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Preface 

 
The present volume of Modern Aspects of Electrochemistry is 

the second in a two-volume set (No. 46 and 47) that covers 
important technological progress in recent years in the fields of 
electrochemical corrosion and materials engineering. 

The first chapter, by Macdonald, discusses electrochemical and 
corrosion phenomena of metals and alloys in supercritical aqueous 
media. The author reviews the corrosiveness of supercritical water 
oxidation (SCWO) media operating at temperatures up to 650 oC 
and at pressures of several hundred bars and the technical issues 
that need to be resolved for practical use of SCWO technology. 
The topics include the development of in-situ sensors for measuring 
pH and redox potential and the electrochemical polarization and 
corrosion studies in SCWO media. 

In Chapter 2, Ohtsuka provides an in-situ characterization study 
of passive oxide films on iron and steels using optical techniques. 
A wide range of optical techniques – including ellipsometry, 
Raman spectroscopy, potential modulation reflectance and photo-
electrochemical technique - are rigorously discussed to make a 
step further towards understanding what really happens during the 
passivation process. A comprehensive description is given of the 
growth mechanism, composition, and semiconducting properties 
(e.g., energy band gap, flat band potential, donor density, etc.) of 
the passive oxide films. 

Chapter 3, by Oltra and Vuillemin, deals with experimental 
characterization and theoretical simulation of galvanic coupling 
phenomena in localized corrosion. The chapter offers a succinct, 
easy-to-follow introduction to the mathematical formulation of 
electrochemical reactions problems, followed by extensive coverage 
of localized galvanic corrosion modeling. The authors present 
several examples for galvanic corrosion on galvanized steel and 
aluminum alloys, which indicate the crucial role of current/potential 
distribution and homogeneous/heterogeneous chemical processes 
in localized corrosion. 



vi Preface 

In Chapter 4, Shin and Liu review some recent developments in 
fabrication of hierarchical 3-dimensional porous structures for 
energy storage and conversion by an electrochemical deposition 
process, an area in which electrochemistry and materials science 
are intertwined. These authors briefly present typical porous 
structures observed in materials for electrochemical devices, and 
then discuss the preparation of 3-dimensional electro-deposits with 
micro-/nano-hierarchical pores that could make the transport of 
electro-active species easier. 

 
S.-I. Pyun 
Korea Advanced Institute of Science and Technology 
Daejeon, Republic of Korea 
 
J.-W. Lee 
Korea Institute of Energy Research 
Daejeon, Republic of Korea 
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Advances in the Study of Electrochemical 
and Corrosion Phenomena in  

High Subcritical and in Supercritical Aque-
ous Solutions 

 
 

Digby D. Macdonald  
 

Center for Electrochemical Science and Technology, The Pennsylvania State Uni-
versity, 201 Steidle Building, University Park, PA 16802 

 
 

I. INTRODUCTION 

Supercritical Water Oxidation (SCWO) is a promising technology 
for destroying highly toxic organic waste (including physiological 
agents) and for reducing the volume of low-level nuclear waste. 
For example, SCWO has been chosen by the US Army to destroy 
chemical agents, such as VX hydrolysate (product obtained by 
hydrolyzing the chemical agent VX with caustic) and a facility for 
meeting this goal is now operating in Newport, Indiana. However, 
other chemical agents as listed in Table 1 are scheduled to be 
treated in a similar manner. Note that the various agents contain 
sulfur, phosphorous, fluorine, and nitrogen (in the form of cya-
nide), so that complete oxidation is expected to produce the oxyac-
ids and/or (depending upon the pH) oxyanions of these elements. 
The US Navy has also explored SCWO for destroying shipboard 
waste, including oils and greases, solvents, and paints. Various 

S.-I. Pyun and J.-W. Lee (eds.), Progress in Corrosion Science and Engineering II, 1
Modern Aspects of Electrochemistry 47, DOI 10.1007/978-1-4419-5578-4_1,  
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Table 1 
The Composition and Nomenclature for Several Chemical 

Agents. Reprinted from Ref. 1, Copyright (2008) with permis-
sion from ___ 

 
pilot plant commercial facilities have been built in the United 
States, Europe, and Japan with the goal of demonstrating the effi-
cacy of the method for destroying resilient organic waste. A vari-
ant of SCWO that operates under less severe conditions has been 
developed by SRI International in the form of Assisted Hydro-
thermal Oxidation (AHO). This technology is now offered on a 
commercial basis by Mitsubishi Heavy Industries, who operate a 
commercial pilot plant in Nagasaki, Japan. Given the increasing 
sensitivity of regulatory agencies and the general public to toxic 
waste, there is little doubt that the commercial and governmental 
application of SCWO will expand rapidly in the foreseeable future. 

SCWO is accomplished at elevated temperatures (up to 
650oC) and pressures (in excess of 300 MPa) in a pressure vessel 
manufactured from a corrosion resistant material. A typical design 
of a SCWO system is shown schematically in Fig. 1. Typically, 
high nickel base alloys, such as Inconel 625, Alloy C-22, and Al-
loy 59 have been used with generally less-than-satisfactory results, 
because of the high corrosion rates that are encountered. The cor-
rosion rates of the nickel base alloys were sufficiently high in the 
Newport, Indiana facility, which is being used to destroy VX hy-
drolysate, that a platinum liner was employed, necessitating the 
borrowing of platinum from the strategic reserve. However, even 
platinum exhibited significant material loss, which was attributed 
to the formation of PtO2 under the highly oxidizing conditions 
present. The loss is postulated to be due to volatilization, rather 
than corrosion, because of the high vapor pressure of PtO2 at 
650oC. 

Agent Composition 
VX O-ethyl S-diisopropylamino-methyl methylphosphonothiolate 
GF Cyclohexyl methylphosphonofluoridate 
GB (Sarin) Isopropyl methylphosphonofluoridate 
HD (Mustard) Bis-2-(chloroethyl)sulfide 
GD (Soman) Pinacolylmethyl-phosphonofluoridate 
GA (Tabun) O-ethyldimethyl-amidophosphorylcyanide 
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through the quench separator and then through the hot side of the 
heat exchanger [4], where heat is exchanged with the incoming 
mixture. Note that the auxiliary fuel is only added initially; the 
reaction becomes self-sustaining on the organic waste once condi-
tions have stabilized. 
 Supercritical water (SCW) is also the coolant of choice in su-
percritical thermal power plants and has been selected as the cool-
ant for one of the Generation IV nuclear power plant technologies 
(Fig. 2). In the latter application, the high heat capacity, high ther-
mal stability, low cost, ready availability of water in ultrapure 
form, and wide temperature range of operation has made water the 
preferred coolant for supercritical nuclear power plants, as well. 
These applications tend to use clean fluids that do not contain salts 
or other components that might otherwise form precipitates that 
could foul heat-transfer surfaces or cause corrosion. For example, 
in supercritical fossil-fueled power plants the coolant is commonly 
pure water, although some high subcritical systems may contain 
pH and redox control chemicals, such as AVT (e.g., ammonia) and 
hydrazine (N2H4), respectively, with the latter being added to 
scavenge oxygen. Finally, one should note that water, under super-
critical conditions, is Nature’s universal solvent, being responsible 
for the dissolution, transport, and deposition of such inert materials 
as gold and the noble metals in fissured rock deep within the 
Earth’s crust. 
 In this chapter, some of the chemical and electrochemical 
properties of high subcritical and supercritical aqueous systems are 
reviewed. Topics that are addressed include:  

(a) the development of in-situ sensors,  
(b) the development and functioning of reference electrodes,  
(c) measurement of pH, 
(d) electrochemical kinetic studies, including the effects of 

temperature and pressure of the polarization characteristics 
of metals and alloys, and 

(e) corrosion of metals and alloys in supercritical aqueous me-
dia, particularly with regard to selection of materials for 
service in SCWO reactors and SCTPPs. 

 SCWO offers a number of unique advantages over other waste 
destruction technologies, such as incineration and pyrolysis (e.g., 
in plasmas), as previously noted. These advantages include: 
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critical water (nuclear) reactor. The latter system operates with its 
entire coolant system at above the critical temperature of water 
(374.15oC). The advantages that accrue by operating under these 
conditions include a higher thermodynamic efficiency (45%) com-
pared with a conventional BWR (35%); no boiling, and hence no 
formation of concentrated solutions on heat transfer surfaces; and a 
simpler coolant circuit.  

It is important to note that at a temperature that is above the 
critical temperature a liquid phase cannot be produced by increas-
ing the pressure, as can be done at subcritical temperatures by 
condensation. Instead, supercritical water is best described as be-
ing a fluid, whose density is a continuous function of pressure (un-
like a subcritical system for which the density is a discontinuous 
function of pressure at the condensation pressure). Supercritical 
aqueous systems range in their physical characteristics from low 
density steam to dense fluids, depending upon the pressure. 

The two most important parameters in defining the chemical 
and electrochemical properties of any aqueous environment are the 
potential and pH. The electrochemical potential, which is the po-
tential of an indicator or working electrode measured against a 
suitable reference electrode in the same environment, and prefera-
bly expressed on the thermodynamically viable Standard Hydro-
gen Scale (SHE), provides a measure of the electrochemical driv-
ing force of whatever process might be occurring on the indicator 
electrode surface. If the indicator electrode is inert, the potential is 
established by various redox couples that exist in the system and it 
is referred to as the redox potential. On the other hand, if the indi-
cator electrode participates electrochemically in the processes that 
occur on the surface, by being oxidized, for example, the potential 
is referred to as being the corrosion potential. All corrosion and 
redox potentials are mixed potentials that arise from a balance of 
non-conjugate partial anodic and cathodic reactions (e.g., Fe  
Fe2+ + 2 e–

 and H+ + e–  ½ H2, respectively) on the surface, and 
hence the system can never be at thermodynamic equilibrium. 
However, if only a single redox couple exists in the system (e.g., 
H+ + e–  ½ H2) the redox potential is an equilibrium potential, 
with the value of the potential being determined by the activity of 
H+ and the fugacity of H2 in accordance with the Nernst equation. 
If more than one redox couples exists simultaneously in the system 
(e.g., H+ + e–  ½ H2 and O2 + 4 H+ + 4 e–  2 H2O) and the ex-
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change current densities are sufficiently high, the measured poten-
tial is, again, a mixed potential and not an equilibrium potential, 
except in the trivial case where the two redox reactions have come 
to equilibrium with the concentrations of H2 and O2 being related 
by the equilibrium H2O  H2 + ½ O2.  

Potential-pH (Pourbaix) diagrams for iron and nickel in aque-
ous solutions above the critical temperature of water are shown in 
Figs. 4A and 4B, respectively.3,4 The lack of detail, compared to 
their ambient temperature counterparts,5 reflects the lack of ther-
modynamic data for species at supercritical temperatures, particu-
larly for hydrolyzed ionic species, and the lack of stability of dis-
solved ionic species in the low dielectric constant supercritical 
medium. 

The diagram in Fig. 4A was constructed for iron for a temper-
ature of 400°C and for a pressure of 500 bar, and for reference the 
approximate region in potential-pH space for the operation of su-
percritical water oxidation (SCWO) reactors, without pH neutrali-
zation, and supercritical thermal power plants (SCTPPs) are also 
shown. The dotted lines (a) and (b) correspond to the equilibrium 
conditions for the H2/H2O and O2/H2O reactions, respectively, both 
corresponding to unit gas fugacity. The other lines correspond to 
Fe/Fe2+ (line 1), Fe/Fe3O4 (line 3), Fe/Fe3O4 (line 13), Fe3O4/Fe2O3 
(line 12), Fe2+/Fe3O4 (line 14), and Fe2+/Fe2O3 (line 10). Note that 
no stability regions appear for Fe3+ and HFeO2

–; the thermodynam-
ic data indicate that these ionic species are so unstable at tempera-
tures above the critical temperature that they can be ignored in the 
present analysis. Note also the extensions of lines 12 and 13 into 
the Fe2+ stability field; these extensions define the conditions for 
the formation of Fe3O4 and Fe2O3 as metastable phases (potentials 
above lines 13 and 12, respectively), which are responsible for any 
passivity that iron might exhibit in SCWO environments. 

The diagram for nickel (Fig. 4B), constructed for a tempera-
ture of 450oC and a pressure of 500 bar is deceptively simple, pri-
marily because of a lack of thermodynamic data for hydrolyzed 
cationic species under the conditions of interest. Furthermore, at 
the temperature of interest (450oC), the hydroxide, Ni(OH)2, is not 
thermodynamically stable, so that only the oxide (NiO) is consid-
ered in constructing the diagram. No data could be found for other 
compounds in the Ni-O system (e.g., Ni3O4, Ni2O3, NiO2), nor 
could  data  be found for possible  anionic  species  (e.g.,  NiO2

2-).  
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Figure 4. Potential-pH diagram for iron (A) and nickel 
(B) in supercritical aqueous solutions at 400oC and 
450oC, respectively, P = 500 bar.  The hydrogen equilib-
rium line for unit hydrogen fugacity is coincident with 
the Ni/NiO equilibrium line.  The diagram for iron shows 
the approximate regions in potential-pH space for the op-
eration of SCWO reactors and supercritical thermal pow-
er plants (SCTPPs). Reprinted from Ref. 5, Copyright 
(1997) with permission from Elsevier. 
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Accordingly, these species have been omitted from the diagram. 
Nevertheless, the diagram for nickel shown in Fig. 4B provides 
some important information on the corrosion properties of this 
metal, which forms the base of many of the corrosion-resistant 
alloys that are used in SCWO service (e.g., Alloys C-276 and C-
22). Note that the extrapolation of the equilibrium line for Ni/NiO 
into the Ni2+ stability field defines the conditions for the formation 
of metastable NiO, in the same way as that described above for 
iron. 

The first important feature to note is that the pH of neutral wa-
ter (pH = pKw/2) under the conditions of interest is calculated to be 
6.87 (molal scale) or 7.27 (molar scale), where the two scales are 
related approximately by pH(molar scale)  pH(molal scale)  
– log( ), where  is the density. The approximate sign arises from 
the fact that the pH on the molal and molar scales is defined as  
–log( ±mH+) and –log(y±c), respectively, where m and c are the 
molal and molar concentrations and ±. and y± are the correspond-
ing mean activity coefficients. The activity coefficients have 
slightly different values when calculated for the two scales. At the 
low end of the pH scale, incomplete acid dissociation plays a ma-
jor role in determining the acidity of the system (see later). This is 
illustrated in Fig. 5, in which is plotted the pH and –log(mHCl) 
against log(mo

HCl), where mo
HCl is the stoichiometric HCl concen-

tration in the solution. The important point is that as mo
HCl increas-

es the pH does not change in a proportionate manner, because of 
the lower degree of dissociation of HCl at a higher mo

HCl. Thus, 
HCl, which is no longer a strong acid under the conditions of in-
terest (T > 374.15oC, P < 1000 bar), effectively buffers the pH. 

With regards to the potential-pH diagrams shown in Fig. 4, in-
complete dissociation implies that the pH will not decrease in a 
logarithmic manner with increasing stoichiometric HCl concentra-
tion, mo

HCl, particularly at low density. This situation parallels that 
encountered in developing potential-pH diagrams for metals in 
concentrated alkali metal hydroxide solutions, where it was found 
that plotting the potential against log(mo

HCl) offered some ad-
vantages over the classical form.6 

Finally, examination of Fig. 4A shows that SCWO systems 
generally operate under much more aggressive conditions than do 
SCTPPs, with respect to both potential and pH. Indeed, because 
most  SCWO  systems  operate  at  very high redox potential  (high   
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tric constant, and viscosity, respectively, as functions of tempera-
ture and pressure.3 As a point of comparison, nitrogen gas at 25°C 
and at a pressure of 100 atm has a density of about 0.1 g/cm3, 
which is comparable to that exhibited by supercritical water at 
500°C and at a pressure of 300 atm (Fig. 6). Accordingly, as far as 
the volumetric properties are concerned, SCW, under conditions 
that are characteristic of SCWO systems, is best described as being 
a dense gas, rather than a liquid as we know water to be under 
ambient conditions. 

The dielectric constant, which determines the extent to which 
ions are stabilized electrostatically in condensed media, also de-
creases strongly with increasing temperature and decreasing pres-
sure (density) under supercritical conditions, as shown in Fig. 7. 
Indeed, the dielectric constant decreases to values that are typical 
of non-polar solvents, such as hexane (a hydrocarbon). The princi-
pal consequence of this drop in the dielectric constant is that elec-
trolytes (e.g., HCl, NaCl, NaOH) that are essentially fully ionized 
in water at ambient temperature and pressure (where the dielectric 
constant is ~78) are very poorly ionized under supercritical condi-
tions. This is a most important point, because supercritical aqueous 
systems begin to acquire gas-like properties as the temperature 
increases above Tc and the density decreases. Accordingly, in 
many respects, supercritical aqueous systems may be described as 
representing the interface between the liquid phase and the gas 
phase in many properties, including corrosion. However, it is still 
possible to perform electrochemical measurements in this low den-
sity, poorly ionizing environment, as shown by the filled circles 
and triangle that correspond to the conditions at which potentiom-
etric pH measurements have been performed (see below). 

The transport properties of a medium determine that rate at 
which corrodents (e.g., O2, H+ and HCl) are transferred to a metal 
surface, and hence determine the maximum rate at which a reac-
tion can proceed. To a good approximation, the transport proper-
ties can be described by a Walden-type equation: 

 
 D  = constant (1) 

 
where D is the diffusivity of the species of interest (e.g., O2) and  
is the dynamic viscosity of the medium. The importance of Eq. (1)  
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saturation line with the S-L-V curve in the phase diagram; instead 
the saturated fluid displays a continuous transition from liquid-like 
to gas-like behavior as the temperature increases. Note also the 
two turning points on the saturation line at the lower part of the 
diagram; the solubility of Na2SO4 begins a slow decrease at the 
first point (T  40°C) and decreases dramatically above the second 
point (approximately 200°C) until T = 374.5°C, where the system 
is separated into 2 phases: supercritical fluid and solid salt. 

It is clear from the above discussion that the phase behavior of 
supercritical aqueous solutions in a complicated matter, brought on 
primarily by the decrease in the dielectric constant of water. Un-
fortunately, as is evident from an examination of the literature, the 
phase behavior of supercritical aqueous solutions is poorly under-
stood, but an appreciation of that behavior is vital for interpreting 
corrosion and electrochemical phenomena in supercritical aqueous 
media. 

2. Standardization of pH Scale 

As noted previously, the two most important chemical/electro-
chemical properties of any aqueous system are the pH and the 
electrochemical (redox or corrosion) potential. The pH is defined 
as 
 
  pH = – log10( Ha ) (2) 
 
where 

Ha  is the thermodynamic activity of hydrogen ion, which, 
in turn, is defined as  
 

  
0
H

H
H m

m
a  (3) 

 
In this latter definition,

 Hm , 0
H

m , and  are the molal concentra-

tion4 of H+, the standard state molal concentration of the same 
species [ 0

H
m = 1 mol/kg(H2O)], and the activity coefficient for 

hydrogen ion, respectively. Knowledge of the pH of the solution is 
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of particular importance for the SCWO process, because the corro-
sion of structural materials can be attributed to acid attack (H+ and 
possibly molecular HCl). While the importance of pH as been long 
recognized, practical methods of measuring this parameter at tem-
peratures above the critical temperature were lacking until about a 
decade, or so, ago. At that time, Kriksunov and Macdonald9,10 sig-
nificantly extended the temperature and pressure ranges of utiliza-
tion of the YSZ (Yttria-Stabilized Zirconia) ceramic membrane 
based pH sensors and External Pressure Balanced Reference Elec-
trodes (EPBRE) to include aqueous systems at high subcritical and 
at supercritical temperatures (T > 500oC). The authors proposed 
the use of these electrodes for defining the practical pH scale for 
supercritical aqueous systems, as discussed below. A brief outline 
of that proposal follows. 

A viable pH scale for supercritical aqueous systems must be 
practical, in the sense that it must be accessible via experiment, 
yet fulfill the theoretical need for an accurate measure of the ac-
tivity of hydrogen ion in the system. As in the case of systems at 
ambient temperature and pressure, standardization of the pH scale 
for supercritical systems is based upon somewhat arbitrary model 
assumptions and standard solutions. The pH of standard solutions 
at relatively low temperatures (T < 100oC) is usually assigned by 
assuming values for the dissociation constants of the electrolytes, 
by employing model calculations of activity coefficients, and in 
some cases, by estimating liquid junction potentials (ELJ) of the 
reference electrodes employed. The pH of any other solution is 
then determined by measuring the potential (E) of the cell com-
prising a pH-sensitive electrode, which has been calibrated in the 
standard solution, and a pH-independent reference electrode. Be-
cause of the paucity of data on possible standard (buffer) solutions 
at temperatures above ca. 300 C, the options that are available for 
calibrating pH electrodes in high subcritical/supercritical solutions 
are severely limited, compared with the ambient temperature case. 

It is also important to note that pH at ambient temperature is 
defined thermodynamically as the negative logarithm of the activi-
ty of hydrogen ion (

Ha ), as noted above. The activity at ambient 
temperatures is usually based on the molar (mol/L) concentration 
scale. This volume-based scale is highly inconvenient for super-
critical systems, where the volume (density) depends upon temper-
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ature and pressure (see above). Accordingly, Kriksunov and Mac-
donald10,11 suggested the use of the molal scale (mol/kg H2O) in 
pH standardization at high subcritical and supercritical tempera-
tures, in which the concentration is independent of T and P. 

The unambiguous choice of standard solutions for supercriti-
cal aqueous systems is more complicated, in comparison with 
those for subcritical solutions, because of the poor dissociation of 
even strong electrolytes in the former, and because of the relatively 
low activity coefficients. Experimental data for determining those 
parameters are scarce, and data for estimating the isothermal liquid 
junction potential for the reference electrode (ELJ) are practically 
absent (although calculations of ELJ for supercritical aqueous solu-
tions have been reported recently.)3,11,12 Additional problems arise 
from the fact that many fundamental properties of high subcritical 
and supercritical aqueous solutions are strongly pressure-
dependent. In this regard, aqueous solutions at the same (super-
critical) temperature, but at significantly different pressures, 
should be considered as being different systems, thereby greatly 
complicating the specification of pH standards. Large changes in 
the density, dielectric constant, and the dissociation constant of 
water (Kw) with pressure, and the pressure-dependence of electro-
lyte dissociation constants, obviously complicate the specification 
of pH standards. The complication is even further compounded by 
the pressure dependence of the potential of the reference electrode, 
due to pressure dependencies of the thermal liquid junction poten-
tial (TLJP) potential (regardless of whether the reference electrode 
is an internal or an external pressure balanced type) and the iso-
thermal liquid junction potential (ITLJP).13 

To overcome these difficulties, a practical pH scale for super-
critical systems was defined somewhat arbitrarily,10,11 based upon 
available estimates of dissociation constants (Kd) and activity coef-
ficients ( ) for solutions of some common 1-1 electrolytes, such as 
HCl and NaOH, in much the same way as has been done for aque-
ous systems at low subcritical systems. The concentration was 
chosen to be reasonably low, to allow for complete solubility and 
to yield reliable model estimates for Kd and , but at the same time 
the concentration of the buffering system should be much higher 
than the concentrations of potential impurities and corrosion prod-
ucts. As a compromise of all of these factors, 0.01 m solutions of 
HCl and NaOH were proposed as the primary pH standards.10,11  
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In the proposed standardization procedure, we assume that the 
contribution from the isothermal liquid junction potential (ITLJP) 
of the reference electrode to the cell potential, due to interfacing 
the internal reference electrode solution with the external solution, 
is negligible or has been calculated with sufficient accuracy.3,12,13 
The concentration of hydrogen ion in the HCl solution (mH+), for 
example, may be estimated by considering the HCl dissociation 
reaction,5 

 
 HCl    H+ + Cl– (4) 
 

along with water dissociation  
 
 H2O    H+ + OH–  (5) 

 
For reactions (2) and (3), we establish the following system of four 
equations, which include the mass action constants together with 
the mass balance and charge balance constraints: 

 

 

HClHCl

2
ClH

m

mm
Kd

 (6) 

 
 2

OHH mmKw  (7)
  
 

 HClCl
0
HCl mmm  (8) 

  
 0-H OHCl mmm  (9) 

 
Here  is the mean molal activity coefficient, and mo

HCl is the total 
(stoichiometric) molal concentration of HCl in solution.14  

Combining Eqs. (6)–(9), and assuming HCl = 1, we obtain, 
 

  m m mH
3

H
2

H+ + +
K K m K K Kd W

o
d d W

2 2 2 4 0   (10) 
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For sufficiently dilute solutions, the activity coefficients can be 
estimated using Debye-Hückel theory in extended form,14 provided 
that the ionic strength, I, is not too high (I  < 0.1M), which is near-
ly always the case, because of the very small dissociation constants 
for electrolytes. Thus, to a good approximation, the activity coeffi-
cient is given by14 

   
IaB

IAz
log i

1

2
  (11) 

 
where the ionic strength, I, is defined as I = 0.5 Cizi

2; a is the dis-
tance of closest approach of the ions; and A (the Debye-Hückel 
limiting slope) and B are constants that depend on density (pres-
sure) and the dielectric constant of the medium; the molal dissocia-
tion constant of HCl, Kd, can be obtained from the data of Frantz 
and Marshall14 or by using the Supcrt 92 computer program, de-
veloped by Johnson et al.15 Data for the density of water, and for 
KW as a function of temperature and pressure (density) were taken 
from Ref. 16. The Debye-Huckel limiting slopes for the tempera-
ture range of interest were estimated by employing the dielectric 
constant and density of water as given in Ref. 3 and 17. Solution of 
the system of Eqs. (6) to (11) yields the molal concentration and 
activity coefficient of hydrogen ion. A similar model was devel-
oped for the proposed 0.01m NaOH standard.3  

With data on the activity of hydrogen ion in the standard solu-
tion available from model estimations, relationships between the 
pH and cell potential, and hence a practical pH scale, for super-
critical systems was developed.10,11 The potential of the cell com-
prising a pH sensor (yttria stabilized zirconia membrane) and a 
reference electrode (silver/silver chloride external pressure bal-
anced electrode) (Emeas.) can be written in the following form:10,11  
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where EE.S.P.

 represents the effective standard potential, in other 
words, the potential of the cell measured in the standard solution, 
EE.S.P. = .sol.st

.measm pHst.sol. is the value of the pH in the standard solu-
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tion and aH2O  is the activity of water. From Eq. (12), the pH for the 
solution of interest is obtained as 
 

 
OH

st.sol
OH
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2

2log
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1pH

303.2
pH

a
aEE

RT
F

solstmeasPSE   (13) 

 
Clearly, an accurate derivation of pH requires knowledge of the 
activity of water in the test solution as well as in the standard solu-
tion. 

In summary, the proposed pH standard is based on the concept 
of a standard solution and effective standard potential of the cell, 
just as the practical pH scale is defined under ambient conditions. 
This standard requires only one reference measurement in the 
standard solution at the temperature and pressure of interest, in 
exactly the same way as in subcritical systems. However, as is 
shown below, the fact that temperature and pressure are independ-
ent variables over the entire state space in supercritical systems 
considerably complicates the practical definition of the system for 
which the pH is measured or calculated. 

In order to accurately interpret the results of EMF measurements at 
supercritical temperatures, it is necessary to estimate the activity of 
water in the fluid, as noted above, because the activity of water 
appears in the equation for the electrode potential of the YSZ 
membrane as:10,11  

 

o
OH

OH

2

2log
2

303.2pH303.2=
a

a
F

RT
F

RTEE o
YSZ   (14) 

 
For subcritical systems, the activity of water is simply defined 

as the ratio of the vapor pressure of water over the solution of in-
terest to the vapor pressure of pure water under identical condi-
tions. However, for supercritical systems this definition is no long-
er useful or practical, because of the absence of a liquid phase. 
Instead, for supercritical water systems, which are essentially 
dense gases, it is more convenient (and descriptive) to use the con-

3. Contribution of the Activity of Water 
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cept of fugacity instead of activity. Fugacity is essentially pseudo 
pressure or corrected pressure, which permits the use of ideal gas 
equations for real gases. The relationship between fugacity (f) and 
activity of water is given as 

 

 
of

f
a

a
o

OH

OH

2

2   (15) 

 
where superscript "o" indicates a reference or standard state (cor-
responding to pure water for subcritical systems). There exist sev-
eral means of estimating the fugacity of a gas. Kriksunov and 
Macdonald10,11 used the technique based on determining the differ-
ence between the isothermal expansion work functions for ideal 
and real gases. Thus, the work of isothermal expansion of an ideal 
gas from pressure P2 to P1 can be written as Aid=RTln(P2/P1). For a 
real gas, the same work should be written using fugacities (f): 
Are=RT ln(f2/f1). The difference between Aid and Are is the excess 
expansion work: 

 

  21
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2

1
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fP
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fRT

P
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We must choose as P1 a suitably low pressure, such that the 

real gas behaves practically as an ideal gas. In that case, P1 = f1 
and A becomes: 

 

  2

2ln
f
PRTA   (17) 

 
From the last equation, one obtains the fugacity as 
 

  )exp(22 RT
APf   (18) 

 
and the fugacity coefficient as: 
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The value of A is then easily estimated as  
 

 
1

2

1

2

1

2

)(
P

P
reid

P

P
re

P

P
idreid dPVVdPVdPVAAA   (20) 

 
Taking into account that, for one mole of ideal gas, PV = RT, we 
obtain: 
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The values of A were estimated for water at supercritical 

temperatures and at several P2 over the range 1–1000 bars from 
Eq. (21) using specific volumes obtained from the ASME Steam 
Tables.18 Water vapor at a pressure of 1 bar and at the temperature 
of interest was chosen as the standard state, but it is emphasized 
that other standard states are readily defined. 

Calculated values for 2 are presented in the Fig. 13 as a func-
tion of pressure for temperatures of 400 and 500 C. It is clear that 
the fugacity coefficient drops precipitously at pressures higher 
than about 100 bars, especially so at low supercritical tempera-
tures. This is due to the increasing impact of molecular interactions 
in the fluid that tend to make the system less compliant with the 
ideal gas equation and hence less ideal. An increase in tempera-
ture, as one would expect, makes the fluid more ideal, so that at 
higher temperatures the fugacity coefficient decreases more slowly 
with pressure than it does at lower temperatures. 

It is emphasized that the activities (fugacity) of water calculat-
ed above are for pure water only. In order to obtain activities of 
water in solutions, it is necessary to employ PVT data for corre-
sponding systems. However, for relatively dilute solutions, the 
effect of the solute upon the properties of the solvent can be ne-
glected and, hence, fugacity data calculated from the properties of  
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Figure 13. Fugacity coefficient of water as a function of pressure for two 
supercritical temperatures. Reprinted from Ref. 11, Copyright (1998) 
with permission from NACE International. 
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pure water may be used to a first approximation for the pre-

sent application. 
The effect of fugacity on cell potential can now be estimated 

as:10,11 
Values for E are plotted against pressure in Fig. 14 for tem-

peratures of 400 and 500 C. Note that the effects of pressure are 
significant. Thus, for a change in pressure from 500 to 1000 bar at 
500 C, the effect of the change in fugacity on cell potential would 
be (0.192 – 0.204) V = –0.012 V. This value may be compared  
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Figure 14. Contribution of water fugacity to the potential of the 
YSZ pH sensor as a function of pressure for two supercritical tem-
peratures. Reprinted from Ref. 5, Copyright (1997) with permis-
sion from Elsevier.  

 
 

 

A principal goal of early work by the author and his colleagues on 
supercritical aqueous systems was to develop simple, rugged sen-
sors that were capable of measuring pH and redox potential at 
temperatures up to about 550°C. As discussed earlier in this re-
view, these two parameters are of prime interest, because the hy-
drothermolysis of organic material produces acid (which may be 
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with that of 2.303RT/F = 0.153 V at 500oC. Accordingly, the fu-
gacity correction is significant (≈ 0.08 pH unit) for highly accu-
rate work, but is probably of little consequence for many techno-
logical applications.  
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neutralized by the addition of sodium hydroxide) and because a 
typical SCWO reactor utilizes a high partial pressure of oxygen or 
even additions of hydrogen peroxide. These conditions are neces-
sary, in order to destroy the most resilient wastes. However, they 
are also the conditions that lead to exceptionally high corrosion 
rates that render even the most corrosion resistant, nickel-based 
alloys generally unsuitable for use in SCWO reactors unless pro-
tected by a suitable liner. Indeed, even the noble metals, such as 
platinum, are found to corrode at tens of mils per year in some 
supercritical aqueous environments. 

The key to measuring electrochemical potentials in any envi-
ronments is the availability of a viable reference electrode and a 
viable indicator electrode. The generally accepted attributes of a 
viable reference electrode are as follows: 

 The potential should be stable and reproducible over ex-
tended periods of time. 

 The potential should be independent of compositional 
changes in the system or, at least, the change in the potential 
should be predictable from the compositional changes. 

 The reference potential should be established by an electro-
active couple at equilibrium, so that the reference potential 
may be placed on an accepted thermodynamic scale. 

In many cases, only the first two conditions can be fulfilled, 
with the result that the measured potential of an indicator electrode 
cannot be placed upon a viable thermodynamic scale (e.g., the 
Standard Hydrogen Scale, SHE, see below). In this case, the refer-
ence electrode is referred to as a pseudo reference electrode or 
PREs, which might be capable of internal calibration against some 
potential-determining process that occurs at the indicator elec-
trode. PREs have been used extensively in corrosion studies in 
high subcritical and supercritical aqueous systems, as described 
below, and are generally serviceable provided that limited accura-
cy is acceptable. 
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1. Internal Reference Electrodes 

(i) Hydrogen Electrodes 

From the theoretical point of view, the hydrogen electrode is 
perhaps the most ideal reference electrode for high temperature 
work. Thus, the Standard Hydrogen Electrode (SHE) has been 
selected in thermodynamics as the zero of the potential scale and it 
is the electrode against which the standard potentials of all other 
half cells are expressed. However, it is important to note that the 
SHE is a hypothetical construct, in which the activity of H+ (aH+) 
and the fugacity of H2 (fH2) are both equal to one at the specified 
temperature and pressure. Although it is possible to devise a prac-
tical hydrogen electrode that conforms closely to the SHE, by 
choosing the appropriate concentration of H+ and pressure of H2, 
such that the activity and fugacity, respectively, are unity, this is 
seldom, if ever done, because of the ease of relating the potential 
of a practical hydrogen electrode to the SHE scale (see below) and 
because of the difficulty in interfacing a gas (hydrogen of precisely 
controlled pressure) with a high temperature/high pressure aqueous 
solution. Even so, with appropriate care, the hydrogen electrode 
has proven to be rugged and reversible, but it can only be used in 
systems that are stable against reduction by hydrogen. For exam-
ple, it cannot be used in potentiometric studies of Fe3+ hydrolysis, 
because of the occurrence of the reaction  

 
 Fe3+ + ½ H2    Fe2+ + H+ (23) 
 
According to the 1960 Stockholm Convention, the half-cell 

reaction for the hydrogen electrode is expressed as: 
 
 2 H+ + 2 e–    H2   (24)

 
with the potential being given by the Nernst equation 
  

 pH303.2)log(
2

303.2
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H/HH F
RTf

F
RTE   (25)  
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in which pH = –log(aH+). The fugacity of hydrogen is related to the 
molal (mol/kg H2O) concentration of dissolved hydrogen by Hen-
ry’s Law as: 
 

  2222 HHHH mKf
 (26) 

 
where KH2 and H2 are the Henry’s constant and activity coefficient 
for dissolved hydrogen, respectively. 

