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Preface

The objective of this book is to describe the methods of formulating continuum
models for material behavior. The text is structured in a stepwise hierarchical
fashion from basic to more advanced topics. The text begins with an introductory
chapter that summarizes some aspects of creating mechanical models of material
behavior and also describes different models for material object behavior; the
particle, rigid object, lumped parameter, and continuum models. Chapters 2 through
6 contain a development of linear anisotropic continuum mechanics models: a
development of basic continuum kinematics is presented in Chap. 2, the continuum
formulations of conservation laws is recounted in Chap. 3, the process of modeling
material symmetry is explained in Chap. 4, the steps in the formulation of constitu-
tive equations are enumerated in Chap. 5; and four linear continuum theories: flow
through rigid porous media, elasticity, viscous fluid theory, and viscoelasticity, are
described in Chap. 6. These four continuum models are combined in different ways
and applied at the microstructural level in the remainder of the book. Chapter 7
concerns the modeling of material microstructure. Chapters 8 and 9 present
developments of the theories of quasi-static and dynamic poroelasticity, respec-
tively, while Chap. 10 presents a mixture theory approach to poroelasticity. The
kinematics and mechanics of large elastic deformations are described in Chap. 11.
Appendix A on matrices and tensors also contains short reviews of other mathe-
matical topics that occur in the development of the text material. The material in the
Appendix has been added to aid the students in remembering what they once knew.
It is now presented at the start of the course.

The presentations in the text differ from the customary presentations of these
topics in many aspects, two of which are worth pointing out. First, all continuum
models are developed for the anisotropic cases rather than the isotropic cases
because most tissues are anisotropic in their material properties. Second, a slightly
unconventional tensor-matrix notation is employed in this presentation. Its objec-
tive is to represent fourth rank tensors as matrices that are composed of tensor
components, something that the classical Voigt matrix notation for the anisotropic
elasticity tensor does not achieve. In the notation employed here second and fourth
rank tensors in three dimensions are represented as vectors and second rank tensors,
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viii Preface

respectively, in six dimensions. Transformations in the six-dimensional space,
corresponding to three-dimensional transformations, are six-by-six matrix
multiplications that are easily entered and quickly computed with symbolic algebra
software (Maple, Mathematica, MacSyma, and MatLab). In particular the three-
dimensional fourth rank elasticity tensor is represented as a second rank tensor in
a space of six dimensions. This notation is described in the Appendix on matrices
and tensors.

The material in this text is covered in a Continuum Mechanics course by the
author. The course regularly draws students from Chemical, Civil and Mechanical
Engineering as well as Biomedical Engineering. The material in the Continuum
Mechanics course, in the order covered, is Appendix A, then Chaps. 1 through 7.
I cover the material on poroelasticity in a separate course I teach jointly with Luis
Cardoso. I would very much appreciate readers communicating to me suggested
revisions to this book. In particular any corrections, comments, suggestions of
material to be included (or excluded) and suggested problems w/solutions for use
as either examples or problems at the end of sections would be appreciated. Please
email these materials to sccowin@gmail.com or cowin@ccny.cuny.edu. I will
maintain a record of corrections, suggested additions, and suggested (HW)
problems w/solutions.

A problem solutions manual is available from the author for instructors using
this book in a course. For an instructor to obtain an e-copy, please email a request to
sccowin@gmail.com or cowin@ccny.cuny.edu and enclose the name of the
instructor, the name of the instructor’s institution and course in which the book
will be employed.

The contributions from the students who took the courses in which the content
of the book was contained in handouts presented have been most helpful.
Monte Mehrabadi has made substantial indirect contributions to the text through
his 40-year collaboration with the author, as has Luis Cardoso in the last 5 years.

New York, USA Stephen C. Cowin
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Chapter 1
Mechanical Modeling of Material Behavior

1.1 Introduction

The typical types of models that have been employed in the analysis of the
mechanical behavior of material objects are described in this chapter. Specifically,
descriptions of the various model types employed in mechanics, namely the particle
model, the rigid object model, the deformable continuum model, and the lumped
parameter model are described. The modeler should view these model types as tools
and the task of the modeler is to select the proper tool for the problem at hand.

The content of this chapter is not material that can be learned by rote memoriza-
tion. It is material that must be thought about and practiced in order to acquire a
modeler’s skill. In the next section conservation principles, control volumes, and
free object diagrams are discussed. In the section that follows, the first problem in
modeling, the concept of time, is considered, then that of space. In the next section,
the relationship between models and the real physical world is discussed. Four
sections that describe particle models, rigid object models, continuum models, and
lumped parameter models, respectively, follow a section on the types of models
used in mechanics. The final section concerns two philosophical questions related
to mechanical modeling, reductionism, and determinism.

1.2 Conservation Principles, Control Volumes,
and Free Object Diagrams

There is an aspect of the application of conservation principles of mechanics (those
of mass, momentum, angular momentum, energy, etc.) that is an artisan-like skill
that requires some experience on the part of the modeler. Most engineering students
acquire this skill when they learn to construct “free object diagrams” to apply
Newton’s laws to solid objects in a course on statics or to draw “control volumes”
to apply the conservation principles of mechanics to fluids. These diagrams or

S.C. Cowin, Continuum Mechanics of Anisotropic Materials, 1
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2 1 Mechanical Modeling of Material Behavior

volumes are selected to satisfy the criteria of the modeler, which are generally to
define the problem by representing the unknown quantities and the known
quantities in a way that the conservation principles can be applied to obtain an
equation(s) representing the unknown quantities in terms of the known quantities.
The construction of free object diagrams or control volumes is an artisan-like skill
because there is not a unique way to construct them; the modeler must have insight
into the problem. Many such physically correct diagrams can be drawn but it is
likely that only a few will yield the modeler the relationship between quantities that
he or she sought. This creative aspect of the application of conservation principles
of mechanics is prominent because of the great diversity of the situations to which
they are applied. These applications range in size from the Nano scale to the Macro
scale, from a portion of a protein to a molecule to bridges, airplane structures, and
the structure of the universe.

Both free object diagrams and control volumes are drawings made to simplify
the application of conservation principles to a particular physical situation. A
conservation principle can often be written in the form of an accounting statement:

[The time rate of change of a quantity in a system]
= [the amount of the quantity coming into the system per unit time]
— [the amount of the quantity leaving the system per unit time]
+ [the amount of the quantity produced within the system per unit time]

— [the amount of the quantity consumed within the system per unit time].

Thus the application of the conservation of mass (or momentum) of a fluid
employs a drawing to balance the net flow or change in the quantity, much like a
financial account for an organization is balanced.

Note that the word “body” used in modeling nonbiological applications of
Newton’s laws, for example “free body diagrams” and “rigid body motion,” is
replaced in this work by the word “object”; thus reference is made here to “free
object diagrams” and “rigid object motions.” The reason for this shift in terminol-
ogy is to avoid the use of the same word for two different meanings in the same
phrase, like a “free body diagram” of a body or a “rigid body motion” of a body.

1.3 Models and the Real Physical World

Models have been found to be very effective tools for the analysis of physical
problems. The basic elements of these models are Euclidean or classical geometry
and the concept of time. The concept of time is intuitive while our mathematical
model of time, the real line, that is to say the line representing all real numbers, is
abstract. The connection between the mathematical abstraction and our intuitive
perception of time is a philosophical matter that should be accepted by the reader;
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\ The Mathematical Model

of the Object
7 7

A similarly shaped
portion of a three-
dimensional space

The Real Object

/¢

A Cartesian Reference
Coordinate System

THE REAL WORLD \ EUCLIDEAN 3 SPACE

Fig. 1.1 The Euclidean space model of a real object

this relationship is rigorously discussed in a classical book by the German-
American mathematician Hermann Weyl (1883—1955) entitled “The Continuum.”
Once one has accepted the real line as a geometric model for time, the next step of
accepting the real line as a geometric model for a one-dimensional structure (such
as a string or a fiber) is not difficult. Real lines are used in forming one-, two-, and
three-dimensional Cartesian reference coordinate systems for one-, two-, and three-
dimensional Euclidean spaces. The real lines used as the reference Cartesian
coordinate systems in two and three dimensions are mutually orthogonal.

In the initial stages of model construction for a material object of any size or shape,
it is necessary to project the object into Euclidean space (Fig. 1.1). The portion of the
three-dimensional Euclidean space that the object occupies is often an exact replica of
the space in the real world occupied by the real object. However, the structure of the
real object is not carried over into the model unless the modeler makes provision for it.
For example, if the object is fibrous, the fibers are not represented in the model unless
the modeler explicitly provides for their representation. The advantage of the model is
that all the points in the real object now have Cartesian addresses. The triplet of
Cartesian coordinates (xy, X, x3) locates a point in the Euclidean space occupied by a
particular point in the real object. This permits the measurement of distance between
points in the object, and if the object moves or deforms, the resulting motion can be
quantitatively documented. The volume of the object and its centroid may be deter-
mined by use of the integral calculus. The greatest advantage, however, is the ability to
define functions of physical interest in terms of the reference coordinate system. Thus,
for example, the temperature distribution throughout the object can be specified by a
function 0 = 0(x;, x,, x3) defined for all of the Cartesian coordinates (x;, x5, x3)
located within the object. If the function is smooth, then a derivative of the function
can be taken and the temperature gradient is determined for all of the Cartesian
coordinates (x;, x», x3) located within the object. The point of these remarks is that
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the consequence of making a Euclidean space model of an object is that it permits the
powerful computational machinery of classical geometry and the integral and differ-
ential calculus to be used to calculate quantities of physical or biological interest.

Since the representation of physical phenomena must be independent of the
observer, it is necessary to express physical quantities in ways that are independent
of coordinate systems. This is because different observers may select different
coordinate systems. It therefore becomes a requirement that physical quantities be
invariant of the coordinate system selected to express them. On the other hand, in
order to work with these physical quantities and evaluate their magnitudes, it
is necessary to refer physical quantities to coordinate systems as illustrated in
Fig. 1.1. The resolution of this conflict is to express physical quantities as tensors;
vectors are tensors of order one and scalars are tensors of order zero. Thus it is no
surprise that in classical mechanics the essential concepts of force, velocity, and
acceleration are all vectors; hence the mathematical language of classical mechan-
ics is that of vectors. In the mechanics of rigid objects the concepts of position,
velocity, and acceleration are all vectors and moments of inertia are second-order
tensors. In the mechanics of deformable media the essential concepts of stress,
strain, rate of deformation, etc., are all second order tensors; thus, by analogy, one
can expect to deal quite frequently with second-order tensors in this branch of
mechanics. The reason for this widespread use of tensors is that they satisfy the
requirement of invariance of a particular coordinate system on one hand, and yet
permit the use of coordinate systems on the other hand. Thus a vector u represents a
quantity that is independent of coordinate system, i.e., the displacement of a point
on an object, yet it can be expressed relative to the three-dimensional Cartesian
coordinate system with base vectors e,, o = I, II, IIl, as u = uje; + upey + umemn
and also expressed relative to another three-dimensional Cartesian coordinate
system with base vectors e;, i = 1, 2, 3, by u = uje; + uye, + uzes. The vector
u and the two coordinate systems are illustrated in Fig. 2.2. These two
representations of the components of the vector u are different and both are
correct because a rule, based on the relationship between the two vector bases
e, o =1 I, III, and e;, i = 1, 2, 3, can be derived for calculating one set of
components in terms of the other. Thus the vector u has a physical significance
independent of any coordinate system, yet it may be expressed in component form
relative to any coordinate system. The property of vectors is shared by all tensors.
This is the reason that tensors, as well as vectors and scalars, play a leading role in
modeling mechanics phenomena.

1.4 The Types of Models Used in Mechanics

It is possible to divide the discipline of mechanics according to the predominant
type of motion an object is considered to be undergoing. The three types of motion
are translational, rotational, and deformational. In translational motion all the
points of the moving object have the same velocity vector at any instant of time.
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b. Rotational motion

a. Translational motion

After

Before

¢. Deformational motion

Fig. 1.2 The three types of motion possible for an object

A translational motion is illustrated in Fig. 1.2a. In pure rotational motion the
velocities of all the points of the moving object, at any instant, are proportional to
the distance of the point from one single fixed axis. This situation is illustrated in
Fig. 1.2b in the special case where the fixed axis is perpendicular to the plane of the
page. A deformational motion (Fig. 1.2¢) is a motion in which some points on
the same object move relative to one another. It can be shown that the motion of any
object or material system can, at any time, be decomposed into the sum of
three motions, a translational motion, a rotational motion, and a deformational
motion. If there are many objects (e.g., molecules) and only average properties of
the ensemble are sought by statistical methods, the model is said to be one of
statistical mechanics.

These motions suggest three of the five types of models of objects used in
mechanics: the particle model, the rigid object model, and the deformable contin-
uum model. These models of objects are differentiated from one another on the
basis of the type of motion modeled. The particle model only emulates the transla-
tional motion of the object; the rigid object model emulates both translational and
rotational motion of the object; and the deformable continuum model emulates all
three types of motion. The first two models, the particle model and the rigid object
model, are described in mechanics books dealing with statics and dynamics of
particles and rigid objects. The deformable continuum model is described in books
dealing with the mechanics or strength of materials or in books on elasticity and
fluid or continuum mechanics.

There is an important fourth category of model used in mechanics that overlaps
the first three model types; this category is the lumped parameter model, a very
important model type in mechanics. The particle model, rigid object model,
deformable continuum model, and the lumped parameter model are discussed in



6 1 Mechanical Modeling of Material Behavior

the next four sections. The fifth categories of mechanics models, statistical models,
are not discussed in this volume.

After this chapter, the remainder of the book is an elaboration of the deformable
continuum model.

1.5 The Particle Model

The particle model is the simplest model in the hierarchy of models in classical
mechanics. This model of an object considers the entire mass of the object as
located at the mass center and only the translational motion of the mass center is
modeled. Thus the image of the model shown in Euclidean space in Fig. 1.1 shrinks
to a mass point located at the mass center, as illustrated in Fig. 1.3. Since the mass
center is a point, the particle model is a point model; rotational motions and
deformations of the object are neglected. The English natural philosopher Isaac
Newton (1642—1727) created the particle model when he took the sun and a planet
to be particles and used his universal law of gravitation and his second law to
provide an analytical derivation of the three empirical laws of the German
astrologer—astronomer Johannes Kepler (1571-1630). In particular, Newton’s
model showed that the planets moved around the sun in elliptical orbits, a fact
previously established by Kepler’s observational data. Moments and rotational
motions are not considered in the particle model; they are considered in the rigid
object model.

The modeling structure described above may be employed as a framework for
the statement of Newton’s second law. This may be accomplished by letting
the vector p denote the position of a typical point in the mathematical model of

The Mathematical Model

The Real Object of the Object.

7

mass center

A Cartesian Reference
Coordinate System

THE REAL WORLD \ EUCLIDIAN 3 SPACE

Fig. 1.3 The particle model of a real object
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Fig. 1.4 An illustration of the particle model in biomechanics, determining the airborne trajectory
of a ski jumper. In the air the ski jumper is acted upon by the attraction of gravity, the drag of the
wind and the momentum established in the downhill run before contact with the ground ceased.
The ski jumper’s trajectory is determined by the solution of Newton’s second law with these
specified forces

the object, p = x;e; + x,e, + x3e3, where e;, e, and e; are the Cartesian unit
base vectors. The position vector to the mass center of the object is denoted by
Pime) = X(mc)1€1 + X(mc)2€2 + X(me)3€3. If the object is moving, then the location of
the point of the object is changing in the Euclidean space, and the Cartesian
coordinates x;, x5, x3 are all continuous, twice differentiable, functions of time,
x1 = x1(8), x5 = x(t), x3 = x3(#), and it is therefore possible to compute the veloc-
ity of the mass center of the object, or of any point on the object, as well as its
acceleration. The acceleration of the mass center is given by

tme = (X (me)1 /d2) €1 + (X (me)2 /A7) €2 + (dx(me)3 /A7) €3. (1.1)

Denoting the total mass of the object by m and the sum of the forces acting on the
object by F, a statement of the second law of Newton can then be written in the form

F = may,. (1.2)

As an illustration of the particle model, consider the question of determining the
airborne trajectory of a ski jumper. In the air the ski jumper is acted upon by
the attraction of gravity, the drag of the wind, and the momentum established in the
downhill run before contact with the ground ceased (Fig. 1.4). The ski jumper’s
trajectory is determined by the solution of Newton’s second law with these
specified forces. The trajectory is obtained by an analysis that is completely
equivalent to that of an artillery shell or a sub-orbital rocket. While the particle
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a b

velocity distribution cell buoyancy

A
shear force

adhesion adhesion
Y

substratum cell weight

Fig. 1.5 (a) A cell adherent to a substratum and subjected to a fluid shearing action. (b) An
analysis of the forces on a cell of Fig. 1.5 (a), the cell adherent to a substratum and subjected to a
fluid shearing action

model is adequate for determining the trajectory of the skier, it is an inadequate
model for the transition of the skier’s position from the crouch of the downhill run
to the erect and forward leaning body posture adopted for flight, and inadequate to
deal with the question of impact upon landing.

This traditional method of analysis of macroscopic force systems is also applied
at the microscopic level. For example, one method of studying the response of cells
to mechanical loading situations is to culture or grow the cells on a surface such as
glass and subject the surface to fluid shear stresses as illustrated in Fig. 1.5a.
Some of the forces that act on the cell in this flow situation are shown in
Fig. 1.5b. The forces that act on a cell include the weight of the cell, W, the
buoyant force on the cell due to its aqueous environment, Wyyoyans; the adhesive
force of the cell to its substrata, F, the fluid pressure on the cell, the shear force due
to fluid flowing over the surface of the cell, forces due to electrical charge or
magnetic fields, and self generated forces by the cell. The same forces act on these
cells in vivo, but the forces are illustrated in vitro because it is an easier situation to
visualize and to draw. The weight of the cell, W, is about 1 piconewton. The cell
is subjected to a buoyancy force as a consequence of its immersion in an aqueous
environment. The buoyant force on the osteocyte is equal to the weight of the water
it displaces, Wyyoyant = 0.9 piconewton, nine-tenths of a piconewton. The processes
of cell adhesion to substrata, as well as the influence of substratum surface
properties on cell adhesion, have been studied in recent years by subjecting cells,
in vitro, to fluid shear stress. Adhesion of cells to solid substrata is influenced by
several substratum surface properties including substratum wettability, surface
roughness, and surface charge. The force F of adhesion for a single cell is the
surface area A that the cell presents to the flow times the shear stress when the cell is
removed from the surface by the fluid shear stress. The shear stress at which cells
capable of adhesion detach from a glass substratum is about 400 dyn/cm”. Assum-
ing an appropriate surface area, the adhesive force on the cell F' is about
6,000 piconewtons. Since W = 1 piconewton, F = 6,000 W,;. Thus a cell can
express adhesive forces that are three to four orders of magnitude larger than the
cell weight. For man on the surface of the earth, the largest forces with which we
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must cope are generally those due to gravity, that is to say the forces that manifest
themselves in the weight of objects. It is quite a different story for the cell
because the largest force system they experience is due to adhesion. The adhesive
forces on a cell are three to four orders of magnitude larger than the gravitational
forces on a cell. More importantly, cells control their adhesive forces; man does not
control gravity.

Problem

1.5.1. A ski jumper leaves the ski jump with a velocity v, in a direction that is an
angle o above the horizon (see Fig. 1.4). The final point on the ski jump is an
elevation s above the valley floor. If the drag of the wind is neglected, show
that the horizontal and vertical velocities, v, and v, respectively, of the skier
as he reaches the flat valley floor are given by v, = v,cosa and vy =
—((vosino)® + 2gh)1/ 2. Find the time, f,oucn, at which the skier touches valley
floor as a function of v,, «, & and g, the acceleration of gravity.

1.6 The Rigid Object Model

The rigid object model differs from the particle model in that the rotational motion
as well as the translational motion of the object is considered. Deformations are
neglected, hence the adjective “rigid” modifying object. Thus, not only Newton’s
second law of motion is involved, but also Euler’s equations (after their creator, the
Swiss mathematician/engineer/physicist Léonard Euler, 1707-1783) for the rota-
tional motion. Euler’s equations are special forms of the conservation of angular
momentum expressed in a reference coordinate system at the mass center of the
rigid object (or at a fixed point of rotation of the object), fixed to the rigid object,
and coincident with the principal axes of inertia. If I, I5,, and I35 represent the
principal moments of inertia (see Appendix section A.8), and M;, M,, and M3
represent the sums of the moments about the three axes, then Euler’s equations may
be written in the form

M; = I (dw; /dt) + ww3(I33 — Ina),
M, = Inp(dw, /dt) + wswi (I — Is3), (1.3)
M3 = I33(da)3/dl) + w1w2(132 — I]l),

where w, w,, and w3 are the components of the angular velocity about the
respective coordinate axes. In the case when there is only one nonzero component
of the angular velocity ws; and w; = w, = 0, then (1.3) reduces to

M; = I3303, (1.4)
where ;3 = dws/dt is the angular acceleration. This is the one-dimensional form of

the conservation of angular momentum, or of Euler’s equations, a form that usually
appears in basic mechanics texts.
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If the rigid object restriction is relaxed a bit to allow the moment of inertia I33 in
(1.4) to vary, then the conservation of angular momentum about an axis may be
written in this special case as

M; = d(I33(1)3)/dl. (1.5)

This is the form of the conservation of angular momentum that is employed to
explain why a figure skater spinning at one place on the surface of the ice can
increase or decrease his or her angular velocity by extending their arms out from the
torso or lowering the arms to the sides of the torso. If the skater is spinning, there is
no moment about the axis that is the intersection of the sagittal and frontal or
coronal planes, thus M3 = 0 and, from (1.5) above, the product I33w3 must be a
constant. Since I33m; = constant, when the skater extends (lowers) the arms, the
moment of inertia of the skater increases (decreases) and the angular velocity of the
spin must decrease (increase).

For stationary objects, or objects moving with constant velocity, the conserva-
tion of linear and angular momentum reduce to the conditions that the sum of the
forces and the sum of the moments must be 0. These conditions provide six
equations in the case of a three-dimensional problem and three equations in the
case of a two-dimensional problem. The application of these equations is the topic
of an engineering course on the topic of statics.

Problem

1.6.1. A diver rotates faster when her arms and legs are tucked tightly in so that she
is almost like a ball rather than when the limbs are extended in the common
diving posture like a straight bar. Consider a diver with a mass of 63 kg, an
extended length of 2 m and a tucked length of 1 m. (a) Determine the factor
by which her angular velocity in the tucked configuration exceeds her angular
velocity in the extended configuration. It is reasonable to approximate the
body in the two configurations as cylinders, and to assume that the centroid of
the cylinder coincides with the center of mass of the diver. In the extended
configuration the cylinder has a length of two meters and an average radius of
0.1 m while in the tucked configuration the cylinder will have a length of 1 m
and an average radius of 0.1414 m. Recall that the mass moment of inertia of
a cylinder about an axis perpendicular to its long axis and passing through its
mass center is M(3r2 + hz)/ 12, where r is the radius of the cylinder and # is
the height of the cylinder. (b) What is the parameter that predominates in the
determination of this ratio?

1.7 The Deformable Continuum Model

The deformable continuum model differs from the particle and rigid object models
in that relative movement or motion is permitted between two points in the model.
Examples of deformable continua include the elastic solid used, for example, in the
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analysis of beam bending and viscous fluid used, for example, in the model of flow
through a pipe. The use of the word “continuum” in describing these models stems
from the idea illustrated in Fig. 1.1, namely that the model is a domain of Cartesian
space in the same shape of the object being modeled. It therefore has all the
properties necessary to use the analytical machinery of the calculus. In particular,
displacements, strains, velocities, and rates of deformation may be calculated.
These developments will be presented in the next and subsequent chapters. The
deformable continuum is the focus of this text because it is the primary class of
models employed in the study of solid and fluid at both the macro scale, at the
nanometer scale, and at scales in between.

1.8 Lumped Parameter Models

Lumped parameter models are extended rigid object models in which some of the
elements are assumed not to be rigid, but to respond in simplified specific ways. The
word “lumping” is used to imply that not all the properties are modeled exactly, but
in a somewhat approximate way. For example, in a lumped parameter model the
image of the object in Euclidean space, as shown in Fig. 1.1, need not be an exact
model of the object, just a model that contains the features the modeler desires.
The mechanical concept of “Coulomb friction” is a “lumped” concept as it occurs in
the formula of the French engineer Charles Augustin de Coulomb (1736-1806).
The static friction formula of Coulomb is employed to express the force F necessary
to cause the motion of weight W resting upon a frictional horizontal surface as
F = uW, where u represents the coefficient of friction. The sources of what is
called “friction” between the surface and the weight W are varied and include,
among other things, the effect of surface adhesion, surface films, lubricants, and
roughness; these effects are “lumped” together in the concept of Coulomb friction
and expressed as a single coefficient, u.

When linear springs and dashpots are used as elements in a model they are
“lumped” representations of an object’s stiffness or damping. Their properties
describe the constitution of the element and are called constitutive properties.
The spring element is also called the Hookian model (Fig. 1.6a) and is characterized
by an equation that relates its overall lengthening or shortening, x, to the force
applied to the spring, F, by a spring constant, k; thus F = kx (Love, 1927). This
model is named after the English natural philosopher Robert Hooke (1635-1703).
The dashpot is called the viscous model or damper (Fig. 1.6b) and is characterized
by an equation that relates the rate of its overall lengthening or shortening, dx/dt, to
the force applied to the dashpot, F', by a damping constant, 7; thus F = 7 (dx/dr).

Lumped parameter models employing springs and dashpots are used extensively
in the study of mechanical systems. Simple forms of these models are used to
explain the material response phenomena called creep and stress relaxation. Creep
is the increasing strain exhibited by a material under constant loading as the time
increases. A typical creep experiment on a specimen of material is performed by
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Fig. 1.6 Three lumped a b c

parameter models. (a) the

Hookian spring element, F F F_
(b) the damping element or

viscous dashpot, and (c) the

Darcy or permeability

element

placing a constant tensile load on a specimen of the material and measuring the
strain as a function of time. The function of time obtained by dividing the resulting
strain against time data by a unit load is called the creep function. Stress relaxation
is the reduction or decay of stress in a material under constant strain as the time
increases. In a typical stress relaxation experiment on a material a constant tensile
strain is applied to a material specimen and the resultant stress is recorded as a
function of time. The function of time obtained by dividing the resulting stress
against time data by a unit strain is called the stress-relaxation function. Equations
for representing creep and stress relaxation will be obtained in the discussion of the
standard linear solid model below. Materials that exhibit the time-dependent
behaviors of creep and stress relaxation are called viscoelastic, indicating that
they have some properties of both a viscous fluid and an elastic solid (Christensen
1971; Lockett 1972; Pipkin 1972).

As an example of the use of a lumped parameter model, consider the question of
determining the stiffness of elastic compliance of a running track so that the runner
has the optimal advantage of the elastic rebound of the track surface. This question
was answered using the spring and dashpot model of the lower limb shown in
Fig. 1.7. While running on soft surfaces like sod is easier on the body than running
on hard surfaces like concrete, runners know that they run faster on the harder
surface. The question of how hard the surface should be was answered (McMahon
& Greene 1978; McMahon & Greene 1979) by tuning the compliance of the track to
the compliance of the model of the runner’s leg shown in Fig. 1.7. The half dozen or
so running tracks that have been constructed on the basis of this model are known to
runners as “fast” tracks.

Each of these lumped parameter models is an ideogram for a constitutive idea,
e.g., elasticity, damping, or flow through porous media. The Darcy or permeability
element is a special lumped parameter model peculiar to porous media. It was
developed to explain the flow of fluids though porous media. Specifically, the city
engineer of Dijon, France (Henri Philibert Gaspard Darcy, 1803-1858) in the
middle of the 1800s developed the model to analyze the flow of water through a
packed sand layer in a city fountain (Darcy 1856). A sketch of the type of
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Fig. 1.7 Schematic diagram
showing the conceptual
model of the leg used to
predict the runner’s
performance on a compliant
track. Descending commands
from the cortex, brain stem,
and spinal centers (acting to
crank the rack and pinion) are
assumed to be separate from
the mechanical properties of
the muscles plus local reflexes
(parallel spring and dashpot).
From McMahon and

Greene (1979)

experiment that Darcy did is shown in Fig. 1.8. A layer of sand of thickness L is
supported on a stiff wire mesh with mesh openings larger than the size of the typical
fluid passages through the sand layer. On top of the layer of sand is a reservoir of
water maintained at a constant height h. The constancy of this head is maintained by
providing a continuous supply of water to the reservoir and providing an over flow
run-off passage. The domain at the bottom of the sand layer is open to the air again
as is the upper surface of the water reservoir; the air pressure is p,. Thus the
decrease in water pressure across the sand layer is from p + p, where p = pgh,
to po. The pressure gradient across the layer is then p/L, where L is the layer
thickness. The volume flux of water, that is to say, the volume of water coming
out of the sand layer per unit area per unit time, is denoted by ¢. If the cross-
sectional area of the sand layer is denoted by A,, then the volume per unit time is
Ao(dw/dt) where dw/dt is the rate at which the surface of the water in the catchment
basin of cross-sectional area A, below the sand layer is filling with water. The
volume flux q through the layer is then given by g = (1/A,) A,(dw/df) = (dw/d?).
Darcy found that the volume flux q through the sand layer was proportional to the
pressure gradient across the sand layer, p/L. The constant of proportionality ¥ is
called the permeability and it is calculated in the experiment described by the
formula k = ¢L/p. Replacing p/L by the gradient, (Op/0L), Darcy’s law is written
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Fig. 1.8 An illustration of an experimental determination of the permeability of a sand layer

q = —x (9p/0x), (1.6)

where L has been replaced by the coordinate x in the formation of the one-
dimensional gradient operator. The minus sign is placed in (1.6) so that the
permeability x is positive. The fluid flow is always from regions of higher fluid
pressure to regions of lower fluid pressure, hence the pressure gradient in (1.6) is
always negative. The combination of the minus sign in (1.6) and the always-
negative pressure gradient mean the volume flow rate q is always positive.

The constitutive idea of the permeability element (Fig. 1.6c) is that of a
distributed volumetric resistance to flow throughout the layer thickness L of the
porous medium. When a compressive force F is applied to the piston of the
permeability element, the water in the chamber under the piston is subjected to a
higher pressure and a pressure difference p + p, is created between the inside of the
chamber and the air pressure p, outside. The water in the chamber then flows from
the high-pressure region p + p, to the low-pressure region p, and it passes out of
the chamber through the hole in the piston. This process continues until all the water
has been ejected from the chamber, the piston has moved to the bottom of the
cylinder and the chamber no longer exists. The volume flow rate q is the uniform
fluid velocity over the cross-section A, of the orifice in the piston. The pressure
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difference between the fluid chamber and the outside air is p, thus ¢ = k(p/L) =
k(Op/OL) where K is the permeability constant.

Example 1.8.1

Show that, from the viewpoint of the relationship between applied force F and time
rate of change of the deflection (dx/df), the permeability element is equivalent to a
dashpot element characterized by the constant 7. An equivalent statement of the
problem would be to show that the dashpot constant 1 of the permeability element

K

(Fig. 1.6c) is related to the permeability x by n = ;‘—2 L where A is the area of the

piston in the permeability element, L is the thickness of the piston, and A, is the
cross-sectional area of the orifice in the piston.

Solution: To show this, first note that a force balance applied to a free object
diagram of the piston of the permeability element (Fig. 1.6c) shows that F = pA
where A is the cross-sectional area of the piston. If dx/dt denotes the time rate of
changes of the downward movement of the piston and ¢ the volume flow rate
through the orifice in the piston, then three different representations of the time rate
of change of the fluid volume in the cylinder chamber are given by

dv dx
—=—-A—=—qA

dt a4

where A, is the cross-sectional area of the piston orifice. It follows that ¢, the
volume flow rate per unit area through the orifice, may be expressed as

A dx
1= A, e
Combining this result with ¥ = pA and ¢ = k(p/L), a constitutive relation for
the dashpot of the form, F = n(dx/dr), is again obtained but with

This result identifies the source of the dashpot-like viscous loss in the perme-
ability element as fluid movement. The velocity of the fluid movement and the fluid
pressure are the primary parameters in the permeability element; the applied force
and the piston deflection associated with the dashpot element are secondary. It will
come as no surprise that the permeability element will often behave just like a
dashpot element. However the permeability element is not the same as the dashpot
element because the source of the viscous loss is identified as fluid movement in the
permeability element and it is unspecified in the dashpot element.
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Fig. 1.9 Lumped two- a
parameter models.

(a) The Maxwell element; F
(b) the Voigt element; and

(¢) the consolidation or

Terzaghi element

(1]

Each of the three lumped parameter models described has been characterized by
a single constitutive parameter, namely the spring constant, the damping constant,
and the permeability constant. The next higher level of lumped parameter models is
characterized by combinations of these elementary models with two constitutive
parameters, and the level after that by three-parameter models. There are models
with more than three parameters, but they are less useful. The three two-parameter
models of interest, the Maxwell model, the Voigt model, and the consolidation
model are illustrated in Fig. 1.9. James Clerk Maxwell (1831-1879) was a Scottish
natural philosopher who first formulated the basic equations of electromagnetism
(“The Maxwell Equations”), and Woldemar Voigt (1850-1919) was a German
theoretical physicist who wrote a classic volume on crystal physics. The Maxwell
model is a combination of a spring and a dashpot in series. When a force applied to
a Maxwell model is changed from O to a finite value at an instant of time and held
constant thereafter, there is an instantaneous initial elastic extension and then there
is a continued deformation forever as the damper in the dashpot is drawn through
the dashpot cylinder. Thus a Maxwell model exhibits the characteristics of a fluid
with an initial elastic response.

Neither the Maxwell model nor the Voigt models are considered to be particu-
larly good models of the force-deformation-time behavior of real materials.

The Terzaghi consolidation model element is a special lumped two-parameter
model peculiar to soil mechanics (see, for example (Terzaghi 1943)) that has
applications in geomechanics and biomechanics to interstitial water flow in both
hard and soft tissues. The model is constructed by combining a spring element and a
Darcy or permeability element in parallel (Fig. 1.9¢). It was developed by Karl
Terzaghi (1883—-1963) about 1923 to explain the settlement or consolidation of the
soils under the foundations of buildings built on porous, water-saturated soils.
A sponge easily illustrates the mechanical principles involved. If the sponge is
waterlogged, then its compression under loading can only proceed as fast as the
water can drain from the sponge. When a load is initially placed on the piston in
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Fig. 1.10 The application of the Terzaghi model to articular cartilage. On the bottom left the
applied stress history is illustrated. A constant stress (o,) is applied to a sample of articular
cartilage at an instant of time and held constant thereafter. The creep response of the
sample under this loading is illustrated on the bottom right. At the top are drawings of the sample
illustrating the tissue response. From these illustrations one can see that the creep is accompanied
by exudation of the fluid from the sample and that the rate of exudation decreases over time from
point A to B to C. At equilibrium the flow ceases and the load is borne entirely by the solid matrix
(point C) and the water carries none of the load (due to the fact that any pressure in the water would
cause it to flow out of the matrix) (From Nordin and Frankel (1989))

Fig. 1.9c the spring supporting the piston initially takes none of the load because it
cannot deflect. It cannot deflect because the piston cannot move due to the fact that
the cylinder chamber is filled with a relatively incompressible liquid (water).
However, once the water has a chance to exit the cylinder through the orifice in
the piston, then it is possible for the piston to begin to move downward under the
action of the applied compressive loading. This process of consolidation or settle-
ment proceeds until the spring has deflected an amount sufficient to create a force
equal to the applied loading. The relation between the force F applied to the piston
of this model and the resulting displacement x of the piston is given by the same
constitutive equation that characterizes the Voigt model if the dashpot viscosity 7 in
the Voigt model is replaced by (A%/A,)(L/x). The application of this model to
articular cartilage is illustrated in Fig. 1.10. This figure illustrates the response of
a sample of articular cartilage when a force applied to the sample is changed from
0 to a finite value at an instant of time and held constant thereafter. Like the Voigt
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Fig. 1.11 The standard linear
solid F

kr

element under the same loading, there is no instantaneous deflection, but a creeping
deflection begins under the constant applied stress and proceeds asymptotically to a
rest value. There is only one lumped three-parameter element of interest, the
standard linear solid (SLS, Fig. 1.11).

Example 1.8.2

Using the Fig. 1.11 as a guide, derive the differential equation of the governing
force—deflection relationship of the standard linear solid.

Solution: Let F, and Fy denote the force in the two branches, left and right, of the
standard linear solid; the total force F is then given by F' = F + Fg. Let x denote
the overall deflection of the standard linear solid element; the deflections in both
branches must be equal; the horizontal cross-bars in spring-dashpot models are not
allowed to rotate. The total deflection in the right branch is the sum, x, of the
deflection of the dashpot, xp, and the deflection of the spring, xg; thus x = xp + xs.
The equations describing the behavior of the three constituent elements are
Fy =k x, Fr = kgxg and Fr = n (dxp/dt), respectively. Note that the force in the
two elements on the right branch must be the same. These equations are combined
in the following manner. First, note that from Fr = kgxs it follows that (dxg/dr)
= (1/kg)(dFg/df), from Fy = n(dxp/df) it follows that (dxp/df) = (1/n)Fg, and
from x = xp + xg it follows that (dx/df) = (dxp/df) + (dxg/df). Combining these
results it follows that

(dx/dt) = (1/n)Fr + (1/kr)(dFg/dt).
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Now from the equation for the sum of the forces in the two branches (F = Fi + FR)
itfollows that Fr = F—F and since F; = kx, Fr = F—kx. Substituting this equation
for Fg in the equation involving Fi above it follows that

F + (n/kg)(dF /dt) = kx + 1 (1 + k/kg) (dx/d?). (1.7)

The physical implications of the constant parameters characterizing the standard
linear solid are easier to understand if the constants 7 and ki are redefined in terms
of time constants. To that end (1.7) is rewritten in the form

dF dx
F—‘rTxa—k{x—F‘Cpa}, (1.8)

where 7, and 15 are material time constants defined by

w=p and fF:z{u—}:ﬂm (1.9)

These material time constants will be shown to have interpretations as the
characteristic relaxation times of the load associated with a steady, constant deflec-
tion and the deflection associated with a steady, constant load, respectively. Note
that, from the definitions, 7 > 1, since 7, k, and kg are positive.l

The standard linear solid, characterized by the linear differential equation (1.8),
provides a reasonable first model for the phenomena of creep under constant load
and stress relaxation under constant deflection, phenomena observed in many
materials. The creep function is the increase in time of the deflection x(¢) when a
unit force is applied to the element at + = 0 and held constant forever. The
relaxation function is the decrease in time of the force F(f) when a unit deflection
is applied to the element at r = 0 and held constant forever. The creep and
relaxation functions for the standard linear solid are obtained from solving the
governing differential equation (1.8). In Sect. A.16 of the Appendix the Laplace
transform method (Thomson 1960) for solving the differential equation (1.8) is
described,; this is the simplest method of solution. In Sect. A.17 of the Appendix the
more complicated approach of using direct integration is described. The creep
function is the solution of (1.8) for x(f) when F () is specified to be the unit step
function A(¢) and the relaxation function is the solution of (1.8) for F(f) when x(¢) is
specified to be the unit step function A(f) (see (A219) in the Appendix for a
definition of the unit step function). The unit step function A(f) is therefore
employed in the representation of deflection history x(¢) to obtain the creep function
c(t) as well as in the representation of the force history F(#) to obtain the relaxation
function r(¢). The creep function c(¢) for the standard linear solid is given by

c(1) :%t){l - (1 —%)af/fF}. (1.10)
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Fig. 1.12 The creep function. This is a plot of the spring constant k times the creep function c(t),
on the abscissa, against the dimensionless time ratio #/t on the ordinate. See (1.10). The five
curves are for different ratios of 7./t Since 0 < 7./t < 1 the plots, from bottom to top are for
values of t,/tr equal to 0.1, 0.3, 0.5, 0.7 and 0.9

From this result it may be seen that 7 is indeed the characteristic relaxation
time of the deflection at constant load. Plots of the creep function c(¢) (multiplied
by the spring constant k) against the dimensionless time ratio #/7x for different
ratios of 7./t are shown in Fig. 1.12. Because the values of 7,/tr are restricted by
0 < 1,/1F < 1, the plots in Fig. 1.12 are, from bottom to top, for values of 7,/1x
equal to 0.1, 0.3, 0.5, 0.7, and 0.9. The relaxation function for the standard linear

solid is given by
r(t) = k{l + (T—F — l)e’/“}h(z‘). (1.11)
Tx

From this result it may be seen that 7, is indeed the characteristic relaxation time
of the load at constant deflection. Plots of the relaxation function 7(¢), divided by the
spring constant k, against the dimensionless time ratio #/t, for different ratios of
7,/TF are shown in Fig. 1.13. The values of 7,/t employed are 0.1, 0.3, 0.5, 0.7, and
0.9; the same values as in Fig. 1.12.

Higher order lumped parameter models are obtained by combining the lower
order models described above. There is a strong caveat against the process of
combining elementary lumped parameter models to build higher order models.
The caveat is that the number of parameters increases and defeats the advantage
of simplicity of the lumped parameter model. Thus, the standard linear solid
considered is the most reasonable of the spring and dashpot models as a first
approximation of the force-deformation-time behavior of real materials.
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Fig. 1.13 The relaxation function. This is a plot of the relaxation function r(¢), divided by the

spring

constant k, against the dimensionless time ratio on the ordinate. See equation (1.11).

The five curves are for different ratios of 7,/tx. Since 0 < 7 ,/tx < 1 the plots, from the top to
the bottom are for values of 7,/tr equal to 0.1, 0.3, 0.5, 0.7 and 0.9. The top curve, ./t = 0.1, will
intersect the abscissa a little above the value r(¢)/k = 10.

Problems

1.8.1.

1.8.2.

1.8.3.

1.8.4.

1.8.5.

1.8.6.

1.8.7.

1.8.8.

Show that the constitutive relation governing the Maxwell element is F + (n/
k)(dF/dt) = n(dx/de).

Show that the constitutive relation governing the Voigt element is F = k
X + n(dx/de).

Show that the creep function for the Maxwell element is c(¢) = [(1/k) + (#/
MIA).

Show that the creep function for the Voigt element is c¢(f) = (1/k)[1-exp(—kt/
m1ha().

Show that the relaxation function for the Maxwell element is () = k[exp
(=kt/n)1h().

Show that the relation between the compressive force F* applied to the piston
of the Terzaghi or consolidation element and the resulting compressive
displacement x of the piston is given by the same constitutive equation that
characterizes the Voigt model, namely F = k x 4+ n(dx/df), if the dashpot
viscosity 7 in the Voigt model is replaced by (A2/A,,)(h/1c) where A is the
cross-sectional area of the piston, A, is the cross-sectional area of the hole in
the piston, % the thickness of the piston, and « is the permeability constant.

Show that the relaxation function for the standard linear solid element is r
() = k[1 + ((zp/t)—1) exp(—t/t,)] h(F).

Sketch the deflection of each of the three models shown in Fig. 1.9 to the
following loading regime: before + = 0 the load is 0, at + = O the load is
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increased to F and held at that value until + = T when it is decreased to
0 again and held at O thereafter.

1.8.9. In Example 1.8.1 a calculation was presented that mathematically equated the
permeability element and the dashpot element. However, the two elements do
not appear to be the same. How do they differ? How are they similar?

1.9 The Limits of Reductionism and Determinism

A basic method of approach in science and engineering is reductionism. The
philosophy of this approach is to decompose the object of study into its constituent
parts, analyze each part separately, then reconstruct the object and predict its
response to stimuli from a knowledge of response of the constituent parts to stimuli.
Mathematically, such a prediction of the response of the object from the superposi-
tion of the response of its constituent parts generally implies a linear model.
An example is the stress analysis of a large bridge that is accomplished by
decomposing the bridge into bars, beams, girders, and cables and analyzing the
structural capacity of each of these constituents individually. Since reductionism is
the philosophy followed in this book, it is appropriate to mention some general and
some specific caveats. The prime caveat is that the mathematical model of the
system may be non-linear and that superposition of different responses from
different stimuli is not a valid assumption.

Determinism is the philosophical proposition that every event, including human
cognition and behavior, decision and action, is causally determined by prior
occurrences. In the more restricted domain of mechanics, determinism is the idea
that future mechanical events are predetermined by previous events. The philosophi-
cal concept of determinism is embedded in the representation of the motion of an
object employed in mechanics and described in the following chapter. As the concept
of determinism is employed in classical mechanics, it is the view of the determinism
of the eighteenth century. The quote of the Marquis Pierre-Simon de Laplace
(1759-1827) at the beginning of the next chapter captures the nineteenth century
idea of determinism. In the nineteenth century the eighteenth century idea was
modified by the Heisenberg uncertainty principle, the realization that certain pairs
of physical properties, like position and momentum, cannot both be known to
arbitrary precision. The greater the precision in measuring one variable limits
or compromises the ability to measure the other. The idea of the uncertainty principle
is also applied to the situation in which the measurement of a variable in an experi-
mental situation distorts the experimental situation. Laplace’s concept of determin-
ism was also eroded in the twentieth century by the discovery of extreme sensitivity
to starting or initial conditions for differential equations known as “chaos.”

The quote of the Marquis Pierre-Simon de Laplace (1759-1827) at the beginning
of the next chapter captures the idea of determinism underlying the representation
(2.2). All the material in this book is based on the idealistic deterministic extreme
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suggested in the quote of Laplace. The limitations on this idea just stated emphasize
a limitation on the character of the models of nature that will be described.
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Chapter 2
Basic Continuum Kinematics

The theme of this chapter was stated with exuberance and in an idealistic deterministic
extreme by Marquis Pierre-Simon de Laplace (1759-1827): “Thus, we must con-
sider the present state of the universe as the effect of its previous state and as the
cause of those states to follow. An intelligent being which, for a given point in time,
knows all the forces acting upon the universe and the positions of the objects of
which it is composed, supplied with facilities large enough to submit these data to
numerical analysis, would include in the same formula the movements of the largest
bodies of the universe and those of the lightest atom. Nothing would be uncertain for
it, and the past and future would be known to it.”!

2.1 The Deformable Material Model, the Continuum

In the deformable material model all types of motion are permitted, but the
deformational motions are usually the major concern. Consider the image O of an
object in Euclidean space. The object is in a configuration O(0) at # = 0 and in a
configuration O(¢) at time ¢ (Fig. 2.1). The mathematical representation of the
motion of a three-dimensional deformable continuum gives a complete history of
the motion of each point P on the object O(0), P C O(0); in words, P C O(0)
means all points P contained in (C) the image of the object, O, at ¢t = 0. In order to
identify each point P in the object O(0) and to follow the movement of that point in
subsequent configurations of the object O(f), each point on an object is given a
reference location in a particular coordinate system, called the reference coordinate
system. The selection of the reference configuration is the choice of the modeler;
here the reference configuration is taken as the configuration of the object at time
t = 0. To distinguish between the reference location of a point on an object and a
location of the same point at a later time, the terminology of “particle” and “place”

! Translated by John H. Van Drie (http://www.johnvandrie.com).
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Configuration at t = 0

o)

Configuration at time t >
THE REAL WORLD EUCLIDEAN 3 D SPACE

Fig. 2.1 Representation of the motion of an object in Euclidean 2D space

(X1, X, X3)

o)

Fig. 2.2 Details of the representation in Euclidean 2D space

of a particle is introduced. Each point P C O(0) in the continuum model of
the object is labeled by its position in the reference configuration (Fig. 2.2).
This procedure assigns a location to each point in the object and such points are
called particles. A position vector of a point in a given coordinate system is a vector
from the origin of coordinates to that point. In this case the reference configuration
is a three-dimensional Cartesian coordinate system with base vectors e,, « = I, II,
III, and coordinates X,; the position of the particle is described by the vector

X =X,e,.

As a simplifying convention, instead of saying the vector X describes the
position of a particle, we define it to be the particle. Thus the notation X has
replaced the notation P and one can speak of all X C O(0) as a complete represen-
tation of the object in the reference configuration.
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If the motion of one particle X of an object can be represented, then the motion
of all the particles of the object, X C 0(0), can be represented. A second coordinate
system with axes x;, i = 1, 2, 3, and base vectors e;, i = 1, 2, 3, is introduced to
represent the present position of the object O(¢); this also represents the present
positions of the particles. The triplet (x;, x,, x3), denoted in the shorthand direct
notation by X, represents the place at time ¢ of the particle X. The motion of the
particle X is then given by

x1 = 1 (Xe, X, X, 1), X2 = (X, X, Xun, ), x3 = 13 = (X1, Xu, X, 1)
@2.1)

which is a set of three scalar-valued functions whose arguments are the particle X
and time ¢ and whose values are the components of the place x at time ¢ of the
particle X. Since X can be any particle in the object, X C O(0), the motion (2.1)
describes the motion of the entire object x C O(¢) and (2.1) is thus referred to as the
motion of the object O. In the direct shorthand or vector notation (2.1) is written

x=y(X, 1) forall X C 0(0). (2.2)

This is called the material description of motion because the material particles X
are the independent variables. Generally the form of the motion, (2.1) or (2.2), is
unknown in a problem, and the prime kinematic assumption for all continuum
models is that such a description of the motion of an object is possible.

However, if the motion is known, then all the kinematic variables of interest
concerning the motion of the object can be calculated from it; this includes
velocities, accelerations, displacements, strains, rates of deformation, etc. The
present, past, and future configurations of the object are all known. The philosophi-
cal concept embedded in the representation (2.2) of a motion is that of determinism.
The determinism of the eighteenth century in physical theory was modified by
humbler notions of “uncertainty” in the nineteenth century and by the discovery of
extreme sensitivity to starting or initial conditions known by the misnomer “chaos”
in the twentieth century. The quote of the Marquis Pierre-Simon de Laplace
(1759-1827) at the beginning of the chapter captures the idea of determinism
underlying the representation (2.2).

A translational rigid object motion is a special case of (2.2) represented by,

x=X+h(z) forall X C 0(0), (2.3)

where h(?) is a time-dependent vector. A rotational rigid object motion is a special
case of (2.2) represented by

x=Q(X, Q(NQr)" =1 forall X c 0(0), (2.4)

where Q(?) is a time-dependent orthogonal transformation. It follows that a general
rigid object motion is a special case of (2.2) represented by
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x=Q(NX+h(r), Q)Q(NT =1 forall X c 0(0). (2.5)

A motion of the form (2.2) is said to be a planar motion if the particles always
remain in the same plane. In this case (2.2) becomes

x1 = (XX, 1), x2 = X, Xu,t),x = X (2.6)

Another subset of the motion is a deformation of an object from one configura-
tion to another, say from the configuration at t = 0 to the configuration at t = #*. In
this case the motion (2.2) becomes a deformation

x =¥(X) forall X C 0(0), 2.7)
where
Y(X)=y(X, t) forall X C 0(0). (2.8)

A 3D motion picture or 3D video of the motion of an object may be represented
by a subset of the motion (2.2) because a discrete number of images (frames) per
second are employed,

x=y(X, n/{) forall XCO0O(0),n=0,1,2,..., (2.9)

where { is the number of images (frames) per second.
Example 2.1.1
Consider the special case of a planar motion given by

X1 = A(I)XI -+ C(Z)XH + E(f), Xy = D([)XI + B(I)XH + F(l), X3 = X1117
(2.10)

where A(t), B(t), C(t), D(t), E(t), F(t) are arbitrary functions of time. Further
specialize this motion by the selections

A(t)=1+t, C(t)=t, E()=3t, B(t)=1+1t, D) =1t F() =2t
(2.11)

for A(z), B(t), C(t), D(t), E(t), and F(f). With these selections the motion becomes
X = (1 +I)X1+[X11+3t, Xy = X1 + (1 +I)X1[+2l, x3 = Xq1. (2.12)

The problem is to find the positions of the unit square whose corners are at the
material points (Xy, Xn) = (0, 0), (X1, Xn) = (1, 0), (X1, Xn) = (1, 1), (X1, Xn) =
0, 1) attimest = 1and r = 2.

Solution: For convenience let the spatial (x;, x, x3) and material (X1, X1, Xmr)
coordinate systems coincide and then consider the effect of the motion (2.12) on the
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Fig. 2.3 The movement of a square at = 0 due to the motion (2.12)

unit square whose corners are at the material points (X7, X1) = (0, 0), (X1, X)) =
(1,0), Xy, X)) = (1, D), (X, X)) = (0, 1). At = 0 the motion (2.12) specifies that
x; = X1, X, = Xy, and x3 = Xppp so that £ = 0 has been taken as the reference
configuration. The square at r = 0 is illustrated in Fig. 2.3. At r = 1 the motion
(2.12) specifies the places x of the particles X as follows:

X1 =2X1+Xn+3, x=Xi+2Xg+2, x3=Xm.

Thus the particles at the four corners of the unit square have the following new
places x at t = 1:

(37 2) :X(Oa 0)7 (57 3) :X(lv O)v (67 5) :X(L 1)7 (4’ 4) :/C(Oa 1)

A sketch of the deformed and translated unit square at ¢ = 1 is shown in Fig. 2.3.
At t = 2 the motion (2.12) specifies the places x of the particles X as follows:

X1 =3X1+2Xn+6, x2=2X1+3Xp+4, x3=Xm.

Thus the particles at the four corners of the unit square have the following new
places at t = 2:

(634) - X(Ov 0)7 (976) - X(lao)a (1179) = X(lﬂ 1); (837) = X(Oa 1)

A sketch of the deformed and translated unit square at ¢ = 2 is shown in Fig. 2.3.
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—-

DEFORMATION
OR MOTION

Fig. 2.4 The experimental measurement of a planar homogeneous motion. The reference frame is
the laboratory reference frame. The three initial positions (X", X®, X®) of the markers are
indicated as well as their positions xP, x@, x®) at time ¢. In many experiments the markers are
attached to a specimen of soft tissue that is undergoing a planar homogeneous motion in order to
quantify the motion

Example 2.1.2

An experimental technique in widespread use in the measurement of the planar
homogeneous motion of a deformable object is to place three markers (dots or
beads) in triangular pattern (so that the markers are not collinear) on the deformable
object before a motion. The initial locations of the three markers are recorded

relative to a fixed laboratory frame of reference as (XI(I),XI(ID), (XI(2>,XI(I2 )), and (XI(%),
XI(I3 )), Fig. 2.4. If the process is automated a camera is used to follow the motion of
the three markers with time and to digitize the data in real time. The instantaneous
locations of the three markers at a time ¢ is recorded relative to a fixed laboratory
frame of reference as (x(ll)(t), x(zl)(t)), ()cg2> (1), xgz)(t)) and (x§3)(t), x?)(t)), Fig. 2.4.
From these data the experimentalist calculates the time-dependent coefficients A(f),
B(1), C(1), D(1), E(t), and F(¢) of the homogeneous planar motion (2.10). Determine
the formulas used in the calculation of the time-dependent coefficients A(¢), B(?),
C(), D(0), E(1), and F(z) from the data (X\"), x\)), (x\?, x?), (I, x$), oV (1),
1 2 2 3 3
2 (0), @7 (1), 257 (1), and (47 (0, 7 (1))

Solution: The data on the motion of each marker provide two equations that may be
used for the determination of the time-dependent coefficients. Since there are three
markers, a total of six equations is obtained. Three markers are used because it is
known that six equations will be needed to solve the linear system of equations for
the six unknowns, A(), B(t), C(t), D(¢), E(t), and F(¢). Using the notation for the data
and the representation of the homogeneous planar motion (2.10), these six
equations are as follows:

1)

2)

+cxP +E@0, £V =pe)x" +B0OXY + F(r),
+cOX? +E@), P =D0x? +BOXP + F),
+ C(t)X( 4 E(r), xf)(t) = D(I)XI(3) + B(t)XI(I3> + F(1).

(1) = Ax|
A2 (1) = A(0x|
17 (1) = A)x;
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The solution to these six equations is

1 3) 2 3) (2
A1) = 11 Xl (’)_ )< (1) = X; ()+XI(I)X§>()+XII xl (f) I(I)x(l)([)
Do 1 2ol DIE 3ol N2
P“)—XQ§>—X9ﬂ)+x$ﬂ)+xpﬂ)—Xy§>

)

(t) 3) (1 (t) — (1> (2 )( ) +X(3) (2 )( 1) +X(1) (3>(I) —Xl(z)x(;)(t)

B(t)_
Qﬂ”-x§§> X@( +X?ﬂn+xmﬂ> xIx?
(1 2) (3 3) (1 3) (2
e = X0 X700 3707 (1) = X700 — X7 ) + X7 (0
2 1)v(3 2 2)v(3 3) (1 3)v(2 ’
XX X~ XA+ XX+ KA~ XX
1) _(C 2) (3 3 3) (2
Dy = X ) = X (1) — Xy 1)+ X7 1) + X3 0) — X7 )
Xw<m Xwﬂﬂ_xﬁg>+xﬁﬁ$+xmﬂw XD x?
1)(2) (3 1)y(2) (3
B — xUx@ 0 7y — xWxO 2 () — xWx 2,0

1
xUx® —xWx®) _ x@x 0 | xCIxG) 4 xGxh _ xG)y@
2)+-(3) (1 D+(3) (2 D+-(3) (1
XX (0 + x50 X (0 - xPx g (o)

+

32 2 2)+(1) (3
m&><m+%wﬁyo+%&”“m
XQ“>7XU¢37XJ¢U+XU ) 1 xOxM _ xBx@
XX (1) - xPxP A (1) + xxFE ()

+ 1 1 2 1 2 3 3 1 3 2)°
A A ) X

F(t) =

Example 2.1.3

Consider again the experimental technique described in Example 2.1.2, but in this
case a deformation rather than a motion, Fig. 2.4. Suppose that the initial locations
of the markers are recorded relative to the fixed laboratory frame of reference as
xW, xy = 0,0), x*, x?) = (1,0), and (x¥), X)) = (0, 1). The deformed
locations of the three markers relative t0 the same fixed laboratory frame of
reference are (xgl), x2 ) 1, 2), (x1 , x2 ) (2, 3.25), and (xg ), x2 ) (2.5,
3.75). From these data the constant coefficients A, B, C, D, E, and F of the
homogeneous planar deformation (2.10) are determined.

Solution: The solution for the motion coefficients A(¢), B(t), C(t), D(¢), E(t), and F(¢)
obtained in Example 2.1.2 may be used in the solution to this problem. One simply
assigns the time-dependent positions in the formulas for A(¢), B(¢), C(¢), D(¢), E(?),

and F(7) to be fixed rather than time dependent by setting (x<11>(t) xél)(t)) = (x(ll),
x(zl)), (x(lz) (t),x(22>(t)) = (x(12>,xé2)), and (x(13)(t),x§3>(t)) (x?),xé )) The coefficients
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are no longer functions of time so they are denoted by A, B, C, D, E, and F. They are

evaluated by substituting the initial and final locations of the set of particles, (X fl),

Xy') = 0.0, x7.x17) = (1,0). (. %) = (0. D, and ("x3") = (1,2, (x7
x(zz)) = (2,3.25), (x(13),x§3)) = (2.5, 3.75), respectively, into the last set of equations
in Example 2.1.2. The values obtained are A = 1, B = 1.75, C = 1.5, D = 1.25,
E =1, and F = 2 and they are obtained by substituting the values for the relevant
points given in the statement of the problem above into the last set of equations in
Example 2.1.2. The planar homogeneous deformation then has the representation

x1 =2X14+ 15X+ 1, x=125X;+ 175Xy + 2, x3 = X,

which is a particular case of (2.10) To double check this calculation one can check
to see if each marker is mapped correctly from its initial position to its final
position.

There are two coordinate systems with respect to which a gradient may be taken,
either the spatial coordinate system X, (x, x5, x3), or the reference material coordi-
nate system X, (X7, Xy, Xqrp). To distinguish between gradients with respect to these
two systems, the usual gradient symbol V will be used to indicate a gradient with
respect to the spatial coordinate system X, and the gradient symbol Vg with a
subscripted boldface O will indicate a gradient with respect to the material coordi-
nate system X. The (material) deformation gradient tensor F is defined by

F = [Vo® (X, )" forall X C 0(0). (2.13)
The (spatial) inverse deformation gradient tensor F~! is defined by
F'=[Voy;'(xs] forallxcO(r), (2.14)
where

X=y""(x, ) forallx C O(¢) (2.15)

is the inverse of the motion (2.2). The components of F and F~'are

8X 1 6X I 6X it 8x 1 8x2 8x 3

|: 8x,- :| 6)(2 (9)(2 axz -1 |:8X1:| aXH 8XH 8XH

F = = |22 2 2 andFl = = | =2 A an
8Xa 8X1 8XH aX[H Bx,- 8)(?1 a)Q 8x3
Ox; Ox3  Oxs OXm  OXm  OXm
LOX; O0Xy OXy | Ox;  Oxp  Oxz |

(2.16)
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respectively. Using the chain rule for partial derivatives it is easy to verify that F~
is indeed the inverse of F,

FF!=F'F=1. (2.17)

Recall that any motion can be decomposed into a sum of a translational,
rotational, and deformational motion. The deformation gradient tensors remove
the translational motion as may be easily seen because the translational motion is a
separate function of time (cf., e.g., 2.2) that must be independent of the particle X.
Thus only the rotational motion and the deformational motion determine F. If
F =1 there are no rotational or deformational motions. If F = Q(7), Q(#H)Q
(t)T = 1, it follows from (2.4) that the motion is purely rotational and there is no
deformational motion. The deformation gradient F is so named because it is a
measure of the deformational motion as long as F # Q(#). If F = Q(¢), then the
motion is rotational and we replace F by Q(?).

The determinant of the tensor of deformation gradients, J, is the Jacobian of the
transformation from x to X, thus

J=DetF =1/DetF! (2.18)
where it is required that
0<J <00 (2.19)

so that a finite continuum volume always remains a finite continuum volume.

If ¢ represents the position vector of the origin of the coordinate system used for
the configuration at time # relative to the origin of the coordinate system used for the
configuration at ¢ = 0, then the displacement vector u of the particle X is given by
(Fig. 2.2),

u=x—X+ec. (2.20)
The displacement vectors u for all the particles X C O(0) are given by
u(X,7) = x(X,t) — X +¢(r), X C0(0), (2.21)
or by
ux,t) =x— 7 '(x,1) +¢(t), xCO(r). (2.22)

Two gradients of the displacement field u may then be calculated, one with
respect to the spatial coordinate system x denoted by the usual gradient symbol V
and one with respect to the material coordinate system X denoted by the gradient
symbol V g, thus

VoouX,)]" =F(X,/) =1 and [Voux)]"=1-F'(x,1), (223)
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when (2.12) and (2.14) are employed. Often the base vectors of the coordinate
systems X and x are taken to coincide, in which case the position vector ¢ of the
origin of the x system relative to the X system is zero. The selection of the
coordinate system is always the prerogative of the modeler and such selections
are usually made to simplify the analysis of the resulting problem.

Example 2.1.4

Compute the deformation gradient and the inverse deformation gradient for the
motion given by (2.12). Then compute the Jacobian of the motion and both the
spatial and material gradients of the displacement vector.

Solution: The deformation gradients and the inverse deformation gradients for this
motion are obtained from (2.16) to (2.12), thus

14¢ t 0 1+t —t 0
1
F=| ¢+ 14t 0| and F!'= -t 14¢ 0 |,
142t
0 0 1 0 0 142t

a result that can be verified using FF~' = 1 or F'F = 1. It is then easy to show
that J = 1 + 2¢. It also follows from (2.22) that

110 110

t
Voou =1 1 0 md[V@MT:1+% 1 0
000 000

Problems

2.1.1. Sketch the shape and position of the unit square with corners at (0, 0), (1, 0),
(1, 1), and (0, 1) subjected to the motion in (2.10) for the seven special cases,
(a) through (g) below. The shape and position are to be sketched for each of
the indicated values of z.

(a) Translation. A(t) = 1,B(t) = 1, C(t) = 0,D(t) = 0, E(¢) = 2t, F(¢) = 2t
and values of t = 0, 1, 2.

(b) Uniaxial extension. A(t) = 1 + ¢t,B(t) = 1,C(¢t) = 0,D(¢t) = 0, E(¢) = 0,
F(t) = 0 and valuesof r = 0, 1, 2, 3.

(c) Biaxial extension. A(®) =1 +¢ B{) =1+ 2t, Ct) =0, D) =0, E
() =0,F@) = 0and values of t = 0, 1, 2.

(d) Simple shearing (R). A(¥) =1, B(t) =1, C(t) =t, D(t) = 0, E(¥) = 0,
F(t) = 0 and values of t = 0, 1, 2.

(e) Simple shearing (U). A(¥) =1, B(t) = 1, C(t) = 0, D(t) = ¢, E(t) = 0,
F(t) = 0 and values of t = 0, 1, 2.

(f) Rigid Rotation (cw). A(f) = cos (nt/2), B(t) = cos (nt/2), C(f) = sin(nt/
2), D(t) = —sin(nt/2), E(t) = 0, F(t) = 0 and values of t = 0, 1, 2, 3, 4.
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(g) Rigid rotation (ccw). A(t) = cos (nt/2), B(t) = cos(nt/2), C(f) = —sin(nt/
2), D(t) = sin(nt/2), E(t) = 0, F(t) = 0 and valuesof r = 0, 1, 2, 3, 4.

2.1.2. Sketch the shape and position of the square with corners at (—1, —1), (1, —1),
(1, 1), and (—1, 1) at times t = 0, 1, 2, 3, 4. The square is subjected to the
motion in (2.10) with the values of A(?), B(¢r), C(¢), D(¢), E(f), and F(¢) being
those given in 2.1(f), the rigid rotation (clockwise) motion.

2.1.3. For the six motions of the form (2.10) given in Problem 2.1.1, namely 2.1.1
(a) through 2.1.1(f), compute the deformation gradient tensor F, its Jacobian
J, and its inverse F~'. Discuss briefly the significance of each of the tensors
computed. In particular, explain the form or value of the deformation
gradient tensor F in terms of the motion.

2.1.4. Using the planar homogeneous deformation (2.10), with the values of A, B,
C, D, E, and F calculated in Example 2.1.2, show that deformation (2.10)
predicts the final positions of the three markers when the initial marker
locations (X\", X)) = (0, 0), ®?, xP) = (1, 0), and (x¥, x{)) =
(0, 1) are substituted into it.

2.1.5. In Example 2.1.2 an experimental technique in widespread use in the mea-
surement of the planar homogeneous motion of the deformable object was
described and a system of equations was set and solved to determine the
time-dependent parameters appearing in the equations describing the planar
homogeneous motion. Consider the same problem when the problem is not
planar, but three-dimensional. How many markers are necessary in three
dimensions and how must the markers be arranged so that they provide the
information necessary to determine the time-dependent parameters
appearing in the equations describing the three-dimensional homogeneous
motion? Explain the process.

2.2 Rates of Change and the Spatial Representation
of Motion

The velocity v and acceleration a of a particle X are defined by

=

. 0%y
V=X =

- ) - 2 )
Ot IX fixed OF X fixed

(2.24)

where X is held fixed because it is the velocity or acceleration of that particular
particle that is being determined. The spatial description of motion (as opposed
to the material description of motion represented by (2.2)) is obtained by solving
(2.2) for X,
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X =y"'(x, ) forall X C O(0) (2.25)

and substituting the result into the first of the expressions (2.24) for the velocity;
thus v = x = 7(X, ¢) becomes

v=x= (" (x,1),1) = v(x,?) (2.26a)
or

v, 0) = v(r (%0, (%0, 25 (%, 1), 1), (2.26b)

which emphasizes that the time dependence of the spatial representation of velocity
is both explicit and implicit. This representation of the velocity with the places x as
independent variables is called the spatial representation of motion. A quantity is
said to be in the spatial representation if its independent variables are the places x
and not the particles X. In the material representation the independent variables
are the particles X; compare the material description of motion, (2.2), with (2.26).
The material time derivative is the time derivative following the material particle
X; it is denoted by a superposed dot or D/Dt and it is defined as the partial derivative
with respect to time with X held constant. The material time derivative is easy to
calculate in the material representation. It is more complicated to calculate in
the spatial representation. To determine the acceleration in the spatial representa-
tion we must calculate the material time rate of the spatial representation of velocity
(2.26). The notation D/Dt introduced above is illustrated using the definitions
of (2.24):

_Ov
Xfixed Of

Py

T

__Dv

=1 (2.27)
X fixed Dt

A formula for Dv/Dt is obtained by observing the explicit and implicit time
dependence of the spatial representation of velocity (2.26b) and noting that the time
derivative associated with the implicit dependencies may be obtained using the
chain rule, thus

Dv  Ov ov 0x; ov ov
Zr_Zv 4t = +—v;, (2.28)
Dt Ot fvea 0% Of|xfixea  Oflypixea OXi
a result that may be written more simply as
D 0
e 2 (2.29)
Dt Ot|y fixed
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The time rate computed by holding the places x fixed is called the local time rate.
In general, the material time rate is related to the local time rate by the following
operator expression that follows from (2.29),

D 0
s=ol  +vev, (230)

x fixed
where D/Dt is the material time rate of change, 0/0¢ is the local time rate of change
and v-V determines the convective change of the quantity.

The second order tensor formed by taking the spatial gradient of the velocity
field v = v(x, £) is called the tensor of velocity gradients and is denoted by L, thus

(O O On ]
8)61 8)62 8)(3
(9\/,' 8\)2 (9\72 aVQ
il . e e 2.31
[v © V] |:an:| (9x1 8)62 8x3 ( )
Ovs vz Ovs
_8X1 sz 8X3_

L is decomposed into a symmetric part D called the rate-of-deformation tensor, and
a skew symmetric part W called the spin tensor, thus

L=D+W, D=(1/2)(L+L"), W=(1/2)(L-L"). (2.32)

The three nonzero components of W can be formed into an axial vector (1/2)
(V x v) which represents the local rotational motion and is called the angular
velocity or one-half the vorticity.

The rate-of-deformation tensor D defined by the second of (2.32) has the
component representation

8v1 @4_% ovy Lo o3|
le 8)62 8x1 8)63 8){1

L[Ov; Ov; _1 ovy  Onm 8\)2 Ovys  Ovs
a{axﬁaxj 2|amtan 2an on oo (233)
O, Ovs Ovy Ovs 3\/3
on Ton an Ton Con

The components of D along the diagonal are called normal rates of deformation
and the components off the diagonal are called shear rates of deformation. The
normal rates of deformation, D, D»,,, and D33, are measures of instantaneous time
rate of change of the material filament instantaneously coincident with the 1, 2, and
3 axes, respectively, and the shear rates of deformation, D53, D3, and D1,, are equal
to one-half the time rate of decrease in an originally right angle between material
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Fig. 2.5 An illustration for the geometric interpretation of the D, component of the rate-of-
deformation tensor D. A vector of infinitesimal length representing the present position of an
infinitesimal material filament coinciding with the x; at time # is denoted by dx;. The instantaneous
time rate of change of the material filament instantaneously coincident with dx, is dv; = Dy dx;.
The expression dv; = Dy,dx; shows dv; as a linear function of dx; at any point x and time ¢. Thus
the geometric interpretation of Dy = (dx; /dx ) is that it is the instantaneous time rate of change of
dx; at time ¢ relative to dx, at time ¢

filaments instantaneously situate upon the 2 and 3 axes, the 1 and 3 axes, and the 1
and 2 axes, respectively.

The rate-of-deformation tensor D represents instantaneous rates of change, that
is to say how much a quantity is changing compared to its present size. Let dx; be a
vector of infinitesimal length representing the present position of an infinitesimal
material filament coinciding with the x; at time ¢, Fig. 2.5. The instantaneous time
rate of change of the material filament instantaneously coincident with dx; is
dvy = Dq,dx;, a result that follows from the entry in the first column and first
row of (2.33). The expression dv; = D,dx, shows dv, as a linear function of dx; at
any point x and time #. Thus the geometric interpretation of D1; = (dX/dx;) is that it
is the instantaneous time rate of change of dx; at time ¢ relative to dx; at time t.
Similar geometric interpretations exist for D, and Dj;.

The geometric interpretation of the normal rate of shearing components Dy,
D,,, and D33 is easily extended to obtain a geometric interpretation of the trace of D
which is also the divergence of the velocity, tr D = V.v. If dv represents an
element of volume in the spatial coordinate system, dv = dx;dx,dx; (Fig. 2.6),
the material time rate of change of dv can be computed using the type of formula
developed in the previous paragraph; dx; = Dydx,, dx; = Dydx,, and dxz =
D33d)€3, thus

D
dv = Dr (dxidxadxs) = (D11 4+ D + D33)dxidxadxs = (tr D)dvy (2.34)

or, noting from the definition of D that
trD =Dy + Dy +D3;3 =V -v=divv (2.35)
it follows that

trD:V~V:ﬂ. (2.36)
dv
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Fig. 2.6 Illustration for the geometric interpretation of the trace of the rate-of-deformation tensor
D as the instantaneous time rate of change of volume. The material time rate of change of an
element of volume in the spatial coordinate system, dv = dx;dx,dx3, is shown to be dv = trDdv
= V - udv, thus the V-v or trD has the geometric interpretation as the instantaneous time rate of
change of material volume

Thus the Vv or trD have the geometric interpretation as the instantaneous time
rate of change of material volume. Another way of viewing this result is to say that
the divergence of the velocity field is the time rate of change of a material volume
relative to how large it is at the instant (2.35).

The off-diagonal components of the rate-of-deformation tensor, for example
D,, represent rates of shearing. D1, is equal to one-half the time rate of decrease
in an originally right angle between the filaments dx(1) and dx(2), Fig. 2.7. To see
this, note that the dot product of material filaments dx(1) and dx(2) axes may
be written as

dx(1) - dx(2) = |dx(1)[|dx(2)] cos 01,

where 0, is the angle between the two filaments. In the calculation of the material
time derivative of the dot product above, dx(1) - dx(2), we will employ the formula
dv; = dX; = Ljdx; that follows from (2.31). The material time derivative of both
sides of the equation above is then computed;

g (dx(1) - dx(2)) = dx(1) - dx(2) + dx(1) - dx(2)

= Lijdx;(1)dx»(2) + dx;(1)L;jdx;(2) = 2Ddx;(1)dx;(2)
= |dx(1)||dx(2)| cos 01> + [dx(1)||dx(2)| cos 012
— 015]dx(1)||dx(2)] sin 0},

and, since we are interested in the instant that 0,, = /2, it follows that
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Fig. 2.7 An illustration for the geometric interpretation of the rate of shearing strain component
D, of the rate-of-deformation tensor D. The heavy black lines represent two material filaments of
infinitesimal length that are instantaneously perpendicular. The thin black lines represent the same
two material filaments in the next instant. The instantaneous time rate of change of the angle
between the two material filaments, the rate at which the two filaments are coming together or

separating is 01. The geometric interpretation of D5 is that it is one half the instantaneous time of
decrease in an originally right angle between dx; and dx,, D1, = —012/2

2D;idxi(1)dx;(2) = —012]dx(1)] [dx(2)].

Finally, if we take dx(1) = dx;e; and dx(2) = dx,e; it may be concluded that

Dy = - %7
confirming that Dy, is equal to one-half the material time rate of decrease in an
originally right angle between dx; and dx,. The geometric interpretations of D3
and D,; are similar. These geometric interpretations of the components of D as the
instantaneous time rate of change of filaments, angles, and volume are the rationale
for calling D the rate of deformation tensor.

Example 2.2.1

Calculate the velocity and acceleration in the material representation of the motion
(2.12) of Example 2.1.1, then determine the spatial representation. Verify that the
acceleration computed in the spatial representation is the same as the acceleration
computed in the material representation. Calculate the tensor of velocity gradients
L, the rate of deformation tensor D, and the spin tensor W for this motion.

Solution: The velocity and acceleration for this motion are given by (2.24) as
X=Xi+Xn+3, H=Xi+Xp+2, =0, ¥=X=i=0.

In order to find the spatial representation for this motion we must invert the
system of equations (2.12) representing the motion, thus
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1
X;=—{(14+0x; —txy —# =3¢
1 1—|—2t{( +1)x1 — 1 1

1
X = 1+—2{ o+ (1400 +£ -2}, Xm=x

then, substituting these expressions into the previous equations for the velocities,
the spatial representation of this motion is obtained:

n=——{x+xn+3+1}, v=—"{x+x2+2—-1}, vi=0.

1 1
1+ 2t 1+ 2¢

It is known from the first calculation in this example that this motion is one of
zero acceleration, X; = X, = ¥3 = 0. This may be verified by calculating the
acceleration of the spatial representation of the motion above using the material

time derivative (2.29), thus

a*%Jr vy . 8\)1Jr ovy

o T oy P o

—_72{)(-1—)6-1-3-1—[}-1— L 1 {2(x1 +x2) +5} =0
(12?7 U2 (1220 ’
0 v, 0 0

i =2 v Sy T2 gy 2

ot Vox, Oxy v * O3
1 n 1
1+2t (1+421)

-2
m{xl+xz+2 }

5 {2(x1 +x) +5}=0.

The tensor of velocity gradients L for the motion (2.12) is obtained by
substituting the spatial representation for the motion obtained above into
(2.31); thus

1 1 10
L= 1 10
0 0O

1+ 2¢

The rate-of-deformation tensor D for this motion is equal to L. The spin tensor
W is zero for this motion.

Problems

2.2.1. For the first six motions of the form (2.10) given in Problem 2.1.1, namely
2.1.1(a) through 2.1.1(f), determine the velocity and acceleration in the
material (Lagrangian) representation, the velocity and acceleration in the
spatial (Eulerian) representation, and the three tensors L, D, and W. Discuss
briefly how these algebraic calculations relate to the geometry of the motion.
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2.2.2. The motion of a continuum is given by: x; = X;+ Xyt + Xmit?,
X =Xu + Xt + Xi?,  x3 = X + Xit + Xuf*.
(a) Find the inversion of this motion.
(b) Determine the velocity and the acceleration in the material

representation.

(c) Find the velocity in the spatial (Eulerian) representation for this motion.
(d) Find the three tensors L, D, and W for this motion.
(e) Find the tensor of deformation gradients F for this motion.

2.2.3. The motion of a continuum is given by:
x1 = X1+ Xn SiIl(TEl‘)7 xy =X — X1 sin(nt), x3 = X

(a) Determine the deformation gradient F of this deformation.

(b) Determine the instantaneous configuration image of the set of points
(XI)2 + (XH)2 = 1 in the reference configuration.

(c) Describe the geometry of the set of points X)? + Xy)? =1 in the
reference configuration and describe what happens to this set of points
in the motion of the continuum as time ¢ increases.

2.3 Infinitesimal Motions

The term infinitesimal motion is used to describe the case when the deformation,
including rotation, is small. This does not mean that the displacement vector is
small; one can have large displacements but small strain infinitesimal motions.
Large displacements associated with small strain infinitesimal motions occur in
very thin long rods. The criterion for infinitesimal motion is that the square of the
gradients of displacement be small compared to the gradients of displacement
themselves. Thus, for infinitesimal motions, the squares and products of the nine
quantities

Ouy Oy 0wy Duy Oy Oy Dusy Oz Oy (237)
le 78X2,3X3 ’8x1 78)6278)(3 ’8x1 78)(2’8)(3 ’

must be small compared to their own values. This means, for example, {Ou, /0x; }2
is required to be much smaller than Ou, /Ox;; each such square and product of these
nine quantities is so small that it may be neglected compared to the quantity itself.
Using this criterion of smallness, representations of the kinematics variables for
infinitesimal motions will be developed in this section.

If the motion is infinitesimal the deformation gradient tensor F must not deviate
significantly from the unit tensor 1, the magnitude of the deviation being restricted
by the criterion on the deformation gradients stated in the previous paragraph.
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The deformation gradient F may be expressed, using (2.22), in terms of [V o ® u]T,
which is a matrix of components [Ju;/0X,], as

F=1+[Voou]" (2.38)
Since

o 9 o 0
=——=—F 23
BX“ 6Xj 8X, 8x, 4 ( 9)

Vo=F'-V or

it follows from (2.38) and a result obtained in Appendix A, namely that the
transpose of a product of matrices is equal to the product of the transposed matrices
in reverse order, [AB]T = BTAT, that

F=1+[Vou - F. (2.40)

This result may be used as a recursion formula for F. In that role this formula for
F can be substituted into itself once,

F=1+[Vou' +[Veu' - [Veu' F (2.41)
and then again and again,

F=1+[Vou +Veu - [Veu +[Veu' - Veu'  [Veu
+ h.o.t.,
(2.42)

where h.o.t. stands for “higher order terms.” If the terms of second order according
to the criterion (2.37) are neglected, the F is approximated by

Fr1+[Vou' (2.43)
From (2.22) it is known that
F'l=1-[Vau, (2.44)
a formula that is accurate in the approximation because F-F~' = 1 when terms of
second order are neglected.
Two important conclusions may be made from this result. First, for infinitesimal
motions the difference between the use of material and spatial coordinates is

insignificant, thus X and x are equivalent as are the gradient operators Vo
and V. Concerning these operators note from (2.39) that

Vo@u=F".[V®u] (2.45)
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and, substituting for F using (2.42),
Vou=Veu+[Veul[Veu]
thus, to neglect terms of second order,
Vo®uxV®u. (2.46)

For infinitesimal motions, the movement of boundaries due to motion is
neglected because the small movement is equivalent to the difference in the use
of material and spatial coordinates, which is insignificant. Therefore in all the
following considerations of infinitesimal motions the coordinates x will be used
without reference to their material or spatial character, because the result is correct
independent of their character. The second important conclusion is that, for infini-
tesimal motions, F has the representation

F=1+[Vou(x). (2.47)

In the special case when the infinitesimal motion is a rigid object rotation,
F=Qand Q =1 + [V ® u]". The requirement that Q be orthogonal, Q™-Q =
QQ "T=1, QQ "=+ Veouhd+[Vouh'=1+[Vau"
+(Vou +(Veuw'(V ®u) =1, means that

(Vou' +Veou=0, (2.48)

since (V ® u)T~(V ® u) represents terms of the second order terms that are
neglected. Defining the symmetric and skew symmetric parts of V ® uasE and Y,

E=(1/2)(Veu' +Veu), Y=>1/2)((Veouw —=Veu), (249)

it is seen from (2.48) that E must be zero when the infinitesimal motion is a rigid
object rotation. It may also be seen that the orthogonal rotation Q characterizing the
infinitesimal rigid object rotation is given by

Q=1+Y, (2.50)

where Y, defined by (2.49), is skew symmetric, Y = —YT, and YY" is a second
order term, since it is a square of the coefficients (2.37) which are neglected
compared to the values of Y.

Returning to the total infinitesimal motion, the definitions (2.49) of E and Y may
be used to rewrite (2.42) as

F=1+E+Y. 2.51)

It has been established that F represents only the rotational and deformational
motion because the translational portion of the motion, being independent of the
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coordinates, was removed by spatial or material differentiation. It has also been
noted that the special case of F = 1 corresponds to no rotational and no deforma-
tional motion. Further it has been shown (2.50) that Y is associated with pure rigid
object rotation. This means that E must be the tensor representing the deformation.
This is indeed the case, as will be shown below. E is called the infinitesimal strain
tensor and Y is called the infinitesimal rotation tensor. The representation (2.51) for
the tensor of deformation gradients then demonstrates that, for infinitesimal
motions, F — 1 may be decomposed into the sum of two terms, E and Y, which
represent the deformational and rigid rotational characteristics of the infinitesimal
motion, respectively.

The strain tensor E, defined by the first of (2.49), has the component
representation

pOm O Ouy Ouy O ]
(“)xl Ox,  Ox; Ox3 Ox;

Ou;  Ou; 1|0u; Ou Ouy Ouy  Ous

') —_ | =4 = 2—= . 2.52

[ax, + 8}(_,} 2 | Ox, + Ox; Ox> 8x3 ™S x> ( )
8141 4 8u3 8u2 T 81/{3 8u3

o Ton on o Com

The components of E along the diagonal are called normal strains and the
components off the diagonal are called shear strains. The normal strains, E1, Eo,
and FE53, are measures of change in length per unit length along the 1, 2 and 3 axes,
respectively, and the shear strains, E,3, E 13, and E,, are one-half of the changes in
the angle between the 2 and 3 axes, the 1 and 3 axes and the 1 and 2 axes,
respectively.

The geometric interpretation of the components of the strain tensor E stated in
the previous paragraph will be analytically developed here. Let dx; be a vector of
infinitesimal length representing the present position of an infinitesimal material
filament coinciding with the x; at time ¢. The displacement of this material filament
instantaneously coincident with dx, is du; = E|,dx,, a result that follows from the
entry in the first column and first row of (2.52). The expression du; = E;;dx is the
change in length of dx; as a consequence of the strain as illustrated in Fig. 2.8. Thus
the geometric interpretation of £;; = (du;/dx,) is that it is the change in length per
unit length of dx;. Similar geometric interpretations exist for £,; and Es3.

The geometric interpretation of the normal strain components E1, E5, and E3; is
easily extended to obtain a geometric interpretation of the trace of the small strain
tensor tr E, or equivalently the divergence of the displacement field V-u, tr E =
V. If dv, = dx,dx,dx; represents an undeformed element of volume (Fig. 2.9),
the deformed volume is given by dv = (dx; + duy)(dx, + du,)(dx; + dus). Using
duy, = Edx,, duy = Eydx, and du; = E;3dx;, the deformed volume is given by
dv = (1 + E;)(1 + Expn)(1 + E33)dv,. Expanding dv = (1 + Ey)(1 + Exp)
(1 + E33)dv, and recognizing that the squares of displacement gradients (2.37)
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dx, dx, + du,

Fig. 2.8 An illustration for the geometric interpretation of the normal strain component Eq;.
The left and right illustrations of this figure represent the undeformed and deformed
configurations, respectively. The heavy black line represents the same material filament in the
two configurations. E;; is equal to the change in length per unit length of the filament between
the two configurations. The original length is dx; and the change in length due to the deformation
is duy, thus E|; = du,/dx;

Fig. 2.9 Anillustration for the geometric interpretation of the trace of the strain tensor, tr E, or the
divergence of the displacement field, V-u, trE = V-u. The left and right illustrations of this figure
represent the undeformed and deformed configurations, respectively. The heavy black lines
represent the same material filaments in the two configurations. The volume element in the
undeformed configuration is dv, = dx;dx,dx; and the deformed volume is given by dv = (dx; +
duy)(dxy + duy)(dxs + dus). It may be shown (see text) that dv = (1 + trE)dv,. Thus the trE
= V-u represents the change in volume per unit volume, (dv — dv,)/dv,

may be neglected, it follows that dv = (1 + trE)dv,. Thus the trE represents the
change in volume per unit volume, (dv — dv,)/dv,.

The off-diagonal components of the strain tensor, for example E,, represent the
shearing strains. E, is equal to one-half the change in angle that was originally a
right angle between the x; and x, axes. To construct this geometric result algebrai-
cally, the unit vectors e, and e, are considered, see Fig. 2.10. After deformation
these vectors are Fe; and Fe,, respectively, or, since F = 1 + E, the deformed
vectors are given by e; + Ee; and e, + Ee,, respectively. The dot product of the
vectors e; + Ee; and e, + Ee, is (e; + Eej)-(e; + Ee,) = e;-e; + e;-Ee, +
e,-Ee; + Ee;-Ee,, but since the unit vectors e; and e, are orthogonal, e;-e; = 0,
and also since Ee;-Ee, is a higher order term because it contains the squares of the
displacement gradients (2.37), this expression reduces to (e; + Ee|)-(e; + Eey) =
e;-Ee, + e,-Ee,. This result is further reduced by noting that e;-Ee, = e,-Ee; = E/,,
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Fig. 2.10 Illustration for the geometric interpretation of the shearing strain E5. The left and right
illustrations of this figure represent the undeformed and deformed configurations, respectively.
The heavy black lines represent the same material filaments in the two configurations. E, is equal
to one-half the change in angle that was originally a right angle between the x; and x, axes, ¢/2 in
this figure

thus it follows that (e; + Ee;)-(e; + Ee,) = 2E1,. Recalling the formula (A61) for
the dot product of two vectors, say u and v, as equal to the magnitude of the first times
the magnitude of the second times the cosine of the angle (say {) between them, u - v
= u;v; = |u| - |v| cos{, it follows that 2E,, = |e; + Ee,| |e; + Ee,| cos (n/2 — ¢),
where the angle (/2 — ¢) is illustrated in Fig. 2.10. The magnitude of |e; + Ee,|
is the square root of (el + Eel)'(el + Eel) = e;-e + el'Eel + el'Eel + Ee1~Ee1,
but since e;-e; = 1 and Ee;-Ee, is a higher order term, this reduces to the square root
of 1 + 2E4,, by a parallel of the arguments used above to obtain the formula for 2F .
At this point a classical approximation is used. This approximation is that 1 + ¢
~ V(1 + 2¢) if summands of the order ¢ may be neglected; the proof of this
approximation follows easily if one squares it. Then, since the square of E;;
is a higher order term, the square root of 1 + 2FE; is given by 1 + Eqq, thus 2E,
=+ Ei)1 + Ep) cos(n/2 — ¢) or 2E;; = (1 + En)l + Exp)sin¢g  or
expanding; 2E, = sin ¢ + (E;; + E») sin ¢ + Eq1E», sin ¢. Finally, since the
angle ¢ is small, sin ¢ is small as are E; and E,,, thus the neglect of higher order
terms gives 2E |, = ¢, and the interpretation of E, as one-half the change in an angle
that was originally a right angle between the x; and x, axes (Fig. 2.10). These geometric
interpretations of the components of E as the change in the length of filaments, the
change in angles and the change in volume deformation between the undeformed
and the deformed configurations are the rationale for calling E the strain tensor.

Example 2.3.1

The deformation gradient and the inverse deformation gradient for the motion given
by (2.12) were computed in Example 2.1.4. Determine the restriction on the motion
given by (2.12) so the motion is infinitesimal. Find the strain tensor E and the
rotation tensor Y for the infinitesimal motion.
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Solution: Comparison of the expressions Vo ® u(X, ) and V ® u(x, f) obtained in
Example 2.1.4 shows that these two expressions coincide only for very small times
t, only if  is much less than ¢. In this case Vo @ u(X, 1) = V ® u(x, 1) and

1 0
Vou=t 1 0
00

O = =

From this expression for V ® u and (2.49), the rotation tensor is determined to
be Y = 0, and the strain tensor E is given by

as long as ¢ is small.
Problem

2.3.1. For the motions of the form (2.10) given in Problem 2.1.1, namely 2.1.1(a)
through 2.1.1(g), determine the conditions under which the motion remains
infinitesimal and compute the infinitesimal strain and rotation tensors, E and
Y. Discuss briefly the significance of each of the seven strain tensors
computed. In particular, explain the form or value of the strain tensor in
terms of the motion.

2.4 The Strain Conditions of Compatibility

Calculating the strain tensor E given the displacement field u is a relatively simple
matter; one just substitutes the displacement field u into the formula (2.49) for the
strain displacement relations, E = (1/2)(V ® w)! + V ® u). Situations occur in
which it is desired to calculate the displacement field u given the strain tensor E. This
inverse problem is more difficult because the strain displacement relations, E = (1/2)
(V@ w)' + V ® u), become a system of first order partial differential equations
for the displacement field u. Given the significance of the displacement field u in an
object we generally want to insure that the displacement field u is continuous and
single valued. There are real situations in which the displacement field u might be
discontinuous and multiple valued, but these situations will be treated as special cases.
In general it is desired that the integral of the strain—displacement relations, the
displacement field u, is continuous and single valued. The conditions of compatibil-
ity insure this. The conditions of compatibility are equations that the strain tensor
must satisfy so that when the strain—displacement relations are integrated, the
resulting displacement field u, is continuous and single valued. The conditions of
compatibility may be written in the direct notation as
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VXExV=0 (2.53)
or in the index notation as
O*E
ijk€pmn 5 A — 0 2.54
Cijkep OxyOx,, ( )
or in scalar form as the following six equations:
Ox0x3 O Ox; Oxy  Ox3 |’ Ox10xy  0x3 ox3 7
PEy 0 [ 0Ey  OEn n OE3 OPEy  O0’Eyp  0%Es; 2.55)
Ox30x;  Oxy Ox, Ox3  Ox )’ A 0x3 Ox3 o3

0*Ex3 :i _OEn 3E23+5'E31 5 0%Es :32E33 O*Eq
Ox10xy  Oxz Ox3  Ox;  Oxy |’ Ox30x Ox? 0%

Equations (2.53) and (2.54) are symmetric second rank tensors in three
dimensions and therefore have the six components given by (2.55). It follows that
each of the six scalar equations (2.55) must be satisfied in order to insure compati-
bility. The conditions (2.53) are a direct consequence of the definition of strain, that
is to say that E = (1/2)(V @ u)" + V@ u) = (1/2)u @ V + V ® u) implies
that V x E x V = 0. To see that this is true, consider the result of operating on
E=(1/2)u® V 4+ V ® u) from the left by V x and from the right by x V; one
obtains the expression

2(VXEXxV)=Vxu@VxV+VxVeuxV. (2.56)

The operator V x V, which occurs in both terms on the right hand side of (2.56)
is called the “curl grad”; the curl of the gradient applied to a function f is zero,
V x Vf = 0. In the indicial notation this is easy to see, V x Vf = e;(9f/0x;0xy)
e; = 0, because of the symmetry of the indices on the partial derivatives and skew-
symmetry in the components of the alternator (see Appendix A.8). Both terms on the
right hand side of (2.56) contain the operator curl grad, V x V, applied to a function,
hence V x E x V = 0. It may also be shown that the reverse is true, namely that
V xExV =0 implies that E = (1/2)(V ® )" + V ® u). Thus E = (1/2)
(V @ w)' + V ® u) is a necessary and sufficient condition that V x E x V = 0.

