plasmas

Object na ni T Λia Λii
cm−3 cm−3 K cm cm

Cosmological medium (z < 1) 5× 10−9 4× 10−5 104 2× 1022 5× 1016

Galactic neutral clouds 20 0.05 100 5× 1012 3× 109

Intercloud warm medium 0.2 0.03 104 5× 1014 5× 1013

Hot caverns 0 2× 10−3 106 ∞ 1019

Interplanetary medium (1AU) 0 5 105 ∞ 1013

Solar photosphere 1016 1013 6× 103 10−2 10−1

Terrestrial ionosphere 2× 108 106 103 5× 105 104

with equations derived in Sect. 1.3.7 with the Coulomb cross section given by
Eq. (1.147), which has the form

σri ≈ π

(
qe

mriv2ri

)2

ln ΛC, (7.19)

where mri and vri are the reduced mass of two particles and their relative
velocity. For the thermal particles, similar to Sect. 1.3.7, mriv

2
ri ≈ T , which

yields

Λri ≈ 1

niσri
≈ T 2

πniq2e2 ln ΛC
∝ T 2, (7.20)

thus, the longitudinal diffusion coefficient κ‖ ∝ T 5/2.
If the test particles are protons, they are primarily scattered by ions

and neutrals. Collisions of ions with electrons are inefficient because of large
difference in their masses, me � mp. In the electron–proton plasma we have
Λ

pi
= Λii, while the full mfp Λi is

1

Λi
=

1

Λii
+

1

Λia
. (7.21)

On the other hand, the electrons are efficiently scattered by ions, neutrals,
and electrons themselves.

The estimates of the longitudinal Coulomb mfp of the protons in various
astrophysical objects are given in Table 7.1. In most of the presented cases
the Coulomb collisions are more frequent than collisions with neutral with an
exclusion of weakly ionized solar photosphere (cf. Table 1.1 in Sect. 1.3.7).

The diffusion coefficient transverse to the magnetic field is smaller
(for magnetized particles with ωBrτr 
 1 is much smaller), because the
transverse displacement of a particle is limited by its Larmor rotation. Dif-
fusion of the charged particles becomes isotropic when ωBrτr � 1, which is
always the case for neutral particles since for them ωBr = 0.
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We emphasize that Table 7.1 displays the mfps of the thermal particles.
For accelerated fast particles the kinetic energy K = mrv

2/2 
 T is much
larger than the temperature, and their mfp increases as square of energy, see
Eq. (7.20), which is also valid in relativistic energy range. For example, the
mfp of protons accelerated up to a few MeV (still nonrelativistic) is enhanced
in the photosphere by roughly ≈ 12 orders of magnitude, while in IPM by
≈ 10–12 orders of magnitude compared with numbers in the table. Therefore,
for energetic particles, the Coulomb scattering becomes entirely inefficient in
many cases. In such cases the particles are primarily scattered by turbulent
electromagnetic fields in place of background particles. The random turbulent
fields also result in the random walks of the scattered particles. This diffusion
mechanism for the fast, including ultrarelativistic, particles is considered in
detail in Sects. 7.4 and 7.5. For macroscopic neutral particles the diffusion
coefficient can be derived via dynamical viscosity of the medium taking into
account the scale and shape of the particles under study (see, e.g., Heer 1972).

Let us derive relations between the diffusion coefficients κe,iαβ related to in-

homogeneity of particle spatial distribution and electroconductivity σe,iαβ , i.e.,
in general case between tensors of diffusion and conductivity. This relation
has a simpler form for a weakly ionized medium, where Λii, Λei 
 Λia, Λea.
We have

κe‖ =
1

3
vTeΛea, σe‖ =

e2neτea
me

(7.22)

(see Sect. 1.3.4). This yields

κe‖
σe‖

=
mev

2
Te

3e2ne
=

T

e2ne
= 4πr2D, (7.23)

where rD =
√
T/4πe2ne is the Debye shielding radius, one of the key plasma

parameters introduced in Sect. 1.1. The same relation is valid also for trans-
verse and Hall components (note that the Hall components for electrons and
ions have opposite signs); therefore for each combination of α and β we have:

κe,iαβ

σe,iαβ
= 4πr2D. (7.24)

In the fully ionized plasma there is no unique relation for the tensor
components. Moreover, the results depend on the chemical composition of the
plasma as the collisions of the protons with other ions can be more essential
than collisions of the protons with electrons (see Sect. 3.4). Using Eqs. (1.101)
and (1.102), we find for the hydrogen plasma

κeαβ
σeαβ

= 4πr2D, while
κi‖
σi‖

= 4πr2D

(
mi

me

)1/2

,

κi⊥
σi⊥

= 4πr2D

(
mi

me

)3/2

,
gi

Gi
= 4πr2D

(
mi

me

)
. (7.25)
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Note a fundamental difference in diffusion of the neutral and charged
particles. Various kinds of passive neutral admixtures diffuse independently
from each other as long as their number densities are small. The charged parti-
cles interact with each other and with plasma particles via far-acting Coulomb
forces; thus, the diffusion flows of various charged particles are interdepen-
dent; this phenomenon is called the ambipolar diffusion (see Sect. 7.6).

7.3 Transfer of Admixture in a Turbulent Fluid

If the fluid moves, the particles of admixture are being picked up and, besides
the diffusion, take part in the advection transfer with the fluid velocity u(r, t).
Hereafter, we talk about transfer over a macroscopic distance, which is much
larger than the mfp Λ of the test particles in the fluid. The full flux produced
by the admixture particles is, therefore, composed of diffusive (7.11) and
advective terms:

iα(r, t) = n(r, t)uα(r, t)− καβ∇βn(r, t), (7.26)

where a general case of anisotropic fluid is assumed, although thermo- and
baro-diffusions, driven by inhomogeneities of the fluid temperature or pres-
sure (Landau and Lifshitz 1966), are not included in Eq. (7.26).

To derive equation for the number density evolution we note that if there
is no creation or annihilation of the test particles the number of particles in
a given volume V is only changing due to their transport in space; thus, from
the particle number balance and particle flux (7.26), we find

− d

dt

∫
V

n dV =

∮
S

i · dS, (7.27)

where the rhs is the particle flux through the closed surface enveloping
this volume. Then, the Ostrogradsky–Gauss theorem yields an advection–
diffusion equation:

∂n

∂t
+∇ · nu = ∇ακαβ∇β n. (7.28)

In a hydrodynamically turbulent fluid the velocity u(r, t) is a random
function of coordinates and time fluctuating on the spatial scales l � L
and time τ � τc ≈ L/u where L is the main (energy-containing) spatial
scale of the turbulence. In addition, in a compressible fluid, the (microscopic)
coefficient of the “molecular” diffusion κ is also a random function because
of background density fluctuations. Apparently, Eq. (7.26) is only valid if the
spatial scales of the turbulent pulsations l are much larger than the mfp of
the test particles; this condition is required for the particles to be tightly
linked to a fluid element due to the molecular diffusion, and so be transferred
with it.

To describe the test particle transport over large distances Δr 
 L we
have to average Eq. (7.28) over volume elements with linear scales about L
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or over statistical ensemble of the turbulent pulsations. These two ways of
averaging are equivalent to each other if the correlation vanishes quickly with
the distance (see Sect. 6.6). The averaging will eventually give rise to equa-
tion for the mean number density of the test particles 〈n(r, t)〉 and specify
coefficients of this equation expressed via averaged measures of the turbulent
velocity field.

Taylor (1921) was the first who demonstrated that for the time much
longer than the turbulence velocity correlation time τc the transfer of the
test particles is a diffusion with an effective diffusion coefficient defined by
an integration of the correlation function of the Lagrangian velocities

χ =
1

3

∫ ∞

0

〈v(a, t) · v(a, t+ τ)〉dτ. (7.29)

Here v(a, t), in contrast to Euler velocity u(r, t), is the Lagrangian velocity of
the fluid element located at some initial time frame at a position a. Taylor’s
formula (7.29) is derived neglecting the molecular diffusion. An outstanding
problem, how to connect the Lagrangian and Euler correlation functions, has
yet no exact solution; there are only approximate expressions linking the
coefficient of the turbulent diffusion χ with the observable Euler measures of
turbulence, some of which we derive below in this chapter.

7.3.1 Perturbation Theory

Let us start from analysis of incompressible motion (∇ · u = 0) of a fluid
without any mean flow, 〈u〉 = 0. To average Eq. (7.28) over the turbulent
motion ensemble, we adopt the following distribution function of the test
particles:

n(r, t) = N(r, t) + δn(r, t), N = 〈n〉, |δn| � N. (7.30)

The last inequality is a condition of the perturbation theory applicabil-
ity. Tensor of local (molecular) diffusion can be assumed to be a given,
fluctuation-free, value. Thus, after substitution of Eq. (7.30) into Eq. (7.28)
we obtain a system of two equations:

∂N

∂t
=

∂

∂xα
καβ

∂N

∂xβ
−
〈
uα
∂δn

∂xα

〉
,

∂δn

∂t
− ∂

∂xα
καβ

∂δn

∂xβ
= −uα ∂N

∂xα
.

(7.31)

The latter of these equations has been linearized over fluctuating values uα
and δn. It is an inhomogeneous equation that can explicitly be solved using
the Green functionG(r, r′, t, t′), which contains the local diffusion tensor καβ :

δn(r, t) = −
∫
G(r, r′, t, t′)uα(r′, t′)

∂N(r′, t′)
∂x′α

d 3r′dt′. (7.32)
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Substitution of Eq. (7.32) into the first of Eq. (7.3.1) yields the averaged
kinetic equation accounting for the turbulent diffusion in an incompressible
fluid:

∂N

∂t
=

∂

∂xα

καβ
∂N

∂xβ

+
∂

∂xα

∫
G(r,r′, t, t′)〈uα(r, t)uβ(r

′, t′)〉∂N(r′, t′)
∂x′

β

d 3r′dt′.

(7.33)

In case of stationary and uniform fluid the Green function and correlation ten-
sor of Euler velocities depend only on the argument differences, so Eq. (7.33)
reduces to

∂N

∂t
= καβ

∂2N

∂xαxβ

+
∂2

∂xαxβ

∫
G(r − r′, t− t′)〈uα(r, t)uβ(r

′, t′)〉N(r′, t′) d 3r′dt′.

(7.34)

We see that averaging over the turbulent pulsation ensemble gives rise to
an integro-differential equation with a nonlocal interaction within the corre-
lation length L and correlation time τc, specified by properties of the velocity
correlation tensor 〈uαu′β〉. This equation can be simplified at large time and
scale, much larger than the correlation time and length, respectively. For the
same conditions the ergodic theorem for uniform stationary random processes
takes place (Monin and Yaglom 1965), which ensures the equivalence between
averaging over ensemble from one hand and averaging over space or time on
the other hand. In this case the distribution function N varies only slightly
over the integration ranges, so Eq. (7.34) becomes the differential one:

∂N

∂t
= χαβ

∂2N

∂xα∂xβ
(7.35)

with an effective diffusion coefficient

χαβ = καβ +

∫
d 3r

∫ ∞

0

dtG(r, t)Uαβ(r, t), (7.36)

where Uαβ(r − r′, t − t′) denotes the correlation tensor of the turbulent ve-
locities. Thus, the overall concept of the random walks remains valid in the
presence of turbulence; however, the diffusion coefficient changes.

Let us evaluate the applicability region of the perturbation theory in the
problem under study. The original condition |δn| � N requires the correction
due to turbulence in Eq. (7.36) to be small compared with κ (for simplicity
consider here the isotropic case, i.e., καβ = κδαβ , χαβ = χδαβ). If κ 

L2/τc ≈ uL then the exponential factor in the Green function

G(r, t) =
1

(4πκt)3/2
exp

[
− r2

4κt

]
(7.37)

is of the order of unity and estimate of the integral in Eq. (7.36) gives rise to

χ ≈ κ+
1

(4πκτc)3/2
1

3
〈u2〉L3τc = κ

[
1 +

1

3(4π)3/2

(
uL

κ

)5/2
]
. (7.38)
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The dimensionless parameter Pe = uL/κ is called the Pécklet number . The
perturbation theory is, therefore, applicable here for the turbulent motions
with small Pécklet numbers, Pe < 1, which is the case of weak and small-scale
turbulence.

This estimate must be modified for a conducting fluid (plasma) in a
magnetic field. Here the excitations propagate mainly in the form of Alfvén
waves, so the correlation time τc ≈ L/vA is specified by the Alfvén speed vA
rather than the fluid speed u. This effect increases the correcting factor in
Eq. (7.38) by the factor (vA/u)

1/2.
The presented approach has a very limited (mainly, illustrative) appli-

cability in astrophysics: the perturbation theory breaks down due to the
presence of strong turbulence and also large spatial scales of the astrophysi-
cal objects. Nevertheless, the overall picture of the test particle diffusion via
random walks often survives. Moreover, the form of averaged equation (7.35)
often remains the same, although expression (7.36) for the turbulent diffu-
sion coefficient changes. Below we consider the particle transport mediated
by strong/long-wave turbulence following the renormalization approach de-
veloped by Bykov and Toptygin (1993) based on earlier methods presented
by Phythian and Curtis (1978) and Moffatt (1981).

7.3.2 Renormalization of Turbulent Diffusion
Coefficients

For simplicity we still consider an incompressible fluid,∇·u = 0, and 〈u〉 = 0.
Let us derive the diffusion equation averaged over the large-scale turbulent
pulsations in the form of Eq. (7.35) with yet unknown diffusion tensor χαβ .
Consider an auxiliary equation

∂Ñ

∂t
= (χαβ −Δχαβ)

∂2Ñ

∂xα∂xβ
− δuα

∂Ñ

∂xα
, (7.39)

which is a formal result of averaging over all Fourier harmonics of the velocity
field except for the harmonics belonging to a narrow-range Δk of the wave
numbers, where

δu(r, t) =

∫ ∞

−∞

dω

2π

∫
Δk

d 3k

(2π)3
ukω exp(ik · r − iωt) (7.40)

is a velocity field component over which no averaging has yet been performed.
Integration over d 3k must be performed over a spherical layer with thickness
Δk around an arbitrary wave number k; Ñ is a partly averaged distribution
function needed to be further averaged over the remaining random velocity
component δu; accordingly χαβ−Δχαβ is the diffusion coefficient reduced by
a contribution from δu. Averaging of Eq. (7.39) over the turbulent velocity
component δu must compensate for −Δχαβ and give rise to Eq. (7.35) with
the full diffusion coefficient χαβ .
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Note that the partly averaged auxiliary distribution function Ñ depends
on the k value. Nevertheless, the final renormalized kinetic coefficients, which
are observable physical values, are determined by integration over the entire
k-space and so do not depend on that arbitrary choice of k. Apparently, the
fully averaged distribution function N does not depend on this choice either.

The final step of averaging of Eq. (7.39) can be done using the perturba-
tion theory justified by smallness of δu. This does not imply any constraint
on the accuracy because it can be taken arbitrarily small by using Δk � k.
However, in practice the smallness of this range is limited by requirement
that the velocity Fourier harmonics from Δk do not correlate with other har-
monics outside this range. Below we will always assume (until a different is
explicitly stated) the turbulence to be uniform and stationary and use the
common rule of the Fourier harmonics averaging:

〈ukω · uk′ω′〉 = (2π)4〈u2kω〉δ(ω + ω′)δ(k + k′), (7.41)

where 〈u2kω〉 is a regular smooth function of its arguments k and ω. This
definition of 〈u2kω〉 agrees with the model concept of the Kolmogorov-type
turbulence (see Sect. 6.7), which can be described by the turbulence spectral
energy density.

Adopting

Ñ = N + δN, 〈δN〉 = 0, 〈Ñ〉 = N, (7.42)

where the brackets denote averaging over the ensemble δu, and averaging
Eq. (7.39), we obtain

∂N

∂t
= (χαβ −Δχαβ)

∂2N

∂xα∂xβ
−
〈
δuα

∂δN

∂xα

〉
. (7.43)

Here the correction δN to the averaged distribution function can be found
from the linearized equation

∂δN

∂t
− χαβ

∂2δN

∂xα∂xβ
= −δuα ∂N

∂xα
, (7.44)

in which all quadratic terms over δuα including Δχαβ have been discarded.
Solution of this equation can be expressed via the Green function G of the
corresponding homogeneous equation:

∂G

∂t
− χαβ

∂2G

∂xα∂xβ
= δ(r − r′)δ(t − t′). (7.45)

Taking such a solution of Eq. (7.44) and substituting it into Eq. (7.43) we
obtain the integro-differential equation for the averaged distribution function:

∂N

∂t
= (χαβ −Δχαβ)

∂2N

∂xα∂xβ

+
∂2

∂xα∂xβ

∫
G(r − r′, t− t′) 〈δuα(r, t)δuβ(r′, t′)〉N(r′, t′)d 3r′dt′.

(7.46)
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This equation receives a simpler form of Eq. (7.35) if the distribution function
N changes only smoothly over the correlation length L and correlation time
L/u. If these conditions are fulfilled one can replace N(r′, t′) by N(r, t) in
Eq. (7.46) and, thus, determine the correction to the diffusion tensor for the
velocity field component δu:

Δχαβ =

∫
G(ρ, τ)〈δuα(r, t)δuβ(r′, t′)〉d 3ρdτ, (7.47)

where ρ = r − r′, τ = t − t′. This formula, although has a form similar to
Eq. (7.36), is fundamentally different from it in two major respects: in contrast
to Eq. (7.36) it contains the correlator of only a minor part of the entire
velocity field δu, but the Green function contains now the full, (χαβ), rather
than the small-scale (καβ), yet unknown diffusion tensor, which accounts for
the entire large-scale velocity field.

To determine the turbulent diffusion tensor we use the Fourier transform
of the Green function of Eq. (7.45)

Gkω =
1

−iω + kμkνχμν
, (7.48)

to obtain

Δχαβ = k2Δk

∫
dΩkdω

(2π)4
〈uαuβ〉kω

−iω + kμkνχαβ
, (7.49)

where the integration is performed over the angles of k vector and over the
frequency. Further integration of this expression over all wave numbers k
with an obvious constraint χαβ = καβ at u = 0 yields a self-consistent set of
equations for the renormalized components of the tensor of turbulent diffusion
χαβ :

χαβ = καβ +

∫
d 3kdω

(2π)4
〈uαuβ〉kω

−iω + kμkνχαβ
. (7.50)

Note that the unknowns χαβ enter here as parameters (rather than de-
pendent variables), so Eq. (7.50) are algebraic (although transcendental) but
not integral ones. The correlation tensor is assumed to be a given measure of
the turbulence. For a non-gyrotropic fluid it has a form

〈uαuβ〉kω = T (k, ω)(δαβ − kαkβ/k
2) + S(k, ω)kαkβ/k

2. (7.51)

For an incompressible fluid we have additionally S(k, ω) = 0. For the sake of
estimate consider explicit frequency dependence in a Lorentzian form with
the correlation time τc(k) = Γ−1

k :

T (k, ω) = T (k)
Γk
2

[
1

(ω − ω0)2 + Γ2
k/4

+
1

(ω + ω0)2 + Γ2
k/4

]
. (7.52)
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The Lorentzian (dispersive) form of the spectral function is quite general
while simple; the results here depend only slightly on the specific form of this
function (but it can be important when particle acceleration by turbulence
is considered, see Chap. 11).

For isotropic turbulence the set of equations (7.50) reduces to a single
equation. Let us substitute correlation tensor (7.51) in it (with S(k, ω) = 0)
and use the parity of the spectral function T (k, ω) over ω, as well as isotropy
of the tensors χαβ = χδαβ and καβ = κδαβ. This gives rise to a single
transcendental equation for χ:

χ = κ+
4χ

3

∫
d 3k

(2π)3

∫ ∞

0

dω

2π

k2T (k, ω)

ω2 + k4χ2
. (7.53)

This equation cannot be solved analytically in a general case. One case
allowing analytical solution is a “frozen-in” stationary turbulence T (k, ω) ∝
δ(ω). This is a limiting case of the Lorentzian one for ω0 → 0 and Γk → 0,
which results in the following analytical solution:

χ =
1

2
κ+

[
κ2

4
+

2

3π2

∫ ∞

0

T (k)dk

k

]1/2
. (7.54)

A solution satisfying the natural requirement χ � 0 always exists, since
T (k, ω) > 0. Nonphysical (e.g., negative or complex) solutions would indi-
cate either inadequacy of the method or absence of the standard diffusive
mode of the particle propagation (anomalous diffusion). Although a numeri-
cal solution may be needed in a general case, an order of magnitude estimate
of Eq. (7.54) for large Pécklet numbers (κ � uL) yields χ ≈ uL, which is a
reasonable estimate of the turbulent diffusion coefficient.

The developed renormalization method is apparently an approximation
to the reality, whose accuracy is difficult to explicitly evaluate. One of the
main uncertainties introduced by the averaging performed seems to be in
adoption of the diffusive particle propagation throughout all the scales in-
cluding l � L, although this is firmly valid only for Δr � L. This shortcoming
of the theory can be consistently removed within the very renormalization
method at the expense of enhanced mathematical complexity of the theory
implying solving a nonlinear integral equation to calculate effective diffusion
tensor describing the transport at any spatial scale (Bykov and Toptygin
1993).

A further limitation is that the renormalized diffusion tensor depends
only on the pair correlation tensor of the turbulence 〈uαu′β〉; thus, the particle
transport can deviate from the considered here diffusive one if higher-order
correlation tensors contain essential nontrivial information on the turbulence
structure (intermittency of the turbulence). Comparison of the renormalized
theory with results of the corresponding numerical simulations reported in
the literature (see Bykov and Toptygin 1993) shows typically a quantitative
agreement to better than 10%.
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7.4 Transport of Fast Particles in a Random Magnetic
Field

A number of charged particle motion regimes in a regular magnetic field
have been considered earlier in Sect. 1.2. Such a regular field can, at least in
principle, be represented as a function of the coordinates and time. However,
on top of these regular magnetic fields in the astrophysical plasma, there are
also random inhomogeneities of the magnetic field. The drivers of this random
magnetic field are numerous: macroscopic random motions of the plasma,
plasma instabilities, oscillations, and wave modes excited and propagating in
nonstationary plasmas. The corresponding random magnetic field, like the
velocity field considered earlier, allows for many realizations; the statistical
properties of these random fields can be specified (see Chap. 6) by their mean
values and correlation tensors of various ranks.

Accordingly, a single-particle path has also many realizations in the ran-
dom electromagnetic field, so it does not have a closed functional form of the
random field. The particle, or ensemble of the particles, moving in the ran-
dom fields can reasonably be characterized by distribution functions averaged
over the field realizations. In a tenuous astrophysical plasma this random
fields have often much stronger effect on the particle motion than seldom
Coulomb collisions. Here we entirely neglect the Coulomb collisions (see the
corresponding mfp estimated in Sect. 7.2) compared with the scattering by
random magnetic inhomogeneities.

7.4.1 Derivation of the Kinetic Equation

Let us derive a kinetic equation for distribution function of fast, perhaps
relativistic, particles propagating through a volume containing a magnetic
field with a random component. We suppose that the random magnetic field
component is composed of MHD modes with relatively small phase velocity
vph, whose electric field is by a factor of vph/c smaller than their magnetic
field, so we neglect here the effect of the electric field, which ensures conser-
vation of the particle energy.

Adopt the magnetic field B to consist of two physically different com-
ponents: a regular uniform field B0 = const and a random field b(r, t) with
zero mean 〈b〉 = 0. This random field is assumed to be statistically uniform
and isotropic, so in the (rest) reference frame linked to the plasma, we have

Tαβ(r
′
1 − r′2, t1 − t2) = 〈bα(r′

1, t1)bβ(r
′
2, t2)〉. (7.55)

The astrophysical plasma is often involved in a large-scale motion with
a velocity u, which is assumed to have a nonrelativistic value, u = const. In
such a case the radius-vectors in the laboratory and co-moving systems are
related to each other as r = r′ + ut. Assume the fast particle velocity v to
be much larger than any of the characteristic plasma velocities:

v 
 u, v 
 vph (v 
 cs, vA), (7.56)



7.4 Transport of Fast Particles in a Random Magnetic Field 291

since the velocity vph of the magnetic irregularities propagation relative to
the plasma is specified by a combination of the sound cs and Alfvén vA
velocities. Under adopted conditions, the magnetic irregularities can be con-
sistently considered as stationary ones (in the plasma co-moving system), so
the correlation tensor in the laboratory system (in which the plasma moves)
receives the form

〈bα(r1, t1)bβ(r2, t2)〉 = Tαβ(r1 − r2 − u(t1 − t2)). (7.57)

Thus, we have neglected the phase velocities of the MHD waves and corre-
sponding electric fields; however, the bulk velocity u can be much larger than
the phase velocities, i.e., for solar and stellar winds (u ≈ 300–1,000km/s),
supernova explosions (u ≈ 3,000–30,000km/s), and galactic and extragalac-
tic jets (relativistic or even ultrarelativistic in case of the gamma-ray burst
jets), which we will take into account. Apparently, this motion induces an
electric field in the laboratory system according to Eq. (2.19).

Let us denote the exact (fluctuating) distribution function of the fast
particles as f(r,p, t); apparently, it satisfies the collisionless kinetic equation:

∂f

∂t
+ v · ∂f

∂r
+F · ∂f

∂p
= 0. (7.58)

The force

F = eE +
e

c
v ×B =

e

c
(v − u)×B (7.59)

contains both electric and magnetic components. Write down Eq. (7.58) in
the form:

∂f

∂t
+ v · ∂f

∂r
+B · D̂ f = 0, (7.60)

where

D̂ =
e

c
(v − u)× ∂

∂p
(7.61)

is the operator, which changes the value and direction of the particle mo-
mentum. For now we adopt the plasma velocity u to be a regular function;
therefore D̂ is a regular operator.

7.4.2 Small-Scale Magnetic Inhomogeneities

The distribution function describing various observable measures (including
fluxes produced by numerous particles moving along unique random paths)
can be found by averaging of the exact distribution function by all possible
realizations of the random field:

F (r,p, t) = 〈f(r,p, t)〉. (7.62)
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Let us derive equation for this averaged function F from exact collisionless
equation (7.58). We start with a simple case

b � B0, R0 =
cp

eB0

 Lc, (7.63)

where R0 is the Larmor radius of the particle in the regular field and Lc is the
correlation length of the random field. This is the case of small-scale magnetic
inhomogeneities, when the particle experiences only a small Larmor rotation
in the regular field and a small angular deflection due to random field over
a single magnetic inhomogeneity, Fig. 7.2. On top of that we seek for the
distribution function F for sufficiently long time when the particles have
already interacted with many magnetic inhomogeneities.

R0 R0

Lc

Figure 7.2: Interaction of fast particle with small-scale, Lc � R0, magnetic inhomo-
geneity.

Separation of averaged and fluctuating components of the exact distribution
function

f(r,p, t) = F (r,p, t) + f̃(r,p, t), 〈f̃〉 = 0, (7.64)

in Eq. (7.60) yields

∂F

∂t
+
∂f̃

∂t
+v · ∂F

∂r
+v · ∂f̃

∂r
= B0 · D̂ F +B0 · D̂ f̃ +b · D̂ F +b · D̂ f̃ . (7.65)

Now we are to average Eq. (7.65) over random field realizations. Using the

adopted conditions 〈b〉 = 0 and 〈f̃〉 = 0 we obtain an exact equation

∂F

∂t
+ v · ∂F

∂r
−B0 · D̂ F = 〈b(r) · D̂ f̃〉, (7.66)

which contains an unknown mean value of the product 〈bf̃〉 of two random

functions (D̂ is a regular operator). To close Eq. (7.66) we have yet to express
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〈b·D̂ f̃〉 via the averaged function F . To do so, let us subtract Eq. (7.66) from
Eq. (7.65), which yields

∂f̃

∂t
+ v · ∂f̃

∂r
−B0 · D̂ f̃ = b · D̂ F + b · D̂ f̃ − 〈b · D̂ f̃〉.

Assume further that the quasilinear approximation (see Sects. 4.2 and 6.11)
applies, so the difference between two last terms in the rhs is small and they
can be discarded from the equation. In fact, under condition (7.63), an even
stronger inequality

|f̃ | � F, (7.67)

takes place, which justifies discarding of any of these two terms independently.
Therefore, the equation for the fluctuating component f̃ of the distribution
function reduces to the inhomogeneous equation:

∂f̃

∂t
+ v · ∂f̃

∂r
−B0 · D̂ f̃ = b · D̂ F ≡ Q(r,p, t). (7.68)

We have used Q for the rhs of the equation, which formally plays a role of a
source for the random function f̃ , which has to be calculated for the scales
about the correlation length Lc and time about the correlation time Lc/v
needed for the particle to cross an inhomogeneity because the mean value
〈bf̃〉 is apparently proportional to the random field correlation tensor, which
specifies the effective ranges of the integrations.

The solution of inhomogeneous equation (7.68) can be written down via
the Green function of the corresponding homogeneous equation:

L̂G(r,p, t; r′,p′, t′) = δ(r − r′)δ(p− p′)δ(t − t′), where L̂ =
∂

∂t
+ v · ∂

∂r
−B0 · D̂.

(7.69)

At the correlation length we can discard the bulk velocity u because of u� v.
Then, under conditions (7.63) a trajectory of any single particle is almost a
straight line, implying constancy of the momentum vector. Therefore, a free-
streaming Green function

G(r,p, t; r′,p′, t′) = δ(r − r′ − v(t− t′))δ(p− p′)Θ(t− t′) (7.70)

can safely be used in this case. The fluctuating component receives the form

f̃ =

∫ t

−∞
Q(r−v(t− t′),p, t′)dt′ =

∫ t

−∞
b(r−v(t− t′)−ut′) · D̂F (r−v(t− t′),p, t′)dt′.

(7.71)

Let us estimate its order of magnitude. The effective integration range over
t′ is about Lc/v, the operator D̂ ∼ ev/cp; thus, f̃ ∼ (ebLc/cp)F ≈ (Lc/rg)F ,
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where rg ≈ cp/eb is the Larmor radius of the particle in the random field.

Inequalities (7.63) yield Lc � rg and so |f̃ | � F , as has already been noted.
The rhs of Eq. (7.66) contains now the averaged distribution function F

itself and the correlation tensor

〈b(r) ·D̂ f̃〉 = D̂α

∫ t

−∞
Tαβ((v−u)(t− t′))D̂βF (r−v(t− t′),p, t′)dt′, (7.72)

so Eq. (7.66) is a closed one. Let us further simplify it. Note that the tensor
Tαβ vanishes for the arguments larger than Lc; thus, at the order of magni-
tude, we have v(t − t′) ≈ Lc. The averaged distribution function F changes
only slightly over the correlation length if the particles have already inter-
acted with a few magnetic inhomogeneities. Likewise, it varies weakly over
the time t − t′ ≈ Lc/v needed to path through one inhomogeneity. Thus, in
Eq. (7.72), the arguments of F can be replaced: r′ by r and t′ by t that takes
it out from the integral, so only the correlation tensor has to be integrated:

〈b(r) · D̂ f̃〉 = D̂α

(∫ ∞

0

Tαβ((v − u)τ)dτ

)
D̂βF (r,p, t). (7.73)

The most general functional form of the correlation tensor of the statis-
tically uniform and isotropic random field is

Tαβ((v − u)τ) = T ((v − u)τ)δαβ + P ((v − u)τ)
(v − u)α(v − u)β

(v − u)2
, (7.74)

where T (r) and P (r) are two scalar function satisfying the conditions:

T (0) =
1

3
〈b2〉, P (0) = 0; (7.75)

〈b2〉 is the mean square of the random field. The second term in Eq. (7.74)

does not contribute to the rhs of Eq. (7.73), because (v−u)βD̂β = 0. Let us
define the correlation length by the condition

∫ ∞

0

T (r)dr =
1

3
〈b2〉Lc. (7.76)

Then ∫ ∞

0

T (|v − u|τ)dτ =
〈b2〉Lc
3|v − u|

and kinetic equation (7.66) with account of Eqs. (7.73) and (7.76) receives
the differential form

∂F

∂t
+ v · ∂F

∂r
−B0 · D̂ F =

1

3
〈b2〉LcD̂ 1

|v − u|D̂ F. (7.77)
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The rhs of this equation, which describes interactions of the charged
particles with moving magnetic inhomogeneities, plays a role of an effective
collision integral. The regular functions B0, u, and 〈b2〉 can be gradual func-
tions of the coordinates, which are almost constant within the correlation
length. Note that u� v, so the difference |v − u| is always nonzero.

In the fluid at rest we have u = 0 so the operator D̂ receives the form

D̂ =
ec

E Ô, where Ô = p× ∂

∂p
(7.78)

is the operator of angular variation of the particle momentum. The absolute
value of the momentum and the energy are constant in this case, so only
elastic scattering takes place. Kinetic equation (7.77) simplifies to the form

∂F

∂t
+ v · ∂F

∂r
− ec

E B0 · Ô F =
v

2Λ(p)
Ô2

F. (7.79)

Here

Ô2
=

1

sinϑ

∂

∂ϑ
sinϑ

∂

∂ϑ
+

1

sin2 ϑ

∂2

∂ϕ2
, Λ(p) =

3r2g
2Lc

, r2g =
c2p2

e2〈b2〉 , (7.80)

Λ(p) is the transport mfp of the particle, i.e., the distance at which the particle
is deflected by an angle of the order of 1 rad and r2g is the square of the Larmor
radius in the random field. As we adopted R0 
 Lc, we have accordingly
Λ(p) 
 rg 
 Lc and Λ(p) ∝ p2, while R0 can have arbitrary value relative

to Λ. The operator Ô2
in the rhs of Eq. (7.79) is the angular part of the

Laplace operator in the momentum space. Note, finally, that in the considered
case the mfp depends only on the correlation length and mean square of
the magnetic field, while does not depend on the spatial spectrum of the
magnetic irregularities, which is an attribute of the adopted here small-scale
regime. The motion of the particle represents, therefore, a random walk due to
small stochastic deflections by individual magnetic irregularities, i.e., angular
diffusion in the momentum space.

7.4.3 Particle Diffusion in Coordinate Space

In a general case kinetic equation (7.79) can describe anisotropic particle dis-
tributions. However, if the departure from the isotropy is small, this equation
can be further simplified. In practice the anisotropy significantly reduces far
away Δr 
 Λ from an anisotropic source. Adopt this weakly anisotropic
distribution function to have the form

F (r,p, t) =
1

4π

[
N(r, p, t) +

3

v2
v · J(r, p, t)

]
, (7.81)
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where

N(r, p, t) =

∫
F (r,p, t)dΩp, J(r, p, t) =

∫
vF (r,p, t)dΩp (7.82)

are, respectively, an isotropic part of the distribution function and a flux
density of the particles with a given energy; weak anisotropy implies J � vN .

Let us derive a closed form of equation for N(r, p, t). We substitute
Eq. (7.81) into Eq. (7.79) and isolate the angle-independent terms from the
terms proportional to p/p, which gives rise to two equations:

∂N

∂t
+∇ · J = 0, (7.83a)

Λ

v

∂J

∂t
+ J +

Λ

R0
b0 × J = −vΛ

3
∇N, b0 =

B0

B0
. (7.83b)

The first term in Eq. (7.83b) can be estimated as (Λ/v)(J/t) ≈ (τs/t)J , where
Λ/v = τs is the particle isotropization time. The anisotropy is small at the
time t 
 τs, when this term can be discarded. So truncated equation links
the flux density and the gradient of the number density:

Jα = −καβ∇βN, where

κ11 = κ22 = κ⊥ =
κ‖R2

0

R2
0 + Λ2

, κ33=
vΛ

3
= κ‖, κ12=− κ21 = κH=

κ‖ΛR0

R2
0 + Λ2

.

(7.84)

Here axes 3 is directed along the field B0. The anisotropy weakness further
implies |Λ∇N/N | � 1.

The anisotropy of the diffusion tensor is provided by the regular large-
scale field. It has the same structure as differently obtained diffusion tensor
(7.19) and (7.17) and tensor of the magnetized plasma conductivity (see
Sects. 1.3.4 and 7.2). Note that the following relation takes place

Λ

R0
=
vτseB

cp
= Ωτs, where Ω =

ceB

E (7.85)

is the gyration frequency of a particle with an arbitrary (i.e., relativistic)
energy, E is the full energy of the particle (including the rest energy), and
τs = Λ/v is the effective isotropization time.

Off-diagonal components κH describe the Hall effect induced by the ex-
ternal magnetic field. For B0 → 0 (R0 → ∞) the diffusion becomes isotropic:
καβ = κδαβ , κ = κ⊥ = κ‖ = vΛ/3, and κH = 0. For R0 � Λ the tensor
becomes strongly anisotropic:

κ‖ = vΛ/3, κ⊥ ≈ κ‖

(
R0

Λ

)2

, κH ≈ κ‖
R0

L
, κ⊥ � κH � κ‖. (7.86)
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Substitution of flux density (7.84) into continuity equation (7.83a) yields for
the general case of anisotropic diffusion:

∂N

∂t
= ∇ακαβ∇βN. (7.87)

We have to note, however, that such a strong anisotropy of the diffusion
predicted by this “classical” theory of the particle transport is often in a
conflict with observations. One of the most vivid examples of this conflict
is almost isotropic distribution of the galactic cosmic rays (e.g., Berezinskii
et al. 1990). Observations suggest for the vast majority of the cosmic rays
(i.e., protons with energy about a few GeV) Λ‖ is about 1018 cm. The proton
gyroradius in the galactic magnetic field (B ≈ 3× 10−6G) is about 1012 cm.
This yields for the anisotropy factor κ‖/κ⊥ ≈ (Λ‖/R0)

2 = (ωBτ)
2 a very big

value, 1012. Nevertheless, numerous direct and indirect observations favor
almost isotropic diffusion in contrast to the theoretical expectations. This
may imply, likewise in laboratory nuclear fusion experiments (Rechester and
Rosenbluth 1978), that an “anomalous” transverse transport dominates by
many orders of magnitude the “normal” classical transverse transport.

For the isotropic diffusion, καβ = κδαβ with κ = const, we can easily
derive the diffusion equation with account of (Λ/v)∂J/∂t in Eq. (7.83b). Let
us differentiate equality (7.83a) over time and substitute the derivative

∂J

∂t
= − v

Λ
(J + κ∇N)

into it. Then, to eliminate ∇·J , use Eq. (7.83a) again and obtain the diffusion
equation with the second derivative over time:

∂N

∂t
+

Λ

v

∂2N

∂t2
= κΔN. (7.88)

Effects described by this improved diffusion equation (7.88) are discussed in
Problem 7.5 to this chapter.

Energetic charged particles as they move from their sources through the
turbulent magnetized astrophysical plasmas create electric current and elec-
tromagnetic perturbations in various spectral domains. Therefore, calculating
the electric conductivity (which is in fact a kind of “electro-diffusivity”) de-
scribing the energetic particle response to the external electric field makes
sense. Here we calculate this conductivity in the considered model of the
small-scale magnetic inhomogeneities.

To do so we adopt u = 0 and assume a weak electric field E to be applied
to the plasma; fast particle distribution is assumed to be uniform in space
(∂F/∂r = 0) and stationary in time (∂F/∂t = 0). Then, kinetic equation
(7.79) receives the form

eE · ∂F
∂p

− ec

E B0 ·OF =
1

2τs(p)
O2F, (7.89)
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where τs(p) = Λ(p)/v is again the isotropization time.
In a stationary regime the distribution function contains a weak anisotropy

proportional to the small electric field E; thus, it can be presented in a form
of Eq. (7.81) but without arguments r and t. Substitution of Eq. (7.81) into
Eq. (7.89) yields the equation for the particle flux density J(p) induced by
the electric field:

J + Ωτse0 × J =
eτsv

3

∂N

∂p
E, e0 =

B0

B0
. (7.90)

The current density j related to the energetic particles can be calculated as

j = e

∫
vF d 3p = e

∫
J(p)p2dp. (7.91)

Solving Eq. (7.90) for the components of vector J and integrating further
according to Eq. (7.91) we obtain the standard expression for the current
density in a gyrotropic fluid [cf. Eq. (1.102)]:

j = σ‖E‖ + σ⊥E⊥ − σHe0 ×E, (7.92)

where the conductivity components have the form

σ‖ =

∫
σ‖(p)dp, σ⊥ =

∫
σ‖(p)

1 + Ω2
Bτ

2
s

dp,

σH =

∫
σ‖(p)ΩBτs
1 + Ω2

Bτ
2
s

dp, σ‖(p) = −e
2τs(p)vp

2

3

∂N

∂p
. (7.93)

The conductivity components can be expressed via the diffusion coefficients;
in the case of strongly magnetized plasma (Ωτs 
 1) the corresponding re-
lations have the form

σ‖ =
4e2N0

3

(
Λ‖(p)
p

)
, σ⊥ =

4e2N0

3

(
Λ⊥(p)
p

)
, σH =

ecN0

B
. (7.94)

Here Λ‖(p) = vτs(p) is the longitudinal (along the field B0) mfp of an ener-
getic particle having a given energy, Λ⊥(p) = R2

0(p)/Λ‖(p) is the transverse
mfp, the overline denotes the averaging over the distribution function N(p),
and N0 =

∫∞
0 N(p)p2dp is the total number density of the energetic (non-

thermal) particles. The mfps are linked with the diffusion coefficients by the
standard relations κ⊥, ‖(p) = vΛ⊥, ‖(p)/3. Therefore, in the case of the strong
gyrotropy, the ratios of the diffusion coefficients to the conductivities, aver-
aged over the particle spectrum, receive the form similar to Eq. (7.24)

(
κ⊥, ‖
σr⊥, ‖

)
=

pv

4e2N0
= 4πR2

D, where RD ≈
√

K

8πe2N0
(7.95)



7.4 Transport of Fast Particles in a Random Magnetic Field 299

plays a role similar to the classical Debye radius, but for the particles with
an arbitrary energy spectrum. In this case K is the mean value of their ki-
netic energy (which substitutes the temperature). Given that the fast particle
number density N0 is often small compared with that of the background par-
ticles, N0 � n0, while their mean energy is large compared with the main
plasma temperature K 
 T , the effective Debye radius RD can be larger
than the classical Debye radius rD by many orders of magnitude.

7.4.4 Resonant Scattering of Particles by Waves

Although the considered above case of the charge particle scattering by small-
scale magnetic inhomogeneities is relatively simple, in a more realistic situa-
tion, there is a broad spectrum of waves composed of both small- and large-
scale components of which each particle selects itself the part of the spec-
trum to interact the most effectively; this is the case of resonant scattering
of the particles by waves (see Sect. 4.2). There is huge literature on the sub-
ject; here we consider resonant scattering of fast electrons by whistler waves
(see Chap. 3) following mainly Hamilton and Petrosian (1992). In contrast to
Chap. 4, where we concentrated on wave generation by charge particles, here
we consider an effect of a given whistler-wave spectrum on the fast electron
transport.

Having in mind application to electron transport in solar coronal mag-
netic flux tubes we write down the kinetic equation in terms of dimensionless
electron kinetic energy E = γ − 1 taking into account Coulomb collisions
of fast with background electrons and converging/diverging magnetic field
effect:

∂f

∂t
= −cβ cosϑ∂f

∂s
− cβ sinϑ

2

d lnB

ds

∂f

∂ϑ
− ∂

∂E
(ĖLf) +

1

sinϑ

∂

∂ϑ
sinϑDϑϑ

∂f

∂ϑ

+
1

p2(E)

∂

∂E
(p2(E)DEE)

∂f

∂E
+ · · ·+ S(E, ϑ, s, t), (7.96)

where s is the coordinate along the magnetic loop, ĖL is the energy loss rate
(e.g., due to Coulomb collisions), Dϑϑ and DEE are the angular and energy
diffusion coefficients (s−1), and S(E, ϑ, s, t) is the particle source term. Note
that in the absence of the waves the fast particle still experiences angular dif-
fusion due to Coulomb collisions with the corresponding diffusion coefficient

Dϑϑ(C) =
c

λ0β3γ2
, (7.97)

where λ0 = 1024/(n(s) lnΛC), n(s) is the local thermal plasma density, and
lnΛC ∼ 20 is the Coulomb logarithm. Apparently, the presence of the wave
spectrum can only increase (but not decrease) the angular diffusion of the
electrons compared with Coulomb case described by Eq. (7.97).
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The resonant condition of the wave–particle interaction (Chap. 4) has the
form

ω − kcβ cos θ cosϑ− ŝωBe

γ
= 0, (7.98)

where ŝ (not to be mixed with the coordinate s) is an integer (positive or
negative) order of the gyroresonance; ŝ = 0 implies Cherenkov resonance. A
given particle may or may not have a resonance with a particular wave mode
depending on the wave dispersion relation (e.g., Sect. 3.2.3 and Chap. 3 in
general) and the particle momentum. For example, the nonrelativistic elec-
trons do not have any gyroresonance with either Alfvén or fast mode in
typical conditions of the solar corona, although they can have a Cherenkov
resonance (β‖ = βA/ cos θ; the transverse electron momentum is not involved)

with oblique fast modes for which the refractive index is nf = β−1
A ;

βA ≡ vA
c

= 7.27× 10−3

(
B

100G

)( ne
1010 cm−3

)−1/2

. (7.99)

In contrast, no Cherenkov resonance is possible with the Alfvén mode, for
which nA = β−1

A | cos θ|−1: the presence of the term | cos θ|−1 in the refractive
index reduces the resonant region to a single point, β‖ = βA in a given mag-
netic field. Apparently, relativistic electrons with βγ > (βγ)th ≡ (mp/me)βA,
which corresponds to a few MeV in typical coronal conditions, have gyrores-
onances with the MHD waves.

For the whistler waves the refractive index (see Problem 3.4) can be
written in the form

n2
w ≈ 1 +

me

mpβ2
A

ω
Be

ω(cos θ − ω/ω
Be
)
, ω

pe
< ω < ω

Be
, (7.100)

which has a minimum of nw,min = [1 + (4me/mp)(βA cos θ)−2]1/2 at ω =
ω

Be
| cos θ|/2 and increases infinitely as ω → ω

Be
| cos θ|; thus, all electrons

with energy up to (βγ)th can be involved in the resonant interaction with the
whistler waves. In many cases the energy change of the electrons due to res-
onant interaction with the wave turbulence (e.g., whistler turbulence) occurs
over a longer (or much longer) time scale than the corresponding angular
diffusion. For this reason, we neglect here the effect of electron acceleration
by the turbulence (though return to it in Chap. 11), while we consider the
transport related to the interaction with whistler turbulence.

Let us estimate the electron mfp and the electron escape time from a
source with linear scale L. The mfp Λ is a distance over which the particle
velocity direction changes by an angle of the order of 1 rad, which is the prod-
uct of the particle velocity βc and the isotropization time τs ∼ 1/ 〈Dϑϑ〉, i.e.,
Λ = βc/ 〈Dϑϑ〉, where 〈Dϑϑ〉 is the appropriately averaged angular diffusion
coefficient. Accordingly, the escape time τe(E) = L2/κ is the time needed
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for a particle to diffuse the distance of the order of L with the real space
diffusion coefficient κ = βcΛ/3; thus,

τe(E) =
3L2

β2c2
〈Dϑϑ〉 . (7.101)

Specific form of the momentum space diffusion coefficients depends on
the wave turbulence spectrum. We adopt a simple power-law describing the
whistler-wave energy density

Ww(k) =
q − 1

k0

(
k0
k

)q
Wtot; Wtot =

∞∫
k0

Ww(k)dk, (7.102)

where Wtot is the total energy density of the whistler turbulence above
the minimum wave number k0. It is reasonable to associate this minimum
wave number with the threshold wave number of the whistler mode, kth =
ωBp/(cβA) corresponding to ω = ωBp, then the diffusion coefficients receive
the form

(
Dw

ϑϑ

Dw
pp

)
=ωBe sin

2 ϑ| cos ϑ|q−1

(
kthc

ωBe

)q−1
(βγ)q−1

γ

(
8πWtot

B2

)[ Iwϑϑ(q)
m2

pc
2β4

AIw
pp

β2

]
,

(7.103)

where numeric constants dependent on the turbulence spectral index q,
Iwϑϑ(q) = πq/[4(q + 1)] and Iw

pp
(q) = π(q − 1)2(q + 2)/(2q(q − 2))2, are

introduced.
Having the momentum space diffusion coefficients specified, one can now

solve numerically Eq. (7.96) to study in detail how the electron isotropization
and transport occur in the presence of the whistler-wave turbulence. Here we
make some estimates to illustrate how the whistler-wave-mediated electron
transport can be recognized observationally compared with, e.g., collisional
transport. To do so we consider the time evolution, and specifically the de-
cay phase, of solar microwave continuum bursts, produced by accelerated
electrons via GS emission mechanism (see Chaps. 9 and 10 for more detail).

In the case of the GS emission, a higher-frequency emission is produced by
correspondingly higher-energy electrons. The lifetime of the electrons against
the Coulomb collisions increases with electron energy; thus, the higher the
radio frequency the longer the decay time of the corresponding light curve (for
other equal conditions). In some solar flares this effect is prominently present,
which implies a collisional transport regime. In other events, however, the
decay time may not depend or can even decrease with the frequency increase.

Specifically, consider one vivid example of the observed frequency inde-
pendence of the decay constants of the radio emission of the 24 October
2001 solar flare (Bastian et al. 2007). As has been said, this feature is clearly
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a b

Figure 7.3: (a) Detail of the impulsive rise of the 24 October 2001 burst comparing the
HXT Yokhoh L band and selected NoRP and OVSA frequencies. (b) Detail of the decay
phase. The light curves at NoRP and OVSA frequencies labeled, respectively, by either
N or O and a number indicating frequency in GHz, have been scaled to emphasize that
the decay rate of each is essentially identical after 23:11:20 UT (Bastian et al. 2007).
Reproduced by permission of the AAS.

at odds with flare transport models in which the weak (Coulomb) diffusion
regime and magnetic trapping play a significant role: the radio decay profiles
for the Oct 24 event are essentially identical (Fig. 7.3b), being of the order of
50 s for all frequencies with detectable emission for times later than approxi-
mately 23:11:20 UT. We conclude that Coulomb collisions do not appear to
play a role in the transport of the 100s keV to MeV radio-emitting electrons.
Instead, wave-particle interactions, as those considered above involving the
whistler-mode turbulence, must mediate electron transport.

Assuming the spectral energy density of whistler-wave turbulence to be
isotropic and to obey power-law dependence (7.102) we apply the developed
theory to specify the energy dependence of the electron mfp Λ = βc/〈Dαα〉 ∝
(βγ)2−q. For a source of size L, taken here to be the observed loop length of
≈ 2 × 109 cm (Bastian et al. 2007), the electron lifetime in the source τe is
given by τe = L2/(Λβc) ∝ (βγ)q−2/β. Expressing the energy density in the
turbulent spectrum relative to that in the magnetic field, R = 8πWtot/B

2, we
find that for a given magnetic field at the source,∼ 150G, Λ and τe depend on
values assumed for the turbulence index q and R. For the resonant turbulent
transport on the whistler waves to be relevant we must have Λ � L and τe ≈
50 s . These requirements can be met when q ∼ 2 and R ≈ 10−4. With τe ∝
(βγ)q−2/β and q ∼ 2, Λ is essentially independent of energy and τe depends
only weakly on energy. We therefore conclude that the whistler turbulence
with modest parameters can easily mediate the fast electron transport in this
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solar flare and, in fact, in many other events revealing prominent departure
from the collisional transport signatures (see also Sect. 7.5.3).

7.5 Diffusion in a Strong Magnetic Field with
Large-Scale Turbulence

7.5.1 Longitudinal Particle Diffusion in a Strong
Magnetic Field

In a reality the magnetic field often contains a very broad spectrum of the
spatial scales. For example, in the Galaxy the largest turbulence scale is
around 3×1020 cm =100pc, while the minimum scale is at least 10–12 orders
of magnitude smaller. This implies that the condition R0 
 Lc, employed
above (other than in Sect. 7.4.4), does not in fact take place in many cases.
A more likely scale hierarchy is

lm � R0 � Lc, (7.104)

where lm is the minimal scale of the turbulence. Here we perform an order of
magnitude estimate of the diffusion coefficient assuming the turbulent field
to be small to show that the most essential results of Sect. 7.4.4 have in
fact much broader applicability region than those specific conditions adopted
there; for more quantitative kinetic treatment, see Toptygin (1985).

If there is a broad spectrum of the turbulent pulsations in range (7.104),
Fig. 7.4, then the small-scale (l < R0) and the large-scale (l > R0) magnetic
irregularities affect the particle motion differently. Indeed, the small-scale

Large-scale
turbulence

Small-scale
turbulence

Figure 7.4: Large-scale and small-scale magnetic turbulence.
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irregularities give rise to the particle scattering and so form its transport
mfp along the regular field B0. An order of magnitude estimate of this mfp,
Λ‖, can be obtained with Eq. (7.80), but substituting R0 for Lc and using
for the turbulent field 〈b2〉 a part of the whole turbulent field pertained to
the small-scale (R0 ≥ l ≥ lm) region of the spectrum. Let us adopt that
the turbulence spectrum can be approximated by a power-law over the wave
number with an index ν:

〈b2〉k = (ν − 1)〈B̃2〉k
ν−1
c dk

kν
, ν > 1, (7.105)

where 〈B̃2〉 is the entire turbulent field. Integrating Eq. (7.105) from k0 =
2π/R0 to km (k0 � km), we find

〈b2〉 =
∫ km

k0

〈b2〉kdk = 〈B̃2〉
(
R0

Lc

)ν−1

,

and then using R0 for Lc in Eq. (7.80) we obtain

Λ‖ ≈ B2
0

〈B̃2〉

(
R0

Lc

)2−ν
Lc. (7.106)

This estimate is correct to an unknown dimensionless factor of order of one.
A substantial difference between Eqs. (7.106) and (7.80) is that the mfp

depends now on the functional shape of the magnetic irregularity spectrum.
The derived dependence of the mfp on the momentum Λ‖ ∼ p2−ν implies
that the mfp increases with the particle energy for ν < 2, it is constant for
ν = 2, and decreases with the energy for ν > 2. The longitudinal diffusion
coefficient is linked to the mfp by the standard formula κ‖ = vΛ‖/3. Recall
that for the Kolmogorov–Obukhov turbulence ν = 5/3, while for the weak
isotropic MHD turbulence (Kreichnan–Iroshnikov) ν = 3/2. The value of
ν = 2 corresponds to a turbulence composed of discontinuities (including
the shock waves). Thus, for typical turbulence spectra (see Chap. 6), the
particle mfp increases with its energy, although the opposite behavior might
be expected in some peculiar cases. Note that this consideration is in full
agreement with a more detailed analysis of the electron transport mediated
by the whistler-wave turbulence, Sect. 7.4.4.

7.5.2 Transverse Particle Diffusion: Wandering of
Magnetic Force Lines

Consider now what role the large-scale inhomogeneities play in the particle
transport. The magnetic fields with l > R0 affect the particles adiabati-
cally, so the transverse adiabatic invariant p2⊥/B = const is conserved [see
Eq. (1.46) in Sect. 1.2.3]. The particle-guiding center moves primarily along
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Figure 7.5: Stochastic wandering of magnetic force lines.

a field line, while participating in minor transverse drifts. However, the field
line is now formed by the total large-scale field composed of both regular
B0 and large-scale random B̃ fields. Thus, the magnetic field lines receive a
complicated tangled shape due to the random magnetic component. In par-
ticular, two field lines crossing a given spatial region within a correlation cell
can diverge substantially at a distance of a few correlation lengths (Fig. 7.5).
This phenomenon is known as “a wandering of magnetic force lines.” For
B̃ � B0 it has only a minor effect on the longitudinal (relative to B0) par-
ticle transport, while it can greatly enhance their transverse diffusion.

Let us estimate the corresponding coefficient of transverse diffusion for
two following distinct cases.

(a) Let us first adopt that Λ‖ 
 Lc, i.e., the particles cross the cor-
relation cell with a rather small angular deflection. The transverse
displacement of the particle as it crosses one correlation cells l⊥ ≈
B̃Lc/B0, where B̃(� B0) is the rms value of the random field (in
fact, only the large-scale field must be included; however, it is almost
equivalent to the full one for falling with k spectra of the random
field). During a given time t the particle makes N = |v‖|t/Lc steps
(i.e., crosses N correlation cells). If the walk is truly random then the
displacement ΔL⊥ in the transverse direction over this time t is pro-
portional to the square root of the number of steps ΔL⊥ ≈ l⊥N1/2.
Thus, (ΔL⊥)2 ≈ (〈B̃2〉/B2

0)Lc|v‖|t. Comparing this expression with

x2 = 4κ⊥t (see Problem 7.4), we find κ⊥ ≈ (〈B̃2〉/B2
0)Lc|v‖|, which

must yet be averaged over the pitch angle. Detailed calculations based
on the kinetic equation method gives rise to

κ⊥ =
1

3
vΛ⊥, Λ⊥ =

π1/2Γ(ν/2)〈B̃2〉
2Γ(ν/2− 1/2)B2

0

Lc. (7.107)
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(b) In the second case, Λ‖ � Lc, the particles move through the cor-
relation cell diffusively, i.e., they are confined within the correlation
cell and reside there some time τl much longer than the time of the
flight, τl 
 Lc/|v‖|. No simple estimate, like one given above for
the case (a), has yet been obtained for this case. To describe this
regime quantitatively we apply below the renormalization method
already used in Sect. 7.3.2 and the kinetic equation in the guiding
center approximation.

7.5.3 Kinetic Equation in Guiding Center
Approximation

We have already developed (see Sects. 1.2.2 and 1.2.3) the drift approxima-
tion to describe single particle motion. Apparently, a similar treatment is
available and can be very convenient to describe ensembles of the particles
moving in a large-scale inhomogeneous magnetic field with a weak electric
field (E � B) superimposed on it. Averaging over fast particle rotation
around the field lines allows reducing the number of independent variables in
the distribution function down to six of them: f(p‖, p⊥, r, t), where p‖, p⊥ are
the momentum components relative to the direction of the large-scale field
at the guiding center location. Thus, the distribution function f describes,
instead of distribution of particles, the distribution of the particles’ guiding
centers in the five-dimensional space.

It has widely been proved that the variables (r, p‖, p⊥) are canonical and
so the Liuville theorem on the phase volume conservation is valid in terms of
these variables [see, e.g., the reviews by Bogoliubov and Mitropolski (1961)
and Sivukhin (1965)]. This means that the distribution function as a function
of the “drift” variables satisfies the kinetic equation

∂f

∂t
+ vc · ∂f

∂r
+ ṗ‖

∂f

∂p‖
+ ṗ⊥

∂f

∂p⊥
= 0. (7.108)

Here vc is given by Eq. (1.39), while ṗ‖ and ṗ⊥ can be expressed via p‖
and p⊥ and vectors of electromagnetic fields using adiabatic invariant (1.46)
and Eq. (1.49). To account the particle collisions or the small-scale turbulent
fields with l � rg one has to add into the rhs of Eq. (7.108) the corresponding
collisional term averaged over the fast phase: 〈St[F ]〉φ = (1/2π)

∫
St[F ]dφ.

For example, for the collisional term with operator (7.80), we have

〈St[F ]〉φ =
v

2Λ

1

sinϑ

∂

∂ϑ
sinϑ

∂f

∂ϑ
, (7.109)

where the function f in contrast to F does not depend on φ. Note that here
rg denotes the particle gyroradius defined by the entire (regular plus random)
magnetic field.
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Equation (7.108) with account of all terms given in Sect. 1.2.3 is very
complicated. Let us consider here only linear terms over the small parameters
E/B and rg/L. Also, consider only the induced electric field driven by the
fluid motions E = −u×B/c. In this case

vc ≈ v‖e‖ +
c

B2
E ×B = (v‖ − u‖)e‖ + u. (7.110)

The derivative ṗ⊥ is calculated from adiabatic invariant (1.46)

ṗ⊥ =
p⊥
2B

Ḃ =
p⊥
2B

ṙc · ∇B = −1

2
p‖v⊥∇ · e‖. (7.111)

Equation (1.49) in this approximation yields Ė ≈ eE · vc = 0, which gives
ṗ‖ = −ṗ⊥(p⊥/p‖) or equivalently

ṗ‖ =
1

2
p⊥v⊥∇ · e‖. (7.112)

Since collisional term (7.109) depends on the pitch-angle ϑ, we have yet

to change the variables from (p‖, p⊥) to
(
p =

√
p2‖ + p2⊥, ϑ = arctan(p⊥/p‖)

)
and recalculate the derivatives accordingly:

ṗ‖
∂f

∂p‖
+ ṗ⊥

∂f

∂p⊥
=

v

2B

∂B

∂s
sinϑ

∂f

∂ϑ
, (7.113)

where s is the coordinate along the field line ∂f/∂s = (e‖ · ∇)f . The deriva-
tive ∂/∂p cancels out because of energy conservation in the approximation
adopted. Finally, assuming u = 0 in Eq. (7.110), we obtain the following
equation:

∂f

∂t
+ v cosϑ

∂f

∂s
+

v

2B

∂B

∂s
sinϑ

∂f

∂ϑ
=

v

2Λ

1

sinϑ

∂

∂ϑ
sinϑ

∂f

∂ϑ
. (7.114)

This equation discards weak transverse diffusion due to particle scattering by
the small-scale fields and transverse drifts; other kinds of the transverse diffu-
sion, e.g., due to magnetic force line wandering, are considered in Sect. 7.5.2.

Equation (7.114) supplemented by fast electron source and decay terms is
often used to describe transport and evolution of electrons accelerated in solar
flares. An elementary structural element of a solar flare is a coronal magnetic
loop (see, e.g., Fig. 1.5), whose footpoints are buried at dense layers of the
solar atmosphere—chromosphere and photosphere. The electrons reaching
these dense footpoints experience rapid Coulomb losses and so they are lost
from the coronal loop. In case of no angular scattering each electron moves
conserving its value of the transverse adiabatic invariant, sin2 ϑLT/BLT =
const, where ϑLT and BLT = min(B(s)) are the electron pitch angle and
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magnetic field values at the loop top. Thus, whether an electron reaches a
footpoint (and die there) depends on its initial pitch-angle ϑLT: if ϑLT > ϑc,
where sin2 ϑc = BLT/BFP, BFP is the magnetic field at the footpoint, this
electron is trapped in this coronal loop, while if ϑLT < ϑc, then this electron
precipitates to the footpoint and so it is irreversibly lost from the coronal loop
(Melrose and Brown 1976). Accordingly, an anisotropic electron distribution
with a “loss-cone” is formed soon after the electron injection is off.

Let us now add a weak angular scattering described by the rhs of
Eq. (7.114); in this context the term “weak” means that the electron mfp is
much larger than the loop length (weak diffusion regime), i.e., a few bounce
times are needed to scatter the electron by angle of the order of 1 rad. Such
angular scattering will smooth out (otherwise sharp) boundary of the loss
cone; accordingly, the probability of the electron to be lost at a footpoint will
now depend on its pitch angle: the electrons moving transverse to the mag-
netic field at the loop top (and so localized there) will have longer lifetime
in the loop than the electrons moving there obliquely (and so reaching lower
layers of the loop at a given bounce period). Apparently, such a transport
regime will result in fast electron accumulation at the loop-top region, where
the magnetic field is relatively small.

To be complete, mention here two more distinct transport regimes of
the fast electrons in the coronal magnetic traps—regimes of the moderate
and strong angular diffusion. The moderate diffusion regime occurs when
the electron mfp is comparable with the loop length. In this case the loss-
cone emptying due to electron precipitation to the footpoints and the loss-
cone filling due to angular diffusion occur with the same rate, which implies
enhanced electron precipitation to the footpoints. The strong diffusion regime
means that the electron mfp is much smaller than the loop scale, which implies
that the electron distribution is almost isotropic everywhere, the electrons
move diffusively and so their lifetime τ = L2/κ
 L/v is defined by the loop
length L and the electron diffusion coefficient κ. We employ these transport
regimes later, while discussing 3D modeling of the solar flares in Sect. 10.2.2.

7.5.4 Averaging of the Drift Kinetic Equation
for the Strong Turbulence

Let us consider the “anomalous” transverse transport in case of strong turbu-
lence, i.e., in contrast to Sect. 7.5.2 we adopt the spatial scales of the random
magnetic field B̃(r, t) are much larger than the local mfp of the particles Λ‖
formed by small-scale (l � rg) electromagnetic field. On top of that, there is a
quasi-uniform magnetic field B0, which varies on a scale even larger than the
large-scale random field. This situation is highly typical for the astrophysics;
for example, in the Galaxy there is a broad spectrum of fluctuations of both
magnetic field and the fluid velocity, with B̃ � B0.



7.5 Diffusion in a Strong Magnetic Field with Large-Scale 309

If the Larmor radius of the particles is small compared with the mfp then
the local diffusion is strongly anisotropic: the particles move preferably along
the local magnetic field (although with small transverse deflections due to
the drifts). However, the global particle transport over distances much larger
than the random field correlation length and over time much longer than the
correlation time can turn to become almost isotropic due to highly tangled
magnetic force lines and strong transverse fluid motions. Thus, there is an
important problem of linking the local and global diffusion coefficients; espe-
cially important to determine the transverse (relative to the quasi-uniform
magnetic field B0) diffusion coefficient. As has been noted in Sect. 7.4.3 the
Galactic CR observations favor the isotropic global transport.

To correctly describe the particle transport in a fluid with strong turbu-
lence one has to take into account both the turbulent velocity field and the
stochastic component of the large-scale magnetic field. Below we apply the
method proposed by Bykov and Toptygin (1993) and Vainshtein et al. (1993)
to calculate the global diffusion tensor without any constraint on the ran-
dom magnetic field magnitude, i.e., including the case when B̃ � B0, along
with self-consistent account of the turbulent velocity field. This method is
based on the renormalization of the drift kinetic equation, a simple version of
which has been presented in Sect. 7.3.2. Likewise, the diffusion tensor compo-
nents will eventually be expressed via a system of transcendental equations
containing second-order correlation functions of the turbulent fields.

We adopt that the turbulence correlation lengths along and transverse
to the regular field have the same order of magnitude and the turbulence is
spatially and temporally smooth, so the second-order correlation function is
sufficient to fully quantify the turbulence. The correlation is assumed to fall
quickly outside the correlation cell: if there is a certain (even not numerous)
number of long narrow flux tubes, which implies the longitudinal correlation
length is much larger than the transverse correlation length, see review by
Isichenko (1992), the entire transverse particle transport can be controlled by
such flux tubes, which can be relevant for magnetically dominated plasmas, in
particular, to the magnetic loops in the solar corona. In a complex magnetic
structure of the coronal magnetic field above complicated ARs, such peculiar
flux tubes can provide magnetic connectivity between otherwise well-isolated
regions of the solar atmosphere; this connectivity can quickly change via
magnetic reconnection during solar flares and eruptions.

Let us write down drift kinetic equation for the distribution function of
magnetized particles f(p, θ, r, t) assuming zero gyroradius (rg → 0) while
taking into account medium motion, electric field −u × B/c, and electric
drift velocity cE ×B/B2 = u⊥ [see Eq. (7.110)]:

∂f

∂t
+ [(v · b− u · b)b+ u] · ∇f = −ν(f − f). (7.115)
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The field u of the turbulent fluid velocity is defined via the corresponding
second-order correlation tensor; b is the unit vector along the full magnetic
field:

b =
B0 + B̃

|B0 + B̃| . (7.116)

Here B̃(r, t) is the turbulent magnetic field with the scales l (Λ‖ < l � L),
over which we then suppose to average. The same scales characterize the
velocity u. The field B0 is the regular one whose scale R 
 L is comparable
to the scale of whole object under study.

In what follows we accept the following simplifications. First, remind that
all the terms containing energy variation have already been discarded from
Eq. (7.115). The energy change is in fact rather small in case of incompressible
fluid motion (∇ · u = 0). We also neglect the turbulence gyrotropy and

assume the vectors u and B̃ to be directed transverse to B0. Then, the
particle interaction with the small-scale fields (with scales of the order or less
than the gyroradius) is modeled by a simple “relaxation” term, −ν(f − f),
where ν is the effective scattering rate of the particles by the small-scale
field. The overline f denotes averaging over the pitch angle; finally, as we are
going to consider a strong diffusion regime, a term describing the magnetic
focusing/mirroring in the large-scale random field is discarded assuming the
scattering rate ν to be much larger than the competing rate of the pitch-angle
variation due to the focusing v∇ · b.

Further manipulations consist of two stages. At the first stage we guess
the overall structure of the final equation, which could be the result of
Eq. (7.115) averaging over the ensemble of the turbulent pulsations, while
the form of yet unknown diffusion tensor is just postulated, but not calcu-
lated. This tensor is derived quantitatively at the second stage by adopting
small anisotropy of the distribution function and applying renormalization
similar to that developed in Sect. 7.3.2. This method is justified by its ability
to uniquely and self-consistently derive all auxiliary and final values includ-
ing the global diffusion tensor without any constraint on the large-scale field
magnitude.

Thus, the result of averaging of Eq. (7.115) is guessed in the form

∂F

∂t
+ V · ∇F − χαβ(p)∇α∇βF = −ν(F − F ), (7.117)

where F (r,p, t) = 〈f(r, p, θ, t)〉 is the averaged distribution function, while
the overline F means additional averaging over momentum directions. It
is important to note that the original (non-averaged) distribution function
f(r, p, θ, t) and the averaged distribution function F (r, p, ϑ, ϕ, t) depend on
different angular variables controlling direction of vector p. Indeed, the func-
tion f depends on the local pitch-angle θ while it does not depend on the
local (fast) gyration phase φ: Eq. (7.115) is the result of averaging over this
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very phase. After averaging over the turbulent fields, however, the momentum
direction is specified by the angle ϑ, between the momentum vector and the
mean magnetic field B0, and new azimuth angle ϕ around B0. The azimuth
angle ϕ is not a fast variable any longer: dependence of it can be introduced by
either azimuth anisotropy of the turbulence or particle distribution gradient
if different from the B0 direction.

Here, in Eq. (7.117),

V = 〈(v · b− u · b)b+ u〉 = 〈vc〉 (7.118)

is the averaged velocity of the particle-guiding center. The term with the
second derivative χαβ∇α∇βF is supposed to describe the result of averaging

〈(vc − V ) · ∇f〉 = −χαβ(p)∇α∇βF. (7.119)

Tensor χαβ(p) represents only a partial contribution to the full diffusion
tensor due to large-scale turbulence, the other part is produced by the V ·∇F
term. Below we calculate both contributions and the full tensor Dαβ self-
consistently, which requires some further manipulations over V . Denoting

ε = 〈B̃2/(B2
0 + B̃2)〉, (7.120)

we write down the single-point correlator of the unit vectors as

〈bαbβ〉 = (1 − ε)eαeβ + (ε/2)δ⊥αβ , (7.121)

where e is the orth of the field B0. Using Eq. (7.121) we find

V = (1− ε)v‖e+ (ε/2)v⊥, (7.122)

where the subscripts ‖ and ⊥ relate now to the B0 direction. The parameter
ε varies within the limits 0 < ε < 1 and is the measure of the turbulent
component in the entire magnetic field; the two-dimensional tensor δ⊥αβ is

defined by δ⊥αβ = δαβ − eαeβ.
The full diffusion coefficient Dαβ must be expressed via V , χαβ(p), and

effective scattering rate ν by transition in Eq. (7.117) to the weak anisotropy
approximation. Adopting

F =
1

4π
(N(r, p, t) + δN(r,p, t)), δN(r,p, t) = 0, |δN | � N,

(7.123)
we reduce Eq. (7.117) to the diffusion form

∂N

∂t
= Dαβ(p)∇α∇βN, (7.124)
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where

Dαβ(p)=καβ + χαβ(p), καβ=κ⊥δαβ + κ‖eαeβ, κ⊥ =
ε2v2

12ν
, κ‖ = (1− ε)2

v2

3ν
.

(7.125)

At this point we have to calculate the kinetic coefficient χαβ(p), which we
perform using the approach developed in Sect. 7.3.2. Let us isolate a narrow
range of the wave numbers Δk from the entire turbulence spectrum. The cor-
responding field components formed by the harmonics from Δk are denoted
as δu and δB̃. In the linear approximation over these small values we have

vc = v′
c + δvc, (7.126)

where

δvc = (v · δb− δu · b′ − u′ · δb)b′ + (v · b′ − u′ · b′)δb+ δu,

δbα =

[
B0

B̃′ δαβ − B0

B̃′ 3 (B0α + B̃′
α)B̃

′
β

]
δB̃′

β

B0
. (7.127)

The primed values are those related the entire turbulence spectrum except
the narrow range Δk.

Now let us average Eq. (7.115) over the entire spectrum of the tur-
bulent pulsations except Δk. Denoting this averaging by the prime sign:
〈f(r, p, θ, t)〉′ = F̃ (r,p, t), we obtain

∂F̃

∂t
+ v′

c · ∇F̃ − χ′
αβ(p)∇α∇βF + ν(F̃ − F̃ ) = L̂F̃ . (7.128)

Here L̂ is operator of the perturbations proportional to small values δu
and δB̃.

Equation (7.128) is analogous to a simpler Eq. (7.39) from Sect. 7.3.2.
Further manipulations are basically similar to those given in Sect. 7.3.2 but
much more cumbersome because this problem itself is much more difficult.
Thus, we pass the manipulations by and give the answer in the form of the
transcendental equation for the transverse diffusion coefficient D⊥

αβ = D⊥δ⊥αβ

D⊥
αβ = κ⊥δ⊥αβ+κ‖

1−ε−�
(1−ε)2

∫ 〈B̃αB̃β〉k,ω
B2

0

(
1−

k2‖κ‖
iω + k2‖D‖ + k2⊥D⊥

)
d 3k dω

(2π)4

+
(
1− ε

2

)2 ∫ 〈uαuβ〉k,ω
iω + k2‖D‖ + k2⊥D⊥

d 3k dω

(2π)4
, (7.129a)

D‖ = κ‖

[
1 +

〈B̃2〉(1 − ε− �)

B2
0(1− ε)2

]
, � = 〈B2

0B̃
2/(B2

0 + B̃2)2〉. (7.129b)
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The Hall components in the considered non-helical turbulence case are
evanescent within the approximation of zero Larmor radius. Equations (7.129)
do not require the turbulence to be weak: they are valid for arbitrarily strong
(but smooth, i.e., without shock fronts or other discontinuities) pulsations
and for arbitrary regular-to-random field ratio, 0 ≤ ε ≤ 1. The adopted above
transverse orientation of the vectors u and B̃ relative to B0 provided that
the turbulence correlation tensors enter only the equation for the transverse
(but not the parallel) diffusion coefficient.

A shortcoming of the method is the a priori guessed classical diffusive
form of the final transport equation, which, in particular, gives rise to the
quadratic dependence of the particle displacement on time x2(t) ∝ t. This
kind of diffusion is highly frequent and widely observed. Nevertheless, we
have to note that the theory of the turbulent transport allows “anomalous”
transport processes described by equations with fractional derivatives leading
to dependencies like x2(t) ∝ tμ, μ �= 1 (sub-diffusion for μ < 1 or super-
diffusion for μ > 1). Firm evidence in favor of such “peculiar” processes is very
seldom in the astrophysics. One vivid example of a super-diffusive transport
of bright points in solar spot penumbra with μ = 1.48− 1.67 observed with
NST is given by Abramenko et al. (2011); the theory and references of this
“strange” diffusion processes are available, e.g., in a review by Zelenyi and
Milovanov (2004).

7.5.5 Regimes of the Transverse Diffusion

Let us apply the obtained theory to describe various possible regimes of the
particle transverse diffusion in the turbulent fluid. We start from the energetic
particle transport mediated by a weak Alfvénic turbulence. The Alfvén mode
wave vectors are adopted to be isotropically distributed for simplicity. Assume
the correlation tensors of the turbulent velocities and magnetic field to have
the form

〈B̃αB̃β〉k,ω = 4πρ〈uαuβ〉k,ω = 4πρT (k, ω)(δ⊥αβ − k⊥α k
⊥
β /k

2
⊥). (7.130)

Here the sub(super)script ⊥ means direction transverse to B0, the scalar
function T (k, ω) is defined by Eq. (7.52) from Sect. 7.3.2, where ω0 =
ωA = |k‖vA| is the Alfvén wave frequency, Γk is the corresponding spec-
tral bandwidth provided, e.g., by nonlinear wave interaction. Below we use
the approximation Γk → 0, which yields

T (k, ω) = T (k)π[δ(ω − ω0) + δ(ω + ω0)]. (7.131)

The correlation tensor is normalized as follows:

〈B̃2〉 = 4πρ

∫
T (k, ω)

d 3kdω

(2π)4
= 4πρ

∫ ∞

0

T (k)
k2dk

2π2
, (7.132)

and

ε ≈ 〈B̃2〉
B2

0

=
〈u2〉
v2A

� 1, �� 1. (7.133)
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The spectral function T (k) is supposed to have a broad falling with k (inertial)
range (see Chap. 6) and to reach a peak value at k0 ∼ L−1, related to the
main turbulence scale L.

The overall problem depends on a number of dimensionless parameters
whose hierarchy demarcates different regimes of the transverse diffusion, most
common of which are considered below (recall that the theory used here as-
sumes that the local mfp is much smaller than the main scale of the turbu-
lence, Λ‖ � L).

1. Adopt the local mfp Λ‖ is small, so the following inequalities hold:

vAL/vΛ‖ 
 1 or L/Λ‖ 
 v/vA 
 1. (7.134)

From Eqs. (7.125) and (7.129b) we have D‖ ≈ κ‖ ≈ vΛ‖/3, κ⊥ � κ‖.
Since in a weakly turbulent fluid, Eq. (7.133), there must be D⊥ � D‖;
with the use of Eq. (7.134) we have ωA = |k‖vA| 
 k2‖D‖+k2⊥D⊥ ≈ k2‖D‖.
The first integral in the rhs of Eq. (7.129a) gives

≈ κ‖

∫ 〈B̃αB̃′
β〉k,ω

B2
0

d 3kdω

(2π)4
=

1

2
δ⊥αβ

〈B̃2〉
B2

0

κ‖ =
1

2
δ⊥αβεκ‖.

The second integral contribution is

≈
∫ 〈uαu′β〉k,ωk2‖D‖d 3kdω

ω2
A(2π)

4
≈ 1

2
δ⊥αβ

〈u2〉
v2A

κ‖ =
1

2
δ⊥αβεκ‖.

This eventually yields a rather simple expression:

D⊥ ≈ εκ‖. (7.135)

We find that the turbulent velocity field and the turbulent magnetic field
give two equal contributions to the transverse diffusion coefficient.

2. Adopt now the local mfp to be large vΛ‖ 
 vAL but limited, so the
inequalities

vAL� κ‖ � vALε
−1, ε, �� 1 (7.136)

are fulfilled. With correlation tensors Eq. (7.130) integration of Eq. (7.129a)
over the azimuth angle of the vector k yields

D⊥ ≈
∫ ∞

0

T (k)dk

(2π)2

[
1

κ‖
�
∫ 1

0

dx

x2 + 2iβx + γ
+�

∫ 1

0

ikxdx

vA(x2 + 2iβx+ γ)

]
,

(7.137)

where β = vA/(D‖ − D⊥) ≈ vA/2kκ‖ � 1, γ = D⊥/(D‖ − D⊥) ≈
D⊥/κ‖ � 1. Integrals over dx can be taken by the integrand expansion
over the simplest fractions:

1

x2 + 2iβx+ γ
=

1

x− x1

[
1

x− x1
− 1

x− x2

]
, x1,2 = −i[β∓

√
β2 + γ].
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Within the lowest (linear) approximation over ε the first integral in
Eq. (7.137) gives no contribution, so the second one fully specifies the
transverse diffusion coefficient:

D⊥ = εvAL. (7.138)

Here the scale L depends on the spectrum

〈u2〉L =
1

8π

∫ ∞

0

T (k)kdk, 〈u2〉 = 1

2π2

∫ ∞

0

T (k)k2dk. (7.139)

This scale L is comparable to the main turbulence scale.

3. A further possible regime compatible with the assumption of the Alfvén
turbulence weakness is defined by the inequalities:

vAL/κ‖ � ε� 1. (7.140)

Since in this case D‖ ≈ κ‖(1 + ε), then the terms iω = ±iωA can be
discarded as they are small compared with k2‖D‖. After integration over
the azimuth angle of the vector k and discarding some apparently small
terms, Eq. (7.129a) receives the form

D⊥ = κ⊥ +
κ‖
v2A

∫ ∞

0

T (k)k2dk

(2π)2

∫ 1

0

{
1− κ‖

D‖ −D⊥

[
1− γ

x2 + γ

]}
dx

+
1

D‖ −D⊥

∫ ∞

0

T (k)dk

(2π)2

∫ 1

0

dx

x2 + γ
, (7.141)

where γ = D⊥/(D‖ −D⊥). Inequality (7.140) guarantees that D‖ 
 D⊥.
Now, using Eq. (7.139) and integrating over dx, we obtain

D⊥ = κ⊥+
κ‖〈u2〉
2v2A

(
ε+

π

2

√
D⊥
κ‖

)
+

π

2
√
D⊥κ‖

∫ ∞

0

T (k)dk

(2π)2
. (7.142)

The latter term in the rhs is of the order of 〈u2〉L2/
√
D⊥κ‖; its ra-

tio to the second term can be evaluated as ε(κ‖/D⊥)(vAL/κ‖)2, which,
being corroborated with inequalities (7.140), gives rise to the estimate
ε(κ‖/D⊥)(vAL/κ‖)2 � ε3κ‖/D⊥ � 1, because D⊥ is now of the order of
ε2κ‖. Thus, Eq. (7.142) after discarding this small last term reduces to a
simple one:

D⊥ = κ⊥ +
εκ‖
2

(
ε+

π

2

√
D⊥
κ‖

)
. (7.143)

From here it is easy to find to the first nonzero order over ε� 1

D⊥ = gε2κ‖, g ≈ 1.6. (7.144)
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Thus, the transverse transport of the particles by quasi-stationary (ω=0)
small-amplitude irregularities is specified by the fourth power of the
random-field amplitude.

Let us discuss now the particle transport by a strong turbulence (ε ≈ 1),
which in a general case requires solving corresponding transcendental alge-
braic Eq. (7.129). This analysis results typically in almost isotropic diffusion
D⊥ ∼ D‖ due to strong turbulence. To illustrate this we make an oversim-
plified estimate for a one-scale strong static turbulence characterized by the
magnetic correlation tensor

〈B̃αB̃′
β〉k,ω = 〈B̃2〉2π

3

k20
δ(k − k0)δ(ω)δ

⊥
αβ (7.145)

and neglecting the turbulent motions (〈u2〉 = 0). Here, as follows from
Eq. (7.129b), D‖ = κ‖/(1− ε), and the ratio X = D⊥/D‖ satisfies the equa-
tion derived from Eq. (7.129a) after taking the integrals:

X =
ε2

4(1− ε)
+
ε

2

[
ε−X

1−X
+

(1− ε)
√
X

(1 −X)3/2
arctan

√
1−X

X

]
. (7.146)

Let us consider, as an example, the transverse transport in the galac-
tic disk. Observations (Ruzmaikin et al. 1988; Beck 2001, 2011) favor rather
strong random magnetic field comparable with the regular component, which
implies the strong turbulence regime. For the following ratios B̃ ≈ B0 (ε =

1/2), B̃ ≈ 1.4 × B0 (ε ≈ 2/3), and B̃ ≈ 1.7 × B0 (ε ≈ 3/4) compatible
with the observations, Eq. (7.146) yields D⊥/D‖ ≈ 0.3, D⊥/D‖ ≈ 0.6, and
D⊥/D‖ ≈ 0.9, respectively. Thus, D⊥ and D‖ are indeed of the same order
of magnitude. The tensor components for the Hall diffusion are negligible,
because the Larmor radius of relativistic protons is too small compared with
the mfp of the particles. The average diffusion tensor of the relativistic pro-
tons is diagonal in the coordinate system with the polar axis directed along
the large-scale regular field.

7.6 Ambipolar Diffusion Stimulated by Energetic
Particles

7.6.1 Ambipolar Diffusion in Steady Regime

Let us consider a simple model problem of how both nonthermal and thermal
particles diffuse out from a point source of nonthermal particles in a uniform
isotropic steady-state fluid.1 Note that in case of neutral passive admixtures,

1Effective ambipolar diffusion coefficients in a weakly ionized fluid (without fast
particles but with different temperatures of ions and electrons) can be found, e.g., in
Alfven and Fälthammar (1963) and Chen (1984).
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each kind of particles diffuse with its own diffusion coefficient that does not
depend on other kinds of test particles perhaps available in the fluid. The
situation differs drastically for the charged particles, because they interact
with each other via far-acting Coulomb forces; thus, diffusion of each charged
particle component depends generally on all other component motion.

Let us adopt an accelerating process to operate in a small region of space
(point source of accelerated particles), i.e., a small fraction of the ions are
converted to a nonthermal (perhaps, ultrarelativistic) component with a rate
Q (ions per second). Neglecting effect of other charged particles, the fast ions
would diffuse in this isotropic turbulent fluid with a diffusion coefficient κ.
In the stationary case the number density of the ions obeys the equation

κΔN = −Qδ(r), (7.147)

which has a solution

N(r) =
Q

4πκr
. (7.148)

Apparently, the conservation of the particle number implies that genera-
tion rate Q of the accelerated ions produces the same but negative “genera-
tion” rate of the background ions −Q, since the accelerated particles originate
from the background population. Thus, there appears a negative variation
ni(r) of the background ions accompanied, due to the Coulomb interaction,
by a nonstationary variation ne(r) of the background electrons. These values
must be distinguished from the mean values ni = ne = n0 of the electron and
ion densities in the steady-state plasma. On top of that, these three plasma
components produce an electric field and motion of charged particles, i.e.,
generally speaking, an electric current. Let us express all the variations of
the number densities via the acceleration rate Q and diffusion coefficients κ,
Di, and De of the nonthermal and background particles and calculate all the
partial electric current components jr, ji, and je, where the superscript r
denotes the accelerated particles.

The electric currents are defined by the particle number densities and
electric field E using well-known formulae involving both diffusion and
electro-conductivity:

jrα = −eκαβ ∂N
∂xβ

+ σrαβEβ , (7.149a)

jiα = −eDi
αβ

∂ni

∂xβ
+ σiαβEβ , (7.149b)

jeα = eDe
αβ

∂ne

∂xβ
+ σeαβEβ , (7.149c)

where the plasma anisotropy due to regular magnetic field is taken into ac-
count via tensor kinetic coefficients. In what follows we will use links (7.23)–
(7.25) between the kinetic coefficients to reduce their number. A similar link
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is available for the nonthermal particles, which can be written in the form
[see Eq. (7.95)]

κ

σr
= 4πR2

D ≈ K

eN0

 T

en0
= 4πr2D. (7.150)

Here K 
 T is a mean kinetic energy of nonthermal particles, N0 � n0 is
their number density (see Sect. 7.4.3).

In the stationary case the electric currents obey the equations:

∇ · jr = eQδ(r), ∇ · ji = −eQδ(r), ∇ · je = 0, (7.151)

while the electric field obeys the Maxwell equation

∇ ·E = 4πe(N + ni − ne). (7.152)

The Fourier transform of Eqs. (7.149)–(7.152) yields the set of algebraic
equations for the Fourier amplitudes:

eκαβkαkβNk + σrαβkαkβϕk = eQ, (7.153a)

eDi
αβkαkβn

i
k + σiαβkαkβϕk = −eQ, (7.153b)

eDe
αβkαkβn

e
k + σeαβkαkβϕk = 0, (7.153c)

k2ϕk − 4πe(Nk + nik − nek) = 0. (7.153d)

Here we use equation for the scalar potential ϕ instead of electric field.
The last two equations along with Eqs. (7.24) and (7.25) give rise to

Nk + nik − nek = (krD)
2nek. (7.154)

To estimate the rhs on the order of magnitude we note that the diffusive
particle transport can only take place on the scales exceeding the maximum
transport mfp of the plasma components, which is the longitudinal transport
mfp of the accelerated ions Λr‖. Thus, for typical wave number values, we

have k < 1/Λr‖, and, accordingly, a strong inequality

(krD)
2 �

(
rD
Λr‖

)2

� 1 (7.155)

takes place (e.g., in the warm diffuse galactic phase rD/Λ
r
‖ ≈ 10−10 for the

cosmic rays). The rhs of Eq. (7.154) is zero to this accuracy, i.e., the local
electroneutrality holds here with high precision:

Nk + nik − nek = 0. (7.156)
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However, this is only true for the stationary conditions; nonstationarity can
break the local electroneutrality down (see below).

Let us consider a weakly ionized plasma where relation (7.24) between
the kinetic coefficients takes place. Making manipulations to the accuracy of
rD/RD � 1, we obtain the number densities

Nk =
Q

κ̃
, nik = −Q

2

(
1

D̃i
+

1

κ̃

)
, nek = −Q

2

(
1

D̃i
− 1

κ̃

)
, (7.157)

where we introduce the notations κ̃ = καβkαkβ , D̃i = Di
αβkαkβ .

Thus, the nonthermal particles (with K 
 T ) diffuse with their own
diffusion tensor καβ ; the self-consistent electric field effect on their motion is
negligible. The background ions and electrons, however, diffuse with accord-
ingly modified diffusion coefficients (7.157); remarkably, the effective electron
diffusion coefficient is specified by the diffusion coefficients of the accelerated
and background ions. If κ̃
 D̃i then

D̃i
ef ≈ D̃e

ef ≈ 2D̃i. (7.158)

Consider now a highly ionized plasma and apply Eq. (7.25). The calcula-
tions are similar to the previous case; however, in addition to Eq. (7.150) there
appears one more small parameter (me/mi)

1/2. Discarding the correspond-
ing small terms yields the effective diffusion coefficients of the background
particles

D̃i
ef ≈ D̃i, D̃e

ef =
D̃iκ̃

κ̃− D̃i
≈ D̃i, (7.159)

where the last approximate equality is valid when κ̃
 D̃i.
Substitution of Eq. (7.157) into the Fourier transform of Eq. (7.149) yields

the corresponding partial electric current densities:

j rkα = − ieκαβkβ
κ̃

Q, j ikα =
ieDi

αβkβ

D̃i
Q, j ekα = 0. (7.160)

The total current stimulated by the fast particles

jtotkα = −ieQ
(
καβ
κ̃

− Di
αβ

D̃i

)
kβ ; (7.161)

it consists of the contributions from the fast and background ions, which
enter with the opposite signs.

Electric current described by Eq. (7.161) is not equivalent to zero. Broadly
speaking, the possibility of a nonzero net current driven by high-energy par-
ticles propagating out from a localized “point” source in a thermal plasma
seems natural. However, in many cases, no net current appears because the
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partial current driven by the fast particles can be entirely compensated by
a return current driven by the background particles. In particular, this hap-
pens in 1D model of electron return currents considered in Sect. 7.1.3. There-
fore, having a net electric current is not guaranteed, while it requires some
additional conditions to be fulfilled. For example, Eq. (7.161) results in a
zero net current in case of isotropic plasmas with isotropic diffusion tensors,
καβ = κδαβ and Di

αβ = Diδαβ . This is fully consistent with a naive ex-
pectation based on the system symmetry: the current can only be directed
isotropically along a radius drawn from the point source. Thus, its nonzero
value would imply a sustained nonzero charge flow from the source, which is
impossible in the steady state. In an anisotropic case, however, this consid-
eration does not work since the current components are different in different
directions, which is controlled by various components of the conductivity
tensor.

If the tensor structures of both diffusion tensors of fast and background
particles, καβ and Di

αβ , are the same (i.e., they are proportional to each
other), they fully compensate each other in Eq. (7.161). To avoid this com-
pensation, the tensor structures must differ substantially from each other.
For example, if the diffusion tensor components are defined by Eq. (7.84),
having such a different tensor structure requires that the Larmor radius R0

and the mfp Λ have different energy dependence; thus the thermal and fast
particles will have different transverse to parallel diffusion coefficient ratios.
On the other hand, for a strong turbulent diffusion, which is almost isotropic,
one cannot expect a noticeable net current as in the truly isotropic case. In
real objects, e.g., in the case of galactic CRs, different components of the CR
diffusion tensor are different from each other, although they have the same or-
der of magnitude (weakly anisotropic diffusion). Diffusion of the background
particles having much smaller Larmor radii is severely different from the CR
diffusion so it is unlikely that the diffusion tensors καβ and Di

αβ have ex-
actly same tensor structure, which is needed to fully compensate these two
contributions to Eq. (7.161). However, to confidently conclude that there is a
nonzero net current in the system under study, one has to explicitly consider
the entire set of the Maxwell equations including equations for the magnetic
field (cf. Sect. 7.1.3) not included in the above simplified model of the am-
bipolar diffusion.

We can, nevertheless, calculate the electric current arising within the
considered simplified model in the explicit coordinate form. Adopt the net
current to be a sum of two terms jtotkα = j rkα+ j ikα related to the two terms in
the rhs of Eq. (7.161). We write the first term in the form κ̃j rkα = −ieQκαβkβ
and apply the inverse Fourier transform to obtain the following differential
equation:

∇μκμν∇νj
r
α (r) = −eQκαβ∇βδ(r), (7.162)
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whose solution can be expressed via the Green function Gr of stationary
diffusion in an anisotropic fluid:

∇μκμν∇νG
r(r − r′) = −δ(r − r′). (7.163)

This Green function has a form equivalent to electrostatic potential of a
unit-point charge in an anisotropic dielectric and has the form

Gr(r − r′) =
1

4π
√
κ⊥[(r⊥ − r′

⊥)2κ‖ + (z − z′)2κ⊥]1/2
. (7.164)

The current density is straightforwardly described via this Green function as

j rα (r) = −eQκαβ
∫
Gr(r − r′)∇′

βδ(r
′)d 3r′ = −eQκαβ∇βG

r(r). (7.165)

The second term can be transformed in a similar way. Thus, the net current
receives the form

jα(r) = −eQ
4π

(
Di
αβ√
Di

⊥
∇β

1

Ri
− καβ√

κ⊥
∇β

1

Rr

)
, where

Ri =
√
r2⊥D

i
‖ + z2Di

⊥, R
r =

√
r2⊥κ‖ + z2κ⊥. (7.166)

This current produces a large-scale perturbation of the fluid; it occupies a
volume with a linear scale much exceeding the mfp of CRs (and, apparently,
thermal particle mfp). This current decreases reciprocally to the R2 at large
distance.

The electric current, if present, produces additional large-scale magnetic
field b that is easy to calculate from the Maxwell equations written in the
form

Δb =
4π

c
∇× j(r), ∇ · b = 0. (7.167)

Solution of the Poison equation for the magnetic field can be written in the
integral form:

b(r) =
1

c

∫
r′ × j(r′)
|r − r′|3 dr′. (7.168)

Remember, that since no equation for the magnetic field was self-consistently
included in the model, the derivation performed could only be valid for a rea-
sonably small perturbation of the fluid. In particular, fast particle pressure
must be weak and produce no noticeable fluid motion, while the generated
magnetic field remain weak compared with the original magnetic field. Oth-
erwise, the problem becomes highly nonlinear, so the fluid motion and the
varying magnetic field effects on the diffusion coefficients become essential.
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7.6.2 Ambipolar Diffusion in Impulsive Regime

In the astrophysics there are many impulsive, prompt processes when the
energetic particles are generated over a relatively short time scale, e.g., su-
pernova explosions, gamma-ray bursts, and solar and stellar flares, rather
than stationary processes. In this case the electric current depends on time,
so it has to be determined from a system of nonstationary equations:

∂eN

∂t
+∇·j r = eQδ(r)δ(t−t0),

∂eni

∂t
+∇·j i = −eQδ(r)δ(t−t0), −∂ene

∂t
+∇·j e = 0.

(7.169)

Here, in contrast to the previous case, Q is the total number (in contrast to
the acceleration rate) of the accelerated particles produced by a point source
at the initial time frame t = t0. The current densities obey Eq. (7.149); the
electric field is specified by Poisson equation (7.152).

Let us solve Eqs. (7.169) and (7.152) by the Laplace transformation

n(s) =

∫ ∞

0

n(t)e−stdt (7.170)

over the time and Fourier transformation over the space. Poisson equation
supplemented by the electron diffusion equation yields the exact relationships:

ϕk =
4πe

k2
(Nk+n

i
k−nek), Nk+n

i
k−nek = (krD)

2

(
1 +

s

D̃e

)
nek. (7.171)

Two remaining equations of system (7.169), with the use of Eqs. (7.171),
(7.95), and (7.24), for definiteness, we consider a weakly ionized plasma here;
the ambipolar diffusion in the fully ionized plasma can be studied in a similar
way (see, e.g., Problem 7.8), receive the form

(s+ κ̃)Nk +
r2D
R2

D

(
1 +

s

D̃e

)
κ̃ne

k = Qe−st0 , (s+ κ̃)ni
k +

(
1 +

s

D̃e

)
κ̃ne

k = −Qe−st0 .

(7.172)

Equations (7.171) and (7.172) contain small parameters

r2D
R2
D

� 1 and (krD)
2 �

(
rD
Λr‖

)2

� 1. (7.173)

In addition, the diffusion coefficients of accelerated particles often exceed the
diffusion coefficients of the background particles considerably. And on top of
this, the diffusion coefficients of the background electrons and ions are highly
different from each other. Eventually, in most of the k-space, the following
inequalities hold:

κ̃
 D̃e 
 D̃i. (7.174)
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The first of them is due to high energy of the accelerated particles, while
the second one is due to low electron-to-ion mass ratio and valid every-
where except a minor part of the k-space, where (k‖/k⊥)2 � Di

⊥/D
e
‖ ≈

(me/mi)
1/2(ωBiτi)

−2, with the subscripts ‖ and ⊥ related to the regular
large-scale field B0 direction and ωBiτi 
 1 the ion magnetization parameter.
Taking into account inequalities (7.173) and (7.174) and apparent condition
s � κ̃ of the diffusion equation applicability we may obtain an approximate
solution of the analyzed equation. Skipping any detailed analysis we point
out some important properties of the nonstationary ambipolar diffusion.

High-energy particles diffuse with their own diffusion tensor καβ and cre-
ate a pulse of electric current, which can be expressed via the corresponding
diffusion Green function:

j rα (r, t) = eQκαβ∇βG
r(r, t− t0), (7.175)

where

Gr(r, t) =
Θ(t)

κ⊥κ
1/2
‖ (4πt)3/2

exp

[
− r2⊥
4κ⊥t

− z2

4κ‖t

]
. (7.176)

The fast particle pressure has the form

P (r, t) =
1

3
pv QGr(r, t− t0), (7.177)

where the overline denotes averaging over the fast particle energy spectrum.
At and around the acceleration site it can be rather large and even dominate
pressures of the background plasma and the magnetic field.

The Laplace and Fourier transform of the electric current jphkα = jekα+j
i
kα

of the background particles assuming the perfect electroneutrality receives the
form

jphkα(s) = −ieDi
αβkβ

[
1

s+ κ̃
− 2

s+ 2D̃i

]
Qe−st0

+ieQ
∂

∂t0

(De
αβ +Di

αβ)kβ

D̃e

[
1

s+ κ̃
− 1

s+ 2D̃i

]
Qe−st0 , (7.178)

which has two poles over variable s. This implies two “waves” of the
background particle current: the first of them is produced by the back-
ground particle response to the fast particle perturbation, while the second
one describes the joint ambipolar diffusion of background ions and electrons
with the diffusion coefficient roughly equal to the doubled ion diffusion
coefficient.

To compute this current in the coordinate space it is convenient to
start with inverse Laplace transformation, which turns the singular terms in
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Eq. (7.178) into exponent factors. The inverse Fourier transform is performed
similarly to that in the previous section. Eventually, the current density in-
duced by an impulsive source is expressed via integrals over the real 3D space
from the Green functions of the diffusion equations and their derivatives.

Thus, we can outline the following evolutionary pattern. Initially, when
at a given location a fast particle current arises, a compensating (return) cur-
rent formed by the background particles starts to grow. A noticeable current
compensation occurs, however, only in a time of the order of r2/8Di needed
for the background particles to establish the return current (this time is rel-
atively long as the diffusion coefficients of fast and background particles can
differ by many orders of magnitude). However, the full compensation of the
direct and return currents in a stationary regime of the considered here model
only happens if the diffusion coefficients have the same tensor structure (i.e.,
if they are proportional to each other), which implies that considering the
entire set of Maxwell equations (rather than only the Poison equation for the
electric field) is needed to correctly solve the problem of establishing the net
electric current in an anisotropic turbulent fluid.

Problems

7.1 Using the naive concept of the random walk of the test particles with
a mfp Λ and velocity v, obtain Eqs. (7.11) and (7.12) for the diffusive flux
of the admixture induced by weak inhomogeneity of its number density in
nonmoving medium.

7.2 Adopt that a fluid participates in both turbulent motion with velocity
u, 〈u〉 = 0 and regular motion with a velocity U that changes only weakly
over the main scale L of the turbulence. Obtain equation for the number
density N of the admixture and express the effective diffusion coefficient via
the turbulent velocity correlator using the perturbation theory. Accept that
the fluid is incompressible and uniform.

7.3 Adopt the fast particles to be uniformly distributed in a volume with
a uniform magnetic field B0 and random magnetic inhomogeneities. Their
angular distribution at t = 0 is known: F (θ, φ, 0) = F0(θ, φ), where θ, φ are
the polar and azimuth angles in the spherical system with the polar axes
along the uniform magnetic field. Use Eq. (7.79) to calculate the angular
distribution for t > 0. Determine the isotropization time τs defined as the
time needed for the anisotropic part of the distribution to e fold decrease.

7.4 Find the solution of anisotropic diffusion equation (7.87) for a prompt
point-like source of the particles Q(r, t) = δ(r)δ(t). Calculate the mean sizes
of the particle cloud in the corresponding three directions for t > 0.
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7.5 � Determine the Green function of diffusion equation (7.88) with the
second derivative over time for the whole (infinite) space. Discuss the physical
meaning of the solution versus the standard diffusion equation having only
the first time derivative.

7.6 Adopt a fluid with magnetic inhomogeneities to move with a velocity u.
The fast particles are isotropically distributed F0 = N(p0)/4π in the fluid
reference frame. Calculate the differential flux density of the fast particles
with a given p in the laboratory system.

7.7 Magnetized particles propagate along the magnetic field lines from a
point stationary source toward the field decrease being scattered by magnetic
inhomogeneities. Use kinetic equation (7.114) to calculate their distribution
as a function of the pitch-angle ϑ and distance s along the field line. The func-
tions B(s) and Λ(s) are known. Use small-angle scattering approximation.
Compare the results with scattering in a uniform medium.

7.8 A point-like stationary source of the particles is located in a fully ionized
plasma and generate Q accelerated ions per second extracting them from
the background plasma. The diffusion coefficients of three involved plasma
components De

αβ , D
i
αβ , and καβ are known. Calculate the electric current

distribution j(r) in the anisotropic plasma. Adopt that the anisotropy is set
up by a uniform magnetic field B0. Use Eq. (7.25) neglecting small terms of
the order of (rD/RD)

2 � 1 and (me/mi)
1/2 � 1.

Answers and Solutions

7.1 Within the macroscopic theory the minimal scale is Λ and the minimal
time is Λ/v. The theory can only be applied for the scales and time exceeding
the minimal ones. Consider a spatial location r: at a time t there arrive
the particles that have experienced the previous scattering at the location
r−Λv/v at t−Λ/v. These particles form the flux density iv(r, t) = vn(r−
Λv/v, t−Λ/t) along the vector v. The total flux density of the particles with
a given absolute velocity value v is given by averaging the flux density over
v direction:

i(r, t) =

∫
iv(r, t)

dΩv
4π

≈ −κ∇n(r, t), κ =
1

3
vΛ.

7.2
∂N

∂t
+U · ∇N = χαβ

∂2N

∂xα, xβ
,

where

χαβ = κδαβ +

∫
d 3r

∫ ∞

0

dτG(r, τ)Kαβ(r, τ),

G is the diffusion Green function, Kαβ(r, τ) is the turbulent velocity corre-
lation tensor, and κ is the “molecular” diffusion coefficient.
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7.3

F (θ, φ, t) =
∑
l,m

C0
lmYlm(θ, ϕ) exp

{
imΩt− v

2Λ
l(l + 1)t

}
,

C0
lm =

∫
F0(θ, φ)Y

∗
lm(θ, φ)dΩp,

Ω =
ec

E B0, τs =
Λ

v
.

This τs value suggests that Λ plays a role of the isotropization length. Higher-
angular harmonics isotropize faster.

7.4

N(r, t) =
1

(4πt)3/2κ⊥
√
κ‖

exp

(
−x

2 + y2

4κ⊥t
− z2

4κ‖t

)
.x2 = y2 = 4κ⊥t,

z2 = 4κ‖t.

7.5 The wanted Green function obeys the equation

Λ

v

∂2G

∂t2
+
∂G

∂t
− κΔG = δ(r − r′)δ(t− t′). (1)

For clearer interpretation of this equation and its solution let us rewrite
Eq. (1) in a different form using the notations

u =
v√
3
, � =

1

κ
=

3

vΛ
, u2� =

v

Λ
, R = r − r′, τ = t− t′ :

(2)

ΔRG− 1

u2
∂2G

∂τ2
− �

∂G

∂τ
= −�δ(R)δ(τ). (3)

This equation has a form of a wave equation with a damping: the first two
terms in the lhs contain D’Alembertian operator, while the third one, contain-
ing the first time derivative, describes a dissipation process; u is the velocity
of wave perturbations.

Equation (3) can be solved using a method already applied to simpler
Eq. (2.30) in Sect. 2.3.1. An only complication arises in passing by a cut in
the complex plane when performing the inverse Fourier transform. The result
is the following Green function:

G(R, τ ) =
u�

4πR
e−u2	τ/2

{
δ(uτ−R)+

u�R

2
√
R2−u2τ 2

J1

[
1

2
�u

√
R2−u2τ 2

]
Θ(uτ−R)

}
,

(4)

containing the Bessel function J1 [for the details, see Morse and Feshbach
(1953) Chap. 7].
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The first term containing the δ-function is similar to the Green function
of the standard wave equation: it describes propagation of a wave with a
velocity u out from a point source. Its amplitude declines due to both geome-
try as 1/R and dissipation in the fluid exp(−u2�τ/2). The second term (with
the Bessel function) describes purely dissipative effect, in which, however, a
step function describing a finite propagation velocity is present. Therefore,
this Green function ensures the finite propagation speed of the particles,
while solutions of the standard diffusion equations (see above) are nonzero
arbitrarily far away from the source for t > 0 implying a particle popula-
tion moving with arbitrarily large velocity in contradiction with the special
relativity theory.

To make a transition to the standard diffusion we consider a regime when
uτ 
 R and �u2τ 
 1, i.e., vτ 
 Λ. Then, using well-known properties of
the Bessel functions and their asymptotes, we find the Green function of the
diffusion equation

G(R, τ) =
1

(4πκτ)3/2
exp

(
− R2

4κτ

)
. (5)

Apparently, this transport regime becomes established over the time needed
for the particles to travel a distance of many mfp.

7.6 Transition from a moving system to the laboratory system requires
relativistic kinematics momentum transformation:

p0 =
p− uE/c2√
1− u2/c2

≈ p− uE
c2
. (1)

In the laboratory system the distribution function has the form

F (p) =
1

4π
N(|p− uE/c2|) ≈ 1

4π

[
N(p)− Eu · p

c2p

∂N

∂p

]
. (2)

The electric current density is

J =
1

4π

∫
vF (p)dΩp = −p

3

∂N

∂p
u. (3)

7.7 The small-angle approximation implies sinϑ ≈ ϑ, cosϑ ≈ 1; thus, the
transport equation with a source in a stationary case receives the form

∂f

∂s
+

1

2B

∂B

∂s
ϑ
∂f

∂ϑ
=

1

2Λ(s)

1

ϑ

∂

∂ϑ
ϑ
∂f

∂ϑ
+

Q0

2πϑ
δ(ϑ)δ(s − s0). (1)

Here the point source enters the rhs; Q0 is the particle generation rate by the
source. The distribution function is

f(s, ϑ) =
Q0B(s)

πB(s0)ϑ2(s)
exp

(
− ϑ2

ϑ2(s)

)
, ϑ2(s) = 2

∫ s

s0

B(s)dz

B(z)Λ(z)
. (2)
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If the values B and Λ do not depend on s (uniform case), then the mean
square of the scattering angle increases proportionally to the particle path
s− s0. However, in the nonuniform case, there are particles focusing due to
the regular field in addition to the particle isotropization due to the random
scattering. Consider, as an example, the magnetic field nonuniformity in the
form B ∝ s−2, roughly typical for the solar wind region bounded by the
Earth orbit. If the random field changes with the same law then Λ(s) ≈
Λ0(s/s0)

2(2−ν) [here Eq. (7.106) for the transport mfp Λ ∝ R2−ν
0 has been

used]. For this case, Eq. (2) yields ϑ2(s) ∝ s2ν−3 for s
 s0. In particular, for
the turbulent spectrum with ν = 3/2, we obtain 2ν − 3 = 0, i.e., the particle
beam propagates with a constant angular width: the angular scattering by
the turbulence is compensated by the focusing in the declining regular field.
Curiously, such cases of the “coherent” propagation of the solar protons have
been observed in the interplanetary space.