For the hydrogen electrode to be used as a reference electrode, 
the pH of the medium and the fugacity of the hydrogen must be 
accurately known. The first condition is readily achieved by em-
ploying a well characterized buffer solution, as described above. 
Suitable buffers are available for temperatures up to ca. 300°C, 
primarily through the work of the Oak Ridge National Laboratory 
group, but few are available for use at temperatures up to or above 
the critical temperature. The few studies that have been performed 
in supercritical systems have employed HCl and NaOH solutions 
as pH standards, with the pH values being calculated from dissoci-
ation constant data in the literature that were obtained from con-
ductance studies. Note that both electrolytes are poorly dissociated 
at supercritical temperatures and hence are classified as being a 
weak acid and a weak base, respectively.3 Furthermore, the corre-
sponding, fully dissociated salts, which would be required for an 
effective buffer to be formulated, do not exist. However, in most 
applications of the hydrogen electrode being used as a reference 
electrode, the major experimental problem is the accurate meas-
urement of the hydrogen fugacity, as noted above. For instance, a 
temperature fluctuation of ±1°C at 300°C can easily cause an error 
in the estimated hydrogen partial pressure of greater than ±1 atm, 
which will be reflected in an uncertainty in the reference electrode 
potential of nearly 60 mV (if only the total pressure is known).18 
Although values for the hydrogen fugacity coefficients are well 
known, it is generally necessary to employ extra-thermodynamic 
assumptions to estimate the fugacity coefficients in the presence of 
a high solvent (water) vapor pressure. For example, it is often as-
sumed that partial pressures of the solvent (water) and hydrogen 
are additive, an assumption that has not been rigorously tested, to 
the author’s knowledge. 
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the connecting inside surfaces. The converging solutions are sepa-
rated mechanically by a Teflon separator inserted between the two 
half-cylinders (the cylindrical liquid-junction plug). The two flow-
ing streams join before leaving this split plug, then pass along a 
small groove cut along the outside surface of the upper plug to the 
outlet. The porous Teflon separator is intended to form and main-
tain a stable interface and to reduce convection that might result 
from slight differences in densities of the two solutions and from 
heat released at the interface by the mixing of the solutions. This 
emf cell with a flowing liquid junction is capable of operating at 
pressures to 100 atm and at temperatures up to 300oC.  

One application of the cell is the determination of the disso-
ciation quotient for water (QW). The cell used for this purpose can 
be represented as  

 
    Pt,H2(m1)/HCl(m2),KCl(m3)|KCl(m3),KOH(m2)/H2(m1),Pt  (28) 

 
The accuracy of the measured results was ± 0.02 in log[QW] at 
temperatures ranging from 0 to 50oC. When the cell was tested as 
an HCl concentration cell (using different concentrations, c1 and 
c2, of HCl, instead of HCl and KOH, on both sides, see Eq. 27) 
with the potential between the electrodes being given as: 
 

  LJEcc
F

RTE )/log(303.2
12   (29) 

 
the measured potential could be used to calculate the concentration 
ratio of HCl on the two sides. The measured ratios were found to 
be in good agreement with the true values over the full temperature 
range of 0 to 300oC.23  

The hydrogen concentration cell has been used to investigate 
the dissociation of water in KCl solution, to characterize buffer 
systems, including boric acid (50–290oC),21 phosphoric acid (up to 
300 oC),22 and ammonia (50–295oC),24 to investigate the hydroly-
sis of Al3+ (up to 200oC),20 to explore the precipitation of boehmite 
( -AlOOH) (200oC),34 and to measure transport numbers for H+ 
and Cl– in aqueous HCl solutions at temperatures as high as 
200°C,35 among other systems, where the upper temperatures are 
given in parentheses. One instrumental restriction on the applica-
ble temperature of the cell comes from the use of PTFE, which is 
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unstable at temperatures above 300oC. Hydrogen concentration 
cells have proven to be capable of precise in situ pH measurement 
(with uncertainties of no greater than ±0.01 pH unit), even over 
long periods of time (up to one month or more).28 Indeed, it is fair 
to say that essentially all of the high-precision pH measurements at 
moderate, subcritical temperatures (100–300oC) reported to date 
has been performed using hydrogen concentration cells of the type 
first introduced by Mesmer, Sweeton, and Baes more than thirty 
years ago. 

Although the hydrogen concentration cell can provide precise 
pH measurement at temperatures up to 300°C, and could possibly 
be used up to Tc, when employing a flowing cell,23 it has several 
inherent disadvantages:  

(a) It cannot be used in systems that are unstable in the pres-
ence of hydrogen;  

(b) it requires the use of a buffer solution whose pH-
temperature characteristics are accurately known, which is 
difficult to fulfill under high subcritical temperatures and at 
supercritical temperatures, as noted above; and  

(c) a suitably high back ground concentration of an indifferent 
electrolyte, such as KCl, must be employed to suppress the 
isothermal liquid junction potential (ILJP) between the ref-
erence and test compartments.  

Of these three issues, the first two are the most serious, with the 
first severely limiting the systems that can be studied to those that 
are stable in the presence of hydrogen, and the second limiting the 
upper temperature. The third constraint is not a major issue in high 
subcritical systems, because the transference numbers of the ions 
of most, if not all, binary electrolytes tend toward 0.5 with increas-
ing temperature; however, at temperatures above the critical tem-
perature the solubility of a salt is severely restricted and it may not 
be possible to attain a sufficiently high concentration to suppress 
the liquid junction potential. Note that the isothermal liquid junc-
tion is most effectively suppressed if the transference numbers of 
the cation and the anion of the background electrolyte are equal, a 
condition that is fulfilled by KCl at ambient temperature (and 
hence the reason for the choice of KCl in ambient temperature 
studies).  
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The hydrogen (reference) electrode has also been used exten-
sively to explore the thermodynamics of the yttria-stabilized zirco-
nia membrane electrode (YSZME) in high subcritical and in su-
percritical aqueous systems. The use of the YSZME in subcritical 
systems was first described in 1980 by Niedrach39 and soon there-
after by Tsuruta and Macdonald,40 Danielson et al.41,42 and Bour-
cier et al.43 The YSZME with a Cu/CuO internal element was ini-
tially used as a reference electrode by Niedrach40,44-47 for measur-
ing corrosion potentials of stainless steel components in nuclear 
reactor coolant circuits. The work of Macdonald et al.41,48-52 and 
later by Lvov and others53 concentrated on exploring the thermo-
dynamics of the YSZME, as noted above, because of its utility as a 
primary pH sensor (i.e., one that does not need to be calibrated). 
Since these initial studies, the YSZME with a Ag/O2 internal ele-
ment has been used to sense acidity in aqueous solutions at tem-
peratures as high as 528oC using an External Pressure Balanced 
Reference Electrode (EPBRE) based upon the Ag/AgCl, KCl (sat), 
electroactive element.54,55 This work is described further below. 
Regardless of whether the YSZME is employed as a reference 
electrode (in a medium of known pH versus temperature character-
istics, as in the initial application by Niedrach)39,46-47 or as a pH 
sensor, it is necessary to establish the theoretical response of the 
electrode in order that the potential can be related to the SHE 
scale. 

For the YSZME electrode employing a Hg/HgO internal ele-
ment, the half-cell reaction is written as:  

 
 HgO + 2 H+ + 2 e–  Hg + H2O  (30) 

 
with the corresponding Nernst equation being:  
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where E0

Hg/HgO is the standard potential of the Hg/HgO couple and 
aH2O is the activity of water. By combining Eqs. (25), (26), and 
(31), we obtain the potential of the cell H2/H+, YSZME as: 
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The first term of Eq. (32) is a constant for a given tempera-

ture, pressure, and ionic strength, so that the cell voltage is linearly 
related to the logarithm of the dissolved hydrogen concentration. 
In other words, using the hydrogen electrode as an indicator elec-
trode and the YSZME as the reference electrode, the cell  

 
  Pt,H2/H+(aq.)/ZrO2(Y2O3)/HgO/Hg  (33) 

may be employed as a hydrogen sensor to obtain the concentration 
of hydrogen at given temperature and pressure by measuring the 
potential difference between the two electrodes.49,52 To test this 
concept, Ding and Seyfried Jr.59 used the same electrochemical 
cell depicted above to measure the fugacity and Henry’s constant 
for hydrogen at supercritical temperatures. At a temperature of 
400°C and at a pressure of 400 bar, the measured potential of the 
cell displays a good Nernstian response to dissolved hydrogen 
concentration that agrees with the theoretical value. The experi-
ments also demonstrated the excellent stability of the sensor during 
month-long operation.57  

Eklund et al.60 also employed the hydrogen electrode and YSZ 
electrode to measure Henry’s constant for hydrogen in NaOH solu-
tions at temperatures ranging from 25°C to 450°C and at a pres-
sure of 275 bar. The system that they used can be written in the 
form: 

 
  Hg/HgO/ZrO2 (Y2O3)/NaOH (aq.)/H2, Pt  (34) 
 
The results agreed well with those of Fernandez-Prini and 

Crovetto61 for temperatures up to 350°C and with Kishima and 
Sakai’s work62 for temperatures up to 450°C. 

According to Ding and Seyfried Jr.,63 two problems of the 
platinum/hydrogen electrode are the poisoning by sulfide ion and 
the solubility of hydrogen in the metal at elevated temperatures. 
We regard the first of these concerns to be legitimate, but it is dif-
ficult to reconcile the second with thermodynamic principles. Ding 
and Seyfried Jr.63 evaluated gold hydrogen-sensing electrodes, as 
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alternatives to platinum, for the in situ measurement of dissolved 
hydrogen in supercritical aqueous fluid (temperature: 375–400°C, 
pressure: 400 bar). With the same cell potential expressed by Eq. 
(32), at 400°C and 400 bar, the experimental data reveals a slope 
of 0.0668 ± 0.0027 V (measured potential with respect to loga-
rithm of dissolved H2 concentration), which is in excellent agree-
ment with the theoretical values of 0.0668 V (from Eq. 32) com-
pared with that for a platinum electrode under the same conditions 
(0.054 V, see Ref. 57). The present authors consider the latter re-
sult to be too far different from the theoretical value that attribu-
tion of the difference to the different noble metals employed is not 
reasonable. Instead, the difference is probably due to experimental 
error, given the high level of difficulty in performing experiments 
of this type. 

A significant problem with potentiometric measurements in 
high subcritical and in supercritical aqueous systems is corrosion 
of the apparatus, which can result in large changes in the pH. This 
problem was addressed by Lvov, Gao, Zhou, and Macdonald64-66 
by devising flow through reference electrodes (Ag/AgCl and the 
YSZME) and indicator electrodes (H2/H+), such that the incoming 
solution was never in contact with corrodible metal surfaces. In 
this way, contamination of the solution could be prevented or at 
least minimized. Sue et al.67 subsequently employed this concept 
by using two identical high-temperature platinum/hydrogen elec-
trodes as the working and reference electrodes (Fig. 17). The cell 
is depicted as: 

 
 Cu/Pt, H2/Ref. Solution | Test Solution/H2, Pt/Cu  (35) 
 
 T1 |  T2 |  T1 

 
in which T2 is the higher working temperature and T1 is the ambi-
ent reference temperature. The corresponding cell potential is writ-
ten as 
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measured potential, including adjustment of the electrode coiled 
tip lengths, etc., although the exact theoretical basis for the proce-
dures remains obscure. Sue et al.67 compared the calculated and 
measured values for Eap and concluded that an accuracy of ±0.02 
of a logarithmic (pH) unit was achieved at temperatures from 19.6 
to 392.9°C and at pressures from 0.1 to 29.8 MPa. The cell was 
also used to determine the first dissociation constant of sulfuric 
acid at temperatures from 375.2 to 399.8°C and at pressures from 
28.1 to 32.5 Mpa.67 

(ii)  Silver/Silver Chloride Electrodes 

Silver/silver chloride electrodes have been used extensively as 
reference electrodes in high temperature electrochemical studies. 
The first potentiometric measurement of pH at elevated tempera-
tures, at Oak Ridge National Laboratory by Lietzke,68 employed 
Pt-H2 electrodes coupled with Ag/Ag-salt reference electrodes to 
investigate the thermodynamic properties of HCl and other strong 
acids in electrolytes to 225oC. Ag/AgCl electrodes are considered 
to be among the most serviceable electrodes under high tempera-
ture conditions, and have been found to perform satisfactorily at 
temperatures up to 573K (300oC).19 Thus, the early work of Gree-
ley and Lietzke,69-70 subsequently reviewed by Macdonald,18 at-
tests to the utility of the Ag/AgCl electroactive element, in particu-
lar.  

One of the major problems experienced with all Ag/AgX, X  
Cl, Br, I electrodes, when used in hydrogen-rich systems, are the 
reduction of AgX by hydrogen to metallic silver: 

 
 AgX + ½ H2    Ag + H+ + X– (38) 
 

This reaction results in a mixed potential (rather than equilibrium 
potential) being generated at the electroactive element and in the 
activity of X– at the electroactive element varying with time. Fur-
ther, as noted above, the thermohydrolysis of AgX, 

 
 2 AgX + H2O    Ag2O + 2 H+ + 2 X– (39) 
 

readily occurs at elevated temperatures and the reaction product 
will also result in a mixed potential. Furthermore, Ag2O decom-
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al.85 explored the palladium/hydrogen system as a reference elec-
trode as well as a pH indicator electrode. The work by Dobson81-83 
and Macdonald84 used palladium wire electrodes that had been 
cathodically charged into the  region of the Pd-H phase diagram, 
where solid palladium hydrides are formed. Hydrogen was then 
allowed to desorb from the lattice and the system passed into the  
+  region, where hydrogen in solid solution (the  phase) is in 
equilibrium with the hydrides. Under these conditions, the activity 
of H in the lattice is fixed by the Gibbs phase rule, so that the po-
tential due to the reaction 

 
 H+ + e–    H (42) 
 

depends only on the pH and temperature, provided that the compo-
sition remains in the  +  region of the phase diagram for the Pd-
H system. Once the composition moves into the -region, where 
the activity of H depends on composition, the potential varies with 
time. Thus, as the potential decays from the cathodically-charged 
state, it exhibits a plateau over which the activity of H in the lattice 
is established internally. This removes one of the principal objec-
tions to the hydrogen electrode as a reference electrode: the need 
to accurately control the hydrogen fugacity. However, the Pd-H 
phase diagram exhibits an upper consolute temperature for the  + 

 region of the phase diagram of about 275oC.80,82 At temperatures 
above this value, the  +  region no longer exists, so that the es-
tablishment of a fixed activity of H does not occur. 

A variant of the Pd-H2 electrode was explored by Macdonald 
and coworkers84 and later by Nagy et al.85 in the form of a Pd (or 
Pd-Ag) thimble with a known H2 pressure on the inside with the 
external surface being exposed to the solution. Diffusion of hydro-
gen through the Pd wall establishes a fixed activity of H (or fu-
gacity of H2) at the outer surface where the potential determining 
reaction occurs. The electrode potential is stable and the electrode 
can serve as a viable reference electrode, provided that the pH is 
known. Again, like the Pd-H2 electrode, the Pd thimble electrode 
removes the difficulty with the classical hydrogen electrode of 
establishing a known hydrogen activity (fugacity) in the system. 
However, unlike the Pd-H2 electrode, the maximum temperature of 
operation is not limited by the thermodynamics of the Pd-H sys-
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potential, but it suffers from the same disadvantage as does the 
polymer electrolyte reference electrode: the need to calibrate, 
which requires a primary standard whose potential can be accu-
rately related to the SHE scale. 

2.  External Reference Electrodes 

Because of the harsh working conditions in high subcritical and in 
supercritical water systems, the stability of electroactive element 
becomes a major practical and theoretical issue in reference elec-
trode technology. The most frequent problem is the thermal hy-
drolysis of one or more phases in the electroactive element, such 
as AgCl in the Ag/AgCl internal reference electrode, as described 
above. One solution to this problem is to locate the electroactive 
element at ambient temperature, where thermal hydrolysis does not 
occur, and connect the element to the high temperature region of 
the system by a non-isothermal electrolyte bridge. Early variants 
of this scheme used a non-isothermal bridge together with a com-
pressed porous plug to reduce the pressure to ambient at the elec-
troactive element (Jones and Masterson,88 Macdonald and Owen,89 
and Macdonald84) with only limited success. In this case, two irre-
versible potentials are created by the junction. The first is the 
steaming potential due to the non-isobaric junction, which is elim-
inated by the use of pressure-balanced electrolyte bridges. The 
second is the thermal diffusion potential, which remains as the 
main problem of all external pressure-balanced electrodes. 

External pressure-balanced reference electrodes (EPBREs) 
have been developed and evaluated extensively over the past three 
decades. The first variant was described in 1978 by Macdonald et 
al.90 and was patented in the same year, with the invention being 
assigned to the Electric Power Research Institute. The electrode 
won the EPRI Invention-of-the-Year Award in 1979. The EPBRE 
that was first evaluated is described thermodynamically as the 
thermocell: 

 
 (25°C) Ag/AgCl/KCl (M)/AgCl/Ag (T°C)  (43) 

 
in which T was varied from 25 to 275°C and the concentration of 
KCl was varied from 0.0050 to 0.505 M.88 An important feature of 
the original, Macdonald et al.91 electrode was the reliance of pres- 
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trolyte theory. No comparable theory has been developed for su-
percritical aqueous systems, to the author’s knowledge. In spite of 
the theoretical shortcomings, EPBREs have been used extensively 
in supercritical aqueous systems to demonstrate the thermodynam-
ic viability of YSZMEs49,52,88 and to measure pH in high subcriti-
cal and in supercritical aqueous solutions (using YSZMEs as pH 
electrodes).51,84,89,90 In the early 1990s, using an YSZME with a 
Ag/O2 internal element and an EPBRE, Kriksunov and Macdonald 
significantly extended the temperature of direct acidity measure-
ment up to 528°C.53,55,56 To the author’s knowledge, this still rep-
resents the highest temperature at which acidity measurements 
have been made. 
The original flow-through technique for reference electrodes was 
first developed by Danielson in 198394 with the purpose of elimi-
nating thermal diffusion by continually refreshing the inner com-
partment. In this way, the electrolyte in the inner compartment 
could be maintained in the Soret initial state (i.e., by maintaining a 
uniform concentration along the non-isothermal bridge). The flow 
rate was adjusted to be sufficiently high to maintain a uniform 
concentration, but to be sufficiently low to maintain the tempera-
ture gradient along the non-isothermal electrolyte bridge. The orig-
inal Danielson cell, which was restricted to moderate, subcritical 
temperatures (T < 300oC), proved to be quite successful, in that the 
potential remained stable at the expected value over extended peri-
ods of time. Later, this same concept was adopted by Lvov et al. 
(Fig. 22)65,66 for high subcritical and low supercritical temperatures 
(374.15oC < T < 400oC), with the result that highly accurate poten-
tiometric measurements could be made.65,66,92 This required careful 
calibration of the reference electrode against a hydrogen electrode 
in a flow-through system and against theoretical calculation, 
knowing the pH and the fugacity of hydrogen. In any event, while 
this type of electrode represents the current state-of-the-art, it is 
judged to be too difficult to apply in the field and is perhaps too 
difficult to apply even in the research laboratory (the same prob-
lem with the EPBRE). The reference potential was also found to 
depend on flow rate of the electrolyte through the inner compart-
ment, presumably arising from the streaming potential and possi-
bly also from the modified temperature gradient down the thermal 
liquid junction. The fact that the potential is flow rate dependent is  
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in which H+(T2) and H2(T2) are the chemical potentials of the 
hydrogen ion and the hydrogen molecule in the high temperature 
(T2) region, respectively. The quantities Ag(T1), AgCl(T1), and Cl–
(T1) are the chemical potential of Ag, AgCl, and Cl– in the low 
temperature (T1) zone. The term Pt,eS  is the transported entropy of 
an electron in the platinum wire. ED(T2) and ETLJ are, respectively, 
the isothermal liquid junction potential and thermal liquid junction 
potential, which are discussed below. 

(i) Isothermal Liquid Junction Potential 

Both internal and external reference electrodes possess an in-
terface between the internal solution and the external environment. 
This interface is commonly established within a porous junction 
and is designed to permit electrolytic communication while pre-
venting flow. In any event, the junction gives rise to the isothermal 
liquid junction potential (ILJP), ED(T2), which develops, because 
some ions diffuse faster than others, thereby generating an electric 
field that opposes the process. Integration of the electric field 
across the junction yields the isothermal liquid junction potential. 
Bard and Faulkner provide a detailed discussion of the thermody-
namics of the isothermal liquid junction.93 For dilute solutions, the 
potential can be calculated from Henderson’s equation. In the case 
of Thermocell I, the isothermal liquid junction potential is ex-
pressed by:  
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where ui and zi are the mobility of and charge on species i, respec-
tively. The quantities mi

KCl and mi
HCl are the molal concentration of 

the ith species of the right (HCl) and left (KCl) sides of the junc-
tion. The isothermal liquid junction potentials for various 
B(OH)3/LiOH aqueous systems at a number of temperatures have 
been calculated by Macdonald84 and have been used to correct the 
measured results in Ref. 94. 

The Henderson’s equation assumes ideal solution behavior, 
which renders it suitable only for dilute solutions. For more con-
centrated solutions, Harper has provided an alternative expres-
sion.95 The equation is reckoned to achieve an accuracy of 0.1 mV 
for a simple junction between two identical electrolytes of differ-
ent concentrations, and 1–2 mV uncertainty for more complex 
junctions. 

As noted above, the ILJP can be suppressed by employing a 
high concentration of a binary electrolyte whose ions have similar 
transference numbers. Traditionally, in ambient temperature stud-
ies, KCl has been used for this purpose, because of the near equali-
ty of the transference numbers: t0

K+ = 0.491 and t0
Cl- = 0.509 at 

25oC. As shown by Macdonald and Owen34 the transference num-
bers for H+ and Cl– approach equality as the temperature increases 
toward 200oC, and ionic conductance data indicate that this is a 
general trend, suggesting that the ILJP issue is of less importance 
at higher temperatures. However, the trend toward equality of the 
transference numbers is countered by the larger value of RT/F, so 
that the effect of temperature on the ILJP is not easily gleaned by 
inspecting Eq. (46) alone. In the case of supercritical aqueous solu-
tions (SCASs), ion association occurs to such a large extent that, 
even for solutions of high stoichiometric concentrations, the con-
centrations of free ions is always quite small, even at high pressure 
(density). Accordingly, the SCAS case is always dilute and the 
isothermal liquid junction potential may be adequately estimated 
using the ideal expression, Eq. (46). 

(ii) Thermal Liquid Junction Potentials 

The quantity ETLJ  in Eq. (45) is the thermal liquid junction po-
tential, or the thermal diffusion potential, which arises from the 
coupling between heat flow and mass flow (diffusion) in accord-
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ance with Curie’s Principle in irreversible thermodynamics. In the 
electrolyte solution, a small, but definite, increase in concentration 
occurs at the cold end of a non-isothermal electrolyte bridge as the 
system evolves towards a Soret steady-state. This transport phe-
nomenon is denoted as thermal diffusion and is due to coupling 
between the heat flux from the hot end to the cold end and the ion 
flux, as noted above. Thermal diffusion in liquid systems was first 
discovered by Ludwig in 1856, but was examined more closely in 
1879–1881 by Soret, and so is now named the Soret effect.96 The 
state when no obvious thermal diffusion has occurred is designated 
the Soret initial state.97 Concentration gradients due to the Soret 
effect lead to the establishment of a diffusion potential and an in-
ternal electric field due to the migration of ions. The sum of these 
two potentials is designated the thermal diffusion potential. Ther-
mal diffusion continues until backward, chemical diffusion (from 
the more concentrated cold end to the hot end of the junction) 
causes the system to attain a steady state. This state is referred to 
as the Soret final state. Attainment of the Soret steady (final) state 
may take many days or weeks, depending upon the electrolyte, 
temperature gradient, and the length of the junction. Clearly, it is 
impractical to operate an EPBRE in the Soret steady state, so that 
emphasis was originally placed on devising methods for maintain-
ing the system in the Soret initial state (e.g., by transmitting pres-
sure pulses into the inner compartment of an EPBRE, as discussed 
above). The importance of thermal diffusion in electrochemical 
cells has been discussed at length by Engelhardt, Lvov, and Mac-
donald.101 

In 1979, Macdonald et al.102 successfully measured the initial 
thermal liquid junction potential of the thermal cell 

 
  (298.15K)Ag/AgCl/KCl(aq.)/AgCl/Ag(T)  (47) 

 
in which the temperature of the hot end of the cell (T) was varied 
from 298.15 K (25oC) to 548.15 K (275oC) and the KCl concentra-
tion was varied from 0.005 to 0.505 m. Macdonald et al. calculated 
the Nernstian thermal cell potential by employing Gibbs energies 
of formation for the cell components based upon an absolute, 
298.15 K, standard state. The difference between the Nernstian 
potential and the observed potential (Fig. 23) is the initial state 
thermal liquid junction potential (Fig. 24). The thermal liquid junc-
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using extended Debye-Huckel theory, and activity coefficients for 
all neutral species, including water, were set equal to unity. Sec-
ondly, the ionic transference numbers are calculated using the 
equation: 

 

  i
iii

iii
i

cz

cz
t 0

0

 

 (49) 

 
where i

0 is the limiting equivalent ionic conductivity of the ith ion. 
Lvov and Macdonald used the ionic limiting equivalent conductiv-
ities of K+(aq.), Na+(aq.), Cl–(aq.), H+(aq.) and OH–(aq.) given by 
Quist and Marshall.105 The parameter ci is the molar concentration 
of the ith species, which was calculated as described above. Equa-
tion (49) was proved to be a very good approximation for dilute 
solutions. 

To derive the entropies of transport for ionic species, Lvov 
and Macdonald100 extrapolated the standard entropies of transport 
of electrolytes, Si

*,0, from lower temperatures to higher tempera-
tures by applying Agar’s hydrodynamic theory. The low-
temperature experimental data were taken from Refs. 103 and 104. 
Lvov and Macdonald100 employed previously measured differ-
ences between ETLJ values for different electrolytes, MCln(aq.), so 
as to test the viability of the extrapolation. The results are shown in 
Fig. 25. As can be seen, good agreement exists between the calcu-
lated and observed data. Lvov and Macdonald100 also calculated 
thermal liquid junction potentials for different electrolytes over a 
wide range of temperature (Figs. 25 and 26). From the calculated 
data, it can be seen that ETLJ depends strongly on both the tempera-
ture and the type of the electrolyte, and the difference could be 
more than ±150 mV. To our knowledge, these data represent the 
only reported attempt to estimate the thermal liquid junction poten-
tial for external pressure balanced reference electrodes. 

All of the calculations described above correspond to Soret’s 
initial state, i.e., to a state where the concentration of electrolyte 
along the bridge is constant. As noted above, maintaining the 
thermal junction in the initial state has been a vital problem in the 
operation of external pressure balanced reference electrodes. As 
also noted above, in the original design of the EPBRE88 (Fig. 21), 
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ing way of eliminating the TLJP in high temperature pH measure-
ment, it has yet to be fully explored. 

Macdonald and Kriksunov employed an YSZME (with an in-
ternal element of Ag/O2) against the EPBRE to explore changes in 
acidity of dilute HCl and NaOH solutions for temperature ranging 
from 400° C to 528° C as the solution cycled from 0.01 m HCl to 
0.01 m NaOH, as shown in Fig. 30.55 The utility of the sensor for 
detecting pH changes in response to changes in solution com- 
position at temperatures well above the critical point is clearly 
indicated from the figure. By using the calculated pH values and 
the measured cell potentials, Macdonald and Kriksunov calibrated 
the reference electrode and obtained the pH of CCl4 solution (Fig.  
30) assuming complete hydrolysis of CCl4 (Fig. 31).55 This topic is 
discussed further below under Measurement of pH. 

The pH of the CCl4 solution was found to be a little higher 
than that calculated, assuming complete thermal hydrolysis of car-
bon tetrachloride. However, the level of agreement is still accepta-
ble, considering the unknown actual extent of CCl4 thermal hy-
drolysis and the uncertainty in the calibrating cell voltages. While 
the level of uncertainty perhaps does not satisfy the need for accu-
rate thermodynamic work, it is satisfactory for monitoring SCWO 
systems.3 

In the flow-through external pressure-balanced reference elec-
trodes62,63 (Fig. 22), fluid flow was employed instead of pressure 
pulses to suppress thermal diffusion. This was done by pumping 
the internal reference solution through the inner compartment at a 
delicately set rate. The flow rate must be high enough to yield a 
constant electrolyte concentration along the non-isothermal bridge, 
but also not too high so as to maintain the temperature gradient 
along the electrolyte bridge. Since the concentration is kept con-
stant along the bridge, the Soret initial state can be maintained and 
the thermal diffusion potential is constant for a given temperature 
difference across the junction. Thus, the uncertainty of the thermal 
liquid junction potential is assumed to be eliminated at any given 
temperature and pressure. 

To test this assumption, Lvov, Gao, and Macdonald65 em-
ployed two hydrochloride solutions of different concentrations 
(0.01mol kg-1 and 0.001mol kg-1 HCl) as the test solutions, and 
measured the potential difference of the thermocell: 
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tials, listed in Table 2, show good agreement and demonstrate the 
effectiveness of the flow-through technique in maintaining the 
Soret initial state. At the higher temperatures (350–360oC), the 
difference between the measured and calculated potentials was of 
the order of 10mV, corresponding to an uncertainty in a measured 
pH value (if it was used for that purpose) of about 0.08 (± 0.04). 

Lvov, Zhou, and Macdonald66 used a flow-through electro-
chemical cell (comprising a flow-through external Ag/AgCl pres-
sure-balanced reference electrode and a modified flow-through 
platinum hydrogen electrode) to measure pH at temperatures up to 
400°C and pressures up to 25.3 MPa. The measured accuracy was 
demonstrated to be better than ±0.03 logarithmic (pH) units, in 
good agreement with the estimate calculated above.  

A similar FTEPBRE has been employed by Lvov et al.108 in a 
four-way, once-through electrochemical cell (composed of one 
flow-through reference electrode, one flow-through Pt-H2 elec-
trode, one flow-through YSZ electrode, and a thermocouple). Be-
cause the same dependence on the temperature, pressure, flow rate, 
and solution component of the platinum electrode and YSZ elec-
trode exist, the cell was run at 320°C and 350°C (pressure 23.0 and 
24.8MPa) to test the precision and response time of the YSZ elec-
trode as a pH-sensing electrode.  

 
 

Table 2 
Experimental and Theoretical Differences in Potentials E  

(10-2 m-1 HCl) – E (10-3 m-1 HCl) of the Thermocell (Eq. 52) as a 
Function of Temperature and Pressure.57 

 

Temperature (K)  Pressure (bar) 
E (0.01 m HCl) – E (0.001 m HCl) 

Experimental  
observed (mV) 

 Theoretically  
calculated (mV) 

298 275  64.5             59.1 
298 338  61.4             59 
373 275            81             74 
473 275  97.8   93.7 
573 275 100.3  109.8 
623 275  93.4  102.2 
623 338  97.4  106.2 
633 338  91.7  102.4 
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Using a similar concept, Sue et al.109 designed another flow-
through external pressure balanced reference electrode using a 
platinum/hydrogen electrode instead of Ag/AgCl electrode. The 
cell they developed can be depicted by: 

 
 Cu/Pt,H2/Test solution | Reference solution/H2,Pt/Cu (54) 

 
T1   T2  T1  

 
in which T2 is the higher temperature and T1 is the lower (ambient) 
temperature. The platinum/hydrogen electrode on the right side is 
the flow-through external pressure balanced reference electrode, 
while that on the left side is the indicator electrode. This electro-
chemical cell has been used to measure pH at temperatures from 
23.9°C to 400.2°C and pressures from 25.0 to 35.1MPa. The dif-
ference between the measured pH and the calculated pH proved to 
be less than 0.03 logarithmic (pH) units. Sue et al. also used the 
cell to measure the dissociation constant of phenol (PhOH).110  

The development of FLEPBRE represents a significant ad-
vance in the quest to make possible accurate pH measurements in 
supercritical aqueous systems. However, there are also a number 
of issues that need to be resolved. One is the delicate setting of 
flow rate to simultaneously maintain the system in the Soret initial 
state and maintain the temperature gradient down the non-
isothermal bridge, which greatly complicates the system and 
makes the FTEPBRE unlikely to be used in many practical field 
situations (e.g. SCWO system). The second is the calibration of the 
reference electrode. Since the reference potential (measured 
against a hydrogen electrode) strongly depends on the flow rate of 
reference solution, it needs to be calibrated against a known stand-
ard over wide ranges of temperature, pressure, and solution type 
and composition, at accurately known flow rates. This feature, 
alone, indicates that the flow through concept, which was initially 
introduced by Danielson94 more than twenty years ago, is not the 
panacea in reference electrode technology. 

3. Measurement of pH 

A variety of sensors have been developed to measure the activity 
of H+ in high temperature aqueous solutions, including Pd/H elec-
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trodes, Pt/H2 electrodes, metal/metal oxide electrodes, glass elec-
trodes, and most importantly yttria-stabilized zirconia [ZrO2 
(Y2O3)] electrodes.111 The latter [ZrO2 (Y2O3)] sensors have now 
been used for monitoring pH in supercritical systems at tempera-
tures to 528°C, which is more than 150 oC higher than the critical 
temperature.5,10,11 For this reason, the present discussion of pH 
sensors will be restricted to the yttria-stabilized zirconia membrane 
system, with particular reference to the (Ag),O2/ZrO2(Y2O3)/H+, 
H2O electrode. Physically, this sensor comprises a closed end ZrO2 
(Y2O3) tube containing porous silver as an internal element and 
platinum wire as an ohmic contact with the silver. The porous Ag 
internal element is readily formed by the thermal decomposition of 
Ag2O at temperatures above ca 200oC. Although back filled with 
alumina cement, the inside of the tube is assumed to be in contact 
with ambient air with pO2 = 0.21 atm. It is important to note that 
this pH sensor is essentially identical to that described many years 
ago by Danielson,112 which he used to measure pH in subcritical 
systems (T < 300°C, in this case). 

Thermodynamic analysis of this sensor has been carried out 
by noting that the equilibrium processes that occur on the outside 
(solution side) and the inside (dry side) of the membrane are writ-
ten as  

 
 VO  + H2O  OO + 2 H+  (55) 
 

and 
 
  ½ O2 + VO  + 2 e–  OO   (56) 

 
Where VO , OO, and e– are the oxygen vacancy, oxide ion in a 
normal anion site in the YSZ lattice, and an electron in the metal 
(Ag). Thus, the half-cell reaction for the sensor becomes 

 
 ½ O2 + 2 H+ + 2 e–  H2O  (57) 
 

provided that the activity of VO  is uniform across the membrane 
wall. Note that if this latter condition holds, the thermodynamics 
of the system is independent of the properties of the ceramic, 
which constitutes a great advantage of YSZ ceramic membrane pH 
sensors.112 
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Application of equilibrium thermodynamics to this system 
yields the equilibrium potential as 

 

 pH
F

RTfa
F

RTEE OOH
oe 303.2/log

2
303.2 2/1

10 22
  (58) 

 
where OHa

2
 and 

2Of are the activity of water on the solution side 
and the fugacity of oxygen on the dry (internal) side of the mem-
brane, respectively, and pH = –log(aH+). E° is the standard poten-
tial, as given by  

 
 FGE OO 2/    (59) 
 

where G0 is the change in standard Gibbs energy for the cell reac-
tion 

 
 H2 + ½ O2  H2O  (60) 
 
Typical potential vs. time plots for a O2(Ag)/ZrO2(Y2O3) 

/H+,H2O sensor measured against an Ag/AgCl/KCl(sat) external 
pressure balanced reference electrode (EPBRE) for temperatures 
ranging from 400°C to 528°C as the solution is cycled from 0.01m 
HCl to 0.01m NaOH are shown in Fig. 10.10,11 It is evident that the 
cell potential responds to change in pH in a reproducible manner. 
In one case, a 0.1m NH3 solution was pumped through the cell 
resulting in a potential that is more positive than that for 0.01 m 
NaOH, as expected from the relative basicity. While a full analysis 
of these data has yet to be made, the utility of the sensor for detect-
ing changes in pH in response to changes in solution composition 
at temperatures well above the critical temperature is clearly indi-
cated.  

