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Supervisor’s Foreword

A thesis summarizes the essence, the final insight, the net-gain of knowledge of
intensive research hours during 3 years. It is as such an invaluable contribution to
the advance of science. Sometimes a doctoral thesis is regarded as an antique
leftover. But it appears very modern and even an essential alternative for scientific
exchange if it is seen in perspective to the nowadays typical form of scientific
exchange via publications in highly reputed journals. There, the information is
sometimes compactified to an extent that it becomes unreadable for non experts.
Even for experts the streamlining of the text, optimized in order to meet the needs
of the journals, makes some articles very inefficient for efficient information flow.
The importance of the written thesis, where introductory as well as detailed
information is conveyed, cannot be overestimated. The thesis following this
foreword contains important additional information to the published results.
It gives the reader an introduction to the concept of quantum metrology and spin
squeezing as well as important information of what steps are crucial to realize this
quantum resources in her/his own lab.

The theme of the research described in the thesis by Christian Gross falls into
the category of Quantum Metrology. This concept is intimately associated with
one of the very important paradigm shifts of the last century, where quantum
mechanics was not any longer regarded as the loss of predictability, but more as a
new approach for going beyond classical possibilities. Also in the more general
framework of parameter estimation where classical statistical tools reveal the
principle limits of precision we can nowadays utilizing quantum mechanical many
particle states to overcome these limits of classical experiments—quantum
Metrology. It was actually for the first time within Christian Gross’ thesis that this
concept of going beyond classical interferometry has been explicitly demonstrated
for atomic matterwaves.

The thesis is suitable for experts as well as for newcomers in the field of
quantum interferometry with matterwaves. A reader unfamiliar with the termi-
nology of spin squeezing, its connection to entanglement and its application to
interferometry will find a very valuable didactical introduction in the first chapter
of the doctoral thesis. With this introduction the following two chapters going into
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the deep details of spin squeezing generation with Bose Einstein condensates,
detection as well as its application to matterwave interferometry is readily
accessible also for newcomers in the field and is enjoyable to read for the expert.
At this point let me make a remark on the side: at the beginning of these exper-
imental efforts it was not clear at all if the experimental stability can be pushed far
enough that the quantum effects become observable and even useable. In both
experimental campaigns described in detail in the third and forth chapter the final
experimental breakthrough has been achieved with the last big change of the
experimental setup after which the team would have changed the topic.

Concluding I would like to add a more general statement. Science is about
asking questions, working hard on solving the problems and finally conveying the
results efficiently to the community of scientists. Christian Gross’ research
activities during his thesis are a very good example where all three steps have been
successfully taken and the reader will feel this spirit, while reading the thesis.

Heidelberg, October 2011 Prof. Dr. Markus K. Oberthaler
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Chapter 1
Introduction

Today’s most precise measurement instruments work at the shot noise limit, the
precision bound set by single particle quantum mechanics. Many of these devices
are interferometers, based on the interference of two atomic or photonic quantum
states. The observable to be measured causes a relative phase shift ϕ between the
two modes of the interferometer. This relative phase shift is observed indirectly as a
population imbalance at readout. In the readout process the population imbalance is
obtained by counting the atoms or photons in each of the modes and their particle-like
properties become important.

For uncorrelated quantum states single particle quantum mechanics describes the
measurement process. The relative phase ϕ determines the probability for each atom
or photon to be detected in one of the modes—in the balanced case ϕ = 0 the
probability for both modes is equal. The probability distribution of the population
imbalance is poissonian and the measurement uncertainty in the relative phase �ϕ2

scales statistically as �ϕ2 = 1/N . Thus, the shot noise limit for the measurement
precision arises as the classical statistical limit of N uncorrelated particles used in
the interferometer [1, 2]. One single measurement with N independent resources
is equivalent to N identical measurements using only one resource. Fundamentally
this “classical” noise results from the projection of the quantum state on the two
observed output states in the readout process. Equivalent to the term shot noise
commonly quantum projection noise is used and the resulting precision limit is the
standard quantum limit.

Photonic interferometers are commonly used for distance or velocity sensors [3]
while prominent examples for atomic sensors are measurements of magnetic fields,
inertia or time [4].

Many-body quantum mechanics offers the possibility to overcome the single parti-
cle limit by the use of entanglement as a resource. Focussing on atom interferometry,
different quantum strategies have been proposed to obtain interferometric precision
beyond “classical” bounds [5–8]. The quantum Cramer-Rao bound reveals the fun-
damental limit [2], the so called Heisenberg limit for metrology, where the obtainable
phase precision scales as �ϕ2 = 1/N 2. The potential gain is enormous. In an atomic
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clock for example one measures an energy difference �ω for a certain time t (2π�

is Planck’s constant). The “classical” uncertainty scales as �ω2 = 1/t N , while
Heisenberg limited metrology would allow for an error of �ω2 = 1/t N 2. Assuming
a fictitious Heisenberg limited measurement with 106 atoms lasting one second, a
“classical” projection noise limited apparatus would need 11 days to obtain the same
level of precision.

Spin squeezing is one example where entanglement provides a resource for quan-
tum enhanced metrology. For atomic two-level systems the concept of spin squeezed
states and a mechanism to obtain them was introduced by Kitagawa and Ueda in
1993 [6]. One year later Wineland et al. pointed out its potential usefulness for
atom interferometry [5]. The basic idea is to use a quantum correlated spin state for
Ramsey type interferometry [9, 10], where the quantum fluctuations in the different
spin directions are redistributed. Atomic spin squeezing has already been experimen-
tally demonstrated in vapor cell experiments [11–14], ion traps [15] and recently with
laser cooled atoms [16,17]. We demonstrate spin squeezing in a Bose–Einstein con-
densate where distinct to vapor cell experiments the center of mass motion of the
atoms is controlled and where many particles contribute to a single measurement,
which is a limitation in ion trap experiments.

In the following paragraph we briefly outline the connection of spin squeezing
to interferometric phase estimation precision. Any two-mode system, and therefore
any quantum state in a two-mode interferometer, can be described by a fictitious spin
vector with total length J. In a symmetric situation, valid for N Bosons in two modes,
the Schwinger representation [18] connects the three orthogonal components of the
spin vector to the creation and annihilation operators â(b̂) and â†(b̂†) of the two
modes. A direct relation between occupation number difference n and relative phase ϕ

on one side and the spin operators ( Ĵ x, Ĵ y, Ĵ z) on the other side exists [19]. Therefore
engineering of the quantum fluctuations in the different spin directions can be used
to obtain a quantum state that features reduced fluctuations in the relative phase ϕ,

the quantity of interest in interferometry. This is the basic mechanism to obtain
quantum enhanced precision beyond the shot noise limit with spin squeezed states.
However, nature forbids to reduce the variance in the relative phase ϕ arbitrarily
since the population difference n is its conjugate variable. According to Heisenberg’s
uncertainty principle a decrease of the phase variance causes an increase of the pop-
ulation difference fluctuations which eventually degrades interferometric precision.
Therefore knowledge of the fluctuations in both conjugate variables is important to
characterize the usefulness of a quantum state for interferometry.

An uncorrelated collective spin state with mean spin pointing for example in Jx

direction has isotropic fluctuations in the orthogonal spin directions Jz and Jy. Redis-
tribution of these fluctuations requires quantum correlations between the different
constituents. Therefore enhanced interferometric sensitivity in atom interferome-
ters is connected to entanglement among the atoms. In 2001 Sørensen et. clarified
the connection between metrologically relevant spin squeezing and entanglement
[20, 21].

In this thesis we report on experiments detecting many-body entanglement in a
Bose–Einstein condensate of 87 Rubidium atoms. Two different experimental sys-
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tems are used. We achieve coherent spin squeezing among two external degrees of
freedom of the condensate—two mean field modes—populated with approximately
2,000 atoms. Despite of finite temperature in the system we observe up to ξ2

S = −3.8
dB coherent spin squeezing where ξ2

S is the parameter that quantifies the potential
amount of precision gain in interferometry. Spin squeezed states are engineered
employing an adiabatic cooling approach where temperature induced fluctuations
are reduced such that spin squeezing grows. Finite initial temperature and therefore
higher entropy in the system is identified as the limiting factor.

In a second set of experiments we demonstrate coherent spin squeezing between
two internal degrees of freedom of the condensate—two hyperfine states. Microwave
and radio frequency coupling pulses allow for a very accurate control of the collective
spin vector and a narrow magnetic Feshbach resonance is used to tune the interatomic
interactions. We realize a novel non-linear atom interferometer and measurements
on 400 atoms directly demonstrate 15% enhanced interferometric precision beyond
the standard quantum limit. Characterization of the quantum state within the inter-
ferometer reveals ξ2

S = −8.2 dB coherent spin squeezing. This requires the presence
of 170 entangled particles [20] and we exclude less than 80 entangled particles with
three standard deviation statistical confidence. These experiments are done at zero
effective temperature, but loss of the atoms from the trap is identified as the limit for
the obtainable coherent spin squeezing.

This thesis is organized as described below. After Chap. 1, this introduction,
we review the basic concepts of spin squeezing and its connection to many-body
entanglement and interferometry in Chap. 2. The following Chap. 3 deals with the
experiments done with a single component Bose–Einstein condensate in external
double- and few-well potentials. The results of these experiments have been published
in reference [22]. In the last Chap. 4 we report on the realization of a non-linear atom
interferometer and we directly show measurement precision beyond the standard
quantum limit. Our findings have been published in [23]. A comprehensive appendix
on precision absorption imaging with high spatial resolution describes the detection
method used for the experiments. Throughout the thesis we use the most intuitive
units for the energy E. Either angular frequency ω = E/� or temperature T = E/kB

is given where kB is Bolzmann’s constant. � and kB are normalized to unity and it
is useful to remember the conversion between angular frequency and temperature
ω/T ≈ 2π × 20 Hz/nK.

Not directly related to this theses but measured at the same time we published a
paper on Experimental observation of oscillating and interacting matter wave dark
solitons [24].
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Chapter 2
Spin Squeezing, Entanglement
and Quantum Metrology

Spin squeezing is a quantum strategy introduced in 1993 by Kitagawa and Ueda [1]
which aims to redistribute the fluctuations of two conjugate spin directions among
each other. In 1994 it was theoretically shown that spin squeezed states are useful
quantum resources to enhance the precision of atom interferometers [2] and in 2001
the connection between spin squeezing and entanglement was pointed out [3].

In this chapter we introduce the spin representation for N two-level atoms.
We review the basic theoretical concepts of spin squeezing and its connection to
entanglement. Different entanglement criteria are discussed and the usefulness of
entanglement as a resource in quantum metrology—focussing on spin squeezed
states—is reviewed.

2.1 Collective Spins

The mathematical concept of a spin algebra with total spin J is a powerful tool to
describe very different physical systems. Any observable within a spin J system can
be expressed by the three spin operators Ĵx , Ĵy, Ĵz and the identity operator. The
2J + 1 eigenstates of one of the spin operators make up a basis set of the 2J + 1
dimensional Hilbert space. The choice of the direction is arbitrary since the operators
are connected via unitary transformations.

2.1.1 A Single Spin 1/2 on the Bloch Sphere

One of the simplest nontrivial models in quantum mechanics, a two-level system
[4] with levels |a〉 and |b〉 , maps onto a spin J = 1/2 system. This mapping is
done by assigning the state |a〉 to the eigenstate of Ĵz with eigenvalue jz = −1/2
(spin down) and state |b〉 to the eigenstate with eigenvalue jz = +1/2 (spin
up). Two important applications of this model in atomic physics are the two-level
atom and nuclear magnetic resonance experiments. Any pure quantum state
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6 2 Spin Squeezing, Entanglement and Quantum Metrology

Fig. 2.1 The Bloch sphere. Schematic representation of the quantum state |θ, ϕ〉 of a spin 1/2
system on the Bloch sphere. The definition of the longitudinal angle ϕ and the polar angle θ are
highlighted and in the following the same notation will be used for the direction of the collective
spin on a generalized Bloch sphere (see Sect. 2.2.2)

|θ, ϕ〉 = sin(θ/2) |a〉 + cos(θ/2)eiϕ |b〉 of a two-level system can be conveniently
represented on a Bloch sphere. The coordinate axes are chosen such that the popu-
lation difference (|b〉〈b| − |a〉〈a|)/2 maps to the Ĵz component of the spin and the
coherences (|b〉〈a| + |a〉〈b|)/2 and (|b〉〈a| − |a〉〈b|)/2i map to the Ĵx and Ĵy com-
ponents respectively. Figure 2.1 shows the quantum state on the Bloch sphere with
the definition of the longitudinal angle ϕ and the polar angle θ. The Hilbert space
for a single spin 1/2 system is two dimensional, such that the representation on the
surface of the Bloch sphere does not require any additional assumptions.

2.1.2 A Large Collective Spin

The discussion above can be generalized for N particle systems where each particle
is restricted to two modes. Each particle is an elementary spin j = 1/2 system,
sometimes called Qubit.

The collective spin operators Ĵi can be defined as the sum over all elementary
spin operators (Pauli matrices) σ̂

(k)
i , where i = (x, y, z):

Ĵi =
N∑

k=1

σ̂
(k)
i (2.1)

A basis of the general problem can be obtained as the tensor product of all N bases
of the individual components, each of dimension (2 j + 1). The dimension of the
Hilbert space is huge dim(HN ) = (2 j + 1)N = 2N and grows exponentially with
the number of Qubits. The length of the collective spin J is smaller or equal than
half the number of Qubits1:

√
J (J + 1) = 〈Ĵ 2〉1/2 ≤ N/2 (2.2)

One often assumed simplification is exchange symmetry among all Qubits. This is
physically motivated since in many experiments all operations done on the ensemble

1 In this thesis we deal with large spins such that we often approximate
√J (J + 1) ≈ J .
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affect each spin in the same way. One example are nuclear magnetic resonance
experiments in homogeneous fields.

In the symmetric case each elementary Qubit can be prepared for example in the
jz = −1/2 state and maximum collective polarization Jz = −N/2 can always be
reached. Therefore the total spin length is given by J = N/2 and the dimension
of the Hilbert space dramatically reduces to dim(HS) = (2N j + 1) = (N + 1),
linearly dependent on the number of Qubits. One possible choice of a basis are the
symmetric Dicke states |J, m〉 with −N/2 < m < N/2. Due to their exchange sym-
metry the elementary spins can be effectively described as Bosons, the Schwinger
Bosons [5]. Employing the second quantization formalism the creation and annihila-
tion operators of the two modes â† (b̂†) and â (b̂) can be related to the different spin
components [6]:

Ĵ+ =b̂†â

Ĵ− =â†b̂

Ĵx =1

2
( Ĵ+ + Ĵ−)

Ĵy = 1

2i
( Ĵ+ − Ĵ−)

Ĵz =1

2
(b̂†b̂ − â†â)

Each of the Dicke states introduced above corresponds to a perfectly defined particle
number difference between the two modes â and b̂ and since the total number of
particles N is fixed the Dicke states correspond to Fock states in the two modes â
and b̂.

The experiments presented in this thesis deal with two-mode Bose–Einstein con-
densates. Identical particles in two modes (as the Bosons in the condensate) can
be described by the symmetric spin model and the Schwinger representation given
above is used to relate the creation and annihilation operators of the two modes to
the different spin components.

Even if not formally correct we will use the notation J instead of J for all spins
regardless of symmetry and mention explicitly where the symmetry argument is
necessary.

2.2 Fluctuation Engineering

The three different orthogonal spin components are conjugate variables. Their
commutation relation is [ Ĵi , Ĵ j ] = iεi jk Ĵk , where εi jk is the Levi-Civita symbol.
Therefore any pair of spin operators obeys a Heisenberg uncertainty relation which—
for � Ĵ 2

z and � Ĵ 2
y —is given by
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� Ĵ 2
z � Ĵ 2

y ≥ 1

4
〈 Ĵx

2〉 (2.3)

and � Ĵ 2
z = 〈 Ĵz

2〉 − 〈 Ĵz〉2
is the variance in Ĵz direction.

2.2.1 Coherent Spin States

Coherent spin states are the most classical-like pure quantum states of a symmetric
ensemble of N elementary j = 1/2 spins or of N two-mode Bosons [6, 7]. They
are constructed by placing all N particles in the same single particle state in any
superposition of the two modes

|θ, ϕ〉 = 1√
N ! [sin(θ/2)â† + cos(θ/2)eiϕ b̂†]N |vac〉 (2.4)

where |vac〉 is the vacuum state. Especially no quantum correlations between the
particles are present. Therefore a coherent spin state features equal variance in any
direction Ĵ⊥ orthogonal to the mean spin direction (θ, ϕ) which is given by the sum
of the variances of the 2J elementary spin 1/2 particles. The perpendicular variances
�σ̂ 2⊥ of individual Qubits are by definition isotropic around (θ, ϕ) since there are no
subsystems that could cause any correlations [1]. The Heisenberg limit (2.2) for a
single elementary spin pointing in σx direction is �σz

2�σy
2 = 1

4 · 1
4 leading to an

isotropic variance of

� Ĵ 2
z = � Ĵ 2

y = 2J · 1

4
= J

2
(2.5)

for the collective coherent spin state, which identifies this quantum state as a minimal
uncertainty state since 〈 Ĵx 〉 = J. We refer to the perpendicular spin fluctuations of
a coherent spin state � Ĵ 2⊥ = J/2 = N/4 as the shot noise limit.

We go back to the first quantization formalism in order to obtain the probability
distribution over different sets of basis states—especially the two possible Dicke state
bases in the directions orthogonal to the mean spin direction. In order to develop a
more detailed understanding of the coherent spin state and its fluctuations we start
with the discussion of a special case where each particle is in a 50/50 superposition
of the two modes with 0 relative phase—each spin points in σx direction and its
quantum state is

|x〉 =
(∣∣∣∣

1

2
,−1

2

〉
+

∣∣∣∣
1

2
,+1

2

〉)
/
√

2 (2.6)

where we have chosen the Dicke states in σz direction as the basis states. The
probability to observe each individual elementary spin in state up or down is equal



2.2 Fluctuation Engineering 9

1 2 3 N

side view

Fig. 2.2 A coherent spin state composed of elementary spins. The figure illustrates the addition
of N elementary Qubits with equal mean spin orientation (indicated by the arrows) to a large
collective spin J . The gray shading on the Bloch spheres visualizes the spread of the quantum state
on the sphere using the Q-representation introduced in Sect. 2.2.2. The isotropic angular uncertainty
decreases with the number of Qubits according to the standard quantum limit

∣∣〈 1
2 ,± 1

2 |x〉 ∣∣2 = 1/2. The N atom coherent spin state is a collection of these inde-
pendent elementary spins

|X〉 =
[(∣∣∣∣

1

2
,−1

2

〉
+

∣∣∣∣
1

2
,+1

2

〉)
/
√

2

]⊗N

(2.7)

and therefore the measurement of the Jz spin component is equivalent to N mea-
surements on a single spin and the probability distribution over the Dicke states is
binomial. We could have chosen equally the Dicke states in Jy direction to describe
the spin state which shows again that the spin fluctuations in the directions perpen-
dicular to Jx —the mean spin direction—are isotropic.

A general coherent spin state |θ, ϕ〉 described as superposition of Dicke states
|J, m〉 is given by [8]:

|θ, ϕ〉 =
J∑

m=−J

cm(θ)e−i(J+m)ϕ |J, m〉 (2.8)

As argued above the coefficients cm(θ) follow a binomial distribution peaked
around θ :

cm(θ) =
(

2J

J + m

)1/2

cos(θ/2)J−m sin(θ/2)J+m (2.9)

Figure 2.2 depicts the composition of a large collective spin from elementary spins
on generalized Bloch spheres.2 The illustration of the spins is done using the Q-
representation described in Sect. 2.2.2.

The Standard Quantum Limit

Due to the Heisenberg uncertainty principle (2.2) the mean direction (θ, ϕ) of any
spin state can not be defined with arbitrary precision. For a coherent spin state the

2 Above we give an example for the mean spin in Jx direction, however for the purpose of better
illustration we have chosen a different direction in the figure.
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isotropic angular uncertainty �ϕ = �θ , defined by the ratio of the uncertainty of
the perpendicular spin directions �J⊥ to the mean spin length J , is given by:

�ϕ = � Ĵ⊥
〈 Ĵ 〉 = 1√

2J
= 1√

N
(2.10)

As argued above this limit arises as the classical statistical limit in a system consisting
of N independent constituents [2, 9]. In Sect. 2.4 we discuss the connection of spin
states and Ramsey interferometry and we show that the angular uncertainty limits the
interferometric precision. In this context the “classical" limit (2.10) for a coherent
spin state is known as the standard quantum limit. Figure 2.2 also visualizes the
decreasing angular uncertainty with the number of elementary spins.

2.2.2 Visualizing Spin States: The Husimi Q-Representation

Employing the Q-representation [10], spin states can be conveniently visualized on
a generalized Bloch sphere with radius J . In order to describe the most general spin
state, i.e. pure states and statistical mixtures, the density matrix formalism is used
[6]. The density operator ρ̂ in coherent spin state basis is given by

ρ̂ =
∫

P(θ, ϕ)|θ, ϕ〉〈θ, ϕ|d� (2.11)

where the integral covers the full solid angle and d� = sin(θ)dθdφ. The probability
distribution P(θ, ϕ) is normalized to one. The Q-representation uses the diagonal
elements of the density operator to represent the quantum state:

Q(θ, ϕ) = 2J + 1

4π
〈θ, ϕ|ρ|θ, ϕ〉 (2.12)

The interpretation of this representation on generalized Bloch spheres differs from
the single spin j = 1/2 Bloch sphere shown in Fig. 2.1. In the latter case the dimen-
sion of the Hilbert space is two-dimensional and the quantum state representation on
the surface of a sphere is exact. However for collective spin systems the dimension
of the Hilbert space is 2J + 1 such that an exact mapping to the surface of a sphere
is not possible. The position (θ, φ) on the spin 1/2 Bloch sphere describes the full
quantum state, while the position on the generalized Bloch sphere gives only the
mean spin direction and—within the constraints explained below—its fluctuations.
The Q-representation projects the density matrix on minimal uncertainty states, in
particular coherent spin states. The most obvious consequence is that the minimal
extension of a quantum state in (θ, ϕ) on the Bloch sphere is given by the uncertain-
ties of the basis states—a single Dicke state features no uncertainty in polar direction
but its Q-representation shows �θ ∝ 1/

√
N .
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side view

N correlated Qubits

1 2 3 N

Fig. 2.3 Spin squeezed states. The figure illustrates an exemplary pure spin squeezed state on
the Bloch sphere. The individual Qubits feature an isotropic variance, but quantum correlations
between them cause an anisotropic variance of the collective spin state. For a Heisenberg limited
spin squeezed state, one of the perpendicular variances �J⊥,min is smaller than the variance of
a coherent spin state (of the same spin length), while the variance in the second perpendicular
direction �J⊥,max is increased

2.2.3 Spin Squeezed States

Quantum correlations between the elementary spin 1/2 particles of a collective spin J
can cause anisotropic fluctuations of the spin vector in the directions perpendicular to
the mean spin (Fig. 2.3). Nevertheless the fluctuations of each individual elementary
spin are always isotropic [1]. In Ref. [1] quantum states are considered spin squeezed
if the variance of one spin component is smaller than the shot noise limit J/2 for a
coherent spin state:

ξ2
N = 2

J
� Ĵ 2⊥,min (2.13)

Definition (2.13) does not take the second perpendicular spin direction into account.
Due to the Heisenberg uncertainty relation (2.2) reduction of the variance in one
direction causes an increase of fluctuations in the other. Real life strategies to obtain
spin squeezing might also involve states that are not minimal uncertainty states.
One example is the “one axis twisting" scheme proposed in [1], which we use in
the experiments described in the last chapter of this thesis. For these states, as for
experimentally very important non-pure quantum states, the variance in some other
direction than the squeezed direction can be much larger than given by the Heisenberg
uncertainty relation. This leads to a reduction of the effective mean spin length 〈Ĵ〉.

Metrologic applications, especially Ramsey interferometry for which spin
squeezed states have been considered useful, require a large mean spin length. In
order to measure the usefulness of spin squeezed states for these applications another
definition of the squeezing parameter was introduced in Ref. [2]

ξR = √
2J

� Ĵ⊥,min

〈Ĵ〉 (2.14)
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whose inverse ξ−1
R measures the precision gain in a Ramsey interferometric sequence

relative to the standard quantum limit (2.10). For a detailed discussion of interfer-
ometry with spin squeezed states see Sect. 2.4

Spin squeezing among N constituents is related to many-body entanglement.
In this context a third spin squeezing criterion was found [3]:

ξ2
S = N

� Ĵ 2
⊥,min

〈Ĵ〉2 = N
� Ĵ 2

z

〈 Ĵx 〉2 (2.15)

Entanglement is detected by the inequality ξ2
S < 1 as detailed in the following

section. Here we explicitly use the standard assumption throughout this thesis that
the mean spin points in Jx direction and the direction of minimal variance—if not
explicitly mentioned—is the Jz direction.

ξS can be used equivalently to ξR to quantify spin squeezing and precision gain
in interferometry and we refer to it as coherent number squeezing or coherent spin
squeezing.

2.3 Spin Squeezing and Entanglement

2.3.1 Definition of Many-Body Entanglement

For N distinguishable particles the definition of a separable state, i.e. non-entangled
state, is that its N-body density matrix ρ can be written as a direct product of single
particle density matrices ρ(i):

ρ =
∑

k

pkρ
(1)
k ⊗ ρ

(2)
k ⊗ · · · ⊗ ρ

(N )
k (2.16)

pk is a probability distribution to account for incoherent mixtures. Entanglement
in many-body systems (for a general review see [11, 12]) is defined as the non-
separability of the density matrix ρ meaning the equality in Eq. 2.16 does not hold.

In collective spin systems a separable state is composed of independent elemen-
tary spin 1/2 particles. Due to technical limitations the individual elementary spins
can not be addressed in many experiments . However it is important to note that the
elementary spins have to be in principle distinguishable in order to define entangle-
ment among them in a meaningful way [11]. In the scope of this thesis we deal with
N particles in a Bose–Einstein condensate where the distinguishability is not obvi-
ous. However Sørensen and Mølmer pointed out that by a gedanken local operation
one can pinpoint each particle in space without affecting the spin properties of the
system (Sørensen AS, Mølmer K private communication). The distinguishability is
now given via the position of each particle. If entanglement is detected in the system,
it must have been present in the system before the localization, since local measure-
ments can not generate entanglement [13]. Given that the atoms in the Bose–Einstein
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condensate are spaced by more than one wavelength of the detection light (which
is usually fulfilled), this gedanken local operation means to overcome the technical
limitations for addressability and detection of the individual Qubits.