7.8 The Fourier transform of the electric current is

jkα = ieQ

(
Di
αβ

D̃i
− καβ

κ̃

)
kβ .

Accordingly, in the real space,

j(r) =
eQ

4π

⎧⎨
⎩ez

∂

∂z

⎡
⎣ Di

‖√
Di

⊥(D
i
⊥z2 +Di

‖r
2
⊥)

− κ‖√
κ⊥(κ⊥z2 + κ‖r2⊥)

⎤
⎦

+∇⊥

⎡
⎣ Di

⊥√
Di

⊥(D
i
⊥z2 +Di

‖r
2
⊥)

− κ⊥√
κ⊥(κ⊥z2 + κ‖r2⊥)

⎤
⎦

+ ∇×
⎡
⎣ gi√

Di
⊥(D

i
⊥z2 +Di

‖r
2
⊥)

− gr√
κ⊥(κ⊥z2 + κ‖r2⊥)

⎤
⎦
⎫⎬
⎭ ,

where gi = Di
Hez, g

r = κHez , and the axesOz is along the uniform magnetic
field B0.



Chapter 8

Dynamo Mechanism of Large-Scale
Magnetic Field Generation

8.1 Astrophysical Magnetic Fields

Magnetic field is an important constituent of almost any astrophysical object;
magnetic field values typical for some galactic astrophysical objects are listed
in Table 1.1. The characteristic spatial scales of these fields can be of the same
order of or ever greater than the size of the object. These large-scale fields
often coexist with small-scale fields varying on scales much shorter than the
object size. The small-scale field is not necessarily small compared with the
large-scale one. It is important to realize that the effect produced by the
magnetic fields on the source dynamics and evolution depends critically on
the distribution of the magnetic energy over spatial and temporal scales, not
on the magnetic field energy density alone. Therefore, study of the magnetic
field over all available scales is needed to deeply understand astrophysical
phenomena.

Remind that the magnetic fields vary from the smallest values about
10−9G in extragalactic medium or at the Moon-like planetary satellites up
to the largest values 1013–1015G in neutron stars; normal stars poses smaller
magnetic fields but the stellar magnetic fields often exceed the mean magnetic
field of the Sun (∼1G). In particular, young stars with well-developed con-
vective zones display magnetic fields of the order of 2 kG, some “magnetic”
Ap stars have the fields up to tens kG.

Magnetic fields are detected in most of the galaxies. An estimate of the
mean galactic magnetic field using synchrotron radio emission (see Chap. 9)
from 74 spiral galaxies yields 〈Btot〉 = 9 μG, scattered between 4 and 15μG,
which agrees with values determined for the Galaxy using different methods
(including the Faraday rotation; see Chap. 10). Considerable magnetic fields
are reliably detected in Galaxy clusters with scales of a few Mpc and masses
of 1014–1015M�. The detected fields are of the order of a few μG at the cluster
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edges and up to a few tens μG at the central regions. The typical inhomogene-
ity scale of the magnetic field in the clusters is about 1 pc. A detailed review
of the magnetic fields in various astrophysical objects is done by (Vallée 2003,
2004).

Origin and evolution of the magnetic fields are, therefore, fundamental as-
trophysical questions. The simplest hypothesis, that the currently observed
fields are leftovers of a primary magnetic field of the Universe, only shifts
the same question back to early stages of the Universe evolution. More im-
portantly, this hypothesis is not supported by physical considerations: the
magnetic fields are subject to Joule dissipation, so they would vanish with-
out sources capable of producing magnetic fields and compensating the Joule
dissipation. In addition, turbulent motions present in many cases enhance
dissipation of the large-scale magnetic fields, as was shown in Chap. 6.

As a vivid example, consider here the turbulent dissipation of the mag-
netic field in the disk of our Galaxy. Observations suggest that the magnetic
field belongs to the disk plane and has a value of a few μG. This “magnetic”
disk has a diameter about 30 kpc ≈ 1023 cm and semithickness h around
0.4–0.5kpc ≈ (1.2 − 1.5) × 1021 cm. In the disk there is turbulence with
the main scale of l ≈ 100 pc and the characteristic velocity (at this scale)
of u ≈ 10 km/s ≈ 106 cm/s. Accordingly, estimate (6.149) yields for the
turbulent magnetic diffusivity νt ≈ 1026 cm2/s. In addition, there is a col-
lisional magnetic diffusivity νm provided mainly by collisions of electrons
and ions with neutral atoms, which was calculated in Chap. 1, Sect. 1.3.7:
νm ≈ (0.3 − 1) × 1021 cm2/s. Thus, here the turbulent magnetic diffusiv-
ity exceeds the collisional magnetic diffusivity by 5–6 orders of magnitude.
The magnetic field diffusion time transverse to the disk is evaluated with
Eq. (6.147) by equating the exponent index to one:

Δt ≈ h2

4νt
≈ 5× 1015 s ≈ 5× 108 years.

This time is approximately one order of magnitude shorter than the Galaxy
lifetime, which proves the necessity of a magnetic field source capable of
supporting/amplifying the magnetic field.

Compact sources, e.g., stars or SNRs, have smaller sizes, so their magnetic
fields would decay due to the turbulent magnetic diffusivity much faster. An
extreme power of the magnetic field generation mechanisms is likely needed in
the neutron stars. Right after the collapse of the parent star exploding as su-
pernova, a stage of hydrodynamic instability occurs in the compact remnant.
Numerical simulations suggest that this stage lasts about one minute with
the typical fluid velocity up to subliminal values of 109 cm/s; the full rotation
of the fluid in a single convective cell takes around 10−3–10−4 s. Depending
on the star rotation rate, this strong convection results in either dissipation
of the primary magnetic field or its amplification by many orders of magni-
tude by the turbulent dynamo mechanism (see below) up to extremely high
observed values.
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8.2 Dynamo Mechanism and Antidynamo Theorems

MHD dynamo is currently believed to be the most universal way of the large-
scale magnetic field generation. The term “dynamo” means support and am-
plification of a primary field B0(r) by mechanical motions of ionized electro-
conducting gas or fluid. Initially, this idea was proposed by English scientist
Joseph Larmor in 1919 in the context of solar and terrestrial magnetic field
origin.

The currently available dynamo models require typically some initial
(seed) magnetic field. If present, this field can then be amplified by the con-
ducting fluid motions under certain conditions. Most of the models explore
a kinematic approximation, i.e., assuming a given velocity field of the fluid
neglecting any back effect of the generated magnetic field on the fluid mo-
tions. However, even this simplified problem is still very complicated. Let us
consider a number of simple cases clarifying the problem and its complexity.

Adopt that the fluid volume of interest (u(r) �= 0) is spatially bounded
and initial magnetic energy W0 =

∫
(B2/8π)dV is bounded as well. Then,

the dynamo problem requires solving a linear set of equations (2.16) with
variable coefficients:

∇·B = 0,
∂B

∂t
= ∇×[u×B]−∇×νm(∇×B), νm =

c2

4πσ(r)
. (8.1)

Here the velocity field u(r) �= 0 and the magnetic diffusivity νm(r) are fixed,
though can depend on the coordinates, which complicate the equation com-
pared with Eq. (2.16). The initial condition is B(r, t = 0) = B0(r), while the
boundary conditions require that the field is bounded everywhere and goes
at the infinity to zero as r−3 or faster:

B(r)|r→∞ � Cr−3 → 0. (8.2)

The dependence B ∼ r−3 at large r implies a nonzero magnetic dipole mo-
ment produced by electric currents in the original volume; otherwise, the field
decreases faster.

Let us derive now an equation for magnetic energy balance from Eq. (8.1).
Multiplying the induction equation by B/4π and applying simple manipula-
tions, we obtain

d

dt

∫
B2

8π
dV = −1

c

∫
u · [j ×B]dV −

∫
j2

σ
dV, (8.3)

where j = c∇×B/4π. Here, we have used condition (8.2) of fast magnetic
field decrease at large distance. In Eq. (8.3), the first term in the rhs describes
energy exchange between the field and the fluid interacting by the Ampère
law j ×B/c; this is a sign-alternating term. The second term describing the
Joule dissipation of the field is positively defined. Thus, without the first
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term, i.e., when u = 0, or when the integral goes to zero, the only remaining
process is the field dissipation; the vector B and any of its component go to
zero as t→ ∞.

Operation of a dynamo process implies that the fluid velocity field acts
so as to compensate the Joule loss and maintain the magnetic energy (of
the considered object) at some nonzero level over an arbitrarily long time
with, perhaps, some pulsations around the mean level. Within the kinematic
approximation, i.e., linear theory, the magnetic field can even grow infinitely;
however, in a reality, any linear growth will end at a saturation level due
to yet uncounted nonlinearity created by the dynamic effect of the growing
magnetic field on the velocity field. An oscillatory (cyclic) behavior of the
field is observed in stars and Sun; see below for more detail (Sects. 8.7.2 and
8.7.4).

Differential Rotation. However, an arbitrary large-scale plasma mo-
tion will not necessarily generate and support the magnetic field. Let us
address this question by considering a so-called differential rotation, which is
typical for many rotating objects including stars, accretion disks, and spiral
galaxies (e.g., our Galaxy). This type of plasma rotation takes place when
different plasma layers rotate with different angular velocities. In particular,
at the Sun, the equatorial region rotates faster (around 14◦ per day) than
the high-latitude zones (≈10◦ per day). Synodic (i.e., as viewed from the
Earth) rotation period of the solar equator is 26.24days, which corresponds
to sidereal (i.e., in the galactic frame) rotation period of 24.47days, while at a
latitude of 26◦ the so-called Carrington rotation is slower: a synodic rotation
period is 27.28days (the sidereal period is 25.38days). Rotation curves of the
spiral galaxies (i.e., dependencies u(r), where u is the linear rotation speed,
r is the distance to the galactic center) display a complicated shape, which of-
ten highly deviates from the direct proportionality typical for a “rigid-body”
rotation with a constant angular velocity Ω = const. The differential rotation
results in an increase of the distance between two plasma elements rotating
with different angular velocities. If they are linked by a magnetic field line,
it stretches, which means the field amplification; cf. Problem 6.5.

Now perform a quantitative consideration of this effect. Consider a
plasma involved in a stationary differential rotation with angular velocity
Ω = ezΩ(r, ϑ), where r and ϑ are the spherical coordinates. Adopt that ini-
tially the field belongs to the meridian planes: B = (B0r(r, ϑ), B0ϑ(r, ϑ), 0)
at t = 0 (a poloidal field); a dipole field is a simplest example of the
poloidal field. Let us first calculate the magnetic field at t > 0 neglecting the
dissipation, (νm → 0).

The field of the linear velocities u(r) in the plasma is described by a
vector function u(r) = eαrΩ(r, ϑ) sin ϑ. Induction equation (8.1) with νm →
0 gives the equation set for the field components

∂Br
∂t

= 0,
∂Bϑ
∂t

= 0,
∂Bα
∂t

= sinϑ

(
rBr(r, ϑ)

∂Ω

∂r
+Bϑ

∂Ω

∂ϑ

)
, (8.4)
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which is easily solved to yield

Bα(r, ϑ, t) = sinϑ

(
rB0r(r, ϑ)

∂Ω

∂r
+B0ϑ

∂Ω

∂ϑ

)
t, Bϑ = B0ϑ, Br = B0r.

(8.5)
This solution shows that the differential rotation produces an azimuthal com-
ponent of the magnetic field (a toroidal field) from the original poloidal field.
This process, however, being proportional to the time, is relatively slow and
cannot last arbitrarily long. Indeed, the poloidal field, and accordingly the
toroidal field, will decay due to a finite magnetic diffusivity (in fact, always
νm �= 0). This decay occurs with an exponential law, which overcomes the
linear growth law at a long run; thus, eventually the field will fully disappear
from the region under study. Before that, however, it does experience a sig-
nificant evolution; solar active regions (ARs) (see, e.g., Fig. 6.3) offer a vivid
example of such long-living changing magnetic structures, which eventually
decay and disappear from the solar disk typically in a month or a few months.

Let us estimate the time interval Δt after which the magnetic diffusivity
comes into play. Consider the field at some radius r0; on the order of mag-
nitude we have Bα(t) ≈ B0Ω0t, where B0 is the seed poloidal field and Ω0

is an appropriate mean value of the angular velocity (for this estimate, we
adopted sinϑ ≈ 1 and rdΩ/dr ≈ Ω0), while estimate of the dissipative term
is (�B)α ≈ Bα(t)/r

2
0 . Compare these two terms with each other in the rhs

of induction Eq. (8.1):

∂Bα(t)

∂t
≈ B0Ω0 + νm

Bα
r20
.

They have the same order of magnitude at t = Δt ≈ r20/νm. By this time
the toroidal field reaches Bα ≈ B0Rm, where Rm = r20Ω0/νm is the magnetic
Reynolds number. Then, the field dissipates at times larger than Δt.

Now, we apply these equations to estimate the lifetime of ARs in the solar
photosphere. Using the solar radius r0 = R� ≈ 6.96 · 1010 cm and collisional
magnetic diffusivity, Eq. (1.150), νm ≈ 107 cm2/s, we find Δt ∼ R2

�/νm ∼
5 · 1014 s ≈ 1.7 · 107 years in a huge contradiction with the observed AR
lifetime. To remedy this inconsistency we note that the magnetic Reynolds
number in the solar photosphere is large, Rm = R2

�Ω�/νm ∼ 2 · 108, where
Ω� ≈ 4 · 10−7 s, which implies a dominant role of the turbulent magnetic
diffusivity (Sect. 6.11) over the collisioinal one. Taking the characteristic AR
size l ∼ 1010 cm and identifying the proton thermal speed with the turbulent
velocity u ∼ 105 cm/s we use Eq. (6.149) to estimate the turbulent magnetic
diffusivity as νt ∼ ul/3 ∼ 3 ·1014 cm2/s. Replacing the collisional to turbulent
diffusivity in the above estimate, we find Δt ∼ R2

�/νt ∼ 1.5 · 107 s ≈ 0.5 year
in full qualitative agreement with observations, which confirms once again
the primary role the turbulence plays in the astrophysics.

Elsasser Antidynamo Theorem. We now confirm these qualitative
considerations and estimates by more solid quantitative analysis. We adopt
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the vector velocity field to have the following form in the spherical coordinates
u = ∇ × (erψ(r)), where ψ(r) is an arbitrary scalar function, while the
electroconductivity σ(r) depends on the radial distance only. Let us prove
that the magnetic field disappears over a finite time regardless initial state
of the field.

Write u = ∇ψ × er and project induction Eq. (8.1) on the axes er. We
obtain for the dissipative term er· (∇× [u×B]) = −(u·∇)Br :

− er· (∇× νm[∇×B]) = νm

(
�Br + 2

r

∂Br
∂r

+
2

r2
Br

)
. (8.6)

We have taken into account that ∇νm is directed along er and ∇·B = 0.
Thus, equation for Br receives the form

∂Br
∂t

+ (u·∇)Br = νm

(
�Br + 2

r

∂Br
∂r

+
2

r2
Br

)
. (8.7)

Let us multiply Eq. (8.7) by Br/4π and integrate both parts of the equa-
tion over the whole space. Then, transforming the term

∫
Br(u · ∇)BrdV

according to Ostrogradsky–Gauss theorem and using incompressibility condi-
tion ∇·u=0, we obtain zero. The energy balance equation for Br-component,

d

dt

∫
B2
r

8π
dV =

1

4π

∫
νmBr

(
�Br + 2

r

∂Br
∂r

+
2

r2
Br

)
dV, (8.8)

does not contain the fluid velocity u and so describes a purely dissipative
process, dissipation of Br-component due to the magnetic diffusivity, i.e.,
Br → 0 at t→ ∞ (cf. discussion after Eq. (8.3)). Therefore, evolution of the
field components transverse to r can be studied adopting Br = 0.

The transverse components of the field are convenient to consider using
the vector potential B(r, t) = ∇×A(r, t), which obeys the equation

∂A

∂t
= u× [∇×A]− νm∇× [∇×A]. (8.9)

To make sure that this equation is equivalent to Eq. (8.1) one can apply
operator ∇× to it. It is convenient to adopt the following form of the vec-
tor potential A(r, t) = erA(r, t) that explicitly ensures vanishing Br. Here
A(r, t) is an arbitrary differentiable function; equation for this scalar function
A(r, t) receives the form:

∂A

∂t
+ (u·∇)A = νm

(
�A− 2

r2
A− ∂

∂r

1

r2
∂

∂r
r2A

)
. (8.10)

Let us multiply both sides of the equality by A/νm; then integration over the
entire space yields

d

dt

∫
A2

νm
dV = −2

∫ (
∇A− er

∂A

∂r

)2

dV ≤ 0. (8.11)
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This condition ensures A = const everywhere in space for t → ∞, because
the integral

∫
(A2/νm)dV ≥ 0 cannot become negative; thus, the derivatives

over time and coordinates must vanish, which means evanescent transverse
magnetic field.

This result envisions only one example of a large number of the so-called
“antidynamo theorems,” which can be found in a number of books, e.g.,
Moffatt (1978) and Vainshtein (1983). Overall, these theorems demonstrate
that too symmetric (e.g., two-dimensional) fluid motion cannot support the
magnetic field for a long time; the first of these theorems was proved by
Cowling (1957). See also Zeldovich’s antidynamo theorem in Problem 8.1.

Nevertheless, no antidynamo theorem proves absence of the dynamo ef-
fect in principle. In fact, each such a theorem is only valid within an assump-
tion of some specific symmetry of the velocity or magnetic field. There is
no general theorem formulating a set of necessary and sufficient conditions
excluding the magnetic field amplification; it is unclear if they can be formu-
lated in a general form. On the contrary, there are many models of 3D fluid
motion, which do give rise to a magnetic field amplification.

8.3 Examples of Laminar Dynamo

Efficient generation of the magnetic field, as established, requires an asym-
metric 3D motion of the conducing fluid or gas. A historically first labora-
tory model of that kind was proposed by Herzenberg (1958). He proposed a
stationary fluid velocity field u(r) in a spherical volume capable of compen-
sating damping of initial stationary magnetic field B0(r) and producing a
nonzero dipole moment outside the sphere. The velocity field was created by
two spherical rotors embedded in a conducting fluid inside the large sphere;
the fluid was assumed immobile. The angular velocities of the rotors were
adopted constant and generally different by both magnitude and direction;
the rotor radii were small compared with the distance between their centers,
while the distance small compared with the sphere radius. The toroidal field
produced by each rotor played a role of a seed poloidal field for the other
rotor, which, thus, mutually helped each other in amplifying their fields due
to rotations.

The Herzenberg model is particularly remarkable as it received direct
qualitative experimental confirmation in the laboratory experiments of Lowes
and Wilkinson (1963, 1968). Their device was composed of a large cylindrical
body inside which two cylindrical rotors made from the same metal rotated.
The electric lubricator between the main body and the rotors was provided
by a narrow layer of liquid mercury (Fig. 8.1). At some appropriate rotor
orientation and reasonably high rotation velocity of 400 cycles/min (which
provided the magnetic Reynolds number of Rm ≈ 200) the dynamo effect
appeared: the magnetic field measured outside the main cylinder went up.
The electric currents in the cylinder kept increasing up to the point when
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Figure 8.1: Rotor dynamo of Lowes and Wilkinson (Moffatt 1978).

the breaking angular momentum produced by the Ampère force acting on
the rotors turned to be strong enough to slow the rotors’ rotation down to
subcritical values. Later the Herzenberg theoretical model was generalized
to the case of n spheres; other models were proposed, e.g., Gailitis model,
where the magnetic field is amplified by a moving pair of vortex rings; for
more examples see Moffatt (1978) (Chap. 6), and Gailitis et al. (2002). The
field propagated from one rotor to the other due to the field diffusion, which
is a relatively slow process; thus, this kind of dynamo is relatively slow.

In contrast, there are also models of fast dynamo, e.g., stretch-twist-fold-
merge dynamo proposed by Yakov Zeldovich (see, e.g., Vainshtein et al. 1980).
Consider a bundle of closed lines of magnetic force frozen into a conducting
fluid and so composing a ring with a finite thickness (Fig. 8.2a). Let the fluid
motion stretch this ring to an ellipse (Fig. 8.2b) with twice smaller bundle
cross section; then, given the magnetic flux conservation, the magnetic field
B is twice enhanced at the expense of the fluid velocity energy that had pro-
duced this ring deformation. The next stage of this process is transformation
of the ellipse into “Zeldovich’s eight” (Fig. 8.2c), i.e., its twist. To do so, the
contour must leave the original plane, i.e., the process must necessarily be
3D. The last step is to fold the eight and merge the two rings into one ring
with original area while twice enhanced magnetic field (Fig. 8.2d).

Note that although initial stages of this fast dynamo can occur within
the field freezing-in, the final merge requires to remove the unwanted poloidal
field and thus requires a dissipative diffusion process. Repetition of this
process n times results in 2n folding field amplification, i.e., the field grows
exponentially, B(t) = B0e

t ln 2/τ , where τ is one cycle time.
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a b
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Figure 8.2: Zeldovich’s “eight.” Magnetic field strengthening at 3D movement of
medium.

Apparently, this is a fast dynamo; its speed is defined by the fluid velocity.
It is important to realize that even here the entire cycle must include a
dissipative process of magnetic force line reconnection; see Sect. 2.3.2, to allow
overall field enhancement. This enhancement, however, cannot last infinitely
long; a finite free energy stored in the fluid velocity field will eventually
saturate it; the fluid resistance to this process will increase with each cycle.

8.4 Helical Turbulence and Kinetic Helicity

8.4.1 Kinetic Helicity Parameter

Since the dynamo mechanism requires nonsymmetric three-dimensional mo-
tions to operate, it is reasonable to explore the turbulent motions—those
displaying stochasticity, random variations in space and time, and lack of
the order. However, even some turbulent motions, namely those described
by symmetric correlation tensor (6.137), do not support large-scale magnetic
field, while just break it down toward smaller scales and so enhance the mag-
netic field dissipation; see Sect. 6.11 where the turbulent magnetic diffusivity
is calculated. Thus, even less symmetric motions are needed to support and
amplify the field.

Parker, Steenbek, and Krause (see Parker 1979; Krause and Rädler 1980)
discovered that the large-scale field can be produced by a turbulence with-
out mirror symmetry (gyrotropic or helical turbulence), e.g., a turbulence
with a different amount of clockwise and anticlockwise eddies. This ability
to amplify the large-scale magnetic field is the main driver of studying the
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helical turbulence in the astrophysical context. The correlation tensor of this
turbulence contains both polar and axial vectors. Perhaps the simplest exam-
ple of such structure represents the correlation tensor of statistically uniform
gyrotropic incompressible fluid:

Ũμν(k, t) = A(k, t)

(
δμν − kμkν

k2

)
− iP (k, t)eμνλkλ. (8.12)

Importantly, the function P (k, t) here must be a pseudoscalar, i.e., change
the sign at the coordinate inversion. The unit antisymmetric tensor eμνλ is
axial, i.e., does not change the sign at the coordinate inversion. As a result,
all the terms in the rhs of Eq. (8.12) are the polar tensors as needed.

Helical turbulence can appear in a rotating body due to the Coriolis force.
Let us show that the turbulence helicity can be quantified by the following
integral parameter:

α = −1

3

∫ ∞

0

〈u(r, t+ τ) ·∇×u(r, t)〉dτ = −τc
3
〈u(r, t) ·∇×u(r, t)〉. (8.13)

The last equality is in fact the definition of the turbulence correlation time
τc. For stationary turbulence α does not depend on time, so we can adopt
t = 0 and then write

〈u(r, 0) · ∇ × u(r, 0)〉 = eλμν
∂

∂x2μ
〈uλ(r1, 0)uν(r2, 0)〉 |r1→r2

= −i eλμν
∫

d 3k

(2π)3
kμŨλν(k, 0).

Substituting here Eq. (8.13) and making use of Eq. (8.12), we obtain the re-
lation between the pseudoscalar α and the pseudoscalar function P (k, 0):

α = − τc
3π2

∫ ∞

0

k4P (k, 0)dk. (8.14)

This measure, α, is called the kinetic helicity parameter.
Nonzero helicity is only possible for the systems in which the pseudoscalar

α can be build from the available physical parameters. For example, this is
the case for a rotating body (the rotation is quantified by an axial vector of
angular velocity Ω) with a nonuniform density distribution characterized by
the density gradient ∇ρ/ρ �= 0. This gradient is a usual (polar) vector whose
components change the sign at the coordinate inversion, while the compo-
nents of the axial vector Ω do not change the sign. Thus, the dot product of
these vectors forms a pseudoscalarΩ ·∇ρ/ρ = Ω/h, which changes the sign at
the coordinate inversion and so is suitable to built the helicity parameter α.
Here h = ρdz/dρ, if Oz axes are along Ω. The length h is the spatial scale
of the density inhomogeneity; α parameter with the required dimension can
then be built using the characteristic spatial scale of the turbulent motion l:

α ≈ l2Ω

h
. (8.15)

Apparently, this qualitative consideration can determine neither the sign of
the expression nor the dimensionless factor.
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8.4.2 Helical Turbulence in Rotating Bodies

In various objects the helicity can be estimated explicitly by accounting forces
acting on the gas. Consider the galactic disk as an example; see Fig. 8.3.
The disk rotates differentially around axes Oz. The gas density has a peak
at the galactic plane, while decreases upward and downward. The galactic
turbulence is only weakly nonuniform: the scale of the nonuniformity is large
compared with the turbulence correlation scale.

Ω

u0

u0

Figure 8.3: Illustration of Coriolis force origin and correlation between velocity and
velocity vortex in a turbulent cell of the nonuniform medium.

Now, consider a gas cloud with a size comparable with the turbulence
cell l located in the upper part of the disk and moving up with the velocity
u+z ≈ u0 > 0. In the adopted statistically uniform (along the galactic plane)
turbulence there is a similar cloud moving down with the same velocity
u−z ≈ −u0 < 0. However, these clouds are not perfectly the same: the cloud
moving up expands, while the cloud moving down contracts because of the
mentioned density gradient. Thus, radial components of the velocity u±r are
produced by this expansion/contraction; its value is set up by the density
inhomogeneity, u±r ≈ ∓u0l/h. In the non-inertial (rotating) system the ra-
dial motion produces the Coriolis force FC = 2u ×Ω per unit mass, whose
magnitude is estimated as F±

C ≈ −2u±r Ω.
This Coriolis force spins the clouds around the vertical axes: the upper

cloud rotates oppositely to the disk rotation, while the lower cloud along the
disk rotation. However, the net effect of these spinning clouds is nonzero: the
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contribution from the larger upper cloud prevails. As a result, the upper part
of the disk is dominated by the left-handed motions, while the lower part by
the right-handed. Over the correlation time τc ≈ l/u0, which is a lifetime of a
distinct turbulent cell roughly equal to the time needed to complete one-fluid
rotation in the cell, the azimuth components of the cloud velocities will get
values of u±α ≈ F±

C τc under the Coriolis force action.

Figure 8.4: Illustration of helicity origin in a convection cell.

The azimuth components of the cloud velocities gain the value u±α ≈ F±
C τc

due to the Coriolis force action during the correlation time τc ≈ l/u0 over
which the clouds exist in the strong turbulence (Sect. 6.7). Finally, gathering
all required factors, we again obtain order-of-magnitude estimate (8.15):

α = −τc
3
〈u · ∇ × u〉 ≈

{
l2Ω/|h|, z > 0;
−l2Ω/|h|, z < 0.

(8.16)

A similar picture takes place in a rotating star with a turbulent convective
zone. Parameter l can be associated here with the height of the convective
cell (Fig. 8.4); arrows indicate the fluid velocity in a single convective cell.
Equation (8.16) is valid (to the order of magnitude) for this case as well.

8.5 Mean Field in a Fluid with Helical Turbulence

8.5.1 Approximation of Short Correlation Time

Let us demonstrate that the helical turbulence is indeed capable of pro-
ducing a magnetic field with spatial scales much larger than the turbulence
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scales. It is easy to foresee that the turbulent dynamo problem is much more
complicated than analysis of the laminar dynamo; thus, some approximations
and simplifications are unavoidable to formulate a concise analytical consid-
eration. First, we will consider here the large-scale field only, to make averag-
ing over the turbulent ensemble. A similar approach, typical for macroscopic
electrodynamics, has already been applied in Sect. 6.11. Second, since the
large-scale magnetic field varies only slowly with time, while the realization
of the statistically stationary turbulence changes over time τc ≈ l/

√〈u2〉, we
can safely neglect the finiteness of the correlation time and set this time to
zero, which yields the following form of the correlation tensor [cf. Eq. (6.84)]:

Uαβ(r, t) = {Q(r)δαβ +R(r)xαxβ + C(r)eαβσxσ} · 2τc δ(t). (8.17)

In contrast to Eq. (6.84), this tensor is presented in the spatial–temporal
form. And third, we again use the kinematic approximation, i.e., consider a
given turbulent velocity field that does not evolve in spite of the large-scale
magnetic field growth.

Let us first derive equations describing the large-scale magnetic field in
the presence of the helical turbulence and then investigate its solutions. Using
notation of Sect. 6.11, the induction equation (before the statistical averaging)
can be written in the form

∂Hα

∂τ
− νm�Hα = Aαμγσ

∂

∂xμ
uγHσ +Bα(r, t)δ(τ − t), τ ≥ t, (8.18)

where Aαμγσ = eαμνeνγσ, uγ is the turbulent velocity with zero mean, the
collisional magnetic diffusivity νm = c2/4πσ is assumed to be finite and
constant, and δ-term describes the initial condition for non-averaged field
H(r, t).

Integral form of Eq. (8.18) can be written as

Hα(τ) = Aαμγσ

∫
dτ ′
∫

d 3x′G(r − r′, τ − τ ′)
∂

∂x′μ
u′γH′

σ +B(0)
α (r, τ), (8.19)

where

B(0)
α (r, τ) =

∫
d 3x′G(r − r′, τ − t)Bα(r

′, t) (8.20)

and G is Green function (2.32), obeying the initial condition G(r, τ) → δ(r)
for τ → 0.

In contrast to consideration performed in Sect. 6.11, we do not apply
here the perturbation theory over the turbulence measures. Instead, we de-
rive from Eq. (8.19) the field component Hα at the time τ = t + Δt by the
iteration method with the linear term Δt accuracy. Since Hα(r, t + Δt) de-
pends explicitly on the turbulent velocities, the corresponding averaging can
then be performed straightforwardly. Then, assuming Δt to be small com-
pared with the variability scale of the mean (but not the turbulent!) field,
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we obtain a differential equation for B(r, t), which will be valid for large
magnetic Reynolds numbers.

Zero-order iteration over the random velocity is given by Eq. (8.20), which
can be rewritten in the form

B(0)
α (r, t+Δt) = Bα(r, t) + Δt νm�Bα(r, t). (8.21)

This follows from the fact that G(r, τ) → δ(r) for τ → 0, while the correction
to the Green function for a small Δt has the form (∂G/∂τ)Δt = Δtνm�G(r−
r′, t). Integration of the corresponding term in Eq. (8.20) by parts twice yields
Eq. (8.21).

In the first-order iteration we substitute the zero-order solution (8.20)
or (8.21) into the integral term in Eq. (8.19):

H(1)
α (r, τ )=Aαμ

γσ

∫ τ

t

dτ ′
∫

d 3x′G(r−r′, τ−τ ′)
∂

∂x′
μ

u′
γ(r

′, τ ′)B(0)
σ (r′, τ ′)+B(0)

α (r, τ ).

(8.22)

Finally, the second-order iteration has the form

H(2)
α (r, τ) = A

αμ
γσ

∫
τ

t

dτ
′
∫

d
3
x
′
G(r − r

′
, τ − τ

′
)
∂

∂x′
μ

u
′
γ(r

′
, τ

′
)H(1)

σ (r
′
, τ

′
) + B

(0)
α (r, τ)

= Aαμ
γσA

σν
κε

∫
τ

t

dτ1

∫
d 3x1G(r − r1, τ − τ1)

∂

∂x1μ

uγ(r1, τ1)

×
∫

τ1

t

dτ2

∫
d 3x2G(r1 − r2, τ1 − τ2)

∂

∂x1ν

uκ(r2, τ2)B
(0)
ε (r2, τ2)

+Aαμ
γσ

∫
τ

t

dτ1

∫
d 3x1G(r−r1, τ−τ1)

∂

∂x1μ

uγ(r1, τ1)B
(0)
σ (r1, τ1)+B

(0)
α (r, τ).

(8.23)

Averaging of Eq. (8.23) contains terms 〈H(2)
α (r, τ)〉 = Bα(r, τ), 〈uγ〉 = 0

and the correlation tensor 〈uγ(r1, τ1)uκ(r2, τ2)〉, which is assumed to obey
Eq. (8.17). We then take the integrals over dτ2 and d 3x2 by means of the
δ-functions:

∫ τ

t
dτ1

∫
d 3x1G(r − r1, τ − τ1)

× ∂

∂x1μ
〈uγ (r1, τ1)

∫ τ1

t
dτ2

∫
d 3x2G(r1 − r2, τ1 − τ2)

∂

∂x1ν
uκ(r2, τ2)〉B(0)

ε (r2, τ2)

= τc

∫ τ

t
dτ1

∫
d 3x1G(r − r1, τ − τ1)

{
Q(0)

∂2B
(0)
ε

∂x1μ∂x1ν
δγκ − C(0)

∂B
(0)
ε

∂x1μ
eγκν

}
.

(8.24)

Now substitute τ = t+Δt into Eq. (8.24) and calculate the rhs in the linear
over Δt approximation. For this purpose it is sufficient to take the Green
function in zeroth approximation, i.e., G ≈ δ(r − r1). The magnetic field

component must be taken in the same approximation B
(0)
ε , i.e., discarding in



8.5 Mean Field in a Fluid with Helical Turbulence 343

Eq. (8.21) the term proportional to Δt. Thus, the rhs of Eq. (8.24) takes the
form

Δt τc

{
Q(0)

∂2Bε(r, t)

∂xμ∂xν
δγκ − C(0)

∂Bε(r, t)

∂xμ
eγκν

}
. (8.25)

To transform combination AαμγσA
σν
κε including summation over the repeating

index pairs we apply the equivalence eαβγeαμν = δβμδγν−δβνδγμ. Eventually
we use the obvious relation

Bα(t+Δt)−Bα(t)

Δt
≈ ∂Bα

∂t
(8.26)

and obtain the following equation:

∂B

∂t
= α∇×B + (νt + νm)�B. (8.27)

Here νt = Q(0)τc = 〈u2〉τc/3 is the turbulent magnetic diffusivity and α =
−(2/3)C(0)τc = −〈u(r) · ∇ × u(r)〉τc/3 is the helicity parameter.

The Fourier transforms Q̃, R̃, and C̃ of the functions Q(r), R(r), and
C(r) describing the correlation tensor of the turbulent velocities are linked
with the spectral functions A(k, t) and P (k, t) entering Eq. (8.12) by the
following relations:

Q̃(k) = A(k), C̃(k) = −P (k), k
d

dk

1

k

dR̃(k)

dk
= −A(k).

Here, in contrast to Eq. (8.12), a factor 2τcδ(t) containing the δ-function is iso-
lated from the spectral functionsA(k, t) and P (k, t):A(k, t) = A(k)2τcδ(t), P (k, t) =
P (k)2τcδ(t).

The physical meaning of Eq. (8.27) becomes more transparent if we com-
pare it with induction equation (2.12) in the vacuum. To do so we present
Eq. (8.27) in the form

∂B

∂t
= −c∇× E,

where

E = −α
c
B +

νtot
c

∇×B (8.28)

can be interpreted as an effective averaged large-scale electric field. The term
with the full magnetic diffusivity νtot = νt + νm describes only dissipation
of the electromagnetic field, while the term −(α/c)B represents an electric
field produced by the helical turbulence and capable of amplifying the mean
magnetic field. The corresponding process is conventionally called the α-
effect. It is worthwhile to note that generation of an electromotive force along
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external magnetic field by a helical fluid flow was confirmed experimentally
by (Steenbeck et al. 1968), where the conducting fluid was represented by a
liquid sodium moving in spiral channels.

If there is a regular large-scale motion with the velocity U we must add
the corresponding standard term ∇× (U ×B) into Eq. (8.27):

∂B

∂t
= ∇× (U ×B) + α∇×B + νtot�B. (8.29)

Let us note that the derivation presented is not universal as based on
a number of simplifications ignoring some of essential physics of the real
astrophysical sources, e.g., anisotropy and nonuniformity of the turbulence.
Nevertheless, the mean magnetic field can be weakly nonuniform and slowly
vary in time here. A more detailed study of the subject is available in re-
view papers and monographs, e.g., (Vainshtein 1983; Molchanov et al. 1985;
Ruzmaikin et al. 1988). Specifically, the account of a weak turbulence nonuni-
formity results in the following equation for the mean magnetic field:

∂B

∂t
= ∇× (U ×B) +∇× αB −∇× νtot

[
∇× B

μ

]
. (8.30)

Here μ is the diamagnetic permittivity of the turbulent fluid (see Problem
6.9); all coefficients α, νtot, and μ can be slow functions of coordinates.

8.5.2 Renormalization of Mean Field Equation

The considered renormalization method in Chap. 7 can also be applied to
describe transfer of a vector (in place of scalar) admixture by a turbulent
motion. Here we develop it in a practically important case of the magnetic
field averaging in the turbulent dynamo problem. We start with the induction
equation

∂b

∂t
= ∇× (u× b) + νmαβ

∂2b

∂xα∂xβ
; (8.31)

here u(r, t) is the turbulent velocity field specified by given statistical mea-
sures, and νmαβ is the tensor of local (molecular) magnetic diffusivity. The
turbulent magnetic diffusivity can often greatly exceed the local one, which
we consider as a seed value whose exact form is inessential; we adopt a simple
form νmαβ = νmδαβ , where νm = c2/4πσ is defined by the electroconductivity
σ of the plasma. We take into account possible anisotropy and helicity of
the turbulence, but still assume its uniformity, and use the Fourier transform
of the velocity correlation tensor in the following form (cf. Eqs. (8.12) and
(8.17)):

Uαβ(k, ω) = Tαβ(k, ω)− iPαβ(k, ω), (8.32)

where

Tαβ(k, ω) = Tβα(k, ω) = Tαβ(−k, ω) (8.33)
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is a symmetric real tensor, invariant for interchange of k and −k, while

Pαβ(k, ω) = Pβα(−k, ω) = −Pαβ(−k, ω) (8.34)

is an antisymmetric, non-invariant for the inversion, tensor describing the
turbulence helicity.

Let us perform averaging of Eq. (8.31) over the ensemble of the turbulent
pulsations by the developed renormalization method. Specifically, we postu-
late the equation for the averaged large-scale field B = 〈b〉 to have a form

∂Bα
∂t

=Mαβμ
∂Bμ
∂xβ

+ νtotβμ
∂2Bα
∂xμ∂xβ

; (8.35)

where Mαβμ and νtotβν are constant tensor coefficients in the case of a uniform
turbulence; repeated pairs of indices imply summation. If the fluid does not
contain any natural vector rather than k, for the incompressible fluid, we
have

Tαβ(k, ω) = A(k, ω)(δαβ − kαkβ/k
2), Pαβ(k, ω) = P (k, ω)eαβγkγ , (8.36)

where eαβγ is the unit antisymmetric tensor and Eq. (8.35) receives well-
known form Eq. (8.27). The coefficient α describing generation of the large-
scale magnetic field in Eq. (8.27) is nonzero only for a helical turbulence
(P (k, ω) �= 0).

To determine coefficients in more general Eq. (8.35) we isolate, like in the
previous section, a minor component δu composed of harmonics from a nar-
row range of wave numbers Δk. Performing then averaging in Eq. (8.31) over
all harmonics except that narrow range and denoting that “partly averaged
magnetic field” as B̃ we arrive at the equation

∂B̃α
∂t

=M ′
αβμ

∂B̃μ
∂xβ

+ ν′ totβμ

∂2B̃α
∂xμ∂xβ

+ (∇× (δu× B̃))α, (8.37)

in which M ′
αβμ and ν′ totβμ only slightly depart (because of Δk smallness) from

exact coefficients Mαβμ and νtotβμ .
Averaging of Eq. (8.37) over ensemble of δu is then performed within the

perturbation theory. By adopting

B̃ = B + δB̃, 〈δB̃〉 = 0, (8.38)

Eq. (8.37) yields two equations:

∂Bα
∂t

=M ′
αβμ

∂Bμ
∂xβ

+ ν′ totβμ

∂2Bα
∂xμ∂xβ

+ (∇× 〈(δu× δB̃)〉)α, (8.39a)

∂δB̃α
∂t

=M ′
αβμ

∂δB̃μ
∂xβ

+ ν′ totβμ

∂2δB̃α
∂xμ∂xβ

+ (∇× (δu×B))α. (8.39b)
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We note that a significant difference of scales of the turbulent pulsations
(l � L) and regular field B (R 
 L) is only possible when the helical part
Pαβ of correlation tensor (8.32) is small compared with its symmetric part
Tαβ. Indeed, generation of the large-scale field occurs at the scales larger than
Lcrit defined as

Lcrit ≈ 2πνtot/α ≈ 2π〈u2〉1/2/α, (8.40)

and the condition Lcrit 
 L can only take place if α� 〈u2〉1/2.
We, therefore, will assume this smallness, which allows discarding the

first term at the rhs of Eq. (8.39b) so the solution reads

δB̃α(r, t) = Bβ(r, t)

∫
Gm(r − r′, t− t′)

∂δuα(r
′, t′)

∂x′β
d 3r′dt′

−∂Bα
∂xβ

∫
Gm(r − r′, t− t′)δuα(r′, t′)d 3r′dt′. (8.41)

The Green function Gm with the account of incompressibility ∇ · δu = 0
written for the turbulent transport has the form:

∂Gm
∂t

− νtotβμ
∂2Gm
∂xμ∂xβ

= δ(r − r′)δ(t − t′). (8.42)

Substitution of solution (8.41) in the last term in the rhs of Eq. (8.39a) yields
the contributions ΔMαβμ and Δνtotβμ to the kinetic coefficients resulting from
the range Δk:

ΔMαβμ = 2

∫
Δk

Gm(r, t)
∂

∂xμ
δPαβ(r, t)d

3r dt, (8.43a)

Δνtotβμ =

∫
Δk

Gm(r, t)δTβμ(r, t)d
3r dt. (8.43b)

Then, integrating Eq. (8.43) over the full range of the wave numbers we obtain
a set of self-consistent equations for the magnetic diffusivity νtotβμ and magnetic
field generation Mαβμ, which enter into averaged Eq. (8.35):

νtotβμ =

∫
Tβμ(k, ω)

iω + kεkλνtotελ

d 3k dω

(2π)4
+ νmβμ, (8.44a)

Mαβμ = −2

∫
kμPαβ(k, ω)

iω + kεkλνtotελ

d 3k dω

(2π)4
, (8.44b)

where Fourier transforms of the integrands have been performed.
The solutions for the coefficients must be determined sequentially: first,

from Eq. (8.44a), we calculate the magnetic diffusivity tensor and then, using
so determined νtotβμ , integration of Eq. (8.44b) yields the third-rank tensor
Mαβμ, which is antisymmetric over two first indices.
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For the simplest helical turbulence, Eq. (8.36), the equations can be sim-
plified. The tensor of magnetic diffusivity reduces to a diagonal one νtotβμ =

νtotδβμ, while the tensor of the magnetic field generation is expressed via
pseudoscalar α: Mαβμ = α eαβμ. The coefficients νtot and α are calculated
from the set of equations:

νtot = νm +
2

3

∫
T (k, ω)

iω + k2νtot
d 3k dω

(2π)4
, α = −2

3

∫
k2P (k, ω)

iω + k2νtot
d 3k dω

(2π)4
.

(8.45)

The equations derived take into account the transfer of a field at any given
scale l by the turbulent flows of all other scales. Possible non-stationarity
of the flow is also taken into account via integration over frequencies. The
practical importance of the derived equations is very high because solution
of the transcendental equations obtained is incomparably easier task than
the full numeric simulations of the large-scale dynamo problem. Numeric
simulations, apparently, remain important due to both their internal merit,
and also as a cross-check to validate simplified theories as that developed here
for the turbulent motion and magnetic field evolution in the gyrotropic fluids.

8.6 Large-Scale Magnetic Field Generation

8.6.1 Simplified Examples

Let us consider a few examples when the magnetic field is indeed being am-
plified by a helically turbulent fluid. Let us start with a simple case accom-
modated by Eq. (8.27). Assume an initial magnetic field B(r, t)|t=0 = B0(r)
and apply the Fourier transform over spatial coordinates to Eq. (8.27):

∂Bk

∂t
= iαk ×Bk − νtotk

2Bk, (8.46)

which has the following solution:

Bk(t) = {B0
k cosh(kαt) + i[k ×B0

k]k
−1 sinh(kαt)}e−νtotk2t, (8.47)

where B0
k is the Fourier component of the initial (seed) field, satisfying the

conditions k · B0
k = 0, B0∗

k = B0
−k. Enhancement of kth component does

not depend on the helicity sign, although the following conditions must be
fulfilled:

k < kc =
|α|
νtot

or λ > λc =
2π

kc
=

2πνtot
|α| . (8.48)

Therefore, only quite long-wave components of the magnetic field are unstable
and experience amplification; in particular, the object must have a sufficiently
large scale L > λc, for them to exist. In addition, the correlation time τc
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of the turbulent motions (whose value was neglected above) must be small
compared with the characteristic time of the magnetic field amplification:

(|α|k)−1 
 τc. (8.49)

If all of the above conditions are fulfilled, the large-scale magnetic field
increases with the growth rate

γ = |α|k − νtotk
2 > 0. (8.50)

Apparently, the solution obtained is only valid over a finite time; at some stage
of the field amplification it becomes sufficiently strong to affect the helical
turbulence itself. This back reaction of the growing field results eventually in
a nonlinear stabilization of the considered instability and to saturation of the
field growth. It is worthwhile to remind that the considered mechanism can
only amplify a “seed” field, although cannot produce it from a zero level.

The considered model of the helical turbulence in the infinite space offers
only a qualitative viability of the turbulent dynamo, i.e., instability of the
helically turbulent conducting fluid leading to growth of large-scale magnetic
perturbations. In contrast, for practical astrophysical applications, one has
to consider bounded inhomogeneous objects, e.g., spherical bodies (stars),
disks (accretion disks and spiral galaxies), and cylinders (jets, including the
relativistic ones).

Nevertheless, the considered simple model does make sense for applica-
tions to small regions, when the length λc is small compared with the scale
of the object under study. For example, in the case of a star, we can iden-
tify, at a given surface point, the Cartesian axes Ox with direction of er,
Oy with eϑ, and Oz with eα, and then adopting the seed field and the wave
vector to belong to the plane xy, we obtain a growth of toroidal field from the
poloidal one from solution (8.47). Likewise, a seed toroidal field will give rise
to growth of the poloidal field. Therefore, α-effect gives rise to amplification
of both types of the field; for this reason, the considered model is often called
the α2 model (i.e., double α-effect).

Then, we consider a role of differential rotation in the mean magnetic
field generation, called αΩ-dynamo. To do so, in Eq. (8.29), adopt a shear
fluid motion U = Ωxey, where Ω = const is a constant with dimension of
frequency (reciprocal to the time), which yields

∂B

∂t
= ΩeyBx + α∇×B + νtot�B. (8.51)

For simplicity, we seek a solution independent on the coordinate y and write a
single Fourier harmonics in the form Bk(r, t) = B exp(ik · r + γ(k)t), where
k = (kx, 0, kz), γ(k) is a complex growth rate and B(k) is the amplitude
obeying a vector equation explicitly derived from Eq. (8.51):

(γ + νtotk
2)B − ΩBxey − iαk × B = 0. (8.52)
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The functional form of γ(k) is calculated from the solvability condition
of the linear equation system obtained by projecting Eq. (8.52) onto the co-
ordinate axes, i.e., from equating determinate of the system to zero:

∣∣∣∣∣∣
γ′ iαkz 0

−(Ω + iαkz) γ′ iαkz
0 −iαkz γ′

∣∣∣∣∣∣ = γ ′3−γ ′[α2(k2x+k
2
y)−iαΩkz ] = 0. (8.53)

Here γ′ = γ + νtotk
2, k2 = k2x + k2z . The roots of this equation are:

γ′0 = 0, γ′± = ±
√
−iαΩkz + α2k2. (8.54)

The first root γ′0 = 0 corroborated with Eq. (8.51) and the necessarily trans-
verse character of the magnetic field Fourier components k ·Bk = kxBkx +
kzBkz = 0 gives rise to equalities Bkx = Bky = Bkz = 0 for any real values
of Ω, kx, and ky. Consider two other roots adopting |αkz |/Ω � 1. Then,
we have γ′± ≈ ±√

i|αΩkz |1/2 = ±(1 + i)|αΩkz/2|1/2, so growing modes can
originate from the root γ′+, so

�γ ≡ γB = |αΩkz/2|1/2 − νtotk
2 (8.55)

if γB > 0.
To further simplify the discussion, let us adopt kx = 0 while k = |kz | �=

0. This immediately yields Bkz = 0, while Bkx �= 0 and Bky �= 0. Then,
the instability giving rise to the large-scale field amplification occurs under
condition

k < kc =

( |α|
4ν2totΩ

)1/3

. (8.56)

Under this condition, likewise in the case of α2-dynamo, the magnetic field
grows exponentially; thus, the equation is only applicable over a limited time
until the amplifying field does not significantly affect the original helical
turbulent field. The mode with �γ+(kc) = 0 propagates with a constant
amplitude. The physical value of the magnetic field for a given k can be de-
termined by the real part of the complex Fourier component Bk, which reads
�Bk = �Bc exp(ik · r + γ+t) = Bc cos(kcz − ωct), where ωc = −�γ+(kc).
The amplitude Bc is specified by initial value of the seed magnetic field,
whose magnitude and origin is beyond the considered simplified model. De-
noting amplitude of the component Bkx(z, t) as B0, we can write (adopting
an appropriate phase)

Bkx(z, t) = B0 cos kc(z − vpht), where vph =
−�γ+
kz

= ±
( |α|Ω

2kc

)1/2

(8.57)



350 8 Dynamo-Mechanism of Magnetic Field Generation

is the phase velocity. The component Bky(z, t) is then expressed via Bkx(z, t)
using Eq. (8.52):

Bky(z, t) =
√
2
∣∣∣vph
α

∣∣∣B0 cos[kc(z − vpht) + ϕ]. (8.58)

Here, everywhere the phase velocity vph and the helicity parameter α can
have different signs, which affects the phase ϕ. Further models as well as
more detailed analysis of the models considered here can be found, e.g., in
the review by Brandenburg and Subramanian (2005).

8.6.2 Nonlinear Effects in the Dynamo Theory

As has been repeatedly said, the kinematic dynamo theory is intrinsically
unable to bound the large-scale field amplification, which is a significant lim-
itation of the theory as the growing magnetic field must become dynamically
important rather soon after the amplification started. This dynamic effect
produced by the mean field will necessarily reduce the original helical turbu-
lence in such a way that the mean field amplification slows down and ends at
some saturation level. Apparently, this follows from the energy conservation
law. Indeed, adopt the turbulence is characterized by some energy density,
wt = ρ〈u2〉/2. Then, because the magnetic energy wm = B2/8π is taken from
the turbulence energy, wm cannot exceed the originally available wt level:

B2

8π
� ρ〈u2〉

2
. (8.59)

In the case of a “driven” turbulence when some stationary sources of the
turbulent motion support it at a given state providing the mean density of
the turbulence energy to be wt = ρ〈u2〉/2 = const, Eq. (8.59) also looks
a reasonable estimate, even though not required in this case (in principle,
the energy of the external sources can path by the turbulence toward the
mean magnetic field and be accumulated there). Indeed, a strong imbalance
between the magnetic and turbulent energy densities looks unlikely as there
are good reasons to expect that strong magnetic field will suppress the tur-
bulent motions and, thus, anyway affect the entire system dynamically. An
exception is only possible for a 2D turbulence (Landau and Lifshitz 1960),
which seems unlikely in most of the astrophysical objects; so we do not con-
sider this extreme case here.

It is also possible that in some cases inequality (8.59) can become a strong
one, �, because nonlinear mechanisms of the mean field—helical turbulence
interaction can saturate the mean field generation process much earlier than
the equipartition level has been achieved, which was spotted, in particular,
by Vainshtein and Zel’dovich (1972).
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It turns that for both more reliable estimates of the field growth and
developing numerical models of the turbulent dynamo, the mean field theory
equations are convenient to represent in an alternative form proposed by
Blackman and Field (2002). Let us rewrite the second of Eq. (6.139) as follows:

∂B

∂t
= ∇× E + νm�B, E = 〈u × b〉 (8.60)

and derive equation for the vector E by differentiating it over time and using
MHD equations

∂E
∂t

=

〈
∂u

∂t
× b

〉
+

〈
u× ∂b

∂t

〉
. (8.61)

We do not linearize them here as we are specifically going to analyze effect
of nonlinearity, that is,

∂u

∂t
=

1

4πρ
(∇× b)×B − (u · ∇)u+

1

4πρ
(∇× b)× b, (8.62a)

∂b

∂t
= (B · ∇)u− (u · ∇)B + (b · ∇)u− (u · ∇)b+ νm�b. (8.62b)

Here u and b relate to the turbulence; the plasma is assumed cold enough to
discard the pressure gradient (p ∼ T ) and the kinematic viscosity (ν ∼ T 5/2).
The largest dissipative effect is the magnetic diffusivity (νm ∼ T−3/2), which
is retained above; nevertheless, for large magnetic Reynolds numbers typical
for astrophysical objects, it can be discarded as well.

Substitution of Eq. (8.62) into Eq. (8.61) generates terms containing ei-
ther second or third moments of the turbulent measures u and b. The second
moments 〈u × [(B · ∇)u − (u · ∇)B]〉 have been calculated in various ways
in Sects. 6.11, 8.5.1, and 8.5.2; we use here the already familiar results, which
yields

∂E
∂t

=
α

τc
B−1

3
〈u2〉∇ ×B+

B

4πρ
〈b · (∇× b)〉− Bλ

4πρ
〈bλ(∇× b)〉

− 〈u · (u · ∇)b〉+〈u× (b · ∇)u〉+〈(u · ∇)u×b〉. (8.63)

The term proportional to νm is of the order of R−1
m � 1 and has been

discarded as explained above. It is worthwhile to note that the second mo-
ments like 〈b · (∇ × b)〉, as well as kinetic helicity parameter α, are the
pseudoscalars. As so, one can expect the magnetic pseudoscalar to be linked
somehow to the kinetic pseudoscalar α. To obtain this link let us express
the single-point moments 〈bμ(r, t)bν(r, t)〉, entering Eq. (8.63), via the cor-
relation tensor of the turbulence velocities using Eq. (8.41). If the averaging
is performed over a large scale, L 
 l, then we can discard the term with
the derivative of the field B in Eq. (8.41), i.e., adopt its uniformity on the b
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variation scales. For a small fraction of the turbulent magnetic field, we can
discard nonlinear terms in Eq. (8.62b) to write

δB̃α(r, t) = Bβ(r, t)

∫
Gm(r − r′, t− t′)

∂δuα(r
′, t′)

∂x′β
d 3r′dt′, (8.64)

where δB̃α(r, t) is a minor fraction of the field b related to a small range of the
wave numbers Δk. Taking the Fourier transform of Eq. (8.64) we obtain the
link between the correlation tensors within the random phase approximation
(bμkωbνk′ω′ = 〈bμbν〉kωδ(k − k′)δ(ω − ω′)):

〈bμbν〉kω = (k ·B)2|G̃m(k, ω)|2〈uμuν〉kω. (8.65)

This link between the correlation tensors is nonlinear because the Green
function, according to Eq. (8.42), contains, via νtot, the entire velocity field
and has the form

G̃m(k, ω) = (−iω + kσkλν
tot
σλ )

−1. (8.66)

To find the correlator value 〈bμ(r, t)bν(r, t)〉 at a given time and a given
point one has to integrate Eq. (8.65) over all frequencies and wave vectors.
Before that, we have yet to differentiate the components of b over coordinates,
Eq. (8.63), to form ∇×b. Apparently, this gives rise to an additional k vector
factor. Noting that for the δ(t)-correlation model the tensor 〈uμuν〉k does not
depend on frequency and calculating some simple integrals over frequency and
angles of the k vector, we obtain

B

4πρ
〈b · (∇× b)〉 − Bλ

4πρ
〈bλ(∇× b)〉 = −αB 4v2A

5νt
. (8.67)

Thus, account of the turbulent magnetic field correlators ends up with a
cubic nonlinearity over the mean large-scale magnetic field B. Importantly,
nonlinear magnetically induced helicity (8.67) has a sign opposite to that
of the kinetic helicity (see Eq. (8.63)). This reduces an “effective” helicity
parameter, which, in turn, reduces the magnetic field amplification:

αeff = α

(
1− 12v2A

5〈u2〉
)
. (8.68)

Equation (8.63) contains also the third moments of the turbulence
measures; each moment represents a polar vector. Thus, the corresponding
terms are unlikely to contribute to the field amplification as they are “non-
helical” ones. This implies that they are related to a field dissipation process,
which can be collectively roughly described in the “lifetime” approximation
by the term −E/τc:

− 〈u · (u · ∇)b〉+ 〈u × (b · ∇)u〉+ 〈(u · ∇)u× b〉 = − E
τc
. (8.69)
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This assumption, however, is mainly an intuitive guess, with some support
from available numerical simulations (see, e.g., Brandenburg and Subrama-
nian 2005; Brandenburg 2009, 2011):

∂B

∂t
= ∇× E + νm�B (8.70)

and

∂E
∂t

=
αB

τc

(
1− 12

5

B2

4πρ〈u2〉
)
− 1

3
〈u2〉∇ ×B − E

τc
. (8.71)

This nonlinear system of equations, partly accounting the nonlinearity over
the physical value of interest, the large-scale magnetic field B, is apparently
not equivalent to kinematic dynamo equations (8.27) or (8.35) obtained ear-
lier by a simpler approach. Equations (8.70) and (8.71) are more general than
Eq. (8.27); the latter can be derived from the former within some simplifi-
cations. Specifically, one has to discard the nonlinear term, which is valid
for B2/8π � ρ〈u2〉/2. Then, the inequality |∂E/∂t| � |E/τc| must be ful-
filled, which implies that the turbulence-induced mean electric field changes
only slowly during the characteristic turbulent pulsation time. Under these
assumptions, Eq. (8.71) yields E ≈ αB − νt∇×B; substitution of this value
into Eq. (8.70) yields Eq. (8.27).

Consider the saturated level of the large-scale magnetic field. Order-
of-magnitude estimate (8.59) derived from the energy conservation law is
confirmed by nonlinear helicity parameter (8.68): αeff(B) decreases as B in-
creases and the mean field generation stops when

B2 ≈ B2
0 =

5π

3
ρ〈u2〉 = 10π

3
wt. (8.72)

Similar result can be obtained from evaluation of a “stationary” level of the
field from Eqs. (8.70) and (8.71) by discarding the time derivatives, while
replacing the spatial derivatives by dividing by appropriate spatial scales.

The developed nonlinear treatment suffers from a lack of consistent joint
account of the Coriolis and magnetic force effect on the helical turbulent mo-
tion. This problem is highly non-trivial given that the turbulence helicity is
a kind of “subtle” effect, which is supposed to be efficiently suppressed by
the growing mean magnetic field, thus, reducing the mean field amplification
(α-quenching effect), although a nonpotentiality (twists) of the generated
large-scale magnetic field can increase the kinetic helicity component as we
show in Sect. 11.2.2. Then, there is no firm evidence that the dependence of
the helicity on the mean field does follow the link, Eq. (8.68), derived here
from a simplified consideration. In addition, we only considered unbounded
fluid volume, while any real object is bounded. All this (and some other ef-
fects) can strongly affect the nonlinear dynamo process, in particular, reduce
the saturated level of the mean field compared with Eq. (8.72). This concern
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is confirmed in review by Brandenburg and Subramanian (2005), which dis-
cusses a number of different contradictory nonlinear models, whose predic-
tions are different from each other by orders of magnitude.

On the other hand, observational data about the Galaxy do show that
the energy densities of interstellar turbulence and large-scale magnetic field
are comparable to each other, i.e., equipartition described by Eqs. (8.59)
and (8.72) takes place in the Galaxy (see Sect. 8.7.1 for more detail).

In the solar case, Eq. (8.68) can help to locate the region of the Sun,
where the bulk of the solar magnetic field is generated. Adopting the pho-
tospheric density of 2 · 10−7 g/cm3 and u ∼ 105 cm/s, from Eq. (8.72) we
obtain B ∼ 100G, which is apparently insufficient to create typical sunspot
magnetic field of a few thousand G. In the convective zone the plasma den-
sity, with 0.2 g/cm3 at the base, is up to six orders of magnitude larger
than the photospheric value so for the same convection velocity we estimate
wt ∼ 109 erg/cm3, which results in B0 ∼ 105G at the base of the convection
zone; the modern helioseismology data imply the magnetic field of 50−100kG
there, in a remarkable agreement with the prediction of the nonlinear dynamo
model developed here. In the concept of the solar magnetic field generation
inside the convection zone, the surface (photospheric) magnetic field of the
active regions is a result of the much stronger subphotospheric field emer-
gence; only a minor fraction of the subphotospheric magnetic flux is, thus,
needed to build an active region; see Sect. 8.7.4 for more detail.

8.6.3 Generation of Primary Field

Dynamo equations derived above are capable of amplifying an available large-
scale magnetic field, while cannot produce it from nothing. Stated another
way, a “seed” initial magnetic field must first be created by another mecha-
nism. In fact, there are a number of such “non-dynamo” mechanisms capable
of producing either the seed field or even a relatively large mean field; see
Sect. 7.6 and a review by Dolginov (1987) for more examples. Here we con-
sider only one classical example of such mechanisms based on generalized
Ohm’s law (1.90) derived in Sect. 1.3.4.

Consider a fully ionized, hot Pe �= 0, plasma, i.e., F = 0 and ni = ne.
Then Eq. (1.90) takes the form

E +
1

c
u×B +

1

ene
∇Pe = j

σ
+

1

neec
j ×B. (8.73)

Let us derive from it an equation for the magnetic field using the equation of
state for the electron gas Pe = neTe, applying the ∇× operator to Eq. (8.73),
and using then the Maxwell equations

∂B

∂t
= ∇× (u×B)−∇× νm(∇×B)− c

ene
∇ne ×∇Te. (8.74)



8.7 Magnetic Field Generation in Stars and the Galaxy 355

Here, like in Eq. (2.16), the Hall current is discarded, while the electron pres-
sure Pe is retained. It is the pressure that is responsible for the last term,
which is nonzero if the temperature and density gradients are not parallel to
each other. These nonparallel gradients interact with each other to produce a
thermocurrent generating the magnetic field without any seed field. Indeed,
∂B/∂t|t=0 �= 0 even when B|t=0 = 0. This effect discovered by Ludwig Bier-
mann is known as a Biermann battery. Even though the Biermann battery
often produces a very weak field (if any), it can be sufficient to launch the
dynamo process resulting in much larger mean field.

8.7 Magnetic Field Generation in Stars and the Galaxy

8.7.1 Dynamo in the Galactic Disk

In the galactic disk one has to take into account the differential rotation,
mentioned already in Sects. 8.2 and 8.6, in addition to the helicity effect. Let
us apply the locally plane αΩ-model (Sect. 8.6.1) to the galactic disk adopting
standard physical parameters of the galactic disk pertained to R ≈ 10kpc
from the galactic center, which roughly corresponds to the Sun location: the
linear velocity of the disk rotation uϕ ≈ 25 km/s · R kpc = 2.5 × 107 cm/s
for R = 10kpc; a flat rotation curve with uϕ = Ωr = const would result
in the same absolute value of ΔΩ = rdΩ/dr = −Ω. The angular velocity is
Ω = uϕ/R ≈ 8 × 10−15 rad/s, which corresponds to the time needed for one
rotation of the Galaxy TG = 2π/Ω ≈ 0.8×1015 s ≈ 2.7×107 years. Adopt the
main turbulence scale (size of large turbulent cells) to be l ≈ 100 pc, mean
turbulent velocity to be u ≈ 106 cm/s, and disk semithickness of h ≈ 400pc.
For the sake of the order of magnitude estimate we everywhere replace kz
by the inverse scale parameter h−1 because kz came from differentiation over
coordinate z, for which the natural scale is given by the disk semithickness.

Use Eq. (8.16) to estimate the helicity parameter: α ≈ l2Ω/h ≈ 6 km/s.
The growth/damping rate γB determined by Eq. (8.55) is

γB = |αΩkz/2|1/2 − νtotk
2. (8.75)

Its negative part (damping) γd is specified by the turbulent magnetic diffusiv-
ity νtot ≈ 1026 cm2/s and the disk semithickness: γd ≈ νtot/h

2 ≈ 0.7×10−15 s.
The positive part is γi = |l2Ω2/2h2|1/2 ≈ 1.4× 10−15 s.

We conclude that with the adopted parameters the dynamo can operate
in the galactic disk but only marginally with the growth rate γB = γi− γd ≈
0.7 × 10−15 s, the characteristic e-folding growth time of the mean field is
TB = γ−1

B ≈ 1.4× 1015 s ≈ 5× 107 years, roughly two Galaxy rotation times.
The fact that the growth and damping of the field nearly compensate each
other is a good indication that the currently observed galactic magnetic field
is close to the corresponding saturation state (recall, it is in equipartition with
other components of the Galaxy as turbulence and CRs). One can expect that



356 8 Dynamo-Mechanism of Magnetic Field Generation

at some earlier stages of the Galaxy evolution the magnetic field grew faster
and could reach the observed values of (1 − 10) × 10−6G over the Galaxy
lifetime even starting from a very weak seed field.

For the galaxies, one of the favorite mechanisms capable of producing
the seed magnetic field is plasma ejections from early type stars in the form
of strong stellar winds and supernova explosions. In this case the problem
of the magnetic field generation is transferred to another class of objects,
the stars, where indeed the small spatial scales and fast rotation favor the
dynamo process more than in extended regions of a Galaxy; see Sect. 8.7.2.

We emphasize that the consideration given above for the galactic mag-
netic field amplification is highly simplified offering the orders of magnitude
of the involved parameters at best, indicative that account of discarded here
physical effects can significantly modify the obtained numbers. A more precise
(but still idealistic) model of a narrow disk must rely on induction Eq. (8.30)
for the mean field in cylindrical coordinates with the account of the galactic
differential rotation and the α-effect as well as correct boundary conditions
at the disk surface. Strong disk asymmetry allows discarding the derivatives
over r and retains only derivatives over time and coordinate z perpendic-
ular to the disk plane. Then, equations for the magnetic field components
transverse to disk axes in the axially symmetric case have the form

∂Br
∂t

= − ∂

∂z
(αBϕ) + νtot

∂2Br
∂z2

,
∂Bϕ
∂t

= r
∂Ω

∂r
Br + νtot

∂2Bϕ
∂z2

, (8.76)

where the term ∂(αBr)/∂z is discarded compared with the differential ro-
tation term in the second equation. The helicity parameter is treated as
a function of z because it changes the sign at the disk central plane (see
Eq. (8.16)). Although the equations look relatively simple they do not have
a simple solution; see more detailed analysis and some partial solutions
in Ruzmaikin et al. (1988) and Brandenburg and Subramanian (2005).
Vainshtein and Zel’dovich (1972) neglected the dissipation to obtain the
following estimate of the e-folding field growth time:

TB ≈
(
−R∂Ω

∂r

∂α

∂z

)−1/2

≈ 2× 108 years, (8.77)

which is four times longer than our simplified estimate above. This manifests
a good agreement between different approaches given the nature of the sim-
plifications made; on the other hand, it demonstrates that getting precise
numbers does require quantitative accounting of many physical effects, which
is extremely uneasy task.

Overall, a more precise theory of the galactic dynamo needs more detailed
information on physical parameters, which are only known currently to the
order of magnitude. Thus, although the galactic dynamo theory does provide
a qualitative framework to understand the large-scale magnetic field origin,
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it is yet long way to reliable quantitative field calculation of the level and
spatial structure of the mean field.

On top of that, the dynamo is not the only mechanism capable of produc-
ing the large-scale field (see the cited references for more detail). For example,
Dolginov and Toptygin (2004) pointed out that the galactic large-scale field
can be generated and supported by electric current carried by the accelerated
particles (cosmic rays), whose free energy looks sufficient to compensate the
turbulent dissipation of the field. This model is also very far from its comple-
tion mainly because of uncertainty with the intensity of the return currents
produced by the background (thermal) particles capable of reducing or even
fully compensating the CR-produced electric current; see, e.g., Sects. 7.1.3
and 7.6. Perhaps, the galactic disk dynamo is coupled with formation of the
galactic corona and emission of the galactic wind; see Zirakashvili et al. (1996)
for more detail.

8.7.2 Dynamo in Stars

Let us evaluate the characteristic time of the field growth in a main sequence
O class star with a convective core following the classical Vainshtein and
Zeldovich (1972) review paper. In contrast to the core, which is convective in
these stars, the outer layers are free from convection because the temperature
gradient is small there owing to strong radiative thermal conductivity, so no
outer convective zone is available. The star mass is M = 30M�, the surface
temperature is T ≈ 4 × 104 K, the radius is R = 6.6R� ≈ 5 × 1011 cm, and
the linear velocity of the surface rotation at the equator is about 250km/s,
which corresponds to the angular velocity about Ω ≈ 5 × 10−5 rad/s. The
convection speed is estimated as u0 ≈ 2.5 × 105 cm/s; the vertical size of a
convective cell is l ≈ 0.1R ≈ 5×1010 cm. For these parameters the turbulence
correlation time is estimated as τc ≈ l/u0 ≈ 2.5 × 105 s. Let us apply here
the α2-model fully neglecting a possible role of the differential rotation.

The large-scale (L ≈ R) magnetic field according to Eqs. (8.49) and (8.50)
is amplified over the time:

TB =
1

kα
≈ R

2πα
≈ |h|R

2l2Ω
(8.78)

(we use here the α estimate from Eq. (8.16)). The density variation scale |h|
in the convective stellar core is yet undefined. It is reasonable to adopt it to
belong to the range l � |h| � R. Applicability region of Eq. (8.47) requires
that Eq. (8.49) is fulfilled to the order of magnitude, TB > τc. For the adopted
stellar parameters this translates to |h| > 2.5 l and TB > τc ≈ 2.5×105 s. The
magnetic field generated in the convective core then can be transferred to the
star surface by the meridional circulation having the same characteristic time
scale. Many O and B stars display a global surface magnetic field of the order
of 100G.



358 8 Dynamo-Mechanism of Magnetic Field Generation

The estimated time is very short compared with the O star life time
(which is between half and a few million years, i.e., ≈ 5 × 1013 s). Even for
the largest value |h| = R we have TB ≈ 106 s ≈ 0.1 years. These estimates
imply that the dynamo mechanism can in fact efficiently work in the specified
stellar conditions, and call for a comprehensive theory of the stellar dynamo,
which has yet to be built.

8.7.3 Generation of Superstrong Magnetic Fields in
Neutron Stars

The strongest magnetic fields in astrophysics, 108–1014G, are observed at
magnetospheres and surfaces of the neutron stars. In a subclass of the neu-
tron stars with an enhanced magnetic field, called magnetars, the magnetic
field is even stronger, B > 1014G. Measurements of the magnetic fields of
neutron stars with fast rotation (radiopulsars) are performed basically by
two methods: (1) from the star rotation spin down assuming that the corre-
sponding energy losses are mainly provided by the magnetodipole radiation
[see Chap. 9, Eqs. (9.66), (9.100), and Sect. 12.2.2] and (2) by cyclotron lines
in the X-ray spectra of the neutron stars.

The fast rotation of the neutron stars is provided by conservation of angu-
lar momentum during the parent star collapse. The spin-down rate provides
information on the global dipole field of the pulsar, while the cyclotron lines
relate to surface regions contributing to the X-ray emission of the star. The
magnetic fields derived by these two methods are often different from each
other, which are typically ascribed to smaller-scale magnetic field (magnetic
spots), whose magnitude can be 1–2 orders of magnitude larger than that of
the global dipole field.

Originally, these superstrong magnetic fields of the neutron stars were
ascribed to busting the initial magnetic field of the collapsing parent stars
due to freezing-in of the magnetic field into the stellar plasma. However, this
mechanism requires a relatively strong initial stellar magnetic field even if one
entirely neglects the loss of a considerable fraction of the stellar magnetic flux
with the expanding ejection shell of the supernova, whose core remnant forms
the pulsar. For example, in the case of Sun contraction (R� ≈ 7 × 1010 cm)
down to typical pulsar radius of (r ≈ 106 cm), the magnetic field at the pulsar
surface would be about B = B�(R�/r)2 ≈ 5 × 109G, if the mean field at
the photosphere level were B� ≈ 1G. Thus, to obtain the largest pulsar
fields, the collapsing star must have a field of about 104G. Even though
there are normal stars with required field, their total number in the Galaxy
is insufficient to create all known pulsars with that strong magnetic field.

On top of that, there is, perhaps, even stronger shortcoming of the con-
cept of this relict origin of the pulsar magnetic field, which came from the-
oretical consideration and numerical modeling. Specifically, it has been es-
tablished that the star collapse is immediately followed by a stage of strong
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hydrodynamic instability lasting about 1 s. A strong shock wave heats the
star interior up to 1011 K. Hydrostatic equilibrium is then established over a
short time of 10−3–10−2 s. Hydrodynamic instabilities develop at this stage
due mainly to gradients of entropy and lepton densities (including neutrino).
The corresponding motion of the matter starts at outer layers of the star
and propagates toward the star center. Velocity of this convective motion
is rather large, up to subluminal values of 109 cm/s. This strong convection
gives rise to enhanced magnetic diffusivity capable of fast restructuring and
destroying the original magnetic field of the star. On the other hand, the
turbulent convection along with fast rotation of the star can quickly generate
new magnetic field by the turbulent dynamo.

Analytical consideration and numerical models show that the instability
develops unevenly in different zones of the star. An outer zone, R > r > Rc,
where Rc is some critical radius, is unstable due to strong lepton gradi-
ents (viz., electrons and neutrino–antineutrino balance), while the inner zone,
r < Rc, hosts a standard convection driven by gradients of temperature and
density. The instability begins at a subsurface region and takes ∼10ms to
occupy the entire star volume; the instability fully develops over just 30–
100ms. This stage of well-developed convection is, however, rather short; in
∼ 20ms the “convective” zone begins to shrink toward the star center, gradi-
ents smooth out, and the instability quenches by the end of the first minute
of its development. Nevertheless, even this extremely short (for astronomical
scales) episode turns to be sufficient to generate a superstrong magnetic field
observed at the neutron stars.

In both outer (r > Rc) and inner (r < Rc) zones there are turbulent
convective cells, star rotation, and violent fluid motion; however, the fluid
velocities and turbulence properties including the helicity are different. The
convective velocities in the turbulent cells are estimated as 109 and (1 −
3)× 106 cm/s in the inner and outer zones, respectively, while the boundary
between these zones moves toward the center over the typical star cooling
time (1–10) s. The largest spatial scale of the turbulent cell is 1–3 km (recall,
the star radius is only 10–15km).

The turbulence nonuniformity is taken into account by inclusion of vari-
able parameters in the equation for the magnetic field:

∂B

∂t
= ∇× (u×B + αB)−∇× (νt∇×B), (8.79)

where the velocity of large-scale motion is u = Ω × r, with the angular
velocity Ω dependent on the coordinates. A possible rotation model includes
a spherically symmetric component:

Ω(r) = Ω0 +
( r
R

)2
Ω1, (8.80)
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where Ω0 and Ω1 are some constants. The ratio q = Ω1/(Ω0 +Ω1) quantifies
the differential rotation. This parameter is positively or negatively defined
depending on where the rotation is faster—at the center or surface of the
star.

The turbulent parameters α and νt, which are distinctly different in the
two considered zones, can be modeled by smooth functions with a narrow
transition region:

νt = ν1 + (ν2 − ν1){1 + erf [(r −Rc)/ΔR]}/2, (8.81a)

α(r, θ) = α2(r) cos θ{1 + erf [(r −Rc)/ΔR]}/2, (8.81b)

where ΔR = 0.025R is the width of the transition layer; erf is the error
function. Then, let us neglect the turbulence helicity in the inner zone, α1 ≈ 0,
while adopt α2(r) to be constant, α2 = Ωh, assuming that the turbulent cell
and spatial scales of both density and pressure are all of the same order of
magnitude.

Induction Eq. (8.79) supplemented by vacuum boundary condition at the
star surface and zero toroidal field at the star center requires a numerical so-
lution, e.g., utilizing a finite grid for the radial variation with expansion over
spherical harmonics for the angular dependence (Bonanno et al. 2005). The
corresponding numerical calculations show that for a “normal” neutron star
the dynamo works for P = 2π/Ω < P0, where the critical star rotation period
is P0 ≈ 0.5–1 s. Since young neutron stars rotate fast, P ∼ 10–100ms, the
turbulent dynamo is likely to work for most of the neutron stars. Depend-
ing on the differential rotation parameter q, either stationary or oscillatory
dynamo regime is possible. The first one, typical for |q| ≤ 1, originates from
α2-dynamo regime, while the second one, |q| ≥ 1, is produced by αΩ-dynamo.
These two regimes of the magnetic field generation are noticeably different
in efficiency of the poloidal Bp and toroidal Bφ field generation. For |q| < 1
their ratio is Bφ/Bp ≈ 10, while for |q| > 1 (αΩ-regime) Bφ/Bp ≈ 100–200.
A typical period of the oscillating regime is 1 s.

As has been noted, this unstable stage of the neutron star evolution lasts
only about 1min. For the practical purpose, it s highly important to estimate
the saturation magnetic field produced by the end of this stage, which then
freezes in the star crust and then declines slowly due to the Joule dissipation.
Typically, effect of the helicity suppression by the growing magnetic field is
taken into account by a model expression

α(B) =
α0

1 +B2/B2
eq

, (8.82)

where Beq is the “equilibrium magnetic field” obeying the equality of the
magnetic and turbulent energies, B2

eq/8π = ρ〈u2〉/2, which results in “global
quenching” of the magnetic field generation.
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However, we have to emphasize that nonlinear generalization (8.82) of
the helicity parameter is lacking a firm theoretical justification as it was
not derived consistently from the MHD equations. Furthermore, it differs
from Eq. (8.68), which, even being an approximation, has been obtained by
the account of the lowest-order nonlinear terms in the MHD equations. Not
surprisingly, two different expressions, (8.82) and (8.68), offer different esti-
mates for the saturation field, Bsat. Equation (8.68) gives rise to the estimate
Bsat ≈ Beq ≈ (1 − 3) × 1013 for the turbulent cell size about lt = (1–3) km
and typical cooling time of the order of a few seconds. In contrast, Eq. (8.82)
gives rise to Bsat = Beq

√
P0/P − 1, where P0 ≈ 1 is a critical (largest) pe-

riod for the dynamo operation, and P is period of star rotation. The ratio
P0/P can be as high as 103, implying a 1,000-fold imbalance in favor of the
magnetic field energy against the turbulence energy. This option is highly un-
likely because the turbulence is supposed to be suppressed by the magnetic
field at much earlier stage of the field growth. Nevertheless, generation of the
magnetic field of the order of 1013G by the turbulent dynamo is a feasible
process.

The described model implies presence of a specific neutron star subclass
without the large-scale magnetic field. Such stars can appear if their rotation
period right after the parent star collapse is larger than the corresponding
threshold and the large-scale dynamo does not work, i.e., for P � 0.3 s.
Nevertheless, a small-scale field of the order of Beq ≈ 3 × 1013 G must be
generated by the turbulence and then can survive at the star surface. Such
stars are supposed to have the following main properties:

1. Absence of noticeable radio emission because no magnetic moment
is present; in fact, such radio quiet young neutron stars have been
observed, e.g., “magnificent seven” at the Gould belt.

2. Small spin down and nearly constant rotation period.

3. X-ray emission due to surface magnetic field; weak X-ray pulsations are
possible due to inhomogeneities of the temperature and the magnetic
field at the star surface.

4. A strong disconnect between the magnetic field values determined from
the spin down and X-ray emission.

8.7.4 Solar Magnetism, Cycles, and Activity

The Sun is the only star accessible for direct observations of the magnetic
fields in great detail. Role of the solar magnetic field can hardly be over-
stated: no doubts, all kinds of the solar activity (affecting the human life and
technology) are either produced by the magnetic fields or, at least, strongly
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coupled to them. By now, we well know three main components of the solar
large-scale magnetic field (see numerous review papers, e.g., Bruzek and Dur-
rant 1977; Vainshtein et al. 1980; Vitinskii 1983; Obridko 1985; Weiss and
Thompson 2009; Jones et al. 2010 for greater detail).

Toroidal (azimuth) magnetic field up to a few ×103G is located
beneath the photosphere, although it reveals itself at the photosphere at
some regions, called active regions (ARs), and seen as dark sunspots or
groups of the sunspots discovered by Galilei. The sunspots (Figs. 1.2 and 6.3)
have a nonuniform highly dynamic structure with a dark region, umbra, in
the central part surrounded by a less dark filamentary region, penumbra.
The sunspots often appear in bipolar structures consisting of two, leading
and trailing (i.e., following with respect to the solar rotation), spots with
opposite magnetic polarities (e.g, Fig. 10.3) ordered almost parallel to the
solar equator. During a given solar cycle (see below) the polarity of the leading
sunspot is the same in all ARs of the given hemisphere, while different in the
north and south hemispheres, respectively; the polarities reverse each 11-
year cycle. The presence of the bipolar groups can be understood as a result
of emergence of the flux tubes with the toroidal magnetic field from the
convective zone with formation of Ω-like loops; these loops emerging above
the photosphere form a bipolar group at two regions of the fluxtube cross
section with the photosphere level.

The field forming the sunspots has opposite polarities in the north and
south hemispheres; it varies with a period about 22 years. A largest field
over the 22-year cycle appears at latitudes around ≈ ±35◦, then moves
over roughly 11 years toward equator, and disappears at latitudes of ≈ ±8◦

(Spörer’s law). Then, new strong field having the opposite polarity appears
at the middle latitudes; thus, the 22-year cycle consists of two 11-year (semi-)
cycles differing by the magnetic field direction.

This behavior is prominently illustrated by a “butterfly diagram” (up-
per panel in Fig. 8.5). It shows appearance of the sunspots at the middle
latitudes in the beginning of each solar (11-year) cycle, their “drift” to the
equator, and disappearance at the end of the cycle. One can note that the
cycles can overlap: new cycle sunspots appear at the middle latitudes along
with old cycle sunspots still present almost at the equator, although some
cycles (e.g., no. 24) have a delayed start and so do not overlap with the pre-
vious cycle. The lower panel of this figure displays a fraction of visible solar
surface occupied by the sunspots and averaged over a few solar rotations.
Both presented measures are clearly quasiperiodic. Optical observations of
the sunspots lasting continuously since Galilei’s invention of the telescope,
i.e., over a long period from 1610 to now have demonstrated that the ampli-
tude of the cyclic solar activity itself experiences significant variations over
a longer time scale (Fig. 8.6). The largest, over the last 400years, number of
the sunspots (around 200) was observed in 1958; sometimes the number of
sunspots is small or zero; in particular, during a rather long period, 1645–
1715, called the Maunder minimum, there were no observed sunspots at all.
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There is also a poloidal (longitudinal) axisymmetric dipole-like
magnetic field. It is present at high helio latitudes (55◦ and up) in both
hemispheres; it varies with the 22 year quasiperiod and reaches a maximum
(∼10G) during minima of the sunspot activity, i.e., it seems to be 180◦-phase
shifted compared with the toroidal field. Along with this dipole component
(antisymmetric about the equatorial plane), there is a weaker symmetric
quadruple component.

Finally, there is a so-called “sector” magnetic field discovered orig-
inally by first spacecrafts measuring the magnetic field outside the terres-
trial magnetosphere. This component of the large-scale solar magnetic field
is transferred by the solar wind to the interplanetary space and clearly ob-
served at the Earth orbit and farther heliocentric locations (see Sect. 2.5.3).
This field has a magnitude of about 1G and varies for a remote observer with
the period of solar rotation (≈27 days). It does not possess an axial symmetry;
two-sector, four-sector, and six-sector structures have been observed, which
might have been created by a combination of magnetic dipole and quadru-
ple located in the solar equatorial plane. In the system rotating along with
the Sun, this field is relatively stable and roughly constant over many so-
lar rotations. The magnetic sectors in the solar photosphere are relatively

Figure 8.5: Two complementary ways of showing long-term solar-cycle activity; data
from 1874 includes twelve full cycles. Top panel : the butterfly diagram shows evolution
of the sunspot position with phase of the cycle. Specifically, it clearly illustrates that at
the beginning of a new cycle, spots appear at high latitudes around of 30◦. The activity
zones migrate toward the equator and then gradually disappear, along with appearance
of the new spots at higher latitudes manifesting the next cycle activity. Bottom panel :
averaged daily sunspot area, i.e., fraction of the visible hemisphere covered by sunspots
(Weiss and Thompson 2009).
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Figure 8.6: The full range of available yearly averaged sunspot numbers covering the
period from 1610 to 2000. Although the variability is clearly seen, the amplitude of this
activity measure varies irregularly including a prominent interval of extended inactivity in
the seventeenth century—the Maunder Minimum (Weiss and Thompson 2009).

large regions dominated by a field with a given polarity; they occupy a pho-
tospheric area between ≈ ±35◦. Thus, the effective heliomagnetic equator is
not a circle, while a wavy line whose shape changes with the solar cycle phase.

Understanding the solar magnetic field origin requires a detailed infor-
mation on the solar differential rotation as well as on the fluid motions in
the convective zone. The rotation of the solar surface is directly observed
via the spectroscopic Doppler measurements as well as tracing the sunspots
and other features in the photosphere. These observations yield the rotation
period about 25 days at the equator and above 30 days at polar regions; see
Sect. 8.2.

Highly valuable data on the internal solar rotation including dependence
of the rotation on the subphotospheric depth and latitude as well as on pa-
rameters of the fluid and its turbulent motions come from helioseismology.
It is based on investigation of global acoustic solar oscillations modified by
the rotation and magnetic field. These oscillations are likely generated by
convective turbulence and, because of almost spherical shape of the Sun, can
be rather precisely described by spherical harmonics, whose resonant frequen-
cies are specified by the solar fluid properties. The solar rotation gives rise
to a small difference in the frequencies of the waves propagating along and
opposite to the solar rotation; this splitting is sensitive to the rotation veloc-
ity distribution over the depth and latitude. Eventually, a sophisticated fine
tuned technique allows deriving the differential rotation inside the Sun.

Moreover, the helioseismology quantifies the bounds of the convective
zone and type of the fluid motion around those bounds. In particular, it is
well established that the transport of the nuclear fusion energy released in
the solar core up to the heights about 0.7R� is provided by the radiative
heat transfer. There, the temperature gradient is small and so no convection
arises. Above this radiative zone, there is a convective zone, where the gra-
dient is slightly super-adiabatic, which drives the convection. However, the
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distribution of the density and pressure is rather close to the adiabatic ones.
Measurements of the sound speed gradient, which changes strongly when the
heat transfer regime changes from the radiative to the convective one, yielded
the inner radius of the convective zone: r/R� = 0.713±0.003, independent on
latitude. The transition between the radiative and convective zones is rather
sharp, less than 0.1 of the pressure scale.

Figure 8.7: The internal rotation of the Sun, as measured with the helioseismology
technique based on observations made by the MDI/SOHO instrument. X-axes (horizontal)
shows the solar equator, z (vertical) is directed to the pole, the solid circle segment is the
solar surface, and the dashed circle segment indicates the base of the convection zone.
The differential rotation rate Ω/2π is shown in nHz by the contour levels and color code
(Weiss and Thompson 2009).

The differential rotation profiles derived from the helioseismology are
given in Fig. 8.7. Below the convective zone base (the dashed line) the rotation
is almost rigid body, while it is a differential one in the convective zone,
faster in the equatorial zone and slower at the polar regions. The rotation
velocity of the inner radiative zone is roughly the same as in the outer zone
in the middle latitudes. Above and below these latitudes, there is a region of
sheared fluid flow at the base of the convective zone. This region is called the
tachocline. It is supposed that the solar dynamo works the most efficiently
in this tachocline region, which generates here the magnetic field observed
then in the sunspots. There is one more sheared fluid flow region at upper
bound of the convective zone.

The helioseismology measurements locate the center of the tachocline
region from r/R� = 0.692±0.002 at low latitudes up to 0.710±0.002 at higher
latitude, 60◦. The relative depth of this region w/R� is 0.033 ± 0.007 and
0.076±0.010, respectively. In addition, helioseismology is capable of providing
temporal variations of the differential rotation profile of a few months and
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years. Specifically, comparison of the running measurements on the averaged
rotation profiles reveals small, while statistically significant, stripes of zonal
flows migrating from middle latitudes to equator covering at least one-third
of the convective zone below its upper bound. These stripes represent likely
the traces of the active latitude migration, where the sunspots are localized,
although no firm causal relation between the magnetic activity and these
zonal flows has yet been established. If the main location of the solar dynamo
is the tachocline region, then one can expect detecting the duration of the
solar cycle by temporal variations of the angular velocity in the tachocline
region.

One more important dynamic ingredient is a so-called north–south
meridional circulation. The corresponding fluid flows were detected by a
local helioseismology technique. These flows are poleward directed; they are
steady on the scale of a few years. In the layer of roughly 2% of the solar
radius these polar flows move with a velocity 20–30m/s independent on the
depth.

The presented summary of observational data, whose volume has drasti-
cally increased over the first decade of the third millennium, clearly demon-
strates that all conditions necessary for the turbulent dynamo to work are
available at the Sun. Indeed, there are (1) well-localized convective zone with
turbulent cells, (2) general rotation and the differential rotation; and (3) re-
gions with shear flow capable (in principle) of producing a significant helicity
of the turbulence and, thus, provide operation of αΩ-dynamo. Attempts to re-
produce the solar cycle with required properties (e.g., the butterfly diagram)
yielded controversial results; in particular, the toroidal field often drifts to-
ward poles in place of equator. An idealized illustrative example of numerical
dynamo modeling, presented in Fig. 5 of Weiss and Thompson (2009), does
show some general resemblance with the butterfly diagram, though, not sur-
prisingly, lacking any detail similarity. Indeed, development of quantitative
theory of the solar dynamo and solar cycles possessing a reliable predictive
power is extremely complicated, which is additionally enhanced by nonexis-
tence of closed nonlinear theory of the turbulent convection with account of
the magnetic fields and Coriolis forces, as well as by a complex asymmetric
geometry of the system under study. Furthermore, given a large volume of
available detailed observational data on the solar interior and cycle, the the-
ory is supposed to yield a highly detailed picture capable of consistent quanti-
tative interpretation of this whole data volume. The target theory, thus, must
disentangle local and sporadic manifestations of the solar activity from the
main cycle properties, consistently accounting for both. Given this great com-
plexity of the system complemented by the detailed observational demand to
the theory, it becomes clear why no commonly accepted quantitative theory
of the solar dynamo has yet been developed; see recent review papers (Weiss
and Thompson 2009; Jones et al. 2010) for more discussion on the subject.

We have already mentioned that the global solar cycle is accompanied by
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plenty local manifestations reviewed in many monographs and textbooks, e.g.,
Kaplan et al. (1977), Benz (2002) and Aschwanden (2005). Here, we briefly
discuss some of them, using Fig. 1.2 as a general guideline. In the atmosphere
there are bipolar and unipolar magnetic regions and coronal holes.
The latter ones are characterized by a low density and temperature; they are
located above unipolar photospheric regions providing open magnetic field
lines merging the solar wind field lines. The coronal holes produce the high-
speed solar wind flows.

Sunspots (Fig. 6.3): Dark (in visual light) regions at the photosphere
with a typical scale of a few thousand km and temperature by 500–1000K
below the photosphere temperature. They only appear at a restricted region
of latitudes, between 40◦ and 5◦ at both hemispheres. The magnetic field in
the sunspots reaches relatively high values of 103 to 5 × 103G (recall, the
mean photospheric field is about 1G). The sunspots often appear in groups
and form an active region with a typical lifetime from weeks to months.
These active regions drive most of the solar activity by different kind of their
magnetic energy release.

Prominences (Sect. 2.2.3): Elongated gas filaments, hundred thousand
km long, “hanged” at tens thousand km above the photospheric level. They
have diverse shapes that reflected in a number of poetic names like coronal
rain, hedgerow, tornado, and fountain. The prominence density is higher,
while the temperature is lower than in the ambient coronal plasma, which
implies that the magnetic field (a few tens G) plays an important role in
maintaining the pressure balance. The prominence lifetime is from a few min-
utes to many months. The prominences are highly dynamic structures with
a plethora of regular and chaotic motions of the prominence plasma. Some
prominences, called eruptive prominences, can sporadically explode and
produce ejections into the interplanetary space after which the prominence
either experiences a restructurization or disappears entirely.

Coronal Mass Ejections, CMEs (Fig. 1.3): Excessive free magnetic
energy accumulated in the corona above active regions can produce unsta-
ble twisted (due, in particular, to differential photosphere rotation) mag-
netic structures capable to be ejected with a velocity between 20 km/s and
3,200km/s (the mean value is about 500km/s). The ejected mass can exceed
1015 g, which corresponds to “mean” CME kinetic energy of ∼ 3 × 1030 erg.
The CMEs have strong effect on the space weather (Gary and Keller 2004)
including numerous effects on the Earth magnetosphere, human life, and tech-
nology. Some of the eruptions result in a “failed CME,” which falls back to
the photosphere instead of propagation out of the Sun.

Solar Flares: Events of a relatively fast, impulsive, release of the free
magnetic energy, perhaps, via a “magnetic reconnection” process (see
Sect. 5.3.2), giving rise to a firework of secondary effects throughout the entire
electromagnetic spectrum and particular emissions. One important solar flare
property is its ability to accelerate charged particles (electrons and ions) up
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to high, including ultrarelativistic, energies. These nonthermal particles prop-
agate in the magnetized corona and produce a whole variety of nonthermal
electromagnetic emissions (see Chap. 9), e.g., coherent decimeter emissions,
incoherent microwave gyrosynchrotron emission, hard X-ray bremsstrahlung,
gamma-ray lines, and π◦-decay generated quanta (stimulated by ions). Some
fraction of the accelerated particles loses its energy to collisionally heat the
coronal and chromospheric plasma, and the other fraction escapes into inter-
planetary space and is detected in-situ by spacecrafts. These escaping parti-
cles also drive very-low-frequency emissions as they propagate in the tenuous
solar wind plasma. The total flare energy is within 1029–1032 erg. The flare
duration varies from a minute to a few hours (Syrovatskii 1981; Sakai and
Ohsawa 1987; Priest and Forbes 2000; Benz 2002; Aschwanden 2005).

Problems

8.1 Adopt a 2Dmotion with a given stationary velocity field u = (ux(x, y), uy
(x, y), 0) in an incompressible homogeneous conducting fluid. Prove that such
a motion cannot support the magnetic field so the initial field dissipates over
a finite time (Zeldovich antidynamo theorem).

8.2 A star with a solar radius R� ≈ 7 × 1010 cm collapses to the size of
a typical neutron star, RN ≈ 106 cm, conserving the shape, mass, and the
angular momentum (but not the energy). How the rotation period P will
change?

8.3 Calculate helicity parameter α and mean DC electric field induced by
the turbulence composed of MHD waves excited on top of a nonpotential
force-free magnetic field characterized by the force-free parameter αFFF ; see
Problem 2.6.

Answers and Solutions

8.1 Use Cartesian coordinates and project the second of Eq. (8.1) onto the
axes Oz:

∂Bz
∂t

+ (u·∇)Bz = νm�Bz. (1)

Then, multiply both sides of the equality by Bz and integrate over all
2D space. The term containing velocity u vanishes for the incompressible
bounded fluid (∇·u = 0). All other terms can be transformed to the form

∂

∂t

∫
B2
zdxdy = −2νm

∫
(∇Bz)2dxdy. (2)

Since the rhs of the equality is negative if the region filled by the field is
bounded, then the field energy decreases monotonically and, thus, Bz → 0



8.7 Magnetic Field Generation in Stars and the Galaxy 369

for t → ∞. Thus, Bz-component decays, so two other components can be
studied assuming Bz = 0.

They obey the equation

∂Bx, y
∂t

+ (u·∇)Bx, y = νm�Bx, y + (B·∇)ux, y. (3)

These components are convenient to express in a standard way via the vector
potential (B = ∇ ×A) directed along the axes Oz, so, Az(x, y) ≡ A(x, y).
Both Eqs. (3) can be derived from equation

∂A

∂t
+ (u·∇)A = νm�A (4)

(the fluid incompressibility must again be taken into account in proving this
statement). Let us multiply Eq. (4) by A and then integrate over the plane
(x, y) and over t to obtain

∫
A2(x, y, 0)dxdy −

∫
A2(x, y, t)dxdy = 2νm

∫ t

0

dt

∫
(B2

x +B2
y)dxdy. (5)

The integral in the rhs of the equality is a monotonically rising function of
time bounded by the value

∫
A2(x, y, 0)dxdy. Thus, the integral over time

converges at t → ∞, which proves that B2 = B2
x + B2

y → 0 at t → ∞. This
finding represents one of the antidynamo theorems, proving impossibility of
generating a large-scale magnetic field by certain (relatively symmetric) fluid
motions.

8.2 Assuming that the star mass is uniformly distributed over its volume
both before and after the collapse we obtain

PN = P�

(
RN
R�

)2

≈ 0.5ms.

This period is roughly one order of magnitude shorter than rotation periods
typically observed from young neutron stars.

8.3 Let us calculate the large-scale electric field, created by helical turbu-
lence, taking into account the entire range of harmonics forming the random
fields of u(r, t) and b(r, t). From the first of Eq. (2.101) we find

b(r, t) = B0ν

∫ t

−∞

∂u(r, τ)

∂xν
dτ − ∂B0

∂xβ

∫ t

−∞
uβ(r, τ)dτ, (8.83)

which allows to form the required bilinear cross product u × b and perform
the averaging

Eh = −(1/c)〈u(r, t)× b(r, t)〉 (8.84)
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over the turbulent ensemble according to Eqs. (8.28) and (8.60), which is
convenient to express via the vector components

〈uσ(r, t)bμ(r, t)〉 = −∂B0μ

∂xβ

∫ t

−∞
〈uσ(r, t)uβ(r, τ)〉dτ

+B0ν

∫ t

−∞
〈uσ(r, t)∂uμ(r, τ)

∂xν
〉dτ. (8.85)

The first term in the rhs describes a modification to Ohm’s law due to the
wave turbulence ensemble (anomalous resistivity), while the second one de-
scribes another correction to Ohm’s law due to the turbulence helicity; we
will see below that these two terms provide comparable contribution in the
problem studied. Adopting for simplicity that the turbulence is statistically
uniform and isotropic, we can express the first integral using the invariant
Kronecker’s tensor as∫ t

−∞
〈uσ(r, t)uβ(r, τ)〉dτ = (〈u2〉τc/3)δσβ , (8.86)

where 〈u2〉τc/3 = νt is the magnetic turbulent diffusivity; cf. Sect. 6.11.
The second integral, which is a third-rank tensor, is apparently propor-

tional to the Levi–Civita’s permutation tensor eσμν and the kinetic helicity
pseudoscalar α

∫ t

−∞

〈
uσ(r, t)

∂uμ(r, τ)

∂xν

〉
dτ =

1

2
αeσμν . (8.87)

Now, the large-scale DC electric field can be written in the form

Eh = (νt/c)∇×B0 − (α/c)B0 = −(αeff/c)B0, (8.88)

where, according to Eqs. (2.108) and (8.13),

α = − τc
12
αFFF v

2
A

〈b2〉
B2

0

, αeff = α− (νt/c)αFFF (8.89)

and

αeff = −5τc
12
αFFF v

2
A

〈b2〉
B2

0

(8.90)

is the total effective helicity parameter specifying the electric field in a non-
potential flux tube. Although both terms in αeff are comparable, the con-
tribution from the anomalous magnetic diffusivity (anomalous resistivity) is
four times larger than the direct helicity contribution. The correlation time
can be estimated using the correlation scale Lc and the Alfvén velocity vA:
τc = Lc/vA. Finally, recalling that the magnetic field vector can be expressed
via the electric current density, Eq. (8.88) can be presented in Ohm’s law form
j = σeffE, where σeff = −(c2/4π)(αFFF /αeff) is the anomalous (turbulent)
electric conductivity.



Chapter 9

Emission Processes

A classical problem of calculating the electromagnetic emission produced by a
charge (or a group of charges) moving in the vacuum is formulated in terms of
computing the Poynting vector flux through a closed infinitely distant surface
surrounding the radiation source (Melrose 1980; Rybicki and Lightman 1986;
Ginzburg 1987; Nagirner 2007b). In contrast, computing the emission from a
plasma, which is an anisotropic, dispersive, and absorbing matter, is distinctly
different from the classical vacuum problem. In particular, unlike the vacuum
case, the polarization vectors of the eigenmodes are not arbitrary any longer,
while set up by the plasma dispersion (see Chap. 3). Then, the concept of
the nonzero energy flux through an infinitely distant surface can only work
in case of truly nonabsorbing matter, which is strictly speaking not the case
for real media including astrophysical plasmas.

In fact, in the case of absorbing matter, there is no exact way of isolating
the radiated energy from the total energy losses of a moving charge. Indeed,
if a radiating particle moves in a finite region of the infinite space filled by
an absorbing matter, the energy flux through an infinitely distant surface is
always evanescent. The emission processes in the strong absorption conditions
are specifically addressed in monograph (Bazylev and Zhevago 1987). Here
we consider the case of weak absorption, when the characteristic length of
the photon absorption is much larger than the wavelength and the length
over which the emission is formed (called the coherence length or formation
zone). In such a case (valid within certain spectral transparency windows)
the absorption can be discarded while calculating the elementary emission
process (e.g., volume emissivity) but can be accounted at a later stage of
the radiation transfer through the plasma (see Chap. 10). In this way, the
radiation flux from a volume becomes uniquely defined, although it does
depend on the volume now unlike the vacuum case.

G.D. Fleishman and I.N. Toptygin, Cosmic Electrodynamics, Astrophysics
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9.1 Emission of Waves by a Given Electric Current

9.1.1 Energy Loss and Electromagnetic Wave
Radiation in an Anisotropic Medium

Let us consider the energy loss of an electric current jω,k in an anisotropic
absorbing medium (Toptygin and Fleishman 2008; Fleishman 2008):

W = −
∞∫

−∞

∫
V

j(r, t)E(r, t)drdt = −(2π)4
∞∫

−∞

∫
j∗ω,kEω,kdkdω =

∞∫
0

∫
Wn,ωdΩdω,

(9.1)

where

Wn,ω = −2(2π)4 Re

∫
j∗ω,kEω,kk

2dk. (9.2)

The factor of 2 and real part selector Re in Eq. (9.2) appear because in the
most rhs of Eq. (9.1) we integrate over the positive frequencies only rather
than over the entire infinite frequency axes. Let us calculate the electric
current produced by the electric current jω,k in the anisotropic medium using
Eqs. (3.11) and (3.12).

Apparently, the formal solution of Eq. (3.11) has the form, cf. Eq. (4.48),

Eα(ω,k) = gαβ(ω,k)jβ(ω,k), (9.3)

where

gαβ(ω,k) = −i4π
ω
Aαβ(ω,k), (9.4)

Aαβ(ω,k) = (T̂ (ω,k)−1)αβ is a tensor inverse to the Maxwellian one (the
inverse tensor for short), such as

Tαβ(ω,k)Aβν(ω,k) = δαν . (9.5)

According to the tensor algebra for Δ �= 0 the inverse tensor reads

Aβν = (T̂−1)βν =
Δνβ

Δ
. (9.6)

Here (like in Chap. 3) Δ = |Tαβ | is the determinant of the Maxwellian tensor
Tαβ and Δνβ is its adjoint (accordingly, Δβν is its cofactor).

Equations (9.3), (9.4), and (9.6) yield the electric field in the form

Eα = −i 4π
ωΔ

jνΔνα. (9.7)

Note that in anisotropic or gyrotropic medium this vector is not necessarily
transverse to the wave vector k. The transverse direction is only guaranteed
for the electric displacement D and magnetic induction B vectors.
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Substituting Eq. (9.7) into Eq. (9.2), we present the energy loss of a given
current j in a medium in the form

Wn,ω = 4(2π)5� i
∞∫
0

jνΔναj
∗
α

ωΔ(ω,k)
k2dk. (9.8)

The necessary and sufficient condition for inverse tensor (9.6) to exist is a
nonzero value of the determinant Δ �= 0. Note that for real k and ω the
integration path contains poles where Δ = 0; thus, we have to adopt rules
of how to bypath the poles in the complex plane ensuring the generated
perturbations to asymptotically represent outgoing spherical waves at large
distance from the source, likewise in the vacuum case. In the medium this
can easily be achieved by adopting a small damping of the waves provided by
a small anti-Hermitian part of the dielectric tensor, resulting in ω → ω + i0.
Accordingly, in the vicinities of the determinant zeros, we can write

Δ(ω,k) =
∂Δ

∂ω
(ω − ω(k) + i0), (9.9)

which for further integration can be transformed using the Sokhotsky rule:

1

ω − ω(k) + i0
=

P
ω − ω(k)

− iπδ(ω − ω(k)). (9.10)

The principal value of the integral yields no real contribution, so the emission
is entirely specified by the δ-function term

Wn,ω = 2(2π)6�
∞∫
0

jνΔναj
∗
α

ω∂Δ(ω,k)/∂ω
δ(ω − ω(k)) k2dk, (9.11)

where a summation over all possible zeros of the determinant is implied.
Given that all the quantities entering Eq. (9.11) are known, this expression
represents a valid formal solution to the problem.

Along with this formal solution, another variant of Eq. (9.8) employing
explicit form Eq. (3.31) of determinant Δ can be convenient. Assume that
the refraction coefficients n1,2(ω,κ) are known (as they can always be found
in principle from the dispersion relation Δ = 0). Then, using Eq. (3.31), the
denominator of the integrand in Eq. (9.8) can be transformed to the form

1

ωΔ
=

ω

ac2(n2
1 − n2

2)

[
1

k2 − ω2n2
1/c

2
− 1

k2 − ω2n2
2/c

2

]
. (9.12)

Accordingly, Eq. (9.8) transforms to

Wn,ω = 4(2π)5� i
∞∫
0

ωjαΔαβj
∗
β

ac2(n2
1 − n2

2)

[
1

k2 − ω2n2
1/c

2
− 1

k2 − ω2n2
2/c

2

]
k2dk.

(9.13)
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Again, to perform the integration around poles we adopt a small damping
of the normal modes giving rise to small positive imaginary parts of the
refractive indices �n2

σ > 0 for ω > 0, which yields the integration rules:

� i

k2 − ω2n2
σ/c

2

∣∣∣∣
n2

σ→+0

→ − π

2k
δ(k − ωnσ/c), σ = 1, 2. (9.14)

We note next that the adjoint tensor Δμν is a Hermitian one: Δμν = Δ∗
νμ.