It is also important to note that the YSZ electrode is a primary 
pH sensor109 and hence (in principle) does not require calibrating. 
However, this is not the case with the EPBRE, which forms the 
other half of the cell. At the present time, no method exists for 
calculating the reference electrode potential, a priori, so that cali-
bration is the only course for devising a practical pH sensor. Cali-
bration requires knowledge of the activity of H+ and the fugacity 
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of water in the calibrating solution (see Eq. 60), both of which can 
be calculated from the thermodynamics of the system, provided 
that equilibrium constants, etc. are known (see above). 

The utility of the pH sensor described above for following the 
course of a reaction is illustrated by the data shown in Fig. 32(d). 
In this particular experiment, an aerated 0.005 m CCl4 solution (a 
resilient waste) was injected into the high temperature zone at a 
temperature of 525°C and at a pressure of 5000 psi (340.2 atm). 
The voltage of the sensor increased in the positive direction, indi-
cating acidification of the solution. Assuming that the carbon tet-
rachloride is completely hydrolyzed, 

 
 CCl4 + 2 H2O  CO2 + 4 HCl  (61) 

 
the HCl concentration should be 0.02 m. The observed potential is 
in good agreement with that measured for 0.01 m HCl, being 
slightly more positive than that for the latter. Because both the 
thermal hydrolysis and the oxidation of organic materials produces 
acid, monitoring of the pH using sensors of the type described in 
this work appears to be an effective means of monitoring the pro-
gress of a reaction. By using the calculated pH values and the 
measured cell potentials, it is possible to calibrate the external 
pressure balanced reference electrode (EPBRE). From this calibra-
tion it is possible to then obtain the pH of the CCl4 solution, as 
shown in Fig. 31. Also plotted in this figure are the calibrating 
data. The pH of the CCl4 solution is judged to be slightly high (by 
about 0.15 pH units). However, the level of agreement is satisfac-
tory considering that the extent of CCl4 thermal hydrolysis is un-
known and that the uncertainties in the calibrating cell voltages are 
such that the derived pH is unlikely to be more accurate than 0.15 
units. While this level of uncertainty is not satisfactory for accurate 
thermodynamic work, it is satisfactory for monitoring SCWO sys-
tems. In this regard, we note that attempts are now underway to 
develop techniques (including reference electrodes) for measuring 
pH to better than 0.05 at supercritical temperatures and at the 
time of preparation of this article measurements of this precision 
have been made at temperatures to 400oC.113 
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Figure 32. Measured potential vs. time for dilute HCl and NaOH solu-
tions and for carbon tetrachloride in supercritical aqueous systems at 
temperatures ranging from 400°C to 528°C. Reprinted from Ref. 5, 
Copyright (1997) with permission by Elsevier. 
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Figure 32. Continuation. 

 
 
The pH measurements reported in this review are summarized 

in Fig. 33, in which are plotted the calculated pH values for the 
0.01 m HCl calibrating solutions and the measured pH for the CCl4 
solution, as a function of temperature and pressure. Note that, at a 
temperature of 528oC and a pressure of 300 bar, the neutral pH is 
pKw/2 = 10.4, so that a pH of 8.4 under these conditions corre-
sponds to an acidic system. Also note that the density of the sys-
tems at the highest temperatures (525oC and 528oC) are of the or-
der of 0.15 g/cm3, which renders the systems more gas-like than 
“liquid-like”, as previously noted. The fact that pH measurements 
can be made under these conditions is remarkable and demon-
strates an additional, peculiar property of SCW. Finally, while the 
data plotted in Fig. 33 clearly correspond to dilute HCl solutions 
and to hydrolyzed CCl4, they are believed to be representative of 
SCWO systems in general that do not employ neutralization. 
 It is evident from the material presented above and earlier in 
this paper that the pH of a high subcritical aqueous solution or of a 
supercritical aqueous fluid is dominated by incomplete dissociation 
of even the strongest acids and bases. The importance of acid dis-
sociation in determining the pH is best illustrated by using HCl as 
a calculational probe. Thus, in Fig. 34, is plotted the calculated 
degree of dissociation of a dilute HCl solution (0.01 m) as a func-
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tion of temperature (25oC to 600oC) at pressures ranging from 400 
bar to 1000 bar. At temperatures below 325oC, HCl is almost com-
pletely dissociated and hence behaves as a strong acid. At higher 
temperatures, however, the degree of dissociation drops precipi-
tously and becomes highly pressure dependent. The pressure de-
pendence at supercritical temperatures is such that the degree of 
dissociation increases with increasing density and dielectric con-
stant, corresponding to progressively more effective stabilization 
of the ions. At the highest temperature (600oC) and lowest pressure 
(400 bar), the degree of dissociation corresponds to little more than 
one part per million, illustrating that overwhelmingly chloride ex-
ists in the form of undissociated HCl. 
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Figure 33. Plot of calculated pH against temperature for a stoichiometric 
HCl concentration of 0.01 m (closed circles). The measured pH for the 
hydrolyzed CCl4 solution is given by the closed triangle. Reprinted from 
Ref. 5, Copyright (1997) with permission by Elsevier. 
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4. Redox and Combination Sensors 

The chemical and electrochemical properties of SCWO systems 
and other supercritical aqueous solutions are determined in large 
part, by the concentration of oxygen, hydrogen, and other redox 
species. The presence of oxygen often causes extensive general 
and/or localized corrosion attack, including pitting corrosion and 
stress corrosion cracking. In many industrial environments, such as 
those found in nuclear power industry, various forms of corrosion 
can be prevented or significantly diminished by maintaining the 
potential of structural metals and alloys exposed to the aqueous 
environment within certain ranges. This is usually achieved by 
modifying the water chemistry, e.g. as in hydrogen water chemis-
try, which is now used in Boiling Water Reactors to mitigate and 
control stress corrosion cracking of sensitized stainless steels.114 
However, in applying these techniques, it is important to monitor 
the amount of oxidant (or redox potential) in the system on line 
and in situ, in order to avoid excessive corrosion damage. Our abil-
ity to do so depends critically upon having available an in situ re-
dox sensor that is both effective and practical under the conditions 
of interest. One such sensor that was developed in the author’s 
laboratory is shown in Fig. 37.115 

This sensor was developed for monitoring oxygen, hydrogen, 
and redox potential in aqueous solutions at temperatures extend-
ing above the critical temperature of water. The sensor is based 
on a combination of two electrodes that are structurally combined 
into a single unit: a redox insensitive yttria stabilized zirconia 
(YSZ) membrane pH electrode, of the type described in the pre-
vious section, and a Pt electrode. The potential of this latter elec-
trode is, of course, sensitive to oxygen and hydrogen concentra-
tion and to pH. The potential of the YSZ membrane can be repre-
sented as 
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o
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F
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F
RTEE
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303.2303.2=  (62) 

 
where aH2O is the activity of water and Eo

YSZ is the standard poten-
tial for the internal couple (O2/H2O) used in the YSZ membrane. 
The potential of the platinum electrode in a hydrogenated envi-
ronment can be written as  
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Importantly, Eqs. (62)–(64) contain the same dependence of 
the electrode potential on pH. Hence, the potential difference 
between the YSZ electrode and Pt electrode in both hydrogenated 
and oxygenated environments will be pH independent, under ide-
al conditions, provided that the electrodes are at equilibrium. For 
hydrogenated environments, we obtain by subtracting Eq. (63) 
from (62): 

 

 OHH
o
YSZ a

F
RTf

F
RTEE

22
log

2
303.2 log

2
303.2=  (65) 

 
From this last equation, it is apparent that we can estimate the 
hydrogen fugacity in the solution, independently of the solution 
pH, as:  

 
 OH

o
YSZH aRTEEFf

22
log303.2)/(2 log   (66) 

 
Likewise, subtracting Eq. (64) from Eq. (62) we obtain for 

oxygenated environments: 
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and hence 
   
  )/2.303RT+(4 log

2
o
OX
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YSZO EEEFf  (68) 

 
Because all of the quantities on the right hand sides of Eqs. 

(66) and (68) are known or can be measured, the sensors are pri-
mary sensors and, in principle, do not need calibrating. Note that 
the sensor is the same in both cases. We should emphasize that 
Equation (66) for hydrogenated environments contains the activity 
of water, which can be estimated for dilute solutions from the PVT 
properties of water, as previously described. Another important 
issue is that both Eqs. (66) and (68) contain thermodynamic fugac-
ity (activity) of dissolved gases. Fugacity coefficients under 
SCWO operating conditions might be significantly different from 
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unity and, because of this, the practical determination of the con-
centration of dissolved gas may require calibration of the sensor in 
solutions of known gas concentrations. 

Experiments were performed at temperatures in excess of 
500 C and at pressure of 3500-4000 psi.116 Several different de-
signs of the sensor were explored. The sensor was found to re-
spond to changes in oxygen and hydrogen concentration in the 
solution, as determined by saturating the feed solution with the 
corresponding gas (Figs. 38–41). The response time of the sensor 
is mostly determined by the hydrodynamics of the high-
temperature / high-pressure loop and cell. In particular, for the 
system employed, the time required for the solution of a new con-
centration to reach the measurement zone dominates the sensor 
response time. 

From the data summarized in Figs. 38 to 40, is apparent that 
the sensor responds rapidly to changes in the concentrations of 
oxygen and hydrogen and, correspondingly, to the redox potential 
in the solution.116 For example, Fig. 38 presents potential data 
from the sensor measured in a stainless steel cell at a low pH that 
was established by the addition of 0.01 m HCl to the system and at 
a temperature of 400oC. As the hydrogen partial pressure in the 
ambient temperature reservoir is changed systematically from 0.01 
atm to 1.0 atm, the potential is observed to change systematically 
in like fashion. In this mode, the sensor acts as a hydrogen sensor. 
The addition of oxygen to the reservoir gives rise to a large shift in 
the potential (by about 720 mV) in the negative direction. In this 
case, a systematic variation in the oxygen partial pressure in the 
reservoir results in a corresponding variation in the potential. Thus, 
in this case, the sensor acts as an oxygen sensor. When both hy-
drogen and oxygen are simultaneously present in the system, the 
sensor measures the redox potential, corresponding to values be-
tween the pure hydrogen and pure oxygen limits discussed above. 

Similar, but more extensive data for oxygenated supercritical 
solutions are shown in Fig. 36.116 These data were measured in a 
0.002 m NaOH solution at a temperature of 430oC and at a pres-
sure of 4000 psi. Again, the sensor is found to respond systemati-
cally to changes in the oxygen partial pressure in the reservoir. 
Comparison of these data with those given in Fig. 38, albeit at dif- 
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Figure 41. Response of the W/WO3-Pt combination sensor to changes in ox-
ygen and hydrogen concentrations in pure water at 300 °C. Reprinted from 
Ref. 5, Copyright (1997) with permission by Elsevier. 
 
  

in the solution reservoir. This tungsten/tungsten oxide/platinum 
redox sensor, which is exceptionally rugged (consisting of an 
oxidized tungsten wire and a platinum wire), clearly responds to 
changes in the redox conditions in the solution in a manner that 
parallels the response of the sensor containing the YSZ ceramic 
tube. 

The major advantages of the combination sensors described 
above include:  

(a) absence of a traditional reference electrode (such as a 
Ag/AgCl external pressure balanced reference electrode);  

(b) the possibility of employing the sensor up to very high tem-
peratures (YSZ membranes are routinely used in fuel cells 
and oxygen sensor applications at temperatures in excess of 
700 C in gas phase);  

(c) the fact that this is a universal oxygen, hydrogen, and redox 
combination sensor, auto corrected for the pH of the solu-
tion, and; 
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(d) the sensor is very resistant to corrosion (YSZ, and Pt are 
probably the most corrosion resistant materials known for 
use in high subcritical and supercritical aqueous solutions). 
The corrosion properties of tungsten in SCWO environ-
ments are presently unknown. 

Applications of the sensor include monitoring oxygen and hy-
drogen concentration, and redox potential in SCWO systems, as 
well as for monitoring the chemistry of the heat transport fluid 
(water) in supercritical thermal power plants. Because the sensor 
contains an independent pH-sensitive electrode, it can be used, in 
conjunction with a suitable reference electrode for simultaneous 
pH monitoring. If the value of pH in the system is kept constant, 
the YSZ membrane electrode of the sensor could also be utilized 
as a reference electrode, in order to monitor corrosion potentials of 
structural components. 

IV. CORROSION STUDIES 

Because of the technological importance of supercritical aqueous 
solutions, as evidenced by their use as reaction media in the de-
struction of toxic waste and as a heat transport medium, it is not 
surprising that the corrosion of structural materials has been stud-
ied in some depth. This is especially true recognizing the well-
known aggressiveness of supercritical aqueous solutions, which 
raises great challenges in materials selection. Indeed, it is likely 
that SCWO and SCTPPs will continue to drive the development of 
the science and engineering base of the corrosion of metals and 
alloys in supercritical aqueous solutions over the foreseeable fu-
ture. 

1. General Corrosion 

From a strictly engineering viewpoint, corrosion studies need to:  

 identify the type of attack occurring on a surface, and; 
 characterize the rate.  
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 3 Fe2+ + 4 H2O  Fe3O4 + 8 H+ + 2 e–   (70) 
 
 The authors note that the inner layer/outer layer interface re-
mains at the location of the original metal/solution interface; a 
finding that was apparently first reported by Potter and Mann.119  
 Because the rates of growth of the inner and outer layers are 
proportional to the fluxes of oxygen vacancies and iron intersti-
tials, respectively, with the volumes of the respective phase formed 
being corrected for the effective density, the constant volume na-
ture of the barrier layer growth implies a relationship between the 
transport numbers for oxygen vacancies and cation interstitial in 
the inner layer. While a satisfactory atomic scale explanation of 
this phenomenon has yet to be given, it is likely that the relation-
ship between the fluxes is such that the stress within the barrier 
layer and hence its Gibbs energy is minimized. Citing the work of 
Crouch and Robertson,120 the authors conclude that diffusion of 
oxide ions through the inner layer occurs via short circuit paths 
along the grain boundaries. In this regard it is known that the inner 
(barrier) oxide layer that forms on iron comprises nano-
crystallites,121 such that a significant fraction of the surface is cov-
ered by highly disordered grain boundary phase through which 
rapid diffusion is envisioned to occur.  

Similar studies have been reported by Ampornrat and Was122 
on ferritic-martensitic alloys (T91, HCM12A, HT-9), Chen et al.123 
on oxide dispersion strengthened 9Cr ferritic steel (9Cr ODS),124 
and by Motta et al.,124 also on 9Cr ODS steel. The findings of these 
studies are all broadly similar; where measured, the oxidation fol-
lows a parabolic rate law and the oxide layer exhibits a bilayer (or, 
sometimes, a multilayer) structure comprising a chromium-rich 
spinel inner (barrier) layer and a porous, outer layer of magnetite. 
The proposed oxidation mechanisms are essentially the same as 
that articulated by Was et al.117 

Because of the use of zirconium alloys for fuel cladding in 
nuclear power reactors and because of the intense interest in su-
percritical water reactors under the Generation IV reactor devel-
opment program, it is not surprising that the corrosion of zirconi-
um alloys in supercritical water have been extensively studied by 
Yilmazbayhan,125 Peng,126 Jeong,124 and Motta.128 Weight gain 
versus time data from the work of Jeong et.al.127 for various zirco-
nium alloys along with low alloy steels and austenitic iron- and 
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2. Some Theoretical Aspects of General Corrosion  
Mechanisms 

Prior to discussing the work that has been reported on the use of 
electrochemical noise analysis (ENA) or electrochemical emission 
spectroscopy (EES) as it is sometimes termed, it is worth discuss-
ing possible mechanisms for the corrosion of metals and alloys in 
high subcritical and supercritical aqueous media. The treatment 
that follows closely that reported by Kriksunov and Macdonald3 
and later by Guan and Macdonald.129  

As noted elsewhere in this review, the density ( ) and dielec-
tric constant ( ) of high temperature water depend on the tempera-
ture and pressure of the system. For instance,  = 0.6255 g cm-3 
and  = 14.85 for T = 350°C, P = 250 bar (typical high subcritical 
conditions) and  = 0.1090 g cm-3 and  = 1.78 for T = 450°C, P = 
250 bar (typical supercritical conditions). The change of the die-
lectric constant of high temperature water corresponds to the 
change of the system density in a way that the dielectric constant 
decreases with increasing temperature and decreasing density. So-
lutes such as HCl and H2SO4 are fully dissociated under ambient 
conditions, in which the dielectric constant of water is relatively 
high at 78. On the other hand, strong electrolytes that are fully 
dissociated under ambient conditions may be very poorly ionized 
in low-density, supercritical aqueous systems, because of the low 
dielectric constant of the medium. Consequently, the corrosion of 
metals in high temperature aqueous systems is significantly influ-
enced by the temperature and pressure of the systems, because of 
the impact that T and P have on the solvent stabilization of ions 
and ionic corrosion properties. 
 Due to the unique properties of high temperature water, the 
corrosion of metals and alloys in high subcritical and supercritical 
aqueous systems (SCAS) shows characteristics that can be attribut-
ed to either electrochemical oxidation (EO) or chemical oxidation 
(CO) mechanisms, depending upon the density and dielectric con-
stant of the media, as suggested by the earlier work of Liu, et al.130 
A corrosion reaction involving partial interfacial charge transfer 
process, as envisioned by the Wagner-Traud hypothesis in relative-
ly high-density subcritical and supercritical solutions is called 
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an electrochemical oxidation (EO) process, because the overall 
reaction can be decomposed into partial anodic and partial cathod-
ic charge transfer reactions: M  Mn+ + ne– (partial anodic reac-
tion) and O2 + 4 H+ + 4e–  2 H2O (partial cathodic reaction) oc-
curring on the surface.128 The overall reaction is: M + n/4 O2 + n 
H+  Mn+ + n/2 H2O. Because charge species are stabilized in 
systems with higher dielectric constant, and because ions are more 
effectively hydrated at higher densities, the EO mechanism is fa-
vored in relatively high density solutions.  

In general, low-density SCAS (supercritical aqueous solu-
tions, which are often analogous to low pressure gas phases) have 
characteristics that include low dielectric constants; low degrees of 
dissociation for acids, bases, and salts; and low salt solubility. In 
addition, the hydrogen bonds that exist in low temperature solu-
tions are extensively broken in low-density SCAS with the conse-
quence that the fluid takes on less water-like properties as the tem-
perature increases and the fluid density decreases. Furthermore, 
the dissociation constant of water (Kw) decreases sharply with in-
creasing temperature and decreasing density as the temperature 
increases above the critical temperature. Likewise, base dissocia-
tion and acid dissociation constants decrease with increasing tem-
perature and decreasing density with the result that both bases and 
acids become less strong with increasing temperature and decreas-
ing density. Thus, the attenuated dielectric screening of solvents 
enhances the tendency of ions pairing in low-density SCAS.132 
Consequently, corrosion processes occurring in low-density SCAS 
are dominated by direct molecular processes and are termed as 
chemical oxidation processes. Unlike the EO mechanism, in which 
corrosion typically involves two or more coupled partial redox 
reactions at different sites on the corroding metal surfaces, the CO 
mechanism is envisioned to be a direct result of the reaction of the 
metal with the corrodent (e.g., O2 or HCl) at a single site, as indi-
cated by the reactions M + O2  MO2.133 It is postulated that ei-
ther a chemical or an electrochemical mechanism is the dominant 
corrosion mechanism under any given set of temperature/pressure 
conditions. In condensed aqueous systems (defined arbitrarily here 
as having  > 0.1 gm/cm3) the EO mechanism is postulated to pre-
vail, such that the electrochemical activity is detected in the form 
of electrochemical noise in the coupling current between two iden-
tical specimens. The CO mechanism is the dominant corrosion 
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process in gaseous systems, where the density is very low (< 0.1 
gm/cm3). A distinctive characteristic of the CO mechanism is that 
there are no electrons transferring from anodic sites to cathodic 
sites in corroding metals and no ions move through the aqueous 
phase between the same sites. In general, the chemical oxidation 
mechanism becomes important when:  

(a) aggressive, nonionic components are present;  
(b) the reaction medium has a low dielectric constant, and  
(c) the medium has low density.  

As expected, those conditions inhibit the EO corrosion processes.  
The electrochemical oxidation (EO) corrosion reaction in a 

deaerated acidic solution can be expressed by a chemical reaction 
form such as M + 2 H+  M2+ + H2, which is indistinguishable 
from a chemical oxidation (CO) corrosion reaction such as  
M + 2 HCl  MCl2 + H2. The activity (concentration) of H+ has 
been widely used to indicate the corrosion susceptibility in con-
densed liquid solutions (pH is the independent variable in Pourbaix 
diagrams). On the other hand, undissociated, aggressive species 
such as HCl and H2S become important in low-density supercriti-
cal aqueous systems, corresponding to the CO dominant corrosion 
processes. Consequently, the reaction rate of an electrochemi-
cal/chemical corrosion process in a deaerated, acidic, high subcrit-
ical and supercritical solution can be expressed by the chemical 
reaction rate law,  

 
 a

HCkR  (71) 
 

where k  is the heterogeneous rate constant. Based on the transi-
tion state theory, the rate constant can be expressed as k = k0 exp(–

G0, /RgT), in which superscript “0” designates the reference con-
ditions, G0,  is the change in standard Gibbs energy of activation 
and is defined as the difference in Gibb’s energy between the reac-
tants and the transition state, and Rg is the universal gas constant. 
CH+ in Eq. (71) is the volumetric concentrations of hydrogen ion 
and a is the corresponding reaction order. The dominant form of 
corrosion in high temperature, acidic solutions is acid attack. 
Therefore, the Y– ion is not treated as an aggressive ion and the Y–



High Subcritical and Supercritical Aqueous Solutions Phenomena 91 

ion-induced corrosion phenomena, such as pitting, is not included 
in Eq. (71).  

The volumetric concentration (mol/l of the solution) of CH+ in 
Eq. (71) is density dependent and can be expressed in terms of the 
molal (mol/kg of solvent) concentration by,  

 

  smM
mC

1000
1000   (72) 

 
where Ms is the molecular weight of the dissolved species (g/mol), 
m is the molal concentration (mol/kg), and  is the density of the 
solution (g/cm3). For dilute solutions, we can approximate C  m , 
because mM << 1000. Therefore, CH+ = mH+ . A relative corro-
sion rate in deaerated, acidic solutions can be written as follows134 
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Equation (73) can be expressed in logarithmic form such as, 
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The first term in the right hand side of Eq. (74) is the tempera-

ture dependent degree of dissociation of H+; the second term repre-
sents the effect of temperature on the volumetric concentration of 
the attacking species; and the last term corresponds to the tempera-
ture dependence of the reaction rate constant. The quantity G0,  is 
the change in standard Gibbs energy of activation for the reaction. 
The model shows that the temperature dependence of the corrosion 
rate can be attributed to two competing effects:  

 the increase in the corrosion rate with increasing tempera-
ture due to the exponential (Arrhenius) dependence of the 
rate constant on temperature, and;  



92 Digby D. Macdonald 

 the decrease in the corrosion rate with increasing tempera-
ture corresponding to the decrease in the dissociation of an 
associated species (e.g., an acid, such as HCl) that produces 
the attacking species (e.g., H+) and the decreasing density of 
the medium. 

One of the two corrosion mechanisms (chemical oxidation and 
electrochemical oxidation) should prevail under any given set of 
working conditions. Electrochemical noise (spontaneous potential 
and current emissions) should be observed only in the case of the 
electrochemical oxidation (EO) mechanism and not in the case of 
the chemical oxidation (CO) mechanism. This is postulated, be-
cause only in the EO case is the partial anodic and partial cathodic 
reactions spatially and temporally separated, resulting in current 
transients being induced in the wire coupling the identical, but 
spatially separated specimens. Thus, the noise in the coupling cur-
rent between a pair of identical working electrodes in high pres-
sure, high temperature aqueous environments has been measured 
as a function of pressure (up to 300 bar) and temperature (up to 
500oC). Each test was measured for 30 minutes and standard devi-
ation of current noise was calculated for every test. It is assumed 
that the current noise (standard deviation of current noise) is pro-
portional to the electrochemical corrosion rate, when the electro-
chemical mechanism is operative.131,135 

3. ENA Studies of General Corrosion 

Electrochemical noise analysis (ENA), which is also known as 
electrochemical emission spectroscopy (EES), was first introduced 
by Iverson for corrosion studies around 40 years ago and it has 
become one of very promising corrosion monitoring methods, due 
to its unique advantages, such as non-perturbative, in-situ applica-
tion, and simplicity.136,137 Electrochemical noise (EN) is a series of 
naturally-occurring transient events and is measured as fluctua-
tions of coupling current noise between the two identical working 
electrodes, as measured using a zero resistance ammeter (ZRA) 
and as fluctuations in the potential of one of the specimens meas-
ured against a low noise reference electrode. Since the electro-
chemical noise is produced by the fluctuation in corrosion rates 
across the electrode surfaces, it has been proposed that the shape 
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and amplitude of the noise transients, among other characteristics 
of the EN data, are directly related to the electrochemical corrosion 
rates in the system.138  

Mansfeld et al.138 applied electrochemical noise analysis 
(ENA) to the study of corrosion process on iron in NaCl solution 
and they observed that the root mean square (RMS) of current 
noise is largest for iron in aerated NaCl solution in which signifi-
cant corrosion occurs. By applying ENA to monitor corrosion pro-
cesses of carbon steel and stainless steel in high temperature (in-
cluding supercritical) aqueous systems, Macdonald et al.130,133 sug-
gested that the RMS of the electrochemical noise is related to the 
corrosion rate, with a high current noise being associated with a 
high corrosion rate. They also concluded that corrosion was the 
dominant source of electrochemical noise based on the correlation 
between the measured noise and the extent of corrosion. Recently, 
ENA has been successfully applied in monitoring and differentiat-
ing corrosion mechanisms in high subcritical and supercritical 
aqueous systems.137 Consequently, ENA is a effective and conven-
ient method for studying corrosion activity and rate in elevated 
temperature systems. 

4. Effect of Temperature 

Electrochemical noise analysis, ENA (sometimes termed electro-
chemical emission spectroscopy, ECS) has proven to be an effec-
tive method of following the kinetics of corrosion reactions in high 
subcritical and supercritical aqueous media, because the method 
can be applied in situ to obtain rate data without interrupting the 
experiment. The first application of ENA (ECS) to the study of 
metal corrosion in supercritical aqueous systems appears to be that 
of Liu et al.130 on 1013 carbon steel in oxygenated water as a func-
tion of temperature and oxygen concentration. The study was 
based upon earlier, unpublished data by Macdonald and Chen,139 
who found that, under ambient conditions, the root mean square of 
the electrochemical noise generated between two identical steel 
electrodes and measured by a wide bandwidth zero resistance am-
meter (ZRA) was proportional to the instantaneous corrosion rate. 
The apparatus used to record the coupling current noise is shown 
in Fig. 48. The apparatus included a band-pass filter, so that only 
noise having components within a specified frequency range were 
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In some instances, at 405oC and at P = 14.8 MPa (2150 psi), 
large excursions were observed in the RMS versus time traces, as 
shown in Fig. 53(a). These excursions were identified with the 
pitting attack shown in Fig. 53(b). However, if the pressure was 
increased to 18.9 MPa (2750 psi), the excursions were no longer 
observed and pitting attack did not occur. The origin of this form 
of localized attack is currently unknown. 

In a later study, Zhou et.al.139 studied the corrosion of Type 
304 SS in 0.1m NaCl+0.01m HCl and 0.1m NaCl+0.001m HCl 
saturated with H2 gas at ambient temperature ([H2] = 7.84 x 10-4 
m) at temperatures ranging from 150oC to 400oC, using the test 
system shown in Fig. 54. 

trodes and one platinum wire electrode that served as a low noise 
reference electrode (note that the potential of the Pt electrode is 
determined by the H2/H+ electrode reaction, with both the fugacity 
of H2 and the activity of H+ being fixed by the solution compo- 
sition). The coupling current between the two steel electrodes was 
monitored using the ZRA while the potential of one of the SS elec-
trodes was monitored using the Pt electrode. Every effort was 
made to mitigate contamination of the solution by corrosion prod-
ucts from the stainless steel apparatus; thus, the solution was de-
livered to the cell via PEEK tubing and, prior to coming in contact 
with the sensors, the solution was in contact with only zirconia or 
PTFE. The potential of the Pt wire versus the Ag/AgCl, Cl– exter-
nal reference electrode measured on the two solutions was con-
sistent with the calculated pH difference, thereby demonstrating 
the viability of both reference electrodes.140 

Typical potential and coupling current noise data are shown in 
Fig. 55(a) and (b), respectively. 

Posttest examinations included determination of weight loss 
and SEM/EDS examination of the steel surface. A typical SEM 
micrograph of the corroded surface is displayed in Fig. 55. The 
form of attack was observed to be scaling with sections where it 
was apparent that exfoliation had occurred (Fig. 55b), as observed 
in other studies.141 The exfoliated material is almost certainly the 
outer layer, which from passivity theory forms via the hydrolysis 
of cations (Fe2+) that are transmitted as cation interstitials across 
the barrier oxide layer from the metal/barrier layer interface to the 
barrier layer/outer layer (solution in the pores of the outer layer) to 

The ENA sensor comprised two identical Type 304 SS wire elec-
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relationship requires knowledge of the anodic and cathodic inverse 
Tafel constants in the form of the quantity, babc/(ba+ bc), which 
may be determined by calibration of the inverse noise (polariza-
tion) resistance data on mass loss data or by measuring ba and bc 
directly in polarization experiments. The former method was em-
ployed in the work of Zhou et al.141 for temperatures up to 300oC, 
but the second method is also viable. 

In a more recent study of the electrochemistry and corrosion 
behavior of Type 304 SS and titanium in high subcritical and su-
percritical aqueous solutions, Guan and Macdonald129 monitored 
the noise in the coupling current 

Following the work of Liu, et al.130 and Zhou and cowork-
ers,134 Guan and Macdonald129 carried out extensive studies of the 
corrosion of Type 304 SS and titanium in HCl solution at high 
subcritical and supercritical temperatures as a function of tempera-
ture and pressure. These studies again employed electrochemical 
noise analysis (ENA) as the principal tool for monitoring the cor-
rosion rate in situ. The experiments were carried out in a high 
pressure/high temperature flow loop (Fig. 60) using an ENA sen-
sor of the type shown in Fig. 54. Figure 61 shows the relationship 
between the standard deviation of the current noise (proportional 
to electrochemical corrosion rate) and temperature for Type 304 
stainless steel in deaerated 0.01 m HCl. The working pressure was 
250 bar and the HCl solution was deaerated by nitrogen gas sparg-
ing. The current noise is observed to increase to a maximum as the 
temperature rises to approximately 350oC, as also found by others. 
Then, the current noise decreases sharply after the temperature 
passes the critical point (374.15oC). This can be explained by the 
chemical/electrochemical corrosion mechanisms theory, as out-
lined earlier in this review. Below the critical temperature, the in-
creased corrosion activity, due to increasing temperature (expo-
nential dependence of the rate constant on temperature, as de-
scribed by the Arrhenius equation), dominates over the effects of 
falling density and dielectric constant, resulting in the electro-
chemical corrosion rate increasing as the temperature increases. 
Beyond the temperature of the maximum in corrosion rate, the test 
solution changes from being a condensed, liquid aqueous phase to 
a gas-like phase and the density decreases sharply. Consequently,  
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the molal concentration of H+ decreases sharply with increasing 
temperature at high subcritical and supercritical  temperatures  and 
it decreases further with increasing temperature, because HCl be-
comes increasingly poorly dissociated, as noted above. Under 
those conditions, the electrochemical oxidation (EO) corrosion 
mechanism is less prevalent and the corrosion current noise de-
creases sharply due to the dominant effects of increasing tempera-
ture on the concentration of the aggressive species and on the dis-
sociation of HCl. This result corresponds to experimental observa-
tions that severe corrosion damage occurs in those regions of a 
reactor that operate at temperatures just below the critical tempera-
ture, whereas less damage is observed at higher or lower tempera-
ture.  

Figure 62 shows the effect of oxygen on the electrochemical 
corrosion rate of Type 304 SS in 0.01 m HCl as a function of tem-
perature from ambient to 500oC. The solid points in the figure rep-
resent the electrochemical current noise of Type 304 SS in deaer-
ated 0.01 m HCl (N2 sparged) and the open points represent the 
electrochemical current noise of the steel in 0.01 M HCl purged 
with oxygen gas in the solution reservoir at ambient temperature 
and pressure. Thus, the oxygen concentration in the latter case was 
about 40 ppm (2.5x10-3 m). The working pressures for both exper-
iments were 250 bar. Similar to that observed for the corrosion of 
Type 304 SS in deaerated, 0.01 m HCl (Fig. 61), the current noise 
(which is proportional to electrochemical corrosion rate) of Type 
304 SS in oxygenated 0.01 m HCl increases with increasing tem-
perature and passes through a maximum prior to the temperature 
reaching the critical value of 374oC. Thereafter, the current noise 
amplitude decreases as the temperature passes the critical tempera-
ture of the medium. The electrochemical corrosion rate at the max-
imum at T = 350oC in the oxygenated environment is only margin-
ally greater than that in the deaerated environment (Fig. 62). These 
data indicate that, by itself, oxygen is not a particularly aggressive 
solute, at least in this particular case, as indicated by the relative 
corrosion rates observed in the deaerated vs. the oxygenated envi-
ronments. The graph shows that the presence of oxygen increases 
the corrosion rate within the temperature range of 150oC to 400oC, 
but only by 0–25%. Thus, at the peak, the increase is ~25 %. It is 
important to note that the drop-off of the current noise becomes 
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high subcritical and supercritical HCl solutions, which can be at-
tributed to the formation of the protective passive film on the tita-
nium surface. They also reported that the titanium corrosion rate 
increases with increasing temperature in subcritical temperature 
range and decreases with increasing temperature in the supercriti-
cal temperature range. These finding are consistent with the results 
presented in Fig. 63. 

Figures 63 and 64 shows the current noise of Type 304 SS as 
a function of temperature in 0.01 m HCl and in 0.01 m H2SO4. The 
working pressure for both experiments was 250 bar. Both HCl and 
H2SO4 solutions in the figure were purged by oxygen. Similar to 
the 0.01 m HCl case, the electrochemical corrosion rate of Type 
304 SS in 0.01 m H2SO4 increases with increasing temperature 
before reaching a maximum value at approximately 350oC. Then, 
the electrochemical current noise decreases sharply in the super-
critical temperature region (T > 374.15oC), because of the decreas-
ing dielectric constant and density of the supercritical medium as 
the temperature is raised. As demonstrated by the data in the fig-
ure, a relatively larger current noise was obtained in 0.01 m HCl 
than in 0.01 m H2SO4, which may be due to the presence of pitting 
corrosion in the chloride-containing solution or due to chloride-
catalyzed dissolution of the passive film.  

Figure 65 shows the response of the standard deviation of the 
noise in the coupling current of Type 304 SS in deaerated 0.01 m 
NaOH as a function of temperature. Again, the working pressure 
was 250 bar. The current noise is observed to increase to a maxi-
mum value as the temperature rises to 300oC, which is significant-
ly lower than the 350oC observed in the case of HCl. Then, the 
current noise decreases sharply. This can be explained, again, by 
the chemical/electrochemical corrosion mechanisms theory, as 
outlined previously in this review. AS before, at low temperatures 
(T < 300oC), the corrosion process is dominated by the exponential 
(Arrhenius) dependence of the rate constant on increasing tem-
perature. At temperatures higher than that at which the maximum 
corrosion rate occurs, the standard deviation of the current noise 
decreases sharply with increasing temperature, following the same 
behavior observed in other systems for the same reasons.  
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where a and b are the reaction order with respect to H+ and O2, 
respectively. The standard Gibbs energy of activation ( G0, ), 
which may be determined by mass transfer or charge transfer pro-
cesses, can be estimated by using Eq. (6). As there are no data 
available for the reaction order, , of the electrochemical corrosion 
reactions of Type 304 SS in high temperature acidic solutions, we 
assume that the reaction orders with respect to both H+ and O2 are 
one half. Accordingly, a = b = ½  is used in this study. A value of 
b = ½ was previously found experimentally for the corrosion of 
carbon steel in supercritical aqueous solutions, as shown in Fig. 
52.128 The molal concentration of hydrogen ion (mH+) was obtained 
by solving the speciation problem based on mass balance, charge 
balance, and mass action equations for the appropriate reaction 
set.131 The density was taken as that for pure water from the NIST 
steam data, as the working solutions are dilute [NIST Steam Algo-
rithm]. The relative corrosion rate R/R0 was obtained experimental-
ly by electrochemical noise analysis (ENA).  