The question of entanglement in bosonic pseudo spin systems and its connection
to spin squcezing are extensively discussed in [14].

2.3.2 Entanglement Criteria Based on Collective Spin Variables

Without the possibility to address the individual Qubits entanglement criteria based
on the collective spin variables are necessary to detect entanglement. Furthermore the
observables in most experiments so far are limited to first and second order moments
of the distributions functions in different spin directions due to rather small counting
statistics and technical noise. Based on these, a complete set of inequalities that is ful-
filled for any separable quantum state has been found [15, 16]. Complete in this sense
means that assuming the only information available are first (〈 Ĵx 〉, 〈 Ĵy〉, 〈 Ĵz〉) and
second moments (� Ĵ 2

x ,� Ĵ 2
y ,� Ĵ 2

z ) of the distribution functions. These inequalities
are:

〈 Ĵ 2
x 〉 + 〈 Ĵ 2

y 〉 + 〈 Ĵ 2
z 〉 ≤ N (N + 2)

4
(2.17)

� Ĵ 2
x + � Ĵ 2

y + � Ĵ 2
z ≥ N

2
(2.18)

〈 Ĵ 2
i 〉 + 〈 Ĵ 2

j 〉 − N

2
≤ (N − 1)� Ĵ 2

k (2.19)

(N − 1)[� Ĵ 2
i + � Ĵ 2

j ] ≥ 〈 Ĵ 2
k 〉 + N (N − 2)

4
(2.20)

Toth et al. published these inequalities in Refs. [15, 16] and the authors depict the
inequalities by a volume containing all separable states in a three dimensional space
spanned by (� Ĵ 2

x ,� Ĵ 2
y ,� Ĵ 2

z ).

Throughout this thesis we use the original spin squeezing inequality (2.15) in
order to detect spin squeezing type entanglement experimentally [3]. All separable
states fulfill the inequality ξ2

S ≥ 1, but a subgroup of entangled states violate it.
As pointed out in Ref. [16], this criterion is equivalent to criterion (2.20) in the

limit of large N and the mean spin pointing in Jx direction.
None of the entanglement witnesses given in this section requires any symmetry

assumption. They are valid for the general definition of the collective spin given in
Eq. 2.1. Entanglement criteria only valid under the symmetric two-mode assumption
are discussed in the next section.
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Entanglement Criteria for Symmetric States

Making the strong assumption of symmetry under particle exchange many entangle-
ment criteria simplify. In this case the detection of spin fluctuations in one direction
below the shot noise limit for N atoms implies entanglement [17–20].

ξ2
N = 4� Ĵ 2⊥,min

N
= 2� Ĵ 2⊥,min

J
≥ 1 (2.21)

holds for any separable symmetric state. For clarity the mean spin is assumed to
point in Jx direction such that 〈 Ĵ⊥,min〉 = 0.3 Equation (2.21) is identical to the
spin squeezing definition of Kitagawa and Ueda (2.13) showing that at least in the
symmetric two-mode case entanglement is necessary to redistribute the fluctuations
of orthogonal spin components. Within this thesis we refer to ξ2

N as number squeezing.
All entanglement witnesses discussed here are based on second moments, there-

fore they contain maximally two body correlations 〈σ̂ (i)
k σ̂

( j)
k 〉 of the elementary spins

i and J in direction k. The question arises if these criteria detect only bipartite entan-
glement, the non-separability of the average two-body density matrix.

Toth, et al. show in Ref. [16] that in the non-symmetric case the complete set
of separability criteria (Eqs. 2.17–2.20) can detect entanglement even if there is no
bipartite entanglement in the system—the average two-body density matrix of an non-
symmetric state can be separable even if the N-body density matrix is entangled. The
situation is different in the symmetric case. Here the violation of the number squeez-
ing criterion (2.21) is both necessary and sufficient for bipartite entanglement in the
system. Every bipartite entangled symmetric state features number squeezing [17].

2.3.3 Experimentally Used Quantification of Entanglement

The criteria given above are useful to detect the presence of entanglement, how-
ever they do not quantify entanglement in the system.4 Two experimentally used
approaches to quantify entanglement are reviewed here.

Von Neumann Entropy

In a recent experiment entanglement has been reported based on the von Neumann
entropy [21]. However, we clarify in this short section that it is not possible to
characterize entanglement in our experimental system by this measure.

For pure quantum states the von Neumann entropy SN (ρ̂A) = −Tr(ρ̂Alog(ρ̂A)) of
the reduced density matrix ρ̂A = TrB(ρ̂) is a measure for bipartite entanglement [11,
13, 22] between one subsystem ρ̂A and the rest of the system ρ̂B = TrA(ρ̂). There is

3 The general expression is
4� Ĵ 2

k
N ≥ 1 − 4〈 Ĵk 〉2

N 2 [19].
4 Since criterion (2.15) can be related to a gain in interferometric precision (see Sect. 2.4), it
measures the “usefulness" of spin squeezed states as a quantum resource in a known experimental
protocol.
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side view side viewa b

Fig. 2.4 Von Neumann entropy and delocalization of the quantum state. Panel a depicts an
entangled spin squeezed state on the Bloch sphere. Quantum correlations cause an increased uncer-
tainty in one spin direction which results in a shortening of the effective spin length. This shortening
is measured by the linearized von Neumann entropy. Panel b shows a non-entangled incoherent
mixture. Loss of coherence results also in a shortening of the mean spin length, making it hard to
use the von Neumann entropy for our experiments where temperature or environmental noise cause
decoherence

no difference on which of the two subsystem SN is evaluated: SN (ρ̂A) = SN (ρ̂B).

Expanding the von Neumann entropy to first order one obtains the linear entropy:

SN = 1 − Tr(ρ̂2
A) (2.22)

Taking subsystem A to be a single elementary spin 1/2 particle, SN can be used to
measure entanglement between one Qubit and the rest of the system. The density
matrix ρ̂A can be expressed as a linear combination of Pauli matrices σi [23]. If the
system is additionally in a symmetric state, the linearized von Neumann entropy can
be related to the mean values of the collective spin J [21, 24]:

SN = 1

2
[1 − 4

N 2 (〈 Ĵx 〉2 + 〈 Ĵy〉2 + 〈 Ĵz〉2)] (2.23)

Figure 2.4 illustrates the linear entropy measure and clarifies its connection to
the spread of the state on the Bloch sphere. Since mixed states always have an
(incoherently) increased spread it is essential to note its applicability to pure states
only. The quantum states realized in our experiments are subject to decoherence
making it impossible to apply the linear entropy measure.

Depth of Entanglement

In the context of spin squeezing the depth of entanglement has been proposed to
quantify entanglement [25] which measures the number of non-separable elementary
Qubits. This criterion is valid for incoherent mixtures as well as for pure states making
it suitable for our experiments. However, we once again emphasize that there is no
clear definition for entanglement among indistinguishable particles. Furthermore,
unique entanglement measures for more than two or three particles are still a very
active field of research [11].

We review the depth of entanglement criterion here and use the label J for the
collective spin of the full system and the label S for subsystems of smaller spin, but
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not necessarily S = 1/2. The basic idea is to find the minimal variance �Ŝ2
z for a

given mean spin length 〈Ŝx 〉. Combining the inequality 〈Ŝ2
z 〉+〈Ŝ2

y〉+〈Ŝ2
z 〉 ≤ S(S+1)

(which is similar to Eq. 2.17) with the Heisenberg uncertainty limit (2.2) one obtains

�Ŝ2
z ≥ 1

2

[
S(S + 1) − 〈Ŝx 〉2 −

√
(S(S + 1) − 〈Ŝx 〉2)2 − 〈Ŝx 〉2

]
(2.24)

as an analytical estimation of the limit.
Numerical calculations allow to set the bound even tighter [25] and a comparison

between the numerical results and the analytical formula is shown in Fig. 2.5. From
Fig. 2.5 it is obvious that large spins S can be more squeezed than small spins.5 This
implies that a collective spin J composed of k subsystems with spin S(k) can be more
squeezed than the individual spins S(k). In other words, one perfectly squeezed large
spin J has always lower or equal normalized variance � Ĵ 2

z /J for a given normalized
mean spin length 〈 Ĵx 〉/J than the sum of the normalized variances of N independent
but individually perfectly squeezed smaller spins S(k) for the same normalized mean
spin length. Based on these findings the authors of Ref. [25] derive a lower bound
for the variance of the collective spin � Ĵ 2

z

� Ĵ 2
z /N S ≥ FS(〈 Ĵz〉/N S) (2.25)

where FS(.) is the minimum for spin S shown in Fig. 2.5.
The interpretation of this result in the case of N spin 1/2 particles is: If one measures

the pair � Ĵ 2
z /J and 〈 Ĵx 〉/J outside the gray shaded area in Fig. 2.5, entanglement

has to be present in the system. Depending on which curve m the measured datapoint
falls, the minimal size of the largest non-separable spin has to be S = m · 1/2 and
the number of these non-separable blocks is N/m.

What happens if N/m is not an integer value? In this case there has to be one or
more smaller blocks of entangled (or even non-entangled) particles, causing larger
fluctuations than in the case of exactly N/m particles with spin S = m · 1/2 since
smaller spins cause larger fluctuations. In order to explain the observed data point,
the largest entangled block has to be even greater than m. To summarize, minimally
m entangled Qubits are detected if the measured datapoint falls on the curve for
S = m · 1/2.

2.4 Entangled Interferometry

Entanglement in collective spin systems is not only interesting from a conceptual
perspective but it has also been shown to provide a useful quantum resource. In 1994
Wineland et al. [2] pointed out, that in particular spin squeezed states can be used to
overcome the standard quantum limit in metrology.

5 As already mentioned a spin S = 1/2 can not be squeezed at all.
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Fig. 2.5 Depth of entanglement. The figure shows the minimal allowed normalized variance �Ŝ2
z

for a given mean spin length 〈Ŝx 〉 depending on the total spin S (different line styles). The black lines
are the numerical result taken from reference [25] (Fig. 2.1) while the gray lines show the analytic
approximation (2.24) which we use later in this thesis. The spin length S is written as S = m · 1/2
in order to emphasize the minimal non-separable block size m of the density matrix in the case of
Qubits as elementary spins. The gray area correspond to pairs of 〈Ŝx 〉/S and �Ŝ2

z /S for which no
entanglement is detected in the system

2.4.1 Precision Limits in Ramsey Interferometry

The term Ramsey interferometry [26, 27] is used most often for atomic interferom-
eters based on internal states. Prominent applications are the definition of the time
standard [28] or high precision magnetometry [29]. However the scheme is more
general and applies also to atom interferometers where the two states are imple-
mented using external degrees of freedom. These interferometers allow for example
for high precision inertia measurements of gravity or rotation [30–32]. The optical
counterpart of Ramsey interferometry is a Mach–Zehnder interferometer and the
analogy is further discussed in Sect. 4.7 .

The Ramsey Interferometric Sequence

In order to develop an intuitive understanding for the precision limit in interferometry
we discuss the implementation of a typical Ramsey interferometer and visualize the
protocol schematically on Bloch spheres (Fig. 2.6a). A Ramsey atom interferometer
conceptually consists of at least three building blocks, two beamsplitters and an
evolution time in between. The first beamsplitter, which corresponds to a unitary
rotation on the Bloch sphere around an axis in the equatorial plane, is used to generate
a coherent superposition of the two quantum states. Assuming only one input port to
be populated the output is usually a collective spin state with the mean spin pointing
onto the equator. A fixed time τ of free evolution follows during which a relative

http://dx.doi.org/10.1007/978-3-642-25637-0_4
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input state after second
       pulse 
- readout -

after first 
       pulse

after evolution
time

(a)

(b)

Fig. 2.6 Schematic representation of Ramsey interferometry on the Bloch sphere. Part a shows
the standard Ramsey protocol represented on the Bloch sphere. Beamsplitters correspond to rotations
of the quantum state around an axis in the equatorial plane as indicated by the circular shaped
arrows. The sequence is described in detail in the main text. Panel b shows a similar protocol but
after the first “magic" beamsplitter a spin squeezed state emerges which propagates through the
interferometer resulting in degreased occupation number uncertainty at the readout. Section 4.7 of
this thesis describes the concrete implementation of this “magic"—non-linear—beamsplitter

phaseϕ between the two modes accumulates (corresponding to a longitudinal rotation
on the Bloch sphere). Depending on the kind of interferometer this phase is due to
differential energy shifts between the states or due to effective path length differences
to be measured [30]. Since the angle in longitudinal direction on the Bloch sphere ϕ is
usually not directly observable, a second beamsplitter is necessary. This beamsplitter
implements another unitary rotation around an axis in the equatorial plane shifted
by 90◦ with respect to the first beamsplitter in order to translate the longitudinal
angle to a polar angle θ. The readout of the interferometer is done by detection of
the population difference Jz of the two output ports, from which the relative phase ϕ

can be deduced. The resulting sinusoidal variation of the population difference 〈 Ĵz〉
versus acquired relative phase ϕ is commonly called a Ramsey fringe.

Quantifying Interferometric Precision

Taking finite environmental noise into account, the sensitivity of the interferometer
to small phase shifts

�ϕ−1 =
⎛

⎝ � Ĵz

∂〈 Ĵz〉
∂ϕ

⎞

⎠
−1

(2.26)

http://dx.doi.org/10.1007/978-3-642-25637-0_4
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Fig. 2.7 Precision limit in Ramsey interferometry. We compare schematically the phase estima-
tion precision in Ramsey interferometry using a coherent spin state (gray) and a spin squeezed state
(black). The main figure shows a Ramsey fringe whose visibility V is maximal for a coherent spin
state (V = 1) but smaller for a spin squeezed state. Nevertheless the phase precision for a squeezed
state outperforms the precision obtained for classical interferometer as shown in the zoom around
the zero crossing. The projection noise is suppressed for the spin squeezed state such that the ratio
of projection noise and slope of the Ramsey fringe is smaller by a factor ξS compared to the standard
quantum limit, which explains the gain in interferometric precision

depends on the mean phase 〈ϕ〉 and is determined by the projection noise � Ĵz

and the slope of the Ramsey fringe ∂〈 Ĵz〉/∂ϕ. The point of maximum sensitivity
is reached where the mean population difference is zero and the slope is maximal
(∂〈 Ĵz〉/∂ϕ)max = V N/2. The visibility V measures the mean spin length 〈J〉 =
V N/2. Figure 2.7 illustrates the phase sensitivity of a Ramsey interferometer.

The amount of precision gain (or loss) relative to standard quantum limit is given

by ξ−2
R or equivalently by

(
ξ2

S

)−1
. The measure can be expressed in visibility V and

spin noise in Jz direction at readout � Ĵ 2
z :

ξ2
S = 4� Ĵ 2

z

V2 N
(2.27)

The absolute phase uncertainty–measured as the root mean square deviation is:

�ϕ = ξS
1√
N

(2.28)

Spin squeezed states feature reduced noise in one of the spin directions but excess
noise in another direction can be present either due to a non-Heisenberg limited
quantum state or due to an incoherent mixture of several quantum states. The for-
mer might limit precision in standard Ramsey interferometry, but specific correlated
quantum states enable even enhanced interferometric precision in a generalized inter-
ferometer [33]. The latter is easily limiting interferometric precision at a level above
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the standard quantum limit and experimentally it requires a large effort to prevent
decoherence due to technical noise from the environment or due to finite temperature
in the system. Large noise—quantum or classical—even in a spin direction that is not
directly measured has a degrading effect on interferometric precision which arises
due to the curved surface of the Bloch sphere. As soon as the noise amplitude is large
enough such that the area of uncertainty can no longer be approximated by a plane,
the mean spin is effectively shortened and the visibility decreases V < 1.

Ramsey Interferometry with Entangled States

Entanglement can be used as a quantum resource in a Ramsey interferometric
sequence in different ways. In order to increase the phase sensitivity either the slope
of the signal ∂〈 Ĵz〉/∂ϕ has to be increased or the projection noise � Ĵ 2

z has to be
decreased.

Slope increase can be reached by Schrödinger cat type entanglement which
involves maximally entangled states that are very fragile to decoherence. Therefore
they have been realized so far with very few particles only [34–36].

Spin squeezing aims to decrease the projection noise. This is possible in gradual
steps meaning that depending on the amount of spin squeezing the precision is grad-
ually increased. Therefore—at least for moderate levels of spin squeezing—these
states are less fragile and they have been realized with a large number of particles but
only with a relatively small squeezing factor [37–46]. Ramsey interferometry with
spin squeezed states is schematically depicted in Fig. 2.6b where a “magic" beam-
splitter produces an entangled state. Interferometric sensitivity for a coherent spin
state and a spin squeezed state is compared in Fig. 2.7. For the spin squeezed state the
decreased quantum fluctuations � Ĵz reduce the projection noise while the increased
fluctuations � Ĵy cause a slight decrease of the mean spin length and therefore of the
visibility of the Ramsey fringe. Nevertheless, the ratio of projection noise and slope
of the Ramsey fringe—and therefore the phase sensitivity—is increased.

2.4.2 Heisenberg Limit in Quantum Metrology

The ultimate limit for metrologic precision is the Heisenberg limit [47], where the
phase estimation error �ϕ is given by

�ϕ = 1

N
(2.29)

for N resources used in a single measurement. This fundamental limit can—up to a
constant numerical factor in the order of unity—in principle be reached with both
approaches mentioned above—Schrödinger cat type entanglement or spin squeezing.
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Schrödinger Cats and Metrology

In the context of quantum metrology the Schrödinger cat state is frequently called a
NOON state [48]. Its name originates from its form in Fock states basis:

|NOON〉 = (|N , O〉 + eiϕN |O, N 〉)/√2 (2.30)

It is a coherent superposition of all atoms in state â and zero atoms in state b̂ and
vice versa. In spin representation the NOON state is the superposition of the two
maximal Dicke states:

|NOON〉 = (|J,−J 〉 + eiϕN |J, J 〉)/√2 (2.31)

The increase of the signal slope for a NOON state is obvious since the phase acquired
between the two components ϕN = Nϕ is N times larger than for a coherent spin state
[9, 49, 50]. Experimentally it is important to note that the readout of the interferometer
can not be realized by measuring 〈 Ĵz〉. The reason is the vanishing mean spin length
〈 Ĵx 〉 of this state. It has been shown that the parity of the state is a useful experimental
observable to make use of NOON states in interferometry and to reach the Heisenberg
limit [34, 50].

Spin Squeezed States

Spin squeezed states allow to ask for the best achievable interferometry gain demand-
ing a finite mean spin length such that standard interferometric readout can be used.

The optimum ξR for a given mean spin length was found numerically in Ref. [25]
and for rather small spins it is shown in Fig. 2.5. An experimental protocol to generate
spin squeezed states close to the Heisenberg limit was proposed in Ref. [52].

Other Types of Quantum Correlated States

Recently it has been pointed out that the Fisher information is the most general
criterion to measure phase sensitivity since it saturates the Quantum Cramer-Rao
bound [33, 53]. Calculating the Fisher information for a coherent spin state state
evolving under the non-linear Hamiltonian Ĥ = χ Ĵ 2

z , where χ parametrizes the
nonlinearity, Pezzé and Smerzi recovered Heisenberg limit like scaling for the phase
precision [33]. The quantum state here is neither necessarily a NOON state nor a
coherently spin squeezed state. However standard interferometric readout can not be
used to extract the phase information and a new type of Bayesian readout has to be
employed which was experimentally demonstrated in [53].
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Chapter 3
Squeezing Two Mean Field Modes of a
Bose–Einstein Condensate

Bose–Einstein condensation has been predicted in 1924/1925 by Satyendra Nath
Bose and Albert Einstein [1–3]. The Nobel prize 2001 was awarded to Eric A.
Cornell, Wolfgang Ketterle and Carl E. Wieman for the first experimental observa-
tion of Bose–Einstein condensation in dilute gases of laser cooled alkali atoms in
1995 [4–8]. Almost 15 years later a whole new sub field of atomic physics developed
dealing with Bose–Einstein condensates and degenerate Fermi gases. A lot of effort
has been made, both experimentally and theoretically, to explore the basic physics
of ultracold quantum degenerate gases [9–11]. Extraordinary experimental control
over the trapped quantum gases and the possibility to measure and adjust almost
all relevant parameters directly (e.g. interaction strength, relative phases, ...) opens
up a new route in atomic physics. The quantum gases can be used to engineer spe-
cific Hamiltonians that map for example to problems in solid state physics where
some measurements are hard to perform and many parameters are not controllable.
Ultracold quantum gases are promising candidates for quantum simulators of solid
state systems [12–14]. In the field of quantum metrology degenerate gases have
been proposed to be one experimental system that allows for a precision beyond the
“classical” projection noise limit in atom interferometry. Controllable many-body
entanglement can be used as a resource to beat the standard quantum limit [15–21].

In this chapter we focus on Bose–Einstein condensates in double- and few-well
potentials and in particular on the experimental observation of spin squeezing type
many-body entanglement among them. The mechanism of squeezing generation is
explained within a two-mode approximation and limits on the observed spin squeez-
ing due to finite temperature and environmental noise are discussed.

C. Groß, Spin Squeezing and Non-linear Atom Interferometry with Bose–Einstein 25
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3.1 Bose–Einstein Condensates in Double-Well Potentials:
Mean Field and Beyond

3.1.1 Basic Concepts of Bose–Einstein Condensation

In this section we discuss some basic principles of Bose–Einstein condensation in
dilute alkali gases necessary to understand the main part of this thesis—coherent
spin squeezing in Bose–Einstein condensates and its limits. We follow the arguments
given in the books [9, 10].

Bose–Einstein condensation is a quantum statistical effect that occurs for non-
or weakly interacting Bosons. The occupation number of a single particle state ni

obeys the Bose–Einstein statistics ni = [e(εi −μ)/kB T − 1]−1, where kB is Bolz-
mann’s constant and εi the single particle eigenenergy. For high temperatures
T � TC the chemical potential μ is much lower than the single particle ground
state eigenenergy ε0. With decreasing temperature the phase space density ρ̃ = nλ3

T
and simultaneously the chemical potential μ rises. Here n is the atomic density and
λ3

T = (2π�
2/mkB T )3/2 is the cubic thermal de Broglie wavelength.1 When the

phase space density ρ̃ exceeds a critical value in the order of unity,2 μ approaches ε0
and the ground state becomes macroscopically occupied n0 ≈ N . This is the mech-
anism of Bose–Einstein condensation. The functional dependence of the fraction of
atoms in the condensate n0/N as a function of temperature is determined by the
density of states which is given by the dimensionality of the system and the spatial
trapping potential Vext . For a three dimensional harmonic trap n0 follows from:

n0

N
= 1 −

(
T

TC

)3

(3.1)

In alkali vapors with typical densities between 1013 and 1015 cm−3 the critical tem-
perature TC is in the 100 nK to few μK regime.

Interacting Bosons

Alkali vapors are not exactly ideal gases but they are weakly interacting dilute gases.
Dilute means that the gas parameter is much smaller than unity na3 � 1, where a is
the s-wave scattering length describing the interactions among the atoms as contact
interactions at low temperatures. The ideals gas formalism remains approximately
valid, but the interparticle interaction causes a modification of the single particle
eigenenergies. The condensate emerges in the lowest collective, mean field state. The
theoretical description of weakly interacting dilute Bose gases was introduced 1947
by Bogoliubov. The key idea is to replace the annihilation (and creation) operators â0
for the macroscopically occupied ground state by a complex number â0 → √

n0eiϕ0 .

1 2π� is Planck’s constant and m the atomic mass.
2 The exact value depends on the density of states.
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Starting with the exact Hamiltonian of the system expressed in field operators
�̂ = ∑

i φi âi

Ĥ =
∫

dr�̂†
(

−�∇
2m

+ Vext

)
�̂ + 1

2

∫
drdr′�̂†�̂†′

V (r − r′)�̂�̂ ′ (3.2)

one way to obtain the Gross–Pitaevskii equation is to minimize the grand canonical
potential 	̂ = Ĥ − μN̂ under the Bogoliubov approximation neglecting all states
but the ground state.3 Minimization is done with respect to the condensate wave-

function �0 meaning
∂	[�0,�∗

0 ]
∂�0

∗ = 0 and the Gross–Pitaevskii equation found 1961
independently by Pitaevskii and Gross reads:

i�
∂

∂t
�0(r, t) =

(
−�∇

2m
+ Vext (r, t) + g |�0(r, t)|2

)
�0(r, t) (3.3)

Here g = 4π�2a
m is the coupling constant proportional to the s-wave scattering

length a. Equation (3.3) describes a weakly interaction Bose–Einstein condensate in
the mean field limit. It reveals the ground state of the system �0, but it does not tell
anything about fluctuations of the system.

3.1.2 A Bosonic Josephson Junction with Ultracold Atoms

Some Aspects of Josephson Junctions in Ultracold Gases and in Solid
State Systems

A Bose–Einstein condensate in an external double-well potential models a Josephson
junction in solid state systems [22]. However one big difference is that the trapped
ultracold gas is a closed system meaning the wavefunction vanishes for large dis-
tances or equivalently the number of Bosons in the system is fixed. For a solid state
junction the system is coupled to the environment by current carrying wires result-
ing in a non-fixed number of cooper pairs in the system. Due to these differences
the experimental observables to characterize the state of the system differ. In solid
state systems transport properties like the current through the junction or the voltage
across it can be measured, however there is no direct way to “look at” the spatial
probability distribution of the cooper pairs. In the case of ultracold gases however
the distribution of atoms, their number and the relative phase between the two wells
can be directly measured.

Josephson Junctions for Ultracold Bosons—Experimental setup

An accurate description of our Bose–Einstein condensation apparatus can be found
in former Ph.D. thesis from our group [23–25] such that only the experimental
parts essential for the experiments presented in this thesis are discussed here. A red

3 φi is the normalized i th eigenfunction of the single particle Hamiltonian, V (r − r′) is the
interatomic interaction potential, later approximated as a contact interaction V (r − r′) ∝ δ(r − r′).
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(a) (b)

Fig. 3.1 Trap geometry of the double-well potential. a illustrates the most important trap parameters
which are the well distance d = 5.7 μm, the barrier height V0 and the longitudinal trap frequency
of the dipole trap ωz . b The chemical potential μ and the barrier height V0 define the wavefunction
overlap 〈�l |�r 〉 between the left and the right mode. The overlap defines the Josephson coupling
E J between the modes which can be controlled by the barrier height V0

detuned optical dipole trap [26] with a wavelength of 1,064 nm is used to generate
the external trapping potentials for the Bose–Einstein condensate of 87 Rubidium
atoms in the F = 2, m F = 2 hyperfine state [27]. Harmonic approximation of the
trapping potential around the potential minimum reveals the trap frequencies ωi of
the bare dipole trap. The transversal frequencies in our tightly focussed single beam
trap4 are ωx = ωy = 2π · 425 Hz and the longitudinal frequency is ωz = 2π · 20
Hz. A second orthogonal trapping beam can be used additionally to increase the
longitudinal trapping frequency continuously up to ωz = 2π · 70 Hz while the
two transversal frequencies remain almost unchanged. An one dimensional optical
lattice—generated using a laser with a wavelength of 843 nm—superimposed in
longitudinal direction allows for splitting of the trap into two or more wells depending
on the longitudinal confinement ωz . The periodicity of the optical lattice is set to
d = 5.7 μm by choosing an angle of 8.5◦ between the two lattice beams. The height
of the potential barrier V0 ∝ Ilatt between the wells can be accurately controlled
by adjusting the intensity Ilatt of the optical lattice beams.5 Further technical details
of the lattice setup and its calibration can be found in reference [23]. Figure 3.1a
schematically shows the double-well trap geometry and in Fig. 3.10 later in this
thesis the laser beam configuration can be found.