Thus, the tensor product jμΔμνj
∗
ν is real for real ω and k. Integrating

Eq. (9.13) with Eq. (9.14) we obtain

Wn,ω = − (2π)6ω2

ac3(n2
1 − n2

2)
[n1(jαΔαβj

∗
β)1 − n2(jαΔαβj

∗
β)2]. (9.15)

Although the adjoints entering Eq. (9.15) can always be computed based
on the Maxwellian tensor, it is convenient to express them via the polarization
vectors of the corresponding eigenmodes of the medium. Let us demonstrate
that a polarization vector can be written as

e
(i)
β = AiΔ

(i)
μβ , (9.16)

where i is index of the mode and Ai is a normalization constant; the in-
dex μ has arbitrary fixed value (from 1 to 3). Indeed, substitution of the
refractive index n = ni and solution (9.16) into Eq. (3.26) turns them to a
set of equivalences: two of the equalities (those with μ �= α) are satisfied ir-
respectively of n, while the third one (that with μ = α) does only for n = ni
due to vanishing of the determinant. Likewise, using Hermitian properties of
the Maxwellian tensor Tαβ, it is straightforward to show that the first index
of the adjoint defines the components of the complex conjugate polarization
vector e∗μ. This allows, for n = ni, expressing the adjoint via the normalized
polarization vectors:

Δ(i)
μν = C(i)e∗μeν , (9.17)

where e∗μeμ = 1, so C(i) = Δ
(i)
μμ is a real (positive or negative) normalization

constant that is equal to the adjoint trace. We have to emphasize that the
adjoint can be reduced to the direct product of the polarization vectors only
when the corresponding dispersion relation n = ni is fulfilled; otherwise,
relation (9.17) does not take place.

Accordingly, the radiation spectral density is expressed via the eigenmode
polarization vectors and refractive indices as

Wn,ω =
(2π)6ω2

a(ω,κ)c3(n2
2 − n2

1)
[n1C

(1)|(e(1)∗μ jμ)|2 − n2C
(2)|(e(2)∗μ jμ)|2]. (9.18)

This equation describes transformation of a given current energy to the en-
ergy of electromagnetic radiation, which, apparently, must describe emission
of the transverse free-space modes in the vacuum when (εαβ → δαβ). How-
ever, this turns Eq. (9.18) to an indefiniteness of 0/0 kind, whose computation
can be easier done at an earlier step of the derivation.
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9.1.2 Emission in Vacuum

When εαβ → δαβ , Eq. (3.29) yields the following simplified expressions of the
determinant and the adjoint tensor:

Δ → Δ0 = (1− n2)2, Δαβ → Δ0
αβ = (1− n2)(δαβ − n2κακβ). (9.19)

Upon their substitution into Eq. (9.7) the common factor cancels out from
numerator and denominator, so the Fourier-transform of the electric field
produced by a given current in the vacuum reads

E = −i 4π

ω(1− n2)
[j − n2(κ · j)κ] = −i 4πω

ω2 − c2k2

[
j − c2(k · j)k

ω2

]
. (9.20)

Then, Eq. (9.2) with Eq. (9.20) yields

Wn,ω = 4(2π)5
ω3

c4
�(−i)

∞∫
0

|j⊥(ω,k)|2dk
k2 − ω2/c2

. (9.21)

Selection of the retarded solution is again achieved by adding an infinitely
small imaginary part to the frequency ω, which gives rise to a familiar ex-
pression

Wn,ω = (2π)6
ω2

c3
|j⊥(ω,κ)|2, (9.22)

describing emission of two free-space modes with (arbitrary orthogonal)
transverse polarizations, which can also be obtained by explicit analysis of
the Poynting vector:

S =
c

4π
[E ×H] = c

H2

4π
n = c

E2

4π
n. (9.23)

9.1.3 Emission of Electrostatic Modes

The considered wave modes can be called quasitransverse modes because
they contain nonzero displacement D �= 0 and magnetic B �= 0 vectors,
which are transverse to the wave vector. The condition B �= 0 was used to
derive Eq. (3.12). In addition, there can be wave modes with B = 0 (and
D = 0) and purely longitudinal electric vector E‖k satisfying the following
equation for the Fourier components:

k ×E = 0, kαεαβEβ = −i4π
ω
kαjα(ω,k). (9.24)

Seeking the electric field in the form E = E‖κ we find from Eqs. (9.24)

E‖ = −i4πκ · j(ω,k)
ωεl(ω,k)

, εl(ω,k) ≡ a(ω,k) = κακβεαβ(ω,k). (9.25)
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Then, calculation of the spectral energy density of the generated longitudinal
waves using Eq. (9.2) and a small imaginary part of εl yields

W l
n,ω =

2(2π)6

ω

∞∫
0

dk|k · j(ω,k)|2δ(εl(ω,k)). (9.26)

Here, unlike Eq. (9.18) one must take the spatial dispersion into account.
Without the spatial dispersion the corresponding electric oscillations, appear-
ing at a number of distinct single frequencies, cannot propagate and transfer
the energy. Integration in Eq. (9.26) can be performed using the expression

δ(εl(ω,k)) =
∑
a

δ(k − ka(ω, κ))

|∂εl/∂k|k=ka(ω)
, (9.27)

where the summation is made over all possible roots of the equation εl(ω,k) =
0, setting up the dispersion laws of the longitudinal waves in the plasma, i.e.,
over all possible longitudinal waves of the plasma. Generally, the number of
these mode can be quite (infinitely) large.

9.1.4 Energy Loss and Electromagnetic Wave Radiation
in Plasma with Spatial Dispersion

In addition to modification of the longitudinal wave dispersion, the spatial
dispersion can have other diverse effects on the eigenmodes; in particular,
it results in new eigenmodes and additional absorption of the eigenmodes
(because anti-Hermitian part of the dielectric tensor is nonzero in this case).
Let us explicitly expand our treatment to the case when the spatial dispersion
is present and the wave damping is not necessarily infinitely small (Toptygin
and Fleishman 2008; Fleishman 2008). To do so, we express inverse tensor

(9.6) via the eigenvectors b(i)(ω,k) of the Maxwellian tensor, which results
in a simple diagonal form [cf. Eq. (3.17)] of the inverse tensor:

Aαβ(ω,k) =
3∑
i=1

1

λ(i)
b(i)α b

(i)∗
β =

b
(1)
α (ω,k)b

(1)∗
β (ω,k)

λ(1)(ω,k)

+
b
(2)
α (ω,k)b

(2)∗
β (ω,k)

λ(2)(ω,k)
+
b
(3)
α (ω,k)b

(3)∗
β (ω,k)

λ(3)(ω,k)
. (9.28)

Thus, we can calculate the electric field produced by the current jω,k
using Eqs. (9.3), (9.4), and (9.28) and substitute it into Eq. (9.2), to express
energy losses of the current in the anisotropic medium via eigenvectors and
eigenvalues of the Maxwellian tensor:

Wn,ω = −4(2π)5

ω
Im

∫
k2dk

3∑
i=1

| (b(i)∗(ω,k) · jω,k) |2
λ(i)(ω,k)

. (9.29)
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In an arbitrary absorbing medium the eigenvalues λ(i)(ω,k) are complex
and their imaginary parts are fully responsible for the energy loss of a given
electric current jω,k. In principle, Eq. (9.29) allows finding the loss because all
entering terms can be algebraically determined. However, such calculations
are highly cumbersome for the most general case of an anisotropic absorbing
medium with spatial dispersion. In particular, the Cardano formulae for the
roots of cubic equation (3.15) specifying the eigenvalues of the Maxwellian
tensor are very complicated. Nevertheless, the problem simplifies in a number
of important cases, e.g., if the medium possesses a symmetry or in the spectral
transparency windows when the anti-Hermitian part of the dielectric tensor is
small. In the latter case the eigenvalue of the (almost) Hermitian Maxwellian
tensor is real number, so the only imaginary contribution to integral (9.29)
comes from zero eigenvalues related to the eigenmodes according to condition
(3.33). Thus, it is the case of generation of the eigenmodes by a given current.

Let us derive the emission of the eigenmodes from Eq. (9.29) entirely
neglecting the wave damping in the medium (while keeping the spatial dis-
persion). Since in a nonabsorbing media the Maxwellian tensor is a Hermitian
one its eigenvalues λ(i)(ω,k) are real. This implies that for any λ(i)(ω,k) �= 0
the integral in Eq. (9.29) is real as well, thus, its imaginary part (and, ac-
cordingly, the energy loss) is evanescent. The only imaginary contribution
comes from the poles, where the eigenvalues λ(i)(ω,k) vanish. Recall that
the condition λ(i)(ω,k) = 0 is just the dispersion law for the eigenmode with
index i. Thus, we arrive at a familiar conclusion that in nonabsorbing media
the energy loss of the current jω,k is entirely formed by excitation of the
eigenmodes (including but not limited to the high-frequency electromagnetic
waves capable of leaving the volume).

To account for the imaginary contribution to integral (9.29), we again
introduce an infinitely small wave damping by adding small imaginary part
to the refractive index: n→ n+ iε, ε→ +0, which yields

λ(i)(ω,k) → λ(i)(ck/(n+ iε),k) ≈ λ(i)(ω − iγ,k) ≈ λ(i)(ω,k)− iγ
∂λ(i)

∂ω
.

Then, we use the Sokhotsky rule, Eq. (9.10):

� 1

λ(i)(ω − iγ,k)

∣∣∣∣
γ→0

→ +πsign

{
∂λ(i)

∂ω

∣∣∣∣
ω=ωσ

i (k)

}
δ(λ(i)(ω,k)). (9.30)

Now we can take into account that when the dispersion law λ(i)(ω,k) = 0 is

fulfilled, the eigenvectors b(i)(ω,k), coincide with the polarization vectors of
the given mode e(i)(ω,k), thus the current energy loss for eigenmode gener-
ation reads

Wn,ω = −2(2π)6

ω

∫
k2dk

3∑
i=1

| (e(i)∗(ω,k) · jω,k) |2 sign

⎧⎨
⎩
∂λ(i)

∂ω

∣∣∣∣∣
ω=ωσ

i
(k)

⎫⎬
⎭ δ(λ(i)(ω,k)),

(9.31)
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which is approximately valid in the case of finite small damping. Thus, we
explicitly express the radiated energy as a sum over all possible eigenmodes
of the medium. The number of these modes is generally unlimited because
each dispersion equation λ(i)(ω,k) = 0 can have many roots if the spatial
dispersion is taken into account, so the actual number of terms in the sum
can be larger than three.

To make practical use of Eq. (9.29) or Eq. (9.31) we have to explicitly
compute the corresponding eigenvalues. Let us expand Eq. (3.15) with the
Maxwellian tensor components; using its determinant in form (3.31) we write
down the characteristic equation for the eigenvalues λ:

λ3 − [ε1 + ε2 + ε3 − 2n2]λ2 + [n4 − (ε1 + ε2 + ε3 + a)n2 + ε1ε2 + ε2ε3

+ ε1ε3 − g2]λ− a(n2 − n2
1)(n

2 − n2
2) = 0. (9.32)

Here we consider the case of interest when dispersion law (3.33) is fulfilled
for an eigenmode, say, n2 = n2

1. Then, the free term in Eq. (9.32) vanishes
so λ can be taken out of the brackets and the cubic equation reduces to a
quadratic one:

λ
[
λ2− [ε1 + ε2 + ε3 − 2n2

1

]
λ

+
[
n4
1 − (ε1 + ε2 + ε3 + a)n2

1 + ε1ε2 + ε2ε3 + ε1ε3 − g2
] ]

= 0, (9.33)

which is easy to solve:

λ(1) = 0, (9.34)

λ(2,3) =
ε1 + ε2 + ε3 − 2n2

1 ±
√

ε21 + ε22 + ε23 + 4g2 − 2(ε1ε2 + ε2ε3 + ε1ε3) + 4an2
1

2
.

(9.35)

Since according to Eq. (9.31) the emission is only produced when λ = 0,
we are interested in λ(1), which must be calculated more accurately as n2 →
n2
1. Accordingly, let us rewrite Eq. (9.32) in the form

λ
[
λ2 − [ε1 + ε2 + ε3 − 2n2

]
λ+

[
n4 − (ε1 + ε2 + ε3 + a)n2

+ε1ε2 + ε2ε3 + ε1ε3 − g2
] ]

= a(n2 − n2
1)(n

2 − n2
2). (9.36)

The condition λ→ 0 allows adopting λ = 0 inside the square brackets in
Eq. (9.36) so the evanescent eigenvalue λ(1) receives the form:

λ(1) =
a(n2

1 − n2
2)

[n4
1 − (ε1 + ε2 + ε3 + a)n2

1 + ε1ε2 + ε2ε3 + ε1ε3 − g2]
(n2 − n2

1)

=
a(n2

1 − n2
2)

λ(2)λ(3)
(n2 − n2

1), (9.37)
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i.e., λ(1) is proportional to the difference (n2 − n2
1) with a non-unitary coef-

ficient in a general case; the latter equality in Eq. (9.37) is written based on
the Vieta’s theorem applied to Eq. (9.33):

λ(2)λ(3) = [n4
1 − (ε1 + ε2 + ε3 + a)n2

1 + ε1ε2 + ε2ε3 + ε1ε3 − g2], (9.38)

which means that finding the evanescent eigenvalue λ(1) does not require the
other two eigenvalues; one only needs their product (9.38). Using the second
equality in Eq. (3.34) we can conclude that for λ(1) = 0,

λ(2)λ(3) = Δ
(1)
ii = C(1) (9.39)

in full agreement with Eqs. (9.17) and (9.18). Note that explicit forms (9.35)
and (9.37) allow straightforward confirmation that all required relationships
(3.34) including Eq. (9.39) for the eigenvalues are fulfilled.

The second eigenvalue has a similar form:

λ(2) =
a(n2

2 − n2
1)

λ(1)λ(3)
(n2 − n2

2),

λ(1)λ(3) =n4
2 − (ε1 + ε2 + ε3 + a)n2

2 + ε1ε2 + ε2ε3 + ε1ε3 − g2=Δ
(2)
ii =C(2).

(9.40)

Finally, the third eigenvalue arising for a = 0 corresponds to generation of
longitudinal modes described above. As has been noted correct treatment
of the longitudinal wave generation requires account of the spatial disper-
sion. When the spatial dispersion is discarded, only two quasitransverse wave
modes can be generated. For this case from Eqs. (9.37) and (9.40) we find

� 1

λ(1)
=

πωλ(2)λ(3)

2acn1(n2
1−n2

2)
δ(k−ωn1/c), � 1

λ(2)
=

πωλ(1)λ(3)

2acn2(n2
2−n2

1)
δ(k−ωn2/c).

(9.41)

Then, Eqs. (9.29)–(9.31) yield the spectral and angular density of the
quasitransverse wave emission:

Wn,ω =
(2π)6ω2

a(ω,κ)c3(n2
2 − n2

1)
[n2λ

(1)λ(3)|n=n2
|(e(2)∗μ jμ)|2 − n1λ

(2)λ(3)|n=n1
|(e(1)∗μ jμ)|2]

(9.42)

in full agreement with earlier derived Eq. (9.18) after taking into account
Eq. (9.39), i.e., C(1) = λ(2)λ(3)|n=n1 and C(2) = λ(1)λ(3)|n=n2 . We note that
if the refractive indices of the anisotropic medium are both around unity then
the factors

F1 =
λ(2)λ(3)|n=n1

a(n2
2 − n2

1)
, F2 =

λ(1)λ(3)|n=n2

a(n2
1 − n2

2)
(9.43)

go to one as well. The same happens in the vacuum and isotropic media.
However, in the general case of the anisotropic or gyrotropic media the de-
parture of these factors from the unity can be significant, which results in
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a strong departure of the radiation intensity and polarization from the case
of the isotropic medium. Physically, departure of these factors from the vac-
uum value (one) is related to the fact that the energy of the eigenmodes of
a medium is composed of both electromagnetic energy and the energy of the
plasma particles involved in the wave motion.

Let us finally rewrite radiation intensity (9.42) in a more compact form
explicitly using introduced anisotropy factors (9.43):

Wn,ω =
(2π)6ω2

c3

[
n1F1|(e(1)∗μ jμ)|2 + n2F2|(e(2)∗μ jμ)|2

]
. (9.44)

In the general case when the spatial dispersion is included we have to add
generation of the longitudinal waves (l) and all new quasitransverse waves
(σ) appeared due to the spatial dispersion

Wn,ω =
∑
σ

Eσn,ω + E ln,ω, (9.45)

where

Eσn,ω = (2π)6
ω2nσ(ω)

c3
Fσ|(e∗σ · jω,k)|2, (9.46)

E ln,ω = 2
(2π)6

ω

∫
dk | (k · jω,k) |2 δ(εl

′
(ω,k)), (9.47)

εl
′
(ω,k) = �εl(ω,k) is the real part of the longitudinal dielectric permittivity.

Since we have integrated over dk with the use of δ-functions in the quasitrans-
verse terms, then ω and k are linked in Eq. (9.46), by the corresponding dis-
persion law ω = ωσ(k). In contrast, in longitudinal term (9.47) the δ-function
is kept, although this integration can always be performed by employing rela-
tion (9.27) in which the summation is performed over all possible longitudinal
waves of the medium. The number of these waves can be rather large (in par-
ticular, infinitely large in case of the hot magnetized plasma) and some of
them have a very weak dependence ω(k). This is why it is typically more
convenient to first integrate over the frequency, rather than over the wave
number, and consider distribution of the radiated energy over k, rather than
over ω.

We conclude that in an anisotropic dispersive medium with a weak wave
damping, the energy radiated by a given electric current into any given
eigenmode of the medium is described by Eqs. (9.46) and (9.47) with the
corresponding refraction indices and polarization vectors. In the case of the
magnetized plasma, the dispersion curves consist of a number of isolated
branches (see Chap. 3) separated by discontinuities around the electron or
ion resonances. The low frequency modes are often considered as separate
modes (Alfvén, fast, whistler, Z- mode etc); emission of all those modes is
described by the derived equations without limitation.

Then, we have to note that even though the anisotropic factors go to
one in the isotropic medium and, accordingly, the radiation intensities of the



9.1 Emission by a Given Electric Current 381

two normal modes are defined by two terms in Eq. (9.44) with the same
refraction indices, this does not imply an unpolarized radiation. In fact,
the polarization can be very strong (up to 100% as in case of Vavilov–
Cherenkov radiation (VCR), see Sect. 9.2.1) depending on relative directions
of the electric current vectors, wave vector, and other vectors essential for
the problem under study.

At the high frequencies, where no longitudinal waves are available and
any difference between the normal modes can be ignored, we can add up the
two contribution using

eαeβ =
1

2
(δαβ − nαnβ) (9.48)

to find the total (in all polarizations) radiation intensity generated by the
current at a given frequency in a given direction

En,ω = (2π)6
ω2n(ω)

c3
|(n× jω,k)|2. (9.49)

This equation resembles (being only by the factor n(ω) ∼ 1 different from)
Eq. (9.22) for the wave radiation in the vacuum. Nevertheless, these two equa-
tions are fundamentally different from each other. Indeed, here the variables
ω and k, defining the Fourier component of the current jω,k, are linked by
the plasma dispersion law ω = ω(k) rather than the vacuum relation ω = kc,
which modifies the emission in the medium compared with the correspond-
ing emission in the vacuum. Then, the given external current stimulates a
plasma current, which, in its turn, is a source of additional electromagnetic
emission. As a result, the radiative processes in a medium are much more
rich and diverse than in the vacuum.

We note that the equations obtained are also valid for radiation by a sin-
gle charged particle. Indeed, the electric current produced by a single particle
with charge Q, moving along a given path r(t), is

j(r, t) = Qv(t)δ(r − r(t)), (9.50)

whose Fourier component has the form

jω,k = Q

∫
v(t)ei(ωt−kr(t)) dt

(2π)4
. (9.51)

Substitution of Eq. (9.51) into equations for the radiated energy yields even-
tually the radiation produced by a single charged particle; see Problem 9.1.
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9.2 Emission by a Rectilinearly Moving Particle

The simplest kind of the particle motion is a rectilinear trajectory with a con-
stant velocity. Such a particle can produce electromagnetic emission if some
additional conditions are met. One possibility is a particle moving strictly
rectilinearly without any acceleration. The other possibility is a case of weak
acceleration, when the particle velocity can be considered constant and the
path is a straight line, while the nonzero acceleration can be taken into ac-
count within the perturbation theory. Remarkably, in both of these cases, a
radiation can be produced and both of them allow finding general solutions
applicable for any media and any kind of weak acceleration. Both cases are
considered below.

9.2.1 Vavilov–Cherenkov Radiation

Let us consider radiation arising as a charged particle moves rectilinearly in
a medium with the refractive index exceeding one. Adopt for simplicity the
medium to be isotropic so the two refractive indices are equal to each other:
nσ=1(ω) = nσ=−1(ω) = n(ω).

The electric current produced by this charge is

j(r, t) = Qvδ(r − vt), (9.52)

whose Fourier transform is straightforward to find by direct integration:

jω,k =
Qv

(2π)3
δ(ω − kv). (9.53)

As the polarization vectors of the eigenmodes of the isotropic medium are not
uniquely specified, we consider emission of two orthogonal linearly polarized
modes in a given direction; in one of the modes the electric vector belongs
to the plane defined by vectors k and v; in the other one the electric vector
is transverse to this plane. Apparently, the second wave mode will not be
emitted in this direction because the dot product (eσ · v) entering Eq. (9.46)
vanishes.

Thus, the generated emission is 100% linearly polarized with the electric
vector belonging the (k,v) plane. Substitution of Eq. (9.53) into Eq. (9.46)
yields the spectral and angular distribution of the VCR:

En,ω =
Q2ω2n(ω)

c3
v2 sin2 θδ2(ω − kv). (9.54)

The infinite radiated energy contained in Eq. (9.54) due to squared δ-function
is just a math formulation of the fact that a particle forced to move recti-
linearly an infinitely long time will generate proportionally infinite amount
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Figure 9.1: VCR kinematics.

of energy. To obtain a more meaningful measure of the energy produced per
unit time we use the following presentation of the squared δ-function:

δ2(ω − kv) =
T

2π
δ(ω − kv), (9.55)

where T is the total time of emission. Now, we can divide Eq. (9.54) by T
and take into account kv = ω vcn(ω) cos θ to obtain the spectral and energy
distribution of VCR per unit time:

In,ω =
Q2ωn(ω)v2

2πc3
sin2 θ δ

(
1− v

c
n(ω) cos θ

)
. (9.56)

Apparently, radiation (9.56) has a nonzero value for the only directions
satisfying the VCR condition:

cos θ =
c

vn(ω)
. (9.57)

This means that all the existing particles that move “sub-luminally,” v < c,
can only produce the VCR at frequencies where n(ω) > 1; in particular, no
VCR is possible in the vacuum (though, it would be possible for hypothetical
super-luminal particles). Equation (9.56) implies that the VCR directivity
pattern at a given frequency is an infinitely narrow open cone whose surface
is defined by Eq. (9.57) (Fig. 9.1).

Then, integrating Eq. (9.56) over full solid angle dΩ = d cos θdϕ we find
the radiation spectral intensity

Iω =
Q2ωv

c2

(
1− c2

v2n2(ω)

)
Θ
(v
c
n(ω)− 1

)
. (9.58)
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Figure 9.2: (a) A model of plasma dielectric permittivity with molecular line contribution
included; (b) Vavilov–Cherenkov radiation produced by fast electrons with a power-law
distribution over the velocity—blue and green curves corresponding to the blue and
green models of the dielectric permittivity in the left panel, respectively; the red curve is
for ε(ω) = 1+ω2/ω2

0 , i.e., without standard plasma contribution (Fleishman and Kontar
2010). Reproduced by permission of the AAS.

Eventually, the full radiated VCR energy per unit time is specified by
integration of Eq. (9.58) over all frequencies, which depends on the specific
spectral shape of the function n(ω) in a given medium.

9.2.2 Vavilov–Cherenkov Radiation from Solar
Chromosphere

We see that the VCR is produced by any charged particle moving faster than
the corresponding speed of light in the medium. It, therefore, seems irrelevant
to the astrophysical objects since in a fully ionized plasma the high-frequency
dielectric permittivity is less than unity, ε(ω) � 1. Therefore, the phase ve-
locity of electromagnetic waves c/

√
ε(ω) is larger than the speed of light,

c, and the VCR does not occur. However, there are partly or weakly ion-
ized astrophysical plasmas (molecular clouds, stellar atmospheres, planetary
ionospheres, etc.) in which contributions from neutrals can make the VCR
possible in some favorable spectral windows.

One of many examples of such partly ionized plasmas is the solar chromo-
sphere; there are numerous atoms and molecules whose quantum transitions
can make positive contribution to the dielectric permittivity and, accord-
ingly, make the VCR possible at certain frequencies. A charged particle with
velocity v emits VCR in the medium, where its dielectric permittivity ε(ω)
is such that v > c/

√
ε(ω). The dielectric permittivity of normal gases is

only slightly more than unity in the optical range [e.g., Hydrogen gas has
(ε − 1) ∼ 2 × 10−4], so only highly relativistic particles with γ > 50 can
emit. The situation is however very different in other frequency ranges, near
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transition frequencies of atoms or molecules: ε(ω) goes up and down being
considerably larger than one at certain frequency windows, which allows even
sub-relativistic electrons to emit VCR at favorable conditions.

Each atomic or molecular quantum transition makes a contribution to

the dielectric permittivity of the form of δεnm(ω) = 4πnee
2

me

Snm

(ω2
nm−ω2)+iΓnmω

,

where Snm is the oscillator strength of the transition, ωnm is the transition
frequency, and Γnm is the transition decay constant. The resulting dielectric
permittivity accounting for plasma (free electrons) and molecular contribu-
tions is ε(ω) = 1 − ω2

pe/ω
2 +
∑
δεnm. The exact spectroscopic permittivity

depends on the chemical composition of the chromosphere with the sum over
all excitation states of corresponding molecules, and, so, complicated and not
unique. Here, to perform an order of magnitude estimate, we assume that
there are many atomic/molecular transitions capable of making a contribu-
tion to the dielectric properties of gas. Then, the energy level populations
over the rotational levels of chromospheric molecules can be assumed to have
a Boltzmann distribution with the gas temperature T ; therefore population
densities will have maxima at energy levels above the THz range increasing
to about kBT . Thus, we adopt the mean molecular contribution to the di-
electric permittivity to have a model form ω2/ω2

0, where ω0 is an unknown
constant, which is a parameter of the model.

To estimate the Cherenkov spectrum from an ensemble of accelerated
electrons precipitating from coronal part of the flare volume onto the chro-
mosphere (Fleishman and Kontar 2010), we adopt a spectrum of the electrons

described by a power law over electron velocity ne(v) = AN0v
β−1
0 /vβ , v < c

(it is more convenient in this case than a more familiar power law over energy
since the VCR intensity depends on the velocity rather than on energy), where
N0 is the total number of electrons with velocity above minimum velocity v0,
β is the spectral index, and A is a dimensionless normalization constant of
order of unity, the VCR yields flux at Earth:

Ff =
1019

4πR2

(2π)2AN0e
2fvβ−1

0

cβ

[
2ε(β−2)/2

β(β − 2)
+

1

βε
− 1

β − 2

]
(sfu). (9.59)

We emphasize that when the flare-accelerated electrons are present, they pro-
duce VCR at all frequency windows (including IR, viz, and UV bands) where
the dielectric permittivity is (even marginally) above unity, giving rise to a
radiation spectrum raising with frequency for (mean) dielectric permittivity
increasing with frequency and vice versa.

Fig. 9.2a displays the model dielectric permittivity rising with frequency
as described, while Fig. 9.2b shows the corresponding Cherenkov spectra. One
can see that the standard plasma contribution to the dielectric permittivity
dominates below roughly 100GHz; thus, the VCR is only possible at higher
frequencies, f > 100GHz. The spectrum shape and the flux density level
allow this emission to be easily detected in observations for typical numbers
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Figure 9.3: Decimeter to submillimeter spectra of a strong solar flare occurred on Decem-
ber 06, 2006, around 18:40 UT, at three phases: precursor, impulsive, and decay phases
obtained by OVSA in the microwave range and SST at sub-THz range; from Kaufmann
et al. (2009). Presence of a distinct sub-THz component, presumably produced by the
VCR mechanism at solar chromosphere, is evident.

of flare-accelerated electrons. The predicted flux density, being up to ∼5 ×
107 sfu at 400GHz, is much larger than the strongest radio bursts recorded
from flares, which is good as this allows a competing VCR even from lower
number of radiating electrons, for unfavorable viewing angles, or/and when
chromospheric absorption is enhanced.

The sub-THz radiation from solar flares has only recently been observed
from a few large events, at a small number of frequencies. The available at the
time or writing observational tools are unable to measure polarization and
are clearly insufficient to provide detailed spectral and positional information
about the sub-THz bursts.

The available observations suggest that, on top of quiet Sun emission, at
least two kinds of sub-THz emission can be produced. The first kind looks like
a natural extension of the microwave spectrum to higher frequencies and so
can reasonably be interpreted as synchrotron radiation (see Sect. 9.4), from
accelerated electrons, which are also responsible for microwave and hard X-
ray emission. The second kind looks like a distinct spectral component rising
with frequency in the sub-THz range in contrast to the microwave spectrum,
which falls with frequency, Fig. 9.3. The main observational characteristics of
this component are the following: relatively large radiation peak flux of the
order of 104 sfu; radiation spectrum rising with frequency F (f)∝f δ; spectral
index varying with time within δ ∼ 1–6; sub-THz component can display a
sub-second time variability with the modulation about 5%; the source size is
believed to be less than 20′′.

The VCR from compact sources located at the chromospheric level,
Fig. 9.2, is likely to be responsible for this distinct rising with frequency
sub-THz component of large solar flares: it produces a very large radiation
flux, while the spectral slope does not have any fundamental constrain, so
can cover all the observed range from 1 to 6. Given that the emission is from
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compact footpoints <10′′, where energetic particles interact with the chro-
mosphere in a typical flare, we conclude that the VCR is fully consistent with
the observations of the rising sub-THz flare component. The time variability
requires corresponding fluctuations of the electron distribution function,
similar to sub-second variations of microwave GS or HXR radiations.

In contrast, models based on other emission mechanisms (see below this
chapter) proposed so far to account for the sub-THz component, including
thermal free–free emission or gyro emission from flare-accelerated electrons,
suffer from a number of shortcomings; thus, none of them is readily consistent
with the full list of the sub-THz component properties and/or with avail-
able context observations at other wavelength. We emphasize a high value
of the VCR diagnostics potential: since its spectrum depends on the dielec-
tric permittivity of the chromosphere in a straightforward way, the sub-THz
emission represents a sensitive tool to measure the chromospheric dielectric
permittivity and so chromosphere atomic and molecular composition and the
corresponding excitation states.

9.2.3 Perturbation Theory for Radiation

Assuming the departure of the particle motion from the rectilinear one is
somewhat small we adopt the particle velocity to be constant, while the
acceleration of the particle due to an external field effect is accounted by
the perturbation theory (Fleishman 2008). It is convenient here to start from
well-known expression for the Fourier component of the emission field in the
wave zone (Landau and Lifshitz 1971):

Eω=
Q

2πc2R

eikR(
1−nv

c

√
ε(ω)

)2
∞∫

−∞

[
n×

[(
n−v

c

)
×w(t)

]]
e
iωt
(
1−nv

c

√
ε(ω)

)
dt,

(9.60)

where R is the distance between the source and observer, n is the unit vec-
tor along the wave vector, ε(ω) is the dielectric permittivity of the plasma
(adopted here isotropic for simplicity; otherwise, one of two refractive indices
must be used instead) and w(t) is the particle acceleration due to external
field. Introducing a parameter with the dimension of frequency

ω′ = ω
(
1− nv

c

√
ε(ω)

)
(9.61)

and the corresponding Fourier component of the acceleration

wω′ =

∞∫
−∞

w(t)eiω
′t dt

2π
, (9.62)

we obtain

Eω =
Q

c2
eikR0

R0

( ω
ω′
)2 [

n×
[(

n− v

c

)
×wω′

]]
. (9.63)
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Then, the radiation intensity in a given direction at a given frequency, i.e., the
Poynting flux (9.23) via a distant closed surface in the Fourier representation

En,ω = cR2
0 | Eω |2 (9.64)

takes the form

En,ω =
Q2

c3

( ω
ω′
)4 ∣∣∣[n×

[(
n− v

c

)
×wω′

]]∣∣∣2 . (9.65)

Equation (9.65) is rather general; it is valid for particles with arbitrary energy,
both relativistic and nonrelativistic.

In particular, for the nonrelativistic case we can take advantage of v/c�
1 and make expansion of Eq. (9.65) over this small parameter. The zeroth
order term is convenient to display via the dipole moment of the system of
emitting charges, d =

∑
Q

QrQ. Adopting v/c → 0 and noting that in this

case ω′ ≈ ω and Qw = d̈, we find

En,ω =

√
ε

c3

∣∣∣[n× d̈ω

]∣∣∣2 , (9.66)

while the first-order terms result in a quadruple and magneto-dipole radi-
ation; the latter can be calculated by Eq. (9.66) where the electric dipole
moment must be replaced by the magnetic moment mω.

In the ultrarelativistic case Eq. (9.65) can further be simplified by taking
into account strong directivity of the emission along the particle velocity, i.e.,
smallness of the angle θ between the particle velocity v and the direction of
the emitted waves n. Let us introduce a 2D vector θ, transverse to n, whose
absolute value equals to the angle between v and n, defined as

v

v
= n

(
1− θ2

2

)
+ θ. (9.67)

Then, present the acceleration vector wω′ as a sum of two components: the
parallel (wω′‖) and perpendicular (wω′⊥) to the velocity vector:

wω′ = wω′‖ +wω′⊥ (9.68)

Substitution of Eqs. (9.67) and (9.68) into Eq. (9.65) gives rise to the following
expression for the spectral and angular distribution of the radiation intensity:

En,ω =
Q2

c3

( ω
ω′
)4 ∣∣∣∣
[
(wω′⊥θ) θ − ω̃

ω
wω′⊥ − θ

(vwω′‖)
c

]∣∣∣∣
2

, (9.69)

where ω̃/ω = (1 − vn/c) ≈ (1/2)(γ−2 + θ2).
In most cases, contribution of the parallel acceleration is small (by a

factor of γ2) due to a large difference between the so-called “longitudinal”
and “transverse” masses of a relativistic particle and can safely be discarded.
We, however, keep this contribution, having in mind those situations when
the transverse acceleration is small or evanescent.
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Apparently, the contributions related to wω′‖ and wω′⊥ in Eq. (9.69) are
coupled in a general case. Nevertheless, they decouple if the acceleration vec-
tor does not depend on the velocity direction θ. Likewise, they decouple after
averaging Eq. (9.69) over the azimuth angle of the vector θ. This averaging
yields:

dĒn,ω =
1

2π

2π∫
0

En,ωdφ = E⊥
n,ω + E‖

n,ω, (9.70)

where

E⊥
n,ω=

Q2

c3

( ω

ω′
)2 |wω′⊥|2

⎡
⎣1− ω

ω′

(
γ−2+

ω2
pe

ω2

)
+

ω2

4ω′2

(
γ−2+

ω2
pe

ω2

)2

+
ω2

4ω′2γ4

⎤
⎦ , (9.71)

E‖
n,ω =

2Q2

c3

( ω
ω′

)3 ∣∣wω′‖
∣∣2
[
1− ω

2ω′

(
γ−2 +

ω2
pe

ω2

)]
. (9.72)

Equations (9.71) and (9.72) adopt a simple plasma formula for the dielectric

permittivity ε(ω) = 1 − ω2
pe

ω2 that is always valid at high frequencies. Thus,
the derived formulae solve the problem of radiation by a rectilinearly moving
particle under condition of known weak acceleration, which has yet to be
determined.

To do so we write equation of relativistic particle motion for components
parallel and transverse to the initial particle velocity:

Mγw‖ +Mγ3(v‖/c2)(v‖ ·w‖ + v⊥ ·w⊥) = F ‖, (9.73)

Mγw⊥ +Mγ3(v⊥/c2)(v‖ ·w‖ + v⊥ ·w⊥) = F⊥. (9.74)

As we consider the case of constant velocity, v⊥ = 0, v ≈ v‖ ≈ v0 ≈ c, and

γ =
√
1− v20/c

2 
 1, the second term in the lhs of Eq. (9.74) vanishes; while
the first term in the lhs of Eq. (9.73) can be discarded for highly relativistic
particles, which yields

w⊥ =
F⊥
Mγ

; w‖ =
F ‖
Mγ3

(9.75)

where F ‖ and F⊥ are the longitudinal and transverse components of the
external force acting on the particle; then for F ‖ ∼ F⊥ at ω ∼ ω′γ2 we have

E‖
n,ω ∼ E⊥

n,ω

γ2
, (9.76)

which justifies that the contribution E‖
n,ω can in many cases be discarded.

Note that the radiation related to the longitudinal acceleration is only rele-
vant to the case of external electric field; in the magnetic field the acceleration
is always transverse to the particle velocity vector.
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To transform the solution obtained to a practical form we have yet to
express the particle acceleration components in terms of the external electro-
magnetic field, supposed to be a given function of the coordinates and time.
Note that in a general case the field can contain both regular and random
components so the square of the acceleration modulus |wω′⊥|2 includes both
regular and random components as well. To find a stationary radiation level
we have to average |wω′⊥|2 over the random field distribution.

Let us adopt that the random Lorentz force F (r, t), composed of both
electric and magnetic components, can be presented via the Fourier transform
over ω and k:

F (r, t) =

∫
e−i(ωt−kr)F ω,kdωdk. (9.77)

The dependence of the magnetic Lorentz force on the particle velocity does
not complicate the problem because within the perturbation theory v =
const. Force (9.77) is a global field that varies in both space and time. In
contrast, the particle acceleration is driven by a local value of these field
present in the very place where the particle is located instantly. Finding this
local force as a function of time is a highly complicated task. However, within
the perturbation theory this problem simplifies greatly because the particle
velocity is adopted constant and the trajectory needed to be substituted into
Eq. (9.77) takes an especially simple form r = r0 + vt; thus

F (r0 + vt, t) =

∫
e−i(ωt−kr0−kvt)F ω,kdωdk. (9.78)

This expression depends only on time (rather than on r), so the Fourier
component F ω′ defining the acceleration wω′ = F ω′/Mγ is determined by a
Fourier transform of Eq. (9.78) over time:

F ω′=

∫
dt

2π
eiω

′tF (r0 + vt, t) =

∫
dωdkδ(ω′ − ω + kv)F ω,ke

ikr0 . (9.79)

Accordingly, the square modulus of the force | F ω′ |2 receives the form

| F ω′ |2=
∫

dωdkdω1dk1e
i(k−k1)r0δ(ω′−ω + kv)δ(ω′−ω1 + k1v)F ω,kF

∗
ω1,k1

.

(9.80)

The force square modulus | F ω′ |2 depends according to Eq. (9.80) on the
initial position of the fast particle r0; thus, value (9.80) fluctuates although
its mean value is nonzero (even when the entire field F ω,k is a complex
function with zero mean). As has been said, the stationary emission level is
specified by the averaging of the value

〈| F ω′ |2〉 in Eq. (9.80), which is easy
to perform assuming that all the initial positions of the radiating particle
are equally probable. In this case noting that the exponent exp(i(k − k1)r0)
oscillates strongly for k �= k1, we find

1

V

∫
ei(k−k1)r0dr0 =

(2π)3

V
δ(k − k1), (9.81)
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where V is the source volume. Then, for
〈| F ω′ |2〉, we obtain

〈| F ω′ |2〉 = (2π)3

V

∫
dωdkδ(ω′ − ω + kv) | F ω,k |2 . (9.82)

Finally, the averaged value of the square of the particle acceleration Fourier
component receives the form

| wω′⊥ |2= (2π)3

M2γ2V

∫
dωdkδ(ω′ − ω + kv) | F ω,k⊥ |2, (9.83)

which uniquely links the spatiotemporal Fourier component of the Lorentz
force (rhs) and the temporal Fourier component of the particle acceleration
(lhs). Substituting Eq. (9.83) into Eq. (9.71) and using the dummy arguments
(q0, q) for (ω,k), we eventually obtain the energy emitted over the entire
time1 of the particle motion per unit solid angle Ω per unit frequency ω

E⊥
n,ω=

(2π)3Q2

M2c3γ2V

( ω
ω′
)2[

1− ω

ω′γ2∗
+

ω2

2ω′2γ4∗∗

]∫
dq0dqδ(ω

′−q0+qv) | F q0,q⊥ |2,
(9.84)

where

γ−2
∗ = γ−2 + ω2

pe/ω
2; γ−4

∗∗ =
1

2

(
γ−2 +

ω2
pe

ω2

)2

+
1

2γ4
, (9.85)

defined in a way ensuring γ∗∗ = γ∗ = γ at high frequencies ω 
 ωpeγ,
where the plasma dispersion (term ω2

pe/ω
2) can be discarded. Recall that

the frequency ω′ (when the emission takes place in a plasma with dielectric

permittivity ε(ω) = 1− ω2
pe

ω2 ) is

ω′ =
ω

2

(
γ−2 + θ2 +

ω2
pe

ω2

)
. (9.86)

To compute the radiation intensity into the full solid angle one has to inte-
grate Eq. (9.84) over dΩ = sin θdθdϕ. Since Eq. (9.84) does not depend on ϕ,
while the angle θ is small, sin θdθ � θdθ = dθ2/2 = d(ω′/ω), then

E⊥
ω =

(2π)4Q2

M2c3γ2V

∞∫
1/2γ2∗

d

(
ω′

ω

)( ω
ω′
)2 [

1− ω

ω′γ2∗
+

ω2

2ω′2γ4∗∗

]

×
∫

dq0dqδ(ω
′ − q0+qv) | F q0,q⊥ |2 . (9.87)

1Note that the adopted constancy of the particle velocity implies that the particle
moves in the given field infinitely long so the entire radiated energy is proportionally
infinite.
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If there is a magnetic field only (no electric field), then the square of
the transverse Lorentz force is | F q0,q⊥ |2= Q2 | B⊥

q0,q |2= Q2(δαβ −
vαvβ/v

2)Bαq0,qB
β∗
q0,q, and, likewise (substituting Bαq0,q → Eαq0,q) for the elec-

tric field only.
To be more specific let us consider a random magnetic field, i.e.,

|F q0,q⊥|2 = e2|B⊥
q0,q|2 = e2(δαβ − vαvβ/v

2)Bαq0,qB
β∗
q0,q, and introduce the

second-order correlation tensor of the statistically uniform random magnetic
field as follows; see Sect. 7.4:

Tαβ(r, τ) = 〈Bst,α(R, t)Bst,β(R + r, t+ τ)〉
=

1

TV

∫
dtdRBst,α(R, t)Bst,β(R + r, t+ τ). (9.88)

Then, express | B⊥
q0,q |2 via the Fourier spectrum Tαβ(q0,q) of this correlation

tensor using the following expression:

Bαq0,qB
β∗
q0,q =

TV

(2π)4
Tαβ(q0, q). (9.89)

Here we used the correlation tensor defined by Eq. (9.88), whose Fourier
transform is Tαβ(q0, q) =

∫
drdτ
(2π)4 e

i(q0τ−qr)Tαβ(r, τ). Then, multiplying this

by (δαβ − vαvβ/v
2), we obtain

| B⊥
q0,q |2= TV

(2π)4

(
δαβ − vαvβ

v2

)
Tαβ(q0, q) =

TV

(2π)4
T⊥(q0, q), (9.90)

where T⊥(q0, q) = Tαβ(q0, q)
(
δαβ − vαvβ

v2

)
is the spectrum of the random

magnetic field transverse to the particle velocity. If the random field is com-
posed of random waves with the dispersion relation q0 = q0(q) (in the limiting
case of a static random field we have q0(q) ≡ 0), the spectrum takes the form
T⊥(q0, q) = T⊥(q)δ(q0 − q0(q)).

Substituting all required values into Eq. (9.84) and dividing it by the total
duration of emission T we arrive (Fleishman 2006) at the radiation intensity
(energy emitted per unit frequency per unit solid angle per unit time):

In,ω =
Q4

2πM2c3γ2

( ω
ω′
)2 [

1− ω

ω′γ2∗
+

ω2

2ω′2γ4∗∗

]

×
∫

dq0dqδ(ω
′ − q0 + qv)T⊥(q)δ(q0 − q0(q)). (9.91)

When the particle moves in an arbitrary potential electric field it could
be convenient to express the radiation intensity via the scalar potential ϕω,k
instead of the electric field itself. Using well known expression for the electric
field Eω,k via the potential ϕω,k, we obtain the square modulus of the Fourier
component | Eω′ |2 in the form:

| Eω′ |2= (2π)3

V

∫
k2dωdkδ(ω′ − ω + kv) | ϕω,k |2 . (9.92)
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Then, the transverse and parallel accelerations receive the forms

| wω′⊥ |2= Q2

M2γ2
(2π)3

V

∫
k2⊥dωdkδ(ω

′ − ω + kv) | ϕω,k |2, (9.93)

| wω′‖ |2= Q2

M2γ6
(2π)3

V

∫
k2‖dωdkδ(ω

′ − ω + kv) | ϕω,k |2; (9.94)

thus, the radiation intensities produced by the transverse and parallel particle
accelerations, respectively, transform to

E⊥
n,ω=

(2π)3Q4

M2c3γ2V

( ω
ω′
)2[

1− ω

ω′γ2∗
+

ω2

2ω′2γ4∗∗

]∫
q2⊥dq0dqδ(ω

′−q0+qv) |ϕq0,q |2,

(9.95)

E‖
n,ω =

2(2π)3Q4

M2c3γ6V

( ω
ω′
)3 [

1− ω

2ω′γ2∗

] ∫
q2‖dq0dqδ(ω

′ − q0 + qv) | ϕq0,q |2,

(9.96)

where we have replaced the dummy arguments (ω,k) → (q0, q) in the inte-
grands. Integrating then over all possible directions of the n vector we obtain
the radiation intensity (related to the transverse acceleration) into the full
solid angle:

E⊥
ω =

(2π)4Q4

M2c3γ2V

∞∫

1
2

(
γ−2+

ω2
pe

ω2

)
d

(
ω′

ω

)( ω
ω′
)2 [

1− ω

ω′γ2∗
+

ω2

2ω′2γ4∗∗

]

×
∫
q2⊥dq0dqδ(ω

′−q0+qv) | ϕq0,q |2; (9.97)

a similar integration is easy to perform also for E‖
ω.

9.2.4 Thomson Scattering

As one of the simplest examples of the electromagnetic emission by charged
particles we consider a process of emission by a slow, nonrelativistic particle,
whose motion is perturbed by an external electromagnetic wave. Because this
original wave already represents a radiation, the process under study is com-
monly called scattering of radiation, which is convenient to characterize
by the differential and total cross sections of the scattering:

dσ =
dI(θ, α)

γ0
σ =

∫
dσ. (9.98)

Here dI(θ, α) = γr2dΩ is the radiation intensity per solid angle dΩ averaged
over time; γ and γ0 are the mean energy flux densities defined by the Poynting
vector in the scattered and incident waves, respectively.
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Below we calculate the scattering cross section of a weak electromagnetic
wave satisfying the condition

e|E0|/mωc� 1, (9.99)

where E0 and ω are the amplitude and frequency of the incident wave, by a
free nonrelativistic particle, which is called Thomson scattering. Condition
(9.99) ensures that the particle remains nonrelativistic during its interaction
with the wave. Equation (9.66) for the dipole radiation in the time (instead
of Fourier) domain is

dI

dΩ
=

1

4πc3
(d̈ × n)2, (9.100)

where d = er is the electric dipole moment, r is the radius vector of the
particle, and n is the direction of scattering.

In the equation of nonrelativistic motion we can safely discard the mag-
netic force (vB/c� E) so we obtain

mr̈ = eE(t) = eE0 cosωt =
eE0

2
(eiωt + e−iωt), r̈ = eE/m. (9.101)

To the same accuracy the factor eik·r can be replaced by one since its variation
over the wave period is of the order of small parameter (9.99). From here we
conclude that the electron oscillates with the same frequency as the incident
wave, so the scattered wave will also have the same frequency. Using the

averaged wave amplitude E2(t) = |E0|2/2 we can find the differential cross
sections, which differ depending on incident wave polarization.

For a wave propagating along Oz axes with linear polarization, E0 =
E0ex, we obtain

dσ

dΩ
= r20(1− sin2 θ cos2 α), r0=

e2

mc2
; σ=σT=

8π

3
r20 ≈ 6.65× 10−25 cm−2,

(9.102)

where θ and α are the polar and azimuth angles of the scattered wave vector
relative to Oz axes; the total cross section is found by integration of the
differential one over the angles and is called Thomson cross section.

In the case of circular polarization, E0 = E0(ex ± iey)/
√
2,

dσ

dΩ
=

1

2
r20(1 + cos2 θ), σ = σT , (9.103)

for any direction of the electric vector rotation in the wave; thus the cross
section of unpolarized wave is also given by Eq. (9.103). As we see from
Eqs. (9.102) and (9.103), the total cross section is equal to the Thomson cross
section in all the cases, so it does not depend on the wave polarization. The
parameter r0 has a dimension of size and is called classical electron radius.
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The equations obtained show that heavy particles (ions) almost do not take
part in the wave scattering because of their big masses: the ion contribution
to the scattering by free charges is about (me/mi)

2 � 10−6 compared with
the electron contribution.

Note that this conclusion is a consequence of ignoring the plasma dis-
persion and, specifically, the Debye shielding. Indeed, for scattering of waves
with the length larger than the Debye radius, each electron is surrounded by
an equal positive charge formed by the corresponding lack of other electrons
within the Debye sphere. Thus, the electron having the negative charge and
the Debye sphere around it having the same positive charge will produce
radiations in opposite phases, which will effectively compensate each other.
This compensation does not occur in case of ions because the compensating
negative charge in the Debye sphere around the ions is mainly formed by the
electrons. Thus, the oscillations of the Debye spheres around the ions will give
the main contribution in this regime, which is called Rayleigh scattering.

The Thomson scattering, therefore, correctly describes the electromag-
netic wave scattering for reasonably short waves, shorter than the Debye
radius, which varies depending on the source conditions. In most cases, it is
valid in the optical range, e.g., applicable to the stellar light scattering, or
even down to infrared and millimeter range. In contrast, in the meter and
decimeter radio domains, the collective plasma behavior is typically impor-
tant, so the Rayleigh scattering is relevant.

9.2.5 Inverse Compton Effect

Thomson or Rayleigh scattering (Sect. 9.2.4) of relatively low-frequency elec-
tromagnetic waves by nonrelativistic electrons does not change the frequency
of the scattered radiation. However, if the frequency of the scattered wave ω
is large so that the corresponding photon energy �ω is comparable to the elec-
tron rest energymc2 or if the scatterer is a relativistic electron, the scattering
is accompanied by a change of the wave frequency: it can either increase or
decrease depending on the parameters involved. To explicitly illustrate this
let us consider the energy and momentum conservation laws (cf. Sect. 4.3)
during a photon to electron collision.

Below we use these conservation laws in a form of conservation of a four-
momentum p in a 4D space, defined as p = (E/c,p), for which the following
statements are valid:

|p| �= p, E =
√
m2c4 + c2|p|2, (9.104)

while the square of the four-momentum is defined as

p2 = E2/c2 − |p|2 = (mc)2. (9.105)

Square of any four-vector is invariant, whose value does not depend on the
reference system. For a photon m = 0 so the square of its four-momentum is
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zero, �2k2 = 0 and |k| = ω/c. The dot product of two four-vectors is another
invariant defined as

pk =
Eω
c2

− p · k =
Eω
c2

− |p|ω
c

cos θ0, (9.106)

where θ0 is angle between 3D vectors p and k.
Consider now a collision of electron and photon with initial four-

momentum vectors p and k, which transform to p′ and k′ after the collision.
Conservation of the total four-momentum can be written in the form

p+ k − k′ = p′. (9.107)

Then, we take squares of both sides and simplify it employing Eqs. (9.104)–
(9.106), which yields

pk − pk′ − kk′ = 0. (9.108)

Expressing the dot products via 3D angles θ0 between initial 3D momen-
tums of the electron and photon, θ between initial 3D momentum of the
electron and final momentum of the photon, and ϑ between initial and final
3D momentums of the photon, we find

�ω′ = �ω
E − c|p| cos θ0

E − c|p| cos θ + �ω(1− cosϑ)
. (9.109)

This equation is applicable for arbitrary energies of the involved particles and
for any scattering angles. Let us consider a few simplified cases.

1. The earlier considered Thomson scattering takes place as nonrela-
tivistic electrons (|p| � mc) interact with reasonably “soft” photons
(�ω) � mc2. Taking this inequalities into account we see that the
fraction in Eq. (9.109) is about one and, thus, �ω′ ≈ �ω.

2. The photon scattering on a nonrelativistic electron can occur with a
frequency change if the initial photon energy is comparable with the
electron rest energymc2. Here, the terms with the electron momentum
in Eq. (9.109) are small and can be discarded, so the energy of the final
photon has the form

�ω′ =
1

1 + �ω(1− cosϑ)/mc2
. (9.110)

The final photon energy decreases for any scattering angle ϑ > 0, the
corresponding energy defect is transferred to the electron; this is a
usual Compton effect discovered by Arthur Holly Compton in 1922.
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3. When photon scattering occurs on ultrarelativistic electrons the an-
gular distribution of the final photons narrows because of relativis-
tic kinematic effects. Equation (9.109) in this parameter range implies
that the energy of the final photon is largest when θ0 = ϑ = π, while
θ = 0, i.e., for a “head-on” collision with a soft photon and emission
of a hard photon along the electron motion:

�ω′ = �ω
2E

(mc2)2/2E + 2�ω
. (9.111)

We see that the enhancement of the photon energy can be very large.
For example, for �ω � mc2/γ, where γ = E/mc2 is the Lorentz factor,
Eq. (9.111) yields �ω′ ≈ 4�ωγ2 
 �ω, although �ω′ � E . In the
other case, �ω 
 mc2/γ, the photon energy �ω′ approaches the initial
electron energy E .

Such scattering of photons on ultrarelativistic electrons, which results in
generation of high-energy quanta (typically, the gamma rays) is called the
inverse Compton effect. This process can play an important role in many
astrophysical phenomena because both relativistic electrons and photons are
typically available; in particular, the soft CMB photons are always present.
Note that the inverse Compton process can result in severe radiative losses
of ultrarelativistic electrons if �ω � mc2/γ.

Below we calculate the intensity of the inverse Compton emission by
relativistic electrons interacting with soft photons within classical electrody-
namics, which yields correct results for the parameter regime where �ω � E .
Alternatively, when the energy of emitted photon approaches the relativistic
electron energy E , a more exact quantum consideration is needed.

Let us calculate intensity of radiation produced by an ultrarelativistic
electron perturbed by a weak monochromatic linearly polarized plane elec-
tromagnetic wave:

E(r, t) = E0 cos(ω0t− k · r), B(r, t) = n0 ×E(r, t), (9.112)

where n0 = k0/k0 is the unit wave vector; assuming the wave frequency ω
to be large enough to discard any plasma effect on the wave dispersion, we
adopt the vacuum dispersion relation k0 = ω/c.

Here, compared with the case adopted to derive Eq. (9.91) in Sect. 9.2.3,
both electric and magnetic fields are comparably important in producing the
Lorentz force

F = e

(
E +

1

c
v × [n0 ×E]

)
. (9.113)

Note that the exact expression for this Lorentz force depends on the wave po-
larization. We adopt that the particle moves along the z-axes, i.e., v = v0ez ,
while the wave vector belongs to the xz-plane. Therefore, there are two dis-
tinct linearly polarized waves; we use index 1 for the wave with the electric
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vector E1 directed along the y-axes, while index 2 for the wave with the elec-
tric vector E2 belonging to the xz-plane. Accordingly, for the first wave, the
Lorentz force has only y component, F 1 = eE1ey(1− cos θ0), while for the
second one it has x and z components: F 2 = −eE2(ex(1− cos θ0) + ez sin θ0).
Then, to apply Eq. (9.84) for the radiation intensity, we have to calculate
the squares of the Lorentz forces transverse to the particle velocity, (δαβ −
vαvβ/v

2)FαFβ , cf. Eqs. (9.88)–(9.90), which have similar forms for both po-
larizations, i = 1, 2 if we adopt v = c (this is correct everywhere except
a narrow angular range θ20 ∼ γ−2 of the head–tail collision of photon and
electron):

|F iq0,q⊥|2 =
(
δαβ − vαvβ

v2

)
FiαFiβ = e2(1− cos θ0)

2EiαE
∗
iα

= e2(1− cos θ0)
2 TV

(2π)4
Kiαα(q0, q), (9.114)

where Kiαα(q0, q) is the trace of the electric field correlation tensor for the i
polarizations:

Kiαβ(q0, q) = E2
i eiαe

∗
iβf(q)δ(q0 − qc). (9.115)

The correlation tensor is normalized in such a way that E2
i =∫

dqdq0Kiαα(q0, q); eiαe
∗
iα = 1. For a monochromatic wave we have

f(q) = δ(q−k0); substituting this into Eq. (9.115), then integrating Eq. (9.87)
with account of Eq. (9.114), and dividing by the total time of the electron
emission T , we obtain

In,ω =
e4(1− cos θ0)

2

2πm2c3γ2

( ω
ω′
)2(

1− ω

ω′γ2
+

ω2

2ω′ 2γ4

)
E2
i δ (ω

′ − Ω) , (9.116)

where Ω = ω0 (1− (v/c) cos θ0). Since the radiation intensity does not de-
pend on the scattered wave polarization, we can add up the contributions for
i=1, 2, so E2

i will be substituted by E2
0 = E2

1 + E2
2 .

Argument of the delta function controls the frequency range of emitted
waves. The largest frequencies are emitted along the electron velocity, θ = 0.
In this case, for a given initial angle θ0, we have

ω = ωIC = 2ω0γ
2
(
1− v

c
cos θ0

)
. (9.117)

This equation demonstrates that the inverse Compton scattering by relativis-
tic particles is remarkably different from the Thomson scattering. The very
largest frequency is emitted for a head-on collision between soft photon and
relativistic electron, cos θ0 = −1, which is ω = 4ω0γ

2. This implies that rela-
tivistic electrons interacting with microwave or optical radiation can produce
very energetic X-ray or gamma radiation; in many cases the energy of ra-
diated photon estimated as �ωIC will exceed the initial electron energy; see
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Eq. (9.111). In such cases, as has been said, a more exact quantum consid-
eration of the inverse Compton process is required to correctly describe this
process. On the contrary, for a head–tail collision, cos θ0 = 1 and ω = ω0.

Using the link between ω′ and emission angle implied by definition
of Eq. (9.86), we can easily calculate inverse Compton radiation into the
full solid angle for a given set of parameters ω0, θ0, and E0, similarly to
Eq. (9.87):

Iω =
e4(1− cos θ0)

2

m2c3γ2
ω

Ω2

(
1− ω

Ωγ2
+

ω2

2Ω2γ4

)
E2

0Θ
(
2Ωγ2 − ω

)
. (9.118)

This radiation intensity can be expressed via the Thomson cross section de-
fined by Eq. (9.102):

Iω =
3σT cW (1− cos θ0)

2

γ2
ω

Ω2

(
1− ω

Ωγ2
+

ω2

2Ω2γ4

)
; ω < 2Ωγ2, (9.119)

where W = E2
0/8π is the initial wave energy density averaged over the wave

period.
In a real situation the background ensemble of soft photons has some

angular and spectral distributions over which the obtained intensity of the
inverse Compton radiation must yet be averaged. Although this averaging
is straightforward to perform, one has to take into account that the original
delta function present in Eq. (9.116) due to corresponding conservation laws
implies some restrictions for the further integration ranges, in particular,
while averaging over the angle θ0, one must take into account the following
inequalities:

1− 2ω

ω0
≤ cos θ0 ≤ 1− ω

2ω0γ2
, | cos θ0| ≤ 1. (9.120)

Let us estimate the characteristic energy of the inverse Compton quanta
produced due to scattering of the CMB photons on the electrons of CRs.
The temperature of the CMB photon gas T ≈ 3K corresponds to the energy
�ω0 ≈ 3× 10−4 eV. Relativistic electrons have energies at least up to γ = 106

and so they can produce very hard gamma-ray emission up to 4γ2�ω0 ≈
1GeV. The inverse Compton radiation makes a contribution to high-energy
radiation from relativistic jets, neutron stars, accretion disks, and so on; see,
e.g., Nagirner (2007b); this mechanism likely dominates in the range of ultra-
high-energy gamma rays (Aharonian et al. 2007) from some sources, e.g., from
pulsar wind nebulae (Sect. 12.3).

Another exciting and highly practical outcome of the Compton scattering
was discovered in 1969 by Zeldovich and Sunyaev (1969). They noted that
clouds of hot gas, e.g., in galaxy clusters where the plasma temperature
can be as high as 107K, must scatter the CMB radiation and thus distort
its original Planck distribution: the Planck spectrum moves toward larger
frequencies as a result of this scattering; which is called the Zeldovich–
Sunyaev effect. Observations of these spectrum distortions and polarization
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modifications offer a very efficient tool of measuring various cosmological
parameters including the Hubble constant, peculiar velocities of the galaxy
clusters, temperature, and spatial distribution of the hot plasma, which is
presented in more detail in Rephaeli (1995).

9.3 Bremsstrahlung

Let us consider radiation arising as a fast particle collides with a background
(immobile) particle. This emission process is called bremsstrahlung (“break-
ing emission”) because the collisions lead eventually to slowing the particle
down to the thermal velocity.

Figure 9.4: Deflection of a fast electron moving in the Coulomb electric field of a heavy
positive charge (ion).

Perhaps, a simplest model allowing to calculate the emission arising from
a single collision is to assume that at the collision the radiating particle ve-
locity changes instantly by a value Δv, so this instant acceleration drives the
emission. This approach can be approximately valid when the radiation for-
mation length is much larger than the particle path region where its velocity
experiences a significant change. The corresponding Fourier transform of the
electric current carried by this particle (assuming the VCR condition is not
fulfilled) is

jω,k = − iQ

(2π)4

[
v1

ω − kv1
− v2

ω − kv2

]
, (9.121)

where v1 and v2 are the particle velocities before and after the collision,
respectively. Thus, Eq. (9.49) reads

En,ω =
Q2n(ω)

(2π)2c3

∣∣∣∣∣∣
[nv1]

1− v1n

c
n(ω)

− [nv2]

1− v2n

c
n(ω)

∣∣∣∣∣∣
2

. (9.122)

However, this expression is not explicitly practical because even though the
vector v1 can be known, the other vector v2 can be arbitrary as the collision
impact parameter b (Fig. 9.4) is generally unknown. Moreover, in a media
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there are many scatterers, so each fast particle experiences many collisions
before it becomes fully thermalized. Thus, Eq. (9.122) has yet to be averaged
over all possible v2 values, which is not unique.

Figure 9.5: Random walk of a fast electron scattered by randomly located plasma ions.

In a medium, Fig. 9.5, using the perturbation theory results developed in
Sect. 9.2.3 turn to be more convenient than averaging Eq. (9.122). To do so we
start from the electric potential associated with a single background particle
with the account of the Debye shielding appropriate for usual plasma:

ϕ(r, t) =
ez

|r −RA(t)|e
− |r−RA(t)|

Rd , (9.123)

where ez is charge of the background particle A and RA(t) is its radius vector
at the time t, whose Fourier transform is easy to find:

ϕq0,q =
4πez

q2 +R−2
d

∫
dt

(2π)4
eiq0t−iqRA(t). (9.124)

Now, to apply Eq. (9.95), we have to compute the square of the electric po-
tential modulus created by all background particles, which is straightforward
to construct from Eq. (9.124):

| ϕq0,q |2= (4πez)2

(q2 +R−2
d )2

∫
dtdt′

(2π)8
eiq0(t−t

′)
∑
A,B

e−iq(RA(t)−RB(t′)). (9.125)

We emphasize that at this point the expression is rather general as it
accounts for microscopic motion of every single background plasma particle,
which is excessive and impractical. In many cases, however, it can be greatly
simplified. First, in case of emission by a fast particle, to a good accuracy
we can entirely neglect the slow (nonrelativistic) motion of the background
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particles; thus, RA and RB are constants independent on time. And second,
we can average the double sum over the particle locations assuming they
are entirely uncorrelated (random). Under this averaging all the terms with
A �= B vanish, while the contribution of the terms A = B gives just the total
number of particles N :

〈∑
A,B

e−iq(RA−RB)

〉
= N. (9.126)

Then, taking the integrals over dtdt′ in Eq. (9.125), we obtain

| ϕq0,q |2= TN

(2π)7
(4πez)2

(q2 +R−2
d )2

δ(q0), (9.127)

where T is the entire time of emission by the particle in the plasma.
A dominant contribution to the bremsstrahlung produced by an ultrarel-

ativistic particle in the plasma comes from the transverse component of its
acceleration, Eq. (9.93). Thus, dividing Eq. (9.95) by the total time of emis-
sion T , we obtain spectral and angular distribution of the radiation intensity:

I⊥n,ω=
4Q4z2e2

(2π)2M2c3γ2
n
( ω

ω′
)2 [

1− ω

ω′γ2∗
+

ω2

2ω′2γ4∗∗

] ∫
q2⊥dq0dq

δ(q0)δ(ω′ − q0+qv)

(q2+R−2
d )2

,

(9.128)

where n = N/V is the number density of the background plasma particles.
Integration of Eq. (9.128) over dq0 is trivial, while integration over dq

is convenient to perform in the cylindrical coordinate system, i.e., dq =
2πdq‖q⊥dq⊥. This yields

I⊥n,ω=
Q4z2e2

πvM2c3γ2
n
( ω
ω′
)2 [

1− ω

ω′γ2∗
+

ω2

2ω′2γ4∗∗

] (mc/�)2∫
0

q2⊥dq
2
⊥

(q2⊥+ω′2/v2 +R−2
d )2

.

(9.129)
Then, taking the integral over dq2⊥, we find

I⊥n,ω =
2Q4z2e2

πvM2c3γ2
n
( ω
ω′
)2 [

1− ω

ω′γ2∗
+

ω2

2ω′2γ4∗∗

]⎛
⎝ln

mc/�√
(ω

′
v )

2 +R−2
d

− 1

2

⎞
⎠ .

(9.130)

In a general case the logarithm in Eq. (9.130) depends on frequency; however,
at low frequencies, ω � (c/Rd)γ

2, one can discard a small (compared with
R−2
d ) value ω′2/v2, so the logarithm simplifies to a frequency-independent

form ln mcRd

�
.
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To find the bremsstrahlung intensity into the full solid angle, I⊥ω ,
Eq. (9.130) has yet to be integrated over

dΩ ≈ 2π
dθ2

2
= 2πd

(
ω′

ω

)
, (9.131)

where, according to definition (9.86), the lower bound of integration over

d(ω′/ω) is 1
2

(
γ−2 +

ω2
pe

ω2

)
. When integrating, one can safely adopt ω′ ≈

ω
2

(
γ−2 +

ω2
pe

ω2

)
in the logarithm argument as the logarithm is anyway a very

slow function of its argument. At low frequencies, ω � (c/Rd)γ
2, where the

logarithm does not depend on frequency, we have

I⊥ω =
16Q4z2e2n

3vM2c3
(
1 +

ω2
peγ

2

ω2

)
(
ln
mcRd
�

− 1

2

)
=

8Q2γ2

3πc
(
1 +

ω2
peγ

2

ω2

)q, (9.132)

where

q = q0γ
−2 =

2πQ2z2e2n

vM2c2γ2

(
ln
mcRd
�

− 1

2

)
(9.133)

is the effective rate of angular scattering of the radiating particle. At relatively
high frequencies, ωpeγ � ω � (c/Rd)γ

2, the terms containing the plasma
frequency can be discarded, so

I⊥ω =
16Q4z2e2n

3vM2c3

(
ln
mcRd
�

− 1

2

)
(9.134)

depends neither on frequency nor on particle energy. At the low frequencies,
ω � ωpeγ, the bremsstrahlung intensity decreases due to the density effect
(Ter-Mikaelian effect):

I⊥ω =
16Q4z2e2n

3vM2c3
ω2

ω2
peγ

2

(
ln
mcRd
�

− 1

2

)
. (9.135)

Formal integration of bremsstrahlung spectrum (9.134) over all frequen-
cies diverges as the spectrum does not depend on frequency. The cause for
that infinite radiated energy is in fact the classical treatment of the radiation
process. It is clear, however, that no particle can generate more energy than
it has. Energy of high-frequency �ω ∼Mc2γ photons is comparable with the
particle energy, so the correct emission treatment requires quantum descrip-
tion. To roughly estimate the total radiated energy one can use Mc2γ/� for
the upper integration bound over frequencies (apparently, the full frequency
dependence of the logarithm has to be included).

Let us estimate if/when the perturbation theory used is indeed appli-
cable for the problem considered. For an ultrarelativistic particle most of
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the emission is produced within a narrow cone with the characteristic angle
θ ∼ γ−1 around the particle velocity. The particle path can be approximated
by a straight line if its velocity vector does not change by an angle larger or
about that at the trajectory region equal to the radiation formation zone,
lc ∼ λγ2, λ is the wavelength. The mean deflection angle due to uncorrelated
scatterings accumulated over the formation time τω is θ2 ∼ qτω , where q is
the scattering rate defined by Eq. (9.133). The formation time is apparently
τω ∼ lc/c ∼ γ2/ω; thus θ2 ∼ qγ2/ω. The perturbation theory is valid until
θ2 � γ−2, i.e., at relatively high frequencies ω 
 qγ4 = q0γ

2 only. If this
condition is not fulfilled, the departure of the particle trajectory is essential
and must be taken into account. An accurate account of the angular deflec-
tions due to multiple scattering gives rise to the following modification of the
bremsstrahlung intensity (Migdal 1956) (Fig. 9.6):

I⊥ω =
8Q2γ2q

3πc
(
1 +

ω2
peγ

2

ω2

)Φ(s), (9.136)

where

Φ(s) = 24s2
∞∫
0

dt exp(−2st) sin 2st

[
coth t− 1

t

]
=

{
1, s
 1

6s, s� 1
, (9.137)

s =
1

8γ2

(
ω

q

)1/2
(
1 +

ω2
peγ

2

ω2

)
. (9.138)

Figure 9.6: Examples of bremsstrahlung spectra for electrons with different energies;
parameters are shown in the plot.



9.3 Bremsstrahlung 405

Apparently, the radiation spectrum differs for the high- and low-energy
particles, respectively. For

γ 
 γcr =
ωpe

4q0
, (9.139)

at the low frequencies, ω � ωpe

2

(
ωpeγ

2

2q0

)1/3
, where s
 1, we have

Iω =
8Q2q0
3πc

ω2

ω2
peγ

2
. (9.140)

Here the bremsstrahlung is suppressed by the Ter-Mikaelian (“density”) ef-
fect, Iω ∝ ω2, in agreement with Eq. (9.135).

At higher frequencies,
ωpe

2

(
ωpeγ

2

2q0

)1/3
� ω � 16q0γ

2, where s � 1,

the radiation spectrum is formed by multiple scattering of the radiating
particle by numerous background particles:

Iω =
2Q2

πcγ
(ωq0)

1/2. (9.141)

Here the bremsstrahlung intensity is lower than the incoherent sum of emis-
sions on the same number of independent scatterers; this suppression, Iω ∝
ω1/2, is called the Landau–Pomeranchuck–Migdal effect.

At even higher frequencies, ω 
 16q0γ
2, the multiple scattering is

inessential again, s 
 1, and the radiation intensity does not depend on the
frequency:

Iω =
8Q2q0
3πc

. (9.142)

Equation (9.142) is valid up to the frequencies ω ∼Mc2γ/�, where the impact
of the emitted high-energy photon becomes kinematically important.

Note that for moderately energetic particles, such as

γ � γcr =
ωpe

4q0
, (9.143)

the parameter s is greater than one at all frequencies, so the multiple scat-
tering plays no role and the spectrum region Iω ∝ ω1/2 is absent. Here,
at low frequencies, ω � ωpeγ, Eq. (9.140) holds, while at high frequencies,
ω 
 ωpeγ, Eq. (9.142) holds.
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9.4 Gyro Emission

Figure 9.7: Gyration of a fast electron in a uniform magnetic field.

To address explicitly how an essentially curved particle trajectory affects
emission we consider radiation produced by a particle gyrating in a constant
uniform magnetic field (Fig. 9.7). It is straightforward to prove that the
use of the perturbation theory yields a zero radiation intensity in this case.
It does not mean, however, that there is no radiation, rather the perturbation
theory is fully inapplicable here.2 Thus, to correctly describe the radiation in
the uniform magnetic field (which is called gyro emission or magnetobrems-
strahlung) one has to more precisely describe the particle trajectory in the
magnetic field, which greatly complicates the theory of gyro emission. Note
that the gyro emission process is commonly called synchrotron, cyclotron, or
gyrosynchrotron emission for the ultrarelativistic, nonrelativistic, and mildly
relativistic particles, respectively.

9.4.1 Gyrosynchrotron Radiation

The general case of a particle with an arbitrary (including nonrelativistic or
mildly relativistic) energy is highly complicated (Eidman 1958, 1959; Melrose
1968; Ramaty 1969) because one have to consider here exact expressions for
the particle velocity and trajectory containing the sine and cosine functions
to calculate electric current Eq. (9.51), where the dot product in the exponent
can be written in the form

k · r(t) = k⊥RL sin(φ +Ωt) + kzvzt, (9.144)

2Formally, the perturbation theory is applicable at high frequencies, where the
radiation intensity is exponentially small; see below. But it is not helpful even there
since, within the perturbation theory, the exponentially small emission is undistin-
guishable from zero emission level.
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where φ is the azimuth angle of the k vector. The analysis is facilitated
by using expansion of the exp(A sin(αt + φ)) term into a series over Bessel
functions:

exp[−ik⊥RL sin(φ+Ωt)] =
∞∑

s=−∞
e−is(φ+Ωt)Js(k⊥RL). (9.145)

Further straightforward although cumbersome manipulations (see, e.g.,
Melrose 1980) yield for the electric current components:

jiω,k =
|Q|

2(2π)3mγ

∞∑
s=−∞

(
ækx
k⊥

)s+1

Γsi δ(ω − s|Ω| − kzvz), (9.146)

where æ = Q/|Q| is the sign of the particle charge:

Γs1 = 2p⊥
s

z
Js(λ); Γs2 = −2iæp⊥J ′

s(λ);

Γs3 = 2pz
kx
k⊥

Js(λ); λ = k⊥RL. (9.147)

Finally, we have to make use of the refractive indices and anisotropy
factors of the magnetized plasma to apply Eq. (9.46), which yields

Iσf,n =
2πQ2

c

nσf2

1 + T 2
σ

×
∞∑

s=−∞

[
Tσ(cos θ − nσβμ) + Lσ sin θ

nσ sin θ
Js(λ) + J ′

s(λ)β
√

1− μ2

]2

× δ

[
f(1 − nσβμ cos θ)− sfB

γ

]
, (9.148)

where the intensity is expressed in terms of practically used frequency f =
ω/2π, fB = QB/(2πMc) is the particle gyrofrequency, nσ, Tσ, and Lσ are
the refraction index and transverse and longitudinal (relative to the wave
vector) components of the polarization vector respectively (see Sect. 3.2.3), θ
is the angle between the wave vector and the magnetic field vector, β = v/c
is the normalized (by c) particle velocity, μ = cosα, α is the particle pitch
angle (i.e., the angle between the particle momentum and the magnetic field

vector), λ = k⊥RL = f
fB
γnσβ sin θ

√
1− μ2. We will return to this general

case in Chap. 10 where we discuss a 3D modeling of radiation sources, while
here we consider a much simpler although highly practical case of synchrotron
radiation produced by ultrarelativistic particles.

9.4.2 Synchrotron Radiation

To consider synchrotron emission by relativistic particles we take advantage
of the already used in Sects. 9.2.3 and 9.3 strong directivity of the emission
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Figure 9.8: Directivity of synchrotron radiation: the spectrum recorded by a localized
detector is formed from a small part of the particle path over which the particle gyrates
by an angle of order 1/γ.

along the relativistic particle velocity with the typical beaming angle θ of the
order of

θ ∼ γ−1. (9.149)

Since the particle velocity direction varies broadly as it gyrates in the mag-
netic field, the presence of directivity Eq. (9.149) implies that the synchrotron
radiation is formed over a small fragment of the circle orbit over which the
velocity vector rotates by an angle about γ−1 (Fig. 9.8). Therefore, in the
expressions for the trajectory and the velocity, the sine and cosine functions
can be expanded into the series valid for small arguments, where the first
terms describing the departure of the trajectory from the straight line must
be retained:

v(τ) = v‖ + v⊥ cosΩτ + [bv⊥] sinΩτ ≈ v + [Ωv]τ − v⊥
Ω2τ2

2
, (9.150)

r(τ) = v‖τ +
v⊥
Ω

sinΩτ − [bv⊥]
Ω

(cosΩτ − 1) ≈ vτ + [Ωv]
τ2

2
− v⊥

Ω2τ3

6
,

(9.151)

where Ω = QB
Mcγ is the angular velocity vector of the particle with the mass

M and charge Q, gyrating in the magnetic field B, b is the unit vector in the
B direction, and v‖ and v⊥ are the initial (at τ = 0) parallel and transverse
to the magnetic field components of the particle velocity, v = v‖ + v⊥.
Substitution of Eqs. (9.150) and (9.151) into the expression for the particle
current and then into Eq. (9.46) yields the spectral and angular distributions
of the synchrotron emission. In particular, the polarization tensor components
(for the polarization tensor definition, see Sect. 10.1.6) have the form

I(11)n,ω =
3Q2ωBγ

(2π)3c

(
ω

ωc

)2

(1 + γ2θ2)2K2
2/3(ξ), (9.152)

I(22)n,ω =
3Q2ωBγ

(2π)3c

(
ω

ωc

)2

γ2θ2(1 + γ2θ2)K2
1/3(ξ), (9.153)
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I(12)n,ω = −I(21)n,ω = −i3Q
2ωBγ

(2π)3c

(
ω

ωc

)2

γθ(1 + γ2θ2)3/2K1/3(ξ)K2/3(ξ),

(9.154)

where axes (1 and 2) of the coordinate system in the plane transverse to k
are such that the unit vector l2 is along the projection B⊥ of the uniform
magnetic field on this plane, while l1 = [l2,k]/k, ωB = QB

Mc is the gyrofre-

quency of the radiating particle, ξ = ω
ωc
(1 + γ2θ2)3/2, ωc = (3/2)ωB⊥γ2,

ωB⊥ = ωB sinχ, where χ is the angle between the particle velocity and the
magnetic field and Kμ(ξ) is the MacDonald function with index μ. The radi-
ation described by components Eq. (9.152)–(9.154) of the polarization tensor
is elliptically polarized in a general case.

The spectral distribution of synchrotron radiation is obtained from
Eqs. (9.152) and (9.153) by integration over the full solid angle. This inte-
gration is straightforwardly performed using the narrow directivity of the
emission:

I(11)ω =

√
3Q2ωB⊥
2πc

(
ω

2ωc

){ ∞∫
ω/ωc

K5/3(x)dx +K2/3(ω/ωc)

}
, (9.155)

I(22)ω =

√
3Q2ωB⊥
2πc

(
ω

2ωc

){ ∞∫
ω/ωc

K5/3(x)dx −K2/3(ω/ωc)

}
. (9.156)

Alternatively, intensities (9.155) and (9.156) can be expressed via the Airy
function. The total intensity of the synchrotron radiation (the Stokes I
parameter, see Sect. 10.1.6) in the vacuum is the sum of these two ex-
pressions (Fig. 9.9). In the plasma we have yet to take into account the
wave dispersion. Consider for simplicity an isotropic plasma with dielectric
permittivity

ε(ω) = 1− ω2
pe

ω2
. (9.157)

Then, in contrast to the vacuum case, we obtain

Iω =

√
3Q2ωB⊥
2πc

(
1 +

ω2
peγ

2

ω2

)−1/2

Fs

(
ω

ωcp

)
, (9.158)
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Figure 9.9: Universal function Eq. (9.159) describing the spectrum of synchrotron radi-
ation in a uniform magnetic field.

where

Fs (z) = z

∞∫
z

K5/3(x)dx, (9.159)

ωcp = ωc

(
1 +

ω2
peγ

2

ω2

)−3/2

. (9.160)

Other Stokes parameters are determined in a similar way.
The function Fs(z) is a smooth function with a single peak at z = 0.29.

For small arguments, z � 1, a power-law asymptote takes place:

Fs (z) =
4π√

3Γ(1/3)21/3
z1/3, (9.161)

where Γ(a) is the Euler gamma function. For large arguments, z 
 1, the
function Fs(z) decreases exponentially:

Fs (z) =

√
πz

2
e−z. (9.162)

It is important to note that in a plasma (in contrast to the vacuum case) the
value ω/ωcp has a maximum at a frequency about ωpeγ. Thus, for

γ � ωpe/ωB⊥, (9.163)
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Figure 9.10: Synchrotron spectra for a low-energy [Eq. (9.163)], left, and high-energy,
[Eq. (9.164)], right, radiating particle. Left: γ = 100, ne = 1010 cm−3, B = 1G
(ωpe/ωBe ≈ 320, thick curve), and B = 3G (ωpe/ωBe ≈ 107, thin curve). Right:
ωpe/ωBe ≈ 33, values of the Lorentz factor are given in the plot.

ω/ωcp 
 1 at all frequencies so Eq. (9.162) is valid everywhere and the syn-
chrotron radiation is exponentially small at all frequencies; see Fig. 9.10, left;
the peak frequency is about ωpeγ and so does not depend on the gyrofre-
quency here. The density effect revealing itself in suppression of the syn-
chrotron radiation due to wave dispersion provided by a nonzero plasma
density is called the Razin effect. Remarkably, for the relatively low-energy
electrons obeying Eq. (9.163), the entire synchrotron spectrum turns out to be
exponentially suppressed according to Eq. (9.162) provided that ωpe 
 ωB⊥,
in contrast to the bremsstrahlung case (the Ter-Mikaelian effect takes only
place at a low-frequency part of the spectrum). For higher energy particles

γ 
 ωpe/ωB⊥, (9.164)

there is a frequency range

ωpe

√
ωpeγ

ωB⊥
� ω � ωc, (9.165)

where Eq. (9.161) is valid so the synchrotron radiation intensity raises with
frequency as a power-law Iω ∝ ω1/3; outside this range the synchrotron ra-
diation decreases exponentially.

The high-frequency exponential cutoff is valid for both vacuum and
plasma, while the low-frequency one can only take place in a plasma. Here,
for relatively high-energy particles, the Razin effect suppresses only a low-

frequency part of the spectrum at ω ≤ ωpe

√
ωpeγ
ωB⊥

, Fig. 9.10, right, not the

entire one as for the low-energy particles.
Curiously, the spectra of the synchrotron radiation and bremsstrahlung

are qualitatively different from each other: the former displays a prominent
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peak at the frequencies around ωB⊥γ2 (or at ωpeγ) and decreases exponen-
tially at higher frequencies, while the latter is almost independent on the
frequency up to very high frequencies around Mc2γ/�. The account of the
plasma dispersion on the bremsstrahlung spectrum (Ter-Mikhaelyan 2003)
gives rise [see Eq. (9.132)], to a suppression of the spectrum at the low fre-
quencies ω � ωpeγ according to Iω ∼ ω2, much more gradual than exponen-
tial suppression of the synchrotron spectrum describing the Razin effect. All
these dissimilarities are eventually provided by underlying dissimilarities of
the radiating electron trajectories.

The polarization of synchrotron radiation depends on the angle θ between
the particle velocity and the wave vector. Figure 9.11 shows that electric
vector of the wave rotates along an ellipse with the axes ratio:

tanβ =

θK1/3

[
ω

2ωc

(
1 + θ2

γ2

)3/2]

(γ−2 + θ2)K2/3

[
ω

2ωc

(
1 + θ2

γ2

)3/2] . (9.166)

Figure 9.11: Shape of polarization ellipse and direction of the electric vector rotation
produced by a positive charge gyrating in a magnetic field.

The synchrotron radiation of an isotropic ensemble of monoenergetic particles
(in practice, an “isotropy” within only a small angle θ̃ > 1/γ is required)
is (partly) linearly polarized. The circular polarization vanishes because
Eq. (9.166) contains θ to an odd power, which is integrated with an (even)
isotropic distribution. A circular polarization, however, can recover if one
takes into account the plasma gyrotropy provided by an external magnetic
field (Melrose 1980; Ruzmaikin et al. 1988).
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The degree of linear polarization (Ginzburg and Syrovatskii 1965)

Pl =
K2/3

(
ω
ωc

)
∞∫

ω/ωc

K5/3(η)dη

=

{ 1
2 , for ω � ωc

1− 2ωc

3ω , for ω 
 ωc

(9.167)

increases with frequency and at ω 
 ωc (where the intensity decreases expo-
nentially) reaches almost 1.

In a reality, in an astrophysical source, there are many radiating elec-
trons, described by a distribution function f(p); thus, the volume emissivity
is calculated by integration of the emission produced by a single particle over
the particle distribution:

jσn,ω =

∫
Iσn,ωf(p)dp. (9.168)

As discussed in great detail in Chap. 11, the nonthermal fast particles are
isotropically distributed in many cases and have typically rather broad dis-
tributions over energy, which can often be described by power laws with
different indices, N(E) = Kξ/E

ξ. This implies that the synchrotron ra-
diation formulae have yet to be integrated over the fast electron distribu-
tion over energy according to Eq. (9.168). Adopt that this power-law dis-
tribution is valid between some bounding energies, Emin = mc2γmin and
Emax = mc2γmax 
 Emin, and evanescent outside this range:

dNe(γ) = (ξ − 1)Neγ
ξ−1
min γ

−ξdγ, γmin ≤ γ ≤ γmax, (9.169)

where Ne is the number density of electrons with energies E ≥ mc2γmin, ξ is
the power-law index of the distribution, and γmin 
 1.

There can be a few different regimes of the synchrotron radiation pro-
duced by the fast electron ensemble depending on the parameters. If γmin ∼ 1
and ωpe 
 ωBe, then a power-law spectrum

P (ω) ∝ ω−α, α = (ξ − 1)/2 (9.170)

appears between ωmin ∼ ω2
pe/ωBe and ωmax ∼ ωBeγ

2
max. This asymptote

is easy to understand: the electron energy spectrum here is much broader
than the synchrotron spectrum produced by a single electron. Thus, one can
ignore the exact shape of this spectrum and approximate it by a narrow
peak ∝ δ(1–0.3ωBeγ

2/ω) and integrate it with electron spectrum (9.169),
which immediately yields Eq. (9.170). This means, in particular, that any
emission mechanism producing a spectrum peaking at a ω0γ

2 will produce
spectrum (9.170) from electrons distributed over energy with a power law.
Outside this range the synchrotron spectrum drops exponentially; the low-
frequency exponential cutoff is due to the Razin effect. If γmin 
 ωpe/ωBe,
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then the mentioned power-law part of the synchrotron spectrum, Eq. (9.170),
starts at about ωBeγ

2
min, below which a single electron asymptote, P (ω) ∝

ω1/3, appears. At a lower frequency, ω � ωpe

√
ωpeγmin/ωB⊥, the radiation

is suppressed by the Razin effect.
The degree of linear polarization of the synchrotron radiation produced

by electron ensemble with the power-law distribution is (Trubnikov 1958;
Westfold 1959)

Pl =
ξ + 1

ξ + 7/3
. (9.171)

It is 75% for ξ = 3 and 69% for ξ = 2. These numbers are much higher
than the degree of polarization typically measured in observations, which
implies a major role of radiation depolarization in the astrophysical sources,
in particular, due to random inhomogeneities of the magnetic field.

9.4.3 Applications of Synchrotron Radiation

Applications of synchrotron radiation in astrophysics are more than numer-
ous. Historically, the synchrotron radiation came into astrophysical context
starting from fifties of the twentieth century when a new observing window,
the radio astronomy, appeared and started to bring unexpected new ob-
servations. A naive expectation based on the Rayleigh–Jeans regime of the
thermal blackbody spectrum (see Chap. 10) was that a typical radio spectrum
would increase with frequency as f2. In contrast to this expectation the ra-
dio observations immediately revealed many compact and extended sources
(including background radio emission from the Galaxy) with a radio spec-
trum falling with frequency roughly as ∝ f−α with positive α, which was
impossible to reconcile with the thermal hypothesis of the radio emission.
In contrast, as we have seen above, the synchrotron radiation generated by
nonthermal relativistic particles has naturally a falling spectrum with shape
(9.170) if the relativistic electrons are distributed over energy with a power
law. Remarkably that Eq. (9.170) offers a nice diagnostics of the power-law
index in the electron energy distribution ξ using the observed spectral index
of the radio emission α:

ξ = 2α+ 1. (9.172)

In many cases these radiation spectra extend to much higher frequencies
including optical and HXR ranges indicative of the particle acceleration up
to accordingly high energy. For example, for a magnetic field about 10−5G,
the electron energy needed to produce synchrotron X-ray emission at f >
1017Hz is γ > 107, i.e., E � 104GeV. Note that in case of very broadband
synchrotron spectra occupying many decades from the radio to optical and/or
X-ray range, the spectrum often departs from a single power law implying
corresponding breaks or cutoffs in the energy spectrum of radiating electrons.

In particular, this is the case for the galactic background radiation,
Fig. 9.12, left, which has a relatively flat spectrum ∝ f−0.4 at 10–300MHz



9.4 Gyro Emission 415

a b

Figure 9.12: Left panel: spectra of background galactic radio emission for a few se-
lected directions. Note a relatively sharp break in the spectra around 300MHz Right
panels: exponential cutoffs of nonthermal spectra at optical or infrared for a number of
extragalactic sources including jets and radio galaxies. Credit: Rieke et al. (1982) and Keel
(1988). Some of the spectra do consistent with a power law rather than the exponential
cutoff.

and then experiences a break and softening to roughly f−1. The latter spec-
trum agrees well with measured energy spectra of relativistic electrons at the
IPM (e.g., at the Earth orbit) ∝ E−3 above a few GeV.

Nonthermal radiation is also observed from many kinds of extragalac-
tic objects including jets, active galactic nuclei, quasars, and radio galaxies.
Right panels in Fig. 9.12 display infrared and optical spectra of a number
of extragalactic objects demonstrating a quasiexponential cutoff of the spec-
trum, which is a characteristic feature of the synchrotron spectrum produced
by a high-energy cutoff in the electron spectrum. This spectral feature along
with relatively large polarization detected in many cases is a strong evidence
in favor of the synchrotron origin of the corresponding emission in this wide
spectral band—from radio to optical. However, at a slightly larger frequency,
these exponential cutoffs give a way to a more gradual, perhaps, a power-law
decrease of the spectrum, Fig. 9.13, which is indicative of a distinct spectral
component produced by either different population of relativistic particles
or a different emission process or both; we return to this point later in this
chapter.

Note that this nonthermal electromagnetic emission is mainly produced
by electrons and so provides us with information about only the electron
component of CRs, while the protons and other ions, that presumably con-
tain more energy and, thus, more dynamically important than the electrons,
cannot be directly observed via most of the spectral range (excluding gamma-
ray range, where the ions do contribute via various nuclear processes, e.g.,
nuclear excitation and pion decay; see Sect. 12.1.8). This means that most in-
formation of the nuclear CR component in remote sources or distant regions
of the Galaxy is obtained indirectly using emission produced by the relativis-
tic electrons in combination with detailed theoretical analysis and numerical
modeling.
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Figure 9.13: Observational broadband spectra from Jester et al. (2005) (triangles) and
model synchrotron plus DSR spectra for a knot D1 (upper left) and interknot region
between the knots D1 and D2 (upper right) for the jet in quasar 3C273. The model
spectrum is plotted with equations from Sect. 9.5.3 for parameters: Bst = 1.2Bls and
ν = 1.5; the parameters of the synchrotron part of the spectrum are the same as in Jester
et al. (2005). Bottom: Same for two knots (B, left, and C, right) of the jet in M87. Model
uses the same parameters (Bst = 1.2Bls and ν = 1.5, solid lines). Data: triangles from
Perlman et al. (2001), squares at 2×1015 Hz from Waters and Zepf (2005), and asterisks
from Marshall et al. (2002).

9.5 Diffusive Synchrotron Radiation

As we have discussed throughout the book, in many astrophysical magnetic
fields, there is a stochastic, turbulent component, variable over a wide range of
spatial and temporal scales, which can often dominate over the regular field.
In order to calculate the radiation spectrum from a volume encompassing
regions of varying field strength and orientation, it is apparently necessary to
average the microscopic emission intensity over the different field strengths
and orientations (as well as over the range of particle energies which may
be present). A common approach to this problem is to simply average the
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standard synchrotron formulae for a regular field over the varying magnetic
field. However, in general, this approach is only correct if the field can be
described as regular over the volume large compared with a typical particle
orbit.

In the case of a field which has structure in a volume small compared with
the average particle orbit, the particle paths deviate significantly from regular
gyration around the field lines, and the standard synchrotron formulae (see
Sect. 9.4.2), can lead to incorrect results. For example, if a turbulent magnetic
field is composed of random waves, then the ensemble of these waves results
in an incoherent superposition of random Lorentz forces which produces a
stochastic electron trajectory quite different from the circular orbit in the
regular field. To correctly calculate the emission spectrum in such a case
requires not only averaging over the regions of different field strengths and
orientations but also over the many possible particle paths (Toptygin and
Fleishman 1987; Fleishman 2005), since the microscopic nature of the particle
path strongly influences the spectrum, as we have already pointed out when
compared synchrotron radiation and bremsstrahlung. This problem is highly
nonlinear: in addition to the electron path affecting the nature of the emission,
electrons are efficiently mirrored from regions of high magnetic field and thus
spend a disproportionate time in the regions of lower field.

The radiation from electrons moving diffusively in stochastic magnetic
fields is called Diffusive Synchrotron Radiation (DSR); it can be prop-
erly described within stochastic theory of radiation (STR) (Fleishman 2008),
which attempts to calculate the average emission over the many possible
particle paths. We consider here a special case of DSR where the magnetic
field represents an incoherent superposition of waves with different scales
and random phases and orientations and having a power-law spectrum. We
note that such a field, consisting of only random waves and having no regu-
lar component, is almost certainly an oversimplification. Real astrophysical
fields will often contain a combination of stochastic and regular magnetic
fields. The case considered here, however, is an important limiting case, with
the opposite limiting case being that of only regular field, Sect. 9.4.2, while a
superposition of the random and regular fields is discussed in Sect. 9.5.3.

9.5.1 DSR in Weak Random Field

Assume initially that the random magnetic field is weak, so the perturbation
theory is applicable. The spectrum of the radiation described by Eq. (9.87)
or Eq. (9.91) depends on the statistical properties of the random force, which
is convenient to describe in terms of effective scattering rate q(ω, θ) of the
particle by the magnetic inhomogeneities:

In,ω =
Q2

2π2c

( ω
ω′
)2 [

1− ω

ω′γ2∗
+

ω2

2ω′2γ4∗∗

]
q(ω, θ), (9.173)
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where

q(ω, θ) = π

(
Qc

E
)2 ∫

dq0dq
(
δαβ − vαvβ

v2

)
Tαβ(q, q0)δ(ω − q0 − (k − q)v).

(9.174)

The intensity of radiation into the full solid angle is determined by integration
of Eq. (9.173) over the angles, which simplifies in the relativistic case by using
Eq. (9.131):

Iω =
Q2

πc

∞∫
1/2γ2∗

d

(
ω′

ω

)( ω
ω′
)2 [

1− ω

ω′γ2∗
+

ω2

2ω′2γ4∗∗

]
q(ω, θ). (9.175)

We emphasize that down to this point all consideration is valid for an
arbitrarily anisotropic distribution of the random magnetic field. Below, as
an example, we consider the case of an isotropic quasistationary random field
in more detail. Adopting Tαβ(q, q0) = (T (q)/2)δ(q0)(δαβ − qαqβ/q

2) we find
the effective scattering rate q(ω, θ) ≡ q(ω′) in the form

q(ω, θ) =
π

2

(
Qc

E
)2 ∫

dq(1 + cos2 θ)T (q)δ(ω − (k − q)v), (9.176)

where θ is the angle between vectors q and v.
Apparently, exact form of the scattering rate q(ω, θ) depends on the dis-

tribution of random magnetic field energy over spatial scales; adopting a
power-law distribution

T (q) =
Aν
qν+2

, Aν = aνk
ν−1
min

〈
B2

st

〉
, aν =

(ν − 1)

4π
, kmin < k < kmax,

(9.177)
where ν is the spectral index of the random field spectrum, T (q) is normalized
by d3q, so

kmax∫
kmin

T (q)d3q =
〈
B2

st

〉
, for kmin � kmax, ν > 1, (9.178)

〈
B2

st

〉
is the mean square of the random magnetic field. For this spectrum,

integration of Eq. (9.176) yields

q(ω′) =
π2Aν
v

(
Qc

E
)2

(ν + 2)q2∗ + νω′2/v2

ν(ν + 2)qν+2∗
, q∗ = max(kmin, ω

′/v). (9.179)

Substitution of q(ω, θ) into Eq. (9.173) for the spectral and angular dis-
tribution of the emission yields the radiation spectrum in a closed analytical
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form. Finding the spectral distribution into the full solid angle requires fur-
ther integration over angles. For the considered here model case described
by Eq. (9.179) the integration of Eq. (9.175) can be performed analytically,
which yields

I⊥ω =
8Q2γ2∗
3πc

q(ω), (9.180)

where

q(ω) =
π2aν
2ν

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3·2ν(ν2+3ν+4)
(ν+2)2(ν+3)

ων−1
0 ω2

stγ
2ν
∗

ωνγ2 , ω > 2ω0γ
2∗

ω2
st

ω0γ2

[
1+ 3ν(ν+1)ω2

4(ν+2)2γ4∗ω
2
0
− νω3

2(ν+3)γ6∗ω
3
0
+ 3νω2

4(ν+2)γ4∗ω
2
0
ln
(

ω
2γ2∗kminc

)]
,

ω < 2ω0γ
2
∗ ,

(9.181)
ω0 = kminc, ω

2
st = Q2

〈
B2

st

〉
/(Mc)2 (to make expression in the square brackets

more compact we adopted γ∗∗ = γ∗; this has only a very minor effect on
q(ω)). The matching condition ω = 2ω0γ

2∗ can be fulfilled at two frequencies:
ω1 = 2ω0γ

2 at ω > ωpeγ and ω2 = ω2
pe/2ω0 at ω < ωpeγ. In particular, at

high frequencies ω′ 
 kminc, where γ∗ = γ, we have (Nikolaev and Tsytovich
1979)

Iω =
2ν+2π(ν2 + 3ν + 4)aν
ν(ν + 2)2(ν + 3)

Q2

c

ων−1
0 ω2

st

ων
γ2ν . (9.182)

It is remarkable that the spectrum of electromagnetic emission at high fre-
quencies is described by the spectral index ν, characterizing distribution of
the random magnetic field over wave numbers, which implies a way of mea-
suring the turbulence spectrum in remote sources.

At lower frequencies, ω′ � kminc, where the effective scattering rate
q(ω, θ) does not depend on frequency, the radiation spectrum receives the
form

Iω =
4πaν
3ν

Q2

c

ω2
st

ω0

(
1 +

ω2
peγ

2

ω2

)−1

. (9.183)

We note that the spectrum shape is here the same as for the bremsstrahlung.
In particular, at relatively high frequencies, ω > ωpeγ, the radiation intensity
does not depend on frequency at all, while for ω < ωpeγ it decreases with
the frequency decrease as ∝ ω2 following the Ter-Mikaelian effect. At even
lower frequencies, the value γ2∗ ≈ ω2/ω2

pe decreases faster than ω; thus, the
condition ω > 2ω0γ

2
∗ holds again at these low frequencies, ω < ω2

pe/(2ω0), so
the radiation intensity has the form ∝ ων+2.

It should be emphasized that the applicability of the perturbation theory
developed above is itself rather limited. Indeed, even if the deflection of the
particle is small during the time needed to pass through a single correlation
cell of the random field, it is not necessarily small along the coherence length
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of the emission, since multiple scattering of the particle by several successive
magnetic inhomogeneities can easily provide large enough deflections due to
angular diffusion to render perturbation theory inapplicable.

Thus, we have to explicitly consider the applicability of perturbation the-
ory to the emission of fast particles moving in the small-scale random fields.
The coherence length lc(ω) ∼ cγ2∗/ω of emission by a relativistic particle
with a Lorentz-factor γ at a frequency ω decreases as frequency increases, so
the approximation of the rectilinear motion is eventually valid at sufficiently
high frequencies. However, at lower frequencies, the coherence length may
be larger than the correlation length of the random field, and this necessar-
ily will be the case at some low frequencies if one neglects the effect of the
wave dispersion in the plasma. Thus, the particle trajectory traverses several
correlation lengths of the random field to emit this low frequency and its
trajectory random walks due to uncorrelated scattering by successive mag-
netic inhomogeneities. This angular diffusion will clearly affect the radiation
spectrum if the mean angle of the particle deflection θc accumulated along
the coherence length lc exceeds the beaming angle of the emission γ−1.

To estimate the deflection angle θc, adopt that the random field consists of

cells with the characteristic scale l0 and rms field value
〈
B2
st

〉1/2
. Inside each

cell, the electron velocity rotates by the angle θ0 ∼ (ωst/γ)(l0/c) ∼ ωst/(ω0γ);
θ0 � 1/γ if ωst � ω0. Since the deflections are produced by successive
uncorrelated cells of the random field, the mean square of the deflection angle
after traversing N cells will be θ2c ≈ θ20N , where the number of the cells is
specified by the ratio of the coherence length lc to the correlation length
l0 of the random field, N ≈ lc/l0. Therefore, when the particle passes the
length lc(ω) required to produce emission at a frequency ω, its characteristic
deflection angle is θ2c � ω2

st/(ω0ω). This angular diffusion will strongly affect
the emission if θc � 1/γ, i.e., at

ω � ω2
st

ω0
γ2, (9.184)

which occurs in the range of the low-frequency asymptotic limit discussed
above, Eq. (9.183).

9.5.2 DSR in Strong Random Field

Likewise the bremsstrahlung case, the (non-perturbative) intensity of DSR
(assuming the regular magnetic field is zero) is expressed via the Migdal
function, Eq. (9.137):

Iω =
8Q2q(ω)

3πc
γ2

(
1 +

ω2
peγ

2

ω2

)−1

Φ(s). (9.185)

A fundamental distinction between this expression and Eq. (9.136) for the
bremsstrahlung is that q(ω), according to Eq. (9.181), now depends on fre-
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quency. Here the random field is not necessarily weak; the case of ωst > ω0 is
also described by Eq. (9.185). Although Eq. (9.185) in general must be inte-
grated numerically, we can analytically obtain several characteristic asymp-
totes, which gives a good qualitative idea of the overall shape of the DSR
spectrum.

As we will see, the regime of strong random field contains a new charac-
teristic frequency

ωlsc =

[(
2πc

L0

)ν−1 e2
〈
B2

st

〉
m2c2

] 1
ν+1

=

(
ωst

ω0

) 2
ν+1

ω0 =

(
ω0

ωst

) ν−1
ν+1

ωst, (9.186)

which plays a role similar to some extent to the role of the frequency ωB⊥ in
the standard synchrotron theory. At high frequencies,

ω 
 ωlscγ
2 ≡

(
ωst

ω0

) 2
ν+1

ω0γ
2 ≡

(
ω0

ωst

) ν−1
ν+1

ωstγ
2 (9.187)

we have s 
 1, so the radiation spectrum has the standard high-frequency
form

Iω =
8Q2q(ω)

3πc
γ2, (9.188)

with the spectral asymptote Iω ∝ ω−ν, typical for the high-frequency pertur-
bative regime of DSR. Note that if the magnetic field were regular with the
same strength, then the bounding frequency would be ωstγ

2 in place of ωlscγ
2,

Eq. (9.187), and the radiation intensity would decrease exponentially rather
than as a power law, Eq. (9.188). The decrease of the bounding frequency
(compared with the regular field regime) happens because the deviation of
the particle trajectory from the straight line occurs more slowly in the ran-
dom than in regular field; thus the region of applicability of the perturbation
theory [asymptote Eq. (9.188)] broadens toward lower frequencies.

Accordingly, the amount of radiated energy in the random magnetic field
is lower than in the regular magnetic field with the same energy density.
Stated another way, larger random (than regular) magnetic field is required
to provide the same radiative losses.

The parameter s decreases with frequency, and when it falls below unity
at

ω < ωlscγ
2, (9.189)

the perturbation theory is no longer valid. For s � 1 we have Φ(s) � 6s;
therefore

Iω =
2Q2

πc
(ωq(ω))1/2. (9.190)

This expression is valid down to relatively low frequencies, where parameter
s increases again under the influence of the effect of density (term ω2

pe/ω
2)

and again reaches the unity at a sufficiently low frequency.
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Figure 9.14: Single-particle DSR spectra for ν = 1.5 and γ = 106. Cases of small-
scale/weak (ω0/ωpe = 102) and large-scale/strong (ω0/ωpe = 10−4 and 10−7) random
magnetic field are shown. The shape of the DSR radiation spectrum changes significantly
as the largest scale of the field (L0 = 2πc/ω0) changes as described in the text; in
particular, the regime of large-scale magnetic field (solid and dashed curves) differs
substantially from the regime of the small-scale field (dash-dotted curve).

The asymptotic regime Φ(s) � 6s, at s� 1, is due to multiple scattering
of the fast particle by the uncorrelated long waves composing the random
magnetic field at the scales l > c/ωlsc. Even though the perturbation of the
particle trajectory due to any single Fourier component of the random field
is small, their cumulative effect results in significant angular diffusion of the
charged particle. Accordingly, the direction of the particle’s motion changes
by a value exceeding the characteristic beaming angle of emission (ϑ ∼ γ−1),
which leads to a suppression of the emission compared with that predicted
by the perturbation theory (Iω ∝ ω−ν).

Note that this essentially non-perturbative regime of DSR has no direct
analogies in other emission mechanisms. In particular, it cannot be obtained
by either perturbation theory or any averaging of the standard synchrotron
radiation, since the real particle trajectory in the presence of the large-scale
random magnetic inhomogeneities deviates strongly from both the straight
line and a circle.

In the region of applicability of Eq. (9.190), the radiation spectrum is
composed of two or three power-law asymptotes depending on the relation
between ωpeγ and ω0γ

2. If ω0 � ωpe/γ then ω > 2ω0γ
2∗ ; so the top row of

Eq. (9.181) for q(ω) is valid at all frequencies. Accordingly, discarding also
the term ω2

pe/ω
2, which is valid at ω 
 ωpeγ, we obtain

Iω ∼ Q2

c
ωst

(
ω0γ

2

ω

)(ν−1)/2

; ωpeγ � ω � ωlscγ
2, (9.191)
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Figure 9.15: Broadband DSR spectra as produced by three different power-law distri-
butions [Eq. (9.169)] of ultrarelativistic nebular electrons, which extend from a Lorentz
factor γ1 = 0.3× 106 to γ2 = 3× 106, 3× 107, and 3× 108, respectively. The values of
the model parameters were chosen so as to match the spectral energy distribution of the
Crab Nebula; see Sect. 12.3. The values adopted for the spectral index of the turbulence,
ν, the energy index of the power-law electron distribution, ξ, the plasma frequency, ωpe,
and the mean square of the random magnetic field, 〈B2

st〉, are indicated in the figure.

where we have omitted a numeric coefficient near unity for simplicity. It is
important to note that for typical turbulence spectra with ν =1–2, Chap. 6,
the DSR spectrum, Eq. (9.191), is relatively flat having the spectral index
α = (ν − 1)/2 = 0–0.5.

In the other case, ω0 
 ωpe/γ, the lower bound of this region shifts to-
ward larger frequencies, and the spectrum has the form given by Eq. (9.191) at
ω0γ

2 � ω � ωlscγ
2. At low frequencies, ω2

pe/ω0 � ω � ω0γ
2, the scattering

rate does not depend on frequency, and Iω ∼ ω1/2 as in the case of small-scale
magnetic inhomogeneities. Then, for even lower frequencies, ω � ω2

pe/ω0 (or,
if ω0 � ωpe/γ, for ω � ωpeγ), the effect of density, described by the term
ω2
pe/ω

2, dominates γ∗ entering q(ω). Discarding small terms, we obtain

Iω ∼ Q2

c

ωst

γ

ω
(ν−1)/2
0 ω(ν+1)/2

ωνpe
. (9.192)

Therefore, at these low frequencies, the spectrum falls with frequency de-
crease as Iω ∼ ω(ν+1)/2 = ω1−1.5 for ν =1–2. Finally, at even lower fre-
quencies, the parameter s will again be larger than unity due to effect of
plasma dispersion (term ω2

pe/ω
2), so a standard low-frequency DSR asymp-

tote, Iω ∼ ων+2, applies. In Fig. 9.14 we show the DSR spectra calculated
by the numerical integration of Eq. (9.185) in the case of large-scale random
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magnetic field, i.e., under condition

ωst 
 ω0 (9.193)

along with the DSR spectrum in a small-scale field.
We conclude that the spectrum of electromagnetic emission produced by

a single relativistic particle in the presence of large-scale random magnetic
field is entirely different from the standard synchrotron spectrum and also
deviates significantly from that in the small-scale random magnetic field.