Figure 67 shows the energy of activation for electrochemical 
corrosion processes for Type 304 SS and titanium in deaerated 
0.01 m HCl at the temperature range of 50–250oC. The solid 
squares in the figure are the energy of activation of Type 304 SS 
and the open squares are the energy of activation of titanium. As 
shown by the figure, the energy of activation for corrosion of Type 
304 SS is lower than that for titanium. Although the corrosion re-
sistance of stainless steel is lower than that of titanium in those 
environments, the rate of change of corrosion with increasing tem-
perature is greater for titanium than for stainless steel. This obser-
vation is consistent with the results obtained previously, as pre-
sented by Fig. 63, in which the standard deviation of the coupling 
current noise for titanium is lower than that for Type 304 SS. As 
noted previously, the high corrosion resistance of titanium can be 
attributed to the formation of a protective passive film of TiO2 on 
its surface. It is important to note that the above calculation of the 
activation energy is based on the assumptions that the electro-
chemical corrosion rate is proportional to the standard deviation in 
the coupling current noise, as measured by monitoring spontane-
ous current fluctuations between identical electrodes using a zero 
resistance ammeter (ZRA), and the corrosion reaction rate is a half  
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solutions, without direct charge transfer between sites, due to the 
low degree of dissociation and low dielectric constants. Since the 
overall reaction form of a EO process (such as M + 2 H2O  MO2 
+ 4 H+ + 4 e–  and O2 + 4 H+ + 4 e–  2 H2O  to give the overall 
reaction M + O2  MO2) is indistinguishable from that of a CO 
process (M + O2  MO2), the reaction rate of an electrochemi-
cal/chemical corrosion process in a deaerated, acidic, high subcrit-
ical and supercritical solution can be expressed by the following 
rate law, 

 
  a

HCkR    (79) 
 

where k is the heterogeneous rate constant with k = (kBT/h)exp 
(– G0, /RT), kB is Boltzmann’s constant, h is Planck’s constant, T 
is the Kelvin temperature, G0,  is the change in standard Gibbs 
energy of activation, CH+ is the volumetric concentration of hydro-
gen ion, and a  is the corresponding reaction orders with respect to 
H+. It is postulated that either a chemical or an electrochemical 
mechanism is the dominant corrosion mechanism under any given 
set of temperature/pressure conditions. The activity of H+ has been 
widely used to indicate the corrosion susceptibility in condensed 
liquid solutions (as indicated in a Pourbaix diagram). The domi-
nant form of corrosion in high temperature acidic solution is acid 
attack. Consequently, corrosion in those solutions is an electro-
chemical oxidation (EO) dominated process in which the cathodic 
partial reaction is hydrogen evolution. Other species, such as Cl–, 
may be aggressive and induce particular forms of corrosion, such 
as pitting, or may enhance the general corrosion rate by catalyzing 
the dissolution of the barrier oxide layer of the passive film, as 
noted previously. These species are not included in Eq. (71). The 
treatment of this topic presented below is essentially identical to 
than recently published by Guan and Macdonald.129  

By taking the natural logarithm of Eq. (71) and differentiating 
with respect to pressure, the pressure dependence of the corrosion 
reaction rate in high temperature aqueous systems can be ex-
pressed as, 

 



118 Digby D. Macdonald 

 
T

H

TT P
C

a
P

k
P

R lnlnln   (80) 

 
As illustrated by Eq. (80), the pressure effects on corrosion re-

action rate can be attributed to the impact of pressure on the acti-
vation process and on volume concentration of the aggressive spe-
cies.144 The volumetric concentrations (mol/l of the solution) of the 
aggressive species, CH+, in Eq. (80) is density-dependent and can 
be expressed in terms of the molal (mol/kg of solvent) concentra-
tion by 
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where m is the molal concentration (mol/kg), Ms the molecular 
weight of dissolved species (g/mol), and  is the density of the 
solution (g/cm3). For dilute solutions, we can approximate that C  
m  as mMs << 1000. The pressure dependence of the molar con-
centration then becomes 
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where [  ln( )/ P] is defined as the isothermal compressibility ( T) 
of the system with T =  ln( )/ P = –( V/ P)T /V. Since solutes, 
such as acids and bases, are only partially dissociated in low-
density, high temperature water, the degree of dissociation of  = 
m/m0 is introduced to demonstrate the effect of pressure on the 
dissociation of aggressive species, where m  is the molal concen-
tration of the dissociated species such as Cl– from HCl and m0 is 
the stoichiometric concentration of the solute. Equation (82) be-
comes, 
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The pressure dependence of the corrosion reaction rate (Eq. 80) 
can be further modified by applying the above equations, such that 
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As illustrated in Eq. (80), the effect of pressure on the rate of cor-
rosion of metals in high temperature aqueous systems can be at-
tributed to the activation process, to changes in the degree of dis-
sociation of aggressive species, and to the system isothermal com-
pressibility.  

The effect of pressure on reaction rate constant k can be ex-
plained by the activated complex theory. The theory postulates that 
the elementary chemical reactions occur via a transition state, such 
as A + B   M   products, in which the reactants and transition 
state are assumed to be in equilibrium. The transition state (acti-
vated complex), M , is defined as the state of the maximum energy 
along the reaction path (reaction coordinate). The rate constant 
can be expressed as follows, based on the activated complex theo-
ry,145 

 

 )exp(
TR
G

h
Tkk

g

B   (85) 

 
Where  is the transmission coefficient, G0,  is the difference in 
standard Gibb’s free energy between the reactants and the transi-
tion state, Rg is the universal gas constant. Based on activated 
complex theory, the standard volume of activation ( V0, ) of a 
reaction is related to the pressure dependence of the reaction rate 
constant as expressed by,  

 
  00,0,0 )/ln(

HMT VVVPkRTV  (86) 

 
where k is the rate constant, ,0V  is the standard partial molar 

volume of the transition state, and 0
MV and 0

H
V  are the standard 
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partial molar volumes of the reactants; metal M and H+. It is rec-
ognized that the volume of activation includes volume changes due 
to solvent-solute electrostatic interaction as the reaction proceeds 
along the reaction coordinate toward the transition state.146 The 
volume of activation for chemical reactions in liquid aqueous solu-
tions is generally 50 cm3/mol. On the other hand, a much larger 
volume of activation has been observed for chemical reactions in 
the highly compressible supercritical fluids.128,146 For instance, the 
volume of activation for the uni-molecular decomposition of chlo-
robenzyl methyl ether in supercritical 1,1-difluoroethane is –6,000 
cm3/mol at 130oC and 50 bar and volume of activation for the un-
catalyzed reaction of butyronitrile in high temperature water is 
around –362 cm3/mol at 330oC and 128.5 bar.128,133 This large vol-
ume of activation undoubtedly reflects the large magnitudes of the 
partial molar volumes of some species in highly compressible, 
supercritical fluids. Beside the electrostatic and compressibility 
effects, Wu et al146 suggested that the phase-behavior and diffu-
sional limitations effects also can affect the volumes of activation. 

Based on the partial charge method, Macdonald148 suggested 
that the reaction coordinate of corrosion processes of metals in 
deaerated acidic solutions can be expressed as follows: 

 

2
2

2
2 HM])H2(1H)M(1[2HM  

  (87) 
 

where M is the metal, the entity in square brackets is the transition 
state, and  is the extent of charge development at the knoll in the 
reaction coordinate between the initial state and the final state (i.e., 
at the transition state). The value of the quantity  is restricted to a 
range between 0 and 1. The volume of activation of this corrosion 
processes can be expressed as: 
 
  00,0,0 2

HM VVVV  (88) 

where ,0V , 0
MV and 0

H
V are the standard partial molar volumes 

of the transition state, the metal, and hydrogen ion, respectively. If 
the volume of activation and the partial molar volumes of the reac-
tants are known, the standard partial molar volume of the transition 
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state ,0V  can be determined and the extent of the charge devel-

opment in the transition state may be estimated by comparison 
with the partial molar volumes of model compounds, as has been 
done with solvolysis reactions at ambient or near ambient tempera-
tures.149 It is important to note that the corrosion reaction is being 
treated as elementary process in Eq. (78), even though the corro-
sion processes are typical complex, multi-step processes. Howev-
er, this simplification does not compromise the present application 
of the partial charge method, since it is equally valid for multi-step 
reactions.149  

As described before, corrosion reaction rates can be expressed 
in terms of the chemical reaction rate law for both chemical and 
electrochemical corrosion processes and the volume of activation 
can be expressed by Eq. (80). Applying Eq. (80) to Eq. (78) and 
integrating, Eq. (78) becomes,  
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Where P0 is the reference pressure. It is important to note that the 
isothermal compressibility of high temperature aqueous systems is 
pressure dependent. The relative corrosion reaction rate at pressure 
P and P0 is expressed as, 
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Where RP/RP0 is the relative corrosion reaction rate. The first term 
in the right hand side of Eq. (84) is related to the activation pro-
cess; the second term is the contribution from the dissociation of 
aggressive species; and the third term corresponds to the pressure 
dependence of the volumetric concentration of the aggressive spe-
cies.  

The experimental setup used in the study of Guan and Mac-
donald126 comprised a closed, circulating loop system as illustrated 
in Fig. 60, within which the test solution was heated to the desired 
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temperatures (up to 500oC) while being pumped into the reaction 
cell using a high pressure, positive displacement liquid chromatog-
raphy pump. The internal pressure (up to 400 bar) was regulated 
by a check valve with a precision of ±15 bar. Heating of the cell 
was provided for by an OMEGA heating-band and the temperature 
was controlled by a temperature controller with a precision of 
±1oC. 

The electrochemical noise sensors (ENS) used in this study 
comprised three identical 0.5 mm diameter Type 304 SS wires 
(annealed 99.98% nickel wires later). Two of the electrodes were 
used as identical working electrodes and the third was employed 
as the pseudo reference electrode. The three 0.5 mm diameter, 
identical wire electrodes were inserted into separate 1.0 mm diam-
eter quartz tubes. The remaining space in the quartz tubes was 
filled with Zirconia (ZrO2) cement to electrically insulate the elec-
trodes from each other. The three quartz tubes were then inserted 
into a ceramic tube before inserting the ceramic tube into a stain-
less steel outer tube, which served as the pressure boundary. The 
ceramic and stainless steel outer tubes were sealed by Zirconia 
cement. The length of each wire was trimmed to 15 mm at one 
end, which was exposed to the high temperature test solution. The 
electrodes were separated from each other by a distance of 3-4 
mm. The exposed wire was lightly polished and washed with ace-
tone and de-ionized water before use. The other ends of the wires 
were inserted into a three-hole ceramic tube. A CONAX gland 
with Lava sealant was used to seal the EN sensor.  

The corrosion current noise between the two identical working 
electrodes and the potential noise between the coupled working 
electrodes and the pseudo reference electrode were measured sim-
ultaneously using a Gamry PC 400 electrochemical system operat-
ing as a zero resistance ammeter. The data were collected at an 
acquisition rate of 2Hz and a high-frequency filter was used in this 
study to prevent aliasing. A ZRA maintains the two identical 
working electrodes at virtually the same potential via negative 
feedback, with the measured instantaneous coupling current being 
that put out by the control amplifier to maintain this condition. 
Furthermore, an electrometer was used to measure the potential 
noise, with both measurements being made simultaneously. The 
working solution was 0.01 M HCl.  
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The purpose of this study was to understand the effect of pres-
sure on the rate of corrosion of a metal in high subcritical and su-
percritical aqueous systems (SCAS), with emphasis on the contri-
butions from activation, system compressibility, and degree of 
dissociation of aggressive species. Since the amplitude of the elec-
trochemical noise is postulated to be proportional to the electro-
chemical corrosion rate, the electrochemical corrosion rate can be 
estimated using electrochemical noise analysis (ENA). Note that, 
because the CO mechanism does not involve partial charge trans-
fer processes, it is postulated not to produce electrochemical noise. 
Accordingly, measurement of the current noise and the weight loss 
over a period of time, and knowledge of the relationship between 
the current noise amplitude and the instantaneous corrosion rate, 
provides a means of delineating the EO and CO mechanisms. This 
was partially achieved by Liu et al.,130 who measured the RMS of 
the noise in the coupling current between identical carbon steel 
electrodes in water at 450oC as a function of density and found that 
the noise disappeared at densities below 0.06 g/cm3. Accordingly, 
we may conclude that at lower densities the dominant corrosion 
process is CO and at higher densities EO prevails.  

As described above, the corrosion reaction rate in deaerated 
acidic solutions can be expressed by Eq. (72), in which the corro-
sion mechanism is electrochemical oxidation (EO) with H+ being 
the principal corrodent. As there are no data available for the reac-
tion order of the electrochemical corrosion of stainless steel in 
high temperature acidic solutions, we assume that the reaction is 
half order with respect to [O2], as noted above, and hence that a = 
½. The relative corrosion reaction rate at pressure P with respect to 
that at pressure P0 is then expressed as: 
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where P0 is the reference pressure, and RP/RP0  is the relative cor-
rosion reaction rate. The first term on the right hand side of Eq. 
(91) is due to activation; the second term corresponds to the 
change in the degree of dissociation of the aggressive species; and 
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the third term describes the pressure dependence of the volumetric 
concentration of aggressive species. The degree of dissociation of 
aggressive species ( H+) in SCAS is pressure-dependent and it can 
be determined by modeling species dissociation equilibria based 
on mass balance, charge balance, and the law of mass action.131 In 
this study, the compressibility of working solutions was estimated 
from steam data obtained from the NIST steam algorithm recog-
nizing that 0.01 M HCl is a dilute solution.149 The relative reaction 
rate of RP/RP0 was measured by ENA. Consequently, the volume 
of activation was estimated as outlined above. Macdonald suggest-
ed that the volume of activation is only weakly dependent on pres-
sure in liquid phases over relatively narrow pressure ranges.137 
However, the volume of activation is expected to change dramati-
cally as the system transitions the critical temperature and is ex-
pected to display strong pressure dependence in super critical sys-
tems for the reasons discussed above. Thus, Johnson et al.15 re-
ported that the volume of activation of uni-molecular decomposi-
tion of chlorobenzyl methyl ether in supercritical 1,1-
difluoroethane ranges from a negative few thousand cm3/mol in 
the highly compressible, near-critical region to a negative few 
dozen cm3/mol in the liquid state. As the compressibility of SCAS 
is high and hence the density of SCAS is highly pressure depend-
ent, the volume of activation of corrosion processes in SCAS may 
also be highly pressure-dependent. In order to solve Eq. (90), the 
authors assumed that the volume of activation of a corrosion pro-
cess in SCAS is constant between the two neighboring measured 
pressures as there are no data available for the differential relation-
ship between the volume of activation of an electrochemical corro-
sion processes and pressure. 

Figure 68 shows the standard deviation of the coupling current 
noise (postulated to be proportional to the electrochemical corro-
sion rate) of Type 304 stainless steel in deaerated 0.01 M HCl as a 
function of pressure at a high subcritical temperature (T = 350oC). 
As demonstrated by the data, the electrochemical corrosion rate 
increases with increasing pressure, corresponding to negative val-
ue for the volume of activation. The figure illustrates that the cur-
rent noise increases from 50.5 A/cm2 at 224 bar to 74.7 A/cm2 
at 272 bar, and then to 85.8 A/cm2 at 317 bar. The increasing 
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Figure 68. Electrochemical corrosion rate (standard deviation of the current 
noise) of Type 304 SS as a function of pressure at 350oC in deaerated 0.01 M. 
Reprinted from Ref. 142, Copyright (2009) with the permission from NACE 
International. 
 
 

corrosion   rates   may  be  attributed  to the  effect  of pressure on 
the solvent-solute interactions and on the degree of dissociation of 
the aggressive species. 

Figure 69 presents the volume of activation of the electro-
chemical corrosion of Type 304 SS in 0.01 M HCl at 350oC as a 
function of pressure. In this study, the relative electrochemical 
corrosion rate is estimated as the ratio of the two neighboring 
measured standard deviations in the current noise, such as the cur-
rent noise of 67.6 A/cm2 at 252 bar divided by the current noise 
of 50.5 A/cm2 at 224 bar. In addition, it was also assumed that 
the volume of activation is constant between the two neighboring 
measured pressures, such that the volume of activation is taken to 
be –210.8 cm3/mol over the pressure range of 224 to 252 bar, –
183.3 cm3/mol over the pressure range of 252 to 272 bar, and –
120.3 cm3/mol over the pressure range of 272 to 306 bar, as ex-
plained above. As demonstrated by the data in the figure, a large, 
negative volume of activation (–210.8 cm3/mol) is observed  at  the  
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alloys for Generation IV, Supercritical Water Nuclear Power Reac-
tors (SCWNPRs). Just as much materials selection was simply 
transferred from subcritical fossil-fueled thermal power plants in 
designing BWRs, with disastrous results, concern has been ex-
pressed that a similar mistake may be being made in transferring 
materials technology from supercritical thermal (fossil fueled) 
power plants to supercritical nuclear systems by inadequately de-
fining the properties of the environment or the response of an alloy 
when in contact with that environment. In the BWR case, when 
materials selection was affected, little was known of the electro-
chemical nature of IGSCC in sensitized Type 304 SS and in Type 
316 SS. For example, in the 1960s it was not known that a critical 
potential for IGSCC (EIGSCC) existed or that the critical potential 
was a sensitive function of temperature, crack length, degree of 
sensitization, or conductivity of the medium.150 Also, it was not 
generally appreciated that the radiolysis of water in the reactor 
core produced oxidizing (e.g., O2, H2O2, OH) and reducing (H2, H, 
O2

–) species that are electroactive (i.e., the species participate in 
redox reactions on the alloy surface) and that these species estab-
lish the redox potential of the environment and the corrosion po-
tential of the steel. Over the past four decades a great deal has been 
learned of the electrochemical nature of IGSCC in austenitic stain-
less steels in subcritical systems, including the exponential de-
pendence of crack growth rate on the electrochemical corrosion 
potential (ECP), as shown in Fig. 81.151 Indeed, the evidence 
demonstrates that IGSCC in sensitized austenitic stainless steels is 
primarily an electrochemical phenomenon and not a mechanical 
process, although the bulk of the models that have been devised to 
account for the CGR are mechanical in nature (for example, see 
the model of Shoji, et.al.152 The importance of electrochemistry in 
determining CGR underlies the current technology for mitigating 
IGSCC in operating BWRS (Hydrogen Water Chemistry, HWC) 
through the addition of hydrogen to the primary coolant in order to 
displace the potential in the negative direction thereby reducing the 
crack growth rate (Fig. 81) or in eliminating IGSCC altogether if 
the ECP is more negative than –0.23 VSHE. This value is recog-
nized by the Nuclear Regulatory Commission (NRC) as the 
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Figure 81. Measured and calculated (via the CEFM) crack growth rates for sensi-
tized Type 304 SS in high temperature aqueous solutions as a function of ECP and 
conductivity. The solid lines correspond to predicted crack growth rate using the 
CEFM. The citations refer to references in the original source. Reprinted from Ref. 
149, Copyright (1996), with permission from NACE International. 

 
 

critical potential for IGSCC in sensitized Type 304 SS in BWR 
environment (pure water at 289oC), EIGSCC, such that if the ECP is 
more negative the reactor operator may take credit for controlling 
IGSCC. This topic is revisited later in this section. 

Because stress corrosion cracking is a localized corrosion pro-
cess, involving the spatial separation of the local anode (in the 
crack) and the local cathode (on the external surfaces), the phe-
nomenon of IGSCC is expected to fall under the theoretical um-
brella of the Differential Aeration Hypothesis (DAH), as depicted 
in Fig. 82. The DAH, which was first postulated by Evans in the 
1920s and which has since been recognized as the theoretical basis 
for essentially all localized corrosion phenomena requires that, in 
order to maintain the spatial separation between the local anode 
and local cathode, a positive ionic coupling current flows through 
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the solution from the crack to the external surface where it is anni-
hilated by oxygen reduction on the crack external surfaces and by 
the equivalent electron current flowing through the metal, as de-
picted in Fig. 82. The magnitude and the distributions in the cur-
rent and the potential from the crack tip to a point on the external 
surface that is remote from the crack mouth are such that charge is 
conserved in the system. Indeed, this condition determines the 
potential at the crack mouth, which is always more positive (i.e., 
the electrostatic potential in the solution) than that on the external 
surface remote from the crack mouth (negative of the corrosion 
potential). 

The coupling current depicted in Fig. 82 is readily measured 
by mounting side cathodes on a compact toughness specimen 
whose surfaces (except for the crack) have been insulated from the 
solution and then measuring the electron current that flows from 
the specimen to the cathodes using a ZRA, as described by Mana-
han, et.al.152 (Fig. 83). Under optimal conditions, and by using a 
suitably high data acquisition rate, the coupling current is found to 
comprise packages of 6 to 13 periodic oscillations that are separat-
ed by brief periods of intense current activity (Fig. 84). These os-
cillations arise from brittle microfracture events that occur at the 
crack tip and by determining their frequency (approx 2 s–1) and 
knowing the crack growth rate it is possible to estimate the size of 
the microfracture event at about 3 m.154 The size of the event 
does not appear to be consistent with the slip/dissolution model, 
where the dimension should be of the order of a few Burger’s vec-
tors (i.e., a few nanometers) corresponding to the dimension of a 
slip band. In this case the frequency of the events might be ex-
pected to be in the kHz range, in order to account for the known 
crack growth rate. Instead, the frequency and dimension of the 
microfracture event is more consistent with a hydrogen-induced 
cracking mechanism, even though the external environment is oxi-
dizing. HIC is attributed to differential aeration displacing the po-
tential of the metal at the crack tip below the hydrogen evolution 
line, thereby injecting hydrogen into the matrix   ahead   of  the   
crack  tip  where  it   embrittles   the  grain boundary matrix, which 
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may contain significant hydrogen-and strain-induced martensite, 
resulting in brittle, intergranular fracture. 

The reader will note that the measured coupling current pro-
vides for the direct interrogation of events that occur at the crack 
tip as a function of various independent variables, such as the ap-
plied stress intensity factor (Fig. 83). The author knows of no other 
measurement that can be made that yields comparable information 
on the events that occur at the crack tip and it remains as a mys-
tery, at least to the author, as to why this measurement, which is 
easy to make, is not used more extensively in the study of stress 
corrosion cracking. For example, it has been shown154 that the 
crack growth rate is proportional to the average coupling current, 
which is expected from Faraday’s law. Because current can be 
measured much more conveniently and to far greater accuracy than 
can crack growth rate, measurement of the coupling current might 
be an effective means of measuring CGR, particularly at very low 
rates. Additionally, there is no other method for the in situ deter-
mination of the dimension of the microfracture events, although 
the frequency can be ascertained using acoustic emission, but that 
technique has yet to be applied at high subcritical temperatures. 
 The role of radiolysis in establishing the ECP of stainless 
steels in determining IGSCC crack growth rate (CGR) is now well 
understood in terms of radiolysis models that predict the concen-
trations of electroactive radiolysis products around the coolant 
circuit of a BWR,155 the mixed potential model for calculating the 
ECP,156 and the Coupled Environment Fracture Model152,128,157 for 
estimating the IGSCC CGR. These models have been assembled 
into codes (DAMAGE-PREDICTOR, ALERT, REMAIN, and 
FOCUS) for predicting the accumulation of damage due to IGSCC 
in BWR primary coolant circuits as a function of the operating 
history of the reactor. Figure 85, for example, shows the predicted 
ECP around the primary coolant circuit of the Leibstadt BWR in 
Swizerland operating under normal water chemistry protocol, in 
which no hydrogen is added to the reactor feed water. The ECP is 
predicted to vary from about 0 VSHE in the recirculation piping
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to about 0.3 VSHE in the core channels, where radiolysis and the 
generation rate of H2O2 is most intense. On the other hand, H2O2 
decomposes thermally in the recirculation piping, such that its 
concentration at the exit of the recirculation pipe is greatly reduced 
compared with that in the reaction core. Because the ECP is very 
dependent upon the concentration of hydrogen peroxide, because 
this is the most powerful oxidizing agent that is produced in a sig-
nificant concentration by water radiolysis, the ECP reflects, to a 
large extent, the concentration of H2O and, to a lesser extent, the 
concentration of oxygen.  

Shown in Fig. 85, it is not surprising to find that the CGR 
around the coolant circuit, as shown in Fig. 86, closely resembles 
that for the ECP (Fig. 72). Thus the crack growth rate for a 0.5 cm 
long crack loaded to a stress intensity factor of 27 MPa.m1/2 varies 
from about 10-9 cm/s at the exit of the recirculation piping system 
to about 5 x10-9 cm/s in the core channels. A crack growth rate of 
10-9 cm/s corresponds to the lengthening of a crack by 0.3 mm 
over one year. This magnitude of CGR is tolerable during opera-
tion and according to the data plotted in Fig. 71 for low conduc-
tivity the corresponding potential is about –0.05 VSHE. This is sig-
nificantly more positive than the NRC-mandated critical value of -
0.23 VSHE, suggesting that the latter may be too conservative, as 
previously noted.152 Also presented in Figs. 85 and 87 are plots of 
ECP and crack growth rate, respectively, for the reactor operating 
under hydrogen water chemistry (HWC) with the addition of 1.2 
ppm of hydrogen to the reactor feedwater. These plots show that 
hydrogen significantly shifts the ECP in the negative direction and 
lowers the crack growth rate in many, but not all, regions of the 
primary coolant circuit. Thus, using the –0.05 VSHE/10-9 cm/s as 
the protection criteria, it is evident that HWC may protect much of 
the lower down comer and lower plenum [beneath the reactor core 
at the bottom of the reactor pressure vessel (RPV) containing the 
control rod drives (CRDs), and most of the recirculation piping 
system], but the core channels (containing the fuel), the core by-
pass (between the core and the inside of the core shroud), the up-
per plenum, the mixing plenum (both above the core and in contact 
with water exiting the core channels  and  the  bypass  and  hence  
containing   radiolytically- generated H2O2), and the jet pumps. 
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The efficacy of HWC is significantly improved by depositing no-
ble metal on the steel surfaces in a protocol termed noble metal 
chemical addition (NMCA), as offered to reactor operators by the 
vendor, General Electric Company.158 

As noted above codes have been developed to predict the ac-
cumulation of damage by IGSCC in the primary coolant circuits of 
operating reactors as a function of the reactor operating history 
(start-ups, shut-downs, variation in power level, hydrogen addi-
tions, etc), which defines the corrosion evolutionary path. The 
predicted damage (length of a crack on the upper inner surface the 
core shroud adjacent to the H-3 weld) for three operating scenarios 
is shown in Fig. 87. Under NWC operating conditions (no added 
hydrogen), the crack is predicted to grow by about 2 cm over the 
ten year operating period, corresponding to an average crack 
growth rate of 1.3x10-8 cm/s, but if HWC had been initiated im-
mediately upon start-up the crack is predicted to have advanced by 
a little more than 0.5 cm. On the other hand, had HWC been insti-
tuted after five years, the crack is predicted to have lengthened by 
about 1.7 cm, considerably more than half of the advance under 
NWC operating conditions. This law of decreasing returns, in this 
case, is a consequence of the parabolic form of the CGR versus 
time curve, which, in turn, reflects the fact that the CGR decreases 
as the crack length increases, due to the increase in the IR potential 
drop down the crack. In closing, the author notes that the predic-
tions of the code (these calculations were performed using 
ALERT) are in excellent agreement with the observed damage due 
to IGSCC in the shroud, where comparisons between prediction 
and measurement can be made. 

It is important to note that no comparable models have been 
developed for supercritical aqueous systems, so that similar calcu-
lations are not yet possible for supercritical water nuclear power 
plants (SCWNPPs). In the opinion of the author, the development 
of such a code would prove to be invaluable for selecting materials 
and for devising water chemistry and operating protocols for 
SCWNPPs. That radiolysis occurs in supercritical water to produce 
a variety of electroactive species is well established experimental-
ly, particularly through the work of Bartels and coworkers158  and 
of  that by Katsumura.159  The current   situation   with  regard  to 
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volving those radiolytic species (e.g., H2/H+, O2/H2O, 
H2O2/H2O) or for the species diffusivities, which are needed 
for estimating limiting currents. These data are a prerequi-
site for being able to calculate the ECP using the Mixed Po-
tential Model.156  

 No crack growth rate data under well controlled fracture 
mechanics and electrochemical conditions are currently 
available for any alloy in supercritical aqueous solutions. 
Indeed, it may well be that under conditions where the 
Chemical Oxidation (CO) mechanism dominates (low den-
sity) the electrochemistry may not be important, but that 
deeds to be demonstrated. At high density (  > 0.06 g/cm3) 
general corrosion occurs via an Electrochemical Oxidation 
(EO) mechanism and it is likely that SCC also will be an 
electrochemical phenomenon. 

 The experimental techniques required to measure the data 
have yet to be fully developed. 

As noted above, various groups are working on determining 
G-values for the radiolysis products of water and some data are 
now becoming available. Most experiments employ pulse radioly-
sis with scavenging by an additive to the solution that produces a 
product that exhibits an absorption spectrum within the visible 
region of the electromagnetic spectrum. The concentration of the 
species of interest (e.g., hydrated electrons) is then readily deter-
mined from Beer’s law and the measured absorbance. 

An example of the type of study that is being carried out in 
this area is that reported by Ghandi and Percival160 (Fig. 88). These 
workers, using radiolysis data in the literature explored various 
models for predicting rate constants for the reactions OH + OH  
H2O2 (triangles, Fig. 88), OH + OOH  O2 + H2O (squares, Fig. 
88) in water and (b) OH + nitrobenzene in water at temperatures 
ranging from ambient to 450oC. The two principal models em-
ployed were those based upon the Noyes equation 
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where kdiff is the diffusion-limited rate constant and kact is the rate 
constant for the activated process. The diffusion limited rate con-
stant, kdiff, is given by the Schmoluchowski equation 

 
 Aveffdiff NRDDk 214000   (93) 
 

where  is the spin statistical factor for reactions between radicals, 
D1 and D2 are the diffusivities of the two reacting species, Reff is 
the mutual reaction diameter, and NAv is Avogadro’s number. The 
reader will note that, as predicted by Eq. (92) the smaller of the 
two rate constants, kdiff and kact, controls the observed rate constant 
for a given reaction. Thus, in the radiolysis models that have been 
developed for subcritical temperatures.152 The activation rate con-
stant, kact, is given by the Arrhenius equation as 

 
 RTE

act aAek /  (94) 
 

where kB is Boltzmann’s constant, h is Planck’s constant, and 
G0,  is the change in Gibbs energy of activation of the reaction. 

The second model employed by Ghandi and Percival160 makes use 
of a modified form of Eq. (94) as 

 
 RTE

Rreact aAefk /   (95) 
 

where the efficiency factor, fR, is given by 
 
 )1/( qpqpf RRR   (96) 
 

which takes account of reactive orientation (described by pR) and 
the number of collisions between the reactants over the duration of 
an encounter (q). The parameter q can be expressed as the ratio of 
the encounter lifetime ( enc) and the time between collisions ( coll) 

 
 collencq /  (97) 
 
Methods are available for estimating both enc  and coll  (see 

Ghandi and Percival).160 Importantly, q is found to change from 
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about 1000 for liquid water to about one (every collision being 
effective) for low density, supercritical water conditions, with the 
reaction efficiency falling from 100% per encounter to a lower 
value as the density decreases from that for subcritical liquid wa-
ter. 

It should be noted that, in the reaction mechanisms that are 
currently used for modeling the radiolysis of water in subcritical 
systems,152 most of the bimolecular reactions are at the diffusion 
limit. Because the temperature dependence of an activation con-
trolled reaction is normally greater than that of a diffusion con-
trolled reaction, any reaction that is diffusion controlled at subcrit-
ical temperatures is almost certainly diffusion controlled at super-
critical temperatures and many that are activation controlled at 
subcritical temperatures will become diffusion controlled at super-
critical temperatures. Accordingly, the rate constants for many 
reactions between radiolytic species in any mechanism adopted for 
the radiolysis of water in supercritical water might be reasonably 
estimated. The challenge exists with the unimolecular reactions 
and those bimolecular reactions whose rates are below the diffu-
sion limit. Nevertheless, the author’s opinion is that a good chance 
exists that an acceptable set of rate constants for a reaction mecha-
nism could be developed for use at supercritical temperatures. 

As a second example, the rate constant for the scavenging of 
hydrated electrons by nitrobenzene in water at 380oC as a function 
of density, as reported by Marin, et al.,162 is plotted in Fig. 89. For 
lower densities (  < 0.4 g/cm3), the rate constant decreases with 
increasing density, but at higher density the opposite trend is ob-
served. There is no obvious property versus temperature correla-
tion that can account for the density dependence of the rate con-
stant.  

The need to actual measure kinetic data, rather than extrapo-
lating data from lower temperatures, is that the theoretical models 
are insufficiently sophisticated to accurately describe the transition 
from subcritical conditions to supercritical conditions, as is evident 
from the data plotted in Fig. 88. Thus, a simple Arrhenius extrapo-
lation of Elliot’s161 subcritical data or by using a  multiple collision 
model does not produce the data at all well in the  
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Cross-sectional micrographs of Alloy 690 specimens after ex-

posure to deaerated supercritical water at (a) 400oC; (b) 450oC; (c) 
500oC; and (d) 550oC and at a pressure of 25.5 MPa are displayed 
in Fig. 95. The cracks are clearly evident and it is also evident that 
many initiate at emergent grain boundaries, but others initiate in-
tergranularly and penetrate transgranularly (Fig. 95c). In sensitized 
Type 304 SS, at BWR operating temperatures (288oC), cracks are 
often found to initiate at a surface discontinuity (e.g., a pit, which 
acts as a stress raiser) and then grow transgranularly across the 
first grain (Figs. 96 and 97) until intersecting a sensitized grain 
boundary, as found for Type 304 SS in chloride-containing solu-
tions at 288oC.165 Thereafter, the crack grows intergranularly. It 
appears, then, that there is little difference between crack initiation 
in subcritical and supercritical aqueous systems. 
 That crack growth in the four alloys is a thermally activated 
process is clearly shown by plotting the crack growth rate (Fig. 
98a) in Arrhenius form (Fig. 98b). The activation energy is found 
to be of the order of 84–105 kJ/mol, which is a commonly ob-
served range for a thermally activated process of this type. The 
crack growth rates were determined by dividing the depth of the 
deepest crack on the fracture surface of the failed CERT specimen 
by the time of straining from the yield point. This method has been 
extensively used in subcritical temperatures, but there are signifi-
cant objections to its use, including:  

(a) The mechanical state at the tip of a crack is poorly defined;  
(b) data analysis is considerably complicated by the existence 

of multiple cracks propagating simultaneously on the failure 
surface and on the specimen side surfaces;  

(c) the time at which the cracks nucleate, and hence the time 
over which the cracks grow, is uncertain; and  

(d) the specimen is forced to fail regardless of the crack veloci-
ty, which does not reflect in service dynamics. Furthermore, 
where comparisons have been made, crack growth rates de-
termined by CERTs are significantly higher than those 
measured using well-defined fracture mechanics specimens. 
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If we accept that the crack growth rate in these alloys in de-
aerated supercritical water is of the order of 10-7 mm/s at 550oC 
(roughly the proposed operating temperature of a SCWNPP) and 
noting that there are about 3x107 seconds in a year, crack extension 
is calculated to be of the order of 3 mm per year. This is judged to 
be a little high in practical engineering terms, because it corre-
sponds to the growth of a greater than one-inch deep crack in ten 
years. However, recognizing that crack growth rates measured 
using CERT experiments are likely to be high, by as much as an 
order of magnitude, a crack growth rate of 0.3 mm/year would be 
acceptable, corresponding to that observed under BWR coolant 
conditions. Clearly, the crack growth rate needs to be measured 
using well-defined (mechanically) fracture mechanics specimens.  