In order to both prove and motivate this result consider the two integration paths
from the point P° to the point P’ in an object (Fig. 2.11). If the result of the
integration from the point P° to the point P’ is to be the same along all paths chosen
between these two points, then the value of the integral around any closed path in
the object must be zero. This means that the integrand of the integral must be an
exact differential (see Appendix A.15 Exact differentials). Recall the theorem at the
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Fig. 2.11 Illustration of two

integration paths from the

point P° to the point P’ in an

object. If the result of the

integration from the point P°

to the point P’ is to be the

same along all paths chosen

between these two points,

then the value of the integral

around any closed path in the Po
object must be zero. This

means that the integrand of

the integral must be an exact

differential P'

start of most texts on ordinary differential equations concerning exact differentials:
If M(x, y) and N(x, y) are continuous functions and have continuous partial
derivatives in a region of the x—y plane, then the expression M(x, y)dx + N(x, y)dy
is an exact differential if and only if OM /0y = ON/Ox throughout the region. This
theorem will be applied to prove that the compatibility relations V x E x V = Oare
both necessary and sufficient conditions for the continuous and single-valued nature
of the displacement field obtained by integration from the strain—displacement
relations. If the displacement vector is known at the point P° then integration of
du from the point P° to the point P’ (Fig. 2.11) will determine u(x’), thus,

P/ P/
u(x') =u’® + J du=u’+ J (Vou)' - dx (2.57)
PO PO

Recall from (2.43) and (2.51) that

(Vou' =E+Y (2.58)
it follows that
P’ P
u(x') =u®+ J E-dx+ J Y - dx. (2.59)
Po Po

The last integral in the previous result may be rewritten as

P/ P/
JY~dx: JY-d(x—x’) (2.60)

Po Po
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and integrated by parts, thus

P/ PI
JY~dx:7Y°~(x°fx/)+de~V®Yo(x7x’). (2.61)
Po Po
Placing the result (2.61) into (2.59) it follows that
P/
ux) =u’ —Y° (x*—x')+ de- E+VRY-(x—x)] (2.62)
PO

or, in the indicial notation,

P

ui(x’) = u? — Yiok(xl(: — X;C) + J |:Eim _
PU

Y,
% (x — X)) | dxy. (2.63)

The relationship between the derivatives of the rotation and strain tensors,

BYik o 8Etm aEmk

Ox,  Oxp Ox; '

(2.64)

may easily be verified by substituting the formulas (2.49) relating E and Y to the
displacement gradients. When the relationship (2.64) is substituted into (2.63) it
becomes
P/
ui(xX') = u =Y (xp —xp) + JR,-,,, dx,,, (2.65)
PO

where

6}( k ax i

—X). (2.66)

OE;, OE,
Rim = Eim - { k}(xk .X/

The condition that the integrand in the integral in (2.65) be an exact differential
is then expressed as the condition

OR;y, . OR;1.
Oxy  Oxy

(2.67)

When (2.67) is substituted into (2.66), the result
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82E”’" O’Ei 82Ekt/ O?Ei /
0= {ax,@xk + X0y OXiOXy 3xqaxk}(xq —x,) (2.68)

is satisfied only when the compatibility conditions (2.54), or equivalently (2.54) or
(2.55)orV X E x V =0, hold. Thus V x E x V = 01is a necessary and sufficient
condition that the integration of the strain—displacement relations will yield a
single-valued and continuous displacement field.

Problems

2.4.1. For the motions of the form (2.10) given in Problem 2.1.1, namely 2.1.1(a)
through 2.1.1(g), determine if the infinitesimal strain tensors, E, calculated in
2.3.1 satisfy the conditions of compatibility.

2.4.2. Is the following strain state possible for an object in which the displacement
field must be continuous and single valued? Justify your answer analytically.

x(xF+x3) xxxs 0

e=¢ X1X2X3 X3X% 0

0 0 0

2.4.3. Demonstrate the validity of the formula (2.64) by substituting the formulas
relating E and Y to the displacement gradients (2.49) into (2.64) and show
that an identity is obtained. This is more easily done in the indicial notation.

2.4.4. Verify that substitution of the formula (2.67) into (2.66) leads to the result
(2.68). This is much more easily done in the indicial notation.



Chapter 3
Continuum Formulations of Conservation Laws

The theme for this chapter is captured by a quote from Herbert Callen’s book (Callen
1960) on thermodynamics. Callen introduces the conservation of energy and the
concept of internal energy in the following paragraph: “The development of the
principle of conservation of energy has been one of the most significant
achievements in the evolution of physics. The present form of the principle was
not discovered in one magnificent stroke of insight but has been slowly and labori-
ously developed over two and a half centuries. The first recognition of a conserva-
tion principle, by Leibnitz in 1693, referred only to the sum of the kinetic energy
((1/2)mv?) and the potential energy (mgh) of a simple mechanical mass point in the
terrestrial gravitational field. As additional types of systems were considered, the
established form of the conservation principle repeatedly failed, but in each case it
was found possible to revive it by the addition of a new mathematical term - a “new
kind of energy.” Thus consideration of charged systems necessitated the addition of
the Coulomb interaction energy (Q;Q,/r) and eventually of the energy of the
electromagnetic field. In 1905 Einstein extended the principle to the relativistic
region, adding such terms as the relativistic rest-mass energy. In the 1930’s Enrico
Fermi postulated the existence of a new particle, called the neutrino, solely for the
purpose of retaining the energy conservation principle in nuclear reactions. Con-
temporary research in nuclear physics seeks the form of interaction between
nucleons within a nucleus in order that the conservation principle may be formulated
explicitly at the subnuclear level. Despite the fact that unsolved problems of this
type remain, the energy conservation principle is now accepted as one of the most
fundamental, general, and significant principles of physical theory.”

3.1 The Conservation Principles

Conservation principles will be cast here in the form of a balance or accounting
statement for the time rate of change of a quantity in a system. On the plus side of
the accountant’s ledger are the amount of the quantity coming into the system and
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the quantity produced within the system. On the minus side are the amount of the
quantity leaving the system and the quantity consumed within the system. The
system will be either a fixed material system consisting always of the same set of
particles or a fixed spatial (continuum) volume through which material is passing.
The quantity will be either mass, linear momentum, angular momentum, or energy.

The focus of this chapter is the development of continuum formulations for the
conservation principles of mass, linear momentum, angular momentum, and
energy. The statement of conservation of mass is usually the statement that mass
cannot be created or destroyed. The conservation of momentum is usually stated in
the form of Newton’s second law: the sum of the forces acting on an object is equal
to the product of the mass of the object and the acceleration of the object. The
conservation of angular momentum is the statement that the time rate of change of
angular momentum must equal the sum of the applied moments. The conservation
of energy is the requirement that the time rate of change of the sum of all the kinetic
and internal energies must equal the mechanical power and heat power supplied to
the object.

In the next section the continuum formulation of the conservation of mass is
developed. In the following section the concept of stress is introduced and its
important properties are derived and illustrated. The conservation of momentum,
or the second law of Newton, when expressed in terms of stress, is called the stress
equation of motion. The conservation of angular momentum is employed in the
development of the stress equations of motion to show that the stress tensor is
symmetric. In the last section the continuum formulation of the conservation of
energy is developed.

3.2 The Conservation of Mass

The total mass M at time ¢ of an object O is given by

M= Jp(x,t)dv7 (3.1)
)

where p(X, f) is the mass density at the place x within the object at the time ¢. The
statement of mass conservation for the object O is that M does not change with time:

DM D

B~ o Jp(x7 f)dv = 0. (3.2)

o

The material time derivative may be interchanged with the integration over the
object O since a fixed material volume is identified as the object,
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This is a potato-shaped object

his is another potato
shaped object contained
within the larger objgct.

Fig. 3.1 A potato-shaped object and a second potato-shaped object that is fully contained within
the first potato-shaped object. All the conservation principles may be applied to both objects
separately. Furthermore one may select or define these objects as one chooses

J(p(x, 1)dv + p(x,1)dv) = 0. (3.3)
0

Then, using the relationship relating the time rate of change in the volume to the
present size of the volume from (2.36), dv = (V - v)dv, it follows that

J{p(x, )+ p(x,0)(V-v)}dv=0. (3.4
0

The next step in the development of this continuum representation of the
conservation of mass is to employ the argument that the integral equation (3.4)
over the object O may be replaced by the condition that the integrand in the integral
equation (3.4) be identically zero, thus

p+p(V-v)=0. (3.5)

The argument that is used to go from (3.4) and (3.5) is an argument that will be
employed three more times in this chapter. The argument requires that the inte-
grand in the integral (3.4) be continuous. The argument is that any part or
subvolume of an object O may also be considered as an object and the result
(3.4) also holds for that sub-object. In Fig. 3.1 an object and a portion of an object
that may be considered as an object itself are illustrated. The argument for the
transition (3.4) — (3.5) is as follows: suppose it is not true that the integrand of
(3.4) is not zero everywhere (i.e., suppose the transition (3.4) — (3.5) is not true).
If that is the case then there must exist domains of the object in which the integrand
is positive and other domains in which the integrand is negative, so that when the
integration is accomplished over the entire object the sum is zero. If that is the case
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consider a domain of the object in which the integrand of (3.4) is always positive
(or negative). Let this domain be an object. For the object chosen in this way the
integral on the left-hand side of (3.4) cannot be zero. This conclusion contradicts
(3.4) because (3.4) must be zero. It may therefore be concluded that the require-
ment that the integral (3.4) be zero for an object and all sub-objects that can
be formed from it means that the integrand must be zero everywhere in the object.
Note that a very important transition has occurred in the argument that obtains (3.5)
from (3.4). Integral statements such as (3.4) are global statements because they
apply to an entire object. However the requirement (3.5) is a local, pointwise
condition valid at the typical point (place) in the object. Thus the transition
(3.4) — (3.5) is from the global to the local or from the object to the point
(or particle) in the object. Note also that the converse proof (3.5) and (3.4) is trivial.

Note that (3.5) may be combined with (2.30), the expression decomposing the
material time derivative into the sum of a local rate of change and a convective rate
of change, to obtain this alternate local statement of mass conservation:

dp
—+V- =0. 3.6
5 TV (ov) (3.6)
Another consequence of the conservation of mass is a simple formula for the
material time derivative of an integral of the form

K= Jk(x7 Hp(x, t)dv, (3.7)
0

where k(x, f) is a physical quantity (temperature, momentum, etc.) of arbitrary
scalar, vector or tensor character and K is the value of the density times quantity
k(x, f) integrated over the entire object O. Since, by (3.2), the material time rate of
change of p(x, #)dv is zero, it follows that

K = Jk(x, H)p(x,t)dv. (3.8)
0

Problems

3.2.1. For the first six motions of the form (2.10) given in Problem 2.1.1, namely
2.1.1(a) through 2.1.1 (f), determine the ratio of the time rate of change of

density p to the instantaneous density p, %

3.2.2. In this section it was shown that one could derive the local statement of mass
conservation (3.5) from the global statement of mass conservation, DM/Dt
= 0. Reverse the direction of this derivation, derive the global statement of
mass conservation DM/Dt = 0 from the fact that the local statement (3.5) or
(3.6) is true at all points in an object O.
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3.3 The State of Stress at a Point

Stress is a mental construct of humans to represent the internal interactions or
internal forces on a material object. The concept of a stress will first be introduced
as a vector. Consider the potato-shaped object shown in Fig. 3.2. An imaginary
plane X characterized by its normal n divides the object into an upper portion U and
a lower portion L. Considering L as a free object, the action of U upon L is statically
equivalent to a resultant force f and couple m. Assuming that the interaction is
distributed across Z, each area element AA; of the intersection of X and the object
may be considered as transmitting a force Af;) and a moment Amg;. The average
stress vector, tf‘n) (P), at the point P acting on the plane whose normal is n, is defined

as the ratio

to (P) = Mg (3.9)
The quantity t?n) is a vector because the force Af(;) is a vector and AA;, is a scalar.
A

The average couple stress vector c( (P) at the point P acting on the plane whose

n)
normal is n is defined analogously by the ratio

Ami
el (P) = F((; (3.10)

These two definitions are illustrated in Fig. 3.2. The stress vector t,,(P) acting at
the point P on the plane whose normal is n is defined as the limit of the average

Am ) AfGY/AAG)
n

Am ()/AAG)

Fig. 3.2 A plane X, with normal n, is shown passing through a point P in a potato-shaped object.
The force and moment acting across the plane at the point P are indicated
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stress vector, t/(‘n> (P), as AAg tends to zero through a sequence of progressively

smaller areas, AAy), AA@py, AAgy, ..., AAny, .. ., all containing the point P,

tm (P) = Alimito t (P)- (3.11)
(Ol

When a similar limit is applied to the average couple stress vector we assume that
the limit is zero:

0= limit ¢}, (P). (3.12)
AAU)_'O (n)( )

In effect we are assuming that the forces involved are of finite magnitude and
that the moment arm associated with Amy;, vanishes as AAg, tends to zero. For
almost all continuum theories the assumption (3.12) is adequate.

The internal force interaction at a point in an object is adequately represented by
the stress vector t,, across the plane whose normal is n. However, there is a double
infinity of distinct planes with normals n passing through a single point; thus there
is a double infinity of distinct stress vectors acting at each point. The multitude of
stress vectors, t,, at a point is called the state of stress at the point. The totality of
vectors ty,(P) at a fixed point P, and for all directions n, is called the state of stress
at the point P. The representation of the state of stress at a point is simplified by
proving that t.,,(P) must be a linear function of the vector n, as will be done below.
The coefficients of this linear relationship will be the stress tensor T. Thus T will be
a linear transformation that transforms n into t(,), tm(P) = T(P)-n. The proof that
T is, in fact, a tensor and the coefficient of a linear transformation will also be
provided below. However, even though it has not yet been proved, T will be
referred to as a tensor. The stress tensor T has components relative to an orthonor-
mal basis that are the elements of the matrix

Ty Ty T3
T=|Ty Ty Tix]|. (3.13)
T3 T3 Ta3

The component Tj; of the stress tensor is the component of the stress vector
tm) = t acting on the plane whose normal n is in the e; direction, n = e;, projected

in the e; direction,
Tij =€ - t(j>. (314)

The nine components of the stress tensor defined by (3.14) and represented by
(3.13) are therefore the e/, e,, and e; components of the three stress vectors t, t,
and tg,which act at the point P, on planes parallel to the three mutually perpendic-
ular coordinate planes. This is illustrated in Fig. 3.3. The components T, T2, T33
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Fig. 3.3 Cartesian components of stress acting on the faces of a small cubic element

are called normal stresses, and the remaining components Ty, 123, T3, 121, T32, T31
are called shearing stresses. Each of these components has the dimension of force
per unit area.

Recall that stress was defined as the force per unit area that the upper portion
U exerts on the lower portion L. From this definition, it follows that if the exterior
normal of the object is in the positive coordinate direction, then positive normal and
shear stresses will also be in the positive coordinate direction. If the exterior normal
of the object is in the negative coordinate direction however, positive normal and
shear stresses will point in the negative coordinate direction. The rule for the signs
of stress components is as follows: the stress on a plane is positive if it points in a
positive direction on a positive plane, or in a negative direction on a negative
plane. Otherwise it is negative.

It will now be shown, following an 1822 result of Cauchy, that the nine
components of stress are sufficient to characterize the entire state of stress at a
point. Specifically, it will be shown that the state of stress at a point P is completely
determined if the stress vectors associated with three mutually perpendicular
planes are known at P and are continuous in a neighborhood of P. The stress
vector t, acting on any plane whose normal is n is given by

)1 Ty T T |m
tmp | = [T T T | |n (3.15)
t(n)3 T31 T3 Taz | |m
or
t(n) =T-n, In)i = Tiji’lj. (3.16)

This means that the stress tensor T can be considered as a linear transformation
that transforms the unit normal n into the stress vector t, acting on the plane whose
normal is n.

To prove this result we consider the tetrahedral element of an object shown in
Fig. 3.4 as a free object and apply Newton’s second law to the force system acting



60 3 Continuum Formulations of Conservation Laws

€3

€
€

Fig. 3.4 The surface tractions on a tetrahedron

on the tetrahedron. The tetrahedron is selected in such a way that the stress vectors
acting on the mutually orthogonal faces are the stress vectors acting on the coordi-
nate planes. Recall that we have represented the components of the stress vectors
acting on the planes whose normals are ey, e,, and e3 by the components of the stress
tensor. The three scalar equations of Newton’s second law will suffice for the
determination of the unknown components of ty, acting on the fourth face. For
simplicity we will only derive (3.15) in the e; direction. We let A be the area of the
inclined face with normal n, and h the perpendicular distance from P to the inclined
face. The mean value of t,, will be denoted and defined by

. 1
top =74 Jt<n>1dA = tm)(Q), (3.17)

A

where, as a consequence of the mean value theorem, the point Q lies inside A.
Analogously defined mean values of the components of T over their respective
areas will be denoted by T. The reason for requiring that the stress components be
continuous functions of position in a neighborhood of P is to ensure that the mean
values of the stress components actually occur at certain points always within the
corresponding areas.

Since the area of the inclined face of the tetrahedron may be represented by the
vector An, where A is the magnitude of the area and n is the normal to the plane
containing the area, the areas of the orthogonal faces are each given by An;, An,,
Ans. The fact that the areas of four faces of a tetrahedron, where three of the faces of
the tetrahedron are orthogonal, are A, Any, An,, and Anj is a result from solid
geometry. Summing forces in the e; direction and setting the result equal to the
mass times the acceleration of the tetrahedron we find that

~ _ _ _ Ah AR
fonA — T1Any — TpAny — T13An3 + pdy 3 =P (3.18)

where Ah/3 is the volume of the tetrahedron, d; is the action-at-a-distance force
(e.g., gravity) in the e; direction and ¥; the acceleration of the tetrahedron in that
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direction. The next step in this development is to cancel A throughout (3.18) and
allow the plane whose normal is n to approach P, causing the volume of the
tetrahedron to vanish as % tends to zero. Before doing this, note that since Q must
always lie on A, as & tends to zero, by the mean value theorem:

ta) (P) = limit §a)1 (P) = limit t (Q), T(P) = Limit T(P) = limit T(Q). (3.19)

Canceling A throughout (3.18) and taking the limiting process as 4 tends to zero,
noting that the object force and the acceleration vanish as the volume of the
tetrahedron vanishes, it follows from (3.18) and (3.19) that

tmy1 = Tiny + Tiang + Tians. (3.20)

Repeating this analysis for the e, and e; directions the result (3.15) is
established.

Thus we have shown that the double infinity of possible stress vectors ), which
constitutes a state of stress at a point in an object, can be completely characterized by
the nine components of T. These nine components are simply the three components
of three different stress vectors, one acting on each of the coordinate planes of a
reference frame. Thus, in the matrix of tensor components (3.13) the first row consists
of the components of the stress vector acting on a plane whose normal is in the e,
direction. A similar interpretation applies to the second and third rows. When the
meaning is not obscured, we will drop the subscript (n) in the equation t,) = T-nand
write it as t = T-n, with it being understood that the particular t depends upon n. The
normal stress on a plane is then given by t-n = n-T-n and the shear stress in a
direction m lying in the plane whose normal isn, m-n = 0, is givenby tm = m-T-n
= n-T-m. Note that if a vector m’ is introduced that reverses the direction of m,
m’ = —m then the associated shear stress is given by ttm’ = m’-T-n = n-T-m’ =
—t-m. This shows that, if the unit vector m is reversed in direction, the opposite value
of the shear stress is obtained. Note also that if the unit vector n is reversed in
direction, the opposite value of the shear stress is obtained. If both the unit vectors
n and m are reversed in direction, the sign of the shear stress is unchanged. These
conclusions are all consistent with the definition of the sign of the shear stress.

A short calculation will show that the stress matrix T is a tensor. Recall that, in
order for T to be a tensor, its components in one coordinate system had to be related
to the components in another coordinate system by

=Q -TY9.Q" and TYW =QT.T¢ Q.(A83)repeated

To show that the T in the relationship (3.15), t = T-n, has the tensor property,
the equation t = T-n is specified in the Latin coordinate system, t* = T®.n®.
Then, using the vector transformation law (A77) for t and n, t = Q-t(G) nd

n“ = Q:n'?, respectively, the expression t) = T“.n'“ is then rewritten as
Qt9 = T1V.Qn'“, or t© = Q" T®.Q.n'?. Finally, it can be noted from
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Fig 35 & it o o (T

stress o

7

t9 = QT-TW.Q-n'® that since t‘“> = T“.n‘“ | it follows that T = Q"-T.Q.
Since this is the transformation rule for a tensor (A83), T is a tensor.

Example 3.3.1

Determine the stress tensor representing the state of stress at a typical point in the
uniform bar subjected to a uniform tensile stress (Fig. 3.5). The applied tensile
stress is of magnitude ¢ and it is assumed that the stress state is the same at all points
of the bar. Determine the stress vector t acting on the plane whose normal is n,
where n is given by n = cos 0 e, + sin 0 e;. Determine the normal stress on the
plane whose normal is n and the shear stress in the direction m, m-n = 0, m =
—sin 0 e, + cos 0 e3, on the plane whose normal is n.

Solution: The components of the stress tensor T at a typical point in the bar and
relative to the coordinate system shown in Fig. 3.5, are given by

0
T=10
0

S OO
Q © O

thus the only nonzero component of the stress tensor is T533. The stress vector
t acting on the plane whose normal is n is then given by

0 0 O 0 0
t=Tn=|{0 0 0| |cosf| = 0 ,
0 0 ¢ sin 0 osin0

thus this vector has only one nonzero component, namely, t3 = ¢ sin 0. The normal
stress on the plane whose normal is n is given by t-n = ¢ sin . The shear stress on

the plane whose normal is n in the direction m, m-n = 0, m = —sin e, + cos 0 e3
is given by t-m = ¢ cos 0 sin 0. (Note that one could choose m’ = sin 0 e,—
cos 0 e3, wherem’ = —m, thent-m’ = —¢ cos 0 sin 0 = —t-m and the direction of

the shear stress is reversed). From these results it is seen that when the normal to
the plane n coincides with the ez direction (0 = m/2), the stress component 3 is
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Fig. 3.6 An illustration for problem 3.3.1

Fig. 3.7 An illustration for problem 3.3.2

equal to ¢ as one would expect, and when the normal to the plane n coincides with
the e, direction, the stress component f, is zero. The shear stress t-m = ¢ cos 6 sin 0
has maxima of ¢/2 at 0 = n/4 and 37/4.

Problems

3.3.1. The flat plate shown in Fig. 3.6 has only two stresses acting on it. There is a
uniform tensile stress ¢ in the e, direction and a uniform compressive
stress—o in the e; direction. Find the stress vector and the components of
the stress tensor acting on the planes whose normals are

(2) (&1 + €2), (b) —= (&1 + €2), (c)

= = —e2), (d) =

V2

1
7 (e1 (—er +e)
3.3.2. The flat plate shown in Fig. 3.7 has shearing stresses 7 acting on each of its

four faces. Find the stress vector and the stress components acting on the
planes whose normals are

(@n = (e +e). () = = (e~
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Fig. 3.8 An illustration for
problem 3.3.4

3.3.3. Repeat the arguments of this section and show that
tmy2 = Tarny + Toang + Toznz

List each of the arguments and rules or facts used in the proof.

3.3.4. The roughly triangular-shaped region in Fig. 3.8 with the included angle
[ represents the upper portion of a dam. The zigzag lines at the bottom of the
triangular region are an indication that the dam extends beyond those zigzag
lines. Find the stress vectors acting on the face x; = 0 and on the slanted face
of the wedge shown in the Fig. 3.8. The stress matrix at the typical point x,
X5, X3 of the wedge shown in Fig. 3.8 is given by

T T P 2 + ! P
= —)x =(———F)x ———Px
11 VX2, 22 @nf  anf 1 tan2f 2
o
T12=T21=721, T33=T351=Ti3=T3=T»=0.
tan?f}

3.4 The Stress Equations of Motion

In continuum mechanics the stress equations of motion are the most useful form of
the principles of balance of linear and angular momentum. The stress equations of
motion are statements of Newton’s second law (i.e., that force is equal to mass
times acceleration) written in terms of stress.

The forces that act on the object in Fig. 3.9 are the surface traction t(x, #), which
acts at each boundary point, and the action-at-a-distance force pd, which represents
forces such as gravity and the effect of electromagnetic forces on charges within the
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Fig. 3.9 An object acted t(x) t(x)
upon by an action-at-a-
distance force pd and
a system of surface
tractions t(x)

pd

object. For example, at the surface of the earth, in the absence of electromagnetic
forces, d = —ge,, where e, is a positive unit normal to the surface of the earth and g
is the acceleration of gravity at the earth’s surface. The total force XF acting on the
object is given by

SF = J tda+ J pddv, (3.21)
90 o

where 0O is the surface of the object O. The total moment about the origin of the
coordinate system illustrated is

M = J X X tda+ Jx X pddv, (3.22)
90 0

where x is a position vector from the origin. The linear momentum p and the
angular momentum H of the object in Fig. 3.9 are written as the following integrals
over the object O:

p= in(dv, H= Jx X pxdv. (3.23)
0 0

The balance of linear momentum requires that the sum of the applied forces
equals the time rate of change of the linear momentum, and the balance of angular
momentum requires that the sum of the applied moments equals the time rate of
change of the angular momentum. In computing the time rates of change of the
integrals (3.23) we note that the object O is material so that the material time
derivative may be taken inside the integral sign and applied directly to the integrand
with the density excluded, (3.8). The material time derivative applied to (3.23) yields

p= indv,H: JXXXpdv +Jxxipdv:Jxxipdv, (3.24)
o 0] o o
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where the term in the square brackets vanishes because x x x = 0. Equating pto ZF

and H to ZM as required by the conservation of linear and angular momentum,
respectively, we obtain from (3.21) and (3.24) that

indv = J tda+ J pddv, (3.25)
90 0

o)

and from (3.22) and (3.24) that

Jx X Xpdv = J X X tda+Jx x pddv. (3.26)
0 a0 0

These integral forms of the balance of linear and angular momentum are the
global forms of these principles. The global forms are weaker statements of these
balance principles than are the point forms that we will now derive. We say that the
point forms are stronger because it must be assumed that the stress is continuously
differentiable and that pX and pd are continuous everywhere in the object in order to
obtain the point forms from the global forms. The point form of the balance of
linear momentum is obtained from (3.25) by first substituting (3.16) into the surface
integral in (3.25),

indv = J T - nda+ dedv, (3.27)
0 90 0

then applying the divergence theorem (A184) to the surface integral in (3.27),

indv = Jv -TTdv+ J pddv, (3.28)
o o o

The second step in obtaining the point form is to rewrite (3.28) as a single
integral,

J(pi —V-T' — pd)dv = 0, (3.29)
0
and then employ the same argument as was employed in the transition from (3.4) to
(3.5); see the discussion following (3.5). It follows then that
px =V T + pd (3.30)

at each point in the object O. There is one more point to make about (3.30) before it
is complete. That point is that the stress tensor T is symmetric and thus the
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transpose notation in (3.30) is not necessary. In the next paragraph the conservation
of angular momentum is used to show that the stress tensor T is symmetric.

The arguments to show that the stress tensor T is symmetric are algebraically
simpler if we replace the statement of the conservation of angular momentum given
above, (3.26), by the equivalent requirement that the skew-symmetric part of Z,

Z:Jx@ipdv— Jx@tda—Jx@pddv, (3.31)
19) 20 19)
be zero:
Z-7" =o. (3.32)

Equation (3.32) is equivalent to (3.26). The rationale for this equivalence is
that the components of the cross-product of two vectors, say a X b, are equal to
the components of the skew-symmetric part of the open product of the two vectors,
a®b. Since (3.32) requires that Z be symmetric, it follows that the skew-
symmetric part of Z is zero. Equation (3.26) is equivalent to the skew-symmetric
part of Z, and the equivalence is established.

The sequence of steps applied to the conservation of linear momentum in the
paragraph before last are now applied to the expression (3.31) for Z. The point form
of (3.31) is obtained by first substituting (3.16) into the surface integral in (3.31),

7= Jx@ipdv— J X®Tnda—Jx®pddv, (3.33)
0 90 0
then applying the divergence theorem (A184) to the surface integral in (3.33),
7= Jx ® Xpdv — J{(V x)T+ (x®V-T)}tdv— JX ® pddv. (3.34)
0 0 0

This result is simplified by observing that V ® x = 1 and collecting all the
remaining integrals containing X ® together, thus

7= JTdv—s—Jx@{pi—V-TT—pd)dV. (3.35)
o %

The second integral in (3.35) is exactly zero because its integrand contains the
point form statement of linear momentum conservation (3.30); thus (3.35) and
(3.32) show that

J(T —Tdv = 0. (3.36)
o
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The final step in this development is to employ the same argument as was
employed in the transition from (3.4) to (3.5); see the discussion following (3.5).
It follows then that the stress tensor is symmetric,

T =17, (3.37)
at each point in the object O.

The final form of the stress equations of motion (Truesdell and Toupin, 1960) is
obtained from the combination of (3.37) and (3.30), thus

pXx =V -T+pd, T =T (3.38)

This local statement of Newton’s second law retains aspects of the original. The
mass times acceleration is represented by density times acceleration on the left-
hand side. The sum of the forces is represented on the right-hand side by the
gradient of the stress tensor and the action-at-a-distance force. The expanded scalar
version of the stress equations of motion is

ar oT ar
L =otn 9l Ol

= d
px 8)(] 8x2 3X3 P,
. 0Ty 0Ty O0Tx
= d 3.39
pX2 o + 2 + s + pda, (3.39)
. JT oT oT
_OTs O Ol oy

pX3 = ox1 Oxy Ox;3 i

where the symmetry of the stress tensor is expressed in the subscripted indices. For
a two-dimensional motion the stress equations of motion reduce to

.. oT oT .. oTr oT
pit = o+ ot pdy, piy = o+ o pd. (3.40)
Ox;  Oxy Ox;  Ox

Example 3.4.1
The stress tensor in an object is given by

C1X1 + CaXxp —Cy4X1 — C1X2 0
T=|—cax; —ci1x2 c3x1 +cax2 +pgxo 0|,
0 0 Cs
where ¢;, i = 1, ...,5, are constants. This same object is subjected to an action-at a-

distance force d with components [0, —g, 0]. Determine the components of the
acceleration vector of this object.
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Fig. 3.10 An illustration X1, X2 +dX2 X1 +dX1, X2 + dx2

for problem 3.4.1 e2

el

X1, X2 X1 +dX1, X2

Solution: Substitution of the given stress tensor T and the action-at-a-distance force
d into the stress equations of motion (3.39) yields the fact that all the components of
the acceleration are zero:

p¥r=c1—c1+0=0,pi2 = —cs +ca + pg — pg =0,p¥3 =0.

Problems

34.1.

3.4.2.

3.4.3.

Derive the stress equations of motion in two dimensions, (3.40), from the
less rigorous argument that consists of applying Newton’s second law to the
differential element of an object. This element is of length dx; and of width
dx, (see Fig. 3.10). The stresses acting on the element are all referred to the
point (xy, x,) that is the lower left-hand corner of the element. Use the
stresses to calculate the forces acting on the various faces of the element.
In order to determine the stresses on opposite faces expand the stresses on
one face in a one term Taylor series about the first face. Please keep in mind
that, even though the stress tensor is symmetric, the shear stress 7, on a face
with a normal in a positive direction is opposite in direction from the shear
stress T, on a face with a normal in a negative direction.

The components of a stress matrix are

Al + B(x? — x3)] —2ABx1x; 0
T— —2ABxx, A2 + B3 — 23] 0 ;
0 0 AB(xt + x3)]

where A and B are constants. Does this stress matrix satisfy the stress
equations of motion? For what action-at-a-distance force field does it satisfy
the stress equations of motion? Assume that the acceleration of the object
is zero.

Using the equations of motion to determine the acceleration of an object for
which d = 5e; + 6e, + 7es, the density, p, is 2 and T is given by

3x1 x5 3xq
T= X3 4XQ 3)(?3
3)(1 3X3 7X3
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3.5 The Conservation of Energy

The idea of energy and its balance or conservation is central in science yet energy is
not considered to be a precisely defined term. A precise definition would imply that
all types of energy are known, and we do not think that they are. In this regard,
review the quote from Herbert Callen at the beginning of the chapter. Some energies,
such as kinetic energy, are well known and readily identified in any given situation.
It is possible to define energy as any member of the set consisting of all energies
which are recognized by science, energies such as heat energy, kinetic energy,
atomic energy, chemical energy, electromagnetic energy, etc. As science identifies
each new energy, it would become a member of this set of energies.

The conservation of energy is therefore viewed here more as a basic method of
science rather than as a basic fact in the sense that the charge of an electron is a
scientific fact. The conservation of energy is viewed here as a method of checking
energetic interactions and discovering new energies. Whenever one approaches a new
scientific problem, one tries to select or invent energies such that, by setting their sum
equal to a constant, some aspect of the physical phenomenon is correctly described.

In the continuum theories, the known energies will include kinetic energy, heat
energy, chemical energy, electromagnetic energy, and so forth. The total energy E
of a system consists of the sum of all the energies we choose to recognize or define
and the remainder of the total energy of a system is said to be the internal energy U
of the system. That is to say, all the energies that are not singled out and explicitly
defined are placed in the category of internal energy. The total energy E of an object
consists of a kinetic energy,

K= Jp(v - V)dv, (3.41)

o

N =

and an internal energy U,
E=K+U, (3.42)

where U consists of all energies except kinetic.

The principle of conservation of energy is the statement that the total energy of
an object is constant. It is more convenient to reformulate the conservation of
energy as a balance of rates: the rate of increase of the total energy of an object is
equal to the rate of energy flux into the object. The flux of energy into a object
occurs in two ways, first through the mechanical power P of the surface tractions
and action-at-a-distance forces and, second, through a direct flow of heat Q into the
object. With these definitions and conventions established, the conservation of
energy may be written in the form

P+Q0=K+U=E, (3.43)
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where P + Q is the rate of energy supply. Equation (3.43) is a global statement of
energy conservation and we will need a point form of the principle in continuum
mechanics applications. In the point form representation all the variables will be
intensive in the conventional thermodynamic use of that word. In thermodynamics
an extensive variable is a variable that is additive over the system, e.g., volume or
mass, and an intensive variable is a variable that is not additive over the system,
e.g., pressure or temperature. To understand these definitions consider adding
together two identical masses occupying the same volume at the same temperature
and pressure. When two masses have been added together the resulting system has
double the volume and double the mass, but it still has the same temperature and
pressure. Extensive variables can be made into intensive variables by dividing them
by the density of the particle. Thus density or specific volume (the reciprocal of
density) is the intensive variable associated with the normally extensive variable
mass. The internal energy U, an extensive variable, is represented in terms of the
specific internal energy ¢, an intensive variable, by the following volume integral

U= Jpsdv. (3.44)
0

Integral representations of the mechanical power P and the non-mechanical or
heat power Q supplied to a object O are necessary in order to convert the global
form of the energy conservation principle (3.43) to a point form. Heat is transferred
into the object at a rate—q per unit area; the vector q is called the heat flux vector.
The negative sign is associated with q because of the long-standing tradition in
thermodynamics that heat coming out of a system is positive while heat going into a
system is negative. The internal sources of heat such as chemical reactions and
radiation are represented by the scalar field r per unit mass. Using these
representations the total non-mechanical power supplied to an object may be
written as the sum of a surface integral and a volume integral,

0=- J q - nda + Jprdv. (3.45)
20 0

This integral representation for the heat supplied to the object distinguishes
between the two possible sources of heat, the internal and the external. Applying
the divergence theorem (A184) to the surface integral in (3.45) it is easy to see that
QO may also be represented by the volume integral

0= J(pr — V- q)dv. (3.46)
0

The mechanical power P delivered to the object is represented in integral
form by
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P= J t-vda + de - vdv, (3.47)

90 o
where t is the surface traction acting on the surface of the object O, d is the action-
at-a-distance force and v is the velocity vector. The terms t-vda and pd-vdv both
represent the rate at which mechanical work is done on the object, t-vda is the rate of
work of surface forces and pd-vdyv is the rate of work of action-at-a-distance forces.

Substitution of (3.16), t = T-n, into (3.47) and subsequent application of the
divergence theorem (A 184) to the surface integral in the resulting expression yields

P:J{V-(T-v)+pd-v}dv:J{((V-T)-V)+T:(V®V)+pd-v}dv,
0 0

or

P= J{(v T+ pd) - v + T:L}dv, (3.48)
o

where L is tensor of velocity gradients defined by (2.31). This result may be
further reduced by using the stress equations of motion (3.38) to replace V-T + pd
by pv, thus

P= J{pv -v+ T:L}dv. (3.49)
o

Two more manipulations of this expression for P will be performed. First, recall

from (2.31) that L =[V ®V]T and from (2.32) that L is decomposed into a
symmetric part D and a skew-symmetric part W by L = D + W. It follows
then that

T:L =T:D + T:W, (3.50)

but T:W is zero because T is symmetric by (3.37) and W is skew-symmetric, hence
T:L = T:D. The second manipulation of (3.49) is to observe that the first integral in
(3.49) is the material time rate of change of the kinetic energy K defined by (3.41).
To see that the first term in the integral of (3.49) is K, apply (3.8) to (3.41). With
these two changes, the integral expression for P (3.49) now has the form

P=K+ JT:de, (3.51)

0

since, from (3.41),
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K= Jp(v - V)dv.

The formula (3.51) shows that the total mechanical power supplied to the object
is equal to the time rate of change of kinetic energy plus an integral representing
power involved in deforming the object.

The point form statement of the principle of energy conservation will now be
obtained by placing the integral representations for U, O, and P, equations (3.44),
(3.46), and (3.51), respectively, into the global statement (3.43), thus

J{T:D+pr—v-q—pé}dv:0. (3.52)
o

Now, for the last time in this chapter, the argument employed in the transition
from (3.4) to (3.5) is applied here again (see the discussion following (3.5)), thus the
integrand of (3.52) must be zero everywhere in the object O;

pi=T:D+pr—V-q. (3.53)

This is the desired point form of the principle of energy conservation. It states
that the time rate of change of the specific internal energy ¢ multiplied by the
density p is equal to the sum of the stress power, the negative of the divergence of
the heat flux, and the internal heat supply term.

Before leaving these considerations of energy, a formula for the quasistatic work
done during a loading of an object will be obtained. The mechanical power P
delivered to the object, (3.47), is the rate of work. The desired new formula relates
to the work done rather that to the rate of doing work or power. A formula identical
to formula (3.47) for the rate of work, in every regard except that the velocity is
replaced by the displacement, is employed, thus

W= J t-uda + de -udv. (3.54)

00 o

W is the mechanical work delivered to the object in a quasistatic loading, t is the
surface traction acting on the surface of the object O, d is the action-at-a-distance
force and u is the displacement vector. The terms t-uda and pd-udv both represent
the mechanical work done on the object, t-uda is the work of surface forces and
pd-udv is the work of action-at-a-distance forces. Substitution of (3.16), t = T-n,
into (3.54) and subsequent application of the divergence theorem (A184) to the
surface integral in the resulting expression yields

W:J{V-(T~u)+pd~u}dv:J{((V~T)~u)+T:(V®U)+pd-u}dv,
0 )
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or

W:J{(V~T+pd)~u+T:(V@u)}dv. (3.55)
o

This result may be further reduced by using the stress equations of motion (3.38)
in the case when v = 0 to replace V-T + pd by 0, thus

W= JT (Veu)dv. (3.56)
0

Recall from (2.49) that (V ® u)” may be decomposed into a symmetric part E
and a skew-symmetric part Y by (V ® u)’ = E + Y. It follows then that

T:(Veou) =T:E+T:Y, (3.57)

but T:Y is zero because T is symmetric by (3.37) and Y is skew-symmetric, hence
T:(V ® u) = T:E. The work done on the object is then given by

W= JT : Edv. (3.58)
o

This means that the local work done is T:E. This result will be of interest in the
consideration of elastic objects.

Problem

3.5.1. In terms of the concepts introduced in this section how would one specify a
system that was functioning adiabatically globally but not locally? How
would one specify a system that was adiabatic locally or point wise? If a
system is adiabatic locally what type of energy is the mechanical work done
on the object transferred into? If the system is not adiabatic and if the
system’s internal energy does not change as mechanical work is done on
the system, into what type of energy is the mechanical work then converted?
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Chapter 4
Modeling Material Symmetry

“A study of the symmetry of three-dimensional spaces is of great theoretical and
practical significance, because symmetrical spaces include crystals (from which, of
course, the majority of solids are formed), and all homogeneous fields without
exception: electric, magnetic, gravitational, etc. A study of the structures of crystals
is unthinkable without a knowledge of the laws governing symmetry of three-
dimensional spaces.” (Shubnikov and Koptsik 1974)

4.1 Introduction

The variation of material properties with respect to direction at a fixed point in a
material is called material symmetry. If the material properties are the same in all
directions, the properties are said to be isotropic. If the material properties are not
isotropic, they are said to be anisotropic. The type of material anisotropy generally
depends upon the size of the representative volume element (RVE). The RVE is the
key concept in modeling material microstructure for inclusion in a continuum
model. An RVE for a volume surrounding a point in a material is a statistically
homogeneous representative of the material in the neighborhood of the point. The
RVE concept, described briefly in the following section, is employed in this
chapter, which addresses the modeling of material symmetry and, more exten-
sively, in Chapter 7, which addresses the modeling of material microstructure.
The tensors that appear in linear transformations, for example A in the three-
dimensional linear transformation r = A - t, (A39), and C in the six-dimensional
linear transformation T =C-J, (A160), often represent anisotropic material
properties. Several examples of these linear transformations as constitutive
equations will be developed in the next chapter. The purpose of this chapter is to

present and record representations of A and C that represent the effects of material
symmetry These results are recorded in Tables 4.3 for A and Tables 4.4 and 4.5 for

C, respectively. In these tables the forms of A and C are given for all eight
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symmetries. Some background material is provided before the derivation of
representations. First, there is a discussion of crystalline and textured materials in
Sect. 4.3. Next the only symmetry operation considered here, the plane of mirror
symmetry, is introduced in Sect. 4.4, and the symmetries of interest are defined in
terms of mirror symmetry planes in Sect. 4.5. The symmetry representations for the

forms of A and C associated with the symmetries of interest are then obtained in
Sects. 4.6 and 4.7.

The primary interest here is only in about half of the eight material symmetries
admitted by the tensor C, however all of them are described for completeness (and
because being complete requires little space). The eight material symmetries

admitted by the tensor C are triclinic, monoclinic, trigonal, tetragonal, orthotropic,
transversely isotropic (or hexagonal), cubic, and isotropic symmetry. The main
interest will be in the orthotropic, transversely isotropic, and isotropic symmetries
with lesser interest in the triclinic, monoclinic, and trigonal symmetries. Curvilinear
and rectilinear anisotropy are described and compared in Sect. 4.8. The representa-
tion of the symmetry of a material with chirality (handedness) is considered in
Sect. 4.9. Section 4.10 is a short guide to the literature on the subject matter of this
chapter.

4.2 The Representative Volume Element

The RVE is a very important conceptual tool for forming continuum models of
materials and for establishing restrictions that might be necessary for a continuum
model to be applicable. An RVE for a continuum particle X is a statistically
homogeneous representative of the material in the neighborhood of X, that is to
say a material volume surrounding X. For purposes of this discussion the RVE is
taken to be a cube of side length Lryg; it could be any shape, but it is necessary that
it has a characteristic length scale. An RVE is shown in Fig. 4.1; it is a homogenized
or average image of a real material volume. Since the RVE image of the material
object O averages over the small holes and heterogeneous microstructures, overall
it replaces a discontinuous real material object by a smooth continuum model O of
the object. The RVE for the representation of a domain of a porous medium by a
continuum point is shown in Fig. 4.2. The RVE is necessary in continuum models
for all materials; the main question is how large must the length scale Lryg be to
obtain a reasonable continuum model. The smaller the value of Lrvg the better; in
general the value of Lgyg should be much less than the characteristic dimension Lp
of the problem being modeled. On the other hand the Lgvyg should be much larger
than the largest characteristic microstructural dimension Ly, of the material being
modeled, thus Lp > Lgrvg > Ly. In wood, for example, this can be a problem
because wood has large microstructures and some objects made of wood are small.
For low carbon structural steel the bounds on Lgvg are much less restrictive, the
characteristic size of the problem is greater and the characteristic size of the
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Fig. 4.1 The image of a representative volume element (RVE)

Continuum point

porous medium

RVE for the solid
matrix material

Fig. 4.2 The RVE for the representation of a domain of a porous medium by a continuum point,
modified from Cowin (1999)

material microstructure is much less. For many applications the bounds on Lgyg are
not seriously restrictive, although this is not generally the case with
nanomechanical and biological problems. Both in biology and in nanomechanics
there are structures that have a significant size range and the modeler must adjust
the value of Lgryg to the size range of the objects modeled. For example, in
biomechanics, continuum models are often made of organs as well as of biological
membranes. In the case of the membrane, the Lgyg may be less than 0.01 nm while
in the case of the organ, the Lgyg may be of the order of 0.01 mm or larger.
The concept of stress is employed in both cases, with the modeler keeping in mind
that the two Lgvg's differ by a factor of 1,000,000. The concept of the Lgyg may, in
this way, be used to justify the application of the concept of stress at different
structural levels. The modeler usually does not write down the value of the Lryg
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Fig. 4.3 An illustration of a
cross-section of trabecular
bone. The whiter regions are
the bone trabeculae and the
darker regions are the spaces
occupied by the marrow in the
bones of young animals.

The rectangular regions
represent various RVE’s
discussed in the text. Adapted
from Cowin and Mehrabadi
(1989)

in a problem under consideration, hence it is a “hidden” parameter in many
applications of continuum models.

The selection of different size RVE’s is illustrated in Fig. 4.2. A small RVE
will just contain the solid matrix material while a much larger RVE will average
over both the pores and the solid matrix. As another illustration of these different
RVE sizes relative to a real material, consider a cross-section of trabecular bone
shown in Fig. 4.3. The white regions are the bone trabeculae and the darker
regions are the pore spaces that are in vivo filled with marrow in the bone of
young animals. First consider the small rectangular white region in the lower right
quadrant as the first RVE for homogenization. This small rectangular white region
is entirely within the trabecular bone domain and thus the properties will be those
of trabecular bone. On the other hand, if the small RVE in the darker marrow
region is entirely within the bone marrow domain, the properties will be those of
the marrow. If the RVE or homogenization domain is taken to be one of the larger
rectangles in Fig. 4.3, the properties of the RVE will reflect the properties of both
the bone and the marrow, and their values will lie in between these two limits and
be proportional to the ratio of the volume of marrow voids to the volume of bone
in each rectangle.
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4.3 Crystalline Materials and Textured Materials

The difference between the crystalline materials and the textural materials is the
difference between the types of force systems that determine the two different types
of symmetry. Crystallographic symmetries are determined by the internal force
systems that hold the material together in its solid form. These are force systems
between atoms or molecules. The lines of action of the attractive forces between
lattice points of a crystal determine the crystalline symmetry. On the other hand, the
symmetry of textured materials is determined mainly by external, rather than
internal, force systems. For example, it is well known that geological materials
have material symmetries associated with the stress state experienced by the mate-
rial during its formative state. Sedimentary deposits are generally organized by the
direction of gravity at the time of their formation. Similarly, the material symmetry
of structural steel is often determined by the external force systems associated with
its method of manufacture (extrusion, rolling, etc.) and not by the fact that it is
composed of ferric polycrystals. Man-made composites are generally designed to
survive in specific stress states and therefore can generally be considered as having a
material symmetry designed for the external force systems they will experience.
Plant and animal tissue are known to functionally adapt their local material structure
to external loads. In each of these examples the macroscopic material symmetry of
the textured material is determined by external force systems, even though at the
microscopic level some constituents may have crystalline symmetries determined
by internal force systems, as is the case with structural steel and bone tissue.

Crystals have the most clearly defined symmetries of all naturally occurring
materials. In crystallography an ideal crystal is defined in terms of a lattice.
A lattice is an infinite array of evenly spaced points that are all similarly situated.
Points are regarded as "similarly situated" if the rest of the lattice appears the same
and in the same orientation when viewed from them. An ideal crystal is then
defined to be an object in which the points, or atoms, are arranged in a lattice.
This means that the atomic arrangement appears to be the same and in the same
orientation when viewed from all the lattice points, and that the atomic arrangement
viewed from any point that is not a lattice point is different from the atomic
arrangement viewed from a lattice point. The form and orientation of the lattice
are independent of the particular point in the crystal chosen as origin. An ideal
crystal is infinite in extent. Real crystals are not only bounded, but also depart from
the ideal crystal by possessing imperfections. Forces that act on the lines connecting
the lattice points hold crystals together. The force systems that hold a crystal
together and give it shape and form are internal force systems.

Most large samples of natural materials are not crystals. They are either not
crystalline at all or they are polycrystalline. Polycrystalline materials are composed
of small randomly oriented crystalline regions separated by grain boundaries. The
material symmetry of these materials is not determined by the crystal structure of
their chemical components but by other factors. These factors include optional
design for man-made composite materials, growth patterns, and natural selection
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Fig. 4.4 Layers of fibers are
alternated to obtain a laminar
composite

Iooooo%

forces for biological materials, method of formation for geological materials, and
method of manufacture for many manufactured materials. These factors are
discussed in the following paragraphs.

The selection of material symmetry for a model of a material depends upon the
intended application of the model. For example a common application of elasticity
theory is to steels that are employed in large objects for structures. In this applica-
tion steels are conventionally treated as materials with isotropic symmetry. The
basis for the isotropic symmetry selection is an RVE of a certain practical size that
averages over many grains of the microstructure. Although each crystalline grain is
oriented, their orientation is random and their average has no orientation, hence for
a large enough RVE the material is isotropic. However if the application of the
model is to study the interaction between the crystalline grains, a much smaller
RVE will be selected. If the RVE selected is entirely within a single crystalline
grain, then this RVE selection would imply cubic material symmetry since ferrous
materials are characterized by cubic symmetries. It follows that the selection of
different size RVE’s can imply different material symmetries. The selection of a
particular size RVE is at the discretion of the person making the model, and that
selection should be determined by the model’s intended use.

Man-made composite materials are often designed to be anisotropic because
their intended use is to carry a particular type of loading that requires stiffness and
strength in one direction more than in others. While many materials might have the
stiffness and strength required, a composite material may have a lesser weight.
A unidirectional fiber-reinforced lamina of a composite is illustrated in the top
panel of Fig. 4.4. The directions of the fibers in alternate layers can be crossed to
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Fig. 4.5 The cylindrical
layers associated with each
year’s growth in wood; note
curvilinear orthotropic
symmetry

obtain a laminar composite such as that shown in the remaining panels of Fig. 4.4.
It is possible to form cylinders and spheres from these laminae. Wood is a natural
composite composed of approximately cylindrical layers associated with each
year’s growth. These growth rings are illustrated in Fig. 4.5. In Fig. 4.6 there is
an illustration of the microstructure of a biological material, a three-dimensional
view of a nasturtium petiole. In each of these illustrations, it is possible to see how
the microstructure of the material will give the material a distinctive anisotropy.
Such materials are often called natural composite materials. Bone tissue, bamboo,
teeth, and muscles are other examples. These materials evolve their particular
microstructures in response to the environmental forces of natural selection.

The method of formation of geological materials generally provides them with a
definitive layering that makes them anisotropic. The layered structure is easily seen
to be analogous to a layered composite. The deposition of layers is influenced by
particle size, because different size particles fall through liquids at different rates.
Gravity is the force that gives geological sediments their initial layering. Plate
tectonic forces then force these layers in directions other than that in which they
were formed, that is why the layers are often viewed in situations where the normal
to the plane of the layer is not the direction of gravity.

Macrocomposite man-made materials such as reinforced concrete beams, skis,
and helicopter blades are easily seen to be elastically anisotropic. These materials
are designed to be anisotropic. In the process of deformation or in the
manufacturing process, anisotropy is induced in a material. Anisotropy is also
induced in geological and biological materials by deformation. The manufacture
of steel by extrusion or rolling induces anisotropy in the steel product as illustrated
in Fig. 4.7. Also illustrated, in Fig. 4.8, is the anisotropy induced by deformation.
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Fig. 4.6 A three-dimensional view of a nasturtium petiole; note curvilinear orthotropic symmetry,
reprinted from Wainwright et al. (1976)
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Fig. 4.7 Extrusion or rolling induces anisotropy in a steel product



4.4  Planes of Mirror Symmetry 83

Fig. 4.8 Material anisotropy a
induced by deformation, from
Hull (1981)
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The illustration in this figure might represent the fiber deformation in a fibrous
composite manufacturing process. However, it could also represent deformation of
the collagen fibers in the deformation of a soft tissue.

For noncrystalline materials there are only three material symmetries tradition-
ally considered, orthotropy, transverse isotropy, and isotropy. However, the forms

of C for orthotropy and transverse isotropy are the same as the forms of C for the
rhombic and hexagonal crystal systems, respectively. Hence when the crystalline
and the traditional noncrystalline elastic material symmetries are combined, there
are only eight distinct forms of C, one for each of the seven crystal systems and
isotropy.

4.4 Planes of Mirror Symmetry

Symmetry elements are operations used in the analysis of symmetry. The principal
symmetry element of interest here is the plane of mirror or reflective symmetry. We
begin with a discussion of congruence and mirror symmetry. Two objects are
geometrically congruent if they can be superposed upon one another so that they
coincide. The two tetrahedra at the top of Fig. 4.9 are congruent. Congruence of two
shapes is a necessary but not sufficient condition for mirror symmetry. A pair of
congruent geometric objects is said to have mirror symmetry with respect to a plane
if for each point of either object there is a point of the other object such that the pair
of points is symmetric with respect to the plane. The two congruent tetrahedra at the
bottom of Fig. 4.9 have the special relationship of mirror symmetry with respect to
the plane whose end view is indicated by an m. Each congruent geometric object is
said to be the reflection of the other. The relationship between the two objects with
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Fig. 4.9 Illustration of
mirror symmetry

Congruent tetrahedra

b
/.
a a
b
I
a
Mirror-image tetrahedra

respect to the symmetry plane is said to be achiral, that is to say that the objects are
mirror images. If the objects are not reflections of one another, they are said to be
chiral. The plane with respect to which two objects have mirror symmetry is called
their plane of reflective symmetry. A material is said to have a plane of reflective
symmetry or a mirror plane at a point in the material if the structure of the material
has mirror symmetry with respect to a plane passing through the point.

In the following three sections the concept of a plane of reflective symmetry
will now be used to classify the various types of anisotropy possible in the 3-D and
6-D symmetric linear transformations, the A in the three-dimensional linear
transformationr = A - t, (A39), and C in the six-dimensional linear transformation
T=C-J, (A160). Recall that the matrices A and C transform according to the rules
(A83) and (A162), respectively, when the coordinate system is changed. In order to
apply the restrictions of reflective symmetry to (A83) and (A162), it is necessary to
have a representation for a plane of reflective symmetry for the orthogonal

transformations Q and Q, respectively. To construct such representations let a be
a unit vector representing the normal to a plane of reflective symmetry and let b
be any vector perpendicular to a, then a-b = 0 for all b. An orthogonal transforma-
tion with the properties

R®.a=—-a, R@.p=»p (4.1)

represents a plane of reflective, or mirror, symmetry. The transformation (4.1)
carries every vector parallel to the vector a, the normal to the plane of mirror
symmetry, into the direction —a and it carries every vector b parallel to the plane
into itself. The orthogonal transformation with the property (4.1) is given by

R®=1-2a®a, R}

= (3,:,‘ — 2(1,‘(11‘), (42)
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as may be verified directly. The reflective transformation in six dimensions,

denoted by ﬁ(a>, is constructed from R® using (A167), thus

~ (a
RY =2v2
(1-242)7 2ata; 2a%a3
2\/21 # \/153 da3aras 2a1a5(2a2 — 1) 2ajax(24} — 1)
202a? 1—242 2 2a2a?
(j/lgz ( 2\/22) (:;;_13 2aya3(2a3 — 1) da\d3as 2a1a,(2a3 — 1)
2a}d3 2a%d3 (1—242)
\/153 \;53 2\/23 2aya5(245 — 1) 2aja3(2a3 — 1) daiara3
2a% +8d2a: —1 2 4a% — 1 2 4a% — 1
dataras 2ara3(2a5 — 1) 2ara3(2a3 — 1) 4 + Saras aaz(4a; — 1) aas(4a; — 1)
: 2V2 2v2 2V2
2 4a% — 1 243 2a2 —1 2 4a% — 1
2a1a3(2a2 — 1) daidias 2a1a3(2a3 — 1) @ (das ) @ + 8aja; a3 (4a )
2V2 2V2 2V/2
2 4a% — 1 2 4a% — 1 24 + 8a2a* — 1
2a|a2(2a% -1) 2a|a2(2a% -1) 4a|a2a% @03 (44; ) s (4a; ) a5 + Saya;
L : 2v2 2v2 2v2 ]
4.3)

As an example of the application of the result (4.3), the six-dimensional
transformations corresponding to planes of mirror symmetry in the e; and e,
directions,

-1 0 0 1 0 O
ReD=1]10 1 0|,R®=1]0 -1 0], (4.4)
0 0 1 0 0 1
respectively, are given by
1 000 0 O 1 00 0 0 O
0100 0 O 010 0 0 O
se) |0 0O 1 0 0 O - (€2) 001 0 0 O
R = 0001 0 O R = 000 -1 0 0} (.5)
0000 -1 O 000 O 1 O
00 00 0 -1 000 0 0 -1

respectively. Other examples are the cases when the normals to the plane of
reflective symmetry are vectors in the e, e, plane, a = cos 0 e; + sin 0 e,, or

the e,, 3 plane, a = cos 0 e, + sin 0 es. In these cases R(“2) and R») are given by

—cos20 —sin20 O 1 0 0
RO — [ —sin20 cos20 0 , R®) = [0 —cos20 —sin26
0 0 1 0 —sin20 cos20

, (4.6)
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0
(6z) are given by

cos? 20 sin” 26 0 0 0 V/2sin26 cos 26 ]
sin® 20 cos? 20 0 0 0 —+/25sin 20 cos 20
0 0 1 0 0 0
0 0 0 cos20 —sin20 0
0 0 0 —sin20 —cos20 0
L V25sin20cos20 —+/2sin20cos26 0 0 0 sin? 26 — cos?20 ]
and
1 0 0 0 0 0
0 cos? 20 sin® 20 v/2 sin 20 cos 20 0 0
0 sin” 20 cos? 20 —+/25sin 20 cos 20 0 0
0 +2sin20cos20 —+/2sin20cos20 sin%26 — cos?26 0 0
0 0 0 0 cos20  —sin20
K 0 0 0 —sin20 —cos20 |
4.7)

respectively. The formulas (4.1)—(4.7) provide the 3-D and 6-D orthogonal
transformations for a plane of reflective symmetry. These mirror symmetry
transformations will be used in Sects. 4.6 and 4.7 to develop the representations
in Tables 4.3 and Tables 4.4 and 4.5 for the matrices A and C, respectively, for the
various material symmetries.

Problems

4.4.1.

4.4.2.

4.4.3.

4.4.4.

Verify that the transformation (4.2) R® =1—2a®a has the properties

4.1), R® .a=—aand R® . b = b where a -b = 0 for all b.

Construct the orthogonal transformations R®) and li(ez)

orthogonality.

, then verify their

. ~ (0 . .
Construct the orthogonal transformations R?3) and R( s associated with the
vector a = cos 0 e; + sin 0 e, and verify their orthogonality.

Show that the reflections R(’2) and R(OIZ)
)

when evaluated at § = 0 coincide

with the reflections R®") and ﬁ(e] , and when evaluated at 6 = n/2, they

coincide with the reflections R€2) and ﬁ(eZ).
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4.4.5. Show that the reflections R(">) and R ) when evaluated at 6 = 0 coincide

with the reflections R?) and Ii(eZ) , and when evaluated at 6 = 7/2, they

coincide with the reflections R®*) and ﬁ(eB).

4.4.6. Construct the three- and six-dimensional reflective transformations for each
of four normal vectors, k = (1/2)(e; + (V3)eo), p = (1/2)(—e; + (V3)ey),
m = (1/2)(N3)e; + e,), n = (1/2)A(V3)e; — e,). Show that the set of six
vectors k, p, m, n, e, and e, form a set that makes a pattern. The pattern
is such that each vector of the set of six vector points is one of six different
directions and makes angles that are each multiples of /6 with the
other vectors.

4.5 Characterization of Material Symmetries
by Planes of Symmetry

In this section the number and orientation of the planes of reflective symmetry
possessed by each linear elastic material symmetry will be used to define it. These
material symmetries include isotropic symmetry and the seven anisotropic
symmetries, triclinic, monoclinic, trigonal, orthotropic, hexagonal (transversely
isotropy), tetragonal, and cubic. These symmetries may be classified strictly on
the basis of the number and orientation of their planes of mirror symmetry.
Figure 4.10 illustrates the relationship between the various symmetries; it is
organized such that the lesser symmetries are at the upper left and as one moves
to the lower right one sees crystal systems with greater and greater symmetry. The
number of planes of symmetry for each material symmetry is given in Table 4.1
and, relative to a selected reference coordinate system, the normals to the planes of
symmetry for each material symmetry are specified in Table 4.2. Triclinic symme-
try has no planes of reflective symmetry so there are no symmetry restrictions for a
triclinic material. Monoclinic symmetry has exactly one plane of reflective symme-
try. Trigonal symmetry has three planes of symmetry whose normals all lie in the
same plane and make angles of 120° with each other; its threefold character stems
from this relative orientation of its planes of symmetry. Orthotropic symmetry has
three mutually perpendicular planes of reflective symmetry, but the existence of the
third plane is implied by the first two. That is to say, if there exist two perpendicular
planes of reflective symmetry, there will automatically be a third one perpendicular
to both of the first two. Tetragonal symmetry has the five planes of symmetry
(a—as) illustrated in Fig. 4.11; four of the five planes of symmetry have normals
that all lie in the same plane and make angles of 45° with each other; its fourfold
character stems from this relative orientation of its planes of symmetry. The fifth
plane of symmetry is the plane containing the normals to the other four planes of
symmetry. Hexagonal symmetry has seven planes of symmetry; six of the seven
planes of symmetry have normals that all lie in the same plane and make angles of
60° with each other; its sixfold character stems from this relative orientation of its
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Fig. 4.10 The hierarchical organization of the eight material symmetries of linear elasticity. The
figure is organized such that the lower symmetries are at the upper left and as one moves down and
across the table to the right one encounters crystal systems with greater and greater symmetry.
From Chadwick et al. (2001)

Table 4.1 The.distinct Triclinic 0 18 (21)

symmetries of linear Monoclinic 1 0 12 (13)

anisotropic elasticity Orthotropic or orthorhombic 3 0 9
Tetragonal 5 0 6(7)
Cubic 9 0 3
Trigonal 3 0 6(7)
Hexagonal 7 0 5
Transverse isotropy 1+ o0 1 5
Isotropy oo? o0? 2

planes of symmetry. The seventh plane of symmetry is the plane containing the
normals to the other six planes of symmetry. The illustration for hexagonal sym-
metry is similar to that for tetragonal symmetry shown in Fig. 4.11; the difference is
that there are six rather than four planes with normals all lying in the same plane and
that those normals make angles of 30° rather than 45° with each other. Cubic
symmetry has the nine planes of symmetry illustrated in Fig. 4.12. The positive
octant at the front of Fig. 4.12 is bounded by three of the symmetry planes with
normals ay, a,, and a3 and contains traces of the six other planes of symmetry.
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Table 4.2 The normals to the planes of symmetry of the indicated symmetry group

Type of material symmetry Normals to the planes of symmetry of the indicated symmetry group

Triclinic None

Monoclinic e

Orthotropic e, e, €3

Tetragonal e, e, e3, (1/V2)(e; + e;) and (1/\2)(e; — €y)

Cubic e, €, €3, (1/V2)(e; + ), (1IN2)(e; — o), (1/N2)(e; + e3)
(1N2)(e; — e3), (1N2)(ez + €3), (1N2)(e2 — €3)

Trigonal e, (1/2)(e; + \3 e,) and (1/2)(e; — \3 e,)

Hexagonal e, €, €3, (1/2)(\/3 e + ey), (1/2)(\/3 e — e), (1/2)(e; + \3 e,)

and (1/2)(e; — V3 ey).
Transverse isotropy ez and any vector lying in the ej, e, plane
Isotropy Any vector

Fig. 4.11 An illustration of the five planes of symmetry characterizing tetragonal symmetry.
The normals to the five planes are denoted by a;—a, Four of the five planes of symmetry have
normals that all lie in the same plane and make angles of 45° with each other. The fourfold
character of the symmetry stems from the relative orientation of its planes of symmetry. The fifth
plane of symmetry is the plane containing the normals to the other four planes of symmetry.
Modified from Rovati and Taliercio (2003)

If every vector in a plane is normal to a plane of reflective symmetry, the plane is
called a plane of isotropy. It can be shown that a plane of isotropy is itself a plane of
reflective symmetry. The material symmetry characterized by a single plane of
isotropy is said to be transverse isotropy. In the case of linear elasticity the C matrix
for transversely isotropic symmetry is the same as the C matrix for hexagonal
symmetry and so a distinction is not made between these two symmetries. Isotropic
symmetry is characterized by every direction being the normal to a plane of
reflective symmetry, or equivalently, every plane being a plane of isotropy.

In this presentation the reference coordinate system for the elastic symmetries is
selected so that there are only 18 distinct components of C for triclinic symmetry, 12
for monoclinic and so that the 7 constant tetragonal and trigonal symmetries are the
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Fig. 4.12 An illustration

of the nine planes of
symmetry characterizing
cubic symmetry. The positive
octant at the front of the
perspective is bounded by
three of the symmetry planes
with normals a, a,, and a;
and contains traces of the

six other planes of symmetry.
From Rovati and

Taliercio (2003)
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same as the 6 constant tetragonal and trigonal symmetries, respectively. This
selection of the coordinate system is always possible without restricting the gener-
ality of the matrix representations (Cowin 1995; Fedorov 1968).

This classification of the types of linear elastic material symmetries by the number
and orientation of the normals to the planes of material symmetry is fully equivalent
to the crystallographic method using group theory (Chadwick et al. 2001).

Problems

4.5.1.

4.5.2.

4.5.3.

Construct diagrams of the number and orientation of the normals to the
planes of reflective symmetry for six of the eight material symmetries
(diagrams for the other two, tetragonal and cubic, and prose descriptions
for all the symmetries are given in the text); the triclinic, monoclinic,
orthotropic, hexagonal, transverse isotropic, and isotropic material
symmetries.

Construct a diagram for the set of normals to the planes of reflective
symmetry given in Problem 4.4.6, with the addition of the normal e; so
that the set now consists of seven vectors: k, p, m, n, e;, e,, and e;.

From the images of simplified crystal models shown in Figs. 4.13a, b,
identify the appropriate material symmetry for the object in each figure,
set up the convenient coordinate system for the object, and list the vectors of
the normals to the planes of symmetry characterizing each particular
symmetry.
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Fig. 4.13 (a) See Problem 4.5.3. (b) See Problem 4.5.3

4.6 The Forms of the Symmetric Three-Dimensional
Linear Transformation A

In this section the definitions of the material symmetries given in Sect. 4.5 are used
in conjunction with the orthogonal transformation (4.2) characterizing a plane of
reflective symmetry and transformation law (A83) to derive the forms of the three-
dimensional linear transformation A for the material symmetries of interest. First,
since triclinic symmetry has no planes of reflective symmetry, there are no symme-
try restrictions for a triclinic material and the linear transformation A is unre-
stricted. This conclusion is recorded in Table 4.3.

Monoclinic symmetry has exactly one plane of reflective symmetry. This means
that the material coefficients appearing in A must be unchanged by one reflective
symmetry transformation. Let e; be the normal to the plane of reflective symmetry
so that the reflective symmetry transformation is R, given by the first of (4.4).
The tensor A is subject to the transformation

AD = RE) . AO) [RE) (4.8)

which follows from the first of (A83) by setting T = A and Q = R(®"). Substituting
for A and R in this equation, one finds that

A Ap A -1 0 Of|Ay Ap A ||—-1 0 O
Ay Ap Apn| =0 1 0]||An Axn A 0 1 0f,
As1 Az Az 0O 0 1 A3 Ay Asz 0O 0 1
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Table 4.3 The forms of the three-dimensional linear transformation A for the different material
symmetries. Note that these forms are not here required to be symmetric, three of them are and
three of them are not. However symmetry will be required for all of them by different and
specialized physical arguments in subsequent chapters

Type of material symmetry Form of linear transformation A
Triclinic (A A A ]
Ay An An
|As1 Az Asz |
Monoclinic (A, O 0 7
0 Axn Ax
| 0 Ay As ]
Orthotropic (A, O 0 7
0 Ap O
| 0 0 Az |
Hexagonal, trigonal, tetragonal (some crystal classes) Ay Ap O
—-Ap A 0
0 0 As
Transversely isotropic, hexagonal, trigonal, [A;; O 0
tetragonal (the other crystal classes) 0 A; O
L O 0 Az
Isotropic and cubic [A;; O 0
Ay 0
L 0 0 Ap
or
A A A A —An A
Ayl Axn Az | = |—-Axn An  Axn |. 4.9)
Az Ay Az —A3;1 Ay Az

The transformation (4.8) or (4.9) is thus seen to leave the tensor A unchanged by
the reflection only if Aj, = Ay; = A3 = A3; = 0. It follows then that the form of
the tensor A consistent with monoclinic symmetry characterized by a plane
of reflective symmetry normal to the e; base vector must satisfy the conditions
Ajp = Ay = A3 = Az = 0. This result for monoclinic symmetry is recorded in
Table 4.3.

Three mutually perpendicular planes of reflective symmetry characterize
orthotropic symmetry, but the third plane is implied by the first two. This means
that the material coefficients appearing in the representation of A for monoclinic
symmetry must be unchanged by one more perpendicular reflective symmetry
transformation. Let e, be the normal to the plane of reflective symmetry so that
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the reflective symmetry transformation is R() given by the second of (4.4).
The monoclinic form of the tensor A is subject to the transformation

AL) — R) . A0 . [R<ez>]T (4.10)

which follows from the first of (A83) by setting T = A and Q = R®). Substituting
into (4.10) the representation for the monoclinic form for A and the representation

for R one finds that

Apy 0 0 1 0 0][Ay 0 07t 0 o
0 A»n An|=]0 -1 0[] 0 An An|l0 -1 0o,
0 Ap Asns 0 0 1] 0 An Au||0 0 1

or

Ay O 0 Ay 0 0
0 Ay Axpn| = 0 A —Asx |. 4.11)
0 Axn Asxy 0 —Axn Asxn

The transformation (4.10) or (4.11) is thus seen to leave the monoclinic form of
the tensor A unchanged by the reflection only if A3, = A,3 = 0. It follows then that
the form of the tensor A consistent with an orthotropic symmetry characterized by
planes of reflective symmetry normal to the e; and e, base vectors must satisfy the
conditions A3, = A3 = 0. It is then possible to show that this restriction also
permits the existence of a third plane of reflective symmetry perpendicular to the
first two. This result for orthotropic symmetry is recorded in Table 4.3.

A transversely isotropic material is one with a plane of isotropy. A plane of
isotropy is a plane in which every vector is the normal to a plane of reflective
symmetry. This means that the material coefficients appearing in the representation
of A for orthotropic symmetry must be unchanged by any reflective symmetry
transformation characterized by any unit vector in a specified plane. Let the plane
be the e;, e, plane and let the unit vectors be a = cos fe; + sin Oe, for any and all
values of 0; then the reflective symmetry transformations of interest are R(2) given
by the first of (4.6). The orthotropic form of the tensor A is subject to the
transformation

AL = RO . A©) RO (4.12)

which follows from the first of (A83) by setting T = A andQ = R(?2)_ Substitution
for R2) and the orthotropic form for A into this equation, one finds that
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A O 0 —cos20 —sin20 O] |A;; O 0
0 Ap O | =|—sin20 cos20 O 0 Apn O
0 0 As; 0 0 1 0 0 Az

—cos20 —sin260 O
X | —sin20 cos20 O

0 0 1
or
1
AL 00 A11€08220 + Apsin®20 2 Sin40(An —An) 0
0 An 0 1. .
2 Z sm 40(1411 — A22) A1151n229 + A22C08229 0
0 0 As;
0 0 Az
(4.13)

The transformation (4.12) or (4.13) is thus seen to leave the transversely
isotropic form of the tensor A unchanged by the reflection only if Ay = Aj».
It follows then that the transversely isotropic form of the tensor A consistent with
transversely isotropic symmetry characterized by a plane of isotropy in the e;, e,
plane must satisfy the conditions A;; = A,,. This result for transversely isotropic
symmetry is recorded in Table 4.3. Algebraic procedures identical with those
described above may be used to show that the forms of the tensor A consistent
with the trigonal, tetragonal, and hexagonal symmetries are each identical with that
for transversely isotropic symmetry.

Isotropic symmetry is characterized by every direction being the normal to a
plane of reflective symmetry, or equivalently, every plane being a plane of isotropy.
This means that the material coefficients appearing in the representation of A for
transversely isotropic symmetry must be unchanged by any reflective symmetry
transformation characterized by any unit vector in any direction. In addition to the
e, e, plane considered as the plane of isotropy for transversely isotropic symmetry,
it is required that the e,, e; plane be a plane of isotropy. The second plane of
isotropy is characterized by the unit vector a = cos 6 e, + sin 6 e for any and all
values of 0, then the reflective symmetry transformation of interest is R(">) given by
the second of (4.6). The transversely isotropic form of the tensor A must be
invariant under the transformation

AL = R) . A©) RO (4.14)

which follows from the first of (A83) by setting T = A and Q = R(%>). Substitution
for R») and the transversely isotropic form for A into this equation, one finds that
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Ay O 0 1 0 0 Ay O 0
0 A3 O | =0 —cos20 —sin20 0 Ay O
0 0 As 0 —sin20 cos20 0 0 As

1 0 0

x |0 —cos20 —sin20
0 —sin20 cos20

or
A11 0 0 All 0 0
0 Ap 0 = 0 A11C0S220 +A33sin220 i Sil’l40(A11 — A33) ,
0 0 As 0  1sin40(A; —As3)  Ajpisin®20 + Aszcos20
(4.15)

>The transformation (4.14) or (4.15) is thus seen to leave the isotropic form of the
tensor A unchanged by the reflection only if A;; = As;. It follows then that the
isotropic form of the tensor A consistent with isotropic symmetry characterized by
planes of isotropy in the e, e, and e,, e3 planes must satisfy the conditions A1, = Ass.
Actually there are many ways to make the transition from transversely isotropic
symmetry to isotropic symmetry other than the method chosen here. Any plane of
reflective symmetry added to the plane of isotropy of transversely isotropic symme-
try, and not coincident with the plane of isotropy, will lead to isotropic symmetry.
This result for isotropic symmetry is recorded in Table 4.3. Algebraic procedures
identical with those described above may be used to show that the form of the tensor
A consistent with cubic symmetry is identical with that for isotropic symmetry.

Problems

4.6.1 Show that the orthotropic form of the tensor A given in Table 4.3 is invariant
under the transformation R(®) constructed in Problem 4.4.3.

4.6.2 Show that the isotropic form of the tensor A given in Table 4.3 is invariant
under the transformation R() constructed in Problem 4.4.3.

4.6.3 Construct a representation for A that is invariant under the seven reflective
transformations formed from the set of normals to the planes of reflective
symmetry given in Problem 4.5.2: k, p, m, n, e;, e,, and e;. Does the result
coincide with one of the representations already in Table 4.3? If it does,
please explain.

4.7 The Forms of the Symmetric Six-Dimensional Linear
Transformation C

In this section the definitions of the material symmetries given in Sect. 4.5 are used
in conjunction with the six-dimensional orthogonal transformation (4.3)
characterizing a plane of reflective symmetry and transformation law (A162) to
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Table 4.4 The forms of the six-dimensional linear transformation C for the triclinic, monoclinic,
and orthotropic material symmetries. Note that these forms are not here required to be symmetric,
three of them are and five of them are not. However symmetry will be required for all of them by
different and specialized physical arguments in subsequent chapters

Type of material symmetry Form of the six-dimensional linear transformation C
Triclinic _611 512 513 (:'14 (:‘15 (}16_
Gyt Gy Gy Cog G5 Cos
C31 Cn C33 G4 (35 (3
Car Cap Ciz Caa Ca5s (a6
Cs1 G52 Cs3 Csy Css Cse
L6t Coa Ce3 Coa Cos5 Cos ]
Monoclinic [¢11 C12 C¢13 C¢ia O 07
Gyt Cxn C3 Gy 0 O
C31 Cxn €633 ¢ 0 O
Cs1 Cap C43 Caa O O
0 0 0 0 Css Cse
L 0 0 0 0 665 Ce6
Ol‘IhOU‘OpiC [¢11 G2 Ci3 0 0 0 7
Gy Cp 63 0 0 0
G331 Céxn 63 0 0 0
0 0 0 ¢4 O 0
0 0 0 0 ¢és55 O
L O 0 0 0 0 Cep |
Trigonal [¢n Ci2 G135 Cuig 0 0
2 Cp (3 —Cu 0 0
¢3 (3 ¢ 0 0 0
a1 —Cy 0 Gy 0 0
0 0 0 0 Caa V2¢14
LO 0 0 0 V24 (én—7¢n)

derive the forms of the three-dimensional linear transformation C for different
material symmetries. The developments in this section parallel those in the previous
section step for step. The matrices are different, and the results are different, but the
arguments are identical. However, since this topic involves 6 x 6 ratherthan3 x 3
matrices, a computational symbolic algebra program (e.g., Maple, Mathematica,
Matlab, MathCad, etc.) is required to make the calculations simple. One should
work through this section with such a program on a computer.

First, since triclinic symmetry has no planes of reflective symmetry, there are no
symmetry restrictions for a triclinic material and the linear transformation C is
unrestricted. This conclusion is recorded in Tables 4.4 and 4.5. Monoclinic sym-
metry has exactly one plane of reflective symmetry. This means that the material
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coefficients appearing in C must be unchanged by one reflective symmetry

transformation. Let e; be the normal to the plane of reflective symmetry so that

)

the reflective symmetry transformation is ﬁ(e' , given by the first of (4.5). The tensor

C must be invariant under the transformation

- (e1),T

(” R (4.16)

_ ﬁ(el) ) C(G)

C
which follows from the first of (A162) by setting Q= ﬁ(e]>. The pattern of this
calculation follows the pattern of calculation in (4.9). That pattern is the substitu-

tion for C and ﬁ(el) into this equation and the execution of the matrix multiplication.
The resulting matrices are not documented here. As mentioned above, they may be

easily obtained with any symbolic algebra program. The result is that the tensor Cis
unchanged by the reflection only if ¢15 = ¢51 = €16 = Cg1 = Ca5 = Cs5p = C26 = Ce2
= (35 = (53 = C36 = Ce3 = Ca5 = Cs54 = Cag = Cos = 0. It follows then that the form
of the tensor C consistent with monoclinic symmetry characterized by a plane
of reflective symmetry normal to the e; base vector must satisfy the conditions
C15s = C51 = C16 = Co1 = C25 = C50 = C26 = Ceo = (35 = (53 = (36 = C63 = C45 =
Cs4 = C46 = Ce4 = 0. This result for monoclinic symmetry is recorded in Table 4.4.

Three mutually perpendicular planes of reflective symmetry characterize
orthotropic symmetry, but the third plane is implied by the first two. This means

that the material coefficients appearing in the representation of C for monoclinic
symmetry must be unchanged by another perpendicular reflective symmetry
transformation. Let the e, be the normal to the plane of reflective symmetry so

(e2)

the reflective symmetry transformation is R™ as given by the second of (4.5).

The monoclinic form of the tensor C must be invariant under the transformation

~(L)

¢ (e2)

_R®.¢ I (4.17)

which follows from the first of (A162) by setting Q = li(ez). The pattern of this

calculation follows the pattern of calculation in (4.11). That pattern is the substitu-

tion of the monoclinic form for C and ﬁ(eZ) into this equation and the execution of

the matrix multiplication. The resulting matrices are not documented here; they
may be easily obtained with any symbolic algebra program. The result is that the
tensor C is unchanged by the reflection only if ¢14 = €41 = Coq4 = C40 = C34 = C43
= (56 = C¢5 = 0. It follows then that the form of the tensor C consistent with
orthotropic symmetry characterized by planes of reflective symmetry normal to the
e; and e, base vectors must satisfy the conditions ¢4 = €41 = Coq = C4p = C34 =
C43 = Cs6 = Cg5 = 0. This result for orthotropic symmetry is recorded in Table 4.4.

A transversely isotropic material is one with a plane of isotropy. This means that
the material coefficients appearing in the representation of C for orthotropic
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symmetry must be unchanged by any reflective symmetry transformation
characterized by any unit vector in a specified plane. Let the designated plane of
isotropy be the e, e, plane and let the unit vector be a = cos 0 e; + sin 0 e, for
any and all values of 0; then the reflective symmetry transformation of interest is

ﬁ(()u) , given by the first of (4.7). The orthotropic form of the tensor C must be

invariant under the transformation

|, (4.18)

which follows from the first of (A162) by setting Q= li(em). The pattern of this
calculation follows the pattern of calculation in (4.12). That pattern is the substitu-

. . A (012) . . . .
tion of the orthotropic form for — ¢ and R< 2) into this equation and the execution

of the matrix multiplication. The resulting matrices are not documented here. They
may be easily obtained with any symbolic algebra program. The result is that the
tensor C is unchanged by the reflection only if €, = ¢y, ¢21 = ¢12, 23 = C13, ¢
= C31, C55 = C44, Ce6 = C11 — C12. It follows then that the form of the tensor C
consistent with transversely isotropic symmetry characterized by a plane of isot-
ropy whose normal is in e; direction must satisfy the conditions ¢, = ¢11, €21
= C1p, Co3 = €13, C3p = (31, C55 = Ca4, Ces = C11 — C12 . This result for trans-
versely isotropic symmetry is recorded in Table 4.5.

Isotropic symmetry is characterized by every direction being the normal to a
plane of reflective symmetry, or equivalently, every plane being a plane of isotropy.
This means that the material coefficients appearing in the representation of C for
transversely isotropic symmetry must be unchanged by any reflective symmetry
transformation characterized by any unit vector in any direction. In addition to the
ey, e; plane considered for transversely isotropic symmetry it is required that the e,
ez plane be a plane of isotropy. The second plane of isotropy is characterized by the
unit vectors a = cos 0 e, + sin 0 e for any and all values of 6, then the reflective

5 (03) .
symmetry transformations of interest are R( =) given by the second of (4.7). The

form of the tensor C representing transversely isotropic symmetry must be invariant
under the transformation

T

R NCORPNCN [szs)] : (4.19)

A (0
which follows from the first of (A162) by setting Q = R( 23). The pattern of this
calculation follows the pattern of calculation in (4.14) and (4.15). That pattern is the

o . . 2 A (02) . . .
substitution of the transversely isotropic form for C and R( =) into this equation and

the execution of the matrix multiplication. The resulting matrix is not recorded
here; it may be easily obtained with any symbolic algebra program. The result is

that the tensor C is unchanged by any of the reflections whose normals lie in the



4.7 The Forms of the Symmetric Six-Dimensional Linear ... 99

Table 4.5 The forms of the six-dimensional linear transformation C for transversely isotropic and
isotropic materials

Type of material symmetry Form of the six-dimensional linear transformation ¢
Tetragonal [én ¢z 63 0 0 O
¢p ¢én ¢3 0 0 O
¢33 63 ¢ 0 0 O
0 0 O éu O O
0 0 0 0 ¢u O
LO 0 0 0 0 de
Transversely isotropic, hexagonal [¢n ¢12 ¢i3 0 0 0
Cip ¢i1 63 0 0 0
G331 €G3 63 0 0 0
0 0 0 éu O 0
0 0 0 0 cu 0
LO 0 0 0 0 ¢énu—=¢ip
Cubic [¢i1 ¢ ¢ 0 0 0
€ ¢ én 0 0 O
0 0 O ¢ O O
0 0 0 0 ¢éu O
LO 0 0 0 0 ¢m
Isotropic (¢ ¢z ¢ 0 0 0
¢n i 2 0 0 0
Cip G2 G 0 0 0
0 ¢nu—¢n 0 0
0O 0 O 0 ¢ — ¢ 0
LO 0 O 0 0 ¢ —Ci2

plane perpendicular to e; only if the transversely isotropic form for C satisfies the
additional restrictions: ¢33 = ¢11, ¢31 = €12, C31 = C12, €13 = C12, Ca4 = C11 — C12.
It follows then that the transversely isotropic form of the tensor C consistent with
isotropic symmetry characterized by two perpendicular planes of isotropy must
satisfy the conditions ¢33 = 61], C31 = 6]2, 31 = CA‘12, C13 = 6’]2, C4q = C11 — C12.
This result for isotropic symmetry is recorded in Table 4.4. Algebraic procedure
identical with those described above may be used to obtain the forms of the tensor C
consistent with the trigonal, tetragonal, and cubic symmetries listed in Table 4.4.

Problems
4.7.1 Show that the representation for orthotropic symmetry in Table 4.4 is also

invariant under the transformation li(eS) constructed in Problem 4.4.2.
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4.7.2 Show that the representation for isotropic symmetry in Table 4.4 is also

invariant under the transformation R(e'j) constructed in Problem 4.4.3.

4.7.3 Construct a representation for C that is invariant under the seven reflective
transformations formed from the set of normals to the planes of reflective
symmetry given in Problem 4.5.2: k, p, m, n, ey, e, and e;. Does the result
coincide with one of the representations already in Table 4.4? If it does,
please explain.

4.8 Curvilinear Anisotropy

In the case where the type of textured material symmetry is the same at all points in an
object, it is still possible for the normals to the planes of mirror symmetry to rotate as a
path is traversed in the material. This type of anisotropy is referred to as curvilinear
anisotropy. The cross-section of a tree illustrated in Fig. 4.5 and the nasturtium
petiole in Fig. 4.6 have curvilinear anisotropy. At any point the tree has orthotropic
symmetry, but as a path across a cross-section of the tree is followed, the normals to
the planes of symmetry rotate. In the cross-section the normals to the planes of
symmetry are perpendicular and tangent to the growth rings. Curvilinear anisotropy,
particularly curvilinear orthotropy, and curvilinear transverse isotropy are found in
many man-made materials and in biological materials. Wood and plane tissue are
generally curvilinear orthotropic, as are fiber wound composites. Only textured
symmetries can be curvilinear. Crystalline symmetries are rectilinear, that is to say
the planes of symmetry cannot rotate as a linear path is traversed in the material.

Curvilinear anisotropies such as those based on the ideal cylindrical and spherical
coordinate systems may have mathematical singularities. For example, a curvilinear
orthotropy characterized by the ideal cylindrical coordinate system has a singularity
at the origin (Tarn 2002). This is due to the fact that the modulus associated with the
radial direction is different from that associated with the circumferential or hoop
direction (c.f., Fig. 4.5). The singularity at the origin arises due to the fact that the
radial direction and the circumferential or hoop direction are indistinguishable at the
origin yet they have different moduli. A simple resolution of the mathematical
singularity in the model is possible with the proper physical interpretation of its
significance in the real material. One such proper physical interpretation of such
singular points is to note that a volume element containing such a singular point is
not a typical RVE and must be treated in a special manner. This is basically the
approach of Tarn (2002) who constructs a special volume element, with transversely
isotropic symmetry, enclosing the singularity in the cylindrical coordinate system.
The mathematical singularity in the model is, in this way, removed and the model
corresponds more closely to the real material.

Problems

4.8.1 Sketch the curvilinear nature of the set of three normals to the planes of
reflective symmetry that characterize the wood tissue of a tree.
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4.9 Symmetries that Permit Chirality

Thus far in the consideration of material symmetries the concern has been with the
number and orientation of the planes of material symmetry. In this section the
consideration is of those material symmetries that have planes that are not normals
to planes of reflective symmetry. The triclinic, monoclinic, and trigonal symmetries
are the only three of the eight elastic symmetries that permit directions that are not
normals to planes of reflective symmetry. Every direction in triclinic symmetry is a
direction in which a normal to the plane of material symmetry is not permitted.
Every direction that lies in the single symmetry plane in monoclinic symmetry is a
direction in which a normal to the plane of material symmetry is not permitted. The
only direction in trigonal symmetry in which a normal to the plane of material
symmetry is not permitted is the direction normal to a plane of threefold symmetry.
There are not other such directions. The triclinic, monoclinic, and trigonal
symmetries are also the only three of the eight elastic symmetries that, in their
canonical symmetry coordinate system, retain cross-elastic constants connecting

normal stresses (strains) to shear strains (stresses) and vice versa. In the C matrices
listed in Table 4.4 these cross-elastic constants appear in the lower left and upper
right 3 x 3 sub-matrices for the triclinic, monoclinic, and trigonal symmetries. In
the A matrices listed in Table 4.3 only monoclinic symmetry has a cross-elastic
constant. The nonzero cross-elastic constants and the directions that are not normals
to planes of reflective symmetry are directly related; such planes disappear when
the cross-elastic constants are zero. It is the existence of such planes and associated
cross-elastic constants that allow structural gradients and handedness (chirality).

Trigonal symmetry, because it is the highest symmetry of the three
symmetries, admits a direction that is not a direction associated with a normal
to a plane of reflective symmetry, nor any projected component of a normal to a
plane of reflective symmetry. An interesting aspect of trigonal symmetry is the
chiral or symmetry-breaking character of the cross-elastic constant ¢14. Note that
C141s not constrained to be of one sign; the sign restriction on ¢4 from the positive
definiteness of strain energy is

- MQM M (420)

If ¢14 vanishes, the C matrix in Table 4.4 for trigonal symmetry specializes to the C
matrix in Table 4.4 for hexagonal or transversely isotropic symmetry. Hexagonal
symmetry is a sixfold symmetry with seven planes of mirror symmetry. Six of the
normals to these seven planes all lie in the seventh plane and make angles of 30°
with one another. A single plane of isotropy characterizes transversely isotropic
symmetry. A plane of isotropy is a plane of mirror symmetry in which every vector
is itself a normal to a plane of mirror symmetry. Since a plane of isotropy is also a
plane of symmetry, there are an infinity plus one planes of symmetry associated
with transverse isotropy.
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Fig. 4.14 A composite
structure composed from sets
of left- and right-handed
helically wound fibrous
laminae that are in the form of
concentric coaxial cylinders;
the fibers of each lamina or
component cylinder are
characterized by a different
helical angle. The angle of the
helices often rotates regularly
from one cylinder to the next.
This type of structure is called
“helicoidal” and described as
a cylinder made of “twisted
plywood”. From Fraldi and
Cowin (2002)

A simple thought model is possible for the visualization of the symmetry-breaking
character of the elastic constant ¢14. This constant could be described as a chiral
constant, chiral being a word coined by Kelvin (Thompson 1904) ({ call any geometri-
cal figure, or group of points, chiral, and say it has chirality, if its image in a plane
mirror, ideally realized, cannot be brought to coincide with itself.) and widely used in
describing the structure of molecules. It means that a structure cannot be superposed on
its mirror image, that the structure has a handedness. For example, helical spirals are
chiral; they are either left-handed or right-handed. A composite structure of alternate
left- and right-handed helical spirals is illustrated in Fig. 4.14. Consider a composite
material constructed of an isotropic matrix material reinforced by only right-handed
spiral helices whose long axes are all parallel. These helical spirals may be either
touching or separated by a matrix material (Fig. 4.15). Let the helical angle be 6
(Fig. 4.15) and let negative values of 6 correspond to otherwise similar left-handed
helices; the vanishing of 0 then corresponds to a straight reinforcement fiber. Assume
that when the effective elastic constants for this material are calculated, the sign of ¢4 is
determined by the sign of 6 and vanishes when 0 is zero. It is then possible to
geometrically visualize the chiral, symmetry-breaking character of ¢4 as it passes
from positive to negative (or negative to positive) values through zero as the vanishing
of a helical angle of one handedness occurs and the initiating of a helical angle of the
opposite handedness commences. At the dividing line between the two types of
handedness, the reinforcing fibers are straight. In terms of the elastic material
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Fig. 4.15 Two examples of composites formed from an elastic matrix and embedded helicoidal
circular fibers. The two large circular diagrams illustrate the characteristic threefold trigonal
symmetry in the cross-sectional plane. The possible representative volume elements (RVEs) and
their characteristic helical angles are also illustrated. From Fraldi and Cowin (2002)

symmetry, as ¢4 passes from positive to negative (or negative to positive) values
through zero, the elastic material is first a trigonal material of a certain chirality, then a
transversely isotropic (or hexagonal) material, and then a trigonal material of an
opposite chirality. A RVE of the composite in Fig. 4.14 may be constructed using a
set of the helicoidal fibers all having identical circular cross-sections and using the
periodicity of the helix (Fig. 4.15, inset). This construction provides an RVE with a
material neighborhood large enough to adequately average over the microstructure and
small enough to ensure that the structural gradient across it is negligible. An examina-
tion of Fig. 4.15 shows that, in the plane orthogonal to the x3 axis, the threefold
symmetry characteristic of trigonal symmetry arises naturally.

This example illustrates how chirality is created in a material with a helical
structure. It also demonstrates that the symmetry-breaking chiral elastic constant
C14 in trigonal symmetry is related to the angle of the helical structure of the
material, if the material has a helical structure. Further, it again illustrates how
different levels of RVE’s are associated with different types of material symmetry.
In this example the smaller RVE is associated with orthotropic material symmetry
and the larger RVE (obtained by volume averaging over the domain of the smaller
RVE) is associated with monoclinic symmetry. The result demonstrates that a
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material symmetry that permits chirality (i.e., trigonal, monoclinic, or triclinic
symmetry) is obtained by averaging over a domain that is characterized by
a symmetry that does not permit chirality (i.e., isotropic, cubic, transverse isotro-
pic, tetragonal, and orthotropic). Clearly the result presented depends on the fact
that the (non-chiral) orthotropic material symmetry is helically curvilinear. The
association of the micro-geometric chiral character of ¢;4 with a helix is not a
unique association. The basic property of ¢4 is its symmetry-breaking character,
and it may be associated with structural gradients in the material (Cowin 2002;
Fraldi and Cowin 2002).