The Josephson Hamiltonian

The quantum state of a Josephson junction is governed by two competing processes.
Overlap of the wavefunctions in the barrier region (Fig. 3.1b) results in a tunnel
contact with a Josephson energy E J and therefore in a finite probability for the
atoms (or cooper pairs in solid state junctions) to cross the barrier. In the bosonic
Josephson junction realized in our lab this Josephson energy is easily adjustable
throughout the experiments since the wavefunction overlap depends on the height

4 The beam waist is 5.1 μm.
5 The barrier height is tunable between V0 = 2π · 250 Hz and V0 = 2π · 3,000 Hz.
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of the barrier V0. On the other hand there is a finite effective interaction energy
EC between the bosons which is in the solid state case governed by the junction
capacitance and in the atomic case it is given by the elastic interactions between the
atoms in the individual wells. The Josephson Hamiltonian

H = 1

2
EC n2 − E J cos(ϕ) (3.4)

describes this situation with occupation number difference n and relative phase ϕ

between the two wavefunctions.6

From here on we focus on an atomic Josephson contact, where the two wave-
functions are the mean field orbitals in the left �l = √

nl(r)eiϕl and the right
�r = √

nr (r)eiϕr well of the double-well potential with occupation number differ-
ence n = (nl −nr )/2 and relative phase ϕ = ϕl −ϕr .

7 The localized wavefunctions
can be expressed as a linear combination of the lowest energy symmetric �S and
antisymmetric �A solution of the Gross–Pitaevskii equation (3.3):

�l,r = 1√
2
(�S ± �A) (3.5)

Charging Energy EC and Josephson Energy EJ

For a fixed total number of atoms N = nl + nr the energies EC and E J define the
properties of the system. The Charging energy EC is given by the derivative of the
chemical potential with respect to the atom number [28]

EC = ∂μ

∂nl
= ∂μ

∂nr
(3.6)

which holds for approximately equal population of the two modes. It is often nec-
essary to estimate the order of magnitude of EC which, as a rule of thumb, is μ/N .

The Josephson energy E J can be calculated using two different approaches. In the
regime where the barrier height V0 between the two wells is greater than the chem-
ical potential μ, E J is given by the energy difference between the symmetric and
antisymmetric mean field orbitals E J ∝ μA −μS [29, 30]. This is very intuitive due
to the similarity to a standard two-level atom coupled to an electromagnetic radiation
field, where the splitting of the dressed states is the Rabi coupling between the two
levels [31]. But one has to be careful with this analogy since interactions alter the
properties of the Josephson junction (see Sect. 3.1.3).

The second approach to calculate E J is valid in a larger range of parameters
especially for V0 � μ. In reference [28] an analogy of the bosonic Josephson junction
to a capacitor in classical electrodynamics is drawn. The fictitious dielectric in the

6 A dependence of E J (n) from the occupation number difference is omitted here, i.e. we assume
n � N . This term is included in the discussion presented in Sect. 3.1.3.
7 nl,r (r) is the atomic density of the left (right) mode and nl,r = ∫ 0,∞

−∞,0 drnl,r (r) the mode
occupation number.
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capacitor is nonuniform and its distribution is given by atomic density n(r). Based
on this analogy E J = �2

m C is calculated from the capacitance of this capacitor C
which is bounded from below and above

∫
dxdy∫ zr

zl
dzn(x, y, z)−1

≤ C ≤
[∫ zr

zl

dz∫
dxdyn(x, y, z)

]−1

(3.7)

where the two double-well potential minima are located at zl and zr .

Numerical Calculation of EC and EJ

Both parameters EC and E J can be calculated from the mean field wavefunction
obtained from the Gross–Pitaevskii equation (3.3). In our group a numerical code
exists to solve the equation in three dimensions by a split step Fourier transform
algorithm [25].

In Fig. 3.2 the two approaches to calculate the Josephson energy E J are compared.
In a harmonic trap the fastest possible tunneling time is bounded by the inverse trap
frequency ω−1

z since the trap frequency sets the minimal time for the atoms to move
from one side of the trap to the other. Figure 3.2b shows that the “capacitor” method
to calculate E J gives correct results in the regime V0 < μ since the tunnel frequency
ωpl approaches the trap frequency ωz in the limit of vanishing barrier height (see
Sect. 3.2.1 for the definition of ωpl ).

Figure 3.3 shows EC and E J calculated for different barrier heights V0 separating
the two wells. The calculation is done for the dipole trap parameters valid for our
double-well experiments and 1,600 atoms in total. With increasing barrier height,
E J drops a few orders of magnitude while EC stays constant within a factor of two.
This identifies E J as the main control parameter for our system.

3.1.3 Rabi, Josephson and Fock: Different Regimes
of a Josephson Junction

The Josephson Junction in Two-Mode Approximation

The mean field treatment of the Josephson junction discussed above is not sufficient
to explain fluctuations in the occupation number difference n and the relative phase
ϕ. We employ a two-mode description with constant parameters obtained from the
mean field model to describe these fluctuations.

Within the two-mode approximation �̂ = φl âl +φr âr the Josephson Hamiltonian
(3.4) can be derived from the general Hamiltonian (3.2). As a first result the two site
Bose-Hubbard Hamiltonian is obtained [32]

HB H ≈ K

8
(â†

l âl − â†
r âr )

2 − 
E

2
(â†

l âl − â†
r âr ) − J

2
(â†

l âr + â†
r âl) (3.8)

where the large occupation number per site leads to renormalized (compared to single
particle parameters) onsite interactions K = EC and hopping J = 2E J /N [33].
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Fig. 3.2 Two methods to calculate the Josephson energy. a The Josephson energy E J , calculated
using the two methods detailed in the main text is plotted versus the height of the potential barrier.
The two bounds for the capacitance are not distinguishable on this scale, while for V0 < μ the
deduced Josephson energy differs significantly from the value obtained with the “
μ” method.
The gray shaded area gives the range of the chemical potential μ which increases with increasing
barrier since the number of atoms N = 2,000 is chosen constant while the onsite confinement rises.
The calculations were done for a double-well trap with underlying frequencies of the dipole trap of
ωx = ωy = 2π · 420 Hz and ωz = 2π · 65 Hz. b shows the resulting plasma frequency ωpl —the
tunneling rate (see Sect. 3.2.1 for more details) between the two wells. The dashed line indicates
the longitudinal dipole trap frequency, the maximum possible tunnel frequency in our setup. It is
obvious that the “
μ” method violates this bound identifying the capacitor method as the correct
way to calculate E J for low potential barriers

These parameters are calculated from the mean field wavefunctions as described in
the previous section. The term proportional to 
E describes a possible differential
energy shift between the two modes. In Eq. (3.8) higher order terms like pair tunneling
are neglected [30, 34].

The Bose-Hubbard Hamiltonian can be expressed in phase ϕ̂ and number differ-
ence n̂ operators which reveals the Josephson Hamiltonian. Definition of the phase
operator is not straightforward, however it can be done in the limit of large atom
number N [32]. Phase and number operator fulfill the canonical commutation rela-
tion

[
ϕ̂, n̂

] = i. The Josephson Hamiltonian is then given by:

ĤJ = −
En̂ + EC

2
n̂2 − E J

√

1 − 4n̂2

N 2 cos ϕ̂ (3.9)

Another way describing beyond mean field effects which provides an intuitive picture
in many cases is to rewrite the two-mode Bose-Hubbard Hamiltonian using the
Schwinger spin representation introduced in Sect. 2.1 [32]:

H = −
E Ĵz + EC

2
Ĵ 2

z − 2E J

N
Ĵx (3.10)

http://dx.doi.org/10.1007/978-3-642-25637-0_2
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Fig. 3.3 Charging and Josephson energy for our double-well parameters. The figure shows the
dependence of the Charging energy EC and the Josephson energy E J from the barrier height
V0. On the left logarithmic plotting was chosen which reveals an exponential change in E J for
V0 > μ. The linear double axis plot on the right hand side is more useful to highlight the range
400Hz � V0 � 1, 700Hz where our experiments are carried out

Connected to this spin model the parameters χ = EC/2 accounting for the nonlin-
earity and the Rabi frequency 	 = 2E J /N describing the coupling of the two modes
on the single particle level are commonly found in the literature.

In the limit where Eq. (3.9) is valid it is equivalent to Eq. (3.10) meaning there is
a connection between the spin components on one side and the occupation number
difference n̂ and the relative phase ϕ̂ on the other side [32]. For n � N the translation
between these variables is

Ĵx ≈ N cos(ϕ̂)/2

Ĵy ≈ N sin(ϕ̂)/2

Ĵz = (n̂l − n̂r )/2 = n̂

(3.11)

These equations connect the mean spin length 〈 Ĵx 〉 (assuming the spin polarization
to point in Jx direction) with the coherence 〈cos(ϕ̂)〉:

〈 Ĵx 〉 = N

2
〈cos(ϕ̂)〉 (3.12)

The symmetric two-mode model can be easily solved numerically by exact diag-
onalization up to occupation numbers N = O(103). The theoretical predictions
throughout this thesis are obtained using this numerical method.

Quantum Fluctuations in Rabi, Josephson and Fock Regime

The operators Ĵi belong to a J = N/2 spin algebra. Normalizing the spin length
to j = 1/2 in order to compare interaction and tunneling on the single particle
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level the Hamiltonian is Hnorm = N 2 EC j2
z /2 − 2E J jx and the essential parameter

identifying the different regimes of the Josephson junction becomes obvious [35]:

� = N 2 EC

4E J
= Nχ

	
(3.13)

Three regimes are identified [32], the

• Rabi regime with � � 1
• Josephson regime with 1 � � � N 2

• Fock regime with � � N 2

Here we focus on the quantum fluctuations of the ground state of the Josephson
Hamiltonian in the different regimes assuming no bias 
E and we use the spin
language to describe the fluctuations.

Deep in the Rabi regime the ground state of Eq. (3.10) is a coherent spin state on
the equator of the Bloch sphere |θ = π/2, ϕ = 0〉 featuring equal fluctuations in the
two orthogonal spin directions 
 Ĵ 2

z = 
 Ĵ 2
y = N/4.

With decreasing Josephson energy E J the system enters the Josephson regime
and quantum fluctuations 
 Ĵ 2

z decrease at the cost of fluctuations in 
 Ĵ 2
y , however

the mean spin length 〈 Ĵx 〉 is still close to N/2. In the Rabi and Josephson regime
the Josephson Hamiltonian (3.9) can be used to calculate the variances in the two
spin directions by means of a simple analogy: The ground state features rather small
fluctuations in n andϕ, such that Eq. (3.9) can be expanded and one obtains a harmonic
oscillator type Hamiltonian:

Ĥ = E J
ϕ̂2

2
+

(
EC + 4E J

N 2

)
n̂2

2
(3.14)

By direct comparison to the well known harmonic oscillator result [36], the fluc-
tuations in Ĵz = n̂ and Ĵy ≈ N ϕ̂/2 are found to


 Ĵ 2
z = 1

2

√
E J

EC + 4E J /N 2
(3.15)


 Ĵ 2
y = N 2

4

1

2

√
EC + 4E J /N 2

E J

(3.16)

In the Fock regime the harmonic approximation breaks down since the quantum state
spreads around the full Bloch sphere, resulting in vanishing coherence 〈cos(ϕ)〉 ≈ 0
and mean spin length. Spin fluctuations in Jz direction (number fluctuations) are
highly suppressed in the Fock regime and the remaining fluctuations correspond to
less than one atom 
 Ĵ 2

z � 1 (see Fig. 3.4).

Coherent Spin Squeezing and the Josephson Ground State

In the Rabi regime (EC = 0) the ground state—a coherent spin state—is a minimum
uncertainty state. Up to a small correction this remains valid over the whole range
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Fig. 3.4 Spin fluctuations in different regimes of the Josephson junction. a shows the representation
of the ground state of the Josephson junction on the Bloch sphere in the three different regimes.
The histograms represent the probability distribution of the quantum state over the Jz and Jy Dicke
eigenbasis respectively. The distribution in Jz narrows while the variance in Jy increases. Note that
the distribution of Jy in the Fock regime shows fringes with a period of 1/N which in principle can
be used for increased sensitivity in interferometry [19, 37]. b shows the normalized fluctuations
in Jz , the coherence 〈cos(ϕ)〉 which is connected to the spread around the Bloch sphere and the
coherent spin squeezing parameter ξ2

S as a function of �. The calculation was done for 100 atoms

of � [38]. The ground state shows almost minimal allowed fluctuations in 
 Ĵ 2
z for

a given coherence 〈 Ĵx 〉 and coherent spin squeezing close to the Heisenberg limit
is possible.8 The best spin squeezing in the different regimes characterized by � is
shown in Fig. 3.4b [39].

8 The authors of reference [39] show that the Heisenberg limit can be reached within a factor of
two.
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3.2 Ultracold is Not Enough: Finite Temperature Effects

Temperature in Comparison to Other Relevant Energy Scales

For a dilute Bose gas confined in a three dimensional harmonic trap with mean
trapping frequency ωT = (ωxωyωz)

1/3 the critical temperature is TC ≈
0.94 �ωT N 1/3 [9]. The chemical potential in Thomas-Fermi approximation is μ =
�ωT (15Na/aho)

2/5/2 where aho = √
�/mωT is the mean harmonic oscillator

length. For our experimental parameters these two numbers are TC ≈ 150 nK
and μ ≈ 50 nK.

It is hard to achieve temperatures much below the chemical potential μ by standard
evaporative cooling schemes, since evaporation below μ means to “cut into the
condensate”. In our setup we measured temperatures down to 10 nK, a fifth of the
chemical potential [40]. The fraction of non-condensed atoms can be estimated from
Eq. (3.1) and is in the order of 10−3 meaning less than ten atoms are not in the
condensate. Effects due to these few thermal atoms are negligible for our level of
experimental precision. The lowest energy of transversal excitation is set by the trap
frequencies (ωx = ωy = 2π · 425 Hz) and it is approximately twice as large as
the temperature. Exclusively the lowest many-body modes of the Josephson junction
have energies much below T as discussed in the following section.

3.2.1 Collective Mode Spectrum of the Josephson Hamiltonian

The energy spectrum of the Josephson Hamiltonian for different regime parameters �

is shown in Fig. 3.5. Our experiments are done in the Josephson regime (see Fig. 3.6b
for the accessible range of � depending on the barrier height V0) where for small
eigenenergies (Ek � 2E J ) the many-body mode spectrum is a linear Harmonic
oscillator spectrum. For these states phase and number fluctuations are rather small.
The oscillator’s angular frequency ωpl , called plasma frequency, can be easily found
by a taylor expansion up to second order of Eq. (3.9) and a comparison to a standard
harmonic oscillator:

ωpl =
√

E J

(
EC + 4E J

N 2

)
(3.17)

The equation can be reformulated as ωpl = √
EC E J (1 + �−1) = 	

√
1 + �.

In the first form one recognizes the limit in the Josephson regime ωpl = √
EC E J

where � � 1, while the latter shows, that the Plasma frequency approaches the
Rabi frequency in the Rabi regime where � � 1.

The high lying eigenstates (Ek � 2E J ) are grouped in degenerate pairs and their
spacing grows quadratically with the eigenstate label Ek+2 − Ek = k2 EC/8, since
the energy is governed by the quadratic part of the Hamiltonian [25].
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Fig. 3.5 Many-body mode spectrum of the Josephson Hamiltonian. The figure shows the energy
spectrum of the many-body modes in the Rabi (a), Josephson (b) and in the Fock regime (c). In
the Rabi regime the spectrum is completely harmonic in contrast to the Fock regime, where the
eigenstates are grouped in degenerate pairs and the energy splitting between two distinct pairs
grows quadratically. In the Josephson regime both features are contained in the spectrum. The
lowest modes show a linear behaviour, while the high lying modes are pairwise degenerate and the
spectrum is quadratic

Thermal population of the collective modes

For low but finite temperatures9 T � 2E J in thermal equilibrium only the linear
part of the spectrum is thermally populated and the diagonal elements of the density
matrix ρ expressed in the eigenbasis of the Josephson Hamiltonian are given by

ρkk = Ce−T/k·ωpl (3.18)

where C normalizes the density matrix. As mentioned in Sect. 3.1.2 the largest pos-
sible plasma frequency for a double-well trap realized by splitting a harmonic trap
in z-direction is the longitudinal trap frequency ωz . The ratio of temperature and
longitudinal trap frequency is T/ωz ≈ 3 for our parameters meaning at least the
three lowest many-body states are populated at the e−1 level. Figure 3.6a shows the
plasma frequency of our experimentally realized double-well trap with 1,600 atoms
in total.

The ground state of the Josephson junction is close to a minimal uncertainty state,
but finite entropy in the system, i.e. more than one populated many-body mode,
causes increased fluctuations in the atom number difference n and the relative phase
ϕ, or in other words the variances 
 Ĵ 2

z and 
 Ĵ 2
y in the spin directions orthogonal

to the mean spin increase [40, 41]. Figure 3.7a shows the dependence of number
squeezing, coherence and coherent spin squeezing ξ2

s as a function of temperature
in the Josephson regime for ωpl = 2π · 60 Hz (and � = 150), the largest (smallest)
value reachable for our parameters. Figure 3.7b and c show these quantities for a fixed
temperature and for fixed entropy (three thermally populated many-body modes)

9 In the experiment we typically have T/2E J , max ≈ 10−2.
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Fig. 3.6 Accessible range of plasma frequency and regime parameter. We control the Josephson
junction by changing the barrier height V0. This figure shows the range in which the plasma fre-
quency ωpl (a) and the regime parameter � (b) can be tuned for our double-well experiment loaded
with 1,600 atoms

but different values of �. In the isothermal case calculated for T = 20 nK no
spin squeezing develops—the number fluctuations are constant while the coherence
vanishes with rising �. This is a big difference to the adiabatic case where the
coherence also drops to zero but before number squeezing develops such that the
coherent spin squeezed regime ξ2

s < 0 dB can be reached.

3.2.2 Strategies for Optimum Coherent Spin Squeezing

In our experiment the Bose–Einstein condensate is in a thermal equilibrium state
with T ≈ 10–20 nK right after evaporative cooling. The challenge is to achieve
the best possible coherent spin squeezing given these temperature constraints.
The control parameter available is the barrier height V0 that can be dynamically
changed within each experimental realization.

As discussed above an isothermal approach—condensation in a trap with fixed
barrier height V0—would not produce coherent spin squeezing since the plasma fre-
quency ωpl decreases with increasing barrier height V0 leading to a larger number
of thermally occupied many-body states. The quantum state follows the isothermal
lines shown in Fig. 3.8. A better approach is to follow the adiabatic lines in Fig. 3.8.
Experimentally this can be done by condensation in a small barrier height situa-
tion and subsequent adiabatic ramp up of the optical lattice V0. In this case only a
small number of many-body modes is populated initially. Since the entropy in the
system stays constant, but the energy of all many-body states decreases with rising
�, number squeezing and coherent spin squeezing develops as a result of adiabatic
cooling.

Adiabatic Cooling and its Limits

Ramp up of the potential barrier V0 results in a changing energy spectrum of the
system. Starting in the Josephson regime with rather low � and high Josephson
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Fig. 3.7 Spin squeezing at finite temperature. From top to bottom the evolution of number squeez-
ing, coherence and coherent spin squeezing are shown. In a these observables are given versus
temperature for � = 150 and ωpl ≈ 60 Hz. Only for temperatures below approximately 15 nK
number squeezing and coherent spin squeezing ξ2

S < 0 dB are present. b The isothermal evolution
of the quantum state for T = 20 nK is shown versus regime parameter �. Almost constant number
fluctuations and degrading coherence prevent coherent spin squeezing to develop. Part c shows the
results of an adiabatic calculation assuming initially three thermally populated many-body modes.
For intermediate values of � coherent spin squeezing can be reached. The calculations were done
for values close to our experimental parameters, especially EC = 2π · 1 Hz and N = 1, 600. E J
was controlled by changing �. For the connection between �, the plasma frequency ωpl and the
barrier height V0 in our experiment see Fig. 3.6

energy E J , the Josephson energy decreases which has two major implications:
The plasma frequency decreases leading to adiabatic cooling, but the boundary region
between the linear and quadratic part of the spectrum also moves towards the lower
eigenstates. Up to intermediate barrier heights V0 where only a negligible fraction of
the occupied states lie in non-harmonic part of the spectrum the quantum state of the
system can be described by the harmonic oscillator Hamiltonian given in Eq. (3.14).
For a given thermal density matrix ρ the fluctuations in the atom number difference
n̂ are given by

〈n̂2〉 = Tr(ρn̂2) =
∑

k e−Ek/T 〈k|n̂2|k〉∑
k e−Ek/T

(3.19)

where the eigenenergies are Ek = k · ωpl and the matrix element for harmonic
oscillator eigenfunctions |k〉 is 〈k|n̂2|k〉 = (k + 1/2)

√
E J /EC . It follows that
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Fig. 3.8 Phase diagram at finite temperature. The phase diagram—number squeezing versus
coherence—is shown for the same parameters that have been used in Fig.3.7. The dotted black
lines illustrate the limits for number squeezing and coherent spin squeezing. The dashed line cor-
responds to the ground state of the Josephson junction. Gray solid lines are isothermals at different
temperatures indicated on the left. The black lines correspond to an adiabatic evolution of the system
where the number of initially thermal populated many-body modes is given in brackets. The regime
parameter �—or experimentally the barrier height V0—increases for each line from the right to
the left

〈n̂2〉 =
√

E J

EC

(
3

2
+ 1

eωpl/T − 1

)
≈ T

EC
(3.20)

where ωpl/T � 1 for the last approximation.10

Assuming adiabatic evolution, the initial ratio of ωpl,i/T stays constant, but the
matrix element is evaluated at the final value of the Josephson energy E J, f .

11 This
results in decreased number fluctuations as compared to the initial state:

〈n̂2〉( f ) ≈ T

EC

√
E J, f

E J,i
= Teff

EC
(3.21)

The argumentation holds as long as the distribution stays thermal, i.e. only the linear
part of the spectrum is populated. An effective temperature Teff = T

√
E J, f /E J,i

10 n̂ and ϕ̂ are symmetric variables in Eq. (3.14). The fluctuations in the relative phase 
ϕ̂2 ≈
T/E J are obtained in the same way as described for 
n̂2 = 〈n̂2〉, but replacing the matrix element
by 〈k|ϕ̂2|k〉 = (k + 1/2)

√
EC/E J .

11 For our parameters EC, f ≈ EC,i = EC holds.
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Fig. 3.9 Position noise translates to atomic noise. The schematic illustrates the connection of num-
ber difference fluctuations and relative position fluctuations between optical dipole trap and optical
lattice 
z. The chemical potential μ is the same in both wells which results in an occupation num-
ber difference between the left and right mode dependent on the differential energy shift 
Vharm
between them

can be assigned to the system in the final state which is lower than the initial tempera-
ture T. This adiabatic cooling mechanism can be understood in a very intuitive way:
The energy in the system is given by the temperature E = 〈k〉ωpl = T . Adiabaticity
means the mean occupation number 〈k〉 does not change during the evolution and
therefore T f /Ti = ωpl, f /ωpl,i = √

E J, f /E J,i , and one recovers the same result as
above for T = Ti and Teff = T f .

Adiabatic cooling reaches its limit in the Fock regime, when all states are double
degenerate and the energy splitting between the pairs increases quadratically. The
matrix element 〈k|n̂2|k〉 = k2 has to be calculated for |k〉 being eigenstates of
the number difference operator and the degeneracy has to be taken into account.
The cooling limit follows from

〈n2〉 = 2
∑

k k2e−2kωpl/T
∑

k e−Ek/T
≈ 1

2

(
Ti

ωpl,i

)2

(3.22)

and it is determined by the initial entropy which is measured by Ti/ωpl,i .

3.3 Quantum Fluctuations in Few-Well Potentials:
Experimental Challenges

3.3.1 Position Stability of the External Trapping Potentials

As discussed above finite temperature limits the minimum achievable fluctuations

 Ĵ 2

z and 
 Ĵ 2
y and therefore the coherence 〈cos(ϕ)〉. Beside cooling to ultra low tem-

peratures the second technical challenge is the position stability of the different opti-
cal dipole traps [27]. Relative movement of the dipole trap with respect to the position
of the potential barrier causes fluctuations of the atom number difference n between
the left and the right well. Figure 3.9 illustrates this situation. The optical dipole trap
generates harmonic confinement in longitudinal direction Vharm = mω2

z z2/2, where
m is the atomic mass. Fluctuations of the energy difference 
Vharm between the two
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potential minima separated by d due to fluctuations of the barrier position 
z is given
by:


Vharm = ∂Vharm

∂z

z = mω2

z d
z (3.23)

In the local density approximation [10] the overall chemical potential is
μ= Vharm(z) + μat (z) and in equilibrium it is the same for the two wells. The
contribution due to interatomic interactions μat (z) balances the change in Vharm(z):

Vharm = 
μat


μat = ∂μat

∂nl

nl = EC
n (3.24)

With the experimental parameters for the double-well potential EC ≈ 2π · 1 Hz and
ωz ≈ 2π · 60 Hz we obtain


z = EC

mω2
z d


n � 125 nm (3.25)

as the position fluctuation leading to an extra noise of the same order as the shot noise
limit ξ2

N = 0 dB for 2,000 atoms. Since these technical induced fluctuations add to the
variance caused by the atomic quantum state, their magnitude has to be much smaller
than the shot noise level in order to measure a reasonable amount of number squeez-
ing. As a figure of merit, position fluctuations of 60 nm between different experi-
mental realizations limit the best observable number squeezing to ξ2

N ≈ −6 dB.

