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Supervisors’ Foreword

The discovery of the accelerating expansion of the Universe in the mid 1990s was
largely unexpected. In a matter-dominated universe, the expansion slows with
time. Observations of distant supernovae were found to be consistent with the
distance-redshift relation expected in a cosmology with a dynamically dominant
dark energy. In such a universe, the rate of expansion is speeding up. This
breakthrough was marked by the award of the 2011 Nobel Prize in Physics to the
two observational teams that carried out the supernova surveys.

The realisation that the expansion of the universe is speeding up rather than
slowing down has galvanised the astronomical community into finding ways to
quantify the nature of the dark energy. A series of ambitious galaxy surveys is
planned which will culminate with the launch of the European Space Agency’s
Euclid mission, currently scheduled for 2019, which aims to produce the most
extensive galaxy map ever made.

Cosmological structure grows in a battle between gravity and the expansion of
the Universe. Dark energy leaves an imprint on this process by influencing the
cosmic expansion rate. Also, the large-scale distribution of matter contains char-
acteristic scales which can be used as ‘‘standard rulers’’ with which to measure the
distance-redshift relation and hence to constrain the values of the basic cosmo-
logical parameters. The growth of cosmic structure can be modelled under special
conditions using analytical methods. The final stages of the collapse of density
perturbations are, however, highly nonlinear with significant ‘‘cross talk’’ between
different scales. The cosmologists’ tool of choice to model gravitational instability
is computer simulation. The most popular technique is N-body simulation, in
which the density of the universe is represented in a coarse-grained approximation
by particles. These particles are many orders of magnitude more massive than the
particle physics candidates for the dark matter, with a mass determined by the
problem under consideration and the computing resources available. The signa-
tures of dark energy models on the galaxy distribution are only subtly different, so
it is essential that accurate theoretical predictions are developed to interpret
forthcoming galaxy surveys, which means that N-body simulations of structure
formation in competing cosmologies are needed.
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This thesis sets out the state of the art in using computer simulation to model
the growth of large-scale structure in the matter distribution in different dark
energy cosmologies. For the first time, an accurate model for the equation of state
of the dark energy is implemented over the full range of epochs modelled in the
simulation, which can be identified with the properties of the underlying field. The
impact of small but appreciable amounts of dark energy at early epochs is taken
into account, as reflected in the initial fluctuation spectrum used in the
calculations.

The key result of the thesis is that the large-scale clustering of matter is much
more complicated than is typically assumed in forecasts for future observations. In
particular, the impact of peculiar motions, departures from the Hubble expansion
induced by the lumpiness of the matter distribution, is substantially different from
that expected in traditional models. The application of such models to the simu-
lation results can lead to fundamentally flawed conclusions about the behaviour of
dark energy.

The thesis sets out a manifesto for the analysis of future galaxy surveys. These
surveys will be so large that they will allow measurements of galaxy clustering on
large scales of unprecedented accuracy. The author argues that it is essential that to
use computer simulations to guide the development of improved analytical models
which can capture the simulation results. This symbiosis between simulation and
simple analysis will become an essential element of the quest to establish the
nature of dark energy.

Durham, UK, February 2012 Prof. Carlton M. Baugh
Dr. Silvia Pascoli
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Chapter 1
Introduction

The common assumption in modern cosmology is that the Universe is statisti-
cally homogeneous and isotropic, and therefore can be accurately described by the
Friedmann-Robertson-Walker (FRW) metric which has one degree of freedom, the
cosmic scale factor, a(t). In the current cosmological model, our Universe has evolved
from a homogeneous state after the big bang to a highly inhomogeneous state of
galaxies and clusters of galaxies, the energy density of which is composed of 4 %
baryons, 22 % dark matter and 74 % dark energy today (Sanchez et al. 2006; Komatsu
et al. 2010). The success of the ‘hot big bang’ model is clear from observations such
as the microwave background blackbody radiation from the early Universe and from
predictions of light element abundances from big bang nucleosynthesis. Despite this,
there remain several challenges which the model fails to overcome, such as the nature
of the inflationary mechanism and the presence of dark matter and dark energy. The
growth of large scale structure in the Universe is an extremely important tool which
can be used to probe fundamental physics such as the nature of dark energy and the
theory of gravity. Structure formation is driven by a competition between the expan-
sion of the Universe and gravitational attraction. By measuring the rate at which
overdensities grow and their clustering statistics we can test different cosmological
models. This chapter reviews the growth of density perturbations, the evidence for
the accelerating cosmic expansion and discusses viable models which can solve the
dark energy problem. We also present an overview of current and future probes of
dark energy and modified gravity. In the coming years, new galaxy surveys and other
cosmological observations will provide very precise measurements of the properties
of dark energy. The work presented in this thesis uses state of the art modelling
of dark energy cosmologies to provide accurate theoretical predictions for several
cosmological probes.

E. Jennings, Simulations of Dark Energy Cosmologies, Springer Theses, 1
DOI: 10.1007/978-3-642-29339-9_1, © Springer-Verlag Berlin Heidelberg 2012



2 1 Introduction

1.1 The Growth of Linear Fluctuations

The FRW metric is given by

ds2 = −dt2 + a2(t)[(1 − kr2)dr2 + r2dθ2 + sin2θdφ2], (1.1)

where k = 0,±1 is a parameter which describes the spatial curvature, r , θ and φ

are spherical coordinates and the parameter a(t) acts as an evolutionary factor in the
distance and is referred to as the scale factor or expansion factor. This can also be
expressed as a function of redshift z, where (1 + z) = 1/a(t). The evolution of a(t)
is described by the following two equations,

ȧ2 + k

a2 = 8πGρ

3
; d(ρa3) = −Pda3, (1.2)

where ρ is the energy density of the Universe and P is the pressure. The second
conservation equation can be combined with an equation of state, which relates the
pressure and the energy density, to determine the evolution of energy density, ρ(a).
We can define a critical density for a flat Universe as

ρcrit = 3H2
0

8πG
= 1.88h2 × 10−29g/cm3, (1.3)

where H = ȧ/a is the Hubble parameter, H0 is its current value and h = H0/

(100 km/s/Mpc). The dimensionless density parameter for a component, x , is defined
as

�x = ρx (t0)

ρcrit(t0)
, (1.4)

where ρx (t0) is the density today.
The comoving coordinate, �x , is given by the physical position, �r multiplied by

the cosmological scale factor, a, as �r = a�x . The physical velocity is then the sum of
the Hubble expansion velocity and a peculiar velocity as �v = �̇r = ȧ�x + a �̇x . In this
thesis we analyse the formation and evolution of dark matter overdensities defined
as

δ(x) ≡ ρ(x)

ρ̄
− 1, (1.5)

where bar denotes the unperturbed (i.e. homogeneous) matter density. In the New-
tonian limit the evolution of first order cosmological matter perturbations is described
by the linearized equations of motion in comoving units as

Euler �̇v + �v · ∇�v + 2
ȧ

a
�v = −∇ P

ρ
− ∇�

a2 , (1.6)
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continuity δ̇ + ∇ · [(1 + δ)�v] = 0, (1.7)

Poisson ∇2� = 4πGρ̄a2δ, (1.8)

where � is the gravitational potential and G is Newton’s gravitational constant. In the
equations above, differentiation with respect to �x is denoted by ∇ and with respect
to time as a dot. We can combine the three equations above to obtain one equation
which describes the growth of matter perturbations in an expanding universe. In a
dust universe, i.e. one where P = 0, taking the divergence of the Euler equation,
using the continuity equation to eliminate ∇ · �v and replacing ∇2� using Poisson’s
equation gives the growth equation for density perturbations,

δ̈ + 2H δ̇ = 4πGρ̄δ. (1.9)

The growth of large scale structure, described by Eq. 1.9, is determined by a com-
petition between the attractive force of gravity, causing slightly denser regions to
increase in density, and the expansion rate of the Universe. The expansion rate intro-
duces an effective friction term into Eq. 1.9 corresponding to the Hubble drag term,
H . The general solution to this equation can be written in terms of a growing and a
decaying mode solution where, in a matter dominated Universe, the growing mode
can be written as

δ ∝ D(t) ∝ a, (1.10)

where a is the scale factor. At early times, when the matter density perturbations are
small and the density contrast δ(�x, t) � 1, only the growing mode is present and
the field grows self-similarly in time as

δ(�x, t) = D(t)δ0(�x). (1.11)

A statistical description of the inhomogeneities in a field is very useful as the dis-
tribution of matter in the Universe can vary from point to point with overdensities
of different wavelengths and amplitudes. The matter overdensity in Fourier space is
given as

δ(�k) = (2π)−3/2
∫

d3x δ(�x) ei �k·�x . (1.12)

In linear perturbation theory each k mode evolves independently resulting in the
following correlation

〈δ(�k)δ( �k′)〉 = 〈|δ(k)|2〉δ3(�k − �k′) ≡ P(k)δ3(�k − �k′), (1.13)

where P(k) is the power spectrum. From Eq. 1.11 the power spectrum as a function
of time in linear perturbation theory is separable as
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P(k, t) = D(t)2

D(t0)2 P(k, t0), (1.14)

where D(t0) is the linear growth factor at the present epoch.

1.2 The Accelerating Expansion of the Universe

The discovery that the expansion of the Universe is accelerating was first made over
ten years ago by two independent groups observing distant supernovae (Riess et al.
1998; Perlmutter et al. 1999). Type Ia supernova (SN) are white dwarf stars in a
binary system which are accreting mass from a companion star. A thermonuclear
reaction occurs when the white dwarf reaches its Chandrasekhar mass, ∼1.4M�,
resulting in a very bright outburst with typical peak luminosities a few billion times
that of our Sun. Using an empirical relation between the peak luminosity and the rate
at which the light curve decays, Type Ia SN are excellent ‘standardizable’ candles,
providing a distance measure which can probe the expansion history of the Universe
(e.g. Phillips 1993).

In 1998, the Supernova Cosmology Project (SCP) and the High-z SN Search
Team (HZT) found that distant supernovae at z ∼ 0.5 were about 0.2 magnitudes
dimmer than expected. Early results could only constrain a linear combination of �m
and �	, the dimensionless dark energy parameter today,o close to �m − �	, even
after quite restrictive assumptions e.g. priors on h and on the curvature �k. These
observations were the first concrete evidence of a non-zero positive �	. The SCP
(Perlmutter et al. 1999) analysed 42 Type Ia SN between redshifts 0.18 and 0.83
and were able to constrain the relation 0.8�m − 0.6�	 ≈ −0.2 ± 0.1. These SN
results had to be used in combination with other observations of the geometry of the
Universe to give a detection of �	. For a flat Universe (�m + �	 = 1) the SCP
found �flat

m = 0.28+0.09
−0.08.

Some doubts surrounded the robustness of these early SN measurements as it was
suggested that host-galaxy extinction by a hypothetical grey dust could be obscur-
ing the SN making them appear dimmer (Aguirre 1999). In the following decade,
advances in instrumentation and improved host-galaxy extinction estimators have
resulted in precise measurements which rule out dust extinction as an alternative to
an accelerating expansion (Riess et al. 2004). Recently direct SN searches, for exam-
ple with the Hubble space telescope (HST) (Knop et al. 2003), have obtained high
quality light curves and are able to constrain the cosmological parameters indepen-
dently of other datasets. Recent supernovae observations of the distance modulus
versus redshift (see Appendix A.1) from the Supernova Legacy Survey (SNLS)
(Astier et al. 2005) and the ESSENCE survey (Miknaitis et al. 2007; Wood-Vasey et
al. 2007) are shown in Fig. 1.1.

Since these early SN measurements, the cosmic acceleration has been firmly estab-
lished using robust independent evidence from the cosmic microwave background
(CMB). The CMB is the relic radiation from the early Universe, emitted at a redshift

http://dx.doi.org/10.1007/978-3-642-29339-9
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Fig. 1.1 The Hubble dia-
gram for low redshift super-
novae from Wood-Vasey
et al. (2007). Residuals
from an open cosmological
model with �m = 0.3 and
�	 = 0 are shown in the
lower panel. The solid line
plotted is the best fit cosmol-
ogy with (w,�m, �	) =
(−1, 0.27, 0.73). The
dotted and dashed lines cor-
respond to cosmologies with
(�m, �	) equal to (0.3, 0.0)

and (1.0, 0.0) respectively

of z ∼ 1090, when the ionized photon and electron plasma cooled, allowing neutral
hydrogen to form. The photons then decoupled from the matter at what we refer to
as the last scattering surface and have free streamed through the Universe with little
subsequent interaction. As a result, the CMB is incredibly homogeneous with fluc-
tuations in the temperature power spectrum of a few μK or, equivalently, at the level
of 10−5 over the entire sky. Early measurements of the CMB with the COBE satel-
lite reported the amplitude of the temperature fluctuations on large angular scales
(θ > 7◦) and found the anisotropies to be consistent with Gaussian statistics and
a scale invariant power spectrum (Bennett et al. 1996). The Wilkinson Microwave
Anisotropy Probe (WMAP) (Komatsu et al. 2010) was launched in 2001 and has
produced the first fine-resolution full-sky map of the CMB resulting in precision
measurements of the temperature and polarisation power spectra (see Fig. 1.2).

The acoustic oscillations in the photon-baryon fluid before decoupling leave a
characteristic imprint on the CMB with the first peak appearing on angular scales of
about 1 degree. This corresponds to the sound horizon, rs (see Appendix A.1) which
is the maximum distance the sound wave could have travelled before decoupling. The
apparent size of the sound horizon is sensitive to the spatial curvature of the Universe.
By locating the first peak in the CMB power spectrum using the WMAP 7 year data,
Komatsu et al. (2010) constrain the total density of the Universe to be �tot = 1
to better than 1 %. With several independent probes of the matter density finding
�m ∼ 0.3, this would imply a missing energy content of 70 %. In order to have
the large scale structures we see today, such a component must have only emerged

http://dx.doi.org/10.1007/978-3-642-29339-9
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Fig. 1.2 The WMAP 7 year
temperature power spectrum
(points; Larson et al. 2010)
showing the baryonic acoustic
oscillations. The curve is the
best fit to the data 	CDM
model with �bh2 = 0.02270,
�ch2 = 0.1107 and �	 =
0.738. The grey shaded region
represents cosmic variance

recently to dominate the total energy density of the Universe, which constrains its
equation of state parameter, the ratio of the pressure to the energy density of the fluid,
w = P/ρ ≤ −1/3. The spatially flat Universe implied by the CMB data also agrees
with the predictions from theories of primordial inflation.

Further observational evidence for cosmic acceleration comes from measurements
of large scale structure, for example combining the shape of the matter power spec-
trum with CMB data. Efstathiou et al. (2002) conducted a joint analysis of the power
spectrum of the 2dF Galaxy Redshift Survey (2dFGRS) and the CMB spectrum and
found 0.65 < �	 < 0.85 at 2σ uncertainty. The shape of the matter power spectrum
is sensitive to the parameter combination �mh while the CMB alone cannot constrain
h or �	 but is sensitive to the combination of the physical densities wb = �bh2 and
wc = �ch2 where �b and �c are the density parameters in baryons and cold dark
matter respectively. Combining these two measurements helps to break parameter
degeneracies and provides important constraints on cosmology which are indepen-
dent of SN data, which, as discussed above, could be subject to possible systematic
errors, e.g, the dependence on host galaxy properties and dust extinction.

A further probe of cosmology is the apparent size of the acoustic oscillations
described above in the galaxy distribution. These features, called BAO, are weak in
the matter distribution compared to their amplitude in the CMB power spectrum.
This is because the total matter density exceeds the baryon density by a large factor,
leading to BAO which are damped in amplitude (e.g. Meiksin et al. 2000). These
delicate features can be erased by a number of dynamical and statistical effects as
structure grows and galaxies form (Angulo et al. 2008). Nevertheless, the BAO have
been detected in the low redshift galaxy distribution (Cole et al. 2005; Eisenstein
et al. 2005). Figure 1.3 shows the two point correlation function of luminous red
galaxies in the Sloan Digital Sky Survey (SDSS) (Eisenstein et al. 2005) with a
bump occurring at r ∼ 110h−1Mpc corresponding to the sound horizon. The CMB
acts as a standard ruler allowing us to determine the spatial geometry at z ∼ 1090,
while the BAO provide a complementary ruler which to date has been measured at
lower redshifts, z � 1. The apparent size of the BAO, given the measurement of the
sound horizon scale from the CMB, allows us to constrain the distance to a given
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Fig. 1.3 The correlation function for SDSS luminous red galaxies with the BAO peak at
r ∼ 110h−1Mpc (Eisenstein et al. 2005). The lines show different cosmologies with �mh2 = 0.12
(top line), 0.13 (second line) and 0.14 (third line) with �bh2 = 0.024 and ns = 0.98 in all cases.
The bottom line represents a pure cold dark matter model �mh2 = 0.105 with no acoustic peak

redshift and hence the cosmological world model (Hu and Haiman 2003; Blake and
Glazebrook 2003).

The three probes discussed here, SNe, CMB and BAO, are complementary and
constrain different regions of parameter space (see Fig. 1.4; Kowalski et al. 2008).
Individual datasets are affected by different parameter degeneracies. For example,
the WMAP data alone cannot constrain the spatial curvature but with two or more
distance measurements it is possible to break the degeneracy between �k and �m.
In fact, WMAP measurements together with BAO can completely fix �k nearly
independently of the dark energy equation of state (Komatsu et al. 2010). As CMB
measurements are sensitive to the combination �mh2, a flatness prior together with
constraints on h from HST (Knop et al. 2003) are used to break this degeneracy and
obtain good constraints on �	 = 1−(�mh2)/h2. It is the robustness of these results,
together with additional probes such as the Integrated Sachs Wolfe effect, weak and
strong gravitational lensing and X-ray clusters (which we discuss in more detail in
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Fig. 1.4 The constraints on
�m and �	 from CMB, BAO
and SN observations from
Kowalski et al. (2008)
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the following section) that have led to our current concordance cosmological model,
where dark energy accounts for ∼ 70 % of the total energy density of the Universe.

1.3 Cosmological Models

The observed accelerating expansion of the Universe points towards new physics and
explaining it is one of the biggest challenges in cosmology today. One explanation
of the accelerating expansion of the Universe is that a negative pressure dark energy
component dominates the present cosmic density (Sánchez et al. 2009; Komatsu
et al. 2010). Examples of dark energy models include the cosmological constant
and a dynamical scalar field such as quintessence (see e.g. Copeland et al. 2006
for a review). Other possible solutions require modifications to general relativity
and include extensions to the Einstein–Hilbert action, such as f (R) theories or
braneworld cosmologies (see e.g. Dvali et al. 2000; Oyaizu 2008).

The concordance model, 	CDM (cold dark matter and cosmological constant
model), assumes a negative pressure component in the Universe acting as a fluid
with a constant equation of state, w = −1, which drives the accelerated expansion.
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The addition of a cosmological constant, 	, to Einstein’s theory of gravity is the most
familiar and the simplest candidate for dark energy (see e.g. the review by Carroll
2001). Einstein’s equation with a cosmological constant is given by

Gμν = Rμν − 1

2
gμν R = 8πGTμν + 	gμν, (1.15)

where Rμν and R are the Ricci tensor and scalar respectively, Tμν is the energy-
momentum tensor, G is Newton’s constant and gμν is the space-time metric. Includ-
ing a cosmological constant term modifies the RHS of Einstein’s equation which is
interpreted as adding a new fluid component to the Universe—referred to as ‘dark
energy’. This negative pressure component is generally assumed to be the vacuum
energy arising from the zero point fluctuations of quantum fields. Despite the suc-
cess of 	CDM at fitting much of the available observational data (Sánchez et al.
2009), this model fails to address two important issues, the fine tuning problem and
the coincidence problem. The fine-tuning problem arises from the vast discrepancy
between the vacuum energy level predicted by particle physics, generically given by
	4, where 	 is the physics scale considered, and the value of missing energy density
inferred cosmologically, ρ ∼ 10−47 GeV4. In the standard model of particle physics,
	 could be at the Planck scale, giving 	 ∼ 1018 GeV. This leads to the famous 120
orders of magnitude difference between the measured energy density and the pre-
dicted zero point energy density of the Universe. The coincidence problem refers to
the fact that we happen to live around the time at which dark energy has emerged
as the dominant component of the Universe, and has a comparable energy density
to matter, ρDE ∼ ρm. It is a puzzle that we live in the brief intermediate phase when
the matter density of the Universe is similar to the dark energy density given their
different rates of evolution, ρm ∝ a−3 and ρ	 ∼ constant (however see Bianchi and
Rovelli 2010 for a recent discussion).

Quintessence models were devised to solve the fine tuning and coincidence prob-
lems of 	CDM. In these models, the cosmological constant is replaced by an
extremely light scalar field which evolves slowly (Ratra and Peebles 1988; Wetterich
1988; Caldwell et al. 1998; Ferreira and Joyce 1998). An abundance of quintessence
models has been proposed in the literature which can resolve the coincidence prob-
lem and explain the observationally inferred amount of dark energy. Models of
quintessence dark energy can have very different potentials, V (ϕ), but can share
common features. The potentials provide the correct magnitude of the energy den-
sity and are able to drive the accelerated expansion seen today. The form of the scalar
field potential determines the trajectory of the equation of state, w(z), as it evolves in
time. Hence, different quintessence dark energy models have different dark energy
densities as a function of time, �DE(z). This implies a different growth history for
dark matter perturbations from that expected in 	CDM.

Here we briefly review some general features of quintessence models;
more detailed descriptions can be found, for example, in Ratra and Peebles (1988);
Wetterich (1988); Ferreira and Joyce (1998); Copeland et al. (2006) and Linder
(2008). The main components of quintessence models are radiation, pressureless
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matter and a quintessence scalar field, denoted by ϕ. This dynamical scalar field is
a slowly evolving component with negative pressure. This multifluid system can be
described by the following action

S =
∫

d4x
√−g (− R

2κ
+ Lm+r + 1

2
gμν ∂μϕ ∂νϕ − V (ϕ)), (1.16)

where R is the Ricci scalar, Lm+r is the Lagrangian density of matter and radiation,
κ = 8πG, g is the determinant of a spatially flat FRW metric tensor gμν and V (ϕ) is
the scalar field potential. We assume that any couplings to other fields are negligible
so that the scalar field interacts with other matter only through gravity. Minimising
the action with respect to the scalar field leads to its equation of motion

ϕ̈ + 3 H ϕ̇ + dV (ϕ)

dϕ
= 0, (1.17)

where H is the Hubble parameter and we have assumed the field is spatially homo-
geneous, ϕ(�x, t) = ϕ(t). The impact of the background on the dynamics of ϕ is con-
tained in the 3H ϕ̇ term. Once a standard kinetic term is assumed in the quintessence
model, it is the choice of potential which determines the equation of state w as

w = ϕ̇2/2 − V (ϕ)

ϕ̇2/2 + V (ϕ)
. (1.18)

In general in these theories if the contributions from the kinetic (ϕ̇ = 0) and gradient
energy (dϕ/d�x = 0) are negligible, then the effect of the scalar field is equivalent to
a cosmological constant which behaves as a perfect fluid, with P = −ρ or w = −1.
Specific classes of quintessence models are discussed in more detail in Chap. 3.

Einstein’s theory of general relativity describes the relationship between matter
and curvature in the Universe. Instead of adding a new matter component to the RHS
of Einstein’s equation, an alternative method to explain the accelerating expansion
is to modify general relativity on the LHS of the equation. There is an abundance of
modified gravity models on the market which can be motivated either by low energy
limits of string theory, which generally feature a new scalar field degree of freedom,
or by higher dimensional gravity theories, which change the dimensionality of space.
We will briefly discuss a couple of examples (for a more detailed review see e.g. Jain
and Khoury 2010).

In f (R) gravity, the Einstein–Hilbert action is modified by the addition of a
general function of the Ricci scalar,

S ∼
∫

d4x
√−gR →

∫
d4x

√−g[R + f (R)]. (1.19)

In the absence of a cosmological constant, this f (R) term induces a late time accel-
erating expansion. A simple example of one of these theories is f (R) ∝ 1/R

http://dx.doi.org/10.1007/978-3-642-29339-9_3
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(Carroll et al. 2004). These models are severely constrained by Solar System tests
of general relativity (Hu and Sawicki 2007). In addition to these constraints there
are several limits on the functional form of f (R), for example, 1 + f (R) > 0 for
all R so that the effective gravitational constant Geff = G/(1 + f (R)) is positive
(Amendola et al. 2007). Scalar–tensor theories, first introduced by Brans and Dicke
(1961), feature a scalar field in the Einstein–Hilbert action which is non-minimally
coupled to the matter fields in the so called Einstein frame. f (R) theories are for-
mally equivalent to scalar–tensor theories where the two are related by a conformal
transformation of the metric.1 One example is ‘extended quintessence’ which can be
understood as a theory of gravity with an effective Newton’s constant which depends
on the scalar field. The action for extended quintessence in the Jordan frame can be
written as

S =
∫

d4x
√−g(

1

2κ
F(ϕ, R) − 1

2
κ(ϕ)ϕ;μϕ;μ

− V (ϕ) + Lm), (1.20)

where the scalar field, ϕ, describes the gravitational interaction and has kinetic and
potential energy κ(ϕ) and V (ϕ), respectively. Note here natural units are used where
c = 1. The parameter κ = 8πG N . The determinant of the background metric is
denoted by g which is generally assumed to be a flat FRW cosmology and Lm is the
usual matter Lagrangian. In standard quintessence models F(ϕ, R) is just given by
the Ricci scalar, R, and the gravitational action is identical to that in general relativity.
We discuss these models in more detail in Chap. 5.

Extra dimensional modified gravity theories, such as braneworld cosmologies,
describe our (3+1) D Universe as being embedded in a higher dimensional spacetime.
For example, the DGP (Dvali et al. 2000) model features an infinite volume 5th

dimension where the cosmic acceleration of the Universe arises from gravity confined
to the 4D brane where it can be described as an effective scalar–tensor theory. At
large distances there is a cross-over scale, rc, from the usual general relativity force
law, 1/r2, to a corresponding 5D gravity, ∼ 1/r3. In a homogeneous and isotropic
Universe the DGP cosmology allows two solutions where the cross over scale appears
in the modified Friedmann equation as

H2 ± H

rc
= 8πGρ

3
. (1.21)

The self accelerating branch of DGP exhibits accelerated expansion at late times
without including dynamical scalar fields or a cosmological constant and corresponds
to choosing the minus sign in the above equation. The accelerating expansion arises
from the effective weakening of gravity on large scales and in effect it can be described

1 In the Einstein frame, the gravitational action is the same as in general relativity and the scalar field
appears in the matter action. By re-scaling the metric, one can express the action in the so-called
Jordan frame where the Einstein–Hilbert action of general relativity is modified by the introduction
of a scalar field.

http://dx.doi.org/10.1007/978-3-642-29339-9_5
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by a smaller gravitational constant on these scales. This cosmology has been shown
to contain a number of pathologies, for example, in linear perturbation theory the
self accelerating branch contains ‘ghosts’, kinetic terms with the wrong sign which
suggests that the theory is unstable (Gregory et al. 2007). Recently the growth of
dark matter perturbations in the normal branch of the DGP model (plus sign in Eq.
1.21), together with a cosmological constant, has been studied in N-body simulations
(Schmidt et al. 2010).

1.4 Testing the Concordance Cosmological Model

Constraining the properties of dark energy and modified gravity models in future
surveys will require precise measurements of the expansion history and the growth
rate of structure using a number of observations, such as the CMB, supernovae light
curves and the BAO already discussed. In this section we review other cosmological
probes relevant for current and future surveys.

The Integrated Sachs Wolfe (ISW) effect in the cosmic microwave background
arises due to time varying gravitational potentials which cause a differential redshift
in CMB photon energies. These photons gain energy as they fall into the potential
wells and lose it as they exit. At recent times, these potential wells are decaying
due to the presence of dark energy and so there is an overall gain in the pho-
ton’s energy as it traverses the potential. This leads to a boost in the large angle
(low multipole) correlation amplitude in the CMB power spectrum. Although this
large scale observation is limited by cosmic variance, the ISW effect has been mea-
sured by cross correlating CMB measurements with galaxy catalogues to identify
non-primordial CMB signals (Pietrobon et al. 2006; Cabré et al. 2006; Giannantonio
et al. 2008). The amount of dark energy and its clustering properties can also be tested
by combining measurements of the ISW effect with other probes of the gravitational
potentials such as weak lensing.