There are many natural and man-made examples of both chiral materials as
structures and as local components in globally non-chiral composites. Chiral
materials that form chiral structures occur in nature (Neville 1993). Perhaps the
most famous is the tusk of the narwhal (in the middle ages the tusk of the narwhal
was thought to be the horn of the mythical unicorn). This whale is edentulous
except for the upper lateral incisors. The right incisor normally remains embedded
in the jaw, but in adult males the left tooth forms a tusk, which can in large
specimens reach a length of 2.4 m, and have a diameter of 8 cm at the point of
eruption. Normally the tusk is imprinted with the curvature of the bone socket as it
erupts or extrudes itself from a bone socket. However, if the tusk slowly twists in
the socket as it grows, the imprinted curvature will be neutralized or averaged and
the tusk will grow straight with the spiral structure. A second example of a natural
chiral structure occurs in trees, both hardwoods and softwoods, due to a combina-
tion of genetic and environmental factors. The spiral structure in trees causes a
practical problem with telephone and power poles. Changes in the moisture content
of the wood of the pole cause the pole to twist after it has been employed as part of a
transmission network.

Chiral materials that form chiral and non-chiral structures occur very frequently
in nature (Neville 1993). A typical such natural structure is illustrated in Fig. 4.14.
The structure is a set of concentric coaxial cylinders, each lamina or cylinder
characterized by a different helical angle. The angle of the helices often rotates
regularly from one cylinder to the next. This type of structure is called helicoidal
and described as a cylinder made of "twisted plywood" (see Figs. 10.33 and 10.34).
The helical fibers may or may not be touching, as illustrated in Fig. 4.15. The
examples of this structure in nature are numerous and include fish scales and plant
stem walls. Man also uses cylinders made of "twisted plywood" to create structures.

4.10 Relevant Literature

A very interesting and perceptive book on symmetry in general, but including all
the symmetries of interest in the present text, is the book of Weyl (1952) with the
title Symmetry. Material symmetry is well explained in the books of Nye (1957) and
Fedorov (1968). The treatment of material symmetry in this chapter does not follow
the standard treatments of material symmetry contained, for example, in the books
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on anisotropic elasticity mentioned in the literature notes at the end of Chapter 6.
In the first section of this chapter it was stated that one of the purposes of this

chapter was to obtain and record representations of A and C that represent the
effects of material symmetry. This has been done and the results are recorded in

Tables 4.3, 4.4 and 4.5 for A and C, respectively. The representations in these tables
were developed with the minimum algebraic manipulation invoked and with the
minimum rigor but, we think, with the most concise method. The method employed
to obtain these representations is new. Cowin and Mehrabadi (1987) first pursued
using reflections to characterize the elastic symmetries. Later Cowin and
Mehrabadi (1995) developed all the linear elastic symmetries from this viewpoint.
Here we have not generally bothered to demonstrate invariance of these
representations for all the reflective symmetries that they enjoy. In this presentation
we have been content to use the minimum number of reflective symmetries
necessary to obtain the symmetry representations. So we do not show the reader
that further admissible reflective symmetries will not alter the representation
obtained, but it happens to be true.

The established and more general method to obtain these representations is
to use the symmetry groups associated with each of these symmetries.
The disadvantage of that path in the present text is that it takes too much text
space and distracts the reader from the main topic because it requires the introduc-
tion of the group concept and then the concept of the material symmetry group, etc.
In the method of presentation employed, only the concept of the plane of mirror or
reflective symmetry is necessary. The reflective symmetry approach is equivalent to

the group theory approach for A and C tensors (Chadwick et al. 2001), but it may
not be so for nonlinear relationships between these tensors. It does, however, not
provide all the representations for the second rank A if A is not symmetric (Cowin
2003).
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Chapter 5
Formulation of Constitutive Equations

The theme for this chapter is contained in a quote from Truesdell and Noll’s volume
on the Non-Linear Field Theories of Mechanics: “The general physical laws in
themselves do not suffice to determine the deformation or motion of . an object.
subject to given loading. Before a determinate problem can be formulated, it is
usually necessary to specify the material of which the. . .object. . .is made. In the
program of continuum mechanics, such specification is stated by constitutive
equations, which relate the stress tensor and the heat-flux vector to the motion.
For example, the classical theory of elasticity rests upon the assumption that the
stress tensor at a point depends linearly on the changes of length and mutual angle
suffered by elements at that point, reckoned from their configurations in a state
where the external and internal forces vanish, while the classical theory of viscosity
is based on the assumption that the stress tensor depends linearly on the instanta-
neous rates of change of length and mutual angle. These statements cannot be
universal laws of nature, since they contradict one another. Rather, they are
definitions of ideal materials. The former expresses in words the constitutive
equation that defines a linearly and infinitesimally elastic material; the latter, a
linearly viscous fluid. Each is consistent, at least to within certain restrictions, with
the general principles of continuum mechanics, but in no way a consequence of
them. There is no reason a priori why either should ever be physically valid, but it is
an empirical fact, established by more than a century of test and comparison, that
each does indeed represent much of the mechanical behavior of many natural
substances of the most various origin, distribution, touch, color, sound, taste,
smell, and molecular constitution. Neither represents all the attributes, or suffices
even to predict all the mechanical behavior, of any one natural material. No
natural. object. is perfectly elastic, or perfectly fluid, any more than any is perfectly
rigid or perfectly incompressible. These trite observations do not lessen the worth
of the two particular constitutive equations just mentioned. That worth is twofold:
First, each represents in ideal form an aspect, and a different one, of the mechani-
cal behavior of nearly all natural materials, and, second, each does predict with
considerable though sometimes not sufficient accuracy the observed response of
many different natural materials in certain restricted situations.”

S.C. Cowin, Continuum Mechanics of Anisotropic Materials, 107
DOI 10.1007/978-1-4614-5025-2_5, © Springer Science+Business Media New York 2013
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5.1 Guidelines for the Formulation of Constitutive Equations

The conservation principles of mass, linear momentum, angular momentum, and
energy do not yield, in general, a sufficient number of equations to determine all the
unknown variables for a physical system. These conservation principles must hold
for all materials and therefore they give no information about the particular material
of which the system is composed, be it fluid or solid, bone, concrete or steel, blood,
oil, honey or water. Additional equations must be developed to describe the
material of the system and to complete the set of equations involving the variables
of the system so that the set of equations consisting of these additional equations
and the conservation equations are solvable for the variables.

Equations that characterize the physical properties of the material of a system are
called constitutive equations. Each material has a different constitutive equation to
describe each of its physical properties. Thus there is one constitutive equation to
describe the mechanical response of steel to applied stress and another to describe
the mechanical response of water to applied stress. Constitutive equations are
contrasted with conservation principles in that conservation principles must hold
for all materials while constitutive equations only hold for a particular property of a
particular material. The purpose of this chapter is to present the guidelines generally
used in the formulation of constitutive equations, and to illustrate their application
by developing four classical continuum constitutive relations, namely Darcy’s law
for mass transport in a porous medium, Hooke’s law for elastic materials, the
Newtonian law of viscosity, and the constitutive relations for viscoelastic materials.

5.2 Constitutive Ideas

The basis for a constitutive equation is a constitutive idea, that is to say an idea
taken from physical experience or experiment that describes how real materials
behave under a specified set of conditions. For example, the constitutive idea of the
elongation of a bar being proportional to the axial force applied to the ends of the
bar is expressed mathematically by the constitutive equation called Hooke’s law.
Another example of a constitutive idea is that, in a saturated porous medium the
fluid flows from regions of higher pressure to regions of lower pressure; this idea is
expressed mathematically by the constitutive equation called Darcy’s law for fluid
transport in a porous medium. It is not a simple task to formulate a constitutive
equation from a constitutive idea. The constitutive idea expresses a notion
concerning some aspect of the behavior of real materials, a notion based on the
physics of the situation that might be called physical insight. The art of formulating
constitutive equations is to turn the physical insight into a mathematical equation.
The conversion of insight into equation can never be exact because the equation is
precise and limited in the amount of information it can embody while the constitu-
tive idea is embedded in one’s entire understanding of the physical situation.
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The fine art in the formulation of constitutive equations is to extract the salient
constitutive idea from the physical situation under consideration and then to express
its essence in an equation.

The four classical constitutive ideas employed here as examples are described in
this paragraph. Darcy’s law for mass transport in a porous medium may be
considered as arising from the idea that, in a saturated porous medium, fluid
flows from regions of higher pressure to those of lower pressure. Let p; denote
the density of the fluid in the pores of the porous medium, p, denote a constant
reference fluid density, and ¢ denote the porosity of the medium. The velocity of
the fluid v passing through the pores is the velocity relative to the solid porous
matrix. This constitutive idea is that the fluid volume flux q = ¢pv/p, through the
pores, at a particle X, is a function of the pressure variation in the neighborhood of
X, NX). If p(X, 1) represents the pressure at the particle X at time ¢, then this
constitutive idea is expressed as

q= ¢pr/PO = q(p(Xa t)? X)7 all X"in N(X) (5.1D)

Note that q has the dimensions of volume flow per unit area, which means it is
the volume flow rate of fluid across a certain surface area. The volume flow rate q is
the flow rate relative to the solid porous matrix. The constitutive idea for Fourier’s
law of heat conduction and Fick’s law for diffusion of a solute in a solvent have the
same mathematical structure as Darcy’s law for mass transport in a porous medium.
The constitutive idea for Fourier’s law of heat conduction is that heat flows from
regions of higher temperature to those of lower temperature. The constitutive idea
for Fick’s law for diffusion of a solute in a solvent is that a solute diffuses from
regions of higher solute concentration to those of lower solute concentration. The
developments of the Fourier law and the Fick law are parallel to the development of
Darcy’s law. For the Fourier law the heat flux vector replaces the volume flux per
unit area q and the temperature replaces the pressure. For Fick’s law, for diffusion
of a solute in a solvent, the diffusion flux vector replaces the volume flux per unit
area q and the pressure is replaced by the concentration of the solute in the solvent.
These substitutions will extend most of what is recorded in this chapter about
Darcy’s law to the Fourier law and the Fick law.

The D in the equation number above is to indicate that this equation is associated
with Darcy’s law. In this chapter D, H, N, and V will be used in equation numbers to
indicate the constitutive concept that the equation is associated; D is for Darcy, H is
for Hooke, N is for Newton, and V is for viscoelastic.

In the development of the remaining constitutive equations, those that assume
that stress is a function of different kinematic variables, the stress will be denoted as
a vector in six dimensions, T , rather than a tensor in three dimensions, T (see Sect.
A.11). The six-dimensional representation has advantages in the formulation of
constitutive equations. The main advantage in the present chapter is that all the
constitutive ideas to be developed will then have a similar structure except that
some will be in three dimensions and the rest in six dimensions. The constitutive
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idea for Hooke’s law is that of a spring. If a force displaces the end of a spring, there
is a relationship between the force and the resulting displacement. Thus, to develop
Hooke’s law, the stress T at a particle X is expressed as a function of the variation in
the displacement field u(X, 7) in the neighborhood of X, N(X),

T =T@u(X, t),X), all X*in N(X). (5.1H)

The constitutive idea for the Newtonian law of viscosity is that of the dashpot or
damper, namely that the force is proportional to the rate at which the deformation is
accomplished rather than to the size of the deformation itself. The total stress in a
viscous fluid is the sum of the viscous stresses T, plus the fluid pressure
p, T = —pl + T,. The constitutive idea for the Newtonian law of viscosity is
that the stress TV, due to the viscous effects at a particle X, is expressed as a function
of the variation in the velocity field v(X, ¢) in the neighborhood of X, N(X). The
expression for the total stress in a fluid is the pressure plus the viscous stresses.

T=—pU+T,(v(X,1),X), all X*inN(X). (5.1N)

Recall that Uis the six-dimensional vector with components {1, 1,1,0,0,0}; it is
the image of the three-dimensional unit tensor 1 in six dimensions. Each of the four
constitutive ideas described yields the value of a flux or stress at time ¢ due to the
variation in a field (temperature, pressure, displacement, velocity) at the particle X
at time ¢. The constitutive idea for viscoelasticity is different in that the stress at
time t is assumed to depend upon the entire history of a field, the displacement field.
Thus, while the first three constitutive ideas are expressed as functions, the consti-
tutive idea for viscoelasticity is expressed as a functional of the history of the
displacement field. A functional is like a function, but rather than being evaluated at
a particular value of its independent variables like a function, it requires an entire
function to be evaluated; a functional is a function of function(s). An example of a
functional is the value of an integral in which the integrand is a variable function.
The constitutive idea for a viscoelastic material is that the stress T at a particle X is a

function of the variation in the history of the velocity field v(X, #) in the neighbor-
hood of X, N(X),

3

T(v(X,t—3s), s, X)ds, for all X* in N(X), (5.1V)

s=0

>
I

where s is a backward running time variable that is 0 at the present instant and

increases with events more distant in the past. Thus the stress Tata particle X is a
function of the entire history of the displacement of the particle; to evaluate the
stress, knowledge of the entire history is required. In the sections that follow this one
these four constitutive ideas will be developed into linear constitutive equations.
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Problem

5.2.1. Record a rigorous definition of the neighborhood of the particle X, N
(X), using a reference particle X*, a small positive number e and a length
measure [IX - X*|l. Note that this neighborhood is, in general, a three-
dimensional neighborhood.

5.3 Localization

A constitutive equation valid at the particle X of a material object can depend upon
the behavior of the material in the neighborhood of the particle X, N(X), but is
unlikely to depend upon the behavior of the material in regions of the object far
removed from the particle X. The localization guideline for the development of
constitutive relations restricts the dependence of constitutive equations valid for a
particle X to events that occur in N(X). The application of the localization guideline
to the four constitutive equations described in the previous section is described in
the next paragraph.

The constitutive idea for Darcy’s law is considered first. The pressure field
p(X*, 1) at a particle X* in N(X) may be related to the pressure field p(X, ¢) at a
particle X by a Taylor series expansion about the point by

p(X*, 1) =pX, 1)+ (Vp(X, 1)) - (X —X*) + higher order terms, (5.2)

where it is assumed that the pressure field is sufficiently smooth to permit this
differentiation. With the Taylor theorem as justification, the N(X) may always be
selected sufficiently small so the value of the pressure field p(X*, 7) at a particle X*
in N(X) may be represented by p(X, f) and Vp(X, ¢). Thus, by localization, (5.1D)
may be rewritten as

q= d)pfv/po = q(p(Xa t)a VP(X, t),X) (53D)

Exactly the same argument is applicable to the other three constitutive ideas;
thus we have that

T=TwuX, 1, VeulX, 1),X), (5.3H)
T=—pU+T,(v(X, 1),Vav(X, 1),X), (5.3N)

and
T= | Tv(X, t—5),Vov(X, t—s),X,s)ds. (5.3V)
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Problem

5.3.1. Record a complete statement of Taylor’s theorem in the case of three
independent variables for the function f(X) using the point X, as the point
about which the expansion occurs.

5.4 Invariance Under Rigid Object Motions

This guideline for the development of constitutive relations restricts the indepen-
dent variables and functional dependence of constitutive equations for material
behavior by requiring that the constitutive equations be independent of the motions
of the object that do not deform the object. The motions of the object that do not
deform the object are rigid object motions. This guideline requires that constitutive
equations for material behavior be independent of, that is to say unchanged by,
superposed rigid object motions. As an illustration consider the object shown in
Fig. 5.1. If the object experiences a translation and a rigid object rotation such that
the force system acting on the object is also translated and rotated, then the state of
stress T(X, ) at any particle X is unchanged. As a second example recall that the
volume flow rate q is the flow rate relative to the solid porous matrix. It follows that
the volume flow rate q in a porous medium is unchanged by (virtual or very slow)
superposed rigid object motions.

The application of this guideline of invariance under rigid object motions is
illustrated by application to the three constitutive ideas involving stress. The two
constitutive ideas involving fluxes automatically satisfy this guideline because the
fluxes are defined relative to the material object and the rigid motion does not
change the temperature field or the pressure field. The constitutive idea for Hooke’s
law (5.3H) may be rewritten as

T =Twu(X, ),EX, 1),Y(X, 7),X), (5.4H)

ARy

Fig. 5.1 A rigid object rotation of an object, a rotation that includes the force system that acts
upon the object
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where the tensor of displacement gradients V ® u(X, #) has been replaced by
its symmetric part, the infinitesimal strain tensor E(X, ¢) defined by (2.49), and its
skew symmetric part, the infinitesimal rotation tensor Y(X, ¢), also defined by
(2.49). In a similar way the tensor of velocity gradients V ® v(X, #) may be
replaced by its symmetric part, the rate of deformation tensor D(X, 7) defined by
(2.32), and its skew symmetric part, the spin tensor W(X, ¢), also defined by (2.32).

T=—pU+T,(v(X, 1),D(X, 1), W(X, )X). (5.4N)
Finally, decomposing the tensor of velocity gradients V ® v(X, t—s) as in the

case of the Newtonian law of viscosity, the viscoelastic constitutive relation (5.3V)
takes the form

3

T= | TvX, t—5),D(X, 1—5), WX, 1—5),X,s)ds. (5.4V)

s=0

This guideline requires that constitutive equations remain unchanged by super-
posed rigid object motions, thus measures of translational motion, like the displace-
ment u(X, #) and the velocity v(X, f), and measures of rotational motion, like the
infinitesimal rotation tensor Y(X, 7) and the spin tensor W(X, ¢), must be excluded
from the above equations . Using this guideline the form of these three constitutive
ideas is then reduced to

T = T(E(X, 1),X), (5.5H)
T =—pU+T,(D(X,1),X), (5.5N)
and
T= J T(D(X, 1 —s),X,s)ds, (5.5V)
s=0

where the three-dimensional tensors E(X, #) and D(X, 7) have been replaced by their
six-dimensional vector equivalents, E(X, t) and D (X, 1), respectively.

5.5 Determinism

A constitutive equation valid for a material at a time t must depend upon events that
are occurring to the material at the instant t and upon events that have occurred to
the material in the past. The constitutive equation cannot depend upon events that
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will occur to the material in the future. For example, the constitutive assumption for
elastic materials is that the stress depends upon the strain between a previous
unstressed reference configuration and the instantaneous configuration of the
object. All four of the constitutive equations satisfy this guideline. The first four
satisfy it because all the variables entering the relationships are at a time f.
The viscoelastic constitutive relation satisfies the guideline by only depending
upon past events.

5.6 Linearization

Each of the constitutive ideas considered has been reduced to the form of a
vector-valued (q or ’i‘) function or functional of another vector (Vp, E or ]3), X,
and some scalar parameters. It is assumed that each of these vector-valued functions
is linear in the vector argument, thus each may be represented by a linear transfor-
mation. For Darcy’s law the second order tensor in three dimensions represents the
coefficients of the linear transformation and, due to the dependence of the volume
flow rate upon pressure, this second order tensor admits the functional dependency
indicated:

q = ¢psv/p, = —H(p,X) - Vp(X, 1). (5.6D)

The minus sign was placed in (5.6D) to indicate that the volume fluid flux q
would be directed down the pressure gradient, from domains of higher pore fluid
pressure to domains of lower pressure.

For the three constitutive ideas involving the stress vector ’i‘, second order
tensors in six dimensions represent the coefficients of the linear transformation:

T =C(X) E(x,1), (5.6H)
T =—pU+N(X)-D(X,1), (5.6N)
and
T= | GX,s) -D(X,7— s)ds. (5.6V)
s=0

The six-dimensional second order tensors C(X) and N(X)are for Hooke’s law
and the Newtonian law of viscosity, respectively. The six-dimensional second order

tensor function G(X, s)represents the viscoelastic coefficients.
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Problem

5.6.1. Expand the constitutive relations for the Darcy medium (5.6D) and for
Newton’s law (5.6N) into their component from relative to a Cartesian 3-D
coordinate system.

5.7 Coordinate Invariance

Since the representation of physical phenomena must be independent of the
observer, it is necessary to express physical quantities in ways that are independent
of coordinate systems. This is because different observers may select different
coordinate systems. It therefore becomes a requirement that physical quantities be
invariant of the coordinate system selected to express them. On the other hand, in
order to work with these physical quantities, it is necessary to refer physical
quantities to coordinate systems. In particular, a constitutive equation should be
expressed by a relation that holds in all admissible coordinate systems. The
admissible coordinate systems may be any coordinate system possible in a Euclid-
ean three-dimensional space. A sufficient condition for the satisfaction of this
requirement is to state the constitutive equations in tensorial form since tensors
are independent of any particular coordinate system, although their components
may be written relative to any particular one. In classical mechanics the essential
concepts of force, velocity, and acceleration are all vectors; hence the mathematical
language of classical mechanics is that of vectors. In the mechanics of deformable
media the essential concepts of stress, strain, rate of deformation, etc., are all
second order tensors; thus, by analogy, one can expect to deal quite frequently
with second order tensors in this branch of mechanics. The constitutive ideas that
are developed in this chapter satisfy the requirement of coordinate invariance by
virtue of being cast as tensorial expressions.

5.8 Homogeneous Versus Inhomogeneous Constitutive Models

A material property is said to be homogeneous when it is the same at all particles X
in the object, inhomogeneous if it varies from particle to particle in an object. Most
biological materials are inhomogeneous and many manufactured materials are
considered to be homogeneous. Each of the constitutive relations (5.6D), (5.6H),
(5.6N), and (5.6V) is presented as inhomogeneous because the tensors representing
their material coefficients, H(p, X), C(X), N(X) , and G(X,s) , respectively, are
allowed to depend upon the particle X. If the dependence upon X does not occur, or
can be neglected, then the material is homogeneous and the constitutive equations
(5.6D), (5.6H), (5.6N), and (5.6V) take the form:
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q= ¢pfv/po = _H(p) : VP(X, t)a (57D)
T=C -E(x1) (5.7H)
T=—pU+N-D(x,1) (5.7N)
and
T= | G(s) -D(x,7—s)ds, (5.7V)
s=0

Note that, in the above constitutive expressions , not only has the dependence of the
material coefficient tensors been removed by eliminating their dependence upon the
particle X, but also X has been replaced by x everywhere else. For the two constitutive
relations restricted to infinitesimal motions, (5.7H) and (5.7V), the constitutive
relations based on a rigid continuum, (5.7D) and Eulerian viscous fluid theory
(5.7N), there is no difference between X and x (see Sect. 2.4), hence x could have
been used from the beginning of the chapter. For the Newtonian law of viscosity
however, the assumption of homogeneity is much more significant because it permits
the elimination of X from the entire constitutive relation, a constitutive relation that is
not restricted to infinitesimal deformations. Thus, even though (5.7N) applies for large
deformations, it is independent of X. The Newtonian law is different from the other
four constitutive relations in another way, as detailed in the next section.

5.9 Restrictions Due to Material Symmetry

The results of the previous chapter are used in this section to further specify the
form of the constitutive relations. Isotropy or any type of anisotropy is possible for
the three constitutive relations, (5.7D), (5.7H), and (5.7V), that are, or may be,
applied to solid or semi-solid materials. The type of anisotropy is expressed in the
form of the tensors of material coefficients, H, C and (A}(s), respectively. Once the
type of anisotropy possessed by the solid or semi-solid material to be modeled has
been determined, the appropriate form of H may be selected from Table 4.3 or the
form of C orf}(s) from Tables 4.4 and 4.5. Thus, for these four constitutive relations
any type of material symmetry is possible. In this section and in the first paragraph
of the next section the results summarized in Tables 4.3, 4.4 and 4.5 are cited. The
derivation of these results is presented in Chap. 4.

The concepts of anisotropy and inhomogeneity of materials are sometimes
confused. A constitutive relation is inhomogeneous or homogeneous depending

upon whether the material coefficients (i.e., H, C, and G(s)) depend upon X or
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not. The type of material symmetry, that is to say either isotropy or the type of
anisotropy, characterizing a constitutive relation is reflected in the form of the
material coefficient tensors (H, C orG(s)), for example the forms listed in Tables 4.3,
4.4 and 4.5. The tensor H may have any of the forms in Table 4.3 and the tensor C
may have any forms in Tables 4.4 and 4.5. Material symmetry, that is to say the
isotropy or type of anisotropy, is the property of a constitutive relation at a particle X,
while inhomogeneity or homogeneity of materials relates to how the material
properties change from particle to particle. Thus a constitutive relation may be
either anisotropic and homogeneous or anisotropic and inhomogeneous. The most
mathematically simplifying assumptions are those of an isotropic symmetry and
homogeneous material.

The Newtonian law of viscosity, (5.7N), is characterized by these most
simplifying assumptions, homogeneity, and isotropy. These assumptions are easily
justified when one thinks about the structure of, say, distilled water. Absent gravity,
there is no preferred direction in distilled water, and distilled water has the same
mechanical and thermal properties at all locations in the volume and in all volumes
of distilled water. One can then generalize this thought process to see that fluids are
isotropic.

The isotropic form of the Newtonian law of viscosity, (5.7N), is obtained by
using the representation for the isotropic form of N obtained from Table 4.5, thus

[Ty +p] [Nii Niz Np 0 0 0 D

Tr+p Nio N Np 0 0 0 D,

Ts+p _ Ni» Ni Ny 0 0 0 D;
T, | |0 0 0 Nyu—-Np 0 0 Dy |’

Ts 0O 0 0 0 Ny —Nps 0 Ds

L 7 1 Lo o o0 0 0 Ny =Nzl LDg
(5.8N)

This six-dimensional representation is converted to the three-dimensional repre-
sentation by employing the relations (A163) and introducing the following new
notation for the two distinct elements of the 6 by 6 matrix in (5.8N),

Ny =A+2u,Np =2 (5.9N)
then
T]] +p A+ 2/1 A A 0 0 0 D11
Ty +p A A42u A 0 0 0 D>
T3 +p| _ A yl A4+2p 0 0 O D33
VaTs | = | 0 0 0 21 0 0||vaDy| G
V2T 3 0 0 0 0 2u 0 ||V2D;s
V2T, 0 0 0 0 0 2ul||vV2Dp



118 5 Formulation of Constitutive Equations
or

T +p= trD + 2,UD11,T22 +p= AtrD + 2,uD22, T3 +p= trD + 2,I,LD337
To3 = 2uD23,T13 = 2uD 13, T12 = 2D,

where 4 and pu are viscosity coefficients. It is easy to see that the constitutive
relation may be rewritten in three dimensions as

T + pl = /trD)1 + 2uD. (5.11N)

This is the form of the constitutive equation for a viscous fluid, the pressure plus
the Newtonian law of viscosity, which will be used in the remainder of the text.

Problems

5.9.1. Record the explicit matrix form for the constitutive relation for a Darcy
porous medium in an inhomogeneous transversely isotropic material.

5.9.2. Record the explicit matrix form for the constitutive relation for Darcy’s law
in a homogeneous isotropic material.

5.9.3. Record the explicit matrix form for the constitutive relation for Hooke’s law in

5.9.4. Record the explicit matrix form for the constitutive relation for a trans-
versely isotropic, homogeneous viscoelastic material.

5.9.5. Show that the eigenvalues of (5.10N) are 34 + 2u and 2u and specify how
many times each is repeated.

5.10 The Symmetry of the Material Coefficient Tensors

In this section the question of the symmetry of the matrices of the tensors of
material coefficients, H, C, Nand G (s) is considered. Consider first the tensor of

material coefficients N for a Newtonian viscous fluid. In the previous section it was
assumed that a Newtonian viscous fluid was isotropic, therefore, from Table 4.5, the
tensor of material coefficients N is symmetric. In this case the material symmetry
implied the symmetry of the tensor of material coefficients. A similar symmetry
result emerges for the permeability tensor H if only orthotropic symmetry or greater
symmetry is considered. To see that material symmetry implies the symmetry of the
tensor of material coefficients H, if only orthotropic symmetry or greater symmetry
is considered, one need only consult Table 4.3. The symmetry of H is also true for
symmetries less than orthotropy, namely monoclinic and triclinic, but the proof will

not be given here. Finally, G(s) is never symmetric unless the viscoelastic model is
in the limiting cases of G (0) or G(oo) where the material behavior is elastic.

The symmetry of the tensor of elastic material coefficients C is the only coeffi-
cient tensor symmetry point remaining to be demonstrated in this section. In this
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development the inverse of (5.7H), the strain—stress relation rather than the
stress—strain relation, is employed

E=S-T, S=C , (5.12H)

where S is the compliance tensor of elastic material coefficients. The form and
symmetry of C and S are identical for any material, and it is easy to show that the

symmetry of one implies the symmetry of the other. The symmetry of C and S
follows from the requirement that the work done on an elastic material in a closed
cycle vanish. This requirement stems from the argument that if work can be done on
the material in some closed cycle, then the cycle can be reversed and the material
can do work in the reversed closed cycle. This would imply that work could be
extracted from the material in a closed loading cycle. Thus one would be able to
take an inert elastic material and extract work from it. This situation is not logical
and therefore it is required that the work done on an elastic material in a closed
loading cycle vanish. We express the work done on the material between the strain

Em and the strain E<2> by

T.dE, (5.13H)

=
¥}
Il
——

and for a closed loading cycle it is required that
TJ;T -dE = 0. (5.14H)

Consider the work done in a closed loading cycle applied to a unit cube of a
linear anisotropic elastic material. The loading cycle begins from an unstressed
state and contains the following four loading sequences (Fig. 5.2(a)): O — A, the

stress is increased slowly from O to TIA; A — B, holding the stress state TIA constant
the second stress is increased slowly from 72 to T4 + T8, T® £ T, B — C, holding
the second stress state TPconstant the first stress is decreased slowly from 74 + 75 to

f?; and C — O, the stress is decreased slowly from f"lB to 0. At the end of this
loading cycle the object is again in an unstressed state. The work done in (5.13H) on
each of these loading sequences is expressed as an integral in stress:

2 2
W12:JT~dE:JE~dT. (5.15H)

1 1

The integral over the first loading sequence of the cycle, from O to YA"IA, is given by
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Woa -> Won + Wag

TA Fixed
T e T e 710

Woa + Wpg >
Won + Wag + Wae
TB Fixed
TA+ T8 > T8

TB>0
WOA aF WAB ar WBC'>

Woa + Wag + Weet Weo

clockwise

WOC ap WCB ==
Woc + Weg + Wpa
TA Fixed
TA+TB > TA

Woc + Weg + Wega -> Woe > Wog + Weg

Woc + Weg + Wpa + Wpo T8 Fixed

TA->0 TB.>TA+TB

counterclockwise

Fig. 5.2 Illustrations of closed loading cycles. (a) Clockwise cycle O - A — B — C — O,
(b) counterclockwise cycle O — C — B — A — O. See the text for further explanation

A A
(0] o

The integral over the second loading sequence of the cycle, from T,A to T,A + TIB,
! A is a bit more complicated because the loading of the object begins from a
T8 £ T4 b pl db he loading of the object begins fi
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state in which it is subjected to the stress 7:{*, which is held constant during this leg
of the cycle. During the second loading sequence the strain is given by

=S§; N +1), o<1, <1 (5.17H)

and the work done from 7% to TA + TP is
B
& A |y h & AA)AB) | g aB)aB
Wap = Js,-,-(T.( L+ TaT; = STV 4+ 28T T (5.18H)
0

where the factor of one-half does not appear before the first term on the right hand
side because TIA is held fixed during the second loading sequence in this leg of the
loading cycle. During the third loading sequence the stress le is held fixed; the
strain is given by

~(A)

E = $,(7" <7,

H)
S
AN
~>

(5.19H)

The work done during the third loading sequence of the cycle, from f",-A + Tf
to TIB is then

S;TMT™. (5.20H)

S;T®T®. (5.21H)

The work done in the closed cycle is then the sum Woo = Woa + Wap + Wpye
+ Wco given by

Woo = ST VT — ST TN = (§; — §iTMVTP. (5.22H)

i J i
If the cycle is traversed in reverse (Fig. 5.2(b)), then

Woo = _(Sij - Sji)T;A)Ti(B)' (5:23H)
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This result suggests that, if work is required to traverse the loading cycle in one
direction, then work may be extracted by traversing the cycle in the reverse
direction. It is common knowledge however, that it is not possible to extract work
from an inert material by mechanical methods. If it were, the world would be a
different place. To prevent the possibility of extracting work from an inert material,

it is required that C and S are symmetric,

~T

§s=§" ¢=c¢". (5.24H)

There are further restrictions on the tensors of material coefficients and some of
them will be discussed in the next section.
The definition of a linear elastic material includes not only the stress—strain

relation T = C - E(x, t) , but also the symmetry restriction C= CT, (5.7H) and

(5.24H), respectively. The symmetry restriction C= CT is equivalent to the
requirement that the work done on an elastic material in a closed loading cycle is
zero, (5.14H). The work done is therefore an exact differential (see Sect. A.15).
This restriction on the work done allows for the introduction of a potential, the
strain energy U. Since the work done on an elastic material in a closed loading cycle
is zero, this means that the work done on the elastic material depends only on initial
and final states of stress (strain) and not on the path followed from the initial to the
final state. From an initial state of zero stress or strain, the strain energy U is defined
as the work done (5.15H):

U:JT-dE:JE-dT. (5.25H)

The strain energy U may be considered as a function of either TorE, U (T) or

U (E) From (5.25H) and the fundamental theorem of the integral calculus, namely
that the derivative of an integral with respect to its parameter of integration yields

the integrand,

'i“:a{] andE:al{(orTzaUandEzaU) (5.26H)
OE T

OE oT

The following expressions for U are obtained substituting Hooke’s law (5.7H)
into (5.25H) and then integrating both of the expressions for U in (5.25H), thus

1 - 1 A

U=-E-C-EandU=-T-S-T. (5.27H)

NS}
NS}

It is easy to verify that the linear form of Hooke’s law is recovered if the

representations (5.27H) for U are differentiated with respect to TandE, respectively
as indicated by (5.27H). It then follows that (5.26H) or (5.27H) constitutes an
equivalent definition of a linear elastic material. The definition of the most
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important type of non-linear elastic material model, the hyperelastic material, is that
the stress is the derivative of the strain energy with respect to strain, as in (5.26H). In
the non-linear case the strain energy is not specified by an expression as simple as
(5.27H).

Problems

5.10.1. Consider the work done in a closed loading cycle applied to a unit cube of a
linear anisotropic elastic material. The loading cycle this cube will be
subjected to begins from an unstressed state and contains the following
four loading sequences: O — A, the stress in the x; direction is increased
slowly from O to T; A — B, holding the stress in the x; direction, T
constant, the stress in the x, direction is increased slowly from O to TF;
B — C, holding the stress in the x, direction constant, the stress in the X,
direction is decreased slowly from 75 to O; C — O, the stress in the x,
direction is decreased slowly from T to O. At the end of this loading cycle
the object is again in an unstressed state. Show that the work done on each
of these loading sequences is given by

1. A 2 1. o 2 . A
Woa = ESU(TfA)) , Wag = Eszz(TéB)) + SlefA)TéB)
1. A N . 1. ~(B). 2
Wge = —§S11(T§A>) - SlzTEA)TéB), Woa = —Eszz(TéB))
and show that the work done around the closed cycle is given by

Woo = (SZI - Slg)ﬂA)TAéB)‘

Show that one may therefore argue that § =S, .
5.10.2 Show that § = 8 implies C = C .

5.11 Restrictions on the Coefficients Representing
Material Properties

In this section other restrictions on the four tensors of material coefficients are
considered. Consider first that the dimensions of the material coefficients contained
in the tensor must be consistent with the dimensions of the other terms occurring in
the constitutive equation. The constitutive equation must be invariant under
changes in gauge of the basis dimensions as would be affected, for example, by a
change from SI units to the English foot-pound system.

It will be shown here that all the tensors of material coefficients are positive
definite as well as symmetric except for the viscoelastic tensor function G(s) . To
see that the permeability tensor H(p) is positive definite let Vp = n(0p/0w) where
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w is a scalar length parameter in the n direction. The volume flow rate q = ¢p¢v/p,
projected in the n direction, ¢p¢v/p,, is then given by

¢ov-n/p, = —(0p/Ow)n-H-n (5.28D)

In order for the volume flux per unit area q = ¢psv/p, in the n direction to be
pointed in the direction of decreasing pressure, it is necessary to require that

n - H - n>0 for all unit vectors n. (5.29D)

If the fluid flowed the other way, all the mass of the fluid would concentrate itself
at the highest-pressure location and we know that that does not happen. The
condition (5.29D) is the condition that the symmetric tensor H be positive definite.
This condition is satisfied if all the eigenvalues of H are positive.

The tensor of material coefficients for the Newtonian law of viscosity is positive
definite also. To see this, the local stress power tr(T-D) = T:D is calculated using
the constitutive equation (5.11N) and the decomposition (A18) of the rate of
deformation tensor,

D = (1/3)(tr'D)1 + devD, devD =D — (1/3)(tD)1. (5.30N)
The stress due to viscous stresses may be recast in the form

T + pl = ((3X2f1)3)(t'D)1 + 2pdevD, (5.31N)

using (5.11N) and (5.30N). Calculation of the viscous stress power tr{(T + pl1)D}
using the two equations above then yields
(T+ pl):D = ((3)2i3(trD)> + 2ptrdevD)’. (5.32N)

Note that the terms in (5.32N) involving D, and multiplying the expressions
3021 and 2 are squared; thus if the viscous stress power tr{(T + pl)-D} =

(T + p1):D is to be positive it is necessary that

N2pSpS. (5.33N)

The viscous stress power (T + p1):D must be positive for an inert material as
the world external to the material is working on the inert material, not the reverse.
The inequalities restricting the viscosities (5.33N) also follow for the condition that
the 6 by 6 matrix (5.10N) be positive definite. Finally, to see that the tensor of
elastic coefficients is positive definite, the local form of the work done expressed in
terms of stress and strain, T:E = T -Eis employed. Since T = C - E it follows that
T.E=T-E=E-C:E thus from the requirement that the local work done on an
inert material be positive, T:E = T E> 0, it follows that
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E-C-E>0 for all non — zero strains E (5.34H)

. P .. . . ~ ~T
Thus it follows that C is a positive definite symmetric tensor, C = C and

E - C-E > 0 for all non-zero strains E.

5.12 Summary of Results

In this chapter a progressive development of four constitutive relations has been
presented. Beginning with the constitutive idea, restrictions associated with the
notions of localization, invariance under rigid object motions, determinism, coor-
dinate invariance, and material symmetry were imposed. In the development the
constitutive equations were linearized and the definition of homogeneous versus
inhomogeneous constitutive models was reviewed. Restrictions due to material
symmetry, the symmetry of the material coefficient tensors, and restrictions on
the coefficients representing material properties were developed. The results of
these considerations are the following constitutive equations

q=¢pv/p, = —H(p) - Vp(x, 1),H(p) =H"(p), (5.36D)
T=C-E, where C = C" (5.36H)

where H(p) and Care positive definite, and
T = —pl + A(trD)1 + 2uD, (5.36N)

where p is the fluid pressure and / and u are viscosity coefficients (3A 2p1 >2p >),
and

T= J G(s) - D(x, 1 — 5)ds, (5.36V)
=0

s=l

where there are no symmetry restrictions on G(s) All the constitutive equations
developed in this chapter, including Darcy’s law, can be developed from many
different arguments. Darcy’s law can also be developed from experimental or
empirical results for seepage flow in non-deformable porous media; all of the
other constitutive equations in this chapter have experimental or empirical basis.
Analytical arguments for these constitutive equations are presented so that it is
understood by the reader that they also have an analytical basis for their existence.
Darcy’s law is a form of the balance of linear momentum and could include a body
force term; however, such a body force would normally be a constant, and since it is
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only the divergence of q = ¢pv/p, that appears in the theory, such a body force
would not appear in the final theory. In particular, Darcy’s law could also be
developed from the conservation of linear momentum, or from the Navier Stokes
equations that, as will be shown in Chap. 6, is a combination of the stress equations
of motion and the Newtonian law of viscosity (5.6D).
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Chapter 6
Four Linear Continuum Theories

Four linear theories are considered in this chapter. Each has a distinctive and
interesting history. Each one of the theories was originally formulated between
1820 and 1860. Representative of the theme of this chapter are the opening lines of
the Historical Introduction in A. E. H. Love’s Theory of Elasticity (original edition,
1892): “The Mathematical Theory of Elasticity is occupied with an attempt to
reduce to calculation the state of strain, or relative displacement, within a solid ..
object.. which is subject to the action of an equilibrating system of forces, or is in a
state of slight internal relative motion, and with endeavours to obtain results which
shall be practically important in applications to architecture, engineering, and all
other useful arts in which the material of construction is solid.”

6.1 Formation of Continuum Theories

Four linear continuum theories are developed in this chapter. These are the theories
of fluid flow through rigid porous media, of elastic solids, of viscous fluids, and of
viscoelastic materials. There are certain features that are common in the develop-
ment of each of these theories: they all involve at least one conservation principle
and one constitutive equation and for each, it is necessary to specify boundary or
initial conditions to properly formulate boundary value problems. Some of the
continuum theories involve more than one conservation principle, more than one
constitutive equation, and some kinematics relations. Thus this chapter draws
heavily upon the material in the previous chapters and serves to integrate the
kinematics, the conservation principles, and the constitutive equations into theories
that may be applied to physical situations to explain physical phenomena. This is
generally accomplished by the solution of partial differential equations in the
context of specific theories.

The differential equations that are formulated from these linear theories are
usually the familiar, fairly well-understood differential equations, and they

S.C. Cowin, Continuum Mechanics of Anisotropic Materials, 127
DOI 10.1007/978-1-4614-5025-2_6, © Springer Science+Business Media New York 2013
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represent each of the three major types of second-order partial differential
equations—the elliptic, the parabolic, and the hyperbolic. These three types of
differential equations are characteristic of three different types of physical
situations. Elliptic partial differential equations typically occur in equilibrium or
steady-state situations where time does not enter the problem. Laplace’s equation,

oIf  Of Of
2 _ —
vf(x7yvz)_6x2+ay2+azz_07 (61)

and Poisson’s equation, V>f(x, y, z) = g(x, y, z), are typical elliptic partial differen-
tial equations. Parabolic partial differential equations,

of

=0 (6.2)

V3 (x,y,2)

typically occur in diffusion problems, such as thermal diffusion in a heat
conducting material or fluid pressure diffusion in a rigid porous medium as will
be seen in the following section. Hyperbolic partial differential equations,

Vi) =5 63)

often characterize dynamic situations with propagating waves, and are called the
wave equations. A boundary value problem is the problem of finding a solution to a
differential equation or to a set of differential equations subject to certain specified
boundary and/or initial conditions. The theories developed in this chapter all lead to
boundary value problems. Thus, in this chapter, conservation principles, constitu-
tive equations, and some kinematics relations from the previous chapters are
employed to formulate continuum theories that lead to physically motivated and
properly formulated boundary value problems.

6.2 The Theory of Fluid Flow Through Rigid Porous Media

The theory of fluid flow through rigid porous media reduces to a typical diffusion
problem; the diffusion of the pore fluid pressure through the porous medium. The
solid component of the continuum is assumed to be porous, rigid, and stationary,
thus the strain and rate of deformation are both zero. The pores in the solid cannot
be closed,—most of them must be open and connected; so it is possible for the pore
fluid to flow about the medium. The assumption of an immobile rigid porous
continuum is not necessary as the constitutive equation for the porous medium
may be combined with the equations of elasticity to form a theory for poroelastic
materials (Chap. 8). Recall that p; denotes the density of the fluid in the pores of the
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porous medium, p,, a reference value of density, v the velocity of the fluid passing
through the pore, ¢ the porosity of the medium, and q the volume flux of fluid per
unit area, q = ¢pv/p,, through the pores. This constitutive idea is that the fluid
volume flux q = ¢psv/p, at a particle X is a function of the pressure variation in the
neighborhood of X, N(X). The constitutive relation for the rigid porous continuum
is Darcy’s law. Darcy’s law relates the fluid volume flow rate, q = ¢p¢v/p,, to the
gradient (Vp) of the pore pressure p,

q = ¢pv/p, = —H(p) - Vp(x,1),H(p) = H' (p), (5.36D) repeated

where the symmetry in material tensor H has been shown in Chap. 5 to hold for
material symmetries greater than monoclinic. The conservation law that is com-
bined with Darcy’s law is the conservation of mass (3.6) in a slightly rearranged
form. In (3.6) the density p is replaced by the product of the porosity and the fluid
density, ¢py, in order to account for the fact that the fluid is only in the pores of the
medium, and the resulting mass balance equation is divided throughout by p,, thus

1 9¢p;

o or + V- (bpsv/p,) = 0. (6.4)

In the case of compressible fluids it is reasonable to assume that fluid is barotropic,
that is to say that the fluid density pg4 is a function of pressure, pgy = py(p), in
which case (6.4) may be written as

— v q=0, (6.5)

where ¢psv/p, has been replaced by q and where it has been assumed that the
porosity ¢ is not a function of time. Substituting (5.36D) into (6.5), and multiplying
through by the inverse of the factor multiplying the partial derivative of the pressure
p with respect to time, a differential equation for the pore pressure is obtained,

dp _ (p, Op
at<¢am>v”ﬂ'vm' (6.6)

If it is assumed that H and g—é’f are constants, and if the viscosity u of the pore

fluid is introduced by the substitution

H=1K, 6.7)
u
then
op 1
i ;K : (Ve V)p, (6.8)
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where

¢ 9pr

- 6.9
P, Op ©

T=Uu

is a material constant of dimension time. The time constant T depends upon the
porosity of the medium and the viscosity and barotropic character of the pore fluid.
The constant intrinsic permeability tensor K is of dimension length squared; it
depends only upon the arrangement and size of the pores in the medium and, in
particular, is independent of the pore fluid properties. The differential equation (6.8)
is a typical diffusion equation for an anisotropic medium; in the case of an isotropic
medium the differential equation (6.8) becomes

op k_,
—_— == 6.10
T TV 12 (6.10)

where K = k1. Mathematically equivalent differential equations for anisotropic
and isotropic heat conductors are obtained from the Fourier law of heat conduction
and the conservation of energy. The pore fluid density py satisfies the same
diffusion equation (6.8) as the pore fluid pressure p,

Jps 1
— =-K: 6.11
ot T (V®v)pf7 ( )

aresult that follows from the assumed barotropic character, pg = p4(p), of the pore
fluid, and the assumption that %’fis constant.

The boundary conditions on the pore pressure field customarily employed in the
solution of the differential equation (6.8) are (1) that the external pore pressure p is
specified at the boundary (a lower pressure on one side of the boundary permits flow
across the boundary), (2) that the pressure gradient Vp at the boundary is specified
(a zero pressure gradient permits no flow across the boundary), (3) that some linear
combination of (1) and (2) is specified. The complete theory for the flow of a fluid
through a rigid porous medium consists of the differential equation (6.8) specified
for an object O and boundary and initial conditions. The boundary conditions
include the prescription of some combination of the pressure and the mass flux
normal to the boundary 0O as a function of time, n-q = ¢ pr n-v(x*, 1)/p, =
— (1/p) nK-Vp(x*, 1), x* C 00, thus

— (cr/wn - K- Vp(x',1) + cap(',1) = (', 1), C IO (6.12)

where ¢, and ¢, are constants and f{x*, ¢) is a function specified on 0O. In the case
when ¢ is zero, this condition reduces to a restriction of the boundary pressure and,
in the case when c; is zero, it is a restriction on the component of the mass flux
vector normal to the boundary.
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The basic pore fluid flow problem described by (6.8) and (6.12) may be
simplified by specifying the type of material symmetry. If the material has
orthotropic symmetry, employing a representation from Table 4.3 and the principal
coordinate system for orthotropic symmetry, (6.8) and (6.12) become

dp Ky ’p Kndp Ky dp :
ot o ot 0 ot 0x

ci Op dp dp .
U (anll {8x1 }x* * nszz{axz}x* * n3K33{0X3}x*> ey )

=f(x*,1),x" C 00, (6.14)

n o, (6.13)

and, if the material is isotropic, it follows from a representation in Table 4.3 that
(6.13) reduces to (6.10) and (6.14) may be specialized as follows:

— (c1/WKn - Vp(x*, 1) + c2p(',1) = (", 1), C IO (6.15)

The coordinate system may be rescaled so that the differential equation and
boundary conditions are those of distorted heat conduction objects with isotropic
material symmetry. To accomplish this the coordinates x;, x, and x; are rescaled by

x—( L)x = (W/L)x z—(,/i)x where
- K1 LY = K» 254 — K33 3, (616)

K = K11K2»K3;3.

Then the differential equation (6.10) for an isotropic medium applies in the
distorted or stretched O, and the boundary conditions (6.14) are

0 0 0,
_icl<nlka“{8§} +n2\/kK22{81;} +n3\//<K33{8l:} )—&-CZP(X*J)

= f(x",1),x" C distorted JO.
(6.17)

In this restatement of the anisotropic problem one trades a slightly more com-
plicated differential equation (6.8) for a simpler one (6.10) and obtains the slightly
more complicated boundary condition above.

Example 6.2.1

A layer of thickness L of a rigid porous material is between two fluid reservoirs both
containing the same fluid at the same pressure p,,, as illustrated in Fig. 1.8. Let x; be
a coordinate that transverses the perpendicular distance between two layers; one
reservoir is located at x; = L and the opening to the other reservoir is located at
x; = 0, although the fluid level in the second reservoir is below x; = 0 to maintain
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the exit pressure of p,. At t = 0 the pore fluid pressure in the reservoir at x; = L is
raised from p, to pgh + p, and held at pgh + p, for all subsequent times, co > ¢
> 0. The pressure at the entrance to the second reservoir at x; = 0, or the exit from
the layer, is held at p,, for all times, co > t > —oo. (a) Show that the steady-state
solution (that is to say after the startup effects of the pressure changes at t = 0 have
vanished) is a linear variation in the pore fluid pressure from pgh + p,atx; = L to
Po at x; = 0. (b) How does the pressure p(xi, t) in the layer evolve in time to the
linear long-term steady-state solution?

Solution: The problem is one-dimensional in the direction of x;. The one-
dimensional form of the differential equation (6.8) is

op _Ku &p
—=— . (u)unsteady
ot T Ox?

In the special case of steady states it reduces to

2
g—xl; =0. (s)steady

The solution to the steady-state equation (s) subject to the condition that p = p,
at x; =0 and p = pgh + p, at x; = L for all ¢ for all times, co >t > > 0 is
p(xy) = pgh(x1/L) 4+ p.. This result represents a linear variation in the pore fluid
pressure from pgh + p, at x; = L to p, at x; = 0. In the case of unsteady flow a
solution to the differential equation (u) for the unsteady situation is sought, subject
to the conditions that p = p, everywhere in the medium and on its boundaries for
t < 0, that p = p, at x = 0 for all times co >t > 0 and p = pgh + p, at x; = L
for all oo > ¢ > 0. Before solving the differential equation (u), it is first rendered
dimensionless by introducing the dimensionless pressure ratio P, the dimensionless
coordinate X, and the dimensionless time parameter T, thus

— Kiit
P=Po x -2 and T =112
pgh L L7

respectively. These equations are solved for p, x;, and ¢,
Lt
p = pghP +p,,x; =LX,and t = K—T,

11

and substituted into the differential equation (u) for the unsteady situation which
then converts to the dimensionless version of this differential equation

op _op
oT  ox?’
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Fig. 6.1 The temporal evolution of the pressure distribution in a layer of rigid porous material.
The vertical scale is the dimensionless pressure P with a range of O to 1. The front horizontal scale
is the dimensionless coordinate X, also with a range of O to 1; it traverses the porous layer.
The dimensionless time constant 7 is plotted from O to 0.2 in the third direction. The purpose of the
plot is to illustrate the evolution of the steady state linear distribution of pressure across the layer of
rigid porous material

Note that the steady-state solution p(x;) = pgh(x/L) + p, becomes P = X in
the notation of the dimensionless variables. The solution to this dimensionless
differential equation for # > O subject to these boundary and initial conditions is

=00

P=X— (=1)" e ™7 sin(nnX).

SEES)
=

1
n=1 n

Substitution of this solution back into the differential equation above may be used
to verify that the solution is a solution to the differential equation. Note that the
steady-state solution P = X is recovered as ¢ tends to infinity. The temporal evolu-
tion of the steady-state linear distribution of pore fluid pressure across the layer of
rigid porous material is illustrated in Fig. 6.1. The vertical scale is the dimensionless
pressure P with a range of O to 1. The front horizontal scale is the dimensionless
coordinate X, also with a range of O to 1; it traverses the porous layer. The
dimensionless time constant T is plotted from 0 to 0.2 in the third direction.

Problems

6.2.1 Show that the pore fluid density p, satisfies the same differential equation for
diffusion, equation (6.11), as the pore fluid pressure p (6.8).

6.2.2 Verity that the form of the rescaled equations (6.10) and (6.17) follow from
(6.13) and (6.14). Describe the shape of a homogeneous orthotropic material
object O that is in the form of a cube after it is rescaled and distorted so that
the differential equation is isotropic.
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P _ &P 404
JaT — ox?

the prescribed boundary and initial conditions that p = p,, everywhere in the
medium and on its boundaries for #+ < 0, that p = p, at x = 0 for for

t€[—o0,x]and p = pyatL = hfort € [0, oo], is given by

6.2.3 Show that the solution to the dimensionless differential equation

2 n=oo

P=X—-- Z ~(=1)"'e ™7 sin(nnX).
T n=1 n

6.2.4 Record the explicit matrix form for the constitutive relation for the Darcy
medium (5.6D).

6.2.5 Record the explicit matrix form for the constitutive relation for a
Darcy porous medium in an inhomogeneous transversely isotropic material.

6.2.6 Record the explicit matrix form for the constitutive relation for Darcy’s law
in a homogeneous isotropic material.

6.3 The Theory of Elastic Solids

An overview of the theory of linear elastic solids can be obtained by considering it
as a system of fifteen equations in fifteen scalar unknowns. The fifteen scalar
unknowns are the six components of the stress tensor T, the six components
of the strain tensor E, and the three components of the displacement vector u.
The parameters of an elasticity problem are the tensor of elastic coefficients C, the
density p, and the action-at-a-distance force d, which are assumed to be known. The
system of fifteen equations consists of stress—strain relations from the anisotropic
Hooke’s law,

T =C-E,where C = CT.(5.7H) and (5.24H) repeated
the six strain—displacement relations,
E=(1/2)(V@u)" +V®u),(2.49) repeated
and the three stress equations of motion,
pi=V -T+pdT=T". (6.18)

This form of the stress equations of motion differs from (3.38) only in notation:
the acceleration is here represented by u rather than X, a result that follows from
(2.20) by taking the time derivative twice and assuming that the material and spatial
reference frames are not accelerating relative to one another. The system of fifteen
equations in fifteen scalar unknowns may be reduced to a system of three equations
in three scalar unknowns by accomplishing the following algebraic steps: (1) sub-
stitute the strain—displacement relations (2.49) into the stress—strain relations
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(5.7H), then (2) substitute the resulting expression relating the stress to the first
derivatives of the displacement into the three stress equations of motion (6.18). The
result is a system of three equations in three scalar unknowns, the three components
of the displacement vector. This algebraic simplification will be accomplished in
the case of an isotropic material after Hooke’s law for isotropic materials is
developed in the next paragraph.

The stress—strain and strain—stress relations of the anisotropic Hooke’s law,
(5.7H) and (5.24H), respectively, are developed next. It has been shown that the
tensor of elastic material coefficients C is symmetric and positive definite, as is its

inverse S the compliance tensor of elastic material coefficients. The strain—stress
relations (as opposed to the stress—strain relations) are

E=S - T,S= C_l, (5.12H) repeated

The form and symmetry of C and § are identical for any material symmetry and,
for the material symmetries of interest, the form appropriate to the material

symmetry is given in Tables 4.4 and 4.5. The notation employed thus far for C

and S, the notation that allows their representation as second order tensors in six
dimensions, is not the traditional notation. To obtain the traditional notation,
Hooke’s law (5.7H) is expressed in its matrix format,

T, Cil Ci2 €13 Ci4 Ci5s Cio| [Ey
T, Ca Cm G G Cos G | | En
Ts _ G311 Cn C33 O G35 G | | E3 6.19)
T, Gyt Can Ca3 Cag Cus Cas | | Es |’ ’
Ts Gsi Csy Cs3 Csa Css Cse | | Es
| T | LGt Cer Co3 Coa Cos Cool LEg

and then converted to the traditional three-dimensional component representation
by employing the relations (A163),

[ Tu ] [ en e s V2w V205 V26| [ En
Ty c n e V2 V205 V2 Ex
Tz | | o €23 ez V2e V25 V23 E33

V2753 N V2cis V2 V2 2cm 2css 2c46 V2Ey |

V2T V2eis V2cs V2cs 25 2055 2cs6 V2Ei;

| V2T | | V2ci6 V2% V2ci%  2cs6  2cs6 266 | L V2E1 |

(6.20)

and introducing the matrix coefficients ¢, i,j = 1, ..., 6, defined in Table 6.1. It is
easy to verify that the matrix equation (6.20) may be rewritten as
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Table 6.1 The elasticity 1 )

3 1 2 3

and compliance in different - ~

notations Ciin Cl1 C1 St S11 S11
Croo (&%) (n 82220 8§22 Szz
C3333 €33 (33 S3333 8§33 Sas
Crix C12 1o Si122 S12 Slz
Cris3 C13 13 S1133 513 .§|3
Cao33 €23 (n 82233 8§23 .§23
Cas3 Cas e S$2323 *Sas 18w
Ciziz Css 1655 S1313 Lsss %S‘55
Cin2 C66 166 Si212 L 566 %S‘Gs
Ci323 Cs4 1854 S1323 154 %§54
Cizpn Cs6 1856 S1312 1856 %S‘%
Ci223 Ce4 184 S1223 3564 %364
Cazii Ca1 \%ZCAM Sa11 %S41 %SAM
Ciann Cs1 %551 Si311 %S51 \%S}l
Crann Co1 %661 Si211 %Sm \%SAM
Cazm Ca2 % Can $2322 % S42 % S
Ciax Cs52 %5‘52 S1322 Lss \/Liﬁsz
Ciax Co2 %662 S1222 1562 \/% 62
Ca333 C43 %6‘43 $2333 Lsus \/% 43
Cisss Cs3 %553 S1333 1553 \/% S5
Ci233 Ce3 % Ce3 S1233 Lse3 \/%5:63

Column 1 illustrates the Voigt notation of these quantities as
fourth order tensor components in a three-dimensional Car-
tesian space. Column 2 represents the Voigt matrix or double
index notation. Column 3 illustrates the Kelvin-inspired
notation for these quantities as second order tensor
components in a six-dimensional Cartesian space

Ty i1 Cr2 €13 Ci4 €15 Cl Eq

Ty Cl2 € €23 C24 C25 C26 Ex

Ts3 | _ |ci3 c3 €33 Caa €35 C36 E33 621)
T Cla €4 C34 Caq C45 Ca6 | | 2Ep3 | '
T3 C15 €25 €35 C45 Css Cse | | 2E13

Ty, Cle C26 C36 Ca6 Cs6 Co6 | | 2E12

This matrix represents the classical notation of Voigt (1910) for the anisotropic
stress—strain relations. Unfortunately the matrix ¢ appearing in (6.21) does not
represent the components of a tensor, while symmetric matrices C and S do
represent the components of a second-order tensor in a 6-dimensional space.



6.3 The Theory of Elastic Solids 137

A chart relating the component notations of the matrix ¢ (and its inverse s) to the
component notations for Cand S is given in Table 6.1. Table 6.1 also relates these
coefficients to the traditional notation for the representation of these tensors as
fourth-order tensors in a three-dimensional space, a notation that is not employed in
this text. The various components in Table 6.1 are either equal or differ by multiples
of \2 from each other. In the case of orthotropic symmetry it follows from Table 4.4
and (6.19) through (6.21) that

[T11 7] fcir ci2 ¢33 0 0 07T En
1> cp ¢ 3 0 0 O Ey
T c c c 0 0 0 E
B _ |3 3 C3 33 7 (6.220)
T23 0 0 0 Cq4 0 0 2E23
T13 0 0 0 0 Cs5 0 2E13
_T12_ L 0 0 0 0 O Ce6 | 2E12_
or
Ty cit ci2 ci3 | | En
Ty | =|c2 cn 3| |En]|, (6.22b)
T33 ci3 3 33 | B33

Ty = 2c44E23, T3 = 2¢55E13, T12 = 2c66E12,

and, in the case of isotropic symmetry, it follows again from Table 4.4 and (6.19)
through (6.21) that

[T11 ] [A+2u A A 0 0 07T Eu T
Ty A 424 4 0 0 0| En
| | i Aot 000 0| By | 623)
Ty 0 0 0 uw 0 0 2E»3
T3 0 0 0 0 u 2E3
LT> L O 0 0 0 0 ull2E;]

where the coefficients ¢y and ¢, are expressed in terms of the Lame” moduli of
elasticity, A and y; ¢;; = 4 + 2uand ¢, = A (note that ¢;; = A + 2 and ¢1, = 4).
In equation (5.11N) the Greek letters / and u are also used to denote the viscosity
coefficients. This dual use for these Greek letters will continue throughout the text
as they are traditional notations in elasticity theory and in viscous fluid theory. The
reader should keep in mind that the significance of A and u will depend upon
context, viscous fluid or elastic solid. Developing the six scalar equations that come
from the matrix equation (6.23) in algebraic analogy with the transition from (5.8N)
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Table 6.2 The isotropic elastic constants expressed in terms of certain pairs of other isotropic
elastic constants

A u E v k
Ay 1 u u w32+ 2u) ) 34+ 2pu
At 2(A+ ) 3
Av = A1 —2v) A1 —=v)(1—2v) u A(1—v)
3y v 3y
ok ®m 3(k — 2) 9%k(k — 2) A u
2 3k — 2. 3k — 2
wE  (2u—E)u " . (E —2p) HE
(E —3p) 2u 33u—E)
v 2uv u 2u(l + v) u 2u(1 +v)
1—2v 3(1-2v)
Wk 3k—2u n ki 3k — 2 n
3 3+ u 6k + 21
E v vE E u | E
(1+v)(1—2v) 2(1+v) 3(1—2v)
E.k  3k(3k—E) 3kE . (Gk—E) ™
% — E % —E 6k
vk 3kv/(1+ v) 3k(1—2v)  3k(1—2v) m u
2(1+v)

to (5.11N), a result algebraically equivalent to (5.11N) with D replaced by E then
follows:

T = A(ttE)1 + 2uE. (6.24)

For an isotropic linear elastic material there are just two independent elastic
constants. These two constants are represented, for example, by the Lamé moduli 4
and p. Another set of isotropic elastic constants in common use are the Young’s
modulus E, the shear modulus G (=u), and Poisson’s ratio v, where the three
constants are related by 2G(1 + v) = E so that only two are independent. Any single
isotropic elastic constant can be expressed in terms of any two other isotropic elastic
constants as documented by Table 6.2, which contains expressions for most of the
usual isotropic elastic constants in terms of different pairs of the other isotropic elastic
constants. A frequently employed isotropic elastic constant is the bulk modulus £,
which represents the ratio of an applied mean hydrostatic stress, —p = (tr'T)/3, to a
volumetric strain. Recall that trE represents the volumetric strain per unit volume.
The relationship between volumetric strain per unit volume and the mean hydrostatic
stress, —p = (tr'T)/3, is obtained by taking the trace of (6.24), thus —3p = (34 + 2u)
trE. The bulk modulus £ is then given by the following different representations,

(6.25)
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the equivalence of the last equality for the bulk modulus & may be seen from the last
column of Table 6.2. The isotropic strain—stress relations are obtained from (6.24),
thus

E = é{(l +v)T —v(rT)1}. (6.26)

Reverting briefly to the case of orthotropic symmetry, the strain—stress relations
may be written in the form

1 - -y
Ey Ey E Es Ty
—Vi2 1 —V3
E = — T 6.27
2 E, E £ 2 (6.27)
Ess —vi3 —va3 1 T
Eq E> E3
Eyy— Ty B = T3 T,

2Go3 26137 "% T 2Gy,

where Ey, E,, E; represent the Young’s moduli in the xy, x,, x5 directions; G»3, G371,
G, represent the shear moduli about the x;, X,, x5 axes and v,3, V31, V12, V32, V13, and
v, are Poisson’s ratios. The Poisson ratio v, represents the strain in the x; direction
due to the normal strain in the x, direction and where symmetry of the compliance
tensor requires that

—Vi3 _ =V —Vi3 _ —V31 —V23  —V3
E, Es | E E; ' E E;

(6.28)

Biomedical Historical Note: Thomas Young (1773—-1829) was a child prodigy, a well
educated physician, a physicist and a student of languages who attempted to decipher
Egyptian hieroglyphics and who translated the Rosetta Stone. Although he is well known
for his concept of the modulus of elasticity, he did significant work in explaining how the
eye functioned. He argued that the lens of an eye changed shape to focus light as necessary.
He suggested that the retina responded to three principal colors that combined to form all
the other colors. More generally he considered the nature of light and discovered the
principle of interference of light.

As noted in the introductory paragraph of this section, the system of 15 equations
in 15 unknowns can be reduced to a set of three equations in three unknowns or,
equivalently, to a single vector equation in three dimensions. The resulting
equations are known as the Navier equations of elasticity and they are similar in
form to the Navier—Stokes equations of viscous fluid theory developed in the
following section. To obtain these equations for an isotropic material one
substitutes (2.49) into (6.24) and then places the modified (6.24) for the stresses
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in terms of the components of the displacement vector into the equations of motion
(6.18), thus

pii = (2 + wW)V(V -u) + uVu + pd. (6.29)

This is the Navier equation. If the Navier equation is solved for the displacement
field u, then the strain field E can be determined from (2.49) and the stress field T
from (6.24). The resulting stress field will satisfy the stress equations of motion
(6.18) because (6.29) is an alternate statement of the equations of motion.

Consider now the special case when one chooses the stress (or the strain) as the
unknown and the displacement is to be calculated last from the determined strain
tensor. In this case one must consider the strain—displacement relations (2.49) to be
a system of first-order partial differential equations to be solved for the components
of the displacement vector u given the components of strain tensor E (see Sect. 2.4).
The conditions of compatibility in terms of strain, (2.53), (2.54), or (2.55), are a set
of necessary and sufficient conditions that the first-order partial differential
equations (2.49) must satisfy in order that (2.49) have a single valued and continu-
ous solution u.

The general problem associated with the basic system of fifteen equations is to
find the fields T(x, #), E(x, 1), and u(x, ¢) for all x € O and ¢ € [0, ¢] given a

particular object O of density p and elastic coefficients C (or, in the case of isotropy,
A and ) acted upon by an action-at-a-distance force d and some surface loading or
specified displacements at the boundary during a specified time interval [0, #]. Such
problems are called the initial-boundary value problems of the theory of elasticity
and they are classified in several ways. First, they are classified as either
elastostatic, elastoquasi-static, or elastodynamic. The elastostatic boundary value
problems are those in which T(x), E(x), and u(x) are independent of time, and the
inertia term in the stress equations of motion, pu, is zero. The elastoquasi-static
problems are those in which T(x, 1), E(x, 1), and u(x, f) are time dependent, but the
inertia term in the stress equations of motion, pii, is small enough to be neglected.
The elastodynamic initial-boundary value problems are those in which T(x, ),
E(x, 1), and u(x, ) are time dependent and the inertia term in the stress equations of
motion, pi, is neither zero nor negligible.

The formulation of boundary value problems is considered next. The boundary
value problems are classified as displacement, traction, and mixed or mixed—mixed
boundary value problems. An object O with boundary 0O is illustrated in Fig. 6.2.
The total boundary of the object O is divided into the sum of two boundaries, the
displacement boundary 00, over which the boundary conditions are specified in
terms of displacement and the traction boundary 0O; over which the boundary
conditions are specified in terms of the surface tractions t. Note that 00; N 00,
= @ and 00; U 00, = 00. It is required for some problems to further subdivide
the boundaries to include the situation in which the normal tractions and transverse
displacements, or transverse tractions and normal displacements, are specified over
portions of the object boundary, but that is not done here. The rigid wall indicated in
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Fig. 6.2 An object denoted
by O whose total boundary is

divided into traction and

displacement boundaries /

denoted by 00, and 00,,, o

00;N 00, = @, 00, 20,

U00, = 00, respectively a0,
=

pd

Fig. 6.2 is intended to suggest a boundary upon which the boundary condition on
the displacement is specified and the other surface is intended to suggest a boundary
on which the (zero or nonzero) surface tractions are specified.

In the displacement boundary value problem the continuous surface displace-
ment u(x*, f) is specified on the boundary 0O for [0, 7], x* € 00, where [0, 1] is the
time interval for which a solution is desired, and the continuous initial displacement
field u°(x) is specified for all x € O. The displacement boundary value problem is

the following; given a particular object O of density p and elastic coefficients C
(or, in the case of isotropy, 4 and p) acted upon by an action-at-a-distance force d,
determine the fields u(x, #), T(x, ), E(x, ) which satisfy the system of equations
(2.49), (6.18) and some form of Hooke’s law (5.7H), the initial conditions

u(x,0) = u(x),a(x,0) = a(x),x € O, (6.30)
and the displacement boundary condition
u(x,t) = u"(x*,1),x" € 90,t € [0,1]. (6.31)

In the traction boundary value problem the specification of surface displacement
(6.31) is replaced by the specification of the surface traction t(x*, ¢) for all x* € 00O
and r € [0, 7], thus

t(x",7) = T(x",)n,nLO0,x" € 90,1t € (0,1, (6.32)

where n is the unit exterior normal to the boundary. In a mixed boundary value
problem there is a portion of the boundary on which the displacements are specified
and a portion of the boundary on which the surface tractions are specified. These
portions of the boundary are denoted in Fig. 6.2 by 00,, and 00y and they are non-
empty, non-intersecting portions of the boundary whose union is the entire bound-
ary 00, 00; N 00, = @, 00; U 00, = 00. The typical mixed-boundary value
problem must satisfy the condition (6.31) on 00, and the surface traction condition
(6.32) on 0O The mixed-mixed boundary value problem of elasticity is
characterized by boundaries where the two types of boundary conditions appear
on the same portion of the boundary. For example the normal displacement is
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specified and the shear stress is specified on the same portion of the boundary, or the
normal stress and the tangential displacement are specified on the same portion of
the boundary. The mixed—-mixed boundary value problems are complicated and are
not considered here.

Any solution to an elasticity problem is unique. That is to say that, for a specific
object of a specified material acted upon by a specified action-at-a-distance force
and subject to specific boundary conditions, there is one and only one solution to the
set of 15 equations in 15 unknowns. The common strategy for proving uniqueness
theorems is to assume non-uniqueness, that is to say assume there are two, and then
prove that the two must be equal. The uniqueness theorem for linear elasticity is
proved using this strategy. Assume that there are two solutions u(l)(x, 1), T(l)(x, 1),
E(l)(x, 1), and u(z)(x, 1), T(Z)(X, 1), E(z)(x, t), to the same elasticity problem, that is to
say a problem in which the object, the material, the action-at-a-distance force, and
the boundary conditions to which the object is subjected, are all specified. The
linearity of the system of equations for linear elasticity permits one problem
solution for a specified object and material, action-at-a-distance force, traction
boundary conditions, and displacement boundary conditions, to be superposed
upon a second solution for the same specified object, material and displacement
boundary conditions, but for a different action-at-a-distance force, different traction
boundary conditions and different displacement boundary conditions. Thus, for
example, two solutions, u“)(x, 1), T(”(x, 1), E“)(x, t) and u(z)(x, 1), T(Z)(x, 1),
E(z)(x, 1), for the same specified object and material, but different traction boundary
conditions, displacement boundary conditions and action-at-a-distance forces, may
be added together, u(l)(x, tH+ u(z)(x, 1), T(l)(x, 1 + T(Z)(x, 1), E(l)(x, 1 + E(z)(x, 1),
to obtain the solution for specified object and material, for the traction boundary
conditions and displacement boundary conditions and action-at-a-distance force that
are the sum of the two sets of traction boundary conditions, displacement boundary
conditions and action-at-a-distance forces. In the proof of uniqueness the principle
of superposition is used to define the difference problem obtained by subtracting the
two (possibly different) solutions u(l)(x, 1), T(l)(x, 1), E(l)(x, t), and u(2)(x, 1),
T(z)(x, 1), E(z)(x, 1), to the same elasticity problem. The difference problem to
which the fields u'P(x, H—u®(x, 1), TV, N—T(x, 1), and EV(x, )—EP(x, )
are a solution is thus a problem for the same specified object and material but for a
zero action-at-a-distance force and for zero stress boundary conditions on 00, and
zero displacement boundary conditions on 00,. The objective is to obtain the
solution to this difference problem by considering the work done on a linearly elastic
object by the surface tractions and the action-at-a-distance force does this most
efficiently. The relation between the work done by the surface tractions and by the
“action-at-a-distance force” on the object may be expressed as an integral over the
object of the local work done per unit volume, trT:E (see (3.53) and (3.57)):

/ t-uda—|—/pd-udv=/tr{T-E}dv:/T:Edv:/'i‘~f§dv.
20 0 0 ) 0
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The local work done is tr'T-E, which also has the representation T : E = T-E
(see (3.57) and (A164)). Partitioning the two types of boundaries being considered
here, (6.33) may be rewritten as

/t-uda+/ t~uda+/pd-udv:/T-Edv. (6.34)
90, 90 o (0]

u

Each of the three integrals on the left hand side of (6.34) is zero. The first one is
zero because the difference in boundary surface tractions is zero for the difference
problem. The second one is zero because the difference in boundary surface
displacements is zero for the difference problem. The third one is zero because
the difference in “action-at-a-distance” forces is zero for the difference problem.
Since the left hand side of (6.34) is zero and since Hooke’s law relates the stress and
strainby T = C - E, it follows that tr(T-E) = T-E =E- C-E; thus for the special
case of the difference solution,

/ (E-C-E)dv=0. (6.35)
o

The final step in this proof of uniqueness is to recall that Cis positive definite;
E - C-E>0 for all nonzero strains E, (5.34H). There is a contradiction between
(6.35) and the requirement that C be positive definite, E-C. E>0, everywhere in
the object unless E = 0. This shows that the strain, and therefore the stress, in the
difference solution is zero. It does not show that the displacement is zero however.
If fact, the displacement may represent any rigid object motion. Thus a solution to a
linear elasticity problem is only unique up to a rigid object motion.

The uniqueness theorem of linear elasticity theory is a very important tool in the
solution of elasticity problems. From it, the elasticity problem solver knows that if a
candidate solution satisfies all the boundary conditions as well as all the 15
elasticity equations, then the candidate solution is a unique solution to the problem.
In particular, it allows the elasticity problem solver to guess candidate solutions to
elasticity problems, or to make partial guesses. The literature of elasticity does not
describe these guessing or semi-guessing methods as guessing, rather it uses more
dignified terminology like “the semi-inverse method.” The following example is an
illustration.

Example 6.3.1

Consider the problem of pure bending of a beam of orthotropic elastic material.
The long axis of the beam coincides with the x3 direction and the bending moment
is applied about the x; axis (Fig. 6.3). The coordinate system has its origin at the
centroid of the cross-sectional area and the 1, 2 axes coincide with the principal
axes of the area moment of inertia. Determine formulas for the stress components in
terms of the applied moment M, and the geometric properties of the cross-section.
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Fig. 6.3 A beam subjected to
a pure bending loading. The
bending moment M, is
applied about the 1-axis.
There are no other loads.

The origin of coordinates is at
the centroid of the cross-
section. The coordinate axes
coincide with the principal
axes of the area moment of
inertia 1

Solution: To obtain this solution, it is necessary to account only for the bending
moment about the x; axis, M, and the fact that the lateral surfaces of this beam, that
is to say the surfaces other than the ends normal to the x5 axis, are unloaded, that is
to say that there are no surface tractions applied. Because the lateral boundaries are
unloaded we are going to guess that stresses that could act on the lateral boundaries
are zero everywhere in the object, thus

T W=Tn=Tnr=Ti=Ty3=0.

The only nonzero stress is then the axial stress 7T533. The moment M| must then be
balanced by a distribution of the axial stress 733 in the beam. In general
T33 = T33(x1, X2, x3); however this may be reduced to T35 = T33(x1, x,) by observ-
ing that 733 must be independent of x3. The argument for T35 being independent of
x3 is a physical one. Consider a free object diagram at any location along the length
of the beam in Fig. 6.3. The reactive force system at that (any) location must be
equal to the moment M, applied at the end. Thus the stress distribution must be the
same along the entire length of the beam. The only nonzero strains due to T35 are
then computed from (6.27),

—Vi13 —V23

Eyi(x1,x) = T33(x1,X2), Exn(x1,X2) = T33(x1,X2), E33(x1,x2)

1
=E—3T33(x1yxz)-

When the compatibility equations (2.54) are applied to these three strains, the
following differential equations for 753 are obtained:

T3 B O’T33 B OTs3 _
ox3 O Ox\0xy

The solution to this system of differential equations is T35 = ¢, + ¢1X; + X2,
where ¢, ¢1, and ¢, are constants. The next step in the solution to this problem is to
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require that the stress distribution 733 satisfy the conditions that the axial load on the
beam is zero, that the bending moment about the x; axis is equal to M, and that the
bending moment about the x, axis is equal to 0. The respective integrals in the 1,
2 plane over the cross-sectional area are given by

/T33dA:O,/T33X2dA:M1,/T33X1dA:O.
A A A

The second integral equates M, to the couple generated by the integral of the
moment of the stress T35 times the area patch at a location x,. The positive direction
is determined by the right hand rule. Substituting T33 = ¢, + c1X] + X, into
these three integrals, it follows that

L‘O/dA+L’1/)C1dA+C2/X2dA:O,CO/XQdA+C‘1/X1X2dA+C2/x%dA:Ml
A A A A A A

co/xldA—&-cl/x%dA—Fcz/xlxsz:O.
A A A

These results are simplified by noting the cross-sectional area A, the x;, i = 1, 2,
centroid of the cross-sectional area, denoted by ¥;, and the components of the area
moment of inertia tensor (A134), 111, I, I15:

1
A:/dA,)?i:—/XidA7111 :/X%dA7122:/X% dA,]]QZ—/X]XZ dA.
A A A A A A

Since the origin of coordinates was selected at the centroid, it follows that X; are
zero, thus ¢, = 0. Then, since the coordinate system has been chosen to be the
principal axes of the area moment of inertia, it follows that the product of inertia I,
vanishes, thus ¢, = M,/I;; and ¢; = 0. It follows that T35 = M x,/I;.

The solution of the stresses is then Ty = To, = T1o = T13 = T»3 = 0 and
T3 = M x,/I;;. The solution for the strains is

—vizMix; —va3Mx; Mix>
EWyw=—rr—"En=——"—"E3=—""Ep=E3=E3=0,
E1111 E2111 E3111

and the solution for the displacements may be obtained from the solution for the
strains and integration of the strain—displacement relations (2.49). This solution
satisfies each of the 15 equations of elasticity and the boundary conditions specified
for this problem; thus by the uniqueness theorem, it is the unique solution to this
bending problem.

Example 6.3.2
For the problem considered in Example 6.3.1, determine the solution for the
displacement field u(x, #) from the solution for the strains,
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—vizMx; —VasMx; Mixy
Ey =¥ o TR g Epp = E;y = Eypy =0,
1 En 2 E, 33 = B, En 13 23

by integration of the strain—displacement relations (2.49).

Solution: From this strain solution and the strain—displacement relations (2.49), a
system of six first-order partial differential equations for the components of the
displacement vector are obtained:

6”1 o —V13M1)C2 81,{2 - —V23M1X2 8143 - M]Xz 8”1 6142 o 8u1 81,{3
Bxl o E 111 ’8)(2 o EzIU 7((9)(3 _E3111’8x2 Bxl o 8)(3 axl
8”3 8u2

=0,—+—-——=0.
8)C2 8X3

Integration of the first three of these equations yields

—VHM]XQX] —V23M1X%
Uy = ———————+wi(X2,X3), Uy = ————= + Wa(X1,X3), U3
1 EilL, +wi(x2,x3), u2 T 2 (1, 3), u3
M1XQX3
= + w3(X1, X2
Eslyy ( )

This representation for the components of u can then be substituted into the
second set of three equations above, thus

8w1(x2,x3)+8wz(x1,X3) visMix; Owi(x2,x3)  Ows(xy,x2)

= = = = O
3)(2 8)(1 E1111 ’ 6x3 + 8x1
ows(x1,x2) 4 ow(x1,x3) _ My
8x2 8)(3 Ellll .

The problem of determining the displacement field u is now the problem of
determining the functions w(x,, x3), wa(xy, x3), and ws(x;, X»). Differentiation of
the first equation above with respect to x3, the second equation above with respect to
X5, and the third equation above with respect to x;, one obtains the following:

82W](X2,X3) o 62W2(X1,X3) 82W1(X1,X3) - 62W3(X1,X2)
8x2 8X3 o (9)(1 (9)(3 ’ 8x28x3 o 8x1 8x2
Pwa(xi, 1) Pwalxi,x)
8)(] 8)(2 o 8x|8x3
from which we conclude that & “'(Z;;’“) = azngg;@) & g:l(g‘Y’”) 0 It follows that

each component of w must be the sum of two flinctions, each of a different single
variable, thus.

wi(x2,%3) = f1p(x2) +£13(63), wa(x1,x3) = fo1(x1) +f23(x3),
wi(x1,x2) = f31(x1) +f32(x2).
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The substitution of these representations for w back into the differential
equations above yields the following:

I 12(x2) +8f21(x1) _visMix Of 13(x3) +8f31(x1)

= =0
(’)xz 6x1 E1]11 ’ 8)(3 6X1 ’
Of 31 (x1) n Ors(x3) _ Mixs
8x2 6)(3 E3[11 ’

A study of the equations above shows that certain combinations of terms are
constants, denoted by cy», ¢13, and ¢35,

I 15(x2) — _y° — _5f21(x1) +V13M1X1 I 13(x3) — _y°. — _8f31(x1)
6x2 12 8x1 E1[11 ’ 8x3 13 axl ’
) o Ofnls) Mixs
Oxy 23 Ox3 Eilyy’
thus
0 0 visMix]
Fra(e) = =Y)xa +cia, fo1(x1) = Yox1 +———— +car,
2B
fia(3) = =Yi3x3 4 c13,f3,(x1) = Y301 + 3,
M2
Fa(2) = Y3 + c30.fr3(13) = — Y53 — 52 + o,
2E511,

Substitution of these results into the formulas for w,

wi(x2,x3) = =YDox2 — Y{5x3 + ¢12 + €13,

2 2
V|3M1X1 _ M1x3
2E Iy 2E3l
w3(x1,x2) = Y9ix2 + Ysxi + c13 + 32,

0 0
wa(x1,x3) = + Y),x1 — Youx3 + ¢ + €23,

and then into the results of the first integration above, the components of u are
obtained:
u = visMin Y{,x0 — Yisx3 + uf,
EyIny
M 1 X% V23X% V13x%
e <E_3 E E,
_ Mixpxs

Eil

(9 (9 (o)
uy = ) + Y5ax1 — Yoax3 + uy,

3 + Yix0 + Yiix1 + uf,

where u{ = cjp + ¢13,u§ = 31 + ¢23,u§ = 13 + 3. The vector u° represents a
superposed rigid object translation as one can see from the fact that u® are the
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constant components of u; they are the values of u at the origin. The rigid object
rotation Y may be determined from the displacement field u using (2.49), thus
M1X3 1 1
Yo=Y\ Y3 =YY =—7 <_+_> +Y35.
12 13 Ill El E3 23

The constants Y7,, Y75, Y5, therefore represent the superposed rigid object rota-
tion, the values of the rigid object rotation at the origin. If the superposed rigid object
translation and rotation are zero, then the displacement field u is given by

Es E, E,

2 2 2
—vi3M1x2x M, (Xg V23X5 V13X1> " _ Mixpx3
s U3 —

U =———""" 4y = ——— ,
! Eil ? 211 Eil

and the rigid object rotation Y has only one nonzero component,

which represents the rotation along the beam as the distance increases from the
beam end at the origin of coordinates. The total rotation between the two ends of the
bent beam of length L is then given by
YTotal end-to-end rotation __ MlL (i + i)
23 =7 :
I \E1 E3

Example 6.3.3

In mechanics of materials the deflection curve for a beam is considered to be the
deflection curve for the neutral axis, the neutral axis being by definition the curve
that coincides with the centroid of the cross-section at each cross-section. Using the

results of the problem considered in Examples 6.3.1 and 6.3.2, determine the
formula for the deflection curve for a beam subject to pure bending.

Solution: The displacement of the neutral axis of a beam subjected to pure bending
may be determined from the formulas for the displacement field given in Example
6.3.2 above,

E3 E; E,

2 2 2
—visM1x2x M, (x3 vty v13xl) y _ Myxoxs
= , .

Uy =————"",U -
! E1111 2[11 Ellll

The centroid of the beam’s cross-section in Examples 6.3.1 was set at the
origin of coordinates in the planar cross-section, thus, for the centroid, x; and x,
are zero and

M]X%
2111E5 ’

u1:0,u2:— Uz =
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The displacement u, represents the displacement curve. In the case of isotropy,
and in the notation customary of mechanics of materials, the deflection curve is
given by

Example 6.3.4

This problem concerns the propagation of elastic plane waves. The problem is to
determine the wave speed of a plane wave propagating in a symmetry direction in
an orthotropic material. Two kinds of plane waves are to be considered, one in
which the oscillating displacement component varies in the direction of propagation
and the other in which it varies in a direction perpendicular to the direction of
propagation. Let the direction of propagation be the x; direction and let the
direction perpendicular to the direction of propagation be the x, direction. Both
the x; and the x, directions are directions of the symmetry axes of the orthotropic
material. The displacement that varies in the direction of its propagation is
u; = u,(xy, t) and represents an time varying longitudinal motion of axial compres-
sion or tension or some combination of the two. The displacement that varies in the
perpendicular direction is u#; = u;(x,, #) and represents a time varying shearing
motion. The motion u; = u;(x;, ¢) is called the longitudinal (L) motion and
u; = u(xy, t), the shear (§) motion. Neglect the action-at-a-distance force.

Solution: The differential equations governing these two motions are obtained from
the governing set of elasticity equations, the first three equations in this section.
First, from the strain—displacement relations (2.49) it follows that all the strain
components but one is zero for both the longitudinal and shearing motions and that
the nonzero components are given by

8141 1 8141
Eyy = — for (L d Ep, ==-— for (S).
11 aXI or ( ) an 12 3 8}(2 or ( )

Second, using these two results in the stress—strain relations for orthotropic
materials (6.22), it follows that

Ouy Ouy duy Ouy
Ti=cii=—,T» =cip—,T33 =ci3—,for (L) and T, = ces — for (S).
11 C11 ey 2 =C12 oy 33 =C13 oy ( ) 12 = Ceé6 o ( )

Third, upon substitution of these stresses and the functional form of the two
motions, u; = uy(xy, t) and u; = u;(x,, t), in the stress equations of motion (6.18)
one obtains the differential equations

82u1 ) 82141 82141
T 2% for (L) and —2t =
or (L) an 5

2
C .2 a I/l]
o2 Lox?

‘Sa—xg for (S),
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where the notations

= % for (L) and c¢§ = 2%6 for (),

have been introduced. The solution of these equations is so very similar that only
the longitudinal case is considered. These are differential equations whose solutions
can be explicitly calculated. Consider the differential equation for the longitudinal
wave and let ¢ = x; + ¢t and § = x;—ct. The second derivatives that appear in
the differential equation are obtained using the chain rule, thus
82141 o 82141 ) 82141 821/{1 d 62141 2 82141 82u1 82141
o o2 ooy Tap ™ ae T g " “oean ot

When these expressions are substituted into the differential equation for the
longitudinal wave it reduces to

82u1 _ 07
9¢on

which has the solution

u(x1,1) = ur(&,m) = p(&) +q(n) =plx +cut) +qlxi — cvri).

The transformation & = x; 4 ¢t represents a translation of the coordinate
system in the +x; direction by the amount ¢y . Since this translation is proportional
to the time, a point £ = x; + ¢t held constant means %—‘t‘ = —cL, thus £ = constant
moves in the —x; direction with speed cr. A solution of the form u; (xy,#) = p(&)
= p(x1 + cLt) represents a wave traveling with velocity — ¢y, without changing its
shape. For example u;(x, f) = sin(x; + ct) represents a sine wave traveling with
velocity —cy. Similarly u;(xy,¢) = q(n) = q(x| — cLt) represents a wave traveling
with velocity +cr, without changing its shape. Thus the solution u; (x1,1) = u;(&, 1)
=p(&) + q(n) = p(x1 + cLt) + g(x1 — cLt) of the differential equation for the lon-
gitudinal wave is the sum of a wave traveling to the left with velocity —cy, and one
traveling to the right with velocity +cy,. Since the two waves travel in opposite
directions, the shape of u;(x;, ) will in general change with time.

The initial-boundary value problem is composed of the differential equation for
the longitudinal wave and the initial conditions u; (x1,0) = f(x;) and % (x1,0) =
g(x1) for 0 < x; < oo. These initial conditions determine the form of the functions
p and ¢ in the solution. From the solution u; (x1,7) = p(x; + ct) + g(x; — cL.t) and
the chain rule it follows that

p(x1) +qlx) :f(xl)ach_Ig(xl) - CLg_Z](Xl) = g(x;) for 0 < x; < 0.
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Combining these two equations, it follows that 2¢y, g—g (x1) =cL g—{] (x1) + g(xr)

and; integration of these two equations yields

1 1 /S
p(&) = 5f(f) + % /0 2(C) dC + constant and
n
qgm) = %f(ﬂ) - i /o g(£) df — constant

Substitution of these results for the functions p(&) and ¢(n) into u; (x1,¢) = p(x;
+cpt) 4+ q(x; — cvt) yields

ur(xi,1) = plx + crt) +q(xr — cvt)

- % [f(x1 4+ cLt) +f(x) — cLt)]

1 xX1+cLt X1 —cLt
+£{/0 g(@)d@—/o g(@)d@}

X1+cLt
=5l e o —an] 5= [ a0 d

2CL |—cLt

where the constant terms in this expression that are inherited from the functions p(&)
and ¢(n) that are zero due to the initial condition u; (x;,0) = f(x;). A similar result
holds for the S wave; one has only to change the ¢} to cg and the subscript on x; from
1 to 2 to obtain the S result. The difference between the two results is that the shear
or § wave is a propagating shearing motion, as opposed to a propagating compres-
sion/tension motion, and that it travels at a different wave speed. If the same results
were obtained for an isotropic elastic material, the wave speeds would be

2
for (L) and c§ = 7“ for (S).

Problems

6.3.1. Verify that (6.21) may be determined directly from (6.20).

6.3.2. Record the form of (6.22) for transversely isotropic materials.

6.3.3. Calculate (6.24) from (6.23).

6.3.4. Record the explicit matrix form for the constitutive relation for Hooke’s
law (5.6H).

6.3.5. Record the explicit matrix form for the constitutive relation for Hooke’s
law in a homogeneous orthotropic material.

6.3.6. Record the explicit matrix form for the constitutive relation for a trans-
versely isotropic, homogeneous viscoelastic material.

6.3.7. Verify the Navier equation (6.29) for isotropic linear elasticity. Accomplish
this by substituting (2.49) into (6.24) and then place the modified (6.24) for
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Fig. 6.4

6.3.8.

6.3.9.

6.3.10.

6.3.11.

6.3.12.

6.3.13.

6.3.14.

6.3.15.

6.3.16.

6 Four Linear Continuum Theories

See Problem 6.3.11 >

X2

X3

the stresses in terms of the components of the displacement vector into the
equations of motion (6.18).
Use (6.23) and (5.34H) to determine the restrictions on the coefficients A

and u so that E - C - E>O0 for all nonzero strains E.

Use the result of the previous problem and Table 6.2 to obtain restrictions
on the values of the isotropic Poisson’s ratio v.

Show that, in an isotropic elastic material the principal axes of stress and
strain always coincide. {Hint: Recall that the principal axes of stress (strain)
are characterized by the vanishing of the shearing stresses (shearing
strains) }.

Prove that the principal axes of stress and the principal axes of strain cannot
coincide in a triclinic material.

Under what conditions do the principal axes of stress and the principal axes
of strain not coincide for an orthotropic elastic material?

Verify that the conditions of compatibility in terms of strain (2.53) or (2.54)
are identities by substituting the components of (2.49) or (2.52) into (2.54).
The bar shown in Fig. 6.4 is made of an orthotropic material. It is fixed to a
rigid surface at x3 = 0; the origin of the coordinate system is positioned at
the center of the bar where the bar is attached to the rigid surface. It is
subjected to constant stress ¢ acting in the x3 direction along its lower
surface. The orthotropic elastic constants appear in the strain—stress
equations (6.27) and (6.28).

Assume a stress state in the bar and then calculate the strain state in the
bar. Next calculate the displacement field. If this calculation takes more
time than you have, write out the steps you would take to find the solution
and guess what the solution is for the displacement field.

As an extension of Example 6.3.1, show that if the beam in Fig. 6.3 is bent
about both the x; and the x, axes, and if is also subjected to an axial tensile
load of magnitude P, then T53 = P/A + Mxp/l11—Mox1/1;.

This problem is a plane stress problem, which means that the stressed
domain is a thin plate of thickness 4 under the action of forces applied at
the boundary and organized so that their directions all lie in the plane of the
plate. The domain is a rectangular region of length L and width d.
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X1

\)

Y X2

With respect the coordinate system shown the displacements in the 1 and
2 directions are given by

A A A d’
Uy = —=x1x += (1 —&—X)x% += {Lz —(1 +v)7}cz7

2 3 2 2
VA 2+A , AL AL

Uy = —X1X5 +—X] ——F—X1 +—F—.

R S TR

In the case of plane stress the strain—stress relations reduce to the following:

(I+v)
E

1
T —VvIn),Exn =

1
Ey = E(

E( Ty — VT ),En = T

(a) Calculate the strain field in the rectangular region of length L and
width d.