Ultra Stable Optical Traps

Figure 3.10a shows schematically the setup of the laser beams necessary to gen-
erate the double-well potential. As as described in Sect. 3.1.2 and in Ref. [23] the
setup consists of four laser beams of which one generates the main dipole trap, an
additional dipole trap beam increases the longitudinal confinement12 and two beams
interfere to generate the one dimensional lattice with lattice spacing d = 5.7 μm.
The dipole trap potential minimum is positioned such that it coincides with a node of
the red detuned optical lattice, thus making up the double-well potential. The posi-
tion of the interference pattern is actively stabilized at a reference position which is
chosen as close as possible to the atomic cloud, but outside the vacuum chamber.
Position feedback is implemented by control over the relative phase between the two
lattice beams [27]. However the positions where the interference pattern is inter-
ferometrically stabilized and where the optical trapping beams for the dipole traps
are launched are macroscopically spaced by approximately 20 cm. Relative position
stability in the order of a few tens of nanometers is therefore a technical challenge.
We mount all optical beams—avoiding mechanical stress as good as possible—on a

12 The frequency of this beam differs from the frequency of the main dipole beam by 30 MHz to
average their interference pattern.
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Fig. 3.10 Laser beam configuration for the optical potential. a illustrates the beam setup required to
generate a double-well trap at the crossing point of the four laser beams. In part b one of the dipole
trap beams is omitted which results in a smaller longitudinal trapping frequency and decreased sen-
sitivity of the atomic fluctuations to position fluctuations. Smaller longitudinal confinement results
in more than two populated lattice sites. For the chosen total atom number of 5,300 atoms in this
trap typically six to seven wells are populated. The important distances between the main elements
are indicated and the interferometric position stabilization of the optical lattice is schematically
shown

massive casted block of AlMg4,5Mn aluminum alloy for optimal passive stability.
This block is hold to the optical table by its own weight and it is carried by three steel
balls similar to a standard mirror mount design. The required stability of ca. 60 nm
is still hard to achieve day to day13 but the experimental results presented below
suggest that we are close to this level of stability.

3.3.2 From Two to Few: The Six-Well Trap

Quantitative measurements of number and phase fluctuations require long measure-
ment time since the repetition rate of our experiment is one minute and we need
approximately 100 experimental repetitions per parameter set to have reasonable
statistics. Fulfilling the double-well stability requirements on a timescale of a few
hours is experimentally hard to achieve.

In order to decrease the sensitivity to position fluctuations we omit the trapping
beam that provides extra longitudinal confinement (Fig. 3.10b). The longitudinal
frequency of the trapping potential is in this case ωz = 2π · 20 Hz for ωx = ωy =
2π ·425 Hz. The spatial stability requirement given in Eq. (3.25) is proportional to the
inverse quadratic trap frequency ω−2

z . A reduction of ωz by a factor of three from the
double- to the few-well geometry relaxes the required position stability to 
z ≈ 350
nm for ξ2

N ≈ −10 dB maximum number squeezing. Loading a 87 Rubidium Bose–
Einstein condensate of approximately 5,300 atoms into this trap results in a chemical

13 The thermal expansion coefficient of alluminium is ca. 23 × 10−6 /K at room temperature,
leading to a temperature stability requirement of 10 mK over a few hours, the typical duration of
the experiment.
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Fig. 3.11 Local parameters of the Josephson junction array. The local Charging and Josephson
energy for each Josephson junction in the few-well trap is calculated following the recipes given
in Sect. 3.2.1. We choose a geometry with two equally populated wells in the center as shown in
the insets and the calculation was done for 5,300 atoms with the trapping parameters as given in
the main text. The line style distinguishes the different well pairs. In a the Charging and Josephson
energy is plotted, while b shows the resulting local plasma frequency. Interestingly the maximum
local plasma frequency is much larger than the longitudinal trap frequency ωz

potential of μ ≈ 1 kHz and the condensate has a longitudinal extension of ca. 40μ m.
Six to seven lattice sites are populated after superposing the one dimensional optical
lattice where the actual number of sites depends on the relative position of lattice and
dipole trap potential minimum. Our detection system allows for the measurement of
the atom number in each of the wells and for the measurement of the relative phase
between two next neighbors (see Sect. 3.4). This provides access to the local spin
variables of two neighboring wells and we approximate each well pair as a single
Josephson junction. Figure 3.13a, b shows absorption pictures taken in the double-
and few-well trap situation respectively.

Temperature in the Few-Well Case

The few-well configuration can be described as an array of non-identical Josephson
junctions. The mean field Gross–Pitaevskii wavefunction is used to calculate the
Charging energy E (m)

C and Josephson energy E J
(m) for each junction m as given

in Eq. (3.6) and (3.7). In Fig. 3.11 the results for our experimental parameters are
plotted versus barrier height V0.

In order to estimate the effect of finite temperature in the double-well case the
argument ωpl → ωz for vanishing barrier height V0 → 0 was used in Sect. 3.2.
Figure 3.11b shows that this argument does not hold any more in the few-well case.
The extension of one local Josephson junction is much smaller than the extension
of the condensate in longitudinal direction. Therefore the local plasma mode corre-
sponds to a rather short wavelength—high energy—excitation as compared to the
trap dipole mode. This argumentation is a simplification since the energy spectrum in
the few-well situation shows a band structure with M−1 modes per band for M wells.
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Fig. 3.12 Phonon spectrum of the Josephson junction array. The figure shows the energy of the
eigenmodes in the lowest band of the few-well trap versus barrier height V0. For low barrier heights
V0 the frequency of the lowest mode matches approximately the longitudinal trap frequency ωz
while the local plasma frequency of the central well pair compares to the energy of the high lying
modes. The calculation was done in harmonic approximation which is expected to hold for barriers
up to V0 ≈ 1.5 kHz (illustrated by the shading). For greater barriers the local Josephson energies
are comparable to the Charging energies and the system is close to the Fock regime (see Fig. 3.11)

Figure 3.12 shows the eigenmodes in the lowest band of our few-well trap
for 5,300 atoms. The calculation was done in harmonic—phonon—approximation
treating the system as coupled oscillators with different masses (E (m)

C ) and spring
constants (E J

(m)). Exact numerical diagonalization following reference [42] reveals
the eigenmodes. The harmonic approximation does certainly not hold any more in
the high lattice case where each Josephson junction enters the Fock regime. However
for the qualitative arguments presented here only the low lattice regime is important.

The local plasma mode is not an eigenmode of the problem, but its energy is in
the upper part of the first band. We expect that a few of the eigenmodes overlap with
the local plasma modes but as argued above the short wavelength modes should con-
tribute most. The discussion here shows that the local treatment is an approximation
neglecting the long wavelength excitations in the system.

Comparing the frequency of the plasma excitation of the central well pair with
the typical temperature, we obtain T/ωpl ≈ 3, approximately the same number that
was found in the double-well situation. Our experiments in the double- and few-well
situation are effectively in a similar entropy regime. A more sophisticated theoretical
treatment of our few-well system can be found in [43].

3.4 Spin Squeezing Across a Josephson Junction: Experiments

3.4.1 Detection of Number Difference and Relative Phase

In order to measure coherent spin squeezing ξ2
s = N
 Ĵ 2

z /〈 Ĵx 〉2 fluctuations in one
spin direction 
 Ĵ 2

z , the mean spin length 〈 Ĵx 〉 and the total number of atoms N have to
be detected. Measurement of the atom number difference n = Jz , its fluctuations, and
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Fig. 3.13 Typical single shot pictures showing number and phase detection. The left column of
the figure shows number (a) and phase (c) detection for the double-well case. Both variables can
also be locally measured in the few-well situation. Number detection (b) is straightforward while
for the phase measurement (d) the correct expansion time has to be chosen in order to allow only
condensates from neighboring lattice sites to interfere (see also Fig. 3.15)

the total atom number N is straight forward and the only requirement is an accurately
calibrated, linear imaging system with single lattice site resolution. Measurement
of the mean spin length 〈 Ĵx 〉 = N 〈cos(ϕ)〉/2 is possible via the measurement of
the relative phase ϕ which is revealed from an interference pattern between the
wavefunctions from two neighboring wells. A detailed discussion of the statistical
analysis to calculate atom number fluctuations and the coherence follows later in
this section, but in the next paragraph we discuss the requirements on the detection
system to measure n and ϕ in a single realization of the experiment.

We installed an absorption imaging system with single lattice site resolution that
was developed in our group. Details on the setup, its calibration and on the imaging
sequence can be found in appendix A. Figure 3.13a, b shows images of the condensate
in the double-well and few-well trap where the imaging parameters were adjusted
for on site atom number detection. The images in Fig. 3.13c, d correspond to relative
phase measurements and show single shot interference patterns for the two and
few-well case. In the few-well situation the relative phase between two neighboring
wells is deduced from local interference patterns. Therefore the detection requires the
correct expansion time of the condensates such that only the wavefunctions from two
next neighboring lattice sites overlap. Fringes are observed after a short expansion
in the harmonic trap in absence of the lattice potential (2 ms) followed by a free
expansion (400–900 μs). In order to choose the proper timing, we image the cloud
after different free expansion times and observe the formation of the interference
pattern. For too short expansion times, clouds released from neighboring wells do
not overlap which is easily seen in the images. In the case of a low lattice depth, all
wells are in phase leading to a maximum of the interference pattern at the middle
positions between the wells. We choose the timing such that this central maximum
is clearly visible.

Number squeezing and coherence measurements require to measure the statistical
quantities 
n2 and 〈cos(ϕ)〉. However the detection process of the Bose–Einstein
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condensate is destructive such that the experiment has to be repeated with the same
parameters in order to measure distributions of n and ϕ. Typically one dataset consists
of 25–40 experimental “shots” and in order to reduce statistical uncertainties we aver-
age three to four of these datasets such that approximately 100 single experimental
realizations contribute.

Occupation Number Difference and its Fluctuations

The atom number in each well is extracted from an absorption picture where the
signal on each pixel corresponds to the column density of atoms convolved with
the point spread function of the imaging system (σpsf ≈ 700 nm). We choose the
number of atoms in the trap and the expansion time before imaging such that the
detected signal can be unambiguously assigned to individual wells (see Appendix A
for more details). By pixel-wise summation over the area on the picture containing
more than 99% of the atoms per well we obtain the occupation number. We checked
that the detected total atom number and its fluctuations do not depend critically on
the size of the summation area. Given the atom number in each well the calcula-
tion of the atom number difference for each well pair n = (nl − nr )/2 is straight
forward but the deduction of the variance 
n̂2 of the quantum state requires some
caution.

A Grubb outlier detection algorithm [44] is used to filter the atom number
difference n for rare outliers caused by technical problems. It detects typically zero
but maximally 1–2 points per dataset (at a 5% significance level). Due to possible
slow drifts of the trapping potentials (on the timescale of one hour) we correct each
dataset by removing a linear slope. Statistical simulations were performed to test this
procedure and biasing was found to be negligible.

For each dataset, we define p = 〈nl/N 〉 the probability for an atom to be found
in the left well where N = nl + nr is the total atom number per wellpair. If p �= 1/2
the atom number difference n depends on the total atom number as n = (p −1/2)N .

Therefore fluctuations in the total atom number between different experimental runs
contribute to the measured variance. We compute


n2
raw = 〈[(nl − nr )/2 − (p − 1/2)N ]2〉 (3.26)

in order to avoid taking these fluctuations into account. Since p is typically close to
1/2 this correction has only a small effect.

Additional noise 
n2
l(r),ps in the atom number nl(r) per well due to photon shot-

noise from the detection process contributes to the variance 
n2
raw. We deduce this

extra noise as the sum over the variance per CCD pixel in the integration area where
the contribution per pixel is inferred from the light intensity on the absorption and
on the reference picture. A measured CCD camera noise calibration curve relates the
mean counts to the variance per pixel and permits to calculate the additional atomic
variances δn2

l(r),psn for each experimental realization (see Appendix A). We subtract
this contribution



3.4 Spin Squeezing Across a Josephson Junction: Experiments 47

−2 0 2
0

50

100

co
un

ts

number fluctuations

Fig. 3.14 Squeezed distribution of the atom number difference. Shown are the detected atom num-
ber difference fluctuations for a number squeezed state where in total approximately 1,000 mea-
surements contribute. The histogram shows the experimental raw data after filtering by the Grubb
outlier test and linear drift removal. The gray curve is the expected distribution for a shot noise
limited quantum state without experimental noise, while the black curve is the inferred distribution
(assuming a gaussian shape) after subtracting known noise from the experimental data


n2
psn = [1/4 + (p − 1/2)2]〈δn2

l,psn + δn2
r,psn〉 (3.27)

and obtain the corrected number fluctuations:


n2 = 
n2
raw − 
n2

psn (3.28)

Number squeezing is detected when the measured fluctuations 
n2 are lower than
expected for a binomial distribution—the shot noise limit.

ξ2
N = 
n2

p(1 − p)〈N 〉 < 1 (3.29)

Figure 3.14 shows the histogram of measured atom number differences where
several datasets were combined resulting in approximately 1,000 total counts. The
two gaussian curves represent the distributions expected for a shot noise limited state
and for the detected number squeezed state where the measured variance is corrected
for total atom number fluctuations and photon shot noise.

Relative Phase and Coherence

We measure the coherence of the quantum state for the same experimental para-
meters as chosen for the corresponding number fluctuation measurement. In order
to deduce the relative phase between two neighboring wells we Fourier transform
the transversally averaged interference pattern and extract the phase ϕ from the
dominant frequency component. In the few-well situation we slice the picture at the
center position of each well and infer the relative phase between two wells based
on these slices (see Fig. 3.15). We calculate the coherence 〈cos(ϕ)〉 by ensemble
averaging cos(ϕ) over each dataset where ϕ is obtained from the single shot inter-
ference patterns. Figure 3.15 shows profiles of exemplary datasets for high and low
coherence in the double- and few-well system. Each pixel row of each picture is a
vertically averaged single shot profile where the depth of gray shading corresponds
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Fig. 3.15 Phase coherence for different barrier heights. a and b show phase measurements in the
double-well situation for a high barrier in a and for a low barrier in b. The two columns c, d
on the right show the respective phase measurements in the few-well situation. Each line in the
images corresponds to an transversally averaged profile of a single experimental realization. The
graphs below show the average of the pictures above in vertical direction. In the few-well case the
boundaries between different well pairs are indicated. For a high barrier V0 (a and c) the relative
phase measured in each shot is almost random and the average visibility is decreased, while a
stable relative phase is observed for low barriers (b and d)

to the number of atoms per pixel. The ensemble averaged profile is shown below,
which also reveals the coherence from its visibility.

In the few-well situation each slice contains only 11 pixels, therefore photon
shot noise in the individual images is one limiting factor for the phase estimation
precision. Experimentally we find smallest fluctuations when calculating the phase
of the interference fringe relative to the absolute position of the fringe on the camera
sensor. However from repeated measurements of the center of mass position of a
small atomic cloud we extract root mean square fluctuations of the imaging systems
position in the order of one pixel. Both effects, finite signal to noise and position
fluctuations, limit the phase precision to 
ϕmin ≈ 23◦ in the few-well situation.
We do not correct for the this additional noise leading to a systematic underestimation
of the true coherence across the junction.

It is more general to extract the coherence from the ensemble averaged inter-
ference patterns shown in the lower part of Fig. 3.15 than ensemble averaging the
individual phases, since in a non-two-mode situation the single shot visibility of the
patterns might be already decreased. The drawback of this method however is an
underestimation of the coherence due to the finite resolution of the imaging system.
We found that the single shot visibility is compatible with unity taking the finite
resolution of the imaging system into account (Fig. 3.16), which justifies our method
to compute the coherence.
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Fig. 3.16 Single shot visibility of the interference patterns. The fringe visibility observed in a single
experimental realization is compatible with unity when the finite optical resolution is taken into
account. The figure shows the observed average single shot visibility (solid circles) compared to
the expected visibility for a pure two-mode situation including the effect of finite optical resolution
(open squares). Experiment and prediction agree within a few percent. The trend in the observed
data which is due to the dependence of the visibility from the fringe wavelength is reproduced by
the theory. The wavelength decreases with rising barrier since the in the tighter trapping results in
increased kinetic energy at the time of release

3.4.2 Measuring the Timescale for Adiabatic Changes

In Sect. 3.2 we discussed the effects of finite temperature on the fluctuations in
atom number difference and relative phase. Adiabatic cooling was presented as one
approach to achieve number squeezing despite of thermally induced fluctuations.
In order to change the state of the system adiabatically the timescale τ in which the
potential barrier V0 is ramped up and therefore the plasma frequency ωpl is changed
has to be smaller than the inverse plasma frequency itself [39, 46]. Therefore it is
hard to drive the system adiabatically into the Fock regime where EC/4E J � 1 if
the Charging energy EC is small since this requires ramp times τ � E−1

C . For our
parameters ramp times τ on of the order of a few tens of seconds are necessary to
reach the ultimate cooling limit given in equation (3.22). These long times are not
realizable in the experiment without significant perturbation of the system due to the
environment which leads to particle loss and heating [40].

Due to these disturbing effects the experimental duration should be chosen as
short as possible and the optimal ramp duration for a given situation is best found
experimentally. We start with a Bose–Einstein condensate in a low barrier trap of
V0 = 2π · 430 Hz. Now we ramp up the potential barrier in a linear manner to a
fixed end height of V0 = 2π · 1, 650 Hz. We repeat this experiment varying the
total ramp time and measure the number squeezing parameter ξ2

N . Figure 3.17 shows
that ramps with a slope smaller than 2π · 10 Hz/ms are found to be adiabatic within
the detection accuracy of our experiment. In the double-well situation with 1,100
atoms in total we measured up to very long ramp times in the order of a few seconds.
Number squeezing however levels around ξ2

N ≈ −2 dB which is explained taking
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Fig. 3.17 Timescales for adiabatic barrier ramps. We ramp up the barrier height V0 from 2π ·430 Hz
to 2π ·1,650 Hz in a linear way varying the total ramp time. a shows the results of the measurements
for the few-well situation. The gray shaded area is a theoretical simulation within the local two-
mode model assuming temperatures between 20 and 40 nK. The two different symbols correspond
to the two central well pairs in the optical lattice. This figure is originally published in [45]. b shows
the same experiment but in the double-well geometry. Temperature alone as the limiting factor for
number squeezing can not explain the observed data (hatched area). Including relative position
fluctuations of dipole trap and lattice beams, the experimental observation is reproduced for the
same temperatures as in the few-well case (gray shaded area)

position noise into account as detailed below. The data shows even an upward trend for
long ramps which is attributed to heating and atom loss. We load 5,300 atoms in
total into the few-well trap corresponding to a occupation number of N ≈ 2, 200
atoms in each of the two central well pairs. Number squeezing increases from
ξ2

N ≈ −2 dB for a low barrier to the best observed value of ξ2
N = −6.6+0.8+0.8

−1.0−0.8 dB.
This number is calculated by averaging over several datasets such that approxi-
mately 1,000 experimental realizations contribute. The given uncertainties are one
standard deviation statistical errors of the mean over all datasets followed by an upper
bound of 20% for systematic errors due to a possible calibration error of the atom
number detection. We find adiabatic cooling of approximately a factor of three. At
V0 = 2π ·1, 650 Hz the system is not yet in the Fock regime (see Fig. 3.11), however
the highest occupied modes are not any more in the linear part of the spectrum. This
results in large fluctuations in the relative phase and a loss of coherence across the
Josephson junction (see Fig. 3.15). Since the main experimental goal is to generate
many-body entanglement and coherent number squeezing we tried to find the opti-
mum ramp time to this intermediate barrier height. Furthermore the detected number
squeezing of ξ2

N = −6.6 dB means fluctuations of only 10 atoms out of 2,200 which
is close to the detection threshold of our imaging system.

The gray shaded area in Fig. 3.17 shows the result of a numerical simulation
of the two-mode Josephson Hamiltonian using the dependence of the Hamiltonian
parameters EC and E J on the barrier height V0 shown in Figs. 3.11 and 3.3. In the
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theory the initial temperature was adjusted to fit the data and the upper bound of
the area corresponds to T = 40 nK while the lower line corresponds to T = 20
nK. In order to fit the double-well data, we need to take position fluctuations of
the trapping beams into account which limit the best observable number squeezing.
Position fluctuations with a root mean square amplitude of 
z ≈ 80 nm explain the
data (see Sect. 3.3)

We restricted the change of the optical lattice intensity to linear ramps since they
require only one parameter, the ramp time τ , for given initial and final barrier height.
In future experiments the achieved number squeezing might be optimized further
using custom ramp shapes obtained from optimal control schemes [47, 48].

3.4.3 Coherent Spin Squeezing and Many-Body Entanglement

Optimizing Coherent Spin Squeezing

Knowing the timescales for the barrier ramp the challenge is to find a final barrier
height V0 where the amount of number squeezing and phase coherence allows to
achieve coherent spin squeezing ξ2

S < 0 dB.
In order to answer this question experimentally we follow a barrier ramp with

a slope of 2π · 4 Hz/ms (few-well trap) from a low barrier situation where the
condensate is obtained to a variable end value.14 Figure 3.18a shows the results for
the few-well situation. Open and solid data points correspond to the two central
well pairs in the lattice each populated by approximately 2,200 atoms. The phase
coherence 〈cos(ϕ)〉 is plotted in the upper panel and below the measured number
squeezing ξ2

N is shown. For barrier heights below ca. 2π · 1,000 Hz we find high
phase coherence and simultaneously a considerable amount of number squeezing.
Averaging the measurements between V0 = 2π · 650 Hz and V0 = 2π · 900 Hz we
calculate the best coherent spin squeezing:

ξ2
S = −3.8+0.3+0.8

−0.4−0.8 dB (3.30)

This value is obtained from approximately 500 phase and number difference mea-
surements and the uncertainties are one standard deviation statistical errors of the
mean followed by bounds on possible systematic errors. The systematic error is due
to uncertainties in the imaging calibration and due to the afore mentioned underes-
timation of the phase coherence.

The gray shaded areas are the predictions from a two-mode approximation of the
Josephson Hamiltonian assuming adiabatic evolution, where the initial temperature
was adjusted to fit the data. The lower bound corresponds to T = 10 nK and the upper
bound to T = 30 nK, implying an entropy of three to ten thermally populated many-
body states across the junction. Reasonable good agreement with the data confirms
the adiabatic cooling model and the local two-mode approximation presented above.

14 We ramp from V0,i = 2π ·430 Hz for all end values V0 ≥ 2π ·430 Hz and from V0,i = 2π ·250
Hz for all other end values.
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Fig. 3.18 Phase coherence and number squeezing. The experiments carried out to optimize coherent
number squeezing are shown here. The upper row shows the evolution of the coherence, while the
lower row shows the number squeezing. Part a summarizes the results of the measurements done
in the few-well situation. As shown in the inset we follow a fixed slope to different barrier heights
and before detection we ramp up the optical lattice within 10 ms to the end value of 2π · 1,650 Hz.
Solid and open symbols correspond to the two central well pairs in the optical lattice populated with
2,200 atoms each. The gray shaded area shows the result of a local two-mode calculation assuming
adiabatic evolution with three to ten populated many-body modes. Part b shows the equivalent
measurement for the double-well with 1,600 atoms in total. Solid and open symbols correspond
to two distinct measurements where the slope of the barrier ramp was different (see main text).
The gray shaded area is the result of a two-mode calculation with the same assumptions as in the
few-well case. This figure is originally published in [45]

For the phase measurement a maximal coherence of 〈cos ϕ〉2 = 0.85 was taken into
account to match the theory with the data, limited by the phase detection method
as described in Sect. 3.4.1. Since the phase measurement relies on the overlap of
the wavefunctions from two neighboring wells after expansion, we ramp the barrier
within 10 ms to V0 = 2π · 1650 Hz for all final barrier heights lower than this value.
This is necessary since the expansion velocity after release depends on the onsite
interaction energy and the intra-well trap frequency and therefore on the barrier
height and the atom number.

Figure 3.18b summarizes the results for the double-well trap. The different
symbols represent two different measurements where the barrier was ramped up with
a slope of 2π · 2 Hz/ms (solid triangles) and 2π · 8 Hz/ms (open diamonds). As in
the few-well case adiabatic evolution within the two-mode model is assumed for the
same initial temperature and entropy. No upper limit for the phase coherence is nec-
essary here since a longer expansion time allows to observe the interference pattern
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spread over many pixels such that the deteriorating effects of the detection noise are
negligible on this level of precision. Averaging the data between V0 = 2π · 650
Hz and V0 = 2π · 1,200 Hz we measure a best coherent spin squeezing of
ξ2

S = −2.3+0.2+0.8
−0.6−0.5 dB.

Comparing the results for the few-well and double-well situation we find a better
coherent spin squeezing in the few-well situation. This is explainable by the stringent
spatial stability requirement in the double-well case (see Sect. 3.3) making it hard to
obtain better number squeezing.

The best measured spin squeezing of ξ2
S = −3.8 dB potentially allows for a

phase precision gain of 1 − 
ϕsq

ϕsql

= 35% in an ideal Ramsey type interferometer
(see Sect. 2.4). 
ϕsql is the phase error given by the standard quantum limit while

ϕsq denotes the phase error that could be obtained using a spin squeezed state for
the same total atom number.

Systematic Deviations from the Theory

In the coherence graph for the few-well situation (Fig. 3.18a) a systematic overes-
timation of the coherence by the two-mode theory is visible, while the observed
dependence of the number squeezing is reproduced. We attribute the larger phase
fluctuations to contributions from the longer wavelength modes present in the few-
well situation (see Sect. 3.3). Multi mode effects in the few well case as well as onsite
number squeezing have been analyzed in [43].

Many-Body Entanglement

In Sect. 2.3 we discussed the connection of number squeezing and coherent spin
squeezing to many-body entanglement. We briefly summarize the arguments given
there: While number squeezing ξ2

N < 0 dB detects entanglement in a symmetric
situation, coherent spin squeezing ξ2

S < 0 dB requires entanglement without any
symmetry assumption. In Fig. 3.19 we plot our results in this context.

Data points shown are obtained by averaging the data in Fig. 3.18 and the sym-
bols are chosen correspondingly. Solid data points are calculated averaging the mea-
surements between V0 = 2π · 650 Hz and V0 = 2π · 900 Hz (V0 = 2π · 650
Hz and V0 = 2π · 1,200 Hz) while open symbols represent averaged data above
V0 = 2π ·1,300 Hz (V0 = 2π ·1,400 Hz) for the few- (double-) well case.15 For the
high barrier situation phase coherence is lost due to temperature induced fluctuations
while number squeezing increases slightly as compared to the intermediate barrier
height regime (solid symbols). Assuming a symmetric two-mode situation which is
valid for a Bose–Einstein condensate restricted to two modes all points shown cor-
respond to a non-separable many-body density matrix. However the solid symbols
are located below the curved dotted black line, which is the boundary for coherent
spin squeezing and many-body entanglement is unambiguously detected.