9.5.3 Superposition of Regular and Random Fields

The general case when both regular and random magnetic fields are
present has not yet been comprehensively studied. Here, without deriva-
tion, we present expressions valid when either the random field is weaker
than the regular magnetic field or the deviation of the particle trajectory
from the straight line (due to effect of the regular magnetic field) is small
over the correlation length of the random field (Toptygin and Fleishman
1987; Fleishman 2005):

Iω =
8Q2q(ω)

3πc
γ2

(
1 +

ω2
peγ

2

ω2

)−1

Φ1(s, r) +
Q2ω

4πcγ2

(
1 +

ω2
peγ

2

ω2

)
Φ2(s, r),

(9.194)
where Φ1(s, r) and Φ2(s, r) stand for the integrals

Φ1(s, r) = 24s2 Im

∞∫
0

dt exp(−2s0t) ×
[
coth t exp

(−2rs30(coth t− sinh−1 t− t/2)
) − 1

t

]
,

(9.195)

Φ2(s, r)=4rs2Re

∞∫
0

dt
cosh t−1

sinh t
× exp

(−2s0t−2rs30(coth t− sinh−1 t−t/2)) ,
(9.196)

which depend on the dimensionless parameters s0, s, r:

s0 = (1− i)s =
1− i

8γ2

(
ω

q(ω)

)1/2
(
1 +

ω2
peγ

2

ω2

)
, (9.197)

r = 32γ4
(ωB⊥

ω

)2(
1 +

ω2
peγ

2

ω2

)−3

, (9.198)

q(ω) is the rate of scattering of the particle by magnetic inhomogeneities
defined by Eq. (9.181). These expressions contain, as limiting cases, both
synchrotron emission, when q(ω) → 0, and the DSR: when r → 0 then
Φ2 → 0 while Φ1 → Φ, where Φ is the Migdal function considered above.
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9.5.4 DSR from Astrophysical Sources

Relatively strong random magnetic fields, produced in particular by strong
shocks generated by powerful energy release, are typical for many observed
phenomena, such as supernova remnants (SNRs) and gamma-ray bursts
(GRBs), and many dynamic processes, such as cosmic ray generation, turbu-
lence production and transformation, and heating of the interstellar plasma.
Thus, the DSR, describing radiation from turbulent sources, is highly rele-
vant throughout all of astrophysics, being widely applicable to such disparate
sources as extragalactic jets, pulsar wind nebulae, sub-MeV diffuse galactic
emission, and solar radio bursts; see Sects. 12.3.3 and 12.4 for greater detail.

Although several different regimes of DSR are possible, depending on the
value of ξ, we consider the case when

ν < ξ < 2ν + 1, (9.199)

which is probably of the most practical importance. Indeed, the turbulence
spectral index is typically ν < 2 (e.g., ν ≈ 1.7 for the Kolmogorov turbu-
lence), while the particle index ξ > 2 (e.g., ξ ≈ 2.7 for the galactic cosmic
rays). In this regime, the standard nonthermal spectrum typical also for syn-
chrotron radiation, Eq. (9.170), Pω ∝ ω−αnth , where αnth = (ξ − 1)/2, pro-
duced by the inner part γmin � γ � γmax of distribution (9.169) is steeper
than the non-perturbative DSR spectrum, Pω ∝ ω−(ν−1)/2, but shallower
than the high-frequency perturbative spectrum, Pω ∝ ω−ν .

An example of the DSR spectrum (no regular field is present) generated
by the power-law electron distribution is given in Fig. 9.15. We note that at
some low frequencies the spectrum decreases as Pω ∝ ω(ν+1)/2 and then as
Pω ∝ ων+2, but these regions of the spectrum may or may not be observable
from the Earth depending on the source parameters; in Fig. 9.15 these regions
take place at f � 108Hz.

The account of a small-scale or weak field on top of an overall dom-
inant regular magnetic field, Sect. 9.5.3, is particularly important at those
frequency regions where the synchrotron emission decreases exponentially,
e.g., at ω 
 ωBeγ

2
max, where the DSR contribution decreases with frequency

over a much slower, power law, Eq. (9.188). As a result, the exponential cutoff
of the synchrotron spectrum gives a way to the DSR power-law ∝ ω−ν at
these high frequencies, which manifests itself as a secondary spectral com-
ponent distinct from the standard synchrotron spectrum. A few examples of
such spectra representing excellent fits to broadband imaging spectroscopy
spectra from notes and internote region of extragalactic jets presented in
Fig. 9.13 are indicative of the presence of a small-scale component of the jet
magnetic fields.
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9.6 Transition Radiation

9.6.1 General Consideration

Transition radiation is an emission formed by background particles in re-
sponse to electromagnetic perturbation produced by an extraneous (fast)
particle (Ginzburg and Tsytovich 1990; Platonov and Fleishman 2002). Such
a radiation does not apparently require any acceleration of the fast particle;
thus, it does not depend on its mass (for a given Lorentz factor γ; although
for a given energy E the radiation does depend on the mass because particles
with same energy while different masses have distinct Lorentz factors).

Full radiation involving both direct emission by the fast particle and
background electrons is defined, according to Eq. (9.46), by the full electric
current composed on the intrinsic electric current of the particle

jQ(r, t) = Qv(t)δ(r − r(t)) (9.200)

and the plasma response current

jm(r, t) = e

∫
vfm(r,v, t)

d3p

(2π)3
, (9.201)

formed by the plasma electrons perturbed by the fast particle field. Here,
fm(r,v, t) is the electron distribution function in the turbulent plasma with
the account of the plasma (random) inhomogeneity and fast particle effects.
Being calculated and substituted into Eq. (9.46) it yields the transition radi-
ation intensity.

Let us calculate the second-order correction f
(2)
m (r,v, t) to the electron

distribution function dependent on both plasma inhomogeneities and fast
particle electromagnetic field. The kinetic equation for the plasma electrons
has the form

∂f(r,p, t)

∂t
+ v

∂f(r,p, t)

∂r
+ eF (r, t)

∂f(r,p, t)

∂p
= 0, (9.202)

or, for the Fourier transform fω,k(p),

fω,k(p) =
e

i(ω − kv)

∫
F ω−ω′,k−k′

∂

∂p
fω′,k′(p)dω′dk′. (9.203)

Here
F ω,k = Eω,k +

v

c
×Bω,k (9.204)

is the Lorentz force (per a unit charge) acting on a single plasma electron,
and the electric Eω,k and magnetic Bω,k fields are composed of the fields
produced by the plasma eigenmodes (m) and fast particle (Q):

Eω,k = Em
ω,k +EQ

ω,k; Bω,k = Bm
ω,k +BQ

ω,k. (9.205)
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Kinetic equation (9.203) in the integral form is convenient when the cor-
rections to the distribution function related to the fields Eω,k and Bω,k can
be consistently taken into account within the perturbation theory. Note that
Eq. (9.203) is rather general; e.g., it is valid for a relativistic background
plasma.

In the zeroth approximation (for an unperturbed plasma) we have

f
(0)
ω,k(p) = f(p)δ(ω)δ(k), (9.206)

where f(p) is a standard plasma distribution function over momentum. The
first-order correction can be written in the form

f
(1)
ω,k(p) =

eE
(0)
ω,k

i(ω − kv)

∂f(p)

∂p
+ δfω,k(p), (9.207)

where we explicitly isolated a component δfω,k(p) to describe possible spatial
and temporal inhomogeneity of the plasma electron distribution δNω,k. The
functions f(p) and δfω,k(p) are normalized to the plasma electron number
density N0 and its variation δNω,k, respectively:

∫
f(p)

dp

(2π)3
= N0,

∫
δfω,k(p)

dp

(2π)3
= δNω,k. (9.208)

This form of f
(1)
ω,k(p) with an arbitrary variation δfω,k(p) is convenient be-

cause the inhomogeneities of the plasma electron number density can be
coupled with the ion inhomogeneities so the overall charge variation can be
highly reduced or evanescent; alternative (and much more complicated) way
of inclusion of such inhomogeneities into our treatment is via an additional
equation for the ions. Then, the second-order correction receives the form:

f
m(2)
ω,k =

e2

i(ω − kv)

∫
F ω−ω′,k−k′

∂

∂p

[
F ω′,k′

i(ω′ − k′v)
∂

∂p
f(p)

]
dω′dk′

+
e

i(ω − kv)

∫
F ω−ω′,k−k′

∂

∂p
δfω′,k′(p)dω′dk′. (9.209)

In case of relativistic background plasma the term kv in the denominator
is of the same order of magnitude as ω; thus, the difference (ω − kv) is a
small value compared with ω. Then, the magnetic field of the fast particle
has an effect comparable to its electric field because vT /c ∼ 1. This gives rise
to a great complication of (not yet available) transition radiation theory in
relativistic plasmas compared with usual nonrelativistic plasma. Therefore,
for the sake of simplicity, from this point we consider a nonrelativistic plasma
and note that further results should not be applied to relativistic plasmas.

We do not include any large-scale magnetic field B0 into Eq. (9.209) be-
cause its effect on the plasma dielectric tensor (see Chap. 3) is small for
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ωBe � ωpe and can be discarded at ω 
 ωpe in the zeroth order approxi-
mation. Calculating the Fourier transform of the current using Eqs. (9.201),
(9.209), and (9.208), we obtain

j
m(1)
ω,k =

ie2

mω

∫
EQ
ω−ω′,k−k′δNω′,k′d3k′dω′

− e3N

m2cω

∫
d3k′

dω′

ω − ω′ [E
Q
ω−ω′,k−k′×Bm

ω′,k′ ]. (9.210)

To obtain Eq. (9.210) we adopted a few natural simplifications: small terms of
the order of vT /c and u/c, where u is a fluid plasma velocity, were discarded
as well as electric component of the eigenmodes composing the turbulence.
The latter is correct because the potential part of the electric field is taken
into account via δNω′,k′ , while the inductive electric fields of the MHD waves
are small compared with the magnetic fields of these waves.

9.6.2 Transition Radiation on Random Density
Inhomogeneities

As is apparent from Eq. (9.210) there are two main ways generating the tran-
sition radiation: by inhomogeneities of the background electron density or the
random magnetic fields. Let us consider the first of them related to δNω′,k′

in greater detail, for which we write the radiated energy in the form

Emn,ω =
(2π)6e4

m2c3

∫
[n×EQ

ω−ω′,k−k′ ][n×EQ∗
ω−ω′′,k−k′′]

× 〈δNω′,k′δN∗
ω′′,k′′

〉
d3k′dω′d3k′′dω′′. (9.211)

In case of an ultrarelativistic radiating particle it is sufficient to include into
Eq. (9.211) only the transverse electric field of the particle, that is much
larger than its longitudinal field at ω 
 ωpe. The transverse electric field is
expressed via its electric current:

EQ,tri,ω,k = Gtr
ij(ω,k)j

Q
j,ω,k, (9.212)

where Gtr
ij(ω,k) is the corresponding transverse Green’s function:

Gtr
ij(ω,k) =

(
δij − kikj

k2

)
4πiω

c2
(
k2 − ω2ε(ω)

c2

) , (9.213)

while the electric current of the relativistic particle is specified by its path
r(t) and velocity v(t) according to Eq. (9.200); thus, for the steady rectilinear
motion of the particle the current is described by Eqs. (9.52) and (9.53).
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Substituting Eqs. (9.212) and (9.213) into Eq. (9.211), and then averaging
over the random phases using the relation

〈
δNω′,k′δN∗

ω′′,k′′
〉
= |δN |2k′δ(ω′)δ(ω′ − ω′′)δ(k′ − k′′), (9.214)

we find for the radiation intensity per unit time:

Imn,ω =
8πQ2e4

m2c3ω2ε2(ω)

∫
d3k′

|δN |2k′δ(ω − (k − k′)v)[n× v∗]2(
1− (k−k′)2c2

ω2ε(ω)

)2 , (9.215)

where v∗ = v− (k− k′)((k− k′)v)/(k− k′)2, δ(ω − (k− k′)v) � δ(ω( 1
2γ2 +

ω2
pe

2ω2 + θ2

2 + k′v
ω )), θ ≈ |v/v − n| is the viewing angle relative to the particle

velocity vector.
To simplify integration of Eq. (9.215) over angles of the vector k′ using δ-

function we adopt that the angle between k′ and k is the same as between k′

and v, which is justified by a strong directivity of emission along the particle
velocity. To the same accuracy, in v∗ we can use k2 for (k − k′)2 because
k′/k � 1, while the vectors are almost transverse to each other; this yields:

Imn,ω =
16π2Q2e4

m2c2ω2

∞∫
k′min(θ)

θ2|δN |2k′k′dk′(
θ2 + γ−2 +

ω2
pe

ω2

)2 . (9.216)

We made here an expansion over the small angle θ between n and v using
Eq. (9.67). The lower bound of the integration is set up by the δ-function
argument:

k′min(θ) =
ω

2c

(
θ2 + γ−2 +

ω2
pe

ω2

)
. (9.217)

The radiation intensity into the full solid angle is specified by integration
of Eq. (9.216) over all possible directions of the vector k. Changing the order
of integration over dθ and dk′, we obtain the spectral density of the transition
radiation in the form

Imω =
16π3Q2e4

m2c2ω2

∞∫
k′min

|δN |2k′k′dk′
θ2max∫
0

θ2dθ2(
θ2 + γ−2 +

ω2
pe

ω2

)2 , (9.218)

where

θ2max =
2ck′

ω

(
1− k′min

k′

)
, k′min =

ω

2c

(
γ−2 +

ω2
pe

ω2

)
. (9.219)



430 9 Microscopic Emission Processes in the Plasma

Integration of Eq. (9.218) over dθ2 yields the spectrum

Imω =
16π3Q2e4

m2c2ω2

∞∫
k′min

|δN |2k′Φ

(
k′min

k′

)
k′dk′, (9.220)

where
Φ(x) = x− lnx− 1. (9.221)

Adopt the density inhomogeneity spectrum to have the power-law form
of Eq. (9.177) with

〈
B2

st

〉→ 〈
ΔN2

〉
,

| δN |2k=
ν − 1

4π

kν−1
min

〈
ΔN2

〉
kν+2

, (9.222)

where
〈
ΔN2

〉
is the mean square of the electron density irregularities at the

scales l ≤ L0 = 2π/kmin. Integrating Eq. (9.220) with spectrum (9.222) we
find

Imω =
4π2(ν − 1)

ν2(ν + 1)

Q2e4
〈
ΔN2

〉
kν−1
min

m2c2ω2

(
2c

ω

)ν (
γ−2 +

ω2
pe

ω2

)−ν
. (9.223)

Thus, the transition radiation spectrum produced by an ultrarelativis-
tic particle moving rectilinearly through a nonrelativistic plasma with ran-
dom inhomogeneities of the electron density consists of two smoothly linked
power-law regions: at ωpe � ω � ωpeγ there is a flat spectral asymptote
Imω ∝ ων−2, while at ω 
 ωpeγ the spectrum falls as Imω ∝ ω−ν−2. In par-
ticular, this means that for ν > 1 bulk of the transition radiation energy is
generated around the frequencies ∼ ωpeγ. Integration of Eq. (9.223) around
this frequency, ωpeγ, yields the total radiated energy per unit time:

Itrtot ≈
16π2

ν(ν + 1)2
Q2e4

〈
ΔN2

〉
cm2ω2

pe

(
2k0c

ωpe
γ

)ν−1

∝ γν−1. (9.224)

For the purpose of further references, we present below the transition radia-
tion intensity valid for arbitrary particle energy, including the nonrelativistic
case without emission directivity along the particle velocity (Platonov and
Fleishman 2002):

Iω =
4π2(ν − 1)

ν2(ν + 1)

e4Q2
〈
ΔN2

〉
kν−1
0

m2c3
v

kνω2

n(ω)

ε2(ω)

{(
ω

kv
− 1

)−ν

+
8ν3 + 8ν2 − 3ν − 6

3(ν + 2)

(
kv

ω

)ν

−400(1.18ν2 − 2.17ν + 1.18)

3(ν + 2)

(
kv

ω

)3.03ν+1.14
}
. (9.225)
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It should be noted that Eqs. (9.223) and (9.225) are valid for transition
radiation by the particle interacting with an ensemble of weak shock waves
and/or other discontinuities. For this case we must adopt ν = 2 (see
Sect. 6.10), i.e., the radiation loss according to Eq. (9.224) is proportional to
the fast particle energy. Then, at ω � ωpeγ the radiation spectral density is
constant, while at ω 
 ωpeγ, it decreases as ω−4. In case of strong shocks
the spectrum shape does not change much; however, the numeric factors do
change.

9.6.3 Resonant Transition Radiation

Equation (9.215) diverges when ω → ωpe because ε(ω) → 0 in the denomi-
nator. The corresponding peak in the transition radiation spectrum, we call
the resonant transition radiation (RTR) since it happens around the
resonance plasma frequency. In this frequency region, however, we cannot
use the ultrarelativistic approximation. Indeed, since the phase velocity of
the transverse waves around ωpe is much larger than the speed of light so
v/vph � 1 for any v < c, then to calculate the transition radiation to the
accuracy of (v/vph)

2, we can safely consider only the longitudinal electric
field of the fast particles (nonrelativistic, dipole approximation) specified by
the longitudinal Green function:

Glij(ω,k) = − 4πikikj
ωk2ε(ω,k)

. (9.226)

However, the dielectric permittivity entering the expression for this field
must be treated more accurately—with the account of the spatial dispersion,
ε(ω,k) = ε(ω)− 3k2d2 + iε′′. The RTR intensity then receives the form

IRn,ω =
8πe4Q2ε1/2

m2c3

∫
k′2dk′

[nk′]2δ[ω − (k − k′)v] | δN |2k′ dϕdcosϑ

(k − k′)4[(ε(ω)− 3(k − k′)2d2)2 + ε′′2]
,

(9.227)

where d = vT /ωpe is the Debye length, while the imaginary part of the dielec-
tric permittivity ε′′ is kept to avoid divergence of the integral in Eq. (9.227).
At this frequency region ε(ω) � 1 and k � k′; thus we can discard k com-
pared with k′ everywhere except the resonant denominator. Then, it is con-
venient to integrate Eq. (9.227) over angles of n, which yields the radiation
intensity into the full solid angle (the directivity pattern approximately cor-
responds to a dipole):

IRω =
32π3e4Q2ε1/2

vm2c3

∫ ∞

ω/v

dk′

k′
| δN |2k′

∫ 1

−1

sin2 ϑdcosϑ

(ε(ω) + 6kk′d2 cosϑ−3k′2d2)2+ε′′2
,

(9.228)
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where ϑ is the angle between the wave vector k′ and particle velocity v. To
obtain Eq. (9.228) we also performed a trivial integration over the azimuth
angle

∫
dϕ. . . =2π. Expansion of the integrand onto partial fractions and

integration over ϑ yields

IRω =
32π3e4Q2ε1/2

vm2c3

∫ ∞

ω/v

dk′

k′
| δN |2k′

Jϑ
36k2k′2d4

, (9.229)

where

Jϑ=a ln
(a+1)2+b2

(a−1)2+b2
−2+

1+b2−a2
b

(
πΘ(1−a2−b2)+ arctan

2b

a2+b2−1

)
,

(9.230)

a =
3k′2d2 − ε(ω)

6kk′d2
, b =

ε′′

6kk′d2
.

Let us consider Jϑ in greater detail. A nonabsorbing medium corresponds
to the case of b→ 0. Then at a2 ≤ 1 the value Jϑ → ∞ as π/b. This divergence
has a simple origin: when a2 ≤ 1 then the condition for VCR of the plasma
waves is fulfilled, so the electric field with corresponding combination of ω,
k, and k′ is a propagating wave rather than a quasistationary field linked to
the fast particle, which implies an infinitely large formation zone and, thus,
is in a contradiction with the small damping approximation for any small
while finite wave absorption. The transition radiation is a conversion of the
quasistationary electric field into propagating waves; thus, the region a2 ≤ 1
must be removed from integration over dk′.

In this case the function Jϑ can be simplified by discarding πΘ(1−a2−b2)
and expanding arctanx into a series for small argument at a2 > 1:

Jϑ =
{
a ln

(a+ 1)2 + b2

(a− 1)2 + b2
− 4
}
Θ(a2 − 1). (9.231)

Jϑ still has a singularity at b → 0, a2 → 1; however, this singularity is
integrable. This can easily be shown if we expand Jϑ in powers of 1/a, which
converges within 1/|a| < 1. Retaining only the first nonvanishing term of this
expansion

Jϑ � 4

3a2
Θ(a2 − 1) (9.232)

ensures the accuracy with an error less than 30%. Substituting Eq. (9.232)
into Eq. (9.229) and introducing a dimensionless variable μ = k′v/ω, we ob-
tain the RTR spectrum in the form

IRω =
32π2(ν − 1)

27

e4Q2ε1/2

vm2c3
kν−1
0

〈
ΔN2

〉 ( v
ω

)ν+2 ( v

ωd

)4 ∫ ∞

1

dμΘ(a2 − 1)

μν+3(μ2 − α)2
,

(9.233)
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where

α =
ε

3

( v

ωd

)2
≈ ε

3

(
v

vT

)2

, (9.234)

vT is the thermal velocity of the plasma electrons. For an arbitrary spectral
index value ν the integral in Eq. (9.233) is taken via a hypergeometric func-
tion. In fact, the dependence of the spectrum of the spectral index is minor
in this restricted range of the frequencies; thus, one can use a result of ana-
lytical integration of Eq. (9.233) available for ν=2 in the class of elementary
functions.

Introducing a function F (α) as

F (α) ≡ (ν + 2)ε1/2

9

( v

ωd

)4 ∞∫
1

dμΘ(a2 − 1)

μν+3(μ2 − α)2
, (9.235)

and taking the integral for ν=2, we obtain

F (α) = 2ε−3/2

{
1

α

[
1

1− α
+ 2 +

α

2
+

3

α
ln(1− α)

]
Θ(ω1 − ω)

+
1

α2

c

2 · 30.5vT

[
1− 6 · 30.5vT

c
ln

c

2 · 30.5vT
+

5 · 31/2vT
c

]
Θ(ω − ω1)Θ(ω2 − ω)

+

{
1

α2

c

30.5vT
+

1

α

[
1

1− α
+ 2 +

α

2
+

3

α
ln(α− 1)

]}
Θ(ω − ω2)

}
. (9.236)

where

ω1,2 = ωpe

[
1 +

3

2

(vT
v

)2(
1∓ 2 · 30.5vT

c

)]
. (9.237)

At high frequencies ω 
 ωpe, α 
 1 we have F (α) ≈ ε−3/2(ω) so
Eq. (9.236) merges smoothly to the higher-frequency spectrum of transition
radiation, Eq. (9.225). Therefore, the transition radiation spectrum valid at
all frequencies, ω ≥ ωpe, is obtained by replacing ε−3/2 → F (α) in Eq. (9.225),
which yields around the spectrum peak:

IRTR
ω =

32π2(ν − 1)

3(ν + 2)

e4Q2
〈
ΔN2

〉
kν−1
0

c3m2ων+2
F (α)vν+1. (9.238)

Apparently, at high frequencies, ω 
 ωpe, the spatial dispersion plays
no role and so F (α) ≈ ε−3/2 ≈ 1, at low frequencies, α � 1, F (α) ≈
(ε1/2/18)(v/vT )

4 ∝ (ω − ωpe)
1/2, while at the spectrum peak region α ≈ 1

and F (α)∼v3c/v4T .
Figure 9.16 displays the function F (α), specifying the RTR spectrum

plotted by analytical formulae (9.236) for ν = 2 and by a numeric integra-
tion of Eq. (9.235) for various ν. One can note that the peak of the analytical
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Figure 9.16: Left: function F (α) plotted using analytical formula at ν = 2 (dashed
curve) and numerical integration for various values ν = 1.2 − 2 (grey region). The
bottom bound of this region corresponds to ν = 1.2, while the upper bound—to ν = 2.
The numerically obtained curves are systematically lower than the analytical curve. Right:
F (α), analytically (thin solid curve) and numerically (thick dashed curve) computed for
ν = 2 in a cold plasma with vT /c = 0.0155. Apparently, the departure between the
analytical and numerical curves decreases for smaller vT /c.

function always exceeds those of the numerical curves. The deviation between
the numerical and analytical curves plotted for ν = 2 in Fig. 9.16 is related
to the assumption vT /c � 1, made to derive Eq. (9.236). Since vT /c enters
together with numeric factors of (2− 6)×√

3, then, for adopted vT /c ≈ 0.03
in Fig. 9.16, the corresponding error is about 20–30%. For smaller vT /c the
curves match each other very well, Fig. 9.16, right.

Let us calculate now the full power generated by the resonant transition
mechanism. Integrating spectrum (9.238), valid around ωpe for particles with
arbitrary energy, over frequency, we obtain

IRtot =
64π2(ν − 1)

45(ν + 2)

e4Q2
〈
ΔN2

〉
kν−1
0

c3m2

(
v

ωpe

)ν+1
vc

v2T
. (9.239)

Comparison of Eq. (9.239) with energy produced at high frequencies (9.224)
shows that for particles with γ < c2/v2T the RTR produces more power than
the standard transition radiation, while for γ > c2/v2T bulk of the power is
generated at the frequencies ωm ∼ ωpeγ > ωpec

2/v2T .
If the fast charged particle moves in a gradually nonuniform plasma (with

a distribution over plasma frequencies Φ(ωpe)), then the radiation at a given
frequency ω is primarily formed by the plasma spatial regions where ωpe ≈ ω.
RTR from a small part of such nonuniform sources can be approximated as

IRω =
64π2(ν − 1)

45(ν + 2)

e4Q2
〈
ΔN2

〉
kν−1
0

c3m2

(
v

ωpe

)ν+1
vc

v2T
δ(ω − ωpe), (9.240)

which yet must be convolved with the function Φ(ωpe).
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The RTR power produced by a fast particle ensemble is obtained by
integration of Eq. (9.240) with the particle spectrum. For example, for a power
law over momentum modulus with index ξ and 1 < ξ < ν + 3 we have

PR
ω =

2(ν−1)

45(ν+2)

(ξ−1)Γ( ξ−1
2

)Γ
(

ν−ξ+3
2

)
Γ
(
ν+2
2

) e2

c
xξ−1
0 Neω

2
pe

〈
ΔN2

〉
N2

(
kminc

ωpe

)ν−1 c2

v2T
δ(ω−ωpe).

(9.241)

Here the bulk contribution comes from mildly relativistic particles with
Ekin∼mc2.

Note that the presence of even a relatively weak magnetic field in the
plasma with ωBe � ωpe can strongly affect the RTR spectrum because it
depends on structure of the plasma resonance and also on the refractive
index behavior around the mode cutoff frequency. Since the full consideration
of the RTR in magnetic field is very cumbersome and lengthy we give here
a brief summary only. Formally, the presence of magnetic field requires a
substitution F (α) → nσΦ(α, β), where the magnetic field effect is described
by the refractive index and new parameter β = (ω2

Be/3ω
2
pe)(v/vT )

2 (must not
be mixed with dimensionless velocity β used elsewhere). The corresponding
spectra are given in Fig. 9.17; one can see that the magnetic field gives rise to
a significant suppression of the RTR, which leads to a reduction of the total
radiated energy compared with Eq. (9.240). On top of that, the emission can
be now strongly polarized in the sense of O-mode. The total (integrated over
the peak) RTR power per unit solid angle in O-mode is

Ion =
π2(ν − 1)

2(ν + 2)

(1 + cos2 θ)

23/2 · 31/4
e4Q2

〈
ΔN2

〉
kν−1
0

c3m2

(
v

ωpe

)ν+1 (
c

vT

)1/2
ωpe

ωBe
,

(9.242)

if 2
√
3vT /c < β < 1 and

Ion=
21/2π2(ν−1)

(ν+2)

(1+ cos2 θ)

9 · 31/2
e4Q2

〈
ΔN2

〉
kν−1
0

c3m2

(
v

ωpe

)ν+1(
ωpe

ωBe

)1/2(
cv

v2T

)1/2

(9.243)

if β > 1 (ωBe/ωpe >
√
3vT /v). For the extraordinary mode the total in-

tensity Ixn is defined by Eq. (9.242) if β > 2
√
3vT /c and additionally v >

vT
√
3ωpe/ωBe; RTR is weakly polarized in this case. Alternatively, if β <

2
√
3vT /c or v < vT

√
3ωpe/ωBe, the X-mode intensity is strongly suppressed

and emission is highly polarized in the sense of O-mode. Presented equations
are sufficient to estimate RTR from a gradually nonuniform magnetized plas-
mas by using the following approximate expression for the RTR spectrum:

IR,σn,ω = Iσnδ(ω − ω∗), (9.244)

where ω∗ corresponds to a local spectrum peak, which is slightly above the
local plasma frequency.



436 9 Microscopic Emission Processes in the Plasma

1.000 1.002 1.004 1.006 1.008 1.010 1.012

8.0x104

6.0x104

4.0x104

2.0x104

0.0

8.0x101

6.0x101

4.0x101

2.0x101

100

10−1

10−2

10−3

10−4

10−5

10−5 10−4 10−3 10−2 10−1 100

0.0

8.0x104

6.0x104

4.0x104

2.0x104

0.0

1.0 1.2 1.4 1.6 1.8 2.0 2.2

X

O

-1
ω

B
-1/2

-5/2 ω
Bω

Be

β=1βx=1
β=2\/3 v

T
/c  

v/c=0.995

7x10-2
3x10−2

2x10−2

v/c=0.995 v/c=0.995

v/c=0.1v/c=0.1

v < v v < v
*

X

O

-1

-1/2

-3

ωBe

ωBe

ωBe

ωBe

-1

β=1βx=1β=2\/3 v
T
/c  

ω/ωpe

ω/ωpe

ωBe/ωpe

10−5 10−4 10−3 10−2 10−1 100

ωBe/ωpe

1.0 1.2 1.4 1.6 1.8 2.0 2.2
ω/ωpe

1.000 1.002 1.004 1.006 1.008 1.010 1.012
ω/ωpe

nOΦ(α,β)

nOΦ(α,β)

8.0x101

6.0x101

4.0x101

2.0x101

0.0

nXΦ(α,β)

nXΦ(α,β)

Ιtot /Ι0

100

10−1

10−2

10−3

10−4

Ιtot /Ι0

ωBe/ωpe=3x10−5

4x10-3
3.5x10−3

2x10−3

ωBe/ωpe=3x10−5

6x10-1
4x10−1

2x10−1

ωBe/ωpe=3x10−5

6x10-1
4x10−1

2x10−1

ωBe/ωpe=3x10−5

vT/c=10−4 vT/c=2x10−2

v
*
/c=0.93x10−2 v

*
/c=0.13

v/c=10−3

Figure 9.17: Spectra of RTR of O- and X-wave modes in a magnetized plasma with
vT /c = 0.0315. For relatively faster emitting particles (upper panels) the magnetic field
increase results initially in suppression of X-mode radiation and only later to a suppression
(and shift to the right) of the peak in the O-mode spectrum. For slower particles (middle
panels) the spectra are originally broader and the O and X spectra are more similar to
each other than in case of faster particles, although the suppression of X-wave radiation
is still stronger than that of O-mode. The lower panels show how the total (integrated
over all frequencies) radiation intensity changes with the magnetic field for a “slow” (left)
and “fast” (right) particles. I0 is the total intensity in the absence of the magnetic field.
At βx < 1, the curves for X- and O-modes are similar to each other (the degree of
polarization does not exceed 50%), while at βx > 1 the X-mode intensity drops rapidly
so the radiation becomes almost fully (100%) polarized.
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9.6.4 RTR in Astrophysics

As we have seen the transition radiation including the RTR requires fast par-
ticle interactions with a turbulent plasma having random inhomogeneities of
either plasma density or/and magnetic field—the situation highly typical for
many astrophysical sources. For this radiation to be observed from Earth,
however, requires additionally that the plasma density at the source is suffi-
ciently large for the corresponding plasma frequency (defining the emission
frequency) to occur at a spectral domain observable from either Earth or
space. This implies that the RTR can be expected from solar/stellar coro-
nae, interplanetary space, and planetary magnetospheres and ionospheres
(Platonov and Fleishman 2002; Fleishman 2008).

Here we give only one example of RTR produced in a continuum burst of
decimeter radio emission from a solar flare (Nita et al. 2005). Figure 9.18, up-
per panel, presents dynamic spectra of the 2001 April 06 solar radio burst in
intensity (top) and circular polarization (bottom), observed with OVSA. The
RTR occurs at a restricted range of time and frequency shown by the bright
red region in the polarization panel, which represents highly right-hand circu-
larly polarized (RCP) emission. Two other panels of Fig. 9.18 present spatial
association of the RTR radio source with (1) the accompanying gyrosyn-
chrotron source (see Sect. 10.2 for greater detail on the GS bursts), (2) a
dense soft X-ray loop, and (3) the underlying magnetic field structure, con-
firming the presence of all expected relationships between RTR and other
data.

Indeed, as seen in Fig. 9.18, top, the RTR forms a distinct, low-frequency
spectral component relative to the higher-frequency gyrosynchrotron compo-
nent. Both spectral components are smooth in time and frequency, with com-
parable timescales, with the main difference being that the gyrosynchrotron
component is delayed with respect to the RTR component, as expected for
emissions produced by high-energy and low-energy electrons, respectively.

Both the RTR (2GHz) and gyrosynchrotron (7.4GHz) sources arise in or
near a very dense loop. The brightness temperatures (see Sect. 10.1.5 for the
definitions) derived from the radio maps, averaged over the pixels lying inside
the 85% 2GHz contour, are 1.5× 109K, at 2GHz, and 4× 108K, at 7.4GHz.
The electron temperature inferred from SXT data (Fig. 9.18, right), averaged
over the same region, is 2 × 107K, while the average emission measure cor-
responding to one pixel (2.5× 2.5 arcsec) is 5.6× 1048 cm−3. Assuming a line
of sight length of about 25 arcsec, which roughly equals the projected loop
width, we obtain an estimate for the plasma density in the region of interest
as 3× 1011 cm−3. This value directly confirms the existence of a high plasma
density in the flaring region, which agrees with indications of the Razin effect
(see Sect. 9.4.2), found independently from the microwave GS spectral com-
ponent. The RTR peak frequency of 2GHz implies, from the electron plasma
frequency fpe = 9 × 103

√
nHz, an electron density of 5 × 1010 cm−3 that

is small compared with 3 × 1011 cm−3 derived above for the underlying soft
X-ray loop. Note that the X-ray-derived density demonstrates the presence
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Figure 9.18: 2001 April 06 after 19:12 UT. Total power (top) and polarization (second
panel) dynamic spectra recorded by OVSA with 4 s and 8 s time resolution, respectively,
at 40 frequencies in the [1.2–18] GHz range. The period of RTR is the highly polarized
(red) emission in the second panel. Two spectral components are visible in the upper
panel during this time: the low-frequency RTR component, which peaks at 19:22:11
UT (3700 sfu at 2GHz), and the delayed high-frequency GS component, which peaks
at 19:22:51 UT (2300 sfu at 7.4 GHz). Bottom panel: OVSA radio maps (19:22:03
UT) overlaid on the SOHO/MDI magnetogram (19:22:02 UT). The radio contours,
representing 55, 75, and 95% of the maximum intensity, are scaled separately for each
frequency and polarization: the RCP (red contours) and LCP (blue contours) at 2GHz
(unfilled contours) and 7.4 GHz (filled contours). Within the instrumental resolution
(see the corresponding beam sizes shown by dashed ovals), the 2GHz RCP source (red,
unfilled contour) is colocated with the 7.4 GHz LCP GS source (blue, filled contour)
in the negative magnetic field region. Thus, both low- and high-frequency emissions are
likely produced by the same population of electrons traveling along the same magnetic
loop. Remarkably, for both frequencies, the intrinsic degrees of polarization implied by
the radio maps are noticeably larger than those suggested by the unresolved polarization
spectrum presented in the second panel. Right bottom panel: OVSA radio maps of the
dominant polarization (19:22:03 UT) as in the left bottom panel, overlaid on the emission
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of high densities in the region, while the lower radio-derived density (presum-
ably, from higher coronal levels) is expected since the 2GHz radio emission
will come primarily from overlying, less-dense regions due to significant free–
free absorption in the higher-density regions.

Figure 9.18, bottom, shows that the RTR and gyrosynchrotron sources
are co-spatial. This co-spatiality is highly conclusive in favor of RTR, since
having truly separate spectral components requires either completely different
source locations or different mechanisms or both. Distinct spectral compo-
nents having the same source location are a strong indicator that each com-
ponent is produced by a different emission mechanism and the RTR is one of
very few known emission mechanisms capable of producing a low-frequency
(compared with GSR) diffuse emission.

Figure 9.18 shows that the RTR emission is strongly polarized in the
sense of the O-mode, as required (see Sect. 9.6.3), while the gyrosynchrotron
emission is X-mode. Indeed, the radio maps at 7.4GHz in Fig. 9.18, middle,
(filled contours) reveal RCP (red) overlying positive (white) magnetic polarity
and LCP (blue) overlying negative (black) polarity, located on opposite sides
of the neutral line. This clearly shows a relatively high degree of X-mode
polarization of both 7.4GHz radio sources. At 2GHz (unfilled contours),
exactly the opposite spatial correspondence is seen, with RCP (red) overlying
negative magnetic polarity and LCP (blue) overlying positive polarity. This
clearly shows a high degree of O-mode polarization for the RTR spectral
component.

The importance of the RTR detection from a cosmic source is several
fold. First, RTR is confirmed as another continuum emission mechanism
in astrophysical plasmas, among only a small number of others: gyrosyn-
chrotron/synchrotron emission, DSR, bremsstrahlung, and inverse Compton
emission. Second, with new radio facilities in development that are capa-
ble of simultaneous spatial and spectral measurements of solar bursts (e.g.,
at the time of writing Expanded VLA, Expanded OVSA, and planned Fre-
quency Agile Solar Radiotelescope, FASR), RTR can be routinely recognized
and used as a diagnostic of the plasma density, the low energy part of the
electron energy distribution, and of the presence and quantitative level of
microturbulence: in this event, for example, the level of inhomogeneities de-
rived from the RTR flux, which can be estimated with equations given in
Sect. 9.6.3, is

〈
Δn2

〉
/n2 ∼ 10−5.

�
Figure 9.18: (continued.) measure (EM) map derived from the Yohkoh/SXT instru-
ment (19:22:00 UT) using data obtained with two different filters (Be119 and Al12).
The EM map reveals the existence of a magnetic loop or arcade of loops filled with
hot and dense plasma, which is consistent with the magnetic and radio topology pre-
sented in the left bottom panel. The 2GHz RCP radio source and the 7.4GHz LCP
kernel are well aligned with the most dense section of the loop (Nita et al. 2005).
Reproduced by permission of the AAS.
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Problems

9.1 Derive expressions for radiated energy produced by a single charged
particle moving along a given trajectory using Eqs. (9.46), (9.47), and (9.49).

9.2 Calculate spectral and angular distribution of the VCR energy produced
by a charged particle moving rectilinearly in an anisotropic and gyrotropic
medium with a given dielectric tensor εαβ . Consider different eigenmodes
including longitudinal modes and hot plasma modes.

9.3 Calculate DSR spectrum produced by a nonrelativistic particle moving
in a random magnetic field.

9.4 Calculate bremsstrahlung spectrum produced by a nonrelativistic par-
ticle moving in a fully ionized hydrogen plasma in a weak magnetic field,
ωBe � ωpe.

9.5 Calculate RTR produced due to random magnetic inhomogeneities.

Answers and Solutions

9.1 Hint: Use electric current produced by a single particle, described by
Eq. (9.51). For example, substitution of Eq. (9.51) into Eq. (9.46) yields

Eσn,ω =
Q2ω2nσ(ω)

4π2c3
Re

T∫
−T

dt

∞∫
0

dτeiωτ e−ik[r(t+τ)−r(t)](e∗σ ·v(t+ τ))(eσ ·v(t)),

(9.245)
while into Eq. (9.49) yields

En,ω =
Q2ω2n(ω)

4π2c3
Re

T∫
−T

dt

∞∫
0

dτeiωτ e−ik[r(t+τ)−r(t)][n× v(t+ τ)] · [n× v(t)].

(9.246)

9.3 In the nonrelativistic case v/c � 1 (γ ≡ √1− v2/c2 ≈ 1) and ω′ ≈ ω,
Eq. (9.66) can be written in the form

En,ω =
√
ε
Q2

c3
|[n×wω]|2 , (9.247)

where Q is the particle charge and n is the unit wave vector of the radiation.
Equation (9.247) shows that the radiation in a given direction n is defined
by the acceleration component |wω⊥|2 = |[n×wω]|2 transverse to n, which,
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similarly to the derivation in ultrarelativistic case, Sect. 9.2.3, can be ex-
pressed via temporal and spatial Fourier transform of the external Lorentz
force, Fαq0,q:

| wω⊥ |2= (2π)3

M2V

∫
dq0dqδ(ω − q0 + qv)(δαβ − nαnβ)F

α
q0,qF

β∗
q0,q, (9.248)

where M is the mass of emitting particle and V is the source volume.
For electric component of the Lorentz force F = QE we have

(δαβ − nαnβ)F
α
q0,qF

β∗
q0,q = Q2(δαβ − nαnβ)E

α
q0,qE

β∗
q0,q, (9.249)

where

Eαq0,qE
β∗
q0,q =

TV

(2π)4
Kαβ(q0, q), (9.250)

Kαβ(q0, q) is the correlation tensor of the random electric field, such as∫
dq0dqKαα(q0, q) =

〈
E2
st

〉
(Sect. 7.4).

For magnetic component of the Lorentz force the corresponding expres-
sion is different:

(δαβ−nαnβ)F
α
q0,q

Fβ∗
q0,q

=
Q2

c2

(
v2δαβ−vαvβ−[n× v]α[n× v]β

)
Bα

q0,q
Bβ∗

q0,q

= Q2 v
2

c2

(
nαnβ+

(nv)2

v2
δαβ−(nv)

vαnβ+nαvβ

v2

)
Bα

q0,q
Bβ∗

q0,q
,

(9.251)

where the correlation tensor defined by Eq. (9.89) can be used, which yields
the DSR intensity, In,ω = En,ω/T , of a nonrelativistic particle in the presence
of random magnetic field:

In,ω=
√
ε
Q4v2

2πM2c5

∫
dq0dqδ(ω−q0+qv)

(
nαnβ+

(nv)2

v2
δαβ−(nv)

vαnβ+nαvβ

v2

)
Tαβ(q0, q).

(9.252)

This expression is valid for arbitrary spectrum of magnetic turbulence in-
cluding anisotropic distributions.

We consider here the DSR produced by accelerated nonrelativistic elec-
trons interacting with the MHD turbulence. In MHD waves E ∼ (vA/c)B,
where vA is the Alfvén speed, Eq. (2.53); therefore the magnetic part of the
Lorentz force is larger than the electric part for all electrons with v > vA.
Assuming this condition to be fulfilled, we calculate only the DSR related
to the magnetic field of the MHD turbulence; inclusion of electric field effect
will further increase the DSR intensity.

Since we are interested in overall spectral shapes and flux level of the
DSR, rather than model-dependent details of the emission, we consider here
the simplest case of the isotropic MHD turbulence:

Tαβ =
1

2

(
δαβ − qαqβ

q2

)
T (q)δ(q0 − q0(q)). (9.253)
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As we assumed v > vA, i.e., the electrons move faster than the waves, we can
adopt the MHD turbulence to be quasi-static, q0(q) = 0. When the MHD
turbulence is isotropic, the accelerated electrons are isotropic as well, and
so the radiation produced is also isotropic. Thus, we consider further the
radiation produced into the full solid angle:

Iω =

∫
In,ωdΩ =

√
ε
8Q2

3πc
· q(ω), (9.254)

where, like in the ultrarelativistic case, Sect. 9.2.3, we introduce the scattering
rate of the nonrelativistic particle by MHD turbulence q(ω):

q(ω) =
π

4

(
Q

Mc

)2
v2

c2

∫
T (q)δ(ω + qv) dq, (9.255)

which contains a small factor v2/c2 compared with Eq. (9.176).
To proceed further we adopt the turbulence spectrum to have a single

power law down to the smallest (resonant to thermal electrons) scales,
Eq. (9.177). Then, substituting Eq. (9.177) into Eq. (9.255), integrating
over dq,

∫
dqT (q)δ(ω + qv) = 2π

∫
d cos θ · dqAν

qν
δ(ω + qv cos θ) =

2πAν

v

ωpe/vTe∫
ω/v

dq

qν+1

=
2π

ν

Aν

v

(
v

ω

)ν (
1−

(
ωvTe

ωpev

)ν)
Θ

(
ωpe

vTe

− ω

v

)
(9.256)

where

vTe = 6.74× 105
√
Te[K] [cm/s] (9.257)

is the thermal velocity of the plasma electrons, Θ(x) is the step function,
and using the electron charge e and mass m for Q and M , we find

q(ω) =
π2Aν
2ν

e2v

m2c4

( v
ω

)ν (
1−
(
ωvTe
ωpev

)ν)
Θ

(
ωpe
vTe

− ω

v

)
, (9.258)

so the DSR spectrum produced by accelerated nonrelativistic electrons reads

Iω =
8e2

3πc

√
ε · q(ω). (9.259)

The DSR power from N electrons with a spectrum N(E) has the form

Pω =

∞∫
E0

IωN(E) dE. (9.260)
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As an example, let us calculate the radio flux observed at the Earth from
a source located at the Sun. We change the variable ω = 2πf , so that
If = 2πIω, and employ known distance to the source, so

Ff =
2πPωV

4πR2
=
PωL

3

2R2
× 1019 sfu, (9.261)

where R = 1au= 1.49× 1013 cm is the distance from the Earth to the Sun.

9.4 We use Eqs. (9.247)–(9.249) from the previous solution and express the
electric field via the scalar potential, Eαq0,qE

β∗
q0,q = qαqβ |ϕq0,q|2, which yields

En,ω =
√
ε
Q2

c3
(2π)3

M2V

∫
dq0dqδ(ω − q0 + qv)[n× q]2|ϕq0,q|2. (9.262)

The potential of randomly distributed Coulomb centers is described by
Eq. (9.127); dividing Eq. (9.262) by the emission time T and taking trivial
integral over dq0dq‖ with the use of δ-functions, we obtain the spectral and
angular distribution of emission per unit time

In,ω =
√
ε
Q4z2e2ni
πvM2c3

q⊥ max∫
0

dq2⊥

(
ω
v

)2
sin2 θ +

q2⊥
2 (1 + cos2 θ)(

q2⊥ +
(
ω
v

)2
+R−2

d

)2 . (9.263)

Then, taking integrals over dq2⊥ we finally obtain:

In,ω =
√
ε
Q4z2e2ni

πvM2c3

{
(1 + cos2 θ)

[
ln

q⊥maxv

ω
√
1 + (ωpev/ωvT )2

− 1

2

]
+

sin2 θ

1 + (ωpev/ωvT )2

}
.

(9.264)

The upper limit of the integration q⊥max is specified by smallest of the two
values: the radiating charge momentumMv or qmax = 2π/rmin, where rmin is
the minimal impact parameter of the collision compatible with the classical
treatment of the particle motion; its exact finding requires quantum consid-
eration. Total bremsstrahlung power radiated into the full solid angle is easy
to find by integration of Eq. (9.264) over dΩ:

Iω =
√
ε
16Q4z2e2ni
3vM2c3

ln ΛC , (9.265)

lnΛC = ln
q⊥maxv

ω
√
1 + (ωpev/ωvT )2

− (ωpev)
2

2(ωvT )2(1 + (ωpev/ωvT )2)
. (9.266)

In the case of weakly magnetized plasma we have to consider emission of
two eigenmodes σ (X and O). To do so we have to divide Eq. (9.264) or
Eq. (9.265) by 2 and replace

√
ε by nσ. Then, considering radiation produced

by electron (Q = e) in a hydrogen plasma (z = 1) we obtain for any of the
eigenmodes:

Iσω = nσ
8e6ni
3vm2

ec
3
ln ΛC . (9.267)
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9.5 Take into account that the plasma response current in the presence of
magnetic inhomogeneities is described by Eq. (9.210), which yields

IRω =
64π2(ν − 1)

3(ν + 2)

e6N2
0Q

2

vω2m4c5
kν−1
min

〈
ΔB2

〉 ( v
ω

)ν+2

F (α). (9.268)



Chapter 10

Radiation Transfer

While propagating through a medium the electromagnetic radiation changes
due to emission, absorption, scattering, and nonlinear wave transformations;
thus, the radiation intensity, spectral distribution, polarization, and directiv-
ity can all vary in space and time. The theory of radiation transfer represents
a broad field of the physics with numerous astrophysical applications (Chan-
drasekhar 1961; Mihalas 1978; Dolginov et al. 1979; Ginzburg 1987; Nagirner
2007a), including radiation transfer in stellar interiors, Faraday rotation in
intergalactic and interstellar media, group delay in solar corona, and many
more. This chapter considers the most fundamental elements of the radia-
tion transfer theory and gives a few examples of its application to the space
plasma.

10.1 Absorption of Radiation and Equation
of Radiation Transfer

Let us consider radiation of an eigenmode σ leaving a source with a volume
V at a given direction. In a general case the solution depends on bound-
ary conditions; in particular, there can be a partial or full reflection of the
radiation, its absorption, polarization transformation etc. To avoid explicit
consideration of the boundary we can think either of radiation incident onto
the inner source boundary or adopt that the refractive index does not change
at the source boundary, while the absorption and scattering of the radiation
are entirely unimportant outside the source.

Adopt that the emissivity (i.e., the radiation intensity from a unit volume
to a given direction) is jσn,ω(r, t), where dependence on r and t describes
possible gradual (compared with the wavelength) and slow (compared with
the wave period) variations of the emissivity, while the absorption coefficient
of this radiation per unit ray path is κσn,ω(r, t). Apparently, if other processes
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and Space Science Library 388, DOI 10.1007/978-1-4614-5782-4 10,
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446 10 Radiation Transfer

such as wave scattering and mode coupling are inessential, then the radiation
intensity Jσn,ω(r, t) satisfies the balance equation:

dJσn,ω(r, t)

vgdt
= jσn,ω(r, t)− κ

σ
n,ω(r, t)J

σ
n,ω(r, t), (10.1)

where d
dt =

∂
∂t + vg

∂
∂r is the full derivative over time and vg = ∂ω/∂k is the

group velocity of the eigenmode.

10.1.1 Equilibrium Radiation

First of all, consider a radiation in a thermodynamic equilibrium with a
medium. In this case the radiation intensity does not depend on r or t, so the
time derivative in the lhs of Eq. (10.1) vanishes, and the radiation intensity is
specified according to a familiar Plank formula by the photon gas tempera-
ture only. In this case we immediately obtain Kirchhoff’s law directly from
Eq. (10.1):

jσn,ω
κσn,ω

= Jσn,ω = J0
n,ω =

n2
σ�ω

3

(2π)3c2| cos θ|
1

e
�ω

kBT − 1

=

⎧⎪⎨
⎪⎩

n2
σω

2

(2π)3c2| cos θ|kBT, for �ω � kBT

�ω3

(2π)3c2 e
− �ω

kBT , for �ω 
 kBT

, (10.2)

where | cos θ| = c
vg
|∂(ωnσ)

∂ω |−1, θ is the angle between the wave vector and

group velocity vg vector; the effect of plasma dispersion (factors n2
σ and

| cos θ|) can be essential at low frequencies (in theRayleigh–Jeans regime),
while at the high-frequency asymptote (the Wien regime) we neglected this
effect entirely. This equation allows to draw a highly important conclusion:
since the rhs does not depend on the medium properties then the lhs does
not depend either. Stated another way, although the emissivities and the
absorption coefficients along are different for different substances, their ratio
is a universal function for any thermodynamically equilibrium medium having
same temperature.

Let us consider as an example the emission and absorption coefficients
of the free–free emission, i.e., of Bremsstrahlung produced by a nonrel-
ativistic thermal electron population described by the Maxwellian distribu-
tion function fe(p) given by Eq. (1.64) with u(b) = 0 and T (r, t) = const,
or, equivalently, Eq. (3.58) for fe(v). Then, the emissivity is determined by
integration of the bremsstrahlung spectral and angular distribution with the
Maxwellian distribution:

jσf,ff = 2πjσω,ff = 2π

∫
Iσn,ωfe(p)dp, (10.3)
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where Iσn,ω is given by Eq. (9.264) divided by 2 (for one eigenmode), where
nσ is used for

√
ε. Neglecting weak dependence of the Coulomb logarithm

lnΛC on the electron velocity, while taking into account the main functional
dependence Iσn,ω ∝ v−1, the integration in Eq. (10.3) is extremely simple:∫
exp(−p2/(2meT ))pdp = meT , which yields

jσf,ff =
8nσz

2e6nine
3(2π)3/2m3/2(kBT )1/2c3

ln ΛC , (10.4)

where we express the plasma temperature in K; kB is the Boltzmann constant.
Now, it is straightforward to find the corresponding absorption coefficient
using Kirchhoff’s law and Eq. (10.2) and making transformation to usual
frequency f = ω/2π (we also adopt | cos θ| = 1 assuming the magnetic field
is weak; see, however, Problem 10.1):

κ
σ
ff =

8

3(2π)1/2
z2e6nine

nσcf2(mkBT )3/2
ln ΛC , (10.5)

where

lnΛC =

{
18.2 + ln(T 3/2/f), T < 2× 105K
24.5 + ln(T/f), T > 2× 105K

(10.6)

and f is measured in Hz. It is easy to check that absorption coefficient
Eq. (10.6) coincides with that determined in Sect. 3.4, Eq. (3.97), from the
dielectric tensor of collisional plasma.

Note that if we redefine jσn,ω to describe a surface (rather than volume)
emissivity and accordingly κ

σ
n,ω to describe the absorption coefficient by this

surface, then for κσn,ω = 1 Eq. (10.2) yields the blackbody radiation law:

jσn,ω = J0
n,ω, (10.7)

i.e., the blackbody emissivity is specified by the universal function J0
n,ω,

which depends on one measure of this black body only—its temperature
T and on the frequency ω. The fact that Kirchhoff’s law has been com-
prehensively proved experimentally implies that thermodynamic equilibrium
between medium and radiation is, in principle, accessible.

10.1.2 Eddington Luminosity

The idea of the equilibrium, stationary radiation implies amechanical equilib-
rium along with the explicitly considered above thermodynamic equilibrium.
As we will see, the requirement of the mechanical equilibrium puts an up-
per bound on the energy density of the electromagnetic field, which can be
formulated in terms of a critical luminosity. To be specific, consider how the
radiation produced by a compact object (e.g., a star) affects its atmosphere.
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Adopt for simplicity that the stellar atmosphere is a fully ionized hydro-
gen plasma. To study the mechanical stability of the atmosphere we have to
calculate the force with which an electromagnetic wave acts on an electron.
This force is specified by the wave momentum transferred to the electron per
unit time; it is directed along the wave propagation, n = k/k, and equal to
the difference, projected onto n, between the original wave momentum and
momentum of all scattered waves per unit time, whose intensity is specified
only by the original wave and the scattering cross section; an asymmetry in-
troduced by slow motion of the nonrelativistic electrons is small as v/c� 1.
Thus, the force averaged over the wave period is

F = cg

∫
(1− cos θ)

dσ(θ, α)

dΩ
dΩ, (10.8)

where g = 1
4πcE ×B is the density of the wave momentum flux along n.

Although differential cross section of the scattering depends on the wave
polarization according to Eqs. (9.102) and (9.103), the force does not depend
on polarization, so integration in Eq. (10.8) yields a rather simple formula

F = wσTn, (10.9)

containing the energy density w = (1/8π)|E|2 of the original wave field and
the total Thomson cross section σT .

Now we apply this result to estimate the critical Eddington luminosity
Lc of a star, i.e., a highest luminosity whose radiative pressure force on the
stellar atmosphere can still be balanced by the gravitational force. The ra-
diation energy density is reciprocal to the square of the distance from the
star center, w(r) = L/4πcr2. The radiation pressure force acting on a single
electron is defined by Eq. (10.9) and, thus, has the form

Fr = σTw(r) =
2e2L

3m2
ec

5r2
. (10.10)

The radiative force acting on a proton is smaller than that given by
Eq. (10.10) by the factor of (me/mp)

2. However, the gravitation force acts
mainly on the protons and scales with the distance from the star center in
exactly same way as Eq. (10.10):

Fg = GMmp

r2
, G = 6.67× 10−8 cm3g−1s−2, (10.11)

where M is the mass of the star. Because the electron and ion plasma com-
ponents are coupled due to Coulomb interaction, both radiative and grav-
itational forces act on the entire (quasineutral) plasma as a whole. Thus,
equating these two forces, we find the critical luminosity:

Lc =
4πcGmpM

σT
≈ 3.2× 104

M

M�
L� ≈ 1038

M

M�
erg/s, (10.12)
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where M� ≈ 2× 1033 g is the solar mass and L� ≈ 3.86× 1033 erg/s is the
solar luminosity. Note that the Sun has luminosity much lower than its
corresponding Eddington luminosity.

The importance of the Eddington luminosity is that for L > Lc the
star cannot have a mechanical equilibrium because the radiation pressure
sweeps the stellar plasma atmosphere out. In addition, the critical luminosity
controls the possibility of gas accretion onto a compact object: if L < Lc
then the gravitation is stronger than the radiative force and accretion from a
companion (e.g., in a binary system) is possible; in the opposite case, L > Lc,
no accretion takes place.

The estimated above critical Eddington luminosity must not be misin-
terpreted as the largest ever possible luminosity of radiating objects. First,
the estimate will change if one accounts for heavier ions, radiation transfer
in atomic or ion lines, Compton scattering in case of relativistic plasma, etc.
And second, even for a more exact estimate of the critical luminosity, it re-
mains an upper bound of an equilibrium state; however, nonstationary (e.g.,
exploding) objects, including gamma-ray burst sources, novae, and super-
novae, can produce a luminosity orders of magnitude larger than the critical
one, although during a short time period, when the strong, super-Eddington
luminosity is accompanied by a very strong mass loss rate.

10.1.3 Stationary Radiation and Amplification

In the case of relatively weak, sub-Eddington, radiation pressure force, solu-
tion of radiation transfer equation (10.1) is easy to write down for a uniform
stationary (though not necessarily equilibrium) source with a linear scale L
along the vg direction:

Jσn,ω =
jσn,ω
κσn,ω

(
1− e−τ

σ
n,ω

)
, (10.13)

where τσn,ω = κ
σ
n,ωL is the optical depth of the source at a given frequency.

If the optical depth is large, τσn,ω 
 1, then the second term in the brackets
can be discarded, so in the optically thick regime the radiation intensity

Jσn,ω � Jσ,thickn,ω =
jσn,ω
κσn,ω

(10.14)

is determined by the source function Sσn,ω ≡ jσn,ω/κ
σ
n,ω and so does not

depend on the source size (most of the observed emission is collected from
the ray path of the order of 1/κσn,ω � L). In the opposite case, τσn,ω � 1, we

can make an expansion e−τ
σ
n,ω ≈ 1− τσn,ω, so the radiation intensity from an

optically thin source

Jσn,ω � Jσ,thinn,ω = jσn,ωL (10.15)

is proportional to its length L.
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Note that jσn,ω and Jσn,ω are positively defined values. Therefore, the
absorption coefficient of a thermodynamically equilibrium medium is a posi-
tive function as well; thus, the radiation intensity always decreases along the
ray path. However, in nonequilibrium conditions, the absorption coefficient
is not necessarily positive for all frequencies ω and directions n. If in some
range of ω and n the absorption coefficient is negative, the corresponding
radiation experiences amplification instead of damping. Indeed, for κσn,ω < 0,
we have κ

σ
n,ω = −|κσn,ω|, τσn,ω = −|τσn,ω|, and from Eq. (10.13) for |τσn,ω| 
 1

we obtain

Jσn,ω =
jσn,ω
|κσn,ω|

e|τ
σ
n,ω|, (10.16)

which describes an exponential growth of the radiation intensity.
Apparently, solution (10.16) has a limited applicability region because the

radiation cannot gain arbitrarily large amount of energy; at least it cannot ac-
cumulate energy exceeding the free energy of the charge particles generating
this radiation. In case of relatively compact source when only a small fraction
of the available energy goes to radiation over the source size, solution (10.16)
can still be correct, which is indicative of an unsaturated regime of the wave
amplification. In the opposite case the radiation amplification is dynami-
cally important; it affects strongly the distribution function of the charged
particles and, eventually, the absorption and scattering coefficients speci-
fied by this distribution function; thus, the linear radiative transfer equation
is insufficient any longer to consistently describe the radiation. Depending
on situation (see Chap. 4), nonlinear wave–wave interactions or quasilinear
wave–particle interactions can dominate. In the latter case the high radia-
tion level affects the particle distribution in such a way that the absorption
coefficient becomes eventually positive at all ω and n, so the wave amplifi-
cation seizes and turns to the true absorption. Calculation of the absorption
coefficient κ

σ
n,ω (positive or negative) is one of the central problems within

the radiation transfer theory.

10.1.4 Einstein Coefficients

In the astrophysical sources the number density of fast nonthermal electrons
is often much smaller than that of the thermal electrons. In this case the
dispersion and polarization of the eigenmodes are primarily defined by the
background particles, while the fast electrons can provide a major contribu-
tion to the absorption coefficient alternating the entire picture of the radiation
transfer compared with the no fast particle case.

There are a number of approaches to calculate the absorption coefficients.
A general classical method is based on finding the complex dielectric tensor of
the given multicomponent plasma using kinetic equations, which is commonly
used in the plasma physics. On the other hand, one can use a quantum
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approach based on the Einstein coefficient. It turns that the quantum method
is often simpler than the classical one, so it is widely used to analyze even
purely classical problems.

Let us consider the Einstein coefficient method in more detail. To do so
we introduce a probability of spontaneous transition (of a radiating agent—
atom, ion, or a free particle) from an initial state m to a final state n with
emission of a photon with a polarization σ and frequency belonging to the
interval from ω to ω + dω into element dΩ of the solid angle:

dW σ,s
n,ω = AnmdωdΩ. (10.17)

Likewise, we write the probability of the induced (stimulated by the external
radiation field) radiation per unit time

dW σ,i
n,ω = Bnmρ

σ
n,ωdωdΩ (10.18)

and the probability of the photon absorption during the inverse transition
from state n to state m:

dW σ,a
n,ω = Bmn ρ

σ
n,ωdωdΩ, (10.19)

where the energy density ρσn,ω of the electromagnetic field1 can be expressed
via the power flux (i.e., the radiation intensity crossing a unit area per unit
time per unit frequency range per unit solid angle):

ρσn,ω =
Jσn,ω
vg

. (10.20)

The quantities Anm, Bnm, and Bmn are called the Einstein coefficients. They
are widely used because they are linked by universal relations derived from
very fundamental considerations.

Consider a state of full thermodynamic equilibrium. The number of par-
ticles at a state i is specified by a canonic distribution ni ∝ e−Ei/T , where
Ei is the particle energy in the state i, and T is the temperature in units
of energy. Apparently, in the equilibrium state, the number of photons ab-
sorbed per unit time is compensated by the same number of created photons,
therefore, the balance equation must be fulfilled:

e−En/TBmn ρ
σ
n,ω = e−Em/T

[
Bnmρ

σ
n,ω +Anm

]
. (10.21)

Since for the temperature increase, T → ∞, the radiation energy density
raises infinitely, while both exponential factors go to unity, we obtain

Bmn = Bnm. (10.22)

1We use here ρ, rather than W , for the wave energy density because W is com-
monly used for the probabilities defined above within the Einstein coefficient problem.
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Noting that Em − En = �ω, we find

ρσn,ω =
Anm
Bnm

1

e
�ω
T − 1

. (10.23)

Then, the ratio Anm/B
n
m can easily be determined from the limiting transition

in Eq. (10.23) to low frequencies where the energy density of the equilibrium
radiation is described by the familiar Rayleigh–Jeans formulae. Taking into
account the wave dispersion in the plasma we obtain:

Bnm =
8π3c3

n2
σ�ω

3|∂(ωnσ)
∂ω |

Anm. (10.24)

It should be emphasized that the introduced Einstein coefficients are rele-
vant for a given plasma eigenmode σ, not for the total intensity or Stokes
parameters. Thus, the total power radiated into the full solid angle 4π can be
found by multiplying Eq. (10.23) by 8π and taking into account Eq. (10.24)
(the additional factor of 2 accounts for two available eigenmodes):

ρω =
�ω3

π2c3
1

e
�ω
T − 1

, (10.25)

where we adopted nσ = 1 for simplicity.
Let us now derive the absorption coefficient κ

σ
n,ω of the eigenmode σ.

To do so we note that the radiation intensity varies (at a unit ray path)
due to two competing processes—true absorption and stimulated emission.
Accordingly, the amount of radiation power absorbed over the unit ray path
is specified by the imbalance of these two processes:

dwσn,ω = �ω
[
NndW

σ,a
n,ω −NmdW σ,i

n,ω

]
= �ω [NnB

m
n −NmB

n
m] ρσn,ωdωdΩ,

(10.26)

where Nn,m are the number densities of particles at the states n and m,
respectively, and the absorption coefficient per unit length is specified by the
ratio of Eq. (10.26) to the radiation density flux dJσn,ω = |vg|ρσn,ωdωdΩ:

κ
σ
n,ω =

�ω [NnB
m
n −NmB

n
m]

|vg| . (10.27)

Taking into account the relations between Einstein coefficients
Eqs. (10.22) and (10.24), we express the absorption coefficient κ

σ
n,ω via

the probability of the spontaneous emission Anm:

κ
σ
n,ω =

8π3c3

n2
σω

2
∣∣∣vg ∂(ωnσ)

∂ω

∣∣∣
∑

Anm(Nn −Nm), (10.28)
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where the summation is assumed over all pairs of states (n, m), which
transitions give rise to emission or absorption of quanta with a given po-
larization σ, frequency ω, and direction n. Equation (10.28) shows that a
necessary condition to maintain the wave amplification is a population in-
version of the system states, Nm > Nn, when the number of particles Nm
with higher energy exceeds the number of particles Nn with lower energy.

In a practically important case of ionized plasma, where the electrons
are in the states of quasi-continuum spectrum, they can be described by a
distribution function. Here the sum entering Eq. (10.28) can be expressed by
integration of this distribution function f(p), which is assumed to include
both background and fast electrons:

∑
An

m(Nn −Nm) =

∫
Aσ

n,ω (f(p − �k) − f(p))
dp

(2π)3
= −

∫
Aσ

n,ω(p)

(
�k
∂f(p)

∂p

)
dp

(2π)3
,

(10.29)

where Aσn,ω(p) is the probability of spontaneous emission of a photon with
polarization σ, frequency ω, and direction n by a particle with the momentum
p; the electron distribution function f(p) is normalized by the condition

∫
f(p)

dp

(2π)3
= N, (10.30)

where N is the electron number density. The quantity Aσn,ω(p) can straight-
forwardly be expressed via spectral and angular radiation intensity by a single
electron Iσn,ω (since the radiation intensity is a product of the photon energy
and probability of its generation):

Aσn,ω =
Iσn,ω
�ω

. (10.31)

Substituting Eq. (10.31) into Eq. (10.29) and then Eq. (10.29) into Eq. (10.28),
we obtain the final expression for the absorption coefficient κ

σ
n,ω by an en-

semble of classical particles (electrons or positrons):

κ
σ
n,ω = − 8π3c3

n2
σω

3
∣∣∣vg ∂(ωnσ)

∂ω

∣∣∣
∫
Iσn,ω

(
k
∂f(p)

∂p

)
dp

(2π)3
. (10.32)

The particle angular distribution can be anisotropic, for example, due to the
presence of magnetic field. In this case, it could be convenient to rewrite the
dot product (k∂f(p)/∂p) in the cylindrical or spherical coordinate system
with the z-axes directed along the magnetic field B.
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10.1.5 Brightness Temperature

Equation of radiation transfer Eq. (10.1) can be reformulated in terms of so-
called brightness temperature Tb, which is often used at the radio domain
where Rayleigh–Jeans law, Eq. (10.2), takes place. We define Tb according to
Eq. (10.2) but via frequency f = ω/2π practically used in the radio astron-
omy:

Jσn,f =
n2
σf

2

c2| cos θ|kBTb ≈ f2

c2
kBTb [erg cm−2 s−1 Hz−1 Ster−1], (10.33)

where the second (approximate) definition is valid when nσ ≈ 1 and
| cos θ|≈1, i.e., at the frequencies large compared with the plasma reso-
nance frequencies. Likewise, we introduce an effective temperature Teff
linked to the source function

Sσn,f =
n2
σf

2

c2| cos θ|kBTeff ≈ f2

c2
kBTeff . (10.34)

Accordingly, Fig. 10.1, we can rewrite radiation transfer equation (10.1) using
the introduced brightness and effective temperatures in the form

dTb
dτ

= −Tb + Teff (10.35)

or, equivalently, in the integral form

Tb =

τ∫
0

Teff exp(−t)dt+ Tb0 exp(−τ). (10.36)

The usefulness of the introduced temperatures becomes transparent when
we consider a uniform stand-alone source with a simple solution of Eq. (10.36):

Tb = Teff [1− exp(−τ)] =
⎧⎨
⎩

Teff for τ 
 1

Teffτ � Teff for τ � 1
. (10.37)

This equation demonstrates that in the optically thick case, τ 
 1, the
brightness temperature of each of two normal modes is equal to the corre-
sponding effective temperature. In particular, for a Maxwellian plasma with
temperature T , we have Teff = T and so Tb = T for each normal mode.
We emphasize, that the brightness temperature is defined here as a non-
extensive measure, i.e., in this example with equilibrium Maxwellian plasma,
we have TI = TO = TX , where TI is the brightness temperature for the total
intensity (Stokes I), while TO and TX are the brightness temperatures of
the ordinary and extraordinary modes, respectively. Stated another way, an
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TB0

tf=τf

tf

dtf

tf=0

Absorption Observer

Figure 10.1: Geometry and definitions to equation of radiation transfer and brightness
temperature.

additional factor of 2 must be added to the rhs of Eq. (10.33) in case of the
Stokes I. Accordingly, in a general case of non-Maxwellian plasma, we have2

TI = (TO + TX)/2.
In a general case of a nonequilibrium electron distribution, the effective

and brightness temperatures do not correspond to the plasma kinetic tem-
perature; in contrast, they depend on both frequency and the viewing angle.
Nevertheless, even in this case, these temperatures are helpful as they quan-
tify an effective mean energy of the electrons giving the bulk contribution to
the emission at a given frequency in case of an incoherent emission process.
In contrast, for a coherent emission process, the brightness temperature can
greatly exceed the typical energy of the radiating electrons. Thus, measuring
the brightness temperature alone can greatly advise our ability to observa-
tionally distinguish incoherent and coherent emission processes.

10.1.6 Transfer of Polarization

Equations of radiation transfer in form of Eqs. (10.1) or Eq. (10.35) are writ-
ten for a given propagating electromagnetic eigenmode and so implicitly
adopt that the eigenmode propagates independently of the other eigenmode
and its polarization properties do not change during the transfer. Apparently,
this is not necessarily the case: in reality the polarization of radiation often
changes during its transfer due to the mode coupling (linear or nonlinear),
absorption, scattering, or spatial nonuniformity. Thus, in a general case, we
have to consider a set of coupled equations for these wave modes accounting,
in addition to the amplitudes, also the wave phase evolution. This is conve-
nient to formulate in terms of polarization transfer. In a most general case
evolution of radiation propagating in a given direction depends on radiation

2Note that many radio observatories use “extensive” definition of the brightness
temperature, TI = TO + TX , i.e., with additional factor of 2 in the rhs of Eq. (10.33)
for any polarization mode.
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propagating in all other directions because the wave scattering can change the
wave vector direction and so the corresponding balance equation must include
all the radiation field with all k. Below we consider a simplified case when the
wave scattering can be discarded and the 3D problem reduces to 1D prob-
lem of radiation transfer in a given direction. Broadly speaking, for the 1D
approximation to be valid, one more assumption is needed: the ray paths of
both extraordinary and ordinary waves must coincide, which is well justified
at high frequencies although can break down close to the wave mode cut-
off frequencies. Nevertheless, within the cold plasma approximation the ray
paths of the two eigenmodes remain very close to each other so we are not
considering any deviation from 1D geometry of the polarization transfer prob-
lem.

In this 1D case it is convenient to consider a reference system with the
axes z directed along the wave vector k, while the magnetic field direction
is quantified by the polar angle θ between k and B and azimuth angle ψ
between projection of B onto the xy-plane and the x-axes, measured in the
anticlockwise direction. In this system the polarization vector, Eq. (3.50), of
an eigenmode receives the form (for notations see Sect. 3.2.3):

eσ =
(Tσ cosψ − i sinψ, Tσ sinψ + i cosψ,−Lσ)√

1 + T 2
σ + L2

σ

. (10.38)

Note that the longitudinal component of the polarization vector is often small,
e.g., it is always small at high frequencies, so in such cases, it becomes a 2D
vector in xy-plane:

eσ � (Tσ cosψ − i sinψ, Tσ sinψ + i cosψ)√
1 + T 2

σ

. (10.39)

An arbitrary radiation field can be represented as a superposition of the two
propagating eigenmodes with various frequencies whose overall polarization
state can be characterized by a so-called polarization tensor

Iαβ = EαE∗
β , (10.40)

where the averaging is performed over the wave period. It is often convenient
to introduce another set of four values, the Stokes parameters I, Q, U ,
and V , which form a one-column matrix S:

S =

⎛
⎜⎜⎝

I
Q
U
V

⎞
⎟⎟⎠ . (10.41)
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The Stokes parameters are defined via the polarization tensor Iαβ components
as follows:

I = Ixx + Iyy,

Q = Ixx − Iyy,

U = Iyx + Ixy,

V = i(Iyx − Ixy).

(10.42)

In particular, the use of Eqs. (10.39), (10.40), and (10.42) yields the
Stokes parameters for an eigenmode σ:

Sσ = Isσ = I

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

T 2
σ − 1

T 2
σ + 1

cos 2ψ

T 2
σ − 1

T 2
σ + 1

sin 2ψ

− 2Tσ
T 2
σ + 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10.43)

with the intensity I, which also defines the matrix column sσ. Apparently, the
wave is elliptically polarized in a general case. The shape of the polarization
ellipse, for given frequency and plasma parameters, depends on the direction
of the wave propagation relative to magnetic field. The components (10.43)
satisfy the condition I2 = Q2+U2+V 2, which is an indication of that obvious
fact that the eigenmode is fully polarized.

Discarding any nonlinear wave interaction and wave scattering, it is easy
to formulate equation of the polarization transfer in the form:

dS

dz
= S+ RS− KS, (10.44)

where the term S describes the Stokes parameter evolution due to sponta-
neous emission in the source volume, the matrix R describes the polarization
modification due to mode coupling, and matrix K accounts for the wave ab-
sorption during the transfer.

The column matrix S is straightforward to find noting that the sponta-
neous emission produces the eigenmodes only; thus

S = sXjX + sOjO =

⎛
⎜⎜⎜⎝

j

μQΔj

μUΔj

μVΔj

⎞
⎟⎟⎟⎠ , (10.45)

where jX and jO are the plasma volume emissivities of the extraordinary
and ordinary wave modes, respectively, and new coefficients μQ, μU , and μV
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are defined using Eq. (10.43) and taking the equivalence TXTO = −1 into
account as follows:

μQ =
T 2
X − 1

T 2
X + 1

cos 2ψ, μU =
T 2
X − 1

T 2
X + 1

sin 2ψ, μV = − 2TX
T 2
X + 1

, (10.46)

and
j = jX + jO, Δj = jX − jO. (10.47)

The parameter T 2
X − 1 is small for a quasiparallel wave propagation; it is

determined from Eq. (3.51) as

T 2
X − 1 = − 2u sin2 θ

u sin2 θ +
√D . (10.48)

Now, expanding an arbitrary radiation as a combination of the eigen-
modes and using Eqs. (10.44) and (10.1), we find the mode-coupling matrix

R =

⎛
⎜⎜⎝

0 0 0 0
0 0 −μVΔk μUΔk
0 μVΔk 0 −μQΔk
0 −μUΔk μQΔk 0

⎞
⎟⎟⎠ , (10.49)

where

Δk = kX − kO =
ω

c
(nX − nO), (10.50)

kX and kO are the wave numbers of the eigenmodes, and nσ = kσc/ω is the
refraction index, Eq. (3.48) (see Sect. 3.2.3). The small difference between the
refraction indices nX − nO is calculated using Eq. (3.48) as

nX − nO = − v
√D

(nX + nO)(1− u− v + uv cos2 θ)
. (10.51)

Accordingly, the absorption matrix has the form

K =

⎛
⎜⎜⎝

κ μQΔκ μUΔκ μVΔκ

μQΔκ κ 0 0
μUΔκ 0 κ 0
μVΔκ 0 0 κ

⎞
⎟⎟⎠ , (10.52)

where

κ =
κX + κO

2
, Δκ =

κX − κO

2
, (10.53)

κX and κO are the absorption coefficients of the extraordinary and ordinary
waves, respectively.
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As can be learnt in more detail from problems to this chapter, the
polarization of radiation changes in various ways during its propagation
through the plasma. In particular, a highly important is the Faraday effect,
which represents a rotation of the polarization direction of original linearly
polarized radiation during its propagation through a plasma by the angle

χ = λ2RM, RM =
e3

2πm2
ec

4

L∫
0

neB‖dl ≈ 0.81neB‖L, (10.54)

where RM is the rotation measure specified by the averaged product neB‖
along the line of sight; in the most right equality the rotation measure is ex-
pressed in rad/m2, the number density in cm−3, the magnetic field in μG, and
the scale L in pc. This formula is obtained assuming the radiation frequency
to be much larger than the plasma and gyrofrequency at the line of sight, so
the propagating ordinary and extraordinary waves are almost circularly po-
larized (so called, quasiparallel propagation regime). This simple dependence
on the plasma density and longitudinal magnetic field component offers a
nice way of estimating cosmic magnetic fields via observed Faraday rotation.
In practice, this method uses radio emission (the radio domain is preferable
because this effect increases with the wavelength) at a few different frequen-
cies from polarized compact sources (e.g., pulsars or quasars) in combination
with measurement of the dispersion measure, see Problem 10.2, giving a
mean number density ne along the same line of sight. Eventually, making
use of many compact sources seen from different directions and located at
different distances from the Earth, a highly detailed information on the mag-
netic field value, direction, and spatial structure in the galaxy, diffuse sources,
and extragalactic medium is obtained. In particular, the observational esti-
mates of the astrophysical magnetic fields used above throughout the book
are largely based on the Faraday rotation measurements. Note that here the
radiation is produced somewhere as having a linearly polarized component
and then propagates through the cosmic plasma outside the radiation source.
This kind of the Faraday effect is called external Faraday effect.

Consider now an internal Faraday effect occurring in an extended
quasi-uniform source of radio emission with a total depth L. Emission pro-
duced at various depths z will have accordingly different Faraday rotation
angles, χ(z) ≈ λ2RML · (z/L), where RML is the total rotation measure of
the radiation source. Thus, if the angle χ(L) 
 1, i.e., if the Faraday rota-
tion inside the source is strong it results in significant depolarization of the
escaping radiation. The depolarization effect is further enhanced by the de-
pendence on the wavelength, χ ∝ λ2. Indeed, any real radio receiver records
radio emission at a finite bandwidth, Δλ, so integration of the rotation angle
over this bandwidth will result in additional depolarization if χ(L) 
 1.

We found that the linear polarization from a plasma with large rotation
measure is supposed to be very low. It is important to note, however, that this
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conclusion is not always valid. Indeed, in our consideration, we implied that
the linearly polarized radiation can be represented as a sum of two coherent
circularly polarized eigenmodes, which independently propagate through the
plasma and then, leaving the plasma, add up into a new linearly polarized
wave with a rotated polarization direction. In a more general case (e.g., in
stellar coronae, where the radio frequencies are somehow comparable with
the plasma and gyrofrequencies), the deviation of the polarization ellipse
from a circle can be essential. Consider propagation of a certain eigenmode
(X or O) with a given polarization ellipse through a uniform plasma. Appar-
ently, the polarization state of this wave will not change during propagation.
However, the adopted elliptical polarization contains a fraction of circular
polarization (described by the Stokes V parameter) and a fraction of linear
polarization (described by the Stokes Q and U parameters), which means
that the corresponding linear polarization will fully survive during the wave
propagation, so no Faraday rotation affects the linear component of the
eigenmode polarization.

Similarly, no Faraday effect takes place if the radiation is composed of
two incoherent, ordinary and extraordinary, eigenmodes. Nevertheless, de-
spite the fact that linear polarization can survive during propagation through
a plasma with large rotation measure, most of polarized radio emission leav-
ing the stellar/solar coronae is almost entirely circularly polarized, while the
fraction of the linear polarization is negligible (unmeasurable). However, this
happens not because of the Faraday effect, while due to another effect of the
polarization modification in a nonuniform plasma—the limiting polariza-
tion. Consider a wave (X or O) propagating with some original polarization
ellipse from some coronal source outward from the stellar corona. Apparently,
the thermal plasma density and the magnetic field both decrease along the
ray path. Accordingly, the polarization ellipse of the eigenwave will become
more and more similar to the circle and, within the geometry optics propa-
gation regime, the polarization of the propagating radiation will evolve from
the elliptical to the circular one. We emphasize that, assuming the direction
of the magnetic field projection onto the xy-plane does not change along
the ray path, the ellipse orientation does not change during formation of the
limiting polarization, so no rotation of the linear polarization direction hap-
pens. Stated another way, the limiting polarization formation must not be
misinterpreted as a depolarization, while it is a transformation of the linear
polarization to the circular one in such a way that

V 2 = Q2
0 + U2

0 + V 2
0 , (10.55)

where Q0, U0, and V0 are the initial Stokes parameters of the propagating
wave, so the total degree of polarization remains constant. Accordingly, a
linearly polarized radiation from stellar/solar coronae can only be observed
in some special favorable conditions; detection of the linear polarization is,
thus, a very sensitive tool of probing such special conditions in the coronae.
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10.2 Gyrosynchrotron Radiation Transfer

Radiation produced by charged particles moving in magnetic fields (mag-
netobremsstrahlung) plays an exceptionally important role in astrophysics
making dominant contribution to radio emission in most of the astrophysical
objects, major contribution to gamma-ray and X-ray emission (in compact
objects, supernova remnants, and gamma-ray burst sources), and important
contribution to the IR/optical/UV (in active galactic nuclei or extragalactic
jets), which implies necessity of its calculation in highly diverse conditions
specific to the object or phenomenon under study.

Exact equations for the GS emissivity and absorption coefficient for an
eigenmode σ in a magnetized plasma are calculated from the GS intensity
produced by a single electron, Eq. (9.148) (see Sect. 9.4.1) by integration over
electron ensemble distribution function with Eqs. (9.168) and (10.32):

jσf =
2πe2

c

nσf
2

1 + T 2
σ

×
∞∑

s=−∞

∫ [
Tσ(cos θ − nσβμ) + Lσ sin θ

nσ sin θ
Js(λ) + J ′

s(λ)β
√

1− μ2

]2

×F (p)δ

[
f(1− nσβμ cos θ)− sfBe

γ

]
d3p, (10.56a)

κ
σ = − 2πe2

nσ(1+T 2
σ )

×
∞∑

s=−∞

∫ [
Tσ(cos θ − nσβμ) + Lσ sin θ

nσ sin θ
Js(λ) + J ′

s(λ)β
√

1− μ2

]2

× 1

β

[
∂F (p)

∂p
+
nσβ cos θ−μ

p

∂F (p)

∂μ

]
δ

[
f(1−nσβμ cos θ)−sfBe

γ

]
d3p,

(10.56b)

where the derivative over momentum vector is taken in spherical coordinates
linked to the magnetic field direction. The electron distribution function F (p)
is normalized as follows (we assume that it is azimuthally symmetric, which
results in 2π factor):

∫
F (p)d3p = 2π

p2∫
p1

p2dp

1∫
−1

F (p, μ)dμ = ne, (10.57)

where ne is the number density of electrons with momentum between
p1 and p2.
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10.2.1 Model Dependencies

Because the gyrosynchrotron (GS) emission depends in a complicated non-
linear way on many involved parameters, it is useful to elucidate the main
dependences of the radio spectrum on various parameters of interest for a
homogeneous source before turning to a more sophisticated 3D modeling.
For such a homogeneous source, the radiation flux at a given frequency is
apparently computed as (see Dulk 1985 and Bastian et al. 1998)

S(f,B, θ, T, nth, Emin, Emax, nrl, δ) =
jT
κT

A

R2
[1− exp (κTL)], (10.58)

where jT = jff(f, T, nth)+jgs(f,B, θ, nth, nrl, Emin, Emax, δ) is the total emis-
sivity due to the free–free (see Sect. 10.1.1) and gyrosynchrotron mechanisms,
κT = κff(f, T, nth)+κgs(f,B, θ, nrl, Emin, Emax, δ) is the total absorption co-
efficient, A/R2 is the solid angle subtended by the source with visible area A,
and R is the distance from the observer to the source (1AU = 1.496×1013 cm
in case of a source located at the Sun).

The thermal free–free emission and absorption coefficients used for the
computation of the source function are readily calculated, Eqs. (10.4) and
(10.5); those for gyrosynchrotron emission and absorption, Eq. (10.56), are
cumbersome and their calculation is computationally intensive in their orig-
inal form. A breakthrough in the GS computations is achieved by using
Fleishman–Kuznetsov fast and precise gyrosynchrotron code (Fleishman and
Kuznetsov 2010), which includes the plasma effects of Razin suppression,
pitch-angle anisotropy, and correctly describes the low-frequency harmonic
structure in contrast to previous versions of fast GS codes.

Figure 10.2 shows model spectra calculated for various (still highly in-
complete) sets of parameters, computed by a continuous version of the fast
code, which produces emission averaged over harmonics and so does not pro-
duce any local peak at the gyroharmonics. This corresponds to averaging of
the emission over some range of the magnetic field values in a realistically
nonuniform source. All four panels show a reference spectrum (solid line)
due to gyrosynchrotron emission from electrons in vacuo (nth = 0). The pa-
rameters used for the reference spectrum are: B = 150G, θ = 60 ◦, nrl =
5 × 106 cm−3, Emin = 0.1MeV, Emax = 2.5MeV, δ = 3, A = 2 × 1018 cm2,
and L = 9 × 108 cm. This is a single-peak spectrum, whose spectral peak
frequency fpeak is determined by the condition τ ≈ 1; thus it demarcates the
optically thick (low-frequency) and thin (high-frequency) parts of the spec-
trum. Since GS absorption coefficient Eq. (10.56) increases with the magnetic
field value or the number density of emitting electrons, this peak frequency
fpeak also increases with B, Ne, and L, which is, however, not always the
case in the presence of thermal plasma as shown below.

In Fig. 10.2a the dashed lines indicate spectra where the source parame-
ters are identical to those used to compute the reference spectrum except that
an ambient thermal plasma is present in the source. The ambient plasma has
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a b

c d

Figure 10.2: Computed GS spectra illustrating the parameter dependencies (Bastian
et al. 2007). In all panels, the solid line represents GS emission from electrons in vacuo
for parameters given in the text. (a) variation of the spectrum when a background thermal
plasma with a temperature T = 2× 106 K is present: dotted line: nth = 2× 1010 cm−3;
dashed line: nth = 5 × 1010 cm−3; dot–dash: nth = 2 × 1011 cm−3; dot–dot–dot–
dash: nth = 2× 1011 cm−3; long-dash: nth = 5× 1011 cm−3; (b) same, except nth =
1011 cm−3, and B = 150, 200, 250, 300, and 350 G, respectively; (c) same as (b) except
B = 150G and T = 106, 2 × 106, 5 × 106, 107, and 2 × 107 K, respectively; (d) same
as (c) except T = 2 × 106 and nrl = 106, 2 × 106, 5 × 106, 107, and 2 × 107 cm−3,
respectively. Reproduced by permission of the AAS.

a temperature of 2×106K and its density varies from nth = 2×1010 cm−3 to
5 × 1011 cm−3. The combined action of free–free absorption and Razin sup-
pression strongly reduces the radio emission below 10–20GHz for values of
nth > 5 × 1010 cm−3. Moreover, as the density increases, the high-frequency
emission is enhanced. This enhancement is entirely due to the thermal free–
free contribution.

In Fig. 10.2b, the temperature is again T = 2 × 106K, and the ambient
density is held fixed at nth = 1011 cm−3, while the magnetic field strength is
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allowed to vary. Note that, in contrast to gyrosynchrotron emission in which
Razin suppression (Sect. 9.4.2) plays no role (which would be the case for even
greater magnetic fields other parameters being the same) and the free-free
absorption is insignificant, the spectral maximum is insensitive to B although
the peak flux increases with B.

In Fig. 10.2c, the density is again held fixed at nth = 1011 cm−3 and
B = 150G, but the plasma temperature now varies from T = 106 to 2×107K.
For a cooler plasma, the combination of Razin suppression and thermal ab-
sorption strongly reduces the microwave emission. As the temperature of
the ambient plasma increases, all other parameters held fixed, the microwave
emission increases at lower frequencies because the free–free absorption drops
as the temperature increases but decreases at the highest frequencies owing
to the corresponding decrease of the optically thin free–free opacity, and the
spectral maximum moves toward lower frequencies. At high enough temper-
atures the plasma becomes optically thin to free–free absorption (∼107K in
this example) and the spectrum becomes insensitive to further increases in
temperature except the extreme low-frequency end of the spectrum where
the emission is due to optically thick thermal radiation of the plasma and is
proportional to its temperature.

Finally, in Fig. 10.2d, the thermal plasma density, temperature, and mag-
netic field are held fixed (nth = 1011 cm−3, T = 2× 106K, B = 150G), while
the number of energetic electrons nrl between Emin and Emax, varies from
106 to 2 × 107 cm−3. The microwave flux varies with nrl, but the spectral
maximum is insensitive to variations in nrl. The optically thin slope steepens
with increasing nrl as the influence of the dense thermal plasma becomes
relatively less important. At low values of nrl the contribution of free–free
emission is significant and acts to flatten the spectrum. We conclude that
even for the simple uniform source model there is a wide variety of spec-
tral shapes which becomes even wider when spatial inhomogeneity (and/or
evolution) of the relevant source parameters is taken into account.

10.2.2 3D Modeling

A realistic 3D modeling of the microwave emission is highly important be-
cause the gyrosynchrotron (GS) emission depends, as said, in a complicated
nonlinear way on many involved parameters and source geometry including
spatial inhomogeneity and angular anisotropy. The detailed realistic model-
ing has, therefore, to establish a clear quantitative picture of how the involved
physics (i.e., source properties and parameter regimes) affects the emission
produced, e.g., what changes in the emission can be expected from variation
of a given parameter.

Apparently, there is no hope to derive an analytical solution comprehen-
sively describing spatially resolved radiation from 3D nonuniform evolving
sources. On the other hand, given a large number of physical parameters in-
volved and nonlinear dependences on some of them, differing geometry and
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source morphology, it is unlikely to create a comprehensive table of models
using standard numerical modeling approach. To overcome the mentioned
complications, an entirely new, post-numerical approach to the 3D solution
obtaining has been proposed. The idea is to have a simulation tool capable of
smoothly changing all the involved source parameters and quickly compute
and return the solution in the form of datacubes describing the microwave
emission produced. This approach fully explore the modern computation
power and optimized fast codes to calculate the emission while recovering
the ability of smoothly changing all the involved parameters, which is typical
to general analytical solutions with many free parameters. There are very few
such tools at the time of writing, but they start to appear and seem to be one
of main streams in developing sophisticated 3D simulations in astrophysics.

As an example, Fig. 10.3 displays an interface of a powerful tool, called
the GX Simulator (gyrosynchrotron/X-ray simulator), which shows a graph-
ical user interface (GUI) of the tool. The area on the left is the display area,
in which various selectable aspects of the model can be displayed and ma-
nipulated, such as magnetic field components, field lines, flux tubes, thermal
and nonthermal density, nonthermal energy distribution parameters (e.g.,
power-law index, pitch angle, high- and low-energy cutoffs). The tool im-
ports a magnetic model in a form of 3D datacube, which can be either fully
numerical (i.e., for the solar case—computed from nonlinear force-free field
extrapolation from the photosphere boundary) or derived from an analyti-
cal model (e.g., a dipole field). Alternatively, it is capable of producing its
own magnetic datacube from potential field or linear FFF extrapolation of a
“base” magnetic map.

Then, the functional form and parameters governing the distributions are
set using the tools shown in the right side of the GUI in Fig. 10.3. The models
can be viewed from any perspective and, when complete, can be oriented
to the target line of sight view and the emission calculated. The routines
for calculating emission may either be external (e.g., C++ or FORTRAN)
libraries or IDL routines: the callable emission routines return frequency- or
energy-dependent fluxes which are then displayed as images or spectra within
the tool, and can be saved as image cubes for further analysis (e.g., for folding
through instrument response functions and comparing with observations). To
be specific, below we discuss some modeling results obtained using a single
dipole magnetic loop.

We consider a simple case of a symmetric dipole magnetic loop produced
by a magnetic dipole with moment μ that makes an adjustable angle π/2−ϕ0

with its corresponding solar radius and located below the solar surface at a
depth D. The flaring loop is constructed around a central field line that is
chosen to lie in the plane defined by the magnetic dipole vector and the local
solar radius. The adopted geometry (visualized via a few reference magnetic
field lines demarcating the surface of the magnetic loop) for two different loop
orientations is shown in Fig. 10.4. Dependence of the magnetic field strength
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Figure 10.3: Left panel: The GX Simulator graphical user interface, showing a model
with three flux tubes defined. One can draw any number of field lines by selecting points
in the magnetic field model (either with the mouse on the lower surface, or by specifying
x, y, z locations numerically) and the program calculates the field lines through those
points. Regions around selected reference field lines can be designated as flux tubes,
which can be filled with thermal plasma and nonthermal particles. In this example, flux
tube 2’s thermal electron distribution is being modified with distributions across and along
the central field line as shown in the plots in the lower right. Right panel: Example usage
of the GX Simulator, showing a perspective view (left panels) and a top view (right
panels) of an NLFFF extrapolation model with three field lines selected (red lines in
left panels) as the centerline of flux tubes. The three flux tubes are then individually
populated with thermal plasma (upper panels) and nonthermal populations of electrons
(lower panels), using the tools available in the GUI. The flux tubes are embedded in
a background hydrostatic equilibrium density model visible in the upper left panel. The
entire view can be manipulated interactively with simple mouse movements (courtesy by
Drs. Gelu Nita & Dale Gary).

a b

Figure 10.4: The magnetic field model used in the simulations. The red box inscribes
the portion of the magnetic loop situated above the solar surface, while the green solid
rectangle represents the top view of an inscribing box that is perpendicular to the ob-
server’s line of sight. The two panels shows two different orientations of the same model
corresponding to a loop located near the center of the solar disk (a) and a loop located
near the solar limb (b) (Kuznetsov et al. 2011). Reproduced by permission of the AAS.
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at the loop axis on the distance from the looptop along the field line is shown
in Fig. 10.5a. We assume that the density and temperature of the thermal
plasma component within the loop are constant (since the plasma in flaring
loops is often heated up to the temperatures of �107K, the corresponding
barometric scale heights far exceed the loop heights, so the density variations
with height can be neglected). Parameters of the energetic electrons can either
be constant or vary with the distance from the looptop (see below).

By using the above assumptions, we construct a 3D model of the flaring
loop, which is observed at a given direction. The radio brightness map (i.e.,
the observed emission intensity as a function of 2D coordinates x and y) at a
given frequency f is calculated by numerical integration of radiation transfer
(10.1) along all selected lines of sight. This equation is solved separately for
JL and JR, which are the spectral intensities of the left- and right-polarized
emission components, respectively, jL and jR are the corresponding emissivi-
ties, while κL and κR are the absorption coefficients. Left-polarized emission
corresponds to either ordinary or extraordinary magnetoionic mode, depend-
ing on the magnetic field direction; accordingly the right-polarized emission
corresponds to the opposite mode. The plasma emissivities jO,X and absorp-
tion coefficients κO,X for the ordinary and extraordinary modes accounting
for both GS and free–free contributions at each voxel are computed using
Fleishman–Kuznetsov fast gyrosynchrotron codes (Fleishman and Kuznetsov
2010). Outside the flaring loop, the emission propagates like in a vacuum. We
adopt the loop to be located at the solar equator; in this case, the loop orien-
tation is characterized by the angle ψ between the magnetic dipole and the
equatorial plane and by the longitude λ.

The energetic electrons are described by the distribution function F in a
factorized form: F (E, μ) = u(E)g(μ), where E is the electron kinetic energy,
μ = cosα, and α is the electron pitch angle (the angle between the particle
velocity and the local magnetic field vectors). We assume that the electrons
have a power-law energy spectrum u(E) ∝ E−δ in the energy range Emin <
E < Emax. The pitch-angle distribution can be either isotropic or a loss cone
described by the model function

g(μ)∼
⎧⎨
⎩

1, for |μ| < μc,

exp

[
− (|μ| − μc)

2

Δμ2

]
, for |μ| ≥ μc,

(10.59)

where μc = cosαc, αc is the loss-cone boundary, and the parameter Δμ
determines the sharpness of this boundary. The loss-cone boundary is adopted
to exactly follow transverse adiabatic invariant (1.46), i.e., sin2 αc = B/Bf ,
where B and Bf are the magnetic fields at a given point and at the loop
footpoint, respectively. Dependence of the loss-cone boundary on the coordi-
nate along the loop is shown in Fig. 10.5b; this parameter equals 90◦ at the
footpoint and decreases with height, so that the distribution becomes closer
to the isotropic one higher in the corona.
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a b c

Figure 10.5: Magnetic field strength (a), loss-cone boundary (b), and relative density
of the energetic electrons (c) vs coordinate along the loop. All the values correspond to
the loop axis (Kuznetsov et al. 2011). Reproduced by permission of the AAS.

We consider both the homogeneous spatial distribution of the energetic
electrons (when their number density ne is constant) and the case when
the energetic electrons are accumulated at the looptop. The inhomogeneous
distribution of the particles along the loop is described by the following model
function:

ne∼ exp
[−ε2(ϕ− π/2)2

]
, (10.60)

where ϕ is the magnetic latitude (or the angle between the dipole axis and
the vector drawn from the dipole center to a given point) and the parameter ε
determines the inhomogeneity degree (ε = 0 corresponds to the homogeneous
case). Density profiles of the energetic electrons along the loop for the different
values of ε are shown in Fig. 10.5c.

In the simulations, we use the following parameters of the flaring loop:
height H = 10,000 km, dipole depth below the photosphere D = 6,000 km
(so that the distance between the footpoints Δ � 11, 500km), radius at the
top Rt = 2,000km, and magnetic field at the top Bt = 75G (that results
in the footpoint magnetic field of Bf � 800G). Two loop orientations are
considered: ψ = 60◦, λ = 20◦ (a loop near the center of the solar disk,
Fig. 10.4a) and ψ = 60◦, λ = 80◦ (a loop at the limb, Fig. 10.4b). The thermal
plasma density and temperature are n0 = 1010 cm−3 and T0 = 2 × 107K,
respectively. The energetic electrons have the power-law index δ = 4, cutoff
energies Emin = 100 keV and Emax = 10MeV, and the loss-cone boundary
width Δμ = 0.2. Thus, in each loop orientation, the variable parameters
are: type of the pitch-angle distribution (isotropic or loss cone), the number
density of the energetic electrons ne, and the inhomogeneity parameter ε.

A direct way of radiation visualization is via the radio images at vari-
ous frequencies. Without going to the details implied by the plots, we note
that the images presented in Fig. 10.6 differ for various distributions of the
fast electrons related to various transport regimes of the electrons described
in Sect. 7.5.3. For example, the weak diffusion regime implies a loss-cone
angular distribution and progressive electron accumulation at the looptop,
i.e., an anisotropic and either uniform or nonuniform spatial distribution; the
moderate diffusion regime implies more isotropic and uniform distribution
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Figure 10.6: Radio brightness maps for a loop located near the center of the solar disk,
for the isotropic distribution (top row) and loss-cone distribution (all other rows); the
north is up and the west is to the right. The number density of the accelerated electrons
is assumed to be constant along the loop at two top rows, while nonuniform as explained
in the text in three bottom rows. Solid lines are the intensity contours which are evenly
distributed between zero and the maximum brightness temperature Tm (the corresponding
temperatures are given in each panel). Color shades represent the circular polarization
(Stokes V normalized by the absolute value of V peak); red and blue correspond to the
right and left circular polarizations, respectively (Kuznetsov et al. 2011). Reproduced by
permission of the AAS.
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Figure 10.7: Example of observed microwave images (taken around 03:35:30 UT) from a
solar flare 13 July 2005 observed by NoRH at 17 GHz and 34GHz and by SSRT at 5.7 GHz
in intensity (Stokes I) and polarization (Stokes V ). In two right images the intensity of
blue (red) show LCP (RCP) polarization. Overall agreement between images is evident;
however, images at different frequencies clearly display dissimilar morphologies. A sharp
jump in the background image intensity at two left panels indicates the western solar
limb, which is clearly seen at 34GHz (courtesy by Dr. Alexander Altyntsev).

of the fast electrons over the loop, while the strong diffusion regime implies
a spatially nonuniform and isotropic electron distribution. Figure 10.6 offers
a representative set of images highlighting main image properties related to
these transport regimes; cf. an observed example shown in Fig. 10.7.

A complementary way of thinking of the emission is via the spatially
resolved spectra (Fig. 10.7). Figure 10.8 shows that the radiation spectra,
polarization, and spectral index all vary with the position along the source.
In particular, the spectrum peak frequency increases with the magnetic field
strength at the given source region, which implies a way of estimating the
magnetic field from spatially resolved microwave spectra observed from solar
flares. Let us consider the total (spatially integrated) emission from the flar-
ing loop, which makes sense for both distant astrophysical objects including
other stars and also to analyze historically accumulated databases and cor-
responding statistical studies performed mainly based on the total power
observations. The total power data are simpler manageable as they can be
easily visualized by dynamic spectra, see an example in Fig. 9.18, and char-
acterized by only a few simple numbers, such as spectral indices, rise and
decay times, peak flux, and frequency. In particular, the corresponding high-
frequency spectral index is widely used to evaluate the fast electron energy
spectral index, which is especially helpful when ultrarelativistic electrons pro-
duce synchrotron radiation, e.g., in the Galaxy, SNRs, radio galaxies, and jets
etc (see Sect. 9.4.3).

The measures characterizing the total emission are shown in the right
column in Fig. 10.8. Considering the right top panel in Fig. 10.8, one can easily
isolate three distinct regions of the spectra—low-frequency part (region I),
middle-frequency part (region II), and high-frequency part (region III). Visual
comparison of these total power spectra with the spatially resolved spectra
from the footpoints and looptop in Fig. 10.8 suggests that the low-frequency
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Figure 10.8: Emission intensity, degree of polarization, and spectral index vs. frequency
for the loop shown in Fig. 10.6, top. The columns (from left to right) correspond to the
following: northern footpoint source, southern footpoint source, looptop source, and the
emission from the entire loop (spatially integrated). Solid lines: isotropic distribution;
dashed lines: loss-cone distribution. The regions taken to calculate the spatially resolved
spectra are indicated in Fig. 10.6 by thick dashed circles (Kuznetsov et al. 2011). Repro-
duced by permission of the AAS.

part is formed primarily at the looptop region with low magnetic field, the
high-frequency part in the footpoints where the magnetic field is large, while
the middle-frequency part by the entire loop and so related to the magnetic
field nonuniformity.

The low-frequency part is known (Sect. 10.2.1) to be formed by the effect
of the GS optical thickness and/or the Razin effect, i.e., suppression of the GS
emission in a dense background plasma, possibly accompanied by the free–
free absorption in the dense plasma; the slope of the spectrum can here be
quantified by the index of −2 or less (see the right bottom panel in Fig. 10.8).
The high-frequency part is mainly determined by the distribution of fast
electrons including the energy spectrum and pitch-angle anisotropy; note the
anisotropy-related difference between the solid (isotropic) and dashed (loss-
cone) curves in this panel.

The middle-frequency part is clearly seen in Fig. 10.8 as it is almost flat
(the spectral index is around zero). Solar microwave bursts with flat spectra
have been observed for decades. Our modeling confirms that the electrons
trapped in a large dipole magnetic loop can produce the flat radio spectra
due to the source nonuniformity in certain parameter regimes. Generally,
this middle-frequency part is not always flat but can have either negative
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Figure 10.9: Radio brightness maps (emission intensity) for a loop located near the solar
limb. Brighter areas correspond to higher intensity. Number density of the accelerated
electrons is constant and their pitch-angle distribution is of the loss-cone type. Stripes
in the images originate from the gyroharmonics; positions of the stripes change with
frequency following the local resonance conditions (Kuznetsov et al. 2011). Reproduced
by permission of the AAS.

or positive spectral index, which can be misinterpreted as either region I
or III in observations with a limited spectral coverage. In fact, observations
(Nita et al. 2004) reveal that the histograms of both low- and high-frequency
spectral indices extend to zero implying that both low- and high-frequency
spectra can be much flatter than those determined by optical thickness effect
or electron energy index, respectively. For practical application, this means
that having the spectrum falling with the frequency does not guarantee that
its slope is formed by either energetic or angular properties of the electron
distribution function but can instead be related to the source non-uniformity.

Not surprisingly, nonuniform spatial distribution of fast electrons sig-
nificantly affects region II of the spectrum. In fact, with an inhomogeneous
nonthermal electron spatial distribution (with their concentration at the loop-
top), the radio spectrum begins to resemble emission from a roughly uniform
looptop source (see Fig. 10.8). The reason for this to happen for an inho-
mogeneous source is very simple: with the adopted inhomogeneous electron
distribution most of them reside at the looptop, where the spatial variation of
the magnetic field and the viewing angle are minor, so we have a situation
similar to a uniform source.

The gyrosynchrotron emission from a homogeneous source can demon-
strate an oscillatory spectral structure in the low-frequency range (f/fB �
10), when the emission intensity increases at a narrow spectral region near
the harmonics (small integer multiples) of the electron cyclotron frequency.
In an inhomogeneous source, however, this harmonic structure can be hidden
because of natural smoothing: the resonance giving rise to a gyroharmonics
at a given location will vary with frequency due to the spatially dependent
resonant condition in the spatially nonuniform magnetic field. Thus, even
if a spectrum from a single pixel contains harmonics, they often disappear
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after integration over even a relatively small part of the source. This is why
no harmonic structure is present in either footpoint or looptop spectra in
Fig. 10.8.

In the simplest case of a uniform GS source, the harmonic structure is
more prominently pronounced for the source viewed at a quasitransverse di-
rection relative to the source magnetic field. Note that for the magnetic model
adopted here, the harmonic structure is only expected from the footpoint and
leg regions, but not from the looptop where the magnetic field is too weak
for the gyroharmonics to be produced at the considered parameter regime;
thus, the limb location of the loop is most favorable to produce distinct gy-
roharmonics, which is evident from Fig. 10.9: the images contain a number
of bright stripes highlighting the isolines of the magnetic field strength cor-
responding to the gyroresonance conditions at a given frequency. If one were
gradually increasing the frequency, for which the image has been computed,
each stripe would demonstrate an apparent down motion (i.e., toward x co-
ordinate decreases) because same harmonic number requires proportionally
larger magnetic field for a higher frequency. Accordingly, at higher frequency
images, the stripes are shifted toward the footpoints, and their contrast (or
amplitude of the intensity oscillations) decreases.

Apparently, having these stripes detected in real observations would offer
a highly efficient way of model-independent quantitative measurement of the
coronal magnetic field. These stripes become more pronounced for anisotropic
distribution of the fast electrons. Moreover, in the anisotropic case, an am-
plification due to negative gyrosynchrotron absorption can give rise to a so-
called electron cyclotron maser (ECM) coherent emission considered in the
next section in more detail.