When light from a distant galaxy travels through intervening large scale structure
on its way to us, the gravitational potential distorts the path of the light ray, causing the
galaxy’s image to be gravitationally lensed. The distortion of the image is referred to
as ‘shear’ and is sensitive to both the expansion history of the Universe and the effect
of dark energy on the gravitational potentials, � and �. In the conformal Newtonian
gauge � and � represent scalar perturbations to the time and space components
of the metric (see e.g. Ma and Bertschinger 1995) and are equal to one another in
general relativity. Measurements of weak lensing shear allow us to map out the dark
matter distribution in the Universe and its evolution in time, which will be affected by
the late time accelerating expansion. The shear angular power spectrum is sensitive
to both the geometry of the Universe, through the angular diameter distance and the
weight function which describes the efficiency for lensing a population of galaxies,
and the growth of structure through the matter power spectrum.

Clusters of galaxies represent the largest virialised structures in the Universe
and can be used to probe the properties of dark energy by comparing the observed
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number of clusters in a given volume element with predictions from a dark energy
model with a given expansion history and growth rate. Using N-body simulations
we can measure the number density of cluster sized haloes of mass M , dn(z)/dM ,
at a certain redshift, z, as well as the volume element at that redshift, dV/dz, to
obtain dn/dz in a given cosmology and compare with results from large area surveys
which associate cluster observables such as X-ray temperature or luminosity with
cluster mass (see e.g. White et al. 1993). In galaxy clusters most of the baryons are
in the intervening gas and measurements of the baryon to total mass density fraction,
fgas = �b/�m, can be used to determine the cluster mass. Other observables such
as the Sunyaev–Zel’dovich effect, where CMB photons are energised by hot cluster
gas resulting in a decrease in the CMB intensity at low frequencies and an increase
at high frequencies, or weak lensing shear can also be used to measure the cluster
mass.

Measurements of the expansion history alone can tell us if the dark energy equa-
tion of state is w = −1 or if it evolves in time but they do not test the law of
gravity. The rate at which cosmic structures grow is set by a competition between
gravitational instability and the rate of expansion of the Universe. As a result com-
bined measurements of the growth rate and the expansion history allow us to test
the framework of general relativity. The growth of structure can be measured by
analysing the distortions in the galaxy clustering pattern, when viewed in redshift
space (i.e. when a galaxy’s redshift is used to infer its radial position). Proof of con-
cept of this approach at z > 0 came recently from Guzzo et al. (2008), see Fig. 1.5,
who used spectroscopic data for 10,000 galaxies from the VIMOS-VLT Deep Survey
(Le Fevre et al. 2005) to measure the growth rate of structure at redshift z = 0.77
to an accuracy of ∼ 40 % (see also Peacock et al. 2001). We discuss redshift space
distortions in more detail in Chaps. 4 and 5. As can be seen in Fig. 1.5, to distinguish
between competing explanations for the accelerating expansion of the Universe, we
need to measure the growth of structure to an accuracy of a few percent over a wide
redshift interval.

1.5 Current and Future Observational Probes

At present numerous projects and surveys are either underway or being proposed to
discover the underlying cause of the accelerating expansion. All of these projects
make use of one or more of the observational probes we have discussed above. Here
we highlight a few ground-based and space-based surveys.

The Panoramic Survey Telescope and Rapid Response System (Pan-STARRS)-1
(Kaiser and Pan-STARRS Project Team 2005) is a wide area survey which is now
operational on Mount Haleakala, surveying 30,000 deg2 with standard photometric
g-, r-, i-, z- and y-band filters. A planned ultra-deep field survey of 1200 deg2 (PS-4),
which would make use of 4 × 1.8 m telescopes, will be able to measure super-
novae light curves, galaxy clustering and weak lensing and could be used to measure
BAO. Because of the large redshift error when using photometric redshift estimates

http://dx.doi.org/10.1007/978-3-642-29339-9_4
http://dx.doi.org/10.1007/978-3-642-29339-9_5
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Fig. 1.5 The growth rate as
a function of redshift from
Guzzo et al. (2008) with the
measurement at z = 0.77
from the VVDS-Wide survey
(filled circle) together with
the predictions from various
theoretical models as labelled
in the key. The small error bars
show an estimate of the level
of error expected from Euclid

compared to spectroscopic ones, the appearance of the BAO may be damped and
the number of useful modes in the measured power spectrum will be reduced, lim-
iting the statistical power of such a measurement. Nevertheless, the volume covered
by the main 3π survey of PS1 and the number of galaxies mapped make it worth
investigating the measurement of the BAO feature in this survey. The WiggleZ Dark
Energy Survey (Drinkwater et al. 2010; Blake et al. 2010), which began in 2006, is
a large spectroscopic survey which aims to obtain 200,000 redshifts for UV-selected
galaxies using the 3.9m Anglo-Australian Telescope. As of May 2010 the survey has
obtained a total sample of 152,117 galaxy redshifts. The primary aim is to measure
the BAO in the galaxy power spectrum, constraining the expansion history to better
than 2 % and the growth rate to better than 20 % from redshift space distortions in
the redshift range 0.2 < z < 1. The SDSS-III’s Baryon Oscillation Spectroscopic
Survey (BOSS) (Schlegel et al. 2007) currently operating in New Mexico is a galaxy
redshift survey of 1.5 million luminous red galaxies (LRGs) at 0.2 < z < 0.8. BOSS
will map out the BAO signal and obtain absolute distance measurements to a pre-
cision of 1 % at z < 0.6 with a sky coverage of 10,000 deg2. The Large Synoptic
Survey Telescope (LSST) (Ivezic et al. 2008) is an ambitious future project which
will become operational by 2018 which will use a 8.4m ground based telescope in
Northern Chile. The deep-wide-fast survey mode will cover a 20,000 deg2 region
over 10 years of operations measuring multiple probes of dark energy, most notably
BAO and weak gravitational lensing tomography. The Hobby-Eberly Telescope Dark
Energy EXperiment (HETDEX) (Hill et al. 2004) will measure the BAO using the
redshifts of millions of Ly-α emitting galaxies in the redshift range 2 < z < 4. The
aim is to constrain the expansion history and the growth rate out to z = 2.4 to 0.8 %
and 2 % respectively. BigBOSS is a proposed ground based spectroscopic survey
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which will measure the expansion history and the growth rate to sub-percent level
accuracy over redshifts 0 < z < 3.5 looking at BAO and redshift space distortions in
the galaxy power spectrum. The Wide-Field Multi-Object Spectrograph (WFMOS)
(Bassett et al. 2005) is a proposed project with the Subaru 8.2m telescope which will
measure BAO in the galaxy power spectrum at z < 1.3.

The European Space Agency (ESA) currently has one funded dark energy mission,
eROSITA, and another dark energy mission, Euclid, under consideration. eROSITA
(extended ROentgen Survey with an Imaging Telescope Array) is a German–French
collaboration which aims to detect 50–100 thousand clusters of galaxies at z ∼ 1.3
(Predehl et al. 2006). The second misson, Euclid (Cimatti et al. 2009), has emerged
from combining the Dark Universe Explorer (DUNE) and the SPACE concepts
which aim to measure weak lensing and baryonic acoustic oscillations at redshifts
0.5 < z < 2. In Chap. 5 we measure the redshift space distortions in a N-body sim-
ulation of a modified gravity cosmology to test the accuracy of current models for
the redshift space power spectrum in recovering the correct value for the growth rate
at z = 0.5. Our simulation volume of 1500h−1Mpc cubed corresponds to a similar
comoving volume available to Euclid at z = 0.5 assuming a sky coverage of 20,000
deg2 and a redshift shell of thickness �z = 0.1.

Based on several space based missions considered for the NASA-DOE Joint Dark
Energy mission (JDEM) (Gehrels 2010), the Wide Field Infrared Survey Telescope
(WFIRST) has been proposed in the US decadal review ‘New Worlds, New Horizons
in Astronomy and Astrophysics’ (Gould 2010). WFIRST is a 1.5m infrared telescope
which plans to image about 2 billion galaxies in order to study weak lensing, probing
both the expansion rate and the growth of structure. WFIRST also aims to measure
BAO by obtaining the spectra of about 200 million galaxies and will be able to
detect thousands of supernovae providing two robust measurements of the expansion
history.

The huge investment of human resources and funding dedicated to probing the
properties of dark energy and modified gravity in future surveys is clear and needs to
be matched by precise predictions and models calibrated using N-body simulations.
Accurate modelling of the linear, quasi-linear and non-linear regimes is essential for
interpreting future surveys whose total volume will reach ∼10s of Gpc3. This thesis
focuses on measuring several key observational probes of dark energy and general
relativity from consistent N-body simulations of different cosmologies, namely the
clustering of matter on large scales, the halo mass function, baryonic acoustic oscilla-
tions and redshift space distortions. These results can be used to extend the statistical
power of future galaxy surveys.

1.6 Outline of Thesis

The growth of large scale structure in the Universe is an extremely important tool
which can be used to probe fundamental physics such as the nature of dark energy
or modified gravity theories. Cosmological N-body simulations play a vital role in

http://dx.doi.org/10.1007/978-3-642-29339-9_5
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cosmology for both theorists and observers and are an important laboratory where
we can test current theories of structure formation. The results presented in this work
represent a step forward in simulating quintessence dark energy models in ultra-
large volume computational boxes. With many precision tests of dark energy and
modified gravity planned in future galaxy surveys, the aim of this work is to improve
the current models and predictions for observables using accurate simulations of
alternative cosmologies. Using the N-body simulations presented here we can answer
some of the key questions posed by future surveys, such as, can we detect a variation
in w(z) by measuring BAO peak positions to within 1 %? or can we distinguish a
modification to gravity from dark energy with a measurement of the growth rate
which is accurate to ∼2 %?

The main goals of this thesis can be summarised as follows: firstly in Chap. 3
we consider viable quintessence dark energy cosmologies and conduct consistent
N-body simulations of these models, fully accounting for the different expansion
histories, modified linear theory and different values of the cosmological parameters
which are needed to match current observations. We study the non-linear growth of
cosmic structure in these models and compare the growth of structure to that in a
universe with a cosmological constant. Using these N-body simulations we measure
the non-linear power spectra, the halo mass function, the BAO peak positions and the
redshift space distortions in different quintessence dark energy models and test for
detectable differences from the standard 	CDM model. In Chap. 4 we focus on the
use of redshift space distortions as a probe of the growth rate of structure which has
been suggested as a key observable with which to test general relativity. In Chap. 5 we
conduct N-body simulations of two competing cosmologies—a dark energy model
with a scalar field and the other with a change to Newton’s gravitational constant. We
test the accuracy of several models for the redshift space distortions and their ability
to recover the correct growth factor which would distinguish modified gravity from
dark energy. A summary of the thesis is presented in Chap. 6.
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Chapter 2
The Growth of Matter Perturbations in the
Universe

2.1 Numerical Methods

In this chapter we outline some aspects of the N-body simulation code used in
this thesis as well as the modifications made to the code to include the effects of
various dark energy cosmologies. We also describe how the initial conditions for the
simulations are set up.

2.1.1 The Simulation Code

Once a dark matter perturbation approaches the cosmic mean, δ ∼ 1, linear theory
breaks down and full numerical methods are needed in order to follow the non linear
growth of structure. Analytic solutions can be used in special circumstances, for
example, the Press-Schechter formalism can be used to predict the number of objects
of a certain mass in a given volume assuming spherical collapse (Press and Schechter
1974). Here we present a brief review of the N-body simulation code Gadget- 2. For
more information on the code see Springel (2005) and for a comprehensive review
of N-body simulations see Bertschinger (1998).

Following the dynamics of dark matter particles under their mutual gravitational
attraction requires us to solve the collisionless Boltzmann equation and Poisson’s
equation simultaneously. Using a method of characteristics (Leeuwin et al. 1993)
the solution of the Boltzmann equation can be obtained by sampling the (6 +1)
dimensional phase space, {�x, �p, t}, of the initial distribution function, f (�x, �p, t).
Solving Poisson’s equation for N particles, the system can be evolved forward in
time using the equations of motion derived from ∂ f/∂t + [ f, H ] = 0, where H , in
this instance, is the system’s Hamiltonian.

The core of any N-body simulation is the gravity solver. In the PM (particle-
mesh) algorithm the density field is realised on a grid and the gravitational potential
is constructed by solving Poisson’s equation. In this scheme all the particles are
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20 2 The Growth of Matter Perturbations in the Universe

assigned to a grid using a kernel which splits up the masses and determines the
density field, ρi, j,k , at each grid point. The simplest choice of mass assignment
scheme is nearest grid point (NGP) where all the mass is allocated to the nearest
grid cell. This method leads to significant fluctuations in the evaluated force which
can be avoided by using higher order schemes such as the cloud-in-cell (CIC) or
triangular shaped cloud (TSC) schemes (Hockney and Eastwood 1981). In the CIC
scheme the mass is assigned to the 8 grid points nearest to the particle while the TSC
method uses the nearest 27 grid points. The kernel used to construct the density field
in the PM part of Gadget- 2 is the CIC assignment scheme. The density field on the
grid is then Fourier transformed and the potential on the grid is obtained using the
Green’s function, −4πG/k2, to solve Poisson’s equation, ∇2φi, j,k = 4πGρi, j,k in
Fourier space. Using a grid to estimate the forces in this way results in a lack of short
range accuracy on scales comparable to the grid spacing. The Particle-Particle PM
scheme (P3M) overcomes the force resolution problem associated with PM methods
by adding a direct summation of pairs separated by less than 2 or 3 grid spacings.
The combination of mesh based and direct pair summation results in high accuracy
forces. However, the algorithm slows down when clustering becomes strong on small
scales which degrades the performance of the P3M code.

Gadget- 2 makes use of a TreePM algorithm to compute the gravitational forces
accurately. The tree algorithm groups distant particles into larger cells and approx-
imates their potentials using multipole expansions about the centre of mass of the
group (Barnes and Hut 1986). The advantage of this method is a scaling in compu-
tation time of O(N logN ), where N is the number of particles, compared to O(N 2)

calculations with a direct summation of the forces. The error on the long range force
is then controlled by an opening angle parameter which determines when a multipole
expression is used to calculate the forces for a group of particles. A distant cell of
mass M , at a distance r and extension l, is considered for opening if

G M

r2

(
l

r

)2

≤ α|a| (2.1)

where α is a tolerance parameter and a is the total acceleration obtained in the
last timestep. The TreePM algorithm employed in Gadget- 2 combines the com-
putational efficiency of the PM code with the short range accuracy of the tree
code and splits the gravitational potential into a long and short range component,
� = φshort + φ long, where the tree algorithm is used to evaluate the force on small
scales and the long range potential is calculated using a mesh. The spatial scale of
the force split, rs , is present in the expression for the short range potential given by

φshort(�x) = −G
∑

i

mi

ri
erfc

(
ri

2rs

)
, (2.2)

where the smallest distance of any of the images of a particle, i , in a periodic box of
length L , to the point �x is given by ri = min[|�x − �ri − �nL|]. The force is estimated
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according to Fi, j,k = −∇�i, j,k by finite differencing the potential. The force is then
interpolated back to the particle positions using the CIC kernel.

To avoid a singularity in the force calculation when particle separations are close
to zero, it is common to introduce a softening parameter which softens the force
and limits the maximum relative velocity during close encounters between particles.
This softening also prevents the artificial formation of binaries in the simulation. The
equations of motion in an expanding Universe are obtained by integrating Hamilton’s
equations

d�x
dt

= �p
a2 , (2.3)

d �p
dt

= −∇�

a
, (2.4)

where �p = a2m �x is the canonical momentum and � is the interaction poten-
tial. In Gadget- 2 these equations are discretized and integrated using ‘kick’ and
‘drift’ operators in a second order accurate leap frog integrator scheme (Springel
2005). The drift and kick operators are the time evolution operators of the kinetic
and potential components of the Hamiltonian of the N-body problem. The drift oper-
ator leaves the momentum unchanged and advances the position of each particle,
while the kick operator leaves the position unchanged and updates the momentum.
In one time step a combination of these is used, for example the drift-kick-drift
(DKD) leapfrog integrator. For each particle the timestep in Gadget- 2 is given by

	t = min

[
	tmax,

(
2ηε

a

)1/2
]

, (2.5)

where ε is the gravitational softening, η is an accuracy parameter, a is the particle’s
acceleration and 	tmax can be set to a fraction of the dynamical time of the system.
We discuss the initial conditions of the N-body code in Sect. 2.1.3.

2.1.2 Modifying Gadget-2

In this thesis we will determine the impact of quintessence dark energy on the growth
of cosmological structures through a series of large N-body simulations. These simu-
lations were carried out at the Institute of Computational Cosmology using a memory
efficient version of the TreePM code Gadget-2, called L-Gadget-2 (Springel
2005). As our starting point, we consider a �CDM model with the following cos-
mological parameters: 
m = 0.26, 
DE = 0.74, 
b = 0.044, h = 0.715 and a
spectral index of ns = 0.96 (Sánchez et al. 2009). The linear theory rms fluctuation
in spheres of radius 8 h−1 Mpc is set to be σ8 = 0.8.
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Within the code of L-Gadget-2, under the assumption that the dark energy is
a smooth background, the only place where dark energy needs to be accounted for
within the code of L-Gadget-2, is in the calculation of the Hubble factor. This
is needed, for example, when converting from the internal time variable, log a to a
physical time, t , or when converting to physical quantities in the equations of motion.
The Hubble parameter for dynamical dark energy in a flat universe is given by

H2(z)

H2
0

=
(

m (1 + z)3 + (1 − 
m)e3

∫ z
0 dln(1+z′) [1+w(z′)]) , (2.6)

where H0 and 
m = ρm/ρcrit are the values of the Hubble parameter and dimen-
sionless matter density, respectively, at redshift z = 0 and ρcrit = 3H2

0 /(8πG) is
the critical density. The details of the dark energy equation of state, w(z), for each
quintessence model are given in Chap. 3.

In Chaps. 3 and 4, the simulations use N = 6463 ∼ 269×106 particles to represent
the dark matter in a computational box of comoving length 1,500 h−1 Mpc. These
simulations took 3 days to run with typically ∼3000 time steps on 38 processors
of the Cosmology Machine (COSMA) at Durham university. We chose a comov-
ing softening length of ε = 50 h−1 kpc. The particle mass in the simulation is
9.02 × 1011 h−1 M� with a mean interparticle separation of r ∼ 2.3 h−1 Mpc. The
simulation code L-Gadget-2 has an inbuilt friends-of-friends (FOF) group finder
which was applied to produce group catalogues of dark matter particles with 10 or
more particles. A linking length of 0.2 times the mean interparticle separation was
used in the group finder (Davis et al. 1985).

In Chap. 5 the simulations use N = 10243 ∼ 1×109 particles in a computational
box of comoving length 1,500 h−1 Mpc. The comoving softening length was ε =
50 h−1 kpc and the simulations took 5 days to run on 128 processors on COSMA.
TheL-Gadget-2 simulation code (Springel 2005) was modified to allow for a time-
varying Newton’s constant and a dynamical quintessence dark energy. As discussed
in the previous section, in this code the gravitational forces are computed using a
TreePM algorithm where short-range forces are calculated using a ‘tree’ method and
the long-range part of the force is obtained using mesh based Fourier methods. In the
modified gravity simulation, both the long and short-range force computations were
modified to include a time-dependent gravitational constant. For both the modified
gravity and the quintessence dark energy simulations in Chap. 5 the Hubble parameter
computed by the code was also modified (see Chap. 5 for details).

2.1.3 The Initial Conditions

There are two steps needed to set up the initial conditions for an N-body simulation. In
the first step an unperturbed Universe is created by setting up a uniform distribution
of particles which, in the second step, is perturbed so that the resulting density
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Fig. 2.1 The power spectrum
measured from the simulation
at z = 200 (circles) together
with the power spectrum at
z = 5 (squares) scaled to
z = 200 by the squared
ratio of the growth rates at
the two redshifts. The linear
perturbation theory prediction
is shown as a black line

distribution has the appropriate power spectrum. An initially random distribution of
particles will evolve into rapidly growing non linear structures due to the presence
of Poisson shot noise on all scales. The initial ‘white noise spectrum’, in this case,
is |δk |2 ∝ kn where n = 0. A better way to generate a uniform distribution is to
place the particles on a regular cubic grid, where there is no power above the nyquist
frequency of the grid. This method also has its disadvantages as the regularity and
size of the grid is imprinted as a characteristic length scale which is visible in the
evolved particle distribution. Another method used to generate a uniform distribution
of particles which has no regular structure, involves firstly placing the particles at
random in a simulation volume. An N-body simulation code, which has been modified
by reversing the sign of the acceleration, then follows the motion of the particles in
an Einstein de Sitter expanding Universe. As a result the gravitational forces on
the particles are repulsive and after many expansion factors they settle down to a
‘glass-like’ configuration where the distribution is sub-random and shows no order
or anisotropy on scales comparable to the mean interparticle spacing (White 1994a;
Baugh et al. 1995). The initial conditions of the particle load for the simulations in
this thesis were set up with a glass configuration of particles.

In order to impose the density perturbations on the glass, the particles are perturbed
using the Zel’dovich approximation (Zel’Dovich 1970) which moves the initially
unperturbed particles to create a discrete density field using

�x = �x0 − D(τ )

4πGρ̄a3 ∇�0 (2.7)

�v = − 1

4πGρ̄a2

aḊ

D
∇�, (2.8)
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Fig. 2.2 The dark matter distribution from a simulation using 6463 particles to represent the dark
matter distribution in box of 1,500 h−1 Mpc on a side at redshift z = 0

where the Eulerian position, �x , and the peculiar velocity, �v, of each particle are given
as a function of its initial Lagrangian position, �x0, and D(τ ) is the growing mode of
linear fluctuations as a function of conformal time, dτ = a−1dt (e.g. Efstathiou et al.
1985; White 1994b). The displacement field, ∇�, is related to a precalculated input
power spectrum, P(k), with the desired cosmology. The initially uniform density
field is then realised as a Gaussian random field with a random phase. The Zel’dovich
approximation can induce small scale transients in the measured power spectrum.
These transients die away after 	10 expansion factors from the starting redshift
(Smith et al. 2003). In order to limit the effects of the initial displacement scheme we
chose a starting redshift of z = 200. In this thesis the linear theory power spectrum
used to generate the initial conditions was created using the CAMB package of
Lewis and Bridle (2002). The linear theory P(k) output at z = 0 was then evolved
backwards to the starting redshift of z = 200 using the linear growth factor for that
cosmology in order to generate the initial conditions for L-Gadget-2. The details
of the linear power spectra used for each dark energy model is outlined in Chap. 3.
The initial power spectrum output at z = 200 is shown in Fig. 2.1 (circles) together

http://dx.doi.org/10.1007/978-3-642-29339-9_3
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with the linear perturbation theory (black line) and the power spectrum output at
z = 5 (squares) scaled to z = 200 using the squared ratio of the growth rates at
the two redshifts. The power spectrum is drawn from a distribution which results in
fluctuations at low k, on large scales, due to the finite number of modes available in
the simulation volume. The sample variance fluctuation can be clearly seen in the
z = 200 and the z = 5 power spectra on large scales. The z = 5 output agrees very
well with linear perturbation theory. In subsequent chapters in this thesis we shall
use the z = 5 output in ratios to show deviations in growth from linear theory and
to remove the sample variance present on large scales. In Fig. 2.2 we plot the dark
matter distribution at z = 0 in a 2D slice through the simulation with 6463 particles
in a box of 1,500 h−1 Mpc in length.
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Chapter 3
Simulations of Quintessential Cold Dark
Matter

3.1 Introduction

Quintessence models of dark energy are studied as a viable alternative to the
cosmological constant and feature an evolving scalar field which dominates the
energy budget today causing accelerated expansion. In this chapter we present three
stages of N-body simulations of structure formation in quintessence models. Each
stage progressively relaxes the assumptions made and brings us closer to a full phys-
ical model. In the first stage, the initial conditions for each quintessence cosmology
are generated using a �CDM linear theory power spectrum and the background
cosmological parameters are the best fit values assuming a �CDM cosmology. The
only departure from �CDM in this first stage is the dark energy equation of state
and its impact on the expansion rate. In the second stage, we use a modified ver-
sion of CAMB (Lewis and Bridle 2002) to generate a consistent linear theory power
spectrum for each quintessence model. The linear theory power spectrum can differ
from the power spectrum in �CDM due to the presence of non-negligible amounts
of dark energy during the early stages of the matter dominated era. This power spec-
trum is then used to generate the initial conditions for the N-body simulation which
is run again for each dark energy model. The third and final stage in our analysis is
to find the values for the cosmological parameters, �mh2, �bh2 and H0 (the mat-
ter density, baryon density and Hubble parameter) such that each model satisfies
cosmological distance constraints. Recently Alimi et al. (2010) used CMB and SN
data to constrain the parameters in the quintessence potential and the value of the
matter density, �mh2, for two models. In this chapter we allow three parameters to
vary when fitting each quintessence model to the available data. This distinction is
important as changes in these parameters may produce compensating effects which
result in the quintessence model looking like �CDM. For example, for a given dark
energy equation of state, a lower value of the matter density may not result in large
changes in the Hubble parameter if the value of H0 is increased. In going through
each of these stages we build up a comprehensive picture of the quintessence models
and their effect on the nonlinear growth of structure.

E. Jennings, Simulations of Dark Energy Cosmologies, Springer Theses, 27
DOI: 10.1007/978-3-642-29339-9_3, © Springer-Verlag Berlin Heidelberg 2012
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This chapter is organised as follows. In Sect. 3.2 we discuss quintessence models
and the parametrization we use for the dark energy equation of state. We also outline
the expected impact of different dark energy models on structure formation. The main
power spectrum results are presented in Sect. 3.3. Intermediate results are presented
in Sects. 3.3.1 and 3.3.2. In Sect. 3.3.4 we present the mass function predictions. In
Sect. 3.3.5 we discuss the appearance of the baryonic acoustic oscillations in the
matter power spectrum. Finally, in Sect. 3.4 we present our summary.

3.2 Quintessence Models of Dark Energy

Two broad classes of quintessence models can be used to solve both the fine-
tuning and coincidence problems. The first is based on the idea of so called ‘tracker
fields’ (Steinhardt et al. 1999). These fields adapt their behaviour to the evolution of
the scale factor and hence track the background density. The other class is referred to
as ‘scaling solutions’ (Halliwell 1987; Wands et al. 1993; Wetterich 1995). In these
models the ratio of energy densities, ρϕ/ρB, is constant.

In tracking models, the ϕ field rolls down its potential, V (ϕ), to an attractor-like
solution. The great advantage of these models is that this solution is insensitive to the
initial conditions of the scalar field produced after inflation. A general feature of these
tracking solutions is that as the scalar field is tracking behind the dominant matter
component in the universe, its equation of state, wϕ, depends on the background
component as

ρϕ

ρB
= a3 (wB−wϕ) , (3.1)

where ρB and wB denote the background energy density and equation of state respec-
tively, with wB = 1/3 (radiation era) and wB = 0 (matter era). As a result, the energy
density of the scalar field remains sub-dominant during the radiation and matter dom-
inated epochs, although it decreases at a slower rate than the background density.
The quintessence field, ρϕ, naturally emerges as the dominant component today and
its equation of state is driven towards w = −1. An example of a tracking model
is the inverse potential form proposed by Zlatev et al. (1999), V (ϕ) ∼ M4+αϕ−α,
where M is a free parameter that is generally fixed by the requirement that the dark
energy density today �DE ∼ 0.7 and so the quintessence potential must be V ∼ ρcrit.
This implies that ϕ is of the order of the Planck mass today, ϕ ∼ MPl. With α ≤ 6,
the quintessence field equation of state is approximately w0 � −0.4 today.