(b) Calculate the stress field in the rectangular region of length L and
width d.

(c) Calculate the values of the stress field at the surfaces x, = :i:% of the
rectangular region of length L and width d.

(d) Calculate the stress applied on the surfaces x, = i% of the rectangular
region of length L and width d.

(e) Calculate the stress applied on the surface x; = 0 of the rectangular
region of length L and width d.

(f) Name the equation that was employed in the two previous calculations.
2 2
6(?;;1 = Cé %xl'él
that require that the displacement and velocity at time ¢ = 0 to be given by

u1(x, 0) and (Ou;/01t)(x», 0) are identically satisfied by the solution

6.3.17 Show that the differential equation and the initial conditions

1 1 X2+cst aul
M]()CZ, t) = E[Lﬁ()(z + cst, 0) + M]()C2 — Cst, 0)] +2_Cs / E(&O) dé

2—Cst
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6.4 The Theory of Viscous Fluids

An overview of the theory of viscous fluids, without temperature effects, can be
obtained by considering it as a system of seventeen equations in seventeen scalar
unknowns. The seventeen scalar unknowns are the six components of the stress
tensor T, the fluid pressure p, the fluid density p, the six components of the rate-of-
deformation tensor D, and the three components of the velocity vector v. The
parameters of a viscous fluid problem are the viscosity coefficients A and u (34 + 2
> 0,2u > 0) and the action-at-a-distance force d, which are assumed to be known.
The system of seventeen equations consists of a constitutive equation relating the
density p to the pressure p, p = p(p) (and, in thermal-viscous problems, to the
temperature), the six equations of the Newtonian law of viscosity,

T = —pl + A(trD)1 + 2uD, (5.11N) repeated
the six rate-of-deformation-velocity relations,
D=(1/2)(Vev) +Vav), (2.32) repeated
the one equation of the conservation of mass,
p+p(V-v)=0, (3.5) repeated
and the three stress equations of motion,
pv=V-T+pd, T =T". (6.36)

This form of the stress equations of motion differs from (3.37) and (6.18) only in
notation: the acceleration is here represented by v rather than X or i, respectively, a
result that follows from (2.20) and (2.24). The system of seventeen equations in
seventeen scalar unknowns may be reduced to a system of four equations in four
scalar unknowns, the pressure p and the three components of the velocity v, by
accomplishing the following algebraic steps: (1) substitute the rate-of-deformation-
velocity (2.32) into the stress—strain relations (5.11N), then (2) substitute the
resulting expression relating the stress to the first derivatives of the velocity into
the three stress equations of motion (6.36). The result is a system of three equations
in three scalar unknowns, the three components of the velocity vector v:

pv = —Vp+ A+ WV (V-V) + uV?v+ pd. (6.37)

This is the Navier—Stokes equation for viscous fluid flow. Substituting the
barotropic relation p = p(p) into the conservation of mass (3.5) yields the fourth
equation in the set of four equations for the four unknowns, p and the components of v,
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Jp . _
% + p(p)(V-v) =0. (6.38)

This system of equations will become more complicated if thermal effects are
considered. They may also be simplified in different ways. An easy simplification is
to assume that the viscosity of the fluid is small and can be neglected (that is to say
the fluid is assumed to be inviscid), then 1 and u are set equal to zero, (6.37) becomes

pv=—Vp+pd, (6.39)

and (6.38) is unchanged. The system of equations (6.37) and (6.38) may also be
simplified using the assumption of incompressibility of the fluid. An incompressible
material is one which is not permitted to have changes in its volume, trD = V-v
= 0. If the volume cannot change, the density p of the fluid cannot change. It follows
that the barotropic relationship p = p(p) is not appropriate and the pressure is no
longer determined by the density. The pressure field p in an incompressible material
is a Lagrange multiplier (see Example 6.4.1) that serves the function of maintaining
the incompressibility constraint, V-v = 0. Because the volume of the fluid cannot
change, p does no work on the fluid; it is a function of x and ¢, p(x, f), to be
determined by the solution of the system of differential equations and boundary/
initial conditions. The reduced Navier—Stokes equation for viscous fluid flow and
incompressibility constraint now becomes a system of four equations

pv=—Vp+uViv+pd,V-v=0 (6.40)

for the four unknown fields, the three components of v(x, ) and p(x, #). The typical
boundary condition applied in viscous fluid theory is the “no slip” condition. This
condition requires that a viscous fluid at a solid surface must stick to the surface and
have no velocity, v(x*, f) = 0 for x* € 00,, where 00, stands for the solid
boundary of the fluid domain.

Example 6.4.1 Pressure as a Lagrange Multiplier in Incompressible Fluids

The constraint of incompressibility is imposed using a Lagrange multiplier. In order
to describe what this means and how it is accomplished, Lagrange’s method of
calculating extrema in problems in which there is a constraint summarized briefly.
Lagrange’s method is for the solution of a type of problem in which one must find the
extremal values of a function f(x, y, z) subject to the constraint g(x, y, z) = c. The
solution to the problem is obtained by forming the function ¢(x, y, z) = fix, y, z) +
Ag(x,y, z) where A is a constant, called the Lagrange multiplier, whose value is to be
determined. Treating x, y, and z as independent variables four independent
conditions 0g/0x = 0, 0g/0y = 0, 0g/0z = 0, and g(x, y, z) = c are available to
find the four unknowns, x, y, z, and A. As an example of the application of
Lagrange’s method, consider the problem of finding the maximum or minimum
distance from the point (a, b, c) to a point on the surface of the unit sphere, x> + y*
+ 2% = 1. The function that is to be extremized is the square of the distance between
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(x,y,z)and (a, b, ¢), f(x,y,2) = (x—a)® + (y—b)2 + (z—c)*. This function is to be
extremized subject to the constraint that (x, y, z) be a point on the surface of the unit
sphere, X+ y2 + 2> =1, thus qx, y,2) = (x—a)* + (y—b)2 + (z—0)® + A +
y2 + 22—1). Setting the derivatives of g(x, y, z) with respect to x, y, and z equal
to zero it follows that x = a/(A + 1), y = b/(A + 1), z = ¢/(A + 1). From the
constraint condition x> —+ y2 + 72 = 1,itfollows that A + 1 = i\/(at2 + b+ cz).
In the special case when (a, b, ¢) = (2,0,0),(A + 1) = +£2,and (x, y, z) = (1,0,0)
or (x,y,z) = (—1,0,0); thus the point on the unit sphere closest to (2, 0, 0) is (1, 0, 0)
and the point on the unit sphere furthest from (2, 0, 0) is (—1, 0, 0).

With this background the problem is to employ Lagrange’s method to mini-
mize the dissipation due to the rate of volume change, as opposed to the dissipa-
tion due to the shearing motion, in a viscous fluid. From equation (5.23N) the
stress power or dissipation is given by T :D = —p(trD) + (31 + 2;13)(tI‘D)2 +
2utr(devD)?. The constraint condition is that trD = 0. The problem is to show
that when this constraint is imposed, the pressure becomes a constant Lagrange
multiplier.

Solution: In this case g(trD) = —p(trD) + (32 + 2u)/3)(trD)* + 2putr(devD)* +
A(trD); thus from 0g/0(trD) = (A—p) + 234 + 2w)/3)(trD) = 0, Otr(devD)%/
0(trD) = 0, and the constraint condition trD = 0, it follows that A = p.

In a paper of 1883 Sir Osborne Reynolds showed that the transition between
laminar flow governed by the Newtonian law of viscosity, and the form of the
Navier—Stokes equations considered here, and the chaotic flow called turbulence
depended upon a dimensionless number that is now called the Reynolds number.
The Reynolds number R is equal to pVd/p where p and u are the density and
viscosity of the fluid, respectively, and V and d are a representative velocity and a
representative length of the problem under consideration, respectively. Only lami-
nar flows of viscous fluids are considered in this book, hence there is always a
certain value of a Reynolds number for which the solution no longer describes the
physical situation accurately.

Example 6.4.2 Couette Flow

Consider an incompressible viscous fluid of viscosity u in the domain between two
infinite flat solid plates at x, = £//2. Action-at-a-distance forces are not present
and the plate at x, = //2 is moving at constant velocity V in the positive x;
direction. There is no pressure gradient. Determine the velocity distribution and
the stress that must be applied to the top plate to maintain its motion.

Solution: Assume that the only nonzero velocity component is in the x; direction
and that it depends only upon the x, coordinate, v; = v{(x;). This velocity field
automatically satisfies the incompressibility condition, V-v = 0, and the reduced
Navier-Stokes equations are

8v1
8_x%: 0 and Vp =0.
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The solution to the first of these differential equations, which is in fact an
ordinary differential equation, is given by v{(x,) = c¢1x, + ¢,. The no-slip bound-
ary conditions are that v{(—#/2) = 0 and v{(h/2) = V, thus ¢; = V/hand ¢, = V)2,
thus vi(xy) = (V/h)(x, + h/2). The solution to the second of these differential
equations is that p is a constant. The stress at the top plate is given by the T,
component of (5.11N),

avy  uV
T12 :‘uai_xZZW

Example 6.4.3 Plane Poiseuille Flow

Consider an incompressible viscous fluid of viscosity u in the domain between two
infinite flat solid plates at x, = £h/2. Action-at-a-distance forces are not present
and the plates are not moving. The flow is steady and there is a constant pressure
drop in the x; direction given by 0p/0x;. Determine the velocity distribution.

Solution: As in the previous example, assume that the only nonzero velocity
component is in the x; direction and that it depends only upon the x, coordinate,
vy = v1(xp). This velocity field automatically satisfies the incompressibility condi-
tion, V-v = 0, and the reduced Navier-Stokes equation is

v, _Op

u@x% T ox

The solution to this differential equation, which is again an ordinary differential
equation, is given by

! + +
v x Cc3X c
1 2 oy 2 3X2 4.
T'he boundary conditions are that v{(£A/2) = 0,thusc; = Oandcy = — _2],4 —(%’1 (%)2,

and it follows that the velocity profile is parabolic in shape,

54

which is written with a minus sign in front of the pressure gradient to emphasize
that the pressure gradient is negative in the direction of flow or, equivalently, the
pressure is dropping in the direction of flow. The volume flow rate per unit length Q
is given by

h/2 1 8]7 h/2 h 2 5 8]) JE
Q_/h/zw d)Q—i( 8}61) /h/2{<§) —X; dxz—( 8x1> 20



158 6 Four Linear Continuum Theories

In the case of pipe flow under a steady pressure gradient the differential equation

2 iz . . . . . .
corresponding to u —%:2‘ = —af] is, in cylindrical coordinates r and z (see Sect. A.14), is
X2 )

givenby £ 2 (r2=) = % where the pressure gradient is assumed to be a constant. The

solution to this equation in cylindrical coordinates subject to the “no slip” boundary
condition at the pipe wall is a similar parabolic profile to the one obtained above

2 2
S AN P
0z) 4p r’

where r, is the radius of the pipe and r and z are two of the three cylindrical
coordinates. The volume flow rate is given by

To a 4
0= 277:/0 rv, dr = Vnrg = (— 8_lz)> Tg; ,

where v is the mean velocity.

Historical Note: The solution to the Navier—Stokes equations for steady flow in a pipe is
called Poiseuille flow after Jean-Louis-Marie Poiseuille (1799-1869), a Parisian physician
and physiologist interested in the flow of blood. Poiseuille received his medical degree in
1828 and established his practice in Paris. He developed an improved method for measur-
ing blood pressure. He also is believed to be the first to have used the mercury manometer
to measure blood pressure. In the 1840s Poiseuille experimentally determined the basic
properties of steady laminar pipe flow using water as a substitute for blood. The formula for
Q above is rewritten below with the negative pressure gradient expressed as the change in
pressure Ap along the entire length of pipe divided by the pipe length L, thus

2 Aprrg
o SIJL :

This formula had not been derived when Poiseuille did his very careful experimental
work, which demonstrated its principal features using capillary tubes of glass (models of
the blood capillary vessels). Poiseuille showed the volume flow rate Q was proportional to
the pressure drop along the pipe Ap, to the fourth power of the radius r, of the pipe and
inversely proportional to the length of the pipe, L. In honor of Poiseuille the unit of viscosity
is call the poise. The poise has the symbol P and it is equal to one (dyne-second)/
(centimeter)? or 0.1 Pa—s.

QO =vnar

Problems

6.4.1. Verify the calculation of the Navier—Stokes equations (6.37) by (1)
substituting the rate-of-deformation-velocity (2.32) into the stress—strain
relations (5.11N), then (2) substituting the resulting expression relating the
stress to the first derivatives of the velocity into the three stress equations of
motion (6.36).

6.4.2. Find the constant ¢ in 22 — Pili _ .4y

ouD — 0Dy
dtr(devD)?>
6.4.3. Prove —oub 0.

6.4.4. Determine the shear stress acting on the lower plate in example 6.4.2.
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6.4.5.

6.4.6.

6.4.7.

6.4.8

Determine a formula for the stress exerted upon the upper plate during
plane Poiseuille flow (example 6.4.3).

Determine the volume flux per unit length in the direction of flow in
example 6.4.3

Consider a viscous fluid layer between two parallel flat plates. A reference
coordinate system with x; in the plane of the plates and x, as the direction
perpendicular to the plane of the plates is to be employed. Relative to this
coordinate system the plates are located at x, = 4-A/2. For Couette flow the
velocity distribution is v{ = (V/h)(x, 4+ h/2) and for plane Poiseuille flow
the velocity distribution is

(200

(a) Determine formulas for the shear stress in the fluid for Couette flow and
for Poiseuille flow.

(b) Plot the shear stress in the fluid as a function of x, for Couette flow. In
this case let the units of shear stress on the graph be multiples of mV/h.

(c) Plot the shear stress in the fluid as a function of x, for Poiseuille flow. In
h Op

this case let the units of shear stress on the graph be multiples of — 7 7=.
X1

The figure below shows a slope making an angle of theta with the horizontal
and a layer of viscous fluid of thickness /& flowing down the sloping plane.

Shear stress

The velocity field is given by

pgsinf
Vo =
2u

(2hx; — x%)

The coordinate direction x; is parallel to the sloping plane and points down
slope and the coordinate direction x; is perpendicular to the sloping plane.

(a) Determine the rate-of-strain tensor for this flow.
(b) Is this flow volume increasing or decreasing?
(c) What is the stress field in this flow?
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(d) What is the stress on the surface x3 = h? Please describe these stresses
in prose.

(e) What is the stress on the surface x3 = 0? Please describe these stresses in
prose.

(f) In the portion of the figure containing the words “Shear stress” there is a
line drawn across the flow domain. Please sketch in the shear stress
distribution across the flow field using this line as the zero shear
stress reference.

(g) In the portion of the figure containing the word “Velocity” there is a line
drawn across the flow domain. Please sketch in the velocity distribution
across the flow field using this line as the zero velocity reference.

6.5 The Theory of Viscoelastic Materials

An algebraic overview of the theory of linear viscoelastic materials can be obtained
by considering it as a system of fifteen equations in fifteen unknown functions of time.
The fifteen unknown functions of time are the six components of the stress tensor T,
the six components of the strain tensor E, and the three components of the displace-
ment vector u. The parameter functions of a viscoelasticity problem are the tensor of

viscoelastic coefficients G(s), call the tensor of relaxation functions, the density p(s)
and the action-at-a-distance force d(s), which are assumed to be known. The system
of fifteen equations consists of viscoelastic stress—strain relations,

T(x,7) = /H G(t—s)-D(x,s) ds

- . (5.36V) repeated
s=t R DE
:/ G(t—s) - —(x,s) ds
§=—00 Ds ’ ’
the six strain—displacement relations,
E=(1/2)(Veu' +Vou), (2.49) repeated
and the three stress equations of motion,

pi=V-T+pd, T=TT, (6.18) repeated

Interchanging the roles of stress and strain the current strain is expressed as a
function of the past history of stress by

B(x, 1) = /: J(i—s) -%(x, 5)ds, (6.41)

where J(s)is called the tensor of creep function.
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Fig. 6.5 The creep function 4 stress
J(t). The creep function is the
strain response to a step input
of stress at t = 0

To

time
strain
J(t)
time

The physical significance of the creep and relaxation functions, J(s) and G (s), are
best illustrated by one-dimensional examples; uniaxial one-dimensional examples
will be used here. A uniaxial tension specimen of homogeneous material is
subjected to step increase in stress f"l = T,h(t), where h(t) is the unit step function,
h(t) = 0 for t < 0 and A(f) = 1 for t+ > 0. The loading function T, = T,h(r) is
plotted in the top panel of Fig. 6.5. The creep function J (s)is the uniaxial strain-
vs.-time response of the uniaxially stressed specimen to the step increase in stress,
T1 = T,h(t). The function J,;(s)is illustrated in the lower panel of Fig. 6.5. The
strain response is given by E, =TyJy (s). The creep function defined and measured
in this way may be used to predict the creep response to a more complicated stress
history. Suppose, for example, the stress history is a long series of step jumps rather
than just one step jump (Fig. 6.5). The creep strain response to this new stress
history may be built up by repeated application of the basic result E, =T, (s) to
each step, and subsequent summation of strains associated with each step,

El(l) = j]l(l)Afl(O) +j11(l‘ — [1)Af1(l‘1) =+ - +j11(l‘ — l‘,,)Afl(ln) + -
(6.42)

The multiple step plot of Fig. 6.6 is familiar from the introductory presentations
to the process of integration in which a horizontal axis is divided into segments and
the curve is approximated by different level steps drawn horizontally for each
segment so that the curve is approximated by the series of various sized steps.
It follows that any curve representing a stress history could be approximated
arbitrarily closely by a set of various sized steps like those illustrated in Fig. 6.6
and represented analytically by an equation of the type (6.42). In preparation for a
passage to the limit of the type used in the integral calculus, (6.42) is rewritten as
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Fig. 6.6 A plot of stress A
increments applied at specific stress —
time increments

-

0 t1 t2 t3 tn  tne1  time
A n ~ A
El([) = Z-Ill(t_ti)ATl(ti)- (6.43)
i=1
In the passage to the limit the series of times ¢;,,i = 1, ..., n will be replaced by

the continuous parameter s, and the step in the stress by AT (t;) by %ds, thus

E\(r) = / Ju(t—1) %ds. (6.44)
0

\)

Finally, going back to the beginning of this development there was nothing
special about applying the loading at = 0; it could have been started at any time,
thus we set it back to the beginning of time,

E\(t) = /S: Ju(t—ys) %ds. (6.45)

§=—00

It is now clear that (6.45) is a special case of (6.41). The physical significance of
the creep function J,; (s) is the following: it is the uniaxial normal strain E; (f) vs.
time response of a specimen subjected to a step increase in the normal stress in the
same direction, T| = T,h(r).

The physical significance of the relaxation function G (s) can be developed in a
similar manner by reversing the roles of stress and strain used in the case of the
creep function. A uniaxial tension specimen of homogeneous material is subjected
to a step increase in strain, £, = E,h(r). The strain loading function E; = E,h(r) is
plotted in the top panel of Fig. 6.7. The relaxation function G (s)is the uniaxial
stress vs. time response of the uniaxially strained specimen to the step increase in
strain, E; = E,h(t). The function G, (s) is illustrated in the lower panel of Fig. 6.7.
The stress response is given by T = G (1)E,. The relaxation function defined and
measured in this way may be used to predict the relaxation response to a more
complicated strain history as described above for the creep function. Following
completely analogous steps one finds that
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Fig. 6.7 The relaxation .
function G(#). The relaxation strain
function is the stress
response to a step input of
strain at t = 0
Eo
time
i
stress
G(t)
time
s=t n
. A dE,
Fi(e) = / G —5) Ly, (6.46)
e ds

The result (6.46) is a special case of (5.36V). The physical significance of the
relaxation function Gy (s) is the following: it is the uniaxial normal stress T'; () vs.
time response of a specimen subjected to a step increase in the normal strain in the
same direction, £, = Eyh(1).

The creep and relaxation functions, J(s) and G(s), are hypothesized to have a
property called fading memory. The fading memory hypothesis for J(s)(G(s)) is
that the strain (stress) depends more strongly upon the recent history than it does
upon the distant history of the value of stress (strain). Mathematically this is the
requirement that the functions J(s) and G(s) are continuously decreasing functions
of the backward running time parameter s. This then decreases the influence of the
more distant events. For each component of the viscoelastic strain—stress relations
to possess this fading memory behavior, it is sufficient that the magnitude of the
slope of each component of the creep function tensor be a continuously decreasing
function of time, thus

Djl‘j(S)
N

<

§=51

foralli,j =1,2,...6,and fors;>s,>0. (6.47)

5=

DJ,'j (S)
Ds

For each component of the viscoelastic stress—strain relations a similar fading
memory hypothesis holds, thus
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foralli,j =1,2,...6,and fors; >s,>0. (6.48)

§=52

S=51

The isotropic form of the viscoelastic stress—strain relations (5.36V) is obtained by
using the representation for the isotropic form of G(v) obtained from Table 5.4, thus

qll(Y) Glz(S) GAIZ(Y) 0 0 0
Gia(s) Guls) Gn(s) 0 0 0
G(S) _ G]Q(S) Glz(S) G]](S) . 0 R 0 0
0 0 0 Gll(S) — Glz(S) 0 0
0 0 0 0 Gu(s) — Gnls) 0
0 0 0 0 0 Gll(S) — Glz(S)

This six-dimensional representation is converted to the three-dimensional repre-
sentation by employing the relations in Table 6.1 and introducing the following new
notation for the two distinct elements of this 6-by-6 matrix, thus

Gn(s) :w)én(” :M.

(6.49)
The isotropic form of the viscoelastic stress—strain relations (5.36V) may then be
rewritten in three dimensions as

oT(x, 1) = / - k[r(t—s)DBS{trE(x,s)} ds (6.50)

=—00
and

s=t

devT(x,1) = / Gaev(t —5) DBS {devE(x,s)} ds, (6.51)

where k. (s) and G, (s) represent independent relaxation functions. In a similar set
of arguments it may be shown that the isotropic form of the viscoelastic
strain—stress relations (6.41) may be expressed in terms of two isotropic creep
functions, ji(s) and Jge(s), thus

E(x, 1) = / il ) D T(x, ) ds 652)
and
s=t D
devE(x, 1) = / Jaot =) - {devT(x,5)} ds. 6.53)

Viscoelastic materials have properties characteristic of both fluids and solids and
it is sometimes important to distinguish between viscoelastic fluids and viscoelastic
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Fig. 6.8 Frequency ranges that are most effective for the various types of dynamical mechanical
tests. From Lockett (1972), Fig. 4 on page 50

solids. One aspect of fluid behavior is that a fluid is always isotropic while a solid
may be anisotropic. A second characteristic of a fluid, a characteristic that aids in
distinguishing isotropic viscoelastic solids from isotropic viscoelastic fluids, is the
asymptotic value of G4, (f) as t tends to infinity. A necessary and sufficient
condition that an isotropic viscoelastic material be a solid is that G4, (¢) tends to
a nonzero constant as t tends to infinity. A necessary, but not sufficient condition,
that an isotropic viscoelastic material be a fluid is that G4, (¢) tends to zero as ¢ tends
to infinity. It is convenient to define

Giev = lim Gaey (1), (6.54)
then
Giev(t) = GS, + G2, (1), (6.55)
where
lim Gg,, (1) = 0. (6.56)

Thus if Gg,, # 0, the material is a viscoelastic solid and if Gg,, = 0, it may be a
fluid.

Viscoelastic materials differ from the other materials considered in this chapter
because their material properties are determined by material functions rather than
material constants. The material functions are functions of time, or of time trans-
formed, that is to say frequency. Viscoelastic materials are probed with various
dynamical test systems in order to evaluate the forms of the material functions, their
peaks and valleys. Different dynamical test systems are effective for determining the
material functions for different frequency ranges, Fig. 6.8. Both free and resonant
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vibrations and pulse and harmonic wave propagation techniques have the ranges of
effectiveness indicated in Fig. 6.8. One of the easiest probing tests for a viscoelastic
material is to subject the material to forced steady state oscillations. This testing
method is effective over a wide range of frequencies, Fig. 6.8.

In the special case of forced steady state oscillations, special forms of the
stress—strain relations emerge. As an example we consider the case of the deviatoric
part of the isotropic stress—strain relations (6.51). It is assumed that the material is
subjected to a forced deviatoric strain specified as a harmonic function of time,

devE(r) = {devEO}eimt = {devE, }{cos wr + isin ot}. (6.57)

Upon substitution of the strain (6.57) into the viscoelastic stress—strain relation
(6.51), along with the decomposition of G4 (#) given by (6.55), it follows that

s=t
devEe™ + iodevE, / G, (t — 5)e'®ds. (6.58)

§=—00

devT(x,1) = G}

dev
Now, making a change of variable, —s = 7,

devT(x,1) = {GgeV —1—03/ sinon Gge, (n)dn + io)/ cos on G35, (M) dn}deoneiwf7
0 0

(6.59)
or

devT(x, 1) = G, (iw)devE,e™™, (6.60)
where

Gl (i0) = Gy (0) + G ger (o), (6.61)
and

G () = Gy +0 [ sin o G, (1) dn. G (0) =0 [ cos an Gz, (n) .
0 0

(6.62)
The functions G, (w) and G, (o) are called the storage and loss moduli,
respectively. The formulas (6.62) show that the real and complex parts of the
complex modulus G}, (iw), the only material function in the specialized steady-
state oscillatory viscoelastic stress—strain relation (6.60), are determined by the
relaxation function, G4, (?). The stress—strain relations (6.60) may also be written as

devT(x, 1) = |G}, (im)|devE,e @+ Pu) (6.63)
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Fig. 6.9 The complex modulus G*(iw). The vertical scale represents both the real and imaginary
parts of G*(iw) which have the dimensions of one upon stress. The horizontal scale is the log of the
frequency, log . The monotonically increasing curve represents G’'(w), the real part of G*(iw),
and the curve with a peak represents G”(w), the imaginary part of G*(iw).

where the phase angle ., (@) is given by

Paev (@) = tan™! {gd—g;} (6.64)
dev

The quantity tan ., (®) is called the loss tangent. The steady-state harmonic
strain lags behind the stress by the phase angle ¢, (). Typical plots of the storage
and loss moduli, G, (») and G/, (o), respectively as a function of e are shown in
Fig. 6.9. However these curves for real material seldom look exactly like these
examples.

Example 6.5.1

An isotropic viscoelastic material is subjected to a step loading in shear strain E5.
The magnitude of the step loading is E,. The unit step function A(#) is used to
represent the step loading, £, = E k(). Recall that A4(¢) is a function that is defined
as O forz < Oand as 1 for # > 0. The derivative of the unit step function is the delta
function 6(¢), (d/df)(h(f)) = J(t), where the delta function has the property that

fex) = [m ot — )f (¢) dr.

Determine the stress response to the strain loading £, = E h(?).

Solution: Substitution of strain loading E;, = E,hi(f) into the appropriate
stress—strain relation (6.51) yields the following simple formula,

S=t
Ty — / Gutoo (= $)Esd(5) ds = Gue (1)Es.

S§=—00
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Fig. 6.10 Four typical 1F
relaxation functions G(¢). The
vertical scale is the relaxation oslt
function G(¢) that has the
dimensions of stress. The
horizontal scale is time 0.6}
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It follows then that the relaxation function is just the value of the resulting stress
divided by E,,

Gdev(t) = (I/EO)le

This result can then be used as the basis of an experiment to determine the
relaxation function Gg.,(f). Typical relaxation functions are of the form of decaying
functions of time like that shown in Fig. 6.10. The decaying with time is consistent
with the hypothesis of fading memory.

Example 6.5.2

The Maxwell model is a lumped viscoelastic model (see section 1.8) that is a
combination of a spring and a dashpot in series (Fig. 1.9a). When a force applied to
a Maxwell model is changed from zero to a finite value at an instant of time and held
constant thereafter, there is an instantaneous initial elastic extension and then there is
a continued deformation forever as the damper in the dashpot is drawn through the
dashpot cylinder. Thus a Maxwell model exhibits the characteristics of a fluid with an
initial elastic response. In this model, in general, the deflection represents the strain
and the force represents the stress. In this particular illustration the deflection
represents the shearing strain and the force represents the shearing stress. The
differential equation for a Maxwell model is formed by adding together the rate of
strain of the spring, obtained by differentiating Hooke’s law in isotropic shear,
E1» = (1/G,)T2, with respect to time, (d/d0)E;, = (1/G,)(d/dt)T,,, and the dashpot
(d/dHE >, = (1/7.G,)T,, where 1,G, represents the viscosity of the dashpot, thus

dElz_ 1 Ty, + 1 dT12
& 1G, %G, dr

The problem is to determine the response of the Maxwell model to a step loading
in shearing strain E,. The magnitude of the step loading is E,. This example is
formally similar to the previous example, the only change being in the model. The
solution of the problem requires the solution of a first-order ordinary differential
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equation subject to the case when the strain history is given by E1, = E,h(f) and no
other loading is applied to the model. Determine the stress response to this strain
history loading.

Solution: The general solution to the first-order ordinary differential equation

Dt F0y 500

is (see Sect. A.17)

= (e / 4(5)eds ) where () = / £ ds,

and where c is a constant of integration. In the differential equation of interest
() = T1x(0), F(t) = (t/,), g(s) = (d/ADE |, = (d/dt)(E,h(s)) and, due to the initial
condition ¢ = 0, thus

' dh '
Tin(y) =e ™ ( / GoEod(;)eS/Trds) e < / GOEOS(s)es/TrdS)
0

0
= GoEoh(1)e™/",

The special form of the relaxation function for the Maxwell model may then be
identified as

Gaey (1) = (1/Eo)T1y = Goh(r)e "

Problems

6.5.1 Derive (6.50) and (6.51) from (5.36V).

6.5.2 Derive (6.52) and (6.53) from (6.41).

6.5.3 Determine the strain response to this stress loading for an isotropic viscoelas-
tic material subjected to a step loading in shear stress T1,. The magnitude of
the step loading is T,,. This problem is formally similar to the Example 6.5.1,
the only change being that the step loading is now in shear stress rather than
shear strain. The step loading is represented by T, = T,h(f). Show that the
creep function is just the value of the resulting strain divided by T,,. Note that
typical creep functions are of the form of increasing functions of time like
that shown in Fig. 6.11.

6.5.4 The Voigt model is a lumped viscoelastic model that is a combination of a
spring and a dashpot in parallel (Fig. 1.10b). When a force applied to a Voigt
model is changed from zero to a finite value at an instant of time and then held
constant thereafter, extension occurs only after the dashpot begins to move.
Thus the Voigt model is initially rigid; then it begins to creep asymptotically
under the constant applied load to a rest value. In parallel models like the
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Fig. 6.11 Four typical creep 1F
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Fig. 6.12 A three-parameter vl:;_/vvw/w/\/_

viscoelastic model

6.5.5

Voigt model, the transverse or horizontal bars or connecting elements are
required not to rotate, so the two parallel elements are constrained to always
have the same extension in both elements at any instant of time. In these spring
and dashpot models, in general, the deflection represents the strain and the
force represents the stress. In this particular illustration the deflection
represents the shearing strain and the force the shearing stress. The differential
equation for a Voigt model is formed by adding together the stress in the two
parallel branches, T, = (1/J,)E, for the spring and, Ty, = (t,/J,)(d/dt)(E2)
for the dashpot, thus

dE;, 1 1 dTy,
dt  1.G, G, dr -~

The problem is to determine the response of the Voigt model to a step loading
in shearing stress T'j,. The magnitude of the step loading is T, This problem is
formally similar to the Example 6.5.2, the only change being in the model. The
solution of the problem requires the solution of a first order ordinary differen-
tial equation subject to the case when the stress history is given by Ty, = T,h
(#) and no other loading is applied to the model. Determine the stress response
to this strain history loading and show that, for this model, the creep function is
given by J (1) = (1/To)E1> = Joh(t)(1 — e™"/*). Typical creep functions are
shown in Fig. 6.11.

A three-parameter viscoelastic model is shown in the Fig. 6.12. The model
consists of two branches, the lower branch with a spring and the upper branch
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with a spring and a dashpot. These two branches are connected by two
transverse elements that are indicated by vertical lines. The rules for
formulating the overall force-deformation (F—d) relation for these spring
and dashpot models are: (1) the transverse elements that connect the two
branches remain parallel as the system is deformed; (2) the springs follow the
rule that F = ko, and the dashpots follow the rule that F' = n(dd/dr). Let Fy,
and F'y denote the forces in the upper and lower branches, respectively, dp the
deflection of the dashpot and Jg the deflection of the spring in series with
the dashpot. Construct the overall force-deformation (F—J) relation for this
spring and dashpot model. List each step of your argument and explain
its rationale.

6.6 Relevant Literature

This chapter presents brief descriptions of four theories of material behavior.
There are many volumes written on each of these theories and there are entire
periodicals devoted to publishing recent results in each of these theories.
The purpose of this section is to mention some of the general literature associated
with each of these four theories, particularly that was drawn upon in the writing of
this chapter.

In heat conduction there are the texts of Carslaw and Jaeger (1959), Ozisik
(1980) and Jiji (2000). The thermoelasticity book of Boley and Weiner (1960) also
contains much related material. The journals include the ASME Journal of Heat
Transfer and the International Journal of Heat and Mass Transfer.

Flow through porous media is addressed in books by Bear (1972), Carman
(1956), Scheidegger (1960) and others. Several of the books on poroelasticity
mentioned in Chap. 8 contain much related material. The related journals
include Transport in Porous Media, Water Resources Research, and the Journal
of Hydrology.

The theory of elastic solids is described in the classical text of Love (1927), in
Timoshenko and Goodier (1951), Sokolnikoff (1956), Saada (1974) and in
Gurtin (1972). Anisotropic elasticity is the subject of books by Hearmon
(1961), Lekhnitskii (1963), and Fedorov (1968). Current publications on
elasticity theory may be found in the Journal of Elasticity and in many related
journals such as the International Journal of Solids and Structures, the Journal
of the Mechanics and Physics of Solids, and the ASME Journal of Applied
Mechanics.

The theories associated with fluid behavior are described in the classical books
of Lamb (1932), Prandtl and Tietjens (1934a, b), and Schlichting (1960); Langois
(1964) is an introduction to slow viscous flow. The current widely used text
is Batchleor (2000). There are many journals specializing in fluid mechanics;
the most broad and most successful is the Journal of Fluid Mechanics.
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The books that deal with viscoelasticity theory include Christensen (1971),
Lakes (1999), Lockett (1972), Pipkin (1972), and the contemporary work of
Wineman and Rajagopal (2000). Journals in this area include Rheologica Acta,
Journal of Rheology and Biorheology.
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Chapter 7
Modeling Material Microstructure

Continuum mechanics deals with idealized materials consisting of material points
and material neighborhoods. It assumes that the material distribution, the stresses,
and the strains within an infinitesimal material neighborhood of a typical particle
(or a material element) can be regarded as essentially uniform. On the microscale,
however, the infinitesimal material neighborhood, in general, is not uniform,
consisting of various constituents with differing properties and shapes, i.e., an
infinitesimal material element has its own complex and, in general, evolving micro-
structure. Hence, the stress and strain fields within the material element likewise are
not uniform at the microscale level. One of the main objectives of micromechanics is
to express in a systematic and rigorous manner the continuum quantities associated
with an infinitesimal material neighborhood in terms of the parameters that charac-
terize the microstructure and properties of the microconstituents of the material
neighborhood. From Nemat Nasser and Hori (1999), page 11

7.1 Introduction

The heterogeneity of materials is obvious at all levels of their hierarchical structure,
including the smallest level. At the smallest level there are spaces between the
atoms or molecules that constitute holes in the material making the material
discontinuous. One purpose of this chapter is to reconcile this fact with the
continuity assumption of the continuum models described in the preceding chapters
so that one will understand how these continuum models are applied to material
objects. A second purpose is to relate the effective material parameters and material
symmetry used in continuum models to the material microstructure.

The key concept in modeling material microstructure, as well as for modeling
material symmetry, for inclusion in a continuum model is the representative volume
element (RVE). The discussion of the RVE contained in Chap. 4, particularly Sect.
4.2, is further developed in Sect. 7.2. A material composed of two or more distinct
constituent materials is called a composite material. Most natural materials are

S.C. Cowin, Continuum Mechanics of Anisotropic Materials, 175
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composite materials. Many think that the first man-made composite material was
the reinforced brick constructed by using straw to reinforce the clay of the brick.
Dried clay is satisfactory in resisting compression, but not very good in tension. The
straw endows the brick with the ability to sustain greater tensile forces. Most
structural soft tissues in animals can carry tensile forces adequately but do not do
well with compressive forces. In particular, due to their great flexibility they may
deform greatly under compressive forces. The mineralization of the collagenous
tissues provides those tissues with the ability to resist compressive forces; thus bone
and teeth are composites of an organic phase, primarily collagen, and an inorganic
or mineral phase. Effective material parameters for composite materials, defined in
Sect. 7.3, are generally determined by expressions that depend upon the phase or
constituent-specific material parameters and their geometries. Examples of effec-
tive elastic constants and effective permeabilities are developed in Sects. 7.4 and
7.5, respectively. Restrictions on the RVE for the case of a gradient in its material
properties are considered in Sect. 7.6. The continuum modeling of material
microstructures with vectors and tensors is described in Sect. 7.7, with a particular
emphasis on the fabric tensor, a measure of local microstructure in a material with
more than a single constituent. The stress—strain—fabric relation is developed in
Sect. 7.8. Some of the relevant literature is described in Sect. 7.9.

7.2 The Representative Volume Element

Recall from Sect. 4.2 that, for this presentation, the RVE is taken to be a cube of side
length Lgvg; it could be any shape, but it is necessary that it have a characteristic
length scale (Fig. 4.1). The RVE for the representation of a domain of a porous
medium by a continuum point was illustrated in Fig. 4.2. We begin here by picking
up the question of how large must the length scale Lgyg be to obtain a reasonable
continuum model. The Lgyg should be much larger than the largest characteristic
microstructural dimension Ly, of the material being modeled and smaller than the
characteristic dimension of the problem to be addressed Lp, thus Lp > Lgvg > Ly

The question of the size of Lryg can also be posed in the following way: How
large a hole is no hole? The value of Lgvg selected determines what the modeler has
selected as too small a hole, or too small an inhomogeneity or microstructure, to
influence the result the modeler is seeking. An interesting aspect of the RVE
concept is that it provides a resolution of a paradox concerning stress concentrations
around circular holes in elastic materials. The stress concentration factor associated
with the hole in a circular elastic plate in a uniaxial field of otherwise uniform stress
is three times the uniform stress (Fig. 7.1). This means that the stress at certain
points in the material on the edge of the hole is three times the stress five or six hole
diameters away from the hole. The hole has a concentrating effect of magnitude 3.
The paradox is that the stress concentration factor of 3 is independent of the size of
the hole. Thus, no matter how small the hole, there is a stress concentration factor of
3 associated with the hole in a field of uniaxial tension or compression. One way to
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Fig. 7.1 An illustration

of the stress concentration
(by a factor of 3) associated
with the hole in a circular
plate in a uniaxial field

of otherwise uniform stress,
S. From Cowin (2002)
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resolve the paradox described above is to observe that the modeler has decided how
big a hole is no hole by choosing to recognize a hole of a certain size and selecting a
value of Lrvg to be much less. Let the size of the largest hole in the plate to be di.
and assume that the plate has a dimension of 100 dy, thus d;. > Lgvg > Ly. Let ds
denote the dimension of the largest of the other holes in the plate. Thus any hole
whose dimension is less than Ly; = dg will not appear in the model although it is in
the real object. The interpretation of the solution to the problem illustrated by
Fig. 7.1 is that there is only one hole in the model of radius dy , no holes of a size less
than dy and greater than Ly; = ds, and all holes in the real object of a size less than
Ly = ds have been “homogenized” or averaged over.

The macro or continuum properties that are employed in continuum models are
micro material properties that have been averaged over an RVE. Let p denote the
microdensity field and T the micro stress field; then the average or macrodensity
field (p) and the macro stress tensor (T) field are obtained by volume averaging over
the microscale. The averaging integral operator {f) of the micro field f is given by

1
dv. 7.1
o i;f : 7.1)

) =

Equation (7.1) represents the homogenization of the local or micro material
parameter fields. That is to say, in the volume Vgzvg, the average field {f) replaces
the inhomogeneous field f in the RVE. The length scale over which the homogeni-
zation is accomplished is Lryg or the cube root of the volume Vgiyg, which is
intended to be the largest dimension of the unit cell over which the integration (7.1)
is accomplished. A plot of the values of the macro density (p) as a function of the
size of the RVE is sketched in Fig. 7.2. Note that as the size of the volume Vyyg or
the Lrvg is decreased, the value of the density (p) begins to oscillate because the
small volume of dense solid material in the volume Vg is greatly influenced by
the occurrence of small voids. On the other hand, as the size of the volume Vxyg or
the Lrvg is increased, the value of the density tends to a constant, stable value.

As another illustration of these ideas consider a cross-section of trabecular bone
shown in Fig. 4.3. As was noted in Sect. 4.2, the white regions are the bone
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Fig. 7.2 A plot of the values of the macro density as a function of the size Lryg of the RVE. Note
that as the size of the volume Vgxyg = (Lrvg)® is decreased, the value of the density begins to
oscillate because the amount of dense solid material in the volume Vyyg is greatly influenced by
the occurrence of small voids. On the other hand, as the size of the volume Vgyg = (Lrvg)® is
increased, the value of the density tends to a constant, stable value. The concept for this plot is
taken from Prandtl and Tietjens (1934). Prandtl used this type of diagram to illustrate density in the
transition from rarefied gases in the upper atmosphere to denser air

trabeculae and the darker regions are the pore spaces that are in vivo filled with
marrow in the bone of young animals. First consider the small rectangular white
region in the lower left quadrant as the first RVE for homogenization. This small
rectangular white region is entirely within the trabecular bone domain and thus the
global or macro density (p) and stress tensor (T) obtained by volume averaging over
the microscale density p and stress tensor T will be those for trabecular bone. On the
other hand, if the small RVE in the darker marrow region is entirely within the whole
domain, the global or macro density (p) and stress tensor (T) obtained by volume
averaging will be those associated with the marrow. If the RVE or homogenization
domain is taken to be one of the larger rectangles in Fig. 4.3, the global or macro
density (p) and stress tensor (T) obtained by volume averaging over the microscale
will be different from the microscale density p and stress tensor T for both the bone
and the marrow, and their values will lie in between these two limits and be
proportional to the ratio of the volume of marrow voids to the volume of bone in
each rectangle.

Problems

7.2.1 Find the average density (p) of a cube of volume b? if one-half the cube has a
density of p, and the other half of the cube has a density wp.,.

7.2.2 Find the average density {p) of a sphere of radius whose density p is given by
p = kpor where r is the radial spherical coordinate.

7.2.3 Find the average stress (T) in a heterogeneous cube of volume b’ if each face
of the cube is subjected to a different pressure. The pressure on the face
normal to e; and -e; is p;, e, and —e, is p,, e; and —ej is p;. Find the average
stress (T) in a heterogeneous cube when all the surfaces are subjected to the
same pressure.
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7.3 Effective Material Parameters

One of the prime objectives in the discipline of composite materials, a discipline
that has developed over the last half-century, is to evaluate the effective material
parameters of a composite in terms of the material parameters and configurational
geometries of its constituent components or phases. The purpose of this section is to
show that the effective material properties may be expressed in terms of integrals
over the surface of the RVE. The conceptual strategy is to average the heteroge-
neous properties of a material volume and to conceptually replace that material
volume with an equivalent homogenous material that will provide exactly the same
property volume averages as the real heterogeneous material, allowing the calcula-
tion of the material properties of equivalent homogeneous material. The material
volume selected for averaging is the RVE and the material properties of equivalent
homogeneous material are then called the effective properties of the RVE. The
calculational objective is to compute the effective material properties in terms of an
average of the real constituent properties. This is accomplished by requiring that the
integrals of the material parameters over the bounding surface of the RVE for the
real heterogeneous material equal those same integrals obtained when the RVE
consists of the equivalent homogeneous material. Thus we seek to express the
physical fields of interest for a particular RVE in terms of RVE boundary integrals.

In order to construct an effective anisotropic Hooke’s law it is necessary to
represent the global or macro stress and strain tensors, (E) and (T), respectively as
integrals over the boundary of the RVE. To accomplish this for the stress tensor
we begin by noting the easily verified identity (see the Appendix, especially
problem A.3.3)

Ox;
(V X X)T =1, aﬁi&' Kej = 5,‘1‘6,' X e;j. (7.2)
]

Using the identity (7.2) a second identity involving the stress is constructed,
T=1-T=(Vex) - T={V - (Tox)}". (7.3)

The derivation of the last equality in (7.3) employs the fact that the divergence of
the stress tensor is assumed to be zero, A-T = 0. This restriction on the stress tensor
follows from the stress equation of motion (3.37) when the acceleration and action-
at-a-distance forces are zero. The term V - (T @ x)in (7.3) is written with the T first
in the parenthesis to indicate that the divergence operator is to be applied to
T and not to x; the latter case would be written as V - (x ® T). The expansion of
V- (T ®x)is

V- (Tex)=V-Tex+T-(Vex)=T (7.4a)

since V- T = 0and V ® x = 1. In the indicial notation this development is written
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0 8Tjk Ox i

9 n) = L O 7.4b
Bx_,-( X)) = X o + Ti o, k (7.4b)

since d{% =0, % = 0;;. The expansion of V - (x ® T) is shown below:

V- xT)=(V-x)T+x-(VeT)=3T+x-(V®T) (7.5)

Substitution of the identity (7.3) into the definition for (T) yields

Ty = jETdv: ! jﬁ{v-(mx)}%, (7.6)
VRVEV VRVEV

and subsequent application of the divergence theorem (A184) converts the last
volume integral in (7.6) to the following surface integral:

1

VRVE

(T) ﬁi {n-(T®x)} ds. (7.7)

%

Finally, employing the Cauchy relation (3.16), t = T-n, provides a relationship
between (T) and the integral over the boundary of the RVE depending only upon the
stress vector t acting on the boundary:

(T) f{) X ® tds. (7.8)

7%

VRvE

This is the desired relationship because it expresses (T) in terms only of
boundary information, the surface tractions t acting on the boundary.

It is even easier to construct a similar representation of (E) as an integral over the
boundary of the RVE. To accomplish this set the fin (7.1) equal to V ® u and then
employ the divergence theorem to obtain

(Veu) =

SF(V Ru)dv = i{> (n ® u)ds. (7.9)
VRvE
Vv av

VRvE

This form of the divergence theorem employed above is obtained by setting
T = u ® cin (A184), where u is the displacement vector and ¢ is a constant vector.
The divergence theorem (A184) may then be written in the form

ffc (Veu)dv = f]; ¢ (n®u)ds, (7.10)
v ov
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and since this must hold for all constant vectors ¢, it follows that
}V@udv: ff)n@uds. (7.11)
1% v

The final result in the representation for (E) is achieved immediately by recalling the
definition of the small strain tensor E = (1/2)((V @ u)" + V @ ), thus from (7.9)

1 1
(E) = fi;—(n®u+u®n)ds. (7.12)
VRrVE av2

With the representations (7.8) and (7.12) for the global or macro stress and strain

—eff
tensors, (E) and (T), respectively, the effective anisotropic elastic constants C  are

defined by the relation

(T) = ée‘ﬁa?:). (7.13)

This formula provides the tool for the evaluation of the effective material elastic
constants of a composite in terms of the material parameters of its constituent
components or phases and the arrangement and geometry of the constituent
components. In the next section results obtained using this formula are recorded
in the cases of spherical inclusions in a matrix material and aligned cylindrical
voids in a matrix material.

As a second example of this averaging process for material parameters the
permeability coefficients in Darcy’s law are considered. In this case the vectors
representing volume averages of the mass flow rates (q) and the pressure gradient
(Vp) have to be expressed in terms of surface integrals over the RVE. Obtaining
such a formula for the pressure gradient (Vp) is straightforward. Substitute r = pc,
where ¢ is a constant vector, into the divergence theorem in the form (A183), then
remove the constant vector from the integrals, thus

c ii;Vpdv — 4; (npdv | = 0; (7.14)
% v

then, since (7.14) must hold for all vectors ¢, it follows from (7.14) and (7.1) that

(Vp) = ff npds. (7.15)

ov

RVE
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Obtaining a surface integral representation for the mass flow rates (q) is slightly
more complicated. To start, consider the expression V - (q ® x) and recall the
discussion of the special form of the divergence theorem following (7.9) in which
it was indicated that V - (q ® x) would imply that the divergence operator would be
applied to g, not to x, thus V- (q ® x) = (V - q)x + q. Then if the second rank
tensor in the divergence theorem in the form (A184) is set equal to X ® q; the
divergence of x ® q is then equal to x(V-q) + ¢, and (A184) yields

fi;q +x(V-q)dv = ﬁ; (q-n)x dv. (7.16)
v v

A second integral formula involving q is obtained by setting r in the divergence
theorem in the form (A183) equal to q, thus

}V-qdv:iq-ndv. (7.17)
% v

Now, if it is assumed that there are no sources or sinks in the volume V and that
there is no net flow across the surfaces 0V, both of the integrals in (7.17) are zero.
Then, employing the argument that is used to go from (3.4) to (3.5), it follows that
A-q = 0 in the region and using (7.1) and (7.16) one may conclude that

1

VRvE

(q) f{) (n - q)x ds. (7.18)

%

Using the representations (7.18) and (7.15) for the volume averages of the mass
flow rates (q) and the pressure gradient (Vp), respectively, the effective anisotropic
permeability constants H¥ are defined by the relation

(q) = —H"(Vp). (7.19)

This formula provides the tool for the evaluation of the effective permeability of
a porous material in terms of the porous architecture of the solid phase and the
properties of the fluid in those pores. In the section after next the result (7.19) is
used to evaluate the effective permeability in a simple uniaxial model with multiple
aligned cylindrical channels.

Although it is frequently not stated, all continuum theories employ local effec-
tive constitutive relations such as those defined by (7.13) and (7.19). This is
necessarily the case because it is always necessary to replace the real material by
a continuum model that does not contain the small-scale holes and inhomogeneities
the real material contains, but which are not relevant to the concerns of the modeler.
In the presentations of many continuum theories the substance of this modeling
procedure is incorporated in a shorthand statement to the effect that a continuum
model is (or will be) employed.
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This approach is reasonable because, for many continuum theories, the averaging
arguments are intuitively justifiable. This is generally not the case for biological tissues
and nanomechanics in general. In almost all continuum theories the notation for RVE
averaging is not employed, but it is implied. Thus in continuum models the notation of
the typical field variable f really means (f), the RVE average of f. In particular, in any
continuum theory involving the use of the stress tensor T, it is really the RVE averaged
(T) that is being represented, even though an RVE has not been specified.

Problem

7.3.1 Find the average stress (T) in a heterogeneous cube of volume b” if each face
of the cube is subjected to a different pressure. The pressure on the face
normal to e; and —e; is p; for i = 1, 2, 3. Also, find the average stress (T) in a
heterogeneous cube when all surfaces are subjected to the same pressure.

7.4 Effective Elastic Constants

As a first example of the effective Hooke’s law (7.13), consider a composite
material in which the matrix material is isotropic and the inclusions are spherical
in shape, sparse in number (dilute), and of a material with different isotropic elastic
constants. In this case the effective elastic material constants are also isotropic and
the bulk and shear moduli, KT and G‘“’ff, are related to the matrix material bulk and
shear moduli, K, and G,,,, and Poisson’s ratio v, and to the inclusion bulk and shear
moduli, K; and G;, by (Christensen, 1971; pp. 46—47)

Keft ({f—’ - )¢s Geff 15(1 — vm)(l - %)qﬁs
K _ 1 + m o , G_ — 1 _ m =
m |+ e aie: m 7—5vm +2(4 = 5vm) G-

(7.20)

where ¢, is the porosity associated with the spherical pores. Thus if the porosity
¢ and the matrix and inclusion constants K.,, G, K; and G; are known, the
formulas (7.20) may be used to determine the effective bulk and shear moduli,
K and G°', recalling that for an isotropic material the Poisson’s ratio v,, is related
to K, and G, by v, = 3K, — 2G)/(6K,,, + 2G,,), see Table 6.2.

As a simple example of these formulas consider the case when v,, = 1/3 and,
since there are only two independent isotropic elastic constants, G,, and K, are
related. A formula from Table 6.2 may be used to show that G,, = (3/8)K,,.
Substituting v,, = 1/3 and G, = (3/8)K,, in (7.20), they simplify as follows:

o e e (g

: N
: SN ST g0
Kn 1+%<K£.:,_1) Gm 8+75
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The ratio of the effective bulk modulus to the matrix bulk modulus, in the
limiting cases when as the ratio of inclusion bulk modulus to the matrix bulk
modulus tends to zero and infinity, are given by

Keff Keff 3¢
limit =1-—3¢, d limit =1 >
Ki/lllg:rl—’o Km ¢b an Kl/}(Tl—*OO Km * 2 ’

(7.22)

respectively. The ratio of effective shear modulus to the matrix shear modulus, in
the limiting cases when as the ratio of inclusion shear modulus to the matrix shear
modulus tends to zero and infinity, are given by

G 15 Gt 15¢.
limit T _ 14 B
Gi/Gn—0 G 8 LTS G 7

, (7.23)

respectively. These results illustrate certain intuitive properties of effective moduli.
As the moduli of the inclusion decrease (increase) relative to the moduli of the
matrix material, the effective elastic constants decrease (increase) relative to the
elastic constants of the matrix material. If the inclusions are voids, the formulas
(7.20) simplify to:

K | b, G L1501 ),

- Km ’ —
K 1 - JryEy o Gn 7 — 5V

(7.24)

In the case when v, = 1/3 these two formulas reduce to the first of (7.22) and the
first of (7.23) respectively. The first equation of (7.24) is given by Nemat-Nasser
and Hori (1999) as their equation (5.2.6b).

If the material of the inclusion is a fluid, (7.20) simplifies to the following:

. K¢ §
Ketf - (ﬁ - 1)¢5 Gt | 15(1 - Vm)‘ﬁg (7.25)
i K-k, T T T T sy '
Ko l+ g dame,  Om i

where K represents the bulk modulus of the fluid.
Example Exercise 7.4.1

Problem: Calculate the effective bulk modulus K°, shear modulus G, and
Young’s modulus £, for a composite material consisting of a steel matrix material
and spherical inclusions. The spherical inclusions are made of magnesium, have a
radius r, and are contained within unit cells that are cubes with a dimension of 5r.
The Young’s modulus of steel (magnesium) is 200 GPa (45 GPa) and the shear
modulus of steel (magnesium) is 77 GPa (16 GPa).

Solution: The isotropic bulk modulus K of a material may be determined from
the Young’s modulus E and the shear modulus G by use of the formula
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K = EG/(9G — 3E) given in Table 6.2. The bulk modulus of steel (magnesium) is
166 GPa (80 GPa). The volume fraction of the spherical inclusions is the ratio of
the volume of one sphere, (4/3)Tcr3 , to the volume of the unit cell, (Sr)3 , thus

B (4/3)r? B (4/3)n 4
O = a5 T s T rst 00

Substitution of the accumulated information into the formulas (7.20) one finds
that K™ and G°,

KT (&-1)335 6T 15(1-.3)(1 - 19).0335
166 |+ R0l 77 7—5(3)+2(4—5(3)48

are given by 161 GPa and 74 GPa, respectively. The effective Young’s modulus £
is determined to be 103 GPa from the formula E = 9KG/(3K + G) given in
Table 6.2.

As a second example of the effective Hooke’s law (7.13), consider a composite
made up of a linear elastic homogenous, isotropic solid matrix material containing
cylindrical cavities aligned in the x; direction (Fig. 7.3). Although the matrix
material is assumed to be isotropic, the cylindrical cavities aligned in the x;
direction require that the material symmetry of the composite be transverse isotropy
(Chap. 4, Table 4.5). The matrix of tensor compliance components S for the

effective transversely isotropic engineering elastic constants is in the following
form:

E?ff Eelsz ngf
1
om0 00
o 1
~ eff eff eff 0 0 0
S = E3 E3 E3 |
0 0 0 =g O 0
23 |
O 0 0 0 —= 0
2623 f
1 e
o o o o0 o -2
i ET

The effective elastic constants are expressed in terms of the matrix elastic
constants and the volume fraction of cylindrical cavities, which is denoted by ¢..
The volume fraction ¢.. is assumed to be small and the distribution of cavities dilute
and random. Terms proportional to the square and higher orders of ¢, are neglected.
When ¢, is this small, several different averaging methods show, using a plane
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Fig. 7.3 An illustration of a
block of a homogeneous
material containing
cylindrical pores all aligned
in one direction

o000
o000
e 00
OO COR0)

stress assumption in the xy, x; plane, that the effective elastic constants are given by
(Nemat-Nasser and Hori 1999; Chap. 2; (5.1.18a, b, ¢, d) and (5.1.27a, ¢)):

Geff B Geff _ 4(15( Ecltff Eeff S(b Eeff ¢
Gm Gm 1 4 Vi ’ Em Em - cr - ) 26
veff veff 1 veff veff veff veff (7 )
Z12 721 1— <3 _ _) (bc, 231 732 1, J13 723 —-1— 2¢C
Vm Vm Vm Vm Vm Vm Vi

As noted, the cylindrical cavities aligned in the x;3 direction change that material
symmetry but the isotropic character of the plane perpendicular to the x3 direction is
retained. The material in the plane perpendicular to the x3 direction is isotropic; all
the elastic constants associated with that plane will be isotropic, as shown in the
following exercise.

Example Exercise 7.4.2

Problem: The effective elastic constants (7.23) for the composite composed of an
isotropic matrix material containing cylindrical cavities aligned in the x; direction
are isotropic in the plane perpendicular to the x; direction. Verify that this is the
case showing that if the matrix material satisfies the isotropy relationship 2Gy,
E./(1 4+ vy, the effective elastic constants G?gf = Gggf, Eeff ngf and v?fzf = vgflf
also satisfy the isotropy relationship However, due to the notation, there is a
multitude of equivalent forms: 2GST = 2GST = EST /(1 +v$) = EST /(1 + 51 =
Eeff/(l + Veff) Eeff/(l + vetf)

Solution: The first formula of (7.26) is rewritten as
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8Gmob,
14 vy,

2G5 = 2G5 = 2G,, —

then from 2G,, = E/(1 + v,,) it follows that

En(14 vy —46¢,)
(1 "’Vm)z .

261 =268 -

eff
From the second formula of (7.26) one can see that E,, = lfﬁ thus,

261 = 268 - ELU 00
(1=3¢)(1 +vm)?

or to the neglect of squared terms in ¢,

Eeff
2Gflrf3f = 2G;f3f — v +1v _)2 (I 4+ v — (Bvm — 1)o,).

From the fourth formula of (7.26) one can write v = v§if = v,, — (3v,, — 1)¢,,
thus obtaining the desired result

2G5 = 2G5 = EST(1+455).

In the special case when v, is 1/3, the expressions for the effective constants
(7.26) simplify to

eff eff eff eff
G13 _ G23 El — E2

- —1-3¢

Gn  Gm En En : a2

Eeff veff veff veff veff veff veff :
3:1_¢ 12:21:1 31:32:1 13:2321_2¢

En “YVm Vm ' Ym Ym  Vm  Vm ‘

From these results it is apparent that the Young’s modulus and the shear modulus
in the transverse plane are more severely reduced than the axial Young’s modulus
as the porosity increases. In the example below, the second of (7.27), E§" /E,, = 1
—¢,, is constructed from a mechanics of materials argument.

Example Exercise 7.4.3

Problem: Recall the mechanics of materials formula for the deflection 6 = PL/AE
of a bar of cross-sectional area A, length L, and modulus E subjected to an axial
force P. Apply this formula to the bar with axially aligned cylindrical cavities
illustrated in Fig. 7.3 to show that ES" /E,, = 1 — ¢,. The bar and the cylindrical
cavities are aligned in the x5 direction.
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Solution: The formula 6 = PL/AE will be applied in two ways to the bar with
axially aligned cylindrical cavities illustrated in Fig. 7.3 and subjected to an axial
force P. First apply the formula to the matrix material imagining a reduced cross-
sectional area A, not containing the voids, thus E,, = PL/A,J. Next apply the
formula to the entire bar containing the voids, thus E§" = PL/AJ. The relationship
between the cross-sectional total area A and the cross-sectional area A, occupied
by the matrix material is A,, = A(l - ¢.). The desired result is established by
eliminating P, L, 9, A, and A,,, between these three formulas.

Problems

7.4.1 Calculate the effective bulk modulus, K* ff, shear modulus, GEH, and Young’s
modulus, Eeff, for a composite material consisting of a steel matrix material
with spherical inclusions that contain water. The spherical inclusions, which
have aradius r, are contained within unit cells that are cubes with a dimension
of 4r. The Young’s modulus of steel is 200 GPa and the shear modulus of
steel is 77 GPa. The bulk modulus of water is 2.3 GPa.

7.4.2 Calculate the effective bulk modulus, K™, shear modulus, G, and Young’s
modulus, Eeff, for a composite material consisting of a magnesium matrix
material and spherical inclusions. The spherical inclusions are made of steel,
have a radius r, and are contained within unit cells that are cubes with a
dimension of 5r. The Young’s modulus of steel (magnesium) is 200 GPa
(45 GPa) and the shear modulus of steel (magnesium) is 77 GPa (16 GPa).

7.4.3 Calculate the effective moduli for a composite material consisting of a steel
matrix material and cylindrical voids of radius r contained in unit squares 8r
by 8r. The Young’s modulus of steel is 77 GPa and its Poisson’s ratio is 0.33.

7.4.4 Considering the effective moduli for a composite material consisting of a
matrix material and aligned cylindrical voids, show that for small values of
the volume fraction the in-plane effective shear moduli and the in-plane
effective Young’s moduli decrease more rapidly with increasing porosity
than the out-of-plane effective Young’s moduli. For simplicity consider the
case when v, is 1/3.

7.5 Effective Permeability

In this section the effective axial permeability of the bar with axially aligned
cylindrical cavities illustrated in Fig. 7.3 is calculated. The method used is the
simplest one available to show that Darcy’s law is a consequence of the application
of the Newtonian law of viscosity to a porous medium with interconnected pores.
The Navier—Stokes equations (6.37) are a combination of the Newtonian law of
viscosity (5.36 N) and the stress equations of motion (3.37), as was shown in the
previous chapter. Thus one can say that Darcy’s law is a consequence of the
application of either the Newtonian law of viscosity, or the Navier—Stokes
equations, to a porous medium with interconnected pores. There are a number of
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more general, more rigorous, and more elegant proofs of this result (Ene and
Sanchez-Palencia 1975; Sanchez-Palencia 1980; Burridge and Keller 1981) but
the one presented below suffices to make the point.

Consider the bar with axially aligned cylindrical cavities illustrated in Fig. 7.3 as
a porous medium, the pores being the axially aligned cylindrical cavities. Each pore
is identical and can be treated as a pipe for the purpose of determining the fluid flow
through it. In the case of pipe flow under a steady pressure gradient dp/0x3, the
velocity distribution predicated by the Navier—Stokes equations is a parabolic
profile (compare Example 6.4.3),

B op rg r?
=

where 1 is the viscosity, 7, is the radius of the pipe and r and x3 are two of the three
cylindrical coordinates. The volume flow rate through the pipe is given by

To .
0=2n J rvidr = — (g—)i) 7;:; , (7.29)
) 3

which, multiplied by the total number of axially aligned cylindrical cavities per unit
area, n., gives the average volume flow rate per unit area along the bar,

4
fi; (n-q)xds = (— 8_]7) ne o . (7.30)

~ Veve Ox3 8
v

(q)

The pressure gradient dp/dx; is a constant in the bar, hence the average of the
pressure gradient over the bar is given by the constant value;

1

dp
Vp) = Vpdy = 2 731
(V) V{> pv =L (.31

a result that, combined with (7.28), yields

4
TEI’O

(@) = —neg 2 (Vp). (7.32)

A comparison of this representation for (q) with that of (7.19) yields the
representation for the hydraulic permeability Hg’gf in the x5 direction,

T 1'4

HA = p =2 (7.33)
33 8,[1
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This derivation has demonstrated that the hydraulic permeability depends upon
the viscosity of the fluid | and the geometry of the pores. The intrinsic permeability
is defined as the hydraulic permeability times the viscosity of the fluid in the pores,

K = uHSY = n, ”E'f . Since n,, the total number of axially aligned cylindrical
cavities per unit area has the dimension of one over length squared, the intrinsic
permeability K$i = n. “;: is of dimension length squared. The intrinsic permeabil-
ity is independent of the type of fluid in the pores and dependent only upon the size
and geometrical arrangement of the pores in the medium. The comments above
concerning the connection between, and the relative properties of, the intrinsic
permeability and the hydraulic permeability are general and not tied to the particu-
lar model used here to calculate the effective permeability Hggf, thus K = yH%in
general.

7.6 Structural Gradients

A material containing a structural gradient, such as increasing/decreasing porosity
is said to be a gradient material. Figure 7.4 is an illustration of an example material
with a layered structural gradient. Spheres of varying diameters and one material
type are layered in a matrix material of another type. As a special case, the spheres
may be voids. Figure 7.5 is an illustration of a material with a structural gradient
that is not formed by layering. Spheres of varying diameters and one material type
are graded in a size distribution in a material of another type. Again, as a special
case, the spheres may be voids. Gradient materials may be man-made, but they also
occur in nature. Examples of natural materials with structural gradients include
cancellous bone and the growth rings of trees.

The RVE plays an important role in determining the relationship between the
structural gradient and the material symmetry. In a material with a structural
gradient, if it is not possible to select an RVE so that it is large enough to adequately

O 0] 0] @] (@] @]
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average over the microstructure and also small enough to insure that the structural
gradient across the RVE is negligible, then it is necessary to restrict the material
symmetry to accommodate the gradient. However, in a material with a structural
gradient, if an RVE may be selected so that it is large enough to adequately average
over the microstructure and small enough to insure that the structural gradient
across the RVE is negligible, then it is not necessary to restrict the material
symmetry to accommodate the gradient.

It is easy to see that a structural gradient is incompatible with a plane of
symmetry. If a given direction is the direction of a structural gradient it cannot
also be the direction of a normal to a plane of symmetry, nor any projected
component of a normal to a plane of reflective symmetry, because the increasing
or decreasing structure with increasing distance from the reference plane, such as
the layered spherical inclusions in Fig. 7.4, would be increasing on one side of the
plane and decreasing on the other side of the plane violating mirror symmetry.
Gradient materials are thus a type of chiral material described in Sect. 4.9. Gradient
materials are chiral materials because they require that the material symmetries
possess at least one direction that is not a direction associated with a normal to a
plane of reflective symmetry, nor any projected component of a normal to a plane of
reflective symmetry. The point is that, on the same scale, the normal to a plane of
symmetry and a material structural gradient are incompatible unless they are
perpendicular. This incompatibility restricts the type of linear elastic symmetries
possible for gradient materials to the same symmetries that are possible for chiral
materials (Sect. 4.9), namely, trigonal, monoclinic, and triclinic symmetries (c.f.,
Fig. 4.10).

The normal to a plane of material symmetry can only be perpendicular to the
direction of a uniform structural gradient. The argument for this conclusion is a
purely geometrical one. First note that the direction of a normal to a plane of
material symmetry cannot be coincident with the direction of the structural gradient
because the structural gradient is inconsistent with the reflective structural symme-
try required by a plane of mirror symmetry. Next consider the case when the normal
to a plane of material symmetry is inclined, but not perpendicular, to the direction
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of the structural gradient. In this case, the same situation prevails because the
structural gradient is still inconsistent with the reflective structural symmetry
required by a plane of mirror symmetry. The only possibility is that the normal to
a plane of material symmetry is perpendicular to the direction of the structural
gradient. Thus, it is concluded that the only linear elastic symmetries permitted in a
material containing a structural gradient are those symmetries characterized by
having all their normals to their planes of mirror or reflective symmetry perpendic-
ular to the structural gradient. The caveat to this conclusion is that the structural
gradient and the material symmetry are at the same structural scale in the material.
Only the three linear elastic symmetries, triclinic, monoclinic, and trigonal, satisfy
the condition that they admit a direction perpendicular to all the normals to their
planes of mirror or reflective symmetry. Trigonal symmetry has the highest sym-
metry of the three symmetries and admits a direction that is not a direction
associated with a normal to a plane of reflective symmetry, nor any projected
component of a normal to a plane of reflective symmetry.

In summary, in a material with a structural gradient, if an RVE may be selected
so that is large enough to adequately average over the microstructure and small
enough to insure that the structural gradient across the RVE is negligible, then it is
not necessary to restrict the material symmetry to accommodate the gradient.
However, in a material with a structural gradient, if an RVE cannot be selected
such that the structural gradient across an adequately sized RVE is negligible, then
it is not necessary to restrict the material symmetry to accommodate the structural
gradient.

7.7 Tensorial Representations of Microstructure

The description and measurement of the microstructure of a material with multiple
distinct constituents is called quantitative stereology (Underwood 1969) or texture
analysis (Bunge 1982) or, in the case of biological tissues, it becomes part of
histology. The concern here is primarily with the modeling of the material micro-
structure and only secondarily with techniques for its measurement.

It is recognized that the volume fraction of a constituent material is the primary
geometric measure of local material structure in a material with multiple distinct
constituents. This means that in the purely geometric kinematic description of the
arrangement of the microstructure the volume fraction of a constituent material is
the primary parameter in the geometric characterization of the microstructure.

The volume fraction of a constituent in a multiconstituent material does not
provide information on the arrangement or architecture of microstructure of the
multiconstituent material, only information on the volume of the constituent pres-
ent. The second best measure of local material microstructure depends upon the
type of material microstructure being modeled and the objective of the modeler.
One approach to the modeling of material microstructures is to use vectors and
tensors to characterize the microstructural architecture. For example, in theories for
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Fig. 7.6 Test lines
superimposed on a cancellous
bone specimen. The test lines
are oriented at the angle 0.
The mean intercept length
measured at this angle is
denoted L(0). From Cowin
and Mehrabadi (1989)

the flow of liquid crystals a vector is often used to characterize the long axis of the
liquid crystal. In early liquid crystal theories the formation of the constitutive
equation for the liquid crystal follows the development outlined in Chap. 5 for
the constitutive equation for the Newtonian law of viscosity up to equation (5.4 N).
In the early liquid crystal theory the equation equivalent to (5.4 N) was assumed to
also depend upon the unit vector n, a vector coincident with the long axis of the
liquid crystal (de Gennes and Prost 1993).

The modeling of the microstructural architecture of a material with two distinct
constituents, one dispersed in the other, has been accomplished using a second rank
tensor called the fabric tensor. Fabric tensors may be defined in a number of ways; it
is required only that the fabric tensor be a positive definite tensor that is a
quantitative stereological measure of the microstructural architecture, a measure
whose principal axes are coincident with the principal microstructural directions
and whose eigenvalues are proportional to the distribution of the microstructure in
the associated principal direction. The fabric tensor is a continuum point property
(as usual its measurement requires a finite test volume or RVE) and is therefore
considered to be a continuous function of position in the material.

One type of fabric tensor is the mean intercept length (MIL) tensor. The MIL in a
material is the average distance, measured along a particular straight line, between
two interfaces of the two phases or constituents (Fig. 7.6). The value of the mean
intercept length is a function of the slope of the line, 0, along which the measure-
ment is made in a specified plane. A grid of parallel lines is overlaid on the plane
through the specimen of the binary material and the distance between changes of
phase, first material to second material or second material to first material, are
counted. The average of these lengths is the mean intercept length at the angle 0, the
angle characterizing the orientation of the set of parallel lines. Figure 7.6 illustrates
such measurements. It is frequently observed that when the mean intercept lengths
measured in the selected plane in the specimen are plotted in a polar diagram as a
function of 6, producing a closed curve in the plane. If the test lines are rotated
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Fig. 7.7 An ellipse is
constructed by making a polar
pole of the average value

of the mean intercept length
L(0) for each value of the
angle 0. From Cowin and
Mehrabadi (1989)

through several values of 6 and the corresponding values of mean intercept length L
(0) are measured, the data are often found to fit the equation for an ellipse very
closely,

(I/LZ(G)) = M, cos*0 + M, sin’0 + 2M, sin 0 cos 0, (7.34)

where M, M5, and M, are constants when the reference line from which the angle
0 is measured is constant. The subscripts 1 and 2 indicate the axes of the x;, x,
coordinate system to which the measurements are referred. The ellipse is shown
superposed on the binary microstructure it represents in Fig. 7.7. The mean inter-
cept lengths in all directions in a three-dimensional binary microstructure structure
would be represented by an ellipsoid and would therefore be equivalent to a positive
definite second rank tensor. The constants M,;, M5, and M, introduced in the
foregoing are then the components in a matrix representing the tensor M which are
related to the mean intercept length L(n), where n is a unit vector in the direction of
the test line, by (1/L*(n)) = n-Mn.

The fabric tensor is commonly computed from data obtained by using stereo-
graphic or image analysis methods (Odgaard 1997) such as Mean Intercept Length
(MIL) (Whitehouse, 1974), Volume Orientation (VO) (Odgaard et al., 1990), Star
Length Distribution (SLD) (Smit et al. 1998), or Intercept Segment Deviation
(Chiang et al. 2006). The experimental procedure for the fabric measurement of
cancellous bone is described by Whitehouse (1974), Harrigan and Mann (1984),
Turner and Cowin (1987) and Turner et al. (1990). A number of ways of
constructing a fabric tensor for a material with two distinct constituents are
described by Odgaard (1997, 2001) for a particular porous material, cancellous
bone. These methods are applicable to any material with at least two distinct
constituents and include the stereological methods known as the mean intercept
length method, the volume orientation method and the star volume distribution
method. In multiphase materials such as cellular materials, foams, and cancellous
bone, the unit vectors may represent the orientation of the interface surface area or
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the inclusion volume orientation (Hilliard 1967). As pointed out by Odgaard et al.
(1997), for the same microstructural architecture, these different fabric tensor
definitions each lead to representations of the data that are, effectively, the same.

The existence of a mean intercept or fabric ellipsoid for an anisotropic porous
material suggests elastic orthotropic symmetry. To visualize this result, consider an
ellipse, illustrated in Fig. 7.8, that is one of the three principal planar projections of
the mean intercept length ellipsoid. The planes perpendicular to the major and
minor axes of the ellipse illustrated in Fig. 7.8(b) are planes of mirror symmetry
because the increasing or decreasing direction of the mean intercept length,
indicated by the arrow heads, is the same with respect to either of these planes.
On the other hand, if one selects an arbitrary direction such as that illustrated in
Fig. 7.8(a), it is easy to see that the selected direction is not a normal direction for a
plane of mirror symmetry because the direction of increasing mean intercept length
is reversed from its appropriate mirror image position. Therefore, there are only two
planes of mirror symmetry associated with the ellipse. Considering the other two
ellipses that are planar projections of the mean intercept ellipsoid, the same
conclusion is reached. Thus, only the three perpendicular principal axes of the
ellipsoids are normals to planes of mirror symmetry. This means that, if the matrix
materials involved are isotropic the material symmetry will be determined only by
the fabric ellipsoid and that the material symmetry will be orthotropy or a greater
symmetry. If two of the principal axes of the mean intercept length ellipsoid were
equal (i.e. an ellipsoid of revolution or, equivalently, a spheroid, either oblate or
prolate), then the elastic symmetry of the material is transversely isotropic. If the
fabric ellipsoid degenerates to a sphere, the elastic symmetry of the material is
isotropic.

The fabric tensor employed here is denoted by F and is related to the mean
intercept length tensor M by F = M™%, The positive square root of the inverse of F
is well defined because M is a positive definite symmetric tensor. The principal axes
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of F and M coincide, only the shape of the ellipsoid changes. M is a positive
definite symmetric tensor because it represents an ellipsoid. The fabric tensor or
mean intercept ellipsoid can be measured using the techniques described above for
a cubic specimen. On each of three orthogonal faces of a cubic specimen of
cancellous bone an ellipse will be determined from the directional variation of
mean intercept length on that face. The mean intercept length tensor or the fabric
tensor can be constructed from these three ellipses that are the projections of the
ellipsoid on three perpendicular planes of the cube.

7.8 The Stress—Strain—Fabric Relation

If the porous medium may be satisfactorily represented as an orthotropic, linearly
elastic material, the associated elasticity tensor C will depend upon the porous
architecture represented by the fabric tensor F. The six-dimensional second rank
elasticity tensor C relates the six-dimensional stress vector to the six-dimensional
infinitesimal strain vector in the linear anisotropic form of Hooke’s law, (4.36 H).

The elasticity tensor C completely characterizes the linear elastic mechanical
behavior of the porous medium. If it is assumed that all the anisotropy of the porous
medium is due to the anisotropy of its solid matrix pore structure, that is to say
that the matrix material is itself isotropic, then a relationship between the
components of the elasticity tensor C and F can be constructed. From previous
studies of porous media it is known that the medium’s elastic properties are strongly
dependent upon its apparent density or, equivalently, the solid volume fraction of
matrix material. This solid volume fraction is denoted by v and is defined as the
volume of matrix material per unit bulk volume of the porous medium. Thus Cwill
be a function of v as well as F. A general representation of Cas a function of v and F
was developed based on the assumption that the matrix material of the porous
medium is isotropic and that the anisotropy of the porous medium itself is due only
to the geometry of the microstructure represented by the fabric tensor F. The
mathematical statement of this notion is that the stress tensor T is an isotropic
function of the strain tensor E and the fabric tensor F as well as the porosity ¢. Thus
the tensor valued function

T =T(p,E,F), (7.35)

has the property that
QTQ" =T(¢,QEQ",QFQ"), (7.36)
for all orthogonal tensors Q. The most general form of the relationship between the

stress tensor and the strain and the fabric tensors consistent with the isotropy
assumption (7.37) is
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T = a;1trE + a; (F[trE] + 1tr [E - F]) + a3(1t[F - E - F] 4 (rE)F?)
+ by Ft[F - E] + by(Ftr[F - E] + («E - F)F?) + b3(F*u[F - E - F))
+2¢1E +2¢,(F-E+E-F) +2¢3(F*-E +E - F?) (7.37)

where a1, a,, as, by, b,, b3, ¢y, ¢2, and c5 are functions of o, trF, trF? and trF>. This
representation has been used to represent the elastic behavior of highly porous
cancellous bone tissue. The form of the functional dependence of the elasticity
tensor Cjj, (recall the stress—strain form of the anisotropic Hooke’s law, T;; =
CijtmE ) upon fabric is given by

Clim = 500k + a5 (FiiOtm + 8iF i) + a5 (35FigF gm + SimFigF )
+ DYFiF i + Dy (FiFigF gm + FinFigF o) + D3FisF F g F gm
+ ¢ (6ki0mj + OmiOn) + 5 (FiiOmj + FijOmi + Fim0rj + Fnjri)
+ Cg (FirFrk5mj + FkrFrjémi + FirFrmékj + FmrFljéik)

(7.38)

where, as in (7.38) the a, a,, a3, by, ba, b3, ¢y, 2, and c3 with the superscript ¢ are
functions of @, trF, trF? and trF>. The fourth-rank elastic compliance tensor S,
(recall E;j = S;jimT 1) for the strain—stress relation is

Sijim = @100t + @& (Fij0tm + 0iiF tm) + a5 (0iiF igF qm + OimFigF ¢j)
+ bYFijFim + b} (Fiiququ + kaFinq]') + B3FisF iF kg F gm
+ €1 (0kiOmj + OmiOkj) + €5 (FiiOmj + FijOmi + FimOij + Fpjoi)
+ S (FirFrkOmj + FiuFrjOmi + FirF i + FourFriOirc)

(7.39)

where a1, as, as, by, b,, b3, c1, ¢> and ¢35 with the superscript s are functions of ¢ and
the invariants of F and porosity ¢ or solid volume fraction (1-¢) of the material.
The least elastic material symmetry for which the representation holds is
orthotropy. It therefore holds for transverse isotropy and isotropy as well as
orthotropy.

Problems

7.8.1 Specialize the representation (7.39) for the components of the fourth order
compliance tensor to the case of isotropic symmetry. Relate the 9 coefficients
in your result to the two elastic constants in equation (6.26), Young’s
modulus and Poisson’s ratio. Upon what parameter(s) do the Young’s modu-
lus and Poisson’s ratio obtained depend?

7.8.2 Specialize the representation (7.38) for the components of the fourth order
elasticity tensor to the case of isotropic symmetry. Relate the 9 coefficients in
your result to the two Lamé moduli in equation (6.23) or (6.24). The resulting
Lamé moduli are functions of which parameter(s)?
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7.9 Relevant Literature

Good discussions of the RVE concept appear in the books by Christensen (1979)
and Nemat Nasser and Hori (1999). The inaugural quote of the next Chapter, Chap.
8, describes a very early application of the RVE concept by Maurice Biot (1941) to
poroelasticity.

The books on composite materials by Jones (1975), Tsai and Hahn (1980), Hull
(1981) and Halpin (1984) tend to specialize in laminated composites, that is to
composites constructed in the manner illustrated in Fig. 7.7. The early book of
Spencer (1972), which develops the theory of fiber reinforced materials, has been
used in developing mathematical models for several biological tissues. Early
rigorous summaries of composite material modeling were given by Sendeckyj
(1974) and Christensen (1979); a contemporary rigorous and exhaustive develop-
ment of elastic composite theory is contained in Nemat Nasser and Hori (1999).
Torquato (2002) presents a general, contemporary, rigorous and exhaustive devel-
opment of the quantification and modeling of microstructure.

Wainwright et al. (1976) and Neville (1993) are two interesting books on
biological composites, both plant and animal natural composites. Neville’s book
explores nature’s wide use of the helicoidal structure as a composite building
geometry. The book of Vincent (1982) is of more restricted scope. Wood is the
most widely analyzed natural composite material and its mechanics and micro-
structure are described in an abundant literature, for example Kollmann and Cote
(1968) and Bodig and Jayne (1982). The book by Niklas (1992) on plant biome-
chanics covers a wider range of the plant world, but it also deals with mechanism
and microstructure.

The quantification and measurement of material microstructure is not addressed
in the present book, but it is addressed in books on histology, metallurgy, and
materials science. The book of Underwood (1969) on quantitative stereology, that
of Bunge (1982) on texture analysis in material science and any standard textbook
on histology are examples of this literature.
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Chapter 8
Quasistatic Poroelasticity

The theme for this chapter is contained in a quote from the 1941 paper of M. A. Biot
that clearly describes an RVE: “Consider a small cubic element of soil, its sides
being parallel with the coordinate axes. This element is taken to be large enough
compared to the size of the pores so that it may be treated as homogeneous, and at
the same time small enough, compared to the scale of the macroscopic phenomena
in which we are interested, so that it may be considered as infinitesimal in the
mathematical treatment.”

8.1 Poroelastic Materials

Thinking about, or experimenting with, a fluid-saturated sponge can develop an
intuitive sense of the response of a saturated elastic porous medium to mechanical
loading. If a fluid-saturated sponge is compressed, fluid will flow from the sponge.
If the sponge is in a fluid reservoir and compressive pressure is subsequently
removed, the sponge will reimbibe the fluid and expand. The volume of the sponge
will also increase if its exterior openings are sealed and the external pore fluid
pressure is increased. However, the volume of the sponge will also decrease if its
exterior openings are sealed and the external pore fluid pressure is decreased. The
basic ideas underlying the theory of poroelastic materials are that the pore fluid
pressure contributes to the total stress in the porous matrix medium and that the pore
fluid pressure alone can strain the porous matrix medium. There is fluid movement
in a porous medium due to differences in pore fluid pressure created by different
pore volume strains associated with the mechanical loading of the porous medium.

This chapter contains a presentation of the quasistatic theory of poroelasticity.
Quasistatic means that inertia terms, that is to say mass times acceleration terms, are
neglected. Thus quasistatic means that processes are either static or moving so
slowly that the inertia terms are much smaller than other terms in the balance
equations for linear and angular momentum. The following chapter contains a
presentation of the dynamic theory of poroelasticity, the theory that deals with
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nonzero inertia terms and focuses on wave propagation. These two aspects of the
theory of poroelasticity are treated separately because both the physics and the
mathematical models are different. These differences stem from the physical
differences in the pore fluid behavior relative to the solid porous matrix material.
In the quasistatic theory the pore fluid flows through the pores, from pore to pore. In
the dynamic theory the wave passing through the porous medium travels at a speed
that does generally not permit the time for the pore fluid to flow from pore to pore.
A consequence of this difference in the pore fluid behavior leads to two theories that
have very different characteristics.

Poroelastic theory is a useful model in many geological and biological materials
because almost all of these materials have an interstitial fluid in their pores. In
biological tissues the interstitial fluid has many functions, one important function
being to transport nutrients from the vasculature to the cells in the tissue and to
transport waste products away. In some tissues the pore fluid pressure creates a
turgor or osmotic pressure that stiffens a soft tissue structure and in other tissues it is
part of the intercellular communication system. In tissues, the quasistatic deforma-
tion of the porous medium has a significant effect on the movement of pore fluid,
although the fluid pressure and fluid movement generally have only a small effect
on the deformation of the porous medium; the porous medium deformation gener-
ally pushes the fluid around, not vice-versa. The pore fluid pressure stays relatively
low in tissues because a higher pressure could collapse blood vessels and render the
tissue ischemic. However the pore fluid pressure does not have to stay low in tissues
like articular cartilage that are avascular. One could speculate that the reason
articular cartilage is avascular is to avoid the collapse of blood vessels. Many of
these effects have been, or will be, modeled using poroelasticity theory.

Quasistatic fluid movement in rocks and soils has many features of importance
to human populations. Water supply is one of the most important, removing oil
and gas from the ground is another. High water content can make soil masses
unstable; previously stable slopes may be caused to flow over human
developments. Earthquakes may cause fluid-saturated soil masses to liquefy and
the buildings situated upon them to sink into the soil mass. The theory of
poroelasticity has its origins in addressing the problem of buildings settling or
sinking into water saturated soil masses due to their own weight, not the liquefac-
tion of the soil mass.

The quasistatic poroelastic theory developed in this chapter is a combination
and modification of three of the four theories, those for elastic solids, viscous
fluids and flow through porous media, developed in Chap. 6. The development of
the theory is strongly dependent on the microstructural modeling concepts
described in Chap. 7. In fact much of the material that has preceded this chapter
has been laying the foundation for this chapter. Laying this foundation began with
the discussion of the Terzaghi and Darcy lumped parameter models in Chap. 1.
Terzaghi was one of the first engineers to address the problem of buildings settling
or sinking into water saturated soil masses due to their own weight. Darcy
investigated the flow of water through sand layers as a factor in the design of
fountains in his hometown of Dijon.
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Two cases associated with the effects of fluid pressure are considered for the
purpose of measuring the elastic constants in a poroelastic material, the drained and
the undrained. In the drained case the fluid pressure in the pores is zero; draining all
the pores before the test or executing the test very slowly achieves this because the
fluid in the pores will drain from the negligible fluid pressure associated with slow
fluid movement. In a porous medium the pores are assumed to be connected; there
are no unconnected pores that prevent the flow of fluid through them. In the
undrained case the pores that permit fluid to exit the test specimen are sealed; thus
pressure will build in the specimen when other forces load it, but the pressure cannot
cause the fluid to move out of the specimen. Paraphrasing the opening quote of this
chapter, the representative volume element (RVE) for a porous medium (Fig. 4.2) is
considered as a small cube (Fig. 4.1) that is large enough, compared to the size of the
largest pores, that it may be treated as homogeneous, and at the same time small
enough, compared to the scale of the macroscopic phenomena which are of interest,
that it may be considered as infinitesimal in the mathematical treatment. The creator
of the poroelastic theory advanced this description of the RVE for a saturated porous
medium before the terminology RVE came into wide usage. Maurice Anthony
Biot (1905-1985), a Belgian-American engineer who made many theoretical
contributions to mechanics, developed poroelastic theory. It is his 1941 paper
(Biot 1941) that is the basis of the isotropic form of the theory described here.

There are three sets of elastic constants employed in this poroelasticity theory,

the drained, Sd, the undrained, S“, and those of the matrix material, S™ The RVE
associated with the large box in Fig. 4.2 is used for the determination of the drained
and the undrained elastic constants while the RVE associated with the smallest box
is used for the characterization of the matrix elastic constants. Unlike the large box
RVE, the small box RVE contains no pores. The elastic compliance matrices S“, Sd,

and S™ for these materials have a similar representation:

where x = d, u, or m stands for drained, undrained, and matrix, respectively. The
special forms of $* associated with particular elastic symmetries are listed in
Tables 4.4 and 4.5.

There are seven scalar stress variables and seven scalar strain variables in
poroelasticity. The seven scalar stress variables are the six components of the stress
tensor T and fluid pressure p in the pores. The seven scalar strain variables are the
components of the strain tensor E and the variation in fluid content {, a dimension-
less measure of the fluid mass per unit volume of the porous material. The variation
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in fluid content { may be changed in two ways, either the density of the fluid may
change, or the porosity ¢ may change. This set of variables may be viewed as the
conjugate pairs of stress measures (T, p) and strain measures (E, {) appearing in
the following form in an expression for work done on the poroelastic medium:
dW =T: dE + p d{. The linear stress—strain-pore pressure constitutive relation
E = E(T, p), consisting of six scalar equations, is described in Sect. 8.2 and the
single-scalar-linear equation fluid content-stress-pore pressure constitutive relation
{ = (T, p) is described in Sect. 8.3. Thus the seven scalar stress variables will be
linearly related to the seven scalar strain variables. The poroelastic theory consid-
ered here is fully saturated, which means that the volume fraction of fluid is equal to
the porosity, ¢, of the solid matrix. Darcy’s law, which relates the gradient of the
pore pressure to the mass flow rate, is the subject of Sect. 8.4. The special form of
poroelasticity theory in the case when both the matrix material and the pore fluid are
considered to be incompressible is developed in Sect. 8.5. Formulas for the
undrained elastic coefficients S" as functions of ¢, the bulk modulus of the pore
fluid, K¢, and drained and matrix elastic constants, S¢ and Sm, respectively, St —

S“(Sd, Sm, ¢, Ky) are developed in Sect. 8.6. The objective of Sects. 8.2, 8.3, 8.4,
8.5, 8.6, and 8.7 is to develop the background for the basic system of equations for
poroelasticity recorded in Sects. 8.8 and 8.9. If the reader would like to have a
preview of where the Sects. 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, and 8.8 are leading, they can
peruse Sect. 8.9 and observe how the various elements in Sects. 8.2, 8.3, 8.4, 8.5,
8.6, 8.7, and 8.8 are combined with the conservation of mass (3.6) and the
conservation of momentum (3.37) to form poroelasticity theory. Examples of
the solutions to poroelastic problems are given in Sect. 8.10 and a summary of
the literature, with references, appears in Sect. 8.11.

8.2 The Stress—Strain-Pore Pressure Constitutive Relation

The basic hypothesis is that the average strain E in the RVE of the saturated porous

medium is related, not only to the average stress T in the RVE, but also to the fluid
pressure p in the fluid-filled pores. Thus the stress—strain-pore pressure constitutive

relation for a saturated porous medium linearly relates the strain E in the saturated

porous medium not only to the stress T, but also to the fluid pressure p in the fluid-
filled pores; this is expressed as the strain—stress-pore pressure relation

E=S8"T+8 Ap (8.1)
or the stress-pore pressure strain relation
T+Ap=C!E, (8.2)

where §¢ represents the drained anisotropic compliance elastic constants of the

saturated porous medium and C4 s its reciprocal, the drained anisotropic elasticity
tensor. This constitutive equation is a modification of the elastic strain-stress relation
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(4.12H) to include the effect of the pore pressure p. The six-dimensional vector

(three-dimensional symmetric second order tensor) A is called the Biot effective
stress coefficient tensor. When p = 0 the stress—strain-pore pressure relation (8.1)
coincides with the elastic strain-stress relation (5.12H). The porous elastic material is
treated as a composite of an elastic solid and a pore fluid. The Biot effective stress

coefficient vector A is related not only to the drained effective elastic constants of
porous matrix material SY, but also to the elastic constants of the solid matrix material

S™. The solid matrix material elastic constants of the porous material are based on an
RVE that is so small that it contains none of the pores (Fig. 4.2). The Biot effective

stress coefficient tensor A is related to the difference between effective drained elastic
constants S and the solid matrix material elastic compliance tensor S™ by the formula

A=(1-C*-8). 0, (8.3)

where U = [1,1,1, 0, 0,0}T is the six-dimensional vector representation of the
three-dimensional unit tensor 1. A derivation of (8.3) is given at the end of this

section. Note that the symbol Uis distinct from the unit tensor in six dimensions that
is denoted by i; U is described in further detail in Sect. A.1 1, just before (A.165).
The components of A depend upon both the matrix and drained elastic constants.
The assumption concerning the symmetry of S is interesting and complex. If the
symmetry of S9 is less than transversely isotropic and/or its axis of symmetry is not
coincident with the transversely isotropic axis of symmetry of C¢, then the 6D
vector C¢ in expression (8.3) has, in general, six nonzero components and the

solution to problems is more complicated. However if both C! and §¢ are
transversely isotropic with respect to a common axis, then

A =[A1,A1,45,0,0,0], (8.4)
where
Ay =1— (Cf, + (ST + S5 + STy) — (287 + S33),
Ay =1—20%(S™ + 8§ +8m) — CL(28™ + Sm).