10.3 Electron Cyclotron Maser Emission from a Source
with Random Inhomogeneities

10.3.1 Negative Absorption

As has been noted in Sect. 10.1 the absorption coefficient is not positively
defined. Apparently, having a negative absorption coefficient requires a sub-
stantial departure of the particle distribution from an equilibrium one, be-
cause the absorption coefficient is positive in the equilibrium. Moreover, an
arbitrary departure from the equilibrium will not necessarily result in the
negative absorption: a distribution with some sort of inverse population is
needed (see Sect. 10.1).

In case of gyrosynchrotron radiation produced by free plasma electrons
the absorption coefficient is described by Eq. (10.56b), whose sign depends on
brackets containing the distribution function derivatives over the momentum
and pitch angle. For isotropic particle distributions the necessary condition
for the ECM instability is a region with positive derivative of the distribu-
tion function over momentum modulus, e.g., a “ring” distribution detected
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Figure 10.10: Examples of solar radio bursts highly structured in temporal and spectral
domains produced by coherent emission mechanisms recorded by FST during strongest on
record solar flares occurred on December, 2006: (a) zebra burst; (b) spike burst; (c) fiber
burst; (d) type III burst; and (e) pulsating burst. Areas with a more diffuse continua-like
emissions are also present in panels (a) and (e) (courtesy by Dr. Dale Gary).

in planet magnetospheres (Delory et al. 1998; Ergun et al. 2000; Strange-
way et al. 2001; Lamy et al. 2010) and implied in cool “brown dwarf” stars
(Kuznetsov et al. 2012), although it is not required for anisotropic electron
distributions.

For most of the practically interesting cases the instability occurs at one
or a few narrow frequency regions around the gyrofrequency or small-integer
multiples of it. These narrow windows of instability are specified by favorable
resonance conditions when the positive contribution along the integration
path (which can be formulated in terms of a “resonance ellipse” (Treumann
2006) because the integrations over dp and dμ are linked to each other by
the resonant condition described by the δ-function) overcomes a more usual
negative contribution.

It is highly important to realize that to correctly take into account
the true resonance conditions one must retain the full relativistic form
of the δ-function argument even for nonrelativistic radiating electrons be-
cause for a narrow instability window even a small change in the resonance
condition can significantly change the whole picture or even quench the
instability. This means that the ECM properties are highly sensitive to
(otherwise minor) details of the emission source. In particular, the specific
results differ substantially depending on the functional form of the electron
distribution function and on global source properties including temperature,
density, and magnetic field. This implies that any detailed ECM treatment
should be performed specifically for each kind of the astrophysical objects
where the ECM generation is expected.

Currently, the ECM is believed to be responsible for many kinds of
radiation from space plasma and astrophysical objects including planetary
magnetospheres (e.g., terrestrial, Jovian, and Saturnian), brown dwarfs, so-
lar and stellar coronae, or even from blazar jets. Among many possible pa-
rameter regimes and phenomena of interest we concentrate on only one type
of sporadic coherent solar radio emission (Fig. 10.10), the narrowband mi-
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Figure 10.11: 3D (left column) and contour (right column) plots of the spatial growth
rates of O1 (top), X2- (middle), and O2 (bottom) modes for the parameters: Y = 1,
θc = 45 ◦, Δμ = 0.15, p0/mc = 0.2, pbr/mc = 3, and the spectral index of the electron
distribution over momentum modulus γ = 6. Note that the instability region covers a
rather broad spectral range, although the spectral bandwidth is small for each selected η
value.

crowave spikes, likely to be generated by the ECM mechanism in solar coro-
nal (flaring) loops (Fleishman and Melnikov 1998). In a dynamic spectrum,
e.g., Fig. 10.10b, the spikes appear as apparently randomly distributed iso-
lated peaks of radio emission. These peaks are characterized by the narrowest
spectral bandwidth, shortest duration, strongest brightness temperature, and
highest degree of circular polarization among all kinds of the solar emission.

The solar coronal magnetic loops are characterized by the plasma fre-
quency to gyrofrequency ratio Y = ωpe/ωBe∼1 of the order of unity. The
fast electrons accelerated in flares are mildly relativistic, E � 10keV with a
broad, e.g., power-law, energy spectrum, and the mean angular distribution
can be approximated by a loss cone (with a deficit of electrons streaming
along the magnetic field lines). Examples of the spatial growth rates of the
ordinary wave mode around the fundamental and second harmonics of the
gyrofrequency (O1 and O2 modes) and the extraordinary wave mode around
the second harmonics (X2 mode) are given in Fig. 10.11 in the 3D perspec-
tive view (left) and in projection to the plane of ω and η = cos θ (right).
Figure 10.12 displays how the maximum (over each corresponding peak in
the ω–η plane, Fig. 10.11) growth rate changes as the plasma parameter Y
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Figure 10.12: Spatial growth rates for three first harmonics of the gyrofrequency for
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Figure 10.13: Sketch for the local trap model of spike generation. Red ovals show local
traps in which the pitch-angle anisotropy of the fast electron distribution is enhanced due
to fluctuations of the magnetic field provided by magnetic turbulence in the large-scale
trap. The inset displays the adopted symmetric (gaussian) distribution of the local spike
sources over the ECM optical depth τ with a mean value of τ = 10 and a dispersion of
σ = 1 (Rozhansky et al. 2008). Reproduced by permission of the AAS.
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changes. One can see that each wave mode can only dominate within a very
limited range of Y value, so for moderately large Y no ECM instability is
possible.

A most realistic available model of a radio spike source assumes that fast
electrons (perhaps, accelerated due to a flare energy release) are trapped in a
magnetic loop and maintain a loss-cone distribution not far from a marginal
stability state. The model postulates presence of a magnetic turbulence in
this loop. This turbulence modulates the angular distribution of the fast
electrons in such a way that the ECM instability condition is satisfied at a
number of locations in the loop, so each of these locations acts as a local
source (see Fig. 10.13) producing a single spike with the properties (e.g.,
central frequency and spectral bandwidth) set up by the local conditions. In
a gradually nonuniform magnetic loop the frequencies of various spikes are
different from each other (as they are specified by the local gyrofrequency);
having the ECM conditions randomly set up at various locations at differing
time because of random nature of the turbulent field, this model offers a
consistent qualitative interpretation of the spike cluster phenomenon.

We anticipate that if the radio spikes are generated in a randomly inho-
mogeneous turbulent plasma the spike properties must inherit some imprints
of the turbulence. Intuitively, it is reasonable to expect that the random in-
homogeneity will primarily affect the ECM resonance conditions and, thus,
the spectral properties of the radio spikes. Below we consider the role of the
random inhomogeneity of the magnetic field in the spike source and deter-
mine the distribution of spikes over their bandwidth within the “local traps’
model.”

10.3.2 Approximate Expressions for the Spatial Growth
Rates

After a few e-folding amplification lengths the radiation intensity will have
a spectral peak at the frequency f0, where

3
κ(f, r) has a local maximum

vs frequency. Now, expanding κ(f, r) in a series around f0 (f0 depends ap-
parently on r) to the second-order accuracy terms, provided that the ECM
growth rates are smooth functions of frequency (see Fig. 10.11 as an exam-
ple), we obtain the radiation spectral line in the form of a composition of
local gaussian peaks:

J =

∫
drS(r) exp

(
2

∫ z

dz

(
κ(f0, r)− ∂2κ(r)

∂f2
0

(f − f0(r))
2

))
. (10.61)

In case of random functions κ(r) and f0(r), expression (10.61) has yet to be
averaged over ensemble of the inhomogeneities. Thus, the account of the mag-
netic and density inhomogeneities requires finding the spatial dependences

3Here, unlike Sect. 10.1, the absorption coefficient is −κ(f, r); thus, κ(f,r) is the
amplification coefficient.
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of the quantities entering Eq. (10.61) and further averaging and integrating
Eq. (10.61) over the source volume.

Let us present the parabolic approximation of the exponent index in
Eq. (10.61) in the form

κσ � κ
m
σ (1− α(s− s0)

2), (10.62)

where κ
m
σ is the maximum spatial growth rate for a given parameter set in-

cluding the viewing angle, s = f/fBe, s0 = f0/fBe, fBe is the gyrofrequency.
The coefficient κ

m
σ does not depend on frequency, although proportional to

the gyrofrequency fBe, depends on the plasma parameter Y = ωpe/ωBe =
fpe/fBe (all these dependences are specific for a given eigenmode σ and
harmonic number s0; see Fig. 10.12) and proportional to the fast to back-
ground electron number density ratio (nb/n0). The parabolic parameter α
(that eventually specifies the natural bandwidth of the ECM spectrum) de-
pends primarily on the functional shape and parameters of the fast electron
distribution function (anisotropy, energy spectral index, characteristic elec-
tron energy, etc.) and on the viewing angle, while displays only a very weak
dependence on Y (Fleishman 2004b). We note that in case of a narrow ECM
line the parameter α is much larger than one; we adopt

α = const 
 1. (10.63)

Dependence of the spatial growth rate κ on magnetic field includes both
explicit dependence κ

m
σ (fBe) and s(fBe) = f/fBe and implicit dependence if

the plasma parameter Y changes in the source along with the magnetic field.
Consider small variations of B in the source

δB/B � 1, (10.64)

and approximate the dependences Y (B), κmσ (B), and s0(B) by power-law
functions with various indices

κ
m
σ (δB) = κ

m
σ (0)

(
1 +

δB

B

)λ
, (10.65a)

s0(δB) = s0(0)(1 + δB/B)ε, (10.65b)

where κmσ (0), λ, and ε are constant parameters; for example, if Y = const(B),
then λ = 1 and ε = 0; B is the mean value of the magnetic field at the source,
s0 = f0/fBe is the peak frequency of the ECM radiation in the uniform field
B, fBe is the corresponding gyrofrequency, and δB(r) is the variation of the
magnetic field in the source. The dimensionless frequency s has obviously the
form

s(δB) =
f

fBe(1 + δB/B)
. (10.66)
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Note that this approach is not limited to the magnetic inhomogeneities
only; the density variations can also be consistently accounted via correspond-
ing variations of the Y parameter. Indeed, the Y variation is produced by
variations of both density and magnetic fluctuations:

δY

Y
=
δN

2N
− δB

B
. (10.67)

Adopt that the density fluctuations are proportional to the magnetic fluctu-
ations (which is exactly valid for the magnetosonic waves, for example):

δN

2N
= a

δB

B
; (10.68)

thus
δY

Y
= (a− 1)

δB

B
. (10.69)

We see, therefore, that the model parameters λ and ε depend on a and, thus,
on the density inhomogeneities.

Substituting Eqs. (10.65)–(10.66) into Eq. (10.62), we can safely truncate
the expansion of κσ at the second-order terms over (δB/B); discarding small
terms we obtain

κσ = κ
m
σ (0)

{
A0 +A1

δB

B
+A2

(
δB

B

)2
}
, (10.70)

where

A0 = (1− α(s− s0)
2), (10.71a)

A1 = λ+ 2αs0(1 + ε)(s− s0) + 2α(2− λ)(s − s0)
2, (10.71b)

A2 = −αs20(1 + ε)2 + αs0(1 + ε)(ε − 2(2− λ))(s− s0). (10.71c)

Here s0 is used for s0(0) (see Eq. (10.65b)). Note that presence of the linear
term over (s − s0) gives rise to a shift of the spectral peak due to magnetic
inhomogeneity along with the spectral broadening.

10.3.3 ECM Peak Broadening in a Weak Random
Magnetic Field

Let δB/B be a random function with zero mean. Then the ECM radiation
intensity is a statistical mean (over ensemble) of Eq. (10.61), where we can
safely neglect spatial variations of the source function S(r) and take it out
of the integral:

J = J0

〈∫
dr⊥ exp

(∫
dzκσ(r)

)〉
, (10.72)
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where J0 is a new constant. We consider here only linear terms over δB/B
in κ(r) expansion Eqs. (10.70)–(10.71b):

J = J0

∫
dr⊥

〈
exp

(
κ

m
σ L(1− α(s− s0)

2)

+κ
m
σ

[
λ+ α(2− λ)(s− s0)

2 + 2α(s− s0)s0(1 + ε)

] ∫ L/2

−L/2

dz
δB(r)

B

)〉
.

(10.73)

Assuming the random field to be a gaussian random process we make use of
the expression

〈exp (AX)〉 = exp
(
A2
〈
X2
〉
/2
)
, (10.74)

so the ECM intensity receives the form

J = J0

∫
dr⊥ exp

{
κ
m
σ L
(
1− α(s− s0)

2
)}

× exp
{(

(κmσ )2 /2
)
[λ+ α(2 − λ)(s− s0)

2 + 2α(s− s0)s0(1 + ε)]2

×
∫ L/2

−L/2
dz

∫ L/2

−L/2
dz′

〈δB(r)δB(r′)〉
B2

}
. (10.75)

Thus, the ECM intensity is expressed via a double integral over the longi-
tudinal coordinate from the pair correlator of the amplitudes of the random
magnetic field 〈δB(r)δB(r′)〉.

The averaging in the exponent is convenient to perform by two steps.
The first step is averaging of 〈δB(r)δB(r′)〉φ over the random phases of the
spatial waves composing the random magnetic field δB(r). Since there are
no reliable data on the turbulence properties in the ECM sources we adopt a
simple model of statistically uniform and isotropic magnetic inhomogeneities.
In this case,

〈δB(r)δB(r′)〉φ =

∫
|δB|2keik(r−r′)dk =

〈
δB2
〉
T (|r − r′|), (10.76)

where |δB|2k =
〈
δB2
〉
T (k) is the spectrum of random field (cf. Sect. 9.5)

∫
|δB|2kdk =

〈
δB2
〉
, (10.77)

〈
δB2
〉
is the mean square of the random magnetic field and T (|r− r′|) is the

spatial pair correlator of the random field normalized by the condition

1

Vc

∫
T (r)dr = 1, (10.78)
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where Vc is the correlation volume of the random field, Vc = L3
c , and Lc is

the corresponding correlation length.
The second step is, evidently, the averaging over the source volume Vs. To

perform this averaging we note that the random phase approximation used
at the first step can only be valid for relatively small-scale inhomogeneities
with the correlation length Lc much smaller than the source size. Thus, we
can safely adopt

1

Vc

∫
Vs

T (r)dr � 1, (10.79)

i.e.,

〈δB(r)δB(r′)〉 = 〈δB2
〉
. (10.80)

Then, taking the remaining integrals in the exponent gives a factor of
L2, so

J = J0S exp
(
κ
m
σ L(1− α(s− s0)

2)
)

× exp

[
(κmσ )2

2

(
λ+α(2−λ)(s−s0)2+2α(s−s0)s0(1+ε)

)2

L2

〈
ΔB2

〉
B2

]
,

(10.81)

where S is the projected source area. Let us expand the square of the paren-
theses in the latter exponent retaining the terms up to the order of (s− s0)

2.
The higher-order terms describe the spectrum asymmetry and can easily be
obtained from Eq. (10.81) if needed. Introducing the optical depth of the cor-
responding uniform source τ0 = κ

m
σ L and discarding some small terms (when

α
 1), we obtain

J=Jm exp

(
−τ0α

[(
1−2(1+ε)2s20ατ0

〈
ΔB2

〉
B2

)
(s−s0)

2−2λ(1+ε)s0τ0

〈
ΔB2

〉
B2

(s−s0)

])
,

(10.82)

where

Jm = J0S exp

(
τ0

(
1 + λ2τ0

〈
ΔB2

〉
B2

))
(10.83)

is the ECM peak intensity, which is in most cases set up by quasilinear satu-
ration, Sect. 4.2, or, in some rare cases, by nonlinear wave–wave interactions,
Sect. 4.3; see also estimates below in Sect. 10.4.1. Isolating a perfect square
in the exponent of Eq. (10.82) we finally obtain

J = Jm exp

{
−(1−Δst)

(s− s0 −Δs0)
2

2Γ2
0

}
, (10.84)

where

Γ0 = 1/
√
2ατ0 (10.85)
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is the ECM natural spectral bandwidth,

Δst = 2(1 + ε)2s20ατ0

〈
δB2
〉

B2
, (10.86a)

Δs0 =
λ(1 + ε)s0τ0(

〈
δB2
〉
/B2)

1−Δst
. (10.86b)

Expression for J (10.84) is derived assuming δB/B � 1. However, the
obtained value Δst is not necessarily small compared with unity since α
 1
and τ0 
 1. Nevertheless, for (1−Δst) > 0, Δs0 � s0 the spectral line still
has a gaussian shape (Fig. 10.14), with the bandwidth

Γ =
Γ0√

1−Δst

≈ Γ0(1 + Δst/2). (10.87)

In contrast, for (1 − Δst) < 0, Δs0 � s0, the coefficient at (s − s0)
2 turns

positive, so at s ≈ s0 the spectrum has a minimum rather than a peak. This
could have meant that in a medium with relatively high magnetic inhomo-
geneities the original gaussian spectrum breaks onto two (or more) peaks,
i.e., a spectral line splitting takes place.

To quantitatively describe the splitting effect we need more statistical
information on the random field than contained in second-order correlator
(10.76). We do not consider the splitting problem here while addressing the
problem of the peak broadening in greater detail.

10.3.4 Theory of Strong Broadening of the ECM
Spectrum

As has been found, even in the presence of otherwise weak magnetic inho-
mogeneities, δB/B � 1, the correction to the natural bandwidth Δst is not
necessarily small compared with unity. Apparently, expression (10.84) can
only be valid if Δst < (�)1. Otherwise, Eq. (10.84) implies an infinitely large
radiated energy, i.e., it could only be applicable at a small vicinity of the
frequency s0 ±Δs0, which is, however, irrelevant to the problem of spectral
broadening: for Δst > 1, Eq. (10.84) describes a minimum of the emission
rather than its spectral peak.

Thus, a more accurate way of the ECM spectral peak treatment is called
for when δB/B � 1, while Δst � 1. To develop a theory of a strong ECM
spectral broadening we use a renormalization approach similar to that devel-
oped in Chap. 7 for the charged particle transport.

Specifically, we adopt the random field to consist of statistically inde-
pendent Fourier components with a broad distribution over spatial scales,
Fig. 10.15. In this case the entire inhomogeneity spectrum can be split up
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Figure 10.14: ECM emission peaks in uniform and nonuniform magnetic fields normal-
ized to one.

onto many independent regions as shown in Fig. 10.15 in such a way that each
of them contains only a small fraction of the random field energy density:

∫ ki+1

ki

|δB|2kdk = δB2
i , (10.88a)

N∑
i=1

δB2
i = δB2, δB2

i � δB2 if N 
 1. (10.88b)

Assume that the number of such regionsN is so large that the ECM spectrum
broadening provided by each of them is small, Δst,i � 1 (here the value Δst,i

is specified by Eq. (10.86a) in which δB2
i is substituted).

Making use of statistical independency of the random field components
we can repeat the averaging of Eq. (10.72) N times over each random field
component independently. Eventually, the ECM spectrum peak receives the
shape:

J = Jm exp

{
− (s− s0 −Δsp)

2

2Γ2
0

N∏
i=1

(1 −Δst,i)

}
. (10.89)

With no loss of generality we can use such splitting of the random field spatial
spectrum over N regions that

Δst,i =
Δst

N
(10.90)



484 10 Radiation Transfer

1 10 100
0.01

0.1

............

k

...............

12

i

N

|δ
B

| k
2

Figure 10.15: Example of the broad spectrum of a random magnetic field. The spectral
function of the random field is split onto N statistically independent components. Each
component contains a small fraction of magnetic energy and can be taken into account
within perturbation theory (Fleishman 2004a). Reproduced by permission of the AAS.

and use limiting transition to the case of large N :

lim
N→∞

N∏
i=1

(
1− Δst

N

)
= lim

N→∞

(
1− Δst

N

)N
= exp(−Δst). (10.91)

This yields a renormalized gaussian spectral peak:

J = Jm exp

{
−e−Δst

(s− s0 −Δsp)
2

2Γ2
0

}
, (10.92)

where

Δsp = λ(1 + ε)s0τ0

〈
δB2
〉

B2
. (10.93)

Apparently, Eq. (10.92) yields Eq. (10.84) for Δst � 1.
Renormalized spectrum Eq. (10.92) maintains a gaussian shape with the

renormalized bandwidth

Γ = Γ0e
Δst/2 (10.94)

and is valid for relatively large magnetic inhomogeneities. In particular, for
Δst∼1, the natural spectral line broadens in 3–10 times. Therefore, the effect
of the turbulent magnetic inhomogeneities on the ECM spectrum is rather
significant, namely, the small-scale inhomogeneities with a broad spectrum
give rise to a large spectrum broadening compared with the ECM “natural”
bandwidth.
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Nevertheless, the applicability of the renormalized theory is restricted by
a requirement that the resulting spectrum bandwidth remains much smaller
than one. Indeed, for Δst 
 1, the predicted spectral bandwidth is very
broad, which implies a broad spectral range occupied by the ECM emis-
sion. However, the adopted approximations and simplifications may not be
applicable for very large Δst 
 1, since the parabolic approximation of
growth rates (10.62) fails far from the spectral peak and higher-order terms
as (s− s0)

3 and (s− s0)
4 in the exponent may become important, which can

give rise to a departure of the spectrum shape from the gaussian. In addi-
tion, higher-order moments of the random field may play a role in this case;
in particular, they can give rise to the spectral line splitting onto two or more
subpeaks.

10.3.5 Local Trap Model

As has already been noted, most of the spike properties are consistent with
the local trap model. This model adopts that a spike cluster is produced at a
significant portion of a magnetic trap (Fig. 10.13), where a loss-cone distribu-
tion of the trapped fast particles is formed due to emptying the loss cone as a
result of the electron precipitation into the footpoints. The overall pitch-angle
anisotropy is moderate on average provided that the mean fast electron distri-
bution is at about the marginal stability state in respect to ECM generation.
An important ingredient of the local trap model is a magnetic turbulence,
which gives rise to local variation of the fast electron distribution anisotropy.
Under favorable conditions, this turbulence will increase the anisotropy to
the extent sufficient for the ECM instability to develop at some local places
inside the large-scale magnetic trap. Such favorable places represent those
local spike sources, quasi-randomly distributed over the trap.

As a byproduct of the key role of the magnetic turbulence in forming
the spike local sources, the model suggests that the small-scale tail of the
magnetic turbulence spectrum persists in each local spike source. Therefore,
the spikes are formed in a source, where random magnetic inhomogeneities
are superimposed on the mean magnetic field of the source. The bandwidth
of a single ECM peak described by Eq. (10.94) is convenient to express as

Γ = Γ0 exp

(
a

2Γ2
0

)
, (10.95)

where Γ0 is the “natural” bandwidth of the ECM peak in the uniform source
with the optical depth τ at the spectral peak,

a =
s20
2

〈
δB2
〉

B2
(10.96)
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is a “turbulence parameter,” defined by the ECM harmonic number s0 and
the magnetic turbulence energy density

〈
δB2
〉
/8π normalized by the mag-

netic energy density B2/8π. We note that the magnetic inhomogeneities give
rise to quite a strong ECM broadening when a � Γ2

0. Since Γ2
0 � 1, rather

weak random inhomogeneities of the magnetic field provide large ECM broad-
ening.

To simulate the spike bandwidth distribution we consider a simple model
based of the ECM emission within the local source model. Specifically, we
adopt that the natural spike bandwidth is about 0.1–0.3% in agreement with
calculations of the ECM natural spectral bandwidth (Fleishman 2004b). We
postulate a symmetric gaussian distribution of the natural bandwidth over
the spike local sources. Then, we adopt that the turbulent parameter a has
another gaussian distribution, not correlated with the natural bandwidth
distribution.

Random combinations of the pairs of Γ0 and a taken from those two par-
ent distributions generate artificial sets of spikes. Properties of these artificial
spike distributions are specified by the parameters of the adopted gaussian
distributions, i.e., mean values and dispersions of Γ0 and a. In the discussed
modeling (Rozhansky et al. 2008) the mean Γ0 value was kept constant at
0.2% level, while the a value varied to study dependence of the distribution
moments on a. The dispersion of both values was taken to be about 15%.
An example of the distribution produced by the model is given in Fig. 10.16.
Eventually, 50 sets with 3,000 artificial spikes in each set were generated
and four first moments of this distributions were calculated, which are plot-
ted in Fig. 10.17. The asymmetry of the distribution is characterized by the
skewness (the third moment):

S =

〈
(f − f0)

3
〉

σ3
, (10.97)

which is zero for the normal distribution. The deviation from the normal
distribution (in terms of distribution peak flatness) is estimated by the forth
moment, kurtosis, defined as

K =

〈
(f − f0)

4
〉

σ4
, (10.98)

which is Knorm = 3 for the normal distribution.
Figure 10.16 displays a representative example of the model bandwidth

distribution, whose most evident feature is a clear asymmetry: the distribu-
tion has a sharp cutoff toward narrow spectral lines, while contains a long
“tail” toward the broad lines. Remarkably, this asymmetry appears in a model
with large number of sources with all the relevant parameters adopted to
obey symmetric gaussian distributions. Therefore, the obtained asymmetry
is a model-independent intrinsic property of renormalized ECM spectrum
bandwidth Eq. (10.94).
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Figure 10.16: Spike bandwidth distribution obtained from the local trap model (Rozhan-
sky et al. 2008). Reproduced by permission of the AAS.
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Figure 10.17: Dependences of the spike bandwidth distribution parameters on turbulence
parameter a obtained from the local trap model described in the text (Rozhansky et al.
2008). Reproduced by permission of the AAS.
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Figure 10.18: Bandwidth distribution of the extracted spikes. The bin size is taken
to be 0.15% to avoid any coincidence with the spectral resolution of the instrument.
Note prominent asymmetry of the distribution (Rozhansky et al. 2008). Reproduced by
permission of the AAS.

10.3.6 Spectral Bandwidth of Solar Radio Spikes

Solar radio spikes are very narrowband with a typical bandwidth of the order
of 1% and minimal bandwidth less than 0.1%. The bandwidth was found to
change significantly within any single event and even greater from one event
to another. In particular, no clear correlation between the bandwidth and
the observing frequency was noted. Thus, the bandwidth seems to be more
characteristics of the event rather than function of frequency.

Then, no unique correlation between the bandwidth and radio flux of the
spikes was found: there were uncorrelated cases, as well as correlated and anti-
correlated cases. These observational results imply that the observed spike
bandwidth is formed mainly by source inhomogeneity rather than natural
bandwidth of the underlying emission process.

Curiously, the observed spike bandwidth distributions demonstrate more
or less asymmetric shapes in the sense implied by Fig. 10.16; however, the
number of individual spikes used for the analysis is typically too small to
derive the higher moments of the distribution reliably, which is needed to
make a meaningful comparison with the model presented in Sect. 10.3.5. Here
we use one of very few cases with a statistically significant number of the
individual spikes analyzed: a dense cluster of solar radio spikes registered
from 05:18:03 to 05:18:09 UT on April 10, 2001, at 4.5–6GHz by the Purple
Mountain Observatory spectrometer (Nanjing, China) operating in the 4.5–
7.5GHz range with the temporal resolution of 5ms. The cluster occurred
during a X2.3 flare on April 10, 2001, NOAA region 9415, located close to
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the center of the solar disk (S23W06-08). The flare was associated with a
halo CME, meter-wavelength types II and IV bursts, and strong microwave
continuum burst. The spike cluster occurred during a local impulsive peak
of strong long microwave burst with the absolute peak value in excess of
6,000 sfu around 9.4GHz. Highly polarized coherent emissions were recorded
(LCP at 2GHz and RCP at 3.75GHz) around the time of the spike cluster.

Using a specially developed technique of overlapping spike decomposition
onto individual gaussian peaks, more than 3,000 individual spikes have been
identified. Each spike i is characterized by its amplitude Ai, mean frequency
f0i, and the bandwidth Γi; the entire spike cluster is, accordingly, character-
ized by distributions of these three measures and correlations between them.
Here we discuss only one of these distributions, namely, the distribution of
the spike relative bandwidths. This commonly used dimensionless parameter
is defined as spike width at half-maximum divided by the central frequency
of the spike.

The distribution of the spike relative bandwidths appears to be remark-
ably asymmetric. It has a skew shape with rapid increase at low values of the
relative bandwidth followed by maximum at 0.6% and smooth tail approach-
ing zero at approximately 3% (Fig. 10.18) with the mean value of 0.91±0.02,
the median value of 0.77± 0.01, and standard deviation 0.55± 0.04. For the
spike cluster under study the overall skewness is about 1.6±0.2, while the kur-
tosis is K ≈ 6±0.6, in contrast to that of the normal distribution,Knorm = 3.
Rather weak correlation is found between amplitude and spike relative band-
width; the appropriate rank correlation coefficient is only r ≈ −0.2. No cor-
relation is observed between mean frequency and relative bandwidth of the
spikes (the appropriate rank correlation coefficient is r ≈ 0.04).

Figure 10.17 displays the obtained values of the observed distribution mo-
ments on top of the corresponding model curves. Remarkably, all the observed
moments are consistent with corresponding model moments for a single value
of the turbulent parameter a ≈ 2 × 10−7, which is especially important be-
cause the model employs only one free parameter to yield correct values of all
four moments together. Stated another way, the simulated spike distribution
is remarkably similar to the observed one for this particular event, which
is a strong point of evidence in favor of the ECM mechanism of the spike
generation within the local trap model with magnetic turbulence. Thus, the
demonstrated agreement between the model and observations offers, through
the comparison of the observed and model moments, an efficient tool for
studying weak magnetic inhomogeneities in the spike sources as a function
of time and position for relatively long-lasting spike clusters observed with
high spatial resolution, respectively. The spatially resolved observations will
also help to determine the ECM harmonic number and thus decouple it from
the random magnetic field level in Eq. (10.96). We note that the method is
highly sensitive to the magnetic irregularities and capable of detecting the
turbulence with remarkably low level

〈
δB2
〉
/B2∼10−7 or even less.
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10.4 Nonlinear Processes

General treatment developed in Sect. 4.3 for nonlinear wave interactions
applies, in particular, to the propagating electromagnetic (free-space) modes.
Here we consider both stimulated scattering of the transverse waves on ther-
mal ions and also coalescence processes giving rise to conversion of the
plasma wave energy to the electromagnetic wave energy.

10.4.1 Stimulated Scattering of Transverse Waves
on Thermal Ions

Variation of wave mode σ spectrum due to its nonlinear scattering on thermal
ions is given by general equation (4.60), where the corresponding polarization
vector components and wave dispersion must be substituted. UsingWσ(ω,n)
instead of W (k), we obtain

d(s)

dt
Wσ(ω,n) = 2γsWσ(ω,n) = −16π2e2

m2ω3
Wσ(ω,n)Rσ(k)

∑
σ′=±σ

Re

∞∫
0

dω′

1∫
−1

dη′k′′2Mσσ′Wσ′ (ω′,n′)Rσ′ (k′)
δε′2e (ω

′′,k′′)δε′′i (ω
′′,k′′)

|εl(ω′′,k′′)|2 , (10.99)

where η′ = n′ ·B/B and

Mσσ′ =
ω4

ω4
pe

[
(1− n2

σ)(e
∗σ · eσ′

) + n2
σ

(k · e∗σ)(k · eσ′
)

k2

]2
. (10.100)

Note, that because the waves participating in the scattering process have
different frequencies and propagation directions, their polarization vectors
are not strictly orthogonal to each other. Also, the polarization vectors con-
tain, in a general case, a nonzero longitudinal component. Thus, the rate of
nonlinear scattering of the ordinary wave mode to the extraordinary and vice
versa is nonzero. Nevertheless, it is much smaller than the scattering without
change of the sense of polarization (given that k′′ � k, k′ and ω′′ � ω, ω′).
It seems that the cross scattering can only be noticeable as a “leakage” of
a dominant polarization into the secondary one in case of original power-
ful 100% radiation. Below we make an estimate of the dominant nonlinear
process assuming σ′ = σ.

Substitution of the required dielectric permeabilities into Eq. (10.99)
yields
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γs = −2π2e2

m2ω3
Rσ(k)

∞∫
0

dω′
1∫

−1

dη′MσσWσ(ω
′,n′)Rσ(k′)

√
π

2

ω′′

|k′′z |vTi
ω2
pe

v2Te

× exp

[
−1

2

(
ω′′

k′′z vTi

)2
]
. (10.101)

Now, adopt that the bandwidth of the original emission spectrum, Δωr is
much broader than the width of the integral core, ω′′∼Δω = 2ωnσηvTi/c,
which allows using expansion of the wave energy density, Wσ(ω

′) ≈Wσ(ω)+
ω′′∂Wσ(ω)/∂ω. The first term of the expansion makes zero contribution as
it is integrated with an odd term ω′′, while the second term makes a nonzero
contribution, so the scattering rate receives the form

γs = −2π2e2

m2ω3

√
π

2

ω2
pe

v2Te
(Δω)2R2

σ(k)Mσσ
∂Wσ(ω, η)

∂ω
. (10.102)

For definiteness, let us consider ECM emission of extraordinary wave
mode at the second gyroharmonics, which is believed to be responsible for
generation of narrowband microwave solar spikes and a number of other plan-
etary and stellar emission types. Equation (10.100) at ω ≈ 2ωBe yieldsMσσ′ ∼
1–4 depending on the angle and ωBe/ωpe ratio; then taking into account
Δω ∼ ωBevTi/c and |∂Wσ(ω, η)/∂ω| ∼ Wσ(ω, η)/Δωr and introducing the
brightness temperature (Sect. 10.1.5)

Wσ(ω, η) = T σb (ω, η)
ω2n2

σ

(2π)3c3
∂ωnσ
∂ω

, (10.103)

we find

γs ≈ − (1− 4)π2e2ω2
pe

2mc3

√
π

2

(vTi
c

)2(2ωBe

Δωr

)
T σb
Te
, (10.104)

where Te is the electron plasma temperature.
The natural ECM bandwidth, Δωr/2ωBe, is about 0.2%; see Sect. 10.3.6.

Adopting then Te ∼ Ti = 107K and ωBe = 1010 s−1 we obtain an estimate

|γs| ∼ 10−15ωBe
T σb
Te
. (10.105)

Apparently, for the nonlinear process to be efficient in a source of ECM
emission, the nonlinear scattering rate must be comparable with the ECM
growth rate, which is about (10−6−10−7)ωBe; thus, the stimulated scattering
of the ECM emission on the thermal ions becomes essential for a rather high
brightness temperature of this emission,

T σb
Te

� 108–109, (10.106)
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or T σb � 1015–1016K. Typically, estimated brightness temperatures of the
solar radio spikes are smaller than 1015K, so the nonlinear transformations
of the solar ECM are inessential. In contrast, some stellar coherent ra-
dio bursts display large brightness temperature in excess of 1016K (Bas-
tian et al. 1990; Osten and Bastian 2008) for which the nonlinear processes
play likely an important role. We note that likewise the case considered in
Sect. 4.3.2, equation for the transverse wave energy density can be in certain
cases reduced to Lotka–Volterra Eqs. (4.69) resulting in oscillatory solutions
for the wave energy density. Here, the coefficient of nonlinear wave coupling
is estimated as ζ ∼ 5 × 10−3ω/nekBT . For γ ∼ 10−8ωBe, Eq. (4.75) yields
for the oscillation period τ ∼ 0.2 s, while the wave energy density is of the
order of W/nekBT ∼ γ/ζ ∼ 10−6, which implies the brightness temperature
of the order of 3 × 1013K. Remarkably, 100% polarized oscillations of mi-
crowave emission from flaring stars do display periods of a fraction of second,
0.3–0.7 s, which might be interpreted as the self-organizing oscillations of the
ECM emission like those described by the Lotka–Volterra equations.

10.4.2 Nonlinear Conversion of Plasma Waves
into Transverse Waves

Stimulated scattering of waves on thermal ions is a rather universal process,
in which the initial and final waves are different from each other in a general
case. Among many possible processes, scattering of longitudinal plasma waves
(Langmuir, hybrid, Bernstein, etc.) into transverse electromagnetic waves is
of particular importance because such kind of the mode conversion represents
a distinct mechanism of electromagnetic (radio) emission that can be detected
by a distant observer. To derive an equation describing conversion of the
plasma waves into radio waves we must take into account, along with the
nonlinear stimulated scattering, the usual (linear) scattering of the plasma
waves into electromagnetic waves with small variation of frequency, which
will represent the volume emissivity of the considered process, i.e.,

dWσ(ω,n, t)

dt
= Sσ(ω,n, t) + 2γ(l+i⇒t)Wσ(ω,n, t), (10.107)

where Sσ(ω,n, t) is a source term describing the spontaneous (Rayleigh) scat-
tering of the plasma waves into the transverse waves, and

γ(l+i⇒t) = − 4πe2ω

m2ω4
pe

Rσ(k)
∑
all l

∫
k′′2dk′Wl(k

′, t)Rl(k′)|(eσ · κ′)|2

δε′2e (ω
′′,k′′)δε′′i (ω

′′,k′′)
|εl(ω′′,k′′)|2 (10.108)

is the stimulated scattering contribution derived from Eq. (4.60), where κ =
k/k. Since this scattering process goes with a very small frequency variation,
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only those plasma waves which have a frequency higher than the plasma
frequency can be converted to the radio emission, i.e., the upper-hybrid waves
or high-frequency Bernstein waves in a magnetized plasma or Langmuir waves
in a free plasma; lower-hybrid waves cannot scatter into the radio waves
except a very narrow parameter region (e.g., ωBe 
 ωpe and θ ≈ 0).

To estimate an order of magnitude of this effect (Zaitsev and Stepanov
1983) let us consider an isotropic distribution of the plasma waves in a free
plasma and replace the energy density by the brightness temperature using
Eq. (10.103) [cf. Eqs. (10.1) and (10.35)],

dTb(r, t)

vgdt
= a(l+i⇒t) − (κff + κ(l+i⇒t))Tb, (10.109)

where

a(l+i⇒t) =
π

36

ω3
peWk

vgnev2Tek
, Wk = 4πk2Wl(k, t), (10.110)

W =
∫
Wkdk is the energy density of the plasma waves, vg = c

√
1− ω2

pe/ω
2

is the group velocity of the radio waves,

κ(l+i⇒t) = − π

108

mω3
pe

vgMi

1

nev2TeTe

∂(kWk)

k∂k
. (10.111)

The free–free absorption coefficient, κff = ω2
peνei/(ω

2vg), is given by either
Eq. (3.97) or Eq. (10.5) or solution to Problem 10.1.

For a finite source with a linear size L along the line of sight, the ra-
dio emission described by Eq. (10.109) is generated in either optically thin or
thick regime depending on whether the optical depth |τ | = |(κff+κ(l+i⇒t))|L
is smaller or larger than 1. If |τ | � 1, then Tb = a(l+i⇒t)L ∝ Wk, i.e., the
radio brightness temperature is linearly proportional to the plasma wave en-
ergy density. The optically thick regime will differ depending on what process,
the free–free absorption or the stimulated scattering, dominates. Indeed, if
|τ | > 1 and κff 
 |κ(l+i⇒t)| then we can neglect the stimulated scattering,
which yields Tb = a(l+i⇒t)/κff again ∝ Wk. However, at some high level
of the plasma wave energy density, we will have κff = |κ(l+i⇒t)| and then
κff � |κ(l+i⇒t)|, so the radio wave absorption will be mediated by the non-
linear process—stimulated scattering of the plasma waves on ions. The result
of this nonlinear absorption process depends crucially on the emission fre-
quency. At higher frequencies produced by a falling, higher k, part of the
plasma wave spectrum, where ∂(kWk)/∂k < 0, the radio brightness temper-
ature is saturated at the level of Tb ∼ (3Mi/m)Te and does not rise with Wk

any longer provided that the plasma wave spectrum shape does not change,
Wk/(∂(kWk)/∂k) = const.
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Figure 10.19: Brightness temperature of the plasma radiation at the fundamental (red
and green curves) and double (blue curve) plasma frequency as a function of the plasma
wave energy density. Parameters: ne = 2.5×1010 cm−3, Te = 107 K, and L = 3×107 cm.

In contrast, at lower frequencies produced by a raising, lower k, part of
the plasma wave spectrum, where ∂(kWk)/∂k > 0, the absorption coefficient
turns negative implying radio wave amplification instead of true absorption:

Tb =
a(l+i⇒t)

|κ(l+i⇒t)| [exp(|κ(l+i⇒t)|L)− 1]

≈ 3Mi

m
Te[exp(|κ(l+i⇒t)|L)− 1], (10.112)

where the radio brightness temperature increases exponentially with the
plasma wave energy density.

Let us estimate the processes involved for conditions typical for coronal
sources of coherent solar radio bursts. For the thermal number density ne =
2.5 × 1010 cm−3 (fpe ≈ 1.4GHz) and Te = 107K at a frequency f = 1.1fpe
we have κff ∼ 0.65× 10−8 cm−1. Therefore, for the source size smaller than a
few ×108 cm, the free–free absorption is negligible; it can become important
for a denser or/and cooler plasma, however. Then, an estimate of the non-
linear absorption for the same parameters and a mean wave number of the
plasma wave spectrum k ∼ 3ωpe/c yields |κ(l+i⇒t)| ∼ 10−3(W/nekBTe); thus
for a source of a few hundred km the radio wave amplification due to stimu-
lated scattering on ions becomes important for (W/nekBTe) � 3×10−5. This
amplification takes place at low frequencies, lower that the spectral peak of
the plasma waves. Accordingly, the brightness temperature of the radio emis-
sion increases exponentially with the energy density of the plasma waves at
these low frequencies (see green curve in Fig. 10.19). In contrast, the higher
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frequency radio emission (still around the plasma frequency) saturates at
some universal level, which depends only on the electron temperature at the
source, red curve in Fig. 10.19. This means that at the higher frequencies the
stimulated scattering of waves on ions transfers energy from radio waves to
the plasma waves, which results in radio wave absorption that saturates the
radio emission level, while at the lower frequencies the energy is transferred
from plasma waves to the radio waves and the efficiency of this stimulated pro-
cess increases with the wave energy, which results in the exponential growth
shown by the green curve in Fig. 10.19.

Consider now a coalescence of two plasma waves into an electromagnetic
wave based on Eq. (4.61), which for this particular process reduces to

d(l+l
′⇒t)

dt
Wσ(ω,n) = 4π2ω(k)

∑
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∫
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′′)

−ωl′(k′′)signε′′(ω′′,k′′)Wσ(ω,n)Wl(k
′)

−ωl(k′)signε′′(ω′,k′)Wσ(ω,n)Wl′ (k
′′)
]
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where the core Qllt with the use of Eqs. (4.62) and (4.63) receives the form
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(10.114)

which must be multiplied by 1/2 if two merging waves belong to the same
wave mode. Note that Eq. (10.113) contains summation over all possible
plasma wave modes and all possible combinations of the coupling mode fre-
quencies, ω = ωl ± ωl′ . For example, there can be coalescence of two lower-
or upper-hybrid waves into a transverse wave with roughly double frequency
ω = ω± + ω± or a decay process when an upper-hybrid wave decays into
a lower-hybrid and a radio wave, ω = ω+ − ω−. For example, in a highly
magnetized plasma, ωBe 
 ωpe, the radio waves produced at the double
lower-hybrid frequency, 2ω−, occupy a region between ωpe and 2ωpe (see
dispersion laws of the plasma waves in Sect. 3.2.2 and Problem 3.1), while
those at the double upper-hybrid frequency, 2ω+, occupy a narrow region
above the second gyroharmonics. The radio waves from the coupling or de-
cay ω = ω+±ω− form a doublet around the gyrofrequency. Bandwidth of the
corresponding radio emission spectra depends strongly on the gyrofrequency
to plasma frequency ratio and also on the lower- and upper-hybrid wave tur-
bulence spectra including the anisotropy. Apparently, in a hot plasma, the
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amount of possible coalescence or decay processes is much larger because the
number of eigenmodes is accordingly larger. The plethora of plasma emis-
sion processes is in qualitative agreement with the observed diversity of solar
coherent emissions (see Fig. 10.10).

Consider now in more detail the case of a relatively dense ωBe � ωpe,
cold plasma, where only one, the upper-hybrid or Langmuir, wave contributes
to Eq. (10.113). Apparently, it has a standard form of the radiation transfer
equation, where the contribution arising from the first term in the square
brackets, which does not contain Wσ(ω,n), describes the (spontaneous) vol-
ume emissivity due to the plasma wave coupling, while two remaining terms,
proportional toWσ(ω,n), describe the radio wave absorption due to its decay
into two plasma waves. In a general case, the free–free absorption must also
be added to this equation. Accordingly, replacing again the energy density of
the radio waves by the corresponding brightness temperature we obtain

dTb(r, t)

vgdt
= a(l+l⇒t) − (κff + κ(l+l⇒t))Tb. (10.115)

The coefficients of this equation can be straightforwardly derived from
Eq. (10.113) for any given plasma parameters and the turbulence spectra.
Below, we make estimates assuming that the Langmuir wave spectrum is
isotropic and uniform, Wl(k

′) =W/(Δk)3, where W =
∫
dkWl(k

′) is the to-
tal energy density of the plasma waves. The actual bandwidth of the plasma
wave spectrum is convenient to parameterize as (Δk)3 = ξ(ωpe/c)

3, where
the dimensionless parameter ξ can be straightforwardly estimated from its
definition given above; in most of the practical cases ξ = 20–500. For this
case Eq. (10.113) yields (Zaitsev and Stepanov 1983)

a(l+l⇒t) ≈ (2π)5

15
√
3
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pe〈vph〉
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neTe, (10.116a)
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ωpe

〈vph〉
w

ξ
, (10.116b)

where 〈vph〉 = 〈ωpe/k〉 is the mean phase velocity of the involved plasma
waves.

For the condition typical for decimeter radio emission of solar bursts,
outlined after Eq. (10.112), the free–free absorption is not important, so the
solution of radiation transfer equation (10.115) is only specified by the plasma
turbulence and the source size:

Tb(r, t) =
a(l+l⇒t)

κ(l+l⇒t)

(
1− exp[κ(l+l⇒t)L]

)

≈ (2π)3
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ω3
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w

ξ
neTe

(
1− exp[κ(l+l⇒t)L]

)
, (10.117)
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so the brightness temperature of radio emission produced by the plasma wave
coalescence depends on whether the source is optically thin or thick for this
process. Adopting for the estimate ne = 2.5× 1010 cm−3, 〈vph〉 = 1010 cm/s,
ξ = 400, and L = 3×107 cm, we obtain τ(l+l⇒t) = κ(l+l⇒t)L ∼ 3×105w; thus,
the source is optically thin for w < 3× 10−6 and the brightness temperature
Tb ≈ a(l+l⇒t)L ∝ w2 increases quadratically with the plasma wave energy
density. For a higher energy density of the plasma waves, w > 3 × 10−6,
sufficient to form the optical depth larger than one, the decay of the radio
waves into the plasma waves becomes essential, so the brightness temperature
Tb ≈ a(l+l⇒t)/κ(l+l⇒t) ∝ w increases linearly with the plasma wave energy
density (see blue curve in Fig. 10.19).

10.4.3 Coherent Plasma Radiation from Solar Corona

Radio emission produced from plasma wave conversion can, apparently, be
expected from sources whose characteristic plasma frequency corresponds
to the radio domain, e.g., from stellar and solar coronae. Having in mind
primarily application to the solar case, let us introduce the characteristic
radio flux in the solar flux units, 1 sfu = 10−19 erg/(s cm2 Hz)

Fsfu ≈ 7× 10−11Tbf
2
9L

2
8, (10.118)

where f9 is radio frequency in GHz, L2
8 = (L⊥/108 cm)2 is the source area,

and Tb is the brightness temperature in K. Adopting the same parameters
as before and w ∼ 10−5 for which τ(l+l⇒t) ∼ 1, we obtain Tb ∼ 1015K
and Fsfu, cr ≈ 103 sfu, i.e., the corresponding coherent radio bursts occur in
the optically thin regime for Fsfu < Fsfu, cr, while in the thick regime for
Fsfu > Fsfu, cr.

There is a variety of solar radio emission types that are produced by a
coherent emission mechanism (e.g., Fig. 10.10), in particular, by a conversion
of plasma waves into radio waves, commonly called plasma mechanisms
of radio emission. In some cases the presence of a coherent process is
unavoidable. For example, if a radio emission peak lasts around 30ms, which
implies that its size does not exceed 109 cm and reaches a level of 1,000 sfu at
f = 1GHz, then Eq. (10.118) requires Tb > 1011K, which cannot be produced
by available non- or mildly relativistic particles via an incoherent emission
process. We note that for coherent decimetric bursts the assumed level of
1,000 sfu is quite modest: the radio flux reaches some 106 sfu in record radio
bursts.

The plasma mechanisms require a source of the free energy capable of ex-
citing the plasma waves to be available. In most cases these plasma waves are
excited by nonequilibrium unstable distributions of fast electrons (Sect. 4.1).
For example, collimated beams of the fast electrons can generate plasma
waves via beaming instability, while fast electrons trapped in a nonuniform
magnetic loop can build up a loss-cone angular distribution due to loss of
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electrons with small pitch angles, which gives rise to a loss-cone instability.
Observable signatures will be different in these two cases. Indeed, an electron
beam moving through inhomogeneous solar corona will excite plasma waves
along its path with varying plasma frequency (because of varying electron
density); thus, the radio waves produced by such plasma waves will display
a frequency drift reflecting variation of local plasma density along the beam
path. Such drifting bursts (Fig. 10.10d), frequently in large groups, are often
observed at decimeter and meter spectral bands and commonly interpreted
as signatures of the electron beams. Many other kinds of coherent bursts,
such as zebra and fiber bursts (Fig. 10.10a,c) and quasiperiodic pulsations
(Fig. 10.10e) can be consistently interpreted in terms of a plasma mechanism
driven by a loss-cone instability.

Although we obviously cannot give a comprehensive picture of the solar
radio burst, we, nevertheless, consider in some detail one case where the in-
terpretation of radio emission as due to coalescence of plasma waves at the
second harmonic looks unavoidable and being combined with accompanying
observed effects gives rise to a reliable detailed plasma diagnostics. Specifi-
cally, we present here an event recorded during the rise phase of a contin-
uum microwave burst on 2 November 1997 at frequencies f = 2.81–2.89GHz
from 03:02:17 UT to 03:02:21 UT by spectropolarimeter of the Beijing Astro-
nomical Observatory operated at 2.6–3.8GHz with 8ms time resolution and
10MHz frequency resolution; see event overview in Fig. 10.20. This event dis-
plays quasiperiodic pulsations of both left (L or LCP) and right (R or RCP)
polarized intensity components and the degree of polarization. A selected
fragment of the records in Fig. 10.21 displays clearly that the L and R pulsa-
tions are shifted in respect to each other by a considerable part of the period.

No emission mechanism is currently known to produce such oscillatory
behavior of the degree of polarization over that short period. In contrast,
we show below that this oscillatory behavior is a result of propagation of
originally weakly polarized radio emission through the magnetized coronal
plasma, or, more specifically, the result of the birefringence effect that reveals
itself in different group velocities of ordinary and extraordinary waves.

Apparently, the most suitable math tool for oscillation study is the
Fourier analysis, which fully characterizes the pulsations by providing their
oscillation frequency, phase, and amplitude at all available radio frequencies.
For this event, the radio light curves at all “pulsating” radio frequencies
demonstrate oscillation period τp = 40 ± 1ms; the Fourier amplitudes of
this oscillation vs radio frequency are shown in Fig. 10.22, left. The time
delays between the light curves at different radio frequencies, calculated as
a product of Fourier phase difference (between these two frequencies) and
the oscillation period, separately for L and R waves (auto-delays, for short)
are plotted in Fig. 10.22 (right), remarkably, that L and R waves demon-
strate opposite trends with frequency. The time delay between L and R radio
components (cross delay) at a given frequency is calculated in a similar
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Figure 10.20: 2 November 1997 event. Left: Dynamic spectra displaying pulsations in the
LCP and RCP channels. A narrowband pulsating emission is clearly seen around 2.85 GHz.
Right: Time profiles of the LCP and RCP intensities and the degree of polarization at
f = 2.85GHz. A puzzling feature is oscillations of the degree of polarization with a very
short period, ∼ 40ms (Melnikov et al. 2002a).

Figure 10.21: Selected fragments of the RCP (solid curve) and LCP (dashed curve)
light curves at f = 2.85GHz. The time delay (shift) between the components is apparent
(Melnikov et al. 2002a).

way, which gives Δt = 18–21ms depending on frequency. Figure 10.23, left,
displays that the cross delay systematically decreases with frequency as a
power law, Δt ∝ f−3.5.

Let us outline a consistent interpretation of these remarkable observa-
tions. As has been said, no emission mechanism is capable of producing radio
emission with so rapidly alternating degree of polarization, while the radio
wave propagation through a magnetized coronal plasma can easily make the
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Figure 10.22: Left: Fourier amplitudes of the pulsations as a function of frequency for
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relative to the waves (with the same polarization) at a reference frequency f = 2.81GHz
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model curves obtained for various ratios of the effective scales (see below); the solid lines
correspond to identical values of all involved effective scales (Melnikov et al. 2002a).
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Figure 10.23: Left: Frequency dependence of the delay between the RCP and LCP
components of the pulsation (filled squares with error bars). The line shows the theoretical
relation obtained using exact formulas for the group velocities of the transverse waves
and taking into account the inhomogeneity of the source (∝ f−3.5). Right: Group delay
for waves emitted at the double hybrid frequency in a uniform magnetized plasma with
a linear size of 4.5 × 109 cm as a function of the ratio of the plasma frequency to the
gyrofrequency Y = fpe/fBe.

polarization to oscillate due to birefringent properties of the magnetized
plasma—a fundamental effect giving rise, in particular, to the Faraday ro-
tation of the linear polarization plane (see Sect. 10.1.6) and to the group
delays between oppositely polarized waves. Indeed, consider a relatively com-
pact source generating a pulsating radio emission with a short period and a
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low degree of circular polarization, i.e., with comparable intensities of the
ordinary (O) and extraordinary (X) modes. When the radio emission leaves
the source, these waves (O and X) propagate in the magnetized corona with
different group velocities so that the temporal peaks of the LCP and RCP
signals arrive at the Earth with a time delay specified by the plasma density
and magnetic field along the emission path. Thus, the LCP signal dominates
during one part of the period, while the RCP signal during the other part,
leading to especially prominent oscillations of the degree of circular polariza-
tion when the time delay is about half of the oscillation period, which is the
case for the event under study.

Let us estimate the frequency dependence of the group time delay. For
a compact (point-like) source and f 
 fBe, fpe, we can write (see Sect. 3.2.3
and Problem 3.2e)

c

vX,O
≈ 1 +

ω2
pe

2ω2
− σ

ω2
peωBe cos θ

ω3
, (10.119)

where, as usual, σ = 1 for O waves and σ = −1 for X waves, cos θ is the angle

between the wave vector and the magnetic field, ω
‖
Be = ωBe cos θ. The group

time delay between simultaneously emitted O and X waves is given by the
integral along the radiation path:

Δtg =

∞∫
0

(
1

vX
− 1

vO

)
dz =

2

cω3

∞∫
0

ωpe(z)ω
‖
Be(z)dz =

2

c

ω2
psωBs||
ω3

H

(10.120)

where ωps and ωBs are the plasma and gyrofrequencies at the source and

H =

∞∫
0

ω2
pe(z)ωBe||(z)
ω2
psωBs||

dz =

∞∫
0

n(z)B||(z)
nsBs||

dz (10.121)

is the effective scale of the coronal inhomogeneity. Note that the integral in
the rhs of Eq. (10.120) is directly proportional to the rotation measure, RM,
introduced by Eq. (10.54) in connection with the Faraday rotation effect.
Accordingly, we have

Δtg ∝ RM · f−3. (10.122)

In a similar way, using Eq. (10.119) we can estimate the group auto-delays
between f0 = 2.81GHz and f = 2.89GHz for either O or X waves:

δtg ≈ Δtg
3Δf

f0
∼ 1.7 ms (10.123)

in rough agreement with absolute values of the auto-delays given in Fig. 10.22,
right.
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Now, let us consider a possible emission mechanism producing the radio
burst. Based on either time variability or rather narrow bandwidth of the
radio spectrum we can conclude that the source of emission is rather com-
pact, L < 108 cm; thus, Eq. (10.118) implies Tb > 5× 1010K, which requires
a coherent emission mechanism to be involved. We note that many coherent
mechanisms, including ECM emission and plasma radiation around the fun-
damental plasma frequency, produce a strongly polarized radiation and so
can be eliminated from consideration as we deal with the radiation weakly
polarized at the source. This implies that a coalescence of the plasma waves
resulting in emission at the second harmonic of the plasma wave frequency
must be responsible for the observed radio emission. Remind that gyroabsorp-
tion in the solar corona is typically significant up to the third gyroharmonics
(see Sect. 3.3.3); thus, the observed frequency range must fall above the third
local gyroharmonic, which means that the only suitable plasma wave mode
is the upper-hybrid mode; the lower-hybrid mode would generate emission
below the second gyrolayer and will be absorbed, while the Bernstein modes
would produce many similar pulsating “islands” in the dynamic spectrum in
contradiction with the fact that there is only one such region. Thus, we firmly
conclude that the radiation is produced by plasma mechanism at the second
harmonic of the upper-hybrid wave.

Importantly, as has been shown in Sect. 4.3.2, the energy density of the
upper-hybrid waves can oscillate due to nonlinear effects, e.g., stimulated
scattering of the waves on thermal ions, and that the energy density of the
upper hybrid waves displays either nonperiodic pulsations or quasiperiodic
oscillations, depending on the size and shape of the instability region of
the upper hybrid waves provided by a given distribution of fast electrons.
Quasiperiodic solutions appear for relatively narrow (in the wave-vector
plane) regions of instability, while nonperiodic pulsations arise for more
extended regions. In the considered case the pulsations are quasiperiodic in-
dicative of a narrow spectral domain of the underlying, presumably loss cone,
instability.

Note that narrow regions of instability are more easily formed if the in-
stability operates in a weakly above-threshold regime (with the threshold de-
termined, e.g., by the collisional wave damping). In this case, we expect that
the conditions for instability are fulfilled only in a small part of a nonuniform
coronal trap, which seems to be a natural reason for that narrow spectral
band occupied by the pulsations.

For a loss-cone instability the upper-hybrid waves are generated at qua-
sitransverse directions to the magnetic field (see Fig. 4.2b), i.e., ω ≈ 2ωUH ≈
2
√
ω2
pe + ω2

Be. Using this relation we can study how the expected group de-

lay depends on the plasma parameter Y = ωpe/ωBe. Indeed, for the double
upper-hybrid frequency, Eq. (10.120) yields
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Δtg =
H

4c

(
2fUH

f

)3
Y 2

(1 + Y 2)3/2
(10.124)

where 2fUH/f ≈ 1; the corresponding dependence Δtg(Y ) is shown in
Fig. 10.23, right. This plot shows that there is a relatively narrow range of Y
where the group delay around 20ms is possible: Yopt ≈ 1.5, which allows to
roughly estimate both plasma and gyrofrequencies provided fUH ≈ 1.4GHz.
Interestingly, the magnetic field at the source can be estimated precisely from
the analysis of the Fourier spectra of the pulsations (Fig. 10.22, right). Indeed,
the ratio of the spectra of the LCP and RCP components drastically changes
for a minor frequency change of only 0.3%, at the transition from 2.86GHz
to 2.87GHz: in the high-frequency part of the spectrum (f ≥ 2.87GHz) the
Fourier amplitudes for the LCP and RCP signals coincide, whereas in the
low-frequency part (f ≤ 2.86GHz) the Fourier amplitudes of the LCP signal
are systematically lower than for the RCP signal. Such a sharp, stepwise
change is indicative of a system transition through some threshold. Given
that typically the first three gyrolayers are thick for the X-mode waves,
it is natural to suppose that this threshold is the fourth gyrolayer, which
is transparent for O-mode, while can be partially opaque for the X-mode;
therefore

4fBe = 2.865± 0.005GHz. (10.125)

Thus, from Eq. (10.125), we find

B = 255.7± 0.5G, (10.126)

which along with Eq. (3.109) yields for the plasma number density

n = (1.9± 0.1)× 1010 cm−3. (10.127)

Note that the accuracy of n estimate is lower than that of B because we
do not know the angle of the generated upper-hybrid waves relative to the
magnetic field.

Combining Eqs. (10.126) and (10.127) we obtain the plasma parameter
Y at the source:

Y = 1.7. (10.128)

The estimated Y value is indeed close to optimal one (Yopt ≈ 1.5) producing
the largest group delay all other conditions being equal. Using Eq. (10.124)
with Eq. (10.128) we estimate the effective coronal inhomogeneity scale as

H ≈ 5× 109 cm. (10.129)

So far, we have considered fundamental effects of plasma birefringence
and gyroabsorption to determine the main physical parameters of the prob-
lem: the magnetic field, the electron number density, and the coronal inhomo-
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geneity scale. Now we turn to analysis of the plasma turbulence and related
properties. Since the total spectral width of the radio emission is

Δf/f ≈ 3%, (10.130)

we can, to the first approximation (i.e., within an accuracy of 3%), consider
the radio source to be homogeneous; effects produced by the source inhomo-
geneity, which are also important in the case under study, are considered in
Problem 10.6 to this chapter.

In a general case the bandwidth of the radio emission consists of the in-
trinsic width arising in a homogeneous source and the contribution of the in-
homogeneity of the real source. Apparently, the theoretically predicted “nat-
ural” width of the plasma waves must not exceed the observed width of the
pulsations. From this perspective it is conclusive to recall that the upper-
hybrid frequency depends on the wave angle to the magnetic field roughly as
ωUH ≈ ωpe(1+sin2 θ/2Y 2) (see Problem 3.1). Thus, if the upper-hybrid waves
were distributed isotropically, then, the corresponding natural bandwidth
would correspond to the entire range of the angle variation, 0 ≤ sin θ ≤ 1,
which, for Y ∼ 1.7 would be

Δω

ω
∼ 10–20% (10.131)

in apparent conflict with observed bandwidth (10.130) suggesting a narrower,
anisotropic angular distribution of the upper-hybrid turbulence.

Indeed, numerical studies of the nonlinear plasma wave pulsations
(Sect. 4.3.2) suggest that in the case of narrow instability region required to
produce quasiperiodic pulsation regime, the upper-hybrid turbulence remains
anisotropic and confined within a narrow region of the k-plane comparable
to the original instability region with the following typical values and their
scatter:

kde ∼ 0.1, (10.132a)

θ ∼ 80◦, (10.132b)

Δkde ∼ 0.1, (10.132c)

Δθ ≤ 20◦, (10.132d)

implying Δk ∼ k, and, accordingly

Δω

ω
∼ 1–3%, (10.133)

which means that the contribution of the source inhomogeneity to the total
spectral width of the observed radio pulsations may be comparable to the
natural spectral bandwidth of the emission mechanism.
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Let us estimate the relevant plasma wave growth and damping rates in
this event. Note that like in numeric simulations in Sect. 4.3.2, the timescales
of the radio pulsations’ growth and decay are comparable to each other; thus,
the maximum growth rate for the wave amplification is of the same order as
the effective wave damping rate γ̄ ∼ γ̃. The observed pulsation period is
specified by the maximum growth rate according to Eq. (4.75) which yields
the growth rate estimate:

γ̄ ≈ 2.7× 102 s−1 ≈ 3× 10−8ωpe. (10.134)

Using approximate formula γ̄ ∼ 10−1(nb/ne)ωpe (see Fig. 4.2c) and the
growth rate value from Eq. (10.134) we can estimate the number density of
unstable fast electrons driven the loss-cone instability of the upper-hybrid
turbulence:

nb ∼ 104 cm−3. (10.135)

On the other hand, the effective damping rate γ̃ has the same order of
magnitude as γ̄. The damping rate consists of the collisional absorption (νei)
and contribution from the fast electrons, i.e.,

γ̃ ≥ νei ≈ 60 nT−3/2. (10.136)

Since the plasma number density has been determined by Eq. (10.127),
we can find a lower bound of the plasma electron temperature

T ≥ 3× 106K. (10.137)

Furthermore, we can now estimate energy density of the upper-hybrid turbu-
lence noting that the mean level of the oscillations is defined by the stationary
solution W ≈ γ̄/ζ and taking into account Eq. (4.70):

w =
W

nekBT
∼ 50

fτ
∼ 10−6. (10.138)

As has been shown in Sect. 10.4.2, for this relatively low level of the plasma
turbulence, the radio waves are generated in the optically thin regime; there-
fore, Tb ≈ a(l+l⇒t)L‖, where L‖ is the source size along the line of sight and
a(l+l⇒t) is defined by Eq. (10.116a), where ξ ≈ 30 must be used according to
Eq. (10.132a). On the other hand the brightness temperature can be calcu-
lated from the observed flux (F ∼ 20 sfu) using Eq. (10.118), which contains
the transverse size of the source. We know all the entries to these equations,
rather than the sizes; however, we can assume the sizes to be comparable
to each other and estimate them from the condition that both equations
provide the same brightness temperature, which yields both the brightness
temperature

Tb ∼ 5× 1012 K (10.139)
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and the source size
L|| ∼ L⊥ ∼ L ∼ 107 cm. (10.140)

Herewith, we have outlined a coherent picture of this pulsating radio
bursts, which consistently explains all the observed properties, except posi-
tive auto-delays of the RCP emission, which cannot be reconciled within a
homogeneous source model and so requires an explicit account of the source
inhomogeneity (see Problem 10.6 to this chapter).

Problems

10.1 Calculate the free–free emission and absorption coefficient of O- and
X-modes of magnetized plasma using expressions for the corresponding re-
fractive indices (see Problem 3.9) and Kirchhoff’s law.

10.2 A short broadband pulsar signal is being recorded by two narrowband
receivers at different frequencies ω1 and ω2. Each of them is tuned to a narrow
bandwidth Δω � ω1, ω2. The propagation time of a narrowband signal is
specified by the distance to the pulsar and signal group velocity, which is
a function of frequency. Thus, simultaneously launched pulsar signals will
arrive at the receivers at different times, with a delay of Δt = t1 − t2.

Determine dependence between the delay Δt and dispersion measure

DM =
∫ L
0
nedl = neL. Here, ne is the electron number density and L is the

distance between the pulsar and the receiver; the integration is required to
account for a nonuniform distribution of the thermal plasma along the line of
sight. Adopt that the electron plasma frequency ωpe =

√
4πnee2/me is small

compared with the signal frequencies, ω1 and ω2.

10.3 Consider transfer of radiation polarization through a nonabsorbing and
non-emitting plasma. Obtain formulae of the Faraday and Cotton–Mouton
effects from general solution. Find conditions in which the Faraday rotation
does not take place.

10.4 Solve the polarization transfer equation in a radiation source adopting
the rotation measure is strong inside the source; no external radiation incident
on the radiation source is present.

10.5 Analyze GS images presented in Sect. 10.2.2. Formulate what observa-
tional signataries are expected from (i) different lines of sight, (ii) pitch-angle
anisotropy, and (iii) spatial inhomogeneity.

10.6 In the solar corona, the plasma density and magnetic field strength,
decrease with increasing distance from the solar surface. This means that, on
average, the higher frequency emission (of each mode) is generated in deeper
layers of the corona and travels a longer distance to the observer than the
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lower-frequency emission. If these signals had identical group velocities, this
effect would result in a delay of the arrival of the high-frequency signal rela-
tive to the low-frequency signal. In fact, however, because of plasma disper-
sion, the group velocity increases with frequency, asymptotically approaching
the velocity of light at high frequencies. Thus, high-frequency waves propa-
gate faster than low-frequency waves, i.e., the effects of wave dispersion and
source inhomogeneity are counter directed; thus, under real conditions, high-
frequency waves can either lead or lag low-frequency waves, depending on
parameters.

Determine the auto- and cross delays taking into account both plasma
dispersion and source inhomogeneity. Use data in Fig. 10.22, right, to derive
the corresponding parameters of the inhomogeneous model, such as local scale
of inhomogeneity and total source size.

Answers and Solutions

10.1 The absorption coefficient κσff is defined by the dimensionless absorp-
tion index ησ, Eq. (3.114):

κ
σ
ff =

2ωησ
c

=
2ωνv

nσc

u2 sin4 θ − σ
√D [u sin2 θ + 2(1− v)2

]
σ
√D

[
2(1− v)− u sin2 θ + σ

√D
]2 . (10.141)

Accordingly, the free–free emissivity of the magnetized plasma is specified by
Eq. (10.141) and Kirchhoff’s law (10.2):

jσn,ω =
n2
σω

2
κ
σ
ff

(2π)3c2

∣∣∣∣vg∂(ωnσ)c ∂ω

∣∣∣∣ kBT, for �ω � kBT, (10.142)

and for the practically used emissivity jσn,f related to usual frequency f =
ω/2π, we obtain:

jσn,f = 2πjσn,ω =
n2
σf

2
κ
σ
ff

c2

∣∣∣∣vg∂(ωnσ)c ∂ω

∣∣∣∣ kBT. (10.143)

10.2 The dispersion relation of the transverse waves in a plasma at high

frequencies has the form ω(k) =
√
ω2
pe + (ck)2, while the group speed can be

calculated as vg = dω/dk. Some straightforward manipulations yield

Δt =

∫ L

0

[
1

vg1
− 1

vg2

]
dl =

e2(λ21 − λ22)

2πmec3
DM ≈ 4.6(λ21 − λ22)DM μs.

In the latter equality the delay is expressed in microseconds, the wavelength
λ in cm, and DM in pc/cm3. The relation obtained offers an elegant way
of probing the ISM and deriving the mean (over the line of sight) electron
number density if the distance to the pulsar is independently known.
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10.3 No emission means jX = jO = 0; thus, S = 0. Accordingly, no ab-
sorption means κX = κO = 0; thus K = 0. Then, taking into account the
equivalence μ2

Q + μ2
U + μ2

V = 1, a solution of Eq. (10.44) is easy to find:

I(z) = I0, (10.144a)

Q(z) = μQ(μQQ0 + μUU0 + μV V0)

+[(μ2
U + μ2

V )Q0 − μQ(μUU0 + μV V0)] cosΔkz

+(μUV0 − μV U0) sinΔkz, (10.144b)

U(z) = μU (μQQ0 + μUU0 + μV V0)

+[(μ2
Q + μ2

V )U0 − μU (μQQ0 + μV V0)] cosΔkz

+(μVQ0 − μQV0) sinΔkz, (10.144c)

V (z) = μV (μQQ0 + μUU0 + μV V0)

+[(μ2
Q + μ2

U )V0 − μV (μQQ0 + μUU0)] cosΔkz

+(μQU0 − μUQ0) sinΔkz, (10.144d)

where I0, Q0, U0, and V0 are the initial (incident at z = 0) values of the Stokes
parameters. Apparently, the radiation intensity (Stokes I) does not change
when neither emission nor absorption are present. Other Stokes parame-
ters contain oscillating component describing, in particular, the Faraday and
Cotton–Mouton effects. The intensity of polarized component, Q2+U2+V 2,
and, accordingly, the degree of polarization remain constant.

Consider propagation of originally linearly polarized wave (Q0 = I0, U0 =
0, and V0 = 0) at a given angle to the magnetic field; Eqs. (10.144) reduce to

Q(z) = Q0 − (μ2
U + μ2

V )Q0(1− cosΔkz), (10.145a)

U(z) = μUμQQ0(1 − cosΔkz) + μVQ0 sinΔkz, (10.145b)

V (z) = μV μQQ0(1 − cosΔkz)− μUQ0 sinΔkz. (10.145c)

We see that in a general case, the original linearly polarized radiation ex-
periences a rotation of the polarization plane and, on top of that, it pro-
duces a nonzero circular polarization component, Eq. (10.145c). According
to Eq. (10.48), in a quasilongitudinal propagation regime at high frequen-
cies, μQ ∼ μU ∝ √

u sin2 θ � 1 and μV ≈ 1. Thus, the degree of circular
polarization remains small compared with the degree of linear polarization,
V ∼ √ωBe/ωQ0; nevertheless, precise measurements of this secondary cir-
cular polarization are potentially highly valuable for the magnetic field di-
agnostics. In the case of transverse propagation, we have μQ = − cos 2ψ,
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μU = − sin 2ψ, and μV = 0, which yields the Cotton–Mouton effect; to ob-
tain the correct functional dependence of the rotation angle on the wavelength
one yet has to calculate and substitute Δk for the transverse propagation re-
sulting in ψ ∝ λ3.

To obtain the pure Faraday effect let us consider propagation along the
magnetic field. In this case the eigenmodes are precisely circularly polarized,
TX = 1 and TO = −1, so μU = μQ = 0 and μV = 1; thus, Eq. (10.145) yields
Q(z) = Q0 cosΔkz, U(z) = Q0 sinΔkz, and V (z) = 0, which describes
rotation of the linear polarization direction (Faraday effect).

Using Eq. (3.42) we find the polarization plane rotation angle δ = ΔkL
at the distance L, expressed via the wavelength λ = 2π/k:

δ =
λ2e3

2π(mec2)2
neBL.

The relative rotation angle of two waves with different frequencies is

Δχ = δ1 − δ2 = (λ21 − λ22)RM, where RM =
e3

2π(mec2)2
neBL

is the rotation measure.
If the magnetic field makes an angle with the line of sight and, perhaps,

nonuniform like the electron distribution in Problem 10.2, then the combina-
tion neBL must be replaced by the corresponding integral

RM =
e3

2π(mec2)2

∫ L

0

neB‖dl = 0.81neB‖L.

Here B‖ is the parallel (to the line of sight) magnetic field component in μG,
ne is the thermal electron number density in cm−3, L is the distance in pc, and
RM is the rotation measure in radian per square meter. Simultaneous mea-
surements of the dispersion measure and rotation measure complemented by
the emission measure offers an efficient way of studying the thermal electron
and magnetic field distributions in ISM.

Let us define the conditions when no polarization rotation happens, i.e.,
solve where the coefficients before the sine and cosine functions turn zeros.
Although there are six such equations, they are not independent; they are
satisfied all at once if

Q0

μQ
=
U0

μU
=

V0
μV

. (10.146)

Thus, when Eq. (10.146) is fulfilled, the oscillating component in Eq. (10.144)
vanishes and all the Stokes parameters remain constant during the propaga-
tion. This is, in particular, the case when the propagating radiation represents
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an incoherent combination of the ordinary and extraordinary waves, i.e.,

⎛
⎜⎜⎝

I0
Q0

U0

V0

⎞
⎟⎟⎠ = sXIX + sOIO =

⎡
⎢⎢⎣

IX + IO
μQ(IX − IO)
μU (IX − IO)
μV (IX − IO)

⎤
⎥⎥⎦ , (10.147)

where IX and IO are arbitrary amplitudes of the eigenmodes.

10.4 Plasma particles moving in a magnetized plasma produce coherent X-
and O-modes, although this coherence is lost quickly if the rotation measure
is strong, so we adopt that the propagating radiation consists of uncorrelated
X and O waves. Then, because there is no radiation incident on the plasma,
we have I = Q = U = V = 0 at z = 0. In this case the solution of radiation
transfer equation (10.44) is easy to write

I(z) =
jX
κX

(
1− e−κXz

)
+
jO
κO

(
1− e−κOz

)
, (10.148a)

Q(z) = μQ

[
jX
κX

(
1− e−κXz

)− jO
κO

(
1− e−κOz

)]
, (10.148b)

U(z) = μU

[
jX
κX

(
1− e−κXz

)− jO
κO

(
1− e−κOz

)]
, (10.148c)

V (z) = μV

[
jX
κX

(
1− e−κXz

)− jO
κO

(
1− e−κOz

)]
. (10.148d)

Again, no oscillations of the Stokes parameters are present in Eq. (10.148) be-
cause for the radiation composed of incoherent eigenmodes conditions (10.146)
are fulfilled everywhere along the ray path. The polarization will evolve, how-
ever, if the radiation propagates through a nonuniform medium, e.g., in the
case of solar corona. In particular, strong modifications of the radio emis-
sion polarization can occur when the radiation interacts with layers where
the line-of-sight component of the magnetic field changes the orientation
(regions of quasitransverse wave propagation), which may happen at the
current sheets, where processes of magnetic reconnection and corresponding
prompt energy release are likely.

10.6 Let us assume that the spatial center of the low-frequency emission
source (e.g., at frequency f0 = ω0/(2π) = 2.81GHz in the event under study)
is located at z = 0 and that the emission at other frequencies is generated
at volumes centered at −z(ω) (z(ω) is a positive quantity). We can then
write for each mode the group auto-delay as a function of frequency and the
(already analyzed above) group cross delay between the modes taking into
account the source inhomogeneity.
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The travel times of a σ wave at the reference frequency ω0 and arbitrary
one ω are

tσ0 =

R∫
0

dz

vσ(ω0)
, tσω =

R∫
−z(ω)

dz

vσ(ω)
. (10.149)

Accordingly, the delay between them is defined by difference between two
expressions in Eq. (10.149):

Δtσω = tσω − tσω0
=

0∫
−z(ω)

v−1
σ (ω)dz +

∞∫
0

(v−1
σ (ω)− v−1

σ (ω0))dz. (10.150)

With this definition, the delay is negative if the high-frequency signal reaches
the Earth first and positive if the low-frequency signal arrives first. In the
latter integral, the upper limit can obviously be replaced with ∞.

Given that the emission frequency is of the same order as the plasma
and gyrofrequencies, in further analysis we use exact expressions of the group
velocities while make expansions over the small quantity Δω/ω ∼ 3%. In the
second term, this enables us to expand the function v−1

σ (ω) in a series over
the frequency with the accuracy Δω/ω0. To calculate the first term to the
same accuracy, we note that the region of integration for this term is a small
quantity of the same order as Δω/ω0, z(ω)/Heff ∼ Δω/ω0 where Heff is a
characteristic length giving the main contribution to the integration of the
second term. The auto-delay then becomes

Δtσω = z(ω)v−1
σ (ω0) +

Δω

ω0

∞∫
0

(
ω
∂v−1

σ (ω)

∂ω

)
ω=ω0

dz. (10.151)

To specify the yet unknown function z(ω) the sum of the auto-delays in
X- and O-modes will be useful:

ΔtXω +ΔtOω = z(ω)(v−1
X (ω0) + v−1

O (ω0)) +
Δω

ω0

∞∫
0

ω0

(
∂v−1

X (ω)

∂ω
+

∂v−1
O (ω)

∂ω

)

ω=ω0

dz.

(10.152)

The integral in the second term can be represented as a product of the
integrand evaluated at z = 0 and the effective integration scale Heff . To a
first approximation over Δω/ω0, the function z(ω) can be written as

z(ω) = χ
Δω

ω0
Heff , (10.153)
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where χ is yet unknown parameter. Then

ΔtXω +ΔtOω = Heff
Δω

ω0

{
χ(v−1

X (ω0) + v−1
O (ω0))

+ω0

(
∂v−1

X (ω)

∂ω
+
∂v−1

O (ω)

∂ω

)
ω=ω0

}
. (10.154)

Let us introduce for compactness the difference between reciprocal values
of the group velocities as follows

Δv−1
g (ω) = v−1

X (ω)− v−1
O (ω) (10.155)

and derive a more precise relation than Eq. (10.120) for the group cross delay
Δtg, taking into account the radio source inhomogeneity. Similar to derivation
of Eq. (10.151), we obtain

Δtg(ω) = z(ω)Δv−1
g (ω0, 0) +

∞∫
0

Δv−1
g (ω0, z)dz +

Δω

ω0

∞∫
0

(
ω
∂Δv−1

g (ω, z)

∂ω

)
ω=ω0

dz.

(10.156)
Estimating the integrals as

∞∫
0

Δv−1
g (ω0, z)dz = Δv−1

g (ω0, 0)H,

∞∫
0

(
ω
∂Δv−1

g (ω, z)

∂ω

)

ω=ω0

dz

=

(
ω
∂Δv−1

g (ω, 0)

∂ω

)

ω=ω0

H1, (10.157)

whereH,H1 are the corresponding effective integration scales, and then using
Eq. (10.153), obtain

Δtg(ω) = HΔv−1
g (ω0)

{
1 +

H1

H

ω0

Δv−1
g (ω0)

(
∂Δv−1

g (ω)

∂ω

)
ω=ω0

Δω

ω0
+ χ

Heff

H

Δω

ω0

}
.

This formula solves the problem of finding the cross delay for the
frequencies comparable to the plasma eigenfrequencies with the account of
source inhomogeneity. The frequency dependence of Δtg is described by the
second and third terms in the braces. If the emission frequency were much
higher than the plasma frequency, we would have H1 = H and, accordingly,

α =
ω0

Δv−1
g (ω0)

(
∂Δv−1

g (ω)

∂ω

)

ω=ω0

≈ −3 (10.158)
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in agreement with approximate formula (10.120) that implies Δtg ∝ ω−3 ≈
ω−3
0 (1 − 3Δω/ω0). In fact, α(ω) is a function of frequency approaching the

value of −3 only asymptotically. Specifically, the α(ω) dependence for a fixed
plasma frequency, which is straightforward to compute based on theory pre-
sented in Chap. 3 is given in Fig. 10.24, left. We can see that α can be quite
different from −3 near the plasma frequency. In our case, the emission fre-
quency to the plasma frequency ratio is fixed for a given value of Y . Fig-
ure 10.24, middle, shows α as a function of Y : α differs appreciably from its
asymptotic value (−3) at all values of Y and varies from −3.9 to −3.75 in
the Y range of interest. The third term in braces in Eq. (10.158), related to
the source inhomogeneity, is positively defined and is determined solely by
the constant χ (for a fixed ratio of the effective integration scales Heff/H).

Therefore, to determine the cross delay we have yet to find the value of χ.
For this purpose, we express this quantity in terms of the sum of auto-delays
(10.154):

χ =
ω0

(
∂v−1

X (ω)
∂ω +

∂v−1
O (ω)
∂ω

)
ω=ω0

v−1
X (ω0) + v−1

O (ω0)
+

ω0

Δω

(ΔtXω +ΔtOω )

Heff(v
−1
X (ω0) + v−1

O (ω0))
. (10.159)

The first term in this formula is a function of Y and does not depend on
other parameters of the source or on the observational errors. In the second
term, the quantity ω0/Δω is known, and the delays Δtσω are known from the
observations (i.e., with some error), whereas the scale Heff is unknown. It
will then be convenient to transform the second term using Eq. (10.158). We
multiply and divide this term by Δtg/H , noting also that at the reference
frequency ω0 we have

Δtg/H = Δv−1
g (ω0). (10.160)

Then, Eq. (10.159) receives the form

χ =
ω0

(
∂v−1

X (ω)
∂ω +

∂v−1
O (ω)
∂ω

)
ω=ω0

v−1
X (ω0) + v−1

O (ω0)
+

ω0

Δω

Δv−1
g (ω0)

v−1
X (ω0) + v−1

O (ω0)

ΔtXω +ΔtOω
Δtg

H

Heff
.

(10.161)

Advantage of this form is that χ now depends on the ratio of the effective
scales H/Heff , which is of the order of unity, rather than on the absolute
value of Heff . The dependence of χ on Y for various values of H/Heff is
presented in Fig. 10.24, right. Note that χ is almost independent on either Y
or H/Heff . This is due to the smallness of the sum of the auto-delays ΔtXω +
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Figure 10.24: Left: Index α as a function of frequency for various values of Y (a) and
as a function of Y for waves at the double hybrid frequency (b). Right: Inhomogeneity
index χ as a function of Y for various values of H/Heff = 0.6, 0.7, 0.8, 0.9, and 1.0
(Melnikov et al. 2002a).

ΔtOω in the analyzed event. To an accuracy sufficient for the analysis we can
adopt

χ = 0.32 = const(Y,H/Heff), (10.162)

which, being substituted into Eq. (10.158) along with α ≈ −3.8 yields
Δtg(ω) = Δtg(ω0)[1− 3.5(Δω/ω0)] ∝ ω−3.5 in agreement with the solid line
in Fig. 10.23.

Let us return now to the auto-delays. Substituting expression (10.153) for
z(ω) into Eq. (10.151) and introducing the effective integration scalesHσ (σ =
X,O), we obtain

Δtσω = Heff
Δω

ω0

{
χv−1

σ (ω0) +
Hσ

Heff

(
ω
∂v−1

σ (ω)

∂ω

)
ω=ω0

}
. (10.163)

Figure 10.22, right, shows the theoretical dependences Δtσω for various
values of Hσ/Heff taking into account Eq. (10.162), plotted on top of the
observational data. Note that the effect of source inhomogeneity is dominant
for the ordinary waves (i.e., the low-frequency signal reaches the observer
first so that the delays are positive), while the effect of dispersion dominates
for the extraordinary waves (i.e., the delays are negative).

Above, estimating various relevant integrals, we introduced five different
effective scales having, presumably, the same order of magnitude; however,
they are not all independent. Indeed,

Heff =

{
∂v−1

X (ω)
∂ω HX +

∂v−1
O (ω)
∂ω HO

∂v−1
X (ω)
∂ω +

∂v−1
O (ω)
∂ω

}

ω=ω0

, (10.164a)
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H1 =

{
∂v−1

X (ω)
∂ω HX − ∂v−1

O (ω)
∂ω HO

∂v−1
X (ω)
∂ω − ∂v−1

O (ω)
∂ω

}

ω=ω0

. (10.164b)

In particular, if HX = HO, then Heff = H1 = HX = HO. Generally speak-
ing, a detailed and precise frequency dependence of the delays could allow us
to determine the relative values of these effective scales. However, the avail-
able data, at least within the observational errors, can be well interpreted
assuming all the scales to be identical and equal to H already estimated to
be ∼ 5× 109 cm in Sect. 10.4.3.

Let us consider the total linear size of the inhomogeneous source l ≈
z(2.89GHz):

l = χHeff
Δf

fo
≈ 4× 107 cm, (10.165)

which exceeds by a factor of three the source size found from the radio flux
and brightness temperature of the radio emission, Eq. (10.140). This apparent
discrepancy appeared because in Sect. 10.4.3 we calculated the size of a homo-
geneous radio source radiating with a natural bandwidth, which implies that
the effective source size at each frequency is ∼ 100 km, while the determined
source size relates to emission at all frequencies. Hence, solving Eq. (10.140)
for Δf/f0 and substituting l = 100 km, we can estimate the natural band-
width of the emission mechanism to be Δf/f0 ∼ 1%, or Δf ≈ 20MHz.
The regions radiating at different (though neighboring) radio frequencies are
spatially displaced relative to each other because of the inhomogeneity. Note
that the value of χHeff represents an estimate of the local scale of plasma
inhomogeneity at the very source site, which means that the plasma density
gradient at the radio source is roughly a factor of three greater than the mean
gradient in the corona along the radio emission path. Thus, the instability of
the upper hybrid modes arises in a locally more nonuniform site of a magnetic
trap.

To summarize the presented rather thorough analysis of this event and
emphasize a great potential of the plasma emission for diagnostics of the
coronal plasma, we gather below all the parameters determined:

-Background plasma density ne = 1.9× 1010 cm−3

-Magnetic field B = 256G
-Kinetic electron temperature Te ≥ 3× 106K
-Number density of fast electrons nb ∼ 104 cm−3

-Growth rate of the plasma waves γmax ∼ 300 s−1

-Spectral bandwidth of the generated plasma waves Δω/ω ≤ 3%
-Wave number of the generated plasma waves kde ≈ 0.1
-Scatter of the wave numbers cΔk/ωpe ≈ 3 or
of the generated plasma waves Δkde ≈ 0.1
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-Direction of peak amplification of the plasma waves θ ≈ 80 ◦

-Angular scatter of the generated plasma waves Δθ ≈ 30 ◦

-Level of plasma turbulence w =W/nT ≈ 10−6

-Brightness temperature of the emission Tb ≈ 5× 1012 K
-Source size at a given frequency L ≈ 100 km
-Total source size l ≈ 400 km
-Plasma parameter in the source Y ≈ 1.7
-Natural bandwidth of the spectral line Δf/f ≈ 1%
-Effective scale of inhomogeneity

average in the corona H ≈ 5× 109 cm
at the radio source χH ≈ 2× 109 cm



Chapter 11

Particle Acceleration in Astrophysical
Media

In the laboratory, the particles with high to very high energy (E 
 mc2) are
obtained by means of extremely sophisticated devices. One of many examples
is large Hadron collider (LHC) recently commissioned in Europe. These spe-
cially designed accelerating devices are needed because high-energy particles
lose their energy very quickly due to interaction with matter and external
fields and, thus, become thermally assimilated by the medium.

Nevertheless, there are also natural processes giving rise to particle ac-
celeration up to extremely high energies due to routine interactions with
natural media in astrophysics. There are many examples of such sporadic ac-
celeration including particle acceleration in solar and stellar flares, planetary
magnetospheres, SNRs, GRBs, etc. Perhaps, the earliest of discovered natural
phenomena involving the high-energy particles was the phenomenon of cos-
mic rays (CRs), which arrive from far far away of the Universe and penetrate
the terrestrial atmosphere. CRs have been recorded, over more than century,
by both ground-based and spaceborne detectors. The highest detected energy
of a single CR particle is about 3× 1020 eV, i.e., by 7–8 orders of magnitude
higher than the highest energy achievable in the modern laboratory acceler-
ators. For comparison, a comparable energy is carried out by a macroscopic
body with the mass of 1 g moving with the sound speed in air (∼330m/s).

CRs at moderate energies (E < 1012 eV) consist mainly of protons
(∼90%), helium nuclei (α-particles) ∼10% by number, and heavier nuclei
(less than 1%). Electrons provide around 1% of the total CR flux. In other
phenomena, e.g., in solar flares or SNRs, the proportion between various
charges can be different; the estimate is complicated by the fact that the
ions are much heavier than the electrons (or positrons), so they produce
electromagnetic emission much less effectively, thus, it is often difficult to
quantitatively derive their relative abundances. Unlike electrons, which are
visible throughout the entire electromagnetic spectrum, the ions can mainly
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be detected via gamma-ray emission generated in nuclear interactions of the
high-energy particles with the background target particles, which requires a
reasonably dense target to produce a detectable gamma emission. In case of
solar flares, some information of the ion composition (and ionization states)
is obtained by in situ measurements in the IPM. These measurements show
that the relative abundances of the charged particles vary in very broad
limits. For example, there are so-called He3-rich flares in which the ratio of
He3 to He4 is much larger than in the thermal plasma ∼10−4 (and sometimes
even larger than one).

The problem of the high-energy particle origin has not yet been fully
solved. Apparently, an avenue to solve it lies within the physics of highly
nonstationary collisionless astrophysical plasma. This plasma, as has been
broadly discussed in this book, contains plenty of macroscopic motions
and electromagnetic fields including stochastic, turbulent component. Im-
portantly, the plasma number density n can be very low (compared with
the terrestrial densities), e.g., 0.1 � n � 10 cm−3 outside the stars and
n ∼ 1010 cm−3 in stellar coronae.

This nonstationarity is driven by strong energy release which can be
supplied by mechanical motion of the celestial bodies, stellar winds and ex-
plosions, accreting flows, jets, “annihilation” of magnetic energy, etc. Some
of the astrophysical sources, including extragalactic jets, active galactic nu-
clei, and gamma-ray burst sources, include relativistically moving ejectas (see
Chap. 12), which somehow can effectively transfer a part of the expansion en-
ergy into the particle acceleration. Thus, the energy releases are followed by
a complicated disturbance of the source volume filled by regular and random
motions and magnetic fields. A natural outcome of the interaction between
these motions and magnetic fields in a highly conducting plasma is generation
of electric field, which, in its turn, capable of direct accelerating the charged
particles. In addition to the plasma nonstationarity, another important con-
dition required for the efficient acceleration to be possible is availability of
free energy capable of transforming to the accelerated particle energy.

A charged particle moving in an electric field over its trajectory from

point 1 to point 2, gains energy ΔE = e
∫ (2)

(1)
E · vdt. If averaging over all

allowed trajectories in the acceleration region yields 〈E〉 �= 0, such accelera-
tion is called regular acceleration. If, in contrast, 〈E〉 = 0, i.e., the electric
field vector changes its direction repeatedly, an acceleration is still possi-
ble. Indeed, the mean work of the electric force on the particle, which is

〈∫ (2)

(1)
eE ·vdt〉, is nonzero in a general case because the particle velocity v[E]

represents a complicated functional form of the electric field; thus, averaging
yields terms proportional to 〈E2〉, which are apparently positively defined;
this kind of acceleration is called stochastic acceleration.

For highly conducting plasma the electric field can be expressed via the
magnetic field and macroscopic velocity of the plasma using Eq. (2.19). In this
case the particle acceleration can be interpreted as a result of their elastic
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collisions with moving “magnetic inhomogeneities,” which transfer part of
their energy to the particles. Here we consider some of many acceleration
processes in the nonstationary plasmas capable of producing high-energy
particles.

11.1 Regular Change of Particle Energy
and Conservation Laws

Apparently, to change energy of a charged particle requires an electric field to
be applied to it because the magnetic field does not produce any work, while
gravitational field effect is negligible in most of the cases. For example, like in
laboratory devices, one can expect a charge acceleration by a potential drop.
However, in a highly conducting plasma, it is extremely difficult to support
a large-scale DC electric field because rapid charge neutralization—similarly
to the situation with neutralizing return currents, considered in Sect. 7.1.3.
Below we consider the particle energy change by a regular field or regular
plasma motion and formulate a number of general conclusions regarding the
particle acceleration in a natural plasma.

11.1.1 Particle Energy Change in Regular Fields

Assume a DC electric field E is applied to a plasma volume and consider
immediate consequences of this. Apparently, if this field is somewhat weak,
it will stimulate electric current obeying standard Ohm’s law. Ohm’s law
is set up by equality of the electric force and the collisional drag force due
to electron-ion friction when the individual particle velocity change between
two successive collisions is small compared with the thermal velocity. How-
ever, if the velocity change is of the order of the thermal speed, the Coulomb
collision cross section decreases and, accordingly, the electron-ion collisions
become inefficient to set up a steady electric current, which implies progres-
sive acceleration (“runaway”) of all available particles. The critical electric
field can be estimated as such a field that doubles the particle (thermal) ve-
locity over one collisional time, which yields for electrons (see Problem 1.13):

EDe =
ze lnΛC

r2D
=

(
2× 10−8

0.6× 10−5

)( ne

109 cm−3

)( T

107 K

)−1( lnΛC

20

)(
statvolt/cm

V/cm

)

(11.1)

and is called the Dreicer electric field; here z is the ion charge (z = 1 for
the hydrogen) and rD is the Debye length.

It is interesting to address the problem of the ion Dreicer electric
field, which as we will see depends on both the ion charge and number den-
sity. For the estimate we consider a three-component plasma consisting of
electrons (e), protons (p), and one more sort of ions (i) with the charge Z|e|,
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mass mi, and number density ni so that ne = np + Zni, permitted by a
sub-Dreicer uniform electric field E. To address the question of the runaway
ions we have to estimate the value and direction of the component flow ve-
locities in the given plasma. To do so we have to obtain balance conditions
between the electric force and forces of the dynamic friction between the
plasma components.

The dynamic friction force acting from a plasma component a on a given
“test” particle is calculated from the averaged momentum exchange between
this plasma component and the test particle (Trubnikov 1965), i.e.,

Fa(u) = −Z
2Q

μa

∫
u− v

|u− v|3 fa(v)d
3v, (11.2)

where u is the velocity of the test particle, μa = Mma/(M + ma) is the
reduced mass defined by the test particle mass M and a-component par-
ticle mass ma, fa(v) is the distribution function of the component a, and
Q = 4πe4 ln ΛC. Apparently, to find the force acting on a “mean” test par-
ticle, we have yet to average force (11.2) over distribution function of the
“test” particle component. Both these averagings are convenient to perform
assuming u = uT+δu and v = vT+δv, where uT and vT are the correspond-
ing thermal velocities with zero means (but nonzero rms values), while δu
and δv are flow velocities driven by external electric field. Since we adopted
E/EDe < 1, the denominators are defined by the thermal velocities, whose
contributions to the numerators are zeros, so the numerators are solely de-
termined by the flow velocities.

Accordingly, the balance of forces acting on the electron component yields
(we drop δ and use v for all δv below for short)

− |e|E − Qnp
mev3Te

(ve − vp)− Z2Qni
mev3Te

(ve − vi) = 0, (11.3)

where we took into account that vTe
vTp, vTe
vTi and μa≈me. Then, in
a similar way, we write for protons

|e|E − Qne
mev3Te

(vp − ve)− Z2Qni
mipv3Tp

(vp − vi) = 0, (11.4)

where we adopted for simplicity vTp
vTi; this approximation is the least
accurate for the Helium ions but even is this case the error is within 30%,
which is acceptable for the purpose of the estimate; with the same accuracy
we use below the proton mass mp for the reduced ion-proton masses mip.
Then, we add up Eqs. (11.3) and (11.4) to eliminate the electric field:

− QZ(Z − 1)ni
mev3Te

ve − Z2Qni
mipv3Tp

vp +
Z2Qni
mipv3Tp

vi = 0 (11.5)
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and eliminate the electron velocity using the momentum conservation law
ve = −(npmpvp+nimivi)/(neme) (provided that the plasma is immobile as
a whole in this reference frame):1

[
1 +

mipv
3
Tp

mev3Te

Z − 1

Z

nimi

mene

]
vi =

[
1− mipv

3
Tp

mev3Te

Z − 1

Z

npmp

mene

]
vp. (11.6)

This equality demonstrates a remarkable property of the admixture ion be-
havior in the external electric field: the admixture ions move in the
direction opposite to the main ions (since the second, negative term
dominates the rhs for the natural abundance of the protons), i.e., the ad-
mixture ions move together with electrons in the direction opposite
to the electric vector direction (Fig. 11.1). This anomalous behavior (see,
e.g., Gurevich 1961; Furth and Rutherford 1972; Holman 1995), originates
from the fact that the dynamic friction force produced by moving electron
component on the ions with Z > 1, and so proportional to Z2, turns out to
overcome the electric force, which is proportional to Z. Another remarkable
property revealed by Eq. (11.6) is that a significant ion flow velocity can only
be achieved for a relatively tiny ion population for which the second term in
the lhs brackets can be neglected compared with 1; for some abundant ions
including helium and oxygen it is not the case since the second term is larger
than or comparable to 1 even though ni/np � 1 for them.

Let us make estimates of the flow velocity for the Helium isotopes. Con-
sider 4He (Z = 2 and mi = m4 = 4mp) first and adopt mv2T ∼ T for all
plasma components, i.e., vTp/vTe ≈

√
me/mp, then

[
1 + 2

n4

ne

√
mp

me

]
v4 =

[
1− np

2ne

√
mp

me

]
vp. (11.7)

Since ni/ne ∼ 0.1 
 √
me/(4mp) ≈ 1/86 ≈ 0.012, for a rough estimate

we can discard the first terms (ones) in both brackets, which simply yields
v4 ∼ −(np/4ni)vp. To express the ion flow velocities via the electron flow
velocity, however, we have to calculate the ion velocity more accurately, i.e.,
retain small terms in Eq. (11.7), which yields

v4 ≈ − np
4n4

[
1− ne(4n4 + np)

2npn4

√
me

mp

]
vp. (11.8)

Substituting Eq. (11.8) into the component momentum conservation law we
find for the protons

vp ≈ − 2n4

np + 4n4

√
me

mp
ve, (11.9)

1We note that in a purely electron–proton plasma the momentum conservation
would imply a very small proton flow velocity vp = −(me/mp)ve.
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Figure 11.1: Illustration to the origin of the heavy ion velocity directed oppositely to
the external electric field due to dynamic friction from moving electrons.

which is noticeably larger than vp = −(me/mp)ve in the purely hydrogen
plasma. Now, substituting Eq. (11.9) into Eq. (11.8), we find for the 4He ions

v4 ≈ np
2(np + 4n4)

√
me

mp
ve. (11.10)

A similar analysis for the other helium isotope, 3He (Z = 2 and mi =
m3 = 3mp) gives rise to essentially different result because of much lower
3He number density, n3 ≈ 1.7×10−4n4. For such a low density, we can safely
discard the second term in the lhs of Eq. (11.6) (while still discard 1 compared
with the second term in the rhs), which eventually yields

v3 ≈ npn4

ne(np + 4n4)
ve, (11.11)

roughly one order of magnitude larger than the 4He flow velocity v4,
Eq. (11.10).

The results obtained allow estimating effective “Dreicer” fields for various
ions, which we define as an electric field needed to form the ion flow velocity
equal to the thermal velocity of the same ion. Rewriting Eqs. (11.10) and
(11.11) in a compact form vi = Kive and taking into account that ve =
−vTeE/EDe and vTe = vTi

√
mi/me (we still assume equal temperatures of

all plasma components), we obtain vi/vTi = −Ki

√
mi/meE/EDe ≡ E/EDi,

where the latter equivalence is a definition of the effective ion Dreicer field.
Then, using Eqs. (11.10) and (11.11) we find

ED3 ≈ ne(np + 4n4)

npn4

√
me

m3
EDe, (11.12a)



11.1 Regular Change of Particle Energy 523

ED4 ≈ np + 4n4

np
EDe. (11.12b)

Adopting n4 = 0.1np (i.e., ne = 1.2np), we find ED3 ≈ 0.23EDe, while
ED4 ≈ 1.4EDe, i.e., ED3�EDe < ED4.

This remarkable difference in the effective Dreicer fields implies that a
given electric field can be sub-Dreicer for the electrons and ions
with large abundance (e.g., 4He), while super-Dreicer for ions with
small abundance (e.g., 3He). It is important to make a distinction between
runaway electrons and ions in corresponding super-Dreicer fields. Indeed, in
case of electron super-Dreicer electric field, E > EDe, all plasma electrons
are being picked up by this electric field and infinitely accelerated (until they
are affected by this field) because the Coulomb friction force produced by
ions is too weak to prevent the acceleration. The runaway admixture ions are
driven by the electron drag force (rather than the electric field itself); thus,
they start to runaway as soon as their flow velocity becomes comparable
to their thermal velocity and the Coulomb friction force produced by other
ions goes down. Therefore, the ions cannot be infinitely accelerated because
they cannot achieve a velocity larger than their driver has, i.e., the electron
flow velocity. However, in practice this would still mean a highly efficient ion
acceleration, up to v2e/v

2
Ti times original thermal ion energy.

In the case of the sub-Dreicer electric field, E < ED, some acceleration is
still possible in spite of the fact that the drag force is strong enough to prevent
acceleration of the particles moving with the thermal velocity. Indeed, the
thermal particles are distributed over energy with a tail of particles with large
velocities compared with the thermal velocity. Apparently, for the particles
with

v > vr = vTe

(
ED
E

)1/2

, (11.13)

where vr is so-called runaway velocity, the Coulomb collisions are too
weak to prevent particle acceleration. Nevertheless, acceleration by the sub-
Dreicer electric field turns out to have a relatively small efficiency in a typical
situation, e.g., in the solar corona. Indeed, even in a reasonably strong sub-
Dreicer electric field, ∼10−6V/cm, an electron has to travel ∼1010 cm to
gain energy around 10 keV and ∼1011 cm to gain energy around 100 keV.
Having in mind solar flares for which this mechanism has often been applied,
we conclude that in the most favorable situation when the electric field is
distributed along a big coronal loop with L ∼ 1011 cm no energy gain above
100keV is likely.

In the solar flares much stronger, super-Dreicer fields ∼1− 10V/cm, are
often deduced in localized regions where magnetic reconnection takes place
(e.g., Qui et al. 2009), perhaps, in current sheets, which could provide efficient
acceleration over much shorter distances, 104–106 cm. Nevertheless, efficiency
of this process was put into question because transverse drifts may remove
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electrons from the current sheet much earlier than needed for strong accel-
eration, with effectively the same upper limit for the energy gain, 100 keV;
see Aschwanden (2005) and references therein for greater detail. On the other
hand, a modest magnetic field directed along the current sheet can reduce the
transverse drifts and allow individual particle to gain high, ultrarelativistic
energy (see Somov and Oreshina 2011 and references therein).

11.1.2 Particle Energization in a Collapsing
Magnetic Trap

Another kind of regular particle acceleration occurs when a size of the source,
where the charged particles are somehow trapped, changes in time. Suppose,
for example, that a particle is confined in a 1D source between two walls
moving toward each other. If the wall motion is adiabatic, the particle will
experience many “head-on” collisions with the walls and will gain energy in
each of the collisions. Conservation of the corresponding adiabatic invariant,
pl = const, where p is the particle momentum and l is the source size, requires
that p(t)/p(0) = l(0)/l(t), which implies rise of the particle momentum recip-
rocally to the source size, i.e., a corresponding energy gain in a contracting
source.

In a reality, a similar kind of particle energization (i.e., acceleration or
heating) can happen in magnetic traps with sufficiently large mirror ratio to
confine a large number of particles in the trap. Then, suppose the magnetic
trap starts to collapse (perhaps, due to strong non-equilibrium magnetic ten-
sions) in such a way that both longitudinal and transverse scales of the trap
decrease with time. These contractions will apparently result in correspond-
ing increase of both longitudinal and transverse components of the particle
momentum. We note that transverse contraction is associated, because of
magnetic flux conservation, with corresponding magnetic field enhancement
so the transverse momentum increase can be expressed via the changing mag-
netic field with the use of the magnetic adiabatic invariant; accordingly, this
part of the acceleration in a magnetic trap is called betatron acceleration;
see Problems 1.5 and 1.6.

Therefore, during the trap collapse the transverse momentum in-
creases as p2⊥(t)/p

2
⊥(0) = B(t)/B(0), while the longitudinal momentum as

p‖(t)/p‖(0) = l(0)/l(t); thus, for nonrelativistic particles we haveK(t)/K(0) =
2B(t)/B(0) + l2(0)/l2(t). For a solar coronal loop the loop top value of the
magnetic field is typically above a few 10s of G; we adopt 30 G for definite-
ness. The photospheric values, which can be adopted as a largest possible
upper bound for a contracting coronal loop are typically below 3 kG; thus,
the largest ever possible change of the magnetic field during the trap collapse
is by a factor of 100 or less, which implies, that if we start from particles with
energy of a few keV, the highest achievable energy will be a few hundred
keV, which is far insufficient to provide bulk acceleration in solar flares up
to 10–100MeV.
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In addition, during the trap contraction, the number of accelerated elec-
trons decreases due to particle escape through the loss cone. If we adopt
(see, e.g., Somov 2006) that the footpoints of the loop do not move and the
magnetic field is fixed there to some value Bm, then the number of particles
evolves as2

N = N0
l(t)/l(0)

√
Bm −B(t)√

B(0) + (Bm −B(0))l2(t)/l2(0)
. (11.14)

Note that if the looptop magnetic field reaches the footpoint value Bm, all
the particles are lost from the loop via the loss cone. We conclude that even
though some acceleration can happen due to magnetic trap collapse, this
mechanism is insufficient to provide bulk electron acceleration in solar flares.
On the other hand, if this kind of particle energization would repeat many
cycles, the overall acceleration could be much more powerful.

11.1.3 Particle Acceleration by Magnetic Pump

In contrast to two previous examples of a regular acceleration by regular elec-
tric or time-changing magnetic field we envision here how a stochasticity of a
physical system, if present, can greatly enhance efficiency of the particle en-
ergization compared with otherwise the same regular system. Specifically, we
consider particle acceleration by a magnetic field with a constant direction,
while time-oscillating amplitude. We adopt for simplicity that the oscillation
period is large compared with periods of the particle gyration in the mag-
netic field. Although the oscillating magnetic field will necessarily be spatially
nonuniform, this nonuniformity will be a small, second-order effect being a
product of (1) smallness of the oscillation amplitude and (2) slowness of the
oscillation, which allows to discard the field spatial nonuniformity and adopt
the uniform field model.

Neglecting all kind of particle angular scattering by either each other or
turbulent fields, the longitudinal particle momentum and transverse adiabatic
invariant conserve

p‖ = const,
p2⊥(t)
B(t)

= const; (11.15)

see Sect. 1.2. The transverse particle momentum and its energy E=√
m2c4 + (p2‖ + p2⊥(t))c2 will oscillate having exactly the same values at

the oscillation phases differing by 2πn. Accordingly, the particle distribution
function is modulated by oscillations of the external magnetic field. For

2More realistic models, e.g., accounting the Coulomb collisions in the trap, are
considered by Giuliani et al. (2005), Bogachev and Somov (2009) and Grady and
Neukirch (2009).
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example, in the case of originally isotropic distribution with mean momen-
tum components obeying

p2x = p2y = p2z or p2⊥ = p2x + p2y = 2p2‖, (11.16)

the isotropy will break down during either increase or decrease of the magnetic
field.