Attention is now turned to examining the possible role of elec-
trochemistry in SCC in supercritical aqueous systems. Thus, be-
cause oxygen is known to impact the corrosion potential (see 
above) and recognizing that the effect of oxygen on the fracture 
behavior of the austenitic alloys in supercritical water has yet to be 
studied systematically, some data suggest that high oxygen may 
exacerbate IGSCC. Thus, the data shown in Fig. 99 show that the 
extent of IGSCC on the fracture surfaces failed in CERT tests in 
high subcritical and at supercritical temperatures, which is associ-
ated with stress corrosion cracking, show that the extent of IGSCC 
decreases dramatically with increasing temperature in the super-
critical region, possibly reflecting increasing dominance of the CO 
mechanism over the EO mechanism. 

Finally, it is of interest to examine, briefly, the temperature 
dependence of IGSCC in sensitized Type 304 SS in pure water at 
subcritical temperatures. A plot of the available data from An-
dresen,166 together with predictions from the Coupled Environment 
Fracture Model,158 are shown in Fig. 100. The crack growth rate 
(CGR) is found to pass through a maximum at about 170oC. At 
higher temperatures, the crack growth rate is found to decrease 
dramatically with increasing temperature, such that at 300oC the 
CGR is about two orders in magnitude higher than the creep crack 
growth rate. Unfortunately, no CGR data appear to be available for 
the temperature range of 300oC to the critical temperature for this 
(or any other) steel, so that it is not possible 
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subcritical systems have been reported, but few studies of this 
type apparently have been previously performed at supercritical 
temperatures. 

A number of groups have developed experimental techniques 
for performing electrochemical polarization studies at high subcrit-
ical and at supercritical temperatures. The measurements are per-
formed in a stainless steel, high temperature/high pressure test cell. 
In the studies performed by the author and his colleagues the 
working electrode (Ni) and counter electrode (Pt) were incorpo-
rated into an alumina holder with a cooled PTFE support and this 
assembly was then inserted into the test cell through which the 
electrolyte was slowly pumped (at a rate of 4-5 ml/minute) (e.g., 
Fig. 54). A silver/silver chloride external pressure balanced elec-
trode was employed as the reference electrode. This system was 
used to measure polarization curves at temperatures over the range 
20–430 C and at a pressure of 340 bar (5000 psi) in deaerated 0.01 
m NaOH. 

In Fig. 101 we present polarization curves obtained for nickel in 
0.01 m NaOH over the temperature range from 20 to 400 C. The 
classic behavior of a passive metal is observed at temperatures up 
to 400 C, with the active dissolution hump being more pro-
nounced when compared with the ambient temperature behavior. 
At 430 C and at higher temperatures (not shown), the conductivi-
ty of the solution is very low and polarization measurements have 
proven to be difficult to perform and interpret. However, the re-
producibility of the measurements illustrated in Fig. 101 was 
good, including those at the highest temperatures. 

With increasing of the temperature, the range of passivity 
shrinks considerably, as illustrated by Fig. 102. A strong depend-
ence of the length of the passive region on temperature is ob-
served, possibly because the overpotential for oxygen evolution 
and hydrogen evolution, which defines the practical stability 
range of water, become smaller as the temperature is increased. 
Furthermore, increasing temperature most likely shifts the poten-
tial at which transpassive dissolution occurs, which marks the 
upper boundary of the passive range to lower values. In any 
event, shrinkage of the passive range implies increased suscepti-
bility to corrosion, particularly at highly positive and negative 
corrosion potentials.  
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Figure 101. Polarization curves for nickel in 0.01 m NaOH at temperatures 
ranging from 20oC to 400oC. P = 340 bar. Reprinted from Ref. 5, Copyright  
(1997) with permission from Elsevier. 
 
 

 

The value of the current in passive region is very important 
parameter for the prediction and modeling of the metallic corro-
sion. In Fig. 103 the current in the passive region is plotted as a 
function of temperature. It is noted that the passive current passes 
through a maximum at a temperature of around 300 C. The pas-
sive current is expected to increase with temperature, because it is 
partly determined by the transport of ions through the oxide film, 
a process that is temperature activated. However, the passive cur-
rent is also determined by the rate of dissolution of the passive 
oxide film, which is sensitive to the chemical and physical prop-
erties of the environment. The Point Defect Model168 for the 
growth and breakdown of passive films on metal surfaces gives 
the steady state current on nickel in terms of  
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Figure 102. Length of the passive range for nickel in 0.01 m NaOH as a 
function of temperature at a pressure of 340 bar. Reprinted from Ref. 5, 
Copyright (1997) with permission from Elsevier. 
 
 
 

 ])/([2 00
1

no
HHs

bLaV
passive cckeekFi ss   (98)  

 
where a and b are constants, k1
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o are the standard rate con-

stants for the injection of cations into cation vacancies at the met-
al/film interface and for the dissolution of the film, respectively, 
Lss is the steady state film thickness, cH+ and cH+

o are the molar 
concentrations of H+ in the solution and in the standard state, and 
n is the reaction order for the film dissolution reaction with re-
spect to H +. The steady state barrier layer thickness is given in 
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Figure 103. Dependence of the passive current density for nickel in 0.01 
m NaOH on temperature at a pressure of 340 bar. Reprinted from Ref. 5, 
Copyright (1997) with permission from Elsevier. 
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where  is the polarizability of the film/solution interface,  is the 
dependence of the potential drop across the film/solution inter-
face on pH,  = F/RT, and 2 and k2

0 are the standard rate constant 
and transfer coefficient for the generation of oxygen vacancies at 
the metal/film interface and hence for generation of the film,  is 
the electric field strength, and ks

0  is the standard rate constant for 
film dissolution. Equations (71) and (72) have been derived for 
the case where no change occurs in the oxidation state of the cati-
on upon ejection from the film into the environment. We have 
previously argued169 that the rate of corrosion of a metal, which 
reflects the rate of dissolution of the passive film, because that 
controls the barrier layer thickness, passes through a maximum at 
a high subcritical temperature by virtue of competing effects of 
temperature on the rate constant and on the properties of the 
aqueous medium (density and hence molar concentration, acid 
dissociation, and dielectric constant), as shown in Fig. 104, which 
is taken from the work of Kriksunov and Macdonald.10 Plotted in 
this figure is the relative rate of corrosion for two different stoi-
chiometric HCl concentrations and for three different activation 
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Figure 104. Relative rate of a corrosion reaction versus temperature 
plotted as a function of activation energy and stoichiometric HCl con-
centration. Reprinted from Ref. 5, Copyright (1997) with permission 
from Elsevier. 
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energies. The existence of the maximum in the corrosion rate has 
been found experimentally using a variety of techniques,170 in-
cluding electrochemical emission spectroscopic (electrochemical 
noise) methods,170,171 and it appears that the same factors extend 
to determining the passive current density (Fig. 103). 

Returning now to Eq. (72), we see that, if the rate of dissolu-
tion of the passive film passes through a maximum (due to the 
competing effects of the second and third terms), then the steady 
state film thickness (Lss) should pass through a minimum with 
increasing temperature. That being the case, then both terms on 
the right side of Eq. (71) will pass through coincident maxima 
(both terms are sensitive to the same dissolution phenomenon), 
thereby accounting for the observed maximum in the passive cur-
rent. 
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VIII. SUMMARY AND CONCLUSIONS 

It has been argued in this review and elsewhere that a rational ba-
sis exists for defining pH in supercritical aqueous systems and 
sensors have been developed for measuring this parameter at tem-
peratures well in excess of the critical temperature (374.15°C). The 
principal impediment to realizing the goal of making research 
grade pH measurements that are accurate to better than  0.05 is 
the lack of a viable reference electrode that can operate at tempera-
tures above 500°C and which can provide a reference potential of 
that is accurate to ca ±5mV. This goal has not yet been realized for 
T > 500°C, although it has been achieved at low supercritical tem-
peratures up to 400°C.171 The development of a reference electrode 
that provides an accurate reference potential remains a pressing 
need in this field. However, for the specific purpose of monitoring 
pH in SCWO systems, the external pressure balanced reference 
electrode (EPBRE), which has now been used to measure poten-

will probably remain the workhorse for routine potential meas-
urements in high temperature aqueous solutions. Indeed, we be-
lieve that considerable room exists for improving the precision of 
the EPBRE, particularly for measurements in supercritical media. 

One such strategy, which is currently being exploited172 is to 
slowly pump the internal solution from an external reservoir 
through the electrode at a slow enough rate so as to maintain the 
temperature gradient along the non-isothermal bridge but at a high 
enough rate that the tendency for thermal diffusion to occur is ef-
fectively suppressed. This idea is not new, having been described 
by Danielson172 about twenty years ago. Nevertheless, this elec-
trode, when combined with a hydrogen electrode in a solution of 
accurately known hydrogen fugacity, has enabled the measurement 
of pH to 0.05 at temperatures to 400oC. However, this reference 
electrode suffers from two problems that may or may not adverse-
ly impact its acceptability as a general tool for studying supercriti-
cal aqueous solutions. The first is that the pump that is required to 
slowly and precisely meter the internal solution into the electrode 
considerably complicates the system, to the point that, while such 
complexity may be acceptable in the research laboratory, it is un-
likely to find acceptance in the field. The second issue is that the 

tials to better than ±5 mV in low subcritical systems (T < 300 oC) 
and to about ±20 mV at high supercritical systems (T > 500oC), 
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reference potential, as measured against a hydrogen electrode, 
strongly depends on the flow rate of the solution through the inter-
nal reference electrode compartment, thereby requiring accurate 
control of the flow rate and calibration against a known standard. 
The extent to which calibration can be done accurately and con-
veniently over wide ranges of temperature, pressure, and solution 
type and composition remains to be determined. 

We have also shown that it is possible to measure redox po-
tential at high supercritical temperatures with a sensor that auto-
matically compensates for changes in pH. The sensors that have 
been developed are rugged and respond rapidly to changes in the 
redox potential. In particular, the sensor that employs a W/WO3 
pH-sensitive element, is particularly promising, because of its all 
solid-state structure and exceptional ruggedness. These sensors, 
when combined with a suitable reference electrode, provide the 
means for measuring the two most important parameters defining 
the corrosion conditions that exist in SCWO reactors, namely po-
tential and pH. 

Finally, we have demonstrated that it is now possible to per-
form electrochemical polarization studies in high subcritical and 
supercritical aqueous systems, which suggests that the whole range 
of powerful electrochemical techniques, including transient meth-
ods and electrochemical impedance spectroscopy (EIS) can be 
brought to bear on the behavior of metals at the interface between   
wet and dry corrosive environments. 
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I. INTRODUCTION 

Passivity of metals was initially stated by Faraday1 and 
Schœnbein2 over 150 years ago. The origin of the passivity was 
argued and at the present the passivity is thought to be the for-
mation of three dimensional oxide films. It is stably formed in 
aqueous solution. The passive oxides are extremely thin (usually a 
few nm), so it is very difficult to detect them analytical techniques. 
For the quantitative description, electrochemistry is a key tech-
nology, because the oxidation state of the metal surface can be 
precisely controlled by electrochemical apparatus. Since the elec-
trochemical control is restricted into solution phase, the passivated 
surface should be characterized in the same phase. To overcome 
the difficulty for characterization, several optical techniques have 
been applied. 

The presence of the thin oxide film on iron was confirmed by 
Freundlich3 and Tronstadt4 by using an optical technique of ellip-
sometry.  The ellipsometry is one of the most sensitive techniques 

S.-I. Pyun and J.-W. Lee (eds.), Progress in Corrosion Science and Engineering II, 
Modern Aspects of Electrochemistry 47, DOI 10.1007/978-1-4419-5578-4_2,  
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Figure. 1. Potential-current density (cd) relation of 
iron electrode in borate and phosphate solutions at 
various pH values. The cd is taken after 1 h at 
each potential. Reprinted from N. Sato, T. Noda, 
and K. Kudo, “Thickness and Structure of Passive 
Films on Iron in Acidic and Basic Solutions”, 
Electrochim. Acta, 19 (1974) 471, Copyright 
©1974 with permission from Elsevier Science. 

 
 
to detect a thin layer on metals and has been applied to the study of 
surface oxide film by many authors. The advantage of ellipsometry 
is that it can be used in an aqueous environment. Electronic spec-
troscopy such as XPS, AES etc., electron diffraction, mass spec-
troscopy such as SIMS have been conducted to determine the 
structure and composition of the passive oxide. For the ex-situ 
techniques under vacuum, since the electrodes are removed from 
electrolyte, the film may be altered through crystallization and/or 
dehydration. To avoid the alteration, the following in-situ tech-
niques by which the oxide film is measured in the environment 
where it was formed have been used; Mössbauer spectroscopy, 
Raman spectroscopy including surface enhanced Raman spectros-
copy, and X-ray adsorption techniques such as XANES and 
EXAFS.  
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First, a typical potential-current relation is shown in Fig. 1 
where the potential was plotted against saturated calomel electrode 
(SCE).5 The iron electrode exhibits four potential regions: the ac-
tive dissolution, active-passive transition, the passive and the oxy-
gen evolution. In the passive potential region, the steady current 
density (cd) is not dependent on the potential, but changes with 
solution pH values. The cds plotted in Fig. 1 were taken after 1 h 
polarization under the constant potential control. They reach a 
steady cd in the solution at pH lower than four in 1 h. The cd in 
neutral and slightly alkaline solutions does not, however, reach the 
steady-state value and continues to decay even after 1 h polariza-
tion. The steady cd means that the passive oxide is under the sta-
tionary state in which the passive oxide remains unchanged as time 
goes on. In this chapter, the discussion is mainly focused on the 
passive oxide under the stationary state.  

In this chapter we first introduce optical techniques combined 
with electrochemistry for study of the passive oxide and then we 
focus on the growth mechanism, composition, and nature of the 
passive oxide on iron and steels, which were detected by the opti-
cal techniques of ellipsometry, Raman spectroscopy, potential 
modulation reflectance, and photo-electrochemistry combined with 
electrochemistry.  

II. OPTICAL TECHNIQUES 

1.  Ellipsometry 

Ellipsometry is an optical technique in which the change in ellip-
soidal shape of the polarized light is measured between the inci-
dent and reflected polarized lights. Since the change is related to 
the complex refractive indices of the solid surface and the surface 
film, and the thickness of the film, the ellipsometry characterizes 
the surface film in thickness at sub-nanometer scale. Since the 
ellipsometry operates with visible light with a constant wavelength 
and the corrosion environment (i.e., air and electrolyte) is trans-
parent in that light region, in-situ application to the study of cor-
roded metal surfaces could be easily achieved. The basics and ap-
plication of ellipsometry are described in detail in the book pub-
lished by Azzum and Bashara.6 
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Figure 2. Loci combined by two vectors at vibrated on x 
plane and on y plane. (a) In the case that the phase shift be-
tween the two vectors is zero, and (b) the phase shift is ( /2) 
radian. 

(i)  Polarized Light 

The polarized light can be divided into plane-polarized and el-
lipsoidal-polarized lights. The polarized light is described by two 
basic plane-polarized lights, the electric vector of which meets at 
right angle with each other. When the propagation direction is z, 
and vibration directions of the vectors of the two basic polarized 
lights are x and y, the vibration of electric vectors are described as 
follows: 

 
  Ex = Ex exp [j( t – kz + x)] (1) 
    
  Ey = Ey exp [j( t – kz + y)] (2) 
    

where j = (–1)1/2 and Ex and Ey are complex number. When the 
phase shifts, x and y, are same as each other ( x = y), the loci of 
the summation of two vectors reveals a vector propagating on the 
plane slanting against the x axis with the angle of arctan (Ey/Ex) 
(Fig. 2a). When the phase shift between the two vectors is ( /2) 
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radian, the shape of the loci in the x-y plane becomes an ellipsoid 
(Fig. 2b), depending on the amplitude ratio of (Ey/Ex). The shapes 
of the ellipsoid shown in Fig. 1 are the special cases and in general 
it is seen that the shape changes with the amplitude ratio of (Ey/Ex) 
and the phase shift of ( x – y).  

(ii) Reflection of Polarized Light at Solid Surface 

Let’s consider light reflection on a solid surface at an inci-
dence angle of 1, where the incidence angle is defined at an angle 
between the incidence light beam and the normal direction on the 
surface (Fig. 3). For the light reflection, the two basic 
plane-polarized lights are selected as follows; one is a 
plane-polarized light which vibrates on a plane including incident 
and reflected light beams (the incidence plane) and the other vi-
brates on the plane normal to the incidence plane. The former is 
designated as parallel (p-) polarized light and the latter as parpen-
dicular (s-) polarized light. The shape of the ellipsoidal polarized 
light propagating is a function of the amplitude ratio of Ep/Es and 
the phase shift of p – s. 

 
 

 
Figure 3. Incidence of polarized light at angle of incidence 1, re-
fraction at angle of refraction 3, and reflection. EP is electric vec-
tor which vibrates on the incidence place and Es on the place nor-
mal to the incidence plane. 
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When a plane-polarized light reflects on a solid surface, phase 
retardation occurs as well as amplitude reduction. The ratio of the 
reflected light to the incident light can be described as the follow-
ing reflection coefficients for the p- and s- polarized light.  

  
  rp = Ep(r) / Ep(i) = rp exp [j( p(r – i))] (3) 
 
  rs = Es(r) / Es(i) = rs exp [j( s(r – i))] (4) 
 

where p and s represent the reflection of p- and s-polarized light, 
respectively, and (r) and (i) reflected and incident lights, respec-
tively. p(r – i) and s(r – i) is phase retardation at the reflection 
for the individual lights. 

The change in ellipsoidal shape between the incident and re-
flected lights is determined by a ratio of rp to rs described in Eqs. 
(3) and (4). The change is described by the following relative re-
flection ratio: 

 
 r = rp / rs = tan  exp (5) 
 

where 
 tan  = rp / rs (6) 
 

 = p(r – i) – s(r – i) (7) 
 
and tan  represents a relative amplitude ratio and  a relative 
phase retardation. For the ellipsometric experiment,  and  be-
come measurable parameters and compared with the values theo-
retically calculated from the reflection equations. 

(iii) Reflection Coefficient 

The reflection coefficient shown in Eqs. (4)-(6), i.e., the 
change of the reflected light against the incident light is theoreti-
cally derived from the usual reflection equations. In this calcula-
tion, refractive indices are expressed as complex numbers (com-
plex refractive index), 

 
 N = n –jk (8) 
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Figure 4. Reflection of the light at two-phase interface and the 
three-phase interface. In the three-phase interface, thin film is 
formed between the initial two phases.   

 
 

where n is an usual refractive index and k an extinction coefficient 
which indicates the degree of decay in magnitude of propagating 
light in a medium.  

The refection coefficients for the p- and s- polarized lights at 
the interface between the solution or gas (phase 1) and the sub-
strate (phase 3), as shown in Fig. 4, are described as the following 
Fresnel’s equations, 

 
rp

13 = (N3cos 1 – N1cos 3) / (N3cos 1 + N1cos 3) (9) 
 
rs

13 = (N1cos 1 – N3cos 3) / (N1cos 1 + N3cos 3)  (10) 
 

where the 3 is an angel of refraction derived from the Snell’s law, 
 

 N3sin 3 = N1sin 1  (11) 
 
Since the N3 is a complex number, sin 3 is becomes a complex 

number.  
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When the surface film (phase 2) is formed between the phase 
1 and phase 3, the reflection coefficient for the three phases is 
changed according to the following Drude’s equation with consid-
eration of the multiple reflection in the film: 

 
 rp

123 = (rp
12 + rp

23exp(–jD)/ [1 + rp
12rp

23exp(–jD)]  (12) 
 
 rs

123 = (rs
12 + rs

23exp(–jD)/ [1 + rs
12rs

23exp(–jD)]  (13) 
 

where rp
12 and rs

12 are the Fresnel’s reflection coefficients at the 
interface between the phase 1 and phase 2 (metal/film interface), 
and rp

23 and rp
23 are those between the phase 2 and phase 2 

(film/solution or gas)interface. D is a function of thickness (d) of 
the film and wavelength of light ( ), indicating the phase retarda-
tion by the multi-reflection in the film, 
 

 D = 4 n2(cos 2)d/   (14) 
 
Experimentally  and  are measurable with ellipsometry and 

theoretically one can evaluate those values from the reflection co-
efficients described in Eqs. (9)-(13), 

 
  = rp

i /rs
i = tan l exp j l  (15) 

 
where i = 13 indicates a system without the film and i =123 a sys-
tem with the film.  

(iv) Apparatus 

Various types of ellipsometers have been developed. Classi-
cally nulling method has been adopted, and recently the photomet-
ric ellipsometers have been used. 

Figure 5 shows a typical arrangement of ellipsomteter which 
consists of a light source, polarizer (P), phase compensator (C), 
reflection surface (S), analyzer (A), and photo-detector. In the nul-
ling method, azimuths of the three optical elements (polarizer, 
compensator, and analyzer) are adjusted for the light intensity of 
the photo-detector to be zero or minimum. For example, when one 
fixes the azimuths of the compensator at C = ( /4) or –( /4) and its  
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Figure 5. Basic arrangement of optical elements for ellipsometry. 
 
 

phase shift at c = ( /2), the parameters of  and  are determined 
by the azimuths of polarizer (P) and analyzer (A) at the zero inten-
sity, 

 
  = A,    = 2P + (1/2)    (16) 
 

or 
   = –A,     = –2P + (1/2)  (17) 
 
where the azimuths are measured in reference to the plane of inci-
dence. Since the polarization state is the same in case that each of 
P and A is rotated by  radian, eight sets of P and A are possible at 
the zero intensity.  

A typical photometric ellipsometer is a rotating analyzer ap-
paratus. When the analyzer rotates, the light intensity is modulated, 

 
 I = I0 [1 + cos(2A) + sin(2A)]  (18) 
 
For the arrangement of P-C-S-A,  and  are calculated from 

the following equation: 
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  (19) 
 

where c is the complex transmittance of the compensator, 
 

c = c exp j c  (20) 
 

Usually, for the quarter wave compensator, c = exp j( /2) = j. For 
the rotating ellipsometer, during continuous rotation of the analyz-
er, the Fourier coefficients, a and b, are monitored and converted 
to the ellipsometric parameters,  and .  

(v) 3-Parameter Ellipsometry 

For the thin surface oxide film which absorbs light, the esti-
mation of three unknown parameters are required which are a real 
part (refractive index, n2) of complex refractive index, N2 = n2 – jk2, 
an imaginary part (extinction coefficient, k2), and thickness of the 
film (d). From the usual ellipsometry, one obtains two parameters, 

 and . The three unknown parameters will thus be not solved 
mathematically from the two measurable values. For the calcula-
tion, simply, one parameter is first assumed, and the other two pa-
rameters are solved with a computer program for the reflection 
equations (Eqs. 9-15). 

To overcome this difficulty, several methods are proposed for 
obtaining the three unknowns without assumptions. First, one has 
to measure reflectance, R, in addition to  and During the 
oxide film formation, the reflectance change, R, is measured with 
the changes of  and . Since I0 in Eq. (18) corresponds to the 
reflection intensity from the sample surface, the photometric el-
lipsometer can easily be modified to the simultaneous measure-
ment of reflectance. For the nulling ellipsometer, however, it is 
difficult to simultaneously measure the reflectance with  and . 
From the three parameters of , , and R, one can calculate the 
three unknowns, n2, k2, and d with help of computer program. 
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For the other technique for the estimation, multiple-incidence 
angles method has been applied.12-14 The  and  are measured by 
several angles of incidence ( 1) and the optimal values of n2. k2, 
and d were calculated by the sets of i and i at each angle, 1,i.  

2. Raman Spectroscopy 

Raman scattering originates from an interaction between molecular 
vibration and electromagnetic light wave.15 In infra-red spectros-
copy, absorption is measured by which the frequency or energy of 
the incident radiation of light matches that of a molecular vibration 
so that the molecules is promoted to a vibrational excited state. In 
Raman spectroscopy, scattering light from the molecules is de-
tected. The incident photon interacts with the molecule and distorts 
(polarizes) the cloud of electrons around the nuclei to form a 
short-lived state. This state is not stable and the photon is quickly 
re-radiated. When the nuclear motion is induced during the scat-
tering process, energy is transferred from the incident photon to 
the molecule or from the molecule to the scattered photon. The 
energy of the scattered photon is thus different from that of the 
incident light. The scattering light is very weak so that incident 
light with high energy density from laser and highly sensitive de-
tection may be required.  

Figure 6 shows the basic process which occurs for the scatter-
ing from a molecule. In addition of the Rayleigh scattering which 
is elastic radiation, two scattering processes occur, one of which is 
Stokes scattering where the photon with the energy less than the 
incident photon by the vibration energy of the molecule is scat-
tered, 

 
 = – (21) 

 
and the other anti-Stokes scattering with energy higher than the 
incident photon, 
 

’ = –  (22) 
 

where  is wave-number of Raman scattering light, 0 wave num-
ber of incident light, and  and ’ are Raman shifts. The Stokes  
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Figure 6. Interaction between electromagnetic wave and molecular vibration. 
The three scattering lights are radiated from the interaction. 

 
 
Raman scattering light is usually measured, because intensity of 
the anti-Stoles Raman scattering is relatively very weak. 

For the measurement of Raman scattering, laser as excitation 
source and spectrometer equipped with high efficient detector are 
required. In the earlier stage, double- or triple-monochromator was 
used to effectively reject the Rayleigh scattering light, intensity of 
which will be much stronger than the Raman scattering. However, 
filter technology has been improved and at present effective notch 
and edge filters can reject the Rayleigh scattering so that a combi-
nation of notch or edge filter, single monochromator, and mul-
ti-channel detector of CCD are adopted for recent measurement.  

For the measurement of the passive film on metals under the 
in-situ condition, the scattering light from the aqueous phase sur-
rounding the surface oxide blocks the measurement of the passive 
film, because of the much larger scattering from the aqueous phase. 
To reject the scattering light from the aqueous phase, confocal op-
tical path for the collection of scattering light will be effective. A 
small pinhole is located at the confocal point to pass the scattering 
light from the electrode surface and to remove the scattering light 
from the electrolyte surrounding the electrode. However, since the 
scattering light from the aqueous phase will be still one hundred 
times more than that from the passive oxide a few nm thick, the 
accumulation  of the signal on CCD over a thousand seconds may  
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Figure 7. Optical confocal system for collection of scattering light from electrode 
surface. 

 
 

be necessary. In Fig. 7, an example for the apparatus with the con-
focal optical path is shown, in which a pinhole with 50 mm diam-
eter was inserted at the confocal point between the sample elec-
trode and the entrance slit of the spectrometer. The scattering light 
from the electrolyte around the electrode surface can be considera-
bly omitted.16 

3. AC Technique 

AC impedance technique is also effective to study the passive ox-
ide. The passive oxide may have semiconductive property, so that 
the AC potential application will induce the charge modulation in 
the oxide film. 16, 17 For example, when we consider n-type semi-
conductive oxide film under positive bias, i.e., under reverse bias 
condition, as shown in Fig. 8, a depression layer is formed in the 
oxide film. In the depression layer, space charge is extended.  

The AC potential applied to the electrode covered by the oxide 
modulates the width of the space charge which may be estimated 
by the differential capacitance. Since the width of space charge 
layer is greatly dependent on the DC potential applied to the ox-
ide-covered electrode, one can characterize the type of the semi-
conductive oxide from the relation between the space charge ca-
pacitance, Csc, and the potential applied. The relation is described  
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Figure 8. Modulation of space charge by AC potential 
applied to electrode covered by n-type semiconductive 
passive oxide under positive bias relative to the flat 
band potential. 

 
 
by the following Mott-Schottky approximation  for the n-type 
oxide under the positive bias relative to the flat-band potential, 
EFB, 

 
(1/Csc)2 = (2/F 0ND)(E–EFB – RT/F)  (23) 
 

and for the p-type oxide under the negative bias relative to the 
flat-Band potential, 
 
  (1/Csc)2 = (2/F 0NA)[– (E – EFB) – RT/F]  (24) 
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where F is Faraday constant,  dielectric constant of the oxide, 0 
vacuum permittivity, ND donor density and NA acceptor density.  

From the AC impedance, the capacitance was estimated which 
include the capacitance of the ,electric double layer, ,CDL, ,in addi- 
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Figure 10. Modulation of reflectance induced by AC potential applied to the elec-
trode covered by passive oxide. The AC potential also induces the modulation of 
space charge. 

 
 
 E = E0 + E exp j t  (25) 
 
 R = R0 + R exp (j t + )  (26) 

 
The model is shown in Fig. 10. 

Where E0 is DC potential superimposed by AC potential with 
the amplitude E, and R0 is DC reflectance on which a modulation 
signal induced by AC potential is superimposed with the magni-
tude, R and the phase shift, . The modulated reflectance is usu-
ally normalized by R0, so that, 

 
  (dR/dE)(1/R0) = (1/R0)(dR/dE) exp(–j )  (27) 
 

Figure 11 is an example of the apparatus of the potential mod-
ulation reflectance.19 The modulation of the reflectance, R, in-
duced by AC potential is taken by a two-phase lock-in amplifier or 
a frequency response analyzer referred to the AC potential and DC 
reflectance is taken through a low-pass filter. 

If the linear combination between dQsc/dE (= Csc) and dR/dE 
is assumed, dR/dE is proportional to Csc and thus the formation of 
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Figure 11. A scheme for the apparatus of potential modulation reflectance. 
 
 
 
 
 
 

 
Figure 12. Photo-excitation process of n-type semiconductive passive oxide 
under positive bias condition. Electrons in the valence band are excited by 
photon irradiated higher than the band gap energy to leave positive holes in 
the conduction band. The electron-hole pair thus formed is separated by the 
potential bias in the depression layer or is recombined with each other to 
radiate luminescence light. 

dE

Polarizer

Photomultiplier

Monochromator

Cell

A/D Converter

GP-IB

RS-232C

Potentiostat

Function GeneratorLock-in Amplifier

Low-Pass filter

i,E
Ro

dR

Analyzer

Xe-lamp

Band-Pass filter

dE

Polarizer

Photomultiplier

Monochromator

Cell

A/D Converter

GP-IB

RS-232C

Potentiostat

Function GeneratorLock-in Amplifier

Low-Pass filter

i,E
Ro

dR

Analyzer

Xe-lamp

Band-Pass filter

e

h

Luminescence

Redox

h

he
e

F

El
ec

tro
ch

em
ic

al
Po

te
nt

ia
l, 

E
El

ec
tro

n 
Le

ve
l, 

Metal

E-EFB

Passive Oxide Solution



200    Toshiaki Ohtsuka 

4. Photo-Excitation 

For study of the semiconductive electrode, the photo-excitation 
with incidence energy higher than the Band gap energy, BG, of the 
semiconductor  has  been utilized.  Figure 12 shows a model in 
which the light is incident into an electrode covered by an n-type 
semiconductive oxide and biased by positive potential relative to 
the flat band potential. The incidence light with the energy h  > 

G, excites electrons from the valence band to the conduction 
band and therefore makes pairs of free electron in the valence band 
and positive hole in the conduction band. Due to potential gradient 
in the space charge, the electron and hole are moved to the sepa-
rated direction, electron moving to the metal side and the hole to 
the solution side. The separation of electron and hole is measured 
by the outer circuit as photo-excited current. The photo-excited 
current is a function of the potential applied (E) and the incident 
photon energy (h ) of light. From the dependence of E and hv, the 
semiconductive properties of the oxide film can be discussed. 

The pair of electron and hole undergoes another process in 
which the electrons in the conduction band are recombined with 
the positive holes in the valence band to radiate the energy. A part 
of the energy is emitted as a luminescence light. Since the recom-
bination process preferentially occurs under the reverse bias, the 
potential is applied of the negative or zero bias for the n-type sem-
iconductor and of the positive or zero-bias condition for the p-type. 
Since spectra of the photo-excited luminescence include the in-
formation on the band gap energy and mid gap levels, the energy 
levels of the oxide film can be discussed.20 

III. PASSIVE OXIDE FILM ON IRON 

1. Thickness of Passive Films on Iron at the Stationary State 

The thickness of passive oxide on various metals has been reported. 
In the first, the results are limited only under the stationary state or 
nearly stationary state. Figure 13 shows oxide thickness as a func-
tion of potential in the pH 8.4 borate solution and the pH 3.1 
phosphate solution.21 The film thickness was obtained after 1-h 
oxidation at constant potential and assumed to be under nearly  
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Figure 13. Thickness of the passive oxide and current density (cd) as a function of 
potential in pH 8.4 borate solution and pH 3.1 phosphate solution. The cd was taken 
after 1 h oxidation at each potential. Reprinted from K. Azumi, T. Ohtsuka, and N. 
Sato, “pH dependence of Thickness of Passive Films on Iron; Measurement by 
three Parameter Reflectrometry”, Denki Kagaku, 53 (1985) 700, Copyright ©1985 
with permission from The Electrochemical Soc. of Japan. 
 
 
stationary state. The linear relation between the thickness and po-
tential applied was reported by several authors.22-26 In Fig. 13 the 
current density (cd) was also plotted, which was taken after 1 h 
oxidation.  It is seen that the passive oxide grows with anodic 
potentials and the cd remains constant in the passive potential re-
gion, regardless of the potential value, and, however, it is depend-
ent on the solution pH. The pH dependence of the stationary state 
cd was reported in the pH lower than five to be 28,29 

 
 d log i / d pH = –0.84   (28) 

 
Such a linear increase of the thickness was reported in other pH 
solutions by various authors,24-26 except for an alkaline solution in 
which the much thicker film was reported.29 
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Figure 14. Ionic compound model of the passive oxide. The iron ions formed at 
the metal/oxide interface migrates in the passive oxide and then dissolves into 
the electrolyte solution. O2- in the oxide matrix is related to H2O in the electro-
lyte with the reaction of O2-

(ox) + 2H+
(aq) = H2O(aq). 

 
 
The linear increase of the film with potential was assumed to 

follow the mechanism suggested by Vetter30,31 and Sato27 with a 
model of the high-field assisted ionic migration32,33. According to 
the model,  the ionic compound is assumed for the passive oxide 
consisting of Fe3+ and O2– (see Fig. 14). Fe3+ in the oxide reacts 
with Fe atoms in the metal substrate and with Fe3+ in the electro-
lyte, 

 
 Fe0 (met) = Fe3+(ox) + 3e(met)  (29) 
 
 Fe3+(ox) = Fe3+(sol)   (30) 

 
O2– in the oxide reacts with H2O in the electrolyte under deaerated 
condition, 
 

O2–(ox) + 2H+(sol) = H2O(sol)  (31) 
 

Since the interfacial reactions are accompanied by charge transfer, 
their rates depend on the interfacial potential difference. For  re-
action (31), the rate described in current density, iO(ox/sol), is ex-
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pressed as a function of the potential difference at the ox-
ide/solution interface, (ox/sol), 
 
  iO(ox/sol) = i0

O(ox/sol) {exp[ nF/RT( (ox/sol) – 0 (ox/sol))]  
 
              – exp[(1 – )nF/RT( 0

(ox/sol)) – (ox/sol))]}  (32) 
where  and n are the transfer coefficient and the valence of trans-
ferred ion respectively. Since the amount of O2– is constant under 
the stationary state, O2– is assumed to be in equilibrium with H2O 
in the electrolyte in reaction (31), 
 

 iO(ox/sol) = 0  (33) 
 

Under the stationary state, the interfacial potential difference at the 
oxide/solution interface is determined by the equilibrium of reac-
tion (31), so (ox/sol) = 0

(ox/sol) and thus it will be a function of pH of 
the solution, 
   
  (ox/sol) = 0

(ox/sol) = 0
(ox/sol)(pH=0) – (RT/F)(2.303pH)  (34) 

 
where 0

(ox/sol)(pH=0) is the potential difference at pH = 0. The ionic 
transfer of Fe ions is determined by the reactions (29) and (30), 
and the ionic migration rate in the oxide film. For the reaction (29), 
the rate, i(met/ox), is expressed as a function of the potential drop at 
the metal/oxide interface, (met/ox), 
 
 iFe (met/ox) = i0

Fe(met/ox) {exp [( 1 nF/RT) ( (met/ox) – 0
(met/ox)) 

 
            – exp[(1 – 1)nF/RT( 0

(met/ox) – (met/ox))]}  (35) 
 

where 0
(met/ox) indicates the interfacial potential difference in equi-

librium. For the reaction (30), the rate is 
 
  iFe(ox/sol) = i0

Fe(ox/son) exp[( nF/RT) (ox/sol) ]  (36) 
 
where 1 and  are transfer coefficients for the individual reac-
tions. 