In scaling quintessence models, the ratio of energy densities, ρϕ/ρB, is kept con-
stant, unlike tracking models, where ρϕ changes more slowly than ρB. During the
evolution of the energy density in a ‘scaling’ model, if the dominant matter compo-
nent advances as ρ ∝ a−n , then the scalar field will obey �ϕ = n2/α2 after some
initial transient behaviour. Scaling quintessence models can suffer from an inability
to produce late time acceleration, whilst at the same time adhering to observational
constraints, such as, for example, the lower limit on �ϕ during nucleosynthesis



3.2 Quintessence Models of Dark Energy 29

(Bean et al. 2001). Albrecht and Skordis (2000) used a modified coefficient in their
scaling potential, V (ϕ) = Vp e−λ ϕ, where Vp(ϕ) = (ϕ − B)α + A, resulting in a
model which can produce late time acceleration as well as satisfying cosmological
bounds, for a variety of constants A and B. Barreiro et al. (2000) considered a linear
combination of exponential terms in the scalar field potential and found this yielded
a larger range of acceptable initial energy densities for ϕ compared with inverse
models. Copeland et al. (2000) also consider supergravity (SUGRA) corrections to
quintessence models, where the resulting potential can exhibit either ‘tracking’ or
‘scaling’ behaviour depending on which path the scalar field takes down its potential
towards the minimum where it would appear as a cosmological constant.

The physical origin of the quintessence field should be addressed by models
motivated by high energy particle physics. As the vacuum expectation value of the
scalar field today is of the order of the Planck mass, any candidates for quintessence
which arise in supersymmetric (SUSY) gauge theories may receive supergravity
corrections which will alter the field’s potential. It is this fact that motivates many
authors to argue that any quintessence model inspired by particle physics potentials
must be based on SUGRA. Brax and Martin (1999) discuss such models and employ
the potential V (ϕ) = �4+α/ϕαeκ/2ϕ2

with a value of α ≥ 11 in order to drive w0
close to −1 today.

In summary, in this chapter we will consider six quintessence models which cover
the behaviours discussed above. In particular, INV1 and INV2, which are plotted in
Fig. 3.1, have inverse power law potentials and exhibit tracking solutions. The INV1
model is the ‘INV’ model considered by Corasaniti and Copeland (2003) and has a
value of w0 = −0.4 today. As current observational data favour a value of w0 < −0.8
(Sánchez et al. 2009), the INV1 model will be used as an illustrative model. We shall
consider a second inverse power law model (INV2) which is in better agreement with
the constraints on w. As noted by Corasaniti (2004), the scale � in the inverse power
law potential, V (ϕ) = �α+4/ϕα is fixed by the value of �DE today. Solving the
coincidence problem requires this scale for � to be consistent with particle physics
models. For values of α ≥ 6 it is possible to have energy scales of � ∼ 106 GeV.
Setting α = 6 results in an equation of state with w0 = −0.4 (INV1). It is possible
to drive the equation of state closer to −1 today with lower values of α, although the
value of � is then pushed to an undesirable energy range when compared with the
typical scales of particle physics. The second model INV2, which has w0 = −0.79
with α = 1, has been added to illustrate a power law potential with a dark energy
equation of state which agrees with constraints found on w0 using CMB, SN and
large scale structure data (Sánchez et al. 2009). We also use the SUGRA model of
Brax and Martin (1999) which exhibits tracking field behaviour. The potential in this
case also contains an exponential term which pushes the dark energy equation of state
to w0 = −0.82. The 2EXP model is an example of a scaling solution and features
a double exponential term in the scalar field potential (Barreiro et al. 2000). The
AS model suggested by Albrecht and Skordis (2000) belongs to the class of scaling
quintessence fields. As mentioned previously, the parameters in this potential can be
adjusted to have the fractional dark energy density, �DE, below the nucleosynthesis
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Fig. 3.1 The dark energy
equation of state as a function
of expansion factor, w(a),
for six quintessence models
motivated by particle physics,
which are either tracking
or scaling solutions. The
parametrization for w(a)

is given in Eq. 3.2 and the
four parameter values which
specify each model are given
in Table 3.1. Note the left hand
side of the x-axis is the present
day

bound in the early universe. The CNR model (Copeland et al. 2000) has a tracking
potential where the scalar field rolls down to its minimum and will settle down to
w0 = −1 after a series of small oscillations.

Each of the quintessence models we consider is one of a family of such models with
parameter values chosen in order to solve the issues of fine-tuning and coincidence,
as well as to produce a value of w0 ∼ −1 today. These requirements limit the
parameter space available to a particular quintessence potential. For example, this
limits the range of the Brax and Martin (1999) SUGRA model. The SUGRA model
we simulate has a fixed parameter value in the supergravity potential but the dark
energy equation of state for this model does not depend strongly on this parameter
(see Fig. 4 in Brax and Martin 1999).

3.2.1 Parametrization of w

Given the wide range of quintessence models in the literature it would be a great
advantage, when testing these models, to obtain one model independent equation
describing the evolution of the dark energy equation of state without having to specify
the potential V (ϕ) directly. Throughout this chapter we will employ the parametriza-
tion for w proposed by Corasaniti and Copeland (2003), which is a generalisation of
the method used by Bassett et al. (2002) for fitting dark energy models with rapid
late time transitions. Using a parametrization for the dark energy equation of state
provides us with a model independent probe of several dark energy properties. The
dark energy equation of state, w(a), is described by its value during radiation dom-
ination, wr, followed by a transition to a plateau in the matter dominated era, wm,



3.2 Quintessence Models of Dark Energy 31

before making the transition to the present day value w0. Each of these transitions
can be parametrized by the scale factor ar,m at which they occur and the width of the
transition �r,m.

In order to reduce this parameter space we use the shorter version of this parame-
trization for w, which is relevant as our simulations begin in the matter dominated
era. The equation for w valid after matter-radiation equality is

wϕ(a) = w0 + (wm − w0) × 1 + e
am
�m

1 + e− a−am
�m

× 1 − e− a−1
�m

1 − e
1

�m

. (3.2)

Corasaniti and Copeland (2003) showed that this four parameter fit gives an excellent
match to the exact equation of state. Table 3.1 gives the best fit values for the equation
of state parameters for the different quintessence models taken from Corasaniti and
Copeland (2003), with the addition of the INV2 model. The parametrization for the
dark energy equation of state is plotted in Fig. 3.1 for the various quintessence models
used in this chapter.

Figure 3.2 shows the evolution of the dark energy density with expansion factor
in each quintessence model. Some of these models display significant levels of dark
energy at high redshifts in contrast to a �CDM cosmology. As the AS, CNR, 2EXP
and SUGRA models have non-negligible dark energy at early times, all of these
could be classed as ‘early dark energy’ models. As shown in Fig. 3.2 both the CNR
and the 2EXP models have high levels of dark energy at high redshifts compared to
�CDM; after an early rapid transition, the dark energy density evolves in the same
way as in a �CDM cosmology. Other models, like the AS, INV1 and the SUGRA
models, also have non-negligible amounts of dark energy at early times, and after
a late-time transition, the dark energy density mimics a �CDM cosmology at very
low redshifts. In Sect. 3.3 we will investigate if quintessence models which feature an
early or late transition in their equation of state, and in their dark energy density, can
be distinguished from �CDM by examining the growth of large scale structure. The
luminosity distance and Hubble parameter in the quintessence models are compared
to �CDM in Figs. 3.3 and 3.4, respectively. In these plots it is clear that the CNR
and the 2EXP models differ from �CDM only at very high redshifts. The adoption
of a 4 variable parametrization is essential to accurately model the expansion history
over the full range of redshifts probed by the simulations. Using a 1 or 2 parameter
equation of state whose application is limited to low redshift measurements restricts
the analysis of the properties of dark energy and cannot make use of high redshift
measurements such as the CMB. As an example, Corasaniti (2004) demonstrated
that a two parameter log expansion for w(z) proposed by Gerke and Efstathiou
(2002), can only take into account a quintessence model which varies slowly and
cannot faithfully reproduce the original w(z) at high redshifts. Bassett et al. (2004)
analysed how accurately various parametrizations could reproduce the dynamics of
quintessence models. They found that parametrizations based on an expansion to
first order in z or log z showed errors of ∼10 % at z = 1. A general prescription
for w(z) containing more parameters than a simple 1 or 2 variable equation can
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Table 3.1 The equation of state of the dark energy models simulated, expressed in the parame-
trization of Corasaniti and Copeland (2003)

Model w0 wm am �m

INV1 −0.4 −0.27 0.18 0.5
INV2 −0.79 −0.67 0.29 0.4
SUGRA −0.82 −0.18 0.1 0.7
2EXP −1.0 0.01 0.19 0.043
AS −0.96 −0.01 0.53 0.13
CNR −1.0 0.1 0.15 0.016

The evolution of w(a) is described by four parameters, the value of the equation of state today, w0,
and during matter domination era, wm, the expansion factor, am, when the field changes its value
during matter domination and the width of the transition, �m. We have added the INV2 model to
this list as an example of an inverse power law potential with a value of w0 closer to −1 than in the
INV1 model

Fig. 3.2 The dark energy
density, �DE(a), as a function
of expansion factor. The INV1,
SUGRA, CNR, 2EXP and AS
models have significant levels
of dark energy at early times.
From z ∼ 9 until today
the 2EXP and CNR models
display the same energy
density as �CDM. Note the
x-axis scale on this plot goes
to z > 300 on the right hand
side

accurately describe both slowly and rapidly varying equations of state (Bassett et al.
2004). For example, the parametrization provided by Corasaniti and Copeland (2003)
can accurately mimic the exact time behaviour of w(z) to <5 % for z < 103 using
a 4 parameter equation of state and to <9 % for z < 105 with a 6 parameter equation.
Finally, we note that the parametrization for w proposed by Corasaniti and Copeland
(2003) is similar to the four parameter equation of state in Linder and Huterer (2005)
(Model 4.0) where the evolution of w is described in terms of the e-fold variable,
N = ln a, where a is the scale factor.
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Fig. 3.3 The luminosity dis-
tance in different quintessence
models compared to that in
a �CDM cosmology. In this
case we have assumed the
same matter density today of
�m = 0.26 in each of the
models. The CNR and 2EXP
models predict the same DL as
in �CDM and are overplotted

Fig. 3.4 The ratio of the Hub-
ble parameter for quintessence
cosmologies to that in �CDM

3.2.2 The Expected Impact of Dark Energy on Structure
Formation

The growth of structure is sensitive to the amount of dark energy, as this changes
the rate of expansion of the Universe. As a result, a quintessence model with a
varying equation of state could display different large scale structure from a �CDM
model. Varying the equation of state will result in different amounts of dark energy at
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different times. It has been shown that models with a larger density of dark energy at
high redshift than �CDM have more developed large scale structure at early times,
when normalised to the same σ8 today (Grossi and Springel 2009; Francis et al.
2008).

The normalised growth factor G = D/a obeys the following evolution equation
in dark energy cosmologies (Linder and Jenkins 2003),

G ′′ +
(

7

2
− 3

2

w(a)

1 + X (a)

)
G ′

a
+ 3

2

1 − w(a)

1 + X (a)

G

a2 = 0 , (3.3)

where

X (a) = �m

1 − �m
e−3

∫ 1
a dlna′w(a′) , (3.4)

w(a) is the dynamical dark energy equation of state and a prime denotes a deriva-
tive with respect to the scale factor. The linear growth factor for each quintessence
model is plotted in Fig. 3.5. In Sect. 3.3.1, we present the simulation results for each
quintessence model where the initial conditions were generated using a �CDM lin-
ear theory power spectrum and the background cosmological parameters are the
best fit values assuming a �CDM cosmology (Stage I). The difference between the
simulations is the result of having a different linear growth rate for the dark matter
perturbations.

The presence of small but appreciable amounts of dark energy at early times also
modifies the growth rate of fluctuations from that expected in a matter dominated
universe and hence changes the shape of the linear theory P(k) from the �CDM
prediction. The quintessence scalar field can contribute at most a small fraction of
the total energy density at early redshifts. Constraints on this amount come from
big bang nucleosynthesis as well as from CMB measurements. Bean et al. (2001)
found a limit of �DE < 0.045 at a ∼ 10−6 using the observed abundances of
primordial nuclides and a constraint of �DE < 0.39 during the radiation domination
era, a ∼ 10−4, from CMB anisotropies. Caldwell et al. (2003) discuss the parameter
degeneracies which allow for different amounts of dark energy at early times leaving
the position of the CMB peaks unchanged (see Sect. 3.3.3). Using the WMAP first
year data, Corasaniti et al. (2004) found a limit of �DE < 0.2 at z ∼ 10. Some recent
parametrization dependent constraints on early dark energy models found the dark
energy density parameter to be �DE < 0.02 at the last scattering surface (Xia and Viel
2009). Note that all of the models we consider are consistent with this constraint,
except for the AS model (see Fig. 3.2).

If the dark energy is not a cosmological constant, then there will be dark energy
perturbations present, δϕ whose evolution will affect the dark matter power spectrum
and alter the evolution equation in Eq. 3.3 (Ferreira and Joyce 1998; Weller and Lewis
2003). As most of the quintessence models we will consider display a non-negligible
contribution to the overall density from dark energy at early times, the matter power
spectrum is affected in two ways (Ferreira and Joyce 1998; Caldwell et al. 2003;
Doran et al. 2007). In the matter dominated era, the growing mode solution for
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Fig. 3.5 The growth factor as
a function of expansion factor.
The upper panel shows the
evolution of the linear growth
factor in each quintessence
model. In the lower panel
the ratio of the growth factor
in the quintessence models
compared to�CDM is plotted.
The growth factor in each case
has been normalised to unity
today

dark matter density perturbations is proportional to the expansion factor, δm ∝ a,
in a universe without a scalar field component. In a dark energy model which has
appreciable amounts of dark energy at early times, the dark matter growing mode
solution on subhorizon scales is modified to become

δm ∝ a[√25−24�DE−1]/4. (3.5)

The growth of modes on scales k > keq, where keq is the wavenumber corresponding
to the horizon scale at matter radiation equality, is therefore suppressed relative to the
growth expected in a �CDM universe. For fluctuations with wavenumbers k < keq

during the matter dominated epoch, the suppression takes place after the mode enters
the horizon and the growing mode is reduced relative to a model with �DE � 0. These
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Fig. 3.6 Linear theory power spectra at z = 0 for dynamical dark energy quintessence models and
�CDM. In this plot, the spectra are normalised to CMB fluctuations (on smaller wavenumbers than
are included in the plot). The presence of a non-negligible dark energy density fraction at early times
causes a scale independent suppression of growth for scales k > keq where keq is the wavenumber
corresponding to the horizon scale at matter radiation equality and a scale dependent suppression
at k < keq. Models with high �DE at the last scattering surface have a lower σ8 today compared to
�CDM if normalised to CMB fluctuations

two effects are illustrated for a scaling quintessence model in Ferreira and Joyce
(1998), whose Fig. 7 shows the evolution of δm for two wavenumbers, one that enters
the horizon around aeq (k = 0.1 Mpc−1) and one that comes in during the radiation
era (k = 1 Mpc−1), in a universe with �DE = 0.1 during the matter dominated
era. There is a clear suppression of growth after horizon crossing compared to a
universe with no scalar field. The overall result is a scale independent suppression
for subhorizon modes, a scale dependent red tilt (ns < 1) for superhorizon modes
and an overall broading of the turnover in the power spectrum. This change in the
shape of the turnover in the matter power spectrum can be clearly seen in Fig. 3.6
for the AS model. This damping of the growth after horizon crossing will result in a
smaller σ8 value for the quintessence models compared to �CDM if normalised to
CMB fluctuations (see also Kunz et al. 2004).

We have used the publicly available Parametrized Post-Friedmann (PPF) module
for CAMB (Fang et al. 2008) to generate the linear theory power spectrum. This
module supports a time dependent dark energy equation of state by implementing
a PPF prescription for the dark energy perturbations with a constant sound speed
c2

s = 1. Figure 3.6 shows the dark matter power spectra at z = 0 generated by CAMB
for each quintessence model and �CDM with the same cosmological parameters, an
initial scalar amplitude of As = 2.14×10−9 and a spectral index ns = 0.96 (Sánchez
et al. 2009). As can be seen in this plot, models with higher fractional energy densities



3.2 Quintessence Models of Dark Energy 37

at early times have a lower σ8 today and a broader turnover in P(k). In Sect. 3.3.2
a consistent linear theory power spectrum was used for each quintessence model to
generate the initial conditions for the simulations (Stage II).

Finally, quintessence dark energy models will not necessarily agree with observa-
tional data when adopting the cosmological parameters derived assuming a �CDM
cosmology. We consider how the different quintessence models affect various dis-
tance scales. We find the best fit cosmological parameters for each quintessence
model using the observational constraints on distances such as the measurements
of the angular diameter distance and sound horizon at the last scattering surface
from the cosmic microwave background. The method and data sets used are given
in Appendix A.1 and the corresponding simulation results which use a consistent
linear theory power spectrum for each model together with the best fit cosmological
parameters are presented in Sect. 3.3.3 (Stage III).

3.2.3 Simulation Details

For each of the quintessence models the parametrization for the dark energy equation
of state given in Eq. 3.2 was used. In the first stage we fix the cosmological parameters
for all of the quintessence models to those of �CDM. As a result, some of the scalar
field models do not match observational constraints on the sound horizon at last
scattering or the angular diameter distance. We shall discuss this further in Sect. 3.3.3
using the results given in Appendix A.1. In the first stage of our calculations, presented
in Sect. 3.3.1, the linear theory power spectrum used to set up the initial conditions
in the quintessence models was the same as �CDM. For the purpose of computing
the shape of P(k) in Stage I, we have assumed that the ratio of dark energy density
to the critical density at the last scattering surface (zlss ∼ 1000) is negligible and
have ignored any clustering of the scalar field dark energy. To generate the initial
conditions for the simulations with dynamical dark energy, the growth factor, which
appears in the Zel’dovich approximation, needs to be computed numerically using
the growth equation in Eq. 3.3. In Sect. 3.3.2, the linear theory P(k) is generated for
each quintessence model using a modified version of CAMB which incorporates the
influence of dark energy on dark matter clustering at early times. In each model the
power spectra at redshift zero have been normalised to haveσ8 = 0.8. Using the linear
growth factor for each dark energy model, the linear theory P(k) was then evolved
backwards to the starting redshift of z = 200 in order to generate the initial conditions
for L-Gadget-2. The power spectrum was computed by assigning the particles to
a mesh using the cloud in cell (CIC) assignment scheme (Hockney and Eastwood
1981) and performing a fast Fourier transform of the density field. To compensate for
the mass assignment scheme we perform an approximate de-convolution following
Baumgart and Fry (1991). Snapshot outputs of the dark matter distribution as well
as the group catalogues were made at redshifts 5, 3, 2.5, 2, 1.5, 1, 0.75, 0.5, 0.25
and 0. We investigate gravitational collapse in the six quintessence models listed in
Table 3.1 by comparing the evolution of the power spectrum at various redshifts.

http://dx.doi.org/10.1007/978-3-642-29339-9
http://dx.doi.org/10.1007/978-3-642-29339-9
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3.3 Results

In the following sections we present the power spectrum predictions from the three
stages of simulations carried out as described in Sect. 3.2. The bottom line results
are presented in Sect. 3.3.3, in which we compare power spectra in �CDM with a
subset of dark energy models which also pass the currently available observational
constraints. Sections 3.3.1 and 3.3.2 show intermediate steps away from �CDM
towards the consistent dark energy models presented in Sect. 3.3.3, to allow us to
understand the impact on P(k). In Sect. 3.3.1 the Friedmann equation was modified
with the quintessence model’s equation of state as a function of redshift and a �CDM
linear theory power spectrum was used to generate the initial conditions for all
the simulations (Stage I). In Sect. 3.3.2 we use a consistent linear theory power
spectrum for each quintessence model (Stage II). In Sect. 3.3.3 we constrain a set
of cosmological parameters, using CMB, BAO and SN data, for each dark energy
model. The final stage of simulations use a consistent linear theory power spectrum
for each model together with the best fit cosmological parameters (Stage III).

3.3.1 Stage I: Changing the Expansion Rate of the Universe

In this first stage of simulations, the same �CDM initial power spectrum and cosmo-
logical parameters were used for all models. In Fig. 3.7 we plot the power spectrum
at redshifts z = 0, 1, 5 in �CDM (orange lines) and in the AS model (green lines),
together with the linear theory power spectra for �CDM (black lines). The AS model
has a linear growth rate that differs from �CDM by ∼20 % at z = 5. We also plot
the Smith et al. (2003) ‘Halofit’ empirical fitting function for �CDM and the AS
model. The Halofit function has been incorporated into the CAMB package and this
code was used to generate the output at various redshifts seen in Fig. 3.7. As this plot
shows, the Smith et al. (2003) expression accurately describes the evolution of the
power spectrum at redshift 0 in both models and at earlier times. As the normali-
sation and linear spectral shape is the same in these two models, Halofit accurately
reproduces the nonlinear power in each model at various redshifts once the appro-
priate linear growth factor for the dark energy model at that redshift is used. The
Smith et al. expression agrees with the simulation output at z = 0 to within 4 % for
k < 1 h Mpc−1 for both the quintessence model and �CDM. At higher redshifts,
the difference between the simulation output and the Halofit prediction for all the
models is just under 10 % on scales k < 0.3 h Mpc−1 at z = 5.

To highlight the differences in the power between the different models, we plot in
Fig. 3.8 the measured power divided by the power at z = 5, after scaling to take into
account the difference in the linear theory growth factors for the output redshift and
z = 5, for �CDM. This removes the sampling variance from the plotted ratio (Baugh
and Efstathiou 1994). A ratio of unity in Fig. 3.8 would indicate linear growth at the
same rate as expected in �CDM.
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Fig. 3.7 Power spectra in a
�CDM cosmology (orange
lines) and AS quintessence
model (green lines) at redshift
0, 1 and 5. The dashed lines
correspond to the (Smith et al.
2003) analytical expression
for the nonlinear P(k) in
�CDM; dotted lines show the
equivalent for the AS model.
The solid black line is the
linear theory for �CDM at
the corresponding redshift
outputs. The Smith et al.
(2003) expression for the AS
model has been scaled with
the appropriate growth factor
for this model at each redshift
(colour figure online)

Figure 3.8 shows four epochs in the evolution of the power spectrum for all of the
quintessence models and �CDM. The black line in the plot shows the P(k) ratio for
�CDM (note the yellow curve for the CNR model is overplotted). Non-linear growth
can be seen as an increase in the power ratio on small scales, k > 0.3 h Mpc−1 at
z = 3 and k > 0.1 h Mpc−1 at z = 0. Four of the quintessence models (INV1, INV2,
SUGRA and AS) differ significantly from �CDM for z > 0. These models show
advanced structure formation i.e. more power than �CDM, and a large increase in
the amount of nonlinear growth. All models are normalised to have σ8 = 0.8 today
and as a result all the power spectra are very similar at redshift zero in Fig. 3.8. There
are actually small differences between the quintessence models at z = 0 as seen on
the expanded scale in Fig. 3.9. This increase in nonlinear power at small scales in the
quintessence models is due to the different growth histories.

The power spectra predicted in the 2EXP and CNR models show minor departures
from that in the �CDM cosmology. This is expected as Figs. 3.1 and 3.2 show the
equations of state and the dark energy densities in these two models are the same
as �CDM at low redshifts and all three simulations began from identical initial
conditions. It could be possible to distinguish these two models from the concordance
cosmology at higher redshifts if we do not ignore the dark energy perturbations or
changes in the growth factor which alter the form of the linear theory power spectrum.
We shall discuss this more in the next stage of our simulations in Sect. 3.3.2.

Finally, we investigate if the enhanced growth in the power spectrum seen in
Fig. 3.8 in the quintessence models is due solely to the different linear growth rates
at a given redshift in the models. In order to test this idea, the power spectrum in
a quintessence model and �CDM are compared not at the same redshift but at the
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Fig. 3.8 The nonlinear growth of the power spectra in the various quintessence models as indicated
by the key in the top left panel. Each panel shows a different redshift. The power spectra in each
case have been divided by the �CDM power spectrum at redshift 5 scaled to take out the difference
between the �CDM growth factor at z = 5 and the redshift plotted in the panel. This removes the
sampling variance due to the finite box size and highlights the enhanced nonlinear growth found in
quintessence cosmologies compared to �CDM. A deviation of the power ratio from unity therefore
indicates a difference in P(k) from the linear perturbation theory of �CDM (colour figure online)

same linear growth factor.1 As the growth rates in some of the quintessence models
are very different from that in the standard �CDM cosmology, the power spectra
required from the simulation will be at different output redshift in this comparison.
For example, the normalised linear growth factor is D = 0.5 at a redshift of z = 1.58
in a �CDM model and has the same value at z = 1.82 in the SUGRA model, at
z = 1.75 in the AS model and at z = 2.25 in the INV1 quintessence model. In
Fig. 3.10 we show the power spectrum of simulation outputs from the INV1, AS,
SUGRA and CNR models divided by the power spectrum output in �CDM at the

1 We thank S.D.M. White for this suggestion.
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Fig. 3.9 Ratio of power spec-
tra output from the simulations
in the six quintessence models
compared to the nonlinear
�CDM P(k) at redshift 0.
Note the expanded scale on
the y-axis. As expected, the
2EXP and CNR models show
no difference from �CDM
while the difference in the
INV1, INV2, SUGRA and
AS models is under 10 % for
wavenumbers k<1 h Mpc−1

same linear growth rate. We ran the simulations taking three additional redshift
outputs where the linear growth rate had values of D = 1, D = 0.5 and D = 0.3.
It is clear from Fig. 3.10 that scaling the power spectrum in this way can explain the
enhanced linear and most of the excess nonlinear growth seen in Fig. 3.8 for scales
k < 0.1 h Mpc−1. For example, in the INV1 model the enhanced nonlinear growth,
on scales k ∼ 0.3 h Mpc−1 at fixed D = 0.3, differs from �CDM by at most 5 % in
Fig. 3.10 as opposed to at most 30 % at z = 5 in Fig. 3.8. At earlier redshifts when
the linear growth rate is D = 0.3, the nonlinear growth in the quintessence models
agrees with �CDM on smaller wavenumbers k < 0.3 h Mpc−1. As in Fig. 3.8, the
CNR model shows no difference from �CDM when plotted in this way.

Note in Fig. 3.10 the INV1 model has less nonlinear growth at D = 0.3 and
D = 0.5 compared to the AS model. The AS and SUGRA models have a growth
rate of D = 0.5 at lower redshifts compared to the INV1 model and so are at a
later stage in their growth history. The INV1 model has a growth rate of D = 0.5
at z = 2.25 whereas for the AS model this occurs at z = 1.75 and at 1.82 for
the SUGRA model. The reason for the success of this simple model—matching the
growth factor to predict the clustering—can be traced to the universality of the mass
function, which we discuss in Sect. 3.3.4. In this Stage I calculation, the models have
the same mass function when plotted at the epoch corresponding to a common growth
factor. This means that the two-halo contribution to the clustering is therefore the
same. Can this simple halo picture of the clustering also explain the clustering on
small scales (high k)? Although the abundance of haloes in the models is the same
at the epochs corresponding to a given value of the growth factor, the concentrations
of the haloes will not be the same. In cosmologies where the haloes formed at a
higher redshift (i.e. roughly the redshift corresponding to a particular value of D),
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Fig. 3.10 The ratio of the quintessence model power spectra to the �CDM power spectrum output
from the simulations at three values of the linear growth factor D = 1, D = 0.5 and D = 0.3.
Each panel shows the results of this exercise for the AS, CNR, 2EXP and SUGRA quintessence
models. The growth factors correspond to z = 3.4 (D = 0.3), z = 1.6 (D = 0.5) and z = 0
(D = 1) for �CDM. For each model, the choice of growth factor corresponds to slightly different
redshifts, with the biggest difference being for the INV1 model. A ratio of unity would indicate
that the growth factor is the only ingredient needed to predict the power spectrum in the different
quintessence models. Note the expanded scale on the y-axis

one would expect these haloes to have higher concentrations than their counterparts
in the other models (Eke et al. 2001). A higher concentration would be expected
to yield stronger nonlinear clustering and hence more power at high k in Fig. 3.10.
Unfortunately our simulations do not have the resolution to probe the required range
of wavenumbers to uncover this behaviour. The ratios plotted in Fig. 3.10 stop at
wavenumbers approximately equivalent to the collapsed radius of a massive halo.