In the case when both C? and §¢ are isotropic, it follows that Ais given by «U
(o1 in 3D),

A=oU where o=[1— (KYK™), (8.5)

where o is called the isotropic effective stress coefficient. In most situations there
appears to be little disadvantage in assuming that Sdis isotropic. The assumption does
not mean that the real matrix material is actually isotropic, it only means that there
is little error in assuming that it is isotropic because the principal determinant of
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the symmetry of the drained elastic constants, €4, is the arrangement of pores; the
symmetry of the material surrounding the pores, S™, has only a minor effect. These

low consequences of the isotropy assumption for the symmetry of S™ have been
discussed by several authors (Shafiro and Kachanov 1997; Kachanov 1999;
Sevostianov and Kachanov 2001; Cowin 2004). The Biot effective stress coefficient

L. .. . ... . < eff
tensor Ais so named because it is employed in the definition of the effective stress T

=T+ Ap. (8.6)

This definition of effective stress reduces the stress—strain-pressure relation (8.1)
to the same form as (4.12H), thus

E=8.1". (8.7)

The advantage of the representation (8.7) is that the fluid-saturated porous
material may be thought of as an ordinary elastic material, but one subjected to

. ~ eff ) R
the “effective stress” T* rather than an (ordinary) stress T.
The matrix elastic compliance tensor sm may be evaluated from knowledge of

the drained elastic compliance tensor ¢ using composite or effective medium
theory described in Chap. 7. For example, if the matrix material is isotropic and the
pores are dilute and spherical in shape, then the drained elastic material is isotropic
and the bulk and shear moduli, K% and Gd, are related to the matrix bulk and shear
moduli, K™ and G™, and Poisson’s ratio v by

oK™ Gdi1 15(1 — v
1 —K"/(K™ + (4/3)G™)" G™ 7 —5wm

Kd=K™— (8.8)

where ¢ is the porosity associated with the spherical pores. Problem 8.2.2 at the end
of this section derives the expressions (8.8) from the formulas (7.16). If the porosity
¢ and the drained constants K and G* are known, the formulas (8.8) may be used to
determine the matrix bulk and shear moduli, K™ and G™, recalling that for
an isotropic material the Poisson’s ratio v" is related to K™ and G™ by v" =
(BK™ — 2G™)/(6K™ + 2G™), see Table 6.2. As an example, if K = 11.92 GPa,
G® = 4.98 GPa and ¢ = 0.5, then K™ = 16.9 GPa and G™ = 5.48 GPa.

The final consideration in this section is the derivation of the formula (8.3) for
the Biot effective stress coefficient tensor A. The material in this paragraph follows
the derivation of the formula by Carroll (1979). In his proof, which generalized the
elegant proof of Nur and Byerlee (1971) from the isotropic case to the anisotropic
case, Carroll (1979) begins by noting that the response of the fluid-saturated porous
material may be related to that of the drained material by considering the loading

t=T-nonO,, t=—pnonO,, loading(8.9) 8.9
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Fig. 8.1 Cartoon of the total loading for a cube of material (only a cross-section is visible)
representing a mechanically loaded portion of a saturated anisotropic compressible poroelastic
medium. The pores in this porous material are represented by ellipsoids which appear as ellipses in
the cross-section; however pore shape and pore connectivity is unrestricted. The pressure on the
walls of the ellipse is indicated by the arrows perpendicular to the walls,t = —pnon O, where O,
represents the boundaries of the pores. The tractions on the exterior boundary, t =T - n on O,,
where O, represents the outer boundary of the porous medium, are indicated by the arrows slanted
with respect to the lines forming the boundary of the square and acting on that boundary

where O, and O, represent the outer boundary of the porous medium and the pore
boundary, respectively. This loading is illustrated for a cube of material (only a
cross-section is visible) in Fig. 8.1. The pores in this porous material are represented
by ellipsoids which appear as ellipses in the cross-section of Fig. 8.1. The pressure
on the walls of the ellipse is indicated by the arrows perpendicular to the walls,
t= —pn on O,.

The tractions on the exterior boundary, t =T -n on O,, are indicated by the
arrows slanted with respect to the lines forming the boundary of the square and
acting on that boundary.

The first key to this proof is to treat the loading (8.9) as the superposition of two
separate loadings:

t=—pnon0O,, t= —pnonO,, loading (8.10) (8.10)
and
t=T -n+pnonO,, t=0onO,, loading (8.11). (8.11)

The loading (8.10) is illustrated in Fig. 8.2a; this loading creates a uniform
hydrostatic pressure p in the matrix material and, consequently, a uniform strain if



208 8 Quasistatic Poroelasticity

‘|1.'111*r'|r'-r1'mf
p

Fig. 8.2 (a) Cartoon of the loading (11) for a cube of material (only a cross-section is visible)
representing a mechanically loaded portion of a saturated anisotropic compressible poroelastic
medium. This loading creates a uniform hydrostatic pressure p in the matrix material and,
consequently, a uniform strain if the porous material is homogeneous. The strain in the porous
material is then the same as that in the matrix material; in effect, uniform straining of the matrix
material results in the same straining of the pore space. Nur and Byerlee (1971) illustrate this
clearly by pointing out that the loading (8.10) of the solid is achieved by filling the pores with the
matrix material, as illustrated in (b). (b) Cartoon of the loading (8.10) for a cube of material (only a
cross-section is visible) equivalent to the cartoon of the loading (8.10) in (a). The fact that (a)—(c)
are mechanically equivalent is one of the keys to understanding this proof. The loading (8.10)
creates a uniform hydrostatic pressure p in the matrix material and, consequently, a uniform strain
if the porous material is homogeneous. The strain in the porous material is then the same as that in
the matrix material; in effect, uniform straining of the matrix material results in the same straining
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the porous material is homogeneous. The strain in the porous material is then the
same as that in the matrix material; in effect, uniform straining of the matrix
material results in the same straining of the pore space. Nur and Byerlee (1971)
illustrate this clearly by pointing out that the loading (8.10) of the solid is achieved
by filling the pores with the matrix material. This is illustrated in Fig. 8.2b. Filling
the pores with the matrix material has created in the cube a uniform material in
which the pressure everywhere is the same. Thus there is no difference in the
pressure and strain fields in Fig. 8.2a from those in Fig. 8.2b. Both Fig. 8.2a, b have
the same pressure p acting everywhere and the same homogeneous strain. With a
little reflection the reader will see that the conclusion that has just been drawn is
independent of the shape, size, and connectivity between the pores. Thus, rather
than ellipsoids, the pores of Fig. 8.2a could all be of arbitrary shape and size and
they could all be connected as shown in Fig. 8.2c, but the same pressure p acts
everywhere as well as the same homogeneous strain, just as in all three Fig. 8.2a—c.

The resulting strain E(g'm)for loading (8.10) in the homogeneous matrix material is
then uniform, and it is given by

ES1Y — _p8m ., (8.12)

where the tensor equation T = —p1 in 3D has been written in 6D as T= —pr.
Since the pore pressure in loading (8.11) is zero, the exterior surface loading
(t=T-n+pn on O,) may be considered as being applied to a drained elastic

material, Fig. 8.3. The resulting strain l:](g'm is given by

E® Z 84 (T4 p0) 8.13)
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Fig. 8.2 (continued) of the pore space. Nur and Byerlee (1971) illustrate this clearly by pointing
out that the loading (8.10) of the solid is achieved by filling the pores in (a) with the matrix
material, as illustrated in this figure. It is also important to note that this conclusion is independent
of the shape of the pores and their connectivity with each other and with the external environment
as long as the external environment is at a pressure p; see (c). (¢) Cartoon of the loading (8.10) fora
cube of material (only a cross-section is visible) equivalent to the cartoon of the loading (8.10) in
(a)—(c). The fact that (a)—(c) are mechanically equivalent is one of the keys to understanding this
proof. The loading (8.10) creates a uniform hydrostatic pressure p in the matrix material and,
consequently, a uniform strain if the porous material is homogeneous. The strain in the porous
material is then the same as that in the matrix material; in effect, uniform straining of the matrix
material results in the same straining of the pore space. Nur and Byerlee (1971) illustrate this
clearly by pointing out that the loading (8.10) of the solid is achieved by filling the pores in (a) with
the matrix material, as illustrated in (b). As this figure illustrates, it is also important to note that
this conclusion is independent of the shape of the pores and their connectivity with each other and
with the external environment as long as the external environment is at a pressure p
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Fig. 8.3 Cartoon of the t
loading (8.11) for a cube of

material (only a cross-section

is visible). Observe that the

loadings (8.10) and (8.11)

may be superposed to produce

the total loading (8.9),

illustrated in Fig. 8.1. This

loading consists of a surface

traction that is the sum of t
the actual surface traction t =

T - n and the superposed pore

pressure, t =T - n + pn on

0,, the external surface. The

surface traction on the pores

is zero

| P
) ER N R R KR % % CL R R

NI

L

NN

and the total strain due to the loadings (8.10) plus (8.11) is the total strain due to the
loading (8.9)

- (89)

B (8.10)  ~(8.11)

=E T 4+E =8 T+pS¢-8).U. (8.14)

Figures 8.1, 8.2a, and 8.3 correspond to the loadings (8.9), (8.10), and (8.11)

respectively, and the strains E(S'g), I:Z<8'10), and E(g.n) have the same respective

correspondence. It is easy to see that (8.14) may be rewritten as

E=8'(T+1-C* 8" Up), (8.15)

where E = E(w) is the total strain. Comparing this result with (8.1) it may be seen

that the Biot effective stress coefficient tensor A is given by (8.3). Note that this
proof is based on superposition that is a characteristic of linear systems and thus
applies to all the considerations of linear compressible poroelasticity, isotropic or
anisotropic, but fails when the deformations are no longer infinitesimal.

Problems

8.2.1. Show that the representation (8.4) for A in the case when both C* and S are
transversely isotropic with respect to a common axis reduces to (8.5) when
both C? and §¢ are isotropic.

8.2.2. Derive the expressions (8.8) for K% and GY in terms of the volume fraction o,
matrix bulk and shear moduli, K™ and G™, and Poisson’s ratio v" from the
formulas (7.20).
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8.3 The Fluid Content-Stress-Pore Pressure
Constitutive Relation

The basic field variables for poroelasticity are the total stress T, the pore pressure p,
the strain in the solid matrix E, and the variation in (dimensionless) fluid content (.
The variation in fluid content { is the variation of the fluid mass per unit volume of
the porous material due to diffusive fluid mass transport. In terms of the volume
fraction of fluid ¢ (¢ is also the porosity in a fluid-saturated porous medium), the
fluid density p¢, and initial values of these two quantities py, and ¢, respectively,
are defined as

pqu - pfod)o pf
=0r TP _ T h— .. 8.16
: Pro Pro o= (8:16)

It is important to note that the variation in fluid content { may be changed in two
ways, either the density of the fluid pf may change from its reference value of pg,, or
the porosity ¢ may change from its reference value of ¢,. This set of variables may
be viewed as the conjugate pairs of stress measures (T , p) and strain measures (E, 0
appearing in the following form in an expression for work done on the poroelastic
medium: dW = T - dE + p d{. Thus the pressure p is viewed as another component
of stress, and the variation in fluid content { is viewed as another component of
strain; the one conjugate to pressure is the expression for work. It follows that the
variation in fluid content { is linearly related to both the stress T and the pore
pressure p,

Noad 1 1 1 1
{(=A-§ - T+C%p whereC? m+¢(m> (8.17)
eff ot KdReff KReff Kf KReff

or related, using (8.2) to both the strain E and the pressure p, by
(=A-E4+Ap, A=C% A 8 A (8.18)

and where the various super- and subscripted K’s are different bulk moduli; for
example, K is the bulk modulus of the pore fluid. Before introducing formulas for
the other two bulk moduli in (8.17), note that the isotropic elastic compliance tensor

S twice contracted with ﬁ, the six-dimensional vector representation of the three-
dimensional unit tensor 1, U-S U (see (A.166)), is equal to 3(1 — 2v)*1, which, in
turn, is the reciprocal of the bulk modulus (see Table 7.2),

- < (8.19)
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Hill (1952) showed that Kger = (U-S-U) ™', where § is now the anisotropic
elastic compliance tensor, is the Reuss lower bound on the effective (isotropic)

bulk modulus of the anisotropic elastic material S and that the Voigt effective bulk
modulus of an anisotropic elastic material, Kvegr = (fJ .S fJ) /9, is the upper

bound,

N -1

(U-S-U)  =Kgett < Kett < Kverr = (U-S71-10)/9. (8.20)

In the case of isotropy the two bounds coincide with the isotropic bulk modulus,
K, thus:

1 1 1 1 1 .~ ~ -1 U-S U
Kreti  Kr  Keit  Kver Ky ( ) 9
3(1 -2 1
_3-2v) 1 (8.21)
E K

where E is the isotropic Young’s modulus and v is the Poisson’s ratio and where the
subscript eff is no longer applicable because these K’s are the actual bulk moduli
rather than the effective bulk moduli. The Reuss effective bulk modulus of an
anisotropic elastic material Kgess occurs naturally in anisotropic poroelastic theory
as shown, but not noted, by Thompson and Willis (1991). In analogy with this result
(8.19), U - S - U is defined as the inverse of the effective bulk modulus (1/K) when
the material is not isotropic. Thus, for the orthotropic drained elastic compliance

tensor Sd, and the matrix of the orthotropic elastic compliance tensor Sd, the
following definitions, which were employed in (8.17), are introduced:

1 _gggo Ly L L s 25 2, (8.22)
Ky E{ E E§ Ej E§ Ef
1 A as 1 1 1 200 2 2y™
—=U-8U=—_—+_—+ B3t =12 (8.23)
Keff El E2 E3 EZ E13n El

Using these notations the formula for A, (8.18), may be recast in terms of the
effective bulk moduli. Using (8.3) note that,

o 2
AST A= - =
KReff KReff

U-S4. 48910, (8.24)

where (8.19) and (8.22) have been employed. Substituting this result into (8.18) and
employing (8.17) to remove CY%, it follows that

1 1 1 .

A:T+¢(f——)—U-Sd-éd-Sd-ﬁ. (8.25)
KReff Kt ngff
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Problems

8.3.1. Prove that U-T =tr T.

8.3.2. Show that the isotropic elastic compliance tensor S, twice contracted with U,
the six-dimensional vector representation of the three-dimensional unit ten-
sor 1, U-S- fJ is given by (8.19).

8.3.3. Show that, in the case of isotropy, Ais given by «U, where « is the isotropic
effective stress coefficient given by o = [1 — (Kd/Km)].

8.3.4. In the case of isotropy show that U - 8¢ - C¢ - §¢ - Uis equal to K./ (Kiher)>,
oad oA ~oad
and thus A-S" - A is given byA-§" - A =L — & andAzﬁ—i—d)(%—
L) _ K
K™ (Km)2 .

8.4 Darcy’s Law

The constitutive equations of poroelasticity developed thus far are the strain—stress-
pore pressure relations (8.1) and the fluid content-stress-pore pressure relation
(8.17). The other constitutive relation of poroelasticity is Darcy’s law, which relates
the fluid mass flow rate, pgv, to the gradient (Vp) of the pore pressure p,

q = (¢ps/p)v = —H(p)Vp(x,1),H(p) = H'(p), (4.36D) repeated

where the symmetry in H has been shown to hold for material symmetries greater
than monoclinic (Chap. 4). In this equation ps is the fluid density and py, is a
reference value of the fluid density. It will be assumed that H is independent of pore
fluid pressure and that H = K/u, where K is the intrinsic Darcy’s law permeability
tensor, and u is the fluid viscosity. The intrinsic permeability tensor K has units of
length squared and is a function of the porous structure only, not the fluid in the
pores; thus Darcy’s law takes the form

q = (¢p¢/pi)v = —(1/WKVp(x,1), K =K, (8.26)

where it has been shown that the symmetry in K holds for material symmetries
greater than monoclinic and where the volume flux q has the dimension of velocity
because it is the volume flow rate per unit area. In the case of isotropy, Darcy’s law
is written in the form

q = (¢pr/pro)V = —(k/0)Vp(x,1). (8.27)

Recall from Sect. 1.8 the lumped parameter model for Darcy’s law and consider
that idea again in the present context. Also, recall from Sect. 7.5 that it was shown
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how the Darcy permeability law could be obtained from a model for the flow of a
viscous fluid through a rigid porous solid. These ideas, plus the example of the
compressed, fluid-saturated sponge described in Sect. 8.1, convey the physical
meaning of Darcy’s law in three different models.

8.5 Matrix Material and Pore Fluid
Incompressibility Constraints

The two incompressibility constituent-specific constraints for poroelasticity are that
matrix material and the pore fluid is incompressible. These two incompressibility
constraints are kinematic in nature, requiring that both materials experience no
volume change at any stress level. Constraints of this type introduce an indetermi-
nate pressure in both the fluid and the matrix material that must be equal in both
materials at any location from the requirement of local force equilibrium. Thus the
two assumptions are compatible.

The requirement that the fluid be incompressible is implemented by requiring
that the reciprocal of the bulk modulus of the fluid tends to zero as the instantaneous
density tends to the initial density, phlf} % — 0, or by imposing the condition that

[ Fro

the fluid density p; be a constant; thus p; and its initial value pg, are equal. Recall
that, in the case of a compressible fluid above, the value of the fluid content { can
change if the fluid density changes or if the porosity changes. However, in the case
of the incompressible fluid since p¢ = py, the fluid content { (8.16) can change only
if the porosity changes,

(=0 — ¢, (8.28)
A similar change occurs for the Darcy’s law (8.17) when p; = pso,
q=¢v=—(1/W)KVp(x,t),K =K". (8.29)

The requirement that the matrix material be incompressible involves a slightly
longer development. Hooke’s law for the matrix material is written as

E" = 8" (8.30)
and the incompressibility constraint for the matrix material is the requirement that

the dilatational strain,

A Am

UE =uwE"=(2 =U-§-T

m

=T".8.0U (8.31)
vanish for all possible stress states Tm, thus

U-E"=0=0-8=8"U=0. (8.32)
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The components of the vector U-S'=8Uare given by

S° = Tm’rm’rm’ pm’ pm’ pm|? (8333)
KM KD KD K™ KD K®

where

1
on =St S5+ S5 (x=1,...,6) (8.33b)
o

in the case of no (triclinic) symmetry, and by

Usm:[1 1 1000} L1

KT Ky Ky Ky E}
11—y — v I 1=y =5
K ER KR ED ’
PN 1 1 1 1 1—2v% 1 1
U'Sm: 7:7777070707 7:ﬂa m — om
K" K KR Ky EY Ky K
:l—v‘l"z—v'fg:l—vzml—vg‘3
EY £ ’
A Am 1 1 1 —2v™ A Am A~ 3 1
. =—1,1,1,0,0 — = . U=—"rn=—
U S Km[v y Ly Yy 70]7 Km Em ) U S U K{n Km
3(1 —2v™
_ X - ) (8.34)

in the cases of orthotropic, transversely isotropic, and isotropic symmetries, respec-
tively. As may be seen from (8.33) the incompressibility conditionU-§¢ =8¢ U =0
requires that S be singular, Det S¢ = 0. From (8.32) and (8.34) the incompressibility
condition U-$4=8-U=0 is expressed in terms of Poisson’s ratios for the
orthotropic, transversely isotropic and isotropic symmetries by

EmEm EmEm Em
iy = e Vi = - S v = (8.35)
EJ(ET + EY) EJ(ET + EY) EY + E3
vy =1— ﬁ vy = ﬁ =3 (8.36)

and v™ = 1/2, respectively.

The significance of these incompressibility results is illustrated here by simple
geometric considerations. Consider an incompressible isotropic material for which
one must have v™ = 1/2. If a cube of this material with a volume V, = a° is
extended by a uniform tensile stress in one direction, the length in that extension
direction becomes a + Agxa and the lengths of the other two faces become a + Aa.
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The new volume is then V = (a + Agxa)(a + Aa)*, which when higher order terms
are neglected, becomes V =V, + a2(AEXa + 2Aa). It follows that if there is to be
no volume change, V = V,, then the two transverse sides actually contract by an
amount Aa = —(1/2)Agxa. Dividing both sides of Aa = —(1/2)Agxa by a it
follows that the strain in the transverse direction ¢ is equal to one-half the strain in
the tension direction, ¢ = —(1/2)er. Recalling the definition of Poisson’s ratio, it
follows that v™ = 1/2 for the material in this example.

Only two of three sets of poroelastic constitutive equations described in the
previous section are influenced by these two incompressibility constraints. Darcy’s
law is unchanged because in both cases it is based on the assumption that the
movement of the boundaries of the pores is a higher order term that is negligible and
thus the law has the same form in the compressible and incompressible cases as it
would have in a rigid porous material. The stress—strain-pore pressure and the fluid
content-stress-pore pressure are modified in the case of incompressibility from their
forms in the compressible case. The stress—strain-pore pressure relation (8.1) for the
incompressible case is given by

E=8" (T+0p) (8.37)

for U - §¢ = Osince the Biot effective stress coefficient tensor A given by (8.3) takes
the form

A=0U (8.38)

for U - S% = 0. The definition of the effective stress Teff

-~ eff
T

— T+ 0p (8.39)

changes for the incompressible case and the Hooke’s law (8.7) holds in the

incompressible case with this revised definition of Tetf.

Since the reciprocals of K. and K" vanish in the case of incompressibility, the
fluid content-stress-pore pressure relation (8.17) is modified in the case of
incompressibility to the form

PN . 1 PN N
(=0.8"1+2L WhereCSffde—zU-Sd~U (8.40)
Reff Reff

thus, from (8.25), (8.38), (8.40) and the vanishing of the reciprocals of the bulk
moduli of the fluid and the matrix material, it follows that

{=U-E and A=0. (8.41)
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The specialization of (8.32) to the case of incompressibility recovers the obvious
consequence of the assumption of material matrix incompressibility,

1 PN N
—=U0-8"U=0 (8.42)
KReff

for U-S¢ = 0. The pore pressure is given by (8.18) as

p= % [(— (A -E) (8.43)

and one can observe from the preceding that, for incompressibility,
A—0 and [(—(A-B)—0 (8.44)

and it follows that the pressure p given by (8.43) becomes indeterminate in the
formula (8.43) as the porous medium constituents become incompressible. A
Lagrange multiplier is then introduced (Example 6.4.1), thus (8.39) above now
applies. The convention that there are two very different meanings associated with
the symbol for pore pressure p is maintained here. In the compressible case p is a
thermodynamic variable determined by an equation of state that includes the
temperature and the specific volume of the fluid as variables, but in the incompress-
ible case p is a Lagrange multiplier whose value is determined by the boundary
conditions independent of the temperature and the specific volume of the fluid.

Problems

8.5.1. Show that (8.17) reduces to { = A - S (zd— — z—)p where C4; = -
Keerr Kretr ¢ KRetr
1

— g when the bulk moduli of the matrix material and the fluid are equal.
Reff

8.5.2. Show that (8.17) reduces to (8.40) when the matrix material and the fluid are
assumed to be incompressible.

8.6 The Undrained Elastic Coefficients

If no fluid movement in the poroelastic medium is possible, then the variation
in fluid content {, that is to say the variation of the fluid volume per unit volume of
the porous material due to diffusive fluid mass transport, is zero. In this situation

(8.17) may be solved for p; thus the pore pressure is related to the solid stress T by
p= —B - T, where

A=—( —-8§89.U. (8.45)
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Skempton (1954) first introduced the components of the tensor B, thus it is

reasonable to call the tensor B the Skempton compliance difference tensor. In the
case of incompressibility, it follows from (8.45), (8.40), and (8.38) that the
Skempton compliance difference tensor in the incompressible case is given by

B=ki, S U (8.46)

from which it follows, with use of (8.31), that
U B=k!, 0.8 U=1 (8.47)

in the incompressible case. For the isotropic compressible case the Skempton
compliance difference tensor has the form,

fs:%ﬂ, or 31=32:B3=§, B, =Bs=B;=0, (8.48)

where S is the Skempton parameter,

g — —cdaKd _ (8.49)

The subscript eff is removed from CY; as well as all the K’s in (8.17) because
these K’s are the actual bulk moduli for the isotropic material rather than
the effective isotropic bulk moduli of an anisotropic material. It follows from

p= —B - T that, in case of an isotropic and compressible medium, p = —(S/3)U - T
= —(S/3)tr T. Note that if K = K™, thenC¢ = «/K%and S = 1 whether or not these
constituents are incompressible. In the isotropic compressible case (8.45) may be

used to show that A = SK4CYU. In the isotropic incompressible case the Skempton
parameter S is equal to 1, thusp = —(1/3)U - T = —(1/3)tr T. It also follows in the
isotropic incompressible case that K¢ = 1/C? and A = U, as shown by (8.38).

In the case of compressibility, the undrained elastic coefficients S" are related to

. . ~d ~
the drained elastic constants S and the tensor A by

N ~d 1

=88 AgB=8" (@& -A). (8.50)

In the case of incompressibility, the undrained elastic coefficients S" are related

. . ad
to the drained elastic constants S by

-0) (8.51)
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a result that follows from (8.50) with the application of (8.40). When (8.51) is

dotted with U and (8.40) again employed, it follows that the undrained elastic
coefficients are also incompressible in the case of assumed incompressibility of the
matrix material and the fluid, as one would anticipate:

U8 =08 -k ,(0-8 028 0)=0-8 -8 0=0 @852

In the isotropic compressible case (8.49) reduces to formulas for the undrained

|
bulk modulus K" (where K* = (U-S" - U) ) and the undrained Poisson’s ratio v*
in terms of v, K¢, K, K™, and ¢, thus

K'(1 - (K*/K™)
KT/K™(1 — (KY/K™) — o+ ¢
C3vE 51— 2vY)(1 — (KY/K™))

T3-S -2v(1 - (KYK™)

K" =K+ and

u

(8.53)

In the isotropic incompressible case (8.53) reduces to 1/K" = 0 and v* = 1/2,
consistent with the general result for incompressibility for the undrained constant
set. It follows that E" = 3G.

Problems

8.6.1. Expand the second equality in (8.50) as a six-by-six matrix equation.

8.6.2. Expand the second equality in (8.50) as a six-by-six matrix equation for the
special case of transversely isotropic symmetry using the technical elastic
constants, i.e., Young’s moduli and Poisson’s ratios.

8.6.3. Show that (8.53) are a consequence of the two equations (7.20). Do this by
working backward; start with (8.53) and substitute K% and GY from (8.8),
a=[1— (Kd/Km)] and employ the relations between the elastic isotropic
constants listed in Table 7.2. The mechanics of solving this problem is
straightforward algebraic substitution. However, it can become a task if
one is not careful to keep the algebraic objective in view. Try using a
symbolic algebra program.

8.7 Expressions of Mass and Momentum Conservation

The conservation of mass is expressed by the equation of continuity,

19)
% +V-(pv) =0. (3.6) repeated
The form of the mass conservation equation (3.6) is altered to apply to the pore
fluid volume by first replacing p by ¢p; in (3.6) and then dividing the equation
through by py,, thus
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1 Odps 1
— +—V- v) =0. 8.54)
pro Ot Pro (4prv) (

The form of (8.54) is changed by use of the time derivative of (8.16),

ol 1 0dpy
—=— 8.55
af pfo al ( )
and (8.26), thus
9(/ot+V -q=0. (8.56)
In the case of incompressibility, pr = ps,, and (8.54) becomes
0
F(f +V-(¢v)=0. (8.57)

The stress equations of motion in three dimensions,
pii=V-T+pd, T=T, (3.37) repeated

have no simple representation in 6D vector notation, and the conventional notation
is employed; ui represents the acceleration and d the action-at-a-distance force.

Problems

8.7.1. Evaluate each of the following formulas in the limit as ¢ — 0 (note that
¢ — Oimplies ¢, — 0): (a) (8.8), (b) (8.13), (c) (8.17), (d) (8.22), (e) (8.27),
() (8.49), (g) (8.50), (h) (8.53), (i) (8.54).

8.7.2. Evaluate each of the following formulas in the limit as ¢ — 1 (note that
¢ — 1 implies ¢, — 1): (a) (8.3), (b) (8.2), (c) (8.17), (d) (8.18). The last
two results requires the easily justified restriction that 1/K}; — Oas ¢ — 1.

8.8 The Basic Equations of Poroelasticity

An overview of the theory of poroelastic materials can be obtained by considering it as
a system of 18 equations in 18 scalar unknowns. This system of equations and
unknowns, a combination of conservation principles and constitutive equations, is
described in this section. The 18 scalar unknowns are the six components of the stress
tensor T, the fluid pressure p, the fluid density py, the variation in fluid content {, the six
components of the strain tensor E and the three components of the displacement vector
u. The 18 scalar equations of the theory of poroelastic solids are the six equations of
the strain—stress-pressure relation (8.1), the six strain displacement relations (2.49),
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2E = (A ® w)" + A ® u), the three equations of motion (3.37), the one fluid
content-stress-pressure relation (8.17) (or the one fluid content-strain-pressure relation
(8.18)) and the one mass conservation equation (8.56) and a relation between the fluid
pressure and the density p = p(py) which is not specified here. The parameters of a
poroelasticity problem are the drained effective elastic constants of porous matrix

material Sd, the Biot effective stress coefficients A, Cgff, the fluid viscosity u, the
intrinsic permeability tensor K, and the action-at-a-distance force d, which are all
assumed to be known. If the displacement vector u is taken as the independent
variable, no further equations are necessary. However, if it is not, use of the compati-
bility equations (2.54) is necessary to insure that the displacements are consistent.

There are many methods of approach to the solution of poroelastic problems for
compressible media. The method selected depends upon the information that is
provided and the fields that are to be calculated. One approach that has been
effective is to solve for the variation in fluid content ( if the stress or the strain
field is known or may be calculated without reference to the variation in fluid
content (. The diffusion equation for the variation in volume fraction is obtained by
first substituting Darcy’s law (8.17) into the expression (8.56) for the conservation
of mass and subsequently eliminating the pore pressure by use of (8.43), thus

% LR.0 K-O[A-E|. (8.58)

1
= K- Of=-——
ot ul : u\

This shows that the time rate of change of the fluid content { is due either to fluid
flux or to volume changes caused by the strain field. It is possible to replace the
strain on the right hand side of (8.58) by stress in which case (8.58) becomes

%L g or-— ' k.0A-§ T (8.59)
o puCe HCof

Diffusion equations for the pressure field are also employed in the solution of
poroelastic problems. The first diffusion equation for the pore pressure field is
obtained by substituting Darcy’s law (8.17) into the expression (8.56) for the
conservation of mass and subsequently eliminating the variation in fluid content {
by use of (8.17), thus

P K- Op=-——A-2. .
%A Op (8.60)

The alternative diffusion equation for the pore pressure field is obtained by
replacing the strain on the right hand side of (8.60) by stress, thus

d 1 . . 1 (. om s OT
P K~Op:F<U-(S ~8Y. ) (8.61)

o
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For an orthotropic material equation (8.61) may be written in the following form:

dp lK *p 1 *p 1K *p
ot n 118x% u 228}(% u 338}6%

__ i_i‘z_&_i_,_vu_’_"n o,
ES ES ES EMTEMTEY) o
+< Loy v ] ) V23> Ty

ES EY Bl EREMEY) o

Lovgy v 1 v v\ OTss
—————— — 4= 8.62
N (Eg E$ E§ EY * E} TEn EY) ot (8.62)

Cett

The boundary conditions on the pore pressure field customarily employed in the
solution of this differential equation are (1) that the external pore pressure p is specified
at the boundary (a lower pressure permits flow across the boundary), (2) that the pressure
gradient Vp at the boundary is specified (a zero pressure gradient permits no flow across
the boundary), (3) that some linear combination of (1) and (2) is specified.

Problem

8.8.1. Verify that (8.62) follows from (8.61) once the assumption of orthotropy is
made. Record the form of (8.62) for transversely isotropic symmetry.

8.9 The Basic Equations of Incompressible Poroelasticity

In this section the development of compressible poroelasticity as a system of
eighteen equations in 18 scalar unknowns presented in the previous section is
specialized to the case of incompressibility. The result is a system of 17 equations
in 17 scalar unknowns because the fluid density p¢ is a constant, py = pg,, and no
longer an unknown, and an equation relating the fluid pressure to the fluid density
p = p(py) does not exist. The other 17 equations in 17 scalar unknowns are the same
except for the constraint of matrix material incompressibility. It is important to note
that only algebraic coefficients of terms are changed by the transition to incom-
pressible components; the order of the differential equations is unchanged. The
diffusion equation (8.61) makes an easy transition to the incompressible case. For
incompressibility it follows from (8.40) that C%; = 1/K§.;; and from (8.32) that

U-S¢=8%.U =0, thus (8.61) reduces to

RN (ﬁ ' (?;) (8.63)

and for an orthotropic material equation (8.63) may be written in the following form:
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Lop L Op L Op 1, Op
K&oor pw Mol w o nh Yo

(v v \OTu (L vy v\ OTm (L v5y 05 OTw
B B ) o \E B E) o \BE B E) o

(8.64)

The boundary conditions on the pore pressure field are coincident with those
described at the end of the previous section.

8.10 Some Example Isotropic Poroelastic Problems

Example 8.10.1

Formulate the differential equations governing the problem of determining the
vertical surface settlement of a layer of poroelastic material resting on a stiff
impermeable base subjected to a constant surface loading. The layer, illustrated
in Fig. 8.4, is in the x;, x, plane and the x5 positive coordinate is in the thickness
direction and it is pointed downward in Fig. 8.4. The surface is subjected to an
applied compressive stress 733 = —P(¢), the only nonzero strain component is E33.
The free surface of the layer permits the passage of fluid out of the layer.
Solution: First, since the free surface of the layer permits the passage of fluid and the
supporting base of the layer is impermeable, the boundary conditions on the pore
pressure field are p = 0 at x3 = 0, Op/0x3 = 0 at x3 = L. Next, using the fact that
the only nonzero strain component is £33 (E33 = Jus/dx; from (3.52)) and that the
applied compressive stress T33 = —P(f) is uniform throughout the layer, the
strain—stress-pressure relations (8.1) specialize to the following:

1
0= F{(l + VT = v T 4 (1 — 2vhap},

1
0= E{(l +vHTy — v T + (1 — 2vap}

8143

% %{_(1 VP — v T + (1 — 2v8)op).
3

b ™0

i 0

Fig. 8.4 Illustration of a

layer of poroelastic material
resting on a stiff impermeable SN
base subjected to a uniform
time varying surface loading Y Xs
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The solutions of these equations for Ty, T5,, tr'T, and T35 are

vd (1—2vY)
Ty =Txn= —mp(f) —Wapa
EY  Ous (1+vY) 2(1 —2vY)

trT =

(1 —=2vd) 87)@_3(1[7: ) ()= (1 —=v9) P
and

a(1=v) Ouy
(1 +Vd) 8x3

Ts; = 7P(l‘) =3K

and the single strain component Es3, is given by

Couz (149

= v K V) (—P(t) + op).

33

The stress equations of motion ((3.37) or (3.38)), or equilibrium in this case,

reduce to the condition that the derivative of the T35 stress component with respect
to x3 must vanish, thus from the equation directly above,

0 4 (1=v9) Ous
Z 13k — _—app =0.
Ox3 {3 (14 v4) Ox3 P 0

Since trE = FE33, substitution of E33 into the pressure diffusion equation (8.60),
and use of (8.38) for both material and drained constants yields

op *p dp

where

o aW B a(l+v9)
oo T 3AKY(1 — vd) 4 o2 (1 + )

and ¢y represents the value of the constant ¢ when the matrix material and the pore
fluid are incompressible,

c _K1|3Kd(1 —Vd)
(v

In the special case when the matrix material and the fluid are incompressible,
¢ = ciand W = 1. The two following examples examine special solutions of these
equations that may then be specialized to these more special assumptions by the
appropriate selection of ¢ and W.
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Example 8.10.2
Determine the vertical surface settlement of a layer of poroelastic material resting
on a stiff impermeable base subjected to a constant surface loading T35 = —P

(1) = —poh(t). The layer, illustrated in Fig. 8.4, is in the x;, x, plane and the x;
positive coordinate direction is downward. The conditions for the drainage of the
layer are described in Example 8.10.1.

Solution: Since the applied stress at the surface is constant for times greater than
zero, it follows that equation (8.65) becomes

op o’p
A
ot 0x3
where the initial pore pressure p' is obtained from the formula for the pore
pressure in an undrained isotropic and compressible medium, p = —(S/ 3)fJ T =
—(8/3)uT where
o
S = o (8.49)
thus
1 aP
p(x3,0)=p = CIKd

in one of the initial conditions on the pressure. The other is that dp/0x; = 0 at
x3 = L.

Assuming separation of variables, p = X(x3)T(¢), it follows from dp /0t = (0
p/0x3) that

2

10T 19X P
cTat_X(?x%_
or
10T OdlogT , X,
—_——_— = — — X:
T o P g thX=0

thus performing the integration,
T(r) = Ce_("But, X(x3) = Acos PBx; + Bsin fx;
and

2
p(x3,1) = (Acos fx3 + Bsin ,Bx_g)e"'B ‘.
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The condition that dp/0x; = 0 at x3 = L requires that p/9dx3|,,_, = B(—Asin

2
pL —&—Bcos/i’L)e“’B = 0 which is satisfied by setting A = 0, and cosffIL =0 is
satisfied by setting § = (1 4+ 2n)n/2L where n = 0, 1, 2, ... . Substituting these

results back into p(x3,7) = (Acosmnxs + Bsinnys)e N, and summing over all
possible values of n, one obtains the representation

s 1+2 . 2
plxs, 1) = Z (Bn sini( ZLH)HJ@)G_L((IH"W/M) g
n=0

The condition that p(x3,0) = p' = aP,/C K then yields

Loy & . (I +2n)m
p(x3,0) =p *ﬁ*;anmT)@

If we multiply both sides of the previous equation by sin((1 4 2m)nx3/2L),
integrate the result from O to L, and recall the orthogonality relations

L 1+2 1+2 L
/ sin (+2n)mx sin (L 2mjmry dx3 = = 8um
o 2L 2L 2

it follows that

aPy [t [(142n)mxs 2LoP,
B, = Tod sing ————— 5 dx3 = i A
k9 Jo 2L CIKY(1 + 2n)

and the solution for the pressure field is

_ 2LaP, & 1 . (1+2n)n —e((142m)TL/2L) %
= > ((1+2n) AR i '

Note that this result satisfies the initial conditions (Figs. 8.5 and 8.6).

Example 8.10.3
Determine the vertical surface settlement of a layer of poroelastic material resting
on a stiff impermeable base subjected to a harmonic surface loading 733 = —P(¢)

= —P,e'®. The layer, illustrated in Fig. 8.4, is in the x,, x, plane and the x3 positive
coordinate direction is downward. The conditions for the drainage of the layer are
described in Example 8.10.1.

Solution: Substituting the surface loading P(¢) = P,e'® into the pressure diffusion
equation in Example 8.10.1, the diffusion takes the form
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Fig. 8.5 Illustration of the decay of the pressure with time in a layer of poroelastic material resting
on a stiff impermeable base subjected to a constant surface loading. (a) The dimensionless pressure
pX, 1)/Wp, is plotted (ordinate) against the entire range of the dimensionless layer coordinate
X = x3/L from 0 to 1 (abscissa) for dimensionless time ¢ values of 0, 0.0001, 0.001, 0.01, 0.1 and 1.
The top curve with the sinusoidal oscillations is the curve for T = 0. The sinusoidal oscillations
arise because only a finite number of terms (200) of the Fourier series were used to determine the
plot. It is important to note that this curve begins at the origin and very rapidly rises to the value 1,
then begins the (numerically oscillating) decay that is easily visible. The curves for values of 7 of
0.0001, 0.001 and 0.01 are the first, second and third curves below and to the right of the one for
7 = 0. The curves for values of 7 of 0.1 and 1 both appear as p(X, 7)/Wp, = 0 in this plot. (b) The
dimensionless pressure p(X, t)/Wp, is plotted against the entire range of the dimensionless layer
coordinate X = x3/L from O to 1 (abscissa) and the range of dimensionless time 7 from 0 to 0.01

op _ p o
E — Ca—'x% = ICOWPOC t,

where the boundary conditions are the same as those in the example above, namely
that p = 0 at x3 =0 and Jp/Oxz =0 at x3 = L. The solution is obtained by
assuming that the pressure p is of the form p(x3, £) = f(x3)e'®, thus the partial
differential equation above reduces to an ordinary differential equation,
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Fig. 8.6 Illustration of the vertical settlement of a layer of poroelastic material resting on a stiff
impermeable base subjected to a constant surface loading. This is a plot of the function g(¢) against
time. The curve underneath the top curve is for a layer twice as thick as the layer of the top curve.
The two curves below are for layers that are five and ten times as thick, respectively, as the layer
associated with the top curve. Compare with Fig. 1.11c

2
iof (x3) — coa= ioWp,

3

after dividing through by e!®'. The solution to this ordinary differential equation is

fls)=Wp, +A sinh%

The boundary conditions of the previous example, namely that the pressure is
zero at x3 = 0 and that the pressure gradient is zero at x3 = L yield the following
solution to the original partial differential equation above, thus

ioL
p(xs,t) = Wp, | 1 + tanh 9% gin
c

The solution to the problem of semi-infinite domain of poroelastic material
subjected to a harmonic surface loading T33 = —P(t) = —p,e'® may also be
obtained without difficulty. This problem is also illustrated in Fig. 8.4 if the stiff
impermeable base is removed. The solution to the original differential equation
above with the boundary conditions that the pressure is zero at x3 = 0 and that the
pressure gradient tends to zero as x3 becomes large is

p(xs,1) = Wpoa(x3)e'®, where a(x3) = [l —e V¥,
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Fig. 8.7 A plot of the lal
function la(x3)! against x3.
This plot has a peak of
1.06702 at x3 = 3.33216 and
then it is asymptotic to the
value one as x3 tends to
infinity

X

8 10

The derivation of this solution is a problem at the end of the section. The real part
of a(x3) is plotted in Fig. 8.7. This plot has a peak of 1.06702 at x; = 3.33216 and
then it is asymptotic to the value one as x5 tends to infinity. This indicates that the
depth beyond & = 3.33216Yc/w from the surface, where a(x;) has an almost
constant value of one, the pore pressure p is in phase with the surface loading and
proportional to it by the factor W. The interpretation of this result is that the
departure of the pore pressure fluctuations from the undrained solution is confined
to a boundary layer of thickness ¢. The semi-infinite domain solution is therefore
applicable to the finite layer problem under consideration provided § < L.

The desired settlement of the free surface, u3(0, f) is calculated following the
method of Example 8.10.2 thus

1 +v)WLp,
u(0,1) = SKd 1—vi) 1coL2 \/

A plot against frequency of the absolute value of the function

c ioL?
P tanh
ioL c

determining the amplitude of the settlement of the free surface u3(0, ¢) is shown in
Fig. 8.8. At very large frequency the poroelastic layer behaves as if it were
undrained, that is to say /u(0, t)) — 1 as @ — co. At low frequencies it behaves
as if it were drained, that is to say /u(0, )/ — 0 as w — 0.

Problems
8.10.1. Using the assumptions of Example 8.10.1 and the equation (8.50) derive the

pressure diffusion equation

o_ Op_ 0P
o " ox3 ot
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Fig. 8.8 Illustration of the 1
vertical settlement of a layer
of poroelastic material resting
on a stiff impermeable base
subjected to a harmonic
surface loading. A plot of the 0.6}
absolute value of the function

/i tanh | /"(‘f_Lz against 04}

frequency. See Example 8.8.3

8.10.2.

8.10.3.

8.10.4.

8.10.5.

8.10.6.

8 Quasistatic Poroelasticity

0.8}

0.2}

where ¢ and W are given by
c=cW/o, W =a(l+v)/BAKY (1 — v + o?(1 4+ v%))

and ¢ represents the value of the constant ¢ when the matrix material and
the pore fluid are incompressible,

K113K4(1 —v9)
l=——FF———~—
T+

Verify that the solution to the pressure diffusion differential equation in
Example 8.10.2 satisfies the specified form of the differential equation and
the appropriate boundary and initial conditions.

Determine the flux g; of the pore fluid from out of the top surface of the
layer in Example 8.10.2.

Verify that the solution to the pressure diffusion differential equation in
Example 8.10.3 satisfies the specified form of the differential equation and
the appropriate boundary conditions.

Determine the pressure distribution in a semi-infinite domain of poroelastic
material subjected to an harmonic surface loading T33 = —P(f) = —P,e'®".
The surface of the domain is in the x;, x, plane and the x; positive
coordinate direction is downward. Drainage of the semi-infinite domain is
only allowed at the surface. The solution to the pressure diffusion equation,

Op /ot — c(07p/0x3) = W(IP/Or)
for the semi-infinite domain will determine the pressure field.

Determine the flux g; of the pore fluid from out of the top surface of the
layer in Example 8.10.3.
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8.11 Three Approaches to Poroelasticity

There are three different major approaches to the development of the same basic
equations for the theory of poroelasticity. Each approach is rigorous to its own
hypotheses and stems from well-established mathematical and/or physical models
for averaging material properties. The averaging processes are the difference
between the three approaches.

The first approach, the effective medium approach, originates in the solid
mechanics tradition and the averaging process involved is the determination of
effective material parameters from a RVE, as discussed in the work of Hashin and
Shtrikman (1961), Hill (1963) and others. Standard contemporary references are the
books of Christensen (1979) and Nemat-Nasser and Hori (1993). The effective
medium (parameter) approach appears in a primitive form in the early Biot work
(1941) and grows in sophistication with time through the work of Nur and Byerlee
(1971), Rice and Cleary (1976), Carroll (1979), Rudnicki (1985) and Thompson
and Willis (1991). The development of effective moduli/parameter theory over the
last 50 years occurred almost in parallel with the increasing sophistication and
refinement of the original Biot formulation.

The second approach is called the mixture theory approach; mixture theory is
developed in Chap. 10. Mixture theory is based on diffusion models and has a very
different philosophy and a longer history than the RVE approach. It stems from a
fluid mechanics and thermodynamical tradition and goes back to the last century.
Fick and Stefan suggested (Truesdell and Toupin 1960, section 158) that each place
in a fixed spatial frame of reference might be occupied by several different particles,
one for each constituent. This is a Eulerian approach in that the flux of the various
species toward and away from a fixed spatial point is considered. Truesdell (1957)
assigned to each constituent of a mixture in motion a density, a body force density, a
partial stress, a partial internal energy density, a partial heat flux, and a partial heat
supply density. He postulated equations of balance of mass, momentum, and energy
for each constituent and derived the necessary and sufficient conditions that the
balance of mass, momentum, and energy for the mixture be satisfied. Bowen (1967)
summarized the formative years of this subject. For subsequent developments see
Bowen (1976, 1980, 1982) and Miiller (1968, 1985). An advantage of mixture theory
approach over the other approaches appears when a number of different fluid species
are present and in relative motion. This advantage is attractively illustrated in the
theory for the swelling and deformation behavior of articular cartilage by Lai et al.
(1991), Gu et al. (1993) and Huyghe and Janssen (1997).

The key difference between the effective parameter approach and the mixture
approach to poroelastic models is the averaging process employed. The effective
parameter approach illustrated in Fig. 8.9a is a schematic version of the viewpoint
described in Biot (1941). A small but finite volume of the porous medium is used
for the development of constitutive equations for the fluid-infiltrated solid. These
constitutive equations are then assumed to be valid at a point in the continuum.
This is an early form of the RVE approach used in composite material theory today.
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Continuum points

(b) The diffusion approach.

(a) The effective parameter approach.

Fig. 8.9 Illustrations of the effective medium approach and the mixture theory approach

The length or size of the RVE is assumed to be many times larger than the length
scale of the microstructure of the material, say the size of a pore. The length of the
RVE is the length of the material structure over which the material microstructure is
averaged or “homogenized” in the process of forming a continuum model. Biot’s
presentation is consistent with the notion of an RVE, although the RVE terminol-
ogy did not exist when his theory was formulated. The homogenization approach is
illustrated in Fig. 8.9a by the dashed lines from the four corners of the RVE to the
continuum point. The material parameters or constants associated with the solid
phase are more numerous and difficult to evaluate compared to those associated
with the fluid phase. The Biot—effective modulus approach provides a better
understanding of the effective solid mechanical parameters like effective solid
moduli and constituent compressibility than does the mixture theory approach.

The averaging process for the mixture approach is illustrated in Fig. 8.9b. This is
a Eulerian approach in that the flux of the various species toward and away from a
fixed spatial point is considered. The fixed spatial point is shown in Fig. 8.9b and
the vectors represent the velocities of various species passing through the fixed
spatial point. It is important to note that, for mixture theory, the averaging is density
weighted on the basis of the density of each species in the mixture, instead of being
averaged over a finite volume of the porous solid as in the Biot approach. This is the
key difference between the Biot and the mixture theory approach. In neither
approach is a length scale specified, but an averaging length is implied in the
Lagrangian nor material, Biot—effective modulus, approach because a finite mate-
rial volume is employed as the domain to be averaged over. On the other hand the
mixture theory is Eulerian and considers a fixed spatial point through which
different materials pass and, as with the Biot approach, no length scale is suggested.
It is difficult to imagine a length scale for the mixture theory approach other than
one based on the mean free paths associated with the constituents. The significantly
different averaging lengths in the two approaches reflect the difference in the
averaging methods. Cowin and Cardoso (2012) suggest a method for developing
the Biot- effective modulus approach in mixture theory that requires small
modifications of mixture theory.
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Bowen (1982) showed that it was possible to recover the Biot constitutive
equations from the mixture theory approach. In particular Bowen derived equations
(his 8.23 and 8.24) that have the same form as equations (7) and (8) of Rice and
Cleary (1976); these equations are (3) and (5) in the text below. (Actually the
second summand on the right hand side of Bowen’s equation (8.24) is missing a
factor of 3; this is probably a typo or an algebraic slip.) Earlier Mow and Lai (1980,
footnote page 291) indicated how the mixture theory-based (incompressible)
biphasic theory for articular cartilage could be linearized to the incompressible
Biot theory.

In Chap. 10 the difference between the RVE approach of Biot, represented by
Fig. 8.9a and the mixture theory approach represented by Fig. 8.9b is narrowed
by minor changes in the mixture theory approach.

The third major approach to the development of the poroelastic equations is due
to Burridge and Keller (1981). These authors rederived the dynamic form of the
same basic set of equations using a two-space method of homogenization. This
method provides a systematic method for deriving macroscopic equations that
govern the behavior of the medium on the microscale. Thus, at the continuum
point, the three rigorous theoretical developments lead to the same set of equations,
and the difference between Biot (RVE), the mixture-theory-based, and the homog-
enization derivations is the method of averaging. The nature of the equations is
better understood because there are three approaches. The Biot approach provides
better insight into the nature of the parameters associated with the solid phase, the
mixture theory approach provides the mechanism for averaging over different fluid
phases, and the homogenization approach illuminates the dynamical (wave propa-
gation) characteristics of the theory.

The basic equations of quasistatic poroelasticity developed here are extended to
include a dependence the fabric tensor (introduced at the end of Chap. 7) in Cowin
(2004).

8.12 Relevant Literature

There is only one text on poroelasticity (Coussy 1995), but there is much related
material in Bear (1972). There is also a book on the very interesting historical
development of the theory, de Boer (2000), which also presents a noteworthy
presentation of the theory. The presentation of poroelasticity in this chapter was
taken from the following papers: Biot (1941, 1955, 1956a, b, 1962a, b), Rice and
Cleary (1976), Rudnicki (1985), Thompson and Willis (1991), Cowin (2003),
Cowin and Mehrabadi (2007), Cowin and Cardoso (2009) and the excellent sum-
mary of Detournay and Cheng (1993). In these papers the proofs omitted in this
chapter, as well as some technical restrictions or assumptions underlying those
proofs, are documented. The exception to the inclusion of proofs occurred at
the end of Sect. 8.2. The proof included was the derivation of the formula (8.3)
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for the Biot effective stress coefficient tensor A. This formula has an interesting
history. It was suggested by Geertsma (1957) and by Skempton (1961) then proved
with increasing generality by Nur and Byerlee (1971), Carroll (1979) and
Thompson and Willis (1991). The material in this paragraph follows the elegant
derivation of the formula by Nur and Byerlee (1971) in the isotropic case and by
Carroll (1979) for the anisotropic case. The problems described in Sect. 8.10 were
taken from Detournay and Cheng (1993).
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Chapter 9
Dynamic Poroelasticity

The modern theory of the motion of the water in the soil based on Darcy’s law does
not take into account the fact that the particles of the soil can be elastically
compressed and extended, assuming that the external forces and the hydrostatic
pressure act on the liquid filling these pores only. This simplifying assumption
necessitates a correction even in the case of problems on the steady flow of soil
water under the influence of given external forces. It becomes, however, wholly
untenable in the case of such questions as the propagation of elastic vibrations in the
soil (Frenkel 1944).

9.1 Poroelastic Waves

Dynamic poroelasticity is very different from the static and quasistatic
poroelasticity considered in the previous chapter. The concern here shifts from
pore fluid movements over longer distances and longer time spans to pore fluid
movements over shorter distances and shorter time spans associated with the
passage of waves. In poroelasticity there are the usual shear waves in an elastic
solid media (see Example 6.3.4), but there are two types of compressive waves
called the fast and slow waves. The fast wave is the usual compressive wave
characteristic of elastic solid, slightly modified by its pore fluid, and it moves
mainly through the solid matrix. The slow wave is unusual, and peculiar to
poroelasticity, in that the relative movement of the pore fluid and the solid matrix
is its generator.

The intended primary application of the dynamic poroelastic results is to
water-saturated geological and biological materials. The primary objective of the
application of dynamic poroelasticity to geological materials is to understand and
interpret the consequences of waves associated with earthquakes and to access oil
producing potential of geological structures. The primary objective of the applica-
tion of dynamical poroelasticity to biological tissue is to understand its use as a
model for ultrasound in noninvasive clinical tool to evaluate the state of internal

S.C. Cowin, Continuum Mechanics of Anisotropic Materials, 237
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Fig. 9.1 An harmonic plane 7\1
progressive poroelastic wave
considered to be moving in L.
the x direction in medium is
illustrated. The relationship
between the wave number of
a harmonic wave k, the wave
length of the wave 4, the wave
velocity v, the frequency f (in
radians per second) and the
frequency w (in cycles per
second, Hertz or Hz) is given
by k =2n/i=2nf/v=w/v

\ B
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tissue structures. Most techniques for the noninvasive evaluation tissues generate
ionizing radiation; ultrasound does not.

This chapter concerns harmonic plane progressive poroelastic waves. Harmonic
describes the sinusoidal character of the amplitude of the wave, plane refers to the
consideration that the wave propagates as a planar surface and progressive means
that it moves through the medium, in this case a poroelastic medium. The amplitude
and the wavelength of an harmonic plane progressive poroelastic wave are
illustrated in Fig. 9.1. Such a wave is represented mathematically in several
different ways, for example a displacement vector u(x, f) may be written as

ll(x’ t) = aeiw((nx/t’)*t) or u(x, t) _ aei(k(n.x)fwr).

In these representations x = x-n represents distance along the propagation path,
n is the direction in which the wave is propagating, a is the amplitude or polariza-
tion of the wave and ¢ represents time. If the directions of a and n coincide the wave
is said to be a pure longitudinal wave or pressure (P) wave. If the directions of a and
n are perpendicular the wave is said to be a pure shear (S) wave. The plane that is
propagating in the direction n is the plane perpendicular to n. The wave number of a
harmonic wave, k, the wave length of the wave, A, the wave velocity, v, the
frequency f (in radians per second) and the frequency w (in cycles per second,
Hertz or Hz) are related by k = 21/ = 2nf /v = w/v. From these relationships one
can see that v = w/k, which is actually called the phase velocity of the wave and
denoted by some as v, = w/k to distinguish it from the group velocity of the wave,
ve = dw/dk. The phase velocity is the speed of a crest belonging to the average
wave number k. The group velocity is the velocity of the wave’s modulating
envelope.

Problems

9.1.1. There is a characteristic length Lgvg associated with the representative
volume element (RVE) employed in poroelasticity. In order for a wave
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passing through this poroelastic medium to obtain an appropriate average of
properties in the poroelastic RVE, what condition must be satisfied between
the wavelength of a wave 4 and the characteristic length Lgryg associated
with the volume element employed in the poroelastic model?

9.1.2. What parameter of an experiment may the experimentalist control to insure
that the criterion that is the answer to question 9.1.1 above is satisfied?

9.2 Historical Backgrounds and the Relationship
to the Quasistatic Theory

The formulation of the theory of wave motions in the context of poroelastic theory
presented here is consistent with the presentations of Biot (1941, 1955, 19564, b,
1962a, b), Plona and Johnson (1983), Sharma (2005, 2008) and many others. The
origins of this analysis appear in the work of Frenkel (1944). Unchanged by the
addition of anisotropy is the fact that the total elastic volumetric response in
poroelasticity described in the previous chapter is due to a combination of the
elastic volumetric response of the matrix material of the porous solid, the volumet-
ric elastic response of the pore fluid, and the pore volume changes in the porous
medium. The poroelastic constitutive equations are described in this and the
following section follow Biot’s (1956a, b, 1962a, b) formulation of the appropriate
two coupled wave equations. In the following section the coupled wave equations
((9.16) and (9.17)) for the propagation of plane waves in an anisotropic, saturated
porous medium are developed and, in the section after that, the relationships
between the material coefficients and the fabric are recorded. The algebra
associated with the representation of plane waves is developed in Sect. 9.4, and
the fabric dependence of the coefficients is recorded in Sect. 9.5. The propagation of
plane waves in a principal direction material symmetry and the direction that is not
a principal direction of material symmetry, are recorded in Sects. 9.6 and 9.7,
respectively.

In his 1956 papers on wave propagation Biot (1956a, b) let u represent the
displacement vector of the solid matrix phase as has been done in this chapter, and
U represent the displacement vector of the fluid phase, which is not done in this
chapter. These were the two basic kinematic quantities employed in Biot (1956a, b).
In Biot (1962a) the displacement vector of the fluid phase U was replaced by the
displacement vector w of the fluid relative to the solid, thus

w=¢(U—nu). 9.1)
The present development follows Biot (1962a, b) and the two basic kinematic

fields are considered to be the displacement vectors u and w. The relative velocity
of the fluid and solid components is, from (9.1),
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w=¢(U—1). 9.2)
The variation in fluid content { may then be defined in terms of w:
{=-V-w. 9.3)

Recall that the variation in fluid content { is the variation of the fluid volume per
unit volume of the porous material; it is defined as the difference between the strain
of the pore space and the strain of the fluid volume in the pore space and is
dimensionless (see (8.16)).

In addition to the slight changes in kinematic notation noted above, Biot (1962a, b)
employed slightly different notation for the poroelastic constitutive relations. As an
introduction to these changes consider the inverse of (8.17),

p=M{~A-E), (p=M({-AEy),
where M is the inverse of A defined by (8.18),
M=1/A 9.4)

and the representation of stress T as a function of the strain E and the variation in
fluid content {, rather than as a function of the strain and the pore pressure p, is

T={C"+MA®A)} E-MAL (T; = (¢

ijkm + MAkmAlj>Ekm - MAUC)

9.5)

Biot (1962a, equations (9.11)) employed a slightly different notation for the two
previous expressions, namely

~d ~
T=72 -E-M, (Tj=Zj,Ewm—My) (9.6)

and
p=-M-E+M, (p=—MpEp+ (M), 9.7)

where Biot’s parameters M, M and Zd are related to Cgff, A and Cd above by

M=MA, (M;=M4ay), Z°=C'+MA®A),

(Zz(jkm = Cz'km + MAUAkm)'

(9.8)


http://dx.doi.org/10.1007/978-1-4614-5025-2_8#Equ16
http://dx.doi.org/10.1007/978-1-4614-5025-2_8#8.17
http://dx.doi.org/10.1007/978-1-4614-5025-2_8#Equ18
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. . . .. sd . .
It is interesting to note that Biot’s elasticity tensor Z differs from the drained

elasticity tensor Cd by the term M (A ® A) which is M times the open product of

Biot effective stress coefficient vector A with itself. Equations (9.6) and (9.7) take
the following forms when the strain—displacement relations (2.49) and (9.3) are
employed:

Tij = ZijimUgm + Mijwi i 9.9)
and
P = —Mumltem — Mwyy. (9.10)

The balance of momentum in the form of the dynamical stress equations of
motion

px =V -T+pd, T=T" (3.37 repeated)

will now be applied twice, once to the solid phase and once to the fluid phase. In
both cases of its application the action-at-a-distance force d is neglected. The
application to the solid phase involves the mass times acceleration terms for the
fluid saturated solid phase ¢p;U 4 (1 — ¢)p,ii and may be reduced to pii + p;W
when (9.2) is used as well as the definition of p,

p=(1=3¢)ps+ ¢py, (9.11)

where p, represents the density of the solid matrix material, thus
V- T = pii + ¢ppsW. (9.12)

In the application of the balance of momentum to the fluid phase the mass
times acceleration term may first be written as pr and may be rendered in the form
p¢(i + (W/¢) by use of (9.2). However Biot (1962a, b) extends this formulation of
this mass times acceleration term of include J, the micro—macro velocity average
tensor, thus p;(ii + (W/¢)) becomes p;(it +J- W) where the newly defined J
incorporates the factor ¢~'. The micro-macro velocity average tensor J functions
like a density distribution function that relates the relative micro-solid—fluid velo-
city to its bulk volume average w. In introducing this concept Biot was clearly
viewing and modeling the poroelastic medium as hierarchical. The use of p;(ii + J
-W) yields a balance of linear momentum for the pore fluid phase in the form

—Vp = pelii+J - W). (9.13)


http://dx.doi.org/10.1007/978-1-4614-5025-2_2#Equ49
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The next step in the development of the coupled wave equations is to substitute
the expression (9.9) for the solid stress tensor and the expression (9.10) for the pore
fluid pressure into the conservation of momentum for the solid phase (9.12) and the
conservation of momentum for the fluid phase (9.13), respectively. However
the analysis to this point does not include the force on the fluid phase set up by
the drag of the fluid moving over the solid surface. To account for this force the
flow-resistivity tensor R, defined as the inverse of the intrinsic permeability tensor K
(see (8.26)), is introduced:

R=K" 9.14)
The viscous resistive force pR -w represents the effect of the fluid—solid
interaction on the fluid phase. Formally it should be subtracted from the left hand

side of (9.13), but we add it to the right hand side, to the mass times acceleration
terms, thus

—Vp=p(ii+J-W)+uR-w. (9.15)

Finally, accomplishing the substitutions mentioned above into (9.12) and (9.13),
but using (9.15) instead of (9.13), one obtains

82uk 62wk
Zin M — pil; + ppi, 9.16
ijk ' D, + M) D0, pU; + prw; 9.16)
o*u *w . .
M ——— 4 M =5 = ppi(iiy + J ;) + uRip;. (9.17)

0x,,0x; OxyOx;

Equations (9.16) and (9.17) are two coupled wave equations for the solid
displacement field u and the displacement field w of the fluid relative to the solid.

Problems

9.2.1. Explain the differences between the quasistatic formulation and the dynamic
formulation of the theory of poroelasticity.

9.2.2. How does the composite elasticity tensor Zd, Zd = Cd +M (A ® A) change
when the porosity of the porous medium vanishes?

9.2.3. Show that the coupled system of equations (9.16) and (9.17) reduce to the
wave equation for an anisotropic elastic continuum with no porosity.

9.2.4. Using the indicial notation substitute the expression (9.9) for the solid stress
tensor and the expression (9.10) for the pore fluid pressure into the conser-
vation of momentum for the solid phase (9.12) and the conservation of
momentum for the fluid phase (9.15), respectively, and derive the coupled
wave equations (9.16) and (9.17).


http://dx.doi.org/10.1007/978-1-4614-5025-2_8#Equ26
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9.3 Fabric Dependence of the Material Coefficients
in the Coupled Wave Equations

The form of the functional dependence of the drained elasticity tensor C¢ jkm UPON
fabric is that given by (7.38) where the superscript ¢ on the coefficients in (7.38) is
replaced by double superscript, cd, the ¢ indicating the elasticity coefficients and
the d indicating that they are the drained coefficients. All of these coefficients are
scalar-valued functions of ¢, II, and III. Recalling that the Biot effective stress
coefficient tensor A;; is related to the difference between effective drained elastic

constants C¢. iitm and the solid matrix material elastic compliance tensor S}, by the

formula (8.3), where C¢,_is expressed in terms of the fabric tensor by (7.38) above

m
and Sljkm

ijkm
ijkm
is not a function of the fabric tensor because it represents the elastic
constants of the matrix material. Recall also that the result (7.39) was based on the
assumption that the matrix material is isotropic and that the anisotropy of the solid
porous material is determined by the fabric tensor, thus we express the isotropic

form of 7, in terms of the bulk modulus and the shear modulus, K™ and G,
respectively:
. 1 1
ijlm = 56 OikOjm — §5zj5km 9K‘“ ~—0i0km- (9.18)
The form of S, that appears in (8.3) is S, and it is given by (9.18) as
m 1
Skmqq :Slf—mékm (919)

Substituting (9.19) and (7.38) into (8.3) and simplifying, one finds that the Biot
effective stress coefficient tensor A;; is related to the fabric tensor F by

Ajj = 8 — 7w 10305 + ai'Fyj + aif FigF s}, ©.20)

3Km

where

a =3a + as* + a§ (1 — 210) + 2¢,
ai” = 3a5? + b + 5T (1 — 21I) + 4¢f’,
aif = 3a5’ + b5 + b5 (1 — 200) + 4c§? (9.21)

and where Il is the second invariant of F. Biot’s parameters M;; and Z;j,, are related
to C4 o> Ajj, and 4 above by (9.8). Formulas relating M;; and Z;;,, directly to the
fabric tensor F will now be obtained by using the formula (7.38) above expressing
C¢,,, in terms of the fabric tensor and the expression (9.20) relating A;; to fabric, thus

ijkm

ijkm


http://dx.doi.org/10.1007/978-1-4614-5025-2_7#Equ39
http://dx.doi.org/10.1007/978-1-4614-5025-2_7#Equ39
http://dx.doi.org/10.1007/978-1-4614-5025-2_8#Equ3
http://dx.doi.org/10.1007/978-1-4614-5025-2_7#Equ39
http://dx.doi.org/10.1007/978-1-4614-5025-2_7#Equ40
http://dx.doi.org/10.1007/978-1-4614-5025-2_8#Equ3
http://dx.doi.org/10.1007/978-1-4614-5025-2_7#Equ39
http://dx.doi.org/10.1007/978-1-4614-5025-2_8#Equ3
http://dx.doi.org/10.1007/978-1-4614-5025-2_7#Equ39
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M

M = Mdj; — ——=1{a6; + a'Fjj + a§{Fi,F ,;} (9.22)
3K’
and
3K™ — qd)? MBK™ — ad)ad
Zijom = (“id +M ((3Km)2”)) Oij0km + <a§d - W (FiiSkm + SiiFtm)
2
d (3Km _ ard)acd . d (acd)
+ (alg - M(:;Tizn (oiijqum + 5kmFinqj) + bl] +M (3[1{m)2 Fiijm
0y dia d g (@)
+ bg +M (3K'“)2 (F,ijqum + kaF,'qu/‘) + bg + M(3Km)2 Fistijqum
+5%(84i0mj + Smidwj) + 5 (FriSmj + FigOmi + FimOsj + Fji)
+C§d(FiI‘F7‘k5mj + Fk/‘F)jénzi + FirFrm‘skj + FmI‘FIf[(Si/C)~
(9.23)
Problem

9.3.1. Calculate trA?, where the Biot effective stress coefficient tensor A is given
by (9.20).

9.3.2. Derive the formulas (9.22) and (9.23) relating the Biot’s parameters M;; and
Zjjim to fabric.

9.4 Plane Waves

The propagation of a harmonic plane wave is represented kinematically by a
direction of propagation, denoted by n which is a unit normal to the wave front,
and a or b, which are the directions of displacement for the wave fronts associated
with u and w, respectively. These two harmonic plane waves are represented by

u(x,t) = aexp [1w(¥ - t)} ,  w(x,t) =bexp [iw (? - t)} , (9.24)

where v is the wave velocity in the direction n, x is the position vector, w is the
frequency and ¢ is time. The slowness vector s is defined as s = (1/v)n, and the
wave speed v may be complex. As in elastic solid wave propagation (see Example
6.3.4), a transverse wave is characterized by a-n = 0, a longitudinal wave by
a-n = 1. Substituting the representations (9.24) for the plane waves into the field
equations (9.16) and (9.17) one obtains equations that are in Biot (1962a, b) and
Sharma (2005, 2008) and many other places,
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(Qik — péikvz)ak + (C,‘k — pf5jkvz)bk =0, (9.25)
(Cri — prdav®)ar + (Mnkn,- — ped v’ — %Rik#)bk =0, (9.26)

where the following notation has been introduced:
Qi = Zmnj,  Cit = Mynjny. 9.27)

Q is the acoustical tensor from elastic wave propagation and C represents the
interaction of the displacement fields u and w. Rewritten in matrix notation
equations (9.25) and (9.26) take the form

(Q—pv*1)-a+ (C—pp*l)-b=0, (9.28)
(CT — pp1)-a+ (Mn ®@n— (pr + %R) v2> ‘b =0. (9.29)

These equations represent an eigenvalue problem, the squares of the wave
speeds v? representing the eigenvalues and the vectors a and b representing the
eigenvectors. Rewriting (9.28) and (9.29) as a scalar 6 by 6 matrix formed from the
four 3 by 3 matrices that appear in (9.28) and (9.29) and also representing the two
3D vectors a and b as one 6D vector, the following representation is obtained:

Q-1 C —pp*l a|
C'—pp?1l Mn®n— (pr—&-%R)vz} [b} =0 9.30)

Please note that the scalar 6 by 6 matrix operating on the vectors a and b is
symmetric; the 3 by 3 matrices along the diagonal are symmetric and, even though
C is not symmetric, having the transpose of C is the lower left 3 by 3 matrix and the
3 by 3 matrix C itself in the upper right makes the 6 by 6 matrix symmetric. Since
the right hand side of this linear system of equations is a zero 6D vector, it follows
from Cramer’s rule that, in order to avoid the trivial solution, it is necessary to set
the determinant of the 6 by 6 matrix equal to zero, thus

Q-1 C—ppl _
CT —pp’1 Mn®n— (pJ +LR)»? =0 ©.3D)

This condition will provide six (four nonzero) values of the possible squares of
the wave speeds v* in the direction n. In each direction there will be four nontrivial
wave speeds, two representing shear waves and one each representing the Biot fast
and slow waves. For each value of a squared wave speed v* substituted back into
(9.30), two 3D vectors a and b will be determined subject to the condition that they
are both unit vectors. The ease with which these calculations are described does not
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convey their algebraic complexity. However contemporary symbolic algebraic
software solves this type of eigenvalue problem in a few keystrokes.

Problems

9.4.1. Using the indicial notation substitute the representations (9.24) for the plane
waves into the field equations (9.16) and (9.17) and derive the coupled
equations (9.28) and (9.29) for the velocity and amplitudes of the two
waves in the fixed direction n.

9.4.2. How do you use your favorite symbolic algebraic software to solve (9.30) in
the case where the parameters are all specified numerically.

9.5 Fabric Dependence of the Tensors Q, C, J, and R

The governing equations for anisotropic poroelasicity for quasi-static and dynamic
poroelasticity were developed and extended to include the dependence of the consti-
tutive relations upon a pore structure fabric tensor F as well as the porosity (Cowin
1985, 2003, 2004; Cowin and Cardoso 2011; Cardoso and Cowin 2011, 2012).
Formulas relating the acoustic tensor Q, the flow-resistivity tensor R and the tensor
C, representing the interaction of the velocity fields u and w, to the fabric tensor F are
obtained in this subsection. The dependence of the elastic acoustic tensor Q upon the
fabric tensor F is obtained by substituting (9.23) into the first of (9.27),

Q= (¢ + cStr{F-n®n} + §tr{F* -n®n})1
+gmen+cF+¢(F-n@n+n®n-F)
+cF* + ¢;(F> - n@n+n@n-F) +¢F-n®F-n

+¢s(F-n®@F* . n+F-n®F-n)+¢F -n®F n, (9.32)
where
2 dy d
cd cd (3Km - ag) cd cd M(SKm - ao)al
g =c+a+M— >, g =c&"+a ————,
1 1 1 (3K‘“)2 2 2 5 (3K"‘)2
2
cd cd (3Km B ag)a?l cd (d?)
gGg=c4+ad —-M—2= g, =b"+M ,
3 3 3 (3Km)2 4 1 (3Km)2
) alad ad)?
qs = b+ M (311@?)2 . g =bY M (;;n)l)z . (9.33)

The six quantities defined in (9.33) are scalar-valued functions of ¢, II, and III.
The formula for the tensor C is obtained by substituting (9.8) into the second of
(9.27) and then employing (9.20), thus

1
K™

[C=M{n-——{ai'n+a/F -n+aF* n} @n. (9.34)
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by

1. . :
{ay'n + a&‘F -n + ajF? -n}) @n. (9.34)

C:(M-{n—3Km

The micro—macro velocity average tensor J is related to the fabric by
J=Q- (il +;F +jF), (9.35)

where Q represents a rotation matrix associated with the transformation between
the principal axes of F and the reference coordinate system used for J and ji, j,, and
J3 are functions of ¢, II and III. Similarly, The flow-resistivity tensor R, is related to
the fabric by

R = r11 + rF + r3F?, (9.36)

where ry, >, and r5 are functions of ¢, Il and III, and R is equivalent to the inverse
of the second-rank intrinsic permeability tensor K.

Problems

9.5.1. Express the direct notation equation (9.32) for Q in the indicial notation.
9.5.2. Express the equation (9.32) for Q in the matrix notation in the principal
coordinate system of the fabric tensor.

9.6 Propagation of Waves in a Principal Direction
of Material Symmetry

In this section the solution is developed for waves that propagate in the direction of
a principal axis of material symmetry. The direction of propagation is selected to be
the one direction, thus n are given by the vector n = [1, 0, O]T. The solution to the
problem is the solution of the 6 by 6 system of equations given by (9.23), thus the
values of the tensors J, R, C, and Q in the coordinate system of the principal axes of
material symmetry and at the vectorn = [1, 0, 0]T are determined first. Under these
conditions J is determined from (9.35) with Q = 1, R from (9.36), C from (9.34)
and Q from (9.32) are given by

Jiui 0 0 Ry 0 0 Ci 0 0
J=|0 Jn 0|, R=|0 Rn 0], C=]0 0 0
0 0 Js 0 0 Ry 0 00
(9.37)

and
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0, 0 0
Q=10 0Opn 0|, (9.38)
0 0 Qs

In the coordinate system of the principal axes of material symmetry and at the
vector n = {1, 0, 0}, the four 3 by 3 submatrices that form the 6 by 6 matrix in
equation (9.30) are given by

0y — pv? 0 0
Q-—p’l= 0 0, — pv* 0 , (9.39)
0 0 Q33 — pv*
C11 — pf\/2 0 0
C—pp*1=CT —pn?1 = 0 —pr 0 |, (9.40)
0 0 —pv?

Mn®n — (pr—F%R)vz

M — pfv2J11 — ngR” 0 0
0 0 —ppviTs3 — %Rn

(9.41)

Substitution of the four 3 by 3 matrices above into the 6 by 6 determinant (9.31)
reveals that result may be expressed as three 2 by 2 matrices for the three sets of
ComponentS, {alv bl }9 {aZ, bZ}’ and {a39 b3}’

[Qn —PV2 Cu —,Of,V2 } {al] —0

Cll 7pr2 M — (pf.]” +%R11)V2 b1
0y — pv* —ppv? al _,
—pp* = (pef2 +ERp)V | | ba ’
033 — pv*? —ppv? as
in =0. 9.42
[ “op? — (o + BRI | | by ©42)

Requiring that the determinants of these 2 by 2 matrices vanish yields four
nontrivial solutions for the squared wave speed v>. The vanishing of the first of the
determinants of these 2 by 2 matrices provides two roots of a quadratic equation that
represent the fast and the slow squared longitudinal wave speeds,

N N 1 C? - M
V= + { ] +Pf( 11 Qu)7 (9.43)
2p¢Ly 2pL peLn




9.6 Propagation of Waves in a Principal Direction of Material Symmetry 249

where

] i
Lij = pJi +—uRik — pg0ij, N =Mp + p; (Qu (111 + —MRII) - 2C11>a
pe@ pe®

(9.44)
or
V=124l (9.45)
where the notation
2= N 7 C_2:\/[ N }2+Pf(c%1_MQ11) (9.46)
¢ 2peln ? 2piL1y peLan

has been employed. The vanishing of the second and third of the determinants of the
2 by 2 matrices in (9.42) provide a zero root and a nonzero root from each
determinant. The two nonzero roots are the squared shear wave speeds

Vv = Q22 <J22 + —R22) and v = Q33 (J 33 + —R33) (9.47)
Ly pr@ L33 P

The vectors a and b for the fast and slow waves are given by
a=1{a;,0,0}, b={b,0,0}, (9.48)

where a; and b; are related by the following two equivalent expressions for the fast wave

Cu —pi(vi+c; M — (piJ 1/ 0)R1y) (V3 + ¢
_Cumplnte) oy Mz ot @/0)R)E, 6, g 4
p(vo—’—c()) _Qll pf(vo+ca) —Ci

and the next two equivalent expressions for the slow wave,

g = S —pe(v — <) p =M (e 11 + (ip/ @)R11) (v, —Cf)b
p(vi—c2) =0y’ pe(v2 —c2) — Ci

1 (9.50)

and for the two shear waves by
a={0,a,0}, b={0,0,0}, a=-— (122 +%R22)b2 and
a=1{0,0,a3}, b=1{0,0,b3}, a3= —(.133 +%R33)b3, 9.51)

respectively.
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Fig. 9.2 A plot of the ultrasound wave velocities as a function of the porosity from the theoretical
model. P1 is the fast wave, P2 the slow wave, S1 and S2 are the two propagating shear waves,
while S3 and S4 are non-propagating shear waves with null velocity. These results are plotted for a
medium with isotropic fabric. The velocity of propagation for all directions is the same
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Fig. 9.3 A similar plot to Fig. 9.2, but for a medium with anisotropic fabric. Propagation along the
three different principal directions is shown

The six-ultrasound wave velocities as a function of the porosity from the model
are shown in Fig. 9.2 for an isotropic material. These six possible wave velocities
are the six roots of (9.42). In the figure the fast wave is denoted by P1 (P for
pressure), the slow wave by P2, S1, and S2 denote the two propagating shear waves
(S for shear), while S3 and S4 are non-propagating shear waves with zero velocity.
These results are plotted for a medium for the isotropic case, thus the velocity of
propagation is the same for all directions. In Fig. 9.3, the six-ultrasound wave
velocities are plotted again as a function of porosity, but for an anisotropic medium.
Propagation along all three principal directions are shown for each wave as a solid,
dashed, and dotted line. In these two figures one can see that the response of the
compression or P waves is the most varied. The fast wave has a high velocity at low
porosity and that velocity drops to the velocity of sound in water, about 1,500 m/s,
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at very high porosity. The slow wave is at or near zero velocity at very high and
very low porosities and climes to a peak near 60% porosity. The nonzero shear
wave velocities are highest at the lowest porosity and decrease linearly to zero at the
highest porosity.

The experimental identification of the fast and slow waves is illustrated in
Figs. 9.4 and 9.5. Figure 9.4 contains four panel figures with plots of amplitude
vs. time for a wave passing thought different media. Figure 9.5 contains four panel
figures with plots the frequency spectrum vs. time for a wave passing thought the
same four different media. For both figures, panels 1 and 4 the media in the
container is water, but the placement of the emitting and receiving transducers is
different. In panel 2 there is a fluid saturated porous specimen and in panel 3 there is
the porous specimen but no water. In each figure these various combinations of test
media and transducer setups are illustrated in the small cartoons to the left or right
of each plot of amplitude vs. time. In each cartoon the emitting and receiving
transducers are indicated as tubes (bottom and top of the cartoon) applied to the
specimen in the water or air filled container. In panel 1 the shape of the wave or
frequency spectrum is determined by its passage through the small space between
transducers. In panel 2 the shape of the wave or frequency spectrum is determined
by its passage through a fluid saturated porous specimen between transducers. In
panel 3 there is no water, just the porous specimen, so the shape of the wave or
frequency spectrum is determined by its passage through the unsaturated porous
specimen between transducers. Panel 4 is the same as panel 1 except the space
between the transducers is the same as if the specimen were there. Notice that, in
this case, the shape of the wave or frequency spectrum is almost the same as in
panel 1 but it is displaced to a greater time. It is only in the second panel that the
waveform shape and frequency spectrum are determined by passage through the
saturated porous specimen. In this panel one can see that the first part of the
waveform is similar to that of the fast wave and the last part is similar to that of
the slow wave. Panel 4 shows the passage of only the wave in the fluid because there
is no porous specimen in the container; this situation is similar to that of the slow
wave in the porous media shown in the second panel. Panel 3 shows the passage of a
wave propagating within an unsaturated porous specimen; this wave is similar to
the fast wave shown in the second panel. These data suggest that under the tested
conditions of porosity, the propagation of the fast wave is mainly related to the solid
phase of the medium, while the slow wave is characteristic of the fluid phase
(Cardoso et al. 2003).

A plot of the fast (top three curves) and slow (lower three curves) wave speeds as
a function of frequency for different degrees of anisotropy at a porosity of 50 % in
cancellous bone tissue is shown in Fig. 9.6. In ultrasonic measuring systems the
viscous effects of the pore fluid damp out the genesis of the slow wave and its
potential observation below the critical frequency. The amplitude damping of both
waves also occurs at frequencies above the viscous frequency, which is 10* times
the critical frequency, making the observation of both waves above the viscous
frequency challenging (Cardoso et al. 2008).



252 9 Dynamic Poroelasticity

Zero Reference

Amplitude (V) Q

Time (us)

Human Sample No.34 Dir B in immersion

o
2]
T

Amplitude (V) o~

|
o
&)

o
XY S .
) )

3
I}

6
Time (us)

Human Sample No.34 Dir B saturated with Air

o
o

Amplitude (V) ¢
o
o L

7] TErURpR R

=] St EEERE

2 4 6
Time (us)

|
<o
S

Water Reference for the sample No.34 Dir B

n
=)

-

Amplitude (V) Q.

o O o

|
-

o
PN S

Fig. 9.4 Each panel of this four-panel figure contains a plot of amplitude vs. time for a wave
passing thought different media. In panels 1 and 4 the media is water, but the placement of the
emitting and receiving transducers is different. In panel 2 there is a fluid saturated porous
specimen and in panel 3 there is the porous specimen but no water. These various combinations
of test media and transducer setups are illustrated in the small cartoons to the left or right of each
plot of amplitude vs. time. In each cartoon the emitting and receiving transducers are indicated
as tubes (bottom and top of the cartoon) applied to the specimen in the water or air filled
container. In panel 1 the signal detected corresponds to the wave at the bottom of the measure-
ment cell. This is the ultrasound wave that would excite the porous media under the conditions
shown in panels 2 and 3. In panel 2 the shape of the wave is determined by its passage through a
fluid saturated porous specimen between transducers. In panel 3 there is no water, just the porous
specimen, so the shape of the wave is determined by its passage through the unsaturated porous
specimen between transducers. Panel 4 is the same as panel 1 except the space between the
transducers is the same as if the specimen were there. Notice that, in this case, the shape of
the wave is the same as in panel 1 but it is displaced to a greater time. It is only in panel 2 that the
waveform shape is determined by the passage through the saturated porous specimen and
one can see that the first part of the waveform is similar to that of the wave propagating in the
unsaturated porous medium and the last part of the waveform is similar to that of the wave
propagating in the fluid. Therefore, the waveform in panel 2 is shown to be composed by two
waves; the first wave is identified as the fast wave of poroelastic wave propagation theory
(shorter arrival time), and the second wave is the slow wave (larger arrival time). In this
example, the propagation of the fast wave is closely related to the solid phase of the medium,
while the slow wave is mostly related to the fluid saturating the pores
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Fig. 9.5 The four panels in this figure represent different data from the same four experiments
illustrated in Fig. 9.3, thus the description of the experiment and the small cartoons for each panel
have the same significance. The difference is the plot of amplitude vs. time for a wave passing
thought different media have been replaced by the frequency spectrum of waves vs. time for the
wave passing thought the different media. The frequency spectrum for the wave in water alone,
panels 1 and 4, is seen to be the same general shape; this shape is missing from panel 3 where there
is no water, but is identified in panel 2 as the frequency spectrum representing the energy
associated with the slow wave (SW). The frequency spectrum representing the energy associated
with the fast wave (FW) is shown in panel 3 where the wave is passed through the unsaturated
porous specimen

Example 9.6.1: Wave Propagation in a Principal Direction of Symmetry
Determine the wave velocities and the polarization vectors or eigenvectors for
cancellous bone associated with a harmonic wave propagating along an axis of
material symmetry. Let the axis of material symmetry be e;. The properties of the
specified cancellous bone are a porosity ¢ = 0.5, a density of the matrix material
of the porous structure of 2,000 kg/m>, and a density of the pore fluid of the porous
structure of 1,000 kg/m>. From Yang et al. (1999) the values of the compliance
and elasticity tensors for orthotropic elastic coefficients are approximately
given by
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Fig. 9.6 A plot the fast (top three curves) and slow (lower three curves) wave speeds as a function
of frequency for different degrees of anisotropy at a porosities of 50, 70 and 90 % in cancellous
bone tissue. In ultrasonic measuring systems the viscous effects of the pore fluids damp out
potential observations of these waves below the critical frequency and the same damping occurs
at frequencies above the viscous frequency, which is 10* times the critical frequency
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where we take E, = 10 MPa. The value of the fluid viscosity u is 1,000 Pa s. The
flow-resistivity tensor R and the micro-macro velocity tensor J are assigned the
following values to simplify the calculation:

R=0, J=¢ '1=21 (9.54)
Solution: First note that the values of the matrices S and C" are given by the

od ~d -
formulas for S and C when the porosity is zero, thus

~d

ST =(1-¢1

and it follows from (9.2), A = (1— €. §™) . U, that

A=¢@2-9)U.

To calculate the value of the parameter A specified by (8.18), = Cfﬁ- —A-S-A,
we first evaluate A - §° - A and Cfﬂ. Using A = ¢(2 — ¢)U, it follows that


http://dx.doi.org/10.1007/978-1-4614-5025-2_8#Equ18
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To evaluate ngﬁ[ and Kl’é’eﬁc in the formula (8.18) for Cjﬂ we note that

W oad oA ! m

Kiy=(U-S-U) , Kp,=(U-8
thus it follows that for the drained elastic constants,
K8 = 407E,(1 — $)* = 1.018 GPa
and the result for the matrix material is obtained by setting ¢ = 0,
KRos = 407E; = 4.073 GPa.

Then from (8.17), noting that value of the bulk fluid modulus K'is 2.25 GPa, C;’ﬁ
is given by

1 1 1 1 0.836
ct =— —_ | =
TKey Kiy 9 (Kf K;;;ﬂ> GPa

and the value of A is then

0.2836
GPa

A=cl —A-§8 A=

Using the values of the fluid density p' (1,000 kg/m>) and the solid density
p* (2,000 kg/m?), p given by (9.11) has the value

p=1{2(1 — ¢) + $}1,000(kg/m?) = 1,500(kg/m?).

These parameter values, in addition to the formulas above and the observation
from (9.4) that the scalar M is simply ¢ times the inverse of the parameter A,

¢ GPa

= A= 0563" 1.76 GPa.

Thus from (9.8)
~ A N 3\ . .
M=MA=Mp(2—¢)=U=1.76 GPa<Z>U =1.322 GPa U.

The results above will first be specialized to the propagation of waves in a
principal direction of material symmetry n = [1, 0, 0]" and then in a direction that


http://dx.doi.org/10.1007/978-1-4614-5025-2_8#Equ18
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will generate quasi-waves, n = (N3, 1, l]T. Recall from (9.8) the formula for

Zd , thus

2'=C'+MA®A) =C' +0992GPa U U.

Proceed with the first case,n = [1,0, O]T, from (9.27) we note that forn = [1,0, O]T,

d
Ow =Zi, Ciu=Muyn; or

_Z((lilll Zglzl ng ZAil %36 ZAES ZA(lil (21 0
Q= Zém Z%lm Zﬁm = ZAIG Zps ZASG =10 Zs 2
L Zhs1 Zaus Laim Zfs Z(516 Z(sis 0 0z
[4.32 0 0
= 0 2.32 0 |GPa,
| O 0 1.58
My 0 O 1.322 0 O
C=|My 0 Of= 0 0 O |GPa.
M;; 0 O 0 0 0

The solution to the problem is the solution of the 6 by 6 system of equations
given by (9.30), thus the values of the tensors J, R, C, and Q in the coordinate
system of the principal axes of material symmetry and at the vector n = [1, 0, 0]"
are determined first. The specified numerical values of J, R, C, and Q, the four 3 by

3 submatrices that form the 6 by 6 matrix in equation (9.30), are given by (compare
(9.39) to (9.41))

3.48 x 10° — 1.5,2 0 0
Q — p»*1 = 1,000 0 2.32 x 10° — 1.5v? 0 ,
0 0 1.58 x 10% — 1.5v2

where p is calculated above to be 1,500 kg/m?,

1322 x10°—=v> 0 0
C - pp*l =C" — pp?1 =1,000 0 - 0
0 0 —?

i 176 x 106 =202 0 0
Mn®n—v2{pr+—R}:1,OOO 0 -2 0
@ 0 0 -2
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These results may be assembled into a rather large 6 by 6 determinant,

3.48 x 10° — 1.5v2 0 0 1.322x10°=v? 0 0
0 2.32x 10% —1.5v2 0 0 - 0
0 0 1.58 x 10° —1.5v2 0 0 —?
1 =
000 1.322 x 10% —1? 0 0 1.76 x10°=2v* 0 0 0,
0 —? 0 0 -2 0
0 0 —? 0 0 —-2?

but the division of this into three 2 by 2 determinants is more manageable.
Substitution of the four 3 by 3 matrices above into the 6 by 6 determinant (9.31)
reveals that this result may be expressed as three 2 by 2 matrices for the three sets of
components, {ay, b1}, {az, bo}, and {as, b3} (as accomplished in (9.42));

6 2 6 2
17000{3.48 x 10° —1.5v2 1322 x 10° —v Hal] o,

1.322 x 10° —v2 176 x 106 — 232 | | by

232x 106 —v? ||a
1 —
,ooo[ " B 2v2} { b 0,

158 x 10° —v? |[as]
1,000{ S _2v2Hb3 =0.

Requiring that the determinants of the three 2 by 2 matrices above vanish yields
four nontrivial solutions for the squared wave speed v2. The vanishing of the first of
the determinants of these 2 by 2 matrices provides two roots of a quadratic equation

that represent the fast and the slow squared longitudinal wave speeds. The fast and
the slow squared longitudinal wave speeds are given by,

v=1,629m/s, v=909m/s,
and the vanishing of the second and third of the determinants of the 2 by 2 matrices
above provides a zero root and a nonzero root from each determinant. The two
nonzero roots are the squared shear wave speeds
v=1,523m/s and v=1,258 m/s.
The vectors a and b for the fast and slow waves are given by
a={-2.66b;,0,0}, b={b,0,0}

and

a={—0211b,,0,0}, b={b;,0,0}
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and for the two shear waves by

a={0,-2h,,0}, b=1{0,b,,0}, and a={0,0,—2h5}, b=1{0,0,b3},

respectively.

Problems

9.6.1.

9.6.2.

9.6.3.

9.6.4.

9.6.5.

9.6.6.

9.6.7.

9.6.8.

9.6.9.

9.7

Which wave modes propagate in a porous medium saturated with a very
low-density gas (i.e. He)? How many wave modes of each type propagate?
Which wave modes propagate in a porous medium when the porosity of the
porous medium is zero? How many wave modes of each type propagate?
Using Fig. 9.6 please explain what is meant by dispersion of fast and slow
waves plotted vs. frequency.

Explain the rise and fall of dispersion described in problem 9.6.3 in terms the
properties of the fluid (specify frequency range).

Using symbolic algebraic software show that the vanishing of the first of the
determinants (9.42) provides the two roots given by (9.45) and (9.46).
Using symbolic algebraic software show that the vanishing of the second and
third of the determinants (9.42) provides the two roots given by (9.47) and
two zero roots as well.

Explain how the amplitudes a and b of the two waves are determined once
the wave velocity is calculated in a typical problem of the type of problems
9.4.10r94.2.

Determine the wave velocities and the polarization vectors or eigenvectors
associated with a harmonic wave propagating along an axis of material
symmetry e; in cancellous bone with a porosity of 0.2. Use the properties
specified for cancellous bone in Example 9.6.1.

Determine the wave velocities and the polarization vectors or eigenvectors
associated with a harmonic wave propagating along an axis of material
symmetry e; in cancellous bone with a porosity of 0.5. Use the properties
specified for cancellous bone in Example 9.6.1.

Propagation of Waves in a Direction That Is Not
a Principal Direction of Material Symmetry; Quasi-Waves

In this section the theoretical framework for poroelastic waves is extended to the
propagation of waves along a general direction in orthotropic porous media, not
waves propagating the in the specific direction of a material symmetry axis consid-
ered in the previous section, which are called pure waves to distinguish them from
the wave types considered in the present section. The kind of waves under consid-
eration here are called quasi-longitudinal waves or quasi-shear waves as their
amplitudes or polarization vectors are neither parallel nor perpendicular to the
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direction of propagation n, in contrast to the case with pure longitudinal waves or
pure shear waves. The waves under consideration here are said to be quasi-
longitudinal waves if their amplitudes or polarization vectors make an angle of
45° or less with the direction of propagation n, or to be quasi-shear waves their
amplitudes or polarization vectors make an angle of more than 45° with the
direction of propagation n. The theory developed in the previous sections is
applicable to quasi-waves as well as to pure waves, but the algebra is much simpler
for pure waves.

Example 9.5.1: Wave Propagation in a Direction That Is Not a Principal Direction
of Symmetry
Determine the wave velocities and the polarization vectors or eigenvectors for
cancellous bone associated with a harmonic wave propagating in a direction that
is not an axis of material symmetry. Let the axis of material symmetry be e; and the
direction that is not an axis of material symmetry be n = {1, 1, 1}(1/V3). The
properties of the specified cancellous bone those of Example 9.6.1.