Under the stationary state, (ox/sol) = 0
(ox/sol), thus the dissolu-

tion rate of Fe3+ becomes a function of solution pH, 
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Figure 15. Steady current density in the passive potential region as a function of 
solution pH. The cd reached the stationary value in the solution at pH lower than 
5 in 1 h oxidation at each potential, however, it does not reach at pH higher than 
5 in which the cd was plotted after 1h oxidation. Reprint from N. Sato and T. 
Noda, “Ion Migration in Anodic Barrier Oxide Films on Iron in Acidic Phosphate 
Solutions”, Electrochim. Acta, 22 (1977) 839, Copyright ©1977 with permission 
from Elsevier Science. 

 
 
 iFe(ox/sol) = i0

Fe(ox/son) exp[( nF/RT) (ox/sol)(pH=0) – n(2.303)pH] (37) 
 
The anodic current measured by the outer circuit (ia) corresponds 
to the reaction rate  described in current density of  reaction (29)  
 
and under the stationary state, the ionic transfer of Fe ion at the 
interfaces and in the oxide film are kept same as each another, 
 
  ia = iFe(met/ox) = iFe(ox) = iFe(ox/sol)  (38) 
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The stationary state cd represented by a logarithmic scale, there-
fore, is a linear function of pH according to Eq. (28) and the pH 
dependence can be described as follows: 
 
  d log i / d pH = – n  (39) 

 
From the result by Sato and Noda,27 and Vetter,34 the station-

ary cd was found to depend on the solution pH as shown in Fig. 15 
with d log i / d pH = –0.84 in solutions at pH lower than five. 
From n = 0.84, the transfer ions has been thought to be a com-
plex ions of Fe3+ coordinated by OH– anion or others.34 

The ionic migration of Fe ions, iFe(ox), through the oxide film is 
assumed to follow by the high-field assisted migration mechanism, 

 
  ln iFe(ox) = ln i0

Fe(ox) + (zaF/RT)(d (ox)/dx)  (40) 
 
where iFe(ox) is migration cd of Fe(III) ions through the oxide film, 
d (ox)/dx electric field intensity in the film, i0Fe(ox) an exchange cd at 
d (ox)/dx = 0, z the valence of the migration ion, and a the half 
jump distance or activation distance. If one assumes for d (ox)/dx 
the average electric field, /d, where d is the film thickness and 

 the potential drop in the oxide film, the ionic cd can be related 
to the film thickness, 
 
  ln iFe(ox) = ln i0

Fe(ox) + (zaF/RT)( (ox)/d)  (41) 
 
Since the ionic migration cd is equal to the ionic transfer cd at the 
metal/oxide interface and at the oxide/solution interface under the 
stationary state (Eq. 38), the thickness measured can be combined 
with the solution pH and the potential difference, 
 
 d = (ox)(zaF/RT) { ln(i0

Fe(ox/sol)/i0
Fe(ox))  

 
                     – 2.303pH + F (ox/sol)(pH=0) /RT}-1  (42) 
Equation (42) indicates that  

1) the film thickness increases linearly with the potential drop 
in the oxide film, (ox), at constant pH, and  
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2) the inverse of the thickness, d-1, decreases with the increase 
of solution pH at constant (ox). The prediction is in 
agreement with the results shown in Figures 13 and 15. 

In the solution at pH higher than five, the stationary state cd 
does not easily reach in the experimental time period because it is 
extremely low cd and very long time period is required to reach 

 
 

   
 
Figure 16. Change of film thickness of passive oxide formed 
in pH 8.4 borate solution as a function of time. The refractive 
index (n2) and extinctio index (k2) of the film which was 
simultaneously estimated from the 3-parameter ellipsometry 
was also plotted. Reprinted from K. Azumi, T. Ohtsuka, and 
N. Sato, “pH dependence of Thickness of Passive Films on 
Iron; Measurement by three Parameter Reflectrometry”, 
Denki Kagaku, 53 (1985) 700, Copyright ©1985 with per-
mission from The Electrochemical Soc. of Japan. 

Oxidation time, log ( t / s)

Fe/ pH 8.4 borate soln
at E = 1.34 V vs. RHE
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the stationary state. Figure 16 shows an example in borate solution  



Passive Oxide Films on Iron  207 

 
at pH 8.4, in which the film thickness continues to increase after 
the constant oxidation for 104 s.35 During the slow increase of the 
thickness, the cd in the order of 10-8  A cm-2  gradually decreases 
with time. In the solution at pH higher than five, the stationary 
state cd will be lower than the cd plotted in Figure 15 which was 
taken after 1 h. In the solution, since there is a difference between 
the solubility of ferric and ferrous ions, the anodic deposition from 
the ferrous ions in the electrolyte onto the passive oxide occurs, as 
discussed later. 

2. Non-Stationary Growth of the Passive Oxide on Iron 

In the non-stationary state, the thickness changes with time. For 
the film growth, since the amount of O2- and Fe3+ in the film in-
creases with time, i0(ox/sol) in Eq. (32) is, 

 
 iO(ox/sol) > 0   (43) 
 

and since the accumulation rate of Fe(III) in the film is given by 
the difference between iFe(met/ox) in Eq. (35) and iFe(ox/son) in Eq. (36), 
 
  iFe(met/ox) – iFe(ox/sol) > 0  (44) 
 
and for keeping neutrality,  
 

iO(ox/sol) = iFe(met/ox) – iFe(ox/sol)   (45) 
 

Since ia = iFe(met/ox),  

 

  ia = iO(ox/sol) + iFe(ox/sol)  (46) 
 

Vetter and Gorn evaluated the partial currents of iO(ox/sol) and 
iFe(ox/sol) during the oxide film growth by constant cd in 0.5 M sul-
furic acid solution.37 They estimated the dissolution cd of Fe, 
iFe(ox/sol), from the quantitative analysis of Fe3+ as a function of time 
and, and calculated the cd of oxide ions, io(ox/sol), as io(ox/sol) = ia – 
iFe(ox/sol). The result is given in Figure 17, where the log(io(ox/sol)) is 
plotted against log(iFe(ox/sol)). In Figure 17, the interfacial potential 
difference, (ox/sol), was calculated from Eq. (28) with n = 0.84 
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and plotted in the upper scale. The similar result was reported by 
Heusler by using the rotating ring-disc electrode,36 where the 
iFe(ox/sol) was estimated from the ring current instead of the analysis 
of Fe3+ dissolved. 

Ohtsuka and Ohta measured the non-stationary oxide growth 
of the passive oxide on iron during anodic potential sweep in pH 
8.4 borate solution.37 Figure 18 shows the result, in which changes 
of , , and R was measured during the potential sweep from 0.0 
V vs. Ag/ AgCl/ Sat. KCl to 0.90 V at a sweep rate of 2.0x10–3 Vs-1 
following the potentiostatic oxidation at 0.0 V for 103 s. The re-
flectance was converted to  R/R0 = [R(d) – R0]/R0, where R(d) is 
reflectance of the electrode covered by the passive oxide and R0 a 

 
 
 
 

  
 

Figure 17. Relation between the two partial cds of cationic and anionic charge 
transfer. The overvotage of interfacial potential difference was estimated from 
iFe(ox/sol)/i0

Fe(ox/sol) in Eq. (36) or iO(ox/sol)/i0
O(ox/sol) in Eq. (32). Reprint from K. J. 

Vetter and F. Gorn, “Kinetics of Layer Formation and Corrosion Processes of 
passive Iron in Acid Solutins”, Electrochim. Acta, 18 (1973) 321, Copyright 
©1973 with permission from Elsevier Science. 
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Figure 18. Change of (a) potential E and current density i, (B) ellipso-
metric parameters,  and , and reflectance, R/R0 = (R(f)-R0)/R0, dur-
ing the potential sweep from 0.00 V vs. Ag/AgCl/Sat. KCl to 0.90 V at 
sweep rate 2×10-3 V s-1. The passive oxide was formed at 0.00 V for 103 
s before the potential sweep. Reprinted from T. Ohstuka and A. Ohta, 
“Growth of a passive film on iron in a Neutral Borate Solution by 
Three-parameter Ellipsometry”, Materials Sci. and Eng. A,198 (1995) 
169, Copyright ©1974 with permission from Elsevier Science. 
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The initial film at 0.0 V before the sweep was 2.4 nm thick. The 
changes of those parameters during the sweep do not starts imme-
diately after onset of the potential sweep, and the beginning of the 
changes requires some delay. The change of cd exhibits a similar 
behavior. The changes of the three parameters were converted to 
the thickness and complex refractive index of the growing oxide 
film. One example of the growing oxide film is given in Fig. 19, 
where the film thickness growth was plotted against time as well 
as cd during the potential sweep at a rate 5.0x10–3 Vs-1. In Fig. 19, 
the film growth process during the potential sweep can be divided 
into two processes, in which at the initial stage no film growth 
takes place in spite of the potential increase and at the second stage 
the steady growth of the oxide with the increase of potential. 

In Fig. 20, a model of potential distribution during the linear 
increase of potential is given. In Fig. 20(a), the film electrode is 
under the stationary sate by potentiostatic control. When the addi-
tional potential is applied, it first appears as the increase of the 
interfacial potential difference denoted by (ox/sol) without any 
growth of the oxide (Fig. 20b). With the increase of the interfacial 
potential difference, the potential gradient i.e., electric field, in the 
oxide gradually increases. The interfacial ionic transfers and the 
ionic migration in the oxide at the process can increase with the 
potential increase. From the condition free from the growth of the 
oxide, the following relations can be derived: 

 
 iFe(met/ox) – iFe(ox/sol) = 0  (47) 
 
 iO(ox/sol) = 0  (48) 
 
In Fig. 20(c), after reaching the enough large electric field in 

the oxide, the ionic migration equal to the interfacial ionic transfer 
at the metal/ oxide interface is larger than the cationic transfer at 
the oxide/solution interface, 

 
 iFe(met/ox) – iFe(ox/sol) > 0  (49) 
 

and since iFe(met/ox) – iFe(ox/son) = iO(ox/sol) from the neutrality condi-
tion,  
  
  iO(ox/sol) > 0  (50) 
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Figure 19. Non-stationary growth of the passive oxide in pH 8.4 borate solution 
during anodic sweep of potential at rate of 2×10-3 Vs-1 following the potenti-
ostatic oxidation at 0.0 V vs. Ag/AgCl/Sat. KCl for 103 s. Reprinted from T. 
Ohstuka and A. Ohta, “Growth of a passive film on iron in a Neutral Borate So-
lution by Three-parameter Ellipsometry”, Materials Sci. and Eng. A,198 (1995) 
169, Copyright ©1974 with permission from Elsevier Science. 

 
 

Since the interfacial anionic transfer is assumed to be constant 
from the steady growth,  
 
  iFe(met/ox) – iFe(ox/son) = iO(ox/sol) = constant  (51) 
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the interfacial potential difference (φ(ox/sol)) at the oxide/solution 
will be constant and the potential drop in the oxide film increases 
with keeping the electric field constant in the film. Under the situ-
ation, the anionic transfer in reaction (31) and the cationic transfer  
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Figure 20. Schematic representation of potential distribution 
under nonstationary growth of the passive oxide during anodic 
potential sweep. Reprinted from T. Ohstuka and A. Ohta, 
“Growth of a passive film on iron in a Neutral Borate Solution 
by Three-parameter Ellipsometry”, Materials Sci. and Eng. 
A,198 (1995) 169, Copyright ©1974 with permission from 
Elsevier Science. 
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in reaction (30) at the oxide/solution interface simultaneously pro-
ceed. This indicates that the oxide film grows, accompanying the 
iron dissolution. 

3. Outer Hydrous Layer on the Passive Oxide Film 

In neutral solution, Fe2+ dissolved in the electrolyte can be anodi-
cally deposited on the electrode to form a hydrous layer 38-43. 
When iron electrode is passivated after the passage of active dis-
solution, the ferrous ions dissolved in the active potential region 
are deposited in the passive potential region to form the relatively 
thick hydrous layer. 38-45 
 Ohtsuka et al. measured the oxide film growth during potenti-
ostatic oxidation in neutral borate solution at pH 8.4 containing the 
Fe2+ ions by ellipsometry with 632.8 nm wavelength light and 60.0 
deg for incidence angle.46 Figure 21 shows current decay at a po-
tential of 0.8 V vs. Ag/ AgCl/ Sat. KCl in the borate solution con-
taining Fe2+ ions at concentrations of 0.0, 0.25, and 0.50 mM.  

Fe2+ and, however, the higher anodic cd is seen after the initial 10 s 
in the solution containing Fe2+. The larger film growth was ob-
served for the higher cd. Figure 22 shows the loci of  vs.  dur-
ing the film growth.  The loci move to the directions of the 
smaller values of  and  at the initial period and almost stop in 
the solution without Fe2+. The loci, however, change in the direc-
tion to the higher value of  at the latter stage of the oxidation in 
the solution containing Fe2+. The change of the direction of the loci 
indicates that the film growing in the initial stage is different in 
optical property from that growing in the latter stage. From this 
loci,  the complex  refractive  index  was  evaluated  to  be  
N2 = 2.3 – j(0.38 – 0.50) for the inner layer initially growing and 
N2 = 1.8 – j(0.045 – 0.096) for the outer layer growing at the latter 
stage. The smaller refractive index for the outer layer may corre-
spond to an optically lower density and to more hydrated oxide 
film. From the loci during the oxidation, the thickness of the oxide 
film was calculated, which is given in Fig. 23. Without Fe2+ the 
film growth mainly occurs at the initial 50 s and the thickness is 
kept almost constant at 5 nm for the latter period. In the solution 
containing Fe2+, the thickness increases almost linearly with the   

 

Monotonous decay of anodic cd is observed in the solution without 
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Figure 21. Decay of carrent density during potetiostatic oxidation at 0.80 V vs. 
Ag/AgCl/Sat. KCl in pH 8.4 borate solution containing Fe2+ at 0.0, 0.25, and 
0.50 mM. Reprint from T. Ohtsuka and H. Yamada, “Effect of Ferrous Ion in 
Solution on the Formation of Anodic Oxide Film on Iron”, Corrosion Sci., 40 
(1998) 1131, Copyright ©1998 with permission from Elsevier Science. 
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Figure 22. Comparison between -  relations (A) experimentally obtained 
and (B) theoretically calculated from bi-layerd model for the film at 0.80 V in 
pH 8.4 borate solution containing 0.0, 0.25, and 0.50 mM Fe2+ ions. Reprint 
from T. Ohtsuka and H. Yamada, “Effect of Ferrous Ion in Solution on the 
Formation of Anodic Oxide Film on Iron”, Corrosion Sci., 40 (1998) 1131, 
Copyright ©1998 with permission from Elsevier Science. 
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The composition of the anodic deposition layer was studied by 
using ex-situ reflection electron diffraction by Cohen et al.41 They 
found -FeOOH  for the deposited film formed on platinum from 
perchlorate solution containing Fe2+. Ohtsuka et al. estimated the 
composition from Raman spectroscopy as well as in-situ EQCM 
and ellipsometry to be amorphous FeOOH-H2O (i.e., Fe(OH)3).43 

4. Spectroscopic Property of the Passive Oxide 

The multi-wavelength ellipsometry (i.e., spectroscopic ellipsome-
try) can characterize spectroscopic property of the passive oxide. 
Figure 24 indicates spectra of the complex refractive index, N2 = n2 
– jk2, of the passive oxide formed on iron at 1.43 V vs. reversible 
hydrogen electrode at the same solution (RHE) in pH 8.4 borate 
solution and in pH 3.1 phosphate solution for 1 h.49-51 In Fig. 24, 
the thickness of the passive oxide was estimated at each wave-
length of incident light. The measurement and estimation were 
made by the 3-parameter method. Similar results were also re-
ported by Cahan et al.24, 52 

The extinction coefficient, k2, in Fig. 24 is seen to increase 
with decrease of wavelength. The k2 value can be converted to the 
light absorption coefficient, , of the passive oxide by the follow-
ing equation, 

 
  = 2 k2/    (52) 
 

The light absorption at the neighbor of the absorption edge (i.e., 
the Band gap energy) is approximately described as the following 
equation, 
 
  = (A/h )(h  – AE)n  (53) 
 
where h  is photon energy of incident light and AE absorption 
edge energy. When one assumes that the incidence photon energy 
is close to the absorption edge, Eq. (53) can be approximated as 
follows: 
 
   = A’(h – AE)n  (54) 
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Figure 24. Spectra of complex refractive index, N2 = n2 - jk2 for the passive 
oxide formed at 1.43 V vs. RHE in pH 8.4 borate and pH 3.1 phosphate solu-
tion for 1 h. The N2 was calculated from multi-wavelength ellipsometry with 
the film thickness. Reprint from T. Ohtsuka, K. Azumi, and N. Sato“, A spec-
troscopic Property of the Passive Film on Iron by 3-parameter Reflectometry”, 
Denki Kagaku, 51 (1983) 155, Copyright ©1983 with permission from The 
Electrochemical Soc. of Japan. 
 
 
 
 

RHE
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where n = (1/2) for the direct transition of excitation process of 
electrons from the valence to the conduction band and n = 2 for the 
indirect transition. When one assumes the direct transition for 
electron excitation process, one can plotted 2 vs. h . The intercept 
of the plot may correspond to the absorption edge energy and thus 
to the band-gap energy, g, of the passive oxide. The plot is shown 
in Fig. 25 for the passive oxide formed in pH 8.4 borate solution at 
0.50 V, 1.00 V, and 1.60 V vs. RHE. 

 
  

 
Figure 25. 2 vs. photon energy, h , for the passive oxide formed at 0.50, 1.00, and 
1.60 V for 1 h in pH 8.4 borate solution. 
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From the intercept the g is estimated to be 2.6 eV. Searson et 
al. replotted the absorption coefficient estimated from the data in 
Fig. 24 in ( h )0.5 = A0.5 (h  – AE) to evaluate the band gap energy 
of 1.75 eV for the indirect transition.52 Such band gap energy has 
been evaluated from the photo-excited  cd measured as a function  
of photon energy under an assumption that the cd was proportional 
to the absorption coefficient.55 The absorption edge was estimated 
from the photo-excited cd to be a range from 2 to 3 eV.54-56 The 
photo-excited current will be discussed in the following section. 

5. Composition from Raman Spectroscopy 

Raman spectroscopy is a promising technique for in-situ detection 
of the electrode surface. However, large scattering of light from 
aqueous electrolyte surrounding the electrode interferes the detec-
tion of electrode surface. To detect the thin passive film, the sur-
face enhanced Raman scattering (SERS) was applied in which the 
fine silver particles was cathodically deposited on the iron surface  
 before the anodic passivation, or the thin iron film present on the 
roughening silver surface.58-64 The enhancement of Raman scatter-
ing from the electrode surface may overcome the scattering from 
the electrolyte. When one applies to the electrode the potential 
high enough for passivation of iron, the silver particles or silver 
substrate are, however, oxidized and the electrode loses the prop-
erty of the Raman enhancement. The potential range for the SERS 
detection, therefore, is restricted to the low potential region from 
the active to the initial passive potential region. Further, the depo-
sition of the silver particles on the surface may possibly introduce 
an unexpected influence on the passive oxide film. The detection 
of the passive oxide by normal Raman scattering is probably de-
sired. 

Recently, Ohtsuka and Taneda applied Raman spectroscopy 
without any enhancement to the detection of the passive oxide on 
iron.16 The measurement was done with a confocal collection sys-
tem to reduce light scattering from the electrolyte surrounding the 
passivated iron electrode.16 The relatively large background scat-
tering light from the electrolyte was observed, even though the 
confocal system was used. Figure 26 shows the result, in which 
Raman spectra of the passive oxides formed on iron in pH 8.4 bo- 
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Figure 26. Raman spectra of the passive oxide on iron formed at –0.1 V 
to 0.7 V vs. Ag/AgCl/sat. KCl in pH 8.4 borate solution. The spectra 
were obtained from subtraction of a spectrum of bare ion surface re-
duced from those of the iron covered by passive oxides. 

 
 
rate solution at various potentials for 1 h was plotted.16 The spectra 
were determined by a difference between a spectrum measured for 
the electrode with cathodically reduced bare surface and a spec-
trum for the passivated electrode. The original Raman spectra in-
clude a large background in the higher intensity 100 times than the 
spectra from the oxide film. The subtracted spectra reveal Raman 
peaks about 670 cm-1 and 320 cm-1. Figure 27 shows an ex-situ 
Raman spectra of the passive oxide measured in air after removal 
from electrolyte.16  

The Raman peak is more clearly seen than the in-situ spectra 
and the peak wavelengths are same to those of the in-situ spectra. 
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Figure 27. Ex-situ Raman soectrum of the passive oxide on iron formed at 
0.70 V vs. Ag/AgCl/sat. KCl in pH 8.4 borate solution. The Raman spectrum 
was measured immediately after removal from the electrolyte. 

 
 
reference spectra of various iron oxides and oxyhydroxides, which 
are given in Fig. 28.64 

Although the spectra measured are broad and do not exhibit 
clear peaks, the passive oxide may be basically considered an 
amorphous-like Fe(III) oxide and oxyhydroxide. In the Raman 
spectra of iron oxides and oxyhydroxides, Fe3O4, -Fe2O3, and 
-FeOOH possess the strongest peak at a Raman shift of about 

600-700 cm-1 on the individual Raman spectra; for example, the 
strongest peak of Fe3O4 is 670 cm-1, -Fe2O3 is 680 cm-1, and 
-FeOOH is 700 cm-1.62,64-66 From the second peak at 300-400 cm-1 

observed under the ex-situ condition as well as the in-situ condi-
tion, one can select the compounds of Fe3O4 and -Fe2O3 as can-
didates for the passive oxide. The assignment is in agreement with 
the presumption derived by many authors.66-76 They assumed that 
the passive oxide film was composed of Fe3O4 in the neighbor at 
the oxide/metal interface and -Fe2O3 at the oxide/solution inter-
face.67,68
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For the composition of the passive oxide on iron, many au-
thors have applied in-situ techniques such as Mössbauer spectros-
copy, X-ray diffraction, X-ray spectroscopy, and probe techniques 
of  STM and  AFM as well as ex-situ techniques such as  XPS, 
SIMS, AES, electron diffraction, etc. The electron diffraction in 
vacuum indicated that the passive oxide revealed a cubic structure 
of O2– lattice which may be assigned to be -Fe2O3 and 
Fe3O4

41,69-72. From the Mössbauer spectroscopy, O’Grady72 and 
Berett et al.73 estimated a hydrated Fe(III) oxy-hydroxide with a 
polymeric structure containing OH bridges and the passive oxide 
changed to -Fe2O3 after it was removed from electrolyte and dried. 
Kruger et al.74 and Dabenport et al.75 applied X ray absorption to 
the passive oxide on iron to conclude the presence of hydrated 
Fe(III) oxide which may have amorphous structure. The work of 
X-ray diffraction by Toney et al. indicated the diffraction was in 
coincident with a modified -Fe2O3 under the in-situ condition as 
well as the ex-situ.76 XPS measurement also showed a presence of 
Fe(III) compound.77 

In the SERS studies, a large peak at about 550–600 cm-1 was 
reported and assumed to be a Raman peak of the passive oxide.58-63 
The peak was observed in the relatively low potential correspond-
ing to the active to the transient region and continued to the pas-
sive potential region. For the SERS measurement, the potential is 
restricted in the initial of passivation, because silver causing the 
enhancement of Raman scattering is oxidized to silver oxide in the 
passive potential region of iron electrode and thus loses the en-
hancement effect. Among iron oxides, oxyhydroxides, and hy-
droxides, only Fe(OH)2 exhibits a main Raman peak at about 500- 
600 cm-1.62 However, many authors in the previous paper did not 
estimate presence of Fe(OH)2 in the passive potential region, be-
cause the Fe(II) compounds did not stably form from the view-
point of thermodynamic. In the SERS studies, the Raman scatter-
ing of Fe2+ ions, Fe(OH)2 or its oxidized hydrated compound, may 
be enhanced by the effects of the silver particles or silver sub-
strates in the active and initially passive potential regions. In the 
earlier section, we described that Fe2+ ions in electrolyte solution 
are deposited on the passive oxide film as an outer hydrated layer, 
resulting in growth of the oxide film much thicker than the original 
passive oxide.43,46,47 When one polarizes the iron electrode at the 
active potential region in neutral pH solution, Fe2+ is dissolved into 
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the electrolyte solution. Then, when one changes the potential in 
the passive region, in addition to the thin passive oxide film, the 
thick outer hydrated layer can be formed by the anodic deposition 
from Fe2+ that was dissolved into the electrolyte solution at the 
previous active potential. It is conceivable that the Raman peak at 
550–600 cm-1 observed by the SERS studies does not correspond 
to that of the passive oxide film, but to a hydrate layer deposited 
from Fe2+ in the electrolyte solution. 

6. AC Response for Characterization as n-Type  
Semiconductor 

Dielectric and semiconductive properties of the passive oxide was 
estimated by capacitance measurement from the AC impedance. 
When the film capacitance is measured during step-wise increase 
of potential, the inverse of capacitance increases with increase of 
potential. The result is given in Fig. 29.78 In Fig. 29, (1/C) is plot-
ted with the film thickness against potential for the passive oxide 
formed in pH 6.4 borate solution. Such a linear increase of (1/C) 
was also reported by Ord and Bartlett,79 and Moshtev.80 With the 
linear increase of (1/C), the thickness of the passive oxide is in-
creased with potential, as shown in Fig. 29. However, at the poten-
tial at which (1/C) is extrapolated to zero, the film has a definite 
thickness. It is conceivable that the whole oxide film does not 
work as a dielectric layer, but some part of the oxide film has a 
conductive property. If the (1/C) represents the thickness of the 
dielectric layer, the passive film can be assumed to consist of the 
inner conductive layer with a constant thickness and the outer die-
lectric layer, which linearly grows with potential. For the inner 
conductive layer, for example, a Fe3O4 or incomplete -Fe2O3 
(i.e., -Fe2-xO3, x = 0-1/3) may be possibly assigned to the layer. 
From the linear relation between (1/C) and the thickness, the die-
lectric constant was estimated to be 40.78 At potentials near the 
region of oxygen evolution, the value of (1/C) starts to decrease. 
This decrease of (1/C) or increase of the capacitance may be 
caused by the oxidation reaction from H2O to O2 at the oxide/ so-
lution interface. In the passive region, the positive charge accumu-
lates in the space charge layer in the n-type semiconductive pas-
sive oxide, and, however, due to adsorption intermediate on the 
oxide surface in the oxidation reaction of H2O, the site of the 
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charge accumulation changes to the oxide/ solution interface in the 
potentials in which oxygen evolution can take place. The charge 
density at the interface is much higher than the space charge in the 
passive oxide, the capacitance at the potentials of oxygen evolu-
tion may reveal much larger value. 
 In the case that the capacitance was measured with potential 
decrease after formation of the passive oxide at a relatively high 
potential, the capacitance can represent the dielectric layer thin-
ning with potential decrease in the oxide film whose thickness 

 
  

 
 
Figure 29. Inverse of Capacitance, 1/C,  of iron electrode covered by the passive 
oxides. The passive oxide was formed during step-wise increase of potential form 
0.5 V to 1.9 V vs. RHE and the capacitance was measured at each potential after 
keeping for 1 h at individual potentials. The thickness is also plotted for comparison. 
Reprint from K. Azumi, T. Ohtsuka, N. Sato, “Impedance of Iron Electrode Passiv-
ated in Borate and Phosphate Solutions”, Transaction Japan Inst. Metals, 27 (1986) 
382. Copyright ©1986 with permission from Japan Institute of Metals. 
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Figure 30. Csc

-2 vs. potential plot for the iron covered by the passive oxide in pH 6.4 
borate solution. The capacitance was measured by step-wise decrease of potential 
form the formation potentials, Ef, at which the passive oxide was formed by poenti-
ostatic oxidation for 1 h. Reprint from K. Azumi, T. Ohtsuka, and N. Sato, 
“Mott-Schottky Plot of the Passive Film Formed on Iron in Neutral Borate and 
Phosphate Solutions”, J. Electrochem. Soc., 134 (1987) 1352, Copyright ©1987 
with permission from The Electrochemical Soc. 
 
 
tric layer corresponds to a space charge layer, at which the poten-
tial drop in the passive film appears. For the thickness of the space 
charge layer thinning with potentials, the Mott-Schottky approxi-
mation is formulated on the relation between the capacitance and 
potential, 

 
 (1/Csc)2 = (2/F 0ND)(E EFB RT/F)  (54) 

 
The plot of C–2 vs. E for the passive oxide is shown in Fig. 30, in 
which the oxide film was first formed in pH 6.5 borate solution at 
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potentials from 0.83 V to 2.03 V vs. RHE and then the AC imped-
ance was measured during the step-wise potential decrease.82 The 
capacitance was calculated from a relation between log (Z) and log 
(f) in the frequency range from 10 mHz to 10 kHz, where Z is im-
pedance of the passivated iron and f frequency. From the intersept 
and the slope in Fig. 30, a flat band potential and the product of 

0ND are respectively determined. The flat band potential is esti-
mated from Fig. 27 to be 0.50 V vs. RHE in pH 8.4 solution. The 
donor density, ND, is a range of 1  10x1026 m-3. The same order of 
the density was reported by other authors.55,56,81 The ND value 
means that one donor site is present in every 1-10 nm3 volume. 
The semiconductor with such large concentration of ND may not be 
classified into the crystalline semiconductors, but into the amor-
phous semiconductors. The average distance between the neigh-
boring donors is about 1-2 nm. Since the electrons trapped on the 
donor site can tunnel over the distance, the electrons can migrate 
through the donor sites. In this case, for the electron conduction, 
the migration gap between the donor level and the acceptor level 
or the valence band edge may have a more important meaning than 
the band gap between the conduction and valence bands. The elec-
trochemistry of the amorphous semiconductors is not enough es-
tablished and thus introduction of new theories will be expected. 

The potential modulation reflectance can give the same evalu-
ation of the capacitance. One can consider that the modulation in 
reflectance of the oxide-covered electrodes induced by AC poten-
tial will be caused by change of concentration of various type of 
charge; change of electron concentration in the metal substrate, 
change of ionic charge in the electric double layer, change of 
charge in dielectric films, and change of space charge in semicon-
ductive oxides. When one considered the oxide film with a space 
charge corresponding to the passive oxide of iron under the posi-
tive bias, the modulation of the space charge is thought to cause 
the reflectance change. When one converts the AC impedance, Z = 
dE/di, and the charge modulation, dQ/dE, becomes: 

 
 dQ/dE = (1/j )(di/dE) = (1/j )(1/Z)  (55) 
 

We can define complex capacitance, , for (dQ/dE). When the 
reflectance is harmonically modulated with the charge in the elec-
trode system, the modulation reflectance, dR/dE, may reveal the 
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same complex response. Figure 31 shows a complex response of 
(dR/dE)(1/R0) as well as , in which the amplitude in logarithmic 
scale and phase is plotted against log (f ).83 Although the signal of 
dR/dE is so small that the phase is not correctly detected in the 
high frequencies, the complex response is almost same between 
(dR/dE)(1/R0) and . The reflectance modulation is thus assumed 
to be thus responsible to the space charge in the passive oxide sim-
ilarly as the capacitance. 

The potential modulation reflectance is thought to be followed 
by the Mott-Schttoky type plot as well as the capacitance. Such 
type of the plot is shown in Fig. 32 with the original plot for the 
capacitance for the passive oxide formed at 1.55 V vs. RHE in pH 
9.6 borate solution.53 The intercepts on the abscissa, which is cor-
responding to (EF – RT/F), are in coincident with each other. From 
the intercept the flat band potential can be estimated to be EF = 
0.35 V vs. RHE.  

7. Photo-Excitation Current 

In the Mott-Schottky plot of the capacitance, the passive oxide is 
classified to n-type semiconductor. When the passive oxide is situ-
ated under the electron depression state in the passive potential 
region, the space charge layer is formed in the passive oxide. Un-
der the condition, irradiation of photon whose energy is higher 
than the band gap energy excites electrons in the valence band to 
free electrons in the conduction band to leave positive holes in the 
valence band. The electrons in the conduction band are driven to 
the metal/oxide interface according to the potential gradient 
formed in the depression layer. Since the potential gradient moves 
the positive holes in the valence band to another direction. The 
excited electron-hole pairs are effectively separated in the depres-
sion layer. If the holes moving to the oxide surface can transfer to 
redox pairs in the electrolyte, the steady current flow can be ob-
served by an outer circuit. If the transfer of the holes at the inter-
face does not occur, the separated electrons and holes may cause a 
change of charge distribution and potential profile in the depres-
sion layer. 
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Figure 32. The Mott-Schottky type plot of capacitance (C-2 vs. E) and poten-
tial modulation reflectance (PMR), [(dR/dE)(1/R0)] vs. E for the iron electrode 
covered by passive oxide formed at 1.55 V vs. RHE. The PMR measurement 
was done at frequency of 500 Hz by light wavelength for 350 nm. Reprint 
from D. J. Wheeler, B. D. Cahan, C. T. Chen, and E. Yeager, “Optical Study of 
the Passivation of Iron”, in Passivity of Metals, Ed. by R. P. Frankenthal and J. 
Kruger, The Electrochem. Soc. Inc., Pronceton, 1978, p. 546, Copyright 
©1978 with permission from The Electrochemical Soc. 

 
 
 
The transient change of photo-excitation current is shown in 

Fig. 33, where light from Xe lamp is irradiated for 17 ms onto the 
iron electrode passivated at various potentials for 1h in pH 6.5 
borate solution.84,85 The current initially reveals a sharp peak and 
then decays with time. The steady photo-current which is evaluat-
ed from the end current of the 17 ms irradiation is almost zero at 
the potentials lower than 1.1 V vs. RHE and the appreciable cur-
rent is observable at the higher potentials. The steady pho-
to-current is assumed to be the transfer of the holes from the va-
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lence band edge on the oxide surface to the redox of H2O/O2 in the 
electrolyte to form oxygen molecule due to water oxidation. Since 
the oxygen evolution is appreciable at potential higher than 1.6 V 
vs. RHE in the dark condition, the photon irradiation assists the 
water oxidation, decreasing the potential for water oxidation by 0.5 
V. 

The similar photo-excited current was measured for the film 
first oxidized at 2.03 V to form a passive oxide 5 nm thick. The 
photo-current of the oxide film was measured as a function of de-
creasing potentials (Fig. 34).84 Due to the thicker oxide film, the 

 
 
 

 
Figure 33. Response of photo-excited current to 17 ms illumination for the iron 
electrode covered by the passive oxide in pH 6.5 borate solution. The passive oxide 
was formed by step-wise increase of potential and the photo-current was measured 
after 1.8ks oxidation at the respective potentials. Reprint from K. Azumi, T. Ohtsu-
ka and N. Sato, “Analysis of Transient Photocurrent in Passivated Iron Electrode in 
Neutral Borate Solution”, Nippon Kinzoku Gakai-shi (Bulletin of JIM), 53 (1989) 
479, Copyright ©1973 with permission from Japan Inst. Metals. 
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to-current is almost zero at the potentials lower than 0.6 V and is 
observable in the higher potentials. The similar decay of pho-
to-curent was reported by Riefer and Plieth,86 and P. C. Searson et 
al.,52 although the time scales for the measurement are much dif-
ferent between each other. 