Hence, it seems that scaling the power spectrum using the linear growth rate can
be used to predict the linear growth in the quintessence dark energy simulations and
can reproduce some of the nonlinear growth at early redshifts. In Fig. 3.10 there are
still some differences in the small scale growth in quintessence models compared to
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Fig. 3.11 Ratio of linear
theory power spectra for
quintessence models shown in
Fig. 3.6 to that in �CDM. In
this plot each P(k) has been
normalised so that σ8 = 0.8
today; this is the normalisation
used in our simulations

�CDM which cannot be explained by the different linear growth rates. We find that
nonlinear evolution is not just a function of the current value of the linear growth
rate but also depends on its history through the evolution of the coupling between
long and short-wavelength modes.

3.3.2 Stage II: Use of a Self-Consistent Linear Theory P(k)

We have run the simulations presented in the previous section again but this time
using the appropriate linear theory P(k) for each model (shown in Fig. 3.6) nor-
malised to σ8 = 0.8 today (Stage II). After normalising the power spectra in this
way, the difference between the quintessence models P(k) and �CDM can be seen
in Fig. 3.11. The INV2 model was not included in this set of simulations as there
is a negligible difference in the linear theory power spectrum from �CDM. Note
Francis et al. (2008) also generate the linear theory power spectrum for ‘early dark
energy’ models and normalise all P(k) to have the same σ8 today. Francis et al.
(2008) make an equivalent plot to Fig. 3.11 but find a decrease in this ratio with
decreasing scale (k > 0.2 h Mpc−1), using the parametrization for early dark energy
proposed by Doran and Robbers (2006), in contrast to the ratio of unity we find
on small scales in Fig. 3.11. This difference is due to the different parametrizations
used for the dark energy equation of state, as a ratio of unity is obtained on small
scales for the same ‘early dark energy’ model using the parametrization suggested
by Wetterich (2004) (M. Francis, private communication).
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Fig. 3.12 Ratios of power spectra for the SUGRA (first row), AS (second row) and CNR (third
row) quintessence model compared to �CDM from the three stages of simulations in this chapter.
The plot shows the growth in the quintessence models using �CDM linear theory P(k) in the initial
conditions in black (Stage I) and using a self consistent linear theory P(k) for each quintessence
model (dashed colored line) (Stage II). The dotted lines show the P(k) ratio from the simulation for
the quintessence models using the best fit parameters in Table A.1 (Stage III). The power spectra in
each case have been divided by the �CDM power spectrum at redshift 5 with appropriate scaling
of �CDM growth factors. The linear theory power spectra in each case has been normalised to
σ8 = 0.8

In the first row of Fig. 3.12 we plot the power spectrum for the Stage II SUGRA
model at z = 0, 1, and 3 divided by the simulation output in �CDM at z = 5 as in
Fig. 3.8 (red dashed lines). The result from Fig. 3.8, Stage I SUGRA, is also plotted
here to highlight how changing the spectral shape affects the nonlinear growth in
the simulations. On large scales the growth is not modified by the altered spectral
shape. The growth of perturbations on small scales in the simulation is affected by the
modified linear theory used in the initial conditions. Normalising the power spectra to
σ8 = 0.8 results in more power on large scales in the quintessence models compared

http://dx.doi.org/10.1007/978-3-642-29339-9
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to �CDM, as can be seen in Fig. 3.11. This enhanced large scale power couples to
the power on smaller scales and results in a small increase in the nonlinear power
spectrum for k > 0.1 h Mpc−1 in the Stage II SUGRA simulation compared to the
one using �CDM linear theory P(k) in Stage I.

In the second row of Fig. 3.12 we plot the power spectrum for the Stage II AS
model as green dashed lines at z = 0, 1, and 3 divided by the simulation output in
�CDM at z = 5 as in Fig. 3.8. The growth of dark matter perturbations is greatly
suppressed in the AS model due to the large fractional dark energy density at high
redshifts. After fixing σ8 = 0.8, there is more power on large scales in the AS
model compared to �CDM. As in the first row of Fig. 3.12 there is a small increase
in nonlinear power for the AS model in Stage II. Although the excess large scale
power is significantly larger than in the SUGRA model case, it does not result in
more nonlinear power on small scales through mode coupling, as can be seen in the
panels in the second row in Fig. 3.12. The linear theory power spectrum for these
quintessence models has a scale dependent red tilt on large scales which shifts the
position of the BAO peaks which is the origin of the oscillation apparent in the second
row of Fig. 3.12 at z = 3. The difference in BAO peak positions is very prominent
when we plot the ratio of the power spectrum in the AS model to the �CDM power
spectrum and can be clearly seen in Fig. 3.12.

3.3.3 Stage III: Consistency with Observational Data

In this section we present the power spectra results in �CDM and a subset of the
dark energy models, measured from simulations which use a consistent linear theory
power spectrum for each model together with the best fit cosmological parameters.
We have simulated the SUGRA, AS and CNR models using the best fit cosmological
parameters from Table A.1 and the linear theory power spectrum specific to each
model as discussed in Sect. 3.2.2. We chose to simulate these three models following
the analysis and results of Sects. 3.3.1, 3.3.2 and Appendix A.1. Any of the dark
energy models listed in Sect. 3.2 which showed similar results in Sect. 3.3.2 to �CDM
and similar cosmological parameters in Appendix A.1 have not been simulated again.
Table A.1 in Appendix A.1 shows the best fit values for �mh2, �bh2 and H0 for each
quintessence model, found by minimising χ2

total = χ2
WMAP+SN+BAO. The SUGRA, AS

and CNR models had the biggest improvement in the agreement with observational
constraints, on allowing �mh2, �bh2 and H0 to vary. The results for the SUGRA, AS
and the CNR model are shown as dotted coloured lines in Fig. 3.12 and are referred
to as Stage III in the legend to distinguish them from the results of Sects. 3.3.1 and
3.3.2 which are also plotted. In each row we show the simulation outputs at z = 0, 1
and 3. The simulation results for each quintessence model uses the models linear
theory and the best fit parameters from Table A.1. Using the best fit parameters for
each model together with the correct linear theory changes the growth of structure
in the simulation.

http://dx.doi.org/10.1007/978-3-642-29339-9
http://dx.doi.org/10.1007/978-3-642-29339-9
http://dx.doi.org/10.1007/978-3-642-29339-9
http://dx.doi.org/10.1007/978-3-642-29339-9
http://dx.doi.org/10.1007/978-3-642-29339-9
http://dx.doi.org/10.1007/978-3-642-29339-9
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In Fig. 3.12 the measured power spectrum for each model is divided by the power
for �CDM at z = 5 which has been scaled using the difference in the linear growth
factor between z = 5 and the redshift shown. Plotting the ratio in this way highlights
the differences in growth between the quintessence models and �CDM as well as
removing sampling variance.

The measured power for the SUGRA model is plotted in the first row in Fig. 3.12.
The power spectra have all been normalised to σ8 = 0.8 resulting in a large increase
in the large scale power (k < 0.1 h Mpc−1) seen in Fig. 3.12 compared to �CDM.
There is a large increase in the linear and nonlinear growth in this model at z > 0
(dotted red line) compared to �CDM (dot-dashed grey line). The second row in
Fig. 3.12 shows there is a significant enhancement in the growth in the AS power
spectrum measured compared to �CDM for z < 3. The power measured from the
simulations of the CNR model are plotted in the third row of Fig. 3.12. We find
there is a small reduction in the amount of linear and nonlinear growth in this model
compared to �CDM.

In Fig. 3.12 we also plot the simulation results for these three models from
Sect. 3.3.1 (Stage I), where �CDM linear theory was used in the initial conditions,
(black lines). The dashed coloured lines show the simulation results from Sect. 3.3.2
(Stage II), where the quintessence model linear theory was used. The SUGRA power
spectrum measured in Stage III has less nonlinear growth at high redshifts compared
to the SUGRA P(k) from Stage I or II due to changes in the spectral shape. The
measured power for the AS model using the best fit parameters (Stage III) shows
enhanced growth on all scales compared to the power for the AS model in Stage I
(using �CDM parameters and linear theory P(k)) or Stage II (using �CDM para-
meters).

These results show the importance of each of the three stages in building up a
complete picture of a quintessence dark energy model. Models whose equation of
state is very different from �CDM at low redshifts, for example the SUGRA and
the AS model, show enhanced nonlinear growth today compared to �CDM. Models
whose equation of state is very different to �CDM only at early times, for example
the CNR model, will show no difference in the nonlinear growth of structure if we
use the �CDM spectral shape (Stage I). In Stage II and III the shape of the power
spectrum in the CNR model has changed and is very different to �CDM on large
scales as can be seen in Fig. 3.12. Using the best fit cosmological parameters for
this model we find a very small reduction (<2 %) in the nonlinear growth at z = 0
compared to �CDM.

3.3.4 Mass Function of Dark Matter Haloes

In this section we present the mass function of dark matter haloes in the quintessence
models using the three stages of simulations discussed in Sects. 3.3.1–3.3.3.

Press and Schechter (1974) (hereafter P-S) proposed an analytical expression for
the abundance of collapsed objects with mass M in the range M to M + d M at
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redshift z, based on the spherical collapse model in which a perturbation can be
associated with a virilised object at z = z′, if its density contrast, extrapolated to
z = z′ using linear theory, exceeds some threshold value, δc, the critical linear
density contrast. It has been shown that the P-S approach fails to reproduce the
abundance of haloes found in simulations, overpredicting the number of haloes below
the characteristic mass M∗ and underpredicting the abundance in the high mass tail
(Efstathiou and Rees 1988; White et al. 1993; Lacey and Cole 1994; Eke et al. 1996;
Governato et al. 1999).

It is thought that the main cause of this discrepancy is the spherical collapse
approximation, as the perturbations in the density field are inherently triaxial. After
turnaround, each axis may evolve separately until the final axis collapses and the
object virilises. Sheth et al. (2001) and Sheth and Tormen (2002) (hereafter S-T)
modified the P-S formalism, replacing the spherical collapse model with ellipsoidal
collapse, in which the surrounding shear field as well as the initial overdensity deter-
mines the collapse time of an object. Sheth et al. (2001) found a universal mass
function for any CDM model. Jenkins et al. (2001) found a universal empirical fit to
the form of the mass function measured from a suite of cosmological simulations.
The Jenkins et al. mass function can accurately predict halo abundances over a range
of cosmologies and redshifts (see also Warren et al. 2006; Reed et al. 2007; Crocce
et al. 2010).

We use a friends-of-friends (FOF) halo finder, with a constant linking length of
b = 0.2, to identify haloes in all cosmologies. In Fig. 3.13 we plot groups containing
20 particles or more to ensure that the systematic uncertainties in the mass function
are at or below the 10 % level; tests show that 90 % or more of such haloes are
gravitationally bound (Springel et al. 2005). The first row in Fig. 3.13 shows the mass
function for SUGRA and �CDM at z = 0, 1 and 2. The filled red squares represent
the mass function from Stage III of the simulations where a consistent linear theory
and cosmological parameters were used for the SUGRA model. The mass function
for �CDM (open black circles) and the SUGRA model are plotted together with the
Jenkins et al. mass function shown in black (red) for �CDM (SUGRA). The S-T
mass function is shown in the top left panel in the first row of this figure (blue dashed
line) for comparison. The abundances in both �CDM and SUGRA agree with each
other at redshift 0 and with the Jenkins et al. and S-T models, although the fitting
formulae seem to slightly under-predict the number of haloes at the high mass end
(M > 1015h−1 M
). In the first row of Fig. 3.13, the number of haloes in the two
models start to differ at z = 1, and at z = 2 there is a large difference in the mass
functions. The linear growth factor for the SUGRA model together with the best fit
cosmological parameters from Table A.1 have been used to obtain the Jenkins et al.
fit at the earlier redshifts. The Jenkins et al. fit describes the data slightly better at the
high mass end at higher redshifts than the S-T prescription. This is as expected as the
Jenkins et al. fit was explicitly tested at the high mass end of the mass function. Each
model shows only small (<20 %) differences between the measured value and the
Jenkins et al. fitting formula for M < 1015h−1 M
 at z = 0. Underneath each panel
in the first row in Fig. 3.13, we plot the ratio between the measured mass function

http://dx.doi.org/10.1007/978-3-642-29339-9
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Fig. 3.13 Dark matter halo mass functions for the SUGRA (first row) and AS (second row)
quintessence models compared with that in �CDM from the Stage III simulations at z = 0, 1
and 2. The mass function in �CDM is shown as open black circles throughout this plot. In the first
row the red filled squares show the mass function from the simulation for the SUGRA model using
the best fit parameters in Table A.3 (Stage III). Underneath each panel in the first row we plot the
log of the ratio between the measured mass function for �CDM (open black circles) and Stage III
SUGRA (red squares) and the Jenkins mass function for �CDM. In the second row the green filled
squares show the mass function from the simulation for the AS model using the best fit parameters
in Table A.3 (Stage III). For the AS Stage III simulation, �mh2 = 0.086, giving rise to a change in
the spectral shape of the linear theory power spectrum. As a result, there are fewer low mass halos
and a similar number of high mass haloes at z = 0 compared to �CDM (�mh2 = 0.1334). The
difference between the Jenkins et al. mass function for �CDM and the measured mass function
for �CDM (open black circles) and Stage III AS (green squares) is plotted underneath each panel
in the second row. The black horizontal line indicates a ratio of unity in the ratio plots. In the
first and second rows the solid black (red/green) lines are the predicted abundances in the �CDM
(SUGRA/AS) model using the Jenkins et al. fitting function at various redshifts. In the top left
panel, for reference, we have also plotted the Sheth and Tormen mass function (blue dashed line)
for �CDM (colour figure online)

for �CDM and the SUGRA model in Stage III, and the Jenkins at al. mass function
for �CDM.

The second row of Fig. 3.13 repeats this comparison for the AS model. In this row
the mass function for �CDM (open black circles) and the AS model from Stage III
(green squares) of the simulations at z = 0, 1 and 2 are plotted. The Jenkins et al.
mass function for �CDM (black line) and the AS model for Stage III (green line) are
also plotted. The AS model has a greater abundance of halos than �CDM at z = 2.
For the Stage III simulation, the AS model has �mh2 = 0.086 giving rise to a change

http://dx.doi.org/10.1007/978-3-642-29339-9
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Fig. 3.14 The halo mass function for the SUGRA and AS model and �CDM at z = 0 and 1
compared to the Jenkins et al. (2001) analytic fit. The Jenkins et al. mass function is plotted as
solid black (red/green) lines for �CDM (SUGRA/AS). Underneath each panel the ratio of the mass
function measured from the simulation and the Jenkins et al. mass function is plotted for all models.
Note a logarithmic scale is used on the y-axis in the ratio plots

in the spectral shape of the linear theory power spectrum from �CDM linear theory
(�mh2 = 0.133). As a result there are fewer low mass halos and a similar number of
high mass haloes at z = 0 compared to �CDM. This change accounts for the decrease
in the mass function for M < 1015h−1 M
 seen at z = 0 in the AS model (green
squares). At z = 0, there are only small (<20 %) differences between the measured
value and the Jenkins et al. fitting formula for M < 1015h−1 M
 for �CDM and
the AS model from Stage III. The ratio between the Jenkins et al. mass function for
�CDM and the measured mass function for �CDM and the AS model from Stage
III is plotted underneath each panel in the second row in Fig. 3.13. Only the SUGRA
and AS models are plotted in Fig. 3.13 but similar differences in halo abundances are
seen in the INV models compared to �CDM, whilst only negligible differences with
�CDM were found in the mass functions of 2EXP and CNR. Grossi and Springel
(2009) found similar results for the mass function over the range 1011–1014 h−1 M

in an ‘early dark energy’ model, using much smaller volume simulations than ours.
They found a higher number density of haloes corresponding to groups and clusters
in non-standard dark energy models at high redshifts compared to �CDM, while
at z = 0 the models all agreed with one another. We find similar results although
using the cosmological parameters from Table A.1 for each quintessence model can
give different abundances at z = 0 in those models compared to �CDM because
although σ8 is the same the shape of the linear theory can be different. Also, we have
been able to probe a higher mass range for the dark matter haloes. The high mass
end of the mass function is very sensitive to changes in the current value of the linear
growth factor in the different cosmologies.

In Fig. 3.14 we plot the fraction of the total mass in haloes of mass M rather than
simply the abundance as shown in Fig. 3.13. We compare the Jenkins et al. analytic
fit to our simulated halo mass functions in the SUGRA and AS models and in �CDM

http://dx.doi.org/10.1007/978-3-642-29339-9
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at z = 0 and 1 in Fig. 3.14. In this plot the quantity lnσ−1(M, z) is used as the mass
variable instead of M , where σ2(M, z) is the variance of the linear density field at
z = 0. This variance can be expressed as

σ2(M, z) = D2(z)

2 π2

∞∫

0

k2 P(k)W 2(k; M)dk , (3.6)

where W (k; M) is a top hat window function enclosing a mass M , D(z) is the linear
growth factor of perturbations at redshift z and P(k) is the power spectrum of the
linear density field. Plotting different masses at different redshifts in this way takes out
the redshift dependence in the power spectrum. Note a large value of ln σ−1(M, z)
corresponds to a rare halo. Using this variable, Jenkins et al. found that the mass
function at different epochs has a universal form, for a fixed power spectrum shape.
Note that in our case, the Stage III simulations have somewhat different power spectra,
which account for the bulk of the dispersion between the simulation results at the
rare object end of Fig. 3.14; in Stage I, the simulation results agree with the Jenkins
et al. universal form to within 25 % at lnσ−1 = 1.0. As shown in Fig. 3.14, we find
the Jenkins et al. fitting formula is accurate to ∼20 % at z = 0 for all the models
in the range M < 1015h−1 M
. At higher redshifts the measured mass function
for the SUGRA model and �CDM differ from the Jenkins et al. mass function by
∼30 % over the same mass range while for the AS model the difference is ∼50 %
at z = 1. In previous work, Linder and Jenkins (2003) also found that the predicted
mass function for a SUGRA-QCDM simulation, which would be the equivalent of
our Stage I simulations, was well fit (within 20 %) by the Jenkins et al. formula.

3.3.5 The Appearance of Baryonic Acoustic Oscillations
in Quintessence Models

In this section we examine the baryonic acoustic oscillation signal in the matter power
spectrum for the AS, SUGRA and CNR models. Angulo et al. (2008) presented a
detailed set of predictions for the appearance of the BAO signal in the �CDM model,
covering the impact of nonlinear growth, peculiar velocities and scale dependent
redshift space distortions and galaxy bias. Here we focus on the first of these effects
and show power spectra in real space for the dark matter. We do not consider the
INV1 model as it is not consistent with observational constraints (Appendix A.1),
or the INV2 or 2EXP models as they are indistinguishable from �CDM, and hence
were not simulated again in Stage III (Sect. 3.3.3).

In Stage I of our simulations (Sect. 3.3.1), we would expect the linear theory
comoving BAO for the quintessence models to be identical to �CDM as the same
linear theory power was used for all models. In Stage II (Sect. 3.3.2), some of the
quintessence models have large amounts of dark energy at early times which will
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alter the sound horizon in these models compared to �CDM (see Table A.1), and
as a result we would expect to see a corresponding shift in the BAO peak positions.
The best fit cosmological parameters found in Stage III were derived using CMB,
BAO and SN distance measurements (see Appendix A.1). Stage III of our simulations
(Sect. 3.3.3) uses these parameters and we would expect models with the same BAO
distance measures to have the same peak pattern in the matter power spectrum as
�CDM.

The baryonic acoustic oscillations are approximately a standard ruler and depend
on the sound horizon, rs , given in Eq. A.1.3 (Sanchez et al. 2008). The apparent size
of the BAO scale depends on the distance to the redshift of observation and on the
ratio rs/Dv, where Dv is an effective distance measure which is a combination of
DA and H , given in Eq. A.1.6. In most quintessence models, rs remains unchanged
unless there is appreciable dark energy at last scattering. Models which have the
same ratio of rs/Dv are impossible to distinguish using BAO.

To calculate the power spectrum for a galaxy redshift survey, the measured angular
and radial separations of galaxies pairs are converted to co-moving separations and
scales. This conversion is dependent on the cosmological model assumed in the
analysis. These changes can be combined into the single effective measure, Dv. Once
the power spectrum is calculated in one model we can simply re-scale P(k) using
Dv to obtain the power spectrum and BAO peak positions in another cosmological
model (see Sánchez et al. 2009). In the left panel of Fig. 3.15, we plot the ratio of
Dv in four quintessence models compared to �CDM up to z = 1.5. Percival et al.
(2007) found Dv = 564 ± 23 h−1 Mpc at z = 0.2 and Dv = 1019 ± 42 h−1 Mpc at
z = 0.35 using the observed scale of BAO measured from the SDSS DR5 galaxy
sample and 2dFGRS. These data points are plotted as grey circles in Fig. 3.15. Note
that at face value none of the models we consider are consistent with the Percival
et al. (2007) point at z = 0.35. These authors report a 2.4σ discrepancy between their
results using BAO and the constraints available at the time from supernovae. The
blue square plotted in the left panel in Fig. 3.15 is the constraint Dv = 1300±31 Mpc
at z = 0.35 found by Sánchez et al. (2009). This constraint was found using a much
larger LRG dataset and improved modelling of the correlation function on large
scales. The constraint found by Sánchez et al. (2009) using CMB and BAO data is
fully consistent with CMB and SN results. The results from Percival et al. (2010) for
Dv and rs(zd)/Dv at z = 0.275 using WMAP 5 year data together with the SDSS
data release 7 galaxy samples are also plotted (black triangles). The Percival et al.
(2010) results are in much better agreement with those of Sánchez et al. (2009).

Over the range of redshifts plotted in Fig. 3.15 the distance measure, Dv, in the
AS, 2EXP and CNR models differ from �CDM by at most 2 % and is <1 % in
these models for z < 0.2. Re-scaling the power spectrum for these dark energy
cosmologies would result in a small shift ∼1 % in the position of the peaks at low
redshifts. The value of Dv in the SUGRA model differs from �CDM by at most
9 % up to z = 1.5. The right panel in Fig. 3.15 shows the ratio of rs(zd)/Dv in
the quintessence models compared to �CDM, where rs is the co-moving sound
horizon scale at the drag redshift, zd , which we discuss in Appendix A.1. The value
of rs(zd)/Dv can be constrained using the position of the BAO in the power spectrum.
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Fig. 3.15 The ratio of the distance measure Dv(z) (left panel) and the ratio of rs(zd )/Dv (right
panel) for four quintessence models compared to �CDM as indicated by the key in the right hand
panel. The grey circles are estimate points from Percival et al. (2007) at z = 0.2 and z = 0.35
measured using the observed scale of BAO calculated from the SDSS and 2dFGRS main galaxy
samples. Sánchez et al. (2009) combined CMB data with information on the shape of the redshift
space correlation function using a larger LRG dataset and found Dv(z = 0.35) = 1300 ± 31 Mpc
and rs(zd )/Dv = 0.1185 ± 0.0032 at z = 0.35 (blue squares). The data points from Percival et al.
(2010) for Dv and rs(zd )/Dv at z = 0.275 using WMAP 5 year data + SDSS DR7 are plotted as
black triangles (colour figure online)

In the right panel of Fig. 3.15 the grey symbols are the results from Percival et al.
(2007) at z = 0.2 and z = 0.35. From this plot it is clear that the SUGRA and AS
model are within the 1σ limits at z = 0.2. The 2EXP and CNR model lie just outside
the 1σ errors at z = 0.35. Note the value of rs(zd)/Dv for �CDM at z = 0.35 also
lie outside the 1σ errors, see Percival et al. (2010) for more detail. The blue square
plotted in the right panel in Fig. 3.15 is rs(zd)/Dv = 0.1185±0.0032 at z = 0.35 and
was obtained using information on the redshift space correlation function together
with CMB data (Sánchez et al. 2009).

In Figs. 3.16 and 3.17 we plot the z = 0 and z = 3 power spectra in the AS
and SUGRA models divided by a linear theory �CDM reference spectrum which
has been smoothed using the coarse rebinning method proposed by Percival et al.
(2007) and refined by Angulo et al. (2008). After dividing by this smoothed power
spectrum, the acoustic peaks are more visible in the quasi-linear regime. In Figs. 3.16
and 3.17, the measured power in each bin has been multiplied by a factor, f , to remove
the scatter due to the small number of large scale modes in the simulation (Baugh
and Efstathiou 1994; Springel et al. 2005). This factor, f = P(k)linear/P(k)N-body, is
the ratio of the expected linear theory power and the measured power in each bin
at z = 5, at which time the power on these scales is still expected to be linear.
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Fig. 3.16 The real space power spectrum for the AS model on large scales at z = 0 (left) and
z = 3 (right). All power spectra have been divided by a smoothed linear ‘no-wiggle’ theory P(k)

for �CDM. The factor, f , removes the scatter of the power measured in the simulation around
the expected linear theory power. Stage I in our simulation is represented by grey circles, Stage
II is represented by open blue squares and Stage III results are shown as green triangles. The
black solid line represents the linear theory power spectrum in �CDM divided by the smooth
reference spectrum. The vertical dashed (dotted) lines show the position of the first two acoustic
peaks (positions ±5 %) for a �CDM cosmology

Multiplying by this correction factor allows us to see the onset of nonlinear growth
around k ∼ 0.15 h Mpc−1 more clearly.

In Fig. 3.16 (3.17) we plot the AS (SUGRA) power spectrum as grey circles
from Stage I, blue (purple) squares from Stage II and green (red) triangles from
Stage III. The black line represents the linear theory power in �CDM divided by
the smooth reference spectrum. In both plots and for all power spectra, the same
reference spectrum is used. The reference is a simple ‘wiggle-free’ CDM spectrum,
with a form controlled by the shape parameter � = �mh (Bardeen et al. 1986). The
difference between the AS and �CDM linear theory, as shown in Fig. 3.11, results
in an increase in large scale power on scales k < 0.04 h Mpc−1. The vertical dashed
(dotted) lines show the first two positions of the acoustic peaks (positions ±5 %) for
a �CDM cosmology.

As shown in Fig. 3.16, we find that the position of the first acoustic peak in the
AS model from Stage I is the same as in �CDM. The position of the first peak for
the AS model, measured in Stage II of our simulations (blue squares), is slightly
shifted (∼4 %) to smaller scales compared to �CDM as the sound horizon is altered
in the AS model. In Stage III, when the best fit cosmological parameters for the AS
model are used, the sound horizon in the AS model and �CDM are very similar
at z ∼ 1090 and there is a very small (<1 %) shift in the position of the first peak
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Fig. 3.17 The real space power spectrum for the SUGRA model on large scales at z = 0 and
z = 3. All power spectra have been divided by a smoothed linear theory P(k) for �CDM. Stage I
in our simulation is represented by grey circles, Stage II is represented by open purple squares and
Stage III results are shown as red triangles. The black solid line represent the linear theory power
spectrum in �CDM divided by the smooth reference spectrum. The vertical dashed (dotted) lines
show the position of the first two acoustic peaks (positions ±5 %) for a �CDM cosmology

(green triangles). As there is less nonlinear growth at z = 3 the higher order peaks
are more visible in the right-hand plot in Fig. 3.16.

In Fig. 3.17, the SUGRA power spectrum from Stages I, II and III are plotted. The
SUGRA P(k) from Stages I and II have identical peak positions to �CDM as the
sound horizon is the same as in �CDM in these cases. There is a shift (∼5 %) in the
position of the first peak in the SUGRA model using the P(k) measured in Stage III.
Note the units on the x-axis are h/Mpc and from Table A.1, h = 0.67 for the Stage
III SUGRA model compared to h = 0.715 for �CDM. On small scales the BAO
signature is damped due to more nonlinear structure formation at z = 0 compared
to z = 3 as shown in Fig. 3.17. We find a large increase in the power in the region of
the second peak, k ∼ 0.15 h Mpc−1 in both the AS and SUGRA models, measured
in Stage III, compared to �CDM. For brevity we have not included the plots of the
power spectra for the CNR model showing the baryonic acoustic oscillations. We
find identical peak positions in �CDM and this model in all stages at z = 0.