Using the data from Example 9.6.1 and n = (1/¥3)[1, 1, 1]T, the 6 by 6
determinant of the wave speeds (9.31) in this case is given by

2.46x10°—1.5/2 9.6x10° 7.08x10°  4.407x10°—?  0.44x10° 0.44x10°
9.6x10°  2.053x10°—1.5v*  0.59x10° 044x10°  0.44x10°—v?  0.44x10°
Looo| 0-708x10° 0.59x10°  1.50x10°~1.5v* 0.44x10°  044x10°  0.44x10°—|
’ 0.44x10°—y? 0.44x10° 0.44%10°  0.59x10°—2v?  0.59x 10° 0.59 % 10°
0.44x10° 0.44 x 10°—1? 0.44%10° 0.59%10°  0.59x10°—212  0.59x10°
0.44x10° 0.44x10° 0.44%10°=v?  0.59%10° 0.59%10°  0.59x10°—212

and the wave speeds are 1,692, 1,127, 1,039, and 893 m/s. For the 1,692 m/s wave
speed the polarization vectors are

a=1{1,0.74,0.40}a;, b={-042,-0.29,-0.122}q,.
This vector a makes an angle of 19° with the direction of propagation n. This
vector b makes an angle of 156° with the direction of propagation n. Thus this is the

quasi-longitudinal fast wave. For the 1,127 m/s wave speed the polarization vectors
are

a={1,-1.30,0.007}a;, b={-0.56,0.59,0.06}a,.

This vector a makes an angle of 96° with the direction of propagation n. This
vector b makes an angle of 91° with the direction of propagation n. Thus this is a
quasi-shear wave. For the 1,039 m/s wave speed the polarization vectors are

a={1,094,-3.52}a;, b={-1.09,—0.106,1.17}a;.
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This vector a makes an angle of 104° with the direction of propagation n. This
vector b makes an angle of 107° with the direction of propagation n. Thus this is a
quasi-shear wave. For the 893 m/s wave speed the polarization vectors are

a={1,-230,—119}a;, b={11.08,12.73,17.55}a;.

This vector a makes an angle of 129° with the direction of propagation n. This
vector b makes an angle of 110° with the direction of propagation n. Thus this is a
quasi-longitudinal slow wave.

Problems

9.7.1. What is the word used to describe waves composed of a mixture of longitu-
dinal and wave modes?

9.7.2. For the mixed waves of the previous question, what is the particle’s polari-
zation vector orientation relative to the vector representing the direction of
wave propagation?

9.7.3. Determine the wave velocities and the polarization vectors or eigenvectors
associated with a harmonic wave propagating in a direction that is not an axis
of material symmetry in cancellous bone with a porosity of 0.2. Let the
direction that is not an axis of material symmetry be n = {1, 1, 1}(1/Y3).
Use the properties specified for cancellous bone in Example 9.4.1.
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Chapter 10
Mixture Theory-Based Poroelasticity
and the Second Law of Thermodynamics

Here is an appropriate interpretation of the second law of thermodynamics:
Dissipation principle: For all thermodynamic processes that are admissible for a
given constitutive assumption, the entropy production must be positive or zero. The
decisive word in this postulate is the quantifier all it makes the postulate a restrictive
condition on the internal constitutive assumptions that can be imposed on systems
of the type under consideration. Indeed, if internal constitutive assumptions are laid
down at will and without restriction, the entropy production can be expected to be
positive or zero only for some but not for all admissible processes. Thus, the second
law is not a restriction on the kind of processes that can occur in nature, but a
restriction on the kind of material properties that physical systems occurring in
nature can have. Walter Noll, 8th International Congress on Thermal Stresses, 2009

10.1 Introduction

The title of this chapter makes reference to three topics; mixture theory,
poroelasticity, and the second law of thermodynamics. In Sect. 8.11 it was noted
that there are different major approaches to the development of the same
basic equations for the theory of poroelasticity. The first approach, the effective
medium approach, was the subject of Chap. 8. The second approach, the mixture
theory approach, is one of the subjects of this chapter. It would be helpful to read or
reread the paragraphs in Sect. 8.11 that deal with this second approach as much of
the development of the subject described there will be detained in this Chapter.
A mixture is a material with two or more ingredients, the particles of which are
separable, independent, and uncompounded with each other. If the distinct phases
of a mixture retain their identity, the mixture is said to be immiscible; if they lose
their identity, the mixture is said to be miscible. Mixture theory provides a basis
upon which the poroelasticity model of Chaps. 8 and 9 may be extended to
multicomponent mixtures. The possible constituents of a mixture include a porous
solid, solvents and solutes and possibly other constituents. The theory of mixtures is

S.C. Cowin, Continuum Mechanics of Anisotropic Materials, 263
DOI 10.1007/978-1-4614-5025-2_10, © Springer Science+Business Media New York 2013


http://dx.doi.org/10.1007/978-1-4614-5025-2_8
http://dx.doi.org/10.1007/978-1-4614-5025-2_8
http://dx.doi.org/10.1007/978-1-4614-5025-2_9

264 10 Mixture Theory-ased Poroelasticity and the Second Law. . .

based on diffusion models that originated in a fluid mechanics and thermodynamics
tradition and was formulated in the century before last.

The modeling of pore fluid flow in porous materials whose fluid and matrix
constituents are solid components, solvents and solutes, and which may be modeled
as incompressible, is the main subject of this chapter. The modeling of pore fluid
flow in geological and biological materials whose components are compressible
was dealt with in Chap. 8 on quasistatic poroelasticity. In Chap. 8 it was shown how
the incompressible case may be approached from the compressible and thus
demonstrating that it is possible to treat the compressible and incompressible
cases jointly, but it is easier to address them separately because the interaction of
the interstitial fluid flow and the solid matrix in these two tissue types is signifi-
cantly different. Chap. 9 concerned wave propagation in poroelasticity and neces-
sarily deal with the case when all constituents were compressible.

The porous medium behavior of hard biological tissues is similar to the behavior
of saturated porous rocks, marble and granite, while the porous medium behavior of
soft tissues is similar to the behavior of saturated soils, the sort of geological
deposits one might call “swampy soils.” Although both are saturated porous
media, their detailed modeling and physical behavior are quite different. The
term unsaturated porous media generally refers to cases when the matrix pores
are filled with a fluid and a gas as, for example, the soil near the roots of a plant may
contain water, air, and soil solids. In the case of hard tissues and saturated porous
rocks, the fact that the bulk stiffness of the matrix material is large compared to the
bulk stiffness of water means that (1) only a fraction of the hydrostatic stress in
the matrix material is transferred to the pore fluid, and (2) the strains levels in many
practical problems of interest are small. In the case of soft tissues and the saturated
porous soils, (1) the strains can be large (however, only small strains are considered
in this chapter), and (2) the bulk stiffness of the matrix material is about the same as
the bulk stiffness of water which means that almost all of the hydrostatic stress in
the matrix material is transferred to the pore fluid. The effective Skempton param-
eter defined by (8.49) or (8.45) is a measure of the fraction of the hydrostatic stress
in the matrix material that is transferred to the pore fluid. For soft tissues and
saturated soils the Skempton parameter approaches one, indicating that almost
100% of the hydrostatic stress in the matrix material is transferred to the pore
fluid. As a consequence of this fact that the response to volumetric deformation of
the fluid and the solid matrix in soft tissue is much stiffer than the deviatoric
response, it is reasonable to assume that the soft tissues and the contained fluid
phase are incompressible. Thus soft tissues are “hard” with respect to hydrostatic
deformations and soft with respect to shearing or deviatoric deformations. This fact
is the justification for the assumption of incompressibility of both the matrix
material and the pore fluid made in the development of porous media models for
soft tissues. The assumption of incompressibility is not correct for marble, granite,
and hard tissue. For marble and granite the Skempton parameter is between 0.5 and
0.6 and for the lacunar canalicular porosity of bone it is between 0.4 and 0.5. This
means that only about 50% of the hydrostatic stress in the matrix material is
transferred to the pore fluid in these materials with a stiff bulk modulus.
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10.2 The Present Mixture Theory-Based
Poroelasticity Approach

Since mixture theory was first presented by Truesdell (1957) its relationship to the
previously established Biot’s poroelasticity theory (1941) has been a subject of
discussion. In this Chapter the overlap in the two theories is increased. In several
important ways the mixture model of saturated porous media is more general than
the Biot (1941) model of poroelasticity; Bowen (1980, 1982) recovered the model
of Biot (1941) from the mixture theory approach. The most important way in which
the mixture model is more general than the Biot poroelastic model is that the
mixture model admits the possibility of following many solid and fluid constituents
and it admits the possibility of having chemical reactions occurring. Thus some
constituents might vanish and others might be created. The contrast with Biot
theory is that Biot theory considers the single solid and fluid components to be
chemically inert. In several important ways the poroelastic model of Biot (1941,
1956a,b, 1962) offers better conceptual mechanisms for relating the elements of the
physical situation to their mathematical representations, a principal example being
in the distinction between the matrix, the drained and the undrained elastic
constants. It is the objective of this contribution to transfer the selected Biot
conceptual mechanisms to a mixture theory formulation of poroelasticity, thus
combining the advantages of Biot’s ideas with mixture theory.

The mixture theory-based poroelasticity presented in this chapter is augmented
from the usual presentation by the addition of two poroelastic concepts developed
by Biot and described in the two previous chapters. The first of these is the use of
the larger RVE in Fig. 8.9a rather that the Eulerian point often employed when the
mixture consist only of fluids and solutes, Fig. 8.9b. The second is the subRVE-
RVE velocity average tensor J, which Biot called the micro-macro velocity
average tensor and which is related to pore structure fabric by (9.35). These two
poroelastic concepts are developed in Cowin and Cardoso (2012). Traditional
mixture theory allows for the possibility constituents to be open systems, but the
entire mixture is a closed system. In this development the mixture is also considered
to be an open system. The velocity of a solid constituent is employed as the main
reference velocity in preference to the mean velocity (10.25) concept in the early
formulations of mixture theory. The mean velocity concept is avoided in the
mixture theory-based poroelasticity because the averaging of the solid velocity
and the fluid velocity is seldom a quantity of physical interest as it is in mixture in
which all constituents are fluids. The standard development of statements of the
conservation principles and entropy inequality employed in mixture theory are
modified to account for these kinematic changes and to allow for supplies of
mass, momentum, and energy to each constituent and to the mixture as a whole.

This presentation of the theory of mixtures is restricted to the situation in which
all the mixture constituents are incompressible, immiscible and all are at the same
temperature 0. It is assumed that terms proportional to the square of diffusion
velocities will be negligible. Bowen (1976, p. 27) considers the case where they
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are not negligible. It is also assumed that the stress tensor associated with each
constituent is symmetric and that there are no action-at-a-distance couples, as there
would be, for example, if the material contained electric dipoles and was subjected
to an electrical field. The restrictions associated with each of these assumptions may
be removed.

10.3 The Second law of Thermodynamics

The development of constitutive equations for theories of mixtures cannot proceed
without such a formal algebraic statement of the irreversibility principle, the second
law of thermodynamics and that is why that topic is introduced in this chapter. Thus
far in the development of the subjects of this book it has not been necessary to
formulate a specific equation restricting the direction of development or evolution
of material processes. In Chap. 6, where the linear continuum theories of heat
conduction, elastic solids, viscous fluids, and viscoelastic materials were devel-
oped, direct physical arguments about irreversible processes could be made, with-
out invoking the second law of thermodynamics. These arguments, which were in
fact special applications of the second law, influenced only the signs of material
coefficients and stemmed from intuitively acceptable statements like “heat only
flows from hot to cold.” In this chapter a statement of the entropy inequality (the
second law) is introduced and its use is developed as a method of restricting
constitutive functions to physically acceptable processes using the arguments
introduced by Coleman and Noll (1963). The basis of that argument is summarized
in the quote from Walter Noll in 2009 repeated at the top of this Chapter.

10.4 Kinematics of Mixtures

In formulation of mixture theory-based poroelasticity presented here, the Eulerian
point used as a model of the continuum point (Fig. 8.9b) for a mixture whose
constituents are all fluids is replaced by a larger RVE introduced by Biot (1962) as
the model of the poroelastic continuum point (Fig. 8.9a). Further, Biot’s concept of
the RVE level representation of the fluid velocity as a function of the pore fluid
velocities in the sub RVE pores is employed. Biot related the components of the
relative microvelocity field w™ in the sub RVE pores to the RVE level fluid
velocity vector v by a linear transformation or second order tensor denoted here as J,

V'lecl‘() — J V.

Biot noted that J depended on the coordinates in the pores and the pore geometry.
The formula (9.35) relates J to the fabric tensor of the RVE. Thus, the mixture
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theory concept of the mean velocity (10.25) of the solid and fluid constituents is
replaced by reference to the velocity of a selected constituent v(,) and the
diffusion velocities relative to a selected constituent, the v introduced above.

In the theory of mixtures each place x in a fixed spatial frame of reference might
be occupied by several different particles, one for each constituent X, a = 1,
2,...,N, of the mixture. This representation is a direct generalization of the single
constituent continuum considered in Chap. 2, thus the material description of
motion (2.2) is generalized to a description that recognizes all the constituents of
the mixture:

x = 1(X(a), ) forall X,y C O)(0). (10.1)

The inverse of the motion (10.1) is then, in analogy with the relationship
between (2.2) and (2.15), given by

X(w) = %) (%, 1) forall X4 C Oy (0). (10.2)

Similar generalizations to multicomponent mixtures of the formulas for the
deformation gradient and its inverse, (2.13) and (2.14), are straightforward.
The deformation gradient tensor for the ath constituent F,, is defined by

Fl = Vi @ 12X, 0] forall X, C O,(0), (10.3)

and the inverse deformation gradient tensor F (71% is, from (10.2), defined by

T
F) = |V@y,(x 0| forall x C Oyr). (10.4)

The determinant of the tensor of deformation gradient for the ath constituent,
J(a), 1s the Jacobian of the transformation from x to X(,, thus

1

a)
where it is required that
0<J(a><OO (10.6)

so that a finite continuum volume always remains a finite continuum volume.

. . DWWy, . .
The velocity v, and acceleration D‘:( L of a particle of the ath constituent, X,),

are defined by formulas that are generalizations of the definitions (2.24) for the

velocity v and acceleration % in a single component continuum,
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. Dax(a) aX(a) (X(a)v t)
= = = 10-7
Vi) = X(a) Dr o et (10.7)
Dav(a) 82}{(“) (X(a)a t)
= = = 10.8
a(a) X(a) Dt (91‘2 e d) ( )
(a) fixe

where X, is held fixed because it is the velocity or acceleration X, that is being
determined. The spatial description of motion of the particle X, (as opposed to the
material description of motion of the particle X, represented by (10.1)) is obtained
by substituting (10.2) into the expressions (10.7) for the velocity; thus v(,) = g—“’ L(a)
(X(a), ) becomes

D _
Vo) = p; Ha) (x(al) (x,1), t) =V (x,1), (10.9)

which is a generalization of (2.26). The material time derivative of the ath constitu-
ent is the time derivative following the material particle X,y; it is denoted by D*/Dr
and is defined as the partial derivative with respect to time with X, held constant. If
I'(x, 7) represents a function of x and ¢, the material time derivative of the ath
constituent is given by:

D“ 3F(X(a>(x(a>,l)»l>
Dr ot

(10.10)

X(q) fixed

This definition is simply a generalization of (10.7) to an arbitrary function I'(x, ?).
It then follows from (2.29) that

DT ar(x,1)
5 =5 Ve V(0] (10.11)

The modeler may select one component of the mixture as special because, from
the viewpoint of the modeler, that constituent serves as a key reference relative to
which the movement of all the other constituents may be referred. This constituent
of the mixture is denoted by s. The motion of the selected constituent is, from
(10.1), given by x = (X, ©) for all X; C O40). The material time derivative
following the selected constituent is given by (10.11) with the label @ replaced by
the label s. A relationship between the time derivative following the selected
constituent s and the time derivative following the generic constituent a is obtained
by subtracting the two formulas for the time derivatives:

DI DT
Dt ot

+ Vs - VIF(x,1)], (10.12)
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where
Via/s) = Vi) = V() (10.13)

represents the diffusion velocity of the ath constituent relative to the s constituent.
The tensor of velocity gradients for the ath constituent L, is formed by taking
the spatial gradient of the velocity field for the ath constituent v,) = v(,)(X, ), thus

Ly =V ®Vy. (10.14)

Please note that this definition is completely analogous to the definition of the
tensor of velocity gradients for a single constituent material, L, given by (2.31).
Using the chain rule it is easy to show that L, also has the representation

DF
@ gt (10.15)

L(a): Dr @

If p(4) denotes the density of the ath constituent, then the density of the mixture
may be defined by

N
P, = pay(%,1)- (10.16)

a=1

Physically, p,) represents the mass of the ath constituent per unit volume of the
mixture. The true material density for the ath constituent is denoted by y, and
represents the mass of the ath constituent per unit volume of the ath constituent.
The quantity p,, is sometimes called the bulk density as opposed to the frue
material density, ). The volume fraction of the ath constituent, ¢, that is to
say the volume of the ath constituent per unit volume of the mixture, is defined by

P(a)(Xa 1)
b (X, 1) = ———, (10.17)
“ V() (X, 1)
which may be viewed a factoring the bulk density into two components.
Pla) (X, 1) = by (X, )70 (X, ). (10.18)

It is assumed that the sum of all volume fractions divided by the total volume is
equal to one,

N
> b =1. (10.19)
a=1

The porosity of the ath constituent is 1-¢,). If the ath constituent is incompress-
ible, then y,, is a constant. Observe from (10.18) that the bulk density p(,, need not be
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constant even if the ath constituent is incompressible since the volume fraction ¢,
may change. The mixture is only incompressible when all the y,),a = 1,2,...,N, are
incompressible. If less than N constituents are incompressible, (10.19) is a
constraining relationship between the densities. Note that the mixture density p
given by (10.19) may be variable even when all the constituents are incompressible,
that is to say all the y,)‘s are constant, because the volume fraction (10.17) of the
constituents present at a point X is variable.

10.5 The Conservation Laws for Mixtures

In this section equations are postulated equations for the balance of mass, momen-
tum, and energy for each constituent and then the necessary and sufficient
conditions are obtained so that the usual global balance of mass, momentum, and
energy for the entire mixture is satisfied. In order to postulate equations for the
balance of mass, momentum, and energy for each constituent X,), a = 1, 2,.. .,N,
each constituent of the mixture is assigned a density p(,, an action-at-a-distance
force density d ), a partial stress T ), a partial internal energy density ¢, a partial
heat flux, and a partial heat supply density, r(4).
The local statement of mass conservation for a single constituent continuum,

% +V-(pv) =0, (3.6 repeated)

may be written for each constituent a = 1, 2,...,N as

9P a)
ot

+V (b v) = 5@ (10.20)

where s, represents the mass supply to a constituent from other constituents and
from external sources. The local statement of mass conservation for a single
constituent continuum rewritten in terms of the selected velocity becomes

dp _
a(za> + V- (Vo) + Vi) = S (10.21)

The sum of all mass supplies to a constituent from other constituents is denoted
by s, thus

N
> 5@ = 5. (10.22)

a=1

The summation of (10.21) over all constituents and the use of (10.22) yields



10.5 The Conservation Laws for Mixtures 271

dp N .
B +V. (pV@ + Zp(a)v(a/s)> = s(1). (10.23)

a=1

When the selected point (s) for velocity reference is the point where the velocity
is equal to the mean velocity, the statement of the conservation of mass above
reduces to the traditional formula below involving the mean velocity,

0 _
5’; LV (pv) = 5(0). (10.24)
The constituent form of mass balance (10.20) summed over all the constituents

produces the continuum statement (3.6) if the definitions (10.16) for the density of
the continuum mixture and the mean mixture velocity v,

1
V=— PV (10.25)

are employed. Recall from the introductory paragraph of this section that this
presentation of mixture-based poroelasticity will not employ this mean velocity
concept. An exception to this non-use is note the fact that some results simplify
when the velocity of a selected constituent vy is set equal to the mean velocity
(10.25). The conservation of momentum for a single constituent continuum,

pv=V-T+ pd, (3.29 repeated)

may be written as

P =", =V Twtrwde +Pw, (10.26)

where T, is the partial stress, d g is the action-at-a-distance force density and |3<a> is

the momentum supply associated with constituent a. The momentum supply f)(a) is
the only term that is not directly associated with a term in (3.29); it represents the
transfer of momentum from the other constituents to constituent a. In this presenta-
tion it is assumed that all the partial stress tensors T, are symmetric. The
assumption is consistent with the mixture theory applications that are to be consid-
ered here, but it is an assumption that may be avoided if necessary (Bowen 1976,
1980). The conservation of energy for constituent a is a similar generalization of the
single constituent continuum result (3.52),

pe=T:D—-V - -q+pr, (3.52 repeated)
thus
D) _
P, = T D =V e + @@ + ¢, (10.27)
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where ¢(,) is the partial internal energy density, g, is the partial heat flux vector, r(,)
is the heat supply density, &, is the energy supply and D,y = (1/2) (L4 + (L(a))T)
by the extension of (2.32) to each constituent. The energy supply &(,) is the only
term that is not directly associated with a term in the single constituent continuum
form of energy conservation (3.52); it represents the transfer of energy from the

other constituents to constituent a.
If the sum of all mass supplies to a constituent from other constituents, denoted

by s and defined by (10.22) is zero, then the summation of the forms of the balance
of mass (10.20), the balance of momentum (10.26) and the balance of energy
(10.27) for each constituent over all the constituents is required to produce again
the single constituent continuum forms of the balance of mass (3.6), the balance of
momentum (3.29) and the balance of energy (3.52), respectively. In the case when
the summation is over the density-weighted time derivatives of specific quantities
following the generic constituent as, for example, on the left hand side of (10.27),
the result is difficult to interpret. Thus a formula relating the time derivative of the
selected component to the sum of the density-weighted time derivatives has been
developed. Let the constituent-specific quantity per unit mass be denoted by @,
and its density-weighted sum by pw3, thus

1 N

w = Z Pl (a)- (10.28)
a=1

The desired formula relating the sum of the density-weighted, constituent-
specific, time derivatives to the time derivative following the selected component

N Daﬁ)'( S’ID' N—s N—s
d P = DV (@m0 Yem) BV D) Vi
a=1 b=1 b=1

N
+ {mi’(t) — Z m(a)§<a)(f)}a
(10.29)

where v,/ is the diffusion velocity relative to the selected component defined by
(10.13).

The derivation of (10.29) is given in the Appendix to this Chapter. The deriva-
tion involves the following relationship that follows from (10.25) and (10.16) with
the use of (10.13) to note that v,/ must be zero:

=z

—S

N
p(V—v()) = Z P Viass) = D Pp) Vb/s)s (10.30)

a=1 1

S
Il
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The derivation of (10.29) involves the expressions for the time derivatives
(10.11) and (10.12), the constituent-specific mass balance (10.20) and the definition
of the density-weighted sum pcs in terms of the constituent-specific quantity per
unit mass denoted by w3, (10.28). When the result (10.30) is incorporated in
(10.29) it takes the form

N Da’G)' DS‘G)' N—s
> rw Dt(a) =P, T Y V(@ pp)Vess) — V- p(V = Vi)
a= b=1
N
+ {ms(z) — Zur(a)s’(a)(z)} (10.31)
a=1
Note that (10.30) reduces to
N Daﬁ)'(a) Dsm' N—s
;P(a) o Pt bz::l V(@) Py Vibss))
N
+ {ms(t) -y m<a>§(a)(t)} (10.32)
a=1
when v,y = v and to
N Dam'(a) Dw
D P0p =P (10.33)

when @ ) is assumed not to have a dependence upon the index a. Application of the
formula (10.31) relating the sum of the density-weighted, constituent-specific, time
derivatives to the time derivative following the selected component to the special
case of the velocity v(,) yields the following representation:

(10.34)

which reduces to

a=1

o~ Do _ DV | _
> P o "ot vs(t) = > VS (10.35)
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where terms of order of the diffusion velocity v(,/,) squared have been neglected or
when v = v.

With the results (10.31) and (10.34) in hand it is now possible to return to the
development of the sums of the constituent-specific balance equations. Recall that it
is required that the summation of the forms of the balance of mass (10.20), the
balance of momentum (10.26) and the balance of energy (10.27) for each constitu-
ent over all the constituents is required to produce again the single constituent
continuum forms of the balance of mass (3.6), the balance of momentum (3.29) and
the balance of energy (3.52), respectively, to within the supply terms for each
constituent and the supply term for the mixture. The summation of the component-
specific form of the conservation of linear momentum (10.26), employing the
representation (10.35) for the sum of the density-weighted, component-specific
time derivatives of the component-specific velocities, one obtains a result that is
similar to the single component form (3.29),

D’v
Dt

p—=V-T+ pd + p(t), (10.36)

if the squares of the diffusion velocities are neglected. The total stress T is defined by

T= ZT@, (10.37)

> (P dw); (10.38)

and the sum of the constituent momentum supplies f)(a) is denoted by p,

N
> AP + Vi S} — vs() = p. (10.39)

a=1

If the velocity of the selected component is equal to the mean velocity of the
mixture, V(5 = v, the results (10.35) through (10.39) will coincide with results that
appear in Bowen (1967, 1976, 1980, 1982).

The summation of the constituent-specific form of the balance of energy (10.27)
over all the constituents, and subsequently employing the formula (10.29) with w
replaced by ¢(,), yields

D’¢

N
= e(t T
Y P”JFS()JFZ (a)

N
Dy = V- Z {‘l(a) + (&) — 8)p(a>v(g/x)}, (10.40)
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where ¢ is the specific internal energy density for the mixture and r is the heat
supply density for the mixture given by

E== Pty T == D Pl (10.41)

and where the sum of the energy supplies ¢, is denoted by &(z),

60 =Y {ew + s} — as(0). (10.42)

a=1

The key results of this section are the statements of the conservation of mass,
momentum, and energy for each constituent and the summation of these component
forms to yield statements of these conservation principles for the mixture. The
kinematic identities (10.29) and (10.34) form the other important result; its deriva-
tion is a suggested problem below.

Problems

10.5.1 Show that the constituent form of mass balance (10.18) summed over all the
constituents will produce the continuum statement (3.6).

10.5.2 Derive the formula relating the sum of the density-weighted, constituent-
specific, time derivatives to the time derivative following the selected
component, (10.29). In the course of this derivation you will likely employ
(10.11), (10.12), and (10.28).

10.5.3 Derive the formula (10.34) from (10.29) by setting @, equal to v(g).

10.6 A Statement of Irreversibility in Mixture Processes

Many physical quantities can be considered as influencing the specific internal
energy density € of a material object. (Recall that the specific internal energy density
€ was introduced in the section on the conservation of energy, Sect. 3.5). These
include, for example, the specific volume, the components of a tensor measuring
deformation or strain, the densities, or the concentrations of the constituents of the
mixture, and so on. In the mixtures of interest here the set of parameters
characterizing the thermodynamic substate of a particle X of the mixture, which
actually represents an RVE, will be the infinitesimal strain tensor E given by (2.52)
and each of the densities of the constituents, p(,). The notation {E, p,} is introduced
for these parameters. The set of parameters {E, p,} is said to characterize the
thermodynamic substate of a particle X in an object (i.e. a thermodynamic system).

Knowledge of the thermodynamic substate {E, p.,} does not, however,
completely characterize the thermodynamic properties of a thermodynamic system
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because it does not describe the relationship between two substates. Given two
thermodynamic substates {E, p(,} and {E*, p,,*}, the knowledge is not sufficient
to specify whether a transition {E, p} — {E*, p*} is possible or not. This
ordering of thermodynamic substates is accomplished by the introduction of
entropy; the steps of this introduction we develop in the following paragraph.

Atransition {E, p,,} — {E*, p,,*} between thermodynamic substates is simply
an ordered pair {E, p,,}, {E*, p(,y*} of thermodynamic substates. If the transitions
{E, py} — {E¥, py*} and {E*, p»*} — {E, p(,} are both possible, the transi-
tion is said to be reversible. If the transition {E, p,,} — {E*, p(,,*} is possible, but
{E*, py*} — {E, pwy} is not, then the transition is said to be irreversible. The
directionality of transitions may be expressed in the following axiom of ordering:
Given two thermodynamic substates {E, p,} and {E*, p)*}, it is possible to
decide whether the transition {E, p,,} — {E*, p,,*} is possible or not.

The existence of an ordering of substates is analogous to the existence of the
“greater than” relation “> for real numbers. For example, given two distinct real
numbers a and a* we have either a > a*, a* > a or a = a* while no such ordering
holds for, say, the complex numbers. This permits the construction of a homeomor-
phism between the ordering of thermodynamic states and the ordering of real
numbers. This is done by introducing a real-valued function n which assigns a
real number to each thermodynamic substate n = n(E, p(,), in such a way that
nE*, py*) > n(E, p(,y) if the transition {E, p,,} — {E*, p,y*} is irreversible.
The substates are thereby ordered and labeled by means of the real-valued function
of the substate, n. In any particular physical situation such a function is empirically
determinable, and if 7 is one such function, then so is f{n), where f is a monotoni-
cally increasing function of its argument. Assuming a particular function 7 to have
been chosen, it is called the empirical entropy of the thermodynamic system.

The thermodynamic state of a particle X in an object is completely specified by
the thermodynamic substate {E, p,, }and the entropy 7 of the (RVE associated with
the) particle. The basic assumption of thermodynamics is that the thermodynamic
state completely determines the (specific) internal energy ¢ independent of time,
place, motion and stress, thus ¢ = &(n), E, p(,), X). Choice of the exact functional
form of ¢ defines different thermodynamic substances. If X does not appear in the
form of ¢ chosen, the substance is said to be thermodynamically simple.

In order to develop a rationale for a differential equation in entropy production 7,
the time rate of change of internal energy ¢ in the conservation of energy (3.52) is
expressed in two different ways:

_Dss
Y

=Pp+ Q=P+ 0, (10.43)

where Pr and Qf denote the contribution of the external mechanical and nonme-
chanical power and P; and Q; denote the division into internal mechanical and
nonmechanical power, respectively. The external quantities are defined, using
(3.50) and (3.52), by
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Pr=T:D, Qp =pr—V-h, (10.44)

where h is the heat flux vector. The internal mechanical power is represented by the
power generated by the time rate of change of the internal parameters {E, p,}
contracted with the corresponding internal force systems to form scalar quantities
with the dimension of energy. The internal nonmechanical power is represented by
the product of the time rate of change of the specific entropy with the density and
the temperature 6, thus

D
= p0 . 10.45
O,=p Dt ( )
From (10.43) and (10.45) it follows that
DS
00 D:]:PE—PH—QE; (10.46)

thus the production of specific entropy is the difference between the external and
internal mechanical work plus the external nonmechanical power.

Let N denote the entropy of an entire object and let 1 denote the entropy per unit
mass or specific entropy at the particle X of the object, thus

N = J pndv. (10.47)

o

The time rate of change of the N and 7 are related by

D’N D’n
—= d 10.48
Dt Jp Dt Y ( )
o
which follows from (3.8). The total entropy production % is written as the sum of

D‘VN(U
Dt

. DN . .
the external production —5 and the internal production thus

DN _D'Ng DN
Dt Dt Dt

(10.49)

. DNy . . .
The external entropy production D;” is associated with the total flux of
nonmechanical power, divided by the absolute temperature 0, thus

D'N) h-n or

= — d —d 10.

Dr i# 7 a+J 7 4V, (10.50)
90 0
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D*Ng)
oD

internal entropy production quantity Dt ,

and the internal entropy production is simply related to a similar specific

D'N; D*
® J p=2 (10.51)

Dr

where ¢ is the specific internal entropy. From experiment and experience it is
known that, at constant temperature, the excess of external power over internal
power (Pg - Py) must be greater than zero; that is to say, at constant temperature,
one cannot recover from an object more power than was supplied to the object. It is
also a fact of experience and experiment that heat flows from the hotter to the colder
parts of an object and not in the reverse way. In equation form we note this last
assertion by

q-V0 >0 for Pp — P =0, (10.52)

while the former assertion is summarized in the statement (Pg - Py) > 0.

Guided by these results it is postulated that the internal entropy production is
always greater than or equal to zero Dt’ > 0. This postulate is a form of the second
law of thermodynamics; the postulate of irreversibility. The second law applied to

DN sN DN N

an object occupying a volume O may be stated as —; U= DD],V L > 0. In terms
sy D'N D‘

of D N . B 2 , the following terminology is customary an equilibrium

state is defined by B ﬁ = 0, a reversible process is characterized by T =0, an

D‘VN(i) D‘VN(U

irreversible process is characterized by >0; BV = =
adiabatic process and only in the case of an adiabatically insulated system does
the second law of thermodynamics in the form DI;—IIV > 0 apply. It should be noted

characterizes an

that in general the various entropies might satisfy the three inequalities =5 DN N >0,

(') >0, and 2 (” <0.
In terms of the specific or continuum variables, the second law of thermody-

namics D, Mo DY — o N 2 > 0 may be written as
D'n or
—d d —dv>0 10.53
J” Dr & 0 J = (16-53)
) 90 )

using (10.48) and (10.50). In order to convert the integral equation (10.53) to a field
or point equation the divergence theorem (A183) is employed as well as the
argument that was used to convert the integral equation (3.4) to the field equation
(3.5). Recall that this was an argument employed four times in Chap. 3. Applying
these arguments to (10.53) it follows that
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D h or
(=] -=>0. 10.54
5 TV (9> ( )

Integral equations such as (3.4) and (10.53) are global statements because they
apply to an entire object. However the results (3.5) and (10.54) are local, point wise
conditions valid at the typical point (place) in the object. Thus the transitions
(3.4) — (3.5) and (10.53) — (10.54) are from the global to the local or from the
object to the point (or particle) in the object.

On the molecular level, each macroscopic substate {E, p(,} corresponds to a
large set of molecular states. In other words, the relationship between the molecular
states and the macroscopic states is injective, they are in one-to-one correspon-
dence. If we attribute an equal probability to each molecular state, the probability
that a thermodynamic state {E, p,} is different from another thermodynamic state
{E*, p»*} can be calculated from the number of molecular states to which it
corresponds. In statistical physics, the concept of entropy is defined as the logarithm
of the number of molecular states that correspond to that particular molecular state
(multiplied by Boltzman constant). The entropy thereby provides a measure of the
relative probability of different macrostates. The second law, stating that entropy
moves towards increasing entropy, simply states that the system has a natural
tendency to evolve from less probable states towards more probable states. In this
sense one can interpret the second law as being almost a tautology.

10.7 The Entropy Inequality for a Mixture

Returning to the continuum model note that, in terms of the internal energy &(, E,
P> X), the temperature, stress and electrochemical (or chemical) potential may be
defined as the derivatives of &(n, E, p«), X) with respect to entropy, strain, and
volume fraction, respectively:

O Oe O
0 — <_) T (_> g = ( ) . (10.55)
M/ g, OE) 151 9P (@) En

The time derivative of the internal energy ¢ may then be expressed as follows:

D's GDsn
Dr Dt

D'p )

o0 (10.56)

N
+T:D+Z,U(a)
a=1

The Helmholtz free energy is defined by

lP(eaE7p(a)7X) :S(WaEap(a)vx) _7707 (1057)
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and the derivatives of the free energy ¥ with respect to temperature, strain, and
volume fraction yield the entropy, stress, and electrochemical (or chemical) poten-
tial, respectively:

oV ovY 554
) @) (),
20 Ep) OE 0:p() 9P E0

The time derivative of the free energy ¥ may then be expressed as follows:

D'¥Y D% X Dpg
Pa) (10.59)

= T:D
or "D " +71ﬂ(“) Dt

It is assumed that each constituent of the mixture has the regular properties of a
thermodynamic substance, thus the Helmholtz free energy of each constituent ¥,
is related to the temperature ¢ and constituent-specific internal energy &, and
entropy 7)., by the component-specific form of (10.57)

l[/(a) = 3((1) - 077(51)’ (1060)
where
1 &
W:EZleP@. (10.61)
a=1

Either the condition D;Z(” =DN_ ngf@ > 0 or the integral (10.49) or the field
equation (10.50) are called the Clausius Duhem inequality for internal entropy
production. They are equivalent statements of the second law of thermodynamics.
In order to generalize the inequality (10.50) to a mixture, three substitutions into
(10.50) are made. First the 7 in (10.50) is replaced by the density-weighted average

of the constituent-specific internal entropy 7)), thus

1
== P (10.62)

and, second, a similar replacement, the second of (10.37) is made for pr. Third, the
formula (10.26) for the density-weighted sum of all the time derivatives of (g
following all the constituents is related to the time derivative following the selected
constituent is applied to the density-weighted average of the constituent-specific
internal entropy 7)),

s

N Da’l’] Ds N—:s
(a) n
;P(a) or "o ; {V [ pwuwl —nV - [P(b)”(b)]}~ (10.63)
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The entropy inequality for a mixture may now be formulated using the entropy
inequality for the single component continuum (10.50) as the guide. The term p 5 D 5
in (10.50) is eliminated using (10.63). The heat supply density r in (10.50) 1s
replaced by that for the mixture given by the second of (10.37), thus entropy

inequality for a mixture takes the form

N

(10.64)

It is important to note that, while there were forms of each of the conservation
principles for each of the constituents (10.18), (10.20), (10.21) that were summed
over to obtain statements of those principles that applied to the mixture as whole,
(3.6), (3.29), (3.52), respectively, it was not assumed that there were constituent-
specific forms of the entropy inequality (10.64). The literature is somewhat divided
on the use of constituent-specific forms of the entropy inequality (Bowen, 1976,
Sect. 1.7). The conservative position is to assume only the mixture level inequality.
Thus the entropy inequality employed here only makes a statement for the entire
mixture, not for any particular constituent.

The remainder of this section presents the development of an alternate form of
the entropy inequality (10.64). First, the product pr(, is eliminated between
(10.21) and (10.64) and then, second, the result is multiplied by 0, third, it is
assumed that the constituent-specific flux vectors, h,, and q,), are related by

M) = 4@y + P(a)01(a) () (10.65)

thus

+ Z QUV . [p(h)u(;,)] + Z T(a) : D(a) -V Q(@ + :‘j(a) > 0, (1066)

9= 4w (10.67)

(The expression (10.67) for the heat flux is an approximation that neglects several
terms associated with diffusion velocities. This point is discussed on page 27 of
Bowen (1976)) it follows that
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D0 1 N
—pn Dr ~q- V0 + Zeﬂv : [P(b)”(b)
a=1

0

DO 1
Dt 0

N
+ —pn q-Vo0+ Z 0V - [p )
a=1
- . DV,
+y {T@ Do) = Vi) Pla) — Pla) Tz} > 0. (10.68)
a=1

The expression relating the terms in (10.68) containing the time derivatives of
the specific free energy density for the mixture ¥, is replaced by

N Daqja Dsl]/ N—s
Zp(a) D W=p or Z {V [P wppum] — ¥V - [P(b)”(b)]} (10.69)
a=1 t 4 b=1

a result that was obtained by substituting ¥, for @) in (10.23); thus (10.68)
becomes

D'y D0 1 N
g Vo~ > eV - [t
a=1

P or TPy
N
+) |:T(a) :D(a) = V(@) " Pla) = V- [lp(b)p(h)u(h)ﬂ =0, (10.70)
a=1

where use of been made of (10.57) in setting ¥ + n0 = .

The entropy inequality (10.70) will now be restricted to the case of accelerationless
processes. Neglecting both the acceleration and the action-at-a-distance forces, the
balance of momentum for the continuum (3.29) reduces toV - T = Oand the balance of

momentum for each constituent of the continuum (10.20) reduces to ]3<a) ==V -T(.

Thus we now have the following representations for the divergence of the total
stress and the divergence of the constituent-specific partial stress

V-T=0,V T =—pu. (10.71)

An algebraic development will now be used to obtain an alternate representation
for the first two terms of the sum in (10.70). This manipulation begins with the
identity that follows easily from (10.71) and the separation of the selected constitu-
ent stress-related components from the other stress-related components;

N N
T : D =V Pl = 2 [T Py + Vi) - VT
a=1 a=1
N—s
=T : Dy v VI + Q2 [Tw): Dy +vey VIpl  (10.72)

>
I

1
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Observing from (10.33) that the selected components of the stress T ;) may be
expressed in terms of the remaining components and the total stress.

T=T-> Ty, (10.73)

then the first two terms of the sum in (10.70) have the alternate representation

N N—s
@ D) = V@ Pl =T : Doy + 3 [T+ [V @ up)] + gy - VT
1

>
Il

a=1

(10.74)

where (10.72) has been employed. Substitution of (10.74) into (10.70) yields the
inequality

D'y D0 1 N
Py P Tl Vo + ;SV lpwum) + T : D)
N—s
+ Z [T(h> Ve M(h)} + U - VT(;,) -V ['P(h)p(b)u(b)” > 0. (10.75)
b=1

The inequality (10.75) for accelerationless processes in the absence of action-at-
a-distance forces will be applied, after further specializing it for a porous medium,
in the section after next.

10.8 Constitutive Equations for a Multi-Constituent
Porous Medium

In this section the conservation principles of mass, linear momentum and energy,
and the entropy inequality are first specialized to the development of a continuum
mixture model of a fluid-saturated porous medium containing a porous solid and
N-1 other species including a pore fluid and neutral solutes. Then the constitutive
equations for the multicomponent porous medium are developed following these
same steps outlined in Chap. 4 and employed in Chap. 6 in the development of
the four linear continuum theories considered, but here placing a greater emphasis
on the use of the entropy inequality to restrict the constitutive assumptions. At the
end of the section the reduced entropy inequality is employed to restrict the values
of the material coefficients in Fourier’ and Darcy’ laws.

The porous solid is taken to be the selected constituent in the mixture, hence
the “s” subscript or superscript notation now means solid as well as “selected”.
The porous solid constituent is special because it contains all the other constituents
and limits their behavior. From the viewpoint of the modeler it serves as a structure
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relative to which the movement of all the other constituents may be referenced.
It is therefore singled out for special consideration in models of the porous medium.

Since the true density of each constituent, y,), is assumed to be constant, the
local statement of mass conservation for a single constituent continuum, (10.20), is
written for each constituent ¢ = 1, 2,...,N in terms of the local volume fractions,

Dy aS

99,
a; L4V - (prayviw) = 0. (10.76)

Since the solid constituent is treated as special, the restriction (10.19) is rewritten as

N—s

by (5, 0) + Y Py (x,0) = 1, (10.77)

b=1

where the summation index b runs over all the constituents except s. Summing all
the constituent mass conservation equations (10.76), and employing (10.19), it
follows that

N
v (Z </><a>v(a>> =0. (10.78)
a=1

Multiplying (10.19) by v, and subsequently taking the divergence of the result, it
follows that

N
Vv, — V- (Z d)(a)v(S)) = 0; (10.79)
a=1
the sum of (10.78) and (10.79) yields

N
Vv +V- (Z d)(a)u(a)) =0, (10.80a)
a=1

where the definition of the diffusion velocity, (10.13) orv(, /sy = v(4) — V(5), has been
employed. However, since v(;/5) = 0, it follows that (10.80a) is equivalent to

N—s
Vv +V- (Z qﬁ(b)u(b)) =0. (10.80b)
b=1

It is required that this entropy inequality (10.75) hold for all states of the mixture
complying with the balance laws, the incompressibility condition and that it hold
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for all states of the mixture. The implementation in the inequality (10.75) of the
constraint of incompressibility is accomplished by introducing the Lagrange
multipliers p (for this use of Lagrange multipliers, see Example 6.4.1 concerning
pressure as a Lagrange multiplier in incompressible fluids; for another method of
imposing the incompressibility constraint in poroelasticity, see Chap. 9). The
Lagrange multiplier p for incompressibility is introduced by multiplying the fol-
lowing form of (10.76),

N—s
Vv + (Z(}’)(,,)Vu(b)—l—u(b)V(/)(,,)) =0, (10.81)

b=1

by p and adding the result to (10.75), thus (10.75) becomes

DY D6 1

N
q-V0+ ZSV . [p(,,)u(;,)] + 7 Dy
a=1

“Por P o
N—s
+ > ATy + dppl + o3 Pl : [V @ up)}
b=1
N—s
+ ) A{upy [V -Ty +pVdpy — Vou Pnl} =0, (10.82)
b=1

where the effective stress has been introduced:
T =T +pl. (10.83)

The development of four, relatively simple, constitutive relations was described
in Chap. 6. The process of developing constitutive relations was described in
Chap. 3. The steps in this process consisted of the constitutive idea and the
restrictions associated with the notions of localization, invariance under rigid object
motions, determinism, coordinate invariance, and material symmetry. In that devel-
opment, restrictions on the coefficients representing material properties were devel-
oped without recourse to the second law of thermodynamics; ad hoc arguments
equivalent to those obtainable from the second law were employed. The present
development proceeds by making constitutive assumptions that are consistent with
the restrictions of localization, invariance under rigid object motions, determinism
and coordinate invariance by assuming a general form for their functional depen-
dence on localized tensorial variables that are invariant under rigid object motions,
and that have no dependence upon time except for the present time. Then the entropy
inequality is employed to restrict the constitutive assumptions in the manner of
Coleman and Noll (1963) based on the philosophy described in the opening quote for
this Chapter due to Noll (2009). This is a straightforward process that often appears
complex due to the notation for the many factors that must be accounted for in a
mixture. To ease the reader into this method a simpler example is first presented.
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Example 10.8.1

Restrict the functional dependence of the free energy ¥, the entropy 7 and the heat
flux vector q in a rigid isotropic heat conductor using the entropy inequality and
arguments concerning the functional dependence of these three functions.

Solution: Democratic but elementary constitutive assumptions are made for the free
energy ¥, the entropy 7, and the heat flux q. The independent variables for these
three functions are assumed to be same for all three quantities; they are the tempera-
ture 6 and the temperature gradient V6, thus ¥ = ¥(0,V0),n =n(0,V0), q = |(
0, V). The time rate of change of the free energy ¥ = ¥(6, V6), determined using
the chain rule,

D¥ _ 0¥ D0 ¥ DV
Dt 99 Dt 9VO Dt ’

and the constitutive assumptions ¥ = ¥(0,V0), n =n(0,V0), ¢ = q(0,V0) are
then substituted into the entropy inequality (10.82) and one obtains the inequality

C(p OP\DO 1o 0¥ DV
P\ 50 ) Dr 9 Pove Dr —

The argument originated by Coleman and Noll (1963) is that this inequality must
be true for all possible physical processes and the functional dependence upon the
independent variables, in this case {0, V0}, must be restricted so that is the case.
In view of this set of independent variables, the last summand of the inequality
above is linear in the time derivative of the temperature gradient D*V0/Dt. This
time derivative is not contained in the set of independent variables {0, V0} and it
does not appear elsewhere in the inequality and thus it may be varied when the set
of independent variables at a point is held fixed. In order that it not be varied in way
that inequality be violated it is necessary that the coefficient &£ of 230
vanish. However, if % =0, it follows that the function dependence of ¥ = ¥ (0
,V0) is reduced to ¥ = ¥(0). When the reduced dependence, ¥ = ¥(0), the
inequality above reduces to

oY\ D0 1
—,0(7’]4'%) —EqVHEO

must

Dr

The argument made above is now repeated to show that the term involving the time
derivative of the temperature, D°0/Dt, must vanish, thus one concludes that
n=—(0¥/00). When the restrictions 0¥ /0V0 =0 and n= —(0¥/00) are
substituted back into the form of the entropy inequality above, it reduces to — (1/6)
q - VO > 0. In the case when the isotropic form of the Fourier law of heat conduction
gives the heat flux, ¢ = —kV0, the inequality reduces to(k/0)V6 - V6O > 0 and it
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requires only that k be positive, since the temperature is positive as a consequence of
its definition.

Finally, note that the argument involving D°V0/Dt was performed first, then the
argument involving D*6 / Dt. This ordering of the arguments is required because D*
0/Dt depends on V0, 2¢ = do(x )+ v(s) - VI[0(x, )], a result that is a special case of
(10.11).

The method of this example will next be applied to the mixture of interest.
Constitutive assumptions will now be made for the free energy ¥, the entropy 7, the
effective stress T°, each constituent-specific free energy ¥, each constituent-
specific partial stress T ) and the heat flux q. The independent variables included in
the constitutive assumptions are the localized small strain tensor E, the temperature
0, the temperature gradient V0, the constituent densities p,, and the diffusion
velocities v(,/5). These functional dependencies are expressed as equations in the
following forms:

Y =Y(E 0,V0,b4),vps), 1= TI(E 0,0, 1), vvss))s
Teff Teff (E 9 V@ ¢ V(h/s) 'P(c) = (E 9 V@ d) b/s)
T((?) = c)(E 0 VO (,25 h/s) q= (I(E 0 VO ¢ b/s) (10.84)

These constitutive assumptions are now substituted into the entropy inequality
(10.82); in the case of the free energy, ¥, the chain rule is applied, thus

DY 8‘PDO+8T DE_ 0¥ D%zS(a)Jr o¥ D'y 0¥ D'VO
‘Dt 00 Dt ' OE Dt by Dt s Dt ovo Dt ’
(10.85)

thus

oW\ D0 . oY oY DVO
_ eff _ B el
P ( ae) 9 q-Vo+ (T paE) Po =159

2

—S

N
oY DV},
t=) Py e /S)>+ {[Tw) + iyt = Py V1] : [V @ v}
1 S 1
N

>
Il

N—
+ D) ANV-To)+ ) Vou) = Vo Pl vemt 20,
b=1

(10.86)

where 1, are the electrochemical potentials of the constituents other than the
porous solid,

oY
ey = P ™ + e+ P, (10.87)
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p is a Lagrange multiplier representing the fluid pressure. We now employ the
Coleman and Noll (1963) argument described in the example above, namely that
the assumed constitutive dependencies (10.84) must be restricted so that the
inequality (10.86) is true for any value of the final set of independent variables.
In view of this set of independent variables, the last summand of (10.86) is linear in

the time derivative of the diffusion velocity ;)(f/ This time derivative is not

contained in the set of independent variables (E, 0, V0, b ) V) P =Y(E 0,V
0 ¢ V(5/s)) and it does not appear elsewhere in the mequa.hty and thus it may be
Varred when the set of independent variables at a point is held fixed. It follows
that the coefficient 5 ‘W D "/ Y must vanish, thus the functional dependence of ¥

= Y(E,0,V0,9) ;,/S)) is reduced to¥ = 'I’(E 0,V0,h ) Repeatrng the same
DAV

argument, the coefﬁ01ent (?vlpe of
Y =Y(E0,V0,0,) is reduced to ¥ = Y’(E 0, ). In view of the reduced
dependence of ¥ = ¥(E, 0, (;S(h)), a repetition of the previous argument for this

reduced set of independent variables is applied to the coefficient of the first
summand of (10.86) involving the time derivative of the temperature % , and so

the coefficient of the third summand is linear in the solid rate of deformation tensor
D(X) , thus

n:,a_l‘yad]“eff 3_11/

0 Pop (10.88)

This result shows that the entropy and effective stress of a porous medium
can be derived from a regular strain energy function ¥ = Y(E,0,¢y) ,
which physically has the same meaning as in single phase or multiphasic media,
but which can depend on both strain and solute concentrations in the medium.
Concerning the summands within the summation signs in (10.86) there is one
summand linear in the gradient of the diffusion velocity V & v, s), and this term
appears nowhere else in the reduced inequality. In order to satisfy this restriction the
following equation for the partial stress is implied:

Ty = ) (Vi) P (o) — ) 1, (10.89)

thus the partial stress of the fluid and the solutes are all seen to be scalars.
When the reduced functional dependence of the free energy to ¥ = ¥ (E, 6, qﬁ(,,))

and the three restrictions (10.88) and (10.89) obtained on the inequality (10.87) are
substituted back into (10.87), it reduces to the following:

_,q Vo - Zqﬁ Vi/s) }>0 (10.90)
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Note that the functional dependence of the terms in (10.90) is not uniform. In
particular, note that 1, in (10.90) depends only upon (E, 0, o ) the independent
variables of the free energy, while ¢ depends upon (E,0, VO Py Vivss) by
assumption (10.84). In the case when the anisotropic form of the Fourler law
of heat conduction gives the heat flux, q = —K-V0, the inequality reduces to
(1/6)VO-K-V6O > 0 and it requires only that K be positive definite, since the
temperature is positive as a consequence of its definition. The entropy inequality
then reduces to the following:

=

—S

Vs - (D) Vigs))] = 0. (10.91)
1

S
Il

Developments beyond this point could include the specification of constitutive
equations for the gradients of the chemical potentials, ¢,V ). The inequality
(10.91) may then be used to restrict the coefficients in these constitutive
relationships.

As an example of the application of this result consider Darcy’s law (5.36D)
which, in the case of an incompressible fluid, py = p,, is written

q=¢v=—H(p) - Vp(x, 1),H(p) = H (p). (10.92)

Considering the chemical potential (10.87) to be a function of the single constit-
uent pressure only, then (10.91) may be written as

—¢v-Vp>0. (10.93)
Substituting ¢v from (10.92) into (10.93) it follows that
Vp-H-Vp >0, (10.94)

which requires that H(p) be positive definite. This result is equivalent to (5.29D).
Problem

10.8.1 Derive the statement of mass balance for the entire mixture, (10.76), by
summing (10.76) over all constituents and employing (10.77).

10.9 Relevant Literature

Some of the literature relevant to mixture theory is discussed in Sect. 9.14. Bowen
(1967) summarized the formative years of mixture theory. A readable history of the
subject and its applications in the period 1957-1975 is given by Atkin and Craine
(1976a,b). de Boer (1996, 2000) has presented more up-to-date histories. Of key
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importance in the development of the mixture theories is the application by Bowen
(1967, 1976, 1980, 1982) of a thermodynamically based analytical approach devel-
oped by Coleman and Noll (1963) to restrict the form of constitutive equations.
At that time (1966—1967) the thermodynamically based Coleman and Noll approach
was very new. In his history of the development of theories for porous media, de
Boer (2000) credits Goodman and Cowin (1972) with the first use of the decompo-
sition of bulk density into a volume fraction and a true or material density (10.16).
The introductory material in this chapter is taken from Bowen (1976, 1980, 1982).

Appendix

The purpose of this appendix is to record the derivation of (30) and some related
auxiliary results. Recall that w3, denotes a generic component-specific property

N a
such as v, or & and we seek a simple formula for ) P(a) W to be used in

a=1

determining the continuum level form of the conservation laws by summing over
the single constituent continuum forms of the conservation laws. A formula relating
the density-weighted sum of the time derivatives of the selected components to the
sum of the density-weighted time derivatives is desired. Recall that the sum of
generic constituent-specific quantity per unit mass w, is related to its density-
weighted sum w by (10.29). The time derivative of (10.29) with respect to the
selected component is given by

D'w Dp & D'w, & D'p
= —_— 10.95
"or TPy ;p@ Dr +;m<”> Dr (1095)
N s
which may be solved for > Pa) %, thus
a=1
N . ¢ N N
D‘Y’m’(a) D'w D’p D P(a)
=p— - . 10.96
;p @ D "D "D ;m(‘” Dr (1056)

The relationship between the time derivatives with respect to the selected

[Tt}

component and with respect to the “a” component is obtained using (10.12)

N Dsm(a> N Dam(a) N N
> P Dr > P D T 2 P@)Vs)  Va) = 2 P VBa);

a=1 a=1

(10.97)



Appendix 291

this is used to rewrite (10.96) as

D'm, Dw Dp o~ Dy ¢
> rw =P, t TS T DT, 2P VT

a=1 a=1 a=1

N
+ Zp(a)v(a) . V’lII(a)
a=1

(10.98)

The following relationships, the first obtained from the conservation of mass for
the mixture (10.25),

D°p Op _
Dr = B + V() - Vp = S(l‘) -V (pV) + V() - Vp (10.99)

and the second obtained from the conservation of mass for the constituent (10.23)

Doy Op

Dt ot

V) VP = 5@(0) = V- (p@v@) + v - Vo (10.100)

will now be used in (10.98). However, before using (10.100) it is multiplied by and
summed over all values of “a,” thus

N Diw D't .
Zﬂ(a) D—t@ =p— -+ w(s(t) =V (pv) + v - Vp)

a=1

N
+> PV - Vo) (10.101)

The second line of the result above is condensed

N Diw gy D'w _ > <
ZP(Q)T =p— -+ o(s(t) = V- (pv) +vi5) - Vp) — Zw(a>5(a>(f)

Dr 2
N N
+ Zl V- (@ PV a) Z; v - Voap

(10.102)

and then the entire equation is algebraically reduced to (10.30).
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Chapter 11
Kinematics and Mechanics of Large
Elastic Deformations

“The perfectly elastic material is a particular kind of ideal material. It has a single
preferred or natural configuration. We think a portion of this material in a certain
configuration with material coordinates X, which we choose as specifying the
reference configuration. However this material is deformed, into whatever configu-
ration it is brought, it always remembers precisely its preferred or natural configu-
ration and attempts to get back to it. When the forces that maintain it its present
configuration are released, it will return precisely to initial configuration. It is a
material, in other words, which has perfect memory for one state and no memory
whatever for any other state. The forces required to maintain it in the configuration
yare completely independent of the matter in which it is brought from its original
configuration to the configuration y, the time it has taken to get there, and all of its
intermediate history. This is a highly idealized kind of behavior, but it is one that
may be observed in a remarkably good approximation and rubber, for example.”
Truesdell (1960)

11.1 Large Deformations

Large deformations are more difficult to mathematically model than either small
deformations or fluid motions. The difficulty stems from the fact that, for the
analysis of large deformations, the knowledge or data associated with at least two
different configurations must be maintained. In the case of fluid motions, only the
knowledge of the present or instantaneous configuration is necessary and, in
the case of small deformations of solids, the difference between the initial reference
configurations and the present configuration is a small higher order quantity, and it
is neglected. In fact, this neglect of higher order terms between the two
configurations is the definition of “small” deformations. These difficulties may be
illustrated using the concept of stress in large deformations. For small deformations
the only definition of stress employed is force per unit of instantaneous cross-
sectional area. This is adequate since there is a negligible difference between the
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area in the reference configuration and the area in the instantaneous configuration in
the case of small deformations. In practice, in the case of small deformations, the
stress is generally calculated approximately using the original cross-sectional area,
even though the definition is for the instantaneous cross-sectional area. For large
deformations however, the cross-sectional area can change considerably. Consider
a rubber band in its unstressed state and measure or visualize the cross-sectional
area of the rubber band perpendicular to the long axis of the band, the long axis that
forms the closed loop of the band. When the rubber band is stretched, note how the
cross-sectional area decreases. When the band is stretched the force on the band is
increased and, since stress is defined as force per unit area and the area is decreas-
ing, the increasing stress is due not only to the increasing force, but also to the
decreasing cross-sectional area of the rubber band. Each incremental increase in
the force increases the stress, but it also reduces the cross-sectional area, thereby
further increasing the stress. This feature of the concept of stress at large
deformations, the fact that its change is not only due to changing force, but also
to changing area, is a characteristic feature of large deformations, namely that the
analysis of large deformations requires nonlinear mathematics. Nonlinear mathe-
matics is generally more difficult than linear.

A development of the kinematics of large deformations is presented in this
chapter. It begins in the following section with homogenous deformations and
continues with the polar decomposition theorem, strain tensors for large
deformations, and formulas for the calculation of volume and area change. Using
the formulas for the area change, the appropriate definitions of stress for large
deformations are then developed. These large deformation stress measures are
incorporated in the stress equations of motion. Constitutive equations for both
Cauchy elastic and hyperelastic materials capable of large deformations are then
considered along with the special cases of isotropic material models and incom-
pressible material models. Some solutions to large deformation anisotropic elastic
problems are then described. The chapter closes with a discussion of the literature on
this topic.

11.2 Large Homogeneous Deformations

In this section the easily understood and easily illustrated large class of
deformations called homogeneous deformations is described. It is most important
for the modeler to understand homogeneous deformations because most mechanical
testing of materials requires homogeneous deformations and many finite deforma-
tion problems for this class of deformations are easily solved. Homogeneous
deformations are deformations that are exactly the same for all particles, that is to
say all particles experience the same deformation, the same strain, and the same
rotation. Recalling the representation (2.2) for a motion, x = X(X, t), and the fact
that the strain and rotation are derivatives of the motion with respect to X, means
that the motion must be linear in X so that the strain and rotation measures such as
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the deformation gradients will be constant. Thus a homogeneous deformation is
mathematically defined as a deformation that has a representation of the form

x=L(1)-X, (11.1)

where L(t) is a tensor independent of X. Recalling the definition (2.13) of the
deformation gradient tensor F, F = [V & x(X,t)]T, it follows that for a homo-
geneous deformation,

F=L. (11.2)

Thus, as would be expected for the definition of a homogeneous deformation, the
tensor of deformation gradients is independent of X. Lord Kelvin and P. G. Tait in
their Treatise on Natural Philosophy extensively developed the geometrically
interesting properties of homogeneous deformations. Their study of the effect of
homogeneous deformations upon simple geometric figures is briefly reviewed here.
Recall that a plane may be defined by its normal and the specification of one point in
the plane. Let a denote the vector normal to a plane and let X, denote a point in the
plane. Then all the other points in the plane are points X such that a-(X — X,) = 0.
This is so because the condition a-(X — X,) = 0 requires that the vector (X — X,))
be perpendicular to a, the normal to the plane. If we set a-X, = ¢, a constant, then a
material surface that forms a plane may be described in material coordinates by

a-X=c. (11.3)
Substituting the inverse of (11.2), X = L~ 'x, into (11.3) yields
a*.-x =g, (11.4)

where a new constant vector a* by a* = a-L ™" has been defined. Eq. (11.3) is also
the equation of a plane, a plane in the spatial coordinate system, thus permitting one
to conclude that a plane material surface is deformed into a plane spatial surface by
a homogeneous deformation. More simply stated, homogeneous deformations map
planes into planes. Selecting different values for the constant ¢ in (11.3) and (11.4),
it may be concluded that parallel planes will deform into parallel planes since the
normals to parallel planes have the same direction. Since the intersection of two
planes is a straight line (Fig. 11.1), it follows that parallel straight lines go into
parallel straight lines, parallelograms go into parallelograms, and parallelepipeds
deform into parallelepipeds. The results are illustrated in Fig. 11.2.

Example Problem 11.2.1

Draw a sketch of the set of parallel lines given by the intersection of the planes
a = [230]" with c = 0 and 5, and X;;; = 0. These lines have the representations
2X; + 3X;; = 0 and 2X; + 3X;; = 5, respectively. Draw a sketch of the set of
parallel lines after subjecting them to the homogeneous deformation



296 11 Kinematics and Mechanics of Large Elastic Deformations

Fig. 11.1 The intersection
of two planes is a straight line

Fig. 11.2 An illustration

of sets of parallel lines
deforming into sets of parallel
lines and a parallelogram
deforming into a
parallelogram

V3

F=1{0
0

(el NS
=]

Solution: A sketch of the set of parallel lines given by 2X; + 3X;; = 0 and 2X; +
3X;; = 5 is shown in Fig. 11.3a. The inverse of the homogeneous deformation F is
given by

)

4L =L
4 V3 o 2v3
F~ = 1
2

0

0

0 (O
0 1
thus a* = a-L ™' = [2/Y3, (3/2) — 1/43, 0]". The set of deformed parallel lines
determined by the intersection of the planes, a* = [2/V3, (3/2) — 143, 0]T
with ¢ =0 and 5, and x3 = 0. This set of parallel lines are given by 2x;/
V3 4+ ((3/2) — 1/¥3)x, = 0 and 2x;/v¥3 + ((3/2) — 1/J3)x, = 5 and are sketched
in Fig. 11.3b.

The effect of homogeneous deformations on ellipsoids is similar. Recall that the
Cartesian equation for an ellipsoid is

aZ b2 6‘2 ? °
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Fig. 11.3 An illustration a
of Example 11.2.1, a set of
parallel lines deforming into 3
a set of parallel lines
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where the constants a, b, and ¢ represent the intersection points of the ellipsoid on
the Cartesian coordinates axes. In material coordinates an ellipsoid has the
representation

X-A-X=1, (11.6)

where A is a constant second rank tensor. To see that (11.5) and (11.6) are
equivalent representations of an ellipsoid, let A be in its principal coordinate system
andset Ay = a % Ay = b 2, A3 = ¢ % Substituting the inverse of (11.2), X =
L' x, into (11.6) yields

X-A%*.x =1, (11.7)

where a new constant second rank tensor A* has been defined by the transformation
A* = (L”HT.A-L™". Eq. (11.7) is also the equation of an ellipsoid, an ellipsoid in
the spatial coordinate system, thus permitting us to conclude that an ellipsoid in the
material system is deformed into an ellipsoid in the spatial system by a
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Fig. 11.4 An illustration of
an ellipse being deformed
into an ellipse and of a circle
being deformed into an —
ellipse
Q
homogeneous deformation. In particular, spheres will deform into ellipsoids and, in
planar deformations, ellipses into ellipses (or circles into ellipses). This result is

illustrated in the planar case where ellipses deform into ellipses or circles into
ellipses in Fig. 11.4.

Example Problem 11.2.2

Draw a sketch of the ellipse given by (X7/9) + (X7/4) = 1, and then draw a sketch
of the same ellipse after it was subjected to the homogeneous deformation of
Example 11.2.1.

Solution: A sketch of the ellipse given by (X7/9)+ (X7/4) =1 is shown in
Fig. 11.5a. Using the inverse of the homogeneous deformation F determined
in Example 11.2.1, the tensor A representing the ellipse (X7/9) + (X7,/4) = 1,

A:

S O
Okri— O
(e e e)

is transformed into A*, A* = (L”HT-A-L™!,
12

=— | -1 =
8
54 0 0

—_
—_

0
A* 0],
0
and the deformed ellipse is given by (1/27)(x? + (31/16)x5 — 2x1x2) = 1. A sketch
of the deformed ellipse is shown in Fig. 11.5b.

The geometric results of this example give an intuitive insight into a number of
tissue deformation situations. Consider the case when a circle is inscribed on a
tissue and the tissue is then greatly deformed. Fig. 11.6 illustrates the deformation
of a circle with a ratio of principal axes of 1:1 through ten steps to a ratio of

principal axes of 1:19; this is the deformation of a circle inscribed on a surface
subjected to a homogeneous deformation. At a ratio of principal axes of 1:19 the
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Fig. 11.5 An illustration of Example 11.2.2, an ellipse deforming into an ellipse. (a) left, before
deformation, (b) right, after deformation

000000

Fig. 11.6 An illustration of a circle deforming into an ellipse by an increasingly unequal biaxial
extension. The deformation deforms a principal axes ratio of 1:1 to one of 19:1

deformed circle looks more like a crack than an ellipse or the original circle. It is not
an exact analogy but one can, from this result, imagine what happens to the circular
hole punched in a cadaver. The skin and epidermis of the cadaver are under a
natural tension that quickly deforms the circular hole through the skin into the shape
of an elongated ellipse as shown in the right most panel in Fig. 11.6. When these
elongated ellipse are connected end to end to form curves they are called split lines,
called Langer lines. Langer lines are illustrated in Fig. 11.7 (Danielson 1973;
Danielson and Natarajan 1975).

A most significant point concerning homogeneous deformation is that any
deformation in a sufficiently small neighborhood of a point is a homogeneous
deformation. This may be mathematically verified by expanding the motion x =
x(X,t) in a Taylor series in X about the point X, and retaining only the first order
term, which is the deformation gradient evaluated at X,. Thus, for a sufficiently
small domain about the point X, the deformation gradient evaluated at X,
represents the deformation. Since this deformation gradient is independent of X,
the deformation in this small domain is a homogeneous deformation. One easy way
to illustrate the general truth of this mathematical result is to draw a small circle or
parallelepiped on the skin with removable ink, and then apply a deformation to the
skin surface. Alternatively, the small circle can be drawn on a rubber eraser and
the eraser may be deformed to visualize the transition. The circle is easily seen to
deform into an ellipse and must make an effort to obtain a non-elliptical shape. The
same is true of parallelepipeds.
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Fig. 11.7 Langer lines on
a cadaver. From Danielson
(1973)

Problems

11.2.1 Draw a sketch of the set of parallel lines givenbya = [—2,1,0]" and ¢ = 0
and 5, —2X; + X;; = 0 and —2X; + X;; = 5, then draw a sketch of the set
of parallel lines after subjecting them to the homogeneous deformation of
Example 11.2.1.

11.2.2 Draw a sketch of the ellipse given by (X?/16) + X7 = 1, and then draw a
sketch of the same ellipse after it was subjected to the homogeneous
deformation of Example 11.2.1.

11.2.3 Show that the deformation x; = (9/4)X;, x, = Xj;, x; = Xy carries the
ellipse (X;/4)* + (X;/9)* = 1 into the circle (x1/9)*> + (x»/9)> = 1 and that
the inverse deformation carries the circle (X ,/4)2 + (X,,/4)2 = 1 into the
ellipse ()(1/9)2 + (x2/4)2 = 1. Provide a sketch of the undeformed and
deformed ellipses and circles.

11.2.4 Why is it not possible for an ellipse to deform into a hyperbola?

11.3 Polar Decomposition of the Deformation Gradients

It can be shown that the deformation gradient F can be algebraically decomposed in
two ways into a pure deformation and a pure rotation. This decomposition is
multiplicative and is written

F=R- U=V R, (11.8)
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Undeformed Deformed

Fig. 11.8 The deformation of a square by F

where R is an orthogonal tensor (R"-R = R-R" = 1) representing the rotation and
called the rotation tensor and U and V are called the right and left stretch tensors,
respectively. Both U and V represent the same pure deformation, but in different
ways that will be demonstrated. The right and left stretch tensors, U and V, are
related to F by

U=F -F, V= F-F (11.9)

In order to define the square root of a tensor involved in (11.9), the tensor must
be symmetric and positive definite. In that case the square root is constructed by
transforming the tensor to its principal axes where the eigenvalues are all positive,
then the square root of the tensor is the diagonalized tensor coincident with the
principal axes but containing the square roots of the eigenvalues along the diagonal.
To show that the definitions (11.9) are reasonable it should be shown that the
tensors U? and V? are positive definite,

U>=F'.F, V’=F-F. (11.10)

The positive definite character of U? may be seen by letting it operate on the
vector a, then taking the scalar product with a, thus

a-U’-a=a-F -F-a=(F-a) - (F-a) >0, (11.11)

where the fact that a-FT = (F-a) has been used. A similar proof will show the
positive definite character of V2. The fact that the tensor R is orthogonal follows
from the definitions of U and/or V. From (11.8) R is given by R = F-U! (or
R = V 'F) thus the calculation of R™-R (or R-RT) yields

RIO-R=U"F .F-U'=U"UU"=1,

where the fact that U and its inverse are symmetric and the definition (11.10) have
been employed. As an example of this decomposition consider the F associated
with a simple shearing deformation illustrated in Fig. 11.8. The decomposition of
this simple shearing deformation is shown in Fig. 11.9
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.7

Deformed, but not rotated

Undeformed

F
R R

Deformed and rotated

Rotated, but not deformed

Fig. 11.9 The deformation of a square by F, illustrating the polar decomposition of F

Example Problem 11.3.1
Determine the polar decomposition of the deformation gradient tensor

V310
F=[(0 2 0
0 0 1

Solution: The squares or the right and left stretch tensors are calculated directly
from F, thus

3 V3
UV =F F= |3

4 2 0
5 CVP=F.F' =2 4 0
0 0 0 0 1

—_ o O

The square roots of these two tensors are constructed by transforming the tensor
to its principal axes where the eigenvalues are all positive, then the square root of
the tensor is the diagonalized tensor coincident with the principal axes but
containing the square roots of the eigenvalues along the diagonal,

V3A V3B 0 24 2B 0
U= |38 24+B 0|, V=|2B 24 0/,
0 0 1 0 0 1
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where

V34l B:sinlSo—\/g_1

272 Co2V2

The fact that U and V given above are the square roots of U* and V?, respec-
tively, many be verified simply by squaring U and V. The orthogonal tensor R may
be computed in several ways,

A =cos15° =

A B 0
R=V'.F=F-U'!=|-B 4 0
0 0 1

The polar right and left decompositions of the given deformation gradient tensor
are then given by

A B 0][V3A V3B 0 V3 10
F=R-U=|-B A O||[+3B 24+B 0|=|0 2 0],
0O 0 1 0 0 1 0 0 1
and
2A 2B 0 A B 0 Vi1l o0
F=V-R=1{2B 2A 0 -B A 0|l=]0 2 0f,
0 0 1 0O 0 1 0 0 1
respectively.

Example Problem 11.3.2

Develop a geometric interpretation of the deformation gradient tensor F of Example
Problem 11.3.1 by considering it as representing a homogeneous deformation
x = F-X acting on a unit square with vertices (0, 0), (1, 0), (1, 1), (0, 1).

Solution: The scalar equations equivalent to the homogeneous deformation x =
F-X where F is given in the statement of Example 11.3.1 are

x1 = 3%+ Xy, x2 =2Xy, x3 =Xu.

This unit square is deformed by F into a parallelogram with corners at the points (0,
0), (3, 0), (1 + V3, 2), and (1, 2) as illustrated in Fig. 11.10. Consider the left
decomposition, F = V-R, first. In this decomposition the rotation R is applied first,
then the left deformation or left stretch, V. The effect of R on the unit square is a
clockwise rotation of 15°; this isillustrated in Fig. 11.11. Following this rotation of the
unit square, there is a left stretch V that carries the rotated square into the deformed
shape illustrated in Fig. 11.9. The other decomposition choice F = R-U reverses the
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Fig. 11.10 The deformation 2orll
of a unit square by the F of * (1, 2) (2.732, 2)
Example 11.3.1 \
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Fig. 11.11 The deformation 2orll
of a unit square by the R of *
Example 11.3.1 |

\

\
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order of the deformation and the rotation. The deformation or right stretch U is first
applied to the unit square and it deforms the square into the shape illustrated in
Fig. 11.12. The clockwise rotation of 15° is then applied and it rotates the deformed
shape illustrated in Fig. 11.9 into its final position illustrated in Fig. 11.8

Problems

11.3.1. Prove that aF" = F-a.
11.3.2. Using the polar decomposition theorem, F = R-U = V'R, find the U and R

1 -1 0
associated with the F givenby F =2 |1 1 (1)
0 0 =
11.3.3. Find the square root of the matrix
4 -1
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Fig. 11.12 The deformation (0.45, 2.19) (2.12, 2.64)
of a unit square by the U of 2orll
Example 11.3.1 *
\
\
\
l/
\//
©,1) |
- \
\ 15°
e (1.732,0) \
- - -
(0, 0) (1,0) lorl

11.3.4. Find the square root of the matrix

31 =53 0
A=|-5/3 21 0
0 0 4

11.3.5. Find the polar decomposition of the tensor F,

1
F=1{0
0

O = R
=]

11.4 The Strain Measures for Large Deformations

The deformation gradient is the basic measure of local deformational and rotational
motion. It maps a small region of the undeformed object into a small region of the
deformed object. If the motion is a pure translation with no rotation, then F = 1.
If the motion is a rigid object rotation, then F = R where R is an orthogonal matrix,
RR"=R"R=1

The local state of deformation may be investigated by considering the deforma-
tion of an infinitesimal material filament denoted by dX. In the instantaneous
configuration the same material filament has a position represented by dx. Recalling
the representation (2.2) for a motion, x = x(X,t), and the representation (2.16) for
F, it is easy to see that dx and dX are related by dx = F-dX, or from the polar
decomposition theorem dx = R-U-dX = V-R-dX. Thus a pure rotational motion
for which U = V = 1 the length of dX will be preserved but its direction will be
rotated. If the motion includes a deformational component, then the length of dx
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will be different from the length of dX, in general. To calculate this change in length
we denote the square of the final length by ds* = dx-dx and the square of the initial
length by dS* = dX-dX. The difference in the squares of these length changes is
written ds* — dS* = dx-dx — dX-dX. This expression for ds* — dS* can be written
entirely in terms of the material filament dX or entirely in terms of its image dx at
time ¢. To accomplish both of these objectives we observe that, using dx = F-dX,
dx-dx has the representation

dx-dx = (F-dX)- (F-dX)=dX -F'.F.dX, (11.12)

and that dX = F~!.dx, dX-dX has the representation
dX-dX = (F'.ax)- (F'-dx) =dx- (F“)T~F"dx. (11.13)

The two formulas may then be derived from the expression ds* — dS* = dx-dx
— dX-dX, one by substituting for dx-dx from (11.12) and the other by substituting
for dX-dX from (11.13), thus

ds* —dS* = dx -dx —dX -dX = {F" -F — 1} dX -dX
—{1— (F)" - F'} ax-dx. (11.14)

The Lagrangian or material strain tensor E and the Eulerian or spatial strain
tensor e are defined by

1 1
E = (§>{FT-F——1}, e= <§>{1—(F“)T-F‘1}. (11.15)
In terms of the strain tensors the change ds* — dS? takes the form

ds* —dS? =2dX -E -dX = 2dx - e - dx. (11.16)

Clearly, if either of these strain tensors is zero, then so is the other and there is no
change in length for any material filament, ds* = dS>.

The Lagrangian strain tensor E and Eulerian strain tensor e are defined for large
strains and represented in terms of the deformation gradient and its inverse in
(11.15). A component representation of these two tensors in terms of the displace-
ment vector u will now be obtained. From (2.20) and Fig. 2.4, u is given by
u =x — X + c. If u is referred to the spatial coordinate system and the spatial
gradient taken, or if u is referred to the material coordinate system and the material
gradient taken (Sect. 2.2), then

Voo uX,n))] =F(X,7) —1land [V@u(x,0)] =1-F ~'(x,7). (2.23)
repeated
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These equations are then solved for F and F!, thus

FX,t) =1+ [Ve@uX,n)]" and F(x,7) =1 - [V u(x,1)]".

(11.17)

The Lagrangian strain tensor E and the Eulerian strain tensor e are related to the
displacement gradients by substituting the two equations (11.17) into the two
equations (11.15), thus

E = (1/2){[Vo @ u(X,1)]" + [Vo @ u(X,1)] + [Vo ® u(X, 1)][Ve @ u(X, )"},

(11.18)

e=(1/2){[Veux] +[Voux, )] —[Veux)]Veux} (11.19)

The expanded component forms of (11.18) and (11.19) are given by

8u1 1 8141 2 81111 2 814111 2
Ejj=—— 4= |{= — —
" 8)(] + 2 H@x[} + 8)(] + Bxl ’
(91111 1 al/l[ 2 8u” 2 (911[1[ 2
Enn=——+= 37— — .
i 8x11 2 [{8}@1} + 8x,1 + 8)(1[ ’
Ouyp 1 Ouy : Ouyy : Oupyy ?
Emm=o—+5 37— —— o
M A 2 H@Xm} * Oxpry * Oxyr J |’
1 8u, 81411 8u, auu au” BM” (9u111 814111
Epy =~ |2 P O Ot Ot Pt St Ot 11.20
r 2 |:8X11 Bxl (9)(1 6x1 8x1 8X11 BX1 8X11:|, ( )
£ _1 Oup | Ouyy n Ouy Ouyy | Quy Auyy Oy Ouyy
i 2 8)(111 8)(,‘1 6X1 8)(1 8x1 8x1” 8x1 ale ’
£ _ V| Ouy | Owr | Oy Ouy | Ouy Ouy  Qur dupm
=2 \oxm Oy Oxy Oxyyr | Oy Oxyy | Oy O]’
and
o 8141 1 [ 8141 2 + 8u2 2 4 8M3 2]
en = 8x1 2 8x1 8x1 8x1 ’
Cou 1[fou)? [ow)> [ous)’]
€2 = 6)(2 B 2 {8X2} + 8)(2 + 6)(2 ’
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ey = O LI fOou)®  fOu)* | f0u)®
3 8x3 2 8X3 8x3 8x3 ’

e 1 |:8M| 8142 8u1 6142 6142 8142 8143 al/h:|
12 =% ’
2

- 11.21
8X2 + 8x1 8)(1 8X1 6x1 3)(2 8x1 8xz ( )

1 {&11 Ouz  Ou; Ouz  Oup Our  Ous 8u3]

P72 0w T ox on on Ox Ox  On oxs
ey = 1|02 O O Ouy Oz Oy _ Oz Dy
= _2 8X3 8x2 8)(2 8)(3 8x3 8X3 8X2 6X3 ’

respectively. The products of the displacement gradients appear in Egs. (11.20) and
(11.21) for the strain tensor E and e. This is called geometrical nonlinearity to
distinguish it from the physical or constitutive nonlinearity (e.g. the relation
between stress and strain) that will be considered later in this chapter. If the
deformation of the object is so small that the square of the displacement gradients
can be neglected, and thus the difference between the material and spatial
coordinates, then both the Lagrangian strain tensor E and the Eulerian strain tensor
e coincide with the infinitesimal strain tensor (2.44).

The geometrical interpretation of the Lagrangian strain tensor E and the Eulerian
strain tensor e are algebraically straightforward, but not very simple geometrically.
If §; represents the change in length per unit length in the X; direction, then the
deformation gradient F and the Lagrangian strain tensor E are given by

1 0 {
F=1+6,{0 0 ,E=_{F".F-1}
00 2

S O O

1 1 00
= (5,+253> 0 0 0f; (11.22)
0 00
thus all the components of E are zero except for,

1
Ey = <5, + 55?). (11.23)

If ;; represents the change in length per unit length in the X;; direction, and sin ¢
indicates a shear, then the deformation gradient is given by

1—|—51 (1+51)Sll’1¢ 0
F=| 0 1+ 0y 0], (11.24)
0 0 1
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and the Lagrangian strain tensor component E; ; is related to d;, d;; and to the
change in the right angle ¢ between the filaments lying in the / and /I directions by

Ep= G)(l—s—é,)(l + dpr) sin ¢. (11.25)

Thus, unless the extensions d;, 0y, and ¢ are small so that the square of each may
be neglected, the traditional geometric interpretation for small strains,

Ey =9y, Ell[f“w’%, (11.26)

namely that £, ; is the extension in the / direction and E; ;; is one-half the change in
an angle that was originally a right angle, is not accurate. Eqs. (11.23) and (11.24)
representing E; ; and E; ; in terms of 0;, d;, and ¢ show that the geometric
interpretation of the finite strain tensors in terms of extensions and changes in
right angles is possible, but is awkward and not very useful due to its nonlinear
nature.

Example 114.1

Compute the Lagrangian strain tensor E and the Eulerian strain tensor e for the
motion given by (2.12). Determine the range of values of ¢ for which these two
strain measures coincide in this special motion.

Solution: The deformation gradient and inverse deformation gradient for the motion
(2.12) are given in Example 2.1.1,

141t t 0 1 14+t —t 0
F = t 14+t 0 andF’lzl 5| 1+t 0
0 0 1 T2 0 142

These values for F and F~' can then be substituted into (11.15) for the Lagrang-
ian strain tensor E and the Eulerian strain tensor e, thus

1 1 0
E=t(1+7|1 1 0| ande=——=
0 00

These expressions are, of course, valid for large strains. If we restrict ourselves
to small strains, then the two strain tensors must coincide. Since each component of
E is proportional to 7 + #* and each component of e is proportional to

t(1+1)

=t—37+8 — -
(1+21)°
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the two strain tensors coincide only if terms of the order 7> and higher are neglected.
Thus the motion (6) is one of small strain only when all terms of order 7* and higher
are neglected.

There are several other strain measures used in the development and analysis of
finite deformations. Two of the most widely used are the right and left
Cauchy—Green tensors, C and B, respectively. These two tensors are simply the
squares of the right and left stretch tensors, U and V,

C=U*=F'.F,B=V’=F-F. (11.27)

It is also convenient to introduce the inverse of the left Cauchy—Green tensor
denoted by c,

c=B'=V2=(FxF)" (11.28)

The Lagrangian strain tensor E and the Eulerian strain tensor e are expressed in
terms of C and ¢ by the following formulas that follow from (11.15), and the
definitions of C and ¢ given as (11.27) and (11.28) above,

2E=C—-1,2e=1—-c (11.29)

The eigenvalues of the various strain measures may be interpreted using the
concept of stretch. The stretch A, in the fiber coincident with dX is defined by

dx - dx
Ty = S 1.
™M= Vax-ax’ (1130)

where N is a unit vector in the direction of dX. The related concept of extension
is then defined in terms of stretch by

Sy = Ay — 1. (11.31)

As a illustration of homogeneous deformations, and of the relationship of the
stretch concept to the various strain measures that have been introduced, the special
case of pure homogeneous deformations is considered. A pure homogeneous
deformation is a deformation for which the rotation R = 1 and the deformation
gradient tensor become symmetric, F = U = V. In its principal coordinate system
the deformation gradients of a pure homogeneous deformation have the
representation

A0 0
F=U=V=|0 4 0], (11.32)
0 0 Zm
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Fig. 11.13 An illustration [ [
of a simple extension, a type 7 X / X3
of pure homogeneous X ;
deformation n %2

—

X1

where 4;, Ay, Ay are the principal stretches. The principal stretches represent the
effect of the deformation upon material filaments in the coordinate directions as
they are the ratios of the final length of the filament to the initial length of the
filament. In terms of the principal stretches, the deformation tensors C and ¢ have
the representations

20 0 0 0
C=|0 22 o0l,e=|0 22 0], (11.33)
0 0 i 0 0 2y

and the Lagrangian strain tensor E and the Eulerian strain tensor e,

e 0
2E=| 0 -1 0 |, 2e
L0 0 -1
[1-7;77 0 0
= 0 1— ;7 0o |- (11.34)
.0 0 1— 2,7

Two special cases of pure homogeneous deformation are of particular interest.
A simple extension is characterized by 4; # J; = 2y and is illustrated in
Fig. 11.13. A uniform dilation is characterized by 1 = A; = Ay = A4y and is
illustrated in Fig. 11.14. In the case of uniform dilation, F =U =V = /1,
C=/le=221,2E=(7—-Dl,2e=( - 1)L
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Fig. 11.14 An illustration

of a uniform dilation, a type

of pure homogeneous —
deformation
—»
Problems
11.4.1. For the six motions of the form (2.10) given in Problem 2.1.1, namely 2.1.1

11.4.2.

11.4.3.
11.4.4.

11.5

(a)-2.1.1(f), compute the Lagrangian strain tensor E and the Eulerian strain
tensor e, the right and left Cauchy—Green tensors, C and B, respectively,
and the inverse of the right Cauchy—Green tensor. Discuss briefly the
significance of each of the tensors computed. In particular, explain the
form or value of the deformation strain tensors in terms of the motion.
Prove that, in the case of no deformation, the invariants of C and c satisfy
the following relationships: I. = Ic = Il = lIc = 3,lll. = Illc = 1.
Show that the Jacobian J is related to /Il by J = .

A rectangular parallelepiped with a long dimension a, and a square cross-
section of dimension b, is deformed by an axial tensile force P into a
rectangular parallelepiped with a longer long dimension @ and a smaller
square cross-section of dimension b.

(a) What are the stretch ratios in the long direction (1) and the transverse
direction (A1)?

(b) Express the volume of the deformed rectangular parallelepiped, V, as a
function of the volume of the undeformed rectangular parallelepiped,
Vo, and the stretch ratios in the long direction (/;) and the transverse
direction (/).

(c) Express the incompressibility condition for the rectangular parallelepi-
ped as a function of the stretch ratios in the long direction (4) and the
transverse direction (At).

(d) Express the cross-sectional area of the deformed rectangular parallele-
piped, A, as a function of the cross-sectional area of the undeformed
rectangular parallelepiped, A,, and the stretch ratio in the transverse
direction (/).

Measures of Volume and Surface Change
in Large Deformations

In this section we will consider volume and area measures of deformation. Consider
volume deformation first. A material filament denoted by dX is mapped into its
present position dx by the deformation gradient F, dx = F-dX. By considering the
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mapping of three nonplanar dX’s, dX(g), dX(r), and dX(s), into their three-image
dx’s, dx(g), dx(r), and dx(s), a representation of the volumetric deformation may be
obtained. This algebra uses the triple scalar product (Section A.8, equation (A116))
to calculate the volume associated with the parallelepiped defined by three vectors
coincident with the three edges of the parallelepiped that come together at one
vertex. The element of volume dV in the undeformed configuration is given by
dV = dX(¢)-(dX(r) x dX(s)), and in the deformed configuration by dv = dx(g)-
(dx(r) x dx(s)). Substituting dx = F-dX into dv = dx(g)-(dx(r) x dx(s)) three
times, it follows that

dv=A{F-dX(q)} - ({F-dX(r)} x {F -dX(s)}), (11.35)

which may be expanded and, using the fact that a determinant of a product of
matrices is the product of the determinants, rewritten as

dv = JdvV, (11.36)

where J = Det F and dV = dX(g)-(dX(r) x dX(s)) are both determinants. Thus the
element of volume dV in the undeformed configuration is deformed into a volume
dv in the deformed configuration according to the rule dv = JdV where J = DetF is
called the Jacobian of the deformation. In order that no region of positive finite
volume be deformed into a region of zero or infinite volume it is required that
0<J < o0

Consider now the question of the deformation of differential elements of area
where similar formulas for area change can be constructed. Let dA be a differential
vector representation of area in the material reference frame obtained by taking the
cross product of two different material filaments dX, dA = dX(r) x dX(s). Simi-
larly, let da be a differential vector representation of area in the spatial reference
frame, representing the deformed shape of the same material area, obtained by
taking the cross product of the deformed images dx, da = dx(r) x dx(s) of the
material filaments dX(r) and dX(s). The relationship between da and dA is
constructed by twice substituting dx = F-dX into da = dx(r) x dx(s),

da={F-dX(r)} x {F-dX(s)}. (11.37)

The vector da is then dotted with the deformation gradient F from the left, thus
da-F={F-dX(r)} x {F-dX(s)} -F. (11.38)

The right-hand side of this equation may be expanded, as the one for volume was
above, and, using the fact that a determinant of a product of matrices is the product

of the determinants (Section A.8, page 372), rewritten as

da-F = JdA. (11.39)
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On the other hand, the relationship between dA and da is constructed by twice
substituting dX = F~'-dx into dA = dX(r) x dX(s),

dA = {F'-dx(r)} x {F'-dx(s)}. (11.40)

The vector dA is then dotted with the inverse deformation gradient F~' from the
left, thus

dA -F' = {F!'.ax(r)} x {F!-dx(s)} -FL. (11.41)

The right-hand side of this equation may be expanded, as a similar one for da
was above, and, using the fact that a determinant of a product of matrices is the
product of the determinants (Section A.8, page 372), rewritten as

dA -F! =J lda. (11.42)

These formulas relating dA and da are called the formulas of Nanson. These
formulas will be employed in relating the various definitions of stress associated
with large deformations.

Example 11.5.1
Consider the plane area that forms the right-hand face of the unit cube illustrated in
Fig. 11.9. Use the formulas of Nanson to determine the magnitude and orientation

of the deformed area as a result of the deformation specified in Example Problem
11.3.1.

Solution: The undeformed area is represented by dA™ = (1, 0, 0). The value of J is
243 and the tensor of inverse deformation gradients is given by

1 -1
0 o0

0
0
1

From (11.42) it follows that da = JAA-F~! , thus

1 —1

1 =L 9 2

V3 2V3
da=2V3{[1 0 0]lo0 1 ofp=|-1
0 0 1 0

The deformed representation of the plane area that forms the right-hand face of
the unit cube illustrated in Fig. 11.7 is shown as the right sloping right-hand face in
Fig. 11.8. From that figure it is seen that the face associated with this area is two
units high and one unit wide, and that the unit normal to this face is indeed 23,

—1/43, 0).
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Problems

11.5.1. Compute the volume of the parallelepiped whose three edges meeting at
one vertex are characterized by the vectors (1, 2, 3), (2, 3, 3), (—3, =2, —1).

11.5.2. Consider the plane area that forms the top face of the deformed parallelo-
gram illustrated in Fig. 11.8. Use the formulas of Nanson to determine the
magnitude and orientation of the original area if the deformed area was a
consequence of the deformation specified in Example Problem 11.3.1.

11.5.3. Beginning with the formula (11.37) for da use the indicial notation and the
formulas for the DetF employing the alternator from the Appendix to derive
the formula

(F )" . dA = J~'da. (11.42 alternate)

11.6 Stress Measures

The stress equations of motion are the most useful form of Newton’s second law in
continuum mechanics. In Sect. 3.4 these field equations were shown to have the form

pXx =V -T+pd, T=T". (3.37) repeated

These equations involve the most common stress measure, the Cauchy stress T
introduced in Chapter 2. It was not called the Cauchy stress in Chapter 4 because
there was only one stress tensor under discussion there. The Cauchy stress is
referred to the instantaneous or spatial coordinate system; it is measured relative
to the instantaneous area. In mechanical testing the phrase “true stress” is used to
denote a stress calculated using the instantaneous rather than the original cross-
sectional area. Cauchy stress, which is sometimes called Eulerian stress, is therefore
a “true stress.”