In the potentials lower than 1.1 V for the forward (positive) 
potential step and 0.6 V for the backward (negative) potential step, 
although the hole generated by photon migrates to the ox-
ide/solution interface, the transfer of the holes does not occur 

 

 
 

Figure 34. Response of photo-excited current to 17 ms illumination for the iron 
electrode covered by the passive oxide in pH 6.5 borate solution. The passive oxide 
was first formed at 2.03 V following step-wise decrease of potential. The pho-
to-current was measured during the decreasing potential after 1.8ks polarization at 
the respective potentials. Reprint from K. Azumi, T. Ohtsuka and N. Sato, “Analy-
sis of Transient Photocurrent in Passivated Iron Electrode in Neutral Borate Solu-
tion”, Nippon Kinzoku Gakai-shi (Bulletin of JIM), 53 (1989) 479, Copyright 
©1973 with permission from Japan Inst. Metals.. 
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probably because the position of energy level of the adsorption  
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intermediate species for the water oxidation is lower than the Fer-
mi level of the iron/ oxide system. Figure 35 shows a model which 
is assumed for the band diagram of the passive oxide. In Fig. 35, a 
surface state of the adsorbed species of O–/O2– is assumed  which 
locates in the mid gap region. The state may work as an intermedi-
ate to transfer holes from the valence band edge to H2O/O2 redox 
couple in the electrolyte.  In the case that the electron level ( ) of 

  
 
 

 
 
Figure 35. Schematic model of the band level of the passive oxide under positive 
bias and photo-excitation in the passive oxide. 
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the state is enough lower than the Fermi level ( F) of the oxide, the 
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Figure 36. Spectra of photo-excited current per normalized power of 
incidence light. The passive film was formed at 1.60 V in pH 8.4 bo-
rate solution for 1 h. The photo-excited current was measured at the 
same potential. Reprint from K. Azumi, T. Ohtsuka and N. Sato, 
“Spectroscopic Photoresponse of the Passive Film Formed on Iron”, J. 
Electrochem. Soc., 133 (1986) 1326, Copyright ©1986 with permis-
sion from The Electrochemical Soc. 

 
 

state is occupied by electrons and the electron transfer from the 
H2O/O2 redox level to the state is inhibited. In that case, the holes 
excited by photon are accumulated at the oxide surface region. The 
current decay in Figs. 34 and 35 will be the accumulation process. 
In the higher potential, the surface state will change to partially 
occupied state and can accept the electron from the H2O/O2 redox, 
resulting in observation of the steady photo-current (Fig. 35c).  

Action spectrum of the photo excited current, which was 
measured by lock-in technique with chopped light at 830 Hz by 
monochromated light, is shown in Fig. 36 in which the pho-
to-current normalized by 1W incidence power is plotted by loga-
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rithmic scale for the passive oxide formed at 1.6 V for 1h in pH 8.4 
borate solution.48 In the photon energy lower than the bang gap 
energy at 2.6 eV for the direct transition process of photo excita-
tion, the photo current is lower than 10-3 A cm-2  (W cm-2)-1 and in  

 

 
Figure 37. Quantum yield of photo-excited current as a function of photon energy 
incident to the iron electrode covered by the passive oxide. The passive oxide was 
formed at 1.60 V in pH 8.4 borate solution for 1h an the photocurrent was measured 
at the same potential. Reprint from K. Azumi, T. Ohtsuka and N. Sato, “Spectro-
scopic Photoresponse of the Passive Film Formed on Iron”, J. Electrochem. Soc., 
133 (1986) 1326, Copyright ©1986 with permission from The Electrochemical 
Society. 
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the higher photon energy, the photo current increased to 10-2 A W-1. 
From the comparison between the action spectra in Fig. 36, the 
absorption spectra calculated from the extinction index in Fig. 24, 
and the oxide thickness, the quantum yield of the conversion from 
absorbed photon to photo-current was calculated. The result is 
given in Fig. 37. The yield reveals a sharp increase to about 0.2 in 
the photon energy higher than the band gap energy of 2.6 eV for 
the direct transition process. 

The band gap energy has been discussed from the pho-
to-current action spectrum. The band gap energy estimated from 
the photo-current spectra is about  2 eV for the assumption for the 
indirect photo excitation process.86-89 We can illustrate a model of 
the band diagram of n-type semiconductive passive oxide for the 

 
 
  

 
 
Figure 38. Model of the band diagram of the passive oxide on iron for photo excita-
tion process. The flat band is about 0.35 V vs. RHE and the band gap between the 
valence and conduction band edges is about 2.6 eV. The direct transition may take 
place over this band gap energy. The indirect transition may take place via excita-
tion from the valence band to the mid gap level i.e. the ionized donor sites with the 
excitation energy at about 2 eV.  
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sibly occur from electrons in the valence band to ionized donor 
sites and the  electrons in the donor sites are migrated through the 
neighbor donor sites. The transition relating with the donor sites is 
not supposed to be high efficiency. However, the direct transition 
with the edge at about 2.6 eV may be an excitation of electrons 
from the valence to the conduction band and the separation of free 
electrons and positive holes would occur at relatively high effi-
ciency.  

IV. CONCLUSIONS 

The passive oxide of iron was characterized by in-situ optical 
techniques such as ellipsometry, Raman scattering spectroscopy, 
photo-excitaed current and AC modulation combined with elec-
trochemistry. It may be summarized as follows: 

1) The thickness-potential relation may be followed by the 
ionic migration under high electric field and the equilibrium 
potential difference at the oxide/solution interface. The 
thickness is linearly increases with potential applied and the 
passive steady current is pH dependent. 

2) The passive oxide on iron is probably composed of spinel 
type oxides of Fe3O4 and -Fe2O3 or those slightly modified. 
From thermodynamic, Fe3O4 may exist in the metal side and 
-Fe2O3 in the solution side. 

3) In neutral solution, the outer hydrated layer is formed, in the 
case that ferrous ions exists in electrolyte. 

4) The passive oxide works as a semiconductor of n-type with 
high concentration of donor density as large as 1026 m–3. 

5) The band gap of the n-type semiconductive oxide is about 2 
eV for the indirect transition process and 2.6 eV for the di-
rect transition. The conversion ratio of the photon to pho-
to-current by the indirect transition is much smaller than 
that by the direct transition. The band diagram can be illus-
trated as Fig. 38.  
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I.  INTRODUCTION 

The basic driving force of localized corrosion or corrosion protec-
tion in numerous cases is the galvanic coupling of which the di-
mensional aspect is fixed by a combination of scales regarding 
interfacial processes or properties. At the electrolyte–metal inter-
face, it is necessary to consider the microstructure (including all 
real-time modification induced for example by applied stresses), 
the possible chemical changes at the surface of the material, and 
the electrolyte conductivity contribution, among others factors. 

The galvanic corrosion is sometimes defined as bimetallic cor-
rosion and described mainly for engineering structures as they are 
fabricated from dissimilar materials, which are in electrical contact 
with a conductive electrolyte. The galvanic phenomena are consid-
ered in these latter cases at the macroscopic scale. The galvanic 

S.-I. Pyun and J.-W. Lee (eds.), Progress in Corrosion Science and Engineering II, 
Modern Aspects of Electrochemistry 47, DOI 10.1007/978-1-4419-5578-4_3,  
© Springer Science+Business Media, LLC 2012 
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series (widely reported for example in seawater) which report the  
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Figure 1. Evans diagram for estimating the galvanic current density. The 
bimetallic electrode consists of a carbon fibre embedded in a 6061 alumini-
um alloy (metal matrix composites). Two galvanic regimes can be reached 
as function of the aeration of the corrosive media. This analysis does not 
take into account the spatial distribution of the carbon fibers in the metallic 
matrix (see Fig. 12). Reprinted with permission from International Materi-
als Reviews, 39 (1994) 245.Copyright ©1994 Maney Publishing . 

 
 
ranking of the corrosion potentials for various pure metals or al-
loys is used to define the driving force between the elements of the 
couple. Regarding the rate of the galvanic corrosion, in a first ap-
proach Evans diagrams can be used (Fig. 1).1 

From the experimental point of view the conventional meas-
urement of the galvanic current is based on the Zero Resistance 
Ammeter (ZRA). But these approaches do not describe the real 
situation which is controlled basically by the current and potential 
distribution at the surface of the electrodes constituting the couple 
and in the solution as schematically illustrated in Fig. 2. 

For reasons due to either the metallic material and /or the cor-
rosive medium it is known that anodic and cathodic zones may 
take individual characteristics at the metal-solution interface and 
thus initiate localized corrosion phenomena. Localized corrosion  
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Figure 2. Schematic description of the potential and current dis-
tribution for a bimetallic electrode. 

 
 

of metallic materials at macroscopic scale (crevice corrosion, 
welded junctions, etc.) and microscopic (pitting corrosion, inter-
granular corrosion, etc.) depends on the distribution of anode and 
cathode sites on a metal surface. The theory of current distribution 
in the vicinity of a corroding electrode couple has been worked out 
largely by Wagner2 and Waber3 in a series of papers published in 
the 1950's.  

Their theoretical description is both stationary and coplanar. 
The nature of galvanic coupling in the case of localized corrosion 
of passivating metals (light alloys, stainless steels) takes on prop-
erties that differ depending on whether initiation (transient) or 
propagation phenomena (stationary) are under consideration. On 
the other hand, in real case of corrosion, and depending on the 
measurement techniques employed, description should take into 
account the dependence of these relations with time or frequency 
and should consider the dimensional aspect of current and poten-
tial distributions as well. 

The dimensional aspects of the electrochemical polarization 
during galvanic coupling can be summarized as follows. The effect 
of the ohmic drop stabilizes processes of localized corrosion. In 
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anode cathodeanode cathode

isopotential lines

isocurrent lines



246    Roland Oltra and Bruno Vuillemin 

 

terms of electrochemical kinetics, this means that the ohmic drop 
becomes part of the electrochemical polarization of the system. 
Their analysis of this situation was performed taking into account: 

(a) the Laplace ‘s equation : 
 
  02   (1) 
 

(b) the relation between the current density (j) and potential (E) 
on each electrode (cathode and anode)  

The current density (j) is related to the potential by:  

(a) Ohm’s law:  
 

 1J    (2) 

 
where  is the electrolyte resistivity, valid in all the electro-
chemical cell; and 

(b) by the electrochemical polarization:  
 
 j = f(Esurf) (3) 
 

Wagner has introduced a parameter L, which takes into ac-
count the fact that a knowledge of the two reactions (anodic and 
cathodic) but it is not sufficient for determining the coupling cur-
rent of the two electrodes: 

 

   
j
EL   (4) 

 
As illustrated in Fig. 3, it is possible to define the characteris-

tic length of the coupling ( ) between anodic and cathodic zones. 
The nature of coupling changes as a function of the ratio between 

 and L and therefore depends on a scale factor.  
The main physical parameter which determines this scale fac-

tor for metallic materials is the metallurgical microstructure or the  
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Figure 3. Concept of the Wagner’s parameter.  If  is a characteristic dimension of 
the cell (anode-cathode) it can be compared to the Wagner’s length L. It means that 
as a function of the relation between  and L (depending of the electrolyte conduc-
tivity and the polarization) the ohmic drop between the anode and the cathode will 
affect the polarization of the anode and cathode. 

 
 

metallurgical process. Regarding the metallurgical microstructure, 
it is largely demonstrated that the localized corrosion starts in 
mainly cases at small heterogeneities such as precipitates, inclu-
sions, cracks that can be micrometer or submicrometer scale.4 The 
basic chemical composition contrast, which is at the basis of the 
microstructural effect on galvanic corrosion, can be enhanced by 
metallurgical treatments or even during the early stages of local 
attack by aggressive solutions. This can be illustrated by local de-
pletion of noble elements like chromium (well know case of inter-
granular corrosion of stainless steels) or by the local change in 
surface composition due to precipitation of dissolved species com-
ing for example from inclusion dissolution.5 

This latter chemical point illustrates the complexity of the mi-
croscopic description of the galvanic coupling. The chemical gra-
dient is consequently an important parameter which can be also at 
the origin of the characteristic length of the time evolution of the 
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tions/uncertainties in use of the Laplace's equation and it will be 
necessary to use others governing laws as for example the Nernst-
Planck’s equation for refined modelling. 

II. EXPERIMENTAL DATA FOR NUMERICAL 
SIMULATION AND MODEL VALIDATION 

From the experimental point of view, it is necessary to adapt the 
chemical and electrochemical probe techniques for collecting entry 
data for predictive numerical simulation. The same objective must 
be reached for validating experimentally the results of the simula-
tions. 

A large number of physical and chemical parameters are of 
importance but in a first microstructural based approach, the whole 
microstructure can be described by an elementary cell representing 
the basic galvanic coupling at a reduced scale as demonstrated by 
Morris and Smyrl.10 Following the introductive remarks related to 
the interfacial processes or properties, it can be proposed that the 
following parameters must be selected to describe for example the 
galvanic coupling between a phase and its surrounding matrix: 

 The electromotive force related to their relative values in a 
specific galvanic series. 

 Their individual electrochemical kinetics. 
 The chemical evolution of the above electrolyte (conductive 

media) controlled by the mass transport of the species emit-
ted at the anode and at the cathode. 

Even if specific probe techniques allow obtaining separately 
the values of these parameters, the validation by measuring for 
example the galvanic current distribution inside the electrolyte by 
in situ techniques is not an easy task. 

1.  How to Evaluate the Galvanic Series for Elementary  
Microstructure Components:  

Scanning Kelvin Probe Force Microscopy 

Kelvin Probe Force Microscopy (KPFM or SKPFM) was derived 
from  the  development of the atomic force microscope  (AFM)  al- 
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lowing to probe the surface properties of sub-micron structures. 
KFM, developed on the basis of the Kelvin method in 1991,11 was 
applied for example to explain the electrical properties of the met-
al/semiconductor interface in ultra high vacuum or in ambient 
conditions. 12 , 13  This technique seems capable of distinguishing 
constituents of a metal through their work-function differences. 
Application to localized corrosion was promoted about ten years 
ago by P. Schmutz and J. Frankel.14 The authors mapped the Volta 
potential of various metals and the most interesting point was the 
linear relation found between the Volta potential measured in air 
and the corrosion potential in aqueous solution indicating that this 
potential is a measurement of the practical nobility of the surface 
(Fig. 5). They applied this approach to study the Volta potential of 
intermetallic particles in AA2024-T3 and the matrix phase. They 
concluded that all intermetallic particles, including the Mg-
containing S-phase particles, had a Volta potential nobler to that of 
the matrix.  
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Figure 5. Relation between the potential measured in air by SKPFM  
with open-circuit potentials measured in dionized water for different 
metals (same trend has been found in 0.5 M NaCl) assuming the sur-
face potential of pure Ni as the reference - Reprinted with permission 
from  J. Electrochem.  Soc., 145 (1998) 2285 Copyright ©1998, The 
Electrochemical Society. 
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It is clear that the ability to map the potential on a sub-micron 
scale is extremely useful in studies of localized corrosion of alloys 
which contain heterogeneities on the micrometric scale. From a 
qualitative point of view a large amount of rough data are availa-
ble in the literature on KPFM analysis. For example, they concern 
the practical nobility of phases versus matrix on aluminium alloys 
after careful surface preparation (ultramicrotomy),15 the character-
ization of selective dissolution of intermetallics16 or their role dur-
ing the chemical conversion of an aluminium surface.17 All these 
measurements give interesting starting point for discussing the 
galvanic coupling but mainly on a phenomenological point of 
view. 

Nevertheless, strong discussions can be found in the literature 
concerning the origin of the surface potential measured through the 
KPFM. KPFM measurements are highly influenced by the struc-
ture, composition, and thickness of the oxide film covering the 
surface, surface charge distribution, and adsorbed species at the 
surface.18 On the other hand recently, work of Rohwerder et al., 
demonstrated that the correlation between the KPFM potential 
measurement in ambient conditions and the corrosion potential is 
not of general validity.19 In this paper the authors proposed an in-
teresting discussion on the basics of SKPFM measurements com-
pared to the more conventional Kelvin Probe. From this paper it 
appears that no direct relationship can be established between the 
work function measured on a freshly polished metal and its possi-
ble corrosion behaviour, as corrosion depends sensitively on the 
environment (pH, kind of ions, etc.) and is also determined by the 
kinetics of the involved reactions. It is in contradiction with the 
results presented in Fig. 5. 

Nevertheless, the introduction of SKPFM measurements re-
veals the need to establish galvanic series for microstructures or 
elements of galvanic couples involved in localized corrosion at the 
micrometer scale. But the introduction of SKPFM data on numeri-
cal simulation seems to be not possible as a large doubt always 
exists. It justifies the interest to focus on in-situ local microelectro-
chemical studies for investigating the current-potential relation in 
an aqueous solution, i.e., the electrochemical kinetic at the scale of 
the microstructure.  
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2.  How to Measure the Electrochemical Kinetics for the  
Elementary Microstructure Components:  

Microelectrochemical Probes 

Microcapillary electrochemical cells are widely used in biology for 
local potential measurements at a very reduced size. In corrosion, 
pioneering work was performed for promoting the Scanning Ref-
erence Electrode Technique (SRET): in this case the microcapil-
lary is immersed in the bulk electrolyte and local potential20 or 
local electrochemical polarization or local electrochemical imped-
ance21 has been measured.  

In the last 20 years capillary based cells not immersed in bulk 
electrolyte but delimiting a very restricted area of the metallic 
electrodes in contact with the electrolyte were developed in paral-
lel by Böhni and Suter.22 

The basic of these techniques, microcapillary electrochemical 
cells (MEC), consists in pulling a glass capillary in order to reach a 
tip diameter in the range of few micrometers (10 to 100 m) which 
will be stick to the metallic area of interest (MAOI) by a silicone 
gasket deposited at the tip (Fig. 6a). As function of the size of the 
tip it is possible to investigate the electrochemical behaviour of 
multi-phases system or only one phase (Fig. 6b). Regarding the 
modelling of galvanic phenomena in localized corrosion the inter-
est of MEC is to be appropriate for obtaining entry data on the 
anodic and cathodic reaction kinetics on the real phases involved 
in the galvanic process.  

For the reactions occurring on the anode, i.e., dissolution, one 
can expect some limitations due to the acidification and the precip-
itation of solid phases in case of saturation of the electrolyte near 
the tip of the capillary. To avoid this, Lohrengel et al.23,24 proposed 
a derived set-up consisting of a theta-capillary, i.e., capillaries with 
two channels separated by a partition wall where an electrolyte 
flows. In this configuration, reaction products like gases (bubbles 
of O2 or H2) or precipitates cannot block the capillary. (Fig. 6c).  

If the MEC is used for elucidating the cathodic behaviour of 
the cathode one can expect same physical troubles, i.e., bubbles 
generation in acidic media which can interrupt the electrical con-
duction inside the capillary whereas chemical changes can also 
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(a) 

 

 
(b) 

 

 
(c) 

 
Figure 6. (a) Schematic description of the microcapillary electrochemical cell 
equipment, (b) typical analysis of the electrochemical behavior on a microstructure 
which can be performed with MEC equipment, and (c) design of a microcapillary 
tip for circulating. Reprinted with permission from Electrochim. Act., 49 (2004),  
2863 Copyright © 2004 , Elsevier Science. 
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arise as there will be alcalinization from inside the capillary due to 
the mass transport limitation.  

Regarding the Section 3(iii) of this chapter, related to the 
modelling of the galvanic coupling on aluminium alloys, specific 
attention must be paid to the use of MEC for investigating the ca-
thodic reduction occurring on a phase of reduced size in a neutral 
solution. In this case the reduction is due to the reduction of the 
oxygen dissolved inside the capillary in contact through the sili-
cone gasket with the selected phase. It was demonstrated that in 
the case of cathodic polarization, the limiting current density (for 
oxygen reduction reaction - ORR) varies according to the capillary 
diameter used.25 Nevertheless the dependence of cathodic current 
(limiting current) upon the diameter of the capillary was not ex-
plained. 

On the basis of similarities of the design of MEC and electro-
chemical oxygen micro sensors,26 Oltra et al.27 discussed the pos-
sible role of the silicone gasket which can acts as a non-permeable 
membrane for oxygen. It was demonstrated controlling the sur-
rounding gaseous environment by argon gas shielding (Fig. 7a) 
that oxygen reduction, which is of importance in neutral media, 
can be enhanced as function of the size of the capillary tip induc-
ing for example non expected pH changes (alcalinization) at the 
MAOI interface.  

This membrane effect strongly increases the oxygen reduction 
reaction (ORR) inside the capillary masking diffusion control 
which would be always observed considering the same metallic 
area, i.e., a microelectrode of the same diameter than the capillary 
tip but in bulk conditions (Fig. 7b). This remark is important and 
highlights the difficulty to interpret and apply microelectrochemi-
cal measurements when ORR is the controlling step. This would 
explain the strategy chosen for modelling in Section III.3 of this 
chapter.  

To control the pH inside the capillary it was proposed also to 
perform microelectrochemical tests using buffered solutions28 but 
it is not demonstrated that the interfacial pH is really controlled. 

MAOI studied by MEC were mainly related to the role of the 
microstructure on stainless steels, e.g., role of manganese sulphide 
inclusions29 or on aluminium alloys, e.g., electrochemical behav-
iour of intermetallics.30 
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(a) 

 
(b) 

Figure 7. (a) Schematic description of the modified set-up of the MEC for reducing 
the role of the silicone gasket on ORR. An argon gas shielding is continuously 
applied during the polarization experiment. In this configuration only the oxygen is 
coming from inside the capillary (dissolved oxygen solubility can be assumed to be 
0.26 mol m-3). It corresponds to the real bulk conditions observed on the selected 
metallic spot surrounded by a macroscopic matrix. Reprinted with permission from 
Electrochem. Comm., 10 (2008) 848, Copyright © 2008, Elsevier Science. (b) 
Effect of argon shielding on the cathodic reduction reactions in a NaCl (0.5 M) 
neutral solution on a platinum electrode for a microcapillary of 50 m in diameter. 
Experimental polarization curves: from – 0.9 V to 0.4 V vs. SCE (solid lines); [a]  
scan in absence of gas shielding, and [b] during this scan, the argon shielding was 
turned on  after  –0.8 V vs. SCE. FEM simulation (dashed lines); [c] simulation in 
absence of argon shielding and [d] simulation in presence of argon shielding. Re-
printed with permission from Electrochem. Comm., 10 (2008) 848, Copyright © 
2008, Elsevier Science. 

metallic electrode (WE)

Argon 
gas 
shielding

Cylindrical nozzle
diam.= 2 cm 

CE REF

Silicon 
gasket

metallic electrode (WE)

Argon 
gas 
shielding

Cylindrical nozzle
diam.= 2 cm 

CE REF

Silicon 
gasket

-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4
1E-5

1E-3

0.1

10

1000

[c]

[d]

[b]

[a]

C
ur

re
nt

 d
en

si
ty

  [
A.

 m
-²

]

Potential [V / SCE]

-2
]



256    Roland Oltra and Bruno Vuillemin 

 

MEC measurements allowed to clarify the corrosion mecha-
nism on manganese sulphide: local measurements confirmed the 
effect of sulphur species spreading due to the dissolution of man-
ganese dissolution in a well defined range of potential. Interest of 
MEC was demonstrated in the study of the role of the shape of the 
inclusions upon the susceptibility for pitting of the alloy as it was 
easily possible to select only one inclusion and its surrounding 
matrix at a reduced size.31 But a less amount of MEC studies were 
performed for investigating the elementary electrochemical kinet-
ics on an individual metallic phase, like intermetallics or surround-
ing matrix to precipitates. Work of Buchheit et al. can be men-
tioned for the wide scope of investigation on intermetallics in alu-
minium alloys.30,32 Nevertheless the results were only used to de-
fine the galvanic series of a large number of synthetic intermetal-
lics and the kinetics were not used to model the galvanic coupling 
between intermetallics and aluminium based surrounding matrix. 

3.  How to Define the Chemical Composition Gradients:  
Electrochemical and Optical Sensors 

In corrosion domain, pH gradients are the most studied as local 
acidification or alcalinization are directly related to local electro-
chemical reactions as shown in Fig. 4. These pH changes control 
the nature of the species emitted, the homogeneous reactions at the 
vicinity of the surface. These reactions can induce precipitation, 
gaseous bubbling which can be modelled using a stationary ap-
proach (see part on modelling). 

(i)  Amperometric Sensors for Solution Chemistry Mapping 

Among amperometric sensors, the Scanning Electrochemical 
Microscope (SECM) is probably the most attractive but the less 
applied, even if SECM is a scanned probe microscope (SPM) that 
has proven to be a powerful instrument for the quantitative inves-
tigation of a wide range of processes that occur at interfaces.33 The 
probe tip in SECM is an ultramicroelectrode (UME), which typi-
cally has a characteristic dimension in the 0.1–10 m range. The 
amperometric, or potentiometric response of the tip UME is rec-
orded as the probe is scanned either normal to the interface of in-
terest (tip approach measurements) or over the interface typically 
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at some fixed height (for imaging purposes) or is held in a fixed 
position with respect to the substrate (for time-dependent meas-
urements). SECM is mainly used in two modes: feedback or gen-
eration collection using a redox mediator in solution in order to 
characterize the species to be analyzed: this is an analytical tech-
nique. 

SECM applications have been reported for localized corrosion 
studies. Still and Wipf34 published work investigating the localized 
corrosion of a passivated iron sample using SECM in generation 
and collection modes of SECM separately, to firstly induce local 
generation of aggressive ion and secondly to collect after initiation 
the dissolution current issuing form the dissolving pit. They de-
scribed experiments in which an iron sample was immersed in a 
solution of 30-mM trichloroacetic acid solution in phos-
phate/citrate buffer at pH 6, and passivated at fixed potential for a 
given period of time. A gold microdisc electrode initially at a po-
tential of 0 V (versus a mercurous sulfate electrode (MSE)) was 
positioned close to the surface (within 1 tip radius). The potential 
of the tip electrode was then adjusted to –1.6 V to generate chlo-
ride ions by the reduction of the trichloroacetic acid. The equation 
given for this reaction is 

 
 Cl3CCOO– + H2O + 2e–  Cl2CHCOO– + OH– +Cl–  (5) 
 

Current fluctuations at the substrate were observed within a 
few seconds, indicating pitting corrosion. In addition, the tip cur-
rent also fluctuated, and correlated well with the sharp changes in 
current observed at the substrate. This behaviour was attributed to 
the release of iron species by the sample during the corrosion pro-
cess, which was then reduced at the tip. 

On the other hand and in relation with the role of manganese 
sulphide in pitting of stainless steels already mentioned, R.C Al-
kire,35 performed SECM experiments to demonstrate the role of 
adsorbed sulphur species near sulphide inclusions like a driving 
force for pitting of Nickel. 

From an experimental point of view, electrochemical current-
voltage measurements on microscopic parts of the electrodes were 
carried out with capillaries of 20–100 microns manipulated so as 
to cover specific sulphide inclusions, previously characterized by 
SEM/EDX measurements.  
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The active part of scanning electrochemical microscopy appa-
ratus consisted of a carbon fiber tip. The solution used for SECM 
measurements was 10 mM KI + 0.1 M NaCl. The Ni and C fiber 
electrodes were independently controlled by two separate potenti-
ostatic circuits. The SECM tip potential (Etip) was held at 0.6 V to 
reduce I2 to triiodide (Fig. 8). 

In solution, the sulphur species emitted during dissolution of 
MnS inclusions can react with the I3–/I redox system: 

 
  I3– + 2 S2O3

2–   3 I– + S4O6
2–   (6) 

 
or 

  I3– + HS–    3 I– + H+ + S  (7) 
 

The reaction of dissolution of the MnS can be follow using 
the positive-feedback of the SECM:  
 

 3 I–    I3– + 2 e–   (8) 
 

It was then possible to confirm a dissolution mechanism leading to 
the formation of thiosulfates: 
 

 2 MnS + 3 H2O    2 Mn2+ + S2O3
2– + 6 H+ + 8 e–   (9) 

 
confirming the role of poisoning of the sulphur species by dismu-
tation of thiosulfates as shown in reaction (6):  
 

 S2O3
2– + H2O  Sads + SO4

2– + 2 H+ + 2 e–   (10) 

(ii) Potentiometric Sensors for Solution Chemistry Mapping 

Ion selective microsensors can be designed using ultra microe-
lectrodes to follow the changes of ion concentrations of selected 
species during galvanic corrosion experiments. Concentration 
maps can be obtained using liquid membrane glass capillary elec-
trodes, home made from pulled glass capillaries filled with an ion-
ophore having a functional detection range for the selected species. 
If a large number of papers are related to biosensors, in corro-
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sion a more reduced number of examples can be found for detect-
ing like Zn++,36 Mg++,37 and Cu++.38 

Potentiometric pH sensors are probably the most employed in 
corrosion studies. The simplest design is based on the introduction 
of the selected ionophore after silanization of the tip of the pulled 
capillary in which a silver chlorinated wire is immersed to serve as 
the internal reference electrode. This kind of microelectrodes can 
be mounted on the X-Y-Z positioning system to control the posi-
tion and program the sweeping of the microelectrode.39,40,41  

For example, pH mapping has been performed above galvanic 
cell representing the galvanic coupling for a 6061-aluminium al-
loys. In this case the basic galvanic cell consists in Al3Fe interme-
tallic which acts as cathode versus the surrounding matrix.42 pH 
scanning with a lateral resolution of 2 m shown an increase of the 
pH (alcalinization) above a massive Al3Fe electrode electrically 
coupled to a sheet of 6061 alloy. 

The same kind of pH microelectrode can be designed using a 
working electrode made up a tungsten microelectrode inserted in 
one channel of a theta capillary (the other channel is similar to the 
previous sensor and consists in Ag/AgCl reference electrode) (Fig. 
9).  

A typical calibration curve obtained with the probe in 0.03 M 
NaCl solution, whose pH is modified by addition of concentrated 
hydrochloric acid and sodium hydroxide solutions is shown in Fig. 
9. The interest of such pH mapping for validation of modelling 
will be illustrated in the second part of this chapter. 

(iii)  Optical Sensors 

In-situ pH mapping can be also performed using optical sen-
sors based on fluorescence or pH indicators. Fluorescence is large-
ly used to measure concentrations of chemical species in fields of 
analytical chemistry, biology, and physiology. Fluorescent com-
pounds can be added in the electrolyte directly: in this case the 
activity can be followed by confocal laser scanning microscopy 
(CLSM).43 On the other hand fluorescent species can be trapped in 
polymer at the tip of optical fibers (Fiber Optic Chemical Sensors 
– FOCS)44 Typical FOCS are constructed using one or more chem-
ically sensitive fluorescent species or fluorophores immobilized  

 

on  the tip of a single optical fiber or of a multi-fiber  bundle. An 
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Figure 10.  The CLSM reflectance image of a Al2024 after 10 mn of exposure in 
0.1 M KCl solution (a). The corresponding fluorescence image due to the presence 
of 0.1 mM fluorescine in the test solution (b). Reprinted with permission from  J. 
Electrochem. Soc., 145 (1998) 1571, Copyright © 1998, The Electrochemical Soci-
ety. 
 
 
measurement of the alcalinization demonstrating the cathodic be-
haviour of this kind of intermetallics (Fig. 10b). In the same paper 
a model based on simple diffusion is proposed for calculating the 
pH gradient above and around the particle. It will be discussed in 
the second part of this chapter. 

FOCS (fiber bundle) was used by S.Szunerits et D.Walt47 to 
image the concentration of Al3+ cations during localized dissolu-
tion of pure aluminium: in this case the fluorescent molecule was 
morin (excitation 310nm – emission 510 nm) which allowed the in 
situ visualization of the corrosion processes by monitoring the 
release of Al3+. Nevertheless, application of FOCS for corrosion 
mechanisms has not been deeply investigated in the mentioned 
work but this kind of sensor represents a promising tool which 
could be applied.  

At a larger scale (millimetre range), for investigating the gal-
vanic coupling on assembled structures, e.g., welded structures, 
indicators can be used to determine the location and mechanisms 
of corrosion.48 Broad-range of pH indicators can be trapped in 
electrolyte agar gels to study the change in pH related to acidifica-
tion at dissolving parts and alcalinization on cathodic areas. This 

(a) (b)(a) (b)
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approach remains qualitative and cannot be used for supporting 
modelling. It has been applied, for example, to characterize the 
galvanic coupling on aluminium sheets welded by friction stir 
welding (FSW). 

4.  How to Image In-Situ the Galvanic Current Distribution: 
Scanning Vibrating Electrode Technique 

Galvanic corrosion is controlled by the local potential distribution 
above the metallic surface. The potential gradients can be imaged 
directly using a microcapillary cell containing the reference elec-
trode (Scanning Reference Electrode Technique). This technique 
was more applied for detecting localized corrosion initiation49 than 
to describe isopotential contour maps on a bimetallic electrode.50,51 
Pioneering work at a rather macroscopic scale has been conducted 
by Doig and Flewitt52 and McCafferty53 on modelling experimental 
systems like Cu-Zn and Fe-Zn. Nevertheless these studies were 
limited to validation of Laplace’s equation. 

As mentioned in the introduction the current distribution is the 
most useful parameter to quantify the local kinetics in a galvanic 
coupling arrangement. From this local analysis of the currents the 
local damage can be theoretically predicted. The most efficient in-
situ current probing is the Scanning Vibrating Electrode (SVET) 
which allows to measure the local current potential gradients from 
which the current density is deduced applying the Ohm’s law. This 
technique initially developed in biological domain for extracellular 
current measurement54 was transferred to corrosion studies by pio-
neering work of H. Isaacs in 70’s.55 This technique is based on the 
ohmic measurement in electrolyte between two virtual points de-
fined by the vibration of Pt-Ir microelectrodes which is black plat-
inised.56 The diameter of the sphere of the black platinum deposit 
was 15 m, corresponding to a capacitance of about 10 nF (Fig. 
11b). The amplitude of vibration was typically 20 m, with a fre-
quency around 600 and 200 Hz respectively parallel and normal to 
the sample surface.  

The potential drop measured by the microelectrode is convert-
ed with the Ohm's law into a current density value after amplifica-
tion. The displacement of the microelectrode is performed using a 
motorized and computer controlled XYZ micromanipulator (see 
Fig. 11a). To improve the application in case of localized cor-
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rosion this set-up was combined with a capillary technique in order 
to be able to follow a well defined site of corrosion which is gen-
erated by a local injection of aggressive solution in a buffered so-
lution.57 During pitting it is difficult to stabilize the galvanic cou-
pling between the pitting area and the surrounding passive surface, 
whereas in case of localized corrosion on geometrically stable gal-
vanic coupling, i.e., when the anodic and the cathodic areas are not 
changing of location, scanning (2-D or 3-D) is possible. 

Application of SVET was clearly highlighted in the work of 
Kasper R.G and Crowe C.R. on a modelling Fe-Cu couple of rela-
tively large size.58 They demonstrated that ionic current density in 
the near field of the corroding Fe-Cu galvanic couple can be com-
pared with the predictions of a finite element model that calculated 
near field potential and current density distributions. In the second 
part of this chapter it will be illustrated that SVET measurements 
can also be used to detect the change of surface activity during 
galvanic coupling as it was experimentally investigated by Ogle et 
al.59  

III. SIMULATION OF LOCALIZED GALVANIC 
CORROSION 

1.  Basic Equations 

Local probe techniques are available to measure the spatial distri-
bution of potential, current, chemical species concentration and to 
quantify the corrosion rate. 

Modelling is mainly based on the solution of partial differen-
tial equations obtained in most cases by numerical methods like 
Finite Difference Method (FDM),60 Finite Element Method (FEM) 
58 or Boundary Element Method (BEM)61,62,63 describing always a 
bimetallic corrosion situation at various scales combining current 
and potential distribution (Laplace’s equation) with the mass 
transport of reactive species (Nernst-Planck 's equation).  

Modelling of galvanic corrosion, whatever the scale of the 
electrodes, can be solved considering the elementary cell charac-
terizing the coupling length defined by Wagner and Waber2,3 as 
shown in the first part of this chapter. For galvanic corrosion relat-

 

ed to the microstructure of materials this was clearly demon- 
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Figure 12. Simulated microstructure (on left) and corresponding isocurrent lines 
calculated solving the Laplace’s equation. It is assumed that the cathodic reaction is 
located on the particles (white phase in left diagram), Reprinted with permission 
from J. Electrochem. Soc., 136 (1989) 3237, Copyright © 1989, The Electrochemi-
cal Society.   