The AS and SUGRA model are very different to �CDM at late times and as result
they affect the growth of structure at z > 0 as seen in Sects. 3.3.3 and 3.3.4. We have
found that models like this do not necessarily have different BAO peak positions
to �CDM in the matter power spectrum. These results suggest that distinguishing
a quintessence model, like the AS model used in this chapter, using measurements
of the BAO peak positions in future galaxy surveys, will be extremely difficult. The
BAO peak positions for the CNR model will be shifted by at most 2 % in the range
z < 1.5 compared to �CDM after re-scaling the power spectra by Dv. In conclusion

http://dx.doi.org/10.1007/978-3-642-29339-9
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it is possible to have quintessence cosmologies with higher levels of dark energy at
early times than in �CDM and still measure the same peak positions for the BAO in
the matter power spectrum.

3.4 Summary

Observing the dynamics of dark energy is the central goal of future galaxy sur-
veys and would distinguish a cosmological constant from a dynamical quintessence
model. Using a broad range of quintessence models, with either a slowly or rapidly
varying equation of state, we have analysed the influence of dynamical dark energy
on structure formation using N-body simulations.

We have considered a range of quintessence models that can be classified as either
‘tracking’ models, for example the SUGRA and INV models, or ‘scaling’ solutions,
such as the AS, CNR or 2EXP models, depending on the evolution of their equation
of state (see Table 3.1; Sect. 3.2). The models feature both rapidly and slowly varying
equations of state and the majority of the models could be classified as ‘early dark
energy’ models as they have a non-negligible amount of dark energy at early times.

In order to accurately mimic the dynamics of the original quintessence models at
high and low redshift, it is necessary to use a general prescription for the dark energy
equation of state which has more parameters than the ubiquitous 2 variable equa-
tion. Parametrizations for w which use 2 variables are unable to faithfully represent
dynamical dark energy models over a wide range of redshifts and can lead to biases
when used to constrain parameters (Bassett et al. 2004). Our task has been made
easier by the availability of parametrizations which accurately describe the dynam-
ics of the different quintessence models (Corasaniti and Copeland 2003; Linder and
Huterer 2005). This allows us to modify the Friedmann equation in the simulation,
using the equation of state as a function of redshift. We use the parametrization of
Corasaniti and Copeland (2003). In its full six parameter form, this framework can
describe the quintessence model back to the epoch of nucleosynthesis. Four parame-
ters are sufficient to describe the behaviour of the quintessence field over the redshift
interval followed by the simulations. With this description of the equation of state,
our simulations are able to accurately describe the impact of the quintessence model
on the expansion rate of the Universe, from the starting redshift to the present day.
This would not be the case with a 2 parameter model for the equation of state.

In this thesis we have taken into account three levels of modification from a�CDM
cosmology which are necessary if we wish to faithfully incorporate the effects of
quintessence dark energy into a N-body simulation. The first stage is to replace the
cosmological constant with the quintessence model in the Friedmann equation. A
quintessence model with a different equation of state from w = −1 will lead to
a universe with a different expansion history. This in turn alters the rate at which
perturbations can collapse under gravity. The second stage is to allow the change in
the expansion history and perturbations in the quintessence field to have an impact on
the form of the linear theory power spectrum. The shape of the power spectrum can
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differ significantly from �CDM on large scales if there is a non-negligible amount
of dark energy present at early times. This alters the shape of the turn-over in the
power spectrum compared to �CDM. Thirdly, as the quintessence model should be
consistent with observational constraints, the cosmological parameters used for the
dark energy model could be different from the best fit �CDM parameters. In the
three stages of simulations we look at the effect each of the above modifications has
on the nonlinear growth of structure. Deconstructing the simulations into three stages
allows us to isolate specific features in the quintessence models which play a key role
in the growth of dark matter perturbations. In the first stage of comparison, in which
all that is changed is the expansion history of the universe, we found that some of
the quintessence models showed enhanced structure formation at z > 0 compared to
�CDM. The INV1, INV2, SUGRA and AS models have slower growth rates than
�CDM. Hence, when normalising to the same σ8 today, structures must form at
earlier times in these models to overcome the lack of growth at late times. Models
such as the 2EXP and CNR model have the same recent growth rate as �CDM
and showed no difference in the growth of structure. The difference in linear and
nonlinear growth can largely be explained by the difference in the growth factor at
different epochs in the models. At the same growth factor, the power in the models
only diverges at the 15 % level well into the nonlinear regime.

In the second stage, a self-consistent linear theory P(k) was used for each
quintessence model to generate the initial conditions in the simulations. The amount
of dark energy present at early times will determine the impact on the linear the-
ory dark matter power spectrum and the magnitude of deviation from the �CDM
spectrum. High levels of dark energy at early times suppress the growth of the dark
matter on scales inside the horizon, resulting in a broader turn-over in the power
spectrum. We found that models with the highest levels of dark energy at the last
scattering surface, such as the AS and CNR models, have linear theory P(k) which
differ the most from �CDM. The results of the N-body simulations of the AS and
the SUGRA model show a very small increase in nonlinear growth compared to the
results in Stage I. The increase in the linear theory power is on very large scales and
does not change the small scale growth significantly.

In our final stage of simulating the effects of quintessence, we found the best
fitting cosmological parameters for each model, �mh2, �bh2 and H0, consistent with
current CMB, SN and BAO measurements. For quintessence dark energy models, it
is important to consider the changes in more than just one cosmological parameter
when fitting to the observational data. For example, for a given dark energy equation
of state, the values of �mh2 and H0 may change in such a way to compensate one
another and give similar growth rates and expansion histories to �CDM. These
compensating effects will be missed if, for example, only �m is changed for the
dark energy model as in recent work (Alimi et al. 2010). Models with cosmological
parameters which fit the data but were significantly different from �CDM were
simulated again (Sect. 3.3.3).

We will now summarise and discuss the main results for each model. The key
features of each of the quintessence models are presented in Table 3.2. The INV1
model was unable to fit the data with a reasonable χ2/ν (Table A.1). This toy model
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Table 3.2 The key features in the evolution of the quintessence models simulated

Model Transition type Transition redshift �DE(z = 300) �D(z = 5) (%)

INV1 Gradual ∼4.5 ∼0.009 ∼50
INV2 Gradual ∼5 Negligible ∼10
SUGRA Rapid ∼9 ∼0.01 ∼20
2EXP Rapid ∼4 ∼ 0.015 0
CNR Rapid ∼5.5 ∼0.03 0
AS Rapid ∼1 ∼0.11 20

�D(z = 5) is the ratio of the linear growth factor for each quintessence model compared to �CDM
at z = 5. A late time transition in the equation of state is defined as occurring at z < 2. The AS,
CNR, 2EXP and SUGRA models can be considered as ‘early dark energy’ models as they have
non-negligible amounts of dark energy present at early times

had the largest growth factor ratio to �CDM at z = 5 and as a result showed the
most enhanced growth in Stage I of our simulations. The linear growth factor for the
INV2 model is very different to �CDM at early times and gives rise to enhanced
growth at z > 0 as seen in Sect. 3.3.1. This model has negligible dark energy at early
times and so the spectral shape is not altered in Stage II. In the 2EXP model the
rapid transition to w = −1 in the equation of state early on leaves little impact on
the growth of dark matter and as a result the power spectra and mass function are
indistinguishable from �CDM. As both the INV2 and 2EXP models already agree
with cosmological measurements with very similar values for �mh2, �bh2 and H0 to
�CDM, we did not run these simulations again. The SUGRA model has enhanced
linear and nonlinear growth and halo abundances compared to �CDM at z > 0
and an altered linear theory power spectrum shape. The mass function results for all
stages of our simulations for the SUGRA model show enhanced halo abundances
at z > 0. Analysing the SUGRA power spectra, from a Stage III simulation which
used the best fit parameters for this model, reveals a ∼5 % shift in the position of the
first BAO peak. We find the distance measure Dv for the SUGRA model differs by
up to 9 % compared to �CDM over the range 0 < z < 1.5. Re-scaling the power
measured for the SUGRA model by the difference in Dv would result in an even
larger shift in the position of the BAO peaks.

The CNR model has high levels of dark energy early on which alters the spectral
shape on such large scales that the nonlinear growth of structure is only slightly less
than �CDM at z < 5. This model has a halo mass abundance at z < 5 and BAO
peak positions at z = 0 which are the same as in �CDM. For z < 0.5 the distance
measure, Dv, for the CNR model differs from �CDM by ∼1 %, as result there would
be a corresponding small shift in the BAO peak positions. The rapid early transition
at z = 5.5 in the equation of state to w0 = −1 in this model seems to remove any
signal of the large amounts of dark energy at early times that might be present in the
growth of dark matter perturbations.

The AS model has the highest levels of dark energy at early times, and so its
linear theory spectrum is altered the most. This results in a large increase in large
scale power, when we normalise the power spectrum to σ8 = 0.8 today. The results
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from Stage III using the best fit parameters show both enhanced linear and nonlinear
growth at z < 5. The linear theory P(k) is altered on scales k ∼ 0.1 h Mpc−1 which
drives an increase in nonlinear growth on small scales compared to �CDM. The mass
function results in Stage III for this model show enhanced halo abundances at z > 0.
We find that using the best fit cosmological parameters for the AS model produces
a BAO profile with peak positions similar to those in �CDM. At low redshifts there
is ∼1 % shift in the first peak compared to �CDM after re-scaling the power with
the difference in the distance measure Dv between the two cosmologies.

These results from Stage III of our N-body simulations show that dynamical dark
energy models in which the dark energy equation of state makes a late (z < 2)

rapid transition to w0 = −1 show enhanced linear and nonlinear growth compared
to �CDM at z > 0 and have a greater abundance of dark matter haloes compared to
�CDM for z > 0. We found that dynamical dark energy models can be significantly
different from �CDM at late times and still produce similar BAO peak positions in
the matter power spectrum. Models which have a rapid early transition in their dark
energy equation of state and mimic �CDM after the transition, show the same linear
and nonlinear growth and halo abundance as �CDM for all redshifts. We have found
that these models can give rise to BAO peak positions in the matter power spectrum
which are the same as those in a �CDM cosmology. This is true despite these models
having non-negligible amounts of dark energy present at early times.
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Chapter 4
Modelling Redshift Space Distortions
in Hierarchical Cosmologies

4.1 Introduction

Galaxy redshift surveys allow us to study the 3D spatial distribution of galaxies and
clusters. In a homogeneous universe, redshift measurements would probe only the
Hubble flow and would provide accurate radial distances for galaxies. In reality, pecu-
liar velocities are gravitationally induced by inhomogeneous structure and distort the
measured distances. Kaiser (1987) described the anisotropy of the clustering pattern
in redshift space but restricted his calculation to large scales where linear perturba-
tion theory should be applicable. In the linear regime, the matter power spectrum in
redshift space is a function of the power spectrum in real space and the parameter
β = f/b where f is the linear growth rate. The linear bias factor, b, characterises the
clustering of galaxies with respect to the underlying mass distribution (e.g. Kaiser
1987). Scoccimarro (2004) extended the analysis of Kaiser (1987) into the non-linear
regime, including the contribution of peculiar velocities on small scales. We study
the distortions in the redshift space power spectrum in �CDM and quintessence dark
energy models, using large volume N-body simulations, and test predictions for the
form of the redshift space distortions.

In previous work, Cole et al. (1994) and Hatton and Cole (1998) examined the
linear approximations made by Kaiser (1987) and showed that non-linearities in the
velocity and density perturbations affect the anisotropy of the redshift space power
spectrum out to surprisingly large scales. Using N-body simulations in a periodic
cube of 300 h−1Mpc on a side, Cole et al. (1994) found that the measured value of β
deviates from the Kaiser formula on wavelengths of 50 h−1 Mpc or more as a result
of these non-linearities. Hatton and Cole (1998) extended this analysis to slightly
larger scales using the Zel’dovich approximation combined with a dispersion model
where non-linear velocities are treated as random perturbations to the linear theory
velocity. In both these studies, the scales at which a departure from linear theory was
seen pushed the simulation results to the very limit. Velocity perturbations converge
more slowly than density perturbations, and so very large computational boxes are
essential for accurate predictions. These previous studies do not provide an accurate

E. Jennings, Simulations of Dark Energy Cosmologies, Springer Theses, 61
DOI: 10.1007/978-3-642-29339-9_4, © Springer-Verlag Berlin Heidelberg 2012



62 4 Modelling Redshift Space Distortions in Hierarchical Cosmologies

description of the non-linearities in the velocity field as the Zel’dovich approximation
does not model the velocities correctly, as it only treats part of the bulk motions, and
in a computational box of length 300 h−1Mpc, the power which determines the bulk
flows has not converged. Scoccimarro (2004) measured the large scale form of the
redshift space power spectrum using the VLS simulation of the Virgo consortium in
a box of length 479 h−1Mpc (Yoshida et al. 2001), and found discrepancies from
the Kaiser formula on scales k > 0.1 hMpc−1. Assuming a �CDM cosmology,
Scoccimarro (2004) also found significant non-linear corrections due to the evolution
of the velocity fields on large scales. In this chapter, we focus on the impact of
non-linearities and determine their impact on the redshift space power spectrum
in �CDM and quintessence dark energy models. The volume of our simulations,
detailed in Chaps. 2 and 3, is 125 times larger than that used by Cole et al. (1994) and
approximately 27 times larger than the one used by Scoccimarro (2004), and allow
us to accurately predict the redshift space distortions for each cosmology out to very
large scales.

Percival and White (2009) investigated the redshift space clustering using a
N-body simulation in a 1 h−1Gpc box. They argued that large scale redshift space
distortions can provide a bias independent constraint on f σ8(mass). By decompos-
ing the redshift space power spectrum into multipole moments, Percival and White
(2009) then fitted to the measured monopole moment of the power spectrum to
extract the galaxy-galaxy and velocity-velocity power spectra. In this thesis we do
not address the issue of bias and we measure the velocity power spectra directly from
the simulations to test deviations from linear perturbation theory.

This chapter is organised as follows: In Sect. 4.2 we discuss the linear growth rate
and review the theory of redshift space distortions on linear and non-linear scales.
The quintessence models considered in this chapter have already been discussed in
Chap. 3. The main results of this chapter are presented in Sects. 4.3 and 4.4. The
linear theory redshift space distortion, as well as models for the redshift space power
spectrum which include non-linear effects are examined in Sect. 4.3 for various dark
energy cosmologies. In Sect. 4.4 we present the density-velocity relation measured
from the simulations. Using this relation the non-linear models used in the previous
section can be made cosmology independent. We present a prescription for obtain-
ing the non-linear velocity divergence power spectrum from the non-linear matter
power spectrum at an arbitrary redshift in Sect. 4.4.2. Our summary are presented in
Sect. 4.5.

4.2 Redshift Space Distortions

In Sect. 4.2.1 we consider several parametrizations which are commonly used for
the linear growth rate. In Sect. 4.2.2 we review linear perturbation theory for redshift
space distortions and discuss the assumptions that are used in this approach. In
Sect. 4.2.3 we present several models proposed to describe the distortions in the
non-linear regime. A similar review can be found in Percival and White (2009).
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4.2.1 Linear Growth Rate as a Probe of Gravity

The linear growth rate is a promising probe of the nature of dark energy (Guzzo
et al. 2008; Wang 2008; Linder 2008; Song and Percival 2009; White et al. 2009;
Percival and White 2009; Stril et al. 2009; Simpson and Peacock 2010). Although the
growth equation for dark matter perturbations is easy to solve exactly, it is common to
consider parametrizations for the linear growth rate, f = dlnD/dlna, where D(a)

is the linear growth factor, see Chap. 2. These parametrizations employ different
variables with distinct dependencies on the expansion and growth histories.

A widely used approximation for f , first suggested by Peebles (1976), is f (z)
≈ �0.6

m . Lahav et al. (1991) found an expression for f , in terms of the present day
densities of matter, �m, and dark energy, �DE, which showed only a weak dependence
on the dark energy density, with f ≈ �0.6

m + �DE/70 (1 + �m/2). Linder (2005)
extended the analysis of Wang and Steinhardt (1998) to find a new fitting formula to
the exact solution for the growth factor, which he cast in the following form

g(a) = D(a)

a
≈ exp

(∫ a

0
dlna [�γ

m(a) − 1]
)

, (4.1)

where γ is the index which parametrises the growth history, while the expansion his-
tory is described by the matter density �m(a). (Linder 2005) proposed the empirical
result γ = 0.55 + 0.05[1 + w(z = 1)], where w is the dark energy equation of state,
which gives f = �0.55

m for a cosmological constant (see also Linder and Cahn 2007).
In this chapter we consider three quintessence models, each with a different evo-

lution for the dark energy equation of state parameter, w(a). These models are a
representative sample of a range of quintessence models and are a subset of those
considered in Chap. 3, namely the SUGRA, the 2EXP and the CNR quintessence
model. In the left panel of Fig. 4.1, we plot the exact solution for the linear theory
growth factor, divided by the scale factor, as a function of redshift together with the
fitting formula in Eq. 4.1. The 2EXP quintessence model is not plotted in Fig. 4.1 as
the linear growth factor for this model differs from �CDM only at high redshifts,
z > 10. Linder (2005) found that the formula in Eq. 4.1 reproduces the growth factor
to better than 0.05 % for �CDM cosmologies and to ∼0.25 % for different dynam-
ical quintessence models to the ones considered in this chapter. We have verified
that this fitting formula for D is accurate to ∼1 % for the SUGRA and 2EXP dark
energy models used in this chapter, over a range of redshifts. Note, in cosmologi-
cal models which feature non negligible amounts of dark energy at high redshifts,
a further correction factor is needed to this parametrisation (Linder 2009). Using
the parametrization for w(a) provided by Doran and Robbers (2006) for ‘early dark
energy’, Linder (2009) proposed a single correction factor which was independent
of redshift. The CNR model has a high fractional dark energy density at early times
and as a result we do not expect the linear theory growth to be accurately repro-
duced by Eq. 4.1. As can be seen in Fig. 4.1 for the CNR model, any correction factor
between the fitting formula suggested by Linder (2005) and the exact solution for

http://dx.doi.org/10.1007/978-3-642-29339-9_2
http://dx.doi.org/10.1007/978-3-642-29339-9_3
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Fig. 4.1 Left panel the linear growth factor divided by the scale factor as a function of redshift for
the SUGRA and CNR quintessence models and �CDM, as indicated by the key. Right panel the
linear growth rate, f = dlnD/dlna, for the two dark energy models and �CDM as a function of
redshift. In both the left and right main panels, solid lines represent the exact solution for the linear
growth factor and growth rate and dashed lines show the fitting formula given in Eq. 4.1. Note in
the right main panel the �CDM grey dashed line has been omitted for clarity. The lower left hand
panel shows the formula for D(a)/a given by Linder (2005) divided by the exact solution as a
function of redshift. The ratio of the formula in Eq. 4.1 for the growth rate, f , to the exact solution
is shown in the lower right hand panel. Also in the lower right panel the dotted lines show the ratio
of the fitting formula f = �0.6

m to the exact solution for each of the dark energy models plotted as
a function of redshift

D/a would depend on redshift and is not simply a constant. In this case, the ‘early
dark energy’ parametrisation of Doran and Robbers (2006) is not accurate enough
to fully describe the dynamics of the CNR quintessence model. This difference is
∼5 % at z = 8 for the CNR model, as can be seen in the ratio plot in the left panel of
Fig. 4.1. The exact solution for the linear growth rate, f , and the fitting formula in
Eq. 4.1, f = �

γ
m(a), is plotted in the right panel of Fig. 4.1. The old approximation

f = �0.6
m , is plotted in the bottom right panel in Fig. 4.1. The dotted lines represent

the ratio f = �0.6
m to the exact solution for each of the dark energy models. It is

clear that this approximation for the growth factor is not as accurate as the formula
in Eq. 4.1 over the same range of redshifts.

4.2.2 Linear Redshift Space Distortions

The comoving distance to a galaxy, �s, differs from its true distance, �x , due to its
peculiar velocity, �v(�x) (i.e. an additional velocity to the Hubble flow), as
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s = x + �v · x̂

H(a)
, (4.2)

where H(a) is the Hubble parameter and �v·x̂ is the peculiar velocity along the line
of sight. Inhomogeneous structure in the universe induces peculiar motions which
distorts the clustering pattern measured in redshift space on all scales. This effect
must be taken into account when analyzing three dimensional datasets which use
redshift as the radial coordinate. Redshift space effects alter the appearance of the
clustering of matter, and together with non-linear evolution and bias, lead the power
spectrum to depart from simple linear perturbation theory predictions.

On small scales, randomised velocities associated with viralised structures
decrease the power. The dense central regions of galaxy clusters look elongated
along the line of sight in redshift space, which produces ‘fingers of God’ (Jackson
1972) in redshift survey cone plots. On large scales, coherent bulk flows distort clus-
tering statistics (see Hamilton 1998 for a review of redshift space distortions). For
growing perturbations on large scales, the overall effect of redshift space distortions
is to enhance the clustering amplitude. Any difference in the velocity field due to
mass flowing from underdense regions to high density regions will alter the volume
element, causing an enhancement of the apparent density contrast in redshift space,
δs(�r), compared to that in real space, δr (�r). This effect was first analyzed by Kaiser
(1987) and can be approximated by

δs(r) = δr (r)(1 + μ2β), (4.3)

where μ is the cosine of the angle between the wavevector, �k, and the line of sight,
β = f/b and the bias, b = 1 for dark matter.

The Kaiser formula (Eq. 4.3) relates the overdensity in redshift space to the cor-
responding value in real space using several approximations:

1. The small scale velocity dispersion can be neglected.
2. The velocity gradient |d�u/dr | � 1.
3. The velocity and density perturbations satisfy the linear continuity equation.
4. The real space density perturbation is assumed to be small, |δ(r)| � 1, so that

higher order terms can be neglected.

All of these assumptions are valid on scales that are well within the linear regime
and will break down on different scales as the density fluctuations grow. The linear
regime is therefore defined over a different range of scales for each effect.

The matter power spectrum in redshift space can be decomposed into multipole
moments using Legendre polynomials, Ll(μ),

P(k,μ) =
2l∑

l=0

Pl(k)Ll(μ). (4.4)
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The anisotropy in P(�k) is symmetric in μ, as P(k,μ) = P(k,−μ), so only even
values of l are summed over. Each multipole moment is given by

Ps
l (k) = 2l + 1

2

∫ 1

−1
P(k,μ)Ll(μ)dμ, (4.5)

where the first two non-zero moments have Legendre polynomials, L0(μ) = 1 and
L2(μ) = (3μ2 − 1)/2. Using the redshift space density contrast, Eq. 4.3 can be
used to form P(k,μ) and then integrating over the cosine of the angle μ gives the
spherically averaged monopole power spectrum in redshift space, Ps

0 (k),

Ps
0 (k)

Pr (k)
= 1 + 2

3
f + 1

5
f 2, (4.6)

where Pr (k) denotes the matter power spectrum in real space. In practice, Pr (k)

cannot be obtained directly for a real survey without making approximations (e.g.
Baugh and Efstathiou 1994).

In this chapter we also consider the estimator for f suggested by Cole et al. (1994),
which is the ratio of quadrupole to monopole moments of the redshift space power
spectrum, Ps

2 (k)/Ps
0 (k). From Eq. 4.3 and after spherically averaging, the estimator

for f is then

Ps
2 (k)

Ps
0 (k)

= 4 f/3 + 4 f 2/7

1 + 2 f/3 + f 2/5
, (4.7)

which is independent of the real space power spectrum. Here, as before, f = β/b,
with b = 1 for dark matter.

4.2.3 Modelling Non-Linear Distortions to the Power Spectrum in
Redshift Space

Assuming the line of sight component is along the z-axis, the fully non-linear relation
between the real and redshift space power spectrum can be written as Scoccimarro
et al. (1999)

Ps(k,μ) =
∫

d3r
(2π)3 e−ik·r〈eiλ�uz [δ(x) − f ∇z ·uz(x)]

×[δ(x′) − f ∇′
z ·uz(x′)]〉, (4.8)

where λ = f kμ, uz is the comoving peculiar velocity along the line of sight,
�uz = uz(x)−uz(x′), r = x−x′ and the only approximation made is the plane par-
allel approximation. This expression is the Fourier analog of the ‘streaming model’
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first suggested by Peebles (1980) and modified by Fisher (1995) to take into account
the density-velocity coupling. At small scales (as k increases) the exponential com-
ponent damps the power, representing the impact of randomised velocities inside
gravitationally bound structures.

Simplified models for redshift space distortions are frequently used. Examples
include multiplying Eq. 4.6 by a factor which attempts to take into account small
scale effects and is either a Gaussian or an exponential (Peacock and Dodds 1994).
Two popular phenomenological examples of this which incorporates the damping
effect of velocity dispersion on small scales is firstly the so called ‘dispersion model’
(Peacock and Dodds 1994),

Ps(k,μ) = Pr (k)(1 + βμ2)2 1

(1 + k2μ2σ2
p/2)

, (4.9)

and secondly the so called ‘Gaussian model’ (Peacock and Dodds 1994),

Ps(k,μ) = Pr (k)(1 + βμ2)2exp(−k2μ2σ2
p), (4.10)

where σp is the pairwise velocity dispersion along the line of sight, which is treated
as a parameter to be fitted to the data. Using numerical simulations, Hatton and Cole
(1999) found a fit to the quadrupole to monopole ratio Ps

2 /Ps
0 = (Ps

2 /Ps
0 )lin(1−x1.22)

to mimic damping and non-linear effects, where (Ps
2 /Ps

0 )lin is the linear theory predic-
tion given by Eq. 4.7, x = k/k1 and k1 is a free parameter. They extended the dynamic
range of simulations, to replicate the effect of a larger box, using the approximate
method for adding long wavelength power suggested by Cole (1997).

The velocity divergence auto power spectrum is the ensemble average,
Pθθ = 〈|θ|2〉 where θ = �∇·�u is the velocity divergence. The cross power spectrum of
the velocity divergence and matter density is Pδθ = 〈|δθ|〉, where in this notation the
matter density auto spectrum is Pδδ = 〈|δ|2〉. In Eq. 4.8, the term in square brackets
can be re-written in terms of these non-linear velocity divergence power spectra by
multiplying out the brackets and using the fact that μi = �ki ·ẑ/ki . Scoccimarro (2004)
proposed the following model for the redshift space power spectrum in terms of Pδδ ,
the non-linear matter power spectrum, Pθθ and Pδθ,

Ps(k,μ) =
(

Pδδ(k) + 2 f μ2 Pδθ(k) + f 2μ4 Pθθ(k)
)

× e−( f kμσv)
2
,

(4.11)

where σv is the 1D linear velocity dispersion given by

σ2
v = 1

3

∫
Pθθ(k)

k2 d3k. (4.12)

In linear theory, Pθθ and Pδθ take the same form as Pδδ and depart from this at
different scales. Using a simulation with 5123 particles in a box of length 479 h−1 Mpc
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(Yoshida et al. 2001), Scoccimarro (2004) showed that this simple ansatz for Ps(k,μ)

was an improvement over the Kaiser formula when comparing to N-body simulations
in a �CDM cosmology. As this is a much smaller simulation volume than the one we
use to investigate redshift space distortions we are able to test the fit to the measured
power spectrum on much larger scales and to higher accuracy.

4.3 Results I: The Matter Power Spectrum in Real and Redshift
Space

In Sects. 4.3.1 and 4.3.2 we present the redshift space distortions measured from
the simulations in �CDM and quintessence cosmologies presented in Chap.3, and
we compare with the predictions of the linear and non-linear models discussed in
Sects. 4.2.2 and 4.2.3.