15 In the double-well case two more data points not shown in Fig. 3.18 between V0 = 2π · 1,650
Hz and V0 = 2π · 1,800 Hz contribute to the averaging.

http://dx.doi.org/10.1007/978-3-642-25637-0_2
http://dx.doi.org/10.1007/978-3-642-25637-0_2
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Fig. 3.19 Many-body entanglement. We summarize the results shown in Fig. 3.18 in the context
of many-body entanglement. Diamonds correspond to the double-well measurements and circles
(squares) to the two central well pairs in the few-well trap. One standard deviation statistical
error bars are given and the gray shaded boxes are systematic errors. They are asymmetric in
the horizontal direction since our method to measure the coherence suffers from a systematic
underestimation. The phase diagram—number squeezing versus coherence—is divided in three
regions: The coherent spin squeezed region below the curved dotted line (marked as 0 dB), the
number squeezed region below the straight dotted line and the non-squeezed region above. For
intermediate barrier heights (solid data points) we find coherent spin squeezing which requires
many-body entanglement. The curved lines are the boundaries for the indicated amount of coherent
spin squeezing. Open symbols represent measurements taken for a high barrier. Number squeezing
is slightly larger than for intermediate barriers, but phase coherence is decreased. The measurements
lie in the number squeezed region where entanglement is only required for a symmetric quantum
state. The inset shows our measurements in comparison to the lowest achievable number fluctuations
at a given coherence revealing the large effect of increased entropy due to finite temperature. This
figure is originally published in [45]

The inset in Fig. 3.19 clarifies the effect of finite temperature on the spin squeezing
in our experiment. In contrast to the main figure the vertical axes is rescaled to show
the best achievable number squeezing for a given phase coherence (gray line). Ideal
measurements on the ground state of a Josephson junction would yield results close to
this line. The measured data points are approximately 25 dB above the best achievable
coherent spin squeezing showing large room for future improvement if the entropy
of the system can be better controlled.

3.4.4 Particle Loss and Number Squeezing

The results on squeezing presented above rely on an accurate calibration of the atom
number detection (see also Appendix A). An independent test of the calibration
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Fig. 3.20 Number squeezing and particle loss. We measure the evolution of number squeezing with
particle loss in order to test for our absorption imaging calibration. Data shown as gray diamonds
correspond to measurements where we condensed directly into a high barrier trap setup with negli-
gible coupling between the wells. No number squeezing is observed in this case. Black circles show
measurements where we start from a squeezed state and hold the atoms in the trap for different
times. One and three body losses cause a decay of number squeezing. The black solid line is the
theoretical prediction where the loss coefficients are extracted from the observed total atom number
decay shown in the inset. The gray square data point summarizes the fluctuation measured after
10 s starting with a slightly squeezed state. The particle loss reduces the uncertainty in the number
squeezing (gray shaded area) which allows for a good quantitative comparison to the theory. In
order to obtain a strong test of our calibration we repeat the experiment 1,000 times resulting in
small statistical errors. The given error bars represent two statistical standard deviations and show
good agreement with the theory. This figure is originally published in [45]

can be done by monitoring the evolution of number squeezing when the system is
subject to particle loss. Appendix B details the calculation of the evolution of number
squeezing when one and three body loss is present (two body loss is negligible for
87 Rubidium in the |F, m F 〉 = |2,±2〉 states [49, 50]). We perform three different
measurements:

Evolution of Number Squeezing Under Loss Starting with an Uncorrelated State

We prepare a Bose–Einstein condensate in a very high lattice situation (V0 = 2π ·
2,700 Hz) such that the tunneling time τpl = 2π/ωpl between adjacent sites is
in the order of a few tens of seconds and therefore longer than the experimental
timescale. The condensates on the different lattice sites are independent and we
expect poissonian number fluctuations between them. Only small dynamics in the
number squeezing versus particle loss is expected due to correlations stemming
from three particle loss. The gray diamonds in Fig. 3.20 show the measured number
squeezing versus the evolution time. Although we loose approximately two-thirds of
the atoms (see inset), the measured data points scatter around ξ2

N = 0 dB showing
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that the calibration of our imaging is correct. Due to limited statistics we are not able
to observe the dynamics due to three body loss.

Evolution of Number Squeezing Under Loss Starting with an Number Squeezed
State

As a further test we monitor the decay of number squeezing when particle loss is
present. We prepare the system in a number squeezed state with an initial number
squeezing of approximately ξ2

N = −6 dB and measure the relative atom number
fluctuations after different hold times. The result is plotted as solid circles in Fig. 3.20.
Number squeezing decays and asymptotically approaches ξ2

N = 0 dB. The solid
black line shows the prediction for three and one particle loss obtained from the
Master equation approach described in appendix B. The three and one body decay
coefficients where obtained from fits to the observe decay of the mean atom number
shown in the inset. Within the statistical uncertainties the model reproduces our data.

Number Squeezing After Loss: High Statistics

The gray square data point in Fig. 3.20 is the strongest test of our imaging calibration.
Here we start with a slightly squeezed state by condensing into a V0 = 2π · 430 Hz
lattice which is the usual starting point for most of the experiments presented above.
After a fast barrier ramp up in 20 ms to V0 = 2π · 2,700 Hz we expect an initial
number squeezing −3 dB < ξ2

N < 0 dB as detected in the measurement shown
in Fig. 3.17. We measure the relative atom number fluctuations after 10 s evolution
time during which two-thirds of the atoms are lost and we find ξ2

N = −0.7+0.7
−0.7

dB, where the indicated errors are 95% statistical confidence bounds. This has to be
compared to the expected fluctuations of −1.2 dB < ξ2

N < −1 dB predicted from the
measured loss rates. 1,000 experimental realizations contribute to the measurement
which allows for a quantitative comparison with the theory. Within the remaining
statistical uncertainties we find good agreement between theory and experiment.
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Chapter 4
Non-linear Interferometry Beyond
the Standard Quantum Limit

In the experiments described in the previous chapter we detected coherent spin
squeezed atomic quantum states. However the implementation of a full atom inter-
ferometer where the two modes are defined by two mean field wavefunctions in
a double well potential is difficult. One of the problems is the limited range in
which the system parameter � can be tuned—especially the Rabi regime is not
accessible for our setup [1]. Therefore the realization of a beamsplitter, i.e., a π/2
pulse between the two external modes, remains an open challenge [2]. The second
issue is due to the tuning of the Hamiltonian parameters by changing the exter-
nal trapping potential. Standard coupling pulses in an atom interferometer cause
unitary rotations which requires diabatic changes of the hamiltonian parameters.
This involves a fast change of the external trapping potential which is—without
exiting the system—only possible if the timescale corresponding to the local intra-
well trapping frequencies is much faster than the inverse plasma frequency. This
requirement is not fulfilled for our setup and fast changes of the barrier height
initiates the breathing motion or even dipole motion of the individual conden-
sates.1

In the experiments described in this chapter we overcome these problems and
we present an interferometric measurement directly demonstrating phase precision
beyond the standard quantum limit. The prerequisites necessary to implement the
novel non-linear interferometer are described first, and the main result can be found
in Sect. 4.7 at the end of the thesis.

An Interacting Two-Mode System Defined by Atomic Hyperfine States

We extend our experimental setup such that two internal hyperfine states of the 87

Rubidium atoms are used as the two modes to overcome the limitations mentioned
above. The coupling between the two states can be tuned in much cleaner way since
it does not require any change of the external trapping potential but electromagnetic

1 We use the excitation of these modes when changing the barrier height V0 abruptly for a cali-
bration of V0 [3].

C. Groß, Spin Squeezing and Non-linear Atom Interferometry with Bose–Einstein 59
Condensates, Springer Theses, DOI: 10.1007/978-3-642-25637-0_4,
© Springer-Verlag Berlin Heidelberg 2012
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Fig. 4.1 Hyperfine structure of the 52 S1/2 electronic ground state of 87 Rubidium. This schematic
figure shows the two ground state hyperfine manifolds of 87 Rubidium including their Zeeman
splitting. The level splittings are not to scale. We work at rather low magnetic fields such that the
Zeeman splitting between neighboring states is in the order of 2π · 6 MHz. The two states labeled
|a〉 and |b〉 form an effective two-level system with almost common mode first order Zeeman shift

radiation is employed. Today’s time standard is based on shot noise limited Ramsey
interferometry [4] implemented on a similar atomic system—two hyperfine states
of Cesium atoms. The microwave technology required for precise coupling pulses
is therefore readily available and the experimental techniques necessary to realize
standard linear interferometry are well known [5].

However, our goal is to implement high precision non-linear atom interferometry
utilizing the interactions between the particles. Therefore the experimental system
has to fulfill some specific requirements, which are low sensitivity to magnetic field
noise and —most important—finite interaction strength among the atoms. A Bose–
Einstein condensate of 87 Rubidium has been considered as a promising candidate to
create coherent spin squeezing based on two hyperfine states [6]. Figure 4.1 shows
the hyperfine structure of 87 Rubidium in the electronic ground state. The |F, m F 〉 =
|1, 1〉 and |2,−1〉 states in the lower and upper hyperfine manifold are suitable
states for this experiment. They fulfill the two major requirements – the tunability of
interspecies interactions [7–9] and their magnetic field dependent differential energy
shift is small.

4.1 Squeezing: Internal Versus External Degrees of Freedom

In this section we work out the main differences between the external double-well
system and two-mode system based on two hyperfine states with respect to the
generation of spin squeezed states. It is clarified that the two systems can be described
by the same Hamiltonian but also that the experimental limitations are very different.
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A fast, diabatic squeezing protocol is shown to be suitable for the realization of
coherent spin squeezing based on hyperfine states of 87 Rubidium.

4.1.1 The Spin Model

In Sect. 3.1.3 different theoretical descriptions of the external system assuming var-
ious approximations have been discussed. On this level of precision, where higher
order corrections to the Hamiltonian are neglected [1] the internal system is described
by the same Hamiltonians [10]. The main assumption in the internal case is that the
spatial wavefunctions of the two hyperfine states are identical [11–13], an issue dis-
cussed in detail below. Distinct to the external double well case the Hamiltonian
parameters can be switched very fast and also the Rabi regime is easily reached.
Therefore arbitrary rotations on the Bloch sphere are possible and detection of any
spin direction can be done by a proper unitary rotation of the state before readout.
The spin component to be measured is rotated to the Jz direction which is detected
by the occupation difference n between the two states [14]. This is a major difference
to the experiments discussed in the previous chapter, where phase readout was done
by observation of a spatial interference pattern.

The spin Hamiltonian provides the most intuitive description in the internal case

H = −�ω0 Ĵz + χ Ĵ 2
z − � Ĵx (4.1)

where we use the parameters χ for the nonlinearity and the Rabi frequency � instead
of the Josephson parameters EC and E J . The motivation for this nomenclature
becomes clear throughout this chapter but, in brief, we use a diabatic technique
switching the Hamiltonian parameters such that either the Rabi frequency dominates
or the coupling is switched off � = 0 such that the evolution is purely due to the
non-linear term.

The Coupling �

The Hamiltonian parameters are revealed differently than in the external case. The
coupling between the two modes |a〉 := |1, 1〉 and |b〉 := |2,−1〉 is purely given
by single particle physics and its strength–the Rabi frequency �—is controlled by
the intensity of the electromagnetic radiation. The energy of the two states differs
by approximately ω0 = 2π · 6.8 GHz and their Zeeman quantum number m F is
distinct by two. We use a similar scheme as described in references [8, 15, 16] to
couple the two states by a two-photon transition as shown in Fig. 4.2. We choose a
single-photon detuning δ = −2π · 200 kHz to the |2, 0〉 intermediate state allowing
for maximal two-photon Rabi frequencies � = 2π · O(1 kHz). Our experiments
require an offset magnetic field of approximately B0 = 9.1 G resulting in a Zeeman
shift of ca. 2π · 6.3 MHz between two neighboring Zeeman sub-states in the same
hyperfine manifold. Therefore the two-photon pulses comprise of two frequencies,

http://dx.doi.org/10.1007/978-3-642-25637-0_3
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Fig. 4.2 Coupling of the internal two-mode system .This schematic shows the relevant three level
scheme necessary to implement the Rabi coupling � between the states |a〉 and |b〉. Two elec-
tromagnetic radiation fields ωMW and ωRF are used to couple the two states with a single-photon
detuning δ to the |2, 0〉 intermediate state. The individually off resonant photon fields cause a light
shift of the Zeeman levels here represented as the effective shifts δls,a and δls,b. These shifts are
linearly dependent on the intensity of the two electromagnetic fields, especially they drop to zero
when the fields are switched off resulting in a detuning of the two-photon transition during the free
evolution time

one in the microwave regime around ωMW = 2π · 6.841 GHz and one in the radio-
frequency regime around ωRF = 2π · 6.3 MHz. We stress a big difference to the
external case—the coupling can be switched from maximum to exactly zero and vice
versa faster than any other timescale in the experiment.

Detuning: Rotation Around the Jz Axis

The first term in Equation (4.1) proportional to Ĵ z describes a rotation of the state
around the Jz axis of the Bloch sphere. A priori the angular frequency is given by
the energy difference ω0 between the two states. However the position of the state on
the Bloch sphere is measured in a rotating frame whose angular frequency is given
by the joint frequency of the two-photon coupling. For resonant pulses this matches
exactly the energy splitting between the two modes such that there is no relative
rotation in the resonant case [17]. However, for a two-photon coupling scheme the
two states experience a differential light shift due to the single-photon detuning δ (see
Fig. 4.2). This light shift involves contributions from several of the hyperfine states
since we are not dealing with an isolated three level problem. It can be measured
accurately by Ramsey spectroscopy where alternately one of the electromagnetic
radiation fields is present during the evolution. For the typical microwave and radio-
frequency power used in our experiments it is in the order of δls,a +δls,b = −2π ·150
Hz. This effect leads to a different resonance frequency ω0 whether the coupling is
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on or off. Since accurate unitary rotations require resonant coupling, finite rotation
dynamics �ω0 around the Jz axis during free evolution is not avoidable.2

Two other effects cause a differential energy shift of the two modes, of which
one—the second order Zeeman shift—is a single particle effect and the second—
a mean field interaction induced chemical potential difference between the two
condensates—is a many particle effect. Mainly the first effect causes experimen-
tal difficulties when preparing spin squeezed states since the magnetic field is not
controllable to an arbitrary precision and its fluctuations result in excess phase noise.
For a more detailed discussion see Sect. 4.5 The analogy to the detuning �ω0 in the
external double well experiments is described in In Sect. 3.3 where relative position
fluctuations of the different trapping beams were found to be most critical.

Miscibility and the Nonlinearity χ

Calculation of the nonlinearity χ requires the knowledge of the mean field wave-
functions φa,b of the two modes |a〉 and |b〉.3 From the two-mode ansatz (see In
Sect. 3.1.3) used to derive Equation (4.1) the nonlinearity follows [6, 10, 11, 13]

χ = gaa

2

∫
dr |φa |4 + gbb

2

∫
dr |φb|4 − gab

∫
dr |φa |2 |φb|2

≈ 1

2
(gaa + gbb − 2gab)

∫
dr |φa |4 (4.2)

with coupling constants gi j = 4π�
2ai j/m and s-wave scattering lengths ai j between

states i and j . The mean field wavefunctions of each mode are normalized to unity∫
dr |φi |2 = 1. The last approximation assumes equal spatial mean field wavefunc-

tions for both modes. The same expression can be derived in the external double
well case [18, 19] for the calculation of the charging energy EC/2, however the big
difference is that the overlap of the two mean field wavefunctions is small in this
case such that the third term in the first line of Equation (4.2) almost vanishes. In the
external case the last approximation therefore certainly does not hold.

For 87 Rubidium and the chosen hyperfine states the background s-wave scattering
lengths ai j are almost equal [7, 8, 12]

aaa = 100.44aB

abb = 95.47aB

aab = 97.7aB

(4.3)

where aB is the Bohr radius. Therefore the effective scattering length is close to zero
aaa+abb−2aab = 0.5aB resulting in a negligible nonlinearity χ = 2π ·O(10−3 Hz).

2 Technologically a coherent change of the frequency of one of the two electromagnetic fields is
not possible in our experiment.
3 We use the labeling |a〉 and |b〉 for both the single particle states and the mean field modes
which is not rigorously correct. However since we neglect external dynamics and assume perfect
wavefunction overlap this labeling is justified.

http://dx.doi.org/10.1007/978-3-642-25637-0_3
http://dx.doi.org/10.1007/978-3-642-25637-0_3
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There are two possibilities to increase the nonlinearityχ , one involves independent
control of the external potentials seen by the two states such that the wavefunction
overlap can be tuned [12, 20], the second is to make use of a magnetic Feshbach
resonance which provides a handle to control the interspecies s-wave scattering length
aab [21]. The latter method is suitable for our experimental setup since we work
with optical dipole traps where Feshbach resonances can be readily used, but state
selective potentials are hard to implement. The ratios of the background scattering
lengths given above cause another difficulty. The two condensates tend to de-mix
[22] since the miscibility condition a2

ab < aaaabb [23] is not fulfilled. Depending on
the external trapping of the Bose–Einstein condensates this leads to a breakdown of
the two-mode approximation and the Hamiltonian (4.1) is no longer appropriate to
describe the system. However for the chosen states the system is very close to the
miscible regime and a small decrease of 0.3% of the interspecies scattering length
aab would ensure miscibility.

4.1.2 Interaction Tuning via A Magnetic Feshbach Resonance

A suitable interspecies Feshbach resonance between the |1, 1〉 and |2,−1〉 states
around B0 = 9.10 G has been reported [7–9] and tunability of the interstate scattering
length aab in the order of 10% has been shown [8]. Figure 4.3 shows the theoretical
prediction of the dependence of the scattering length from the magnetic field

aab(B) = abg
ab(1 − δB

(B − B0 − iγB/2)
) (4.4)

with a resonance width of δB = 2.0 mG and a decay width of γB = 4.7 mG account-
ing for enhanced inelastic spin relaxation and three body loss [7] (abg

ab = 97.7aB is the
background value). Thus—distinct to the experiments on external degrees of freedom
where no suitable Feshbach resonance exists in the low magnetic field regime—the
nonlinearity χ between the two hyperfine states can be rather easily tuned. The max-
imum achievable nonlinearity is limited by the enhanced inelastic losses when work-
ing close to the Feshbach resonance (Fig. 4.3b) [21]. Furthermore, in a spin squeezing
experiment these losses limit the maximum achievable correlations between the spin
directions [24]. Therefore a balance between elastic and inelastic enhancement of the
scattering properties is important and the optimal magnetic field for our experiments
is chosen taking this problem into account (see Sect. 4.1.3).

Figure 4.3a reveals that the elastic interspecies scattering length is lowered for B >

B0 causing the system to enter the miscible regime. Nevertheless the single spatial
mode approximation—both hyperfine states share the same spatial wavefunction—
does not necessarily hold in a dynamic experiment since a sudden change of the
hyperfine state, as done by a π/2 pulse, initiates external dynamics in the system due
to the different mean field potentials seen by the two states (aaa �= abb). However the
effect of these dynamics has shown to be negligible for our optical trap configuration
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Fig. 4.3 Theoretical prediction of the interspecies Feshbach resonance. Panel a shows the depen-
dence of the elastic part of the scattering length—the real part of Equation (4.4)—around a magnetic
field of B0 = 9.10 G. The interspecies scattering length is decreased for B > B0 and the system
enters the miscible regime. The boundary for aab between the miscible and non-miscible regime is
shown by the gray line revealing miscibility in a large range above the resonance. In b the Lorenzian
shaped inelastic part of the scattering length—the imaginary part of Equation (4)—is plotted

(see Sect. 4.5) [12] and in principle it could be even further suppressed by working
in the breath together regime as proposed in [11, 12].

Due to the small elastic width of the resonance absolute stability of the magnetic
field in the order of a few milligauss is required. We can achieve this stability on
intermediate timescales of a few hours after which slow thermally induced drifts cause
a change of the magnetic field. We measure drifts of approximately 5 mG on the
timescale of one day. Technical constraints of our active magnetic field stabilization
forbid fast changes in the magnetic field during the experimental sequence (see
Appendix C). Therefore the two-photon coupling pulses have to be done close to the
Feshbach resonance and effects of radio-frequency dressing of molecular states can
become important depending on the frequency of the radio-frequency coupling field
[7]. However, for the chosen detuning δ = −2π · 200 kHz we see none of these
effects.

4.1.3 Experimental Characterization of the Feshbach Resonance

Magnetic Feshbach resonances allow for convenient tuning of the interaction strength
in experiments with ultracold atoms. Not only elastic collision properties are altered
but in most cases also the inelastic collision rate increases [21]. A loss rate measure-
ment is performed in order to determine the enhanced inelastic collision rate close
to the resonance while mean field spin dynamics can be employed to measure the
effect of elastic collisions [25].
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Spin Relaxation Losses

Even far away from the Feshbach resonance fast losses limit the lifetime of the
|b〉 = |2,−1〉 state since it is a not a maximal Zeeman state. Dipolar relaxation in
two body collisions causes one or both of the atoms to change the total spin from
F = 2 to F = 1 (only m F is conserved during a two body collision) freeing 2π · 6.8
GHz kinetic energy. This has to be compared to an optical dipole trap depth of a
few kHz, such that the probability to loose both colliding atoms is very large. For
typical densities in our experiment dipolar relaxation losses limit the lifetime to
approximately 250 ms causing an upper limit on the duration of the experimental
sequence even without the extra loss due to the Feshbach resonance.4

The interspecies Feshbach resonance between the two hyperfine states has a rather
large inelastic width caused by enhanced two body collisions—dipolar relaxation
losses—and three body collisions involving molecule formation [21]. We perform
a measurement of the magnetic field dependent loss rate around the interspecies
resonance centered at B0 = 9.10 G. For the estimation of the loss rate we fit the
observed atom number decay Ni (t) with an exponential model Ni (t) = Ni (0)e−t/τloss

where i = a or b (Fig. 4.4(a). This is an approximation since the loss rate τ−1
loss due to

two and three body loss is density dependent and the decay is not exactly exponential.
Figure 4.4b summarizes the result of this measurement. The Lorenzian fit reveals a
inelastic width of 11.7 mG.5

At B = 9.13 G the loss rate is τ−1
loss ≈ 10 Hz resulting in a loss of 10%–15% of

the atoms after 20 ms, the typical timescale for a diabatic squeezing experiment (see
In Sect. 4.2)). The loss limits the number squeezing to approximately ξ2

N = −10 dB,
which is close to the theoretical optimum achievable for our experimental parameters,
i.e. total atom number and external trap configuration [12]. Therefore we choose
B = 9.13 G as our working point.6

The rather short lifetime of the condensate in a superposition of the two internal
states due to the losses described above is another difference to the external squeezing
experiments in a double well potential. It is the main limitation to obtain larger
spin squeezing in the internal system and restricts the available methods to obtain a
reasonable amount of spin squeezing (see Sect. 4.2)

Tuning of the Nonlinearity χ

Despite of the strong inelastic collisions it is still possible to tune the nonlinearity
χ in a useful way. Mean field spin dynamics are used to extract the effective non-
linearity which is measured from the frequency difference between small amplitude

4 Dipolar relaxation is a two body process meaning its rate L2 ∝ K2 N is proportional to the
number of atoms in the trap. The loss coefficient for the |2,−1〉 state was measured to K2 =
8.8 × 10−14 cm3/s [26]
5 At the time this measurement was done the active magnetic field compensation was not yet
installed. Therefore we measure a larger width as theoretically expected. The inelastic width
extracted from the measurement shown in Fig. 4.5 agrees well with the theoretical prediction.
6 Experimentally we also found the best number squeezing at this magnetic field.
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Fig. 4.4 Loss rate measurement in the vicinity of the Feshbach resonance. a, Exemplary loss curves
for both hyperfine states and two magnetic fields are shown. The dashed and solid lines are exponen-
tial fits to the data from which the loss rates are extracted. The respective life times are given in the
legend of the figure. Panel b shows the loss rate in the vicinity of the Feshbach resonance including
a Lorenzian fit to the data for both hyperfine states. The greater loss rate of the |2,−1〉 state with
respect to the |1, 1〉 state is explained by additional dipolar relaxation losses in the |2,−1〉 state.
The slight offset between the center of the two fits is not significant—within the fit uncertainties
the two centers match

oscillations around zero relative phase and π relative phase [25]. Experimentally a
coherent spin state |θ = π/2, ϕ0〉 is prepared on the equator but with small offset
relative phase such that ϕ0 = 0 + ε or ϕ0 = π + ε where ε ≈ 0.1 · π . This ini-
tial quantum state evolves under the Josephson Hamiltonian (4.1) and at time t the
quantum state is:

|θ, ϕ〉(t) = e−i t (χ Ĵ 2
z −� Ĵx )| θ = π/2, ϕ0〉 (4.5)

Sinusoidal oscillations in the population imbalance 〈 Ĵz(t)〉 versus time are observed
and their respective frequency ωpl,π is extracted. In mean field approximation ana-
lytic expressions for the expected oscillation frequencies have been derived [25]:

ωpl,π = �
√

1 ± � (4.6)

The difference of these two frequencies reveals the effective nonlinearity χ since the
Rabi frequency � and the atom number N are known:

χ = ��

N
=

(
ω2

pl − ω2
π

)

2N�
(4.7)
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Fig. 4.5 Tuning of the effective nonlinearity. a The difference between the frequencies of small
amplitude oscillations around zero and χ relative phase reveal the nonlinearity χ . The black solid line
is a fit assuming the real part of Equation (4.4) as the functional dependence between elastic collision
enhancement and magnetic field. Panel b shows the deduced interspecies scattering length aab in
the vicinity of the Feshbach resonance. From the fit we obtain an inelastic width of γB = 4.6 ± 0.7
mG in accordance with the theoretical prediction. Compared to the direct measurement of the loss
rate enhancement presented in Fig. 4.4 the active magnetic field stabilization was installed in this
measurement which explains the difference in the observed widths. The elastic width extracted from
the fit is δB = 1.6 ± 0.2 mG. We find the center of the resonance at B0 = 9.092 G, but since we
did not focus on a precise calibration of the absolute magnetic field we estimate a systematic error
of approximately 10 mG on this value. The background scattering length abg

ab was chosen as a free

parameter and the fit reveals abg
ab = 96.5 ± 0.7aB

Figure 4.5a shows the deduced nonlinearity around the Feshbach resonance. The
evolution was measured for a Rabi frequency of � = 2π · 200 Hz7 and for the same
atom numbers as used in the following experiments. We find χ = 2π · 0.063 Hz at
B = 9.13 G in accordance with simulations using the Gross-Pitaevskii equation.