There are a number of different stress measures used in the study of finite
deformations of materials; three are considered here. The first is the Cauchy stress.
The second stress measure is the first Piola—Kirchhoff stress tensor that is some-
times called the Lagrangian stress tensor. This stress tensor is referred to the
reference configuration. Consider an object in both its deformed and undeformed
configurations. Since this is the same object in the two configurations, it must have
the same total mass M in each configuration, and Eq. (3.1) maybe rewritten to
express that fact:

M= JpR(X) dv = Jp(x7 1) dv, (11.43)
0

where pg(X) is the density in the initial configuration and p(x,f) is the density in the
instantaneous or deformed configuration; dV is an element of volume in the initial
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configuration and dv is an element of volume in the final configuration. Substituting
the relationship (11.36) between dv and dV, dv = JdV, into (11.43) it follows that

M= JpR(X)dV:Jp(X,I)]dV. (11.44)
o o

Since this same result must hold for each and every part of the object we
conclude that the relationship between the two density fields is given by the simple
formula

e =1p, (11.45)

which is an alternative statement of mass balance. The argument that is used to go
from (11.44) to (11.45) is the same argument that was used to go from (3.4) to (3.5),
and it was employed three more times in Chapter 3. In order to relate the stresses
referred to the two different configurations, a similar procedure to the arguments
leading to the result pg = Jp above is followed. The total force f acting on an
object, or on any particular subpart of the object, is considered. The total force is the
same in both configurations; and therefore the product of the stress and a differen-
tial area element integrated over the object must be the same in both configurations.
Thus

f = JTIPK~dA: JT~da, (11.46)
90 90
where T/PX and dA are the stress tensor and differential area element in the initial

configuration and T and da are the stress and differential area in the instantaneous
or deformed configuration. T is the Cauchy stress, of course. When the relationship
of Nanson between da and dA given by (11.42) is substituted into (11.46) we find
that

f= J TPK . gA = JJT S(F )" dA. (11.47)

00 00

Since this must hold for all parts of the object, the same argument as in the
transitions from (11.44) to (11.45) and (3.4) to (3.5), it may be concluded that

TP =T (F Y, “or T = J'TPK . FT. (11.48)
T'PX is called the first Piola—Kirchhoff or Lagrangian stress tensor. The relation
of Cauchy involving the Cauchy stress tensor and the spatial reference frame,
namely that the stress vector t, acting on any plane whose normal is n is given
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Fig. 11.15 TIllustration for a A
uniaxial stretching Xz, X1
deformation due to a load P

by tm, = T-n, may be extended to the first Piola—Kirchhoff stress tensor T'"™ and
the material coordinate system; thus tpy, = TlPK-N, where N is the unit normal
vector to the plane in the material coordinate system. Using this result, the stress
equations of motion may be rederived in the material coordinates and in terms of
the first Piola—Kirchhoff stress tensor; thus

T.

prX = Vo - TPK 4 ppd, TPK.FT =F . (T'PK)"; (11.49)

where the density of the initial configuration py is used as the reference density and
the divergence is now with respect to material rather than spatial coordinates.
Recall from Chapter 2 (see (2.23)) that the gradient symbol V o with a subscripted
O will indicate a gradient with respect to the material coordinate system X, rather
than the usual gradient symbol V used to indicate a gradient with respect to the
spatial coordinate system x. The second of (11.49) shows that the first
Piola—Kirchhoff stress tensor is not symmetric like the Cauchy stress tensor. To
see that this is the case the second of (11.48) may be substituted twice in the second
of (3.37) to verify.

In order to have a measure of stress referred to the initial configuration that is
symmetric, the second Piola—Kirchhoff stress tensor is introduced; this is also
called the Kirchhoff stress tensor. This new stress tensor is denoted by T?** and
defined as follows:

TPK = F L. TP — g1 (F ). (11.50)

Substituting T'"™ = F-T?* into (11.49) the equations of motion in terms of the
second Piola—Kirchhoff stress tensor are obtained:

prX = Vo - (F-TK) 4 ppd, T2PK — (12°6)" (11.51)

This shows that the second Piola—Kirchhoff stress tensor T**¥ is symmetric.

Example 11.6.1

A solid specimen capable of large deformations is extended by a force of magnitude
P in the x; or X; direction (these directions are coincident here). This uniaxial stress
situation is illustrated in Fig. 11.15. Determine the Cauchy and the first and second
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Piola—Kirchhoff stress tensors in this uniaxial situation. Construct the relationships
between each of these tensors in this particular situation.

Solution: The principal axes of extension are obviously the direction of the applied
load and the two perpendicular transverse directions. The deformation can be
represented in terms of the principal stretches 4;, 2;; and 27 by

x1 = Xy, X2 = nXy, x3 = ApXu,

and the deformation gradients F by (11.32). It follows that the Jacobian J is given
by J = A ;. The area perpendicular to the x;- or X;-axis will change with the
deformation. Using the formula of Nanson (11.42), it follows that

. )L[_I 0 0 dA;
da=J(F") -dA=Jpduim| O 5" 0 || O |,
0 0 2y 0

or da; = Ay ldA;, da, = 0, and da; = 0, thus we can conclude that the relation-
ship between the instantaneous area A and initial area A, is A = A;4;;4,. The only
nonzero Cauchy stress is 711 = P/A = P/(AyAmA,)- From (11.48) the only nonzero
component of the first Piola—Kirchhoff stress tensor is given by Tllf K — T
= AP /A = P /A, and, from (11.50) the only nonzero component of the second
Piola—Kirchhoff stress tensor is given by

T121PK = (TIIIPK)//L[ = ()VHJVIHTH)/)V] = ;L]I;L[I]P/(},]A) = P/(;LIAU)

In the special case when the material is incompressible, J = ;44 = 1,
and the cross-section transverse to the extension is symmetric, 4; = 4, 4y = Ay
= /N2, then T?PK = (TIFK) /). = T\, /7% = P/(2*A) = P/ (JA,).

Problems

11.6.1. A rectangular parallelepiped with a long dimension a, and a square cross-
section of dimension b, is deformed by an axial tensile force P into a
rectangular parallelepiped with a longer long dimension @ and a smaller
square cross-section of dimension b. This problem is a continuation of
Problem 11.4.4.

(a) Record the expressions for the stresses T%f X and T, in the deformed

rectangular parallelepiped. Both the x; and X; directions are coincident
with the longitudinal axis of the parallelepiped.

(b) If the material of the rectangular parallelepiped is incompressible, what
is the relationship between b and b,?

(c) Record the expression for the stress T7X in terms of the stress T if the
rectangular parallelepiped is incompressible.
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11.6.2. Consider a unit cube subjected to a uniaxial extension. A net force P in the
x1 or X; direction creates this uniaxial extension. The motion is described by
x1 = (1 4+ Xy, x» = Xy, x3 = Xyyp. Note that each face of the unit cube has
an initial area A, that is unity, A, = 1. Estimate the first Piola—Kirchhoff
stress T'PX, then calculate the Cauchy stress T = J !V TPRFT and the
second Piola—Kirchhoff stress (T?** = F~L.TPK — jp-L.T-(F~1)").

11.6.3. Consider a unit cube subjected to a biaxial extension. A net force P, in the
x; or X, direction and a net force P, in the x, or X;; direction create this
biaxial extension. The motion is described by x; = (1 + )X, x, = (1 + 2
Xy, x3 = Xy Note that each face of the unit cube has an initial area A,
that is unity, A, = 1. Estimate the first Piola—Kirchhoff stress T'PX then
calculate the Cauchy stress T =J"' T'®FT and the second
Piola—Kirchhoff stress (T*** = FL.T'PK = jp~.T-(F~1)").

11.6.4. Consider an object that is the unit cube deformed by deformation gradient
tensor F given in Problem 11.3.1. If the homogeneous second
Piola—Kirchhoff stress tensor T2¥ is given by

10 3 0
TP =3 20 0],
0 0 1

determine the Cauchy stress tensor T and the first Piola—Kirchhoff stress
tensor T'P¥,

11.6.5. Consider an object that is the unit cube deformed by deformation gradient
tensor F given in Problem 11.3.1 on page 511. If the homogeneous second
Piola—Kirchhoff stress tensor T>¥ is given by

10 3 0
TPK = |3 20 0],
0 0 1

determine the stress vector acting on the sloping face whose normal is
(2/Y5, —1/45, 0) in the deformed configuration.

11.7 Finite Deformation Elasticity

An elastic material is a material characterized by a constitutive equation, which
specifies that stress is a function of strain only. It is also possible to represent an
elastic material by a constitutive equation that specifies stress as a function of the
deformation gradients F, provided one keeps in mind that, due to invariance under
rigid object rotations, the stress must be independent of the part of F that represents
rotational motion. In terms of the Cauchy stress T and the deformation gradient F
the constitutive equation for an elastic material can be written T = g(F). Invariance
under rigid object rotations requires
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g(Q-F)=Q-gF)-Q" (11.52)

for all orthogonal tensors Q. If we take Q = R”, where R is the rigid object rotation
and U the right stretch tensor which are related to F by F = R-U (Eq. (11.8)), it
follows from (11.52) that g(R"-F) = g(U) = R -g(F)-R; thus T = g(F) = R-g(U)-
RT, or

T=R-f(C) R" (11.53)

where g(U) = f(C) = f(U?) (since C = U? (Eq. (11.27))). In terms of the first
Piola—Kirchhoff stress tensor T'" the constitutive equation for an elastic material is

T'PX = h(F), (11.54)

or, due to the invariance of constitutive equations under rigid object rotations,
h(Q-F) = Q-h(F), and taking Q = R”, h(U) = R"-h(F); thus h(F) = R-h(U), and

T!’K =R - h(U). (11.55)

In terms of the second Piola—Kirchhoff stress tensor T2PK, the constitutive
equation for an elastic material has the form

T2PK = ¢(C). (11.56)

These constitutive equations are said to describe a material with Cauchy elastic-
ity; that is to say a material in which stress is a function of some measure of the
strain or deformation.

11.8 The Isotropic Finite Deformation Stress—Strain Relation

The assumption of isotropic symmetry of a material is an adequate model for many
materials. Recall from Chapter 5 that, in the case of a stress strain relation, isotropy
means that the response of stress to an applied strain is the same in any direction in
the material. The mathematical statement of this notion is that the stress tensor, say
T in (11.56), is an isotropic function of the right Cauchy—Green tensor C. In
order for the tensor valued function T?*¥ = t(C), given by (11.56) to be isotropic
an function, it must satisfy the relation for all orthogonal tensors Q:

Q -T?K.QT =t(Q-C-Q"). (11.57)

As one can see from the transformation law for a second order tensor (A83) that
the definition of an isotropic function (11.57) requires that, when the value of the
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argument C is transformed, the value of the function T?PK is transformed in the
same manner. The development objective of this section is to use the isotropy
requirement (11.57) to restrict the functional form of the relationship (11.56). The
first step in this development is to show that the principal axes of T*** must
coincide with the principal axes of the right Cauchy—Green tensor C if the isotropy
requirement (11.57) is satisfied.

To show that this is the case let ¢ denotes an eigenvector of C corresponding to

the eigenvalue, say /l,zC, thus C-¢ = ).fc. This eigenvector c is used to construct a

reflective symmetry transformation R(®with the properties specified by (5.1) for the
vector a. Replacing a in (4.2) by c, it follows that

RO =1-2a@a ~(RY = 0; - 2cic)), (11.58)
then, setting Q = Rin (11.57), it follows that
R© . TP . ROT — (RO . C . RO, (11.59)
For a symmetric second order tensor A is easy to show, using (11.58), that
RO A-RY=A—-2c0A-c—2A-c®c+4(c-A-clec®c (11.60)

and, in particular, when A = C, it follows from the fact that ¢ is an eigenvector of C
that

RO.C.RO = C. (11.61)

The substitution of (11.61) into (11.59) reduces (11.59) to

RO . T2PK RO — ¢(C). (11.62)

Next let A = t(C) in the identity (11.60), then it follows with a little algebra, and
recalling that R®) - ¢ = —c, that

t(C)-c=(c-t(C)-c)c. (11.63)

Since ¢ - t(C) - ¢ is a scalar, this result shows that ¢ is an eigenvector of t(C) as
well as C. It then follows that any eigenvector of C is also an eigenvector of
T?K = ¢(C). Since C and T?*® = t(C) have the same set of principal axes, then

the eigenvalues (T77K, T2 T2PK)of T2PX are functions of the eigenvalues (17, 17,

A%)of C given by (11.33), thus

THE = 11 (A7 2 0)s Tos® = 1o (A7, 2, 4y, THE = t33(27, Ay, Aqyp)- (11.64)
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In order to express more specific function forms of (11.64), recall that each

eigenvalue (27, /7, A7 )of a matrix like C satisfies the same characteristic equation
(A54), thus

W — I+ 1) — e =0, (11.65)

where

Ic = rC, Hl¢ = = [(rC)* — rC?], Ll = DetC. (11.66)

1
2

If the expression for 727K = #,(42, 2%, 12 )were expanded in a power series in /2,
(11.65) above could be used to eliminate any term not proportional to 1, i,zor /1;‘. With

this motivation the eigenvalues (T2/X, T2K T2K)of T*"* are expressed as functions

of the eigenvalues (17, A7, 7, )of C as follows:

TK = a, + aij + axij, THX = a, + avig + azdjy, (11.67)
T%;K =a, + Cll)~1211 + 022”?11' |

This system of equations has a unique solution for the three unknown functions
a,, a1, and a,. These functions are elementary symmetric functions of the three

eigenvalues (/112, /1%,, /112”)or the three (isotropic) invariants of C, thus

ay = a,(22, 25, 03,) = ao(Ic, le, Il e), ay = ay (33, 2%, %)

= a\(Ic, e, 1c), ay = ay (22,735, 32,) = ax(Ie, e, ). (11.68)
In the principal coordinate system it then follows that
T2 = 4,1 4+ a,C + a,C?, (11.69)

an expression that is equivalent to (11.67) in the principal coordinate system of C
(or t(C)), but that also holds in any arbitrary coordinate system. A necessary and
sufficient condition that the constitutive relation (11.56), T>*¥ = ¢(C) satisfy
the material isotropy requirement (11.57), Q- TX.QT = t(Q-C-Q"), is that T**¥
= t(C) have a representation of the form (11.69) with a,, a;, and a, given by
(11.68).

The representation (11.69) of T**X as isotropic function of C may also be
expressed as an equivalent isotropic relationship between the Cauchy stress T and
the left Cauchy—Green tensor B. The algebraic manipulations that achieve this
equivalence begin with recalling from (11.27) that C = FT.F, thus (11.69) may
be written in the form
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T = a1 + a;F" - F+ a,F" -F-F' -F, (11.70)
then premultiplying by (FT)_land post multiplying by F~!, thus

F) TP = g, (F)) " F ' 4 ay(FT) " FTF-F'4,
a>(F)Y" .FT.F.F'.F.F .. (11.71)

This expression reduces to

ay,  ar, oo
T="1+—B+-2B 11.72
S 1+-B+—B7, ( )

when one takes note of (11.27), (11.28), and the second of (11.51). This expression
is rewritten in the form

T=hl+mnB+h B!, (11.73)

when it is observed that /o = I, [I¢ = Ilg, and Illc = IlIg = J and the following
notation is introduced

hy = ho(Ic, e, HI¢) = hy(Ig, g, Il 5) = % (e e, ),

hy = hi(Ic,llc,Illc) = h(Ip, g, Ilg) = %(IC,IIC,IIIC),

hoy = h_y(Ic, e, He) = h_y(Ig, I, HIg) = ? (e e, HIc). (11.74)
Problems
11.8.1. Setting A = t(C) in the identity (11.60), verify the formula (11.63),t(C) - ¢
= (c-t(C) - ¢)c.

11.8.2. Verify the result (11.60), then derive the result (11.61) from (11.60).

11.8.3. Determine the Cauchy stress tensor T and the second Piola—Kirchhoff stress
tensor T?" for an elastic isotropic material subjected to the deformation in
Example 11.2.1. Specify the numerical value of the functional dependencies
of the functions a,, a;, and a, as well as those of &, /1, and h_.

11.9 Finite Deformation Hyperelasticity

A hyperelastic material is an elastic material for which the stress is derivable from a
scalar potential called a strain energy function. Thus a hyperelastic material is
automatically a Cauchy elastic material, but not the reverse. In the case of small
deformation elasticity, a strain energy function always exists and therefore the
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small deformation theory is hyperelastic. The strain energy per unit volume W is
obtained from the specific strain energy, that is to say the strain energy per unit mass
by multiplying it by pg, where p is the density function in the initial configuration.
In terms of the Cauchy stress and the first and second Piola—Kirchhoff stress tensors
the definition of a hyperelastic material has the following forms:

_ L g (VN ek _ W ok _ g (OW
T_pRF (3F>’T _aF’T =F aF ) (11.75)

On first encounter, the variety of forms for the constitutive relation for
hyperelastic materials is bewildering. Not only are there three different stress
measures, but there are many different strain measures, C, ¢, F, E, e, etc. Thus,
for example, if we introduce the right Cauchy—Green deformation tensor C, since
C = U* = FF", % = 2F then

oW ow
o = 2F 55 (11.76)

and the constitutive relations (11.57) take the form

p ow\" T mlPK W ok ow
T=2—F - (| F, T =2F —, T =2_——~. 11.77
PR <8C> ’ oC’ oC ( )

Alternatively, these relations can be expressed in terms of the Lagrangian strain
tensor E, 2E = C - 1, by (11.29), thus

oW oW OE 10w

AR A S 11.
oC OE 9C 20E’ (11.78)
and
p AT W opx _ W
T=—F (| F,T"=F —, T =—— 11.
Pr (aE) ’ OE’ OE’ (11.79)

for example.

In the special case of an isotropic hyperelastic material the strain energy function
W =W(C)=W(J} 74,2) depends upon C only through the (isotropic)
invariants (Ic, ¢, Ill¢)of C, thus

W=W(c,lc,Il¢), (11.80)
where (I, ¢, Illc)are given by (11.66). Substituting this isotropic expression for

the strain energy into (11.72) and making use of the following expressions for the
derivatives of the invariants /¢, Il and Il -with respect to C,



11.9 Finite Deformation Hyperelasticity 325

dlc , dll¢ olll -

— =1, ——=11-C, ——=1I.C". 11.81
aC ) aC C 3 3C C ( )
it follows that T>"X has the representation
ow ow ow ow
T =218 — 4 Ic=—t1———C+—1IlI.C"|. 11.82
a1 ¢ ol ot - T te (11.82)

This constitutive relation may also be written in a form which contains C? rather
than C~!,

ow oW oW ow ow ow
2PK __ A ~ A )" o 2
=2 Halc e Gme T o } ! {aHC e G }C o © ]

(11.83)

by use of Cayley Hamilton theorem that states that a matrix satisfies its own
characteristic equation, thus C may replace J%in (11.65), C* = IcC*> +11cC — II
Ic =0. A term-by-term comparison of (11.78) with (11.69) shows that the
coefficients a,, a;, and a, in (11.69) are given in the case of hyperelasticity by

W W oW, Y AL
Go=201: T Cane Tamc e T TG T ol [

_, 0
olll ¢

@ (11.84)

Also, in the case of an isotropic hyperelastic material, the coefficients A,, /4, and
h, in the constitutive relation between the Cauchy stress T and the left
Cauchy—Green tensor B, (11.73), may be expressed in terms of the strain energy
function by the following formulas:

2 oW oW 2 W 2 oW
ho==3Hcet——Ilcp, hy === hy=—=Ilc—— (11.85
J { Bllc " allle C} V=G = e (18D
Problems

11.9.1. Derive the result (OW/JC) = (0W/OE) : (OE/IC) = (1/2)(0W/JE) ,
(11.78), using the indicial notation and the formula 2E = C — 1. Hint: It
is useful to first derive the formula (OE,s/0C,p) = (1/2)0p504, from 2E,s
= Cys5 — Oys.

11.9.2. Derive the result (11.76) using the indicial notation. Hint: It is useful to first
derive the formula (0C,g/0F ;) = (0/0F i) (FiaFip) = 0ikOuyFip + Fraik
0p, beginning from the definition C = F'F in the indicial notation Cyp
= FiFip.
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11.9.3. Derive the first result of (11.81), namely (9l¢/0C) = 1.

11.9.4. Derive the result (11.83), T2% = 2[{(oW /dlc) + Ic(0W /dll¢c) + (OW /D
Hic)Ic — {(0W /dllc) + Ic(OW [Olllc)}C + (OWIIIIc)C?], from the
last of (11.77), T*"® =2(0W/0C), using (11.80), W = W(I¢, I, 1),
(11.81) {(9I¢/OC) =1, (9ll¢/IC) = Ic1 — C, (dlllc/OC) = HIcC™'},
and the Cayley Hamilton theorem, C* — IoC? 4 1IoC — Ill> = 0.

11.9.5. Take the derivative of the Cayley Hamilton theorem, C> — I-C? + IIc.C
—Ill = 0, with respect to C and employ the three formulas (11.81) {(9l¢
/OC) = 1, (0llc/0C) = Ic1 — C, (9lllc/IC) = IlIcC '} to eliminate the
expressions that are the derivatives of the invariants with respect to C. Then
multiply through this result by C and simplify. What is the significance of
the final result? Is it a correct equation? Would it be a correct equation if the
Eq. (11.81) were not correct?

11.10 Incompressible Elasticity

The assumption of incompressibility is an idealization that means that no agency
(stress, strain, electric field, temperature, etc.) can change the volume of the model
of the material. The Jacobian J = Det F relates the element of volume dV in the
undeformed configuration to the volume dv in the deformed configuration
according to the rule (11.36), dv = JdV. The Jacobian J is related to the principal
stretches by J = ;44 The requirement of incompressibility may then be
expressed in several different algebraic forms related to the deformation, J = 1,
Aidpdar = 1,1l ¢ = Illp = 1, etc., and to algebraic forms related to the motion such
as trD = V.v = 0 (Sect. 6.4). The assumption of incompressibility requires that
the density p be a constant. The pressure field p in an incompressible material is a
Lagrange multiplier (see Example 6.4.1) that serves the function of maintaining the
incompressibility constraint, not a thermodynamic variable. Because the volume of
the model material cannot change, p does no work; it is a function of x and t, p(x, t),
to be determined by the solution of the system of differential equations and
boundary/initial conditions.

Recall from Sect. 11.7 that the constitutive equation for an elastic material can
be written T = g(F) in terms of the Cauchy stress T and the deformation gradient F
oras T'PX = h(F) (11.54) in terms of the first Piola—Kirchhoff stress tensor TP or
as T?PX = t(C) (11.56) in terms of the second Piola—Kirchhoff stress tensor T>%
and the right Cauchy—Green tensor C. For incompressible elastic materials the
Cauchy stress tensor T must be replaced by T + p1 where p is the constitutively
indeterminate pressure described above and conveniently interpreted as a Lagrange
multiplier. The response functions, say g(F) above, are defined only for
deformations or motions that satisfy the condition / =Det F = 1. Thus T =g
(F) is replaced by T + pl1 = g(F) when the assumption of incompressibility is
made, T'™ = h(F), (11.54), becomes
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T

TY® £ p(F') =h(F), (11.86)
and T?*® = t(C), (11.56), becomes
T 4 pC™! = t(C), (11.87)

where the functions h(F) and t(C) are defined only for deformations or motions that
satisfy the incompressibility condition Det F = 1.

When an elastic model material is both isotropic and incompressible there are
further simplifications in the constitutive relations. For example (11.69) and (11.73)
are now written in the simpler forms

TK 4+ pC~! = a,C + a,C?, (11.88)
and
T+pl=mnB+h_ B, (11.89)

where the functions of the isotropic invariants in these representations also
simplify,

ay =a1(Ie,1l¢c), a = ax(Ic, 1) (11.90)

and
hoy=h_y(Ic,llc) =h_(Ig,lg), h-y = h_(Ic,1Ic) = h_(Ig,1lg). (11.91)
When an elastic model material is isotropic, incompressible and hyperelastic
there are even further simplifications in the constitutive relations. In this case the

strain energy per unit volume W depends only on /¢ = Ip and Il = Il and (11.93)
reduces to

T=-pl+mnhB+h B, (11.92)
where
ow oW
hy =2, hy=—-2-—. 11.93
1 aIC; 1 6[16‘ ( )

Even with all these restrictive assumptions (hyperelasticity, isotropy, and
incompressibility) a complete solution of many interesting problems is not possible.
Simpler models based on specialized assumptions but which retain the basic
characteristics of the nonlinear elastic response have been proposed for polymeric
materials and for biological tissues. An example that stems from research on the



328 11 Kinematics and Mechanics of Large Elastic Deformations

constitutive behavior of rubber is the Mooney—Rivlin material with the constitutive
equation (Mooney 1940; Rivlin and Saunders 1976)

1 1
Tz—pl-l—,u(i—i—ﬁ)B—,u(E—B)Bl, (11.94)
where p and f§ are constants, which has the following strain energy function

W:%,u[(%—i—ﬁ)(lg—ii)—i—(%—/3)(113—3)], (11.95)

where the inequalities u > 0 and (1/2) > f > —(1/2) are imposed upon the
constants ¢ and f§ so that the strain energy W is a positive semidefinite quantity.
The special case of the Mooney—Rivlin material when = (1/2) is called the neo-
Hookian material

T = —pl + uB. (11.96)

Employing the assumption of incompressibility is the development of a consti-
tutive model for a soft biological tissue is quite easy to justify because soft tissues
contain so much water that their effective bulk compressibility is that of water,
2.3 GPa. When one compares the shear or deviatoric moduli of a soft biological
tissue with 2.3 GPa, it is usually orders of magnitude less. Only in the case of hard
tissues does the shear or deviatoric moduli approach and exceed (up to an order of
magnitude) the effective bulk compressibility of water.

Problems

11.10.1. Derive (11.94) { T = —p1 + u((1/2) + )B — u((1/2) — f)B~" } from
(11.95) (W = (1/2)ul(1/2) + B)(Is — 3) + ((1/2) — B)(il; — 3)]using
(11.92) {T = —pl + B+ h_B~'} and (11.93) {h; = 2(0W/0Ic), h_y
= —2(0W/0llc)}.

11.10.2. Calculate the components of the Cauchy stress T in a Mooney—Rivlin
material (11.94) {T = —p1 + u((1/2) + p)B — u((1/2) — f)B~'} when
the material is subjected to a simple shearing deformation given by x; =
X; + kXy, xo = Xj, x3 = Xy Require that the normal stress acting on the
surface whose normal is in the x3 or X;; direction be zero.

11.4.2. Calculate the components of the Cauchy stress T in a neo-Hookian material
(11.96) { T = —pl 4 uB} when the material is subjected to a simple
shearing deformation given by x; = X; + kX, x» = Xj;, x5 = X5 Require
that the normal stress acting on the surface whose normal is in the x3 or X;;;
direction be zero.
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11.11 Transversely Isotropic Hyperelasticity

The specialized constitutive equations transversely isotropic hyperelastic materials
are developed in this section. Recall from Chapter 4 that transversely isotropic
material symmetry is characterized by a unique direction that serves as an axis of
rotational symmetry for the material structure. The plane perpendicular or trans-
verse to the unique direction is a plane of isotropy, hence the descriptive term
transverse isotropy. The particular material symmetry of an object is only constant
through infinitesimal deformations; larger deformations will change the type of
material symmetry. Thus when the material symmetry of a finitely deformed elastic
object is noted, it is the material symmetry of the reference or undeformed configu-
ration, not the material symmetry of the deformed configuration.

The hyperelastic constitutive equation, the first of (11.77), is the starting point of
this development,

T
T:;F- (g%’) -FT, (11.97)

where pJ = p,. The selected direction is taken as the e; axis and all orthogonal
rotations about that axis by an angle ¢ leave the value of W(C) unchanged. Let R(¢)
represent an orthogonal transformation about e by and the angle ¢,

cos¢p —sing O

R-RT'=1,R=|sing cos¢ O0]; (11.98)
0 0 1
it follows from
dR R’ +R dRT—O (11.99)
de dp '
that
R
Qo = —Q, whereQEZ—(b-RT, (11.100)

hence the representation of the components of Q as an axial vector Q, where
Qi = e (11.101)
The requirement of the invariance of W(C) under the rotation R may be written as

W(C)=W(C'), whereC'=R-C-R’, (11.102)
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from which it follows

d dw dC'  aw
—WC)=0=—:—=—:[Q-C+C-Q 11.103
or
d aw
—W(C)=0=2Q.-C":—. 11.104
Substitution of (11.101) into (11.104) above yields
A aw
ei/‘3QBCimfmj =0, (11.105)
which requires that
aw aw
Cin——=Crp—— 11.106
lmdcm2 2ndcn17 ( )

if (11.105) is to be true for all ¢. Expanding the two sets of summation indexes in
(11.106) we obtain

aw aw
C - C
acor +Ci3 dCos 23

(dW aw
12

aw
_—— =0 (11.107
dC22 dC]] 3 )

) + (C11 — C2) ac,

The form of the function W(C) invariant under the rotation (11.98), for all ¢, is
obtained by solving this differential equation (Ericksen and Rivlin 1954; Januzemis
1967). Simplification of this result is obtained if the following notation is
introduced,

Ci =& +&c0sls, Cn=¢ —E&eosés,
Cip = o8ings, Ci3 = {4c08 L5,  Caz = ysinds, (11.108)

where &, > 0, &4 > 0 in which case (11.107) reduces to

AW dw

AT A 11.109
a5 g (11.109)

thus

W:W(C33a51762,£3;53_265754)~ (11.110)
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Observe from (11.108) that W cannot depend upon &3 — 25 when either £, = 0 or
&4 = 0. To require that W be a single valued function of the components C;; that enter
into &3 — 2¢&5, it is necessary for W to be periodic, with period 27, in &3 — 2¢&5.
Therefore it may be assumed that W depends on&; — 2¢5 through cos(&3 — 2&5). From
these observations it follows that W can be expressed as a function of the invariants

Cs3, C1 4 Co = 2¢,, (Cyy — Cp)? +4C%, =48, CH +C3y = &,
(Ci1 = C)(Cly — C33) + 4C12Cx3C31 = 28,8, cos(és — 2E5). (11.111)

An equivalent set of five invariants is given by the isotropic invariants
I=Ig=Ic, I =1lg=Ilc, lIl =1llg =Illc, (11.112)
and complemented by
IV=ChL+ChL=8,V=Ch (11.113)

Thus W(C) has the representation W(C) = W(I, 11,11l IV, V) and it follows from
(11.97) that the stress has the representation

2 (ow\" ror\ .,
T—JF'(W) (aC)F Li

2

J

ow\” [ oy
Fik(_) (—)Fm (11.114)
Y:I,IL%JV,V 8Y 8Ckm v

which may be rewritten as

o oIl ol oll v v
T="| (i~ )1+ -<B— =B+ ——M+_-N|, (11115
K aC ac) T ac ac® Tac™ Tac } (11.115)
where
ZC%3 FiuFj3 +FiF3), Ny = FisFj3, (11.116)

a=1
which are related to IV and V by
o ov ov o
M =Fy——, 2N;j=Fy——, or2N=F - M =F- .
Py T Tk g, O (8F> (8F>
(11.117)

If this transversely isotropic hyperelastic material is also incompressible, then
Il = 1 and
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ol oIl o ov
T——pl—i-ZaCB—%B —i—%M—i—%N (11.118)

The remainder of the chapter deals with incompressible transversely isotropic
hyperelastic material.

Example 11.11.1

Determine the stress tensor in a rectangular parallelepiped of an incompressible
transversely isotropic hyperelastic material in which the unique direction coincides
with the long dimension of the parallelepiped and the two transverse dimensions are
equal. There is only a force applied to the parallelepiped in the long dimension of
the parallelepiped and 4 denotes the principal stretch in the long dimension. The
stress applied to the parallelepiped is zero in the two transverse dimensions.

Solution: For the situation described above Eqs. (11.28), (11.33), and (11.116) may
be used to show that

V000 20 0 00 0
B=|0 2'" ofl, B'=|0 2 0|, N=[(0 0 0|, M=0,
o o 2 00 i3 00 2
thus from (11.118) it follows that
ol oll
Thu=Tn=-—p+2|==2t=-=21
11 22 p + [8C aC }

and since these two stress are zero, it follows that p = 2[(0I/0C)i~" — (dI1/0C)J)
and that the axial stress is given by

ol 10l n ov
ac " jac " ac”

Ty = 2A[(A—272) [ -

If the material was isotropic rather than transversely isotropic, then the same
result would apply with gg 0.

A number of solutions for transversely isotropic hyperelastic materials in cylin-
drical coordinates were obtained by Ericksen and Rivlin (1954); some of these

solutions are contained in the book by Januzemis (1967).

11.12 Relevant Literature

The developments in nonlinear of nonlinear elasticity are described in many books,
for example Truesdell (1960), Truesdell and Toupin (1960), Green and Adkins
(1960), Januzemis (1967), Treloar (1967), Truesdell and Noll (1965), and Ogden
(1984) among many others.
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Appendix A: Matrices and Tensors

A.1 Introduction and Rationale

The purpose of this appendix is to present the notation and most of the mathematical
techniques that will be used in the body of the text. The audience is assumed to have
been through several years of college level mathematics that included the differential
and integral calculus, differential equations, functions of several variables, partial
derivatives, and an introduction to linear algebra. Matrices are reviewed briefly and
determinants, vectors, and tensors of order two are described. The application of this
linear algebra to material that appears in undergraduate engineering courses on
mechanics is illustrated by discussions of concepts like the area and mass moments
of inertia, Mohr’s circles and the vector cross and triple scalar products. The solutions
to ordinary differential equations are reviewed in the last two sections. The notation,
as far as possible, will be a matrix notation that is easily entered into existing
symbolic computational programs like Maple, Mathematica, Matlab, and Mathcad
etc. The desire to represent the components of three-dimensional fourth order tensors
that appear in anisotropic elasticity as the components of six-dimensional second
order tensors and thus represent these components in matrices of tensor components
in six dimensions leads to the nontraditional part of this appendix. This is also one of
the nontraditional aspects in the text of the book, but a minor one. This is described in
Sect. A.11, along with the rationale for this approach.

A.2 Definition of Square, Column, and Row Matrices

An r by ¢ matrix M is a rectangular array of numbers consisting of 7 rows and ¢
columns,

S.C. Cowin, Continuum Mechanics of Anisotropic Materials, 335
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M . 7

The typical element of the array, Mj;, is the ith element in the jth column; in this
text the elements M;; will be real numbers or functions whose values are real
numbers. The transpose of the matrix M is denoted by M" and is obtained from

M by interchanging the rows and columns

Mll M21 . . . Mrl
M' — My My . . . Mp (A2)
M. . . . . My

The operation of obtaining M" from M is called transposition. In this text we are
interested in special cases of the r by ¢ matrix M. These special cases are those of
the square matrix, r = ¢ = n, the case of the row matrix, r = 1, ¢ = n, and the case
of column matrix, » = n, ¢ = 1. Further, the special sub-cases of interest are n = 2,
n = 3, and n = 6; the sub-case n = 1 reduces all three special cases to the trivial
situation of a single number or scalar. A square matrix A has the form

Ay Ap . . L Ayg
Au . A
while row and column matrices, r and ¢, have the forms
Cl
(&)
r=[r rn . . . mhe=|"1, (A4)
Cn
respectively. The transpose of a column matrix is a row matrix, thus
T _
c = ¢ . . . ¢l (A.5)

To save space in books and papers the form of ¢ in (A.5) is used more frequently than
the form in the second of (A.4). Wherever possible, square matrices will be denoted by
upper case boldface Latin letters, while row and column matrices will be denoted
by lower case boldface Latin letters as is the case in equations (A.3) and (A.4).
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A.3 The Types and Algebra of Square Matrices

The elements of the square matrix A given by (A.3) for which the row and column
indices are equal, namely the elements A;;, Aj,..., An,, are called diagonal
elements. The sum of the diagonal elements of a matrix is a scalar called the
trace of the matrix and, for a matrix A, it is denoted by trA,

trA =A +Apn + -+ Ap. (A.6)

If the trace of a matrix is zero, the matrix is said to be traceless. Note also that
trA = trA”. A matrix with only diagonal elements is called a diagonal matrix,

An O . . . 0
A_ |0 A2 .0 A
0 . . . . Am

The zero and the unit matrix, 0 and 1, respectively, constitute the null element,
the 0, and the unit element, the 1, in the algebra of square matrices. The zero matrix
is a matrix whose every element is zero and the unit matrix is a diagonal matrix
whose diagonal elements are all one:

0 0 0 1 0 0
0— o0 . . .0 1= o1 . . .0 . (A8)
o . . . .0 o . . . .1

A special symbol, the Kronecker delta d;;, is introduced to represent the
components of the unit matrix. When the indices are equal, i = j, the value of the
Kronecker delta is one, 011 = d,, = ... = d,, = 1 and when they are unequal,
i # j, the value of the Kronecker delta is zero, 0o = 051 = ... = 0,1 = 01, = 0.
The multiplication of a matrix A by a scalar is defined as the multiplication of every
element of the matrix A by the scalar «, thus

O(All OCA12 P O(A]n
A — OCA21 OCA22 . OCAzn (A9)
OCAnl . N . aAnn

It is then easy to show that 1A = A, —1A = —A, 0A = 0, and o0 = 0. The
addition of matrices is defined only for matrices with the same number of rows and
columns. The sum of two matrices, A and B, is denoted by A + B, where
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Ay +Byy Ap+Bp . . . An+Bn
A+B— Ay +By Ap+Byn . . . Ax+Bo (A.10)
Anl + Bnl . LI Ann + Bnn
Matrix addition is commutative and associative,
A+B=B+AandA+(B+C)=(A+B)+C, (A.11)

respectively. The following distributive laws connect matrix addition and matrix
multiplication by scalars:

a(A+B)=0A+aoB and (o + f)A = oA + A, (A.12)

where o and f§ are scalars. Negative square matrices may be created by employing
the definition of matrix multiplication by a scalar (A.8) in the special case when
oo = —1. In this case the definition of addition of square matrices (A.10) can be
extended to include the subtraction of square matrices, A—B.

A matrix for which B = B is said to be a symmetric matrix and a matrix for
which C = —C7 is said to be a skew-symmetric or anti-symmetric matrix. The
symmetric and anti-symmetric parts of a matrix, say A% and A*, are constructed
from A as follows:

symmetric part of AS =~ (A + A"),and (A.13)

N =

anti — symmetric part of A® = — (A — AT). (A.14)

N =

It is easy to verify that the symmetric part of A is a symmetric matrix and that the
skew-symmetric part of A is a skew-symmetric matrix. The sum of the symmetric
part of A and the skew-symmetric part of A, AS + A®, is A:

1
A=A5+ AN = (A+AT)+§(A—AT). (A.15)

N =

This result shows that any square matrix can be decomposed into the sum of a
symmetric and a skew-symmetric matrix or anti-symmetric matrix. Using the trace
operation introduced above, the representation (A.15) can be extended to three-way
decomposition of the matrix A,

A1 A 1
A="2 s A AT 2y +-(A—AT). (A.16)
n 2 n 2
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The last term in this decomposition is still the skew-symmetric part of the
matrix. The second term is the traceless symmetric part of the matrix and the first
term is simply the trace of the matrix multiplied by the unit matrix.

Example A.3.1

Construct the three-way decomposition of the matrix A given by:

A =

~N b=

2 3
5 6
8 9

Solution: The symmetric and skew-symmetric parts of A, A5, and A%, as well as the
trace of A are calculated,

| 1 3 5 . 0o -1 -2
ASZE(AJFAT): 357 ,AAZE(A—AT): 1 0 —1],trA=15;
579 2 1 0
then, since n = 3, it follows from (A.16) that
5 00 -4 3 5 0o -1 -2
A=1(0 5 0|+ 3 O 7|+|1 0 -1
0 0 5 5 7 4 2 1 0

Introducing the notation for the deviatoric part of an n by n square matrix A,

deva — A —TAy (A17)
n

the representation for the matrix A given by (A.16) may be rewritten as the sum of
three terms

rA
A =21 4 devAS + AA, (A.18)
n

where the first term is called the isotropic, or spherical (or hydrostatic as in
hydraulics) part of A. Note that

devAS = — (devA + devAT). (A.19)

| =

Example A.3.2
Show that tr (devA) = 0.

Solution: Applying the trace operation to both sides of (A.17) one obtains
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tr(devA) = trA — 1/n(trA)(trl);

then, since trl = n, it follows that tr(devA) = 0.

The product of two square matrices, A and B, with equal numbers of rows
(columns) is a square matrix with the same number of rows (columns). The matrix
product is written as A-B where A-B is defined by

k=n
(A-B); =) AuBy; (A.20)
k=1

thus, for example, the element in the rth row and cth column of the product A-B is
given by

(A ! B)m = ArlBlc +ArZB2c + - +Aranc~

The widely used notational convention, called the Einstein summation conven-
tion, allows one to simplify the notation by dropping the summation symbol in
(A.20) so that

(A - B);; = AuByj, (A.21)

where the convention is the understanding that the repeated index, in this case k, is
to be summed over its range of the admissible values from 1 to #. This summation
convention will be used from this point forward in this Appendix and in the body of
the text. For n = 6, the range of admissible values is 1-6, including 2, 3, 4, and 5.
The two k indices are the summation or dummy indices; note that the implied
summation is unchanged if both of the &’s are replaced by any other letter of the
alphabet. A summation index is defined as an index that occurs in a summand twice
and only twice. Note that summands are terms in equations separated from each
other by plus, minus, or equal signs. The existence of summation indices in a
summand requires that the summand be summed with respect to those indices over
the entire range of admissible values. Note again that the summation index is only a
means of stating that a term must be summed, and the letter used for this index is
immaterial, thus A;;,Bn;j has the same meaning as A By;. The other indices in the
formula (A.22), the i and j indices, are called free indices. A free index is free to
take on any one of the admissible values in its range from 1 to n. For example if n
were 3, the free index could be 1, 2, or 3. A free index is formally defined as an
index that occurs once and only once in every summand of an equation. The total
number of equations that may be represented by an equation with one free index is
the range of the admissible values. Thus the equation (A.21) represents n” separate
equations. For two 2 by 2 matrices A and B, the product is written as
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A Ap||Bu B
A-B=
{Am Azz] {321 Bzz]

_ {Aan +AnBy AnBi +A12322} (A22)

A2 Bi1 +AnBy AyBia+AnBy |’ ’
where, in this case, the products (A.20) and (A.21) stand for the nw=22=4
separate equations, the right-hand sides of which are the four elements of the last
matrix in (A.22).

The dot between the matrix product A-B indicates that one index from A and one
index from B is to be summed over. The positioning of the summation index on the
two matrices involved in a matrix product is critical and is reflected in the matrix
notation by the transpose. In the three equations below, (A.21), study carefully how
the positions of the summation indices within the summation sign change in relation
to the position of the transpose on the matrices in the associated matrix product:

(A-B"); = AuBj, (AT - B);; = AuiByj, (AT - BY);; = AyiBjx. (A.23)

A very significant feature of matrix multiplication is noncommutatively, that is
to say A-B # B-A. Note, for example, the transposed product B-A of the multipli-
cation represented in (A.22),

By Bp||An A
B-A—
{321 By | |An Ax

_ {3111411 + B4 BiiAnp +312A22}

A.24
By1Ayy + BpAy  ByAp 4+ BpAy ( )

is an illustration of the fact that A-B # B-A, in general. If A-B = B-A, the matrices
A and B are said to commute. Finally, matrix multiplication is associative,

A-B-C)=(A-B)-C, (A.25)
and matrix multiplication is distributive with respect to addition
A-B+C)=A-B+A-Cand B+C)-A=B-A+C-A, (A.26)

provided the results of these operations are defined.

Example A.3.3

Construct the products A-B and B-A of the matrices A and B given by:
10 11 12

1 2 3
A=|4 5 6(,B=|13 14 15
7 8 9 16 17 18
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Solution: The products A-B and B-A are given by

84 90 96 138 171 204
A-B=]201 216 231|,B-A=|[174 216 258
318 342 366 210 261 312

Observe that A-B # B-A.

The double dot notation between the two second order tensors is an extension of
the single dot notation between the matrices, A-B, which indicates that one index
from A and one index from B are to be summed over; the double dot notation
between the matrices, A : B, indicates that both indices of A are to be summed with
different indices from B, thus

A:B= AikBik~

This colon notation stands for the same operation as the trace of the product,
A:B = tr(A-B). Although tr(A-B) and A:B mean the same thing, A:B involves
fewer characters and it will be the notation of choice. Note that A:B = A™:B" and
A":B = A:B" but that A:B # A":B in general.

In the considerations of mechanics, matrices are often functions of coordinate
positions xy, X, X3, and time ¢. In this case the matrix is written A(x, x5, X3, f) which
means that each element of A is a function of x, x,, x3, and ¢,

A]](.X],.x27.x3,t) Alz(-x17-x2ax37l) A]n(xlax27x37[)
A(Xl,xz,)@,,t) _ A21 (X[,X27X3, t) A22(X17X2,X3,t) e AQH(XI,Xz,X3,t)
Ani (X1, X2, X3, 1) : o Amn(xr,x2,X3,1)

(A27)

Let the operator < stand for a total derivative, or a partial derivative with respect
to xq, Xo, X3, Or ¢, or a definite or indefinite (single or multiple) integral; then the
operation of the operator on the matrix follows the same rule as the multiplication
of a matrix by a scalar (A.9), thus

QA1 (x1, X2, x3, 1) QAn(xr,x2,x3,8) ... QA(xr,x2,x3,1)
CAGx2.x3.1) = QAzi (X1, x2,x3, 1) QAn(x1,x2,x3,8) ... QAgn(x1,x2,X3,1)
QAni (x1, X2, X3, 1) . oo QA x2,x3,1)

(A.28)

C(A+B) = OB+ QA and (¢ + O2)A = G1A + 024, (A.29)

where 1 and <>, are two different operators.
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Problems

A3.1.

A3.2.

A33.
A34.

A35.

A.3.6.
A3.7.

A38.

A.3.9.
A.3.10.

Simplify the following expression by using the Einstein summation index
convention for a range of three:

0 =riwi + rawy + r3ws,

Y = (u1vi 4+ upvy + uzvs) (u1vy + uava + uzvs),

¢ = Anxt + Anx3 + A33X§ + Appxixy + Ayx1xy + Azxixs + Azxx3
+ Ax3x3xz + Anxzxg.

The matrix M has the numbers 4, 5, —5 in its first row, —1, 3, —1 in its
second row and 7, 1, 1 in its third row. Find the transpose of M, the
symmetric part of M, and the skew-symmetric part of M.

Oxi _ 5.
Prove that o= 0jj.

Consider the hydrostatic component H, the deviatoric component D of the
symmetric part of A, and the skew-symmetric component S of the square n
by n matrix A defined by (A.17) and (A.18),

trA 1 trA 1
H=""1D=-|A+A"—2"21| and S = - [A — A"].
n 2 n 2

Evaluate the following: trH, trD, trS, tr(H-D) = H:D, tr(H-S) = H:S,
and tr(S-D) = S:D.
For the matrices in example A3.3 show that tr A-B = tr B-A = 666. In
general, will A:B = B:A, or is this a special case?
Prove that A:B is zero if A is symmetric and B is skew-symmetric.
Calculate AT-B, A-BT, and AT-BT for the matrices A and B of Example
A33.
Find the derivative of the matrix A(¢) with respect to z.

t £ sinot
A(t) = |cosht Int 17t
1/t 1/ Inf

Show that (A-B)T = BT-AT.
Show that (A-B-C)" = CT.BT-AT.

A.4 The Algebra of n-Tuples

The algebra of column matrices is the same as the algebra of row matrices. The
column matrices need only be transposed to be equivalent to row matrices as
illustrated in equations (A.4) and (A.5). A phrase that describes both row and
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column matrices is n-tuples. This phrase will be used here because it is descriptive
and inclusive. A zero n-tuple is an n-tuple whose entries are all zero; it is denoted by
0 =10,0,...,0]. The multiplication of an n-tuple r by a scalar « is defined as the
multiplication of every element of the n-tuple r by the scalar o, thus ar = [ary, ar,,
..., ory]. As with square matrices, it is then easy to show for n-tuples that 1r =r,
—Ir = —r, Or = 0, and «0 = 0. The addition of n-tuples is only defined for n-
tuples with the same n. The sum of two n-tuples, r and t, is denoted by r + t, where
r+t=1[ri+t,rn+ ... rrm+ t,]. Row-matrix addition is commutative, r +
t =t + r, and associative, r + (t + u) = (r + t) + u. The following distributive
laws connect n-tuple addition and n-tuple multiplication by scalars, thus o(r + t)
=oar + ot and (o + f)r = ar + fir, where o and f§ are scalars. Negative n-tuples
may be created by employing the definition of n-tuple multiplication by a scalar,
or = [ary, arsy, .. ., ary], in the special case when oo = —1. In this case the definition
of addition of n-tuples, r + t = [r; + t{, 7, + f5, ..., 1y + 4], can be extended to
include the subtraction of n-tuples r—t, and the difference between n-tuples, r—t.

Two n-tuples may be employed to create a square matrix. The square matrix
formed from r and t is called the open product of the n-tuples r and t; it is denoted
by r ® t, and defined by

rity rty ... ry
raty It oo It

rot= | ¥ 22 2 (A.30)
Fafl . ... Il

The American physicist J. Willard Gibbs introduced the concept of the open
product of vectors calling the product a dyad. This terminology is still used in some
books and the notation is spoken of as the dyadic notation. The trace of this square
matrix, tr{r ® t} is the scalar product of r and t,

tr{r®t}:r-t:r1t1+r2t2—|—---+rnz‘n. (A.31)
In the special case of n = 3, the skew-symmetric part of the open product r ® t,

0 ritp —rpty ritz — 3l
— | Mty —ritp 0 ity —rit |, (A.32)
r3ty —rits 3ty — i3 0

provides the components of the cross product of r and t, denoted by r x t, and
written as r X t = [ryt3—rats, I3t1—rit3, rltzfrztl]T. These points concerning the
dot product r-t and cross product r x t will be revisited later in this Appendix.

Example A4.1

Given the n-tuples a = [1, 2, 3] and b = [4, 5, 6], construct the open product
matrix, a ® b, the skew-symmetric part of the open product matrix, and trace of the
open product matrix.
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Solution:
4 5 6] , N[0 -1 =2
a®b=|8 10 12 ,(—)(a@b—(a@b)T):G) 1 0 -1
12 15 18 2 1 0

and tr{a ® b} = a-b =32.

Frequently n-tuples are considered as functions of coordinate positions xy, xp, X3,
and time z. In this case the n-tuple is written r(x;, x,, X3, f) that means that each
element of r is a function of x;, x5, x3, and ¢,

r(x15x27x3; t) = ["1()(1,)(2,)(3, t)arZ(xlv-x%x:’H t)? s 7rn(-xlax27-x37t)]’ (A33)

Again letting the operator <) stand for a total derivative, or a partial derivative
with respect to xy, x», X3, or £, or a definite or indefinite (single or multiple) integral,
then the operation of the operator on the n-tuple follows the same rule as the
multiplication of an n-tuple by a scalar (A.9), thus

Or(xi,x0,x3,1) = [Ori(x1,x2,x3,1), Ora (X1, X2,x3, 1), ..., Ora(X1, X2, x3, 1))
(A34)

The following distributive laws connect matrix addition and operator operations:
Gr+1t) = Or + Gt and (G + O2)r = Oir + Oor, (A.35)

where | and <>, are two different operators.
Problems

A.4.1. Find the derivative of the n-tuple r(x;, x, x3, ) = [x1xox3, 10x1xp,
coshoxs] " with respect to x3.

A.4.2. Find the symmetric and skew-symmetric parts of the matrix r ® s where
r=1[1,2,3,4]ands = [5, 6, 7, 8].

A.5 The Types andLinear Transformations

A system of linear equations

ri=Anti +Aph + -+ A,
1y = Aoty +Axnty + - - 4 Aoy,

= Anti +Antr + ... + Amty, (A.36)
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may be contracted horizontally using the summation symbol, thus

ry = A,
ry = Aoly,
In = Apklx. (A.37)

Introduction of the free index convention condenses this system of equations
vertically,

ri = Ajlk. (A.38)

This result may also be represented in the matrix notation as a combination of n-
tuples, r and t, and a square matrix A,

r=A-t, (A.39)

where the dot between A and t indicates that the summation is with respect to one
index of A and one index of t, or

r h

ry Al A . . . An 15
_ Ay Axn . . . Ay 1, (A40)
Au . Am
I'n In

if the operation of the matrix A upon the column matrix t is interpreted as the
operation of the square matrix upon the n-tuple defined by (A.38). This is an
operation very similar to square matrix multiplication. This may be seen easily by
rewriting the n-tuple in (A.40) as the first column of a square matrix whose entries
are all otherwise zero; thus the operation is one of multiplication of one square
matrix by another:

A

r A] . A ... A]n tH o . . .0
_ A21 A22 R A2n 15 o . . .0 ) (A41)
Ant . .. . Am th - . . .0
I'n

The operation of the square matrix A on the n-tuple t is called a linear
transformation of t into the n-tuple r. The linearity property is reflected in the
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property that A applied to the sum (r + t) follows a distributive law A - (r +t)
= A -r+ A -t and that multiplication by a scalar « follows the rule a(A -r) =
A - (ar). These two properties may be combined into one, A - (ar + fit) = ¢A - r
+fA -t where o and f are scalars. The composition of linear transformations is
again a linear transformation. Consider the linear transformation t = B-u, u — t
(meaning u is transformed into t) which is combined with the linear transformation
(A39)r = A-t,t — rtotransformu — r,thusr = A-B-u, and if we let C = A-B,
then r = C-u. The result of the composition of the two linear transformations,
r = A-tand t = B-u, is then a new linear transformation r = C-u where the square
matrix C is given by the matrix product A-B. To verify that it is, in fact, a matrix
multiplication, the composition of transformations is done again in the indicial
notation. The transformation t = B-u in the indicial notation,

tx = Bymln, (A.42)

is substituted into r = A-t in the indicial notation (A.38),

11 = AixBxmUm, (A.43)
which may be rewritten as
ri = CimlUm, (A.44)
where C is defined by:
Cim = AiBm. (A.45)

Comparison of (A.45) with (A.20) shows that C is the matrix product of A and B,
C = A-B. The calculation from (A.42) to (A.45) may be repeated using the Einstein
summation convention. The calculation will be similar to the one above with the
exception that the summation symbols will appear.

Example A.5.1

Determine the result r = C-u of the composition of the two linear transformations,
r = A-tand t = B-u, where A and B are given by

1 2 3 10 11 12
A=|4 5 6[,B=|13 14 15
78 9 16 17 18

Solution: The matrix product A-B yields the square matrix C representing the
composed linear transformation,

84 90 96
A-B= 201 216 231
318 342 366
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It is important to be able to construct the inverse of a linear transformation,
r=At t=Alr, if it exists. The inverse transformation exists if A~' can be
constructed from A, thus the question is one of the construction of the inverse of a
square matrix. The construction of the inverse of a matrix involves the determinant of
the matrix and the matrix of the cofactors. DetA denotes the determinant of A. A
matrix is said to be singular if its determinant is zero, non-singular if it is not. The
cofactor of the element A;; of A is denoted by coA;; and is equal to (— )™ times the
determinant of a matrix constructed from the matrix A by deleting the row and column
in which the element A;; occurs. CoA denotes a matrix formed of the cofactors coAy;.

Example A.5.2

Compute the matrix of cofactors of A;A =

” QU

d
b
f

(SN NI

Solution: The cofactors of the distinct elements of the matrix A are coa = (bc—f>),
cob = (ac—ez), coc = (ab—dz), cod = —(dc—fe), coe = (df—eb), and cof =
—(af—de); thus the matrix of cofactors of A is

bc—f*  —(dc—fe) (df —eb)
A = | —(dc—fe) ac—e*  —(af —de)
(df —eb) —(af —de) ab—d*

The formula for the inverse of A is written in terms of coA as

_ coA)T
L —(Deui , (A.46)

where (coA)" is the matrix of cofactors transposed. The inverse of a matrix is not
defined if the matrix is singular. For every non-singular square matrix A the inverse
of A can be constructed, thus

AA'=AT.A=1 (A.47)
It follows then that the inverse of a linear transformation r = A-t, t = A~ lr,
exists if the matrix A is non-singular, DetA # 0.
Example A.5.3

Show that the determinant of a 3-by-3-open product matrix, a ® b, is zero.

Solution:

aiby aiby aibs
Det{a® b} = Det | axb; axby axbs | = a1by(aybrasb; — axbszazb,)
asby azby azbs
— arby(aybraszbs — asbiaxbs) + arbs(axbyasby — azbyazby) = 0.
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Example A.5.4

Find the inverse of the matrix

18 6 6
A=|6 15 O
6 0 21

Solution: The matrix of cofactors is given by
315 —126 —-90
coA= | —126 342 36 |,
-90 36 234

thus the inverse of A is then given by

oAt 1[5 =7 S
1= ——| -7 19 2
DetA 243 | < 5 13

The eigenvalue problem for a linear transformation r = A-t addresses the
question of the n-tuple t being transformed by A into some scalar multiple of itself,
At. Specifically, for what values of t and A does At = A-t? If such values of 4 and
t exist, they are called eigenvalues and eigen n-tuples of the matrix A, respectively.
The eigenvalue problem is then to find solutions to the equation

(A—71)-t=0. (A.48)

This is a system of linear equations for the elements of the n-tuple t. For the case
of n = 3 it may be written in the form:

(A — At +Aph + A3 =0,
Asity + (Ap — A)ta + Axsts = 0,
Azt + Astr + (A33 — i)l3 =0. (A.49)

The standard approach to the solution of a system of linear equations like (A.48)
is Cramer’s rule. For a system of three equations in three unknowns, (A.36) with
n=3,

ri =Ant +Aph + A,
1y = Agity + Anty + Apts,
r3 = Ast] + Aty + Azsts, (A.50)

Cramer’s rule provides the solution for the n-tuple t = [¢4, 1,, #3]:
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ri Ap Ap Ay o Az Ay Ap

rp Axpn Axp Ay 1y Ap Ay Axn n

r3 Az A3 A3z 13 Asz A3z Az 13
Hh = h = 13 = . A.Sl
! DetA = DetA ' DetA (A-51)

Considering the case n = 3 and applying Cramer’s rule to the system of
equations (A.49) we find that

0 Ap -4 An Az 0 A
0 Az Az — A Az 0 Az — 1
N T DaA—a] ? T DA "
An—4 Ap 0
Ay Ap—21 0
| An Axn 0
Det[A — 1]

which shows, due to the column of zeros in each numerator determinant, that the
only solution is that t = [0, 0, 0], unless Det{A—A1] = 0. If Det[A—11] = 0,
the values of t;, t,, and t; are all of the form 0/0 and therefore undefined. In this
case Cramer’s rule provides no information. In order to avoid the trivial solution
t = [0, 0, 0] the value of / is selected so that DetfA—A1] = 0. While the argument
was specialized to n = 3 in order to conserve page space, the result

Det[A — 1] =0 (A.52)
holds for all n. This condition forces the matrix [A—A1] to be singular and forces the
system of equations (A.48) to be linearly dependent. The further solution of (A.52)
is explored retaining the assumption of n = 3 for convenience, but it should noted
that all the manipulations can be accomplished for any 7 including the values of n of
interest here, 2, 3, and 6. In the case of n = 3, (A.52) is written in the form

An—/4 Ap Az
Az Ay — A Az =0, (A.53)
Az A Ap—4

and, when the determinant is expanded, one obtains a cubic equation for A:

3T\ + 1A — 1, =0 (A.54)
where
k=3
I =trtA = ZAkk = A = Ay +Ap + Az, (A.55)

k=1
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Ay Ap Ay A Ay Axp
1, = : 3, A.56
A ‘Am A ‘A31 As3 Az Asy (8.56)
Ay Ap Ajgs
I, = DetA = |Ay; Axn Ax|. (A.57)
A3z A Az

This argument then generates a set of three 4’s that allow the determinant (A.53)
to vanish. We note again that the vanishing of the determinant makes the set of
equations (A.49) linearly dependent. Since the system is linearly dependent, all of
the components of t cannot be determined from (A.49). Thus, for each value of 4
that is a solution to (A.54), we can find only two ratios of the elements of t, ¢, ,,
and 5. It follows that, for each eigen n-tuple, there will be one scalar unknown.

In this text we will only be interested in the eigenvalues of symmetric matrices.
In Sect. A.7 it is shown that a necessary and sufficient condition for all the
eigenvalues to be real is that that the matrix be symmetric.

Example A.5.5

Find the eigenvalues and construct the ratios of the eigen n-tuples of the matrix

18 6 6
A=|6 15 0 [. (A.58)
6 0 21

Solution: The cubic equation associated with this matrix is, from (A.54), (A.55),
(A.56), and (A.57),

23— 54)% +891) — 4,374 = 0, (A.59)

which has three roots, 27, 18, and 9. The eigen n-tuples are constructed using these
eigenvalues. The first eigen n-tuple is obtained by substitution of (A.58) and 1 = 27
into (A.49), thus

—9t) 4+ 61, + 613 = 0,6t — 12t, = 0,6¢; — 613 = 0. (A.60)

Note the linear dependence of this system of equations; the first equation is equal
to the second multiplied by (—1/2) and added to the third multiplied by (—1). Since
there are only two independent equations, the solution to this system of equations is
t) = t3 and t; = 2t,, leaving an undetermined parameter in the eigen n-tuple t.
Similar results are obtained by taking A = 18 and 4 = 9.

Problems

A.5.1. Show that the eigenvalues of the matrix
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are 11.345, 0.171, and —0.516.

b ¢
A.5.3. Show that the inverse of the matrix G of problem A.5.1 is given by

A.5.2. Construct the inverse of the matrix A where A = [a b} .

A.5.4. Show that the eigenvalues of the matrix G~ of problem A.5.3 are the
inverse of the eigenvalues of the matrix G of problem A.5.1.

A.5.5. Solve the matrix equation A”> = A-A = A for A assuming that A is non-
singular.

A.5.6. Why is it not possible to construct the inverse of an open product matrix,
a®Db?

A.5.7. Construct a compositional transformation based on the matrix G of problem
A.5.1 and the open product matrix,a ® b, where the n-tuplesarea = [1,2, 3]
andb = [4, 5, 6].

A.5.8. If Fis a square matrix and a is an n-tuple, show that a'.F' = Fa.

A.6 Vector Spaces

Loosely, vectors are defined as n-tuples that follow the parallelogram law of
addition. More precisely vectors are defined as elements of a vector space called
the arithmetic n-space. Let A" denote the set of all n-tuples, u = [uy, up, us, . . ., uxl,
v = [vy, V2, V3, .. ., VNI, etc., including the zero n-tuple, 0 = [0, 0, 0, .. ., 0], and the
negative n tuple -u = [—uy, —up, —Us, ..., —un]. An arithmetic n-space consists of
the set A" together with the additive and scalar multiplication operations defined by
u+v=_[u + vy, uy+ vy, Uz + v3, ... uny + vnJ and ou = [ouy, oo, ous, ...,
oun], respectively. The additive operation defined by u + v = [u; + vy, up + v,
Uz + vs, ... un + vnl is the parallelogram law of addition. The parallelogram law
of addition was first introduced and proved experimentally for forces. A vector is
defined as an element of a vector space, in our case a particular vector space called
the arithmetic n-space.

The scalar product of two vectors in n dimensions was defined earlier, (A.31).
This definition provided a formula for calculating the scalar product u-v and the
magnitude of the vectors u and v, |[u| = v/u-u and |v| = \/v-v. Thus one can
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consider the elementary definition of the scalar product below as the definition of
the angle (,

u-v=uyv; = [u||v|cos{ (A.61)

Recalling that there is a geometric interpretation of { as the angle between the
two vectors u and v in two or three dimensions, it may seem strange to have the cos{
appear in the formula (A.61), which is valid in n dimensions. However, since u-v
divided by |u|-|v| is always less than one and thus the definition (A.61) is
reasonable not only for two and three dimensions, but for a space of any finite
dimension. It is only in two and three dimensions that the angle { may be interpreted
as the angle between the two vectors.

Example A.6.1

Show that the magnitude of the sum of the two unit vectors e; = [1,0] and e, =
[cosa, sina] can vary in magnitude from O to 2, depending on the value of the angle o.

Solution: e; + e, = [1 + cosu, sina], thus |e1 + e2| = J2J(1 + cosa). It follows
that |e, + es| =2 when o = 0, |e, + e;| = 0 when o = 7, and e, + e,| = V2
when o = 7/2. Thus the sum of two unit vectors in two dimensions can point in any
direction in the two dimensions and can have a magnitude between 0 and 2.

A set of unit vectors e;,i = 1,2,.. ., n, is called an orthonormal or cartesian basis
of the vector space if all the base vectors are of unit magnitude and are orthogonal to
each other, e;-¢; = 0;; for 7, j having the range n. From the definition of orthogonality
one can see that, when i # j, the unit vectors e; and e; are orthogonal. In the case
where i = j the restriction reduces to the requirement that the e;’s be unit vectors.
The elements of the n-tuples v = [vy, v,, v3, .. ., v,] referred to an orthonormal basis
are called cartesian components. An important question concerning vectors is the
manner in which their components change as their orthonormal basis is changed. In
order to distinguish between the components referred to two different bases of a
vector space we introduce two sets of indices. The first set of indices is composed of
the lowercase Latin letters i, j, k, m, n, p, etc. which have the admissible values 1,2, 3,
... n as before; the second set is composed of the lowercase Greek letters o, f3, 7, 0,
... etc. whose set of admissible values are the Roman numerals I, I, II, . . ., n. The
Latin basis refers to the base vectors e; while the Greek basis refers to the base
vectors e,. The components of a vector v referred to a Latin basis are then v;,i = 1,2,
3, ..., n, while the components of the same vector referred to a Greek basis are v,,
o = LILII, ..., n. It should be clear that e, is not the same as ey, v, is not the same as
v, €tc., that ey, v, refer to the Latin basis while e;, and vy; refers to the Greek basis.
The terminology of calling a set of indices “Latin” and the other “Greek” is arbitrary;
we could have introduced the second set of indices as 7/, j/, k', m’, n’, p’, etc., which
would have had admissible values of 1’,2/,3/, .. ., n, and subsequently spoken of the
unprimed and primed sets of indices.

The range of the indices in the Greek and Latin sets must be the same since both
sets of base vectors e; and e, occupy the same space. It follows then that the two
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sets, e; and e,, taken together are linearly dependent and therefore we can write that
e; is a linear combination of the e,’s and vice versa. These relationships are
expressed as linear transformations,

e = Qi,e, and e, = 0, 'e;, (A.62)

where Q = [Q;,] is the matrix characterizing the linear transformation. For unam-
biguous conversion between the index and matrix notation the Latin index is fixed
in the place of the row index (i.e., first) and the Greek index is frozen in the place of
the column index (i.e., second) in the notation employed here. In the case of n = 3
the first of these equations may be expanded into a system of three equations:

e; = Oyer + Qen + Qumen,
e = Oorer + Oonren + Qomrem,
€3 = Qsier + Oznen + Osmen- (A.63)

If one takes the scalar product of e; with each of these equations and notes that
since the e,, o = I, I, III, form an orthonormal basis, then e;-e;; = e-e; = 0, and
QlI = €1-¢f = ereq, QZI = €€ = er-ey, and Q31 = €3-¢] = er-es. Repeating the
scalar product operation for e; | and e ;; shows that, in general, Q;, = e;-e, = e,-e;.
Recalling that the scalar product of two vectors is the product of magnitudes of each
vector and the cosine of the angle between the two vectors (A.61), and that the base
vectors are unit vectors, it follows that Q;, = e;-e, = e,-e; are just the cosines of
angles between the base vectors of the two bases involved. Thus the components of
the linear transformation Q = [Q;,] are the cosines of the angles between the base
vectors of the two bases involved. Because the definition of the scalar product
(A.61) is valid in n dimensions, all these results are valid in » dimensions even
though the two- and three-dimensional geometric interpretation of the components
of the linear transformation Q as the cosines of the angles between coordinate axes
is no longer valid.

The geometric analogy is very helpful, so considerations in three dimensions are
continued. Three-dimensional Greek and Latin coordinate systems are illustrated
on the left-hand side of Fig. A.1. The matrix Q with components Q;, = e;-e, relates
the components of vectors and base vectors associated with the Greek system to
those associated with the Latin system,

€ -€ € -€qx € -€
Q=[0u]=[ei-e]=|er-e er-en e -em|. (A.64)
€3-€ €3-€enq €3-eqm

In the special case when the e; and e; are coincident, the relative rotation
between the two observers’ frames is a rotation about that particular selected and
fixed axis, and the matrix Q has the special form
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€m
€3
e
e e 8
[} ey
0
e 1 e 2 e 2
€ e, ey
Fig. A.1 The relative rotational orientation between coordinate systems
1 0 0
Q=0 cosf —sinb|. (A.65)
0 sin0 cos0

This situation is illustrated on the left in Fig. A.1.

The matrix Q = [Q;,] characterizing the change from the Latin orthonormal
basis e, in an N-dimensional vector space to the Greek basis e, (or vice versa) is a
special type of linear transformation called an orthogonal transformation. Taking
the scalar product of e; with e; where e; and e; both have the representation (A.62),

¢ = Qise, and ¢ = QOjgep, (A.66)
it follows that
e - e; = 0ijj = Oi,0jpey - g = 0iy0jpdup = Qi Ojy- (A.67)

There are a number of steps in the calculation (A.67) that should be considered
carefully. First, the condition of orthonormality of the bases has been used twice,
e; - e; = J;; and e, - eg = J,4. Second, the transition from the term before the last
equal sign to the term after that sign is characterized by a change from a double sum
to a single sum over n and the loss of the Kronecker delta d,. This occurs because
the sum over f§ in the double sum is always zero except in the special case when
o = f3 due to the presence of the Kronecker delta §,4. Third, a comparison of the
last term in (A.67) with the definition of matrix product (A.20) suggests that it is a
matrix product of Q with itself. However, a careful comparison of the last term in
(A.67) with the definition of matrix product (A.20) shows that the summation is
over a different index in the second element of the product. In order for the last term
in (A.67) to represent a matrix product, the o index should appear as the first
subscripted index rather than the second. However, this « index may be relocated
in the second matrix by using the transposition operation. Thus the last term in
equation (A.67) is the matrix product of Q with Q" as may be seen from the first of
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equations (A.18). Thus, since the matrix of Kronecker delta components is the unit
matrix 1, it has been shown that

1=Q-Q". (A.68)

If we repeat the calculation of the scalar product, this time using e, and eg rather
than e; and e; then itis found that 1 = Q"-Q and, combined with the previous result,

1=Q-Q"=Q"-Q. (A.69)

Using the fact that Detl = 1, and two results that are proved in Sect. A.8,
DetA-B = DetA DetB, and DetA = DetA”, it follows from 1 = Q-Q" or 1 =
Q"-Q that Q is non-singular and DetQ = =£1. Comparing the matrix equations
1=Q-Q"and1 = QT-Q with the equations defining the inverse of Q, 1 = QQ!
= Q "Q, it follows that

Q'=qQ", (A.70)

since the inverse exists (DetQ is not singular) and is unique. Any matrix Q that
satisfies equation (A.69) is called an orthogonal matrix. Any change of orthonormal
bases is characterized by an orthogonal matrix and is called an orthogonal transfor-
mation. Finally, since Q' = Q the representations of the transformation of bases
(A.62) may be rewritten as

e = Qiaea and €, = Qi“ei. (A71)

Orthogonal matrices are very interesting, useful and easy to handle; their deter-
minant is always plus or minus one and their inverse is obtained simply by comput-
ing their transpose. Furthermore, the multiplication of orthogonal matrices has the
closure property. To see that the product of two n by n orthogonal matrices is another
n by n orthogonal matrix, let R and Q be orthogonal matrices and consider their
product denoted by W = R-Q. The inverse of W is givenby W' = Q "R ' and
its transpose by WT = Q"-R”. Since R and Q are orthogonal matrices, Q "R~ =
Q"R it follows that W' = W and therefore W is orthogonal. It follows then
that the set of all orthogonal matrices has the closure property as well as the
associative property with respect to the multiplication operation, an identity element
(the unit matrix 1 is orthogonal), and an inverse for each member of the set.

Here we shall consider changing the basis to which a given vector is referred.
While the vector v itself is invariant with respect to a change of basis, the
components of v will change when the basis to which they are referred is changed.
The components of a vector v referred to a Latin basis are thenv,,i = 1,2, 3, ..., n,
while the components of the same vector referred to a Greek basis are v, o = I, II,
III, . . ., n. Since the vector v is unique,

V = Vie; = V,€,. (A.72)
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Substituting the second of (A.71) into the second equality of (A.72) one obtains
viei = QixVyei, (A.73)

which may be rewritten as
(vi — Qixva)e; = 0. (A.74)

Taking the dot product of (A.74) with e;, it follows that the sum over i is only
nonzero when i = j, thus

Vi = Qjava. (A75)

If the first, rather than the second, of (A.71) is substituted into the second
equality of (A.72), and similar algebraic manipulations accomplished, one obtains

Vj = Qjava. (A76)
The results (A.75) and (A.76) are written in the matrix notation using

superscripted (L) and (G) to distinguish between components referred to the Latin
or the Greek bases:

vb) — Q- V(G), v(G) — Q. vl (A.77)
Problems
A.6.1. Is the matrix
2 1 2
1
-|-1 -2 2
3
2 -2 -1

an orthogonal matrix?.
A.6.2. Are the matrices A, B, C, and Q, where Q = C-B-A, and where

cos® sin® O 1 0 0 cos? 0 —sin¥
A=|—sin® cos® 0|,B=[0 <cosf sinf|,C= 0 1 0
0 0 1 0 —sinf cosf sin? 0 cos¥

all orthogonal matrices?
A.6.3. Does an inverse of the compositional transformation constructed in prob-
lem A.5.7 exist?
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A.6.4. Is it possible for an open product of vectors to be an orthogonal matrix?
A.6.5. Transform the components of the vector v™) = [1, 2, 3] to a new (the
Greek) coordinate system using the transformation

11 33
= — 1 1
=2V 5 &
0 —v2 V2

A.7 Second Order Tensors

Scalars are tensors of order zero; vectors are tensors of order one. Tensors of order
two will be defined using vectors. For brevity, we shall refer to “tensors of order two”
simply as “tensors” throughout most of this section. For application in physical
theories, physicists generated the notion of a tensor, very similar to the notion of
a vector, but generalizing the vector concept. In classical dynamics the essential
concepts of force, velocity, and acceleration are all vectors; hence the mathe-
matical language of classical dynamics is that of vectors. In the mechanics of
deformable media the essential concepts of stress, strain, rate of deformation,
etc. are all second order tensors, thus, by analogy, one can expect to deal quite
frequently with second order tensors in this branch of mechanics. The reason for
this widespread use of tensors is that they enjoy, like vectors, the property of
being invariant with respect to the basis, or frame of reference, chosen.

The definition of a tensor is motivated by a consideration of the open or dyadic
product of the vectors r and t. Recall that the square matrix formed from r and t is
called the open product of the n-tuples r and t, it is denoted by r ® t, and defined by
(A.30) for n-tuples. We employ this same formula to define the open product of the
vectors r and t. Both of these vectors have representations relative to all bases in the
vector space, in particular the Latin and the Greek bases, thus from (A.72)

I =ri€ =1y, t =€ = igep. (A.78)

The open product of the vectors r and t, r ® t, then has the representation
r@t=rite; Qe = rytge,  eg. (A.79)
This is a special type of tensor, but it is referred to the general second order
tensor basis, ; ® e, or e, ® ez. A general second order tensor is the quantity

T defined by the formula relative to the bases e¢; ® e;, e, ® eg and, by implication,
any basis in the vector space:
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T =Tje; ® ¢j = T,pe, ® ep. (A.80)

The formulas (A.78) and (A.80) have similar content in that the vectors r and
t and the tensor T are quantities independent of base or coordinate system while the
components of r, t, and T may be expressed relative to any basis. In the formulas
(A.78) and (A.80), r, t, and T are expressed as components relative to two different
bases. The vectors are expressed as components relative to the bases e; and e,, while
the tensor T is expressed relative to the bases ¢; ® e; and e, ® eg. The tensor bases
€; ® ¢jand e, ® ep are constructed from the vector bases e; and e,.

Example A.7.1

If the base vectors ey, e,, and e3 are expressed as e; = [1, 0, 01%, e, = [0, 1, 01%, and
e; = [0,0, 1]T, then it follows from (A.77) thatv = v;e; and we can express v in the form

1 0 0
v=vi |0 4+wv|1|4+v3|[0]. (A.81)
0 0 1

Create a similar representation for T given by (A.80) for n = 3.

Solution: The representation for T given by (A.80), T = Tj; ¢; ® e;, involves the
base vectors e; ® e, e; ® e, etc. These “base vectors” are expressed as matrices of
tensor components by

1 0 0 01 0
er®e;r =10 0 0,e;®e; =10 0 0,
|10 0 O] 0 0 0
[0 0 0]
eo®er=11 0 0],etc. (A.82)
|0 0 0]

+ T3y

+ T3 +T33
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The components of the tensor T relative to the Latin basis, ™ = [T3], are
related to the components relative to the Greek basis, T® = [T,p], by

V=Q-T9.QTand T® =Q"-TW . Q. (A.83)

These formulas relating the components are the tensorial equivalent of vectorial
formulasv® = Q - v andv(® = QT . v L) given by (A.77), and their derivation is
similar. Flrst, substitute the second of (A.66) into the (A.80) twice, once for each
base vector:

T = Tjje; ® ¢j = T,50:,0jp€i D e€;. (A.84)

Then gather together the terms referred to the basis e; ® e, thus
(Tij — Ta[gQig_Qjﬁ)ei ®e =0. (A.85)

Next take the scalar product of (A.85), first with respect to ey, and then with
respect to e;,. One finds that the only nonzero terms that remain are

Tk = OxaTopOmg- (A.86)

A comparison of the last term in (A.86) with the definition of matrix product
(A.20) suggests that it is a triple matrix product involving Q twice and T‘® once.
Careful comparison of the last term in (A.86) with the definition of matrix product
(A.20) shows that the summation is over a different index in the third element of the
product. In order for the last term in (A.86) to represent a triple matrix product, the
f index should appear as the first subscripted index rather than the second. How-
ever, this f index may be relocated in the second matrix by using the transposition
operation as shown in the first equation of (A.21). Thus the last term in equation
(A.86) is the matrix product of Q-T with Q. The result is the first equation of
(A.83). If the first, rather than the second, of (A.67) is substituted into the second
equality of (A.80), and similar algebraic manipulations accomplished, one obtains
the second equation of (A.83).

The word tensor is used to refer to the quantity T defined by (A.80), a quantity
independent of any basis. It is also used to refer to the matrix of tensor components
relative to a particular basis, for example ™ = [T3] or TO = [T,]. In both cases
“tensor” should be “tensor of order two,” but the order of the tensor is generally
clear from the context. A tensor of order N in a space of n dimensions is defined by

B=5Bj®¢®...0e=B,p .6, 0€¢3...Qe,. (A.87)

The number of base vectors in the basis is the order N of the tensor. It is easy to see
that this definition specializes to that of the second order tensor (A.80). The definition
of a vector as a tensor of order one is easy to see, and the definition of a scalar as a
tensor of order O is trivial.
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In the section before last, Sect. A.5 on Linear Transformations, the eigenvalue
problem for a linear transformation r = A-t was considered. Here we extend those
results by considering r and t to be vectors and A to be a symmetric second order
tensor, A = A™. The problem is actually little changed until its conclusion. The
eigenvalues are still given by (A.52) or, for n = 3 by (A.54). The values of three
quantities I, Il 5, Il 5, defined by (A.55), (A.56), (A.57) are the same except that
Ajp = Ajy, A3 = Asp and A3, = Asjs due to the assumed symmetry of A, A = AT,
These quantities may now be called the invariants of the tensor A since their value
is the same independent of the coordinate system chosen for their determination. As
an example of the invariance with respect to basis, this property will be derived for
In =tr A. Let T = A in (A.86), then set the indices Xk = m and sum from one to n
over the index k, thus

Ak = Top0xaQxp = Aupdap = Ay (A.88)

The transition across the second equal sign is a simple rearrangement of terms.
The transition across the second equal sign is based on the condition

OrxOxp = 0up (A.89)

which is an alternate form of (A.67), a form equivalent to Q".Q = 1. The transition
across the fourth equal sign employs the definition of the Kronecker delta and the
summation over f3. The result is that the trace of the matrix of second order tensor
components relative to any basis is the same number,

A = Ay (A.90)

It may also be shown that /1, and /Il 5 are invariants of the tensor A.
Example A.7.2 (An Extension of Example A.5.5)

Consider the matrix given by (A.58) in Example A.5.5 to be the components of a
tensor. Construct the eigenvectors of that tensor and use those eigenvectors to
construct an eigenbasis

18 6 6
A=1]6 15 0 |. (A.58) repeated
6 0 21

Solution: The eigenvalues were shown to be 27, 18, and 9. It can be shown that the
eigenvalues must always be real numbers if A is symmetric. Eigen n-tuples were
constructed using these eigenvalues. The first eigen n-tuple was obtained by
substitution of (A.58) and 4 = 27 into (A.49), thus

— 9t + 61, + 613 =0, 611 — 121, = 0, 61; — 613 = 0. (A.60) repeated
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These three conditions, only two of which are independent, gave #; = 3 and
t; = 2t,, leaving an undetermined parameter in the eigen n-tuple t. Now that t is a
vector, we can specify the length of a vector. Another consequence of the symmetry
of A is that these eigenvectors are orthogonal if the eigenvalues are distinct. Hence,
if we set the length of the eigenvectors to be one to remove the undetermined
parameter, we will generate an orthonormal basis from the set of three eigenvectors,
since the eigenvalues are distinct. If we use the normality condition #§ + 5 + 13 = 1
and the results that follow from (A.56), t; = 3 and t; = 2t,, one finds that

t==+ (%) (261 + e + 2(’:3) (A.91)

which shows that both t and —t are eigenvectors. This will be true for any
eigenvector because they are really eigen-directions. For the second and third
eigenvalues, 18 and 9, we find that

t=4 (%) (—e; —2e; +2e3) and t = + <%) (2e; — 2e; — e3), (A.92)

respectively. It is easy to see that these three eigenvectors are mutually orthogonal.

It was noted above that, since the eigenvectors constitute a set of three mutually
perpendicular unit vectors in a three-dimensional space, they might be used to form
a basis or a coordinate reference frame. Let the three orthogonal eigenvectors be the
base vectors ey, ey, and ey of a Greek reference frame. From (A.91) and (A.92) we
form a new reference basis for the example eigenvalue problem, thus

1 1
ey = (g) (261 +e + 263), ey = (g) (—91 —2e, + 263),
1
ey = <3> (2e; — 2e; — e3). (A.93)

It is easy to verify that both the Greek and Latin base vectors form right-handed
orthonormal systems. The orthogonal matrix Q for transformation from the Latin to
the Greek system is given by (A.64) and (A.93) as

1 2 -1 2
Q=[0i] = (§> ; —22 —% . (A.94)

Substituting the Q of (A.94) and the A specified by (A.56) into the second of
(A.83) with T = A,

A9 =QT- Al .q, (A.95)
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the following result is determined:

18 6 612 -1 2 27 0 0
A(G):G) -1 -2 2|6 15 0|1 -2 —2|=]0 18 0O
2 2 1|6 o0 21f|2 2 -1 0 0 9

(A.96)

Thus, relative to the basis formed of its eigenvectors a symmetric matrix takes on
a diagonal form, the diagonal elements being its eigenvalues. This result, which was
demonstrated for a particular case, is true in general in a space of any dimension n
as long as the matrix is symmetric. O

There are two points in the above example that are always true if the matrix is
symmetric. The first is that the eigenvalues are always real numbers and the second
is that the eigenvectors are always mutually perpendicular. These points will now
be proved in the order stated. To prove that / is always real we shall assume that it
could be complex, and then we show that the imaginary part is zero. This proves
that 4 is real. If 1 is complex, say u + iv, the associated eigenvector t must also
be complex and we denote it by t = p + iq. With these notations (A.48) can be
written

(A={u+iv}1)-(p+iq) =0. (A.97)
Equating the real and imaginary parts, we obtain two equations,
A-p=up—vq,A-q=vp+uq. (A.98)
The symmetry of the matrix A means that, for the vectors p and q,
P-Aq—q A-p=0=—v(p-pt+q-q), (A.99)

the last equality following from taking the scalar product of the two equations in
(A.98), the first with respect to q and the second with respect to p. There is only
one-way to satisfy —v(p-p + q-q), since the eigenvector cannot be zero and that is
to take v = 0, hence A is real. This result also shows that t must also be real.

We will now show that any two eigenvectors are orthogonal if the two associated
eigenvalues are distinct. Let A; and A, be the eigenvalues associated with the
eigenvectors n and m, respectively, then

A-n=/Amand A-m=i,m. (A.100)

Substituting the two equations (A.100) into the first and last equalities of (A.99)
we find that

(A4 — J)n-m = 0. (A.101)
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Thus, if 1; # 4,, then n and m are perpendicular. If the two eigenvalues are not
distinct, then any vector in a plane is an eigenvector so that one can always
construct a mutually orthogonal set of eigenvectors for a symmetric matrix.

Generalizing Example A.7.2 above from 3 to # it may be concluded that any n by
n matrix of symmetric tensor components A has a representation in which the
eigenvalues lie along the diagonal of the matrix and the off-diagonal elements
are all zero. The last expression in (A.96) is a particular example of this when
n = 3. If the symmetric tensor A has n eigenvalues 4;, then a quadratic form y may
be formed from A and a vector n-tuple x, thus

Y=x-A-x=x) (A.102)

If all the eigenvalues of A are positive, this quadratic form is said to be positive
definite and

Y =x-A-x=/x)>>0 for all x # 0. (A.103)

(If all the eigenvalues of A are negative the quadratic form is said to be negative
definite.) Transforming the tensor A to an arbitrary coordinate system the equation
(A.102) takes the form

Y =x-A-xX = Ajxixi>0 for all x # 0. (A.104)

A tensor A with the property (A.104), when it is used as the coefficients of a
quadratic form, is said to be positive definite. In the mechanics of materials there
are a number of tensors that are positive definite due to physics they represent. The
moment of inertia tensor is an example. Others will be encountered as material
coefficients in constitutive equations in Chap. 5.

Problems

A.7.1 Consider two three-dimensional coordinate systems. One coordinate system
is a right-handed coordinate system. The second coordinate system is
obtained from the first by reversing the direction of the first ordered base
vector and leaving the other two base vectors to be identical with those in the
first coordinate system. Show that the orthogonal transformation relating
these systems is given by

-1 0 O
Q=10 1 0
0 0 1
and that its determinant is —1.

A.7.2 Construct the eigenvalues and the eigenvectors of the matrix T of tensor
components where
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BRE 3v3 V3
T:E 3vV3 7 1
NI 8

A.7.3 Construct the eigenvalues and the eigenvectors of the matrix A of tensor
components where

A:H;\% 31\?}

A.7.4 Construct the eigenvalues and the eigenvectors of the matrix A of tensor
components where

1 13 2 4
A:§ 2 10 2
4 2 13

A.7.5 Construct the orthogonal transformation that carries the matrix B of Problem
A.7.3 into its diagonal form.

A.7.6 Construct the eigenvalues and the eigenvectors of the matrix A of tensor
components where

A=

(=N elo)

0 0
6 0
0 6

A.7.7 Construct the orthogonal transformation that carries the matrix A of Prob-
lem A.7.5 into its diagonal form.
A.7.8 Construct the eigenvalues and the eigenvectors of the matrix B of tensor
components where
1 2
B - [1 J |

What is the angle between the two eigenvectors?
A.7.9 Show that the eigenvalues of the matrix H where

1 2 3 4 5 6
2 7 8 9 10 11
H=— 3 8 12 13 14 15
4 9 13 16 17 18
5 10 14 17 19 20
6 11 15 18 20 21



366 Appendix A: Matrices and Tensors

are 73.227, 2.018. 1.284, 0.602, 0.162, and —1.294.

A.7.10 Consider the components of the tensor T given in problem A.7.2 to be
relative to a (Latin) coordinate system and denote them by T ‘™. Trans-
form these components to a new coordinate system (the Greek) using the
transformation

1 3 3

1 2 2
= — 1 1
=2V % &

0 —V2 V2

A.7.11 Show that if a tensor is symmetric (skew-symmetric) in one coordinate
system, then it is symmetric (skew-symmetric) in all coordinate systems.
Specifically show that if A = (A®)T, then A@ = (AT,

A.8 The Alternator and Vector Cross Products

There is a strong emphasis on the indicial notation in this section. It is advised that
the definitions (in Sect. A.3) of free indices and summation indices be reviewed
carefully if one is not altogether comfortable with the indicial notation. It would
also be beneficial to redo some indicial notation problems.

The alternator in three dimensions is a three index numerical symbol that
encodes the permutations that one is taught to use expanding a determinant. Recall
the process of evaluating the determinant of the 3 by 3 matrix A,

An A Az An An A
DetA =Det| Ayy Ay Az | = Ay Axp A
A3 An Asy Ayl An Asy
= A1AnAs — AnAnAx — AnAaAs + AndsiAs +AzA2nAs — AizAsz1Axn.
(A.105)

The permutations that one is taught to use expanding a determinant are
permutations of a set of three objects. The alternator is denoted by e;j and defined
so that it takes on values +1, 0, or —1 according to the rule:

eijk = 0  otherwise ,P = (A.106)

+1 if P is an even permuation { 1 2 3 }
—1 if P is an odd permuation

ij ok

where P is the permutation symbol on a set of three objects. The only +1 values of
eijx are ey»3, €31, and ezj,. It is easy to verify that 123, 231, and 312 are even
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permutations of 123. The only —1 values of e;ji are e13;, €321, and e;3. It is easy to
verify that 132, 321, and 213 are odd permutations of 123. The other 21 components
of ey are all zero because they are neither even nor odd permutations of 123 due to
the fact that one number (either 1, 2, or 3) occurs more than once in the indices (e.g.,
e12, = O since 122 is not a permutation of 123). One mnemonic device for the even
permutations of 123 is to write 123123, then read the first set of three digits 123, the
second set 231, and the third set 312. The odd permutations may be read off 123123
also by reading from right to left rather than from left to right; reading from the right
(but recording them then from the left, as usual) the first set of three digits 321, the
second set 213, and the third set 132.

The alternator may now be employed to shorten the formula (A.105) for
calculating the determinant;

emnpDetA = eijkAimAjnAkp = eijkAmiAnjApk- (A.107)

This result may be verified by selecting the values of mnp to be 123, 231, 312,
132, 321, or 213, then performing the summation over the three indices i, j, and k
over 1, 2, and 3 as indicated on the right-hand side of (A.107). In each case the
result is the right-hand side of (A.105). It should be noted that (A.107) may be used
to show DetA = DetA™.

The alternator may be used to express the fact that interchanging two rows or
two columns of a determinant changes the sign of the determinant,

Alm Aln Alp Aml AmZ Am3
€mnpDetA = |Aom A Azp =|An Amn As|. (A.108)
A3m A3n A3p Apl Ap2 Ap3

Using the alternator again may combine these two representations:

Aim Ain Aip
eijkemnpDetA = Ajm Aj Ajp . (A.109)
Akm Akn Akp

In the special case when A = 1 (A4;; = J;;), an important identity relating the
alternator to the Kronecker delta is obtained:

5im 5in 5ip
€ijk€mnp — 5j 5jn 5jp . (A.110)
5km 5kn 5kp

The following special cases of (A.110) provide three more very useful relations
between the alternator and the Kronecker delta:

emnk€ijk = OimOjn — SjmOin, Emike€ijk = 20im, €ijkeijk = 6. (A.111)
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The first of these relations is obtained by setting the indices p and k equal in
(A.110) and then expanding the determinant. The second is obtained from the first
by setting the indices n and j equal in first. The third is obtained from the second by
setting the indices 7 and m equal in second.

Example A.8.1

Derive the first of (A.111) from (A.110).
Solution: The first of (A.111) is obtained from (A.110) by setting the indices p and k
equal in (A.110) and then expanding the determinant:

Oim O Oik
€ijk€mnk = 5jm 5jn 5jk )
5km 5kn 3

one finds that
€ijkemnk = 30imOjn — OimOikOkn — 30indim + JinOkmOik + OikOjmOkn — ik OkmOin-
Carrying out the indicated summation over the index k in the expression above,
eijkemnk = 30im0in — OimOjn — 30indjm + 0indim + Oindjm — OimOin-
This is the desired result, the first of (A.111). O
Example A.8.2

Prove that Det(A-B) = DetA DetB.

Solution: Replacing A in (A.107) by C and selecting the values of mnp to be 123,
then (A.107) becomes

DetC = ¢;jCi1 CjpCi3z = €iixC1iCojC.
Now C is replaced by the product A-B using
Cit = AimBm1,Cjp = AjuBn2, Ci3 = AipBp3,
thus
DetA -B = eijkAimBmlAjanZAkpo3, or DetA-B = (eijkAimAjnAkp)BmanZBp37

where the order of the terms in the second sum has been rearranged from the first.
Comparison of the first four rearranged terms from the second sum with the right-
hand side of (A.107) shows that the first four terms in the sum on the right may

be replaced by enpDetA; thus applying the first equation of this solution again with
C replaced by B, the desired result is obtained:
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DetA - B = DetAemqnpBmi1Bn2Bps = DetA DetB. O

Consider now the question of the tensorial character of the alternator. Vectors
were shown to be characterized by symbols with one subscript, (second order)
tensors were shown to characterized by symbols with two subscripts; what is the
tensorial character of a symbol with three subscripts; is it a third order tensor?
Almost. Tensors are identified on the basis of their tensor transformation law.
Recall the tensor transformations laws (A.75) and (A.76) for a vector, (A.86) for
a second order tensor, and (A.87) for a tensor of order n. An equation that contains a
transformation law for the alternator is obtained from (A.107) by replacing A by the
orthogonal transformation Q given by (A.64) and changing the indices as follows:
m— o, n— f,p — 7y, thus

e,5,DetQ = ik 0i, QipOx; - (A.112)

This is an unusual transformation law because the determinant of an orthogonal
transformation Q is either +1 or —1. The expected transformation law, on the basis
of the tensor transformations laws (A.75) and (A.76) for a vector, (A.86) for a
second order tensor and (A.87) for a tensor of order n, is that DetQ = +1. DetQ
= +1 occurs when the transformation is between coordinate systems of the same
handedness (right-handed to right-handed or left-handed to left-handed). Recall that
a right (left) hand coordinate system or orthonormal basis is one that obeys the right
(left) hand rule, that is to say if the curl of your fingers in your right (left) hand fist is
in the direction of rotation from the first ordered positive base vector into the second
ordered positive base vector, your extended thumb will point in the third ordered
positive base vector direction. DetQQ = —1 occurs when the transformation is
between coordinate systems of the opposite handedness (left to right or right to
left). Since handedness does not play a role in the transformation law for even order
tensors, this dependence on the sign of DetQ and therefore the relative handedness
of the coordinate systems for the alternator transformation law is unexpected.