4.3.1 Testing the Linear Theory Redshift Space Distortion

In the left panel of Fig. 4.2, we plot the ratio of the redshift space to real space
power spectra, measured from the �CDM simulation at z = 0 and z = 1. Using the
plane parallel approximation, we assume the observer is at infinity and as a result
the velocity distortions are imposed along one direction in k-space. If we choose
the line of sight direction to be the z-axis, for example, then μ = kz/k where
k = |�k|. In this chapter the power spectrum in redshift space represents the average
of P(k,μ = kx/k), P(k,μ = ky/k) and P(k,μ = kz/k) where the line of sight
components are parallel to the x , y and z directions respectively. We use this average
as there is a significant scatter in the amplitudes of the three redshift space power
spectra on large scales, even for a computational box as large as the one we have
used. The three monopoles of the redshift space power spectra P(k,μ = kx/k),
P(k,μ = ky/k) and P(k,μ = kz/k) measured in one of the realisations are plotted
as the cyan, purple and red dashed lines respectively, to illustrate the scatter.

In Fig. 4.2 the Kaiser formula, given by Eq. 4.6, is plotted as a blue dotted line,
using a value of f = �0.55

m (z) for �CDM. The error bars plotted represent the scatter
over four realisations after averaging over P(k) obtained by treating the x, y and z
directions as the line of sight. It is clear from this plot that the linear perturbation
theory limit is only attained on extremely large scales (k < 0.03 hMpc−1) at z = 0
and at z = 1. Non-linear effects are significant on scales 0.03 < k (hMpc−1) < 0.1
which are usually considered to be in the linear regime. The measured variance in
the matter power spectrum on these scales is 10−3 < σ2 < 10−2.

In the right panel of Fig. 4.2 we plot the ratio Ps
2 /Ps

0 for �CDM at z = 0 and
z = 1. The ratio agrees with the Kaiser limit (given in Eq. 4.6) down to smaller
scales, k < 0.06 hMpc−1, compared to the monopole ratio plotted in the left panel.

http://dx.doi.org/10.1007/978-3-642-29339-9_3
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Fig. 4.2 Left panel the ratio of the monopole redshift power spectra and real space power spectra
measured from the �CDM simulation at z = 0 and z = 1 are plotted as blue lines. The error bars
plotted represent the scatter between the different power spectra from four �CDM simulations set
up with different realisations of the density field with the distortions imposed along either the x, y
or z axis and averaged. The power spectra P(k,μ = kx/k), P(k,μ = ky/k) and P(k,μ = kz/k)

measured from one simulation are plotted as the cyan, purple and red dashed lines respectively.
Right panel the ratio of the quadrupole to monopole moment of the redshift space power spectrum
measured from the simulations at z = 0 and z = 1 in �CDM are plotted in blue. It was not possible
to accurately measure the quadrupole to monopole power in the first bin, so this point has not been
plotted in the right hand panel. Note for wavenumbers k > 0.1 hMpc−1, only every fifth error bar
is plotted for clarity. The Kaiser formula, given by Eq. 4.6, is plotted as a blue dotted line. The error
bars were obtained as described for the left-hand panel

Our results agree with previous work on the quadrupole and monopole moments of
the redshift space power spectrum for �CDM (Cole et al. 1994; Hatton and Cole
1999; Scoccimarro 2004). At z = 1, the damping effects are less prominent and the
Kaiser limit is attained over a slightly wider range of scales, k < 0.1 hMpc−1, as
non-linear effects are smaller then at z = 0. In the next section, we consider these
ratios for the quintessence dark energy models in more detail. For each model we
find that the analytic expression for the quadrupole to monopole ratio describes the
simulation results over a wider range of wavenumber then the analogous result for
the monopole moment.

4.3.2 Nonlinear Models of Ps(k,µ)

The linear theory relationship between the real and redshift space power spectra
given in Eq. 4.6 assumes various non-linear effects are small and can be neglected on
large scales. These assumptions are listed in Sect. 4.2.2. In this section we consider
the non-linear terms in the gradient of the line of sight velocity field and explore the
scales at which it is correct to ignore such effects in the redshift space power spectrum.
As a first step, we compare the model in Eq. 4.11, to measurements from N-body
simulations for different quintessence dark energy models, without the damping term
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due to velocity dispersion. This will highlight the scale at which non-linear velocity
divergence terms affect the matter power spectrum in redshift space and cause it to
depart from the linear theory prediction.

If we rewrite dδ/dτ as aH(a) f (�m(a), γ) δ, where δ is the matter perturbation
and τ is the conformal time, dt = a(τ )dτ , then the linear continuity equation becomes

θ = �∇·�u = −aH f δ. (4.13)

Throughout this chapter we normalise the velocity divergence as θ(k, a)/[−aH(a)

f (�m(a), γ)], so θ = δ in the linear regime. The volume weighted velocity diver-
gence power spectrum is calculated from the simulations according to the prescription
given in Scoccimarro (2004). We interpolate the velocities and the densities onto a
grid of 3503 points and then measure the ratio of the interpolated momentum to the
interpolated density field. In this way, we avoid having to correct for the CIC assign-
ment scheme. A larger grid dimension could result in empty cells where δ → 0. A
FFT grid of 3503 was used to ensure all grid points had non-zero density and hence
a well defined velocity at each point. We only plot the velocity power spectra in each
of the figures up to half the Nyquist frequency for our default choice of NFFT = 3503,
knq/2 = πNFFT /(2L box) = 0.37 hMpc−1 which is beyond the range typically used in
BAO fitting when assuming linear theory.

The left panel in Fig. 4.3 shows the ratio of the power spectra, Pδδ , Pδθ and
Pθθ measured at z = 0, to the power spectra measured at z = 5 scaled using the
ratio of the square of the linear growth factor at z = 5 and z = 0 for �CDM.
It is clear from this plot that all P(k) evolve as expected in linear theory on the
largest scales. Note a linear scale is used on the x-axis in this case. In the right
panel in Fig. 4.3 all the power spectra have been divided by the linear theory matter
power spectrum measured from the simulation at z = 5, scaled using the ratio of
the linear growth factor at z = 5 and z = 0. This removes the sampling variance
from the plotted ratio (Baugh and Efstathiou 1994). In both panels, the error bars
represent the scatter over eight simulations in �CDM averaging the power spectra
after imposing the distortions along the x, y or z axis in turn. From this figure we
can see that the non-linear velocity divergence power spectra can be substantially
different from the matter power spectrum on very large scales k ∼ 0.03 hMpc−1.
The linear perturbation theory assumption that the velocity divergence power spectra
is the same as the matter P(k) is not valid even on these large scales. In the case
of �CDM this difference is ∼20 % at k = 0.1 hMpc−1. Note in the right panel in
Fig. 4.3, the 10 % difference in the ratio of the cross power spectrum to the matter
power spectrum, on the largest scale considered, indicates that we have a biased
estimator of θ which is low by approximately 10 %.

We find that the Pδθ and Pθθ measured directly from the simulation differ from
the matter power spectrum by more then was reported by Percival and White (2009).
These authors did not measure Pδθ and Pθθ directly, but instead obtained these quan-
tities by fitting Eq. 4.14 to the redshift space monopole power spectrum measured
from the simulations. In Fig. 4.4 we plot the same ratios as shown in the right panel of
Fig. 4.3 measured from one �CDM (left panel) and SUGRA (right panel) simulation.
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Fig. 4.3 Left panel the ratio of the non-linear power spectra, Pδδ , Pδθ and Pθθ for �CDM measured
from the simulation at z = 0, divided by the corresponding power spectrum measured from the
simulation at z = 5, scaled using the square of the ratio of the linear growth factor at z = 5 and
z = 0. The non-linear matter power spectrum is plotted as a grey dot-dashed line, the non-linear
velocity divergence auto power spectrum Pθθ is plotted as a blue solid line and the non-linear cross
power spectrum, Pδθ , is plotted as a green dashed line. Right panel the ratio of the non-linear power
spectra, Pδδ , Pδθ and Pθθ , to the linear theory matter P(k) in �CDM measured from the simulation
at z = 0. All power spectra have been divided by the linear theory matter power spectrum measured
from the simulation at z = 5, scaled using the square of the ratio of the linear growth factor at z = 5
and z = 0. In both panels the error bars represent the scatter over eight �CDM realisations after
imposing the peculiar velocity distortion along each Cartesian axis in turn

Fig. 4.4 Left panel the ratio of the non-linear power spectra, Pδδ , Pδθ and Pθθ , to the linear theory
P(k) in �CDM measured from one realisation of the matter density and velocity fields at z = 0.
All power spectra have been divided by the linear theory matter power spectrum measured from
the simulation at z = 5, scaled using the square of the ratio of the linear growth factor at z = 5
and z = 0. Right panel similar to that in the left panel but for the SUGRA quintessence model. The
lines are the same as used in the left hand panel

From our simulations it is possible to find a realisation of the density and velocity
fields where the measured matter power spectrum and the velocity divergence power
spectra are similar on large scales.

Having found that the measured Pδθ and Pθθ differ significantly from Pδδ , we
now test if the grid assignment scheme has any impact on our results. As explained
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Fig. 4.5 A comparison of
the impact of the FFT grid
dimension on power spectrum
estimation. The plots show the
ratio of the non-linear power
spectra, Pθθ (upper panel)
and Pδθ (lower panel), to the
linear theory matter power
spectrum measured from the
simulations in �CDM, using
different FFT grid sizes. From
bottom to top in each panel the
lines show the ratios for grid
sizes NFFT = 128 (purple),
NFFT = 256 (blue), NFFT

= 350 (red) and NFFT = 375
(green)

in Chap. 2, the velocity P(k) are computed by taking the Fourier transform of the
momentum field divided by the density field to reduce the impact of the grid assign-
ment scheme (Scoccimarro 2004). Pueblas and Scoccimarro (2009) showed that the
CIC assignment scheme affects the measured P(k) beyond ∼20 % of the Nyquist
frequency. In Fig. 4.5 we show the power spectrum measurements for four differ-
ent FFT dimensions to show the scales at which we get a robust measurement. For
NFFT = 350 the power spectra have converged on scales up to k ∼ 0.2 hMpc−1.

In the top row of Fig. 4.6, the ratios Ps
0 (k)/Pr (k) and Ps

2 (k)/Ps
0 (k) are plotted

as solid lines in the left and right hand panels respectively. In this figure we have
overplotted as grey dashed lines, the ratio of the redshift space monopole moment to
the real space power spectrum where

Ps
0 (k) = Pδδ(k) + 2

3
f Pδθ(k) + 1

5
f 2 Pθθ(k). (4.14)

On scales 0.05 < k(hMpc−1) < 0.2, this model for the redshift space power spec-
trum reproduces the measured Ps(k,μ) and is a significant improvement compared

http://dx.doi.org/10.1007/978-3-642-29339-9_2
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Fig. 4.6 The left hand column shows the ratio of the monopole of redshift power spectra to the real
space power spectra at z = 0 and z = 1. The right hand column shows the ratio of the quadrupole
to monopole moment of the redshift space power spectra at z = 0 and z = 1. Different rows show
different dark energy models as labelled. Top row the ratio of the redshift and real space power
spectra in �CDM are plotted as solid lines in the left panel. The dashed lines represent the same
ratio using Eq. 4.14 for the monopole of the redshift space power spectrum. The dot-dash line
represents the model given in Eq. 4.11 which includes velocity dispersion effects. In the right panel
the ratio of the quadrupole to monopole moment of the redshift space power spectra in �CDM are
plotted as solid lines. The same ratio using Eq. 4.15 for the redshift space power spectrum is plotted
as dashed lines. Middle row same as the top row but for the SUGRA quintessence model. Bottom
row same as the middle row but for the CNR quintessence model

to Eq. 4.6. This form does not include any modelling of the damping due to velocity
dispersion. The extended model proposed by Scoccimarro (2004) given in Eq. 4.11,
which does include damping, is also plotted as a black dot-dashed line for �CDM
in the top row in Fig. 4.6. The redshift space quadrupole to monopole ratio in the
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quasi-linear regime, including the velocity divergence power spectra, is

Ps
2

Ps
0

=
4
3 f Pδθ + 4

7 f 2 Pθθ

Pδδ + 2
3 f Pδθ + 1

5 f 2 Pθθ

. (4.15)

This model does well at reproducing the ratio of the redshift space to real space
power spectrum, although it underpredicts the ratio on scales k < 0.02 hMpc−1.
The corresponding plots for the SUGRA and CNR models are shown in the middle
and bottom rows of Fig. 4.6. It is clear that including the velocity divergence power
spectrum in the model for Ps

0 and Ps
2 , produces a good fit to the measured redshift

space power in both quintessence models on scales up to k ∼ 0.2 hMpc−1.

4.4 Results II: The Density Velocity Relation

In Sect. 4.4.1 we examine the relationship between the non-linear matter and velocity
divergence power spectra in different cosmologies. In Sect. 4.4.2 we study the redshift
dependence of this relationship and provide a prescription which can be followed
to generate predictions for the non-linear velocity divergence power spectrum at a
given redshift.

4.4.1 Dependence on Cosmological Model

The linear continuity equation, Eq. 4.13, gives a one to one correspondence between
the velocity and density fields with a cosmology dependent factor, f (�m, γ). Once
the overdensities become non-linear, this relationship no longer holds. Bernardeau
(1992) derived the non-linear relation between δ and θ in the case of an initially
Gaussian field. Chodorowski and Lokas (1997) extended this relation into the weakly
non-linear regime up to third order in perturbation theory and found the result to
be a third order polynomial in θ. More recently, Bilicki and Chodorowski (2008)
found a relation between θ and δ using the spherical collapse model. In all of these
relations, the dependence on cosmological parameters was found to be extremely
weak (Bernardeau 1992; Bouchet et al. 1995). The velocity divergence depends on
�m and ��, in a standard �CDM cosmology, only through the linear growth rate,
f (Scoccimarro et al. 1999).

We showed in the previous section that including the velocity divergence auto and
cross power spectrum accurately reproduces the redshift space power spectrum for a
range of dark energy models on scales where the Kaiser formula fails. The quantities
in Eqs. 4.15 and 4.11 can be calculated if we exploit the relationship between the
velocity and density field. In Fig. 4.7 we plot the velocity divergence auto (left panel)
and cross (right panel) power spectrum as a function of the matter power spectrum
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for �CDM and the three quintessence dark energy models. We find that the density
velocity relationship is very similar for each model at the redshifts considered, with
only a slight difference for the SUGRA model at high redshifts and at small scales.
The departure of the SUGRA model from the general density velocity relation is due
to shot noise, which affects the power spectrum most at these scales in the SUGRA
model as it has the lowest amplitude. We have verified that this effect is due to
shot noise by sampling half the particles in the same volume, thereby doubling the
shot noise, and repeating the P(k) measurement to find an even larger departure.
Fig. 4.7 shows the independence of the density velocity relation not only of the
values of cosmological parameters, as found in previous works, Bernardeau (1992),
but also a lack of dependence on the cosmological expansion history and initial power
spectrum.

Fitting over the range 0.01 < k (h/Mpc)< 0.3, we find the following function
accurately describes the relation between the non-linear velocity divergence and
matter power spectrum at z = 0 to better than 5 % on scales k < 0.3 hMpc−1,

Pxy(k) = g(Pδδ(k)) = α0
√

Pδδ(k) + α1 P2
δδ(k)

α2 + α3 Pδδ(k)
, (4.16)

where Pδδ is the non-linear matter power spectrum. For the cross power spectrum
Pxy = Pδθ, α0 = −12288.7, α1 = 1.43, α2 = 1367.7 and α3 = 1.54 and for
Pxy = Pθθ, α0 = −12462.1, α1 = 0.839, α2 = 1446.6 and α3 = 0.806; all points
were weighted equally in the fit and the units for α0,α1 and α3 are (Mpc/h)3/2,
(Mpc/h)−3 and (Mpc/h)−3 respectively. The power spectra used for this fit are the
average Pθθ, Pδθ and Pδδ measured from eight �CDM simulations.

4.4.2 Approximate Formulae for Pδ θ and Pθ θ for Arbitrary
Redshift

In perturbation theory, the solution for the density contrast is expanded as a series
around the background value. Scoccimarro et al. (1998) found the following solutions
for δ and θ to arbitrary order in perturbation theory,

δ(k, τ ) =
∞∑

n=1

Dn(τ )δn(k)

θ(k, τ ) =
∞∑

n=1

En(τ )θn(k), (4.17)

where δ1(k) and θ1(k) are linear in the initial density field, δ2 and θ2 are quadratic
in the initial density field etc. Scoccimarro et al. (1998) showed that using a simple
approximation to the equations of motion, f (�m) = �

1/2
m , the equations become
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Fig. 4.7 Non-linear velocity divergence auto (left) and cross (right) power spectrum plotted as a
function of the non-linear matter power spectrum at z = 0, 1 and 2 in three quintessence models
and �CDM, as labelled. The ratio of the velocity divergence power spectra to the matter power
spectrum at each redshift is plotted in the smaller panels beneath each main panel

separable and En(τ ) = Dn(τ ) = D(τ )n , where D(τ ) is the linear growth factor of
density perturbations. We shall use these solutions for δ(k, τ ) and θ(k, τ ) to approx-
imate the redshift dependence of the density velocity relation found in Sect. 4.4.1.
This relation does not depend on the cosmological model but we shall assume a
�CDM cosmology and find the approximate redshift dependence as a function of
the �CDM linear growth factor.

The fitting function given in Eq. 4.16 generates the non-linear velocity divergence
power spectrum, Pδθ or Pθθ from the non-linear matter power spectrum, Pδδ at
z = 0. Figure 4.8 shows a simple illustration of how the function g(Pδδ) and Pδδ

at z = 0 can be rescaled to give the velocity divergence power spectra at a higher
redshift, z′. Using the simplified notation in the diagram, where P1 = Pδδ , and given
the function g(Pδδ), we can find a redshift dependent function, c(z), with which to
rescale g(Pδδ(z = 0)) to the velocity divergence P(k) at z′. At the higher redshift,
z′, the non-linear matter and velocity divergence power spectra are denoted as P ′

1
and P ′

2 respectively in Fig. 4.8.
Using the solutions in Eq. 4.17, to third order in perturbation theory, see Appen-

dix B.1, we assume a simple expansion with respect to the initial density field, to
find the following ansatz for the mapping P ′

1(z = z′) → P ′
2(z = z′) which can be

approximated as P1(z = 0)/c2(z = 0, z′) → g(P1)/c2(z = 0, z′) where

c(z, z′) = D(z) + D2(z) + D3(z)

D(z′) + D2(z′) + D3(z′)
, (4.18)

http://dx.doi.org/10.1007/978-3-642-29339-9 
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Fig. 4.8 A schematic illustration showing how the z = 0 non-linear matter power spectrum can
be rescaled to find the velocity divergence power spectrum at any redshift z = z′. The upper two
curves represent the non-linear matter power spectrum, P1, in grey and the velocity divergence
power spectrum, P2, plotted as a blue dashed line, at z = 0. The power in the first bin is represented
as a filled circle for each spectrum. The lower two curves, P ′

1 and P ′
2, are the non-linear matter and

velocity divergence spectra at z = z′. The power in the first bin is represented as a filled triangle
in each case. The fitting formula for g(P1) (Eq. 4.16) generates the non-linear velocity divergence
power spectra at z = 0. Using the function given in Eq. 4.18, the matter power spectrum P1 and
g(P1) can be rescaled to an earlier redshift. The power in the first bin from the rescaled P1 and g(P1)

are shown as an empty grey and blue circle respectively. Note that P1 and P2 have been artificially
separated for clarity

and D(z) is the linear growth factor. The equivalence of these mappings gives
P ′

1 − P ′
2 = (P1 − g(P1))/c2 which allows us to calculate P ′

2 at z = z′ if we
have P1(z = 0), g(P1(z = 0) and P ′

1(z = z′). Writing this now in terms of Pδδ ,
instead of P1, we have the following equation

Pxy(k, z′) = g(Pδδ(k, z = 0)) − Pδδ(k, z = 0)

c2(z = 0, z′)
+ Pδδ(k, z′) , (4.19)

where g(Pδδ) is the function in Eq. 4.16 and Pxy is either the nonlinear cross or auto
power spectrum, Pδθ or Pδδ .

In the left panel of Fig. 4.9, we plot the �CDM non-linear power spectrum Pθθ at
z = 0, 1, 2 and 3. The function given in Eq. 4.19 is also plotted as red dashed lines
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Fig. 4.9 Non-linear velocity divergence auto and cross power spectrum, in the left and right panels
respectively, measured from the �CDM simulations at z = 0 (open grey squares), z = 1 (purple
crosses), z = 2 (blue stars) and z = 3 (cyan diamonds). Overplotted as red dashed lines is the
function given in Eq. 4.19 at redshifts z = 1, 2 and 3. The lower panels show the function in Eq. 4.19
divided by the measured spectra at z = 1, 2 and 3

using the factor c(z, z′) given in Eq. 4.18 and the �CDM linear growth factor at
redshift z = 0, 1, 2 and 3 respectively. The ratio plot shows the difference between
the exact Pθθ power spectrum and the function given in Eq. 4.19. The right panel in
Fig. 4.9 shows a similar plot for the Pδθ power spectrum. In both cases we find very
good agreement between the scaled fitting formula and the measured power spectrum.
Scaling the z = 0 power spectra using this approximation in Eq. 4.18 reproduces
the non-linear z = 1, 2 and 3, Pδθ to ∼5 % and Pθθ to better than 5 % on scales
0.05 < k(hMpc−1) < 0.2. It is remarkable that scaling the z = 0 fitting formula
using c in Eq. 4.18 works so well at the different redshifts up to k < 0.3 h/Mpc and
is completely independent of scale.

To summarise the results of this section we have found that the quadrupole to
monopole ratio given in Eq. 4.15 and the model in Eq. 4.11, which includes the non-
linear matter and velocity divergence power spectra at a given redshift z′, can be
simplified by using the following prescription. Assuming a cosmology with a given
linear theory matter power spectrum we can compute the non-linear matter P(k)

at z = 0 and at the required redshift, z′, using, for example, the phenomenologi-
cal model HALOFIT (Smith et al. 2003) or the method proposed by Casarini et al.
(2009) in the case of quintessence dark energy. These power spectra can then be
used in Eq. 4.19 together with the function g, given in Eq. 4.16, and the linear theory
growth factor between redshift z = 0 and z = z′ to find the velocity divergence
auto or cross power spectrum. As can be seen from Fig. 4.9 the function given in
Eq. 4.19 agrees with the measured non-linear velocity divergence power spectrum to
∼10 % for k < 0.3hMpc−1 and to < 5 % for k < 0.2hMpc−1 for �CDM. We have
verified that this prescription also reproduces Pδθ and Pθθ to an accuracy of 10 %
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for k < 0.3hMpc−1 for the CNR, SUGRA and 2EXP models using the corresponding
matter power spectrum and linear growth factor for each model. This procedure sim-
plifies the redshift space power spectrum in Eq. 4.11 and the quadrupole to monopole
ratio given in Eq. 4.15. For the dark energy models considered in this chapter, this
ratio provides an improved fit to the redshift space P(k,μ) compared to the Kaiser
formula and incorporating the density velocity relation eliminates any new parame-
ters which need to be measured separately and may depend on the cosmological
model.

4.5 Summary

We use simulations of three quintessence dark energy models which have different
expansion histories, linear growth rates and power spectra compared to �CDM.
In Chap. 3, Jennings et al. (2010), we carried out the first fully consistent N-body
simulations of quintessence dark energy, taking into account different expansion
histories, linear theory power spectra and best fitting cosmological parameters �m,
�b and H0, for each model. In this chapter we examine the redshift space distortions in
the SUGRA, CNR and 2EXP quintessence models. These models are representative
of a broader class of quintessence models which have different growth histories and
dark energy densities at early times compared to �CDM. In particular the SUGRA
model has a linear growth rate that differs from �CDM by ∼20 % at z = 5 and the
CNR model has high levels of dark energy at early times, �DE ∼ 0.03 at z ∼ 200.
The 2EXP model has a similar expansion history to �CDM at low redshifts, z < 5,
despite having a dynamical equation of state for the dark energy component.

Redshift space distortions observed in galaxy surveys are the result of peculiar
velocities which are coherent on large scales, leading to a boost in the observed
redshift space power spectrum compared to the real space power spectrum (Kaiser
1987). On small scales these peculiar velocities are incoherent and give rise to a
damping in the ratio of the redshift to real space power spectrum. The Kaiser formula
is a prediction of the boost in this ratio on very large scales, where the growth is
assumed to be linear, and can be expressed as a function of the linear growth rate
and bias, neglecting all non-linear contributions.

In previous work, using N-body simulations in a periodic cube of 300 h−1Mpc
on a side, Cole et al. (1994) found that the measured value of β = f/b, where b
is the linear bias, deviates from the Kaiser formula on wavelengths of 50 h−1 Mpc
or more as a result of these non-linearities. Hatton and Cole (1998) extended this
analysis to slightly larger scales using the Zel’dovich approximation combined with
a dispersion model where non-linear velocities are treated as random perturbations
to the linear theory velocity. These previous studies do not provide an accurate
description of the non-linearities in the velocity field for two reasons. Firstly, the
Zel’dovich approximation does not model the velocities correctly, as it only treats
part of the bulk motions. Secondly, in a computational box of length 300 h−1Mpc,
the power which determines the bulk flows has not converged. In this thesis we use a

http://dx.doi.org/10.1007/978-3-642-29339-9_3
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large computational box of side 1500 h−1Mpc, which allows us to measure redshift
space distortions on large scales to far greater accuracy than in previous work.

In this chapter we find that the ratio of the monopole of the redshift space power
spectrum to the real space power spectrum agrees with the linear theory Kaiser
formula only on extremely large scales k < 0.03 hMpc−1 in both �CDM and the
quintessence dark energy models. We still find significant scatter between choosing
different axes as the line of sight, even though we have used a much larger simulation
box than that employed in previous studies. As a result we average over the three
power spectra, assuming the distortions lie along the x , y and z directions in turn,
for the redshift space power spectrum in this chapter. Instead of using the measured
matter power spectrum in real space, we find that the estimator suggested by Cole
et al. (1994), involving the ratio of the quadrupole to monopole redshift space power
spectrum, works better than using the monopole and agrees with the expected linear
theory on slightly smaller scales k < 0.07 hMpc−1 at z = 0 for both �CDM and the
quintessence models.

As the measured redshift space distortions only agree with the Kaiser formula on
scales k < 0.07 hMpc−1, it is clear that the linear approximation is not correct on
scales which are normally considered to be in the ‘linear regime’, k < 0.2 hMpc−1.
In linear theory, the velocity divergence power spectrum is simply a product of the
matter power spectrum and the square of the linear growth rate. In this thesis we have
demonstrated that non-linear terms in the velocity divergence power spectrum persist
on scales 0.04 < k (hMpc−1) < 0.2. These results agree with Scoccimarro (2004)
who also found significant non-linear corrections due to the evolution of the velocity
fields on large scales, assuming a �CDM cosmology. We have shown that including
the non-linear velocity divergence auto and cross power spectrum in the expression
for the redshift space P(k) leads to a significant improvement when trying to match
the measured quadrupole to monopole ratio for both �CDM and quintessence dark
energy models.

Including the non-linear velocity divergence cross and auto power spectra in the
expression for the redshift space power spectrum increases the number of parameters
needed and depends on the cosmological model that is used. Using the non-linear
matter and velocity divergence power spectra we have found a density velocity rela-
tion which is model independent over a range of redshifts. Using this relation it is
possible to write the non-linear velocity divergence auto or cross power spectrum at a
given redshift, z′, in terms of the non-linear matter power spectrum and linear growth
factor at z = 0 and z = z′. This formula is given in Eq. 4.19 in Sect. 4.4.2. We find
that this formula accurately reproduces the non-linear velocity divergence P(k) to
within 10 % for k < 0.3 hMpc−1 and to better than 5 % for k < 0.2 hMpc−1 for both
�CDM and the dark energy models used in this chapter. It is clear that including the
non-linear velocity divergence terms results in an improved model for redshift space
distortions on scales k < 0.2 hMpc−1 for different cosmological models.
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Chapter 5
Testing Gravity Using the Growth of Large Scale
Structure in the Universe

5.1 Introduction

Dark energy and modified gravity models can produce similar expansion histories
for the Universe, which can be derived from the Hubble parameter measured, for
example, using Type Ia SN. The expansion history of the Universe in dark energy
and modified gravity cosmologies can be described using an effective equation of
state. If two models have the same equation of state, as a consequence, it is not
possible to distinguish between them using measurements of the expansion history
alone. However, cosmic structures are expected to collapse under gravity at different
rates in the dark energy and modified gravity cosmologies.