In contrast, in the presence of efficient angular scattering produced, for
example, by a small-scale magnetic irregularities, the anisotropy buildup by
the oscillating magnetic field will be compensated by isotropization of the
distribution due to this efficient angular scattering. Thus, a fraction of “ex-
cessive” transverse momentum acquired at the phase of the field growth will
be transferred to the longitudinal momentum, which does not directly af-
fected by the magnetic field variations. Apparently, during the phase of the
magnetic field decrease, the inverse process of the longitudinal momentum
transfer to the transverse one will occur. Remarkably, however, that these
two processes will not fully compensate each other and a net effect of sys-
tematic increase of the mean particle energy will take place. This in particular
means that although the net energy gain of the particles at a single episode
of a magnetic loop contraction is relatively small, it can be greatly enhanced
due to multiply repeating “contractions” in case of the magnetic field oscil-
lations. This acceleration process can be understood in terms of the system
entropy increase that occurs due to growth of the volume in the momentum
space occupied by the accelerated particles.

This mechanism of particle acceleration by oscillating magnetic field in
the presence of an additional relaxation process (isotropization due to an-
gular scattering) is called a magnetic pumping or Alfvén pumping; see
Alfven and Fälthammar (1963). Here we consider this effect quantitatively
using kinetic equation (7.108) in the drift approximation supplemented by a
“collisional” term, Eq. (7.109):

∂f

∂t
+ vc · ∂f

∂r
+ ṗ‖

∂f

∂p‖
+ ṗ⊥

∂f

∂p⊥
= Ŝf, Ŝ =

νs
sin θ

∂

∂θ
sin θ

∂

∂θ
(11.17)

where θ is the pitch-angle of the particle; in what follows the scattering
rate νs is adopted constant for simplicity. Note that the Liouville’s theorem
implies that

∇ · vc +
∂ṗ‖
∂p‖

+
∂ṗ⊥
∂p⊥

= 0, (11.18)

which will be used below.
The oscillating uniform magnetic field can be written as

B(t) = B0 + b cosωt, b� B0, ω = const. (11.19)



11.1 Regular Change of Particle Energy 527

Then, from Eqs. (11.15), we find

vc = v‖e‖ +
c

B0
E × e‖, ṗ‖ = 0, ṗ⊥ = −p⊥ bω

2B0
sinωt, (11.20)

whereE is the electric field induced by evolving magnetic field. When the am-
plitude of the magnetic oscillations is small, the distribution function will be
almost isotropic and slowly varying with time at a late time Δt
 ν−1

s , ω−1

after the process start, while the anisotropic oscillating (with frequency ω)
component of the distribution function δf represents a small correction to
the main distribution function component:

f(p‖, p⊥, t) = F (p, t) + δf(p‖, p⊥, t), |δf | � F, δf = 0. (11.21)

The overline denotes here averaging over period T = 2π/ω of the magnetic
field oscillations; any change of the main distribution function F (p, t) over
this period can safely be discarded.

Substituting Eq. (11.21) into Eq. (11.17) and isolating the fast oscillat-
ing first-order terms, we obtain equation linking the correction δf with the
averaged function F (p, t):

∂δf

∂t
− Ŝδf = −ṗ⊥ ∂F

∂p⊥
=

bω

3B0
p
∂F

∂p
(1− P2(cos θ)) sinωt. (11.22)

The second equality is written for the variables p and θ; P2(cos θ) is the
second-order Legendre polynomial. Let us seek a solution in the form:

δf = f0(p, t) + f2(p, t)P2(cos θ); (11.23)

for a late time t
 ν−1
s we obtain the following solution:

f0(p, t) = − b

3B0
p
∂F

∂p
cosωt,

f2(p, t) = − 2bνsω

B0(ω2 + (6νs)2)
p
∂F

∂p

[
sinωt− ω

6νs
cosωt

]
. (11.24)

In the equation for F we have to retain averaged second-order terms:

∂F

∂t
+ vc · ∂δf

∂r
+ ṗ⊥

∂δf

∂p⊥
= 0. (11.25)

Then, transform the second term in the lhs using Eq. (11.18):

vc · ∂δf
∂r

= ∇ · (vδf) + δf
∂

∂p⊥
ṗ⊥. (11.26)
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The term with ∇ yields higher-order terms upon averaging; thus, substituting
Eq. (11.26) into Eq. (11.25), we obtain

∂F

∂t
+ δf

∂

∂p⊥
ṗ⊥ + ṗ⊥

∂δf

∂p⊥
= 0. (11.27)

After substitution of Eqs. (11.23) and (11.24) into Eq. (11.27) and averaging
over the oscillation period, the equation will contain trigonometric functions
of θ. Having in mind original weakness of the anisotropy we avoid explicit
account of it by averaging coefficients of the equation over all possible values
of the pitch-angle, which yields a diffusion-type equation:

∂F

∂t
=

1

τp2
∂

∂p
p4
∂F

∂p
,

1

τ
=

1

90

(
b

B0

)2
νω2

ω2 + ν2
, ν = 6νs. (11.28)

Let us normalize the distribution function by the condition
∫∞
0 Fp2dp =

n, where n is the number density of particles with all energies. Equation (11.28)
then ensures n = const, in agreement with statement of the problem.
Now, we calculate evolution of the mean particle momentum described by
p = n−1

∫∞
0 Fp3dp. Integration of Eq. (11.28) yields

dp

dt
=

4

τ
p, p(t) = p0e

4t/τ , (11.29)

i.e., the mean particle momentum increases exponentially.
For example, for nonrelativistic particles, whose kinetic energy is K =

p2/2m, Eq. (11.28) yields

K = K0e
t/τa , τ−1

a =
1

9

(
b

B0

)2
νω2

ω2 + ν2
. (11.30)

This result is equivalent to that obtained by Schlüter (1957) who used me-
chanical equation of motion rather than a kinetic equation for the distribution
function. To conclude we note that the key element of the considered accel-
eration mechanism is “mixing” of the particle momentum directions, i.e.,
efficient angular scattering and isotropization of the particles; we will see be-
low that this is also highly important for many other acceleration mechanisms
to efficiently operate. The magnetic pumping works the most efficiently when
the angular scattering rate ν and oscillation frequency ω are comparable to
each other. In a reality, the acceleration process is supposed to be much more
complex: there can be many “slow” magnetic oscillations provided by a large-
scale magnetic turbulence (turbulent pulsations), generated self-consistently
small-scale turbulence ensuring angular scattering of the particles, particle
escape from a finite acceleration region, and other complicating effects and
processes, the most important of which will be considered below.



11.1 Regular Change of Particle Energy 529

11.1.4 Particle Energy Change by Regular Medium
Motion

Let us concentrate on Eq. (7.77) and analyze the electric field effect (included
there by means of Eq. (7.59) for the Lorentz force) on the particle energy
evolution. If the size of the acceleration region is large enough to isotropize
particle distribution due to scattering by random fields then the diffusion ap-
proximation can be applied. We substitute Eq. (7.81) into Eq. (7.77), expand
the coefficients over powers of u/v, keep the terms � (u/v)2, and separate
the terms independent on p/p and proportional to this vector. This yields
the set of two equations:

∂N

∂t
+∇ · J =

u2

9κ‖

[
p2
∂2N

∂p2
+

(
1 +

v2

c2

)
p
∂N

∂p

]
+

u

3κ‖

(
p
∂J

∂p
+
v2

c2
J

)

+
1

R0v
(u× b0)

[
p
∂J

∂p
+

(
1 +

v2

c2

)
J

]
(11.31a)

J +
Λ

R0
b0 × J = −κ‖∇N − p

3

∂N

∂p

(
u+

Λ

R0
b0 × u

)
− Λ

v

∂J

∂t
, b0 =

B0

B0
.

(11.31b)

The terms of the order of (u/v)3 and (u2/v3)J are discarded.
The key distinction of Eq. (11.31a) from Eq. (7.83a) is the nonzero rhs in

this continuity equation, which is the source (or flux) of the particles with
a given energy. The presence of this source implies exchange of the energy
between particles and medium, which is mediated by motion of the magnetic
inhomogeneities.

Let us simplify Eq. (11.31b). First, the last term in the rhs of Eq. (11.31b)
can be omitted at large t 
 Λ/v. Then, align the coordinate axes along the
vectors n1 = u × b0, n2 = b0 × n1, and n3 = b0. In this case, Eq. (11.31b)
can be solved for J :

Jα = −καβ∇βN − p

3

∂N

∂p
uα, (11.32)

where the diffusion tensor καβ is expressed by Eqs. (7.84). The second term
in Eq. (11.32) describes the convective current due to motion of the medium
and magnetic inhomogeneities,

J(c)(r, p, t) = −p
3

∂N

∂p
u or J(c)(r,K, t) = C(K)N(r,K, t)u(r). (11.33)

In the first expression quantities J (c) and N are defined per unit volume
of momentum space, whereas the second expression contains the differential
quantities per unit interval of the kinetic energy K = E −mc2. Thus,

N(r, p, t)p2dp = N(r,K, t)dK. (11.34)
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The normalization per unit energy is often used in experimental investigations.
The coefficient C(K) is called Compton–Getting factor:

C(K) = 1− 1

3N(K)

∂

∂K
[αKN(K)], α =

K + 2mc2

K +mc2
. (11.35)

The transport equation is derived by substituting Eq. (11.32) into
Eq. (11.31a), which yields

∂N

∂t
= ∇ακαβ∇βN − u · ∇N +

p

3

∂N

∂p
∇ · u. (11.36)

Here the terms containing u2 cancel out. The first term on the rhs describes
particle diffusion in an anisotropic medium and the second term describes par-
ticle convection due to the motion of scatterers (magnetic inhomogeneities).
The last term is responsible for the energy change of the particles interacting
with the moving medium.

Transport equation (11.34) can be rewritten in the form of the continuity
equation in the phase space (Dorman et al. 1978):

∂N

∂t
+∇ · J +

1

p2
∂

∂p
p2Sp = 0, (11.37)

where J is particle current (11.32) in coordinate space and

Sp =
1

3
pu · ∇N (11.38)

is the parallel-to-p component of the particle current in the momentum space.
Given the equivalence of transport equations (11.37) and (11.36) we conclude
that Eq. (11.36) is compatible, as required, with the particle conservation law.

By integrating Eq. (11.37) over dp, with weight function p2, we come to
the continuity equation in coordinate space,

∂n

∂t
+∇ · j = 0,

{
n(r, t)

j(r, t)

}
=

∞∫
0

p2dp

{
N(r, p, t)

J(r, p, t)

}
, (11.39)

where n(r, t) is the total number density of the particles, and j(r, t) is the
total current density.

By integrating Eq. (11.37) over dp with the weight function K(p)p2, it is
transformed to the form

∂w

∂t
+∇ · q = Q(r, t), (11.40)
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where

w(r, t) =

∞∫
0

K(p)N(r, p, t)p2dp = Kn(r, t) (11.41)

is the particle kinetic energy density andK is the mean kinetic energy defined
by Eqs. (11.39) and (11.41). Furthermore,

q(r, t) =

∞∫
0

vK F (r,p, t)d 3p =

∞∫
0

K J(r,p, t)p2dp = q(d) + q(c) (11.42)

is the energy flux which consists of the diffusion flux

q(d)α = −
∞∫
0

Kκαβ∇βN p2dp, (11.43)

and the convective flux

q(c) = (w + P )u. (11.44)

The quantity

P =
1

3

∞∫
0

pvN(r, p, t)p2dp (11.45)

is the pressure of the energetic particle gas equal to 2(E −mc2)n/3 and En/3
in the nonrelativistic and ultrarelativistic cases, respectively. The convective
energy flux can be rewritten as q(c) = h(r, t)u, where h = w+P is the specific
enthalpy of the energetic particle gas (see the fluid mechanics elements in
Chaps. 1 and 2) w is the specific (per unit volume) inner energy of the gas.

The quantity

Q(r, t) =
1

3

∞∫
0

pvu · ∇Np2dp = u · ∇P (11.46)

in the rhs of Eq. (11.40) is the specific energy source. Its sign depends on the
gas pressure gradient along the velocity u. It is worthwhile to note, however,
that the positive sign of Q does not necessarily mean the local particle ac-
celeration, i.e., increase of the average energy per one particle. To illustrate
this, adopt ∇ ·u = 0, but u �= 0. For example, this is the case for u = const,
u ∝ r/r3, and for some other functions. It is evident from Eq. (11.36) that
the particle energy remains constant under this conditions; for instance, an
initial delta-type energy distribution will remain the same indefinitely long
time. On the other hand, generally, the energy production Q is not zero as
u �= 0.

In fact, variations of the average particle energy are determined by the
sign and magnitude of ∇·u. Let us demonstrate this explicitly neglecting the
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spatial diffusion for simplicity. Discarding the diffusion terms in Eqs. (11.39)
and (11.40) and using Eqs. (11.41) and (11.44), we obtain

d

dt
E = −1

3
pv∇ · u, (11.47)

where pv = 2(E −mc2) in the nonrelativistic case and pv = E in the ultra-
relativistic one, and

d

dt
E =

∂

∂t
E + u · ∇E

is the total time derivative. It follows from Eq. (11.47) that the expansion
of system (∇ · u > 0) is accompanied by particle deceleration whereas the
compression (∇·u < 0) is accompanied by acceleration. The typical timescale
of energy variation, τad, is

τ−1
ad =

2

3
|∇ · u| and τ−1

ad =
1

3
|∇ · u| (11.48)

in the nonrelativistic and ultrarelativistic cases, respectively.
With account of the spatial diffusion the equation describing the average

energy change is written as

d

dt
E = −1

3
pv∇ · u− 1

n
∇ · q(d) +

E
n
∇ · j(d). (11.49)

The first term, proportional to ∇ · u, describes the energy variations due to
motion of the medium. Other terms describe spatial redistribution of particles
of various energies due to diffusion in space.

If particles occupy initially a finite volume, the total energy of these par-
ticles, E(t) =

∫
w(r, t)d 3r, varies in time according to an equation obtained

by integrating (11.40) over space:

dE

dt
= −

∫
P (r, t)(∇ · u)d 3r. (11.50)

In the case of radial plasma outflow with constant velocity, when ∇·u =
2ur−1 > 0, particles are adiabatically decelerated, whereas in the case of
compression (∇ ·u < 0) they are accelerated. Cases of energetic solar proton
deceleration (generated initially in solar flares) were widely observed in the
interplanetary space. A compression of the interplanetary medium, leading to
the particle acceleration, can also occur due to some nonstationary processes
on the Sun or in interplanetary space, for instance due to solar coronal mass
ejections (CME) or interaction between solar wind streamers having different
velocities. Large-scale turbulence also leads to patterns of compression and
rarefaction regions and is accompanied by particle acceleration (see below).
A strong compression may take place in shocks so that the shocks can also
act as effective particle accelerating sources.
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11.2 Particle Acceleration by Stochastic Medium
Motion: Fermi Mechanism

11.2.1 Diffusion in Momentum Space

The acceleration regimes discussed above are restricted by the assumption
that the fluid velocity u in diffusion equations (11.31a) and (11.31b) is a
regular and smooth function of the coordinates and time. In a more gen-
eral situation the realistic fluid motion will often have turbulent stochastic
components with various scales; thus, the velocity field can represent a su-
perposition of the regular and random motions:

u = U +Δu, U = 〈u〉, 〈Δu〉 = 0, (11.51)

where U is a “regular” velocity component with a large characteristic scale,
perhaps, of the order of the source size R, while Δu varies over much smaller
scales, L � R. The averaging denoted in Eq. (11.51) by the angle brackets
is being performed over the small scales L. Note that in diffusion equations
(11.31a) and (11.31b) the velocity u is assumed to be a regular function at
the scales of the order of the particle mfp; however, it can be a stochastic
value at much larger scales, L 
 Λ, which is still compatible with L � R.
Given that Λ 
 Lc, we conclude that L 
 Lc, where Lc is the correlation
length of the random magnetic field (see Sect. 7.4).

Thus, in Eqs. (11.31a) and (11.31b) we now treat u as a stochastic quan-
tity with some known average values U and 〈u2〉 = U2 + 〈Δu2〉, where
〈Δu2〉 = 〈u2〉 − U2 is the mean square of the velocity fluctuations. After
averaging the equations over u, we obtain

∂N

∂t
+∇ · J =

〈u2〉
9κ‖

[
p2
∂2N

∂p2
+

(
1 +

v2

c2

)
p
∂N

∂p

]
+

U

3κ‖

(
p
∂J

∂p
+
v2

c2
J

)

+
1

R0v
(U × b0)

[
p
∂J

∂p
+

(
1 +

v2

c2

)
J

]
(11.52a)

J +
Λ

R0
b0 × J = −κ‖∇N − p

3

∂N

∂p

(
U +

Λ

R0
b0 ×U

)
− Λ

v

∂J

∂t
, b0 =

B0

B0
.

(11.52b)

After discarding the term ∂J/∂t, the last equation yields

Jα = −καβ∇βN − p

3

∂N

∂p
Uα. (11.53)

Substituting Eq. (11.53) for J into Eq. (11.52a), we arrive at a diffusion equa-
tion accounting for the acceleration effect:

∂N

∂t
= ∇ακαβ∇βN −U · ∇N +

p

3

∂N

∂p
∇ ·U +

1

p2
∂

∂p
p2D(r, p)

∂N

∂p
. (11.54)
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Here

D(r, p) =
〈Δu2〉p2
3vΛ(r, p)

=
〈Δu2〉p2

9κ‖
(11.55)

is the momentum space diffusion coefficient.
Let us examine the role of the last term in Eq. (11.54). The presence

of this term does not violate conservation of the total number of parti-
cles. Therefore, integrating Eq. (11.54) over dp with the weight function p2,
we again arrive at Eq. (11.39). Likewise, integrating it over dp with another
weight function p2E , we obtain Eq. (11.40) with a new source term at the rhs:

Q(r, t) = U · ∇P +

∞∫
0

dpN
d

dp
(p2vD). (11.56)

The integrand is positive,

d

dp
(p2vD) =

d

dp

( 〈Δu2〉p4
3Λ

)
> 0, (11.57)

because the transport mfp can only grow with p as p2 or slower (see Sect. 7.4).
Hence, the last term in Eq. (11.54) describes the particle acceleration due
to motions of magnetic inhomogeneities in all physically relevant cases. The
acceleration has a diffusive character in the momentum space.

The structure of Eq. (11.54) and the order of magnitude of the accelera-
tion effect can easily be clarified from a simple physical considerations. The
velocity dispersion of the magnetic inhomogeneities at a given scale gives
rise to induction of a stochastic electric fields with comparable scales. The
velocities u of the magnetic structures are bounded according to the inequal-
ity vph < u � v. Adopt for simplicity of the estimate that the correlation
length L is sufficiently small to ensure that the particle energy change over
the length L is small compared with the total particle energy. The accelera-
tion effect then will be important at the time intervals much exceeding the
isotropization time τs = Λ/v.

The influence of these chaotic electric fields on a particle results in its
diffusion in the momentum space, overall analogous to the diffusion in the real
space. The particle momentum changes both its direction and the absolute
value, i.e., energy. The operator of momentum diffusion in transport equation
is analogous with diffusion operator in usual 3D space and different only in
two respects:

1. The variable p is used in momentum space instead of the variable r
in the real space.

2. In differential operator we omit all derivatives over vector p angles
owing to isotropization of particle distribution function at the accel-
eration timescale.
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As a result, this recipe results in the following acceleration operator:

∇ακαβ(r, p)∇βN(r, p, t) → ∂

∂p
D(r, p)

∂

∂p
N(r, p, t) =

1

p2
∂

∂p
p2D(r, p)

∂N(r, p, t)

∂p
,

(11.58)

having precisely the same form as the one mathematically derived above,
Eq. (11.54).

Let us now estimate the acceleration time and diffusion coefficient in the
momentum space. Initially, we neglect any regular motion of the medium
and adopt u to be a stochastic vector function with 〈u〉 = 0. The effective
“collision” frequency of a particle with magnetic inhomogeneities (inverse
isotropization time) is νs = τ−1

s = v/Λ. This quantity is apparently deter-
mined by the stochastic magnetic force Fm = (e/c)v× b and is proportional
to the square of this force, νs ∝ 〈F2

m〉, because the linear term vanishes after
averaging, 〈Fm〉 = 0.

The stochastic electric force Fe = −(e/c)u × (B0 + b) also vanishes
after the averaging,3 〈Fe〉 = 0. That is why the acceleration rate (inverse
acceleration time) is likewise proportional to the square of Fe, νa ∝ 〈F2

e〉.
As a result, we obtain an order of magnitude estimate:

νa ≈ νs
〈F2

e〉
〈F2

m〉 ≈ v

Λ

〈u2〉
v2

B2
0 + b2

b2
. (11.59)

Then, in the presence of some overall regular motion, 〈u2〉 here should be
replaced by 〈Δu2〉. This acceleration rate allows estimating the momentum
space diffusion coefficient D(p). According to Eq. (11.54) we have

D(p) ∼ p2

τa
= νap

2. (11.60)

The obtained simple expressions described by Eqs. (11.59) and (11.60) include
a number of qualitatively different while practically important acceleration
regimes.

Fermi Mechanism

Consider acceleration of particles by impenetrable magnetic clouds, stochasti-
cally moving in a tenuous background fluid with weak magnetic field (B0 � b)
(Fermi 1949). These magnetic clouds are hypothetic stable structures with
a strong magnetic field. In the considered model system, the particle mfp
is Λ = (nclσcl)

−1 = const, where ncl and σcl are the number density of

3In the end of this section we consider the case of helical turbulence where
〈Fe〉 �= 0.
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the clouds and the cloud cross section, respectively. From Eq. (11.59) we
have νa ≈ 〈Δu2〉/vΛ, which, for relativistic particles with v ≈ c, yields
τa ≈ cΛ/〈Δu2〉 = const.

In a uniform medium Eq. (11.54) can be written as

∂N

∂t
=

1

τap2
∂

∂p
p4
∂N

∂p
. (11.61)

Integrating the last equation over dp with the weight function p3, we obtain
a simple equation for the mean particle momentum p(t) =

∫∞
0
p3N(p, t)dp:

dp(t)

dt
=

4

τa
p(t),

with a solution p(t) = p0 exp(4t/τa). The Fermi model gives a very rapid
growth of the particle energy. The obtained unlimited acceleration is an arti-
fact of neglecting any particle energy losses, their escape from the acceleration
region and the back reaction of the accelerated particles on the system.

We can qualitatively think of the Fermi acceleration effect in either ki-
netic or thermodynamic language. The kinetic language involves calculation
of particle energy change during head-on and overtaken collisions with clouds
(“magnetic mirrors”) whose balance forms the frequency of collisions (see
Problem 11.2).

The thermodynamic language relies on the effect of temperature equal-
ization after mixing two gases with different temperatures. This is a direct
outcome of the entropy increase law, i.e., the second law of thermodynam-
ics. The macroscopic plasma clouds, moving with stochastic velocities, can
be considered as a gas of “heavy molecules,” having an efficient temperature
Tcl = Mclu

2/3. The temperature is very high owing to a large mass of a
cloud. Efficient temperature of the particles (their mean energy E) increases
during collisions with clouds, until collisions are elastic and energy losses are
small. The temperature equality between the magnetic cloud gas and the
accelerated particle gas would imply that the mean energy of the fast par-
ticles is about Tcl, which would offer an estimate of the total acceleration
power. However, Tcl is a poorly defined measure, which is impractical for this
estimate.

In a reality, the increase of the particle energy leads to an increase of
magnetic clouds transparency for particles. When the particle gyroradius
inside the cloud exceeds its size, the particles are not reflected by such clouds
any longer, while experience only a weak small-angle scattering; thus, the
regime of acceleration changes according to the transport regime considered
in Sect. 7.4.2 (small-scale inhomogeneities).

Fermi Mechanism: Transparent Clouds

Now we have to use the transport mfp described by Eq. (7.80) (Λ ∝ p2) and
momentum space coefficient (11.55). This leads to independence of D on the
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momentum, D = const. In the uniform medium, Eq. (11.54) receives the form

∂N

∂t
=
D

p2
∂

∂p
p2
∂N

∂p
. (11.62)

Let us adopt the initial condition N(p, 0) = N0p
−2
0 δ(p − p0) that describes

injection of monoenergetic particles into the acceleration process. A familiar
solution of diffusion equation (11.62)

N(p, t) =
N0

pp0
√
4πDt

{
exp

[
− (p− p0)

2

4Dt

]
− exp

[
− (p+ p0)

2

4Dt

]}
(11.63)

yields the time dependent energetic spectrum of the accelerated particles.
The mean value of p(t) evaluated for this distribution at

√
4πDt
 p0 grows

proportionally to the square root of time,

p(t) = 4
√
Dt/π. (11.64)

The particle energy increase is very slow compared with the case Λ = const
and D ∝ p2; Sect. “Fermi Mechanism” above.

Particle Acceleration by Small-Amplitude MHD Waves

If b � B0, the regular magnetic field has an important effect on plasma
motion. In this case magnetic disturbances are formed by small-amplitude
MHD waves (see Sect. 2.4). For MHD waves, the velocity of plasma motions
is of the order of u ∼ vAb/B0, where vA here is the largest of the Alfven and
sound velocities. In this case Eq. (11.59) yields

νa ∼ v2A/vΛ, (11.65)

which again corresponds to Eq. (11.55) with 〈Δu2〉 ∼ v2A. More detailed
calculations (see, e.g., Toptygin 1985) confirm this result for turbulent spectra
with index ν ≤ 2; for ν > 2, the diffusion coefficients D are different for
Alfven and magnetoacoustic waves, so the result becomes “mode dependent.”
For acceleration of nonrelativistic electrons, some other plasma eigenmodes
including the whistler waves (Sect. 7.4.4) may become important in addition
to the MHD modes.

Particle Acceleration by Whistler Waves

Consider here electron acceleration by whistler turbulence, which is a by-
product of the particle transport by whistler turbulence considered in
Sect. 7.4.4. As has been said there, the angular diffusion due to electron
scattering by whistler waves occurs faster than the diffusion over energy;
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thus, by the time when the acceleration starts to play a role, the angular
distribution of the electrons is already almost isotropic. In what follows we
fully neglect any anisotropy and adopt the isotropic electron distribution.
Then, we note that for an efficient acceleration, the residence time τe(E),
Eq. (7.101), at the acceleration region must be much longer than the time of
flight, which means that we can safely discard the first term at the rhs of
Eq. (7.96); then, the diffusion in the real space can be treated in the residence
time approximation by including the escape term, −f/τe(E), in the rhs of
Eq. (7.96), which yields

∂f(E, t)

∂t
= − ∂

∂E
[A(E)f(E, t)] +

∂2

∂E2
[D(E)f(E, t)]− f(E, t)

τe(E)
+ S(E, t),

(11.66)

where, likewise Sect. 7.4.4, we use the dimensionless kinetic energy E =
K/mc2 = γ − 1. The terms at the rhs are the systematic energy change
(gain or loss), the diffusion in the energy space, the particle escape, and the
particle source (S(E, t) = 〈S(E, ϑ, s, t)〉 averaged over the pitch-angle and
source volume, cf. Eq. 7.96), respectively. For a given source term, the accel-
eration by the whistler turbulence, therefore, is controlled by three energy-
dependent coefficients, A(E), D(E), and τe(E). The latter was introduced by
Eq. (7.101), while two other coefficients are straightforwardly defined by the
electron diffusion coefficient over momentum, Eq. (7.103), and the electron
loss rate:

D(E) =
β2 〈Dpp〉
m2c2

, (11.67)

and

A(E) =
mc

p2
∂

∂p
[p2D(E)/β] + ĖL. (11.68)

For power-law spectrum (7.102) of the whistler turbulence the use of
Eq. (7.103) yields

D(E) = Dwβ(γβ)
q−2; A(E) = qDw(γβ)

q−3 − ĖL, (11.69)

where

Dw =
π(q − 1)2

2q2(q − 2)2
ωBe

(mp

m

)3−q
β5−q
A

(
8πWtot

B2

)
[s−1], (11.70)

and

τe(E) = τw · (γβ)q−2/β, (11.71)

where

τw =
3π

2(q + 1)(q + 2)

ωBeL
2

c2

(mp

m

)q−1

β1−q
A

(
8πWtot

B2

)
[s], (11.72)
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and βA is defined by Eq. (7.99). For conditions typical for solar flares both
escape time τw and acceleration rate 1/Dw can vary from a fraction of second
to a few hundred seconds; both regimes, τw > 1/Dw and τw < 1/Dw, are
possible. Therefore, there can be various regimes of the electron acceleration
by whistler turbulence given that various terms in kinetic equation can be
comparably important; in addition, Coulomb losses can also be significant
at low energies at least, which additionally complicates the whole problem.
We will be returning to the electron acceleration in solar flares below in this
chapter.

Strong Turbulence Case

Finally, in the case when b ∼ B0 and u � vA, plasma motions are supersonic;
thus, shocks can be formed along with smooth plasma disturbances. This
situation will be considered in Sect. 11.5.

To finalize this section we make a number of notes having rather general
value for the particle acceleration. If the turbulent pulsations of the plasma
have sufficiently large scales to ensure that the collisionless diffusion time
τd ≈ L2/κ‖ (needed for a particle to travel a distance of the order of the
main turbulence scale L) exceeds the corresponding advective time τc ≈
L/〈Δu2〉1/2, i.e., the Pecklé number is large, then the diffusion coefficient
χ ≈ 〈Δu2〉1/2L, obtained in Sect. 7.3.2 for large Pecklé number regime should
be used for κ‖ ≈ vΛ‖ in Eq. (11.55) forD (see details in Toptygin 1985; Bykov
and Toptygin 1993).

Then, there is a severe constraint of the use of transport equation (11.54)
and, accordingly, all further equations derived from it: all these equations do
not take into account any particle losses (except adiabatic) such as collisional,
Compton, and radiative losses.

Furthermore, all these equations are only applicable to “fast” particles,
i.e., particles with energies exceeding at least by a few times the mean
(thermal) particle energy. For the higher-energy particles their energy loss
in collisions with the background particles is reduced and becomes less and
less important for higher and higher energy. Thus, the energy gain due to the
described mechanisms overcomes the collisional loss for the fast particles; so,
being initially involved in the acceleration, these particles continue to gain
energy. The gained energy can exceed the initial particle energy by orders of
magnitude. Then, for even higher energies, another kind of the energy losses
can come into play, the radiative losses, whose rate is proportional to E2.
Apparently, the radiative losses are much more important for the electrons
compared with ions because of large difference in their masses. Recall, the
largest CR energy is about 1020 eV is indeed much higher than the corre-
sponding thermal energies of (1–100) eV.

In many cases the fraction of particles injected into an acceleration pro-
cess is very small. In stationary media with Maxwellian distribution the frac-
tion of the particles with energy higher than the thermal one is exponentially
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small, which does not favor efficient acceleration. However, in nonstationary
media or even in stationary ones with non-Maxwellian (e.g., kappa-) distribu-
tions the fraction of the fast suprathermal particles increases; these suprather-
mal particles form the pool from which an acceleration mechanism picks up
and accelerate particles. The process of the particle transfer from the main
background population to the population of accelerated nonthermal particles
is called injection.

It is important to realize that correct treatment of the injection process is
extremely complicated; no fully satisfactory injection theory is available, al-
though there are useful analytical or numerical models describing this process
under certain assumptions. Apparently, for relatively hard energy spectrum
of the accelerated particles, the fraction of injected particles must be very low,
say � 1%, which can be understood based on the energy conservation law.
Indeed, for a hard spectrum ∝ E−α with α ≤ 2, the total energy contained
in the accelerated particles is defined by the highest energy in the spectrum;
thus, the higher the highest energy the smaller the fraction of injected par-
ticles for the same amount of the free energy available for acceleration. This
consideration is relevant for young SNRs and galactic superbubbles formed by
OB associations believed to be the main source of the Galactic CRs. Indeed,
the fraction of relativistic ions above 109 eV in the Galactic disk is about 10−9

of the background ions, which implies a relatively low injection fraction. In
contrast, in solar flares the spectra of accelerated electrons are typically much
softer; accordingly, the fraction of accelerated electrons is often very large; in
some cases almost all available electrons in a volume are being accelerated
during the course of a solar flare. Finally, we note that distinct acceleration
mechanisms or regimes can dominate over different energy ranges, thus, the
entire acceleration can be a multi-step process.

11.2.2 Particle Acceleration by Helical Turbulence

The rate of particle acceleration by a stochastic plasma motion can be greatly
enhanced when the turbulence is helical, i.e., when the helicity parameter
α �= 0 (see Sect. 8.4). To develop theory of particle acceleration by helical
(gyrotropic) turbulence let us make use of Eqs. (7.58) and (7.59). In contrast
to consideration of Sect. 7.4, we will treat u as a purely random vector with
zero mean value 〈u〉 = 0 and with the correlation tensor given by expression
(8.12). It is important, however, that the mean magnetic field is assumed to
be different from zero, so that

B = B0 + b, 〈B〉 = B0 �= 0, 〈b〉 = 0. (11.73)

Let us average Eq. (7.58) over an ensemble of turbulent motions by the
method introduced and discussed in some detail in Sect. 7.4. For analyzing
the effect of particle acceleration, we assume that the average distribution
function is independent on coordinates:

〈f(r,p, t)〉 = F (p, t). (11.74)
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Then, adopt the transport regime mediated by resonant scattering of the
particles by small-scale inhomogeneities like in Sect. 7.5.1. After averaging
we obtain the equation

∂F

∂t
+ 〈F〉 · ∂F

∂p
=

v

2Λ(p)
Ô2

F + ŜaF, (11.75)

where Λ is the transport mfp given by Eq. (7.106), and the operator Ŝa in-
cludes all acceleration effects (addressed already in Sect. 11.2.1) besides that
produced by the helical part of the turbulence.

A new effect, qualitatively distinct from what have been analyzed so far,
is described by the term proportional to 〈F〉. If u and b at the same point
are correlated we have

〈F〉 = e

c
v ×B0 − e

c
〈u× b〉, (11.76)

where the last term represents an electric force 〈Fh〉 acting on the parti-
cles. This average, representing an effective electric field created by helical
turbulence, was calculated in Sect. 8.5.1, Eq. (8.28) and also in Problem 8.3
specifically for the turbulence helicity driven by the force-free field (FFF)
nonpotentiality. As a result we find

〈Fh〉 = −e
c
〈u× b〉 = eEh = −e

c
αB0, (11.77)

Hence, Eq. (11.75) for the particle distribution function receives the form

∂F

∂t
+
ec

E B0 · ÔF − eα

c
B0 · ∂F

∂p
=

v

2Λ(p)
Ô2

F. (11.78)

In this equation we have neglected the contribution from the term ŜaF ,
assuming that the dominant contribution comes from the large-scale electric
field (−α/c)B0.

In a general case kinetic equation (11.78) describes anisotropic particle
distributions. However, if the departure from the isotropy is small, which is
reasonable to expect because of the efficient angular scattering of the particles
by the very same turbulence described by the rhs of Eq. (11.78), this equation
can be further simplified if the source size L is much larger than the particle
mfp L 
 Λ. Assuming this to be the case and expanding the distribution
function F (p, t) over moments according to Eq. (7.81), we obtain the set of
coupled equations

∂N

∂t
=

eα

cpv
B0 ·

[(
1 +

v2

c2

)
J + p

∂J

∂p

]
,

1

v

∂J

∂t
+
ec

vEB0 × J − eα

3c

∂N

∂p
B0 = − 1

Λ
J (11.79)
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for the isotropic part of the particle distribution function N and the flux
density J . Note that the direction of the flux density depends on the charge
sign, implying opposite flux directions for the protons and electrons, respec-
tively. Let us eliminate J from Eq. (11.79) neglecting the term (1/v)∂J/∂t.
We then arrive at the diffusion equation in the momentum space,

∂N

∂t
=

1

p2
∂

∂p
p2Dh

∂N

∂p
, (11.80)

where Kichatinov (1983)

Dh =
α2Λp2

3vR2
0

(11.81)

is the diffusion coefficient which describes the particle acceleration by the
helical turbulence, and R0 = cp/eB0 is the Larmor radius.

In spite of the presence of regular electric field along the uniform mag-
netic field, we have arrived at a diffusive form of equation describing particle
acceleration by helical turbulence. This happens because of efficient parti-
cle angular scattering by the turbulence, which makes particle motion back
and forth relative to the accelerating electric field almost equally probable,
although the probability to gain energy remains larger than to lose energy.
Accordingly, though the regular electric field enhances explicitly only the
parallel particle momentum, the angular scattering transfers it to the trans-
verse momentum, so all momentum components rise proportionally roughly
preserving the distribution isotropy.

In fact, the (discarded earlier) Fermi acceleration process does contribute
to the right-hand side of Eq. (11.80) in addition to the acceleration due to tur-
bulence helicity. According to Eq. (11.55), the Fermi acceleration coefficient
is given by

DF =
〈Δu2〉p2
3vΛ

. (11.82)

Thus, the helical part of the velocity correlation tensor gives a dominant
contribution to the acceleration if

Dh

DF
=

α2

〈Δu2〉
Λ2

R2
0


 1. (11.83)

For cosmic plasmas, as a rule, Λ 
 R0. The helical parameter δ = α2/〈Δu2〉
is generally unknown and hard to reliably estimate; however, it seems to be
rather small for most of the astrophysical objects.

To get some idea of possible order of magnitude of the helicity parameter
α we express it in the form α = τc〈hk〉/3, where hk is the kinetic helic-
ity density defined as hk = u(r, t) · ∇ × u(r, t), cf. Eq. (8.13) One object,
where the helicity density can be estimated using helioseismology data is
the subphotospheric solar convective zone, which below ARs yields typically



11.2 Particle Acceleration by Fermi Mechanism 543

|hk| ∼ 10−6 cm s−2 with |hk| < 10−5 cm s−2 in all analyzed cases (Mau-
rya et al. 2011). There are also some ways of estimating the helicity density
by tracking apparent motions of bright features in ARs on the photosphere.
The problem here is that these measurements give only two (ux and uy)
of three velocity components, which is insufficient to compute the helicity
density. Using the transverse velocity components we can only get a very
rough estimate of the helicity density, which, nevertheless, offers an idea of
the plausible order of magnitude of this value. For example, for AR 10030
(Park, private communication, 2011), the estimate yields |hk| ∼ 0.3 cm s−2.
Adopting τc ∼ 1min, this yields |hk|τc ∼ 20 cm/s, which is roughly con-
sistent with that from Eq. (8.15), if we take the solar rotation frequency
Ω ≈ 2.8×10−6 rad s−1, the subphotospheric density scale h ∼ 109 cm and the
turbulence length scale l ∼ 108 cm, which yields α ∼ 30 cm/s. However, both
subphotospheric and photospheric plasmas are very dense so the Coulomb
collisions are very frequent there, which makes any nonthermal acceleration
process highly unlikely.

The charge particle acceleration in solar flares occurs in more tenuous
corona, where, however, no direct measurement of the kinetic helicity is avail-
able. In the case of the solar corona, we, nevertheless, can reliably estimate
the kinetic helicity density using observational data on the current helicity
density defined as

hc = B(r, t) · ∇ ×B(r, t) = αFFFB
2, (11.84)

where the second equality is written for a FFF, see Sect. 2.3.3 and prob-
lem 2.5, which implies a direct link between the force-free parameter αFFF

and the current helicity hc for the case when the magnetic field satisfies the
force-free conditions. Although none of these two parameters can be directly
measured in the corona, we make use of αFFF conservation in the FFF along
any given field line (B · ∇αFFF ≡ 0) and use the photospheric current helic-
ity measurements (or a corresponding nonlinear FFF extrapolation), which
implies that we can have a reliable estimate of the current helicity in the
corona.

Let us now estimate how the turbulence kinetic helicity is related to
the current helicity. For the linear MHD modes, according to Sect. 2.4.2
(see, e.g., Eq. (2.56)), the fluid velocity is proportional to the magnetic field
in the waves,

u ≈ ∓vAb/B; (11.85)

thus, assuming ρ = const for simplicity, we obtain

hk = u(r, t) · ∇ × u(r, t) =
v2A
B2

b(r, t) · ∇ × b(r, t). (11.86)

The last needed step is to link the full current helicity hc, Eq. (11.84), with

that related to only the turbulent magnetic field, ĥc = b(r, t) · ∇ × b(r, t).
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To obtain this link let us consider an MHD wave as an oscillation of a given
field line and take into consideration the αFFF conservation along this new
(distorted) field line,

(B0(r, t) + b(r, t)) · ∇ × (B0(r, t) + b(r, t)) = αFFF(B0(r, t) + b(r, t))2.

(11.87)

After averaging Eq. (11.87), all linear over b terms drop out and then, sub-
tracting the original equality B0 · ∇ ×B0 = αFFFB

2
0, we obtain

〈ĥc〉 ≡ 〈b(r, t) · ∇ × b(r, t)〉 = αFFF〈b2〉, (11.88)

so, in agreement with formal derivation performed in Problem 2.6, the kinetic
helicity density takes the form

〈hk〉 = αFFFv
2
A

〈b2〉
B2

. (11.89)

Now, estimating τc as Lc/vA, where Lc is the main scale of the turbulence,
we obtain the required kinetic helicity parameter

α =
τc〈hk〉

3
= αFFFLcvA

〈b2〉
3B2

, (11.90)

which enables us of estimating relative efficiency of the standard stochas-
tic (Fermi) acceleration and the “helical” acceleration; Eq. (11.83) with the
account of Eqs. (11.90) and (11.85) yields

Dh

DF
∼ α2

FFFL
2
cb

2

B2

Λ2

R2
0

∼ α2
FFFL

2
c

B2

b2

(
Lc
R0

)2(ν−1)

, (11.91)

where in the second equality we use Eq. (7.106) to estimate the particle mfp
formed by the same turbulence. It is transparent from here that the helical
acceleration is relatively more important for (1) more nonpotential loops
(larger αFFF), (2) weaker turbulence (smaller b2/B2 ratio), and (3) lower
energy (smaller Larmor radius R0).

For example, substituting into Eq. (11.91) some standard values of
αFFF ∼ 10−10 cm−1 (Abramenko et al. 1996, 1997; Longcope et al. 1998),
R0 ∼ 1 cm, Lc ∼ 107 cm, ν = 1.5, and (b/B0)

2 ∼ 10−4, we findDh/DF ∼ 105,
i.e., acceleration by helical turbulence can be up to a few orders of magnitude
more efficient in the solar corona than the standard stochastic acceleration
by turbulence (Fleishman and Toptygin 2013). Note, that the particle Lar-
mor radius grows with energy, so the relative efficiency of the acceleration by
helical turbulence drops and the standard stochastic (Fermi) acceleration will
dominate at a large energy in case of a reasonably strong MHD turbulence
preserving all known advantages of the stochastic acceleration at those high
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energies. But on top of that, the particle flux density described by Eq. (11.79)
now depends on the particle charge sign, i.e., the accelerated protons and
electrons will now preferentially precipitate into the opposite footpoints in
agreement with observations, while in contrast to expectations within the
standard Fermi acceleration.

As has been noticed, the helical acceleration is efficient at low energies
and for a weaker turbulence and so can form a particle seed population from
which the particles are then picked up by an acceleration process. Indeed,
the turbulence helicity builds up a large-scale regular electric field which
can form a runaway particle population. The runaway electrons represent
collimated beams, which are supposed to reveal themselves via radio type
III bursts (Aschwanden et al. 1990; Vlahos and Raoult 1995), see Fig. 10.10,
and via sub-second fluctuations of microwave (Altyntsev et al. 2008) or X-ray
(Kiplinger et al. 1983; Aschwanden et al. 1996) emissions. In particular, if the
turbulence consists of many turbulent “cells,” where the mean magnetic field
has different directions relative to the line of sight, then the directions of the
electron beams will also be different in agreement with observations in the
microwave range (Altyntsev et al. 2007).

Let us estimate how big the regular electric field induced by the helical
turbulence can be compared with the electron Dreicer field. Substituting
Eq. (11.90) into Eq. (11.77) defining the electric field and using the same
parameters as used for estimating Eq. (11.91), with B = 100 G and ne =
2× 1010 cm−3, we obtain

E ∼ 10−9B ∼ 10−7statvolt/cm ≈ 3× 10−5V/cm. (11.92)

Therefore, in our example, the induced electric field is slightly sub-Dreicer,
although it can exceed the Dreicer field, e.g., for more tenuous plasma and/or
for stronger turbulence. The sub-Dreicer field creates beams of the runaway
electrons with the velocity exceeding the critical velocity, vc ∼ vTe

√
EDe/E,

which can immediately produce the type III radio bursts and then be picked
up by the main acceleration process, i.e., the seed electron population is
formed by the runaway electrons, whose amount depends on the E/EDe ratio.
In case of super-Dreicer field, E/EDe � 1, most of available electrons will
“run away” and form the seed population, i.e., almost all these electrons
are eventually accelerated in agreement with recent observations of the flare
acceleration regions (Krucker et al. 2010; Fleishman et al. 2011). We note that
because the powerful turbulence forms particle mean free paths much shorter
that the purely collisional transport would imply, the obtained large regular
electric field does not produce any problem typical for classical acceleration
in DC electric fields; see, e.g., Miller et al. 1997. Thus, we see that the helical
component of the turbulence is easily capable of forming a seed population
of electrons, which is needed for the mechanism of stochastic acceleration to
efficiently work.
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Furthermore, we point out that the same electric field can form highly
non-even seed populations of various ions because of a remarkable differ-
ence in the effective electron and ion Dreicer fields discussed in Sect. 11.1.1,
which implies that a given electric field can be sub-Dreicer for the electrons
and ions with large abundance (e.g., 4He), while super-Dreicer for ions with
small abundance (e.g., 3He). This is in particular the case for the electric
field driven by the helical turbulence estimated by Eq. (11.92). Therefore, all
available 3He ions can “run away” in the regular electric field present in the
helical turbulence, and, thus, all the 3He ions become available for further
acceleration by this turbulence, while only a minor fraction of the 4He ions
from the corresponding Maxwellian tail will run away in the same electric
field, so a much smaller number of the 4He ions are available for acceleration,
which offers an efficient mechanism of 3He enrichment in solar flares.

This enrichment mechanism based on the use of Eq. (11.6) can account
for the entire 3He enhancement in the 3He-rich events, which have been puz-
zling since their discovery at early 1970s. Equation (11.6) shows that the ions
with Z > 1 and a low number density can have relatively small effective
Dreicer fields, which is favorable for them to run away and be picked up
by the bulk acceleration process. We note that no enrichment is expected
for the hydrogen isotopes 2H and 3H , because the terms containing Z − 1
drop out from Eq. (11.6) for these ions. And indeed, no 2H or 3H enrichment
has ever been observed from solar flares (Kocharov and Kocharov 1984). On
the other hand, high-Z ions can display even stronger enrichment than the
3He ions, because (Z − 1)/Z ≈ 1 for them in contrast to helium, where
(Z − 1)/Z = 1/2. In fact, enrichment of 3He-rich events with ultraheavy
ions is widely observed (Mason 2007). Note also that a high correlation be-
tween the 3He-rich events and radio type III bursts (Mason 2007) also re-
ceives a natural interpretation within the proposed enrichment mechanism,
because the formation of the 3He seed population happens along with for-
mation of the runaway electrons responsible for the generation of the radio
type III bursts. Apparently, whether the electron beam is formed or not is
determined by the balance between the runaway electron acceleration by the
electric field, which is proportional to Λ ∝ B2

0/〈b2〉 and their angular scat-
tering by the same turbulence, which is reciprocal to Λ. Therefore, for a
stronger turbulence, when, e.g., the induced electric field becomes closer to
the 4He Dreicer field, Eq. (11.12b), the electron angular scattering can effec-
tively isotropize the electron beams and so quench the type III burst gen-
eration in more powerful flares not showing a considerable 3He enrichment
(Mason 2007).

Then, in the presence of this electric field, the particle flux direction
depends on their electric charge sign; thus, the accelerated electrons and pro-
tons are supposed to precipitate into the opposite foots of the same flaring
loop or loop system, which offers a consistent explanation of the observed
spatial displacement between sources of hard X-ray (HXR) (produced by
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electrons) and gamma-ray (produced by ions) emissions (Lin et al. 2003;
Hurford et al. 2006). On top of that, the rate of stochastic particle acceler-
ation can be greatly enhanced when the turbulence is helical, i.e., when the
helicity parameter α �= 0; see estimates of Eq. (11.91).

Therefore, the acceleration by the helical turbulence is a promising mech-
anism in the magnetically dominated stellar coronae including the solar flares
and eruptions. It is well established that magnetic twists related in particular
to the differential rotation of the star plays an important role in the corre-
sponding energy release and particle acceleration; we have argued that the
presence of strong magnetic helicity (twists) may imply a correspondingly
strong helicity of the turbulence produced by release of the flaring energy
stored in the helical magnetic field. It should be noted that this attractive
mechanism of particle acceleration by helical turbulence has not yet been an-
alyzed in any detail, so many important aspects of it remain unclear. Realistic
self-consistent nonlinear models of particle acceleration by the helical turbu-
lence supplied by (yet nonexistent) nonlinear theory of the helical turbulence
are called for to fully assess the role of this acceleration mechanism.

11.2.3 Second-Order Acceleration Effects for Regular
Plasma Motions

In Sect. 11.1.4 we consider the first-order particle energy change connected
with the compressibility of the medium (∇ · u �= 0). Then, in Sects. 11.2.1
and 11.2.2, the second-order acceleration effect for stochastic motion of the
plasma was analyzed. It should not be overlooked that second-order accel-
eration is also produced by a regular plasma motion in the presence of any
velocity gradient, in particular, when ∇ ·u = 0. In this case the acceleration
is the second-order effect relative to the velocity gradient ∂uα/∂xβ , which
can be understood as follows.

We can think of the diffusive motion of the particle as of a sequence of
successive jumps from collision to collision with a mean distance between the
collisions equal to the transport mfp. Then, each collision will take place at a
distance of the order of Λ from the previous collision, i.e., in a region where
the regular speed of the fluid is somewhat different (roughly by ∼∂u/∂r)
from that at the previous collision location. This leads to Fermi acceleration
of second order, because in the first-order approximation in u, the energy
losses and gains are equally probable.

To analyze the second-order effects let us start from the kinetic equation
in the form of Eq. (7.77). Let the regular magnetic field be absent for sim-
plicity. When the size of the system considerably exceeds the transport mfp,
the distribution function F is almost isotropic. However, to properly analyze
effects of the second-order over u, we take into account a small anisotropy of
the distribution function, including the first and second spherical harmonics:
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F =
1

4π

[
N(r, p, t) +

3

v
nαJα(r, p, t) + nαnβfαβ(r, p, t) + . . .

]
, (11.93)

where nα = pα/p and fαβ is a traceless tensor, fαα = 0.
The further required manipulations are straightforward, while cumber-

some, which we path by directly to the main results of the consideration. The
inverse particle acceleration time is of the order of

τ−1
ag ≈ κ

v2

(
∂u

∂r

)2

≈ u2Λ

vL2
, (11.94)

where L is the scale length of hydrodynamic speed. The increase of to-
tal energy of accelerated particles with time depends on the type of the
MHD flow. For example, for a shear flow with a linear velocity profile, when
∂u1/∂x2 = const and other derivatives ∂uα/∂xβ = 0 we have

dE

dt
=

1

3

∫
d 3r

∞∫
0

dp p3NΛ

(
∂u1
∂x2

)2(
7

5
+

2v2

3c2

)
, (11.95)

while, in a fluid body rotating with the angular velocity Ω = const, so that
u = Ω× r, we obtain

dE

dt
=

4

3

∫
d 3r

∞∫
0

dp p3NΛΩ2

(
1 +

v2

3c2

)
. (11.96)

Equations (11.95) and (11.96) allow estimating the second-order effect in the
effective particle energy change due to regular fluid motion when the dis-
tribution function of accelerated particles is known. The efficiency of the
second-order acceleration driven by a regular fluid velocity flow compared
with the Fermi acceleration efficiency is

τ−1
ag

τ−1
aF

≈ u2

〈Δu2〉
Λ2

L2
. (11.97)

The considered acceleration effect can be important in regions with large
velocity gradients, for instance, at the boundaries of high-speed solar
wind streamers or magnetic sectors, interfaces between slow and fast so-
lar wind regions, accretion disks, tangential discontinuities in IPM, and near
the Earth’s magnetosheath.

11.3 Formation of Accelerated Particle Spectra

Time evolution of particle spectra can be evaluated by solving Eq. (11.54)
with corresponding initial and boundary conditions. However, this equation
is very complicated because it describes joint effect of particle acceleration,
adiabatic loss, real space diffusion, and advective transport. To better high-
light the corresponding physics, we address all these effects in a sequential
order.
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11.3.1 Nonstationary Acceleration in a Uniform System

Neglecting any losses, acceleration in a uniform system is described by
equation

∂N

∂t
=

1

p2
∂

∂p
p2D(p, t)

∂N

∂p
. (11.98)

We assume that the diffusion coefficient in this equation depends on both
momentum and time; the time dependence may appear due to turbulence
generation, dissipation, or spectral transformation. For protons and other
heavy particles, the radiative losses are typically unimportant, so only ion-
ization and adiabatic losses can be essential, which, however, can be discarded
if their typical timescales are much larger than the acceleration time.

Since the system is assumed uniform, the total number density of the
particles remains constant. This condition is fulfilled, for instance, when ac-
celerated particles are confined in a trap whose size does not change with
time, or the boundaries of acceleration region are far and their influence is
minor.

Adopt the turbulent acceleration coefficient in the form

D(p, t) = D0(t)(p/p0)
α, (11.99)

where p0 is a constant. Introducing dimensionless variables

τ = p−2
0

t∫
0

D0(t
′)dt′, q = p/p0, (11.100)

we rewrite Eq. (11.98) as

∂N

∂τ
=

1

q2
∂

∂q
q2+α

∂N

∂q
. (11.101)

A partial solution to this equation is given by

Nλ(q, τ) = fλ(q) exp(−λ2τ) (11.102)

with an arbitrary λ. Substituting

fλ(q) = q(2μ−3)/2Fλ(ξ), ξ = qμ, μ = 1− α/2, (11.103)

for α �= 2 we reduce Eq. (11.98) to the Bessel equation for Fλ(ξ),

ξ2F
′′
λ + ξF ′

λ + μ−2

[
λ2ξ2 − 1

4
(α+ 1)2

]
Fλ = 0. (11.104)

A partial regular solution to this equation is given by

Fλ(ξ) = Jβ(λξ|μ|−1), β =
1

2
(1 + α)|μ|−1. (11.105)
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The general solution to Eq. (11.98) can be written in the integral form

N(q, τ) = q(2μ−3)/2

∞∫
0

ψ(λ) exp(−λ2τ)Jβ(λqμ|μ|−1)λdλ. (11.106)

The expansion coefficient ψ(λ) is determined from the initial condition
N(p, 0) = N0(p) using the Fourier–Bessel theorem, which yields

ψ(λ) = |μ|−1

∞∫
0

N0(q)q
μJβ(λq

μ|μ|−1)
√
qdq. (11.107)

Substituting this expression into Eq. (11.106) and integrating over λ, we ob-
tain the solution for any initial condition (α �= 2),

N(q, τ ) = (2|μ|τ )−1q(2μ−3)/2

∞∫
0

N0(q
′)q′μIβ

(
qμq′μ

2μ2τ

)
exp

(
− q2μ + q′ 2μ

4μ2τ

)√
q′dq′,

(11.108)

Iβ(x) is the modified Bessel function. The case α = 2 is considered in Prob-
lem 11.3. If the turbulence disappears during a finite time, then τ → τ0 as
t → ∞, and after the turbulence decay the particle spectrum is determined
by Eq. (11.108) with τ = τ0.

Case α < 2. Let the initial particle momentum be much smaller than the
mean momentum of the accelerated particles, q ∼ τ1/2μ. Then, for values of
q corresponding to the bulk of accelerated particles, the argument of Iβ(x) is
small for

√
τ 
 1. Using the relevant asymptote of Iβ(x), we obtain

N(q, τ0) =
n0

(2− α)1+2βΓ(1 + β)τ1+β0

exp

(
− q2μ

4μ2τ0

)
, (11.109)

where n0 =
∞∫
0

N0(q)q
2dq is the total number density of the particles. The

mean momentum of the particle distribution (11.109) is given by

q = (2μ
√
τ0)

1/μ Γ(2/μ)

Γ(3/2μ)
. (11.110)

The value of α = 1 is typical for interplanetary space and corresponds to
the energy-independent transport mfp Λ. In this case the exponential over
the rigidity spectrum is formed

N(q, τ0) ∼ exp(−q/τ0), q = 3τ0. (11.111)

Spectra with a similar, quasiexponential, cutoff have been detected in
the IPM.
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Case α > 2. At sufficiently large q and fixed τ = τ0 the argument of Iβ(x)
in Eq. (11.108) becomes small provided that q|μ|τ 
 1. Then, the particle
spectrum is the power law:

N(q, τ) =
n0

(2μ)1+2βΓ(1 + β)τ1+β0 (q0q)1+α
, (11.112)

where q0 is the initial particle momentum. For nonrelativistic particles,
Eq. (11.112) corresponds to the differential spectrum over kinetic energy:

N(K) ∝ K−α/2. (11.113)

The stochastic Fermi acceleration is believed to play a role in solar flares
supplying IPM with solar energetic particles (SEP). Observations in IPM
performed by numerous space missions detect a variety of the SEP spectra,
which can be fitted, at least in certain ranges of SEP kinetic energy with
quasiexponential, cf. Eq. (11.111),

I(K) = A exp

[
−
(
K

K0

)1/2
]

(11.114)

or power-law

I(K) = A(K0/K)γ (11.115)

functions, where typically γ > 2. The idealized model considered above does
not offer such power-law asymptotes for a typical value of α ∼ 1, which im-
plies that some important physics is missing from this acceleration regime.
In addition, while analyzing real data on the SEP spectra one has to keep
in mind that the detected spectrum is supposed to deviate from the original
spectrum of particles accelerated at the flare site due to a number of im-
portant transport effects including energy-dependent escape time of the SEP
from the acceleration region, Coulomb and adiabatic losses, in situ stochastic
acceleration by turbulence in IPM, etc.

11.3.2 Stationary Fermi Spectra in a Finite Accelerated
Region

Let us consider stationary spectra of the accelerated particles formed by a
balance between the stochastic acceleration and particle loss from a finite
source. Adopt that in a spatially finite acceleration region there is a source
of turbulence forming a constant transport mfp Λ = const of relativistic
particles and corresponding diffusion coefficient in the momentum space. Re-
mind that the constant transport mfp can be formed by either rigid magnetic
“clouds” or by MHD turbulence with a broad power-law spectrum with index
ν = 2 [see Eq. (7.106)].



552 11 Particle Acceleration in Astrophysical Media

We assume that a minor fraction of the background particles, being scat-
tered by small-scale macroscopic electric fields, gains suprathermal energies
and so is injected into the stochastic acceleration process. Adopt the injection
source to be uniform and to have the form Q(p0)p

2
0δ(p− p0) per unit volume

per unit time. There is no acceleration outside the acceleration region; the
escaped particles never come back.

We start from a simple estimate of the expected acceleration particle
spectrum neglecting the spatial nonuniformity in the particle distribution
and using the lifetime approximation, i.e., replace the spatial diffusion term
by a simpler term N/τd, where τd is the mean residence time of the fast parti-
cle in the acceleration region (that is of the order of diffusion time through the
acceleration region τd ≈ L2/κ). This approximation is often used to approxi-
mately solve transport equations. The corresponding stationary equation for
the distribution function has the form

1

p2
d

dp

p4

τa

dN

dp
− N

τd
+
Q0

p20
δ(p− p0) = 0, (11.116)

where the diffusion coefficient in the momentum space D(p) = p2/τa is sub-
stituted; τa = const.

The δ-source of the particles can be replaced by corresponding bound-
ary conditions in the momentum space, one of which is derived from the
continuity of the distribution function at p = p0:

N(p)|p=p0+0 = N(p)|p=p0−0. (11.117)

The other boundary condition can be obtained from integration of Eq.
(11.116) over a narrow momentum range around p=p0 and taking into
account that N is a bounded function:

dN

dp

∣∣∣∣∣
p=p0+0

− dN

dp

∣∣∣∣∣
p=p0−0

= −Q0
τa
p40
. (11.118)

Then, we can solve homogeneous (p �= p0) Eq. (11.116), which yields the
solution:

N(p) = Ap−s1 for p > p0, N(p) = Bps2 for p < p0, (11.119)

where

s1 =

√
9

4
+
τa
τd

+
3

2
, s2 =

√
9

4
+
τa
τd

− 3

2
. (11.120)

Then, the boundary conditions specify the unknown amplitudes A and B, so

N(p) =
N0

p30

(
p0
p

)s1
p > p0, N0 =

Q0τa
s1 + s2

. (11.121)
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The decelerated particle spectrum at p < p0 can straightforwardly be written
down as well, although this part of the spectrum is often not interesting.

Therefore, we have found that a power-law spectrum of fast particles is
formed with a spectral index dependent on the ratio τa/τd of the characteristic
time constants, which can now be easily made consistent with power-law
spectra (11.115) in IPM by appropriate choice of the ratio τa/τd. Let us
compare this model spectrum with the observed spectrum of the Galactic
CRs. Observations typically deal with a differential particle flux I(E) per unit
area, per unit solid angle, per unit time, while solution (11.121) is written
for the particle density in the phase space N(p); these measures are related
to each other by

I(E)dE = vN(p)p2dp = Np2dE . (11.122)

The observed CR spectrum is well fitted by a power law I(E) ∝ E−γ , with
the spectral index γ ≈ 2.7 in the proton energy range 10 � E � 106GeV. For
the ultrarelativistic particles, E ≈ cp, Eq. (11.122) yields

I(E)dE = cN0

(E0
E
)γ

dE
E0 , γ = s1 − 2. (11.123)

This implies τa/τd ≈ 8 for all significant sources of the Galactic CRs, which is
extremely hard to justify within any realistic model of the CR origin. At the
higher energies (≈ 3× 106 � E � 1011GeV) the CR spectrum has a number
of breaks and cannot be well described by a single power law.

Overall, the smaller the ratio τa/τd the harder (flatter) the energetic
spectrum. In particular, in the limiting case τa/τd → 0 the spectral index
γ → 1, which can also be obtained from Eq. (11.108) assuming τ → ∞. This
means that the accelerated particle could gain an infinite energy:

E =

E∫
E0

I(E)EdE ∼ E → ∞. (11.124)

In fact, this implies that the linear statement of the problem breaks down and
one has to take into account the finite power of the turbulence sources and
its decay due to energy transfer from turbulence to the accelerated particles.
In addition, the acceleration can also be suppressed by the mfp increase
with the particle energy Λ ∝ p2 above some critical energy [see Eq. (7.80)]
and corresponding decrease of the particle residence time in the acceleration
region resulting in τa/τd 
 1 at some high energies; at this energy range the
spectrum has an exponential cutoff according to Eq. (11.63). In contrast, if
the condition τa/τd 
 1 is fulfilled just above the injection momentum, then
the entire spectrum of accelerated particles is very steep, i.e., most of the
particles gain only moderate energies.

An interesting assessment of the lifetime approximation accuracy and
applicability can be done based on comparison of the results of this section
with a more exact solution given to Problem 11.5 obtained with the account
of boundary conditions.
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11.3.3 Stochastic Acceleration of Electrons in Solar
Flares

Let us return to the problem of resonant electron acceleration in solar flares
considered in Sect. 11.2.1. Combining all needed expressions for coefficients
entering Eq. (11.66), it can be rewritten in the form (recall, E = K/mc2 is
the dimensionless kinetic energy here):

∂f

∂t
=

∂2

∂E2
[β(γβ)q−2Dwf ]− ∂

∂E

[(
q(γβ)q−3Dw − c

λ0
β−1

)
f

]

− β(γβ)2−q

τw
f + S(E, t). (11.125)

This equation is rather complicated and cannot be solved analytically since
neither of the terms in the rhs can be discarded in a general case. To illustrate
this, adopt q = 4 (Hamilton and Petrosian 1992) and consider the second
term in the rhs. The two contributions, turbulent and Coulomb, have dissim-
ilar dependence on the electron velocity, ∝ β and ∝ β−1, respectively, which
implies certain critical velocity βc where the acceleration rate is equal to
the Coulomb loss rate. Figure 11.2 displays a number of accelerated electron

Figure 11.2: Four left panels: Time-dependent spectra f(E, t) of electrons stochas-
tically accelerated by resonant whistler-wave turbulence. The adopted parameters are:
Dwτw = ∞; Ec = E(βc) = 0, 10, 50, and 100 keV; thermal energy ET = 1 keV;
plotted for times Dwt = 0.05, 0.1, 0.15, and 0.2. Four right panels: the steady-state
Dwt 	 1 spectra for different Dwτw = ∞ (thick solid), Dwτw = 1 (dashed), and
Dwτw = 0.1 (thin solid) for the same Ec and ET ; from Hamilton and Petrosian (1992).
Reproduced by permission of the AAS.
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Figure 11.3: Example of self-consistent evolution of the cascading fast mode turbulence
and accelerated electrons from Miller et al. (1996). Evolution of electron distribution
function (a and c) and wave spectral density (b and d) is shown for times tnωBe =
1.5 × 106 + 5 × 104n for n = 1, . . . , 10 (a and b) and tnωBe = 2 × 106 + 105n for
n = 1, . . . , 10 (c and d). Reproduced by permission of the AAS.

spectra obtained from numerical solution of Eq. (11.125) for various parame-
ter combinations. One can see that the spectra differ from each other repre-
senting rather complicated curves, which is difficult to describe by a simple
analytical (e.g., a power-law) function.

Even though the problem described by Eq. (11.125) is complicated, it is
incomplete because it adopts a prescribed level of turbulence without con-
sideration of the turbulence generation and decay. A more complete picture
including MHD wave cascading (see Chap. 6), while discarding particle escape
from the source, was considered by Miller et al. (1996). They assumed that
the primary release of free magnetic energy in a solar flare generates initially
a large-scale MHD disturbances, which then cascade toward smaller scales
to form a Kolmogorov-like spectrum in a broad range of spatial scales. From
Chap. 6 we know that a power-law inertial range of the turbulence spectrum
is formed down to a dissipative scale, which can be related to the kinematic
viscosity, magnetic diffusivity, or (gyro or Cherenkov) resonant wave–particle
interactions. In the latter case the MHD wave damping implies acceleration
of the particles absorbing the wave energy.
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Figure 11.3 displays an example of such consistent evolution of the cas-
cading fast mode turbulence and its accelerated electrons. Initially, when the
cascade develops, we can see how the inertial range grows toward smaller
scales, while the electron distribution remains almost unchanged. Later, as
soon as sufficiently small-scale fast waves capable of resonantly interacting
with slightly suprathermal electrons appear, the fast mode turbulence starts
to decay transferring a part of its energy to the particle acceleration. The
apparent break of the spectrum around mc2 is related to transition from
nonrelativistic to relativistic regime, while does not imply any particle loss
mechanism.

These examples demonstrate that efficient stochastic acceleration by res-
onant wave–particle interaction with turbulence can happen in conditions
implied for solar flares. Moreover, the particle (electron or ion) acceleration
can be very strong, so the accelerated particle component accumulate a signif-
icant fraction of the system free energy. In such cases of strong acceleration
the problem becomes highly nonlinear and the effect of accelerated parti-
cles on the turbulence properties must be explicitly taken into account, see
Sect. 11.5.4 for greater detail.

11.3.4 Effect of Adiabatic Losses and Acceleration
on Transport of Solar Protons

Most of the particles accelerated in a solar flare die collisionally in the chro-
mosphere or dense coronal flaring loops. A minor fraction, however, typically
less than 5%, escapes into IPM and can be detected in situ by a spacecraft.
Apparently, spectra of detected particles can differ from those escaping
from the corona due to different transport effects in the IPM. Consider the
spectrum of particles which are emitted from the Sun and evolve during their
propagation. The particle energy can vary due either to adiabatic losses or
the acceleration in the turbulent solar wind flow. For the sake of simplicity,
consider the case of rather strong scattering resulting in a small mfp and
so providing that any fast particle is linked to a particular fluid element.
Stated another way, this means that the particle diffusion can be neglected
compared with the advective transport. This transport regime takes place
when ur/κ
 1; in the slow solar wind with u ∼ 400 km/s for 1 MeV protons
the latter inequality implies Λ � 0.1 r. This condition is only marginally
satisfied for the typical parameter values near the Earth orbit but is supposed
to better fulfilled for the outer heliosphere.

Within the approximation adopted, the transport equation written for
the spherically symmetric, stationary case, including the source term, is
given by

u
∂N

∂r
=

1

p2
∂

∂p
p2D(r, p)

∂N

∂p
+
p

3

∂N

∂p

1

r2
∂

∂r
(r2u) +

N0

p20
δ(r − r0)δ(p− p0).

(11.126)
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We seek a general solution valid for arbitrary u(r) and for D(r, p) in the
model form

D(r, p) = D0(r)(p/p0)
α, (11.127)

where D0(r) is an arbitrary function of r. Introducing variables

q =
p

p0
(r2u(r))1/3, τ = p−2

0

r∫
r0

dr′D0(r
′)
(
r′ 4−2α

u1+α

)1/3

, (11.128)

we reduce Eq. (11.126) to Eq. (11.101), which has already been considered
above,

∂N

∂τ
=

1

q2
∂

∂q
q2+α

∂N

∂q
+N0(q)δ(τ). (11.129)

In this case

N0(q) = N0r
2/3
0 p−3

0 u
−2/3
0 δ(q − r

2/3
0 u

1/3
0 ) (11.130)

plays the role of the “initial conditions” at τ = 0 for this equation.
Although, using the solution in general form Eq. (11.108), one can solve

Eq. (11.129) for an arbitrary dependence of N0(q) in the source term, we re-
strict the analysis to the monoenergetic source case described by Eq. (11.130).
Then, we assume that the source is located at small enough r0 (at the solar
atmosphere) so that the argument of Iβ(x) in Eq. (11.108) is small, x � 1,
so the corresponding asymptote of the modified Bessel function can be used.
Under these assumptions

N(q, τ) =
N0r

2
0

(2− α)1+2βΓ(1 + β)p30r
1+β

exp

(
− q2μ

4μ2τ

)
, (11.131)

where again μ = (2− α)/2, β = (1 + α)/|2− α|. If u and D0 do not depend
on r, the intensity spectrum I(K) = p2N(p) is given by

I(r,K) =
|2− α|N0

Γ(1 + β)p0ur2
ξ−1−β K

K0
exp

(
− Kμ

ξKμ
0

)
, (11.132)

where ξ = 3(2− α)2D0r/(7− 2α)p20u, α �= 2, α < 3.5. The mean energy for
this spectrum is equal to

K = K0Γ(3/μ)Γ
−1(2/μ)ξ1/μ. (11.133)

Note that ξ ∼ τad/τa, where τad ∼ r/u is the adiabatic loss time and
τa ∼ p20/D0 is the acceleration time. In the case of arbitrary source spec-
trum Eq. (11.132) is to be integrated over K0. Far away from the source the
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spectrum is determined by the distance r as well as by energy dependence of
the ratio p20/D0.

Let us envision an interesting limiting regime occurring for α = 1, u =
const, and p20/D0 ∼ p0. The latter proportionality takes place for nonrela-
tivistic particles experiencing “classical” Fermi acceleration (i.e., when the
mfp does not depend on energy, Λ = const). In this case the initial particle
energy K0 drops out of the exponent, so the spectrum is given by

I(r,K) ∝ K

r5
exp

[
− 5Λu2

Δu2r

(
K

K∗

)1/2
]

(11.134)

independently of the source spectrum; K∗ = mu2/2 ≈ 1 keV is the kinetic
energy of solar wind particles.

Equation (11.134) shows that particles emitted from the Sun experience
strong adiabatic “cooling” at small r for the adopted parameter regime. How-
ever, as r increases, the Fermi acceleration wins competition with the adia-
batic losses providing that the mean particle energy increases with distance.
From Eq. (11.134) we obtain

K = K∗

(
2Δu2r√
5u2Λ

)2

. (11.135)

Adopting Λ = 0.1AU, in the most favorable case Δu2 ≈ u2 we have K ≈
100keV near the Earth orbit.

Observationally, the effect of the mean energy increase for the ions
accelerated in corotating streams was discovered by McDonald et al. (1976):
they found that instead of strong adiabatic cooling with the heliocentric
distance while traveling between 1AU and 4AU, the fluxes of ion with
0.1–1MeV could raise by more than one order of magnitude implying an effi-
cient particle acceleration between 1 and 4AU. The theory developed above
offers an elegant way of interpreting this observation. Adopt α = 1 (β = 2)
and Δu2 ≈ u2 for definiteness and estimate the particle mfp needed to ensure
the 1MeV proton intensity increase by a factor of ∼10 between 1 and 4AU.
As has been said for the solar wind we have K∗ ≈ 1 keV, so K/K∗ ≈ 103 for
the 1MeV particles. Then, Eq. (11.134) yields the required 10 fold intensity
increase at 4AU if the mfp is Λ ∼ 0.1AU for the 1MeV particles, which fully
agrees with measurements in IPM. Then, Eq. (11.135) yields the mean fast
particle energy of ∼80 keV at the Earth orbit, while ∼1300keV at 4AU.

11.4 Acceleration of Charged Particles by MHD
Shock Waves

Shock waves are currently believed to represent the main sources of relativis-
tic particles in the Galaxy and in many isolated sources such as SNRs and
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GRBs, where a highly powerful particle acceleration occurs. The basic reason
for this expectation is easy to understand: a powerful particle acceleration
requires a correspondingly large source of the free energy in the accelerat-
ing agent, e.g., MHD disturbances in case of the MHD turbulence. As we
have seen (see Sect. 5.1.4) strong MHD waves experience nonlinear evolution
and can eventually form sharp shock fronts. In this section we consider basic
concepts of the particle acceleration by the shock waves. Main ideas and the
first conceptual science-transforming results on that were obtained almost si-
multaneously and independently by several scientists and groups of scientists
(Axford et al. 1977; Krymskii 1977; Bell 1978; Blandford and Ostriker 1978).
It is a good example of the popular proverb that good ideas are in the air.

11.4.1 Fast Particle Interaction with Shock Front:
Acceleration, Reflection, and Crossing

We begin with investigating how single (test) fast particles interact with a
shock. Consider a fast shock where the magnetic field jump ΔB = B2 − B1

at the front is positive and can have arbitrary magnitude between 0 and 3B1

for a classical shock wave, Sect. 5.4.1, in nonrelativistic plasma. Let us adopt
the conditions

R1,2 
 δ, v⊥ 
 u, (11.136)

where R is particle Larmor radius, u is the shock velocity relative to the
upstream plasma, and δ is the shock front thickness within which the mag-
netic field varies from the value B1 to the value B2 > B1 behind the front.
Further, we assume throughout this section that the magnetic field is regular
and uniform near the front. Note that in the case opposite to (11.136) when
R � δ the adiabatic theory of the particle transport, Sects. 1.2 and 7.5.3, can
be used for the assumed here laminar shock structure.

First, consider the case of a purely transverse shock (i.e., the shock front
normal is transverse to the magnetic field vector); the plasma moves perpen-
dicular to the front in the front rest frame, Fig. 11.4. In this frame, along
with the magnetic fields which are different on both sides of the front, there
also exist the electric fields

E = −1

c
u1 ×B1 = −1

c
u2 ×B2, (11.137)

equal to each other on both sides of the front. Fast particles gyrate around
magnetic field lines and drift through the front with the plasma stream veloc-
ity. Since v⊥ 
 u, particles perform many Larmor rotations during their drift.
In addition to the drift through the front and trivial motion along magnetic
field lines, particles also drift along the front perpendicular to the magnetic
field due to the difference of Larmor radii in the upstream and downstream
plasmas, Fig. 11.5.
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Figure 11.4: Cartoon of a transverse MHD shock.

Figure 11.5: Drift acceleration of a particle which crosses the shock front.



11.4 Acceleration of Charged Particles by MHD Shock Waves 561

The drift through the front is accompanied by acceleration because the
energy gained by the particle from the electric field along the fragment of
the Larmor circle upstream the front exceeds the energy lost along a com-
plementary fraction behind the front, Fig. 11.5. Direct analysis of a particle
trajectory shows that when the particle finally crosses the front its transverse
momentum component p⊥2 is related to the initial momentum component
p⊥1 before crossing as

p2⊥2

B2
=
p2⊥1

B1
, (11.138)

while the longitudinal component remains unchanged, p‖2 = p‖1. The details
of calculations are given by Toptygin (1985). Note that Eq. (11.138) cannot be
interpreted within usual adiabatic theory (see Sects. 1.2 and 7.5.3), because
in the case under consideration, δ � R, the adiabatic approximation does not
apply. However, Khodzhaev et al. (1981) found that the adiabatic invariant
for a particle crossing a transverse shock is conserved for any relation between
R and δ. Equation (11.138) appears to be satisfied rather accurately even
when R ∼ δ.

We see that while crossing the transverse shock, the transverse particle
energy increases proportionally to the magnetic field for a nonrelativistic
particle or to the square root of the field for an ultrarelativistic one. Therefore,
for a strong shock, B2/B1 ≈ 4, the energy of a relativistic particle is doubled,
which is a rather weak acceleration efficiency.

Now, consider an oblique shock. In this case interaction of a particle with
the front is more complicated, Fig. 11.6: some particles are reflected from
the front; others cross it and transit downstream depending on the particle
pitch-angle and on the angle of the magnetic field to the front normal. We
summarize here briefly the main results referring to the review by Toptygin
(1980) for greater detail:

1. If the particle reflects off a shock front or intersect it in any direction,
particle energy increases.

2. The maximum energy gain can exceed the initial particle energy by
a factor of a few (by one order of magnitude at most). The largest
energy gain is possible if the angle α1 between the magnetic field and
the front plane is small, α1 � u1/c. The maximum energy gains during
the reflection (ΔER) or intersection (ΔEC) of the front by the Larmor
circle are

ΔER = 2E v
2

c2

(
B2

B1
− 1

)
or ΔEC =

1

2
ΔER, (11.139)

respectively. If the angle between the field and the shock plane is large,
α1 
 u1/v or α1 ∼ 1, the energy increase is a small fraction of the
total particle energy:

ΔE ≈ pu1/α1 � E . (11.140)
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Figure 11.6: MHD shock with arbitrary orientation of magnetic field relative to the
front.

3. In the case of purely parallel shock, Fig. 11.7, no electric field is present
in the front rest frame, and particle energy is conserved during the
front intersection.

11.4.2 Diffusive Particle Acceleration at the Shock
Front: Test Particle Approximation

As shown above, a particle energy gain at one shock crossing is quite modest
under typical conditions. However, repeating multiple shock crossing by a
particle can result in a noticeable energy gain. This multiple crossing can be
achieved either by (1) repeating interactions with one shock in a turbulent
medium or (2) successive interactions with many shocks. Each of the cases
can happen in astrophysical objects. We start here from a relatively simple
case of the particle acceleration by single plane boundless stationary shock
front in a turbulent medium.

The particle energization at the shock front is supplied by two closely
related factors: (1) the presence of turbulent magnetic field (magnetic inho-
mogeneities) responsible for particle scattering and their random walk and
(2) a regular flow of the scatterers that abruptly slows down at the shock
front, Fig. 11.8. These two effects emulate the situation similar to the particle
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Figure 11.7: Cartoon of a parallel MHD shock.

Figure 11.8: Random walk of a particle in turbulent fluid around the shock front.

motion between two walls moving toward each other even though the particle
energy is conserved during the very crossing of the front at the parallel shock
wave. The walls are emulated by the magnetic inhomogeneity flows and have
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the effective thickness of the order of the mfp Λ along the flow direction.
The larger the total number of the front crossings the higher the energy it
gains in this process from the kinetic energy stored in the shock wave motion.
Apparently, each particle is advected far away downstream the front so the
energy gain is seized sooner or later.

Let us justify this qualitative picture by balance equation for the particles
interacting with a plane front in the turbulent fluid. To do so, integrate
Eq. (11.40) with source (11.56) over the entire finite spatial region occupied
by the fast particles:

dE

dt
= −

∫
P (r, t)∇ · ud 3r +

∫
d 3r

∞∫
0

N(r, p, t)
d

dp
(vp2D(p))dp. (11.141)

Here E =
∫
wd 3r is the total energy of accelerated particles. For a 1D case

at an infinitely narrow front we have:

∇ · u =
∂u

∂z
= −(u1 − u2)δ(z) = −Δuδ(z), (11.142)

so the first term in the rhs of Eq. (11.141) yields the particle energy gain
proportional to the flow velocity jump at the front:

dE

dt
= Δu

∫
P (x, y, z = 0, t)dxdy +

∫
d 3r

∞∫
0

N(r, p, t)
d

dp
(vp2D(p))dp.

(11.143)

The second term (stochastic acceleration) is also present (and positive). Since
it has already been considered in the previous section we do not specifically
consider it here; however, the two corresponding acceleration mechanisms will
be compared later based on the obtained solutions.

It should be noted, however, that this picture complicates in the 3D case,
e.g., for a shock wave produced by a point-like explosion. In such a case,
the fluid compression at the front can be followed by a rarefaction wave,
Sect. 5.5.1, where ∇ · u > 0. The energy balance takes the form

dE

dt
= Δun P (r, t)|S −

∫
P (r, t)∇ · u d 3r, (11.144)

where the first (positive) term describes acceleration at the front, while the
second one arises due to adiabatic cooling (deceleration); the stochastic ac-
celeration is discarded. The net effect is specified by the balance of these two
processes. Below, we concentrate on the acceleration effect at the front.

As usual, there is no simple and reliable way of estimating the fraction
of particles injected into the shock acceleration process. We can expect that
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the main injector is the front itself as the small-scale turbulence capable of
resonantly interacting with thermal and slightly supra-thermal particles is
supposed to be enhanced there owing to numerous possible wave–particle
instabilities, see Chap. 4. Having this in mind, we adopt the particle injection
density at the front:

Q = Q0p
2
0δ(p− p0)δ(z). (11.145)

The injection momentum p0 is reasonable to adopt around a few times larger
than the thermal particle momentum. Apparently, the shock front can also
accelerate particles with the momentum above p0 if they are available in the
inflow coming from infinity, which is considered in Problem 11.7.

Return to the 1D problem with all the variables dependent on only one
coordinate z, which is parallel to the front normal and write down Eq. (11.36)
without stochastic acceleration, while with a source, for two regions: (1) up-
stream, z < 0, and (2) downstream, z > 0, Fig. 11.8:

∂

∂z
κ(z, p)

∂N

∂z
− u

∂N

∂z
+
p

3

∂N

∂p

du

dz
+
Q0

p20
δ(z)δ(p− p0) = 0. (11.146)

Here the fluid velocity profile corresponds to a step-function jumping from
u1 = const to u2 = const. The considered linear acceleration regime implies
that only a minor fraction of the available shock free energy is being spent for
acceleration; thus, the fluid velocity profile does not change. The coefficient
of spatial diffusion κ(z, p) ≡ κzz(z, p) is defined by the level and spectrum
of turbulence and energy of accelerated particles. Again, within the linear
theory, it is a given function of its arguments.

Then, we need boundary conditions at the front and infinities. At the
front, the distribution function N is continuous

N1 = N2, z = 0, (11.147)

while the derivatives ∂N/∂z are bounded everywhere. The second derivatives
have a δ-function singularity. To specify the second boundary condition we
integrate all terms of Eq. (11.146) over a small distance Δz around the front
(z = 0). We obtain

κ2
∂N2

∂z
− κ1

∂N1

∂z
− p

3

∂N

∂p
Δu+

Q0

p20
δ(p− p0) = 0, z = 0, (11.148)

where N denotes the (continuous) value of the distribution function at the
front. Without the particle source, the obtained equality reduces to the par-
ticle flux conservation condition at the front, Eq. (11.32). With the source,
the particle flux has a corresponding discontinuity. At the positive infinity
z → ∞ the distribution function is bounded; at the negative one z → −∞
it goes to zero as all the particles are advected downstream the front by the
magnetic irregularities.
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Beyond the front, Eq. (11.146) has the form

κ1,2
∂2N1,2

∂z2
− u1,2

∂N1,2

∂z
= 0 (11.149)

whose solution is

N1,2(z, p) = A1,2(p) exp

⎛
⎝

z∫
0

u1,2dz
′

κ1,2(z′, p)

⎞
⎠+ C1,2(p). (11.150)

The undefined functions A and C are determined from the boundary condi-
tions. The conditions at infinities imply

N1(z, p) = A1(p) exp

⎛
⎝

z∫
0

u1dz
′

κ1(z′, p)

⎞
⎠ , N2(p) = C2(p), (11.151)

while from condition (11.148) at the front, which reduces to a simple
first-order ordinary differential equation, along with apparent requirement
A1(p) = C2(p), obtain

N2(p) =
3Q0

Δup30

(
p0
p

)α
Θ(p− p0), α =

3u1
u1 − u2

,

N1(z, p) = N2(p) exp

⎛
⎝

z∫
0

u1dz
′

κ1(z′, p)

⎞
⎠ . (11.152)

For the particle flux density I(K) per unit area, unit solid angle and unit
kinetic energy range, K = E −mc2, we use Eq. (11.122):

I(K)dK = vNp2dp = Np2dK. (11.153)

Thus, downstream the front, we have

I(K) =
3Q0

p0Δu

(
K2

0 + 2mc2K0

K2 + 2mc2K

)γ/2

, where γ =
σ + 2

σ − 1
= α− 2, σ =

u1

u2
=

ρ2
ρ1

,

(11.154)

σ is the compression ratio at the shock front.
For ultrarelativistic particles (K 
 mc2, K0 
 mc2), the spectrum

simplifies to

I(E) = 3Q0

p0Δu

(E0
E
)γ

, E ≥ E0, (11.155)

while for nonrelativistic particles (K,K0 � mc2) to

I(K) =
3Q0

p0Δu

(
K0

K

)γ/2
, K ≥ K0. (11.156)
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Finally, if the injection energy is nonrelativistic (K0 � mc2), while the energy
range of interest is relativistic (K 
 mc2), the spectrum receives the form

I(E) = 3Q0

p0Δu

(2mc2K0)
γ/2

E γ . (11.157)

Let us summarize main properties of the diffusive particle acceleration at
the shock front and make general assessment of this mechanism applicability:

• Within the 1D model, the spectrum of relativistic accelerated particles
has a power law with index γ defined solely by the shock wave strength
described by the compression ratio σ of the fluid at the front. For σ = 4
(that is the largest value for the adiabatic shock wave in nonrelativistic
plasma) γ = 2. The galactic CRs have a power-law spectrum with
γ ≈ 2.7 (implying σ ≈ 2.8) within rather broad energy range, 10 ≤
E ≤ 106GeV; for nonrelativistic energies the spectral index is γ/2.
Remarkably, the power-law index does not depend on the detailed
turbulence properties around the front.

• The spatial inhomogeneity of the particle distribution is specified by
the scale:

L =
κ1
u1

=
vΛ1

3u1
, (11.158)

where Λ1 is the mfp along the front normal upstream. For fast par-
ticles, v 
 u1, this scale L much exceeds the mfp Λ itself. The scale
L sets up the distance over which the particles from around the front
can travel upstream before returning back to the front by the fluid
inflow. The particles occupying the layer with thickness L repeatedly
cross the front; the mean number of crossings is about v/u1.

• Consider energy balance (11.143) and estimate the relative efficiency of
diffusive shock acceleration and stochastic acceleration by accompany-
ing turbulence. The first integral in the rhs is estimated as (u1−u2)P
as per unit front area, where P is the accelerated particle pressure. To
estimate the second integral we use Eq. (11.55) for the diffusion coeffi-
cient in which 〈Δu2〉 ≡ 〈δu2〉 is the mean square of the turbulent veloc-
ity. Integration over dz can be replaced by multiplication by the scale
of inhomogeneity L upstream the front, Eq. (11.158), which yields the
estimate P 〈δu2〉/u1, so the ratio of the two terms is 〈δu2〉/u1Δu� 1,
if the alfvénic Mach number is large because the turbulent velocity at
the prefront region is about the Alfvén speed. It should be noted that
the diffusive shock acceleration is linearly proportional to the fluid



568 11 Particle Acceleration in Astrophysical Media

velocity jump at the front in contrast to the stochastic acceleration
which is proportional to the second power of the turbulent velocity.

• Any real shock front has a finite size and a finite lifetime. The energy
range of accelerated particles in which the power law is established de-
pends on the shock wave lifetime, front transverse size, and efficiency
of the turbulent diffusion around the front (described by real space dif-
fusion coefficients κ1 and κ2). For instance, the acceleration is off for
relatively high-energy particles when the mfp Λ1 reaches the same or-
der as the front size. Available estimates suggest that an isolated shock
wave produced by a supernova II explosion can accelerate protons up
to 104–106GeV, which still has a two order of magnitude uncertainty.
Remind that the highest possible acceleration energy of the electrons
can be additionally reduced by the radiative (e.g., synchrotron, see
Chap. 9) losses.

• As said, the acceleration efficiency is highly dependent on the par-
ticle mfp around the front. The smaller the mfp the more efficient
the acceleration. Importantly, that the accelerated particles, having a
considerable amount of free energy, can themselves enhance the MHD
turbulence, which, in its turn, forms the particle mfp. This implies that
the detailed solution of the acceleration problem must be consistently
linked with a nonlinear self-consistent dynamics of the turbulence gen-
eration by the fast particles. On top of that, the electromagnetic radi-
ation, Chap. 9, produced in such a system must take into account the
turbulent component of the magnetic field in addition to or instead of
the standard synchrotron radiation in a regular magnetic field.

• For an extremely strong shock, σ = 4, the particle spectral in-
dex is γ = 2 so the energy density of the accelerated particles

w =
∫ Emax

E0
EI(E)dE ∼ ln Emax diverges logarithmically at high-energy

limit. This implies that the fraction of the inflow energy transferred to
the fast particles can be significant compared with the total available
kinetic energy of the flow. In such a case, one more nonlinearity arises:
the accelerated particles will affect the front itself, which calls for anal-
ysis of this back reaction to the shock front structure including the
fluid velocity profile and the pressure and temperature distributions
in the fluid flow.
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11.4.3 Nonlinear Modification of the Shock Wave
Structure by Accelerated Particles

The astrophysical shock waves accelerating particles up to high (ultrarel-
ativistic) energies are typically collisionless. Their front structure (neglect-
ing the fast particle pressure) is specified by the background thermal gas
and depends essentially on the prefront magnetic field orientation. In strong
quasiparallel shock waves with the alfvénic Mach number above “a few,” the
thermal front is a narrow transition interface with the thickness of the order
of a few ion inertial lengths c/ωpi (see Sect. 5.4.2), which is filled with strong
magnetic field fluctuations δB/B ≈ 1 with frequencies below the ion gyrofre-
quency. These fluctuations are supplied by a number of kinetic instabilities
arising in the counter-streaming flows formed by upstream and downstream
particles (see Chap. 4 for some examples) and, likely, play a dominant role
for the particle injection into the acceleration process.

As the fast particle pressure grows, an extended region, where the in-
coming flow gradually decelerates (called the prefront), develops upstream
the thermal front. The prefront appears because the accelerated particles
take the energy away from the inflow. The fast and background particle in-
teraction is mediated by the turbulence in the form of random magnetic
irregularities. This can be either a given “predefined” turbulence or, more
importantly, self-generated one by the accelerated particles themselves. This
process brings a positive loopback to the system (the more the accelerated
particle number, the stronger the turbulence) further facilitating the energy
transfer to the accelerated particles.

In the latter case, the turbulence is also fed by the energy of the shock
wave, and so the turbulent pulsations represent one of the dynamic ingre-
dients affecting structure of the shock transition. Nevertheless, in a strong
shock wave, most of the energy is shared between the fluid flow and accel-
erated particles, while the dynamic role of the turbulence remains minor,
which could imply that the turbulence evolution passively follows the cou-
pled evolution of the flow and fast particle. For this reason, here we consider
the turbulence in the vicinity of the shock transition to be specified by an
external source and fixed.

The prefront thickness is defined by parameter L, Eq. (11.158), which
can exceed the thermal front thickness by orders of magnitude. Therefore, we
adopt the thermal front to be infinitely narrow.While the accelerated particle
pressure grows, the amplitude of the fluid velocity jump at the thermal front
decreases and the hydrodynamics allows its full disappearance in case of plane
geometry.

The prefront thickness depends, by means of the diffusion coefficient, on
the particle energy: the higher the energy the thicker the prefront. Note that
for a given geometry and the turbulence spectrum, the turbulence cannot
confine at the front vicinity the particles with energies above some Em; these
particles run away from the front and lose any connection with it. This implies
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Figure 11.9: Nonlinear modification of a strong shock front by accelerated particles. A
thermal jump arises at z = 0 with jumps of the fluid velocity Δu = u∗ −u2 and pressure
ΔP = Pg2 − Pg∗. The velocity and pressure change smoothly at the prefront region,
z < 0. The accelerated particle pressure has no jumps; it asymptotically vanishes at the
prefront.

that such a shock wave suffers significant additional energy loss related to
these runaway particles; thus, the shock wave becomes a nonadiabatic one.
Indeed, this kind of energy loss has an effect similar to the radiative losses
from the optically thin heated plasma downstream the front, so it gives rise to
an increase of the compression ratio at the front: the enhanced compression
is provided by a relatively smaller downstream temperature as some of the
energy, which would otherwise heat the plasma, is transferred to the runaway
particles and so does not contribute to the plasma heating.

Let us quantitatively consider a purely hydrodynamic model (no MHD
effect included) of the shock transition with the account of the energetic ions,
whose pressure is supposed to be comparable with the dynamic pressure of
the background gas forming the shock. Below we use the hydrodynamics of
three-component fluid, namely, background electrons and ions and the accel-
erated ions, whose energy density is comparable with the energy density of
the gas flow, while the number density is small compared with the background
number density. This simplified approach, avoiding the use of kinetic equa-
tions, does not yield any detailed information (e.g., a distribution function) at
the shock transition. Nevertheless, it does allow drawing a qualitatively cor-
rect flow structure and get important links between a number of macroscopic
parameters.

Figure 11.9 outlines the front structure modified by a strong fast particle
pressure. Key parameters forming this structure are the overall compression
ratio in the flow σ and the fraction η of the dynamic pressure transferred to
the fast particle pressure:
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σ =
u1
u2

=
ρ2
ρ1
, η =

Pr2
ju1

, (11.159)

where u1 and ρ1 are the fluid velocity and mass density far away upstream;
u2 and ρ2 are the corresponding parameters downstream; ρ = ρg + ρr, the
subscript g denotes the background gas, while r the energetic (relativistic)
particles; Pr2 is their pressure behind the front; and j = ρ1u1 is the full flux
of the mass through the front. The figure also displays the thermal jump
of the fluid velocity at the front u∗ − u2 and thermal pressure jump at the
front Pg2 − Pg∗; energetic particles freely cross the front, so their pressure is
continuous there.

Let us write down the continuity conditions for the fluxes of the mass
j, momentum Πzz, and energy q through the front, analogous to Eqs. (5.61)
and (5.62) valid for a shock wave without accelerated particles:

j = ρ(z)u(z) = ρ1u1, (11.160a)

Πzz = ju(z) + Pg(z) + Pr(z) = ju1 + Pg1, (11.160b)

q =
1

2
ju2(z)+

γg
γg − 1

u(z)Pg(z)+
γr

γr − 1
u(z)Pr(z)− κ(z)

γr − 1

dPr
dz

+ qmΨ(z) =

1

2
ju21 +

γg
γg − 1

u1Pg1. (11.160c)

The magnetic field does not enter here because it is continuous at the front
within the considered geometry (parallel shock wave). The energy flux is
written with the account of the relation between the energy density and the
pressure for the ideal gas familiar from the statistical physics:

Pg = (γg − 1)ε, Pr = (γr − 1)w, (11.161)

where ε and w are the densities of the kinetic energy of the background
gas and the fast particles, respectively, γg and γr are the corresponding
indices of the Poisson adiabats (ratios of specific heats). For a gas composed
of nonrelativistic particles γg = 5/3, while for the accelerated component
4/3 ≤ γr ≤ 5/3; the lower bound γr = 4/3 is achieved for photons and
other ultrarelativistic particles. If the distribution function of the acceler-
ated particles is known, one can explicitly calculate γr from the second of
Eqs. (11.161).

To derive Eq. (11.160c) we simplified diffusive flux (11.43) of the energy
to the form

q(d)r = −κ(z)dw
dz

= − κ(z)

γr − 1

dPr
dz

, (11.162)

where κ(z) denotes the diffusion coefficient averaged over the energetic par-
ticle spectrum. Apparently, this flux includes only the particles with energies
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E < Em linked to the front by the turbulence effect. The runaway particles
with E ≥ Em are included in the term qmΨ(z), where qm is the flux density of
the runaway particles and Ψ(z) is their normalized spatial distribution. The
function Ψ(z) = 1 at z > 0 while drops to zero outside the prefront, i.e., at
z → −∞.

In the absence of accelerated particles, the velocity varies only within the
thin thermal front, and conservation laws (11.160) enable us to express ρ2, u2,
and Pg2 behind the front in terms of incoming flux j, u1, and Pg1, although
this is not possible any longer when the accelerated particles are present.
This important distinction arises because the conservation laws themselves
contain no information about the fraction of particles transferred into the
accelerated component from the incoming flux or the energy they gain during
acceleration. These parameters themselves depend on the global structure of
the shock front, including its smooth part.

Applying Eqs. (11.160a) and (11.160b) to the region z > 0, excluding Pg2
from them, and using notations (11.159), we find a relation

η =
(γr − 1)(σ − 1)

γg − γr + kσ(γg − 1)(γr − 1)

[
(γg − 1)

2
− (γg + 1)

2σ
+

1

M2

]
≥ 0.

(11.163)

Here we have introduced the dimensionless parameters k = qm/u1Pr2 for the
energy flux of escaping particles and M2 = jui/γgPg1 for the square of the
Mach number of the incoming nonrelativistic plasma flow.

If γr = γg (acceleration up to nonrelativistic energies only) and there is
no particle escape, k = 0, then the denominator turns to zero, therefore, the
expression in square brackets must also go to zero to keep η finite, which
yields the familiar compression ratio for the hydrodynamic shock waves:

σ−1
min =

γg − 1

γg + 1
+

2

M2(γg + 1)
. (11.164)

Note that even though the numerator and denominator in Eq. (11.163) both
turn to zero in this limiting case, the parameter η remains finite according
to its definition (11.159). The compression ratio σmin defined by Eq. (11.164)
does not exceed 4 for any Mach number in a nonrelativistic plasma with
γg = 5/3. However, for γr < γg the compression ratio increases accordingly.

Let us obtain now an upper bound of the accelerated particles pressure
using Eq. (11.160b). Applying it to the region behind the front z > 0, we
have

Pr2 = j(u1 − u2) + Pg1 − Pg2. (11.165)

The ratio Pg2/Pg1 cannot be lower than implied by the Poisson adiabat
Pg ∼ ρ

γg
g , for a given compression σ, i.e., Pg2/Pg1 ≥ σγg . The equality cor-

responds here to a fluid flow without any thermal jump, when the entropy
of the thermal component (per particle) does not change. In such a case, the
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Figure 11.10: Shock front model without the thermal jump, where all the macroscopic
parameters vary smoothly. The characteristic spatial scale of the shock “front” is L ≈
κ/u1, which is controlled by the accelerated particle transport.

total entropy increases at the “shock” transition due only to the particle ac-
celeration. Figure 11.10 displays behavior of the velocity and pressure at the
shock transition without the thermal jump. The thickness Lsh of the shock
front is determined here by the accelerated particle effect. It has the same
order of magnitude as thickness of prefront (11.158), Lsh ≈ κ/u1. So far,
there is no compelling observational case reporting that smooth shock fronts
in either laboratory or an astrophysical object; although, this kind of the
shock structure must certainly be kept in mind as a theoretically admissible
option. Note, however, that an essential requirement for the smooth shock
to exit is absence of additional plasma heating in the precursor region. A
possible source of the heating is dissipation of the neglected here turbulence
generated by the accelerated particles.

From Eq. (11.165) we obtain

0 ≤ η ≤ ηm = 1− σ−1 +
1− σγg

γgM2
, (11.166)

which, combined with Eq. (11.163), bounds the range of the involved parame-
ters. The equality in the rhs of Eq. (11.166) defines the dimensionless pressure
ηm of the accelerated particles behind the shock transition.

Equation (11.163) and inequality (11.166) specify the allowable range of
the compression ratio at the shock wave transition and the energy flux of
the escaping runaway particles for a given Mach number. By considering the
lower bound put by inequality (11.166) and, accordingly, k = 0 implied by
η = 0, we obtain the lower bound of the compression ratio σmin, Eq. (11.164),
i.e., σ > σmin. The upper bound in inequality (11.166) corresponds to the
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case when all the excess energy of the incoming flow is transferred to the
accelerated particles. Here, there is no thermal jump and, for a given M ,
the energy of the accelerated particles is highest. Denoting the corresponding
compression by σmax, we obtain

1

2

(
1− 1

σ2
max

)
+

1− σ
γg
max

(γg − 1)M2
=

[
k +

γr
σmax(γr − 1)

][
1− 1

σmax
+

1− σ
γg
max

γgM2

]
.

(11.167)

This equation is a generalization of the Hugoniot adiabat to the case
of a shock wave with accelerated particles and a smooth front without a
sharp thermal jump. It connects four quantities: the Mach number, the en-
ergy flux of escaping particles, the compression ratio, and the adiabatic in-
dex for accelerated particles. Of them, the Mach number is supposed to be
a given externally defined parameter. The quantities γr and k can be calcu-
lated self-consistently from the corresponding kinetic solution of the problem.
The remaining parameter, the maximum compression ratio σmax, can be ex-
pressed in terms of the other three using Eq. (11.167); it can vary substantially
depending on these three other parameters.

Let us consider an important case of strong shock waves, i.e., M 
 1.
Neglecting the small terms (1 − σ

γg
max)/M2 → 0 as M → ∞, Eq. (11.167)

yields the compression ratio:

σmax =
γr + 1

(γr − 1)(1− 2k)
. (11.168)

If nonrelativistic particles predominate among the accelerated particles and
the escape effect is small, then γr ≈ γg and k → 0, so σmax ≈ 4 that coin-
cides with Eq. (11.164) asM → ∞. Note that although we have assumed that
the acceleration leads primarily to nonrelativistic energies, this does not rule
out the possibility of the front fuzing. The accelerated nonrelativistic parti-
cles have larger transport mfp than the thermal particles, which eventually
determines the front thickness when the pressure of the accelerated particles
exceeds the pressure of the thermal plasma.

Let us suppose now that relativistic particles dominate the spectrum,
γr → 4/3, and the particle escape occurs with the highest possible rate, i.e.,
k → 1/2, yielding σmax → ∞ and ηm → 1. In this hypothetic case, the gas
behind the front would be motionless and infinitely compressed, and all the
energy of the incoming plasma flow transferred to escaping particles:

qm = k u1Pr2 = k ηm ju
2
1 = ju21/2.

Thus, depending on the injection power, acceleration efficiency, and the
particle escape conditions, the following range of values is possible for a shock
wave with a smooth front:
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0 < k ≤ 1/2, 4 < σmax <∞; (11.169)

these inequalities are, apparently, valid for shock waves with a finite thermal
jump as well.

Therefore, for strong shocks with M → ∞, the allowable range of the
compression ratio for shock waves with finite thermal jumps and fuzzy fronts:

γg + 1

γg − 1
≤ σ ≤ σmax =

γr + 1

(γr − 1)(1− 2k)
, (11.170)

while for finite M this range narrows; it can be found numerically for any
given M .

Let us now find the velocity jump u∗/u1 at the prefront (excluding the
thermal front itself) using conservation of the momentum flux. Taking into
account that the accelerated particles pass freely through the thermal front,
so that their pressure is the same on both sides of it, we find Pg2 = Pg∗ +
j(u∗ − u2). In the region z < 0 the fluid velocity varies smoothly, and the

pressure of the thermal component follows the Poisson adiabatPg∗ = Pg1y
−γg∗ ,

where y∗ = u∗/u1. Substituting these relations into Eq. (11.165) and using
Eq. (11.163), we find

y∗ +
1

γgM2y
γg∗

= 1 +
1

γgM2
− η. (11.171)

Here the possible values of parameter η are bounded by inequalities (11.166).
From roots of Eq. (11.171) we have to select one providing y∗ ≥ σ−1.

In the strong shock wave case M → ∞, the range of values (11.170) for
the global compression ratio σ corresponds to the range 1 ≤ σ∗ ≤ σmax for
the local compression ratio σ∗ at the thermal jump. At the upper bound,
σ∗ coincides with σ, implying no thermal jump in this (unique) case. For
σ < σmax we always have σ∗ ≤ σ, i.e., the thermal jump is nonzero, although
it can be very small for large M .

Equation for the velocity profile u(z) over the smooth segment −∞ <
z < 0 can be obtained using conservation laws (11.160b,c). Although the
corresponding equation is rather complicated, one can use a simplified inter-
polation equation retaining all essential physics over the entire domain of the
variable 0 ≥ z > −∞

dy

dx
=

2

1− ym
(1− y)(y − ym), (11.172)

where a new independent variable has been introduced:

dx =
(1 − ym)u1

2κ(z)

⎧⎨
⎩1 +

γr − 1

2
exp

⎡
⎣−

0∫
x

u1dz
′

2κ(z′)

⎤
⎦
⎫⎬
⎭dz, x(0) = 0.

(11.173)
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Equation (11.172) has a solution that satisfies the boundary condition
y(0) = y∗:

y(x) =
y∗(σmax − 1) + [2− y∗(σmax + 1)] tanhx

σmax − 1 + (σmax + 1− 2σmaxy∗) tanhx
, x ≤ 0, y∗ > ym.

(11.174)
Likewise the usual MHD shock wave, the velocity of the plasma is constant
downstream the shock transition: y(x) = u2/u1 for x > 0. For y∗ = ym no
thermal jump is present, so the shocked boundary washes out entirely:

y(x) =
1

2
(1 + ym)− 1

2
(1− ym) tanhx. (11.175)

Here we have a simple solution for a smooth transition between two stationary
states [see expression Eq. (5.91)].

Although the fluid velocity profile is rather complex, the distribution
function of accelerated particles at the thermal front and behind the front is
simple:

N(p) = (α− 3)

(
1− 1

σmax

)
u21ng1
cv0p30

(
p0
p

)α
, p ≤ pm. (11.176)

However, to calculate the spectral index α and the compression parameter
σmax requires a self-consistent (numerical) computation (see, e.g., Toptygin
1997). Note, that an increase of global compression ratio σ leads to a decrease
of the exponent α in the momentum spectrum. For relativistic index γr = 4/3
neglecting the particles escape, (k → 0), the largest possible compression ratio
from Eq. (11.170) is σ = σmax = 7. Thus, Eq. (11.152), α = 3u1/(u1 − u2) =
3σ/(σ − 1), yields α = 7/2. If the particle escape is essential, the spectral
index α < 7/2.

A prominent feature of the considered non-linear problem is the presence
of several (one or three) different solutions for the same set of involved param-
eters. In particular, for a certain range of injection power, there are regimes
corresponding to the same injection, while displaying essentially different
global compression ratio, velocity profile shape, and spectra of accelerated
particles. The presence of several branches of the solution is typical for many
highly diverse nonlinear systems. It is indicative of existing unstable states of
the shock transition, being in which the system is capable of a spontaneous
transition to another state differing strongly from the original one due to a
very small change in, e.g., the injection power, which, thus, can lead to a con-
siderable change of the involved parameters such as the global compression
ratio and the spectrum of accelerated particles.

It is worthwhile to note that the outlined picture of the shock nonlinear
modification is confirmed by numerous numerical simulations. For example,
in a model presented by Vladimirov et al. (2009) the upstream velocity u(z)
decreases from u1 at a numeric boundary z = zfeb to u∗ < u1 at z = 0, then
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Figure 11.11: The fluid velocity (curves labeled 1), number density (2), and total pres-
sure (3) versus distance from the explosion center in the perturbed (downstream) region,
normalized to their values at the inner boundary of the front for various compression
ratios: (a) σ = 4.01, (b) σ = 4.25, (c) σ = 5.5, and (d) σ = 6.75. Curves 4 and 5 stand
for the relative pressure of either relativistic (4) or nonrelativistic (5) particles normalized
to the total pressure at the front.

has a small thermal jump and then, at z > 0, reaches a constant downstream
value u2 < u∗. The compression ratio was much larger than the classical value
of 4: σ = u1/u2 = 15 in a model without the turbulence cascading or σ = 11
in a model with cascading. Qualitatively, the velocity profile is similar to that
shown in Fig. 11.9. The temperature of the background plasma is constant
in the prefront in the model without turbulence cascading and experiences
strong jump at the thermal jump, while in the model with cascading the
temperature increases gradually at the prefront and has a minor jump at the
thermal front at z = 0.