The title to this section mentioned both the alternator and the vector cross
product. How are they connected? If you recall the definition of the vector cross
product a x b in terms of a determinant, the connection between the two is made,

€ € €3
axb=|a a a3|=(a2b3 —braz)e| + (a3b; — bza;)e; + (a1b, — biay)es.
b1 by b;
(A.113)

In the indicial notation the vector cross product a X b is written in terms of an
alternator as

axbh= eijkaibjek, (A114)
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a result that may be verified by expanding it to show that it coincides with (A.113).
If ¢ = a x b denotes the result of the vector cross product, then from (A.114),

Cc = eijkaibjek, (C‘k = eijkaibj). (A115)

Is the vector ¢ = a x b a vector or a tensor? It is called a vector, but a second
order tensorial character is suggested by the fact that the components of a x b
coincide with the components of the skew-symmetric part of 2(a ® b), see (A.32).
The answer is that the vector ¢ = a X b is unusual. Although it is, basically, a
second order tensor, it can be treated as a vector as long as the transformations are
between coordinate systems of the same handedness. In that case equation (A.113)
shows that the alternator transforms as a proper tensor of order three, thus there is
no ambiguity in the representation (A.114) for a x b. When students first learn
about the vector cross product they are admonished (generally without explanation)
to always use right handed coordinate systems. This handedness problem is the
reason for that admonishment. The “vector” that is the result of the cross product of
two vectors has names like “axial vector” or “pseudo vector” to indicate its special
character. Typical axial vectors are moments in mechanics and the vector curl
operator (Sect. A.11).

Example A.8.3
Prove thata x b = —b X a.

Solution: In the formula (A.114) leti — j and j — i, thus
axb= ejikajbieh

Next change ej to —e;jj and rearrange the order of g; and b;, then the result is
proved:

axb= —eijkbiajek = —b x a. O

The scalar triple product of three vectors is a scalar formed from three vectors,

a-(b x ¢) and the triple vector product is a vector formed from three vectors, (r x

(p X q)). An expression for the scalar triple product is obtained by taking the dot

product of the vector ¢ with the cross product in the representation (A.114) fora x b,
thus

C- (a X b) = ejikajbick- (A116)

From the properties of the alternator it follows that

c-(axb)=a-(bxc)=b-(cxa)=—-a-(cxb)=-b-(axc)=—c-(bxa).
(A.117)
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If the three vectors a, b, and ¢ coincide with the three nonparallel edges of a
parallelepiped, the scalar triple product a - (b x ¢) is equal to the volume of the
parallelepiped. In the following example a useful vector identity for the triple vector
product (r x (p x q)) is derived.

Example A.8.4
Prove that (r x (p x q)) = (r-qp—(r-p)q.
Solution: First rewrite (A.114) with the change a — r, and again with the changes
a—pandb — q, whereb = (p X q)
r X b = ejxribjex,b = p X q = emnjPmyne;j,
Note that the second of these formulas gives the components of b as

bj = €mnjPmYn-

This formula for the components of b is then substituted into the expression for
(r x b) = (r x (p X q)) above, thus

r X (p X q) = €ijk€mnj’iPmn€k-

On the right-hand side of this expression for r x (p X q), e;jx is now changed to
—ejj and the first of (A.111) is then employed,

r X (p X q) = _(5im5kn - 5in5km)ripmqnek-

then summing over k and i

r x (p x q) = ripxgiex — ripigex = (r-q)p — (r - p)q. O

In the process of calculating area changes on surfaces of objects undergoing
large deformations, like rubber or soft tissue, certain identities that involve both
vectors and matrices are useful. Two of these identities are derived in the following
two examples.

Example A.8.5

Prove that A-a-(A-b x A-c) = a:(b x ¢) DetA where A is a 3 by 3 matrix and a, b,
and c¢ are vectors.

Solution: Noting the formula for the scalar triple product as a determinant
a day as

a-(bxc): b] b2 bg
C1 Cy C3
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and the representation for the multiplication of A times a,

Ay Ap A | | Aja) +Apax + Apas
A-a= |Ay Ap Axn||a| = |Ana +Axa +Apa; |,
A3l Ay A | a3 Aszra; + Axnar + Azzaz

then

A-a-(A-bxA-¢)
Anar +Anpay + Aizas  Asiay +Anay +Axas Asiar + Anar + Azsas
= Det | Aj1b) +Apby +Azbs  Ayby +Apby +Apbs  Aziby + Axnby + Aszbs
Ancr +Anpc +Apes Axicr +Anc +Axncs Aszicr +Anc +Azc

Recalling from Example A.8.1 that Det(A-B) = DetA DetB, it follows that the
previous determinant may be written as a product of determinants,

Ay Ap Ap ay, by c
Det| Ay Ayp Ay |Det|ay by ¢ | =a- (b X c)DetA,
A3z Az Az a3 by

which is the desired result. In the last step the fact that the determinant of the
transpose of a matrix is equal to the determinant of the matrix, DetA = DetA”, was
employed. O

Example A.8.6

Prove vector identity (A-b x A-c)-A = (b x c¢) DetA. where A is a 3 by 3 matrix
and b and c are vectors.

Solution: Recall the result of Example A8.5, namely that A-a-(A-b x A-c) = a-(b X
¢) DetA, and let a = ey, then e, and then e; to obtain the following three scalar
equations:

Apwy +Aywy + Azyws = qlDetA
Apw) +Apwy + Azppws = quetA
Apwy + Azwy + Azzws = q3DetA

where w = (A-b x A-¢),q = (b X c). These three equations many be recast in the
matrix notation,

Ay Ay Az | | wm q1
A Ay An | |wr| = | q |DetA,
Az A Az | | ws q3
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or AT-w = q DetA and since w = (A-b x A-¢c),q = (b X ¢),

AT(A-b x A-c) = (b x c)DetA, or
(A-bxA-c)-A=(bxc)DetA,

Problems

A.8.1. Find the cross products a x b and b x a of the two vectors a = [1, 2, 3]
and b = [4, 5, 6]. What is the relationship between a x b and b x a?

A.8.2. Show that if A is a skew-symmetric 3 by 3 matrix, A = —AT, then
DetA = 0.

A.8.3. Evaluate Det(a ® b).

A.8.4. Show DetA = DetA”.

A.8.5. Show DetQ = +1ifQTQ = Q-Q" =1.

A.8.6. Find the volume of the parallelepiped if the three nonparallel edges of a
parallelepiped coincide with the three vectors a, b, and ¢ where a = [1, 2, 3]
meters, b = [1, —4, 6] meters and ¢ = [1, 1, 1] meters.

A.8.7. Ifv =a x xand ais a constant vector, using the indicial notation, evaluate
the div v and the curl v.

A.9 The Moment of Inertia Tensor

The mass moment of inertia tensor illustrates many features of the previous sections
such as the tensor concept and definition, the open product of vectors, the use of unit
vectors and the significance of eigenvalues and eigenvectors. The mass moment of
inertia is second moment of mass with respect to an axis. The first and zeroth
moment of mass with respect to an axis is associated with the concepts of the center
of mass of the object and the mass of the object, respectively. Let dv represent the
differential volume of an object O. The volume of that object Vg is then given by

Vo = Jdv, (A.118)
0
and, if p(xy, x5, X3, £) = p(X, f) is the density of the object O, then the mass Mg of O
is given by
Mg = Jp(x, t) dv. (A.119)
0

The centroid Xenwoig and the center of mass X, of the object O are defined by

1 1
Xcentroid = 7 JXdV, Xem — Mi JXP (X, f) dv (A.120)
o O
o o
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where X is a position vector locating the differential element of volume or mass with
respect to the origin. The power of x occurring in the integrand indicates the order
of the moment of the mass—it is to the zero power in the definition of the mass of
the object itself—and it is to the first order in the definition of the mass center. The
mass moment of inertia, which is the second moment of mass, arises as a convenient
definition that occurs in the development of the conservation of angular momentum
for an object as an integral of the moment of the linear momentum of an element of
mass, dm, over the object. The expression for the angular momentum H of an object
O as the integral over its volume of the cross product of the position vector x and
the linear momentum pxdv = xdm of an element of mass dm, is given by

H = [x x pxdv. (4.22, repeated)
0

If the object is instantaneously rotating about an axis with an angular velocity w
and the rotational velocity x at the mass element, dm is given by

X = X X.

Substitution of this expression for the velocity into (4.22, repeated), an alternate
expression for H is obtained,

H= JX X (@ X x)pdv. (A.121)
0

The integrand in this new representation for H can be expressed differently using
the vector identity r x (p x q) = (r - q)p — (r - p)q proved in Example A.8.4, thus

XX (wxx)=(x-X)o— (X-0)x.

Incorporating this expression into the integrand in (A.121) it is easily seen that H
has the representation

H=w- J [(x-x)1 — (x ®x)]pdv. (A.122a)
0

This result is written more simply as
H=1 o, (A.122b)

where the definition of the mass moment of inertia tensor,

1= J[(x -x)1 — (x ®x)]pdv, (A.123)
0
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Fig. A.2 A diagram for the calculation of the mass moment of inertia of an object about the axis
characterized by the unit vector e; X is the vector from the origin O of coordinates to the element of
mass dm, X—(x-e)e is the perpendicular distance from the axis e to the element of mass dm

has been introduced; note that it is a symmetric tensor. The rotational kinetic energy
of the spinning object is then given by

Kot = (1/2)0 - 1- . (A.124)

A second perspective on the mass moment of inertia tensor, without the angular
momentum motivation, is the following: Let e represent the unit vector passing
through the origin of coordinates, then x—(x e)e is the perpendicular distance from
the e axis to the differential element of volume or mass at x (Fig. A.2). The second

or mass moment of inertia of the object O about the axis e, a scalar, is denoted by /¢,
and given by

Iee = J(x —(x-e)e)- (x— (x-e)e)p(x,t)dv. (A.125a)
0

This expression for /., may be changed in algebraic form by noting first that
(x —(x-ee) - (x— (x-e)e) =x-x — (x-e)* and

thus, from A(108),
le—e- J{(x 01— (x@x)}p(x, 1) dv| -e. (A.125b)
0
If the notation (A.123) for the mass moment of inertia tensor I is introduced,then

the representation for (A.125b) simplifies to

le=¢-1-e. (A.125¢)
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In this section the mass moment of inertia I has been referred to as a tensor. A short
calculation will demonstrate that the terminology is correct. From (A.123) is easy
to see that I may be written relative to the Latin and Greek coordinate systems as

I(L):J (™ - x1 = (x¥ @ xU)1p(x®), ) dv (A.1262)
o
and
19 = [{(® - x9)1 - 6 £ x9)}p(x . ) (A.126b)
o

respectively. The transformation law for the open product of x with itself can be
calculated by twice using the transformation law for vectors (A.77) applied to X,
thus

xWex=Q x92Q -x9=qQ- (X(G) ® X(G)) -QT. (A.127)

The occurrence of the transpose in the last equality of the last equation may be
more easily perceived by recasting the expression in the indicial notation:

X = 0ux{D 0 = 0ux{%x7 0. (A.128)

Now, contracting the open product of vectors in (A.127) above to the scalar
product, it follows that since Q - QT = QT - Q = 1(QixQip = dup),

6. x(0), (A.129)

Combining the results (A.127) and (A.129) it follows that the non-scalar
portions of the integrands in (A.126a) and (A.126b) are related by

(X1 (Y @ x)) = Q- (X X1 - (X9 9 x9)) QT

Thus from this result and (A.126a) and (A.126b) the transformation law for
second order tensors is obtained,

D=Q - 19.qQT, (A.130)

and it follows that tensor terminology is correct in describing the mass moment of
inertia.
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The matrix of tensor components of the moment of inertia tensor I in a three-
dimensional space is given by,

Ly Ly Iz
I= |1l Ihn Ixn|, (A.131)

I Dz I3

where the components are given by

I = J(x% +x3)p(x, 1) dv, I = ‘[(xf +x3)p(x, 1) dv,

o o
= [+ () v 2 = = [ ar)px, ) dv
o o
I3 = — J (X1X2)p(X, l‘) dv, I3 = — J ()C2X3),0(X, l) dv. (A.130)
o (]

Example A.9.1

Determine the mass moment of inertia of a rectangular prism of homogeneous
material of density p and side lengths a, b, and ¢ about one corner. Select the
coordinate systems so that its origin is at one corner and let a, b, ¢ represent the
distances along the x;, x,, x3 axes, respectively. Construct the matrix of tensor
components referred to this coordinate system.

Solution: The integrations (A.132) yield the following results:

I = J()é +23)p(x,t)dv = p J (3 + x3) dx;dxpdis

0 0
b,c
b
—ap [ (3 +3) dundes = 255 57 4 ),
0,0
b b
Iy = pc; C(az +c?), Iy = pa3 C(a2 + b%),
a.b b
—pabc
I =— J (x1x2)p(x,8)dv = —pc | (x1x7) dxydxy = P (ab)
0 0,0
—pabc —pabc
1y =2 ac), Iy = 2 (be),

4
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thus
4(b* + 2) —3ab —3ac
b N
1=° ?zc Bab M@+ —3be
—3ac —3bc 4(a* + b?)

Example A.9.2

In the special case when the rectangular prism in Example A.9.1 is a cube, that is to
say a = b = ¢, find the eigenvalues and eigenvectors of the matrix of tensor
components referred to the coordinate system of the example. Then find the matrix
of tensor components referred to the principal, or eigenvector, coordinate system.

Solution: The matrix of tensor components referred to this coordinate system is

8 -3 -3

M2
= 102“ 3 8 —3
3 3 8

The eigenvalues of I are M a*/6, 11Ma*/12, and 11M a*/12. The eigenvector
(1/V3)[1, 1, 1] is associated with the eigenvalue Mya*/6. Due the multiplicity of
the eigenvalue 11M,a*/12, any vector perpendicular to the first eigenvector (1/4/3)
[1, 1, 1] is an eigenvector associated the multiple eigenvalue 11Mqa*/12. Thus
any mutually perpendicular unit vectors in the plane perpendicular to the first
eigenvector may be selected as the base vectors for the principal coordinate system.
The choice is arbitrary. In this example the two perpendicular unit vectors (1/v2)
[—1, 0, 1] and (1/V6)[1, —2, 1] are the eigenvectors associated with the multiple
eigenvalue 11M,a*/12, but any perpendicular pair of vectors in the plane may be
selected. The orthogonal transformation that will transform the matrix of tensor
components referred to this coordinate system to the matrix of tensor components
referred to the principal, or eigenvector, coordinate system is then given by

1 1
&
Q=1-7% 9 &
4 =2 1
Ve o V6 V6

Applying this transformation produced the matrix of tensor components referred
to the principal, or eigenvector, coordinate system

2 0 0
M. 2
Q- 1.QT= 102“ 0 11 0. O
0 0 11
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Formulas for the mass moment of inertia of a thin plate of thickness ¢ and a
homogeneous material of density p are obtained by specializing these results. Let
the plate be thin in the x; direction and consider the plate to be so thin that terms of
the order #* are negligible relative to the others, then the formulas (A.132) for the
components of the mass moment of inertia tensor are given by

I = Pfjxgdxldxz, In = thx%dxldxz,
0

o
I33 :ptj X +X2 dxlde
o

I, = —le (X1XQ) dX1dX2, I3 = 0, Iz =0 (A.133)
o

When divided by pf these components of the mass moment of inertia of a thin
plate of thickness ¢ are called the components of the area moment of inertia matrix,

/ I
IlAlrea _ ﬁ = Jx%dxldXZ, Ifzrea = pzj J dJCldXZa

o
I
I3A3rea = % = J(X% +X§) dx;dx,,
o

I
e = ﬁ =— J (x122) dxydy, A = 0, I = 0. (A.134)
o

Example A.9.3

Determine the area moment of inertia of a thin rectangular plate of thickness ¢,
height £, and a width of base b, and a homogeneous material of density p. Specify
precisely where the origin of the coordinate system that you are using is located and
how the base vectors of that coordinate system are located relative to the sides of the
rectangular plate.

Solution: The coordinate system that makes this problem easy is one that passes
through the centroid of the rectangle and has axes that are parallel to the sides of the
rectangle. If the base b is parallel to the x; axis and height 4 is parallel to the x, axis
then the integrations (A.134) yield the following results:

bh3 IAred o hb3 IAred o bh

127 12 12

IAred

(0> + 1), I3 = 0,114 = 0,155 = 0. O

Example A.9.4

Determine the area moments and product of inertia of a thin right-triangular plate of
thickness #, height 4, and a width of base b, and a homogeneous material of density p.
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Let the base b be along the x; axis and the height / be along the x; axis and the sloping
face of the triangle have end points at (b, 0) and (0, /). Determine the area moments
and product of inertia of the right-triangular plate relative to this coordinate system.
Construct the matrix of tensor components referred to this coordinate system.

Solution: The integrations (A.134) yield the following results:

h
bh®
e = ngdxldx2 = Jb(l — )b =2 By =

w
12
o 0

h
! 1) 2 b2
Igea == J (x1x2) dxydxy = —(§> Jbz(l _E> Xodxy = _<7 ,
o 0

thus the matrix to tensor components referred to this coordinate system is

[area _ bl [ 2h? —bh]

T 24| —hb 22

Example A.9.5

In the special case when the triangle in Example A.9.4 is an isosceles triangle, that
is to say b = h, find the eigenvalues and eigenvectors of the matrix of tensor
components referred to the coordinate system of the example. Then find the matrix
of tensor components referred to the principal, or eigenvector, coordinate system.

Solution: The matrix of tensor components referred to this coordinate system is

IArea :% 2h2 —bh
24 | —hb 2K |

The eigenvalues of I are 4*/8 and 4*/24. The eigenvector (1/¥2)[1, —1] is
associated with the eigenvalue h*/8 and the eigenvector (1/y2)[1, 1] is associated
with the eigenvalue /4*/24. The orthogonal transformation that will transform the
matrix of tensor components referred to this coordinate system to the matrix of
tensor components referred to the principal, or eigenvector, coordinate system is
then given by

1 1 1
=51
Applying this transformation produced the matrix of tensor components referred
to the principal, or eigenvector, coordinate system
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1 o
JArea . T - °
Q-I"™-Q 24[0 3} .

The parallel axis theorem for the moment of inertia matrix I is derived by
considering the mass moment of inertia of the object O about two parallel axes,
I.c about e and I about €. I is given by

log =¢€ -1 -¢, (A.135)
where the moment of inertia matrix I’ is given by

I = J{(X’ X = (X @x)}pX,1)dv. (A.136)
0

Let d be a vector perpendicular to both e and €’ and equal in magnitude to the
perpendicular distance between e and €, thus X'’ = x + d, e.d = 0, and ¢'-d = 0.
Substituting X' = x + d in I, it follows that

I’:J{(x-x—i—d-d—|—2x~d)1}p(x,t)dv
0

—J{(x®x+d®d+d®x+x®d)}p(x,t)dv (A.137)
0

or if (A.137) is rewritten so that the constant vector d is outside the integral signs,

I'= IJ{(X -x)p(x,t)dv+1(d - d) Jp(x, fHdv+1 <2d . JX)p(X, t)dv

0 o 0

— J{(X@X)p(x, Hdv—(d®d) Jp(x, f)dv — d®JXp(x, t)dv — (pr(x t) dv) ®d

o o 0 0

then recalling the definitions (A.119) of the mass M of O and (A.120) of the center
of mass X, of the object O, this result simplifies to

I'=1+{(d-d)1 - (d®d)}Mo + 2Mo1(Xem - d) — Mo(d ® Xem + Xem @ d).
(A.138)

Thus, when the origin of coordinates is taken at the center of the mass, it follows
that x.;, = 0 and

I =T+ {(d-d)1—(dod)}Mo. (A.139)
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In the special case of the area moment of inertia this formula becomes
I' = Leentroid + {(d - d)1 — (d ® d)}A, (A.140)
where the I are now the area moments of inertia and the mass of the object Mg has
been replaced by the area of the thin plate A.

Example A.9.6

Consider again the rectangular prism of Example A.9.1. Determine the mass
moment of inertia tensor of that prism about its centroid or center of mass.

Solution: The desired result, the mass moment of inertia about the centroidal axes is
the I, in (A.139) and the moment of inertia about the comer, I, is the result
calculated in Example A.9.1,

4(b* + ?) —3ab —3ac

b

I = % 3ab A+ —3be
—3ac —3bc 4(a® + b?)

The formula (A.139) is then written in the form
Icm == I/ - {(d . d)l - (d ® d)}Mo,

where M, = pabs. The vector d is a vector from the centroid to the corner,

1
d=— (E) (ae1 + be, + 083).

Substituting I and the formula for d into the equation for I above, it follows that the
mass moment of inertia of the rectangular prism relative to its centroid is given by

b* +¢?) 0 0

be | (

Im = % 0 (a® + ¢?) 0 . O
0 0 (a® + b?)

Example A.9.7

Consider again the thin right-triangular plate of Example A.9.4. Determine the area
moment of inertia tensor of that right-triangular plate about its centroid.

Solution: The desired result, the area moment of inertia about the centroidal axes is

the TA™ _ in (A.140) and the moment of inertia, I ...,

calculated in Example A.9.4,

about the corner is the result

. bh [ 2h —bh]

Area _ﬁ —hb 2D
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The formula (A.139) is then written in the form
Iﬁ:r?tioid = I;\rea - {(d ! d)l - (d ® d)}Aa

where 2A = b o.
The vector d is a vector from the centroid to the corner,

d=— G) (bey + hey).

Substituting I' and the formula for d into the equation for I .yoiq above, it
follows that the mass moment of inertia of the rectangular prism relative to its
centroid is given by

[Area @[2/12 bh]
centroid 72 | hb 2b2 .

Problems

A.9.1 Find the center of mass of a set of four masses. The form masses and their
locations are mass 1 (2 kg) at (3, —1), mass 2 (4 kg) at (4, 4), mass 3 (5 kg) at
(—4, 4), mass 4 (1 kg) at (—3, —1).

A.9.2 Under what conditions does the center of mass of an object coincide with the
centroid?

A.9.3 Find the centroid of a cylinder of length L with a semicircular cross-section
of radius R.

A.9.4 Find the center of mass of a cylinder of length L with a semicircular cross-
section of radius R (R < 2L) if the density varies in according to the rule
p=po(1+ c(xz)z). The coordinate system for the cylinder has been
selected so that x5 is along its length L, x; is across its smallest dimension
(0 < x, < R) and x; is along its intermediate dimension (—R < x; < R).

A.9.5 Show that the moment of inertia matrix I is symmetric.

A.9.6 Develop the formulas for the mass moment of inertia of a thin plate of
thickness ¢ and a homogeneous material of density p. Illustrate these
specialized formulas by determining the mass moment of inertia of a thin
rectangular plate of thickness ¢, height A, and a width of base b, and a
homogeneous material of density p. Specify precisely where the origin of
the coordinate system that you are using is located and how the base vectors
of that coordinate system are located relative to the sides of the rectangular
plate.

A.9.7 In Example A.9.2 the occurrence of a multiple eigenvalue (7pa’/12) made
any vector perpendicular to the first eigenvector e; = (1/Y3)[1, 1, 1] an
eigenvector associated the multiple eigenvalue 7pa>/12. In Example A.9.2
the two perpendicular unit vectors e, = (1/¥2)[—1, 0, 1] and e3 = (1/V6)
[1, —2, 1] were selected as the eigenvectors associated with the multiple
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eigenvalue 7pa/12, but any two perpendicular vectors in the plane could
have been selected. Select two other eigenvectors in the plane and show that
these two eigenvectors are given by e;; = cosy e, + siny e3 and ey =
—siny e, + cosy e3. Let R be the orthogonal transformation between these
Latin and Greek systems,

1 0 0
R=|[0 cosy siny
0 —siny cosy

Show that when the Greek coordinate system is used rather than the Latin
one, the coordinate transformation that diagonalizes the I matrix is Q-R
rather than Q. Show that both R-Q and Q transform the I matrix into the
coordinate system in which it is diagonal,

a3

Q.I.QT:R.Q.I.QT.RT:'01_2

S O+

S 2O

NN o O
O

A.10 Connection to Mohr’s Circles

The material in the section before last, namely the transformation law (A.83) for
tensorial components and the eigenvalue problem for linear transformations, is
presented in standard textbooks on the mechanics of materials in a more elementary
fashion. In those presentations the second order tensor is taken to be the stress
tensor and a geometric analog calculator is used for the transformation law (A.83)
for tensorial components in two dimensions, and for the solution of the eigenvalue
problem in two dimensions. The geometric analog calculator is called the Mohr
circle. A discussion of the connection is included to aid in placing the material just
presented in perspective.

The special case of the first transformation law from (A.83), T = Q- T
QT is rewritten in two dimensions (n = 2) in the form ¢’ = Q-¢-QT; thus,
TV = ¢’ and T® = o, where the matrix of stress tensor components o, the
matrix of transformed stress tensor components ¢, and the orthogonal transforma-
tion Q representing the rotation of the Cartesian axes are given by

- |:O'x T)gy:|,o_/_ [Gx’ TX’}"],Q_ [COSH —sm@} (A.141)

Ty Oy Tay Oy sind cosf

Expansion of the matrix equation o/ = Q-¢-Q”,

a’:[a"" rxfy,]:[cow —smﬂ}[ax rx}}{cosQ sm@}7 (A.142)

Tyy Oy sin@ cosO ||ty 0, ]||—sin0 cosO
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and subsequent use of the double angle trigonometric formulas sin 26 = 2 sin 6
cos 6 and cos 20 = cos> 0 — sin” 0 yield the following:

ov = (1/2)(oy + 0y) + (1/2) (6, — 0) c0s 20 + T, 8in 20
oy = (1/2)(ox + ay) — (1/2)(0, — 6y) cos 20 — 1,y sin 20,
Tuy = —(1/2)(0, — ay) sin 20 + t,, cos 20. (A.143)

These are formulas for the stresses oy, oy, and Ty, as functions of the stresses
o, 0, and T,,, and the angle 20. Note that the sum of the first two equations in
(A.143) yields the following expression, which is defined as 2C,

2C =0y + 0y = 0, + 0. (A.144)

The fact that 6v + 0y = 6, + 0, is a repetition of the result (A.90) concerning
the invariance of the trace of a tensor, the first invariant of a tensor, under change of
basis. Next consider the following set of equations in which the first is the first of
(A.143) incorporating the definition (A.144) and transposing the term involving C
to the other side of the equal sign, and the second equation is the third of (A.143):

o¢ —C = (1/2)(0; — 6y) cos 20 + 1,y sin 20,
—(1/2)(0x — ay) sin 20 + 7,y cos 20.

/

Ty
If these equations are now squared and added we find that
(0v — C) + (1vy)* = R? (A.145)
where,
R? = (1/4)(0, — 0,)* + (1)" (A.146)

Equation (A.145) is the equation for a circle of radius R centered at the point
oy = C, ¢y = 0. The circle is illustrated in Fig. A.3.

The points on the circle represent all possible values of ¢, 6,y and t; they are
determined by the values of C and R, which are, in turn, determined by ¢,, ¢, and
T,y. The eigenvalues of the matrix ¢ are the values of the normal stress o, when the
circle crosses the o axis. These are given by the numbers C + R and C—R, as may
be seen from Fig. A.3. Thus Mohr’s circle is a graphical analog calculator for the
eigenvalues of the two-dimensional second order tensor o, as well as a graphical
analog calculator for the equation 6/ = Q-o-Q" representing the transformation of
components. The maximum shear stress is simply the radius of the circle R, an
important graphical result that is readable from Fig. A.3.

As a graphical calculation device, Mohr’s circles may be extended to three
dimensions, but the graphical calculation is much more difficult than doing the
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Fig. A.3 An illustration of
Mohr’s circle for a state of
stress

Fig. A.4 Mohr’s circles in
three dimensions

™y

|

Appendix A: Matrices and Tensors

calculation on a computer so it is no longer done. An illustration of three-
dimensional Mohr’s circles is shown in Fig. A.4. The shaded region represents
the set of points that are possible stress values. The three points where the circles
intersect the axis correspond to the three eigenvalues of the three-dimensional stress
tensor and the radius of the largest circle is the magnitude of the largest shear stress.
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Problems

A.10.1 Construct the two-dimensional Mohr’s circle for the matrix A given in
problem A.7.3.

A.10.2 Construct the three-dimensional Mohr’s circles for the matrix T given in
problem A.7.2.

A.11 Special Vectors and Tensors in Six Dimensions

The fact that the components of a second order tensor in n dimensions can be
represented as an n-by-n square matrix allows the powerful algebra of matrices to
be used in the analysis of second order tensor components. In general this use of the
powerful algebra of matrices is not possible for tensors of other orders. For example
in the case of the third order tensor with components Aj;jc one could imagine a
generalization of a matrix from an array with rows and columns to one with rows,
columns and a depth dimension to handle the information of the third index. This
would be like an n-by-n-by-n cube sub-partitioned into n* cells that would each
contains an entry similar to the entry at a row/column position in a matrix. Modern
symbolic algebra programs might be extended to handle these n-by-n-by-n cubes
and to represent them graphically. By extension of this idea, fourth order tensors
would require an n-by-n-by-n-by-n hypercube with no possibility of graphical
representation. Fortunately for certain fourth order tensors (a case of special interest
in continuum mechanics) there is a way to again employ the matrix algebra of n-by-
n square matrices in the representation of tensor components. The purposes of this
section it to explain how this is done.
The developments in this text will frequently concern the relationship between
symmetric second order tensors in three dimensions. The symmetric second order
tensors of interest will include stress and stress rate and strain and strain rate, among
others. The most general form of a linear relationship between second order tensors
in three dimensions involves a three-dimensional fourth order tensor. In general the
introduction of tensors of order higher than two involves considerable additional
notation. However, since the interest here is only in three-dimensional fourth order
tensors that relate three-dimensional symmetric second order tensors, a simple
notational scheme can be introduced. The basis of the scheme is to consider a
three-dimensional symmetric second order tensor also as a six-dimensional vector,
and then three-dimensional fourth order tensors may be associated with second
order tensors in a space of six dimensions. When this association is made, all of the
algebraic machinery associated with the linear transformations and second order
tensors is available for the three-dimensional fourth order tensors.

The first point to be made is that symmetric second order tensors in three
dimensions may also be considered as vectors in a six-dimensional space. The
one-to-one connection between the components of the symmetric second order

tensors T and the six-dimensional vector T is described as follows. The definition of
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a second order tensor in a space of three dimensions T is a special case of (A.80)
written in the form

T = Tije; ® ¢j = T,pe, D € (A.147)
or, executing the summation in the Latin system,

T=Tne Qe +Tne; e, +Tnes@e; +Tz(e;Qe3 +e3Qe;)
+Ti3(e;Res+e3®er) +Th(e@er+ e Xer). (A.148)

If a new set of base vectors defined by

. . . . 1
e =e Xe, =06, B=Qe;, &=—(E@Re3+e3Re)

V2

(e1@er+e,®e)

.1 1
és=——(e1@es+e3De), & =—=
5 \/E(l 3 3 l) 6 \/E

(A.149)

is introduced as well as a new set of tensor components defined by
Ty =T, Tr =T, T3 = Ts3,T4 = V23, Ts = V2T13,T6 = V2T12, (A.150)

then (A.148) may be rewritten as

T= Tlél + fzéz + T3é3 + f4é4 + T5é5 + T6é6, (A.151)

or
T="Té =T, (A.152)

which is the definition of a vector in six dimensions. This establishes the one-to-one
connection between the components of the symmetric second order tensors T and
the six-dimensional vector T.

The second point to be made is that fourth order tensors in three dimensions, with
certain symmetries, may also be considered as second order tensors in a six-dimensional
space. The one-to-one connection between the components of the fourth order tensors in
three dimensions C and the second order tensors in six dimensions vector C is described
as follows. Consider next a fourth order tensor ¢ in three dimensions defined by

C =Cijmei Q&j D ex D ey = Cyp5e, Qg D €, ® e, (A.153)

and having symmetry in its first and second pair of indices, Cjjxm = Cjikm and
Cijkm = Cijmk, but not another symmetry in its indices; in particular Cjjxy, is not
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equal to Cypij, in general. The results of interest are for fourth order tensors in three
dimensions with these particular symmetries because it is these fourth order tensors
that linearly relate two symmetric second order tensors in three dimensions. Due to
the special indicial symmetries just described, the change of basis (A.149) may be
introduced in (A.153) and may be rewritten as

C= Cijéi ® éj = Caﬁél ® éﬁ, (A.154)

where the 36 components of ¢jjkm,, the fourth order tensor in three dimensions (with
the symmetries Cjjum = Cjikm and Cijxm = Cijmi) are related to the 36 components of
Gij, the second order tensor in six dimensions by

Ci1 = 1111, = €022, (33 = €3333, 623 = €033, (32 = €3320,

C13 = €1133,C31 = €3311, C12 = C1122, €21 = €211,

Cas = 209323, C55 = 2C1313, Cos = 2C1212, Ca5 = 22313, Cs4 = 2C1323,

Ca6 = 202312, Coa = 2C1223, Cs6 = 2C1312, Ce5 = 2C1213,

én = V2ex11,¢1a = V2e1123, 51 = V21311, 615 = V2e113,

61 = V2c111,¢16 = V2¢1112,é42 = V2¢30, Caa = V200003,

Csp = \/56‘1322,5‘25 = \/§C2213,562 = \/§C1222;E26 = \/56‘2212,

éas = V2e333, Caa = V203303, 653 = V201333, G35 = V203313, -

63 = V2c1233, 36 = V2e3310.

(A.155)

Using the symmetry of the second order tensors, T = T™ and J = J7, as well as
the two indicial symmetries of cjjkm, the linear relationship between T and J,

T = CijkmJkms (A.156)
may be expanded to read

Ty = cundn + ciimda + ciiszfss + 2c1123023 + 21113013 + 2¢1112/12,

Ty = e 11 + 2222022 + 223333 + 202003023 + 202013013 + 202012712,

T33 = c33iid 11 + e300 + 333333 + 20332303 + 20331313 + 203312/ 12,

T3 = cas1J11 + €2322J22 + €2333J33 + 22323023 + 22313/ 13 + 22312712

T3 = cizud i + cizndae + 1333033 + 2¢1323J23 + 2¢131313 + 2¢1312/ 12,

Ty = cronidJ 11 + ci2o2J22 + C1233J33 + 2¢1203/23 + 21213/ 13 + 2¢1212/12-
(A.157)
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The corresponding linear relationship between T and J,

Ti = &J;, (A.158)
may be expanded to read

Ty = éndy + éida + ¢33 + Giada + é15Js + Ciels,
Ty = éandy + éxJa + Eaal3 + éaadu + EasJs + Cals,
Ts = é31d1 + éxJa + E33J3 + G4l + E3s)s + G,
Ty = éqdy 4 Canda + é43J3 + Caad s + Casds + Cals,
Ts = ésid1 + ésaJa + Esal3 + Esady + Ess)s + sl
Te = Co1d1 + Coada + Co3J3 + Coads + CosTs + Cosl6- (A.159)

The advantage to the notation (A.158) or (A.159) as opposed to the notation
(A.156) or (A.157) is that there is no matrix representation of (A.156) or (A.157)
that retains the tensorial character while there is a simple, direct, and familiar
tensorial representation of (A.158) or (A.159). The equations (A.158) or (A.159)
may be written in matrix notation as the linear transformation

T=C-J. (A.160)

Recalling the rule for the transformation for the components of vectors in a

coordinate transformation, (A.73), the transformation rule for Tor) may be written
down by inspection,

j(L) _ Q ) j(G) and j(G) _ QT ) j(L>, (A.161)

Furthermore, using the result (A.77), the second order tensor C in the space of six
dimensions transforms according to the rule

¢"=q ¢9.Q a9 =q"-c".q (A.162)

In short, the second order tensor C in the space of six dimensions may be treated
exactly like a second order tensor in the space of three dimensions as far as the usual
tensorial operations are concerned.

The relationship between components of the second order tensor in three
dimensions and the vector in 6 dimensions contained in (A.150) may be written

in n-tuple notation for T and J (T and J),
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. A A A A A AT T
T = [T13T27T37T47T57T6] = [T117T227T33a\/§T23)\/iT137\/§T12:| )

N N A A A A AT T
J=,J2,J3,04,05,06] = [J1171227133,@23,@137@12} . (A.163)

These formulas permit the conversion of three-dimensional second order tensor
components directly to six-dimensional vector components and vice versa. The v2
factor that multiplies the last three components of the definition of the six-dimensional
vector representation of the three-dimensional second order tensor, (A.150), assures
the scalar product of the two six-dimensional vectors is equal to the trace of the
product of the corresponding second order tensors,

T-J=T:J. (A.164)

The colon or double dot notation between the two second order tensors
illustrated in (A.164) is an extension of the single dot notation between the
matrices, A-B, and indicates that one index from A and one index from B are to
be summed over; the double dot notation between the matrices, A:B, indicates that
both indices of A are to be summed with different indices from B. As the notation
above indicates, the effect is the same as the trace of the product, A:B = tr(A-B).
Note that A:B = A":BT and A™:B = A:B” but that A:B # A™:B in general. This
notation is applicable for square matrices in any dimensional space.

The vector U = [1,1,1,0,0, O]T is introduced to be the six-dimensional vector
representation of the three-dimensional unit tensor 1. It is important to note that

the symbol U is distinct from the unit tensor in six dimensions that is denoted by 1.
Note that U - U = 3, U-T=uT and, using (A.164), it is easy to verify that T U=
T : 1 = tT. The matrix C dotted with U yields a vector in six dimensions

i+ Cin+Ci3

Co1 + Cn+ 3

2 ¢ 4 éx + 33

C.U= |Gttt A165
C41 + Cao + C43 ( )
Cs1 + Cs2 + Cs3

Ce1 + Co2 + Co3

and, dotting again with U, a scalar is obtained:

U-C-U=2¢y1 +Cia+ G134 Co1 + o + Coz + C31 + G320 + C33. (A.166)

The transformations rules (A.161) and (A.162) for the vector and second order
tensors in six dimensions involve the six-dimensional orthogonal tensor transfor-

mation Q The tensor components of Q are given in terms of Q by
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_Qill QIII QIIII Qllv QlV Q:lVl

QZI Q:le Q:Z[[[ Q:ZIV QZV QZVI
Qﬂ Q}II QBIH Q}W Q}V QBVI

QAI 9411 Q4IH QAAIV Q4V Q4Vl

QSI QSII QSIII QSIV QSV QSVI

Qﬁl QSH QGIH QGIV Q6V QGVI

o
Il

% O Ol V20mQum V201Qum V2010
0% O O3 V20m0xm V2020 V2020
0% O o V205103m V203103m V2031031

V20203 V200 V20umQsm  QanQsm + QsuQom QuQsm + Qa1Qam QuQan + O3Qan
V2010 vV20mQsn  V20mQsm  QuOsm + Q@ QuQsm + Qi@ QuQan + 0@
LV2010x v20mQm v2QmQun  QuQom + Q@ QuQom + Q@ QuQan + Ol

(A.167)

To see that Q is an orthogonal matrix in six dimensions requires some algebraic
manipulation. The proof rests on the orthogonality of the three-dimensional Q:

~ AT AT =~ ~
QQ'=Q"'Q=1,=2Q:Q =Q Q=1 (A.168)
In the special case when Q is given by
cosoe —sino O
Q= |sina cosa O], (A.169)
0 0 1
Q has the representation
cos? o sin? o 0 0 0 —v/2 cosasina
sin? o cos? o 0 0 0 V2 cosasin o
Q _ 0 0 1 0 0 0
0 0 0 cosa sina 0
0 0 0 —sina cosa 0
V2cosasina —+v/2cosasing 0 0 0 cos? o — sin%a
(A.170)

It should be noted that while it is always possible to find Q given Q by use of
(A.167), it is not possible to determine Q unambiguously given Q. Although Qs
uniquely determined by Q, the reverse process of finding a Q given Q is not unique
in that there will be a choice of sign necessary in the reverse process. To see this
nonuniqueness note that both Q = 1 and Q = —1 correspond to Q — 1. There are 9
components of Q that satisfy 6 conditions given by (A.168),. There are therefore
only three independent components of Q. However, there are 36 components of Q
that satisfy the 21 conditions given by (A.168), and hence 15 independent
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components of Q Thus, while (A.167) uniquely determines Q given Q, the
components of Q must be considerably restricted in order to determine Q given
Q, and selections of signs must be made.

Problems

A.11.1 Construct the six-dimensional vector T that corresponds to the three-
dimensional tensor T given by

RE 3v3 V3
T:5 3V3 7 1
V3 1 8

A.11.2 Prove that the relationship T-J=T:] (A.164) is correct by substitution
of components.

A.11.3 Construct the six-dimensional orthogonal transformation Q that
corresponds to the three-dimensional orthogonal transformation Q where

costy 0 —siny
Q= 0 1 0
sinfy 0 cosy

A.11.4 Construct the six-dimensional orthogonal transformation Q that corresponds
to the three-dimensional orthogonal transformation Q where

1 3 3

1 2 2
Q=3|-v3 % &%
0 —V2 V2

A.12 The Gradient Operator and the Divergence Theorem

The vectors and tensors introduced are all considered as functions of coordinate
positions xj, Xx,, X3, and time ¢. In the case of a vector or tensor this dependence is
written r(xy, x», X3, t) or T(x;, x5, x3, ), which means that each element of the vector
r or the tensor T is a function of x1, x,, x3, and t,. The gradient operator is denoted by
A and defined, in three dimensions, by

0 0 0
=— — —e3. A.171
v o e+ e e+ s €3 ( )
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This operator is called a vector operator because it increases the tensorial order
of the quantity operated upon by one. For example, the gradient of a scalar function
f(x1, x3, x3, 1) 1S a vector given by

of of of

vf(xlax27X3,t) = a—x_lel +8—x2e2 +a—x3e3.

(A.172)

To verify that the gradient operator transforms as a vector consider the operator
in both the Latin and Greek coordinate systems,

V(L)f(X(L),I) = %ei and V(G)f(x(G>7t) = ;{ €y, (A.173)

respectively, and note that, by the chain rule of partial differentiation,

of  Of Ox,

LT (A.174)
Now since, from (A.77),x(% = QT - x(), or index notation x, = Qj,x; it follows

that Q;, = % and, from (A.174), g_JJ; = Qi g—i or
v ) = Q- v (x® 1) (A.175)

This shows that the gradient is a vector operator because it transforms like a
vector under changes of coordinate systems.
The gradient of a vector function r (xy, x5, X3, ) is a second order tensor given by

V®F(X1,XQ,X3,Z‘) = %ei ® ej, (A.176)
where
5 8x1 8x2 6)63
i 87'2 81’2 87'2
Verl= |2 |92 92 o2 A.177
Ver [axj o0 Om 06 (A177)
Bxl 8x2 8X3

As this example suggests, when the gradient operator is applied, the tensorial order
of the quantity operated upon it increases by one. The matrix that is the open product
of the gradient and r is arranged in (A.177) so that the derivative is in the first (or row)
position and the vector r is in the second (or column) position. The divergence
operator is a combination of the gradient operator and a contraction operation that
results in the reduction of the order of the quantity operated upon to one lower than it
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was before the operation. For example the trace of the gradient of a vector function is
a scalar called the divergence of the vector, trff/A ® r] = A r = divr,

V~r:diVl':@+ar2 Ors

—+—. Al
8x1 (9)(2 8x3 ( 78)

The divergence operation is similar to the scalar product of two vectors in that
the effect of the operation is to reduce the order of the quantity by two from the sum
of the ranks of the combined quantities before the operation. The curl operation is
the gradient operator cross product with a vector function r(x;, x,, x3, t), thus

€ € €3
— _ |0 0 9
V xr=curlr = o on ol (A179)

rn.nr2 r

A three-dimensional double gradient tensor defined by O = V ® V (trO = V?)
and its six-dimensional vector counterpart 0 (O U=u0= V?) are often conve-
nient notations to employ. The components of 0 are

. P P 9? P * 1"
o= | = =2
Ox20x370x37 " T Ox0x3” T T OxyOx3” T Ox10xz)

(A.180)

and the operation of O on a six-dimensional vector representation of a second order
tensor in three dimensions, O - T =trO - T, is given by

0-T= ox? x3 Ox3 Ox,0x3 O0x10x3 Ox10xy

(A.181)

The divergence of a second order tensor T is defined in a similar fashion to the
divergence of a vector; it is a vector given by

0Ty 0Ty,  0OTis 0Ty 0Ty 0T
T _ : ;
v <XI7X27X3J) (axl + 8x2 + 8X3>e1 + (6)(1 + 8x2 + 8X3>e2
+ (6x1 + 8)(?2 + 8)63 >e3'

(A.182)

The divergence theorem (also called Gauss’ theorem, Green’s theorem or
Ostrogradsky’s theorem, depending on the nationality) relates a volume integral
to a surface integral over the volume. The divergence of a vector field r(xy, x,, X3, f)
integrated over a volume of space is equal to the integral of the projection of the
field r(xy, x,, x3, £) on the normal to the boundary of the region, evaluated on the
boundary of the region, and integrated over the entire boundary
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normal to the surface

surface of
vector field

the volume,
JR

Fig. A.5 An illustration of the geometric elements appearing in the divergence theorem

JV-rdv: Jr-ndA7 (A.183)
R AR
where r represents any vector field, R is a region of three-dimensional space and OR
is the entire boundary of that region (see Fig. A.5). There are some mathematical
restrictions on the validity of (A.183). The vector field r(x;, x,, x3, ) must be
defined and continuously differentiable in the region R. The region R is subject to

mathematical restrictions, but any region of interest satisfies these restrictions. For
the second order tensor the divergence theorem takes the form

JV-Tdv: JT~ndA. (A.184)
R IR
To show that this version of the theorem is also true if (A.183) is true, the
constant vector c is introduced and used with the tensor field T(x1, x,, x3, ) to form a
vector function field r(x;, x,, x3, f), thus
r=c-T(x,x,x3,1). (A.185)
Substitution of (A.185) into (A.183) for r yields
JV-(c-T)dv:Jc-T-ndA, (A.186)
R OR

and, since c is a constant vector, (A.186) may be rewritten as

c JV-(T)dv—JT-ndA =0. (A.187)

R OR
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This result must hold for all constant vectors ¢, and the divergence theorem for
the second order tensor, (A.184), follows.
Stokes theorem relates line integrals to surface integrals,

Jva.dA:jEv.dx, (A.188)

A 0A

specifically, it relates the surface integral of the curl of a vector field v over a surface
A in Euclidean three-space to the line integral of the vector field over its boundary,
OA. The closed curve of the line integral on 0A must have positive orientation, such
that dx points counterclockwise when the surface normal to OA points toward the
viewer, following the right-hand rule. Note that if v is the gradient of a scalar
function ¢, v = V¢, then (A.188) reduces to

0= f{)v-dx, (A.189)
0A

for all closed paths since V x V¢ = 0, that is to say that the curl of the gradient is
zero. It follows that when the vector field v satisfies the condition all closed paths, it
may be represented as the gradient of a potential, v = V¢. From (A.179) one can
see that V x v = 0 implies the three conditions

6‘v1 aV2 é)vl 8\/3 8V3 8vz 8\)1 an
—_—_——_——— = — —— = —— _— A.l
Ox, Ox; Ox3 Ox; Oxp Oxz or oxj  Ox;’ (A.190)

which are the conditions that insure that v - dx be an exact differential. Note that
these there conditions are equivalent to the requirement that the tensor V ® v be
symmetric,

Vav=(Vav)' . (A.191)

We return to this topic in the next section where exact differentials are
considered.

Problems

A.12.1 Calculate the gradient of the function f = ()(1)2()c2)2(x3)3 and evaluate the
gradient at the point (1, 2, 3).

A.12.2 Calculate the gradient of a vector function r (x, X, X3) = [(x)*(x2)2,
10, (03)°],

A.12.3  Calculate the divergence of a vector function r (x, xp, x3) = [(xl)z(x2)2,
X102, (63)%].

A.12.4 Calculate the curl of a vector function r (xy, x,, x3) = [(xl)z(xz)z, X1X2,

(x3)°1.
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A.12.5 Calculate the gradient of a vector function r(x;, x,, x3) = [(x2)2 + (x3)2,
@)? + ()%, 00)” + (@)%,

A.12.6 Calculate the divergence of a vector function r(x;, x;, x3) = [()cz)2 +
()%, @) + ()%, () + ()]

A.12.7 Calculate the curl of a vector function r(x;, xo, x3) = [(x2)*> + (x3)%
@) + () () + ().

A.12.8 Calculate the divergence of a vector function r(x;, x,, Xx3) = a X X, where
a is a constant vector.

A.129 If v=a x x and a is a constant vector, using the indicial notation,
evaluate the div v and the curl v.

A.12.10 Express the integral over a closed surface S, fV(x -X) - ndS, in terms of
the total volume V enclosed by the surface S.

A.13 The Index Notation: Review and Summary

The purpose of this section is to gather together most of the results of the previous
sections of this appendix relating to the indicial notation and its use. The important
concepts and definitions associated with the indicial notation were presented in the
earlier sections of this appendix in the places where they were necessary for the
logical development of those subjects, a process which left the material relative to
the indicial notation distributed amongst many locations. This section contains
nothing new other than the gathering together of these results related to the indicial
notation as well as the problems related to additional notation culled from the
earlier text. The subsection titles below are the important concepts associated with
the indicial notation.

The Kronecker Delta

A special symbol, the Kronecker delta é;j, is introduced to represent the
components of the unit matrix. When the indices are equal, i = j, the value of the
Kronecker delta is one, 11 = d, = ... = d,, = 1 and when they are unequal,
i # j, the value of the Kronecker delta is zero, 6, = 9 = ... = 6,1 = 01, = 0.

The Einstein Summation Convention

The product of two square matrices, A and B, with equal numbers of rows
(columns) is a square matrix with the same number of rows (columns). The matrix
product is written as A-B where A-B is defined by
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k=n
(A-B); = ZAikBkj; (A.20)
=

thus, for example, the element in the rth row and cth column of the product A-B is
given by

(A ’ B)rc =AnBic +ApBoc + - + ApBye.

The widely used notational convention, called the Einstein summation conven-
tion, allows one to simplify the notation by dropping the summation symbol in
(A.20) so that

(A -B),; = AikByj, (A.21)
where the convention is the understanding that the repeated index, in this case %, is
to be summed over its range of the admissible values from 1 to n. For n = 6, the
range of admissible values is 1-6, including 2, 3, 4, and 5. The two k indices are the

summation or dummy indices; note that the implied summation is unchanged if both
of the k’s are replaced by any other letter of the alphabet.

The Summation Index and Summands

A summation index is defined as an index that occurs in a summand twice and only
twice. Note that summands are terms in equations separated from each other by
plus, minus, or equal signs. The existence of summation indices in a summand
requires that the summand be summed with respect to those indices over the entire
range of admissible values. Note again that the summation index is only a means of
stating that a term must be summed, and the letter used for this index is immaterial,
thus Aj,Bpn has the same meaning as A By or ABy.

The Free Index

The other indices in the formula (A.21), the i and j indices, are called free indices.
A free index is free to take on any one of the admissible values in its range from 1 to n.
For example if n were 3, the free index could be 1, 2, or 3. A free index is formally
defined as an index that occurs once and only once in every summand of an equation.
The total number of equations that may be represented by an equation with one free
index is the range of the admissible values. Thus the equation (A.21) represents
n’ separate equations. For two 2 by 2 matrices A and B, the product is written as
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Ay Ap|[By Bx A2 B +ApnBy AnBia+AnBxn ]’
(A22)

A.B— |:All A12:| [311 312} B |:AllBll +AppBy ABip +AnB»

where, in this case, the products (A.20) and (A.21) stand for the n?=22=4
separate equations, the right-hand sides of which are the four elements of the last
matrix in (A.22).

The Matrix Transpose Indicial Notation

The dot between the matrix product A-B indicates that one index from A and one
index from B is to be summed over. The positioning of the summation index on the
two matrices involved in a matrix product is critical and is reflected in the matrix
notation by the transpose of the matrix. In the three equations below, (A.21), study
carefully how the positions of the summation indices within the summation sign
change in relation to the position of the transpose on the matrices in the associated
matrix product:

(A-B"); = AuBj, (AT - B);; = AiByj, (A" - BY);; = AyiBjx. (A.23)

The Linear Transformation

A system of linear equations representing a linear transformation,

r = A]lll +A1212 + - +A1n[na
ry = Az]f] —|—A22[2 + - +A2ntna

m=Anti +Aph + -+ Anly (A36)
may be contracted horizontally using the summation symbol, thus

ry = A,

ry = Aoly,

In = Apklx. (A.37)
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Introduction of the free index convention condenses this system of equations
vertically,

1 = Ailk. (A.38)

This result may also be represented in the matrix notation as a combination of n-
tuples, r and t, and a square matrix A,

r=A-t, (A.39)

where the dot between A and t indicates that the summation is with respect to one
index of A and one index of t.

The Composition of Linear Transformations

The composition of linear transformations is again a linear transformation. Consider
the linear transformation t = B-u, u — t (meaning u is transformed into t) which is
combined with the linear transformation (A.39)r = A-t,t — rtotransformu — r,
thusr = A-B-u, andif we let C = A-B, thenr = C-u. The result of the composition
of the two linear transformations, r = A-t and t = B-u, is then a new linear
transformation r = C-u where the square matrix C is given by the matrix product
A-B. To verify that it is, in fact, a matrix multiplication, the composition of
transformations is done again in the indicial notation. The transformation t = B-u
in the indicial notation,

fx = Bxmlm, (A.42)

is substituted into r = A-t in the indicial notation (A.38),

ri = AikBxmUm, (A.43)
which may be rewritten as
i = Cimlm, (A.44)
where C is defined by:
Cim = AiBm. (A.45)

Comparison of (A.45) with (A.20) shows that C is the matrix product of A and B,
C = A-B. The calculation from (A.42) to (A.45) may be repeated using the Einstein
summation convention.
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Orthogonal Transformations

The matrix Q = [Q;,] characterizing the change from the Latin orthonormal basis
e, in an N-dimensional vector space to the Greek basis e, (or vice versa) is a special
type of linear transformation called an orthogonal transformation. Taking the scalar
product of e; with e; where e; and e; both have the representation (A.62),

e; = Oj,e, and ¢; = Qjpep. (A.66)
it follows that
e - ¢; = 0ij = Oi,0jpey - g = 0iyQjpdup = Qi Ojy- (A.67)

There are a number of steps in the calculation (A.67) that should be considered
carefully. First, the condition of orthonormality of the bases has been used twice, e;
-ej = jj and e, - eg = J,p. Second, the transition from the term before the last equal
sign to the term after that sign is characterized by a change from a double sum to a
single sum over n and the loss of the Kronecker delta d,,5. This occurs because the sum
over f3 in the double sum is always zero except in the special case when o = f§ due to
the presence of the Kronecker delta 6,. Third, a comparison of the last term in (A.67)
with the definition of matrix product (A.20) suggests that it is a matrix product of Q
with itself. However, a careful comparison of the last term in (A.67) with the definition
of matrix product (A.20) shows that the summation is over a different index in the
second element of the product. In order for the last term in (A.67) to represent a matrix
product, the  index should appear as the first subscripted index rather than the second.
However, this o index may be relocated in the second matrix by using the transposition
operation. Thus the last term in equation (A.67) is the matrix product of Q with Q" as
may be seen from the first of equations (A.18). Thus, since the matrix of Kronecker
delta components is the unit matrix 1, it has been shown that

1=Q-Q". (A.68)

A transformation Q satisfying (A.68) is to be an orthogonal transformation, its
inverse is equal to its transpose, Q ' = Q.

Proof of Invariance for the Trace of a Matrix

As an example of the invariance with respect to basis, this property will be derived
for/, = tr A.Let T = A in (A.86), then set the indices X = m and sum from one to
n over the index k, thus

Axk = ToupQxaQxp = Aupdup = Agy- (A.88)
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The transition across the second equal sign is a simple rearrangement of terms.
The transition across the second equal sign is based on the condition

OxaOxp = 0up (A.89)

which is an alternate form of (A.68), a form equivalent to Q".Q = 1. The transition
across the fourth equal sign employs the definition of the Kronecker delta and the
summation over f3. The result is that the trace of the matrix of second order tensor
components relative to any basis is the same number,

Ak = Ay (A.90)

The Alternator and the Permutation Symbol

The alternator is denoted by e;j and defined so that it takes on values +1, 0, or —1
according to the rule:

+1 if P is an even permuation
eiik = ¢ 0 otherwise P = {

1. 2 3 }, (A.1006)
—1 if P is an odd permuation

i j k

where P is the permutation symbol on a set of three objects. The only +1 values of
eijx are ey»3, €31, and ezp,. It is easy to verify that 123, 231, and 312 are even
permutations of 123. The only —1 values of e are e13,, €351, and e;;3. It is easy to
verify that 132, 321, and 213 are odd permutations of 123. The other 21 components
of e;ji are all zero because they are neither even nor odd permutations of 123 due to
the fact that one number (either 1, 2, or 3) occurs more than once in the indices (e.g.,
e12> = 0 since 122 is not a permutation of 123). One mnemonic device for the even
permutations of 123 is to write 123123, then read the first set of three digits 123, the
second set 231, and the third set 312. The odd permutations may be read off 123123
also by reading from right to left rather than from left to right; reading from the right
(but recording them then from the left, as usual) the first set of three digits 321, the
second set 213, and the third set 132.

The Alternator and Determinants

The alternator may now be employed to shorten the formula (A.105) for calculating
the determinant;

emnpDetA = eijkAimAjnAkp = eijkAmiAnjApk~ (A.107)
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This result may be verified by selecting the values of mnp to be 123, 231, 312,
132, 321, or 213, then performing the summation over the three indices i, j, and k
over 1, 2, and 3 as indicated on the right-hand side of (A.107). In each case the
result is the right-hand side of (A.105). It should be noted that (A.107) may be used
to show DetA = DetA™.

The alternator may be used to express the fact that interchanging two rows or
two columns of a determinant changes the sign of the determinant,

Alm Aln Alp Aml Am2 Am3
emnpDetA: Azm Azn Azp = Anl An2 An3 . (A.108)
A3m A3n A3p Apl Ap2 Ap3

Using the alternator again may combine these two representations:

Aim Ain Aip
CijempDetA = | Aim  Ajn  Ajp |. (A.109)
Akm Akn Akp

An Important Identity

In the special case when A =1 (A;; = J;;), an important identity relating the
alternator to the Kronecker delta is obtained using (A.109):

5im (Sin 5ip
€ijk€mnp = 5jm 5jn 5j . (A.110)
5kn 5kn 5kp

The following special cases of (A.110) provide three more very useful relations
between the alternator and the Kronecker delta:

emnk€ijk = Oim0in — OjmOin, CmjkCijk = 20im, €ijkeijk = O. (A.111)

The first of these relations is obtained by setting the indices p and k equal in
(A.110) and then expanding the determinant. The second is obtained from the first
by setting the indices n and j equal in the first. The third is obtained from the second
by setting the indices i and m equal in the second.

Example A.8.1
Derive the first of (A.111) from (A.110).

Solution: The first of (A.111) is obtained from (A.110) by setting the indices p and k
equal in (A.110) and then expanding the determinant:
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Oim  Oin  Oik
€ijkeémnk = | Ojm  Ojn Ok |,
5km 5kn 3

one finds that
€ijkemnk = 30im0jn — OimOikOkn — 30indim + OinOkmOik + JikOjmOkn — OikOkmOjn-
Carrying out the indicated summation over the index k in the expression above,
€ijkemnk = 30imOjn — OimOjn — 30inOjm + OinOjm + OinOjm — OimOin.

This is the desired result, the first of (A.111). O
Example A.8.2
Prove that Det(A-B) = DetA DetB.

Solution: Replacing A in (A.107) by C and selecting the values of mnp to be 123,
then (A.107) becomes

DetC = ¢;jCi1CjpCiz = €iixC1iC2Cax.
Now C is replaced by the product A-B using
Cit = AimBm1, Cip = AjnBr2, Cis = AipBp3,
thus
DetA -B = eijkAimBmlAjanzAkpo3, or DetA-B = (eijkAimAjnAkp)BmanzBpS,

where the order of the terms in the second sum has been rearranged from the first.
Comparison of the first four rearranged terms from the second sum with the right-
hand side of (A.107) shows that the first four terms in the sum on the right may be

replaced by enpDetA; thus applying the first equation of this solution again with C
replaced by B, the desired result is obtained:

DetA - B = DetAeqnpBmiBnBps = DetA DetB. O

The Tensorial Character of the Alternator

Vectors were shown to be characterized by symbols with one subscript, (second
rank) tensors were shown to be characterized by symbols with two subscripts; what
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is the tensorial character of a symbol with three subscripts; is it a third order tensor?
Almost. Tensors are identified on the basis of their tensor transformation law.
Recall the tensor transformations laws (A.75) and (A.76) for a vector, (A.86) for
a second order tensor and (A.87) for a tensor of order n. An equation that contains a
transformation law for the alternator is obtained from (A.107) by replacing A by the
orthogonal transformation Q given by (A.64) and changing the indices as follows:
m— o, n— f,p — 7, thus

esp,DetQ = eijk 0i, 0jn Oy - (A.112)

This is an unusual transformation law because the determinant of an orthogonal
transformation Q is either +1 or —1. The expected transformation law, on the basis
of the tensor transformation laws (A.75) and (A.76) for a vector, (A.86) for a second
order tensor and (A.87) for a tensor of order n, is that DetQ = +1. DetQ = +1
occurs when the transformation is between coordinate systems of the same hand-
edness (right handed to right handed or left handed to left handed). Recall that a
right (left) hand coordinate system or orthonormal basis is one that obeys the right
(left) hand rule, that is to say if the curl of your fingers in your right (left) hand fist is
in the direction of rotation from the first ordered positive base vector into the second
ordered positive base vector, your extended thumb will point in the third ordered
positive base vector direction. DetQQ = —1 occurs when the transformation is
between coordinate systems of the opposite handedness (left to right or right to
left). Since handedness does not play a role in the transformation law for even order
tensors, this dependence on the sign of DetQ and therefore the relative handedness
of the coordinate systems for the alternator transformation law, is unexpected.

The Cross Product of Vectors

In the indicial notation the vector cross product a x b is written in terms of an
alternator as

a x b = egaibjey, (A.114)

a result that may be verified by expanding it to show that it coincides with (A.113).
If ¢ = a x b denotes the result of the vector cross product, then from (A.114),

Cc = eijkaibjek, (Ck = eijkaibj). (AllS)
Example A.8.3

Prove thata x b = —b x a.

Solution: In the formula (A.114) leti — j and j — i, thus
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axb= ejikajbiek,

Next change ej to —e;jj and rearrange the order of g; and b;, then the result is
proved:

axb= —eijkbiajek =—b x a. O

Scalar Triple Product of Three Vectors

The scalar triple product of three vectors is a scalar formed from three vectors, a-
(b x ¢) and the triple vector product is a vector formed from three vectors, (r x (p
x )). An expression for the scalar triple product is obtained by taking the dot
product of the vector ¢ with the cross product in the representation (A.114) for
a X b, thus

C- (a X b) = ejikajbick- (A.l 16)
From the properties of the alternator it follows that

c-(axb)=a-(bxc)=b-(cxa)=-a-(cxb)=-b-(axc)
= —c- (b x a). (A.117)

If the three vectors a, b, and ¢ coincide with the three nonparallel edges of
a parallelepiped, the scalar triple product a - (b x ¢) is equal to the volume of the
parallelepiped. In the following example a useful vector identity for the triple vector
product (r x (p x q)) is derived.

Example A.8.4

Prove that (r x (p x q)) = (r-q)p—(r-p)q.

Solution: First rewrite (A.114) with the change a — r, and again with the changes
a— pandb — q,whereb = (p X q)

r X b = ejxribjex, b =p X q = eqjPmqnej;
Note that the second of these formulas gives the components of b as
bj = €mnjPmYn-

This formula for the components of b is then substituted into the expression for
(r x b) = (r x (p X q)) above, thus

r X (P X q) = €ijk€mnj’iPmn€k-
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On the right-hand side of this expression for r X (p X ), e;; is now changed to
—ejj and the first of (A.111) is then employed,

r X (p X q) = _(5im5kn - 5in5km)rimeInek;
then summing over k and /,

r X (p X q) = ripxgiex — ripigrex = (r-q)p — (r - p)q. a

Problems

A.3.1 Simplify the following expression by using the Einstein summation index
convention for a range of three:

0 = riwy + rawy + r3ws,
l// = (M1V1 “+ urvy + M3V3)(M1V1 “+ Urvy + Ll3V3),
¢ = AnxT + A + A + Appxixn + Ayxxa + Apsxins + Azpxxs

+ Ap3x3xy + Azpx3x;.

A.3.3 Prove that g—;‘ = 0jj .

A.3.9 Show that (A-B)" = BT-AT.

A.5.8 If F is a square matrix and a is an n-tuple, show that a' -F' = F-a.

A.8.2 Show that if A is a skew-symmetric 3 by 3 matrix, A = —AT, then
DetA = 0.

A.8.3 Evaluate Det(a ® b).

A8.4 Show DetA = DetA”.

A.129 If v=a x x and a is a constant vector, using the indicial notation,

evaluate the div v and the curl v.

A.14 Exact Differentials

In one dimension a differential dg = f(x) dx is always exact and, in two dimensions,
in order that a differential dg = a-dx be an exact differential in a simply-connected
2D region R of the x1, x, plane, it is necessary and sufficient that between a; and a,
there exists the relation

Bm aaz
— = A.192
Ox, 0Oxy ( )
(Note that the notation often used for this result is dg = M(x, y) dx + N(x, y) dy
leading to the condition %—’;” = % ). Continuing now with the considerations
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associated with Stokes theorem at the end of the section before last, in three
dimensions, a differential dg = v-dx is an exact differential in a simply-connected
3D region R of the xy, x,, x3 space if between the functions vy, v, and v5 there exist
the relations (A.190) or (A.192). If dg = v-dx is an exact differential in a simply-
connected 3D space, then from (A.189) the integral about any closed path in the
space is zero, and furthermore it follows that when the vector field v satisfies the
condition (A.189) all closed paths, it may be represented as the gradient of a
potential, v = V¢.

Having now built the idea of an exact differential from one to three dimensions,
we now extend it to six dimensions and the consideration a 6D work differential

dw =T - dE. (A.193)

In Chap. 6 it is shown that, in order that no work can be extracted from an elastic
material in a closed path, it is necessary for the work done in all closed paths to be
zero, §)T -dE = 0. (6.14H repeated)

Thus the 6D work differential (A.193) is an exact differential for an elastic
material. The conditions parallel to those in 3D, namely (A.190) and (A.191) are
that V ® T be symmetric,

ofi _ oty (A.194)
an OE;
or
VeaT=(V;oT), (A.195)

respectively. The parallel to the existence of a potential in 3D is the strain energy U
defined by (6.25H) and related to the stress and strain by (6.26H).

Problem

14.1 The conditions for an exact differential are (A.192) in 2D, (A.190) or (A.191)
in 3D, and (A.194) or (A.195) in 6D. What are the conditions for an
exact differential in 4D if the differential is denoted by dg = a-dx,
dq = aldxl + adeZ + a3dx3 + a4dx4?

A.15 Tensor Components in Cylindrical Coordinates

In several places use is made of cylindrical coordinates in the solutions to
problems in this text. The base vectors in curvilinear coordinates are not generally
unit vectors nor do they have the same dimensions. However local Cartesian
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coordinates called physical components of the tensors may be constructed if the
curvilinear coordinate system is orthogonal. Below, the standard formulas used in
this text for cylindrical coordinates are recorded. In the case when cylindrical
coordinates are employed, the vectors and tensors introduced are all considered as
functions of the coordinate positions r, 0, and z in place of the Cartesian
coordinates x, x,, and x3. In the case of a vector or tensor this dependence is
written v(r, 0, z, t) or T(r, 0, z, t), which means that each element of the vector v or
the tensor T is a function of r, 0, z, and . The gradient operator is denoted by A
and defined, in three dimensions, by

1
Vzger+jﬁe0+ 0

or r 00 9z (A-196)

where e,, ey, and e, are the unit base vectors in the cylindrical coordinate system.
The gradient of a scalar function f(xi, x,, x3, f) is a vector given by

8fe —1—1 afeg +alez. (A.197)

Vi=o T et a;

The gradient of a vector function v(r, 0, z, t) is given by

ov; l@vr Ov;

o r o0 oz
aVQ 1 8\)9 8\/9
v T_ | 2 Y% Y7 A.198
Ve or 1 a0 o ()
or r 00 Oz

The formula for the divergence of the vector v in cylindrical coordinates is
obtained by taking the trace of (A.198), trf[A ® v] = A-v = div v. The curl is the
gradient operator cross product with a vector function v(r, 0, z, f), thus

e € e
V x v =curlv = g g Q . (A.199)
or 00 0z

Vi 'V Vg

The form of the double gradient three-dimensional second order tensor defined
by O =V ® V (trO = V?) and its six-dimensional vector counterpart O(C) U
= trO = V?) have the following cylindrical coordinate representations:
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(19 (0 1 & &
ror\"or) roro0  oro:

2 2 2
o=[vev]=| Lo 1o 105 | (A.200)
r Orof 2 90> r 9200
1P *
oroz r 0z00 072
and
N 10 o\ 1 9* o2 1 & ? 1 0?
0= [ 8r< ) 2 802’822’\/_‘ \/_ \/_I oroo| ’ (A201)

and the operation of O on a six-dimensional vector representation of a second order
tensor in three dimensions, O - T = 0 : T = trO - T, is given by

O-T=

2 907 92 | Tr0z00  “oroz | “r oro”
(A.202)

0 [ 0T, 1 BTy 0°Ty 1 0Ty O*T,, 1 0Ty
r—— +2
or or

The divergence of a second order tensor T is defined in a similar fashion to the
divergence of a vector; it is a vector given by

oT, 10T, T, O 10T 0Ty,
T _(Zr, 2 :
V- T(0,2,0 (ar T az)e <8r 00 az>e"
(aTZr 1 9T, 8TZZ>

or r 00

(A.203)

The strain—displacement relations (3.52) are written in cylindrical coordinates as

_ Ou; 1 8149 B 10u, Ougp up
Err — E 7E99 80 Er@ ( 89 + E I‘)
Ou, B Oou, Ou; 1 Ou, Ouy
EZZ - EaErz - 5 (ar + E) 7E()z (V 60 + (9 )1 (A204)

and similar formulas apply for the rate of deformation-velocity tensor D, (3.33) if
the change of notation from E to D and u to v is accomplished. The stress equations
of motion (4.37) in cylindrical coordinates are
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aTrr 1 6Tr0 8Trz Trr - TO() ..
ooy Zm 00 d. =
or + r 00 oz r + pde = pus,
0Ty 10Tey OTe, T .
2z 20 o, =
or r 00 0z + r + pdo = P,
oT,, 10Ty, T, T, .
: % 124 pd, = pi,. (A.205)
r

o Tr 00 e

Problem

A.15.1 Calculate the components of the rate of deformation-velocity tensor D,
(3.33) in cylindrical coordinates.

A.16 Laplace Transform Refresher

The solutions to linear differential equations in time are often obtained by the use of
Laplace transforms and the Laplace transforms of discontinuous functions. Laplace
transforms provide a method for representing and analyzing linear systems using
algebraic methods. The Laplace transform variable ’s’ can directly replace the d/dt
operator in differential equations involving functions whose value at time zero is
zero. Most of the readers of this text will have been introduced to Laplace
transforms at some time in their past and find it convenient to have the salient
points about these transforms refreshed in their minds before solving the differen-
tial equations of this type.
The Laplace transform of a function f(¢), 0 < ¢ < oo, is defined by

L) =) = [ e ar (A206)
0

This integral is absolutely convergent if the function f{(¥) is of exponential order
o, that is to say if f(r) is continuous for 0 < # < oo and |[f(¢)|<ce™* where ¢ and a
are constants. The notation for the inverse Laplace transform of the function f(s) is

L™ Hf(9)} = £ (). (A.207)
The Laplace transforms of derivatives and integrals are some of the most useful

properties of the transform. If the function f(#) is of exponential order and the
derivative of f(¢) is continuous, then for s > o,

L{f' (1)} = sL{f(0)} = £(0) = sf (s) — £(0), (A.208)
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a result that, by repeated application, can be used to construct similar formulas for
higher order derivatives, for example,

L{f"(1)} = s"L{f (1)} — ' (0) — £(0). (A.209)

The Laplace transform of an integral is given by
L Jf (x)dx p =—f(s), (A.210)
s

for s > o. It follows that, for a function whose value at t = 0 is zero, and whose
higher order derivatives are zero at ¢ = 0, differentiation corresponds to multipli-
cation by s and integration corresponds to division by s. If the function f{(7) is of
exponential order, then

L{e™f(0)} = f(s + a), (A211)

for s > a—a, and if 1 (s) has derivatives of all orders for s > a,

F(s) = L= ()} or /™ () = L{(~0"F (1)} (A212)

In the solution of differential equations using the Laplace transform it is often
necessary to expand the transform into partial fractions before finding the inverse
transform. The rational function P(s)/Q(s), where Q(s) is a polynomial with n
distinct zeros, oy, %p,. . ., oy, and P(s) is a polynomial of degree less than n, can be
written in the form

P A A A
) _ A A A (A.213)
O(s) s—oy s—op S — Oy

where the A; are constants. The constants A; are determined by multiplying both
sides of the equation above by s — o; and letting s approach o, thus

o (s=w)P(s) L P(s) _ P(x)
A= 0w A 206 T /() 4214

Combining the two previous equations one may write

(A.215)

whose inverse Laplace transform is given by
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Table A.1 A very short table

Transform
of Laplace transforms function Object function Conditions
1/s 1 >0
1/(s —a) e >0
1/(s*> +a?) (1/a)sinat a#0, s>0
s/(s* +a?) cosat >0
1/(s(s + a)) (1/a)(1 —e ™) s>a
—1 P(S)} _ P<a1) ot P(an) Ot
L {Q(s) Q’(ocl)e +”'+Q’(ocn)e . (A.216)

The result above was obtained by using the Table A.1 to verify that
L (s —m) ™} = e

Example A.16.1

Problem: Solve the differential equation E —5y=¢*+4 for y(0) = O-using
Laplace transforms.
Solution: Noting that the Laplace transform of e % is HLG and that the Laplace

transform of the derivative of a function is equal to s times the Laplace transform of
the function minus the value of the function at t = 0, the Laplace transform of

G5y =¥ +4is s3(s) — 55(s) = 5+, thus

i(s) = Ss—12
YW =53 -5)
By partial fractions
1 4 L R
s6s—3)(s—5) 55 2(s—3) 10(s—5)
A 4 1 13
ys) =—

55 2(5—3) "0 =5)
Using £7'{(s —a) ™'} = e“, the inverse Laplace transform is

4 1, 13,
H=———= —e.
Y =—5-3¢ ¢

The convolution of the functions f{#) and g(7) is indicated by f(¢) * g(z) and
defined as the integral
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t

£(6) % () = j £(t - x)g(x) . (A217)

0

It can be shown that the convolution is commutative (f * g = g * f), associative
((fxg)«h=fx(gxh)), and distributive ( f*(g+h)=f«g+f=*h). The
Laplace transform of a convolution is the product of the Laplace transforms, thus

L{f (1) x g(1)} = f(5)&(s)- (A.218)

Example A.16.2

Problem: Solve the differential equation % — 5y = ¢(¢) for y(0) = 0 in the general
case where ¢(f) is not specified, other than it has a Laplace transform.

is - and that the Laplace
transform of the derivative of a function is equal to s times the Laplace transform of

the function minus the value of the function at ¢ = 0, the Laplace transform of
LSy = q(1) is s5(s) — 55(s) = G(s), thus 5(s) = L%
Observe that y(s) is the product of two transformed functions like those that

appear on the right-hand side of (A.218) above, thus from (A.218) one can see by
partial fractions that

Solution: Noting that the Laplace transform of e~

t
thus y(¢) = [e’Yg(x) dx. This is a general integral to the differential equation for
0

any function g(¢).

In the material above it was assumed for simplicity that the functions were
continuous in the interval 0 < ¢t < oco. However, one of the most attractive features
of using Laplace transforms is their simplicity in dealing with functions that contain
discontinuities. The unit or Heaviside step function A(z—¢,) is defined as O for ¢ < ¢,
and as 1 for ¢ > ¢,. Since the function jumps from the value O to the value 1 on
passage through ¢ = ¢, the approach of Ai(t—t,) to the value ¢, is therefore different
from below than it is from above,

h(z;) = lim h(t) = 0,h(t)) = lim h(r) = 1. (A.219)

o —
=>t, t—>t)

The function h(¢—t,) is multiple valued at ¢t = ¢, and its value there depends on
how the point ¢ = ¢, is approached. The Laplace transform of the discontinuous
function, because it integrates the function, removes the discontinuity, thus



416 Appendix A: Matrices and Tensors

oo
—st,

L{A(t — 1)} = J h(t — to)e'dr = J e dr = eT (A.220)
0 to

The derivative of the unit step function is the delta function 6(¢) which has the
value O for all values of  except t = t,,. The function may be viewed as the limit as ¢
tends to zero of a function that has the value 1/¢ between O and ¢ and is zero
everywhere else. These properties of d(¢) are then

w =0(t—t,),0(t — t,) = 0 for t # t,,and J(S(t— to)dr=1. (A.221)
0

If the delta function is multiplied by any other function f{), the product is zero
everywhere except at ¢ = 7, and it follows that

Jf (1)o(t — to) dt = f(t,). (A.222)
0

Example A.16.3

Problem: Use Laplace transforms to solve the ordinary differential equation
representing the standard linear solid (1.8) for F(s) as a function of %(s) and vice
versa assuming that F(07) and x(0™) are equal to zero. Then determine the creep
and relaxation functions from the result.

Solution: The Laplace transform of the differential equation for the standard linear
solid (1.8) is given by

F(s) sF(s)

KR Tk

= X(s) + tpsk(s). (A.223)

The solutions of this transformed equation for F(s), and for X(s), are

F(s) (1 +st5)_ o
—~ = mx(s) and X(s) =

(1 +s1y) ﬁ(s)

respectively. To obtain the creep function one sets F(#) = h(¢) in the second of the
equations above; thus by partial fractions

(1 +s10)
(1 + stR)

1 1
- T (A.225)
S

ki(s) = s(1+stg) (1 +s15)’

and to obtain the relaxation function one sets x(f) = A(¢) in the first of the equations
above, thus
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@_ (1 + stR) _ 1 LT
ko s(T4st)  s(I+st)  (1+s1,)

(A.226)

Executing the inverse Laplace transforms of %(s) given by (A.225) and F(s)
given by (A.226) using inverse transform results in Table A.l, the creep and
relaxation functions (1.10) and (1.11) are obtained.

A.17 Direct Integration of First Order Differential Equations

The ordinary differential equation representing the standard linear solid (2.8) may
be solved for F(f) given a specified x(¢#) by direct integration of (2.8), recognizing
that it is a first order ordinary differential equation. For the direct integration
method note that all solutions to the linear first order differential equation

dx
5, TP =al) (A.227)
are given by
(1) = (ef () d’) “ g(0)e) 7O%ar + c] : (A.228)

where C is a constant of integration (Kaplan 1958). If one sets p(f) = (1/tg) and ¢
(t) = (1/ktp)F + (1t /ktp)(dF/d?), then (2.8) may be rewritten in the form of the
differential equation (A.227) and it follows from (A.228) that

‘ t
! F
x(t) = (e—t/rF) (_) JF(t)ef/TFdl‘ + TxJ (((lj_tez/ert 4+ Ce !/,
0 0

kTF

For both the creep and the relaxation functions the constant C is evaluated using
the fact that the dashpot in the standard linear solid cannot extend in the first instant
so the deflection at ¢ = 0, x,, is due only to the deflection of the two springs in the
standard linear solid. The two springs must deflect the same amount, x,, thus the
initial force is F, = (k + kr)x,. This relationship may be rewritten in the form
F, = (ktg/t)x,, using definitions in (2.9). For the creep function the initial force,
F,, is taken to be one unit of force; thus the initial displacement is given by
x(0") = x, = 1,/ktg. For the relaxation function the initial displacement, x,, is
taken to be one unit of displacement; thus the initial force F, is given by F(0") =
F, = ktg/t,. To obtain the creep function one sets F(f) = h(t), thus
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t

t
x(t) = (e*f/fl:) (L) Jh(t)et/n:dt +1, Jé(t)ef/ff:dt + Ce~'/r.
0 0

k‘fp

The integrals in this equation may be evaluated with ease using the definition of
the unit step function and the integral formula (A.222), while the initial condition
x(0%) = x, = 1. /ktg requires that C = 0, thus the creep function c(¢) for the stan-
dard linear solid (1.10) is again recovered. The relaxation function for the standard
linear solid is found by the same methods with some interchange in the roles of F(¢)
and x(7). In this case the selection of p(¢) and q(¢) in (A.227) are that p(¥) = (1/z,)
and q(t) = (k/t)(x + tr(dx/df)), then the solution of (1.8) for F(¢) is given by
(A.228) as

t t

k dx ’

F(t) = (e*t/n) <> Jx(t)e’/f~‘dt + TFJ (dtef/r\dt i Ceff/”,
0 0

Tx

To obtain the relaxation function one sets x(f) = A(f), thus

Ft) = (e*f/fx) (Tf) th(t)e’/f‘dt + 1 l (8(£)e/™dt .

The integrals in this equation may again be evaluated using the definition of the
unit step function and the integral formula (A.222). Thus setting F(¢#) = r(f) and
using the fact that the initial condition F(0*) = F, = ktg/t, requires that C = 0,
the relaxation function for the standard linear solid (1.10) is obtained again.
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231,232
Effective permeability, 188—190
Elastic solids, theory of
boundary value problem formulation,
140-141
deflection curve, 148—-149
displacement boundary value problem, 141
elasticity and compliance, 136
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Fick’s law, 109
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325-327

Flow-resistivity tensor, 242

Fluid content, 240
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Fluid flow through rigid porous media
boundary conditions, 130
Darcy’s law, 129
differential equation, 130
diffusion, 128
orthotropic symmetry, 131
pressure, 133
steady-state solution, 132—133
time constant, 130

Formulas of Nanson, 316

Fourier’s law, 289

G
Geometrical nonlinearity, 310
Gradient materials, 191

H

Harmonic plane progressive poroelastic waves.

See also Dynamic poroelasticity
amplitude and wavelength, 238
propagation, 244
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Homogeneous constitutive model,
115-116
Homogeneous deformations
definition, 296-297
ellipse sketch, 300-302
parallel line sketch, 297-300
Hooke’s law
constitutive ideas, 110, 112
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matrix material, 214

theory of elastic solids, 134
Hookian model, 11, 12
Hyperbolic partial differential equations, 128
Hyperelastic material, 325-326

I
Ideal crystal, 79
Incompressible elasticity, 328-330
Infinitesimal motion
deformation gradien, 43, 47-48
description, 42
geometric interpretation
normal strain components, 45-46
shearing strain, 47
strain tensor, 46
infinitesimal strain and rotation tensor, 45
orthogonal rotation, 44
Inhomogeneous constitutive model, 115-116
Initial-boundary value problems, 140, 150
Internal energy, 70-71
Irreversibility, mixtures
concept of entropy, 279
empirical entropy, 276
entropy production, 277-278
equilibrium state, 278
internal mechanical power, 277
thermodynamic substate, 275-276
Irreversible transition, 276
Isotropic finite deformation stress-strain
relation, 322-325
Isotropic isotropy, 89

K

Kinematics of mixtures
bulk density, 269
deformation gradient tensor, 267
material time derivative, 268
RVE, 266
velocity and acceleration, 267-268
volume fraction, 269-270

L
Lagrange multiplier, in incompressible
fluids, 155-157

Lagrangian strain tensor, 308-313
component forms of, 309-310
computation, 311-313
definition, 308
geometrical interpretation, 310



422 Index

Lagrangian stress tensor, 317-320 steady-state solution, 132-133
Lamé moduli, 137, 138 time constant, 130
Langer lines, 301, 302 formation of, 127-128
Large elastic deformations viscoelastic materials
deformation gradients, polar decomposition complex modulus, 167
of, 302-306 creep function, 161

finite deformation elasticity, 321-322

finite deformation hyperelasticity, 325-327

homogeneous deformations
definition, 296-297
ellipse sketch, 300-302
parallel line sketch, 297-300
incompressible elasticity, 328-330
isotropic finite deformation stress-strain
relation, 322-325
strain measures for, 308-313, 317-320
transversely isotropic hyperelasticity,
331-334
volume and surface measures, 314-316

Linear continuum theories

elastic solids

boundary value problem formulation,
140-141

deflection curve, 148-149

displacement boundary value
problem, 141

elasticity and compliance, 136

elastoquasi-static problems, 140

elastostatic and elastodynamic initial-
boundary value problems, 140

Hooke’s law, 134

initial-boundary value problems, 140

isotropic elastic constants, 138—139

isotropic symmetry, 137

mixed boundary value problem,
141-142

Navier equations, 139-140

orthotropic symmetry, 137

principle of superposition, 142

pure bending, orthotropic elastic
material, 143-148

strain-stress relations, 135

stress equations of motion, 134—135

traction boundary value problem, 141

uniqueness theorem, 143

wave speed, 149-151

fluid flow through rigid porous media

boundary conditions, 130

Darcy’s law, 129

differential equation, 130

diffusion, 128

orthotropic symmetry, 131

pressure, 133

dynamical test system, 165-166
fading memory, 163
isotropic form, stress-strain
relations, 164
Maxwell model, 168-169
phase angle, 167
properties, 164—165
relaxation function, 160, 162-163
storage and loss moduli, 166
stress increment plot, 161-162
stress response, 167-168
viscous fluids (see Viscous fluids, theory of)
Linear elastic material, 122
Linear elastic symmetries, 192
Linearization, 114-115
Lumped parameter models
conceptual model, 12, 13
consolidation model, 16
coulomb friction, 11
creep, 11-12
Darcy’s law, 13
Hookian model, 11, 12
Maxwell model, 16
permeability, sand layer, 14
stress-relaxation, 12
viscous model, 11, 12
Voigt model, 16

M
Man-made composite materials, 80
Mass conservation, 54-56
for mixtures, 270
quasistatic poroelasticity, 219-220
Material symmetry
characterization, 87-80
chirality
helicoidal structure, 102—-103
narwhal tusk, 104
plane of isotropy, 101
crystalline materials and textured materials
ideal crystal, 79
lattice, 79
macrocomposite man-made
materials, 81, 83
man-made composite materials, 80
natural composite materials, 81
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curvilinear anisotropy, 100
description, 75
plane of mirror
congruence, 83
mirror symmetry, 84
RVE, 76-78
symmetric six-dimensional linear
transformation C, 95-99

three-dimensional linear transformation A,

91-95
Material time derivative, 268
Maxwell model, 16
Mean intercept length (MIL) tensor, 193—-194
Mean value theorem, 60-61
Mean velocity concept, 265
Mechanical modeling, material behavior

423

energy, 271-272

internal energy density, 275
mass, 270

momentum, 271

total stress, 274

entropy inequality, 286289

balance of momentum, 282
Clausius—Duhem inequality, 280
constituent-specific flux

vectors, 281
Helmholtz free energy, 279-280

irreversibility

concept of entropy, 279
empirical entropy, 276
entropy production, 277-278

concept of time, 2
conservation principles, 1-2
deformable continuum model, 10-11
determinism, 21
Euclidean space model, 3—4
free object diagrams, 1-2
lumped parameter models (see Lumped
parameter models)
particle model
adhesive force, 8
airborne trajectory, ski jumper, 7-8
buoyant force, 8
real object, 6
reductionism, 21
rigid object model, 9-10

Micro-macro velocity average

tensor, 241

Microstructure

effective elastic constants, 183—188
effective material properties, 179-183
effective permeability, 188—190
RVE
homogenization, 177
macro density and stress tensor, 178
stress concentration factor, 176-177
stress-strain-fabric relation, 196-197
structural gradients, 190-192
tensorial representations of, 192-196

Mixed boundary value problem,

elasticity, 141-142

Mixtures

conservation laws
constituent-specific quantity,
272-273

equilibrium state, 278
internal mechanical power, 277
thermodynamic substate, 275-276
kinematics of
bulk density, 269
deformation gradient tensor, 267
material time derivative, 268
RVE, 266
velocity and acceleration, 267-268
volume fraction, 269-270
Mixture theory approach, poroelasticity,
231-233
Mixture theory-based poroelasticity,
265-266
Momentum conservation, 219-220
Monoclinic symmetry, 87
Motion
infinitesimal (see also Infinitesimal motion)
deformation gradien, 43
description, 42
infinitesimal strain and rotation
tensor, 45
orthogonal rotation, 44
rates of change and spatial representation
definition, 36
material time derivative, 36
rate-of-deformation tensor, 37, 38
shear rates of deformation, 37
tensor of velocity gradients, 37
velocity and acceleration, 35, 4041

N
Nanson, formulas of, 316
Narwhal tusk, 104
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Natural composite materials, 81
Newtonian law of viscosity, 117
Normal stresses, 58—59

(6)
Orthogonal tensors, 302-303, 305
Orthotropic symmetry, 87

P
Parabolic partial differential equations, 128
Particle model, 6-9
Piola—Kirchhoff stress tensor, 317-320
Plane of isotropy, 89
Plane poiseuille flow, 157-158
Plane waves, 244-246
Poisson ratio, 139, 206, 215
Pore fluid incompressibility constraints,
214-217
Poroelasticity
dynamic (see Dynamic poroelasticity)
quasistatic
Darcy’s law, 213-214
effective medium approach, 231, 232
equations of, 220-223
fluid content-stress-pore pressure
constitutive relation, 211-212
mass and momentum conservation,
219-220
matrix material, 214-217
mixture theory approach, 231-233
pore fluid incompressibility constraints,
214-217
poroelastic materials, 201-204
stress-strain-pore pressure constitutive
relation, 204-210
two-space method of
homogenization, 233
undrained elastic coefficients, 217-219
vertical surface settlement, poroelastic
material, 223-239
Poroelastic waves, 237-239
Pure bending, orthotropic elastic material
displacement field, 145-148
stress components, 143—145

Q

Quasistatic poroelasticity
Darcy’s law, 213-214
effective medium approach, 231, 232

Index

equations of, 220-223

fluid content-stress-pore pressure
constitutive relation, 211-212

mass and momentum conservation,
219-220

matrix material, 214-217

mixture theory approach, 231-233

pore fluid incompressibility constraints,
214217

poroelastic materials, 201-204

stress-strain-pore pressure constitutive
relation, 204-210

two-space method of homogenization, 233

undrained elastic coefficients, 217-219

vertical surface settlement, poroelastic
material, 223-239

Quasi-waves, 259-261

R
Rate-of-deformation tensor
definition, 37
geometric interpretation, 38—40
Reference configuration, 317
Relaxation function, 20, 21
Representative volume element (RVE)
effective properties, 179
microstructure
homogenization, 177
macro density and stress tensor, 178
stress concentration factor, 176—-177
plane of mirror symmetry, 76—78
structural gradients, 190-191
Reuss effective bulk modulus, 212
Reversible transition, 276
Rigid object model, 9-10
Rigid porous media, fluid flow through.
See Fluid flow through rigid
porous media
Rotational motion, 5
RVE. See Representative volume
element (RVE)

S

Second law of thermodynamics, 266
Shearing stresses, 59

Shear modulus, composite material, 183—185
Skempton compliance difference tensor, 218
Spin tensor, 37

Split lines, 301

Standard linear solid, 18—19
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Strain energy function, 325
Stress equations of motion

angular momentum, 65

divergence theorem, 67

linear momentum, 65

point form, 66

stress tensor, 68—69

total force, 65
Stress-relaxation, 12
Stress-strain-fabric relation, 196-197
Stress-strain-pore pressure constitutive relation

Biot effective stress coefficient tensor,

205-206

hypothesis, 204

loading, 207-210

matrix elastic compliance tensor, 206
Structural gradients

gradient materials, 191

illustration, 190-191

linear elastic symmetries, 192
Surface tractions on tetrahedron, 60
Swampy soils, 264

T

Tensorial representations, microstructure,
192-196

Terzaghi consolidation model, 16—-17

Tetragonal symmetry, 87, 89

Thermodynamics, second law of, 266

Traction boundary value problem, 141

Translational motion, 4-5

Transverse isotropy, 89

Triclinic symmetry, 87

Trigonal symmetry, 87

Two-space method of homogenization, 233

U
Unidirectional fiber-reinforced lamina, 80
Uniform dilation, 313, 314

\'%

Vertical surface settlement, poroelastic
material, 223-239

Viscoelastic materials, theory of

425

complex modulus, 167
creep function, 161
dynamical test system, 165-166
fading memory, 163
isotropic form, stress-strain relations, 164
Maxwell model, 168—169
phase angle, 167
properties, 164—165
relaxation function, 160, 162—-163
storage and loss moduli, 166
stress increment plot, 161-162
stress response, 167-168
Viscous fluid theory
Lagrange multiplier, in incompressible
fluids, 155-157
Navier-Stokes equation, 154
Newtonian law of viscosity, 154
plane poiseuille flow, 157-158
Viscous model, 11, 12
Viscous resistive force, 242
Voigt effective bulk modulus, 212
Volume orientation (VO), 194-195

W
Wave equations, 128
Wave propagation
principal direction, material symmetry
amplitude vs. time, 251, 252
fast and the slow squared longitudinal
wave speeds, 248
frequency spectrum vs. time, 251, 253
micro-macro velocity average
tensor, 247
phase velocity vs. porosity, 250
squared shear wave speeds, 249
wave velocities and polarization
vector, 253-259
quasi-waves, 259-261
Wave speed, elastic plane wave propagation,
149-151
Wood, 81

Y
Young’s modulus, composite material,
185-186
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