The growth rate is a measure of how rapidly overdense regions are collapsing
under gravity to form large structures in the Universe. Dark energy or modified
gravity models predict different growth rates for the large scale structure of the
Universe, which can be measured using redshift space distortions of clustering. As
noted by Linder (2005), in the case of general relativity, the second order differential
equation for the growth of density perturbations depends only on the expansion
history through the Hubble parameter, H(a), or the equation of state, w(a). This
is not the case for modified gravity theories. By comparing the cosmic expansion
history with the growth of structure, it is possible to distinguish the physical origin
of the accelerating expansion of the Universe as being due either to dark energy or
modified gravity (Lue et al. 2004; Linder 2005). If there is no discrepancy between the
observed growth rate and the theoretical prediction assuming general relativity, this
implies that a dark energy component alone can explain the accelerated expansion.
We test this assumption using large volume N-body simulations which are the only
way to accurately follow the growth of cosmic structure and probe the limits of linear
perturbation theory.

This chapter is organised as follows: In Sect. 5.2.1 we discuss the linear growth rate
and its dependence on the cosmological model. In Sect. 5.2.2 we consider modified
gravity models which feature a time varying Newton’s constant. Our main results
are presented in Sect. 5.3. The details of the simulations and tests of the code are
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given in Sect. 5.3.1. In Sect. 5.3.2 we present the measured redshift space distortions
in the modified gravity and quintessence dark energy simulations. In Sect. 5.3.3 we
test several models for the redshift space power spectrum and determine the best
fit value of the growth rate for each model fitting over different intervals in Fourier
space.

5.2 Testing Modifications to General Relativity

5.2.1 The Linear Growth Rate

The rate at which large scale structures grow is driven by two opposing mechanisms:
gravitational instability (set by Newton’s constant, G N ) and the expansion rate of the
Universe (given by H(a)). In the framework of general relativity, the growth of a den-
sity fluctuation, δ ≡ (ρ(x, t)−ρ̄)/ρ̄, where ρ̄m is the average matter density, depends
only on the expansion history, H(a). In alternative theories of gravity, e.g. where
the modifications can be parametrized by a time-varying gravitational constant, G̃,
the growth of perturbations will depend on both this varying gravitational coupling
and the expansion history. By using the measured expansion history to predict the
growth of structure and comparing this to a direct measurement of the growth rate, it
may be possible to determine whether the physical origin of the accelerating cosmic
expansion is due either to dark energy or modified gravity (Lue et al. 2004; Linder
2005).

Using the perturbed equations of motion, within general relativity, the growth of
density perturbations evolves according to

δ̈ + 2H δ̇ − 4πG N ρmδ = 0 , (5.1)

where the matter overdensity δ = ρm/ρ̄ − 1, H is the Hubble expansion rate, G N is
the present value of the gravitational constant found in laboratory experiments and a
dot denotes a derivative with respect to time. If we change variables to g = δ/a and
allow the gravitational constant G̃ to vary in time, this equation becomes (Linder
2005)

d2g

da2 +
(

5 + 1

2

dlnH2

dlna

)
1

a

dg

da

+
(

3 + 1

2

dlnH2

dlna
− 3

2

G̃(a)

G N
�m(a)

)
g = 0, (5.2)

where �m(a) is the ratio of the matter density to the critical density as a function
of scale factor, a. It is clear from Eq. 5.2 that in the framework of general relativity,
G̃(a)/G N = 1 and the growth of perturbations depends only on the expansion
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history, H(a). In theories of modified gravity the growth of perturbations will depend
on both the expansion history and G̃(a).

5.2.2 Time Variation of Newton’s Constant

Modifications of general relativity, referred to as modified gravity theories, provide
an alternative explanation to dark energy for the observed accelerating expansion. As
discussed in Chap. 1, several classes of theories exist which generally can be divided
into theories which introduce a new scalar degree of freedom to Einstein’s equations,
e.g. scalar tensor or f (R) theories, and those which modify gravity as a result of the
changing dimensionality of space, e.g. braneworld gravity.

In many modified gravity models, the time variation of fundamental constants,
such as Newton’s gravitational constant, G N , are naturally present. For example,
following Dirac’s proposal of the possible cosmological variation of constants to
explain large number coincidences in the Universe, many theorists developed self
consistent scalar-tensor theories, where the space-time variation of a scalar field
can couple to gravity producing a time varying G̃. These ‘extended quintessence’
models are viable alternatives to Einstein’s theory of gravity and give rise to a cosmic
expansion that accelerates at late epochs, as required.

Scalar-tensor theories, originally proposed by Jordan Jordan (1949) and Brans
and Dicke (1961), are the most widely studied class of modified gravity theories
and feature massless scalar fields that couple to the tensor field in Einstein’s gravity.
These theories are a viable alternative to Einstein’s theory of general relativity and
have a distinctive feature of a spacetime varying gravitational ‘constant’.

Calculations with a mesh to allow spatial variations of the scalar field have shown
that, in practice, a broad range of extended quintessence models can be effectively
described as a theory which features a time varying Newton’s constant (Pettorino and
Baccigalupi 2008; Li et al. 2010). The modified gravity model that we discuss in this
chapter, which involves a time varying gravitational constant, can be considered as
a simple parametrisation of a self consistent modified gravity model. For simplicity,
it is common to consider a simple class of models where in Eq. 1.20 in Chap. 1,
F(ϕ, R) = F(ϕ)R/2. It is the F(ϕ) term which has the effect of introducing a
spacetime dependent gravitational constant.

The value of Newton’s constant as measured in Cavendish like experiments on
terrestrial scales, �1 m, is assumed to be the same on all scales. Although the grav-
itational constant is the least accurately measured of all the fundamental constants,
there are experiments which test G N on different spatial scales and aim to tightly con-
strain its variation. For example, solar system scale constraints are obtained in weak
field experimental tests, using laser ranging techniques, which measure the distance
between the earth and the moon (Williams et al. 1996). If Newton’s constant varies
over cosmological time scales then the main sequence time of stars in globular clusters
will be modified. For example, an increase in G N shortens the life span of these stars,
causing them to burn faster (Teller 1948). degl’Innocenti et al. (1996) constrained

http://dx.doi.org/10.1007/978-3-642-29339-9_5
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86 5 Testing Gravity Using the Growth of Large Scale Structure in the Universe

the time variation of G N to be −35 × 10−12year−1 � Ġ/G � 7 × 10−12year−1,
by assuming that the age of globular clusters was between 8–20 Gyear. Another
important constraint on the time variation of G N comes from observing the masses
of neutron stars formed at different redshifts. In the late stages of stellar evolution
the Fermi pressure of the gas balanced by the strength of gravity determine the
Chandrasekhar mass, ∝G3/2

N . Assuming that the mean neutron star mass is equal to
the Chandrasekhar mass, observations of neutron star binaries can limit the allowed
variation of G N (Thorsett 1996).

If G N changes during the radiation dominated phase of the Universe’s history this
will alter the expansion rate during the synthesis of light nuclei in the early Universe,
at the epoch of Big Bang nucleosynthesis (BBN), causing freeze out, when nuclear
reactions end, to occur at a different time. Taking an explicit form for the evolution
of G N , derived from a scalar tensor theory, it is possible to constrain its variation
using observed primordial 4He abundances (Umezu et al. 2005; Clifton et al. 2005).
A time-varying G N will also modify the temperature overdensities measured in the
CMB. For example, the CMB peaks shift to larger (smaller) scales with increasing
(decreasing) G N . Fitting to CMB measurements results in a limit on the variation
of G of Ġ/G = (−9.6 ∼ +8.1) × 10−12year−1, consistent with constraints from
BBN and neutron star masses (Chan and Chu 2007).

In extended quintessence cosmologies the background expansion of the universe,
which is described by the Friedmann equation, is given by

H2 = 8πG N

3F(ϕ)

(
ρfluid + 1

2
ϕ̇2 + V (ϕ) − 3H Ḟ

)
, (5.3)

where the 3H Ḟ term can be omitted as it is negligible (Pettorino and Baccigalupi
2008). The 8πG N /F term in this equation modifies the gravitational interaction from
that in general relativity and can be parametrized as a spacetime varying gravitational
constant.

Pettorino and Baccigalupi (2008) derived the linear perturbations in an extended
quintessence cosmology in the Newtonian limit and found that the Poisson equation
could be written in the usual way as

2k2�E = 8πG N

F
ρmδm , (5.4)

where ρm and δm = (ρm − ρ̄m)/ρ̄m are the matter density and perturbation respec-
tively and the gravitational potential is re-defined as

�E =
(

1 + 1

2

F2
,ϕ

F + F2
,ϕ

)
�, (5.5)

where F2
,ϕ denotes the derivative of F with respect to ϕ. This in turn modifies

the Euler equation (see Pettorino and Baccigalupi 2008, for details). The resulting
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Fig. 5.1 Left panel The two different lines show the ratio of the expansion rate, H(z), for two
modified gravity models to the expansion rate in �CDM. In the left panel we plot the expansion
history for a modified gravity model with parameters as = 1(as = 0.5), divided by H(z) for
�CDM, as a (dot dashed (solid) line). Right panel The linear growth rate, f , as a function of
redshift for �CDM, a modified gravity cosmology and a quintessence model. In the right panel, the
linear theory growth rate is plotted as a function of time for a modified gravity model with as = 1
and μ2

0 = 1.13 in Eq. 5.8 (dot dashed line). The growth rate for a quintessence model, which has the
same expansion history as the modified gravity model, is plotted as a dashed line. The growth rate
for �CDM is shown as a solid line. The inset panel shows the ratio of f for the modified gravity
model to the quintessence model as a function of redshift (dot dashed line)

modifications can be expressed in terms of a gravitational constant which is now
varying in time as

G̃ = 2(F + 2F2
,ϕ)

(2F + 3F2
,ϕ)

G N

F
. (5.6)

Cosmological N-body simulations of extended quintessence cosmologies need to
account for both the gravitational correction due to a varying G in the Poisson
equation and a modified expansion history given in Eq. 5.3. In this chapter we consider
a simple model for a time varying Newton’s constant (Zahn and Zaldarriaga 2003;
Umezu et al. 2005; Chan and Chu 2007),

G̃ = μ2G N , (5.7)

where

μ2 =
⎧⎨
⎩

μ2
0 if a < a∗

1 − as−a
as−a∗ (1 − μ2

0) if a∗ ≤ a ≤ as

1 if a > as .

(5.8)

This parametrization describes a smoothly varying G̃ which converges slowly to its
present value, G N and is a more physical model than parametrizations based on step
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functions which have been considered previously in the literature (Cui et al. 2010).
The scale factor, a∗, is taken as the time of photon decoupling and the parameters
μ0 and as quantify the deviation of G̃ from the present laboratory measured value,
G N , and the scale factor at which G̃ and G N are equal, respectively.

We shall assume that this parametrization for G̃ describes a simple extended
quintessence model where the coupling F = 1/μ2 and the background evolution is
given by

H2 = H2
0

G̃

G N

(
�m

a2 + �DEe3
∫ 1

a dlna′[1+w(a′)]
)

. (5.9)

Note that here we assume an equation of state w = −1 in the modified gravity model
to match �CDM. Here �DE is the ratio of the dark energy density to the critical
density today. We assume the Poisson equation is given by Eq. 5.4 with F = 1/μ2.
In the left panel in Fig. 5.1, we plot the ratio of the Hubble rate for two different
cosmological models with varying G, to the Hubble rate for a �CDM cosmology
as a function of redshift. The dot dashed line corresponds to G̃ with μ2

0 = 1.13
and as = 1 in Eq. 5.8, while the black solid line uses the parameters μ2

0 = 1.075
and as = 0.5. If we require G̃ to converge to G N at higher redshifts, z > 0, then
the permitted variation of G̃ from G N decreases. The maximum deviation of G̃
from G N which is compatible with CMB measurements occurs for a stabilization
redshift corresponding to an expansion factor of as = 1. We use the parametrization
in Eqs. 5.7 and 5.8 for a varying G model with parameters μ2

0 = 1.13 and as = 1.
We can then construct a quintessence model which has the same expansion history
as the modified gravity model. We fit the parameters w0 and wa (Linder 2003) in

H2(a) = H2
0

(
�m

a3 + �DEe−3wa(1−a)a−3(1+w0+wa)

)
(5.10)

to the expansion history for the varying G model using MPFIT (Markwardt 2009).
Using tabulated values for w0 and wa in the redshift range z ∈ [0, 200] we were able
to reproduce the expansion history of the varying G model to better than 0.25 %. This
quintessence model is consistent with current constraints on dynamical dark energy
which feature a time varying equation of state (Komatsu et al. 2009).

5.3 Results

5.3.1 Simulation Details

The linear theory power spectrum used to generate the initial conditions was
obtained using CAMB (Lewis and Bridle 2002) as in the previous simulations in
this thesis. Following previous authors (Laszlo and Bean 2008; Bertschinger and
Zukin 2008), we assume that the Jeans length is smaller than the scales of interest
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at our starting redshift, z = 200, and that modified gravity has not yet become im-
portant. We therefore assume a �CDM cosmology and generate the linear theory
power spectrum using CAMB. To obtain errors on our measurements we also ran 10
lower resolution simulations with 5123 particles in a computational box of comoving
length 1500 h−1Mpc, each with a different realisation of the density field. The full
resolution run has 10243 particles in a simulation box of 1500 h−1Mpc on a side.
The power spectrum was computed by assigning the particles to a mesh using the
cloud in cell (CIC) assignment scheme and performing a fast Fourier transform of
the density field as carried out in previous chapters. We use a common expression
for the fractional error in the power spectrum (Feldman et al. 1994)

σ

P
=

√
2

nmodes

(
1 + 1

n̄ P

)
, (5.11)

where P is the measured power spectrum, n̄ is the Poisson shot noise of the simulation
and the number of Fourier modes is nmodes = V k2δk/(2π2), where V is the survey
volume. For the initial conditions the linear growth rate for each model and �CDM
was obtained by solving Eq. 5.2 numerically and is plotted in Fig. 5.1 as a function
of redshift. For all the models, we used the following cosmological parameters:
�m = 0.26, �DE = 0.74, �b = 0.044, h0 = 0.715 and a spectral index of ns = 0.96
(Sánchez et al. 2009).

In order to test the code used for the modified gravity and quintessence simulations
we check that the linear growth of matter in the simulations agrees with the linear
theory predictions. In linear theory the power spectrum at redshift z is a scaled version
of the power spectrum at an earlier redshift, z̃, according to Eq. 5.2. In the upper and
lower panels in Fig. 5.2, we plot the power spectra measured at z = 0 (solid), z = 1
(dot dashed) and z = 2 (dashed) divided by the power spectrum at redshift 5, scaled
to take out the difference between the growth factor at z = 5 and the redshift plotted
in the panel, for the modified gravity and the quintessence model respectively. Using
this early redshift power spectrum output at z = 5 in the ratio removes the sample
variance on large scales and is justified as the density perturbations are still growing
according to linear theory at this time. Both models fit the theoretical predictions for
their linear growth to a precision of <0.05 % on scales k < 0.01 h/Mpc, showing
that our modifications to Gadget-2 are accurate.

5.3.2 Redshift Space Distortions

Here we use large volume N-body simulations to carry out the first direct test of
the idea that a dark energy cosmology and a modified gravity model which, by
construction, have exactly the same expansion history, can be distinguished by a
measurement of the rate at which cosmic structure grows. The modified gravity
model has a time-varying gravitational constant, G̃(a) = μ2(a)G N , where μ2 is a
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Fig. 5.2 Top (Bottom) panel
the ratio of the modified
gravity (quintessence) model
power spectrum at three red-
shifts to the power spectrum
at z = 5 output from the sim-
ulation. The power spectra at
each redshift shown have been
scaled by the squared ratio
of the growth factor at that
redshift and the growth factor
at z = 5 in each cosmology.
The ratios at redshift z = 2,
z = 1, and z = 0 are shown as
dashed, dot dashed and solid
lines respectively

linear function of the scale factor a, varying from μ2 = 1.13 in the early Universe
(a → 0) to μ2(a = 1) = 1 today, and is consistent with current observational
constraints.

The ratio of the quadrupole to monopole moment of the matter power spectrum
is plotted in Fig. 5.3 at three output redshifts, z = 0, 0.5 and 1. The simulation
results show that this ratio has a strong dependence on scale. This can be contrasted
with the prediction of linear perturbation theory, (Cole et al. 1994), Ps

2 (k)/Ps
0 (k)

= (4 f/3 + 4 f 2/7)/(1 + 2 f/3 + f 2/5) , which is independent of scale (horizontal
lines). The quadrupole to monopole ratio increases in amplitude with redshift, due
to the associated evolution in the matter density parameter. At z = 0 there is a 2.5 %
difference between the linear theory growth rates in each model. However, at this
level, the measured ratios P2/P0 in the two models are indistinguishable on the very
largest scales k < 0.02h/Mpc where our measurements match the linear perturbation
theory predictions (green dotted and blue dashed horizontal lines). At z = 0.5 and
z = 1 the linear theory predictions for the growth rates in the two models differ by 4
and 6 % respectively. The error on this ratio measured from the ten lower resolution
simulations are shown as a grey shaded region in Fig. 5.3.
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Fig. 5.3 The ratio of the quadrupole to monopole moments of the power spectrum, P2/P0 as a
function of wavenumber k, where higher values of k correspond to smaller physical scales. The
moments are determined in a harmonic analysis of the power spectrum. The points show mea-
surements from the N-body simulations, with green circles showing the results from the modified
gravity model and blue triangles the quintessence model. The shading indicates the error on the
ratio, estimated from the scatter over 10 lower resolution simulations. The horizontal lines show
the predictions of the linear theory model, with the colours having the same meaning as those used
for the points. The ratio is shown for three epochs corresponding to redshifts z = 0, 0.5 and 1, in
order of increasing amplitude. The simulation results show a strong dependence on wavenumber
whereas the linear theory predictions are independent of scale

5.3.3 Measuring the Growth Rate

As discussed in Chap. 4, other models have been developed to describe the distor-
tion of the clustering pattern due to peculiar motions, which we now apply to the
measurements from the simulations. In addition to the linear theory model described
above, we consider two variants. The first is the Gaussian model given in Eq. 4.10 in
Chap. 4, in which linear theory is combined with a parametrization for the velocity
dispersion on small scales. Here, we refer to this as the “linear theory plus damping”
model. The damping introduces a scale dependence into the ratio P2/P0. The second
model, given in Eq. 4.11 in Chap. 4, takes into account deviations from linear theory,
as well as including small scale damping (Scoccimarro 2004; Jennings et al. 2010):

http://dx.doi.org/10.1007/978-3-642-29339-9_4
http://dx.doi.org/10.1007/978-3-642-29339-9_4
http://dx.doi.org/10.1007/978-3-642-29339-9_4
http://dx.doi.org/10.1007/978-3-642-29339-9_4
http://dx.doi.org/10.1007/978-3-642-29339-9_4
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Fig. 5.4 The ratio of the quadrupole to monopole moment of the redshift space power spectrum
for the modified gravity cosmology together with three models for Ps

2 /Ps
0 , using the correct linear

growth rate, f = fTRUE (left panel), and the value of f obtained in the χ2 fit over 0.01 ≤ k(h/Mpc)
≤ 0.25, f = fFIT (right panel). The Ps

2 /Ps
0 ratio measured from the high resolution simulation with

10243 particles is shown as green circles. The error bars (shaded region) represent the propagated
errors from the ten lower resolution simulations. The quasi-linear plus damping model, the linear
theory and the linear theory plus damping model are shown in both panels as red dot dashed, cyan
dotted and black dashed lines. In the left panel the best fit value for σp (σv) obtained in the range
0.01 ≤ k(h/Mpc) ≤ 0.25,with fixed f , was used for the linear theory plus damping (quasi-linear
plus damping) model

we refer to this as the “quasi-linear theory plus damping” model. We fit these models
to the power spectrum measured from the z = 0.5 output of our simulations which
is one of the target redshifts for the proposed galaxy redshift survey Euclid.

In Fig. 5.4, we plot the measured ratio Ps
2 /Ps

0 , for the modified gravity cosmology
at z = 0.5, together with the predictions for this ratio using the quasi-linear plus
damping model (red dot dashed line), the linear theory (cyan dotted line) and the
linear theory plus damping model (black dashed line). In the left panel, the correct
value of f for this cosmology together with the best fit value for σp and σv in the
range 0.01 ≤ k(h/Mpc) ≤ 0.25 was used for the linear theory plus damping and
quasi-linear plus damping model respectively. Using another common model for the
redshift space power spectrum, the so-called ‘dispersion’ model (Peacock and Dodds
1994), we found similar values for f to the linear theory plus damping model, when
fitting to both Ps

0 /Pr and Ps
2 /Ps

0 . For clarity we have omitted this model from Fig. 5.4.
In the right panel, the best fit value for f obtained by fitting over the previous range
of scales has been used for all models plotted. It is clear that both the linear theory
and the linear theory plus damping models fail to predict the correct value for f ,
with the best fitting values differing by ∼40 % and ∼6 % respectively from the true
value. The value of f obtained for the linear model depends on the maximum value
of k used in the fit. The linear model plotted in the right panel in Fig. 5.4 uses the value
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Fig. 5.5 Left panel: The ratio of the monopole of the redshift space power spectrum to the real
space power spectrum at z = 0.5, as a function of wavenumber, k(h/Mpc). Right panel: The ratio
of the quadrupole to monopole moment of the redshift space P(k) at z = 0.5, as a function of
wavenumber. Both panels show the quasi-linear plus damping model for the ratios using different
values for the linear growth rate, f . In both panels we plot the quasi-linear plus damping model
using f = fTRUE (dot dashed) and f = 1.05 fTRUE (dashed), using the best fit value for σv in the
range 0.01 ≤ k(h/Mpc) ≤ 0.25. The dashed line in the bottom left and right panels show the ratio
of the quasi-linear plus damping model using f = 1.05 fTRUE to the same model using f = fTRUE

for Ps
2 /Ps

0 and Ps
0 /Pr respectively

of f recovered when kmax = 0.25. The quasi-linear plus damping model recovers the
correct value of f in this range to a precision of ∼0.64 %.

In Fig. 5.5, we plot the ratios Ps
0 /Pr and Ps

2 /Ps
0 for the modified gravity model,

at z = 0.5, in the left and right panels respectively. The quasi-linear plus damping
model with the correct value of the linear growth rate, f = fTRUE, is plotted as a dot
dashed line. The dashed line shows the quasi-linear plus damping model with a linear
growth rate which differs by 5 % from the true value, fTRUE. In the lower left (right)
panel we plot the ratio of the quasi-linear plus damping model using f = 1.05 fTRUE

to the same model with f = fTRUE for the Ps
0 /Pr (Ps

2 /Ps
0 ) ratio as a dashed line.

Changing f by 5 % produces a ∼2 % change in the quasi-linear plus damping model
for the Ps

0 /Pr ratio but a larger, ∼4 %, change in the Ps
2 /Ps

0 ratio.
To test these models for the redshift space power spectrum further we vary the

maximum wavenumber, kmax, used in the fit and plot the recovered growth rate as a
function of kmax in Fig. 5.6. If we had an accurate model of P2/P0, we would recover
the correct value for the growth rate f and the answer would be independent of
the value of kmax adopted, with the only change being the error on the growth rate.
Fig. 5.6 shows that the quasi-linear plus damping model comes closest to meeting
this ideal. This model breaks down beyond kmax ∼ 0.3 hMpc−1, which suggests
that the modelling of the small scale velocity dispersion needs to be improved. Most
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Fig. 5.6 Measurements of the linear growth rate of cosmic structure, f . The results are plotted as a
function of the maximum wavenumber, kmax(h/Mpc), used in the fit. The different symbols show the
results of fitting to P2/P0 at z = 0.5 (see Fig. 5.3) using different models: linear theory—squares,
linear theory plus damping—circles, quasi-linear plus damping—triangles. The symbols are filled
in for scales over which the model is a good description of the measured ratio. The error bars
represent the 1σ uncertainty in the fit. In the left hand panel we fit to the modified gravity model
and aim to recover the true growth factor shown by the thick green horizontal line. In the right
panel we fit to the ratio measured from the quintessence model, in which case the target growth
factor is shown by the thick blue dashed line. The quasi-linear plus damping model performs best,
recovering the correct growth factor in each case over the widest range of wavenumbers. This model
is an accurate model of the simulation results up to kmax = 0.3h/Mpc. The linear and linear plus
damping models are less successful, and only recover the correct answer over a very limited range
of wavenumbers. Their application over a wider range of scales would lead to a systematic error
in the growth factor similar to or larger than the difference in the growth factors between the two
models

importantly, this model recovers the correct value for f and can distinguish between
the two cosmologies. The models based on linear theory perform less well. In fact, the
answer depends strongly on the maximum wavenumber retained in the fit. In Fig. 5.6
the symbols are filled in for scales over which the model is a good description of
the measured ratio. We consider a model as being a good description of the data if
χ2/ν ∼ 1, where ν is the number of degrees of freedom. As shown in Fig. 5.3, the
expression for Ps

2 /Ps
0 in this model is more sensitive to changes in f and as a result

the 1 sigma error bars for f in Fig. 5.6 are smaller when fitting to Ps
2 /Ps

0 compared
to Ps

0 /Pr .

5.4 Summary

The next generation of galaxy redshift surveys aim to resolve some of the funda-
mental questions in modern cosmology, such as whether general relativity needs to
be modified or if a dark energy component is driving the accelerating expansion.
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We have measured the redshift space distortions from two simulations with different
cosmologies and demonstrated that a modified gravity model, described by a time
varying Newton’s constant, and a dark energy model, which have identical expansion
histories, have measurably different growth rates. We have tested several models for
redshift space distortions of clustering including the commonly used linear theory
and linear theory plus Gaussian damping models. We find that these two models fail
to recover the correct value for the growth rate. However, a quasi-linear model which
includes non-linear velocity divergence terms is far more accurate and would allow
us to distinguish between these two competing cosmologies.

Even though the scales we consider are large it is clear that there are impor-
tant departures from linear theory which can only be modelled accurately using an
N-body simulation (Jennings et al. 2010). There is a real chance that without such
guidance from a simulation, the application of the linear theory or linear theory plus
damping models could lead to systematic errors of the same order as the difference
in f between the two competing cosmologies. In this event, these models would give
the wrong conclusion about the physics driving the cosmic acceleration. Our results
indicate that by using an improved model for the power spectrum in redshift space
to constrain the linear growth rate, together with an accurate measurement of the
expansion history, we will be able to identify variations in Newton’s gravitational
constant.
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Chapter 6
Conclusions

The current evidence for the accelerating cosmic expansion is substantial, with a
host of different observations suggesting that dark energy makes up ∼70 % of our
Universe. The physics driving this acceleration is still unknown and represents the
most compelling and challenging question to be answered in our standard cosmo-
logical model. The most popular current explanation is the cosmological constant,
the vacuum energy of space, which is a negative pressure dark energy component
giving rise to a homogeneous expansion of the Universe. Explaining the observed
value of the cosmological constant is a serious challenge and will require new physics
beyond the standard model of particle physics and cosmology. Several other candi-
date theories such as dynamical dark energy e.g. quintessence, or modified gravity
models exist and can fit the current data as well as, and in some cases better than,
the concordance �CDM model (Dantas et al. 2010). The exciting prospect is that
some of these models may leave detectable signatures on the growth rate and in the
distribution of large scale structure in the Universe, allowing us to distinguish them
from �CDM.