In Fig. 4.5b we deduce the interspecies scattering length aab from the measured
nonlinearity using equation (4.2). We calculate the integral

∫
dr |φa |4 for the wave-

function φa obtained from the numerical solution of the Gross-Pitaevskii equation.
Due to this procedure we estimate a possible systematic error of 10% in the data
shown in Fig. 4.5b

4.1.4 What About Temperature?

Finite temperature and entropy is the limiting factor for the squeezing experiments
based on two mean field modes of a Bose–Einstein condensate in an external dou-

7 A lower Rabi frequency than for the usual coupling is chosen here in order to work in a higher
� situation.
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ble well potential. In Sect. 3.2 an argument was given that thermal excitation of the
dipole mode in trap-splitting direction translates to increased entropy in the Joseph-
son many-body modes which limits coherent spin squeezing. The situation is very
different when two internal states are used. As described later, the experiments start
with a system in a maximal Dicke state—only state |a〉 is populated while the second
|b〉 is exactly empty. We ensure this starting condition by pulsing a resonant laser
pulse to remove possible population in the upper hyperfine manifold prior to the
squeezing experimental sequence. The thermal energy scale is seven orders of mag-
nitudes smaller than the energy difference between the two hyperfine states resulting
in negligible thermal excitation initially. After preparing a coherent spin state with
finite population in both modes thermal effects might become an issue through a
coupling to the mean field dynamics of the condensates. However during the short
timescale of our experiment—approximately 20 ms—we find no sign of thermaliza-
tion and the all experimental results are explained by a zero temperature two-mode
model.
The fraction of thermal atoms is also negligible since we work at very low tem-
peratures T/TC ≈ 1/15 resulting in a thermal fraction of 1 − N0/N ≈ 10−3—
approximately one atom out of 1, 000 is not in the condensate.

4.2 Fast Diabatic Spin Squeezing by One Axis
Twisting Evolution

Adiabatic Protocol

In the external squeezing experiment we used an adiabatic scheme to generate spin
squeezing. In principle this is also possible for squeezing based on internal degrees
of freedom, but given the combination of rather fast losses and small nonlinearity,
it is—even at zero temperature—not the optimal way. This becomes clear when
looking at the occupation number fluctuations for the Josephson ground state given in
Equation (3.16) which can be used to express the number squeezing ξ2

N in dependence
of the regime parameter �

ξ2
N = 4�n2

N
=

√
1

1 + �
(4.8)

and � = Nχ/�. Typical values for the parameters are Nχ = 2π · 50 Hz which
requires to reduce � from approximately 2π · 500 Hz adiabatically to 2π · 3 Hz
in order to achieve ξ2

N ≈ −6 dB. In order to check the required ramp time for an
adiabatic evolution (assuming a linear ramp) we perform a numerical simulation
within the two-mode approximation (Fig. 4.6). The measured lifetime of the atoms
is approximately 250 ms and linear ramps of that duration are not yet adiabatic but
the number squeezing is only ξ2

N ≈ −4 dB.
No particle losses are taken into account in Fig. 4.6, but assuming—as an

estimation—only single particle loss from a squeezed state with ξ2
N ≈ −6 dB, loss

http://dx.doi.org/10.1007/978-3-642-25637-0_3
http://dx.doi.org/10.1007/978-3-642-25637-0_3
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Fig. 4.6 Feasibility of adiabatic number squeezing. In order to estimate the possibility to reach
significant spin squeezing close to the ground state of the Josephson Hamiltonian we performed a
zero temperature two-mode simulation for our parameters. Starting with a spin state on the equator
of the Bloch sphere we reduce the Rabi frequency from 2π · 500 Hz to 2π · 3 Hz by linear ramping
with different total ramp time. Within the lifetime of the condensate (marked by the gray line), we
find that the ramping is not yet adiabatic and only approximately ξ2

N ≈ −4 dB of number squeezing
can be reached. Estimation of the effect of particle losses reduces this number even further to
approximately ξ2

N ,loss ≈ −2 dB (see main text)

of 50% of the atoms degrades the squeezing to ξ2
N ,loss ≈ −2 dB. These arguments

show that a different scheme is necessary to achieve significant number squeezing
for our parameters.

Diabatic Protocol: One Axis Twisting

Particle loss clearly limits the experimental time available to achieve spin squeez-
ing. Employing dynamic strategies spin squeezing can be produced much faster
than with adiabatic techniques. One example is the 1993 proposed one axis twist-
ing scheme which uses non-linear phase dispersion as the basic mechanism [27]
and it has been already considered useful for Bose–Einstein condensates [6, 13]. The
scheme is similar to Kerr effect based squeezing protocols in quantum optics where a
material with a Kerr nonlinearity is used such that the refractive index nlight ∝ n2|E |2
is proportional to the light intensity |E |2. The light experiences intensity dependent
phase modulation within this medium resulting in quadrature squeezing [28].

In the original one axis twisting scheme for atoms, a coherent spin state
|θ = π/2, ϕ〉 evolves for a given time τ under the Hamiltonian:
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Fig. 4.7 One axis twisting evolution. Panel a illustrates the initial coherent spin state on the equator
of the Bloch sphere. The histogram shows the binomial probability distribution over the Dicke states.
The zoom window illustrates the quantization on the Jz axis—the different Dicke states—of which
each eigenstate m rotates with a different angular frequency m · χ around the vertical axis. Part
b illustrates the quantum state after a short evolution time τ < τdeph. The isotropic uncertainty
developed into an elliptical one with spin squeezing present under an angle α0. The histogram
shows the squeezed probability distribution over the eigenstates in a coordinate system rotated
by α0

Ĥ = χ Ĵ 2
z (4.9)

Given this Hamiltonian, the time evolution of any quantum state is determined by
the unitary operator

Û (t) = e−itχ Ĵ 2
z (4.10)

which describes a Jz dependent rotation around the Jz axis. In Sect. 2.2.1 coherent
spin states were introduced in the first quantization formalism. It was pointed out
that a coherent spin state on the equator of the Bloch sphere |θ = π/2, ϕ〉 can be
described as a coherent superposition of several Dicke states where the probabil-
ity distribution over these basis states is binomial. Within this picture the one axis
twisting evolution (Equation (4.10)) of an initial coherent spin state can be nicely
visualized. Each Dicke state |J, m〉 composing the coherent spin state rotates with
a different frequency around the Jz axis where the difference in rotation frequency
between next neighboring Dicke states is χ (Fig. 4.7a).

For short evolution times τ < τdeph this shearing effect results in spin squeezing
under an axis rotated by the angle α0(τ ) with respect to the equator of the Bloch
sphere (Fig. 4.7 b). τdeph = (σmχ)−1 is the dephasing time, after which the coherence
〈cos(ϕ)〉 ≈ 2/N 〈 Ĵx 〉 8 has dropped from a value close to unity to 〈cos(ϕ)〉 = e−1

due to the interaction induced spread of the state around the Bloch sphere [30]. In

8 We assume here without loss of generality 〈 Ĵy〉 = 0 such that the twist is symmetric to the Jy
axis.

http://dx.doi.org/10.1007/978-3-642-25637-0_2
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Fig. 4.8 Coherent phase dispersion on long timescales. The graphic depicts the quantum state on
the Bloch sphere for different evolution times τ . For short times optimum coherent spin squeezing
develops, but when the phase is spread around the full Bloch sphere the amount of coherent spin
squeezing is significantly decreased. Complicated interference structures develop for longer times
and the last Bloch sphere illustration shows a partial revival of the wavefunction at τ = 1/4 · 2π/χ .
For an odd number of atoms the dynamics is periodic with period duration 2π/χ while for an even
number of particles a phase of π distinguishes the initial quantum state from the quantum state
t = 2π/χ and the revival period is twice as long [29]. The calculation was done for 100 atoms

general τdeph is inversely proportional to the extension of the quantum state over the
Dicke basis σm which, for a coherent spin state on the equator of the Bloch sphere,
is σm = √

N/2.
At evolution times τ � τdeph reduced quantum fluctuations under a certain axis

are still present but the coherence is very low such that the quantum state is no longer
optimally coherently spin squeezed. After even longer times the dynamics show
highly nonclassical interference effects [31– 33] finally resulting in a revival of the
coherence at τrev = 2πχ−1 when each neighboring pair of Dicke states is in phase
again [32]. Figure 4.8 visualizes the quantum state on the Bloch sphere for different
evolution times τ .

The best achievable noise suppression in general interferometry still increases
with evolution time even if coherent spin squeezing degrades. It has been recently
shown [34] that a new type of Bayesian interferometer readout can be employed to
make use of these quantum states (see also Sect. 2.4). Nevertheless this is beyond the
scope of this thesis since we focus on standard readout of the population imbalance
as used in most of today’s Ramsey interferometers.

Timescales to Achieve Squeezing: Adiabatic Versus Diabatic

The maximum squeezing achievable with the diabatic one axis twisting technique
is [6, 27]:

ξ2
s = 32/3

2
N−2/3 (4.11)

This has to be contrasted to the maximum squeezing that can be generated using
the adiabatic technique which is given by ξ2

s ≈ 2N−1 at the boundary to the Fock

http://dx.doi.org/10.1007/978-3-642-25637-0_2
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regime where the coherence is still reasonable high [35]. The maximum squeezing
is better in the adiabatic case however the adiabaticity criterion requires evolution
times τadiab ≈ 1/χ . The best squeezing in the one axis twisting protocol is achieved
after τdia ≈ N−2/3 · 1/χ , a factor of N 2/3 faster favoring the diabatic protocol.

The timescales given here are not taking particle loss into account. Losses limit the
maximum achievable squeezing and the optimum is reached after a shorter time as
compared to the lossless case [12]. For our experimental parameters (N ≈ 500, χ ≈
0.1 Hz) we expect the best diabatic spin squeezing including particle losses to be in
the order of ξ2

s ≈ −10 dB after a non-linear evolution time of τdia = O (10ms) .

Analytic Expression for the Variance of the Twisted Quantum State

The initial quantum state—a coherent spin state |θ = π/2, ϕ〉—features isotropic
variance in the directions perpendicular to the mean spin vector. After a certain
evolution time τ under the one axis twisting Hamiltonian (4.10) correlations between
the two orthogonal directions have been built up and the variance of the spin state is
no longer isotropic–the two dimensional variance has an elliptical shape.9

Experimentally the fluctuations of the quantum state in Jz direction can be mea-
sured and arbitrary unitary rotations of the quantum state are possible. The normal-
ized variance ξ2

N in Jz direction after an unitary rotation α around the center of the
quantum state (see Fig. 4.9) has been calculated analytically [27]:

ξ2
N (α) = 1 + N − 1

4

[
A −

√
A2 + B2 cos(2(α + δ))

]
(4.12)

where the following abbreviations are used:

A = 1 − cos(2χ t)N−2

B = 4 sin(χ t) cos(χ)N−2

δ = 1

2
arctan

(
B

A

) (4.13)

The required rotation of the quantum state before readout of the population imbalance
Jz has been implemented in our lab. Therefore an experimental characterization of
the quantum state after one axis twisting evolution is possible and the measurements
can be compared to the analytic expression (4.12). The following Sect. 4.3 describes
this experiment in detail.

Prior to our experiments this noise tomography technique has already been per-
formed experimentally [36, 37]. Coherent spin squeezing and an anisotropic variance
distribution have been found for a hot atomic sample in a vapor cell. The experimental

9 We assume small fluctuations �J 2⊥,max as compared to the total atom number �J 2⊥,max < N 2/4
such that the Bloch sphere can be locally approximated by a plane.
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Fig. 4.9 Variance of the Jz spin component versus rotation angle. The figure shows the prediction
of Equation (4.12) for the normalized variance ξ2

N in Jz spin direction versus rotation angle α

around the center of the spin state. The variance is symmetric in intervals 0 ≤ α < 180◦ and
optimal number squeezing is detected for a rotation angle α0. At α0 + 90◦ the maximally uncertain
axis is rotated to the Jz direction. The Bloch sphere illustrations show the quantum state and the
probability distribution in Jz prior to readout for no rotation, in the number squeezed region and
when the anti-squeezed direction is rotated to the vertical axis

protocol used to generate spin squeezing was a quantum non-demolition measure-
ment based method and not the interaction dependent one axis twisting method
presented here.

4.3 One Axis Twisting in Action: Experiments

For an internal Josephson contact in a Bose–Einstein condensate one axis twisting
and noise tomography can be experimentally realized by an interferometric sequence
similar to the standard Ramsey scheme [38, 39]. In the following we report on these
experiments.

Adiabatic Transfer: The Landau-Zener Sweep

Starting with 87 Rubidium atoms in a magneto-optical trap, all our experiments
require evaporative cooling in a magnetic time-orbiting-potential trap prior to the
transfer of the atoms into the optical dipole traps [40]. Final evaporation is done in
the optical traps, defining the temperature and atom number of the Bose–Einstein
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condensate in a repeatable manner. However, magnetic trapping requires collision-
ally stable low field seeking states [41] which are in the case of 87 Rubidium the
|F, m F 〉 = |1,−1〉 and |2, 2〉 hyperfine states. Different to the external squeez-
ing experiment we prepare the Bose–Einstein condensate now in the |1,−1〉 state.
A radio-frequency Landau-Zener sweep within the F = 1 hyperfine manifold is
used to transfer the atoms with very high efficiency to the state |a〉 = |1, 1〉.
The radio-frequency is linearly ramped from 2π · 1.5 to 2π · 2.5 MHz in 20 ms
realizing the sweep at a moderate magnetic field of B = 3.2 G.10

Interferometric One Axis Twisting Sequence

Here we present the specific implementation of the one axis twisting idea for
our experiment. While the magnetic field is actively stabilized at B = 9.13 G (see
Appendix C) we prepare a coherent spin state by a fast �t = π/2 pulse. The Rabi
frequency is � ≈ 2π · 600 Hz such that the nonlinearity can be neglected during the
pulse (Rabi regime with � = 0.08). After this first coupling pulse the phase of the
coherent spin state is defined to ϕ = 0, meaning the center of mass of the spin state
is located on the Jx axis. The state evolves under the Hamiltonian (4.9) for a time τ ,
symmetrically interrupted by a spin echo pulse after τ/2, until another rotation pulse
with appropriately chosen phase is used to rotate the spin state. The pulse phase of
the last pulse is adjusted to assure rotation around the center of the spin state and the
rotation angle α = �tα is set by the duration of the pulse tα . The main external noise
source in our experiment are magnetic field fluctuations and we choose the axis of
the spin echo pulse such that is perpendicular to the spin polarization direction for
lowest noise sensitivity (see Appendix C).11

Here it is important to note that there are two possibilities to control the longi-
tudinal rotation axis of the coupling pulses: The first one is to set the state rotation
angle ϕ(t) via a controlled detuning �ω0 such that ϕ(t) = −�ω0t at time t. In our
setup it is more convenient to choose a second method where we use the fact that
the phase ϕ is defined relative to the phase of the combined microwave and radio-
frequency radiation field. Therefore the longitudinal position of the quantum state on
the Bloch sphere or equivalently the pulse rotation axis can be chosen by the phase
of the subsequent coupling pulses.

In order to perform noise tomography we repeat the experiment 60 times12 for
each angle α and extract the number squeezing ξ2

N for each dataset. For an evolution
time of τ = 18 ms we find the optimal number squeezing and the results are plotted
in Fig. 4.10. For details of the calculation of ξ2

N from the raw data see In Sect. 3.4.1.
A graphical representation of the tomography sequence can be found in Fig. 4.20

10 The single-photon Rabi frequency for the coupling of the Zeeman sub-states is approximately
2π · 10 kHz.
11 Experimentally the phase of the coupling pulses at time t can be found by a measurement of
the population imbalance versus pulse phase of a final π/2 pulse. The zero crossings identify the
two phases where the rotation axis hits the center of the spin state.
12 60 experimental repetitions define one dataset in all measurements done in context with the
internal spin system.

http://dx.doi.org/10.1007/978-3-642-25637-0_3
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Fig. 4.10 Noise tomography. The figure shows the result of the noise tomography experiment. The
gray open circles represent the photon shot noise corrected data, while the black solid data points
are additionally corrected for known technical noise. Panel a is a close up of the number squeezed
region (the dashed area in panel b), where for clarity statistical error bars have been added for the
black solid data only. The black line is the theoretical prediction from Equation (4.12) where all
parameters have been extracted from independent measurements as detailed in the main text. Panel
b shows the complete measurement over the full range of the rotation angle α. It is worth noticing
that the experimental data without correcting for technical noise do not show number squeezing
ξ2N < 0 dB around the second minimum of the theory. From the rotation angle dependence of the
technical noise we can estimate the main noise sources in the experiment as detailed in Sect. 4.5.1
and appendix C. This figure is originally published in [42]

where the non-linear beamsplitter sequence is depicted which is equivalent to the
tomography sequence but for a fixed rotation angle α.
Optimal Number Squeezing

The optimal number squeezing is ξ2
N = −6.9+0.8

−0.9 dB detected under an angle of
α0 = 16.5◦ where the errors are one standard deviation of the mean over several
datasets—in total 634 experimental realizations contribute.13 We use the six-well
one-dimensional optical lattice trap explained in In Sect. 3.1.2 in all experiments on
internal spin squeezing, but the barrier separating the individual sites is very high
(V0 ≈ 2π ·2.5 kHz) such that the individual condensates are independent. As detailed
in Sect. 4.5 this is an experimental trick to increase the statistics and to estimate the
technical noise stemming from single particle effects. Data from different wells
contribute to the data shown in Fig. 4.10 and we use all wells with total atom number
between 200 and 450, while the mean total atom number over all datasets is 400.

13 In order to obtain better statistics we average the measurements for α = 16◦ and α = 17◦.

http://dx.doi.org/10.1007/978-3-642-25637-0_3
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Subtracting technical noise (see Sect. 4.5 for details) we find an optimum number
squeezing of ξ2

N = −8.2+0.9
−1.2 dB close to the theoretical optimum. As this value

is cleaned from all known extra noise contributions it is the best estimation of the
true variance of the quantum state. The black solid data points in Fig. 4.10 show the
technical noise corrected data.14

Measuring the Coherence

A rotation by α = α0+90◦ transforms the most uncertain spin component to the Jz

direction. Here we measure increased number fluctuations of ξ2
N ,max = 10.3+0.3

−0.4 dB.
These fluctuations limit the coherence of the quantum state: Assuming, as a gedanken
experiment, we rotate the most uncertain axis to the Jy direction (a rotation by α0)

then � Ĵ 2
y = N 2

4 �ϕ2. For N � 1,ϕ � π and a gaussian probability distribution
p(ϕ) the coherence follows to:

〈cos(ϕ)〉 =
∫

dϕ cos(ϕ)p(ϕ)∫
dϕp(ϕ)

= e−�ϕ2/2 (4.14)

Noticing that after a unitary rotation by α = α0 +90◦ the maximum number fluctua-

tions�ϕ2 = 4� Ĵ 2
z

N 2 = ξ2
N ,max/N , measure these phase fluctuations then the coherence

is given by:

〈cos(ϕ)〉 = e−ξ2
N ,max/2N (4.15)

Validity of the symmetric two-mode model is crucial here and we tested for it experi-
mentally as described in Sect. 4.6 The coherence follows to 〈cos(ϕ)〉 = 0.986±0.001
and we find coherent spin squeezing ξ2

S = ξ2
N /〈cos(ϕ)〉2 of:

ξ2
S = ξ2

N

〈cos(ϕ)〉2 = −8.2 dB (4.16)

This large amount of coherent spin squeezing allows in principle for a gain of 61%
in the phase precision �ϕ of ideal Ramsey type interferometry with respect to the
standard quantum limit [43].

Comparison to the One Axis Twisting Theory

The black line in Fig. 4.10 is the theoretical prediction detailed at the end of
Sect. 4.2 without any adjustable parameter. The nonlinearity assumed is χ = 2π ·
0.063 Hz as extracted from the mean field spin dynamics experiment presented
in Sect. 4.1.3. The main discrepancy between theory and experimental data is in
the squeezed regions. We attribute this difference to a loss of approximately 15%

14 As explained in In Sect. 3.4.1 we always remove the photon shot noise in these experiments.

http://dx.doi.org/10.1007/978-3-642-25637-0_3
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of the atoms during the total experiment duration of ca. 20 ms which degrades
the achievable squeezing [12]. The good agreement with the theory shows that our
measurements are well described by the two-mode model and the observed phase
dispersion can be fully explained by non-linear one axis twisting dynamics.

4.4 Quantifying Many-Body Entanglement

Coherent spin squeezing is one example where entanglement provides a quantum
resource useful to overcome limits set by single particle quantum mechanics [6, 43].
In 2001 Sørensen and Mølmer showed how the fluctuations in one perpendicular
spin direction and the coherence of the system can be used to measure many-body
entanglement in the system (see also In Sect. 2.3.3) [44]. We are able to detect both
quantities and thus we use the depth of entanglement measure to quantify entangle-
ment in our system. Fig. 4.11 shows our measurement in context of this quantitative
criterion where we use the analytic approximation from Equation (2.24) to plot the
theory lines in the figure.

The measured values for coherence 〈cos(ϕ)〉 = 0.986±0.001 and number squeez-
ing ξ2

N = −8.2+0.9
−1.2 dB imply entanglement of 170 particles in the sense of the non-

separable block size of the many-body density matrix. On a three standard deviation
statistical uncertainty level we can exclude less than 80 entangled particles in the
system.

4.5 Many Experiments in Parallel: More Than Just
Better Statistics

As already mentioned in Sect. 4.3 the Rubidium atoms are trapped in an one dimen-
sional optical lattice. The total atom number is typically 2, 300 distributed over
six wells of the lattice and tunneling between the wells is negligible resulting in
independent condensates in the individual wells. Figure 4.12 shows the typical total
atom number per lattice site. The central wells contain approximately 400atoms,15

the outer ones 100 to 200 atoms. The local trapping frequencies in each well are
ωx = ωy = 2π · 425 Hz and ωz = 2π · 420 Hz. This optical lattice configuration
has a few important advantages over the single trap configuration. The most obvious
one is the increased statistics since we perform six experiments in parallel. But there
are two more points worth noticing:

15 Depending on the relative position of dipole trap and optical lattice the central well can contain
up to 450 atoms.

http://dx.doi.org/10.1007/978-3-642-25637-0_2
http://dx.doi.org/10.1007/978-3-642-25637-0_2
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Fig. 4.11 Quantifying the depth of entanglement. This figure shows the measured number fluctua-
tions and coherence in context of the entanglement measure proposed in [44]. The theory lines are
the analytic approximation of the numerical results from reference [44] underestimating the amount
of entangled particles as shown in Fig. 5. The numbers on the different lines give the minimum non-
separable block size of the density matrix. The inset shows our measurement centered at the line for
170 entangled particles. The gray shaded ellipse is the three standard deviation uncertainty region
excluding less than 80 entangled particles on this statistical precision level. This figure is originally
published in [42]

Suppressed External Dynamics

The lattice increases the local trap frequency in z-direction from 2π ·20 to 2π ·420
Hz. Compared to the–now in all directions—large trap frequencies the difference in
the mean field potentials for atoms in state |a〉 and |b〉 is small, such that only small
amplitude dynamics are initiated after an abrupt internal state change. The single
spatial mode approximation—both modes share the same spatial wavefunction—is
therefore valid. Figure 4.13 shows the dynamics of the mean field wavefunction over-
lap after a π/2 pulse simulated with the two component Gross-Pitaevskii equation
for our parameters.

Technical Noise

Spin readout is performed in a destructive way, meaning a new Bose–Einstein
condensate has to be prepared for each single measurement. Since fluctuation mea-
surements require ensemble averaging our results are sensitive to shot-to-shot fluctu-
ations of the experimental parameters. But next to these shot-to-shot variations also
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Fig. 4.12 Atom number distribution over the six optical traps. The upper part of the figure shows
the total atom number in each of the optical traps—the six central wells are populated, well one
and eight are empty. Below typical absorption pictures are shown, here for a 50/50 mixture of both
species. the lengthened shape of the |1, 1〉 component is due to the longer expansion time before
imaging during which the optical lattice is kept on. Extensive details on the imaging procedure can
be found in Appendix A

fluctuations of the differential energy shift during the evolution time have to be taken
into account. Therefore the one axis twisting Hamiltonian (4.9) becomes:

Ĥ = −�ω0(t) Ĵz + χ Ĵ 2
z (4.17)

The fluctuations �ω0(t) result in random rotation frequencies of the spin state around
the Jz axis during the evolution time τ . The resulting phase noise in the integrated
rotation angle �φ̃(τ) = ∫ τ

0 �ω0(t)dt translates into increased fluctuations in the
occupation number difference depending on the rotation angle α of the last coupling
pulse in the experimental sequence (see Sect. 4.3)

The main contribution to the differential energy shift originates from mag-
netic field noise. The |1, 1〉 and |2,−1〉 hyperfine states share approximately the
same linear Zeeman shift, but at B ≈ 9.1 G the differential Zeeman shift is
∂ω0/∂ B = 2π · 10 Hz/mG requiring for a very high magnetic field stability. We use
an active feedback technique and synchronization of the experiment to the power
line frequency in order to stabilize the magnetic field to the 100μ G level (for details
see Appendix C).

The spin echo pulse mentioned in Sect. 4.3 is used to reduce the low frequency
phase noise sensitivity of the system. The normalized spectral sensitivity with and
without spin echo pulse is shown in Fig. 4.14. It depends on the total sequence length
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Fig. 4.13 Dynamics of the wavefunction overlap. The figure shows the calculated dynamics in the
wavefunction overlap after an abrupt internal state change, e.g., due to a π/2 pulse. The wavefunction
overlap shows negligible dynamics on the 10−4 level. The simulation was done for 500 atoms in
total in a ωx = ωy = 2π · 425 Hz and ωz = 2π · 420 Hz trap and for the scattering length aab
decreased by 10% from its background value

τ and can in principle be modified using further echo pulses—a “bang-bang control”
technique [45].16

Long Time Coherence Measurement

We perform a Ramsey type coherence measurement and compare the observed
visibility of Ramsey fringes versus time for two experiments—with and without
echo pulse. The experimental sequence starts with a π/2 pulse which prepares a
coherent spin state on the equator of the Bloch sphere. After a chosen hold time thold
a second π/2 pulse recombines the two modes for phase sensitive readout. If a spin
echo pulse is used, the free evolution is interrupted symmetrically by the π pulse
at thold/2. Figure 4.15 shows the measured visibility of the |1, 1〉 component as a
function of hold time thold. The experiment was done at a magnetic field of B � 9.1
G away from the Feshbach resonance such that coherent phase spreading due to the
non-linear interaction is small.