A plane front with a one-dimensional velocity field considered above does
not account a true shape of the shock wave from a strong point explosion.
Effect of the accelerated relativistic particles on the spherical shock wave
can be analyzed via a generalization of the auto-model Sedov solution for a
strong point explosion (Toptygin 2000). Without derivation, Fig. 11.11 shows
distributions of the velocity, density, and pressures downstream for various
compression ratios. The plots show that as the compression ratio increases,
the fluid is “raked up” to the front, so the shell becomes narrower. Distribu-
tion of the fluid velocity depends on the compression ratio only weakly, while
the full pressure increases greatly. Curiously, the plots imply that the full gas
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pressure in the center region of the cavity is dominated by the relativistic
particles even if their pressure is small compared with the background gas
pressure at the front region.

As has been said, the multiple front crossing by particles needed to ensure
an efficient acceleration requires either many shock fronts or an enhanced
turbulence level to form a reasonably small particle mfp. We start from the
first option, while address the turbulence generation later, in Chap. 12.

11.5 Particle Acceleration by Supersonic Turbulence

11.5.1 Physical Model and Basic Equations

We have already pointed out that the particle acceleration is highly powerful
in many astrophysical objects, which implies a correspondingly strong energy
release supplying the acceleration. Indeed, the strong energy release gives rise
to strong perturbations of the fluid with the stochastic velocities exceeding
that of the linear modes of the fluid, i.e., the sound speed cs and the Alfvén
speed vA. Apparently, these fast fluid motions will either be produced in the
form of shock waves or evolve due to nonlinear front sharpening, Sect. 5.1.4,
toward formation of the shocks. On top of that, these shock wave ensembles
can be superimposed on large-scale contraction and rarefaction waves along
with other gradual turbulent structures with a broad spatial and temporal
spectra, Sect. 6.10. This rather complicated turbulence is reasonable to be
called supersonic and superalfvénic; a simple model of that strong turbulence
produced by multiple supernova explosions has been considered in Sect. 6.10.1
without account of the particle acceleration.

Formation of the strong supersonic turbulence is likely inside galactic
superbubbles, Sect. 5.6, produced in the OB associations due to cumula-
tive effect of powerful stellar winds from massive stars and supernova ex-
plosions occurring at the end of the massive star evolution lasting ∼106–
107 years. A similar turbulence can be present in other galaxies, especially,
in the active galactic nuclei, as well as in powerful solar and stellar flares. A
distinctive feature of this strong turbulence is its intermittency, revealing it-
self in the form of sharp discontinuities (basically, shock waves in the plasma
dominated by the kinetic energy or tangential discontinuities, called also the
current sheets, in the magnetically dominated plasma). The diffusive particle
acceleration near the shock fronts results in a corresponding intermittency of
the fast particle distribution; the acceleration time of bulk of the particles is
short compared with typical time of the acceleration region evolution, so we
adopt a stationary turbulence for an initial qualitative consideration of the
acceleration effect.

Since efficient acceleration occurs near an MHD shock front, the spatial
distribution of the fast particles has an inhomogeneity there with a spatial
scale l ∼ κ/u ≈ vΛ/3u, where u is the front velocity and κ is the local diffu-
sion coefficient along the front normal. This diffusion is caused by macroscopic
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small-scale fluctuations of the turbulent fields, while Coulomb collisions are
not suitable for that as they imply severe collisional loss of energy. The for-
mation of the mean accelerated particle spectrum depends on both strength
of the fronts and on the ratio of the introduced scale l and the mean distance
L between the fronts. The latter scale can apparently be identified with the
main scale of the supersonic turbulence.

The corresponding ratio, L/l = uL/κ = Pe, is in fact the Pecklé number
introduced in Sect. 7.3, where we demonstrated that the particle diffusion
can be described within the perturbation theory for small Pecklé num-
bers, Pe� 1. This remains valid in considering the particle acceleration as
well. The other case, Pe = L/l 
 1, is more interesting while much more
demanding. Now, a strong spatial inhomogeneity of the fast particle distribu-
tion with an established power-law spectrum is formed near each front faster
that the mean time L/u between front collisions with each other. The spatial
scale of the fast particle cloud is small compared with the main scale of the
turbulence, thus, the spatial distribution of the fast particles is highly inho-
mogeneous with strong spatial enhancements around the fronts, which then
will spread out in the volume due to turbulent diffusion after shock–shock
collisions. Then, a new strong front will again form a strong inhomogeneity of
the fast particle distribution and so on. This qualitative picture is a natural
outcome of the intermittency of the supersonic turbulence, namely, of the
presence of strong discontinuities (shock waves).

To correctly account the (local) shock front contribution to the overall
acceleration by the strong turbulence, we are to use the solution for a single
front obtained in Sect. 11.4 and average this solution over volumes with scale
l near the fronts. This yields an integral operator describing strong accel-
eration at a single front. Then, we average over larger regions of the order
of the main turbulence scale L. Since Pe = L/l 
 1, the perturbation the-
ory does not apply here, so a renormalization of the kinetic coefficients is
called for, which is performed by a method described in Sect. 7.3.2. How-
ever, the problem addressed here is much more complicated and it requires
more information about the turbulence properties complementary to the pair
correlators considered earlier in Sect. 7.3.2.

Specifically, we need the distribution of the shock fronts over the Mach
number (or, equivalently, over the velocity jumps). Then, in addition to the
spectral functions T (k, ω) and S(k, ω) of the vortex and potential motions
characterizing pair correlator (7.51), we need two more spectral functions.
One of them will describe the correlation between the velocity jumps at dif-
ferent fronts, the other one the correlations between the fronts and rarefaction
waves characterized by the divergence ∂uα/∂xα between fronts.

The outlined scheme is basically similar to that presented in Chap. 7;
however, much more cumbersome for the reasons explained above. Below we
present the overall form of the corresponding equations for further use [see
the details in a review by Bykov and Toptygin (1993)]:
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1. A simpler case, when the particle acceleration is weak over one
turbulence correlation scale L, i.e., the absolute change Δp of the
particle momentum satisfies the condition Δp � p. Note that the
acceleration at fronts can be arbitrarily strong. Then, the distribution
function F of the accelerated particles satisfies the integro-differential
equation:

∂F

∂t
− χΔF =

(
1

τsh
+ C

)
L̂F +

1

p2
∂

∂p
p4D

∂F

∂p
+AL̂2F +

2

3
CL̂p

∂F

∂p
.

(11.177)

The integral operator entering the equation

L̂ =
1

3p2
∂

∂p
p3−α

p∫
0

dp′p′α
∂

∂p′
, α =

3σ

σ − 1
, (11.178)

describes strong acceleration of the particles at the fronts, where all the
fronts are adopted to be equally strong. The constants τsh, χ, A, C,
and D can be expressed via statistical measures of the fronts and
turbulence (cf. Eq. (7.53) for χ in the incompressible case):

τsh ≈ L

Δush
, χ=κ+

1

3

∫
d 3kdω

(2π)4

[
2T (k, ω)+S(k, ω)

iω+k2χ
− 2k2χS(k, ω)

(iω+k2χ)2

]
,

(11.179a)

D =
χ

9

∫
d 3kdω

(2π)4
k4S(k, ω)

ω2 + k4χ2
, A = χ

∫
d 3kdω

(2π)4
k4φ̃(k, ω)

ω2 + k4χ2
,

C = χ

∫
d 3kdω

(2π)4
k4μ̃(k, ω)

ω2 + k4χ2
. (11.179b)

They do not depend on the particle momentum until the particle trans-
port is mediated by the turbulent diffusion. Here, like in Sect. 7.3.2,
T and S are the transverse and longitudinal components of the tur-
bulent velocity correlation tensor, while φ̃ and μ̃ describe shock–shock
and shock–rarefaction velocity correlations, respectively, and Δush is
the mean jump of the fluid velocity at fronts.

2. A more complicated is the case of strong acceleration, Δp � p, between
the fronts. Here, in addition to the acceleration at the fronts, the ac-
celeration between them is also described by an integral operator. The
corresponding equation is easier to formulate using a logarithmic sub-
stitution η = ln(p/p0), where p0 is an arbitrary constant momentum:
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∂F

∂t
=

∞∫
−∞

χ(η − η′)ΔF (r, η′, t)dη′ +
(

∂

∂η
+ 3

) ∞∫
−∞

D(η − η′)F (r, η′, t)dη′.

(11.180)

The Fourier transforms of the core χ and D can be calculated from a
set of two transcendental equations (not shown here) containing both
spectral functions of turbulence and statistical characteristics of the
fronts (Bykov and Toptygin 1993).

11.5.2 Evolution of Particles Accelerated by Strong
Turbulence

Let us consider formation of the accelerated particle distribution function
by solving Eq. (11.177). To do so we replace the real space diffusion term
by a model escape term, F/τe, replace the source term by a δ-term, (1/p20)
δ(p−p0)δ(t−t′), and apply the Green function method (Bykov and Fleishman
1992). The Green function is determined using Laplace transformation in time
and Fourier transformation over variable ln(p/p0) and then back to physical
variables. A remarkable property of this Green function is that it does not
depend on detailed properties of the turbulence and shock ensemble at large
time, t 
 τsh, but depends on the acceleration time τsh. In particular, for
the case of sustained, constant in time, injection rate of the particles into the
acceleration, the Green function at t
 τsh has the form

G(p, t) =
τsh
9p30

{
α
[
1− e−σ(t−tp−)

]
Θ(t− tp−), p ≤ p0,

(α− 3)
(
p0
p

)3 [
1− e−σ(t−tp+)

]
Θ(t− tp+), p ≥ p0,

(11.181)

where

σ =
3

(2α− 3)τsh
, tp− = ατsh ln(p0/p), tp+ = (α− 3)τsh ln(p/p0).

(11.182)

In reality, the injection spectrum is not monoenergetic, so to obtain
a meaningful solution we have yet to integrate the Green function with
a realistic injection function over p0. In the considered physical system
involving an ensemble of strong shocks it is reasonable to assume that these
shocks are the main injectors of the seed particles into the global accelera-
tion process, i.e., according to Eq. (11.152) describing the accelerated particle
spectrum at a single shock wave we have

Fi(p0) = (α − 3)qi
pα−3
i

pα
Θ(p0 − pi). (11.183)
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Figure 11.12: A sequence of the accelerated particle spectra described by Eq. (11.184)
at t/τsh = 0, 5, 10, 15, and 20 shown by the lines with correspondingly increasing
thickness.

Then, convolution of Eqs. (11.181) and (11.183) yields

N(p, t) =
(α− 3)qiτsh

9p3i

⎧⎨
⎩
(
pi
p

)3 [
1− e−σ(t+tp)

1−3α/[(α−3)(2α−3)]

]
, pi ≤ p ≤ p∗,(

pi
p

)α
exp(t/τsh), p∗ ≤ p ≤ pmax,

(11.184)

where p∗ = pi exp(t/(α−3)τsh), tp = ατsh ln(p/pi), and pmax is the maximum
possible momentum, which can be set up by applicability of Eq. (11.177), i.e.,
by a requirement that the advective turbulent transport dominates over the
diffusive transport, Λ(p) � 3l∗u/v, or by applicability of the test particle
approximation used to obtain solution (11.184). Apparently, solution (11.184)
illustrated by Fig. 11.12 describes highly efficient particle acceleration in a
form of quickly raising, hard power-law tail with spectral index 3 from original
softer tail with spectral index α ≤ 4, which takes only a few τsh intervals. Note
that the hard spectrum with index 3 recovers the spectral shape obtained in
Sect. 11.3.2 for the Fermi acceleration regime with τa/τd → 0.

11.5.3 Particle Acceleration in Galactic Superbubbles

Let us apply solution (11.184) to evaluate particle acceleration in Galactic
superbubbles (see Sect. 5.6.2), the objects supplied by strong “mechanical lu-
minosity,” L̇k ∼ 1037–1038 erg/s, formed by mutual action of power stellar
winds from massive stars and shock waves generated as these stars start to
explode as type II supernovae in 1–3 Myear after formation of the OB associ-
ation. This strong energy release forms a cavity with radius R ∼ 100pc filled
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by a hot (T ∼ 10MK) tenuous (n ∼ 10−2 cm−3) plasma with an ensemble of
primary and secondary shocks and accompanying developed turbulence with
a broad range of spatial scales. The main scale of the turbulence is reason-
able to associate with the mean distance between shock fronts, l∗ ∼ 3–10pc,
the corresponding plasma velocity fluctuation is about (1–3)×108 cm/s. The
original ISM magnetic field is swept out from the volume by the plasma
flow, see Sect. 5.5.2; however, the turbulent plasma motions generate a tur-
bulent magnetic field (with the same main scale l∗) with a saturated value
of δB ∼ 3 × 10−5G, see Chap. 8. Here we consider the stage of slow, quasi
isotropic expansion of the volume, when the linear scale of it is smaller than
the Galactic disk density scale, i.e., before the superbubble blowout into the
Galactic halo (Sect. 5.6.2) may come into play.

First of all, as explained in Sect. 11.5.2, we estimate the maximum energy
Emax(pmax) from the model applicability requirement 3l∗u/(vΛ(pmax)) = 1.
Using the particle mfp described by Eq. (7.106) for the case when the entire

magnetic field is the turbulent field, i.e., B2/〈B̃2〉 ∼ 1 and ν = 1.7, we find
for protons

Emax ∼ 10 GeV, (11.185)

that increases for smaller ν. Thus, for most of the realistic turbulence spec-
tra (Chap. 6) the kinetic equation used is applicable at least up to 10 GeV
protons.

The estimate of the test particle approximation applicability is more
demanding. To do so we first have to estimate the particle injection rate and
then, using solution (11.184), calculate the energy density in the accelerated
particle population. As has been said, we assume that the strong shock fronts
themselves are the main particle injectors. Thus, the injection rate qi can
formally be written as

qi = 〈ηnushΣsh/VSB〉, (11.186)

where η is a probability of a background particle interacting with the front
to be picked up by the diffusive shock acceleration process, ush is the front
velocity, Σsh is the shock surface area, VSB is the source volume, the angu-
lar brackets denote averaging over the shocks. Observations, modeling, and
theoretical considerations suggest the range

10−5 < η < 10−1. (11.187)

Now we can use the introduced values to estimate the energy content of
the accelerated particles; note that with the hard spectrum, p2N(p) ∝ p−1,
the accelerated proton energy density Wp ∼ ∫ p∗

pi
E(p)p2N(p)dp is specified

by the upper limit, so that Wp ∼ ηpnp∗c. Let us estimate pm that is the
largest p∗, still compatible with the test particle approximation used. Since
the kinetic energy density of the large-scale plasma motions is

Wk ∼ 10−10
( u

108 cm s−1

)2 ( n

10−2 cm−3

)
erg cm−3, (11.188)
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the apparent condition Wp/Wk < 1 requires that pm/mc < (u/c)2/ηp, i.e.,
Em ≡ E(pm) < 1GeV for ηp > 10−5 [Eq. (11.187)] and u ∼ 108 cm/s, i.e.,
well within the applicability range of Eq. (11.177). Within the test particle ap-
proximation one can suppose that the particle spectrum evolution described
by Eq. (11.184) stops as soon as p∗ reaches pm.

In a reality, however, the accelerated particles become dynamically im-
portant and start to modify (i.e., exhaust) the turbulence well before that
moment, which calls for much more sophisticated joint analysis of the parti-
cle evolution, Eq. (11.177), and the coupled turbulence evolution taking into
account the turbulence decay for particle acceleration (Bykov 2001):

∂S(k, t)

∂t
+
∂ΠS(k, t)

∂k
= γSTT (k, t)− γdSS(k, t)− γCRS(k, t), (11.189a)

∂T (k, t)

∂t
+
∂ΠT (k, t)

∂k
= γTTT (k, t)− γSTT (k, t)− γdTT (k, t), (11.189b)

where, compared with Eq. (6.133), one more term, −γCRS(k, t), describing
the compressible turbulence decay due to particle (CR) acceleration, is added.

Therefore, we arrive at a set of coupled equations, describing gen-
eration and nonlinear evolution of the transverse turbulence component,
Eq. (11.189b), whose energy density goes partly (term γSTT (k, t)) to excite
the longitudinal (compressible) component of the turbulence capable of ac-
celerating the charged particles, and the particle evolution, Eq. (11.177). The
term −γCRS(k, t) accounts for the energy density balance in such a way that
the corresponding decrease of the turbulence energy density is equivalent to
the energy gain of the accelerated particles.

Apparently, the obtained set of equations is rather complicated, and so,
not surprisingly, no analytical solution to it has been found. Numerical solu-
tion of this equation set with monoenergetic injection function (Bykov 2001),
whose efficiency is convenient to characterize by the injection energy loading
parameter (instead of fraction of electrons η defined by Eq. (11.186))

ζi =
2
∫
E(p)Fi(p)p

2dp

D(0) ρ 〈u2〉 ≈ η
p20

m2〈u2〉 , (11.190)

where E(p) is the particle kinetic energy expressed via its momentum p,
reveals a number of interesting features, Fig. 11.13. Initially, the spectrum
hardening occurs in agreement with test particle solution (11.184), in par-
ticular, the hard spectrum range p2N(p) ∝ p−1 covering about two decades
develops by the time of 105 years. Soon after that the turbulence power con-
version reaches its maximum and the power-law tail growth slows down and
stops; afterwards, steeper spectra with breaks up appear. Such spectra are
novel compared with the test particle solution; the total energy density in ac-
celerated particles goes down and the distribution function evolves towards a
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Figure 11.13: Left double panel presents time series of accelerated particle spectra
(p2N(p)) computed taking into account the accelerated particle back reaction on the tur-
bulence for source scale R = 220 pc, monoenergetic injection of 10 keV (left) or 10GeV
(right), ζ = 10−3. Right double panel shows power conversion efficiency for the acceler-
ation patterns shown in the left double panel; dash–dotted lines display the same measure
for a source size of 100 pc; from Bykov (2001).

relatively steep state containing relatively small energy density. Overall, the
solution suggests a prominent spectral evolution, which, however, is difficult
to directly detect because the timescale of the evolution is long compared to
commonly available observation periods.

Details of the distribution function evolution depend on many factors
involved. For example, left and right parts of the panels in Fig. 11.13 show
evolution for the cases of nonrelativistic (10 keV) and relativistic (10 GeV)
injection of protons. Although the spectral patterns are similar, the spectral
indices, acceleration times, and final states of the spectra are all different.
This behavior is a direct consequence of the nonlinearity of the system under
study; in particular, the obtained solutions (even though computed for the
monoenergetic source function) do not represent the Green function, i.e., the
solution for the case of a more realistic injection function cannot be obtained
by integration of the given solution with the source function.

The presented acceleration model shows that the acceleration efficiency
by strong supersonic turbulence can be very high, up to ∼30% relative to the
accelerating turbulence energy density, although it decreases slightly after
reaching the efficiency peak. It is interesting that a similar consideration for
even stronger acceleration, described by integral equation (11.180) may result
in oscillations of the power conversion efficiency after the peak time (Bykov
1998) instead of monotonic decline in Fig. 11.13, right. It is yet unclear if
the equation set considered here can produce similar oscillatory regimes for
certain parameter ranges or the monotonic decline represents an intrinsic
property of this acceleration process.

11.5.4 Particle Acceleration by Strong Turbulence
in Solar Flares

Signatures of particle acceleration in solar flares are obtained from nonther-
mal radio, X-ray, and gamma radiation (see Chaps. 9 and 10) they generate in
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solar corona, from analysis of secondary effects they produce, e.g., on plasma
heating or ionization, or from in situ detection of escaping fast particles by
specialized spacecrafts in IPM. In particular, modern HXR observations allow
investigating spectral evolution during individual subpeaks of the impulsive
HXR emission. Often, each such subpeak displays a soft-hard-soft (SHS) evo-
lution; the property, which was earlier established for the impulsive phase as
a whole. It is commonly adopted now that the SHS spectrum evolution of
the accelerated particle population is an intrinsic property of the accelera-
tion mechanism involved. We note, however, that a fraction of stronger events
(typically, the proton reach events) displays a different kind of the spectral
evolution, namely, soft-hard-harder (SHH) as well as a gradual phase of the
impulsive events.

Another important accomplishment is that a significant fraction (some
tens of percent) of the released energy goes into nonthermal accelerated par-
ticles. This conclusion is also confirmed by the radio data suggesting that in
some cases the total energy of accelerated electrons can be as high as 30% of
the estimated magnetic energy of the flaring loop. These findings imply that
the back reaction of the fast particles on the accelerating agent (e.g., the tur-
bulence) is essential so this back reaction must be properly taken into account
by the acceleration model. Based on the model considered in Sect. 11.5.3 we
anticipate that taking into account this back reaction dictated by the large
energy content in the accelerated particles will also offer a prominent spectral
evolution implied by HXR observations as has been said.

To be specific, we adopt the following scenario (Bykov and Fleishman
2009). A process of flare energy release results in formation of large-scale
flows and strong MHD fluctuations in a reasonably tenuous plasma with
frozen-in magnetic fields. The turbulence is assumed to be confined in the
acceleration region; possible turbulence leakage from the acceleration region
is compensated by the adopted sustained source of the transverse compo-
nent of the large-scale turbulence. Particles, however, can escape from the
region through its boundaries because of a large mean free path of the par-
ticles outside the region. The distribution function N(r, p, t) of nonthermal
particles averaged over an ensemble of turbulent motions satisfies kinetic
equation (11.177), which we simplify here in several ways. Firstly, because
the model does not include shock fronts and other discontinuities, we neglect
all terms containing integral operators from the rhs. And secondly, we replace
the real space diffusion by the escape term, which yields

∂N

∂t
+
N

τe
=

1

p2
∂

∂p
p4D(t)

∂N

∂p
+ Fi(p), (11.191)

where τe = R2/4χ, R is the characteristic size of the acceleration region, χ
is the (renormalized) turbulent diffusion coefficient defined by Eq. (11.179a).
The particle source term Fi(p) can differ depending on the dominating in-
jection process of the electrons and nuclei. Although we do not consider
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explicitly any injection process, we note that there are many ways, e.g. the
resonance wave–particle interactions (Sect. 11.3.3) or acceleration by helical
turbulence (Sect. 11.2.2), to inject particles into the stochastic acceleration
process by strong turbulence considered here. A continuous injection of mono
energetic particles (electrons and protons i = e, p) with some injection energy
loading parameters ζi was adopted.

The model accounts only for the evolution of large-scale (energy-
containing) motions with kΛ(p) � 1, where Λ(p) is particle mean free
path due to scattering by small-scale (resonant and nonresonant) magnetic
field fluctuations. Although no evolution of the small-scale fluctuations is
considered explicitly, see in Sect. 12.1, a relatively strong level of small-scale
scattering is needed to provide κ(p) = vΛ(p)/3 < k−1

0 · √〈u2〉, which is
required for Eq. (11.191) to be valid. Kinetics of particles satisfying this
inequality is determined by turbulent advection and so does not depend on
the details of the small-scale diffusion coefficient κ(p). The energy range,
where this inequality holds, does depend on the charged particle mean free
path Λ(p). The estimates show that it is typically fulfilled for electrons up
to a few MeV, where the particle transport is fully driven by the large-scale
turbulence and as so it does not depend on the actual momentum dependence
of the mean free path Λ(p). In fact, this acceleration regime is an advanced
version of considered in Sect. 11.1.3 magnetic pumping.

Then, Eqs. (11.189) for the turbulence evolution can also be simplified.
In particular, the transverse component of the turbulence T (k, ω, t) decays
slower than the longitudinal component S(k, ω, t) because only the latter
explicitly decays due to particle acceleration; thus, T (k, ω, t) ≈ const over the
time interval of interest. Accordingly, the temporal evolution of the spatial
diffusion coefficient χ is very slow since in Eq. (11.179a) it is dominated by
the transverse component of the turbulence; thus, the escape time τe depends
on neither time nor particle energy.

Finally, in case of a single scale long-wavelength injection of the turbulent
motions (gaussian spectrum with the characteristic wave number k0) we can
safely neglect in Eq. (11.189a) both cascading term in the lhs and direct
turbulence damping γdS = 0 in the rhs. We, therefore, consider a simplified
equation for S(k, ω, t)

∂S(k, ω, t)

∂t
= γSTT (k, ω, t)− γapS(k, ω, t), (11.192)

where the expression for the damping rate of large-scale turbulence due to
particle acceleration γap = θD. The θ parameter was determined (iteratively)
in such a way as to preserve conservation of the total energy in the system
of the turbulence and the particles with account for energetic particle escape
from the acceleration region. Although this simplified set of equations neglects
many of potentially important effects, it, nevertheless, properly takes into
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Figure 11.14: Temporal evolution of particle distribution function (sequence of p2N
vs p/p0 plots, where p/p0 is the dimensionless particle momentum normalized by the
injection momentum p0) simulated within a flare acceleration region of the scale size
R = 14π/k0 for the particle injection energy loading parameters ζe = 10−3 (left panel)
and ζe = 0.1 (right panel). Particle spectra are shown in 20 logarithmically distributed
consequent time frames measured in tD(0) starting from 0.01 to 30. For some typical
parameters, e.g., R = 2 × 109 cm, B=300 G, n = 109 − 1011 cm−3, we have vA �
2.2 × (108 − 109) cm/s, and the characteristic acceleration time τacc ≡ 1/D(0) � 1–
10 s in agreement with HXR (Grigis and Benz 2006) and radio (Bastian et al. 2007)
observations (Bykov and Fleishman 2009). Reproduced by permission of the AAS.

account the nonlinear coupling between accelerated particles and accelerating
compressible turbulence.

Figure 11.14 shows the particle distribution function (∝ p2N) computed
within the model for ζe = 10−3 (left panel) and ζe = 0.1 (right panel).
Although there are apparent differences in particle spectra for different ζe, all
of them display clearly SHS behavior of the spectra of accelerated particles.
The origin of this spectral evolution is easy to understand within the pro-
posed model. Initial phase of the acceleration occurs in the linear regime (test
particle approximation is still valid at this stage), which results in effective
particle acceleration by the longitudinal large-scale turbulent motions and
spectral hardening. Then, the fast particles accumulate a considerable frac-
tion of the turbulent energy by the end of the linear stage and start to exhaust
the turbulence, thus, the efficiency of the acceleration decreases, which first af-
fects higher-energy particles resulting in the spectrum softening. Remarkably,
the slope of the spectrum at the late decay phase (red solid curves) depends
strongly on the injection efficiency ζe. In fact, the final spectrum is much
steeper in case of strong injection compared with weak injection. Besides the
general SHS evolution, we should note that in agreement with previous stud-
ies of the stochastic acceleration, e.g., Sect. 11.3.3, these spectra do not obey
power laws exactly: breakups and breakdowns are evident from the plots.
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Figure 11.15: HXR spectral index evolution for theoretically calculated spectra with
various ratios of the escape time to the acceleration time, Tesc/τacc = 5 (green curve),
1 (red curve), and 0.2 (blue curve) and observed from the 04 December 2002 flare,
asterisks, and from the occulted 06 September 2002 flare, horizontal dashes (E. Kontar,
private communication) Bykov and Fleishman (2009). Reproduced by permission of the
AAS.

11.5.5 Observational Evidence for Stochastic Particle
Acceleration in Solar Flares

Observationally, the conclusion of the SHS spectral evolution of the fast elec-
tron spectra in impulsive flares came from analysis of HXR data. Therefore, to
address the question if the considered acceleration regime and corresponding
spectral softening on the flare decay phase are consistent with observations,
the HXR spectral evolution must be computed based on the electron spectra
presented above. Since it is reasonable to expect that the coronal thin-
target HXR emission is closer related to the accelerated electron spectra than
the footpoint thick-target emission, Bykov and Fleishman (2009) computed
the evolution of the thin-target HXR emission generated by the evolving
ensemble of the accelerated electrons (as in Fig. 11.14) and then derived the
evolution of the HXR spectral index at E = 35 keV to compare with ob-
servations of the coronal HXR sources. The model dependences of the HXR
spectral index on time are shown in Fig. 11.15 by three curves computed for
various ratios of the acceleration time to the escape time. The asterisks in
the same plot show the evolution of the HXR spectral index observed for the
coronal source in the December, 04, 2002 event (Battaglia and Benz 2006).

The spectral index analysis of the coronal source can in principle be bi-
ased by much stronger footpoint contribution; thus, a more reliable way of
the thin-target HXR analysis could be the study of the occulted X-ray flares.
An example of the corresponding spectral index evolution in an occulted 06
September 2002 flare is shown by three long horizontal dashes in Fig. 11.15.
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Even though no theoretical curve is the exact fit to the data, one can clearly
note remarkable similarities between theoretical curves and observations in-
cluding the main SHS behavior and some hardening at the later stage in both
model curves and the December 04, 2002 event.

In spite of overall consistency of the model and observed SHS spec-
tral evolution, there are also apparent differences between them. However,
dissimilarities between the theory and observations are comparable to the
dissimilarities between the spectra observed from different events. Thus, we
can ascribe these differences to the effects discarded from the model, e.g.,
the varying geometry of the source and/or to different regimes of the tur-
bulence generation, cascading, damping, resonant stochastic acceleration of
electrons, and various injection regimes. Note that all these mentioned effects
will influence the linear stage of the particle acceleration, where we do see
the most obvious departure of the model curves from the data; in contrast,
during the decay (softening) phase the model and observed curves behaves
highly consistently, which confirms that the nonlinearity originated from the
fast particle–turbulence coupling does represent the main physical effect con-
trolling the spectrum evolution at the late phase of stochastic acceleration.

Moreover, the considered model offers a consistent way of interpreting
the SHH evolution in a subclass of HXR flares. Indeed, the final spectrum in
the right panel of Fig. 11.15 is so steep that it is perhaps undistinguishable
against background thermal particle distribution (not explicitly included in
the model). This means that the sequence of the (dash–dotted) spectra of
accelerated electrons in the right panel will reveal itself as SHH evolution
of the HXR spectrum. This conclusion is consistent with the fact that the
SHH evolution is observed in stronger, often proton reach, events, where
enhanced injection of the charged particles (including protons) is likely, and
with a recent finding of gradual transitions between SHS and SHH evolution
fragments (Grigis and Benz 2008), which requires a common acceleration
mechanism for both SHS and SHH evolution patterns. Overall, we conclude
that taking into account the nonlinearity, which is unavoidable ingredient
in a system where efficient acceleration by strong turbulence occurs, offers
a plausible way of interpreting both kinds of the characteristic spectrum
evolution, SHS and SHH, observed from solar flares.

A by-product of the adopted here model of the turbulent electron trans-
port is the energy independent, constant in escape time from the acceleration
region, which implies that electrons with different energies leave the accelera-
tion site simultaneously: the property required by measurements of the HXR
fine structure timing, see Sect. 7.1.1. Furthermore, the decay time of mi-
crowave light curves is often independent on the radio frequency, i.e., on cor-
responding energy of radio-emitting electrons, see an example in Sect. 7.4.4.
The electron diffusion due to resonant scattering on turbulent waves can be
consistent with this property; however, as shown in Sect. 7.4.4, this requires a
certain fine tuning of the model parameters. In contrast, the considered here
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turbulent transport regime intrinsically results in an energy-independent res-
idence/escape time. On the other hand, the decay phase, even if mediated
by turbulence, is a post-acceleration phase, so the parameters derived from
the electron transport at this stage are not directly relevant to the accelera-
tion region. From this perspective it would be valuable to derive the required
parameters directly from the acceleration region analysis.

However, detection of X-ray and radio emission from the acceleration
region is difficult. The detection of X-rays from the acceleration site is chal-
lenging due to (i) a relatively low density of the surrounding coronal plasma
and (ii) the presence of competing emissions, i.e., emission from hot coronal
flare plasma and trapped electron populations. In addition, as HXR flux is
proportional to the plasma density, the bulk of HXRs is emitted in the dense
plasma of the chromosphere (HXR footpoints) biasing the X-ray imaging of
tenuous coronal emission. Studies of flares with footpoints occulted by the so-
lar disk (Krucker and Lin 2008; Krucker et al. 2010) provide direct imaging of
the looptop X-ray emission but are hampered because essential information
on the flare energy release contained in the precipitating electrons becomes
unavailable. What is needed is to cleanly separate the acceleration and pre-
cipitation regions while retaining observations of both. Stated another way,
having both radio and X-ray observations of a flare without significant plasma
heating and without noticeable magnetic trapping would provide the needed
information on both components to make characterization of the acceleration
region possible. Below we consider one (at the time of writing—unique) event
whose observed microwave GS emission is produced directly in the acceler-
ation region of a flare, and hence, parameters derived from the microwave
spectrum pertain to the directly accelerated electron population and the ac-
celeration region (Fleishman et al. 2011).

X-ray image (Fig. 11.16) clearly shows that the flare has two well-defined
footpoints, which are well visible over the entire range of the X-ray spectrum
6–80keV. The imaging below or around 10 keV does not demonstrate any
thermal component in a separate location as is often seen at the top of a loop
in flares (see, e.g., Fig. 9.18, right), so all the detectable X-ray emission down
to the lowest energy ∼6 keV comes from the footpoints. The flare occurred at
the extreme eastern edge of the active region with the weaker X-ray source
projected onto the photosphere in a region of strong positive magnetic field,
while the stronger X-ray source projects onto a small region of weaker nega-
tive magnetic field, as has commonly been observed from asymmetric flaring
loops.

Both the number of accelerated electrons and the spectral index demon-
strate typical SHS behavior like that considered above. The hardest electron
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Figure 11.16: Left panel: Spatial distribution of X-ray emission (contours at 30, 50,
70, and 90% levels) from July 30, 2002, flares at 9–15 keV (red), 15–30 keV (orange),
and 30–100 keV (blue). Time accumulation interval for RHESSI images is 17:37–17:38
UT. Background image is SoHO EIT 195 Å taken just before the flare at 17 : 36 UT.
Right panel: theclose-up view of the active region and a potential extrapolated flux tube
(green) connecting two X-ray footpoints (blue contours), 2.6–3.2 GHz radio image (red
contours) and 4.2–8.2 GHz radio image (yellow contours). Magenta plus signs mark
the spatial peaks of the HXR and radio sources. Dashed ellipses display the sizes of the
synthesized beams (Fleishman et al. 2011). Reproduced by permission of the AAS.

spectra δx∼3.5 are reached around 17 : 37 : 40 UT. At the same time, the
electron acceleration rate has its maximum of Femax(> 10 keV)�1035 elec-
trons per second.

Radio imaging performed in two separate bands, 2.6–3.2GHz and 4.2–
8.2GHz, reveals that the corresponding radio images (Fig. 11.16) are located
between the X-ray footpoints although with an offset from their connect-
ing line, which is consistent with the radio sources placement in a coro-
nal part of a magnetic loop connecting the X-ray footpoints. The higher-
frequency radio source is displaced compared with the lower-frequency one
toward the stronger magnetic field (weaker X-ray) footpoint. No spatial dis-
placement with time is detected for either of the radio sources. Based on
the source separation, implied magnetic topology, and the northern HXR
source size, the sizes of the radio sources can be estimated as 10′′(transverse
the loop)×15′′(along the loop), and the depth of 10′′ for the lower-frequency
radio source, which suggests the radio source volume of Vradio ∼ 6×1026 cm3,
and roughly half of that for transverse sizes of the higher-frequency source.

Generally, GS continuum radio emission (see Chap. 10 for more detail)
can be produced by any of (1) a magnetically trapped component, Sect. 7.5.3,
or (2) a precipitating component, Sect. 7.1.1, or (3) the primary component
within the acceleration region, Sects. 11.2.2, and 11.5.4. Remarkably, these
three populations of fast electrons produce radio emission with distinctly
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Figure 11.17: RHESSI 30–100 keV (thick line) and Phoenix-2 3.2–3.6 GHz (thin line)
lightcurves of July 30, 2002 flare with 2 s time resolution both. The light curves are highly
correlated; no significant delay is present: the lag correlation plot is given in the insert;
negative delay means the radio emission comes first (Fleishman et al. 2011). Reproduced
by permission of the AAS.

different characteristics. Indeed, (1) in the case of magnetic trapping the
electrons are accumulated at the looptop (Melnikov et al. 2002b), and the
radio light curves are delayed by roughly the trapping time τtrap relative to
accelerator/X-ray light curves. (2) In the case of free electron propagation,
Sect. 7.1, untrapped precipitating electrons are more evenly distributed in a
tenuous loop, and no delay longer than L/v is expected. However, even with
a roughly uniform electron distribution, most of the radio emission comes
from loop regions with the strongest magnetic field. Spectral indices of the
radio- and X-ray- producing fast electrons differ here by 1/2 from each other,
because L/v∝E−1/2. (3) In the case of radio emission from the acceleration
region, even though the residence time (τe) that fast electrons spend in the
acceleration region can be relatively long, the radio and X-ray light curves
are proportional to each other simply because the flux of the X-ray producing
electrons is equivalent to the electron loss rate from the acceleration region,
Fe(t) = Nr(t)/τe.

To address the timing, needed for analysis of the radio data, it is rea-
sonable to compare the radio and HXR light curves. The cross-correlation
(Fig. 11.17) displays clearly that the radio and HXR light curves are very
similar to each other and there is no delay in the radio component. In fact,
the cross-correlation is consistent with the radio emission peaking ∼130 ms
earlier. The lack of noticeable delay between the radio and X-ray light curves
is further confirmed for all available radio frequencies. Therefore, the mag-
netically trapped electron component appears to be absent, and the radio
emission is formed by either (ii) precipitating electrons or (iii) electrons in
the acceleration region or both.
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Figure 11.18: OVSA radio spectra obtained by two small antennas (pluses and aster-
isks; differences between them offer an idea about the data scatter vs. frequency) and
model GS emission from the acceleration region (dashed lines), precipitating electrons
(dotted lines), and sum of these components (solid line). Total number and number
density of the fast electrons at the radio source as derived from the OVSA radio spectrum
are shown in two bottom panels (Fleishman et al. 2011). Reproduced by permission of
the AAS.

With the spectrum of energetic electrons from HXR data, it is easy to es-
timate the radio emission produced by the precipitating electron component.
Taking the electron flux, the spectral index of the radio-producing electrons
δr≈δx + 1/2, and the electron lifetime at the loop L/v (the time of flight,
Sect. 7.1.1), one can vary the magnetic field at the source in an attempt to
match the spectrum shape and flux level. However, if we match the spectrum
peak position, we strongly underestimate the radio flux, while if we match
the flux level at the peak frequency or at an optically thin frequency, we over-
estimate the spectrum peak frequency; examples of such spectra are given in
Fig. 11.18 by the dotted curves.
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We conclude that precipitating electrons only [option (ii)] cannot make
a dominant contribution to the observed radio spectrum. Indeed, having
the spectrum peak at the observed low frequency requires a low magnetic
field, see 3D GS modeling in Sect. 10.2.2; however, in a low magnetic field
the observed radio flux density requires a relatively large number density of
radio-emitting electrons, which, for the given injection rate determined from
the HXR data implies a relatively long residence time of the fast electrons
in the low-frequency radio source, τe 
 L/v. On the other hand, this res-
idence time must be shorter than the radio light curve decay time, ∼10 s;
otherwise, the decay of the radio emission would be longer than observed.
Thus, a reasonable estimate of this lifetime is somewhere between those two
extremes τe ∼ 3 s.

Figure 11.18 displays a sequence of meaningful radio spectrum fits
adopting the following parametric dependences and available constraints
obtained from the data: Nrmax(> 6 keV) = τeFemax(>6 keV) with a value of
Femax(>6 keV) = 2 × 1035 electrons/s and τe = 3 s, and the time evolution
of Nr(>6 keV) is assumed proportional to an optically thin gyrosynchrotron
light curve. The total lifetime of the electrons in the flaring loop is a sum of
the residence time at the radio source and the time of flight between the radio
source and the footpoints. As we adopted a constant, energy-independent,
electron lifetime τe to be much larger than the time of flight ∼L/v we have
to accept for consistency that the spectral index of the radio-emitting fast
electrons is roughly the same as the spectral index of HXR emitting fast
electrons determined above, δr = 3.5. The radio source sizes are taken as
estimated above based on the flare imaging. The thermal electron number
density is adopted to be nth = 1.5× 109 cm−3: the GS spectra are insensitive
to this parameter until nth � 2× 109 cm−3, while at least nth = 109 cm−3 is
needed to supply the observed acceleration rate. The remaining radio source
parameter, not constrained by other observations, is the magnetic field B,
which is determined by comparing the observed (symbols) microwave and
calculated (dashed curves) GS spectra (Fleishman and Kuznetsov 2010) in
Fig. 11.18.

Remarkably, that the whole time sequence of the radio spectra is rea-
sonably fitted with a single magnetic field strength of B ≈ 60 G; the only
source parameter changing with time is the instantaneous number of the fast
electrons, see Fig. 11.18. The microwave spectra, however, deviate from the
model-dashed curves by the presence of a higher-frequency bump at f ∼ 4−8
GHz. Nevertheless, adding the contribution produced by precipitating elec-
trons (dotted curves) at a larger magnetic field strength Bleg peaking some-
where at the western leg (60 G< Bleg <1000G) of the loop as directly follows
from the radio imaging, Fig. 11.16, offers a nice, consistent overall fit (solid
curves) to the spectra. We conclude that the radio spectrum is dominated by
the GS emission from the electron acceleration region with a distinct weaker
contribution from the precipitating electrons.
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In order to complete the model for this event let us address the 3D
structure of the flaring loop. As a zero-order approximation a potential field
extrapolation based on the line-of-sight magnetogram is utilized. Figure 11.16
shows that there is a flux tube connecting the two X-ray footpoints, which
confirms existence of the required magnetic connectivity. This magnetic
loop is highly asymmetric with the magnetic field reaching its minimum
value (around 130 G) at the northern footpoint (stronger X-ray source). The
length of the central field line is about 4 × 109 cm. We know, however, that
the flare phenomenon requires a source of free energy to be released, i.e., a
nonpotential magnetic structure. We, therefore, propose that the true flaring
loop, connecting two HXR footpoints and two coronal radio sources, is higher
and the length of the central field line is somewhat longer; for the estimate
we adopt L ∼ 7 × 109 cm that yields the loop volume Vloop ∼ 4 × 1027 cm3

roughly 5 times larger than the radio source volume.
Let us proceed now to the energy release and plasma heating efficiency.

The energy release rate dW/dt is estimated as the product of the minimum
energy (6 keV) and the acceleration rate Fe(> 6 keV), which yields ∼2 ×
1027 ergs/s at the flare peak time. Being evenly distributed over the loop
volume this corresponds to the averaged density of the energy release of
∼0.5 erg cm−3s −1 and, being multiplied by the effective duration t1/2, the
energy density deposition of w ∼ 12 erg cm−3. Most of this energy is produced
in the form of accelerated electrons around 10 keV. During the time of flight
in the loop (with density 1.5× 109 cm−3 and half length ∼3× 109 cm) these
electrons lose about Δ � 15% of their initial energy. Thus, we can estimate
the plasma heating by the accelerated electrons up to T�w/(1.5kBnth)×Δ ∼
5MK, where kB is the Boltzmann constant. Combined with a relatively low
emission measure of this tenuous loop, this heating is undetectable by X-ray
spacecrafts (GOES and RHESSI), even though the acceleration efficiency is
extremely high.

The observed properties of the acceleration region allow to narrow the
range of possible acceleration mechanisms in this event: indeed neither DC
field acceleration (inconsistent with the long residence time of fast electrons)
nor acceleration in collapsing magnetic traps (inconsistent with constancy of
the magnetic field at the source and with constancy of its spatial location)
is relevant for this case, while they are fully consistent with the stochastic
acceleration in a magnetic loop, when a standard, relatively narrowband, GS
emission is produced at a given volume (permitted with a loop magnetic
field) by the electrons accelerated there by a turbulence, whose side effect
is to enhance the electron trapping (“strong diffusion transport regime,”
Sect. 7.5.3) and so increase, as observed, their residence time at the accel-
eration region. The electron acceleration efficiency is very high in the flare,
so almost all available thermal electrons are eventually accelerated. Some
sort of stochastic acceleration process is, therefore, needed to account for an
approximately energy-independent lifetime of about 3 s for the electrons in
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the acceleration region. All these discovered properties of the acceleration re-
gion, in particular, high acceleration efficiency, SHS evolution, and constant
residence time independent on either electron energy or time, are naturally
consistent with the considered above nonresonant electron acceleration by
strong turbulence. We conclude that detection of GS radio emission from a
region of the electron stochastic acceleration by strong turbulence is likely in
this event.

Let us summarize the physical parameters of the detected acceleration
region in this solar flare: the apparent source area is 10′′ × 15′′; the source
volume is V ∼ 6× 1026 cm3; Femax(>6 keV) = 2× 1035 electrons/s; τe = 3 s;
Nrmax(>6 keV) = 6 × 1035 electrons; magnetic field B ∼ 60G; nth ∼ 1.5 ×
109 cm−3; duration ∼30 s. Based on these acceleration region parameters we
can estimate some properties of the MHD turbulence needed to provide the
residence time of the order of 3 s. Indeed, for a strong while smooth turbulent
motions, u ∼ vA ≈ 3× 108 cm/s for the obtained magnetic field and thermal
density. Then, the escape time is τe ∼ L2/4χ ≈ L2/(4vAl∗). Substituting the
observed values of vA, L ∼ 109 cm, and τe, we can estimate the main scale of
the MHD turbulence to be l∗ ∼ 2 × 108 cm, which is in full agreement with
the idea of acceleration by large-scale turbulence (l∗ is much smaller than
the source size L as needed). We conclude that the nonlinear acceleration
of electrons by strong large-scale MHD turbulence is a plausible mechanism
capable of driving the bulk particle acceleration in solar flares compared with
other logical possibilities, some of which (runaway electrons in DC electric
fields, in reconnecting current sheets, or particle energization in collapsing
traps) have been considered in this chapter, whose role seems more local.

Problems

11.1 Particles accelerated at the Sun propagate in the radial solar wind
that has a speed u = const and suffer the adiabatic cooling. The transport
mfp is small, so one can neglect the diffusion term in Eq. (11.36). Calculate
dependence of average (over the spectrum) particle energy on the distance
from the Sun.

11.2 Heavy rigid magnetic clouds (magnetic mirrors) move one dimension-
ally with the same nonrelativistic velocity u � c in the observer’s reference
frame; the number of the clouds moving in each direction (back and forth
along Ox axes) is the same on average. Calculate the change of relativistic
particle energy due to a head-on or tail-on collision. Demonstrate that the
particle energy increases exponentially with time and determine the charac-
teristic time τa of the e-folding energy increase. Adopt the mean collision
frequency of the particles with clouds ν to be known.
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11.3 Obtain fast particle distribution function from Eq. (11.61) with the
initial condition N(p, 0) = N0p

−2
0 δ(p− p0) (i.e., consider the Fermi accelera-

tion for a constant transport mfp Λ = const).

11.4 Assume that in the case considered in the previous problem, the accel-
eration is off in a finite time due to the turbulence decay. This process can
be described by Eq. (11.61) adopting the acceleration time τa(t) to depend
on time in such a way that τa → ∞ at t → ∞. Determine the accelerated
particle spectrum after the turbulence decay.

11.5 Consider the problem of the particle acceleration similar to that consid-
ered in Sect. 11.3.2, but for a spherical region with the radius a and with the
account of boundary conditions. The diffusion coefficient in the momentum
space D(p) = p2/τa is only nonzero inside the sphere. The spatial diffusion
coefficient κ = const is constant and same in and out the sphere. Particles
with a momentum p0 are injected into the acceleration process uniformly
inside the sphere.

11.6 For conditions of Fermi acceleration modified by the adiabatic losses
studied in Sect. 11.3.4 consider limiting cases such as: (a) no adiabatic loss is
present, u = 0, and (b) no acceleration is present, D = 0.

11.7 Adopt that a plane front considered in Sect. 11.4.2 does not inject par-
ticles, while there are fast particles with a distribution over momentum N0(q)
(in the range qmin ≤ q ≤ qmax) in the inflow. Assume that qmin exceeds the
minimal injection momentum p0 needed for the diffusive shock acceleration
to operate. Calculate the accelerated particle spectrum at the front.

11.8 � Consider the particle acceleration by a stationary spherically symmet-
ric termination shock formed at the transition from a supersonic to subsonic
flow in a stellar wind. Adopt the following stellar wind model:

κ = κ1 = const, u = u1 = const at r < r0;

κ = κ2(r), u = u2

(r0
r

)2
at r > r0.

The shock front is located at r = r0 and has a velocity jump Δu = u1 −
u2 > 0. In the subsonic region, r > r0, the fluid velocity decreases as r−2,
which implies expansion with a constant density. Adopt the injected particle
population in the form Q(r, p) = (Q0/4πr

2
0p

2
0)δ(p−p0)δ(r−r0). Calculate the

accelerated particle spectrum over momentum and their spatial distribution.4

4Recall, Sect. 2.5, most of active stars have a stellar wind with u1 ≈ (2–3) ×
108 cm/s, r0 ≈ 3–10 pc ≈ 1019 − 3× 1020 cm. The solar wind has much more modest
parameters: u1 ≈ 4× 107 cm/s, r0 ≈ 90 au ≈ 1.4 × 1015 cm, see Sect. 2.5.1 .
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Answers and Solutions

11.1 Use Eq. (11.47). By definition we have ∇ · u = 2u/r. The particles
with small mfp propagate with the solar wind velocity, thus, dt = dr/u.
Integrating Eq. (11.47), we find K = K0(r0/r)

4/3 in the nonrelativistic case,
where K = E −mc2 is the particle kinetic energy and r0 is the inner radius of
the solar wind region. The solar wind temperature will drop with the same
law if no heating source is available. In the ultrarelativistic case we have
E = E0(r0/r)

2/3.

11.2 At the head-on collision the particle gains energy ΔE+ ≈ 2Eu(v +
u)/c2, while at the tail-on collision it loses energy ΔE− ≈ −2Eu(v−u)/c2. So,
if the collisions were equally frequent, then the result of two collisions would
be ΔE± ≈ 4Eu2/c2 on average, or ΔE± ≈ 2Eu2/c2 per one collision. On top
of that, we have to take into account that the head-on and tail-on collisions
have uneven rates, so they must be added with their corresponding statis-
tical weights proportional to the relative velocities5 of the colliding agents:
w± = (v ± u)/2v. Account of these nonequal weights further doubles the
energy change ΔE± ≈ 4Eu2/c2 per one collision; thus, per unit time we have:
dE/dt = ν(w+ΔE+ + w−ΔE−) = 4ν(u/c)2E . This yields exponential energy
growth E(t) = E0 exp(t/τa) with the e-folding time constant τa = c2/4u2ν.

11.3 The equation is reduced to the diffusion equation by the variable sub-
stitution

x = ln(p/p0), τ = t/τa, τa = p2/D(p) = const

and factorizing the unknown function as follows:

N(p, t) = N0(pp0)
−3/2e−9τ/4f(x, t).

The function f represents a solution of the 1D diffusion equation

f(x, t) =
1

(4πτ)1/2
exp

(
−x

2

4τ

)
, p = p0e

4τ/τa.

This acceleration regime yields a very hard spectrum with a lot of high-
energy particles, while energy of each single particle grows exponentially. It
must be noted, however, that any real magnetic cloud becomes more and
more transparent for particles with higher and higher energy, which reduces
the acceleration rate. In addition, acceleration region has always a finite size,
which implies finite acceleration time. Eventually, any acceleration occurs
only up to a finite energy.

5We note here that the relative velocity of two bodies can exceed the speed of
light c in some inertial reference frame.
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11.4 This problem is reduced to the previous one by introducing a dimen-
sionless time: τ =

∫ t
0 dt

′/τa(t′). The spectrum is described by the previ-
ous solution where the dimensionless time τ is replaced by a finite value
τ0 =

∫∞
0 dt/τa(t), where τa(t) = p2/D(p, t). The diffusion coefficient must

decay faster than t−1 at t→ ∞.

11.5 In Eq. (11.116) replace the term N/τd by original isotropic diffusive
term

κ

r2
∂

∂r
r2
∂N

∂r
,

while the source term by

(Q0/p
2
0)δ(p− p0)Θ(a− r).

Given the symmetry, we look for a solution dependent on the scalars r and p
only. The variables in the equation separate, N(r, p) = R(r)P (p); the radial
one obeys the equation

1

r2
d

dr
r2

dR

dr
= −λ

κ
R,

where λ is the separation parameter, which is an eigenvalue of both operators.
In the inner part a bounded solution has the form R(r) = (A/r) sin kr, where
k =

√
λ/κ. In the outer region the symmetric solution is R(r) = B/r, where

A and B are constants.
Matching the radial functions R and the particle fluxes κdR/dr at r = a

yields k values: kn = (π/2a)(2n + 1), n = 0, 1, . . . Therefore, we determine
an infinite set of the relaxation times:

τdn =
1

λn
=

τd0
(2n+ 1)2

, where τd0 =
4a2

π2κ

is the longest relaxation time denoted as τd in Eq. (11.116).
The function Pn(p) is determined in a way used to solve Eq. (11.116)

and has the same form. However, each n value generates now its own spec-
tral index s1n, increasing as n increases. Thus, the distribution function is
expressed as an infinite sum

N(r, p) =

∞∑
n=0

AnRn(r)Pn(p).

At high energies, p
 p0, the term with n = 0 dominates. The coefficients An
are defined by expansion of the radial distribution in a series over the orthog-
onal set of the functions Rn(r) with the weight r2, taking into account the
radial dependence of the particle source function. The approximate solution



11.5 Particle Acceleration by Supersonic Turbulence 601

with only one lifetime in Sect. 11.3.2 ignores all the terms with large spectral
indices, which may not be essential if we are interested in a high-energy tail
of the distribution. On top of that, it yields incorrect spatial distribution of
the particle in the acceleration region, which might be essential if, e.g., we
analyze spatially resolved observation of the acceleration region.

11.7

z < 0, N1(z, p) = α exp

⎛
⎝

z∫
0

u1dz
′

κ1(z′, p)

⎞
⎠

p∫
qmin

N0(q)

(
q

p

)α
dq

q

+N0(p)

⎛
⎝1− exp

⎛
⎝

z∫
0

u1dz
′

κ1(z′, p)

⎞
⎠
⎞
⎠ ;

z > 0, N2(z, p) = α

p∫
qmin

N0(q)

(
q

p

)α
dq

q
, α=

3u1
Δu

.

The second term describes the particles that have not yet interacted with
the front. The function N0(q) has a sharp cutoff at q > qmax, where qmax

is the largest momentum of the original particle population. Thus, at p >
qmax the second term goes to zero, while the distribution behind the front is
N2(z, p) ∼ p−α. The function N2 does not depend on z. If the accelerated
particles are monoenergetic far away upstream the front, then

N2(p) =
αN0

p30

(
p0
p

)α
.

11.8 The boundary conditions are

N2(r, p) → 0 at r → ∞;

N1 = N2, κ2
∂N2

∂r
− κ1

∂N1

∂r
=
p

3

∂N1

∂p
Δu− Q0

4πr20p
2
0

δ(p− p0) at r = r0.

(1)

Apparently, both functions must be bounded everywhere.
The problem is convenient to solve using the Mellin transformation over p:

N(r, s) =

∞∫
0

N(r, p)ps−1dp. (2)

The transport equation for the Mellin transform has the form

r
d2N1

dr2
+
(
2− u

κ
r
) dN1

dr
− 2us

3κ
N1 = 0 (3)
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in the inner part. Its solution can be expressed via the degenerate hypergeo-
metric function (see, e.g., Abramowitz and Stegun 1964):

N1(r, s) = A(s)Φ

(
2s

3
, 2,

ur

κ

)
. (4)

In the outer region the equation takes the form

1

r2
d

dr
r2κ2(r)

dN 2

dr
− u2

r20
r2

dN2

dr
= 0 (5)

that has a solution

N2(r, s) = B(s)

⎧⎨
⎩1− exp

⎡
⎣−

∞∫
r

u2r
2
0

κ2(r)r2
dr

⎤
⎦
⎫⎬
⎭ . (6)

Matching them both using the boundary conditions, we obtain

N1(r, s)=
Q0p

s−3
0 (ek2−1)

4πr20u2

Φ(2s/3, 2, u1r/κ1)

Ψ(s,Δu, k1, k2)
, k1=

u1r0
κ1

, k2=

∞∫
r0

u2r
2
0

κ2(r)r2
dr ,

(7)

Ψ =

[
1− (ek2 − 1)

sΔu

3u2

]
Φ(2s/3, 2, k1) +

u1
u2

(ek2 − 1)Φ′(2s/3, 2, k1) , (8)

where the prime denotes the derivative of the degenerate hypergeometric
function over its last argument. To perform the inverse Mellin transform we
have to integrate the direct Mellin transform in the complex plane s over the
straight line contour parallel to the imaginary axes:

N(r, p) =
1

2πi

β+i∞∫
β−i∞

N(r, s)p−sds. (9)

To do so one has to find zeros of the function Ψ over the variable s. Using
recurrent formulae for the degenerate hypergeometric function we transform
equation Ψ = 0 to the form

s =
3u1
Δu

{
1− 1

k1
+

Φ(2s/3− 1, 1, k1)

k1Φ(2s/3, 2, k1)

}
+

3u2
Δu(ek2 − 1)

. (10)

We are primarily interested in the smallest absolute root of Eq. (10), which
yields the main asymptote at p 
 p0. For k1 → ∞ and k2 → ∞ Eq. (10)
yields s0 = 3u1/Δu, which corresponds to the particle acceleration by a
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plane front (see Sect. 11.4.2). Then, for finite while large k1 and k2, we use
an asymptote of Φ to obtain a larger root

s0 =
3u1
Δu

[
1 +

2u2
k1Δu

]
+

3u2
Δu(ek2 − 1)

>
3u1
Δu

. (11)

Taking the inverse Mellin transform, we obtain

N1(r, p) =
3Q0

4πr20Δup
3
0

Φ(2s0/3, 2, u1r/κ1)

Φ(2s0/3, 2, k1)

(
p0
p

)s0
, (12)

N2(r, p) =
3Q0

4πr20Δup
3
0(1− e−k2)

⎧⎨
⎩1− exp

⎡
⎣−

∞∫
r

u2r
2
0

κ2(r)r2
dr

⎤
⎦
⎫⎬
⎭
(
p0
p

)s0
.

(13)
Compared with the plane front, the spectrum is steeper, i.e., the number of
high-energy particles is smaller. This change is related to two effects: (1) the
particle faster escapes from the spherical front than from an infinite plane
front and (2) the particles suffer adiabatic cooling in the supersonic region,
r < r0, ∇ · u1 = 2u1/r > 0, where the fluid expands.



Chapter 12

Ultrarelativistic Component
of Astrophysical Plasmas

We have already noted in many places throughout the book that the very
dynamics of astrophysical plasma often results in production of an ultra-
relativistic plasma component on top of nonrelativistic background plasma
or drives the entire plasma to an ultrarelativistic state. A vivid example of
the first option is the galactic and extragalactic (ultra-high-energy) cosmic
rays (CRs), while the latter one includes ultrarelativistic pulsar winds or jets
and shock waves in active galactic nuclei (AGN) and GRBs. Physics of such
ultrarelativistic plasmas represents an extremely broad, highly dynamic, and
rapidly developing field of the modern astrophysics, which is hardly possible
to comprehensively describe within a textbook format. Nevertheless, below
we attempt to present some basic ideas and selected results having in mind to
(1) introduce current concepts related to the ultrarelativistic plasma compo-
nents and (2) demonstrate that the general theoretical framework developed
within the cosmic electrodynamics is fully applicable here as well as to tra-
ditional nonrelativistic cases.

Study of the ultrarelativistic plasma component has already acquired
a long history. An extraterrestrial air-ionizing radiation was discovered a
century ago by Victor Hess during a solar eclipse on April 12, 1912, in balloon
experiments when he flight at about 5 km above the Earth surface. Long
years of experimental and theoretical studies have passed until the nature of
this radiation, CRs—charged particles with energy up to 1020 eV—has been
basically clarified and a consistent (although yet incomplete) theory of the
CR origin has been proposed.

By now a large body of observational data on the CR spectra, nuclear
composition, and anisotropy has been accumulated, which must all be even-
tually accommodated within a self-consistent theoretical picture. Let us sum-
marize the very basic observational data on the CRs gathered by numerous
ground- and space-based experiments.

G.D. Fleishman and I.N. Toptygin, Cosmic Electrodynamics, Astrophysics
and Space Science Library 388, DOI 10.1007/978-1-4614-5782-4 12,
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The energy spectrum of the nuclear CR component recorded at the Earth
orbit is very broad and conventionally subdivided onto three roughly power-
law regions. At relatively low energies, E � 1010 eV, NCR(E) ∝ E−2.7. This
power-law region extends up to a so-called “knee energy” Ekn ∼ 3 · 1015 eV
above which the spectrum steepens to NCR(E) ∝ E−3. At a higher energy,
∼3 · 1018 eV, the spectrum flattens again to form an “ankle region”; no
CR particle has yet been detected above 1021 eV. It is interesting that the
CRs are dominated by protons at relatively low energies E � Ekn, while by
iron nuclei at and above Ekn. The angular CR distribution is almost isotropic
within accuracy∼10−3. The integrated CR energy density is about 1 eV/cm3.
The electron component of the CRs at the Earth orbit composes only about
1% of the integrated particle flux density. Most of the observed CR spectrum
is produced at the Galaxy, although the very high energy (VHE) tail at
E � 1018 eV has an extragalactic origin.

We emphasize that the theory plays an unusually important role in the
astrophysics of CRs. Indeed, unlike the electromagnetic radiation that propa-
gates almost rectilinearly from its source, the CRs possess an electric charge
so their propagation is controlled by electromagnetic fields. The energetic
particles have Larmor radii up to RL ∼ 1 pc and mfp Λ‖ � RL; thus, they
diffuse in the turbulent ISM filling more or less uniformly the galactic disk
and, perhaps, a more extended quasispherical galactic halo. Therefore, the
charged particles detected at the Earth orbit gained their energy somewhere
very far away from the solar system and their arrival direction carries no
information about the corresponding source location.

The main sources of the free energy supplying the CR energy are super-
nova explosions (as there is no other kind of objects capable of depositing
energy at the required rate) described in Sect. 5.5. The rate of SN explosions
in the Galaxy is estimated as one explosion over 30 years although most of
them remain unobserved due to strong absorption of the light by dust in the
galactic plane. Roughly 10% of the explosion kinetic energy must transfer to
the CRs to supply their energy density at the observed level of 1 eV/cm3.
Even though the free energy input provided by SNe is sufficient to supply
the observed CR level, the theory has yet to sort out how and where exactly
the CRs are accelerated—(1) during the prompt stage of the SN explosion,
(2) at the shock wave formed by expanding SN ejecta, or (3) at the compact
remnants—neutron stars.

Recall that in Sect. 11.5.3 we have considered a model of particle acceler-
ation in galactic superbubbles in which the SN explosions and corresponding
shock wave ensemble play an important role. Even though the model takes
into account a lot of essential physics including turbulent particle transport
and back reaction of the accelerated particles on the turbulence spectrum
and capable of reproducing some essential features of the CR spectrum, it
still contains many postulated model parameters self-consistent calculation
of which remains an open question. Stated another way, it is still a long way
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from the simplified models (like that considered in Sect. 11.5.3) to a fully
self-consistent comprehensive solution of the CR origin problem. Although
it seems established that the main accelerating element is a strong shock
wave from a SN explosion, many important details have yet to be work out.
Theoretically, most of the problems needed to be solved here are highly non-
linear. In particular, it is highly difficult to quantitatively obtain the required
energy density and the spectrum shape of the turbulence forming the charged
particle transport in real astrophysical conditions.

In this chapter we derive and discuss some selected results confirming
that the relevant sophisticated problems are becoming better understood
based on new detailed observations and deep theoretical study. In particular,
we show that the nuclear component of the galactic CRs and a significant
fraction of the electron component are produced at extended SNRs; a fraction
of CR electrons and positrons is generated by neutron stars (pulsars) whose
atmosphere contains relativistic electron–positron plasma and by pulsar neb-
ulae, while ultra-high-energy extragalactic CRs are likely to be generated by
sources of cosmological GRBs.

12.1 Galactic Cosmic Rays and Supernova Remnants

The main foundation of the theory of CR origin was formulated in mono-
graph (Ginzburg and Syrovatskii 1964) in half a century after the Hess CR
discovery.1 Remarkably, the developed concept relied essentially on accumu-
lated by the time data on CR composition, energy spectrum, intensity, and
anisotropy of the particle flux complemented by science-transforming radio
astronomy results. Indeed, a hypothesis [proposed by Alfvén and Herlofson
(1950), Kiepenheuer (1950) and actively promoted by Vitaly Ginzburg] of
synchrotron origin of the radio emission from many sources became widely
accepted during 1950s. It has been established that the radio waves are pro-
duced by ultrarelativistic electrons with E 
 mec

2 moving through mag-
netic fields of the cosmic objects. These achievements confirmed that charged
particle acceleration up to very high energies is a universal astrophysical phe-
nomenon taking place in and out the Galaxy: even though the radio astron-
omy is only sensitive to the electron CR component (radiation produced by a
proton with same Lorentz factor is roughly one million times weaker), there
were no doubts that nuclear CR component must have been generated along
with electron component.

1By now many fundamental monographs and review articles on the CR origin
have been published including Hayakawa (1974), Longair (1981), Ginzburg (1987),
Berezinskii et al. (1990) and Murzin (2007).
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12.1.1 Generation of MHD Oscillations by Accelerated
Particles Ahead of the Shock Front

As has been shown in Sect. 11.4 the most attractive property of the diffusive
shock acceleration mechanism is its ability to form a broad energy spectrum of
accelerated particles obeying roughly a power law with an index close to that
observed in the CR spectrum. Within the concept of CR generation by SNRs
one has to consider formation of accelerated particle spectrum by spherical
SNR shock waves having a finite size and living a finite time. A question
that immediately arises is if the required CR spectrum can in fact be formed
over a limited phase when a strong shock from SN explosion is still available.
One can easily estimate that for a standard ISM magnetic field ∼3 · 10−6G
the Larmor radius RL of a proton with an energy comparable with the knee
energy 3 · 1015 eV (γ ≈ 3 · 106) is about the SNR radius (see Sect. 5.5.3).
Therefore, the high-energy particles cannot be confined at the shock wave
by the ISM magnetic field so they must escape from the remnant making
particle acceleration at the front up to the knee energy problematic. The
problem of the CR escape becomes even more severe if we recall that the
transport mfp Λ‖ along the field is formed by particle scattering by MHD
turbulence and Λ‖ 
 RL if the turbulence energy density is smaller than the
regular magnetic field energy density. These simple estimates unavoidably
imply that in order to ensure efficient CR acceleration at the SNR shock
waves up to the knee energy the level of MHD turbulence up front the shock
must be strongly enhanced.

Indeed, a plasma with a population of relativistic particles is often un-
stable (see Sect. 4.1); MHD waves with the wavelength of the order of the
Larmor radius of the accelerated particles experience amplification and in
their turn scatter the particles and so form their mfp needed for them to be
Fermi accelerated. However, the resonant self-generation of the MHD waves
at the front by accelerated particles2 turns out to be too weak to support the
required acceleration efficiency (Lagage and Cesarsky 1983; Fedorenko and
Fleishman 1988).

However, in Sect. 4.1, we have already established that a nonresonant
instability can be much more powerful than the resonant one in case of high-
frequency waves. Complementarilly, below we are going to demonstrate that
a nonresonant MHD wave generation can make additional contribution to
the wave generation by accelerated particles at a level exceeding that of
the resonant generation resulting in a strong turbulence regime potentially
sufficient to facilitate the CR acceleration at the SNR shocks up to the knee

2The problem of MHD wave generation by relativistics particle is under active
discussion in the astrophysics context since (Wentzel 1968). More recent analytical
and numerical studies on the topics are done by Bell and Lucek (2001), Bell (2004),
Bykov and Toptygin (2007), Zirakashvili et al. (2008) and Bykov et al. (2011) etc.
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energy at least. The entire problem is highly nonlinear and so complicated;
therefore, we restrict the consideration to calculation of the linear growth
rates and some simplified estimates of the strong turbulence nonlinear regime.

12.1.2 Statement of the Problem

Although the general approach developed in Chap. 3 is fully applicable to
analyzing the eigenmodes in a plasma with relativistic particles, a number
of important distinctions must here be taken into account, which include
(1) breaking of the background plasma quasineutrality, which is especially
essential at low frequencies (see Sect. 3.2.2, Fig. 3.2); (2) fluid motion in the
prefront region; and (3) need of kinetic treatment of the relativistic compo-
nent (though the background plasma component can still be described hydro-
dynamically). For what follows it is highly important that the distribution
function of the accelerated particles determined in Sect. 11.4.2 within the
test particle approximation is spatially nonuniform and anisotropic. More-
over, distribution function (11.152) depends on the corresponding upstream
diffusion coefficient that, in its turn, is defined by the upstream turbulence
level, which implies that properties of the eigenmodes we are going to specify
will depend on the preexistent turbulence level and spectrum and, therefore,
are supposed to differ from “standard” linear MHD modes. Stated another
way, we are looking here for the dispersion and damping/amplification rate
of the waves created on top of already available, perhaps, strong turbulence.

Let us consider the problem in the front frame (i.e., the shock front
is immobile). Adopt the upstream plasma to contain three components—
a spatially uniform fully ionized cold background plasma with the number
densities ni and ne and a relativistic nuclear component with the num-
ber density N0 at the front. The total plasma quasineutrality requires that
ne = ni + N0. Accuracy of this condition in low-frequency processes is very
high (see Sect. 7.6.1). However, the background plasma alone is not quasineu-
tral, while dominated by the electrons. The fluid moves toward the front with
a constant velocity u = const. The external magnetic field B0 is normal to
the front as well. Apparently, we consider here a simplified picture of the phe-
nomenon; in particular, we do not take into account the shock front modifi-
cation considered in Sect. 11.4.3. This simplification seems to be appropriate
until only a relatively small fraction of the flow energy is being spent onto
the particle acceleration and wave generation; we will conventionally adopt
the upper bound of ≤ 10% in the energy densities.

To find the wave dispersion we have to form the dielectric tensor or
conductivity tensor, which requires finding electric currents associated with
all available plasma components created in response to small electromagnetic
perturbation. Let us start from calculating electric current stimulated in the
background plasma component by a weak plane monochromatic wave with
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the electric and magnetic vectorsE and b proportional to exp(ik·r−iωt). Let
us introduce the macroscopic velocities of the electron and ion components as

ui,e = u+ vi,e, vi,e ∼ exp(ik · r − iωt) (12.1)

and write down corresponding linearized equations similar to Eq. (3.38)

∂vi,e
∂t

+ (u · ∇)vi,e = ± e

mi,e

[
E +

1

c
vi,e ×B0 +

1

c
u× b

]
. (12.2)

To further simplify the problem we only consider the wave propagating along
the external magnetic field, k ‖ B0 ‖ u. Maxwell’s equations in the Fourier
domain yield

k × b = −i4π
c
j, b =

c

ω
k ×E, k ·E = 0, (12.3)

where j is the total current density associated with the field perturbations
E and b. The latter equality is a result of zero macroscopic electric charge
density in any large-scale fluid perturbations. Using Eq. (12.3) it is easy to
find

E +
1

c
u× b =

ω′

ω
E, ω′ = ω − k · u; (12.4)

then, Eq. (12.2) yield the plasma component velocities

vi,e = ±eω
′[iω′E ± ωBi,ee‖ ×E]

mi,eω(ω′ 2 − ω2
Bi,e)

. (12.5)

Here ω is the frequency in the front frame, while ω′ is the correspond-
ing proper frequency in the upstream frame, which is different due to the
Doppler effect.

Thus, the electric current jpl of the background plasma components as-
sociated with the MHD perturbation receives the form

jpl = enivi − eneve =
i

4πω

{[
ω2
piω

′ 2

ω′ 2 − ω2
Bi

+
ω2
peω

′ 2

ω′ 2 − ω2
Be

]
E

−i
[
ω2
piωBiω

′

ω′ 2 − ω2
Bi

− ω2
peωBeω

′

ω′ 2 − ω2
Be

]
e‖ ×E

}
, (12.6)

which greatly simplifies in the range of low frequencies ω′ � ωBi � ωBe.
Using definitions of the gyro- and plasma frequencies, we obtain

jpl = −i c
2ω′ 2

4πv2Aω
E +

ω2
prω

′

4πωBiω
e‖ ×E. (12.7)
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The first term at the rhs contains the ion current only; the omitted electron
current is me/mi smaller. The second term describes the background plasma
gyrotropy, which does not go to zero (as ω → 0) here as it would in a quasineu-
tral plasma, cf. Sect. 3.2.2, and so contains the square of the plasma frequency

ω2
pr =

4πe2N0

mi
, N0 = ne − ni, (12.8)

related to the ions transited from the background to accelerated component.
Coefficient at the vector components Eβ in the rhs of Eq. (12.7) represents

the components of the corresponding complex conductivity tensor σαβ . In its
turn, this tensor specifies the plasma dielectric permittivity tensor according
to Eq. (3.9). To obtain the total conductivity tensor, we have yet to take into
account a contribution made by relativistic particles.

12.1.3 Accelerated Particle Current Driven
by a Weak MHD Wave

We turn now to calculating the accelerated particle current in the plane
prefront of a nonrelativistic shock wave propagating through a fully ionized
turbulent plasma. This problem is highly sophisticated as it is essentially non-
linear and requires a self-consistent calculation of the absolute number, spa-
tial distribution, and spectrum of accelerated particles along with the spec-
trum, spatial distribution, and intensity of MHD turbulence which determines
the diffusion coefficient and thereby the efficiency and rate of particle accel-
eration, as well as the shock front structure.

No self-consistent analytical solution has yet been found for the full
problem, although there are some numeric models highlighting one or another
side of the whole problem. The problem can be simplified, however, by adopt-
ing a reasonably strong turbulence upstream such as it ensures more or less
effective diffusive shock acceleration, while not too strong to modify the
accelerated particle distribution and anisotropy upstream, so test particle
solution (11.152) for the distribution function remains valid. Accordingly,
the accelerated particles in the turbulent prefront posses a weakly anisotropic
distribution function which can be written down in form (7.81), (11.32) with
distribution function (11.152) valid for 1D case:

f0(z,p) =
1

4π

[
N(z, p) +

3

pv
pzJz(z, p)

]
, J � vN, (12.9)
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where

N(z, p) =
3Q0

Δup30

(
p0
p

)α
Θ(p− p0)e

uz/κ‖ , z ≤ 0, p0 ≤ p ≤ pm, (12.10a)

Jz = −κ‖ ∂N
∂z

− p

3

∂N

∂p
u =

1

3
(α− 3)u

[
N(z, p)−N0p

−2
0 δ(p− p0)e

uz/κ‖
]
.

(12.10b)

Here Q0 is the source power at the front, N0 = 3Q0/(α − 3)Δu is the num-
ber density of relativistic ions, α = 3u/Δu is the index of the momentum
spectrum, and Δu > 0 is the velocity jump at the front.

Solution (12.10a) is valid when only a small fraction of the shock energy is
spent to the particle acceleration and the upstream velocity is approximately
constant: u = const. For a moderately strong front, the exponent α > 4,
while for a strong shock wave α ≤ 4 (see estimates in Sect. 11.4.3). The
actual value of α depends on both the Mach number of the shock wave and
also the rate of the particle injection into acceleration process. Apparently,
for α < 4, the bulk of the energy belongs to the highest energy particles with
E � Em = cpm, so a large fraction, up to a few dozen percents of the total
shock energy, is transferred to the accelerated particles.

We, therefore, restrict our consideration to the case of efficient accelera-
tion up to the highest particle momentum pm 
 p0 ≈ mic with values α ≥ 4
and assume a moderate acceleration rate where the total kinetic energy of
accelerated particles remains within 10% of the total energy of the system
compatible with the test particle solution. For α = 4 the total energy of
accelerated particles at the front (z = 0) depends on pm logarithmically:

wr ≈
pm∫
p0

cpN(p, 0)p2dp = N0mic
2 ln(pm/p0). (12.11)

As no consistent turbulence theory in the upstream region is currently
available we analyze two extremes motivated by the demanded high efficiency
of the diffusive shock acceleration.

Case 1. The transport mfp and the longitudinal diffusion coefficient are
constant in the energy range of interest:

Λ‖ = const, κ‖ =
cΛ‖
3

= const, p0 ≤ p ≤ pm. (12.12)

This requires a magnetic turbulence with the spectrum 〈b2〉k ∼ k−2 (see
Sect. 7.5.1). Assuming the turbulent field at the largest scale to be comparable
with the regular field, the transport mfp is estimated as the Larmor radius
of the highest energy particles: Λ‖ ≈ rg(pm). The smaller-scale harmonics of
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the turbulent magnetic field are weak, which results in a strongly anisotropic
diffusion with a constant longitudinal mean free path Λ‖ ≈ rg(pm) = const
for particles with p� pm.

Case 2. Strong turbulence with the diffusion coefficient approaching the
Bohm limit, i.e., the transport mean free path Λ(p) of a particle is of the
order of its Larmor radius:

Λ(p) ≈ Λ‖ ≈ rg(p) =
cp

eB
, κ‖ =

cΛ

3
, p0 ≤ p ≤ pm, (12.13)

where the case pm 
 p0 is of particular interest. The turbulent and regular
fields must be comparable to each other B ≈ B0. It must be noted that
this is not in conflict with the assumption of a weak energy transfer to the
accelerated particles: in a strong SNR shock wave the mechanical energy
density is by several orders of magnitude higher than the energy density of
the ISM magnetic field; this is also valid for most of the astrophysical shocks.

The accelerated particle distribution function f(r, p, θ, φ, t) perturbed by
the same as in Sect. 12.1.2 external small-amplitude wave field satisfies the
kinetic equation

∂f

∂t
+ v · ∂f

∂r
+

e

m
E · ∂f

∂r
− ec

E (b+B0) ·Of =

(
∂f

∂t

)
col

, O = p× ∂

∂p
,

(12.14)

where O is the momentum rotation operator, and E, b are the external
electromagnetic field vectors of the MHD wave.

Let us linearize kinetic equation (12.14) by adopting f = f0 + δf , where
the small correction δf is proportional to the field:

∂δf

∂t
+v · ∂δf

∂r
− ec

E B0 ·Oδf = − e

m
E · ∂f0

∂p
+
ec

E b ·Of0+

(
∂δf

∂t

)
col

. (12.15)

The last term in Eq. (12.15) takes into account relaxation of the distribu-
tion function δf due to particle interaction with the preexisting magnetic
turbulence. We simplify this term within the “relaxation frequency” approx-
imation: (

∂δf

∂t

)
col

≈ −νδf, ν ≈ v/Λ‖, (12.16)

and separately analyze the cases of weak (12.12) and strong (12.13) tur-
bulence to estimate the relaxation frequency. Below we employ Maxwell’s
equation (12.3) with a real wave vector k and a complex frequency ω.
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We can make further simplifications while solving Eq. (12.15). Although
the correction δf contains the same nonuniform exponential factor as un-
perturbed function (12.10a), δf ∼ exp(uz/κ‖), it can be discarded. Indeed,
this factor results in the frequency correction ν′ = v‖u/κ‖ = 3u/Λ‖, which is
small ν′ � ν for relativistic particles if 3u� v.

Within the assumptions made, Eq. (12.15) implies that the coordinate
and time dependence of the distribution function perturbation is the same as
for the test wave field. The equation can therefore be written in the form

∂δf

∂φ
− aδf = Q(φ), a =

1

Ω
(ν − iω + ik‖v‖), (12.17)

where φ is the azimuth angle of relativistic particle momentum counted
around the regular magnetic field, so that

B0 ·Oδf = B0
∂δf

∂φ
, Ω =

ceB0

E ,

while the rhs of Eq. (12.17) contains only known quantities:

Q(φ) =

(
eE

Ω
− ec

EΩb× p

)
· ∂f0
∂p

. (12.18)

In what follows we assume all accelerated particles to be strongly relativistic
protons, i.e., v ≈ c, E ≈ cp and p0 ≈ mpc.

A solution to Eq. (12.17) can be written in the form

δf =

φ∫
−∞

Q(φ′)ea(φ−φ
′)dφ′. (12.19)

Explicit calculation of the quantity Q(φ) yields

Q(φ) =
e

Ω
(e⊥ ·E)

(
sin θ

∂f0
∂p

+ cos θ
∂f0
∂θ

− ck‖
ωp

∂f0
∂θ

)
. (12.20)

Here e⊥ = p⊥/p⊥ is a unit vector perpendicular to B0; other values entering
here can be calculated from Eqs. (12.9) and (12.10).

The correction δf to the relativistic particle distribution function is
straightforward to calculate from Eqs. (12.19) and (12.20):

δf = −e
(
sin θ

∂f0
∂p

+ cos θ
∂f0
∂θ

− ck‖
ωp

∂f0
∂θ

)
(eφ ·E) + a(e⊥ ·E)

Ω(1 + a2)
, (12.21)

where eφ = e‖ × e⊥ and the variable a is defined above by Eq. (12.17).
Electric current driven by accelerated particles is now calculated by familiar
formula (3.2) written for the relativistic particle component

jr =

∫
evδf(p, θ, φ)p2dp sin θdθdφ. (12.22)
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Substituting the distribution function correction δf and integrating over dφ
we obtain

jr = πe2c

∫
p2dp

∫
sin2 θdθ

(
sin θ

∂f0
∂p

+ cos θ
∂f0
∂θ

− ck‖
ωp

∂f0
∂θ

)
(e‖ ×E)− aE

Ω(1 + a2)
.

(12.23)

To calculate the remaining integrals, we expand the denominator of the in-
tegrand onto the simple fractions:

1

Ω(a2 + 1)
=

1

2Ω

[
1

1 + ia
+

1

1− ia

]

=
1

2

[
1

Ω + ω − k‖cx+ iν
+

1

Ω− ω + k‖cx− iν

]
, (12.24)

where x = cos θ. The main contribution to the integral over momentum comes
from a region at the lower limit, p ≈ p0 = mic; therefore, for the estimate,
we can accept Ω ≈ ωBi. Within the weak turbulence regime, Eqs. (12.12) and
(12.16) imply that the relaxation frequency is small: ν ∼ ωBimpc/pm � ωBi.
Therefore, one can adopt ν → 0, take into account that ω � ωBi, and apply
the Sokhotsky formula, which in agreement with quasilinear approximation
considered in Sect. 4.2 yields

1

Ω(1 + a2)
=

1

2ck‖

[ P
x+ ξ

− P
x− ξ

+ iπ[δ(x+ ξ)− δ(x− ξ)]

]
, (12.25a)

a

Ω(1 + a2)
= − i

2ck‖

[ P
x+ ξ

+
P

x− ξ
+ iπ[δ(x+ ξ) + δ(x− ξ)]

]
. (12.25b)

Here, we introduced a new dimensionless parameter ξ = Ω/ck‖; the symbol
P stands for the principal value. The terms containing δ-functions describe
wave–particle resonances as they contain the resonant conditions Ω ± ω ∓
k‖v‖ = 0, cf. Eqs. (3.62) and (4.38). Accordingly, the terms with the principle
values are nonresonant.

Using Eq. (12.25) we can write down the relativistic proton current in
the form

jr = (σ′
⊥ + iσ′′

⊥)E − (g′ + ig′′)e‖ ×E, (12.26)
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where the kinetic coefficients are given by

σ′
⊥ =

(
1− πAck‖

4ω

)
ω2
pr

16ω2
Bi

ck‖, σ′′
⊥ =

A ln(ξ0/3.4)ω
2
pr

12ω2
Bi

ck‖,

g′ =
ω2
pr

4πωBi
, g′′ = − Aω2

pr

24ω2
Bi

ck‖. (12.27)

Here ξ0 = ωBi/ck; we use notation (12.8) for ω2
pr and a new notation A = u/c

for the anisotropy parameter of relativistic particles. Finally, we assume α = 4
for the momentum spectral index and use approximations

P
1∫

−1

(1− x2)x

x+ ξ
dx = − 4

15ξ2
, P

1∫
−1

1− x2

x+ ξ
dx =

4

3ξ

valid for |ξ| 
 1.

12.1.4 Linear Growth Rate

Now we can calculate eigenmodes in the plasma containing accelerated rel-
ativistic particles and address the question of wave amplification in such
plasmas. From Maxwell’s equation (12.3) we find

E = i
4πω

(ck‖)2
(jpl + jr), (12.28)

where the rhs includes the total electric current formed by background plasma
(12.7) and relativistic particles (12.26). Let us write down Eq. (12.28) in the
form

C1E − iC2e‖ ×E = 0, (12.29)

where

C1 = ω ′2 − (vAk‖)2 − AvA ln(ξ0/3.4)

3c

(ω′ + u · k)ω2
pr

ω2
Bi

vAk‖

+i
πω2

pr

4ω2
Bi

[
ω′ + u · k

ck‖
− πA

4

]
(vAk‖)2, (12.30a)

C2 = −ω
2
prv

2
A

ωBic2
u · k − i

πAω2
prvA

6ω2
Bic

(ω′ + u · k)vAk‖. (12.30b)

Cross product of e‖ and Eq. (12.29) yields another equation:

iC2E + C1e‖ ×E = 0. (12.31)
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The compatibility condition for either Eqs. (12.29) or (12.31) can apparently
be written in the form of two equalities

C1 ± C2 = 0, (12.32)

which, in combination with Eq. (12.29), shows that the eigenmodes are cir-
cularly polarized.

The dispersion relation receives the form

ω ′ 2−(vAk‖)2+i4π
(vA
c

)2
ω(σ′

⊥+iσ
′′
⊥)± i4π

(vA
c

)2
(g′ + ig′′)∓ ω2

prv
2
A

ωBic2ω ′ = 0.

(12.33)

The obtained dispersion equation contains small terms of different orders. To
sort them out one can note that conditions vA � u � c are often fulfilled.
Then, the terms from the accelerated particles are small proportionally to the
relativistic particles number density. In the absence of relativistic particles,
the dispersion relation reads

ω ′ 2 − (vAk‖)2 = 0, ω′ = ±vAk = ±ωA, (12.34)

and describes equal frequencies of standard MHD Alfven and magnetosonic
modes, which, for the longitudinal propagation adopted in our treatment,
degenerate.

Account of the accelerated particle current gives rise to new effect via the
imaginary terms in dispersion relation (12.33), which can have different signs.
This implies that growing and damping wave modes appear. Their growth
(damping) rates γ and corrections ω1 to the real parts of the frequencies,
ω′ = ±ωA + ω1 + iγ, can easily be found provided that they are small:

γ = ±π(4− π)Aω2
pr

32ω2
Bi

ωA, ω1 = ± ω2
pru

2ωBic
. (12.35)

Here all the terms of the order of vA/u or (u/c)2 have been omitted.
Let us estimate now the order of magnitude of the effect obtained. A

critical parameter in Eq. (12.35) is apparently the number density of ac-
celerated particles N0. In the ISM of the galactic disk it is very small,
N0/(ni + na) ≈ 10−9 on the average. At the CR source, however, during
the particle acceleration at the SNR shock front, this ratio depends heavily
on the spectrum shape (i.e., the spectral index) and the highest energy up to
which the acceleration occurs. Based on the energy conservation law we can
write the following relationship:

η
mpu

2

2
n0u = KN0u

′, (12.36)
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where η is the fraction of the primary energy flux transferred to the accel-
erated particles, u and u′ are the velocities of the fluid ahead and behind
the front, n0 is the average proton number density ahead the front (includ-
ing the neutral component if present), and K is the average kinetic energy
of the accelerated particles. For a power-law spectrum with index α = 4
we obtain from Eq. (12.11) K = mpc

2 ln(pm/p0). With a moderate fraction
η ≈ 0.1 of the energy flux transferred to the accelerated particles and with
Em = cpm ≈ 3 × 106GeV (the knee energy of the galactic CR spectrum),
Eq. (12.36) yields

N0

n0
≈ 0.2

ln(pm/p0)

(u
c

)2
≈ 1.4× 10−2

(u
c

)2
. (12.37)

We can now calculate the growth rate to Alfvén frequency ratio from
Eq. (12.35) using A = u/c and introducing the proton plasma frequency
defined from ω2

pt = 4πn0e
2/mp where the total background proton number

density n0 (with the account of neutrals if available3) enters, as

γ

ωA
≈ 5× 10−3

ω2
pt

ω2
Bi

(u
c

)3
. (12.38)

Considering as an example SN explosion in the warm galactic gas we adopt
B0 ≈ 3×10−6G, n0 ≈ 0.2 cm−3 (see Table 1.1) and obtain ω2

pt/ω
2
Bi ≈ 4×108,

which yields
γ

ωA
≈ 2× 105

(u
c

)3
. (12.39)

SN type II explosions produce strong shocks with u ≈ 3 × 108 cm/s at the
Sedov stage, Sect. 5.5.3. We, thus, obtain a rather promising estimate of
γ/ωA ≈ 0.2 implying a highly efficient turbulence generation. Moreover, at
the initial (free expansion) SNR stage characterized by u ∼ 109 cm/s, the
amplification rate can even exceed the wave frequency resulting in a rapid
aperiodic regime of the instability with the growth rate γ/ωA ∼ 5. Appar-
ently, the considered linear theory is not capable of predicting the limit of
turbulence growth or the final saturated state of the system.

12.1.5 Strong Turbulence Regime

We have to emphasize that the method developed accounts both resonant
and nonresonant interactions within single unified consistent approach. In
agreement with theory developed in Sects. 3.3 and 4.2 in the weak turbulence
regime (ν → 0, Sect. 12.1.3), the resonances are accounted in Eq. (12.25)

3If the shock wave propagates through warm ISM gas containing neutrals, they
become ionized at the shock so the total proton number must be used in estimating
the Alfvén speed.
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by the δ-functions, while the fractions with principal values describe the
nonresonant contributions. Although this separation onto resonance and non-
resonance processes is well justified for the weak turbulence case, it fails in the
strong turbulence case when the resonances become very broad and the quasi-
linear theory relying on well-defined resonances becomes invalid. Remarkably,
the general approach developed in Sect. 12.1.3 remains applicable in this case
as it is more general than the conventual quasilinear method.

As we have established above, in the regime of (arbitrary) weak tur-
bulence, the MHD wave growth rate remains positive and so will drive the
system toward a state of strong turbulence characterized by Eq. (12.13). Let
us consider if the wave growth stops or continues in the strong turbulence
regime. Importantly, we cannot adopt ν → 0 any longer in Eq. (12.16); in-
stead, in the strong turbulence regime, it becomes equal to the relativistic
gyrofrequency of accelerated proton:

ν ≈ v/Λ‖ ≈ Ω. (12.40)

Instead of Eq. (12.25) we now have

1

Ω(1 + a2)
=

1

2ck‖

[
1

x+ ξ(1 − i)
− 1

x− ξ(1 + i)

]
,

a

Ω(1 + a2)
=

−i
2ck‖

[
1

x− ξ(1 + i)
+

1

x+ ξ(1− i)

]
. (12.41)

Taking the integrals within the same approximation as in Sect. 12.1.3 yields
the accelerated particle current in the form of Eq. (12.26), with, however,
different kinetic coefficients:

σ′
⊥ = g′ =

ω2
pr

4πωBi
, σ′′

⊥ = 0, g′′ = − ω2
prck‖

120πω2
Bi

A(ln ξ0 − 1). (12.42)

Accordingly, the complex frequency ω′ obeys the equation

ω ′ 2 − (vAk‖)2 + i
ω2
prv

2
A(uk‖ + ω ′)
ωBic2

= 0. (12.43)

Although it is straightforward to exactly solve this equation, we analyze below
its approximate solutions valid for the limiting cases of relatively small-scale
and large-scale waves adopting ω′ � uk‖. The demarcating scale λc = 2π/kc
is reasonable to calculate from the condition that the absolute values of the
second and third terms at the rhs of Eq. (12.43) are equal to each other, which
yields kc = ω2

pru/ωBic
2.

For k 
 kc the imaginary term in the equation is small, so rewriting
ω ′ 2 ≈ (vAk‖)2 ± 2iγvAk, we find the imaginary part of the frequency

γ ≈ ±ω
2
pruvA

2ωBic2
. (12.44)
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Thus, in the small-scale region of the spectrum, there is a growing mode
whose growth rate is proportional to the number density N0 and anisotropy
u/c of the relativistic particles.

For the long waves, k � kc, we can discard the quadratic over k term in
Eq. (12.43), which yields the complex wave frequency in the form

ω′ ≈ ±(1− i)

√
ω2
prv

2
A

2ωBic2
uk ∼

√
k. (12.45)

This perturbation grows rapidly with the growth rate equal to the wave
frequency; the growth rate is reciprocal to the square root of the corre-
sponding wavelength in contrast to the case of the weak turbulence described
by Eq. (12.35). Therefore, the considered instability is capable of generating
large-scale irregularities of the magnetic field needed to efficiently accelerate
high-energy particles. It is highly remarkable that even in the strong turbu-
lence regime the instability does not quench and the growing mode still exist.
This implies that excitation of such a strong turbulence by the relativistic
particles in the upstream region is likely; to quench the instability one has to
take into consideration the explicit effect of the strong turbulence ensemble
on the spatial and angular distribution of the accelerated particles in the
prefront region.

Let us estimate the effects obtained. Using Eq. (12.37) and employing def-
initions of frequencies ωpr and ωBi we obtain kc ≈ 5.6× 10−6(u/c)3 cm−1 for
the warm ISM phase. Then, for u/c = 10−2, we find λc = 2π/kc ≈ 1012 cm,
which is comparable with the Larmor radius of moderately relativistic pro-
ton, rg = mpc

2/eB = c/ωBi ≈ 1012 cm. Thus, Eq. (12.45) applies for all
relativistic protons. For example, at the scale two orders of magnitude larger
than the critical one, λ = 102λc ≈ 1014 cm, we estimate the growth rate as
γ ≈ 10−6 s−1; thus, the amplification time is Δt ≈ 106 s, which is very short
compared with all available SNR time scales including the free expansion and
Sedov phase durations. The corresponding amplification time for the protons
having the knee energy is about 10 years, which is still acceptable to support
the efficient particle acceleration at the SNR shock waves and encouraging
for developing acceleration models with self-generated strong turbulence.

Although the developed theory includes a nonlinearity over the turbulent
wave ensemble (in the relaxation frequency approximation) it remains lin-
ear over the distribution function perturbations. We have to emphasize once
again that this linearity of the theory preclude reliable analysis of the insta-
bility saturation level and saturated turbulence spectrum. A more advanced
theory must take into account the modification of the particle distribution
by the strong turbulence, as well as prefront nonuniformity and finite size of
the quasispherical SNR shock front. Apparently, our plane front model can
only be valid for perturbations with the scale small compared with the SNR
radius and if the prefront thickness is small compared with the front size.
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12.1.6 Spatial Distribution of Accelerated Particles
Upstream

As we have seen the growth rate of the instability is proportional to the
local number density of accelerated particles (with all energies). Test particle
distribution function (12.10) used in our analysis is nonuniform in the prefront
region; if u ≈ u0 = const then the accelerated particles reside mainly in a
finite layer with a thickness of l(p) ≈ κ‖(p)/u0 dependent on the particle

energy. Below we calculate the spatial distribution N(z) =
∫ pm
p0

N(z, p)p2dp

of the accelerated particles integrated over energy. The layer where N(z) is
reasonably large will also represent a region where the turbulence is efficiently
generated. We again consider two cases—of either weak or strong turbulence.

relativistic particles is given by Eq. (12.12) with the longitudinal mfp
Λ‖ ≈ rg(pm) comparable with the Larmor radius of the most energetic
protons, which in its turn is comparable with the scale L0 = 2π/k0 of
the largest-scale magnetic inhomogeneities.

For constant κ‖ and u = u0 integration of N(z, p) over entire momen-
tum range yields

N(z) =

pm∫
p0

N(z, p)p2dp = N0 exp

(
z

lm

)
, lm =

c

3u0
Λ‖ = const.

(12.46)
Thus, the prefront thickness is specified by the scale lm that depends
on the mfp of largest energy particles, while does not depend on the
accelerated particle spectrum.

2. Strong Turbulence. According to Sect. 12.1.3, the mfp of a parti-
cle is comparable with its Larmor radius (the smallest possible value,
the Bohm mfp) (see Eq. (12.13)). Integrating distribution function
(12.10a) with account of momentum dependence κ‖(p) ∼ p we ob-
tain adopting the spectral index α = 4,

N(z) = N0ζ
−1
0 [Γ(1, ζm)− Γ(1, ζ0)], (12.47)

where Γ(1, ζ) the incomplete gamma function (Abramowitz and Ste-
gun 1964)

ζ0(z) =
3eu0
c2p0

0∫
z

B(z′)dz′ (z ≤ 0) (12.48)

is a dimensionless scale, while ζm is similar to ζ0 but with pm instead
of p0.

1. Weak Turbulence.We employ a turbulence spectrum 〈b2〉k ∼ k−2 at
a range of k0 ≤ k ≤ km, Sect. 12.1.3, where the diffusion coefficient of



622 12 Ultrarelativistic Component of Cosmic Plasmas

The incomplete gamma-function asymptotes are

Γ(1, ζ) ≈
{

1− ζ, ζ � 1,
exp(−ζ), ζ 
 1.

(12.49)

Using these asymptotes we obtain N(z) ≈ N0 at small distance from the
front, ζ0 � 1 and ζm � 1, while

N(z) ≈ N0
p0
pm

exp(−ζm)

ζm
(12.50)

at large distance from the front, ζ0 
 ζm 
 1. In the intermediate range of
distances where ζ0 
 1, while ζm � 1 we obtain

N(z) ≈ N0ζ
−1
0 =

N0c
2p0

3u0e
0∫
z

B(z′)dz′
. (12.51)

Thus, for a moderate acceleration efficiency (� 10)% at a strong shock
(α ≈ 4) and if the magnetic field is constant upstream, the number density de-
creases slowly with distance from the front,4 as N(z) ∼ |z|−1. However, if the
magnetic field itself decreases with the distance from the front, which is rea-
sonable to expect if the strong turbulence is produced by particles accelerated
at the front, the number density will decrease even slower than N(z) ∼ |z|−1.
To summarize, the accelerated particle number density is roughly constant
within a layer with thickness l0 ≈ crg(p0)/3u0 and then decreases slower
than 1/|z| in the layer bounded by l0 and lm ≈ crg(pm)/3u0 
 l0. At even
larger distance |z| 
 lm the number density decreases exponentially. Thus,
the total prefront thickness is again specified by the particles with largest
available energy.

12.1.7 On Numerical Simulations of Strong Turbulence
Generation at Shocks

Apparently, the considered above analytical model is built on many simplify-
ing assumptions since it is difficult to analytically account such important in-
gredients of the system as strong multi-scale inhomogeneity and consistently
obtain nonlinear evolution and saturated levels of the turbulence and particles
in the anticipated regime of strong turbulence generation and powerful parti-
cle acceleration. Not surprisingly, a huge amount of (nonlinear self-consistent)

4Note that quasilinear solution for the particle and resonant self-generated turbu-
lence distributions (Lee 1983; Lagage and Cesarsky 1983; Fedorenko and Fleishman
1988) contains a similar spatial dependence, ∼|z|−1, for particles with a given energy,
while here it is only valid for the particle number density. The difference originates
because the quasilinear models consider saturated state of the resonant streaming
instability, while here a preexisting turbulence level is postulated and further wave
generation on top of it studied.
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numerical models addressing different aspects of the collisional shock wave
physics have been developed (e.g., Zirakashvili and Ptuskin 2008; Vladimirov
et al. 2009; Reville and Bell 2012). In particular, we have already noted in
Sect. 11.4.3 that a numerical model of (Vladimirov et al. 2009) yields the
inflow velocity profile and the compression ratio range fully consistent with
the simplified analytical model developed in Sect. 11.4.3.

The situation with strong turbulence generation and formation of its
broad-band spectrum is more complicated. For example, there can appear
a variety of instabilities capable of generating magnetic field at different
scales: from very small-scale Weibel/filamentation instability (see Sect. 4.1.2)
to very large-scale nonresonant instability considered above in this section.
To correctly account the entire range of the scales the numerical model must
correctly describe all these scales over many orders of magnitude, which is a
highly demanding computational task. Then, the results of the computer sim-
ulations are highly sensitive to nonlinear cascading regime of the generated
turbulence. A simplified model of isotropic cascading may not be necessarily
applicable, since we saw in Sect. 6.9.3 that the turbulence cascades anisotrop-
ically within the strong turbulence regime. On the other hand, in the regime
of very strong turbulence generation, the role of the anisotropy induced by
original (weak) regular magnetic field can be minor; all these considerations
produce huge uncertainty in the turbulence cascade modeling.

Taking all these uncertainties into account, we mention the most general
(model independent) results of these numeric simulations. A highly efficient
generation of the turbulent magnetic field does take place. Mean (turbulent
large-scale) magnetic field increases gradually at the upstream region from
the ISM values of ∼3μG to 0.1–1mG, i.e., the rms magnetic field value
experiences 30–300-fold enhancement. The spectrum of generated turbulence
is, however, highly sensitive to the model assumptions: overall, almost any
spectrum can be obtained—from almost flat to highly structured multi-peak
spectrum indicative that the problem of the turbulent generation upstream
is far from its final solution. The particle distribution functions in most cases
display highly efficient acceleration expected in the regime of strong magnetic
turbulence amplification. To summarize, we can conclude that the analytical
treatment given above and in Sect. 11.4.3 offers a correct physical picture of
main physical phenomena occurring in the vicinity of a strong collisionless
shock front, although many important details have yet to be clarified and
worked out.

12.1.8 Evidence of Efficient Particle Acceleration
at SNRs

Ample observational evidence confirming highly efficient electron and ion
acceleration at the SNR shocks has been accumulated. In particular, the
electrons accelerated at a strong shock front, Sect. 11.4.2, have energy spec-
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Figure 12.1: Examples of observed radio spectra from a few galactic SNRs. The spectral
indices are grouped around 0.5, which is expected value for particle acceleration at a strong
shock; however, the scatter of the indices is noticeable including values significantly smaller
than the nominal value 0.5, which is indicative of effects of nonlinear shock modification
considered in Chap. 11. Credit: (Gao et al. 2011). Reproduced with permission c© ESO.

tral index ξ ≈ 2 in Eq. (9.169) and so must produce synchrotron radiation
with spectral index αnth ≈ 0.5. Indeed, radio spectra with such indices (see
Fig. 12.1) are commonly observed from shell-type SNRs where a quasispher-
ical shock wave is formed at the supernova explosion and then expands into
the ISM as has been described in Sect. 5.5.

Note that the statistically significant deviations of the observed radio
spectral indices from the nominal value of 0.5 imply (though indirectly) a key
role of the CRs: the indices α < 0.5 might be indicative of the compression
ratio increase due to non-negligible CR pressure, while the indices α > 0.5 are
likely produced at a thermal jump of a shock whose structure is nonlinearly
modified by the CR effect considered in Sect. 11.4.3. The observations of the
power-law radio spectra from SNRs, however, directly confirm acceleration
of electrons only and up to a moderate energies only, typically, � 10GeV,
much smaller than the knee energy, while the electrons approaching the knee
energy would produce X-ray emission (see Sect. 9.4.3).

Thus, not surprisingly, key evidence of the efficient particle acceleration
at the SNR shocks came from X-ray and gamma astronomy as soon as they
become mature to record the emissions with high spectral and spatial res-
olution, high sensitivity, and reliable absolute calibration. For example, in
case of young SNR 1006, Allen et al. (2008) demonstrated that the spatially
resolved radio-to-X-ray spectra obtained for all the square boxes in Fig. 12.2,
left, have a concave shape, which implies that the electron energy spectrum
flattens with the electron energy having ξ ≈ 2.2 at the GeV range, while
ξ ≈ 2.0 at the TeV range. This finding was reasonably interpreted in terms
of the nonlinear modification of the shock wave profile by the CR pressure:
high-energy X-ray-producing particles “see” the total compression of the en-
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Figure 12.2: Left: composite X-ray image of SNR 1006 with a number of spatial boxes
used for the spectral shape study by Allen et al. (2008). Reproduced by permission
of the AAS. Right: radial distribution of X-ray brightness at the SNR and two model
distributions—with and without significant magnetic field amplification (Berezhko et al.
2003). Reproduced with permission c© ESO. Apparently, the observations support the
model with significant magnetic field amplification.

tire shock transition region including the sharp thermal jump and a more
gradual prefront region (see Sect. 11.4.3), while lower-energy radio-producing
particles having smaller mfp experience acceleration by a fraction of the to-
tal fluid compression at the thermal jump only, which results in a steeper
spectrum.

Furthermore, the radial distribution of the observed X-ray intensity of-
fers a highly conclusive diagnostics. Indeed, this distribution (see Fig. 12.2,
right, as an example) displays a prominent peak at the apparent shock front
location. However, if one adopts the downstream magnetic field to be just
shock-compressed ISM value, ∼10μG, the radial distribution would be very
broad provided that the quasiuniform magnetic field does not significantly
decay downstream, while the particle distribution is more or less uniform
there unless an efficient mechanism of the particle energy loss is on. For a
relatively tenuous ISM plasma the electron Coulomb losses are negligible,
while the radiative (synchrotron) losses, whose characteristic time scale is

τs ≈ 2 · 104
(
10−5G

B

)2(
107

γ

)
years, (12.52)

where γ is the electron Lorentz factor, may become essential.
Nevertheless, for typical ISM magnetic field values, the synchrotron losses

are too weak to form the observed narrow filaments even if the particle diffuse
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in the Bohm regime (i.e., their diffusion rate down from the front is slowest
possible). Thus, we must unavoidably conclude that the magnetic field ampli-
tude at the front must be greatly enhanced, which increases the synchrotron
loss rate and also enhances the particle diffusion confining electrons near
the front. To fit the data consistently (see Fig. 12.2) right, requires a model
with a highly efficient, by more than 10 times, magnetic field amplification,
B � 100μG. This enhanced magnetic field, as we have seen above, can only
be generated by the accelerated particles themselves in the form of strong
magnetic turbulence.

This conclusion has a number of particularly important consequences.
First, the self-generated turbulent magnetic field strongly exceeds the initial
regular magnetic field, which implies that the accelerated particles do diffuse
in the Bohm regime or very close to it. Second, one can easily estimate that
the relativistic electron energy content needed to produce the absolute radio
and X-ray fluxes in the derived magnetic field of B � 100μG is a minor frac-
tion, about 10−3, compared with the shock wave kinetic energy. Therefore,
the accelerated electrons are dynamically negligible and so they cannot pro-
duce either shock structure modification or magnetic field generation. Thus,
a much more powerful acceleration of the nuclear component is needed to
modify the shock dynamics as observed. And third, given that the turbulent
(random) magnetic field dominates in the radiation source, one must consis-
tently take this into account while computing the radiation spectra, spatial
distribution, and the radiative losses, which was considered in great detail in
Sect. 9.5. In particular, as can be noted (see Fig. 12.6), the electron radiative
losses are reduced if the magnetic field is random instead of regular. This fur-
ther implies that to have the same radiative losses at the level needed to form
the narrow filaments as observed requires even stronger turbulent magnetic
field to be produced by accelerated particles.

Nevertheless, all the presented evidence and considerations remain indi-
rect, so it would be desirable to detect a radiation produced by the nuclear
CR component itself. One of very few radiation windows in which the nu-
clear component can make a dominant contribution is the gamma-ray range,
where the nucleon collisions of CRs with background nuclei produce neutral
pions π0 decaying, in their turn, into gamma quanta with E � 50MeV and
up to VHE quanta of > 100TeV produced by the particles with the knee
energy. Although detection of these VHE quanta is very difficult observa-
tionally, there are VHE data on a few SNRs. Figure 12.3 displays an example
of a very broadband SNR spectrum including the VHE range. Remarkably
that the inverse Compton contribution calculated based on the relativistic
electron spectrum and magnetic field derived from the synchrotron data un-
derestimates the observed VHE emission level substantially, while the nuclear
π0 contribution calculated based on nonlinear shock acceleration model with
strong self-generated turbulence where about 10% of the fluid flow energy is
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Figure 12.3: Calculated broadband spectral energy distribution of SNR RX J0852.0-
4622 versus photon energy εγ . The synchrotron part of the spectrum is calculated for
an enhanced magnetic field of ∼100μG needed to account the spatial morphology of
the remnant including observed narrow filaments. Having the same radiation level with
an enhanced magnetic field implies a correspondingly reduced electron energy spectrum,
resulting in a very weak level of the inverse Compton radiation (dashed line) compared
with the observed VHE gamma-ray emission indicative of the VHE gamma rays to be
hadronically dominated (solid curve displays the gamma-ray emission produced via π0-
decay). Credit: (Berezhko et al. 2009). Reproduced with permission c© ESO.

spent to the CR acceleration offers a nice consistent fit to the data. Thus,
this observation of the VHE radiation yields a firm direct evidence in favor
of the CR acceleration at the SNR shocks up to at least the knee energy.