As discussed in Chap. 1, there are several observational probes which can be used
to constrain the properties of dark energy and modified gravity. These observations,
such as measurements of Type Ia SN light curves and the temperature power spec-
trum of the CMB, are sensitive to different physical processes at different epochs
and provide powerful constraints on cosmology when combined together. Broadly
speaking these observations can be divided into those that measure the expansion
rate and geometry of the Universe e.g. Type Ia SN, BAO and CMB measurements,
the growth of structure e.g. redshift space distortions in the power spectrum, or a
combination of the two e.g. weak lensing and cluster mass functions. Measurements
of the expansion history can constrain the dark energy equation of state and its vari-
ation both today and at high redshift. A definite detection of w �= −1 would rule
out �CDM but it would leave us with a host of viable dynamical dark energy and
modified gravity models. However a dark energy or modified theory with identical
expansion histories will have different growth rates for structure in our Universe,
allowing us to distinguish these two models and break this degeneracy.

E. Jennings, Simulations of Dark Energy Cosmologies, Springer Theses, 97
DOI: 10.1007/978-3-642-29339-9_6, © Springer-Verlag Berlin Heidelberg 2012
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Cosmological N-body simulations are the theorist’s tool of choice for modelling
the final stages of perturbation collapse. To date, the overwhelming majority of sim-
ulations have used the concordance �CDM cosmology. Here we simulate different
dark energy models and study their observational signatures. A small number of
papers have used N-body simulations to test scalar field cosmologies by modify-
ing the expansion history alone (Ma et al. 1999; Linder and Jenkins 2003; Klypin
et al. 2003; Francis et al. 2008; Grossi and Springel 2009; Alimi et al. 2009. In
Chap. 3 we carried out the most realistic simulations of quintessence dark energy
to date, using an accurate parametrization for the quintessence models equation
of state and a consistent linear theory power spectrum and appropriate cosmolog-
ical parameters (so that the various models match the CMB, BAO and SN con-
straints). We found that these models can have a significant impact on the growth
of structure when correctly simulated. By measuring the abundance of dark matter
halos we provided theoretical predictions for these dark energy models which will
distinguish them from the standard cosmological model in future galaxy surveys.
For example, a number of optical imaging surveys such as the one proposed with the
LSST, plan to study the properties of dark energy through the large scale distribution
of matter over a wide redshift interval (LSST Science Collaborations et al. 2009).
The LSST will observe ∼1010 galaxies over 20,000 deg2 and will be able to measure
the abundance of clusters and the BAO as a function of redshift. When combined
with weak lensing shear-shear correlations these measurements will constrain �DE
with an error of 0.003 with uncertainties on w0 and wa of 0.03 and 0.1 respectively
(Albrecht and Bernstein 2007; Fang and Haiman 2007). The LSST will also be able
to detect scales well beyond the turnover in the power spectrum which will provide
powerful constraints on models with non-negligible amounts of dark energy at high
redshifts which alters the shape of the turnover, such as the CNR and the AS model
considered in this thesis.

With this level of precision anticipated from future surveys such as the LSST, the
work presented here represents a significant step forward in simulating quintessence
dark energy. Overall, our analysis shows that the prospects for detecting dynamical
dark energy, which features a late time transition, using the halo mass function at
z > 0 are good, provided a good proxy can be found for mass. Parameter degeneracies
allow some quintessence models to have identical BAO peak positions to �CDM and
so these measurements alone will not be able to rule out some quintessence models.
Although including the dark energy perturbations has been found to increase these
degeneracies (Weller and Lewis 2003), incorporating them into the N-body code
would clearly be the next step towards simulating quintessential dark matter with a
full physical model. Although in many quintessence models the dark energy clusters
on very large scales today (k <0.02 hMpc−1) (Weller and Lewis 2003) and the
perturbations are generally small (δDE ∼ 10−1), these perturbations may nevertheless
have some impact on the dark matter structure in a full N-body simulation of the
nonlinear growth (Li et al. 2010).

In Chap. 4, we measured the power spectrum in redshift space from several
quintessence dark energy simulations, which is anisotropic due to peculiar veloc-
ities which distort the clustering signal on all scales. Modelling the redshift space

http://dx.doi.org/10.1007/978-3-642-29339-9_3
http://dx.doi.org/10.1007/978-3-642-29339-9_4
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distortions in either the matter power spectrum or the correlation function allows
us to measure the growth rate of structure which is a crucial test of general rela-
tivity and the physics driving the accelerating expansion. We demonstrate that the
linear theory prediction for the power spectrum in redshift space is a poor fit to the
measured distortions, even on surprisingly large scales k∼0.05 h/Mpc. We also con-
sider an improved model for the redshift space distortions which accounts for velocity
divergence non-linearities. From our results, it is clear that including the non-linear
velocity divergence terms results in an improved model on scales k<0.2 h/Mpc for
different cosmological models. Using a density-velocity relation, we provide a cos-
mology independent formula for generating the velocity power spectrum from the
non-linear matter power spectrum. These results are timely and will be relevant for
future galaxy redshift surveys such as Euclid and BigBOSS (Cimatti et al. 2009;
Schlegel et al. 2007). Current galaxy redshift surveys can provide only very weak
constraints on Pδθ and Pθθ (Tegmark et al. 2002) but both BigBOSS and Euclid
plan to map the galaxy distribution at higher redshifts and to a greater precision than
previously possible. The relation given in this thesis between the non-linear veloc-
ity divergence and matter power spectra will be useful for analysing redshift space
distortions in future galaxy surveys as it removes the need to use noisier and sparser
velocity data.

In addition to the many dark energy models considered which can explain the
accelerating expansion, it may be that an even more radical solution is needed such as
modifying general relativity itself. At present there are two key probes, gravitational
lensing and the growth rate of structure, which will allow us to test general relativity.
Modifications to general relativity can be parametrized using two variables which
can vary in space and time-one is an effective gravitational constant which describes
any deviations from Newton’s constant and the other is the so called slip parameter,
ζ = �/�, which describes the difference between the gravitational potentials, � and
� (see e.g. Bertschinger and Zukin 2008). In Chap. 5 we measure the redshift space
distortions from two simulations with different cosmologies and demonstrate that a
modified gravity model, described by a time varying Newton’s constant, and a dark
energy model, which have identical expansion histories, have measurably different
growth rates. We test several models for the redshift space distortions including the
commonly used linear theory and Gaussian models. We find that these two models
fail to recover the correct value for the growth rate, while a quasi-linear model
which includes non-linear velocity divergence terms, discussed in Chap. 4, is far
more accurate and would allow us to distinguish these two competing cosmologies.

The next generation of galaxy redshift surveys aim to resolve some of the funda-
mental questions in modern cosmology and reveal if general relativity is the correct
description of gravity or if a dark energy component is driving the accelerating expan-
sion. For example, ESA’s Euclid mission (Cimatti et al. 2009) which plans to survey
20,000 deg2 with 	z = 0.1, corresponding to a volume of ∼1 Gpc3 at z = 0.1, will
be able to constrain the linear growth rate to <2 % and the dark energy equation of
state parameters w0 and wa to 2 and 10 % respectively. Our results indicate that using
a correct model for the power spectrum in redshift space, a constraint on the linear
growth rate of better than 2% for several redshift bins from z = 0 to z = 2, together
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with an accurate measurement of the expansion history to <4 % would identify
variations in Newton’s gravitational constant, providing a strong signal that modi-
fied gravity describes our Universe.

There are many ways in which future research on dark energy and modified gravity
cosmologies can benefit from the use of N-body simulations. As a first example,
at present only one consistent modified gravity model has ever been tested using a
simulation which lacked spatial resolution (Oyaizu et al. 2008). Clearly more work is
needed to add modified gravity models into simulations and to test the impact these
models have on the measured redshift space distortions and the determination of
the growth rate. These modifications could be accounted for using parametrizations
for a variable gravitational constant, G(t, �x) and varying gravitational potentials,
ζ(t, �x) = �/�, which can depend on space and time. Secondly, another issue
at present in determining the growth rate is whether or not to use the two point
correlation function instead of its Fourier transform, the power spectrum. Previous
measurements of the correlation function in redshift space (Guzzo et al. 2008) have
found agreement with linear theory predictions on very small scales, r ∼ 20 h−1Mpc.
These clustering measurements in real space are obtained by integrating over all the
Fourier modes and it is not clear what impact this has on the resulting errors. The
correspondence between the correlation function and the power spectrum errors
can be investigated with accurate simulations of different cosmologies and would
significantly improve our current models of redshift space distortions and future
constraints on the growth rate.
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Appendix A
WMAP Distance Priors

The method suggested in Komatsu et al. (2009) employs three distance priors from
measurements of the CMB together with the ‘UNION’ supernova samples
(Kowalski et al. 2008) and the baryon acoustic oscillations (BAO) in the
distribution of galaxies (Percival et al. 2007) to explore the best fit parameters for
the dynamical dark energy models. In Sects. 3.3.1 and 3.3.2, all of the quintessence
simulations were run using the best fit cosmological parameters assuming a
KCDM model. While this is useful for isolating the effect of the different
expansion histories on the growth of structure, this does not yield quintessence
models which would automatically satisfy the constraints on distance measure-
ments. Using CMB, supernovae and BAO data in this way is very useful for testing
and perhaps even ruling out some of the dark energy quintessence models. In
Sect. 3.3.3 we consider the impact of using these new cosmological parameters on
the non-linear growth of structure.

These distance priors are derived parameters which depend on the assumed
cosmological model and yield constraints on dark energy parameters which are
slightly weaker than a full Markov Chain Monte Carlo (MCMC) calculation, as
only part of the full WMAP data is used i.e. the Cl spectrum is condensed into 2 or
3 numbers describing peak position and ratios and the polarisation data are
ignored. The assumed model is a standard FLRW universe with an effective
number of neutrinos equal to 3.04 and a nearly power law primordial power
spectrum with negligible primordial gravity waves and entropy fluctuations. These
WMAP distance priors are extremely useful for providing cosmological parameter
constraints at a reduced computational cost compared to a full MCMC calculation.
We shall briefly review the distance scales used in this thesis and the method for
finding the best fit parameters for the dark energy models. From measurements of
the peaks and troughs of the acoustic oscillations in the photon-baryon plasma in
the CMB it is possible to measure two distance ratios (Komatsu et al. 2009). The
first ratio is quantified by the ‘acoustic scale’, lA; which is defined in terms of the
sound horizon at decoupling, rsðz�Þ and the angular diameter distance to the last
scattering surface, DAðz�Þ; as
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lA ¼ ð1þ z�Þ
pDAðz�Þ

rsðz�Þ
: ðA:1:1Þ

Assuming a flat universe, the proper angular diameter distance is defined as

DAðzÞ ¼
c

ð1þ zÞ

Z z

0

dz0

Hðz0Þ ; ðA:1:2Þ

and the comoving sound horizon is given by

rsðzÞ ¼
cffiffiffi
3
p
Z 1=ð1þzÞ

0

da

a2HðaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð3Xb=4XcÞa

p ðA:1:3Þ

where Xc ¼ 2:469� 10�5h�2 for TCMB ¼ 2:725K (Komatsu et al. 2009) and Xb is
the ratio of the baryon energy density to the critical density. We shall use the
fitting formula proposed by Hu and Sugiyama (1996) for the decoupling epoch z�
which is a function of Xbh2 and Xmh2 only. The second distance ratio measured by
the CMB is called the ‘shift parameter’ (Bond et al. 1997). This is the ratio of the
angular diameter distance and the Hubble horizon size at the decoupling epoch
which is written as

Rðz�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
XmH2

0

p
c

ð1þ z�ÞDAðz�Þ: ðA:1:4Þ

Equation (A.1.4) assumes a standard radiation and matter dominated epoch when
calculating the sound horizon. The expression for the shift parameter will be
modified for quintessence models of dark energy. The proper expression for the
shift parameter is given by (Kowalski et al. 2008)

Rðz�Þ ¼ Rstdðz�Þ
Z 1

z�

dz=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xmð1þ zÞ3

q
R1

z�
dzH0=HðzÞ

0
@

1
A; ðA:1:5Þ

where Rstd is the standard shift parameter given in Eq. (A.1.4). This correction to
the shift parameter can be substantial for quintessence models with non-negligible
amounts of dark energy at early times and so we include this correction for all of
the scalar field models in this thesis. The 5-year WMAP constraints on lA; R and
the redshift at decoupling z� are the WMAP distance priors used to test models of
dark energy (Komatsu et al. 2009).

The angular diameter distance at the decoupling epoch can be determined from
measurements of the acoustic oscillations in the CMB. These baryon acoustic
oscillations are also imprinted on the distribution of matter. Using galaxies as
tracers for the underlying matter distribution the clustering perpendicular to the
line of sight gives a measurement of the angular diameter distance, DAðzÞ: BAO
data also allow us to measure the expansion rate of the universe, HðzÞ; from
observations of clustering along the line of sight. However, current data do not
provide us with a measure of DAðzÞ and HðzÞ individually (Gaztanaga et al. 2008).
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Using a spherically averaged correlation function to reveal the BAO signal results
in an effective distance measure given by (Eisenstein et al. 2005)

DVðzÞ ¼ ð1þ zÞ2D2
AðzÞ

cz

HðzÞ

� �1=3

: ðA:1:6Þ

It is the ratio of DVðzÞ to the sound horizon, rs; at the drag epoch, zdrag; which
determines the peak positions of the BAO signal. The drag epoch is the redshift at
which baryons are separated from photons and is slightly later than the decoupling
epoch, z�: Percival et al. (2007) provide rsðzdÞ=DVðzÞ at two redshifts, z ¼ 0:2 and
z ¼ 0:35; taken from the Sloan Digital Sky Survey (SDSS) and Two Degree Field
Galaxy Redshift Survey (2dFGRS). The two values are rsðzdÞ=DVð0:2Þ ¼ 0:198�
0:0058 and rsðzdÞ=DVð0:35Þ ¼ 0:1094� 0:0033:

The UNION supernovae compilation (Kowalski et al. 2008) consists of 307 low
redshift SN all processed using the SALT light curve fitter (Guy et al. 2005). This
compilation includes older data sets from the Supernova Legacy Survey and
ESSENCE Survey as well as a recent dataset observed with HST. Type Ia SN data
is extremely useful in breaking parameter degeneracies such as the w; XDE

degeneracy in the CMB data. A wide range of these two parameters can produce
similar angular diameter distances at the redshift of decoupling and so SN
constraints, which are almost orthogonal to CMB constraints, help to reduce this
parameter space. The current SN data cover a wide range of redshift,
0:02� z� 1:7; but is only able to weakly constrain a dynamical dark energy
equation of state, w; at z� 1: Also, due to a degeneracy with Xm; the current SN
data by themselves are not able to tightly constrain the present value of w and
including measurements involving Xm such as CMB or BAO observations break
this degeneracy.

Following the prescription of Komatsu et al. (2009) for using the WMAP
distance priors it is necessary to find the vector ~x ¼ ðlA;R; z�Þ for each
quintessence model in order to compute the likelihood, L; as v2 ¼ �2lnL ¼
ðxi � diÞC�1

ij ðxj � djÞ; where ~d ¼ ðlWMAP
A ;RWMAP; zWMAP

� Þ and C�1
ij is the inverse

covariance matrix for the WMAP distance priors. In order to find the best fit
cosmological parameters for each quintessence model we minimise the function
v2

total ¼ v2
WMAP þ v2

BAO þ v2
SN with respect to Xmh2; Xbh2 and H0: In appendix D of

Komatsu et al. (2009) it can be seen that including the systematic errors has a very
small effect on the KCDM parameters but can have a significant effect on dark
energy parameters. Using a two parameter equation of state for the dark energy
Komatsu et al. (2009) found that the parameter constraints weakened considerably
after including systematic errors. In calculating v2

SN in this thesis we have used the
covariance matrix for the errors on the SN distance moduli without systematics.

Table A.1 shows the WMAP distance priors computed for each dark energy
model using the cosmological parameters from Sánchez et al. (2009). The BAO
scale and drag redshift, zd; are given in Table A.2 using the same parameters.
From these tables it is clear that some quintessence models with KCDM
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cosmological parameters fail to agree with the distance measurements within the
current constraints.

With the assumption that Xmh2; Xbh2 and H0 are tightly constrained by
WMAP, BAO and SN data, and as a result their posterior distribution is close to a
normal distribution, minimising v2

total ¼ v2
WMAP þ v2

BAO þ v2
SN with respect to these

three parameters will be the same as marginalising the posterior distribution. We
have fixed the dark energy equation of state parameters for each quintessence
model and the 68.3 % confidence intervals for each parameter from minimising
v2

total are shown in Table A.3. The final column in this table is v2=m where m is the
number of degrees of freedom. From Table A.3 it is clear that the INV1 model is
unable to fit the data and has a poor v2=m ¼ 2:27 statistic. Most of the quintessence
models favour a lower Xmh2 compared to KCDM in order to fit the distance data.
As can be seen from Table A.3 the confidence intervals on the three fitted
parameters Xmh2; Xbh2 and H0 are quite large. Once the best fit parameters from

Table A.1 WMAP distance priors (Komatsu et al. 2009) for each quintessence model using
Xmh2, Xbh2 and H0 parameters from Sánchez et al. (2009). These parameters were derived
assuming a KCDM cosmology. lAðz�Þ is the acoustic scale at the epoch of decoupling, z� and
Rðz�Þ is the shift parameter. v2

total ¼ v2
WMAPþSNþBAO and m is the number of degrees of freedom

z� lAðz�Þ Rðz�Þ v2
total=m

WMAP 5-yr ML 1090.51 �0:95 302.10 � 0.86 1.710 � 0.019 0

LCDM 1090.65 303.73 1.73 1.09
INV1 - 261.05 1.49 15.34
INV2 - 294.34 1.67 1.81
SUGRA - 284.03 1.62 3.88
2EXP - 303.85 1.74 1.09
AS - 289.69 1.74 2.04
CNR - 306.71 1.79 1.37

Table A.2 BAO distance measurements (Percival et al. 2007) for each quintessence model
using Xmh2, Xbh2 and H0 parameters from Sánchez et al. (2009). These parameters were derived
assuming a KCDM cosmology. A fitting formula proposed by Eisenstein and Hu (1998) was used
for the drag redshift zdrag

zdrag rsðzdragÞ rsðzdragÞ=Dvðz ¼ 0:2Þ rsðzdragÞ=Dvðz ¼ 0:2Þ
WMAP 5-yr 1020.5 �

1.6
153.3 � 2.0

Mpc
- -

Percival et al.
(2007)

- 154.758 0.198 � 0.0058 0.1094 � 0.0033

LCDM 1020.505 152.68 0.193 0.116
INV1 - 152.534 0.208 0.130
INV2 - 152.682 0.198 0.121
SUGRA - 152.466 0.198 0.121
2EXP - 152.003 0.192 0.115
AS - 143.874 0.183 0.111
CNR - 150.738 0.191 0.114
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Table A.3 are used, all of the quintessence models apart from INV1 which we rule
out, produce a better fit to the data, as seen in Tables A.5 and A.6, for the WMAP
distance priors and the BAO distance measures respectively. As we noted earlier
the WMAP distance priors do not contain all of the WMAP power spectrum data
and only use the information from the oscillations present at small angular scale

Table A.3 Best fit values for Xmh2, Xbh2 and H0 with 68.3% confidence intervals from mini-
mising v2

total ¼ v2
WMAPþSNþBAO for each quintessence model. wCDM WMAP 5-year are the

parameter constraints assuming a dynamical dark energy model (Komatsu et al. 2009)

102Xbh2 H0 (km/s/Mpc) Xmh2 v2
total=m

LCDM WMAP 5-yr Mean 2.267 þ0:058
�0:059

70.5 �1:3 0.1358 þ0:0037
�0:0036

wCDM WMAP 5-yr Mean 2.27 �0:06 69.7 �1:4 0.1351 �0:0051
Sánchez et al. (2009) 2.267 þ0:049

�0:05
71.5 �1:1 0.13343 �0:0026 1.09

INV1 3.78 �0:145 63.13 �0:54 0.1152 �0:0103 2.27
INV2 2.35 �0:094 68.21 �0:70 0.124 �0:0065 1.07
SUGRA 2.68 �0:105 67.625 �0:71 0.1112 �0:0075 1.25
2EXP 2.22 �0:115 70.01 �0:8 0.1386 �0:00315 1.05
AS 2.12 �0:121 70.42 �0:98 0.086 �0:0121 1.07
CNR 2.09 �0:185 70.05 �1:25 0.140 �0:0133 1.12

Table A.4 WMAP distance priors (Komatsu et al. 2009) for each quintessence model using the
best fit parameters Xmh2, Xbh2 and H0 given in Table 3.3

z� lAðz�Þ Rðz�Þ
LCDM WMAP 5-yr ML 1090.51 �0.95 302.10 � 0.86 1.710 � 0.019
Sanchez et al. 2009 1090.12 � 0.93 301.58 � 0.67 1.701 � 0.018
INV1 1076.178 292.544 1.519
INV2 1088.716 301.693 1.676
SUGRA 1083.96 298.512 1.596
2EXP 1091.75 302.916 1.749
AS 1087.98 300.237 1.684
CNR 1093.97 303.515 1.809

Table A.5 BAO distance measurements (Percival et al. 2007) for each quintessence model
using the best fit parameters Xmh2, Xbh2 and H0 given in Table 3.3

zdrag rsðzdragÞ rs=DVðz ¼ 0:2Þ rs=DV ðz ¼ 0:35Þ
WMAP 5-yr 1020.5 � 1.6 153.3 � 2.0 Mpc - -
Percival et al. (2007) - 154.758 0.198 � 0.0058 0.1094 � 0.0033
INV1 1045.140 146.259 0.1765 0.1103
INV2 1021.192 154.946 0.1921 0.1167
SUGRA 1026.379 155.803 0.1908 0.1161
2EXP 1019.995 150.983 0.1879 0.1123
AS 1010.479 157.745 0.1947 0.1161
CNR 1017.073 150.597 0.1876 0.1128
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(high multipole moments). Neglecting the Integrated-Sachs-Wolfe (ISW) effect at
large angular scales (small multipole moments) as well as polarisation data lead to
weaker constraints on cosmological parameters in these dark energy models. We
have not considered how these distance priors would change with the inclusion of
dark energy perturbations (Li et al. 2008). These results are in agreement with
previous work fitting cosmological parameters of quintessence models using
WMAP first year CMB data and SN data (Corasaniti et al. 2004).
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Appendix B
Approximate Formula for Pdh and Phh

for Arbitrary Redshift

Equation 4.19 in this thesis relates Pxyðz0Þ � Pddðz0Þ at z ¼ z0 to the same expression
at redshift z ¼ 0 using a variable c2:Note from Eq. 4.16 gðPddðz ¼ 0ÞÞ ¼ Pxyðz ¼ 0Þ
in Eq. 4.19. From Eqs. 4.17 in Chap. 4 and using the result by Scoccimarro et al.
1998 we can write the following solutions for h and d in terms of scalings of the
initial density field (Bernardeau et al. 2002),

hðzÞ ¼ DðzÞh1 þ D2ðzÞh2 þ D3ðzÞh3 þ � � � ðB:1:1Þ

and

dðzÞ ¼ DðzÞd1 þ D2ðzÞd2 þ D3ðzÞd3 þ � � � : ðB:1:2Þ

Squaring these expressions and ensemble averaging we can write the velocity
divergence power spectrum and the matter power spectrum to third order in
perturbation theory as

Phhðz0Þ 	 hjDðz0Þh1 þ D2ðz0Þh2 þ D3ðz0Þh3j2i ðB:1:3Þ

Pddðz0Þ 	 hjDðz0Þd1 þ D2ðz0Þd2 þ D3ðz0Þd3j2i : ðB:1:4Þ

Using the fact that jDh1 þ D2h2 þ D3h3j � jDh1j þ jD2h2j þ jD3h3j we can
approximate this as

Phhðz0Þ � hðDðz0Þjh1j þ D2ðz0Þjh2j þ D3ðz0Þjh3jÞ2i ðB:1:5Þ

Pddðz0Þ � hðDðz0Þjd1j þ D2ðz0Þjd2j þ D3ðz0Þjd3jÞ2i ; ðB:1:6Þ

and we assume that
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hjDðz0Þh1 þ D2ðz0Þh2 þ D3ðz0Þh3j2i
� hðDðz0Þjh1j þ D2ðz0Þjh2j þ D3ðz0Þjh3jÞ2i	
hjDðz0Þd1 þ D2ðz0Þd2 þ D3ðz0Þd3j2i
� hðDðz0Þjd1j þ D2ðz0Þjd2j þ D3ðz0Þjd3jÞ2i: ðB:17Þ

Taking the difference of the two power spectra we have

Phhðz0Þ � Pddðz0Þ 	
hðDðz0Þjh1j þ D2ðz0Þjh2j þ D3ðz0Þjh3jÞ2i
� hðDðz0Þjd1j þ D2ðz0Þjd2j þ D3ðz0Þjd3jÞ2i ðB:18Þ

and as x2 � y2 ¼ ðx� yÞðxþ yÞ we can rewrite this as

Phhðz0Þ � Pddðz0Þ 	
h½Dðjh1j � jd1jÞ þ D2ðjh2j � jd2jÞ þ D3ðjh3j � jd3jÞ

� ½Dðjh1j þ jd1jÞ þ D2ðjh2j þ jd2jÞ þ D3ðjh3j þ jd3jÞ
i : ðB:19Þ

Multiplying out the rhs of this equation and denoting the modulus of variable jxj as
x for simplicity, we have

Phhðz0Þ � Pddðz0Þ 	
hfD2½h2

1 � d2
1
 þ D3½ðh1 � d1Þðh2 þ d2Þ þ ðh1 þ d1Þðh2 � d2Þ


þ D4½ðh1 � d1Þðh3 þ d3Þ þ ðh2
2 � d2

2Þ þ ðh1 þ d1Þðh3 � d3Þ

þ D5½ðh2 � d2Þðh3 þ d3Þ þ ðh2 þ d2Þðh3 � d3Þ
 þ D6½h2

3 � d2
3
gi ; ðB:1:10Þ

and then taking out a factor of ½h2
1 � d2

1
 on the rhs we have

Phhðz0Þ � Pddðz0Þ 	

h½h2
1 � d2

1
fD2 þ D3½h2 þ d2

h1 þ d1
þ h2 � d2

h1 � d1



þ D4½h3 þ d3

h1 þ d1
þ h2

2 � d2
2

h2
1 � d2

1

þ h3 � d3

h1 � d1



þ D5½2 h3h2 � d3d2

h2
1 � d2

1


 þ D6½h
2
3 � d2

3

h2
1 � d2

1


gi : ðB:1:11Þ

As h1 and d1 are linear in the initial density contrast, which we assume to be
different to the linear density contrast, h1	 d1	 di and h2	 d2	 di þ d2

i is

quadratic in the initial density contrast and h3	 d3	 di þ d2
i þ d3

i is cubic in the
initial density field, we assume h1 þ h2	 d1 þ d2; h1 þ h3	 d1 þ d3 and h1 �
h2	 d1 � d2; h1 � h3	 d1 � d3 so the fractions in the above equation are unity
and
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Phhðz0Þ � Pddðz0Þ
	 h½h2

1 � d2
1
ifD2 þ 2D3 þ 3D4 þ 2D5 þ D6g

	 h½h2
1 � d2

1
ifDðz0Þ þ D2ðz0Þ þ D3ðz0Þg2 ðB:1:12Þ

Similarly for PhhðzÞ � PddðzÞ we have

PhhðzÞ � PddðzÞ
	 h½h2

1 � d2
1
ifDðzÞ þ D2ðzÞ þ D3ðzÞg2 ðB:1:13Þ

Taking the ratio of the two previous equations, the redshift independent factor
½h2

1 � d2
1
 cancels and we obtain the following ansatz

Phhðz0Þ � Pddðz0Þ
PhhðzÞ � PddðzÞ

	 ½Dðz
0Þ þ Dðz0Þ2 þ Dðz0Þ3
2

½DðzÞ þ DðzÞ2 þ DðzÞ3
2
ðB:1:14Þ

which is the expression in Eq. 4.19 in this thesis for z ¼ 0: A similar
approximation works for the cross power spectrum Pdh:
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