The observed decay of the visibility can be fitted by a gaussian V = e−t2/2τ 2
dec

in both cases. We find with τdec = 108 ms without and τdec = 325 ms with the
spin echo pulse. Low frequency magnetic field fluctuations that represent a non-
markovian bath [46] are expected to cause this kind of coherence decay that can
be partially cancelled by the spin echo technique. Since spin relaxation loss is not
negligible on the experimental timescales the total atom number decreases with a
lifetime of a few hundred milliseconds. The data shown in Fig. 4.15 does not take this
decay into account explicitly, meaning the visibility is extracted from the observed
Ramsey fringes normalized to the total atom number detected at each time thold.

16 Experimentally the number of echo pulses should be kept minimal, since the coupling pulses
introduce additional noise due to fluctuations of pulse phase and power.
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Fig. 4.14 Spectral sensitivity to phase noise. The figure shows the normalized spectral sensitivity
of the system to phase noise for a free evolution time of 20 ms. The black line shows the altered
sensitivity for a spin echo sequence which is normalized to the zero frequency sensitivity limit in
the no-echo case (gray line). The most important effect of the echo pulse is to remove the zero
frequency phase noise sensitivity

4.5.1 Real Time Estimation of Technical Noise

Big technical effort is necessary to minimize the environmental noise and to detect
spin squeezing in our system (see Appendix C). However, excess noise is not per-
fectly cancelled which leads to observed spin fluctuations larger than the intrinsic
fluctuations of the quantum state. The six-well trap configuration can be used to mon-
itor this technical noise “real time” and to remove it from the variance measurements.
The fluctuations of the measured Jz component of the spin vector can be translated
into angular fluctuations in θ , the polar angle on the Bloch sphere. Noise sources
acting on the single particle level such as coupling pulse errors or the integrated
phase noise due to differential energy shifts cause angular errors that—depending on
the experimental sequence—add to the fluctuations of θ . Due to the single particle
nature of these effects the contribution to the observed fluctuations � Ĵ 2

z,tech = β2 J 2

is quadratic in the total spin length J = N/2. Here β2 indicates the angular fluctua-
tions in polar direction at the time of measurement stemming from technical noise.

Performing six experiments in parallel offers the possibility to check the depen-
dence of the observed occupation number fluctuations on the total atom number
for each measured dataset—“real time”—such that � Ĵ 2

z,tech can be subtracted accu-
rately. We bin the individual wells in all possible combinations and bin sizes and
calculate the fluctuations for each binning. This procedure allows to calculate the
number squeezing ξ2

N for different total atom numbers N. Figure 4.16 illustrates this
procedure and shows the obtained correlation of the number squeezing and the total
atom number for one exemplary data set. The correlation is due to the technical



4.5 Many Experiments in Parallel: More Than Just Better Statistics 83

0 200 400 600

0.8

0

0.2

0.4

0.6

1

vi
si

bi
lit

y 
   

   
   

 a
to

m
s

with echo pulse
without echo

hold time        (ms)

Fig. 4.15 Ramsey type coherence measurement. The figure shows the visibility of a Ramsey fringe
extracted from the atoms in the |1, 1〉 state measured versus hold time thold. Due to a detection
problem at the time the measurement was done the information of the second spin state |2,−1〉 can
not be used. However the purpose of the figure is to estimate the effect of the spin echo pulse which
is nicely shown by the data. The coherence time can be significantly enhanced by the π echo, a
strong indication for low frequency phase noise present in our experimental setup

noise which affects all—otherwise independent—condensates in the same way.17

We extract the slope β2 and remove the technical variance � Ĵ 2
z,tech(N ) from the

variance measured in each individual well with total atom number N.
In the noise tomography experiment described in Sect. 4.3 the correction is small

for small rotation angles but without noise removal no number squeezing is detected
after a α = α0 + 180◦ rotation. This indicates pulse power fluctuations or shot to
shot magnetic field drifts to which this rotation close to 180◦ is most sensitive (see
Appendix C).18 For α = 90◦ the measurement is maximally sensitive to longitudinal
phase noise �φ̃ originating from differential energy shifts between the two modes.
Figure 4.17 shows the normalized experimental noise versus rotation angle detected
in the tomography experiment.

17 The spacing between the wells is only 5.7μ m such that magnetic field fluctuations and the
electromagnetic radiation fields for the coupling are homogeneous over the whole system.
18 Fluctuation measurements on a coherent spin state after a 7π/2 pulse in a Rabi cycle still
show shot noise limited noise characteristics. This indicates negligible pulse power fluctuations in
our experiment and suggests again that shot-to-shot magnetic field fluctuations are the main noise
source.
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Fig. 4.16 Technical noise estimation. Performing six experiments in parallel, spatially spaced by
a few micrometer, allows for “real time” monitoring of the technical noise. Noise measurement is
done by binning of the data for all different combinations of k wells resulting in a set of different
total atom numbers {N (k)

i } (left part of the figure). This provides a measure for the scaling of the
normalized occupation number fluctuations ξ2

N with total atom number N. The linear slope β2 is
extracted for each dataset and the measured fluctuations in each individual well are corrected for
the technical noise. The graph on the right of the figure shows the result of this procedure for one
exemplary dataset

4.6 Heisenberg Minimal Uncertainty Product and Validity
of the Symmetric Two-Mode Model

Validity of the Symmetric Two-Mode Model

Some arguments given in the previous sections for example the calculation of
the coherence from the maximum anti-squeezing ξ2

N ,max in Sect. 4.3 require the
validity of the symmetric two-mode model. We test this assumption by comparing

the two-mode coherence 〈cos(ϕ)〉2m = e−ξ2
N ,max/2N with the coherence 〈cos(ϕ)〉 = V

measured via the visibility V in a Ramsey experiment. The Ramsey method reveals
the actual coherence taking all deteriorating effects into account. In order to perform
the Ramsey measurement we prepare a spin squeezed state by the one axis twisting
sequence detailed in Sect. 4.3 The last coupling pulse which was used to rotate the
quantum state around its center in the previous experiment is now replaced by a π/2
pulse whose phase ϕ is changed over the full [0, 2π ] interval.

We use the data from the central four wells obtained in 847 experimental repeti-
tions resulting in 3, 388 data points in total. Figure 4.18 shows the obtained Ramsey
fringe where the data points represent the normalized population imbalance n/N
measured in the different experiments and the black solid line is a sinusoidal fit to
the data. The fit reveals a visibility V = 1.00 ± 0.02, confirming the two-mode
model from which a visibility of 〈cos(ϕ)〉2m = 0.986 ± 0.001 was predicted. Since
the coherence deduced from the maximum anti-squeezing is more accurate, we use
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Fig. 4.17 Rotation dependence of the technical noise. The figure shows the normalized technical
noise contribution in the tomography experiment. The noise shown here is the difference between
the open gray and the solid black data presented in Fig. 10. Within the first 180◦ of rotation the
noise is maximal for angles around 90◦ identifying longitudinal phase noise �φ̃ as the main noise
contribution. The difference in the noise level between the two gray shaded areas can be explained
by shot-to-shot magnetic field fluctuations, which result in fluctuations of the coupling pulse rotation
axis in polar direction (see Appendix C)

this value for the various calculations presented, e.g. coherent spin squeezing, number
of entangled particles and the Heisenberg uncertainty product.

Heisenberg Uncertainty Product

As discussed in In Sect. 2.2 the Heisenberg minimal uncertainty product for the
spin operators is

�2
H = 4� Ĵ 2

z � Ĵ 2
y

〈 Ĵ 2
x 〉 ≥ 1 (4.18)

which can be expressed in the measured quantities ξ2
N and 〈cos ϕ〉:

�2
H = ξ2

N ,minξ
2
N ,max

〈cos(ϕ)2〉 (4.19)

Experimentally we find

�2
H = 1.65 ± 0.35 (4.20)

which is only slightly larger than the value of �2
H = 1.01 predicted by the two-

mode theory. The discrepancy between the two numbers can be explained from the
difference of the best measured number squeezing of ξ2

N ,min = −8.2 dB to the value

ξ2
N ,min,Ueda = −10.3 dB which is the theoretical prediction without particle loss. The

http://dx.doi.org/10.1007/978-3-642-25637-0_2
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Fig. 4.18 Ramsey fringe using a spin squeezed state. The figure shows a Ramsey fringe obtained for
a spin squeezed state prepared using the 18 ms one axis twisting sequence explained in Section 4.3
From the sinusoidal fit we extract a visibility of V = 1.00 ± 0.02 in good agreement with 0.986 ±
0.001, the value deduced assuming the symmetric two-mode model

ratio of these two numbers is 1.62, identifying particle loss as the main deteriorating
effect in this measurement.

4.7 Non-linear Atom Interferometer Beats “Classical”
Precision Limit

For a long time interaction among particles has been regarded as a drawback for atom
interferometry [47, 48]. Recent theoretical work however revealed that-in principle-
one axis twisting dynamics does not spoil interferometric precision and even more
that it can lead to interferometry close to the ultimate Heisenberg limit [34].

We experimentally realize a novel non-linear atom interferometer and show inter-
ferometric precision beyond the standard quantum limit. The interferometric scheme
is related to a standard Ramsey interferometric sequence, where the accumulated
phase ϕ between two modes is measured (see In Sect. 2.4). The phase of interest is
accumulated within a time τ which is bounded between two π/2 coupling pulses.

http://dx.doi.org/10.1007/978-3-642-25637-0_2
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Fig. 4.19 Optical analog to our non-linear interferometer. Panel a shows the analog of optical
Mach-Zehnder interferometry to a standard Ramsey sequence for an atomic interferometer based
on internal states of the atoms. The analog to a beamsplitter in optics is a π/2 pulse and the acquired
phase ϕ, the longitudinal angle on the Bloch sphere, translates into an population imbalance at the
output. b, Atom interferometry beyond the standard quantum limit can be realized by the replacement
of the first beamsplitter with a non-linear one. The non-linear beamsplitter produces an entangled—
phase squeezed state—at its output where the reduced variance in longitudinal direction translates
into reduced noise in the population imbalance Jz at the output

These two pulses are the analog to beamspitters in optical Mach-Zehnder interferom-
etry (see Fig. 4.19a) [49], where the first beamsplitter creates a coherent superposition
of the two modes |a〉 and |b〉 while the last pulse is necessary to translate the acquired
phase into a observable population difference.

A non-linear Beamsplitter for Bose–Einstein Condensates

In our non-linear atom interferometer the first beamsplitter is replaced by a
non-linear beamsplitter (Fig. 4.19b). At its output a coherent spin squeezed state
appears which propagates for a time τ until a standard linear beamsplitter—a π/2
pulse—couples the two modes before readout. As described in In Sect. 2.4 coher-
ent spin squeezed states allow for interferometric precision beyond the standard
quantum limit.
The realization of the non-linear beamsplitter is closely related to the noise tomogra-
phy experiment presented in Sect. 4.3 and its implementation is detailed in Fig. 4.20.
We use the same experimental parameters as for the tomography experiment, in par-
ticular the magnetic field is constant at B = 9.13 G and the twisting time is 18
ms symmetrically split by a spin echo pulse. The angle of the last rotation pulse
around the center of the quantum state is chosen to α = α0 + 90◦, such that the
spin direction with minimal fluctuations is in Jy direction—a phase squeezed state
is prepared. We choose a short interferometric evolution time of τevo = 2 μs in order
to avoid magnetic field fluctuations to spoil our measurement.

http://dx.doi.org/10.1007/978-3-642-25637-0_2
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Fig. 4.20 Schematic of the non-linear interferometric sequence. The figure summarizes the
non-linear beamsplitter and the following interferometric sequence graphically. The action of each
coupling pulse is shown on the Bloch sphere and the evolution of the Jz component of the spin
and its variance is indicated by the gray shaded curve and its width. The rotation axis and angle of
each pulse and the experimental durations of the different intervals are given below. The non-linear
beamsplitter sequence (dashed area) is a special case of the noise tomography sequence described
in Section 4.3 with the last rotation chosen to α = α0 + 90◦

Performance of the Non-linear Interferometer

For a straightforward and very intuitive characterization of the performance of the
non-linear interferometer we carry out repeated measurements around the working
point of the interferometer and calculate the phase precision. We vary the mean
acquired phase 〈ϕ〉 across an interval [−16◦, 16◦] and detect the mean population
imbalance 〈 Ĵz〉 and its variance � Ĵ 2

z (Fig. 4.21). This allows us to draw an uncertainty
band whose horizontal width gives the phase measurement precision �ϕ. In order
to compare the performance of the non-linear interferometer to a standard linear
Ramsey scheme, we replace the non-linear beamsplitter by a single π/2 pulse and
repeat the same measurement. Since approximately 15% of the atoms are lost during
the non-linear sequence (which takes approximately 18.5 ms longer than the linear
one) we experimentally adjust the atom number in the linear case in order to have
a similar number at the time of detection. We find an increase of phase precision
of 31% when using the non-linear interferometer as compared to the linear one,
however due to the presence of classical noise—mainly magnetic field noise and
readout photon shot noise—this number alone does not imply improvement beyond
the standard quantum limit. We stress that no noise correction is done on the data
presented in this section–the shown data points represent the raw data after filtering
for rare outliers (see In Sect. 3.4.1).

In order to claim measurement precision above the standard quantum limit it is
important to compare the results to the precision of an ideal linear interferometer
that does not suffer from any technical noise. Knowledge of the coherence of the
quantum state is crucial for this comparison and we measure the visibility V of a
Ramsey fringe obtained when scanning the phase ϕ in the interferometer over the full

http://dx.doi.org/10.1007/978-3-642-25637-0_3
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Fig. 4.21 Comparison of the linear and non-linear interferometer. We directly compare the perfor-
mance of the linear and non-linear interferometer. An offset has been added to center the results of
both measurements relative to each other. The black (gray) dashed lines are a fit through the upper
and lower ends of the two standard deviation error bars for the non-linear (linear) interferometer.
The horizontal width of the included areas measure the phase precision. We find 31% increased
phase precision for the non-linear interferometer as compared to the linear one

interval [0, 2π ]. We find V = 0.98 ± 0.02 for the linear and V = 0.92 ± 0.02 for the
non-linear interferometer (Fig. 4.22a). The signal for an ideal linear interferometer is
inferred by calculating the expected fluctuations for a binomial distribution �Jz,sn =√

p(1 − p)N—the shot noise level—for the data measured at each mean value of the
relative phase 〈ϕ〉.19 This reveals error bars whose upper and lower ends are linearly
fitted and the slope m of the fits is corrected by m/V in order to take the decreased
coherence into account. Figure 4.22b shows the data of Fig. 4.21 and additionally the
uncertainty regions expected for an ideal linear interferometer. Even though technical
imperfections deteriorate the precision of the non-linear interferometer we find

�ϕnl

�ϕl
= 0.85 (4.21)

where �ϕnl(l) is the phase error of the non-linear (ideal linear) interferometer, imply-
ing 15% increased phase sensitivity beyond the standard quantum limit.

The linear interferometer measurements show 24% larger phase noise than
expected for an ideal interferometer highlighting the effect of excess technical noise.
In order to estimate the amount of this noise in the non-linear measurement we cal-
culate the mean number squeezing over all datasets for the non-linear interferometer
which are shown in Fig. 4.22b and find ξ2

N = −2.1 dB. Subtracting photon shot
noise and technical noise (see Sects. 3.4.1 and 4.5) we calculate ξ2

N = −4.3 dB.
This value still differs from the best measured number squeezing at the output of the

19 As a reminder, p = 〈na/N 〉 is the probability for an atom to be found in mode |a〉.
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90 4 Non-linear Interferometry Beyond the Standard Quantum Limit

-20 0 20

relative phase    (°)

-100

0

100

-200

-100

0

100

200

at
om

 n
um

be
r 

di
ffe

re
nc

e

-180 -90 0 90 180

relative phase    (°)

(a) (b)

Fig. 4.22 Interferometry beyond the standard quantum limit. Panel a shows a Ramsey fringe
recorded at the output of the linear (gray) and non-linear interferometer (black). The solid lines
give the total number of atoms N/2 as a reference. We find a coherence of 0.98 ± 0.02 in the linear
and 0.92 ± 0.02 in the non-linear case. b, Comparison of the interferometer performance to an
ideal linear Ramsey interferometer (gray shaded areas) reveals an increase in phase precision by
15% when using the non-linear atom interferometer (black). The individual data points are shown
without any noise subtraction and the solid lines are linear fits through the lower and upper ends of
two standard deviation error bars. Our implementation of the linear Ramsey scheme performs 24%
worse than the ideal one (gray) highlighting the effect of technical induced fluctuations. An offset
has been added to separate the two measurements for clarity. This figure is originally published
in [42]

non-linear beamsplitter (ξ2
N = −8.2 dB). This difference is due to the long mea-

surement duration for the full interferometer dataset which is in the order of 24 h.
Slow magnetic field drifts (on the order of 5 mG per day) become important since
the nonlinearity χ changes and the performance of the non-linear interferometer
degrades.

The best detected coherent spin squeezing the output of the the non-linear beam-
splitter of ξ2

S = −8.2 dB (see Sect. 4.3) allows in principle for a phase precision gain
of 61% compared to the standard quantum limit. In a possible future experimen-
tal setup magnetic field noise and read out noise due to the detection process have
to be reduced in order to make use of the full precision increase. Nevertheless our
experiment shows the feasibility of non-linear atom interferometry based on inter-
acting atoms and together with novel readout techniques it might lead to real life
interferometric sensors operating beyond the standard quantum limit.
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Chapter 5
Outlook

The obtained results on spin squeezing in a Bose–Einstein condensate on both
external and internal degrees of freedom open up a very promising road toward
applied quantum atom optics. A non-linear atom interferometer with absolute pre-
cision competitive to the limit of todays best linear interferometers becomes within
reach for real life measurements.

For an atom interferometer based on external degrees of freedom a more
specialized trap design with higher spatial stability, maybe involving non-harmonic
potentials, might be used to overcome the limitations in stability and tunability. The
realization of a beam spitter analog among the external modes is a defined goal in
this context. Entropy control in splitting direction is another issue here. The produc-
tion of larger number squeezing requires lower entropy in the Josephson many-body
modes which might be realizable with a trap design such that the trap frequency in
splitting direction is larger than the thermal energy scale. This transversal splitting
has been realized in atom chip interferometers [1], where a first evidence of number
squeezing has been observed [2]. State dependent potentials on atom chips have been
used for the generation of spin squeezed states for which spin squeezing has been
directly observed [3].

The extraordinary experimental control in the experiments based on internal
atomic states allowed for the realization of a prototypal non-linear interferometer.
Our result shows the validity of the simple two-mode model for this system and is
in agreement with the predictions of references [4, 5]. The authors also calculated
the parameters for optimal spin squeezing including particle loss for a large number
of atoms (N = O (105)). Given this number of atoms, state of the art microwave
technology together with well designed magnetic shielding might already allow for
non-linear precision measurements with ultracold atoms that compete with the best
available linear measurements.

We developed the experimental technology to detect and control a Bose–Einstein
condensate in two different two-mode systems with very high precision. These exper-
iments can in principle be combined resulting in effectively four modes among which
cross interaction and coupling is controllable. The two additional degrees of freedom

C. Groß, Spin Squeezing and Non-linear Atom Interferometry with Bose–Einstein 93
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allow for deeper exploration of different types of many-body entanglement. One
example is Einstein–Podolsky–Rosen type continuous variable entanglement [6, 7]
which, for massive particles, has been detected in vapor cell experiments [7]. How-
ever the violation of the continuous variable Einstein–Podolsky–Rosen criterion in
this experiment was not strong enough to violate the generalized Einstein–Podolsky–
Rosen paradox, which tests for local realism for all ‘elements of reality’ [7]. Exper-
iments in the four mode Bose–Einstein condensate might overcome this limitation
and allow for the realization of a Einstein–Podolsky–Rosen paradox in a macroscopic
system consisting of a few hundred atoms [9, 10].
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Appendix A
Precision Absorption Imaging
of Ultracold Atoms

A.1 Hardware and Alignment of the Imaging System

A high resolution absorption imaging system compatible with a typical experiment
on Bose–Einstein condensation was developed in our group [1, 2]. We briefly
describe the crucial points of the setup and alignment of the imaging system here.
For details on the custom made optics we refer the reader to references [1] and [2]
and for basics on absorption imaging to [3].

Hardware

The most important part of the imaging system is an infinite conjugate objective
featuring a numerical aperture of 0.45. Three custom made lenses, anti reflection
coated for 780 nm are contained in this objective. Layout and design of the optics
was done by Carl Zeiss Laser Systems, the housing was built by the mechanical
workshop of the Kirchhoff Institute for Physics and the mounting was done in our
group. At the time of imaging the distance of the objective to the glass cell is
approximately 1 mm, blocking all optical access to the experimental chamber from
this side. Therefore the objective is mounted on a step motor allowing for 110 mm
travel with a repeatable position precision of 1lm,1 such that it can be moved away
from the glass cell during the MOT phase of the experimental sequence.

The image of the atoms is focused onto a CCD chip using a standard infinite
conjugate achromat with a focal length of 1 m. We have chosen a magnification of
30.96, such that the resolution of the system is not limited by the pixel size (13lm)
of our CCD camera. We use a back illuminated deep depletion CCD camera2 with
a quantum efficiency of ca. 93% at a wavelength of k ¼ 780 nm. The vacuum

1 MICOS Linear Stage LS-110.
2 Princeton Instruments, PIXIS: 1024BR.
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window of the camera is parallel (non-wedged) and double sided anti reflection
coated. Two narrow bandpass filters3 with the transmission centered around k ¼
780 nm are placed before the CCD camera since the objective has to be shielded
from laser light originating from the optical lattice beams (k ¼ 843 nm) and one of
the dipole trap beams (k ¼ 1064 nm). We measure 72% quantum efficiency of the
whole system including all optics and the uncoated experimental chamber. The
numbers given in this paragraph represent the current setup of the imaging system
(Fig. A.1) which was used for the squeezing experiments based on internal degrees
of freedom. In the first (external squeezing) experiment we used a different CCD
camera4 which has a much lower quantum efficiency5 and smaller pixel size of
6:45lm. Here the achromat focussing the image onto the CCD chip was chosen
such that the resulting magnification was 11.2.

As an estimate for the resolution of our imaging system we measure its point
spread function by in situ imaging of a small Bose–Einstein condensate and we
find a width (gaussian standard deviation) of ca. 700 nm consistent with the
diffraction limit.

Alignment

Correct alignment of the objective with respect to the glass cell of the experimental
chamber is crucial to minimize optical aberration. Experimentally most
challenging is to obtain parallelism between the glass cell and the principal
planes of the objective lenses. Careful mounting and high precision manufacturing
of the objective ensures correct relative alignment of all three lenses and their
parallelism to the front surface of the objective mount. In order to align the
objective to the glass cell a glass plate is glued to this front surface. A reference

movable
objective

vacuum
chamber

imaging
beam

shielding
tube

camera
shutter

atoms

ca. 10cm

bandpass
filter

razorblade
mask

2cm 100cm
standard
achromat

Fig. A.1 Setup of the imaging system. A large numerical aperture movable objective allows for
high resolution absorption imaging of the ultracold atoms while it preserves maximal optical
access at the laser cooling phase of the experimental cycle. The shielding tube is necessary to
minimize air motion in the imaging path and to decouple the CCD camera from the mechanical
shutter. Both, objective and CCD camera are mounted mechanical stable such that shot noise
limited imaging is achieved. The total length of the setup is approximately 1.5 m set by the
required magnification and the dimensions of the step motor that carries the objective

3 Semrock BrightLine HC 780/12.
4 QImaging, Retiga Exi.
5 The total quantum efficiency of the old setup was approximately 20%.
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laser beam is set up such that it hits the position of the atomic cloud and such that
it is perpendicular to the glass cell. The remaining challenge is to align the
reflected spots from the glass cell and from the glass plate glued to the objective.

The imaging beam is tilted by an angle of approximately 5� to the normal of the
glass cell in order to avoid etaloning between the various parallel glass surfaces.

A.2 The Imaging Sequence

In the external squeezing experiment only the F ¼ 2;mF ¼ 2j i state of the
87 Rubidium atoms has to be detected and the imaging sequence is straightforward.
Absorption imaging requires at least two pictures, one containing the absorption
signal from the atoms and a second one—the reference picture—measuring the light
intensity at the position of the atoms. We take these two images temporally spaced
by approximately 800 ms. A small offset magnetic field is kept on during the
detection and the imaging beam is polarized in order to drive the F ¼ 2;mF ¼ 2j i $
F0 ¼ 3;mF0 ¼ 3j i cycling transition.

The squeezing experiment based on the F ¼ 1;mF ¼ 1j i and F ¼ 2;mF ¼ �1j i
hyperfine states requires a more complicated imaging sequence since the two states
have to be distinguishable on the pictures. The experiments are done at a high
magnetic field of B � 9 G, but for imaging we ramp the field down to a value close
to zero within 3 ms before the first image is taken. This image contains the
absorption information of the F ¼ 2;mF ¼ �1j i atoms. We use the fast frame
transfer mode of our CCD camera to move the first image to the masked area of the
chip6 such that we can take the second picture 780ls later. During the shifting we
shine a resonant laser beam which does not enter the imaging objective to remove
the already imaged F ¼ 2j i atoms. A few tens of microseconds before the second
picture a re-pumping laser is switched on to transfer the population in the
F ¼ 1;mF ¼ 1j i to the F ¼ 2j i hyperfine manifold and the imaging laser’s

absorption driving the F ¼ 2j i $ F0 ¼ 3j i is measured. The F ¼ 2j i atoms are
again removed from the field of view of the camera and a reference picture is taken
another 780ls later.

In all experiments the optical dipole trap is kept on until 500ls before the first
image. From the time of switch off the atomic cloud expands which is necessary in
order to avoid non-linear effects spoiling the imaging accuracy (see Sect. A.3.2).
The imaging pulse duration is chosen between 5ls and 25ls where transversal
blurring limits its duration depending on the number of atoms in the trap.

6 4=5th of the CCD chip are masked by a razor blade (see Fig. A.1).
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A.3 Calibration of the Imaging System

Our experiments are based on atom number fluctuation measurements which
requires a accurate calibration of the total atom number and even more the
linearity of the imaging system.