Although we presented only a few particular results and discussed explic-
itly a very limited number of objects, we emphasize that similar observations
are available for many other young SNRs, so the picture outlined is cur-
rently adopted as a standard acceleration scenario at the SNR shocks. We
conclude that recent progress of the multiwave astronomical observations in
radio, X-ray, and gamma-ray ranges has provided us with firm evidence in
favor of turbulence generation and strong particle acceleration at least up to
the knee energy at the SNR shocks with the efficiency sufficient to account
the phenomenon of galactic CRs and also shed new light on the dynamics of
the SNRs themselves (see Ptuskin 2010; Vink 2012 and references therein for
greater detail).



628 12 Ultrarelativistic Component of Cosmic Plasmas

12.2 Neutron Stars and Particle Acceleration
in Their Magnetospheres

We have already addressed in Sect. 8.7.3 a key property of the neutron
starts—their superstrong magnetic fields reaching likely very high values of
1014–1015G. This and other extreme properties of the neutron stars, e.g.,
their very high density, put them in the very top of the list of the most
intriguing and peculiar objects in the Universe. Indeed, for a modest stellar
mass of M ≈ 1.4M� ≈ 2.8× 1033 g, while a very small radius a ≈ 10 km, the
mean density of a neutron star is about ρ = 3M/4πa3 ≈ 7×1014 g/cm3 ≈ (2–
3)ρ0, where ρ0 ≈ 2.8×1014 g/cm3 is the density inside usual heavy nuclei; the
corresponding gravitational energy is Eg ≈ GM2/a ≈ 5× 1053 erg≈ 0.2Mc2.
For comparison, the Sun having roughly the same mass has a radius of
R� ≈ 7×105 km≈ 7×104a, the density of ρ� ≈ 1.4 g/cm3 ≈ 2×10−15ρ, and
the gravitational energy of E�g ≈ 1.5× 10−5Eg ≈ 10−5M�c2. Neutron stars
are very powerful and peculiar emitters of electromagnetic energy—from
radio waves to TeV gamma rays.

The neutron stars were discovered as radio pulsars; this term was pro-
posed to highlight the main observational property specific to this type of
objects—their ability to produce a pulsating radio emission with highly stable
periods. Remarkably, that identification of discovered in 1967 radio pulsars
with neutron stars happened very quick, during a few first years of pulsar
study. The uniqueness of the neutron stars and their impact on the global
picture of the Universe were boldly summarized by outstanding American
scientists Freeman Dyson (1970):

I myself find that the most exciting part of physics at the present
moment lies on the astronomical frontier, where we have just
had an unparalleled piece of luck in discovering the pulsars.
Pulsars turn out to be laboratories in which the properties of
matter and radiation can be studied under conditions millions
of times more extreme than we had previously had available
to us. We do not yet understand how pulsars work, but there
are good reasons to believe that they are the accelerators in
which God makes CRs. Besides providing CRs for the particle
physicists, the pulsars will, during the next 30 years, provide
crucial tests of theory in many parts of physics ranging from
superfluidity to general relativity.

The cited Dyson’s words imply that a deep study of the neutron stars re-
quires usage of almost all kinds of physical science. Below we give a very
brief description of some most fundamental observable physical phenomena
occurring in the neutron star magnetospheres.
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12.2.1 Basic Observational Data

A first guess that there can be stars having densities comparable with the
nuclear density was made by Lev Landau (1932) even before the very neutron
was discovered by James Chadwick in 1932: “. . .the density of matter becomes
so great that atomic nuclei come in close contact, forming one gigantic nu-
cleus.” Then, after the neutron discovery, Baade and Zwicky (1934) proposed
that neutron stars can be produced by supernova explosions. But observation-
ally, the neutron stars had to await the discovery of pulsating radio sources,
pulsars, by Cambridge University scientists Jocelyn Bell and Antony Hewish
in 1967. Detailed reviews of the topic were published by ter Haar (1972) and
then by Manchester and Taylor (1977), Shapiro and Teukolsky (1983), Beskin
et al. (1993), Haensel et al. (2007), Istomin (2008) and Potekhin (2010).

The most fundamental properties of the pulsar radio emission are:

1. The periods of pulse repetition P belong to the range from ∼1ms to
a few seconds.

2. The accuracy of the pulse periodicity is very high. Some of the pul-
sars have periods with 13 meaningful digits, i.e, they represent highly
precise clocks.

3. The pulsar periods are gradually declining; no gradual increase of the
period was ever detected. However, abrupt increases of the period
are observed sometimes, which have been interpreted as “starquakes”
resulted in a fast star restructurization. The gradual period decline
is characterized by its derivative Ṗ . Typically, Ṗ ≈ 10−15; the ratio
P/Ṗ characterizing the pulsar age is ≈ 106–107 years; it never exceeds
109 years.

Intensity of the pulsar radio emission varies significantly; sometimes the emis-
sion switches off entirely (switching-off or periodically active pulsars). The
light curve of a single pulse has a complex structure with a few sub-pulses. The
radio emission contains linearly and circularly polarized components. A sin-
gle pulse lasts only a tiny fraction of the period. The pulsar radio emission is
broadband occupying a spectral range at least from 10MHz to 5GHz. Some of
the pulsars also display pulsations in the infrared, visual, X-ray, and gamma-
ray ranges (e.g., TeV gamma emission was recorded from Vela pulsar). Then,
there are X-ray pulsars that do not produce radio pulsations (radio quiet pul-
sars; we discussed a possible interpretation for that in Sect. 8.7.3). It should
be noted that the brightness temperatures (see Chap. 10 for definition) are
strongly different depending on the emission wavelength: the radio emission
has a very high brightness temperature up to 1021 K indicative of a coher-
ent emission process, while both optical and X-ray emissions have brightness
temperatures below 109K. More than 1,500 pulsars have been detected by
the time of writing (2012).
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Almost half a century of intensive pulsar study resulted in a classification
of the known neutron stars into distinct subclasses. In particular, a neutron
star can emit either a steady X-ray (gamma-ray) flux or a pulsating emission
resembling the radio pulsar phenomenon. Then, if a neutron star enters a
binary system, the companion star can supply it with an accreting material.
This accretion reveals itself via sporadically occurring strong X-ray flashes
and gamma-ray bursts (GRBs) releasing up to 20% of the accreting plasma
rest energy. Of particular interest is a population of the neutron stars with
superstrong magnetic field reaching 1014–1015G, called magnetars, which,
compared with the radio pulsars, are characterized by (1) relatively slow star
rotation, P = 5–10 c; (2) fast spin-down deceleration, Ṗ = 10−10–10−12; (3)
strong X-ray and gamma-ray flashes; and (4) dominance of the magnetic
energy over the rotational kinetic energy.

Let us show the latter explicitly. The magnetic energy in the star volume
is Emagn ≈ (B2/8π)(4πa3/3) ≈ 1.5×1047 erg for B = 1015 G (we adopted the
same magnetic field at the surface and inside the star) and a = 10km. The
rotational kinetic energy is Erot = JΩ2/2 ≈ 2 × 1044 erg for J = 1045 g cm2

and P = 10 s. The mentioned above deceleration rate implies the loss of
rotational energy with the rate Ėrot = JΩΩ̇ ≈ 4×(1032−1030) erg/s, while the
observed X-ray luminosity of a magnetar is L = 1035–1036 erg/s. Therefore,
the kinetic energy of the star is insufficient to supply the observed X-ray
luminosity, which, thus, must be taken largely from the magnetic energy.

Perhaps, the most studied neutron star is the pulsar PSR 0532 in the
Crab Nebula, which has been produced by a supernova explosion observed by
Chinese astronomers in 1054. The Crab Nebula is located roughly 2 kpc from
the solar system. The Crab pulsar has been thoroughly observed throughout
the electromagnetic spectrum from 10MHz up to 100MeV including infrared,
optical, and X-ray ranges. These emission pulses arrive with a frequency-
dependent delay defined by the dependence of the wave group velocity on
frequency (see Problem 10.2). The Crab pulsar has a relatively short period,
P = 0.033 s and large spin-down deceleration, Ṗ = 4.2 × 10−13. The full
luminosity of the nebula is estimated as L ≈ 1038 erg/s, with roughly 12% in
the radio domain.

The common hypothesis of the neutron star origin is core-collapse su-
pernova explosions of heavy stars with M � 8M�. A considerable fraction
of this mass is ejected into ISM to form a nebula, while a compact central
remnant with a mass of M � 1.4M� forms a neutron star. The exact upper
bound of the neutron stars depends on yet unknown equation of state of the
superdense substance. The heaviest ever detected neutron star in a binary
system PSR J1614 2230 has a mass of M = (1.97 ± 0.04)M�. This hypoth-
esis agrees well with spatial distribution of the pulsars in the Galaxy that is
similar to the distribution of their progenitors—OB stars and supernovae. In
particular, most of the pulsars are located in the galactic disk.
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Nevertheless, a direct identification of the pulsars with given supernovae
has only been performed for a very limited number of the cases. One of these
lucky cases is the Crab pulsar, while most of the pulsars are lacking any
identification with a supernova. This can partly happen because of supernova
explosion asymmetry resulting in a large runaway velocity of the neutron star
that can be in excess of 100km/s. If so the star can run dozens of parsecs
from the explosion site over million years of its evolution. Another possible
cause of the pulsar runaway is an asymmetry of the emitted radiation (see
the next section) back reaction, which is possible if the magnetic dipole axes
is displaced from the star rotation axes.

In what follows, unless explicitly stated a different, we use for estimates
the following “mean” parameters of the neutron star: M ≈ M� is of the
order of the solar mass, the radius a ≈ 106 cm = 10 km, the inertia moment
J ≈ 1045 g·cm2, the rotation period P ≈ 1 s, spin-down deceleration rate
Ṗ ≈ 10−15, and the magnetic field at the surface of rigid crust Bmax ≈ 1012G.

12.2.2 Magnetic Dipole Radiation and Particle
Acceleration

Perhaps, a simplest model capable of explaining the most basic pulsar prop-
erties is the oblique magnetic rotator in vacuum. A conducting filled sphere
with a magnetic moment m rotates in the vacuum with the angular velocity
Ω (Ω = 2π/P ); the vectors m and Ω are not parallel to each other while
making an angle ϕ �= 0. In the system rotating along with the sphere there
exists a static dipole magnetic field, whose peak values Bmax are located at
the magnetic poles of the sphere and can easily be calculated for a given
magnetic dipole model:

m = Bmaxa
3/2. (12.53)

In the laboratory (observer’s) system the rotating magnetic moment produces
the magnetic dipole radiation, whose intensity [similarly to the electric dipole
radiation described by Eqs. (9.66) and (9.100)] is described by

dI

dΩn
=

1

4πc3
|n× m̈|2, (12.54)

where dΩn is the solid angle element and n is the unit wave vector of ra-
diation. From the equation of steady rotation ṁ = Ω ×m of the magnetic
moment we find

dI

dΩn
=

Ω4m2
⊥

4πc2
[1− sin2 ϑ cos2(Ωt′ − α)]. (12.55)

Here t′ = t − r/c is the retarded time, m⊥ is component transverse to the
rotation axes; ϑ is the polar angle relative to the rotation axes; Ωt′ and α are
the azimuth angles of vectors m⊥ and n in the plane transverse to Ω.
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The equation obtained (for sin2 ϑ �= 0) is fully consistent with the ob-
served constancy of emission period specified by the angular velocity Ω of the
star rotation, which is highly stable due to angular momentum conservation.
Apparently, Eq. (12.55) does not and cannot explain either shape or duration
of the radio pulses or their spectra. Emission (12.55) is monochromatic at
the frequency Ω, while the observed radiation has a broadband spectrum.
The pulse duration is only a few percent of the period P ; the shape of the
light curve is complicated and not unique. The short duration of the pulses
suggests a high directivity of the emission in contrast to angular distribution
described by Eq. (12.55).

After averaging over time and integration over the full solid angle we find
the full radiated power:

dI

dΩn
=

Ω4m2 sin2 ϕ

8πc3
(1 + cos2 ϑ), I =

2Ω4m2 sin2 ϕ

3c3
. (12.56)

Assuming that the energy losses due to the magneto-dipole radiation are the
main cause of the star spin down (Ω̇ < 0 or Ṗ > 0), we can estimate the
star magnetic field via observed values of P and Ṗ and theoretically well-
determined inertia moment J and radius a of the neutron star.

The rotational kinetic energy of the star is Erot = JΩ2/2; for its loss rate
we can apparently write

Ėrot = JΩΩ̇ = −(2π)2JṖ /P 3. (12.57)

Equating this loss rate to the radiated power, Eq. (12.56), using Eq. (12.53),
and adopting sin2 ϕ = 1 we obtain

Bmax =

(
3c3JP Ṗ

2π2a6

)1/2

. (12.58)

Equation (12.58) offers an observational estimate for the magnetic field re-
gardless its origin. Adopting the “standard” parameters of a neutron star
given at the end of Sect. 12.2.1, we obtain Bmax ≈ 1.4 × 1012G. Appar-
ently, this estimate gives only a very rough idea of the global magnetic field
magnitude at a neutron star surface. As we have noticed in Sect. 8.7.3, local
magnetic fields derived from cyclotron X-ray lines can be much larger than
this global field.

On the other hand if the pulsar magnetic field is independently known
then the derived simple equations allow estimating another important param-
eter of the pulsar—its age if we additionally adopt approximate constancy of
the magnetic field over the star lifetime. The latter assumption is reasonable
because the star body contains many free charges and so represents a highly
conducting medium. The magnetic field dissipation time, according to results
of Sect. 2.3.1, is:
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τd ≈ a2

4πνm
=
a2σ

c2
, (12.59)

where σ describes some effective “mean” conductivity of the star substance.
It is, however, difficult to reliably estimate this effective conductivity

because the neutron star is highly inhomogeneous in the composition, density,
temperature, and, eventually, the conductivity. On top of that, superfluidity
and superconductivity are likely to be present in the star core (Yakovlev
et al. 1999; Haensel et al. 2007; Potekhin 2010). Accordingly, estimates of the
global field dissipation time differ by orders of magnitude ranging from a few
million years to longer than the Universe age. However, even the minimum
estimate of a few million years allows neglecting the magnetic field dissipation
over the pulsar lifetime. For a constant field (and constant star radius and
inertia moment) Eqs. (12.56) and (12.57) yield a simple law of the star angular
velocity variation:

dΩ

dt
= −CΩ3, where C =

B2
maxa

6 sin2 ϕ

6c3J
= const. (12.60)

Integration of this equation yields the pulsar lifetime:

Δt =
1

2C

(
1

Ω2
− 1

Ω2
0

)
, (12.61)

where Ω0 > Ω is the original star angular velocity at the time the neutron
star was born. For old stars with noticeable angular deceleration, Ω � Ω0,
we obtain a simple expression of the pulsar age via its period P and magnetic
field:

Δt =
3c3J

4π2B2
maxa

6 sin2 ϕ
P 2, (12.62)

which is two times smaller than |P/Ṗ |, i.e., both rough estimates agree with
each other to the order of magnitude.

This simple model of radiating magnetic dipole in vacuum does not in-
clude other important deceleration mechanisms such as gravitational radia-
tion and numerous plasma effects. For example, the gravitational radiation
is possible when the star shape deviates from the ideal spherical shape while
represents an ellipsoid due to rotation and anisotropy induced by the mag-
netic field. Shapiro and Teukolsky (1983) estimated that the gravitational
radiation can dominate the star spin down at an early stage of the pulsar
evolution. Higher multipoles can further contribute to electromagnetic radi-
ation and corresponding losses; the plasma effects will be considered in the
next section.

Phenomenologically, the cumulative effect of all deceleration mechanisms
is taken into account by introducing a so-called breaking index n:

Ω̇ = const · Ωn. (12.63)
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Comparison of this form with Eq. (12.60) shows that for the magnetodipole
case n = 3. Other braking mechanisms are characterized by different de-
pendencies of Ω̇ on the angular velocity Ω. For example, if the gravitational
radiation dominates, then n = 5, while for multipole electromagnetic radia-
tion n � 5. Furthermore, n can deviate from the canonic value n = 3 due
to any asymmetry: if the magnetic poles wander over the star surface or the
rotation axes deviates from one of the star principal axes.

Observationally, the braking index can be determined from the rota-
tion period and its two first derivative. Indeed, taking the time derivative of
Eq. (12.63) and solving for n, we obtain n = ΩΩ̈/Ω̇2. Apparently, precise mea-
surements of the derivatives is a highly challenging task that was addressed
for some of the pulsars. For example, for one of the best studied Crab pulsar,
the braking index is found to be n = 2.515± 0.005.

Rotation of the neutron star magnetic moment induces a strong variable
electric field in the ambient space, which can accelerate charged particles. Let
us estimate expected energy of the accelerated particles within the considered
simple vacuum model. Below we use equation of motion

mv̇ = e

(
E +

1

c
v ×B

)
(12.64)

for nonrelativistic particles and equation of energy balance

Ė = ev ·E (12.65)

for relativistic particles. In the vacuum case the electric field in the near field
zone, r � λ = 2πc/Ω = cP , is small because E = −i(c/Ω)∇ × B, while
∇ × B ≈ 0 there. The electric field approaches by value the magnetic field
in the wave zone only, r � κλ 
 a, where κ > 1 is a constant. We expect,
therefore, that the particle acceleration region is located in a closest to the
star part of the wave zone.

Let us estimate the energy gain of a nonrelativistic particle over half of
the wave period using Eq. (12.64):

Δv ≈ 1

2
P v̇ =

eP

2me,p
E. (12.66)

Here we retain only the electric field that is capable of explicitly changing the
absolute value of the particle velocity. This electric field is then calculated
using formulae for the magneto-dipole radiation:

E = −1

c

∂A

∂t
=

1

c2r
n× m̈. (12.67)

Equations (12.67) and (12.53) along with equation of the magnetic moment
motion yield

Δv ≈ eΩ2Bmaxa
3

4κme,pc3
≈ 1

κP 2

{
1017

1014

}
cm/s. (12.68)
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This implies that both electrons and protons became ultrarelativistic over a
very short time compared with the field period; thus, the energy gain must
be calculated using Eq. (12.65) adopting v ≈ c:

ΔE = ec

∫ ∞

t0

E dt. (12.69)

The particles are picked up toward wave propagation so we can integrate
over dr = cdt, where κλ ≤ r <∞. The field depends on r as r−1 exp(iΩr/c).
Making estimate like in Eq. (12.68) we obtain

ΔE ≈ 2πeBmaxa
3

κc2P 2
. (12.70)

Note that the rhs does not contain the particle mass.
Parameter 2π/κ is about one. The accelerated particle energy is pro-

portional to the pulsar magnetic field and reciprocal to the period squared.
Substituting a3 ≈ 1018 cm3, we obtain

ΔE ≈ 0.5Bmax

P 2
eV. (12.71)

For most of the pulsars Bmax ≈ 1011–1012G and the rotation period
∼1 s or less. This gives a moderate energy of the accelerated particles,
E ≈ 1011–1012 eV. However, much higher energies are well possible. Indeed,
for the Crab pulsar (PSR 0532), we have Bmax ≈ 1012G and P ≈ 0.033 s,
which yields E ≈ 1015 eV. For the Vela pulsar (PSR 0833) Bmax ≈ 1012 G and
P ≈ 0.1 s; thus, E ≈ 1014 eV. Overall, in terms of the plausible conditions for
the particle acceleration the most promising are the youngest pulsars having
the shortest pulsation periods of the order of 1ms. For the standard field
1012G they can ensure particle acceleration up to ∼1018 eV.

12.2.3 Structure of Pulsar’s Magnetosphere

Let us now consider if the above assumption that the vacuum immediately
surrounds the solid surface of the star is plausible and what is a more real-
istic structure of the stellar atmosphere. We first try to establish an analogy
between atmospheres of the neutron star and the Earth because both these
celestial bodies have solid crusts. The terrestrial atmosphere is confined by
the Earth gravitation that controls distributions of its density and pressure,
which for a isothermal atmosphere model results in a well-known barometric
distribution.

Given the pulsar temperature is high, �106K, the matter in the mag-
netosphere is supposed to be almost fully ionized. The charged particles are
affected by both gravitational and electromagnetic forces, whose role we es-
timate below. Adopt a to be the radius of the solid body of the star, then, at
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r > a, the density of the pulsar atmosphere obeys the Boltzman distribution:

n(r) = A exp

(
−U(r)

T

)
, where U(r) = −GmM

r
, r > a (12.72)

is the potential energy of a particle with mass m in the gravitational field of
the star with mass M , G is the gravitational constant, T is the temperature
expressed in energy units, and A is a normalization constant. At large heights,
z � a, we can substitute r = a+ z to obtain the barometric formula:

n(z) = n0e
−z/h, h =

Ta2

GmM
, (12.73)

where h is the effective atmosphere height. Adopting T ≈ 100 eV, a = 106 cm,
and M = M�, we arrive at hp ≈ 1 cm for a proton and he ≈ 10m for an
electron. The smallness of these heights compared with the star radius could
imply applicability of the vacuum model. However, account of the strong
magnetic field supplemented by the star rotation entirely breaks down this
expectation because the electromagnetic rather than gravitational field plays
a dominant role in this case.

Let us consider a neutron star as a highly conducting sphere rotating
with the angular velocity Ω. Electric field E′ in a system “temporarily” co-
moving with a given element of the star body is approximately zero, E′ = 0.
Expressing this field via vectors E and B in the observer’s system and linear
velocity of star rotation, u = Ω× r, we obtain for u� c

E′ = E +
1

c
(Ω× r)×B = 0, (12.74)

which implies that the field vectors are perpendicular to each other E ·B = 0.
The nonzero electric field in the observer’s system means that in the rotating
conducting star a macroscopic volume charge ρe = ∇ · E/4π and a surface
charge can be present, which necessarily will produce electric field outside the
star. Below, following Goldreich and Julian (1969), we calculate the external
electric field for a simplified case of “coaxial” rotation, which allows more
detailed treatment at the expense of evanescent magneto-dipole radiation.

Initially, we adopt a vacuum outside the star and match internal field
inside the star with the external field. The external magnetic field is the
static field of the magnetic dipole. The external electric field must be matched
with the internal field: tangential component is continuous, while the radial
one has a jump if a surface charge is present. In the external region there
is no charge (there is vacuum according to our assumption) the electrostatic
potential ϕ(r, ϑ) obeys the Laplace equation and so can be expanded onto
static multipole moments. The electric charge and the dipole moment are
apparently zeros because of electric neutrality and spherical symmetry of the
star. Thus, the electrostatic potential can only depend on the quadruple and
higher moments.
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Taking into account symmetry of the star, we write the quadruple mo-
ment in the form

ϕ(r, ϑ) =
C

r3
P2(cosϑ), where P2 =

1

2
(3 cos2 ϑ− 1) (12.75)

is the second-order Legendre polynomial and C is a constant. In the subsur-
face area Eq. (12.74) yields Eϑ = −(BmaxΩa/c) sinϑ cosϑ, while above the
surface Eϑ = −(3C/a4) sinϑ cosϑ. Equating them we determine the constant
C and then write

ϕ(r, ϑ) = −BmaxΩa
5

6cr3
(3 cos2 ϑ− 1). (12.76)

The normal electric field component experiences a discontinuity, which im-
plies a surface charge with the following density:

σ =
1

4π
[Er(r, ϑ)|r=a+0 − Er(r, ϑ)|r=a−0] = −BmaxΩa

4πc
cos2 ϑ ≤ 0. (12.77)

The electric force Fe acting on an immobile particle just above the star
surface is

Fe = 2πeσ =
BmaxΩa

2c
cos2 ϑ. (12.78)

Comparison of the electric and gravitational forces results in

Fe
Fg

=
eBmaxΩa

3

GmMc
≈ 109 (12.79)

for a proton. Thus, the gravitation has almost no effect on the structure
of the neutron star magnetosphere. Then, let us compare this electric force,
Eq. (12.78), with the attraction force between nuclei and electrons in a normal
substance, e.g., in a hydrogen atom we have FH = e2/a2B, where aB ≈ 0.5×
10−8 cm is the Bohr radius. Their ratio is

Fe
FH

=
BmaxΩaa

2
B

2ec
≈ 5. (12.80)

This, almost an order of magnitude, excess of the force is, apparently, suffi-
cient to pull an electron out from the neutron star crust to the magnetosphere.
In addition, the particle emission from the star surface is further facilitated by
its high temperature, T > 106K, and chemical composition: heavy ions with
lower work function because the light elements have been burned out during
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supernova progenitor evolution. Therefore, the stability of the star surface
breaks down and emission of the charged particles from the star surface fills
the surrounding space by a plasma.

This plasma has high electric conductivity; thus, the magnetic field must
be frozen in this plasma. Stated another way, the magnetospheric plasma
is rigidly linked to the magnetic field lines and rotates along with them.
Therefore, the magnetospheric magnetic and electric fields are connected to
each other by the same equation (12.74) as they are inside the star. Let us
now estimate the lower bound of the plasma density in the magnetosphere
via the electric charge density. If the magnetic moment of the star is directed
along its rotation axes, then the magnetic field in the magnetosphere is static
and obeys the condition ∇ × B = 0. The number density of elementary
charges is

ne =
1

4πe
∇ ·E = −B ·Ω

2πce
≈ BmaxΩ

2πce
� 1010 cm−3, (12.81)

above the surface. Apparently, the magnetic field is nonuniform in the mag-
netosphere, so it contains region dominated by either positive or negative
charges.

The corotation of the magnetosphere with the star cannot happen up
to arbitrarily long distance from the star. The linear velocity of the plasma
rotation u = Ω× r reaches the limiting speed of light value c at the distance

Rc =
c

Ω
=
cP

2π
(12.82)

from the rotation axes. The cylinder with the radius Rc and the axes coincid-
ing with the star rotation axes is called the light cylinder. The corotation
will necessarily break down at some distance inside the light cylinder. Note
that the radius of the light cylinder is 2π times shorter than the vacuum
wavelength emitted by the rotating magnetic moment.

This dense magnetosphere with the light cylinder bounding the plasma
corotation region significantly complicates physical processes in the circum-
stellar space. In particular, plasma behavior differs substantially in the re-
gions of the closed and opened field lines, respectively, Fig. 12.4. The plasma
linked to the closed field lines, located inside the light cylinder, corotates
having the linear velocity below the speed of light c. Since the plasma motion
transverse to the field lines is limited, it does not, presumably, escape from
this magnetic trap.

The field lines reaching the light cylinder are the open field lines. They
deflect back (relative to the star rotation) to form a toroidal magnetic field
far away from the star. Charged particles moving along such open field lines
can escape from the magnetosphere. The particle escape from the star along
the open field line can result in charged particle depletion in the correspond-
ing regions of the magnetosphere. In this case Eq. (12.74) breaks down and
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Figure 12.4: Cartoon of the magnetosphere of a neutron star.

so the plasma is no longer freezing in the magnetic field, so a noticeable
component of the electric field along the magnetic field B arises, which can
drive the particle acceleration. Now we address the efficiency of this particle
acceleration process.

We adopt that the magnetic field is dipole around the star so the field
lines are described by the following equation in the spherical coordinates:

r = C sin2 ϑ, C = const. (12.83)

The last closed field line, Fig. 12.4, must touch the light cylinder, whose
equation is r = Rc = c/Ω, at sinϑ = 1. This condition yields the constant
C = Rc and the angle ϑp, which this field line makes with the polar axes at
the star surface: sin2 ϑp = a/Rc � 1. This angle determines the radius of
polar cusp, which hosts the bunch of the open field lines:

Rp = a sinϑp = a(aΩ/c)1/2. (12.84)

Typically, the polar cusp radius is about 10−2a. If m · Ω > 0, as has been
adopted for calculating electric potential (12.76), it turns out to be positive at
the equatorial zone and negative in polar regions, in particular, in the polar
cusps. Therefore, negatively charged electrons can escape from there to ISM.

However, the use of vacuum expression (12.76) is controversial. Indeed,
conservation of the full charge requires that the electron escape must be
compensated by a corresponding escape of positive charges, e.g., ions. But
the region of positive potential described by Eq. (12.76) hosts only the closed
field lines which does not allow the positive charges to leave the star farther
that the light cylinder radius.

Users of the Goldreich and Julian (1969) model [including Goldreich and
Julian themselves as well as Manchester and Taylor (1977) and Shapiro and
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Teukolsky (1983)] overcome this difficulty by postulating a modified angular
dependence of the potential compared with Eq. (12.76) in such a way to place
the critical field lines, those with zero value of the potential coinciding with
that in ISM, inside the polar cusp, i.e., at some ϑ = ϑcrit < ϑp ≈ 10−2.
For comparison, vacuum formula (12.76) gives the critical angle of ϑcrit =
arccos(1/

√
3) ≈ 0.95, i.e., roughly 100 times larger. With this modification of

the electrostatic potential the central part of the polar cusp emits electrons,
while a ring bounded by the angles ϑp and ϑcrit emits ions; the value of ϑcrit
is selected to provide the net zero current from the polar cusp.

It is obvious that vacuum potential (12.76) deviates from the true po-
tential in the magnetosphere due to presence of macroscopic volume charge.
Because no exact solution is available, a simple modification of the vacuum
solution that account for the most fundamental properties of the physical
system such as charge conservation, rotation, and strong magnetic field is
commonly employed. Adopting this described modification we can estimate
the energy gained by the particles escaping from the polar cusp along the
open field lines. Assuming that a particle gets roughly half of the potential
drop of the polar cusp we obtain

Δϕ = ϕ(a, ϑp)− ϕ(a, 0) ≈ 1

2
(aΩ/c)2aBmax, (12.85)

which gives the particle energy

E =
e

2
Δϕ ≈ 3BmaxP

−2 eV. (12.86)

Here B is measured in G and P in seconds; no energy loss by the particle is
taken into account. The losses can be essential especially for the electrons that
effectively lose their energy for radiation in various energy domains including
the gamma-ray emission (see the next section). Note finally that estimate
(12.86) is derived from Eq. (12.85) that contains a small factor (aΩ/c)2 ≈
10−4. This factor originates from the selected small value of the critical angle
ϑcrit � 10−2 for the latitude where the potential has zero value. If we use
the vacuum potential described by Eq. (12.76) and adopt ϑcrit ≈ 1 then
the estimate of the particle energy would increase by roughly four orders
of magnitude compared with Eq. (12.86).

12.2.4 Emission of Hard Quanta and Generation
of Electron–Positron Plasma in Pulsar’s
Magnetosphere

Equation (12.86) with Bmax ≈ 1012 G implies electron acceleration up to
the Lorentz factor of γ ≈ 3 × 106P−2. These, highly energetic, electrons
quickly lose their transverse (relative to the magnetic field) energy due to
radiative losses in this magnetic field and, thus, move along a given field
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line being at the bottom (zeroth) transverse Landau level. Given that the
dipole field lines has a finite curvature, a particle moving along such a curved
field line experiences an acceleration alternating its direction of motion. As
a result, this particle generates a so-called curvature radiation, which has
a lot in common with the synchrotron radiation considered in Sect. 9.4.2.
Accordingly, a broad spectrum is emitted with a peak at the frequency ω =
0.29ωc, where

ωc =
3eB

2mc
γ2 =

3c

2rg
γ3, (12.87)

rg is radius of the circle along which the particle is moving. Remind that this
result is obtained in Sect. 9.4.2 within classical consideration, which will not
be valid if so calculated energy �ωc of the emitted quantum is comparable
or exceeds the particle kinetic energy. In such (quantum) case the radiation
spectrum vanishes at and above the largest frequency marginally consistent
with the energy conservation.

The radiation spectrum produced by an ultrarelativistic particle is
formed over a finite fraction of its path with the length about ρ/γ. This
allows us to easily obtain the spectrum of the curvature radiation based on
the theory of the synchrotron radiation given in Sect. 9.4.2. Indeed, identi-
fying the circle radius rg with the curvature radius ρ of the magnetic field
line we can easily estimate the characteristic frequency of the curvature ra-
diation from Eq. (12.87). Then, the corresponding substitution, ωc = cγ3/ρ,
to synchrotron radiation spectrum Eq. (9.158) yields the curvature radiation
spectrum

dI =

√
3

2π

e2γ

ρ
Fs

(
ω

ωc

)
dω, (12.88)

where the function Fs(z) is defined by Eq. (9.159).
In spite of significant similarity between the synchrotron and curvature

radiations we emphasize an essential distinction between them: the syn-
chrotron radiation is produced due to particle gyration transverse to the
magnetic field along a circle with a radius proportional to the particle en-
ergy, while the curvature radiation is produced as the particle moves along a
curved field line; thus, the radius of the particle trajectory does not depend
on the particle energy. Therefore, both the characteristic frequency and the
spectrum have dissimilar dependencies on the particle Lorentz factor.

Let us estimate a typical energy of the curvature quanta produced by
electrons in the polar region of the pulsar magnetosphere. The radius of the
dipole field line curvature is easy to calculate; at the edge of the polar cusp
it is estimated as ρ ≈ (8acP/π)1/2. The characteristic energy of accelerated
electrons is given by Eq. (12.86); thus, the energy of the curvature quanta is

�ωc ≈ �cγ3

ρ
≈ 1.4× 10−29B

3
max

P 6.5
eV. (12.89)
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We see that the frequency/energy of the curvature radiation depends strongly
on two main characteristics of the neutron star—its magnetic field and rota-
tion period. Since both these values differ from star to star we make estimates
for a few selected pulsars.

1. Pulsar PSR 0833 (Vela): P = 0.089 s, Bmax ≈ 1.1× 1012G. Energy of
radiating electrons is E ≈ 3 × 1014 eV; energy of curvature quanta is
�ωc ≈ 7.5× 1012 eV.

2. Pulsar PSR 0532 (Crab): P = 0.033 s, Bmax ≈ 1 × 1012G. Energy of
radiating electrons is E ≈ 3×1015 eV; energy of curvature quanta cal-
culated from Eq. (12.89) is �ωc ≈ ×1016 eV, which exceeds the particle
energy. Therefore, quanta with �ω � 1015 eV will be produced.

3. Pulsar PSR 1133, P = 1.19 s, Bmax ≈ 6× 1011 G. Energy of radiating
electrons is E ≈ 3 × 1014 eV; energy of curvature quanta is �ωc ≈
1.5× 105 eV.

These examples suggest that rapidly rotating neutron stars with strong mag-
netic field can generate gamma rays with energies �ωc > 106 eV, which are
sufficient to produce electron–positron pairs. In the laboratory a e+e− pair
can be produced by either a single photon in the presence of electric field of a
heavy ion or collision of two energetic charged particles or “collision” of two
photons. In the strong magnetic field of a neutron star a single photon can
produce the e+e− pair (the magnetic field substitutes here the nuclear elec-
tric field present in the laboratory experiments), although two-photon process
involving a soft X-ray photon and a hard curvature photon is also relevant if
the star has a high X-ray luminosity (see, e.g., Takata et al. (2006)). Below
we briefly consider the process of single-photon process of the pair production
in a strong magnetic field.

The field is adopted to be strong if the distance between the transverse
Landau levels in this field Bc is comparable with the electron rest mass,
mc2 = �eBc/mc, i.e.,

Bc = m2c3/e� ≈ 4.4× 1013 G. (12.90)

The full probability W of the pair creation per unit time valid for ultrarela-
tivistic energies and integrated over energy and angles of the created particles
is well known; we take it from the Landau and Lifshitz course (Berestetskii
et al. 1982):

W =
33/2

29/2
mc2

�

e2

�c

B sinβ

Bc
exp

(
−8Bc

3B

mc2

�ω sinβ

)
. (12.91)

This probability contains dimensional values; it is valid for

κ =
B�ω sinβ

Bcmc2
� 1, (12.92)
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where �ω is the quantum energy, β is the angle between the wave vector and
the magnetic field B, and m is the electron mass. In the opposite case the
probability takes the form

W = 0.38
mc2

�

e2

�c

B sinβ

Bc
κ−1/3, κ
 1. (12.93)

Maximum of the probability corresponds to κ ≈ 11. A threshold value above
which the pair creation becomes possible is specified by conservation of energy
and longitudinal momentum:

�ω sinβ > 2mc2. (12.94)

From here as well as from Eq. (12.91) it is transparent that a photon moving
along the magnetic field, (β = 0), does not produce pairs. Such a photon
moving in a nonuniform magnetic field must first accumulate a noticeable
transverse momentum (i.e., β �= 0). Nevertheless, if the magnetic field is not
far from the critical one and the quantum is reasonably hard, �ω 
 2mc2, the
pair creation happens very fast because pre-exponential factor in Eq. (12.91)
is very large, e.g., mc2/� ≈ 1021 s−1. This implies that a cascading process in
which newly born ultrarelativistic particles generate new curvature quanta
and those quanta, in their turn, produce next generation of electrons and
positrons. An additional generation of quanta is also possible due to transition
between the Landau levels.

These numerous mechanisms of pair production result, in some of the
neutron stars, in creation of ultrarelativistic electron–positron plasma, which
expands in the ISM in a form of ultrarelativistic “pulsar wind.” Such winds
then form pulsar wind nebulae (PWNe) around some of the pulsars including
the Crab pulsar (see Figs. 1.6 and 1.7).

12.3 Pulsar Wind Nebulae

SNRs containing in their volume a pulsar created by the same SN explosion
are often highly different from the shell-type SNRs considered in Sect. 12.1.8
in the morphology, evolution, and spectral energy distribution. Not surpris-
ingly, a primary driver of these dissimilarities is the pulsar supplying the
nebula volume with energy in the form of plasma flows including magnetic
field. In Sect. 12.2 we found that electrodynamics of the pulsar magneto-
sphere naturally results in a highly relativistic corpuscular emission from
the neutron star surface, which can form an ultrarelativistic “pulsar wind”
outside the corresponding light cylinder. In this section we briefly outline
essentials and main implications of the pulsar wind for the corresponding
nebular physics.
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12.3.1 Simplified MHD Flow Model

Observations of PWNe reveal a lot of spatial inhomogeneity, structures, and
anisotropy (see jet, torus, and wisps in Figs. 1.6 and 1.7 as vivid examples).
Apparently, to fully describe such a complicated evolving morphology requires
a highly detailed (presumably, numerical) model taking into account all es-
sential (inhomogeneous, anisotropic, and time-dependent) physics, which is
not yet fully developed. As a zero-order approximation, in what follows we
mainly employ a highly simplified isotropic model of the PWNe developed by
Kennel and Coroniti (1984b): this model is fully analytical and so relatively
simple and manageable, while nevertheless is capable of reproducing the most
essential properties of the PWNe (Fig. 12.5).

The model adopts that the free energy released from the pulsar spin-down
luminosity L (= 5 · 1038 erg/s in case of Crab pulsar) is somehow divided
between the leptonic flow and the magnetic field:

L = 4πnγur2smc
3(1 + σ), (12.95)

where n is the proper number density of the flow, γ is the Lorentz factor, u
is the radial four speed of the flow so that γ2 = 1+u2, rs is the radius of the
flow termination shock from the pulsar position, m is the electron mass, c is
the speed of light, and σ is the fraction of the electromagnetic energy flux
relative to the corpuscular energy flux:

σ =
B2

4πnuγmc2
, (12.96)

B is the magnetic field in the observer’s frame, which is supposed to be fully
toroidal (azimuthal) as it is typical for stellar winds (Sect. 2.5.3).

For the shock with the magnetic field directed along the front and ultra-
relativistic upstream flow the conservation laws can be written as (cf. Sect. 5.3
and Problem 5.8):

n1u1 = n2u2, (12.97a)

E =
u1B1

γ1
=
u2B2

γ2
, (12.97b)

γ1μ1 +
EB1

4πn1u1
= γ2μ2 +

EB2

4πn1u1
, (12.97c)

μ1u1 +
P1

n1u1
+

B2
1

8πn1u1
= μ2u2 +

P2

n1u1
+

B2
2

8πn1u1
. (12.97d)

Particle flux conservation (12.97a) has already been applied to Eqs. (12.97c,d)
of the energy and momentum flux conservation. Subscripts 1 and 2 are used
for upstream and downstream values (regions II and III, respectively); B, E,
and N = γn are the shock frame electric and magnetic fields and number



12.3 Pulsar Wind Nebulae 645

Figure 12.5: Model structure of a PWN inside a SNR (Kennel and Coroniti 1984a).
Region I (not marked up) is the rotating central neutron star producing ultrarelativistic
leptonic pulsar wind. Region II is the pulsar wind (upstream) region bounded by a ter-
mination spherical shock front. Region III is downstream region representing the PWN
itself, where most of the observed radiation is produced. Outer regions are formed due to
interaction of the nebular flow with the expanding SNR shell.

density; μ is the specific enthalpy, which for the ideal gas with adiabatic index
Γ (small γ is used to denote the Lorentz factors here):

μ = mc2 +
Γ

Γ− 1

P

n
; (12.98)

the compression ratio Y is defined as

Y =
B2

B1
=
N2

N1
=
γ2u1
γ1u2

. (12.99)

Now to derive the Rankine–Hugoniot relations we assume Γ2 = 4/3 pro-
vided that the plasma is relativistic downstream, P2/(n2mc

2) 
 1, solve
Eq. (12.97c) and insert the solution into Eq. (12.97d), which yields

Y 2 − Y

[
2

γ2u2

(
u22 +

1

4

)
u1
γ1

]
+

[
2

γ2u2

(
u22 +

1

4

)(
4πn1μ1γ

2
1

B2
1

+
u1
γ1

)]

−2πn1mc
2

B2
1

u2
u1

−
(
1 +

8πn1μ1u
2
1 + P1

B2
1

)
= 0. (12.100)

We consider an ultrarelativistic pulsar wind with γ1 ≈ u1 
 1, although
“cold,” i.e., P1/(n1mc

2) � 1, which implies μ1 ≈ mc2. Assuming the termi-
nation shock is strong, we also accept u2/u1 � 1; γ22 = 1 + u22. Discarding
corresponding small terms and using definition (12.96) of σ parameter after
some algebra we obtain

u22

(
u22 +

1

4

)2

= (1 + u22)

(
u22 −

σ

4(1 + σ)

)2

, (12.101)
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whose meaningful solution has the form

u22 =
8σ2 + 10σ + 1 +

√
64σ2(σ + 1)2 + 20σ(σ + 1) + 1

16(σ + 1)
. (12.102)

Then, from Eq. (12.97c) in the adopted parameter regime, we obtain the
downstream pressure P2:

P2

n1u21mc
2
=

1

4u2γ2

[
1 + σ

(
1− γ2

u2

)]
, (12.103)

and, accordingly, the downstream temperature T2 (in ergs):

T2
u1mc2

=
P2

n2u1mc2
=

1

4γ2

[
1 + σ

(
1− γ2

u2

)]
. (12.104)

It is remarkable that according to Eqs. (12.101), (12.103), and (12.104), the
key downstream parameters, the flow velocity, the pressure, and the temper-
ature all depend on the magnetization parameter σ only in the strong shock
regime. We note that having strong energization of the corpuscular compo-
nent downstream needed to support strong radiation efficiency of the nebula
requires the magnetization parameter to be small, σ � 0.1. Accordingly, in
the small-σ limiting case, the above equations yield

u22 =
1 + 9σ

8
, (12.105a)

γ22 =
9 + 9σ

8
, (12.105b)

T2
u1mc2

=
1√
18

(1− 2σ), (12.105c)

B2

B1
=
N2

N1
= 3(1− 4σ). (12.105d)

It is important to realize that the solution obtained depends on only one free
parameter and this dependence is very weak; in particular, all parameters
defined by Eq. (12.105) become constant when σ → 0 including u22 → 1/8
and γ22 → 9/8 implying the flow three velocity to be c(u2/γ2) ≈ c/3. Stated
another way, a “minimum” set of assumptions, namely, (1) the upstream flow
is ultrarelativistic with a small temperature and (2) formation of a strong
termination shock with a high pressure downstream, has lead us to a unique
solution, whose properties depend on the magnetization parameter σ and the
product of the number density and the four speed of the upstream flow, which
is straightforwardly defined by the pulsar spin-down luminosity and radius
of the termination shock according to Eq. (12.95).
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12.3.2 Downstream Particle Distribution
and PWN Broadband Spectrum

The mean particle energy downstream, T2, defined by Eq. (12.105c) is ultra-
relativistic provided that u1 ≈ γ1 
 1: T2/(mc

2) ≈ γ1/
√
18. However, one

can hardly expect that the particle distribution downstream is thermal. In
fact, as we have comprehensively demonstrated in Sects. 11.4 and 12.1, the
particles interacting with a strong shock acquire a broad power-law spectrum
starting from a minimum “injection” energy and up to a high energy specified
by the acceleration time, particle escape, or particle energy losses. Therefore,
it is reasonable to adopt that the particle distribution function downstream
obeys Eq. (9.169) with γmin ∼ γ1/

√
18 and γmax 
 γmin, which is capable of

generating a broadband electromagnetic spectrum via interaction with the
nebular magnetic fields.

In fact to compute the radiation from a PWN in some detail one has yet
to find the spatial distributions of the particles and magnetic field. Indeed,
the magnetic field is supposed to decline in the 3D nebular flow, while the par-
ticles to experience adiabatic cooling and radiative energy losses (see Kennel
and Coroniti 1984b for greater detail). In particular, for the highest energy
electrons with E ∼ mc2γmax, the radiative losses are severe, so these electrons
cannot reach the nebula border without a significant energy decrease; as a
result, the observed PWN size decreases with the increase of photon energy
in which the observation is being made. Having these remarks in mind as well
as many idealizations adopted in this simplified model, we will not perform
the corresponding calculations in any detail; instead, we make an estimate of
the PWN spectral shape assuming some averaged PWN parameters implied
by the obtained flow solution.

Let us assume that the electromagnetic radiation is produced by the spec-
ified above power-law particle spectrum in the nebular magnetic field, which
we adopt to be regular for now. The corresponding synchrotron spectrum
has been discussed in detail in Sects. 9.4.2 and 9.4.3. For γ1 ∼ 3 · 106 of the
pulsar wind flow5 we have γmin ∼ 106 and adopting B ∼ 1mG we obtain
fBeγ

2
min ∼ 1015Hz, which corresponds to the optical range. Therefore, the

“standard” nonthermal power-law spectral range described by Eq. (9.170) is
expected at the optical to the X-ray range in agreement with observation.
In contrast, at lower frequencies down to the radio band, the synchrotron
spectrum has a shape ∝ f1/3 (see dash-dotted spectrum in Fig. 12.6) which
is in a strong conflict with radio observations of PWN spectra, ∝ f−αr with
αr = 0.2 ± 0.2. To remedy the situation it has been suggested that there
are in fact two distributions of electrons: the one mentioned above, called
the nebular electrons, and a second distribution to fit the radio observations,

5A pulsar wind with that relativistic factor is required to ensure the observed high
efficiency, ∼10–20%, of the pulsar spin-down luminosity into the PWN luminosity
(Kennel and Coroniti 1984b).
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called radio electrons. The postulated radio electrons have a relatively flat
spectrum at γ � 106; however, it is entirely unclearly how these postulated
radio electrons could be created in the nebula.

In particular in the case of the Crab Nebula, which is the best stud-
ied PWN, a standing shock (where a power-law energy spectrum of nebular
electrons, which produce the bulk of the nebula’s synchrotron emission, is
generated) forms in the pulsar wind at a distance of ∼0.1 pc from the pulsar.
Highly mobile features, called wisps (see Fig. 1.7), which have been associ-
ated with this shock, are observed in optical and X-ray emission (Hester et al.
1996; Mori et al. 2002). The observation of the wisps also in the radio (Bi-
etenholz et al. 2001, 2004) suggests that the radio electrons are accelerated
in the same region (rather than, e.g., injected once at some early stage of
the nebula evolution) as the higher-energy nebular ones. The origin and pro-
duction mechanism of these radio electrons, however, are unclear since it is
extremely difficult to produce them from a pulsar wind with high γ (Arons
2002; Atoyan 1999). It would, therefore, be highly desirable to interpret the
whole PWN spectrum with the single nebular electron population, rather
than requiring a separate population of radio electrons.

Figure 12.6: DSR radiation spectra for a power-law magnetic field spectrum character-
ized by different spectral indices, ν. The dashed curve is ν = 1.2 and the solid curve is
ν = 1.5. In addition, the dash-dotted curve shows the standard synchrotron spectrum
for the same power-law electron distribution and the same magnetic field energy den-
sity. Arrows indicate the changes of the break frequencies which separate various spectral
asymptotes. A region with the standard nonthermal spectrum, Pω ∝ ω−αnth , is present
in all cases, although at differing frequency ranges and at different levels. Beyond this
region, the spectra differ significantly from each other.
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12.3.3 DSR Model of PWN Spectrum

To reconcile the obtained energy spectrum of the nebular electrons with the
observed broadband radio to X-ray PWN spectra, we employ the results
obtained above, e.g., in Sects. 4.1.2 and 12.1, that the magnetic fields are
produced at the shock front vicinity in a form of strong magnetic turbu-
lence, which implies that the magnetic fields are random rather than regular.
Therefore, the DSR theory developed in Sect. 9.5 rather than the standard
synchrotron theory must be used to calculate the PWN electromagnetic spec-
trum (Fleishman and Bietenholz 2007).

To do so, let us proceed to the DSR spectra produced by a power-law
distribution of relativistic electrons, Eq. (9.169). The bulk of the DSR energy,
Sect. 9.5.2, produced by a single particle is emitted at frequencies ω ∼ ωlscγ

2

(if ν < 3). Accordingly, it is easy to estimate that in the region of “interme-
diate” frequencies

ωlscγ
2
min � ω � ωlscγ

2
max, (12.106)

the standard well-known nonthermal (synchrotron-like) spectrum Pω ∝
ω−αnth is formed (see Fig. 9.15 and 12.6). However, the DSR spectrum
will deviate significantly from the standard synchrotron spectrum at high
(ω > ωlscγ

2
max) and low (ω < ωlscγ

2
min) frequencies, where it will reproduce

the single-particle spectra, Pω ∝ ω−ν (in place of the exponential synchrotron
cut-off) and Pω ∝ ω−(ν−1)/2 (in place of Pω ∝ ω1/3), respectively. Therefore,
differences in the shape of the radiation spectrum between DSR and standard
synchrotron theory will occur when a particular spectral region is formed
primarily by electrons from near either end of the electron distribution (γmin

or γmax) (see an example of the DSR spectrum in Fig. 9.15).
Thus, the DSR mechanism, namely the low-frequency asymptote Pω ∝

ω−(ν−1)/2, indeed suggests a simple and straightforward interpretation of the
observed wideband PWN spectra with only a single population of electrons.
Within the DSR model, the flat radio spectrum (with spectral indices αr =
0.2 ± 0.2) should be associated with this low-frequency (non-perturbative)
DSR asymptote Pω ∝ ω−(ν−1)/2. The required spectral index of the random
magnetic field is, therefore, in the range ν =1–1.8, which is in remarkable
agreement with available turbulence models, Chap. 6.

The optical emission (and possibly also down to the millimeter or infrared
and/or up to X-ray emission) then is produced by the inner part of the
electron distribution, Eq. (9.169), and has the standard form Pω ∝ ω−αnth .
Finally, at the frequencies ω 
 ωlscγ

2
max, which can occur in the X-ray or
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Figure 12.7: The model DSR spectra and observed broadband spectrum of 3C 58. The
values adopted for the energy index of the power-law electron distribution, ξ, and the
mean square of the random magnetic field 〈B2

st〉 are indicated in the figure.

gamma-ray range depending on the actual value of γmax, which is also a
decreasing function of the distance from the pulsar due to significant radiative
losses at these high energies, the DSR model predicts a spectrum Pω ∝ ω−ν ,
resembling the spectrum of relatively small-scale magnetic inhomogeneities.
The DSR spectrum given in Fig. 9.15 nicely matches the observed wideband
spectrum from the Crab Nebula. One more example of excellent broadband
DSR fit to the spectrum observed from another PWN, 3C 58, from the radio
to X-ray domain is shown in Fig. 12.7. These findings suggest that highly
efficient electron acceleration and magnetic turbulence generation indeed take
place in the PWNe driven by power pulsar winds.

12.4 Some Remarks on Other Relativistic Sources

Modern astrophysics deals with many objects that either move relativisti-
cally, or contain a relativistically hot plasma or both. In many cases such
objects originate from a strong explosion or gas accretion onto a massive cen-
tral object, presumably, a black hole. In particular, this includes galactic
microquasars/X-ray binaries produced by accretion from a normal star onto
a compact stellar mass object (black hole or neutron star). The accretion
forms an accretion disk whose interaction with the central object produces
somehow a single or pair of oppositely directed highly collimated relativistic
jets (Beskin 2009b). These jets produce most of the observed radio emission
and contribute essentially to emission at other wavelength ranges.

A similar but much more powerful phenomenon is AGN. Here the central
object is a supermassive black hole (up to ∼108M�); the AGN structure is
essentially anisotropic (see Fig. 12.8, left): the central object is surrounded by
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Figure 12.8: Left: a cartoon illustrating anisotropic AGN structure involving a central
black hole with an accretion disk surrounded by a torus of absorbing material. Two
counter jets are ejected relativistically transverse to the accretion disk plane. Right: a
schematic structure of a collimated ultrarelativistic jet in a cosmological source of prompt
gamma-ray burst emission produced by an asymmetric explosion of an inner engine. The
jet is a highly nonlinear structure, which includes a forward and reverse shocks, as well as
(perhaps, numerous) internal shocks, which produce strong gamma-ray flashes at each
shock–shock collision. Each such collision is believed to generate strong random magnetic
and electric fields and efficiently accelerate particles.

an accretion disk, which provides a sustained flux of mass and energy toward
the central object where two jets can be launched (in yet unidentified physical
process) in the directions transverse to the accretion disk plane. The central
object and the accretion disk are surrounded by a relatively dense and cool
torus, whose gas is capable of absorbing emission produced in some vicinity
of the central object and disk. This anisotropic source structure implies that
the AGN will look highly differently depending on the observer’s line of sight.
Historically, those differently viewed AGNs were named differently: the radio
galaxies and Seyfert II galaxies are, in fact, the AGNs viewed roughly at
90◦ to the jet axes (the accretion disk is occulted by the torus); quasars
and Seyfert I galaxies are AGNs viewed by an oblique angle to the jet axes
(the region of the accretion disk is seen), while the blazars including BL
Lac and optically violent variable (OVV) quasars are viewed almost along
the jet axes. In the latter case effects of relativistic jet expansion are largely
responsible for most of the observed radiation properties including the strong
variability. These jets are the sites where most of the nonthermal radiation
is produced throughout the entire electromagnetic range (see Fig. 12.9 as
a vivid example) which implies a highly efficient particle acceleration and
magnetic field generation in this relativistically expanding collimated flows.
However, it seems premature to discuss the jet models in the textbook since
the physics of the jets (in spite of considerable progress of corresponding
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Figure 12.9: Images of the jet in quasar 3C 273 in radio 1.647 GHz (MERLIN array
data), left; optical (Hubble Space Telescope data), middle; and X-ray (Chandra data),
right, with smoothed optical contours overlaid. Note highly inhomogeneous structure with
many labeled bright knots and significant dissimilarities in the detailed structure between
the images. Credit: (Marshall et al. 2001). Reproduced by permission of the AAS.

numerical models) remains highly uncertain; in particular, it is yet unclear if
the jets are pressure dominated or Poynting flux dominated (see Sect. 2.3.3
for the definition).

Another type of objects where the ultrarelativistic jets are likely present is
the cosmological GRBs (see a cartoon in Fig. 12.8, right). A common currently
accepted “fireball model” of the prompt GRB emission suggests that a strong
anisotropic explosion of a central engine (presumably, a special regime of a
core-collapse SN, called hypernova) produces an ultrarelativistic jets with a
sequence of strong nonlinear perturbations of the flow structure (so-called
“internal shocks”). These shocks interact with each other to produce highly
variable X-ray and gamma-ray emission at the time scale of the order of
seconds.

Physics of GRBs represents today so broad and so rapidly growing field
of astrophysics that there is no hope to describe it in any sufficient detail
here. We make only a few very general remarks on the subject, since the
GRB cannot be fully ignored in the chapter discussing ultrarelativistic as-
trophysical plasma. Observationally, the GRBs represent sporadic flashes of
X-ray to gamma-ray emission (in the range from a few keV to tens MeV) with
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a duration of ∼ 1–100 s. It was established (based on their highly isotropic
distribution over the sky, afterglow, and redshift detections) that the GRB
sources are located at cosmological distances from the Earth, which requires
that they generate enormously large luminosity of the observed high-energy
radiation with the energy release of at least 1051 erg.6

Assuming any source model relying on a nonrelativistic plasma motion
results immediately in a conclusion that the photon density is so high that
the source must be strongly optically thick for the photon–photon scattering,
which is in strong conflict with falling with energy radiation spectra implying
an optically thin radiation regime. An elegant solution of this apparent con-
tradiction is that the radiation source moves, as a whole, ultrarelativistically,
which, eventually, greatly reduces the optical thickness. A possible source
model comes from comparison with a SN explosion, which has a comparable
energy release of ∼1051 erg, while much lower, nonrelativistic ejecta velocity:
apparently, to have much larger expansion velocity requires that proportion-
ally much smaller mass is being ejected.

Here, formation of propagating ultrarelativistic shocks is likely in the
jet outflow, which results in a very strong energization of the downstream
particles producing electromagnetic emission similarly to the case considered
above for PWNe (again, with γmin 
 1). In the case of propagating ultrarel-
ativistic shock, however, new important effects come into play. In particular,
the radiation spectrum formed in the co-moving frame is boosted by the
bulk Lorentz factor ΓB of the expanding shell, and, because of the relativis-
tic kinematics, the distant observer can only see a fraction θ ∼ 1/ΓB of the
expanding shell.

The outlined source model is complete enough to allow computing the
prompt GRB radiation spectra produced by different emission mechanisms
considered in Chap. 9. Models of the GBR spectra based on the standard
synchrotron theory suffer from inconsistencies similar to that in case of the
PWN spectra: the corresponding low-energy spectrum range (occurring now
in X-ray rather than radio range because of the relativistic boosting and
stronger source magnetic fields) is on average flatter than expected from
the synchrotron theory, while the corresponding spectral index distribution
contains values higher than 1/3, which is impossible to reconcile with the
synchrotron theory irrespectively of the parameter regime.

Remarkably, a most plausible solution of this problem is exactly the same
as in case of PWNe: one must explicitly take into account that the magnetic
field in the GRB source is random, not regular, and apply the DSR theory
to compute the corresponding spectra. As an example, Fig. 12.10 displays a
comparison between the observed and model DSR histograms of the GRB

6This estimate assumes a highly collimated explosion with a jet occupying only
10−3 of the full solid angle; isotropic explosion would require a release of ∼1054 erg,
which looks unrealistic for a star explosion.
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Figure 12.10: Observed (Preece et al. 2000) (top; reproduced by permission of the AAS)
and modeled (bottom) histograms of the band function parameters α, β, and Ebr.

spectral parameters. To obtain the model histograms a few thousand of GRB
parameter combinations were randomly generated from the corresponding
parent distributions taking into account physical links between the parame-
ters involved in the way similar to, but much more sophisticated than, the
modeling described in Sect. 10.3.5. The magnetic field was adopted to be
strong and composed of random waves whose wave vectors are isotropically
distributed. The model DSR histograms closely resemble the observed ones,
while it is not possible to reach a comparable level of agreement within a
standard synchrotron model with a regular (rather than random) magnetic
field. This implies that similar (to the PWN case) physical phenomena of ef-
ficient particle acceleration and magnetic turbulence generation take place in
essentially different class of astrophysical objects—GRBs, which confirms an
universal character and exceedingly wide applicability of the corresponding
dynamic processes considered throughout the book.

Problems

12.1 Using consideration in Sect. 12.2.2, estimate the magnetic field of the
pulsar PSR 0532 in the Crab Nebula making use of the observational data
P ≈ 0.033 s and Ṗ /P ≈ 1.3 × 10−11 s−1 and using the inertia moment
of J ≈ 1045 g cm2, which corresponds to the inertia moment of a uniform
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spherical body with the mass M = 1.4M� and radius R = 106 cm. In addi-
tion, estimate the pulsar magneto-dipole luminosity and compare it with the
solar bolometric luminosity, L� ≈ 4× 1033 erg/s.

Answers and Solutions

12.1 B ≈ 8× 1012 G; LPSR ≈ 4× 1038 erg/s ≈ 105L�.
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Schlüter, A.Z., 59, 528
Schwenn, R., 77
Scowen, P.A., 648
Sedov, L.I., 198, 200
Shakhov, B.A., 530
Shapiro, S.L., 629, 633, 639–640
Share, G.H., 547, 591
Shatalov, S.D., 561
Shebalin, J.V., 252
Shibanov, Y.A., 633
Shibasaki, K., 593
Shibata, S., 642
Shih, A.Y., 386
Shklovskij, I.S., 204
Shukurov, A.M., 201, 241, 316, 344,

356, 412
Siemiginowska, A.L., 652
Silant’ev, N.A., 445
Silich, S.A., 216
Silin, V.P., 23, 153
Sino-German, A., 624
Sitenko, A.G., 21, 72, 113, 115, 122,

130, 148
Sivukhin, D.V., 17, 44, 306
Skadron, G., 629
Smartt, S.J., 205
Smith, D.M., 547, 591
Sokolov, D.D., 201, 241, 316, 344,

356, 412
Solinger, A., 200
Somov, B.V., vii, viii, 21, 32, 67, 182,

197, 524, 525
Songaila, A., 240
Sparks, W.B., 416

Spitzer, L., 1, 24
Spruit, H.C., 231
Sridhar, S., 252, 253, 255
Stapelfeldt, K.R., 648
Steenbeck, M., 344
Stefani, F., 336
Stegun, I.A., 134, 602, 621
Stein, R.F., 313
Stepanov, A.V., 158, 493, 496
Stepanov, K.N., 21, 72, 113, 115, 122,

130, 148
Stone, J.M., viii, 648
Strangeway, R.J., 474
Sturner, S.J., 624, 625
Subramanian, K., 39, 40, 350, 353,

354, 356
Suchkov, A.A., 1
Sun, X.H., 624
Sunyaev, R.A., 399
Syrovatskii, S.I., 32, 182, 237, 368,

413, 607

T
Takata, J., 642
Taylor, G.I., 284
Taylor, J.H., 629, 639
ter Haar, D., 629
Ter-Mikhaelyan, M.L., 412
Teukolsky, S.A., 629, 633, 639–640
Thompson, M.J., 362–366
Title, A.M., 231
Tobias, S.M., 362, 366
Toptygin, I.N., 25, 39, 114, 176, 186,

201, 241, 261, 262, 286, 289,
303, 309, 357, 372, 376, 417,
424, 537, 539, 544, 561, 576,
577, 579, 581, 608

Trauger, J.T., 648
Treumann, R.A., 43, 150, 474
Trottet, G., 386
Trubnikov, B.A., 414, 520
Tsallis, C., 43, 49
Tsunemi, H., 648
Tsuneta, S., 545



Author Index 687

Tsygan, A., viii
Tsytovich, V.N., 153, 367, 419, 426,

445

U
Urpin, V., 360
Usikov, D.A., 15
Utrobin, V.P., 207, 208

V
Vainshtein, S.I., 176, 241, 261, 262,

309, 335, 336, 344, 350, 356,
357, 362

Vallèe, J.P., 330
van den Oord, G.H.J., 276, 277
Vecchio, A., 313
Vilmer, N., 547, 591
Vink, J., 627
Vishniac, E.T., 256, 257
Vitinskii, I.I., 362
Vladimirov, A.E., 576, 623
Vlahos, L., 545
Vlasov, V.G., 150, 595
Völk, H.J., 357, 608, 625, 627

W
Wang, T., 544
Wargelin, B.J., 652
Waters, C.Z., 416
Watson, A., 648
Weinberg, S., 219
Weiss, N.O., 362–366
Wentzel, D.G., 608
Westfold, K.C., 414
Westphal, J.A., 648

White, S.M., 591
Whitham, G.B., 172, 215
Wilkinson, I., 336
Wills, M.J., 545
Winglee, R.M., 545
Wise, M., 416
Wisniewski, W.Z., 415
Wolf, E., 98
Wood, P., 525
Woosley, S.E., 205
Wuelser, J.P., 591

X
Xiao, L., 624

Y
Yaglom, A.M., 243, 245, 285
Yakovlev, D.G., viii, 629, 633
Yan, Y., 545
Yu, S., 474
Yurchishin, V.B., viii, 313, 544

Z
Zaitsev, V.V., 158, 493, 496
Zarka, P., 474
Zaslavsky, G.M., 15
Zasov, A.V., 3
Zel’dovich, Y.B., 219, 350, 336, 356,

357, 399, 362
Zelenyi, L.M., 313
Zepf, S.E., 416
Zhevago, N.K., 371
Zirakashvili, V.N., 357, 608, 623
Zwicky, F., 629



Subject Index

A
Accelerated particle spectra

adiabatic losses, solar protons
Fermi acceleration, 558
intensity spectrum, 557–558
mean energy, 558
particle energy variation, 556
transport equation, 556

nonstationary acceleration
expansion coefficient, 550
Fourier–Bessel theorem, 550
SEP kinetic energy, 551
stochastic Fermi acceleration,
550

turbulent acceleration
coefficient, 549–550

single shock wave, 581–582
stationary Fermi spectra
boundary condition, 552
differential particle flux, 553
distribution function, 552
δ−source, 552
lifetime approximation, 552,
553

power-law spectrum, 553
transport mfp, 551

stochastic electron acceleration,
solar flares

accelerated electrons, 555, 556
cascading fast mode
turbulence, 555, 556

large-scale MHD
disturbances, 555

resonant wave-particle
interaction, 556

steady-state spectra, 554
system free energy, 556
time-dependent spectra, 554
turbulent and Coulomb
electron velocity, 554

time evolution, 548
Active galactic nuclei (AGN), vii,

64, 74, 145, 415, 461, 518,
578, 605, 650–651

Active regions (ARs), 333
plasma beta, 65
subphotospheric field, 354
sunspots, 367
toroidal magnetic field, 362
X-ray footpoints, 591, 592

Adiabatic invariants
drift approximation, 15–17
magnetic, 524
transverse, 304, 307, 467, 525
transverse shock, 561

Alfvén pumping. See Magnetic
pumping

Alfvén simple waves, 166–167, 181
Ambipolar diffusion, 283

impulsive regime, 322–324
steady regime
accelerating process, 317
CR diffusion tensor, 320
electric currents, 317–320
Fourier transform, 318
Green function, 321
highly ionized plasma, 319
Poison equation, magnetic
field, 321

weakly ionized plasma, 319

G.D. Fleishman and I.N. Toptygin, Cosmic Electrodynamics, Astrophysics
and Space Science Library 388, DOI 10.1007/978-1-4614-5782-4,
© Springer Science+Business Media New York 2013

689



690 Subject Index

Anisotropic turbulence

compressible conducting fluid,
257–258

conservation laws, 252

critical balance, 255

incompressible plasma, 254

incompressible turbulence,
253–254

unmagnetized plasma, 255–256

viscous scale, 256–257

Ankle region, 606

α-quenching effect, 353

ARs. See Active regions (ARs)

Astrophysical magnetic fields,
329–330, 416, 459

Astrophysical plasmas, 237, 297

basic parameters, 6

collisional plasmas (see
Collisional plasmas)

coronal loops, 5, 7

coronal mass ejections, 4, 5

Coulomb particle mfps, 281

Crab nebula, 6–8

cyclotron frequency, 8

Debye radius, 7

degree of thermal ionization, 3

electron plasma frequency, 6

ionization rate, 3

IPM, 186

kinetic equation, 290

magnetic field, 101, 290

microscopic description, 18–19

multi-component plasma, 108

nonstationary collisionless, 518

parameter diagram, 3, 4

polar lights, 4, 6

properties, 6

RTR, 439

statistical representation, 19–21

strong energy release, 3

sun structure, 4, 5

turbulence effect, 264

ultrarelativistic component
(see Ultrarelativistic
plasma component)

VCR, 384

Astrophysical turbulence

anisotropic turbulence

compressible conducting fluid,
257–258

conservation laws, 252

critical balance, 255

incompressible plasma, 254

incompressible turbulence,
253–254

unmagnetized plasma,
255–256

viscous scale, 256–257

correlation tensor formalism

correlation/coherence length,
243

correlation/coherence time,
243

ergodic systems, 243

Gibbs’s ensemble, 241

pulsating velocity, 242

stationary turbulence, 242

statistical ensemble, 243

turbulence energy, 244

turbulent motion, 240–241

incompressible conducting fluid

diffusive scale, 249–250

Iroshnikov–Kraichnan model,
250–252

Kolmogorov–Obukhov
turbulence, 245–248

magnetic diffusivity, 264–267

shock waves and discontinuities

interstellar medium
turbulence, 263–264

supernova explosions (see
Supernova (SN) explosions)

supersonic turbulence, 258

αΩ-dynamo, 348, 360, 366



Subject Index 691

B
Bhatnagar–Gross–Krook (BGK)

collision integral, 23–24,
123

Bipolar magnetic regions, 367
Blackbody radiation law, 447
Bohm limit, 613
Bohr radius, 637
Boltzman distribution, 636
Brown motion, 279
Burgers equation, 170–172, 175, 189,

191

C
Coherence length, 243, 371, 419, 420
Collisional plasmas, 447

BGK collision integral, 23–24
continuity equations, 24
definition, 22
dissipative kinetic coefficients,

39–41, 44
heat flux density, 24
heat transfer equations, 24
kinetic transfer coefficients, 22
macroscopic plasma parameters,

22–23
Maxwell equations, 25
Maxwellian distribution, 22
medium motion equations, 24
Ohm’s law
bulk velocity, aggregate
continuum medium, 26

classical Drude conductivity,
28

“cold” plasma, 28
continuity equation, 27
Cowling conductivity, 29, 31
electrons, equations, 26
Hall conductivity, 30
heavy components, equations,
26

ion conductivity, 31
longitudinal electron
conductivity, 31

neutral component, mass
fraction, 27

Pedersen conductivity, 30

quasineutrality, 26

Spitzer conductivity, 30

plasma dispersion

BGK approximation, 123

dielectric tensor components,
124

elementary phenomenological
theory, 123

high-frequency case, 124–125

ion cyclotron resonances,
125–127

low-frequency case, 127–128

two-component hydrogen
plasma, 123

quasi-hydrodynamic
approximation, 24

strong magnetic field, 36–39, 44

viscous stress tensor, 24

weak magnetic field
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relaxation time, 112
Sokhotsky rule, 114
steady-state distribution
function, 112

equilibrium distribution
function, 41, 43–44

frequency and wavelength, 41
kinetic equation, 41
Maxwellian plasma
analytical integration,
115–116

Bessel function, 116
dielectric tensor components,
117

dispersion equation, 117
lower-and upper-hybrid
resonances, wave
dispersion, 118

particle thermal motion, 116
positive refractive index,
118–119

Vlasov equation, 41
wave damping, 119–121

Compton effect, 396
Convective instability

Bénard experiments, 228–229
photospheric solar granulation,

229, 230
stationary case, 222–224
stellar convection, quantitative

treatment, 230
weakly compressible fluid
Archimedes force, 225
Boussinesq approximation,
225

damping rate, 228
gravitation and magnetic
force, 224

incompressibility, 225
Prandtl number, 227
Rayleigh number, 227, 228

thermal conductivity, 226
thermal diffusivity, 226
velocity field and magnetic
field, 226

Coriolis force, 338–340, 353, 366
Coronal holes, 367
Coronal mass ejections (CMEs), 5,

80, 195, 367, 486, 532
Cowling conductivity, 29, 31
Crab nebula, 6–8, 235, 423, 630, 648,

650
Curvature radiation, 641–642

D
Debye shielding, 156, 282, 395, 401
Debye spheres, 21, 395
Diffusive synchrotron radiation

(DSR), 441, 442, 648
astrophysical sources, 423,

425–426
field strength and orientation,

416
PWN spectrum, 649–650
regular and random fields

superposition, 424–425
strong random field
asymptotic regime, 422
characteristic frequency, 421
low frequencies, 423–424
Migdal function, 420
single-particle DSR spectra,
422, 424

weak random field
angular diffusion, 420
coherence length, 420
effective scattering rate,
418–419

isotropic quasistationary
random field, 418

magnetic inhomogeneities,
417–418, 420

spectral index, 419
Discontinuities, 104, 144, 189, 248,

258, 261, 304, 380, 431,
565, 578, 579, 637
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contact discontinuity (see
Rayleigh–Taylor
instability)

finite nonzero width, 179
ideal/dissipation-free MHD

equations, 179
local properties and

classification
Alfvén/rotational
discontinuity, 181

boundary conditions, 180
conservation laws of basic
physical measures, 179

contact discontinuity, 181
equalities, 180–181
local plane, 179

magnetic terms, 180
mechanical and
electromagnetic terms, 180

tangential discontinuity,
181–182

magnetic reconnection
current sheet/current layer,
182

diffusion region, 183
fluid inflows, 183
IPM, 186
Petschek reconnection model,
185

slingshot effect, 183
Sweet–Parker magnetic
reconnection, 183, 184

shock waves, 197–198
tangential discontinuity,

235–237
Dispersion and polarization, 450

hydrodynamics case, B0 = 0
entropy and vortex
perturbations, 67

sound waves, 67–68
MHD case, B0 �= 0
Alfvén waves, 68–70
entropy perturbations, 68
linear eigenmodes, 72

longitudinal propagation,
71–72

magnetic sound, 70–71
transverse propagation, 71

Dissipative kinetic coefficients,
39–42, 170, 230

Doppler effect, 610
Double α-effect (α2 model), 348
Dreicer electric field, 519, 545–546
Drift kinetic equation

averaged distribution function,
310

global diffusion tensor, 309
hall components, 313
kinetic coefficient, 312
magnetized particles,

distribution function, 309
single-point correlator, 311
transverse diffusion coefficient,

312
Drifts, 156, 366, 498, 559

acceleration, 560, 561
approximation, 17, 44, 306, 526
centrifugal drift, 14
definition, 13
electric drift, 13
gravitation drift, 13–14
transverse/gradient drift, 14,

15, 305, 307, 523, 524
DSR. See Diffusive synchrotron

radiation (DSR)
Dynamo mechanism, magnetic field

generation
complex growth rate, 348–349
differential rotation, 332–333,

356
α−effect, 348, 356

Elsasser antidynamo theorem,
333–335

in galactic disk
cosmic rays, 357
e-folding field growth time,
356

growth/damping rate, 355
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plasma ejections, 356

αΩ-model, 355

helical turbulence

mean field (see Mean field,
helical turbulence fluid)

rotating bodies, 339–340

kinematic approximation, 331

kinetic helicity parameter,
337–338

laminar dynamo

field amplification, 336

fluid velocity field, 335

Herzenberg model, 335–336

magnetic force line
reconnection, 337

rotor dynamo, 335, 336

“Zeldovich’s eight”
transformation, 336, 337

magnetic energy balance,
331–332

magnetic field amplification,
347–348

neutron stars, superstrong
magnetic fields

differential rotation
parameter, 360

helicity suppression, 360

hydrodynamic instability, 359

magnetars, 358

measurement methods, 358

rotation model, 359–360

saturation field, 361

stars properties, 361

stellar plasma, 358

turbulent cell velocity, 359

turbulent parameters, 360

nonlinear effects

Coriolis and magnetic force
effect, 353

correlation tensors, 352

effective helicity parameter,
352

lifetime approximation, 352

magnetic and turbulence
energy densities, 350

magnetic diffusivity, 351
mean field theory equations,
351

pseudoscalar, 351
solar magnetic field, 354
turbulent pulsation time, 353

phase velocity, 350
primary field generation,

354–355
solar magnetism, cycles, and

activity, 361
bipolar and unipolar
magnetic regions, 367

butterfly diagram, 362, 363
coronal holes, 367
coronal mass ejections, 367
helioseismology, 364–366
Maunder minimum, 362, 364
meridional circulation, 366
poloidal magnetic field, 363
prominences, 367
radiative and convective zone
transition, 365

sector magnetic field, 363
solar flares, 367–368
solar rotation, 364
toroidal magnetic field, 362
turbulent dynamo, 366

in stars, 357–358

E
Eddington luminosity, 447–449
Electron cyclotron maser (ECM)

emission, 491, 492, 502
local trap model, 476
fast electron distribution
anisotropy, 485

Gaussian distributions, 486
normal distribution, 486
single ECM peak bandwidth,
485

spike bandwidth distribution,
486–488
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spike cluster, 485
turbulence parameter,
485–486

negative absorption
δ−function, 474
isotropic particle
distributions, 473

magnetic turbulence, 477
ordinary and extraordinary
wave modes, 475

solar coronal magnetic loops,
475

solar radio bursts, 474–475
solar radio spikes, 488–489
spatial growth rates, 475, 476,

478
density and magnetic
fluctuations, 479

radiation spectral line, 477
spectral bandwidth, 488–489
spectral broadening

emission peaks, 483
independent Fourier
components, 482

random field energy density,
483

random magnetic field, 483,
484

renormalized bandwidth,
484–485

renormalized Gaussian
spectral peak, 484

spectrum peak shape, 483
weak random magnetic field
Gaussian spectrum, 482
radiation intensity, 479–480
random magnetic field,
480–481

random phase approximation,
481

spectral bandwidth, 482
Energy loss and electromagnetic

wave radiation
anisotropic medium

δ−function, 373
electric field, 372
electromagnetic radiation,
374

energy loss equation, 372, 373
integral transform, 373–374
Maxwellian tensor, 372, 374
polarization vector, 374
radiation spectral density, 374
refractive index, 374
Sokhotsky rule, 373

plasma with spatial dispersion,
376–381

Entropy simple waves, 165–166
Equation of radiation transfer

absorption of radiation, 445
brightness temperature,

454–455
Eddington luminosity

critical luminosity, 448–449
gravitation force, 448
mechanical equilibrium, 447
radiation pressure force, 448
wave period force, 448

Einstein coefficients
absorption coefficient, 450,
452, 453

complex dielectric tensor, 450
electron distribution function,
453

energy density, 451–452
population inversion, 453
quantum method, 450–451
spontaneous transition
probability, 451

thermodynamic equilibrium,
451

total power, 452
emissivity, 445
equilibrium radiation, 446–447
polarization
absorption matrix, 458
circular, 460
coefficients, 457–458
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column matrix, 457
depolarization effect, 459, 460
dispersion measure, 459
Faraday effect, 459, 460
limiting, 460
linear, 459–460
mode-coupling matrix, 458
polarization vector, 456
radiation propagation,
455–456

Stokes parameters, 456–457
wave scattering, 456

radiation intensity, 446
stationary radiation and

amplification, 449–450
Eruptive prominences, 367
External Faraday effect, 459

F
Faraday effect, 459, 460, 499, 501
Fast and slow simple waves, 167–168
Fermi mechanism

Fermi acceleration effect, 536
kinetic/thermodynamic

language, 536
magnetic clouds, 535
mean particle momentum, 536
particle mfp, 535
transparent clouds, 536–537

Fick’s law, 279
Force-free field (FFF), 64, 65, 465,

541, 543
Formation zone, 371, 404, 432
Free-free emission, 387, 446, 462, 464

G
Galactic cosmic rays and supernova

remnants
accelerated particle current,

weak MHD wave
kinetic coefficients, 616
kinetic equation, 613
Larmor radius, 613
momentum spectral index,
616

particle momentum, 612
quasilinear approximation,
615

regular magnetic field, 614
relativistic proton current,
615

relaxation frequency
approximation, 613

transport mfp and
longitudinal diffusion
coefficient, 612–613

turbulent prefront, 611–612
dielectric permittivity tensor,

611
distribution function, 609
efficient particle acceleration,

SNRs
broadband spectral energy
distribution, 626, 627

gamma-ray range, 626
knee energy, 627
magnetic field amplification,
626

observational evidence,
623–624

radio spectral indices, 624
synchrotron losses, 625–626
time scale, 625
time scale, radiative/synchro-
tron losses,
625

VHE quanta, 626–627
X-ray spectra, 624–625

electric current, 610–611
external magnetic field, 609, 610
linear growth rate
dispersion equation, 617
energy conservation law,
617–618

growing and damping wave
modes, 617

Maxwell’s equation, 616
power-law spectrum, 618

macroscopic velocities, 610
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MHD oscillations, shock front,
608–609

plasma eigenmodes, 609

plasma frequency, 611

radio emission, 607

spatial distribution, 621–622

strong turbulence

complex wave frequency, 620

demarcating scale, 619

kinetic coefficients, 619

numerical simulations,
622–623

perturbation, 620

relativistic proton
gyrofrequency, 619

resonant and nonresonant
interactions, 618–619

spatial and angular
distribution, 620

wave dispersion, 609

Gamma-ray bursts (GRBs), vii, 425,
517, 559, 605, 607, 630,
652–654

Gravitational instability, 219–221

Green function

current density, 321

free-streaming, 293

helical turbulence, 341, 342, 346

high-energy particle diffusion,
323

longitudinal, 431

magnetic field diffusion, 61–62

nonlinear correlation tensors,
352

particle acceleration, 581, 585

perturbation theory, 284, 285

quasilinear approximation, 146

turbulent diffusion coefficients,
287, 288

turbulent magnetic diffusivity,
265–267

Gyro emission, 387

gyration, fast electron, 406

gyrosynchrotron radiation,
406–407

synchrotron radiation
beaming angle, 408
vs. bremsstrahlung spectrum,
411–412

circular polarization, 412
degree of linear polarization,
413, 414

density effect, 411
depolarization, 414
dielectric permittivity, 409
directivity, 408
electric vector rotation, 412
electron energy distribution,
414

extragalactic objects, 415
galactic background
radiation, 414, 415

low-and high-energy
spectrum, 411

nonthermal electromagnetic
emission, 415

nonthermal radiation, 415
observational broadband
spectra, 415, 416

particle velocity, 408
polarization ellipse, 412
polarization tensor
components, 408–409

power-law distribution,
413–414

Razin effect, 411, 413–414
relativistic particles, 407–408
spectral distribution, 409
universal spectrum function,
409, 410

volume emissivity, 413
wave dispersion, 409

Gyrosynchrotron (GS) radiation
transfer

absorption coefficient, 461, 462
computation spectra, 462, 463
3D modeling
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emission intensity,
polarization, and spectral
index, 470–472

emission routines, 465
geometry and source
morphology, 464–465

GX Simulator, 465, 466
inhomogeneous distribution,
468

magnetic field model, 465,
466

magnetic field strength, 467,
468

microwave images, 470
pitch-angle distribution, 467
post-numerical approach, 465
radio brightness maps, 468,
469, 472

uniform source, harmonic
structure, 472, 473

electron distribution function,
461

emissivity, 461
free–free absorption, 463–464
gyroharmonics, 462
microwave flux, 463, 464
radiation flux, 462
Razin suppression, 463–464
thermal free–free emission, 462

Gyrosynchrotron/X-ray (GX)
Simulator, 465, 466

H
Hall conductivity, 30
Helioseismology, 354, 364–366, 542
Hydrogen plasma, 30, 103–106, 123,

282, 443, 448, 522

I
Internal Faraday effect, 459
Interplanetary medium (IPM), 1, 76,

77, 79, 85, 185–186, 194,
237, 248, 261, 282, 415,
518, 532, 548, 550, 551,
553, 556, 558, 586

Ion Dreicer electric field, 519, 522,
546

Iroshnikov–Kraichnan model,
Alfvénic turbulence,
250–253

K
Kelvin–Helmholtz instability,

235–237
Kirchhoff’s law, 446, 447
Knee energy, 606, 608, 618, 620, 624,

626, 627
Kolmogorov–Obukhov turbulence,

245–250, 263, 304
Korteweg–de Vries–Burgers (KdVB)

equation, 176
Korteweg–de Vries (KdV) equation

algebraic equations, 174
cold plasma, 176
condition, 177
KdVB equation, 176
magnetic well, 178
magnetosonic wave, nonlinear

generalization, 174
Maxwell equations, 172–173
nonlinear equation, 175
nonlinear Shrödinger’s equation,

176
one-fluid plasma motion

equation, 173
soliton width, 178
stationary nonlinear waves, 176
transverse propagation, 176

L
Landau damping, 115, 134, 135, 142,

154, 156, 176
Landau–Pomeranchuck–Migdal

effect, 405
Large-scale magnetic field

generation. See Dynamo
mechanism, magnetic field
generation

Larmor radius, 8, 10, 14, 44, 116,
119, 121, 196, 275, 292,
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294, 295, 309, 313, 316,
320, 542, 544, 559, 608,
612, 613, 620, 621

Light cylinder, 638, 639, 643
Liouville’s theorem, 526
Lorentz formula, 9
Lotka–Volterra equations, 158, 159,

492

M
Magnetars, 358, 630
Magnetic pumping, 587

angular scattering, 526, 528
diffusion-type equation, 528
drift approximation, 526
isotropic distribution, 526
isotropization, 528
kinetic energy, 528
longitudinal and transverse

particle momentum,
525–526

mean particle momentum, 528
oscillating magnetic field, 525
second-order Legendre

polynomial, 527
Magnetic reconnection process, vii,

63, 182–185, 309, 367, 523
Magnetohydrodynamics (MHD)

Ampére force, 56
astrophysical turbulence (see

Astrophysical turbulence)
collisional plasmas (see

Collisional plasmas)
diffusion, 61–62
flow model (see Pulsar wind

nebulae (PWN))
freezing-in condition, 62–63
ideal equations, 58–59
induction equation, 58
linear modes
basic equations, 66–67
dispersion and polarization
(see Dispersion and
polarization, MHD)

wave damping, 72–74

magnetic diffusivity, 58

magnetic pressure, 58

magnetic Reynolds number, 61

magnetic tensions, 58

Maxwell equations, 56

motion instability (see Motion
instability)

neutral gas, hydrodynamic
equations, 53–55

nonlinear waves (see Nonlinear
MHD waves)

Ohm’s law, 57

one-fluid, 56

oscillations, shock front,
608–609

quasistationary electromagnetic
phenomena, 56

quiescent prominence model,
59–60

solar wind (see Solar wind,
MHD)

stationary configurations, 64–65

stellar wind (see Stellar wind,
MHD)

theory, 56

two-fluid/multi-fluid, 56

weak MHD wave, 611–616

Magnetohydrodynamic (MHD)
shock waves

diffusive particle acceleration

balance equation, 564

boundary condition, 565–566

distribution function, 565

energy balance equation, 564

first-order ordinary
differential equation, 566

injection energy, 567

magnetic inhomogeneity
flows, 563

multiple shock crossing, 562

particle energization, 562

particle flux density, 566

particle injection density, 565
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properties, 567–568
turbulent magnetic field, 562,
563

fast particle interaction
arbitrary orientation, 561, 562
drift acceleration, 559, 560
electric fields, 559
oblique shock, 561
parallel MHD shock, 562, 563
particle Larmor radius, 559
shock velocity, 559
transverse and initial
momentum component, 561

transverse MHD shock, 559,
560

nonlinear modification
boundary condition, 576
compression ratio, 572–575
conservation laws, 572
continuity conditions, 571
distribution function, 576
energy flux, 571, 573
escaping particles, 574
fast particle pressure, 570–571
with finite thermal jumps and
fuzzy fronts, 575

fluid velocity, density, and
pressure distributions, 577

hydrodynamic model, 570
injection power, 576
interpolation equation, 575
multiple front crossing, 578
prefront, 569
quasiparallel shock waves, 569
runaway particles, 570, 572
velocity jump, 575
velocity profile, 576–577
without thermal jump,
573–574

relativistic particles, 558
Maunder minimum, 362, 364
Maxwellian plasma, 273, 454

analytical integration, 115–116
Bessel function, 116

dielectric tensor components,
117

dispersion equation, 117
lower-and upper-hybrid

resonances, wave
dispersion, 118

particle thermal motion, 116
positive refractive index,

118–119
Maxwellian tensor, 95, 98, 154, 372,

374, 376–378
Cartesian coordinate system,

96, 97
cubic algebraic equation, 95
Hermitian property, 95
inverse tensor, 96
natural reference frame, 95
polarization degeneracy, 96
principal values and

eigenvectors, 99–101
transparency windows, 95

Mean field, helical turbulence fluid
renormalization
electroconductivity, 344
magnetic diffusivity and field
generation, 346–347

partly averaged magnetic
field, 345–346

symmetric real tensor, 345
velocity correlation tensor,
344

short correlation time
collisional magnetic
diffusivity, 341

correlation tensor, 341, 343
δ−function, 342
α−effect, 343
first-order iteration, 342
induction equation, 341
mean magnetic field, 344
second-order iteration, 342
spatial scales, 340
spectral functions, 343
zero-order iteration, 342
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Microscopic emission processes

absorption, 371

bremsstrahlung

cylindrical coordinate system,
402

definition, 400

electric current Fourier
transform, 400

electric potential modulus,
401

electron deflection, Coulomb
electric field, 400, 401

fast electron, random walk,
401

Landau–Pomeranchuck–
Migdal effect,
405

multiple scattering, 405

perturbation theory, 403–404

radiation intensity, 402–404

radiation spectrum, 404, 405

spectral and angular
distribution, 402

total number of particles, 402

ultrarelativistic particle,
403–404

DSR (see Diffusive synchrotron
radiation (DSR))

electric current

electrostatic modes, 375–376

energy loss and
electromagnetic wave
radiation (see Energy loss
and electromagnetic wave
radiation)

in vacuum, 375

electromagnetic emission, 371

gyro emission (see Gyro
emission)

rectilinear moving particle (see
Rectilinear moving particle
emission)

Motion instability
convective instability (see

Convective instability)
gravitational instability,

219–221
Kelvin–Helmholtz instability,

235–237
method of small perturbations,

218
Rayleigh–Taylor instability, 235
disturbed discontinuity
surface, 231, 232

equation of motion, 231
fluid velocity, 231
momentum flux tensor,
components, 233, 234

potential energy, 234–235
velocity perturbation, 231
vertical magnetic field,
stabilizing effect, 233

saturation of, 218
thermal instability
condition of, 239
heat conduction, 239
heat transfer, 238
interstellar medium, 240
power-law dependence, 238
radiative losses, 239
radiative loss function, 238
solar corona, 239
temperature variation
equation, 238

Multi-component plasma, 127, 140,
450

Alfvén and fast modes, 110
electrically neutral plasma

dispersion, 109–111
helium ion-cyclotron modes, 110
hybrid He–He/He–p modes, 110

N
Navier–Stokes equation, 54
Neutron stars, vii, 3, 6, 74, 205, 329,

330, 358–361, 399, 606,
607, 645
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magnetic dipole radiation and
particle acceleration

breaking index, 633–634
Crab pulsar, 635
electric field, 634
energy balance equation, 634
energy gain, 634–635
intensity, 631
magnetic field dissipation
time, 632–633

magnetic moment, 631
pulsar lifetime, 633
radiated power, 632
rotational kinetic energy, 632
star angular velocity
variation, 633

superfluidity and
superconductivity, 633

observational data
Crab pulsar, 630, 631
fundamental properties, 629
gamma-ray bursts, 630
magnetars, 630
magnetic energy, 630
mean parameters, 631
supernova explosion, 630, 631

pulsar’s magnetosphere (see
Pulsar’s magnetosphere)

uniqueness, 628
Nonlinear Landau damping, 156
Nonlinear MHD waves

shock waves (see Shock waves)
simple waves
Alfvén, 166–167
continuity equation, 164
dissipation, 163
entropy, 165–166
fast and slow, 167–168
macroscopic parameters, 163
one-dimensional geometry,
163

phase velocity, 164
sound speed, 165
turnover, 168–169

solitons (see Solitons)

stratified atmosphere, point
explosion, 209–211

superbubble blowout, 211–212

supernova explosions and
evolution (see Supernova
(SN) explosions)

Nonlinear processes, 150, 154

coherent plasma radiation, solar
corona

Bernstein modes, 502

birefringence effect, 498

brightness temperature, 506

coronal inhomogeneity scale,
501, 504

damping rate, 505

Faraday rotation effect, 499,
501

Fourier amplitudes, 498, 501,
503

frequency dependence, delay,
499, 500, 502

group auto-delays, 501

group time delays, 500–501,
503

gyroabsorption, 502, 504

plasma electron temperature,
505

plasma mechanisms, radio
emission, 497, 498

plasma number density, 504

plasma parameter (Y), 504

pulsation period, 505

quasiperiodic pulsations, 498,
499, 505

RCP and LCP fragments,
498, 500

solar flux units, 497

source size, 506

upper-hybrid turbulence,
504–506

upper-hybrid waves, 502–503

X-mode waves, 503
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free-space mode propagation,
490

plasma–transverse wave
conversion

brightness temperature,
494–495, 497

coalescence/decay processes,
496, 497

coherent solar radio bursts,
494

coupling mode frequencies,
495

free–free absorption
coefficient, 493

gyrofrequency, 495
isotropic distribution, 493
Langmuir waves, 493, 496
plasma turbulence and source
size, 496

plasma wave spectrum
bandwidth, 496

stimulated scattering, 492
volume emissivity, 492

transverse waves scattering,
thermal ions, 490–492

Nonlinear Shrödinger’s equation,
176, 195

O
Ohm’s law, 25–31, 57, 519
Ostrogradsky–Gauss theorem, 283,

334

P
Parker’s model, solar corona

expansion
coronal mass ejections, 80
equality, 79
equation of mass conservation,

78
equation of motion, 78
eruptive processes, 80
expansion velocity, 79
gas acceleration, 79
HD equations, 77

heat deposition, 81
internal energy density, 81
plasma heating, 80
polytropic index, 81, 82
power law, 78
runaway velocity, 79
shock position, 83
thermal speed, 79

Particle acceleration
accelerated particle spectra (see

Accelerated particle
spectra)

cosmic rays (CRs), 517
galactic superbubbles, 582–585
helical turbulence
average distribution function,
540

diffusion equation, 542
electric force, 541
Fermi acceleration coefficient,
542

fluid velocity, 543
3He ions, 546
helicity density, 542–544
hydrogen isotopes, 546
kinetic equation, 541
kinetic helicity parameter,
544

mean magnetic field, 540
spatial displacement, 546–547
stellar coronae, 547

magnetic pump (see Magnetic
pumping)

MHD shock waves (see
Magnetohydrodynamic
(MHD) shock waves)

momentum space diffusion
acceleration operator, 535
acceleration time and
diffusion coefficient, 535

chaotic electric fields, 534
diffusion equations, 533
Fermi mechanism, 535–537
fluid velocity, 533
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small-amplitude MHD waves,
537

stochastic electric fields, 534
stochastic electric force, 535
strong turbulence case,
539–540

whistler waves, 537–539
nonstationarity, 518
particle energy (see Particle

energy)
regular acceleration, 518
second-order acceleration

effects, 547–548
solar flares, 517–518
stochastic acceleration, 518
supersonic turbulence (see

Supersonic turbulence)
Particle diffusion, coordinate space

anisotropic diffusion, 297
anisotropic distribution

function, 295–296
conductivity components, 298
Debye radius, 299
electric conductivity

calculation, 297
off-diagonal components, 296

Particle energy, 9, 10, 12–14, 290,
304, 323, 403, 430, 431,
451, 518, 534, 536, 537,
539, 547, 548, 553, 556,
558, 561–564, 569, 587,
621, 625, 635, 640–642, 647

collapsing magnetic trap,
524–525

drift approximation, 15–17
regular fields
admixture ion, 521
Coulomb friction force, 523
critical electric field, 519
Dreicer fields, 522–523
dynamic friction force, 520
energy gain, 524
heavy ion velocity, 521, 522
helium isotopes, 521, 522

magnetic field, 524

momentum conservation law,
521

regular medium motion

Compton–Getting factor, 530

convective flux, 531

electric field effect, 529

energy and diffusion flux, 531

medium and magnetic
inhomogeneities, 529

nonrelativistic and
ultrarelativistic cases, 532

nonzero rhs, 529

particle kinetic energy
density, 531

solar proton deceleration, 532

transport equation, 530

Particle-in-cell (PIC) simulations,
18, 145

Particle transport, turbulent cosmic
media

admixture diffusion, steady
plasma

Brown motion, 279

coefficient, 279

collision frequencies, 280

Coulomb particle mfps, 281

Debye shielding radius, 282

Fick’s law, 279

admixture transfer, turbulent
fluid

advection-diffusion equation,
283

Lagrangian velocities, 284

perturbation theory, 284–286

turbulent diffusion coefficient,
renormalization (see
Turbulent diffusion
coefficient, renormalization)

ambipolar diffusion (see
Ambipolar diffusion)

free-streaming particle
transport
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Alfvén current limiting,
274–275

return current generation,
276–279

time of flight, 274–275

random magnetic field

drivers of, 290

kinetic equation derivation,
290–291

particle diffusion, coordinate
space (see Particle
diffusion, coordinate space)

resonant scattering of
particles (see Resonant
scattering of particles)

small-scale magnetic
inhomogeneities (see
Small-scale magnetic
inhomogeneities)

strong magnetic field

drift kinetic equation (see
Drift kinetic equation)

kinetic equation, guiding
center approximation,
306–308

longitudinal particle diffusion,
303–304

transverse diffusion, 313–316

transverse particle diffusion,
304–306

Pedersen conductivity, 30

Penumbra, 229, 230, 313, 362

Perturbation theory, 12, 64, 66, 263,
267, 284–286, 341, 345,
382, 401, 403, 404, 406,
417, 419–422, 427, 484, 579

acceleration vector, 388–389

correlation tensor, 392

dielectric permittivity, 389

emission field Fourier
component, 387

force square modulus, 390

longitudinal and transverse
masses, 388

magnetic Lorentz force, 390
particle acceleration Fourier

component, 391
Poynting flux, 388
radiation intensities, 393
random Lorentz force, 390
random magnetic field, 392
relativistic particle motion, 389
spatiotemporal and temporal

Fourier component, 391
transverse and parallel

accelerations, 393
transverse Lorentz force, 392

Petschek reconnection model, 183,
185

Plasma dispersion, 151, 371, 381,
391, 395, 412, 423, 446, 507

anisotropic and gyrotropic
media, eigenmodes

dispersion relations, 98–99
Maxwellian tensor (see
Maxwellian tensor)

cold plasma approximation
dielectric permeability tensor,
102

electron contribution, 107
equation of motion, 101
hydrogen plasma, 103–106
MHD modes, 107–108
multi-component plasma (see
Multi-component plasma)

polarization vectors, 107
spatial dispersion, 103
velocity components, 102

collisional plasma
BGK approximation, 123
dielectric tensor components,
124

elementary phenomenological
theory, 123

high-frequency case, 124–125
ion cyclotron resonances,
125–127

low-frequency case, 127–128
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two-component hydrogen
plasma, 123

collisionless plasma (see
Collisionless plasma)

displacement vector, 94
Fourier components, 94
macroscopic Maxwell equations,

94
microscopic Maxwell equations,
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polarization vector, 93

Plasma turbulence, 161, 248, 496,
504, 505

Polar cusp, 639–641
Polarization tensor, 408, 409,

456–457
Poynting vector, 115, 134, 180, 371,

375, 393
Prominences, 59, 60, 235, 239, 367
Pulsar’s magnetosphere

quanta emission
curvature quanta energy,
641–642

curvature radiation spectrum,
641

electron–positron plasma,
642–643

Lorentz factor, 640, 641
pulsar selection, 642
transverse Landau level, 641,
642

structure
barometric formula, 636
electric conductivity, 638
electric field, 636
electric vs. gravitational
forces, 637

external magnetic field, 636
light cylinder, 638–639
number density of elementary
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particle energy, 640
polar cusp radius, 639
pulsar temperature, 635

quadruple moment, 637
speed of light, 638
surface charge density, 637

Pulsar wind nebulae (PWN), viii,
74, 399, 425

MHD flow model
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conservation laws, 644
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temperature, 646

electromagnetic energy flux
fraction, 644

magnetization parameter,
646, 647

model structure, 644, 645
spin-down luminosity, 644

pulsar magnetosphere
electrodynamics, 643

spectrum
and downstream particle
distribution, 647–649

DSR model, 649–650
PWN. See Pulsar wind nebulae

(PWN)

Q
Quasilinear theory, 619

collisionless kinetic equation,
145

δ−functions, 147, 148
electric field correlation tensor,

Fourier representation,
147–148

electron distribution function,
145

Green function method, 146
momentum diffusion equation,

148–149
momentum-space diffusion

coefficient, 148
turbulence energy, 148
weak amplification, 147

Quasistationary electromagnetic
phenomena, 56

Quiescent prominence model, 59–60
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R
Radiative loss function, 207, 238
Radio pulsars. See Neutron stars
Rankine–Hugoniot shock adiabat

equation, 187, 188, 209, 645
Rayleigh–Jeans formulae, 452
Rayleigh–Jeans regime, 414, 446
Rayleigh scattering, 395
Rayleigh–Taylor instability, 211, 235

disturbed discontinuity surface,
231, 232

equation of motion, 231
fluid velocity, 231
momentum flux tensor,

components, 233, 234
potential energy, 234–235
velocity perturbation, 231
vertical magnetic field,

stabilizing effect, 233
Razin effect, 411–414, 437, 471
Rectilinear moving particle emission

inverse Compton effect
characteristic energy, 399
3D momentums of photon,
396

electric field correlation
tensor, 398

four-momentum conservation,
395–396

Lorentz force, 397–398
photon scattering, 396–397
Planck spectrum, 399–400
radiation intensity, 397, 399
relativistic particles, 398
Thomson cross section, 399
ultrarelativistic electrons, 397
Zeldovich–Sunyaev effect, 400

perturbation theory
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correlation tensor, 392
dielectric permittivity, 389
emission field Fourier
component, 387
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longitudinal and transverse
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magnetic Lorentz force, 390
particle acceleration Fourier
component, 391

Poynting flux, 388
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random Lorentz force, 390
random magnetic field, 392
relativistic particle motion,
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spatiotemporal and temporal
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transverse Lorentz force, 392
Thomson scattering
classical electron radius, 394
cross section, 394
Debye sphere, 395
dipole radiation, time
domain, 394

ion contribution, 395
linear and circular
polarization, 394

scattering of radiation, 393
transition radiation (see

Transition radiation)
VCR (see Vavilov–Cherenkov

radiation (VCR))
Resonant scattering of particles, 541

Coulomb collisions, 299, 302
Coulomb diffusion, 302
escape time, 300–301
GS emission mechanism, 301
magnetic trapping, 302
power-law, 301
wave-particle interaction, 300
whistler waves, 299–302

Resonant transition radiation (RTR)
dielectric permittivity, 431
F(α) function, 433, 434
higher-frequency spectrum, 433
intensity, 431–432
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spectral index, 433

Reynolds number, 55, 61–63, 184,
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RTR. See Resonant transition
radiation (RTR)
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304, 359, 431, 581, 582,
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Supernova (SN) explosions)
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front structure

boundary conditions, 190
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energy exchange, 191
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193
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structure of, 191
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MHD (see
Magnetohydrodynamic
(MHD) shock waves)
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188–189
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294

correlation tensor, 294
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Larmor rotation, 292
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437, 470, 474, 517, 518,
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547, 551, 554–556, 585–597

Solar wind, MHD

observational data, 75–77

Parker’s model, solar corona
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coronal mass ejections, 80
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heat deposition, 81
internal energy density, 81
plasma heating, 80
polytropic index, 81, 82
power law, 78
runaway velocity, 79
shock position, 83
thermal speed, 79

Solitons, 163, 192, 193, 195, 258
Burgers equation, 170–172
KdV equation
algebraic equations, 174
cold plasma, 176
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generalization, 174

Maxwell equations, 172–173
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nonlinear Shrödinger’s
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one-fluid plasma motion
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soliton width, 178
stationary nonlinear waves,
176

transverse propagation, 176
Space plasmas, v, 1, 2, 77, 445, 474
Spitzer conductivity, 30, 39
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492
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dissipation-free induction
equation, 83
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523, 545, 546
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258, 273, 291, 322, 356,
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core-collapse SNe, 205
energy sources, 258–259
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Sedov solution
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front velocity, 199
gas parameter distributions,
200

HD equation, 199
isotropic/spherical shock
wave, 198

smoothed spectrum, 260
spatial Fourier transform, 259
spectral index, 262
stages
dense cold shell, 207–208
free expansion stage, 206
radiative stage, 207
Sedov stage, 206–207

stellar mass ejection, 205
tangential and Alfvén

discontinuities, 261
thermonuclear SNe Ia type, 204
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turbulence statistics, 259
vortex mode, amplification, 262
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585
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Pecklé number, 579
solar flares
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electron flux, 594
electron trapping, 596
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evolution, 589
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injection efficiency, 588
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distribution function, 586
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physical parameters, 597
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SHH evolution, 590
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SHS spectrum evolution, 586
signatures, 585
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total electron lifetime, 595
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strong particle acceleration,

580–581
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weak particle acceleration, 580

Sweet–Parker magnetic
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Tachocline, 365, 366
Ter-Mikaelian effect, 403, 405, 411,

419
Thermodynamic equilibrium, 35, 55,

77, 80, 446, 447, 451
Thomson cross section, 394, 399,

448, 686
Thomson scattering, 396
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classical electron radius, 394
cross section, 394
Debye sphere, 395
dipole radiation, time domain,

394
vs. inverse Compton scattering,

398
ion contribution, 395
linear and circular polarization,

394
scattering of radiation, 393

Transition radiation
in astrophysics, 437–439
current Fourier transform, 428
definition, 426
electric and magnetic fields, 427
kinetic equation, plasma

electrons, 426
random density inhomogeneities
density inhomogeneity
spectrum, 430

δ−function argument, 429
Green’s function, 428
radiation intensity per unit
time, 429–430

radiation loss, 431
total radiated energy per unit
time, 430

transverse electric field, 428
relativistic background plasma,

427–428
RTR (see Resonant transition

radiation (RTR))
Turbulent diffusion coefficient,

renormalization, 586
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Fourier harmonics, 287
“frozen-in” stationary

turbulence, 289
Green function, 287, 288
integro-differential equation,

287
Kolmogorov-type turbulence,

287

renormalized diffusion tensor,
289

transcendental equation, 289

Two-stream instabilities, 279

electron beams

dielectric permeability
components, 141

Landau damping, 142

Langmuir waves, 140–142
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long waves, 141

plasma frequency, 140

resonant wave modes, 140
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thermal velocity scatter, 141

particle anisotropy, 140

Weibel instability, 143–145
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Ultrarelativistic plasma component

AGN, 605, 650–651

black hole, 650

cosmic rays (CRs)

energy spectrum, 606

galactic cosmic rays and
supernova remnants (see
Galactic cosmic rays and
supernova remnants)

Larmor radii, 606

SN explosions, 606–607

GRBs, 652–654

jet, quasar 3C 273, 651, 652

neutron stars and particle
acceleration (see Neutron
stars)

observed and model DSR
histograms, 653, 654

photon-photon scattering, 653

pulsar wind nebulae (see Pulsar
wind nebulae (PWN))

Umbra, 229, 230, 362

Unipolar magnetic regions, 367
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condition, 383
electric current, 382
kinematics, 383
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radiation spectral intensity,

383–384
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transition, 385
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384–385

flux, 385
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385

spectrum shape and flux
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Wave-particle interactions, 35, 300,

302, 450, 555, 556, 565, 587
instabilities saturation, 149–150
quasilinear approximation
δ−functions, 147, 148
electric field correlation
tensor, Fourier
representation, 147–148

electron distribution function,
145

Green function method, 146

momentum diffusion
equation, 148–149

momentum-space diffusion
coefficient, 148

standard collisionless kinetic
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turbulence energy, 148
weak amplification, 147

two-stream instabilities (see
Two-stream instabilities)

Wave–wave interactions and plasma
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inverse tensor expansion, 154
Maxwell equation, 155
nonlinear dispersion relation,

151
nonlinear response tensors, 152,

153
quantum language, 150
quasiparticles/plasmons, 150
random phase approximation,

151
wave turbulence
coalescence processes, 161
damping rate, 159
Lotka–Volterra equations,
158, 159

magnetized plasma, 156
nonlinear Landau damping,
156
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Wien regime, 446
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Zeldovich’s antidynamo theorem,

335
Zeldovich–Sunyaev effect, 399
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