A.3.1 Atom Number Calculation

In high intensity absorption imaging [4] the full Beer-Lambert absorption formula
is necessary to calculate the atomic column density ni;j from the counts per pixel
Nc;pic;i;j on the picture containing the absorption information and on the reference
picture Nc;ref;i;j (i,j indexes the CCD camera pixels but it is mostly omitted below to
ensure better readability). Not only the optical density Od ¼ lnðNc;ref=Nc;picÞ but
also the difference in the counts D ¼ ðNc;ref � Nc;picÞ contributes to the signal:

n ¼ d2

r0
ð 1
ccg

Od þ
cccdcgpe

s
DÞ ðA:1Þ

Here d is the linear extension of the CCD pixel taking the magnification into
account, r0 ¼ 3k2=2p the resonant cross section, ccg the Clebsch-Gordan
coefficient, cgpe a correction factor obtained from a comparison to simulations
as explained below and s is the imaging pulse duration. The factor cccd ¼
�hx=ðd2gQIsatÞ contributes to the linear part of the formula where Q is the total
quantum efficiency and g the gain factor of the camera. x is the light angular

frequency and Isat ¼ 1:67 mW=cm
2 the saturation energy of the transition.

The total quantum efficiency Q can be measured using a well calibrated power
meter and the factor g is determined by measuring the noise features of the CCD
camera.

Noise Features of the CCD Camera

We measure the noise curve of the camera over the full dynamic range using an
incoherent light source (e.g. a LED), taking typically more than 10,000
measurements per mean camera count. Photons hitting the active region of the
CCD are assumed to be uncorrelated featuring shot noise limited noise
characteristics. The factor g ¼ 1:025 follows from the slope of the CCD’s noise
curve via a linear fit in the working region where the camera noise is not read out
noise dominated. For the PIXIS camera the slope of a linear fit is consistent with
the value of the linear parameter of a second order polynomial fit. Figure A.2
shows the measured noise curve of the PIXIS camera including a second order fit

DN2
c ¼ p1hNci2 þ p2hNci þ p3 ðA:2Þ
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which is used in the photon shot noise subtraction detailed in Sect. A.3.3. The
parameters are p1 ¼ �1:63 � 10�6; p2 ¼ 1:025 and p3 ¼ 130:3:

Comparison with Gross-Pitaevskii Simulations

The calibration of the cccd factor is based on the quantum efficiency measurement
which itself relies on the power meter calibration. Furthermore the numerical
aperture of 0.45 means a coverage of approximately 5% of the solid angle such
that a non negligible fraction of the scattered photons enters the objective which is
not taken into account in Eq. A.1. Both effects can easily result in a slightly wrong
atom number determination.

In order to cross check the inferred number of atoms, we repeatedly image a
condensate in a very well known trap configuration using high imaging intensity
(typically 50Isat). In this regime only the linear part of the Beer-Lambert formula
contributes (the ratio between the linear and the non-linear part is 2% for the
settings used in the experiment.), but the signal to noise ratio is poor. Imaging is
done with a very short pulse (2ls) to avoid any diffusive broadening of the profile
due to photon scattering. Since the calculation of the atom number is linear, in situ
imaging is possible without worries about the very small size of the condensate
(for details see Sect. A.3.2). We calculate the average profile along the long axis of
the condensate (much bigger than our optical resolution) for different correction
factors cgpe and compare it to theoretical profiles obtained from three dimensional
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Fig. A.2 PIXIS camera noise curve. The estimation of the photon shot noise can be done by a
calibration of the CCD camera noise features. The main figure shows the measured variance of
counts versus the mean over the full dynamic range of the camera and averaged over all pixels.
The inset details the region typically used in the experiments where the number of counts is
limited by the imaging pulse length and its intensity. The slope of the curve extracted by the
second order polynomial fit shown in black reveals the photon to count gain factor g necessary for
the calculation of the atom number
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Gross-Pitaevskii equation simulations varying the total numbers of atoms
(Fig. A.3.a). We choose the correction factor such that the quadratic deviation
between a simulated profile and the measured profile is minimal and find
cgpe ¼ 0:9, reasonable close to unity.

The Clebsch-Gordan Coefficient

Calibration of the imaging is completed by the measurement of the Clebsch-Gordan
coefficient ccg: This is done by imaging a cloud of ultracold atoms with changing
imaging intensities I=Isat: A correct Clebsch–Gordan factor means intensity
independent atom number measurements. We determine the coefficient ccg by
analyzing the obtained pictures assuming different values of ccg: Figure A.3b shows
the results of the calibration measurements with a best Clebsch-Gordan coefficient
of ccg ¼ 0:19 (ccg ¼ 0:28) for the F ¼ 2 (F ¼ 1) atoms.

Knowing all parameters, Eq. A.1 is used to calculate the number of atoms per
pixel, after the mean light intensity on the reference picture is normalized to the
mean light intensity on the picture containing the atomic signal.7 The total atom
number follows from summation over the region where the atoms are detected.
The size of this region is typically chosen to three standard deviations as obtained
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Fig. A.3 Imaging parameter calibration. In a an average longitudinal profile of the atomic cloud
is shown. The error bars are one standard deviation statistical errors from the averaging over
several profiles. The black line is the best fitting prediction obtained from the three dimensional
Gross-Pitaevskii equation, where the fitting is done by variation of the total number of atoms in
the simulation and the correction factor cgpe when evaluating the data. b, Calibration of the
Clebsch-Gordan coefficient. Black squares (gray circles) show the deduced atom number for
atoms the F = 2 (F = 1) atoms versus the imaging beam intensity. For the correct Clebsch-Gordan
factor no dependence on the imaging intensity is expected

7 For the calculation of the mean light intensity the area containing the atomic signal is not taken
into account.
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from a gaussian fit to the atomic cloud. We checked that neither the detected atom
number nor its fluctuations depend critically on the size of the integration area.

A.3.2 Non-linear Effects

Quantitative measurements of the atom number using absorption imaging is
limited to atomic clouds with a size larger than the optical resolution of the
imaging system. For too small clouds the non-linear part of Eq. A.1 causes an
systematic error in the detected atom number. This can be easily understood in the
limit where the optical resolution is much larger than the pixel size which is
limiting in this case. The detected column density per pixel n is calculated from
photon counts integrated over the size of the pixel

n / ln

R
pix

Nc;ref
R

pix
Nc;pic

 !

ðA:3Þ

where we omitted the linear term. Correct atom number calculation ntrue however
requires to calculate

ntrue /
Z

pix

ln
Nc;ref

Nc;pic

� �

ðA:4Þ

In general n 6¼ ntrue holds such that the calculated atom number is wrong. In our
case the pixel size is smaller than the point spread function f of the imaging
system. Here the same argument holds, but the main averaging effect is due to the
convolution with the point spread function, e.g. the replacement Nc ! ðNc � f Þ has
to be made, where ðg � f Þ means the convolution of the functions f and g.
Figure A.4 shows the measured underestimation of the atom number and the
undesired nonlinearity in the atom number calculation for high optical densities
and small atomic clouds. We make sure to expand the atomic clouds before
imaging to avoid this effect (see Sect. A.2).

A.3.3 Photon Shot Noise Estimation

Our experiments aim to measure atomic fluctuations between two modes, e.g. two
neighboring wells of an optical lattice or two internal hyperfine states of the atoms.
The atoms are detected via their resonant interaction with the probe light whose
noise characteristics add to the atomic noise of interest. In order to minimize this
extra noise we take special care to assure photon shot noise limited detection,
in particular the absorption pictures have to be free of interference fringes. These
fringes originate from motion of the imaging systems optics or air motion in the
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light path and lead to an increased background noise level in the images. Our
stable imaging system allows for interference fringe free—detection light shot
noise limited—pictures and the light shot noise contribution can be inferred pixel
by pixel using the camera calibration curve shown in Fig. A.2. We calculate the
photonic noise DN2

c expected from the measured counts per pixel for both, the
picture and the reference picture, using the fit result from Eq. A.2. Standard error
propagation of Eq. A.1 allows for a conversion of the photonic variance DN2

c;picðrefÞ
into atomic variance:

dn2
psn;i;j ¼

d4

r2
0

(
1

c2
cg

DN2
c;pic

N2
c;pic

þ
DN2

c;ref

N2
c;ref

 !

þ cccdcgpe

s

� �2
DN2

c;pic þ DN2
c;ref

� �

þ 2cccdcgpe

ccgs

DN2
c;pic

Nc;pic

þ
DN2

c;ref

Nc;ref

 !)

(A.5)

Here we calculate the photon shot noise contribution dn2
psn;i;j by a expansion up to

second order, assuming a gaussian distribution for the photon statistics pðNcÞ:

0 250 500 750 1000
0

250

500

750

1000

reference atom number 

0 100 200
0

1

2

3

400 µs TOF

m
ea

su
re

d 
at

om
 n

um
be

r

150 µs TOF

M
ax

. o
.d

.

imaging intensity  (     )

Fig. A.4 Nonlinearity of the absorption imaging system for small atomic clouds. We compare
the atom number deduced for different imaging intensities (different shapes of the symbols) and
for two different cloud sizes. The cloud size is set by the expansion time prior to the imaging
process. For small clouds (gray symbols) and up to intermediate imaging intensities (data taken
with 25Isat) the atom number is systematically underestimated with rising optical density.
Linearizing the result around 750 atoms we discover a factor of two smaller slope of the deduced
atom number while the absolute number is underestimated by only 15%. This results in a strong
bias of the detected atom number fluctuations in this regime. For our squeezing measurements we
choose a proper expansion time longer than 400 ls and an intensity of 10–15Isat such that the
atom number deduction is linear. The reference atom number in this figure was measured for 400
ls expansion time and with high imaging intensity I/Isat (black circles)
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This approximation is justified since we make sure to have more than 200 counts
per pixel on all pictures. Photon shot noise on different pixels (i,j) is uncorrelated
such that the total photon shot noise contribution in a given area of the CCD chip
dn2

psn can be obtained by summation over the variance per pixel.

The total detected atom fluctuations Dn2
det between the modes a or b are the sum

of the atomic variance of the quantum state Dn2, the photon shot noise Dn2
psn and

extra technical noise due to experimental instabilities Dn2
exp, e.g. position or

magnetic field fluctuations.

Dn2
det ¼ Dn2 þ Dn2

psn þ Dn2
exp ðA:6Þ

All these contributions are independent from each other, such that they can be
subtracted in order to get the best estimate of Dn2 if their value is accurately
known. The uncertainty in the estimated amount of photon shot noise is given by
the accuracy of the camera calibration curve shown in Fig. A.2, where the fit gives
an error of 4%.

A.3.4 Signal to Noise Optimization

In the strong saturation regime the imaging light intensity I controls the
transparency of the atomic cloud [4]. The imaging signal to noise ratio can be
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Fig. A.5 Optimum signal to noise ratio. A calculation of the detection signal to noise ratio for a
simulated atomic density distribution with 500 and 1,000 atoms reveals the optimal imaging
intensity I/Isat & 10. The vertical axis is scaled to the shot noise limit for the atom number
difference N/4 psn revealing that—at atomic shot noise level—at least 30% of the total detected
noise originates from the imaging process assuming 500 atoms in total
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optimized by choosing the proper light intensity depending on the size of the
atomic cloud and the total number of atoms. A numerical calculation for the PIXIS
camera and for typical experimental parameters is shown in Fig. A.5 and reveals
the optimum imaging intensity for a saturation parameter of I � 10Isat: One has to
be careful when working at very high optical densities, I � 10Isat means an optical
density of approximately two, since here the nonlinearity problem detailed in
Sect. A.3.2 is strongest. Therefore we choose imaging intensities between 10Isat

and 15Isat, where the signal to noise ratio is still close to the optimum, but the
sensitivity to the cloud size is smaller.8

A.4 Independent Tests of the Imaging Calibration

The External Squeezing Experiment

From the discussion above it is clear that correct calibration of the imaging system
is not trivial and the results presented in this thesis depend critically on the
linearity of the atom number detection. In the first (external squeezing) experiment
we used atom number loss in order to check the imaging calibration. We prepared
independent Bose–Einstein condensates in the different lattice sites by direct
evaporation into a very high lattice situation. The relative atom number fluctuation
between different sites is expected to be at the shot noise level in this case. In order
to tune the total number of atoms we allow for some loss of atoms and monitor the
fluctuations. As shown in Fig. A.6 we find a linear dependence of the measured
fluctuations versus the mean total atom number where the slope is compatible with
unity within the statistical uncertainties. The dashed line shows the behavior
expected for poissonian fluctuations and a correct calibration of the imaging
system. Most data points fall within the shown �20% uncertainty region which we
take therefore as the upper bound for possible systematic errors in the imaging
calibration for these experiments. The scattering of the data is due to limited
statistics (100 measurements per data point). For a more quantitative test we start
with a slightly number squeezed state �3 dB\n2

N\0 dB obtained after a
controlled but fast (20 ms) lattice ramp up to a situation with negligible tunneling.
We hold the system in the trap for 10 s after which two-thirds of the atoms are lost.
Knowing the loss rates we predict the the expected number squeezing to

8 We expand the cloud prior to imaging, but detection with higher imaging intensity secures even
more, that our data is taken in the regime where the imaging calibration is reliable.
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�1:2 dB\n2
N\� 1 dB at the time of imaging (see App. B). We measure

n2
N ¼ �0:7þ0:7

�0:7dB where the errors are two standard deviations and the fluctuations
where extracted from approximately 1,000 experimental realizations. This result
confirms our atom number calibration for this experiment.

The Interferometry and Internal Squeezing Experiment

The squeezing and interferometry experiment based on two internal states of
87Rubidium requires a different calibration, since three pictures, one for each
hyperfine state and a reference picture, are necessary to extract the relative atom
number fluctuations. The initial quantum state—a maximal Dicke state with all
atoms in mode aj i—is much better known here as compared to the external case
where temperature affects the fluctuations. A coherent spin state centered on the

equator of the Bloch sphere with known—shot noise—fluctuations in DĴ2
z ¼ Dn2

is prepared by a fast p=2 pulse. The mean total atom number can be
experimentally varied by the evaporation ramp without affecting the effective
parameters of the system such as tunneling rate or temperature. Therefore it is
straightforward to obtain an independent experimental test of the imaging
calibration by measuring the relative occupation number fluctuations of the
coherent spin state versus the total atom number. Data shown in Fig. A.7 confirm
the linear dependence expected where a quadratic fit reveals a slope of 1:01� 0:03
(two standard deviation errors) and a small quadratic contribution of 2 � 10�5:
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Fig. A.6 Calibration test for the external squeezing experiments. In order to test the imaging
calibration we monitor the evolution of number squeezing with particle loss. Loss changes the
total number of atoms in the trap and we expect only slight dynamics in the number squeezing for
the measured loss rates. The poissonian variance is plotted as the dashed line for reference and the
measurements are consistent with the gray uncertainty band of 20%. Data plotted as gray dia-
monds is measured by condensation into individual lattice sites after different hold times. The
black data point correspond to a high statistics measurement (& 1,000 measurements) in order to
test the calibration with smaller statistical uncertainty. Here we start from a slightly squeezed
situation and measure the relative number fluctuations after two-thirds of the atoms are lost. In
Sect. 3.4.4 we explain that we expect this data point to lie slightly below the dashed line as found
in the measurement
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All different combinations of lattice sites were evaluated equivalent to the
procedure described in Sect. 4.5.1 in order to expand the range of total atom
numbers. The inset shows the same data but without the binning technique such
that here only the occupation numbers of the two hyperfine state in a single well
contribute. A linear fit reveals a slope of 0:98� 0:06 (two standard deviation
errors) consistent with the result from the binned data and with a slope of unity as
expected for a correct calibration.
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Fig. A.7 Calibration test for the interferometry and internal squeezing experiments. The variance
of a coherent spin state on the equator of the Bloch sphere is measured versus the total atom
number to test the imaging calibration. In the main figure the total atom number range is extended
by the binning technique detailed in Sect. 4.5.1. However this procedure uses information from
different sites of the optical lattice rather than changing the population of each individual
coherent spin state. Therefore we show the non-binned result in the inset, where only the
information from individual wells is used. The measured data confirms the independently
obtained calibration of the imaging system
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Appendix B
Particle Loss and Number Squeezing

For the tests of the imaging calibration in the external squeezing experiments we
monitor number squeezing versus particle loss. Therefore it is essential to
understand the connection of loss and number fluctuations. The most important
processes in this experiment leading to a loss of atoms from the trap are single
particle losses with a rate K1 due to photon scattering or collisions with
background gas atoms and three body collisions parametrized by K3: Spin
relaxation loss—a two body process—is negligible for the F;mFj i ¼ 2;�2j i
hyperfine states of 87 Rubidium [5, 6], however it is the main loss mechanism for
the F;mFj i ¼ 2;�1j i state used in the internal squeezing experiments.9 Here we
focus on loss processes relevant for the external squeezing experiment, since in the
internal squeezing case the loss happens during the state preparation which
requires a more advanced calculation that has been performed in references [8, 9].

One and Three Body Loss and Their Effect on Number Fluctuations

The single particle loss rate is independent of the number of atoms and the loss
process results in a random reduction of the atom number in the trap. Therefore it
tends to restore binomial fluctuations. However three body loss is a non-linear
process requiring the collision of three atoms. The loss rate L3 / K3N2 is
proportional to the loss coefficient K3 and the atom number squared resulting in a
suppression of atom number fluctuations. A Master equation approach for the joint
probability distribution Pðnl; nr; tÞ for the number of atoms nl;r in the left and right
well can be used to calculate the effect of the particle loss on number squeezing.

9 Close to the Feshbach resonance both two and three body loss become stronger [7] but away
from the resonance the lifetime limit is set by the two body process.

C. Groß, Spin Squeezing and Non-linear Atom Interferometry with Bose–Einstein
Condensates, Springer Theses, DOI: 10.1007/978-3-642-25637-0,
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@Pðnl; nr; tÞ
@t

¼ K1½ðnl þ 1ÞPðnl þ 1; nr; tÞ � nlPðnl; nr; tÞ	

þ K1½ðnr þ 1ÞPðnl; nr þ 1; tÞ � nrPðnl; nr; tÞ	

þ K3

3
½ðnl þ 3Þðnl þ 2Þðnl þ 1ÞPðnl þ 3; nr; tÞ

� nlðnl � 1Þðnl � 2ÞPðnl; nr; tÞ	

þ K3

3
½ðnr þ 3Þðnr þ 2Þðnr þ 1ÞPðnl; nr þ 3; tÞ

� nrðnr � 1Þðnr � 2ÞPðnl; nr; tÞ	 ðB:1Þ

here equal loss coefficients for atoms in the left and right well are assumed. Within
this description the different moments and correlation functions of nl;r are given by

hna
l nb

r it ¼
X

nl

X

nr

na
l nb

r Pðnl; nr; tÞ ðB:2Þ

We are interested in the time evolution of the number squeezing parameter

n2
N ¼

hðnl�nrÞ2i
hnlþnri , where we assume without loss of generality hnl � nri ¼ 0:

@tn
2
N ¼
ð@thn2

ai þ @thn2
bi � 2@thnanbiÞðhnai þ hnbiÞ
ðhnai þ hnbiÞ2

� ðhn
2
ai þ hn2

bi � 2hnanbiÞð@thnai þ @thnbiÞ
ðhnai þ hnbiÞ2

ðB:3Þ

In order to calculate the time derivatives in this Eqs. B.1 and B.2 are used. In the
case of pure one body loss (K3 ¼ 0) the equations can be solved without further
approximation and number squeezing evolves like

n2
NðtÞ ¼ 1� ð1� n2

N;0Þe�K1t ðB:4Þ

where n2
N;0 is the number squeezing at t ¼ 0: Note that e�K1t ¼ NðtÞ

N0
is the fraction

of total atoms remaining in the trap at time t, meaning number squeezing tends
asymptotically to n2

N ¼ 0 dB in the limit where all atoms are lost.
Taking three body loss additionally into account higher moments of

the distribution enter the calculation, such that the differential equation can not be
written in a closed form any more. A gaussian ansatz has numerically shown to be a
good approximation [10] as long as some atoms remain in the trap (NðtÞ 
 1):

Pðnl; nrÞ ¼
1

prnrN
exp � nl þ nr � N

ffiffiffi
2
p

rN

� �2

� nl � nrffiffiffi
2
p

rn

� �2
 ! !

ðB:5Þ

with the total atom number N ¼ hnli þ hnri, its variance r2
N ¼ DN and the

variance of the atom number difference r2
n ¼ hðnl � nrÞ2i: Using this ansatz in the

master equation we express all higher moments of the gaussian distribution by its
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first two moments (here N, r2
N and r2

n) and obtain

@tN � �K3N3 � K1N

@tr
2
N � K3ð3N3 � 6N2r2

NÞ þ K1ðN � 2r2
NÞ

@tr
2
n � K3ð3N3 � 6N2r2

nÞ þ K1ðN � 2r2
nÞ

ðB:6Þ

We kept only the leading order terms which is a good approximation as long as the
fluctuations are in the order of shot noise or smaller (r2

N ¼ OðNÞ; r2
n ¼ OðNÞ).

Numerical solution of the equations above is straightforward and we obtain the

evolution of n2
NðtÞ ¼

rnðtÞ2
NðtÞ : As shown in Fig. B.8 three body loss can lead to

number squeezing on intermediate timescales due to its non-linear dependence on
the atom number. The optimum number squeezing achievable is n2

N � �2:2dB but
for our experimental parameters one body loss dominates in the long time limit
and restores poissonian fluctuations.
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Fig. B.8 Evolution of number squeezing due to one and three body loss. The main graph shows a
calculation of the evolution of number squeezing versus the hold time for typical loss parameters
of our experiment with atoms in the jF;mf i ¼ j2; 2i hyperfine state. The initial atom number is
10,000, fluctuations are at shot noise level, the one body loss coefficient is K1 ¼ 0:1 s�1 and the
effective three body coefficient is K3 ¼ 1� 10�8s�1: On intermediate timescales number
squeezing develops, but in the long time limit one body loss restores poissonian fluctuations. The
dashed line is the limit for pure three body loss. The inset shows the number of atoms remaining
in the trap versus time
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Appendix C
Active Stabilization of Magnetic Fields
Below the Milligauss Level

The performance of the non-linear beamsplitter implemented for the 1; 1j i and
2;�1j i hyperfine states of 87 Rubidium depends critically on the knowledge of the

longitudinal position u of the quantum state at the time of the final rotation pulse
(see Sect. 4.5). Fluctuations Du of this angle translate into noise in the population
imbalance measured at the output of the non-linear interferometer thus it degrades
the overall performance. The most critical external parameter that influences u is
the magnetic field B since it controls the differential energy splitting between the
two hyperfine states via the Zeeman effect. Around B ¼ 9:1G the detuning caused
by magnetic field fluctuations DB is

Dx0 ¼ DB � 2p � 10Hz=mG ðC:1Þ

Despite the usage of a spin echo pulse the system is still sensitive to low frequency
phase noise with spectral frequencies between approximately 10 and 300 Hz as
shown in Fig. 4.14. In this frequency range we estimate a maximal tolerable
magnetic field noise in the order of a few hundred microgauss such that the
fluctuations do not dominate the experimental signal.

Low Frequency Field Fluctuations

The spin echo pulse cancels the effect of low frequency magnetic field fluctuations
(DC fluctuations) on the acquired relative phase during free evolution within the
non-linear beam splitter. However DC fluctuations cause ’shot to shot’ errors of
the coupling pulses. The sensitivity of the coupling pulses to uncontrolled
magnetic field offsets depends on the longitudinal angle jucplj between rotation
axis of the pulse and the quantum state. There are two limiting cases: For jucplj ¼
p=2 a detuning Dx0 results in an effective Rabi frequency

Xeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Dx2

0

q
� Xð1þ Dx2

0

2X2 Þ ðC:2Þ
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showing only a quadratic dependence in Dx0
X : When the rotation axis points through

the center of the quantum state (jucplj ¼ 0) the situation is more critical. Detuning
causes a change of the rotation axis in polar direction

Dh ¼ arctan
Dx0

X

� �

� Dx0

X
ðC:3Þ

which is linearly dependent on the detuning. These fluctuations contribute most to
noise in the occupation number difference if the total pulse angle is a ¼ p: Therefore
we choose the axis of the spin echo pulse to jucplj � p=2 for best noise suppression.

Magnetic Field Stabilization

The major problem is caused by magnetic field noise at a spectral frequency of
50 Hz due to the electrical power line. We measure this noise component to be in
the order of 4 mG, approximately a factor of ten larger than acceptable.
Measurements of the phase stability of the power line signal reveal a coherence
time in the order of a few hundred milliseconds. We minimize the degrading effect
of this 50 Hz noise by synchronization of the timing of the whole experiment to
the power line signal 50 ms before the interferometric sequence. However, we
found that further magnetic field stabilization is necessary in our experiment in
order to overcome the technical noise problems. We implemented an active
feedback loop where we measure the magnetic field as close as possible to the
atomic cloud using a fluxgate magnetometer.10 Since the distance to the atomic
cloud is still in the order of 10 cm, the magnetic offset field needs to be
homogeneous in a large volume including the magnetic field sensor and the atoms.
We installed a pair of quadratic offset coils spaced by 1 m with a side length of
96 cm. Each of these coils has 11 windings and a current of approximately 150 A
is necessary to generate a magnetic field of 9 G in the center of the pair. The
current is provided by a Delta SM 15-200-D-P104-P145 power supply. We use the
internal feedback loop of the power supply in constant voltage mode for coarse
control of the magnetic field. The control voltage is generated by a home build
fixed voltage source with a relative stability better than 10�5 per day. For the
Fluxgate based feedback loop we use an extra coil pair winded on top of the first
coils. A home build current source allows to change the magnetic field by ca.
200 mG, enough to tune the magnetic field around the Feshbach resonance.
We choose the cut off frequency of the feedback loop to a few 100 Hz such that
low frequency fluctuations can be compensated to an amplitude in the 100lG
range. Figure C.9 shows the measured noise spectrum with closed feedback loop.
In order to avoid local magnetic fields seen by the atoms but not by the Fluxgate
sensor we disconnect all other coils close to the experimental chamber by relays.

10 Bartington Instruments, Mag-03MS1000
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Fig. C.9 Measured magnetic noise spectrum in closed loop configuration. The figure shows the
magnetic field noise spectrum obtained from the error signal of the fluxgate sensor feedback loop.
The background noise level is low, in the order of 50lG. The main features are the spikes most
pronounced at odd multiples of the 50 Hz power line frequency. None of the peaks exceeds the
400lG level showing the suppression due to the feedback loop, since in unlocked condition the
power line noise signal is approximately 4 mG. It is important to note that the measurement is not
meaningful in the DC limit since the loop reacts to tilts of the sensor itself or offset voltage drifts,
resulting in a change of the magnetic field at the position of the atomic cloud
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