 
 

strated by Smyrl and Morris.64,10 In this work the authors consid-
ered only the current distribution ignoring the chemical gradients 
related to the anodic or cathodic reactions occurring at the scale of 
the microstructure. In fact the same authors have described the 
chemical contribution in another work related to the corrosion on 
2024 aluminium alloy (see the Ref.45 already mentioned), but they 
have not combined the two. 

For example, in this latter case, the cathodic reduction of dis-
solved oxygen occurring on the IM phase is limited by the mass 
transfer and the alcalinization can contribute simultaneously to the 
dissolution of the surrounding aluminium matrix in addition to the 
pure galvanic coupling, e.g., the current density typically increased 
at the boundary between IM and matrix (Fig. 12).  

It remains an open question recently discussed65 on the basis 
of numerous experimental results. Aluminium alloys are an inter-
esting system as the alcalinization related to oxygen reduction is 
affecting the dissolution of aluminum.66 Considering various ex-
perimental works conducted on a large scale of model electrodes 
representing tentatively the galvanic corrosion between IM and 
matrix on 2xxx aluminium alloys58,20,67 it can be noticed that this 
multi-physics approach, i.e., coupling of galvanic interaction and 
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chemical change, has not been considered. This is probably due to 
the fact that with aluminium alloys steady state cannot be reached 
preventing any validation of the numerical simulation. A bimetal-
lic system exhibiting a stationary galvanic coupling will be chosen 
in this chapter to illustrate the combined effects of ionic current 
distribution and the chemical gradients on the galvanic corrosion 
damage. 

For modelling corrosion damages induced by galvanic pro-
cess, numerical resolution can be based on various mathematical 
approaches: one of the most applied, especially for taking into 
account the coupling of current distribution with the mass transport 
control, is the finite element method. It exists now powerful gen-
eral-purpose finite element packages with which one can construct 
a 1-D, 2-D or quasi 3-D models with capabilities that exceed those 
of home-made codes. This then allows corrosion specialists to 
concentrate on the much more difficult task of obtaining the con-
sistent experimental boundary conditions and defining valid mod-
els of the polarization behaviour of the electrodes.  

From a general point of view, in electrochemistry (in corro-
sion) modelling allows to solve the equations solving the current 
and potential distributions in the electrolyte coupled with the 
chemical processes occurring homogeneously (in the solution 
bulk: chemical reaction) or heterogeneously (i.e., at the electrode 
surface: electrochemical reaction). Fluxes of each chemical species 
are described by transport equations including diffusion, convec-
tion and migration components. In modelling of galvanic corrosion 
related to local electrochemical sites (precipitates, intermetallics, 
inclusions, defects in coating, etc.) local probe techniques de-
scribed in the previous part can be used to obtain quantitative data 
on the interfacial reactions and current and or potential distribu-
tion. 

Simulations of galvanic coupling have been mainly limited to 
resolution of the Laplace’s equation58,67,68 to define the electrostat-
ic potential in the solution  This electrostatic approach, largely 
spread for solving large scale galvanic coupling, can be general-
ized to all involved species by solving the general Nernst-Planck’s 
equation as followed assuming as negligible the effect of convec-
tion on the concentration of involved species:69,70 
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Figure 13. Typical FEM meshing for a galvanic cell (2D simulation). 
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where Ci the concentration of species i inside the cell (mol.m-3), Di 
the diffusion coefficient of species i (for i = 1 ... n) (m2/s), R the 
gas constant, T the temperature, F the Faraday number, zi the 
charge of species i.  

The term Ri for production/consumption depends on the ho-
mogeneous chemical reactions taken into account in the cell, and 
on the electrochemical reactions on the surface of the electrodes. 

On the other hand, the electroneutrality is assumed every-
where in the cell 

 
 0

i
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It is then necessary to set-up the boundary conditions which can be 
expressed as follows on the basis of indexes on Fig. 13 (assuming 
corrosion phenomena controlled by the oxygen reduction in neu-
tral pH conditions): 

 Boundaries 1, 4, 5, 7: electrical insulation for ionic current 
and oxygen flux. 

 Boundaries 2 et 3: polarization behaviours which can be if 
possible described by the well-known Butler-Volmer rela-
tion or by empirical laws deduced from local probe tech-
niques. 

 Boundary 6: at the air/solution interface there is an insulat-
ing condition for the potential and an oxygen flux corre-
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sponding to its dissolution rate in solution). The thickness h 
is an important parameter which is directly related to the na-
ture of environmental conditions (corrosion in confined me-
dia, atmospheric corrosion, bulk electrolyte, etc.). 

The meshing is always refined at the boundaries of both elec-
trodes due to the localization of the current distributions and chem-
ical perturbations. 

The current distribution is obtained by solving the Laplace’s 
equation if the concentration variations can be neglected and is 
called primary or secondary, depending on the nature of the 
boundary conditions on the electrodes.71 It can be noticed that for 
solving Laplace‘s equation various numerical methods can be 
used, especially the boundary elements method (BEM) which has 
been largely promoted by the group of Brebbia.72,73  

From an experimental point of view, various modelling ap-
proaches based on solution of Laplace’s equation have been vali-
dated by measuring the profile of the induced damage which fol-
lows the anodic current profile. As shown in different works where 
the mass transport of species were controlled: galvanic coupling 
between pure aluminium and a Cu containing solid solution in a 
flowing electrolyte68 or galvanic corrosion on two parts of a weld-
ed pipe made of stainless steel and low-alloy steel74 (Fig. 14) is 
supported by the numerical modelling. 

But it exist only few studies where the numerical simulation 
on well-defined bimetallic electrodes has been validated by in-situ 
current probe techniques: SVET for current distribution and/or pH 
probes for proton concentration. The work of Crowe et al.58 al-
ready mentioned is probably one of the most advanced. The au-
thors used FEM to fit SVET measurements above a galvanic iron-
copper couple using polarization curves for each metal carried out 
in bulk solution.  

Concerning the modelling of the corrosion damage itself, 
work of Oltra et al.75 on bimetallic electrode obtained by casting of 
an aluminium Al-4% Cu alloy around a rectangular section bar of 
pure aluminium (AA 1199) tested in a 0.2 M NaCl + 0.3% H202 
solution in a specially designed corrosion cell can be mentioned. 
As shown in Fig. 15a, controlled electrolyte circulation was 
achieved using a peristaltic pump which allowed a sufficient re-

 

newal rate without causing hydrodynamic corrosion phenomena.  
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Figure 14. Current density distribution calculated from BEM modelling  
showing the localization of current densities at the interface between the an-
ode (carbon steel) and the cathode (stainless steel). Reprinted with permis-
sion from Corrosion, 40 (1984) 628, Copyright © 1984, NACE  

 
 
The renewal of liquid has been realized to avoid local chemistry 
problems and to evacuate corrosion products in order to model the 
corrosion damage solving the Laplace’s equation by M-BEM 
method (Moving Boundary Elements Method). After exposure to 
the corrosive solution for periods of 6-72 hours the heterogeneous 
electrode was cleaned in an ultrasonic bath to remove the corro-
sion products from the surface of the sample.  

The local attack was then characterized by laser profilometry 
and depth profiles have been compared with theoretical predictions 
obtained using M-BEM (Fig. 15b). 

A good agreement was found between the numerical model 
and the evolution of the geometry of the junction between the an-
ode (Al) and cathode (Al-4% Cu) as function of time. 

One metallurgical way which can be chosen to explore a large 
range of size ratio between the anode and the cathode is to work on 
the cut-edge of coated metallic sheets. The coating can be per-
formed for example by ion sputtering or hot metal dipping. In the 
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following  parts the  modelling and  validation of ionic current dis- 
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Figure 15.  Galvanic corrosion experiments on a Al-Al%Cu model electrode. 
(a) Schematic view of the test cell consisting in a channel flow cell (gap = 1 
mm). (b) Corrosion profile of the Al (anode)/Al-4% Cu (cathode) electrode 
obtained by laser profilometry after 48 h exposure in NaCl N/5 + 0.3% H2O2. 
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tribution will be illustrated on iron-zinc couple. After this, discus-
sions will be focused on the transfer of such an approach on the 
galvanic behaviour which can be at the basis of the localized disso-
lution for a real microstructure.  

In the following, application of the Nernst-Planck’s equation 
will be described for such a system consisting in a cut-edge of gal-
vanized steel. This example allows illustrating the role of concen-
tration variations on the corrosion process itself and also on the in-
situ probes limitations. Discussion on the use of in-situ electro-
chemical data for validating the results and for defining the enter-
ing data in the model will be proposed. 

2.  Resolution of the Nernst-Planck’s Equation in the Case of 
a Bimetallic Couple of Well-Defined Geometry 

This example described the behaviour of a galvanized low alloy 
carbon steel sheets. The galvanic corrosion between Fe (cathode) 
and Zn (anode) in contact with dilute NaCl solution (low conduc-
tivity media) is considered. Details of such an experiment has been 
widely described in literature.59,76,77 

(i)  Set-Up of the Model 

The objective of the modelling is to describe the ionic current 
distribution which corresponds to the motion of charge carriers in 
solution through the flux of species by solving the Nernst-Planck’s 
equation (the convection term can be neglected in a first approxi-
mation): 
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The flux of a species is defined as the summation of a term of 

diffusion and a term of electromigration. The mass balance rela-
tion in a stationary mode for each species i is given by 
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where Ri is the production term of the species. Seven homogene-
ous chemical reactions have been considered. Their respective 
equilibrium constants are summarized in Table 1. In this example, 
considered species are Na+, Cl–, H+, OH–, O2, Zn2+, ZnOH+, 
Zn(OH)2(aq), ZnOH3

–, CO2, HCO3
–, CO3

2–, ZnCO3(aq).  
Finally, the electroneutrality condition, 
  
 0

i
iiCz    (12) 

 
which leads to the equation 
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completes the model in imposing an additional equation for varia-
bles. 
 
 

Table 1 
Listing of Homogeneous Chemical Reactions and their  

Respective Equilibrium Constants. 

Homogeneous Chemical Reactions Equilibrium Constant Reference 

H+ + OH–    H2O 1014  

Zn2+ + OH–    ZnOH+  105.04 [78] 

ZnOH+ + OH–    Zn(OH)2(aq)  106.06 [8] 

Zn(OH)2(aq) + OH–    Zn(OH)3
–     102.5 [78] 

CO2 + OH–    HCO3
– 107.65 [79] 

HCO3
– + OH–    CO3

2– + H2O  103.67 [79] 

Zn2+ + CO3
2–    ZnCO3(aq)  105.3 [80] 
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(a) Model geometry 

 Figure 16 shows the 2D-geometry and the corresponding 
meshing. The low alloy steel is in contact with a thin sheet of zinc, 
both surrounded by two walls corresponding to the mounting. The 
upper boundary is the air/solution where oxygen dissolution occurs. 
The cell domain is divided in two parts. One next to the electrodes 
surfaces behaves as a pseudo-diffusion layer, where both diffusion 
and migration of species are possible. 

The other subdomain behaves as a bulk solution, where only 
migration exits inside, thanks to the specific boundary conditions 
imposed to the interior boundary. The position of this boundary at 
500 m above the electrodes surfaces has been estimated from the 
potential evolution measured by a pH sensor in the solution. This 
value is closed from the data proposed by Rosenfeld using a spe-
cific electrochemical cell.78 Meshing is refined in the vicinity of 
the boundaries between the electrodes (steel and zinc where the 
highest fluctuations for variables are expected. 

(b) Heterogeneous reactions 

  As shown in Fig. 17 electrochemical reactions on zinc and 
iron sheet are considered: the reduction of the oxygen by a four 
electrons transfer in one step, the oxidation of zinc and the oxida-
tion of iron. Their respective rates are: 

500 m

Electrolyte/air interface 

Steel
ZincInner Boundary

3mm

2 mm

500 m

Electrolyte/air interface 

Steel
ZincInner Boundary

3mm

2 mm

 
Figure 16. FEM meshing for  the Nernst-Planck’s model. Compared to Fig. 10 
an interfacial domain has been introduced to mimic pseudo-diffusion layer, 
where both diffusion and migration of species are possible.  
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Figure 17.  Polarization curves in 0.03 M NaCl of a ( ) zinc and ( ) 
steel electrodes. Corresponding calculated curves are also plotted (solid 
and dash curves). 
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where kO2, kZn and kFe are interfacial rate constants; E°O2, E°Zn and 
E°Fe are standard potentials and bO2, aZn and aFe are Tafel parame-
ters; and CO2,s is the activity of O2. Data are indicated in Table 2. E, 
the local electrode potential, is defined as the difference of poten-
tial between the metal and the solution just outside the double lay-
er  (at the boundary).   The values  of  the  metal potentials for  the  
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Table 2 
Constants Used in the Model. 

Constant name Value Reference 
CbNa+ 0.03 mol/L  
CbCl- 0.03 mol/L  
CbH+ 10-5.6 mol/L  
CbOH- 10 -8.4 mol/L  

CbO2 0.26x10-3 mol/L [82] 
CbCO2 1.31x10-5 mol/L [83] 
CbHCO3- 2.33x10-6 mol/L  
CbCO32- 4.3x10-11 mol/L  
CbZn2+, CbZnOH+, CbZn(OH)2(aq), 

CbZn(OH)3-, CbZnCO3(aq) 
0 mol/L  

DNa+ 1.3x10-9 m²/s [83] 
DCl- 2x10-9 m²/s [83] 
DH+ 9.3x10-9 m²/s [83] 
DOH- 5.3x10-9 m²/s [83] 
DO2 2.4x10-9 m²/s [83] 
DZn2+ 0.7x10-9 m²/s [83] 
DCO2 1.91x10-9 m²/s [83] 
DHCO3- 1.19x10-9 m²/s [83] 

DCO32- 0.923x10-9 m²/s [83] 
DZnOH+, DZn(OH)2(aq), DZn(OH)3-, 

DZnCO3(aq) 
10 -9 m²/s Assumed 

kO2 10-5 m/s  
kZn 2.32x10-5 mol/m²/s  
kFe 1.45x10-6 mol/m²/s  

O2 0.05 V [84] 
Zn 0.022 V  
Fe 0.154 V  

NmaxO2 3.5x10-5 mol/m²/s [85] 

 
 
zinc and steel are supposed to be identical. For each reaction, a 
flux of species is associated to the current density in according to 
the Faraday’s law. 

(c)  Boundary conditions 

 Heterogeneous kinetics expressions and associated species 
flux are the conditions for electrodes boundaries. Bulk concentra-
tions for all species Cbi (see Table 2) are imposed at the inner 
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boundary with a condition of continuity for current. Those condi-
tions permit to confine concentration gradients at proximity of 
electrodes boundaries and to force the transition between a current 
prevailed by diffusion to a current prevailed by migration. 

(d) Precipitation of solid phases 

 Formation of five precipitates is considered in post-calculation 
in according to reactions: 
 
  Zn(OH)2(aq)    Zn(OH)2(S) (19) 
 
 
  Zn(OH)2(aq)    ZnO(S) + 2 H2O (20) 

 
 

  ZnCO3(aq)    ZnCO3(S) (21) 
 
  4 Zn(OH)2(aq) + Zn2+ + 2 Cl–    Zn5Cl2(OH)8(S) (22) 
 
 3 Zn(OH)2(aq) + 2 Zn2+ + 2 CO3

2–   Zn5(CO3)2(OH)6(S) (23) 
 

Those precipitates are generally found in zinc corroded lay-
ers79 and thermodynamic data are available. Domains of existence 
for those solid phases are areas where solution is supersaturated. 
Table 3 gives values of solubility products of the solid phases de-
scribed above. Thanks to the use of a pseudo-diffusion layer an 
accurate stationary model is defined for chemical species concen-
tration whereas precipitation is necessarily a non-stationary prob- 
 

 

 

 
Table 3 

Solubility Product of Precipitated Solid Phases. 

Corrosion products Solubility product, KS Reference 
Zn(OH)2(s) 10-4.45 [78] 
ZnO(s) 10-5.59 [78] 
ZnCO3(s) 10-4.7 [80] 
Zn5(OH)8Cl2(s) 10-29.1 [87] 
Zn5(OH)6(CO3)2(s) 10-41.01 [88] 
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Figure 18. (a) In-situ image of the surface of the galvanic cell after 5 
h of immersion in 0.03 M NaCl solution (top view), and (b) schematic 
view of the cut-edge (side view). 

 
 
lem with accumulation of precipitates with time. Thus, a post-
calculation procedure is used to simulate precipitation in the do-
main. 

 (ii)  Modelling Results 

(a) Simulation of galvanic current distribution 

 As heterogeneous and homogeneous reactions are taken into 
account some complex changes in the solution and at the surface 
of the electrodes can occur. It is why the basic modelling must be 
completed by the analysis of the corrosion feature.  

In this example, after few minutes of immersion of the sample 
in the electrolyte, precipitation of mainly zinc dihydroxides occurs 
and settles on steel forming a white line almost parallel to the cut-
edge length, as it can be seen in Fig. 18. Thereafter, these precipi-
tates accumulate without changing in a considerable way theirs 
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distribution on the cut-edge. Between the line and the coating, 
there are almost no visible corrosion products. The steel electrode 
can be split in two zones: a zone beyond the line, where zinc based 
white precipitates are observed (mark I); and a zone close to the 
coating, where almost no white corrosion products are visible 
(mark II).  

Consequently these phenomena must be integrated in the 
model. At this time of modelling set-up, it is difficult to ignore the 
current distribution analysis performed by SVET, which can be 
used here as an indirect entry data, as it allows to assume that the 
region II is a region where the cathodic reduction of oxygen is 
completely inhibited as shown in Fig. 18. It illustrates the im-
portance of in-situ probe techniques to be used in close relation 
with the modelling. In the following, all the simulations have been 
performed assuming on a part of one of the electrode, the steel 
(i.e., the cathode), the reaction of the reduction of oxygen is inhib-
ited by a surface oxide film.80 

Normal ionic current profiles has been modelled on a galvanic 
couple using the Laplace‘s equation as it was proposed by Crowe 
and Kasper,58 but without taking into account the effect of mass 
transport of species in solution. Considering the total current, i.e., 
migrative and diffusive components, a good fit is obtained be-
tween the experimental (Fig. 19a) and simulated (Fig. 20) profiles 
verifying the Nernst-Planck’s equation (Eq. 13).  

From an experimental point of view, the SVET measurements 
show it exits a stationary state of the galvanic cell itself. The mo-
tion of the solution is confined in the vicinity of the tip and limited 
in time (short scanning duration) and consequently the homoge-
nous and heterogeneous reactions involved in the self-healing of 
the steel sheet considered in the Nernst-Planck’s model are not 
disturbed. 

(b) Simulation of pH profiles 

 Nernst-Planck’s equation which accounts for the acido-basic 
equilibriums susceptible to occur in the solution allows to validate 
the experimental pH profile over the cut-edge. Figure 21 shows 
such an experimental profile performed 150 m above the sample 
surface and the corresponding simulated profile with or without 
the cathodic inhibition on 1900 m of steel.  
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(a) 

 

 
(b) 

 
Figure 19. (a) Normal current density at 150 m over the sample after 40 
min of immersion in 0.03 M NaCl (SVET measurement), and (b) normal 
current density at 50 m over the sample after 40 min of immersion in 0.03 
M NaCl (SVET measurement). 
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Figure 20. Simulated SVET profile (Solution of the Nernst-Planck equa-
tion). ORR is assumed to be inhibited on zone (II). The current density is 
the sum of the migrative and diffusive current densities. 

 

 
Figure 21. pH distribution at 150 m above the cut-edge at 3 h of immersion 
in 0.03 M NaCl: ( ) experimental data, ( ) simulated distribution, ( ) simu-
lated distribution with oxygen reduction inhibition on a part of steel (size of 
area II is fixed to 1900 m on steel). 
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It validates the necessary assumption in the definition of the 
geometry of the electrode boundaries: when a cathodic inhibition 
is assumed, simulated pH in solution above the coating and the 
inhibited area of steel is lower. Although SVET measurements 
give direct information on the surface reactivity and the cathodic 
inhibition on a part of steel, pH measurements need the numerical 
model to be interpreted in term of protective inhibition. 

(c)  Simulation of interfacial chemical reactions induced by the 
galvanic coupling 

 With the same numerical model, domains of stability of pre-
cipitated solid phases can be Domains of supersaturation are de-
limited by iso-lines corresponding to equality between reaction 
quotient and solubility product defined as the area where the solu-
tion is supersaturated (Fig. 22). 

A comparison can be made with optical observations of the 
corrosion products distribution on cut-edge (see Fig. 18a) showing 
a good agreement. This kind of simulation also highlighted the 
contribution of CO2 diffusion on the formation of carbonated spe-
cies 81 which have been previously mentioned as important species 
in atmospheric corrosion of such metallic systems.82 

 
 
 
 
 
 

 
Figure 22. Thermodynamic domains of existence of precipitated solid phase. 
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3. Resolution of the Nernst-Planck’s Equation in the Case of 
a Localized Galvanic Cell on a Real Microstructure 

(i)  From Phenomenology to Model 

 Compared to the previous example, galvanic coupling at the 
scale of the microstructure is not theoretically different as the same 
governing equations can be applied to model the corrosion behav-
iour. Nevertheless, only few modelling approach can be found in 
literature. It exits probably some difficulties in adapting numerical 
(mass-transport) models for simulating electrochemical reactions 
at the micrometer scale for local and selective corrosion. The 
works of Smyrl et al.10,45,64 already mentioned are probably the 
most advanced in this domain. Modelling in relation with micro-
structure has been also performed to validate the microelectro-
chemical characterizations of pitting on MnS sulphide in stainless 
steels by Suter et al.83 In this work a 1-dimensional mass transport 
model was applied to describe the corrosion in the vicinity of the 
inclusion-matrix interface where a local microcrevice crevice can 
be generated trapping aggressive chemical species. The results of 
the simulations confirmed that the pitting can be triggered by a 
critical solution chemistry mechanism due to sulphur species en-
richment in a chloride environment in the confined media at the 
matrix-inclusion interface.  

On the other hand the localized corrosion and more specially 
the role of galvanic coupling is largely discussed for aluminium 
alloys. In these alloys, microstructural corrosion e.g. pitting or 
intergranular corrosion (IGC) can be initiated at the interface be-
tween constituent intermetallic (IM) particles and the matrix. Most 
of the constituent particles contained in structural alloys have a 
simple cathodic behavior towards the matrix and support reduc-
tion. This reduction can be considered, in a simple way, as a four-
electron process:  

 
  O2 + 4 e– + 2 H2O    4 OH– (24) 

 
The morphological characteristic of a simple cathodic 

IM/anodic matrix system after corrosion is the formation of a 
groove or trench around the almost unattacked particle due to the 
matrix dissolution. This has been shown on iron rich particles in 
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6XXX matrix84,85,86,87 or on IM particles contained in 2024 (i.e., 
AlCuFeMn(Mg) or AlCu particles).88,89,90 

In near-neutral, unbuffered, low-chloride solutions, it is sup-
posed to be related to the destabilization of the oxide layer over the 
surrounding matrix due to local alcalinization.99,91,6 It can be con-
sidered, according to the results of several authors,92,93 that the 
driving force of the localized corrosion that occurs at the interface 
between constituent cathodic IM particles and the matrix of alu-
minium alloys is the galvanic coupling between the particles and 
the matrix. If a lot of experimental data obtained more and more 
by in-situ local probe techniques are available the question of ap-
plication of general modelling remains an open question. Some 
models based on the resolution of second Fick’s law for oxygen 
concentration allowed to illustrate the pH profile above and around 
a cathodic IM.94,45 

In the work of Alodan and Smyrl,45 the pH profiles over the 
particle were simulated by assuming a diffusion-controlled oxygen 
reduction reaction at the cathode and by setting a limiting diffusion 
current density of 0.1 mA cm-2, calculated for a diffusion layer 
thickness of 20 m and O2 concentration of 0.26 mol m-3. 

Hydrolysis of Al into AlOH3 at the anode was taken into ac-
count. The proton gradient at the anode is controlled by the oxygen 
reduction limit current density. For an initial pH equal to 7, the 
maximum pH was around 10 (Fig. 23a). In the studies,90,45 model-
ling was based on the resolution of second Fick’s law but the 
boundary current densities were set by experimental macroscopic 
passive dissolution current density measurements. No hydrolysis 
was considered at the anode. The pH profiles show that alcaliniza-
tion up to pH = 9.5 is predicted for an initial pH of 6. 

Even if the discussion on the role of alcalinization is always 
open, the question of the possible convolution of this pH profile 
with the effect of pH on dissolution of aluminium seems never 
asked even if surrounding trench around cathodic IM has been 
reported as shown in Fig. 24. It is obvious that the alkalinization 
clearly concerns the surrounding matrix and not only the IM (Fig. 
23a), of which the size is fixed to 10 m, whereas from the calcu-
lation the pH is higher than eight for a critical distance of about 25 
micrometers which could correspond to the grooving observed 
sometimes.  
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Figure 23. (a) pH profile along the plane in the radial direction and 1 m 
above from the centre of a disk (IM) of 10 m in diameter for a bulk pH of 
7. Reprinted with permission from J. Electrochem. Soc., 145 (1998) 1571, 
Copyright © 1998, The Electrochemical Society. (b) Influence of pH on the 
dissolution rate of pure aluminium. The curve is based on the mass loss rate 
measurement  (circles)  which has been converted in dissolution rate 
(squares) applying the Faraday’s law  assuming Al  Al3+ + 3 e–. Reprint-
ed with permission from J. Electrochem. Soc., 105 (1958)  629, Copyright 
© 1958 The Electrochemical Society.   
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Figure 25. FEM meshing for simulation on a 
cathodic IM/anodic matrix system microstruc-
ture. Height of electrolyte : 0.1 mm ; cathodic 
IM at boundary 3 : 10 m ; anodic alloy matrix 
at boundary 4 : 50 m; resin at boundary 5 : 40 

m. Boundary 2 is a symmetry axis. 
 

 
Figure 26. Arrays of Cu islands patterned 
using photolithography  and deposited by 
electron beam evaporation (10 nm height) 
on a thin films of Al (200 nm) evaporated 
onto Si substrates. Reprinted with permis-
sion from Journal of Metals, 53 (2001) 34, 
Copyright © 2001 The Minerals, Metals & 
Materials Society (TMS), Warrendale. 
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5) and the resin is 40 m (boundary 6). The thickness of electro-
lyte (boundaries 2 and 3) is 100 m. The length of each boundary 
must be in the same order of magnitude so that the calculation can 
converge. The mesh is refined around the interface between the 
anode and the cathode and between the cathode and the symmetry 
axis. 

This approach could also fit the experiments conducted by 
Missert et al.95 To simplify the study of the galvanic corrosion 
between IM and aluminium matrix in Al-Cu alloys, N. Missert 
proposed to simulate the IM by copper islands evaporated on the 
surface of a pure aluminium substrate.104 

It avoids considering the selective dissolution of the IM which 
in fact will lead to the increase in copper concentration: it explains 
the choice of the deposition of copper islands. The authors verified 
by fluorescence measurements with a confocal scanning laser mi-
croscope that pH is increasing above the individual copper islands. 
Unfortunately they did not observe local dissolution around Cu 
islands (Fig. 26) which could be used for validating the proposed 
simulation. 

Comparing to the iron-zinc couple largely described in the 
previous part, there is not a large amount of data concerning the 
anodic reaction which will govern the dissolution rate of the alu-
minium matrix which is mainly related to: 

 
  Al  Al3+ + 3e–  (25) 

 
On the other hand, in the aluminium system, the most difficult 

is to express the relation between the interfacial and homogeneous 
reactions. It exists different ways for modelling the anodic dissolu-
tion of the aluminium matrix as follows. 

As in Ref.96 it can be considered that hydroxide ions are dis-
solving the oxide film, that is composed of, for the sake of simplic-
ity, Al(OH)3. 

The dissolution reaction is : 
 
 Al(OH)3 + OH–  Al(OH)4

–  (or AlO2
– + 2 H2O) (26) 

 
One mole of Al3+, obtained by Al dissolution, is replacing one 
mole of dissolved Al(OH)3.99 Hence the overall reaction can be 
written as following : 
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 Al + 4 OH–  Al(OH)4
– + 3 e–   (27) 

 
Following the example of Alodan and Smyrl,45 a hydrolysis 

reaction can be taken into account as follows: 
 
 Al + 3 H2O  Al(OH)3 + 3 H+ + 3 e–  (28) 

 
Concerning the boundary conditions, the electrochemical po-

larizations could be defined theoretically from MEC measurements 
as illustrated in Fig. 27. 

These MEC experiment were performed in absence of aera-
tion control and it is difficult to define the cathodic reaction from 
this curve. Nevertheless the curve corresponding to the MAOI 
containing an IM particle confirms that the cathodic reaction is 
mainly distributed on the IM particle for such an aluminium alloy 
(6xxx). The IM particle represents 6 % of the capillary area and 
the cathodic current is more than 50 times higher, but does not 
exhibit a mass transfer control which is probably due to the non-
controlled aeration of the capillary (see Fig. 6b). 

Consequently, to simplify the choice of the boundary condi-
tion, for the IM it could be defined by imposing the oxygen con-
centration to zero at the surface of the IM and considering that  the  

 
 

 
Figure 27. MEC experiment on a 6xxx aluminium alloy. Two MAOI are select-
ed: representing the matrix (a) or a IM surrounded by a matrix (b). the surface 
ratio between the IM and the matrix is around 6%.  The tip of the capillary was 
in the range of 30 m. Polarization curves are represented on the left part high-
lighting the location of the cathodic reaction upon the IM. In this case the capil-
lary was not under argon shielding (see Fig. 7a).  
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resulting dioxygen diffusion flow governs the cathodic current. 
Considering a bulk O2 concentration of 0.26 mol m-3

,
 the condition 

CO2 = 0 is imposed as a boundary condition on the IM. The source 
of O2 is the boundary called air at which is set an O2 concentration 
equal to the bulk concentration. 

The cathodic current density is proportional to the resulting 
diffusive O2 flux: 

 
 jC = 4 FJO2  (29) 

and the OH– flux is equal to 4JO2. Whereas the anodic current can 
be related to the electrochemical potential via a Butler-Volmer law 
for dissolution of the matrix using the anodic part of the MEC ex-
periment for the matrix. 

(iii)  Modelling Results 

Following this, it is possible to evaluate the balance between 
the damage related to the galvanic contribution estimated from the 
Faraday’s law applied to the calculated surface current density 
distribution and the damage related to the dissolution related to the 
pH change relation.  

The latter is directly defined through the pH profile which was 
found very close from the results obtained by Alodan and Smyrl45 
as shown in Fig. 28. It confirms that there is a critical distance 
larger than the radius of the IM for which the pH is above the 
threshold value for the aluminium dissolution.  

To define the pH contribution to the total damage (Al dissolu-
tion), the dissolution depth associated with the pH is calculated 
from the radial pH distribution defined on Fig. 28 and by using the 
experimental law obtained by Pryor and Keir66 already mentioned 
in Fig. 23. It gives the dissolution profiles presented in Fig. 29a. 
On the other hand the global current density distribution obtained 
by the Nernst-Planck’s equation resolution, considering a mass 
transfer control of the galvanic coupling, can be used to estimate 
the damage applying the Faraday’s law. As shown in Fig. 29b the 
galvanic contribution can be expressed in terms of an anodic disso-
lution depth.  

 

Comparing the two contributions, it can be seen that the disso-
lution depth related to the pH is about 200 times less important  
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Figure 28. pH profile 1 m above the surface of the electrode calculated 
considering an oxygen diffusion limited cathodic reaction on the IM The 
hydrolysis reaction is considered to take place at the Al matrix. Axisymet-
rical FEM simulation (see Fig. 23). 

   
Figure 29. Calculation of the dissolution depth at the boundary between 
the IM particle  and the Al matrix. (a) Damage related to the dissolution 
estimated by using mass loss versus pH change  (see Fig. 23b) applied to 
the calculated pH distribution. (b) Damage related to the galvanic con-
tribution estimated from Faraday’s law applied to the calculated surface 
current density distribution. 
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than what the galvanic contribution. Indeed, dissolution depth ob-
tained with the calculated current is equal, after 24 h to around 4 

m whereas for the same time the pH contribution is about 0.07 
m. Unfortunately, this result needs to be experimentally validat-

ed. Consequently the question of the role of alcalinization in local-
ized corrosion processes at a cathodic IM/ Aluminium matrix in-
terface remains an open question. 

IV.  CONCLUSIONS 

In the first part of this chapter, experimental results illustrate how 
local probe techniques (SVET, microcapillary cell, pH probe) can 
be applied to quantify the corrosion on local electrochemical sites 
such precipitates, inclusions, intermetallics or defects on coated 
materials where galvanic coupling is the driving force. 

In the second part, the purpose is focused on the application of 
numerical simulations for analysing galvanic coupling of localized 
corrosion sites. Discussions are proposed on the interest of simula-
tions for validating the results of local probing and for predicting 
the localized corrosion behaviour (corrosion rate or corrosion pro-
tection). This second part confirms that modelling is important to 
clarify the complementary role of current and potential distribution 
and homogeneous and heterogeneous chemical processes occur-
ring during localized corrosion. The modelling approach an espe-
cially the validation needs a careful design or control of the metal-
lurgical microstructure. 
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1. INTRODUCTION 

Rapid advancements in electronic and telecommunication devices 
as well as increased concern on global warming have greatly in-
tensified the demands for a new generation of energy storage and 
conversion devices. One of the grand challenges is how to create 
devices with energy and power densities far greater than those 
available today. The key to the successful creation of such a device 
depends critically on the development of new electrode materials 
with novel structures that dramatically enhance the charge and 
mass transfer along surfaces and across interfaces. 

Conventional electrochemical energy storage and conversion 
devices are typically two-dimensional (2-D), a parallel arrange-
ment of planar cathode and anode separated by an electrolyte. In 
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this design, the improvement of energy density is often at the ex- 
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pense of the power density. For a conventional battery, for exam-
ple, as the thickness of the electrode is reduced, the power density 
increases due to the shortened distance of ionic transport, whereas 
the energy density falls because of reduced amount of active elec-
trode materials and the increased fraction of other cell components 
(e.g., separator). Similarly, the power density of a conventional 
fuel cell is often limited by the electrode polarization resistance of 
the 2-D configuration, due primarily to the restricted reaction are-
as/sites and inefficient electrochemical reactions. 

Nano-porous structures have attracted much attention in 
search for the next generation electrochemical energy storage and 
conversion devices because of their potential to achieve utmost 
power density without much sacrifice of energy density. Since 
batteries and fuel cells with nano-porous electrodes are exposed, 
respectively, to the electrolyte and the active gases in three dimen-
sions, the volume of the active materials can take part in the reac-
tions much more effectively, as compared to planar 2-D design. At 
the same time, proper design of porous structures for facile 
transport of active species might make it possible that the energy 
density is not traded for power density. 

A number of studies have focused on the creation of nano-
porous structures and their applications to electrochemical energy 
storage and conversion devices. These include a sol-gel derived, 
nano-structured aerogel/ambigel composed of a 3-D network of 
nano-scale particles,1-4 a 3-D hierarchically-ordered macro-porous 
solid with the inverted opal structure created by a combination of 
sol-gel chemistry and templating,5 an on-chip 3-D arrays based on 
microelectronics and microelectromechanical systems (MEMS) 
technology,6,7 and non-woven fibers by electro-spinning process.8 
While progress is being made in creation of 3-D nano-porous elec-
trodes with improved electrochemical properties,2,5 many chal-
lenges still remain in preparation of new 3-D structures of desired 
composition and performance. 

Hierarchical 3-D graded porous structures offer a possibility 
for developing batteries and fuel cells of high energy and power 
density.9 The highly open structures, prepared by an electrochemi-
cal deposition of metal/alloy accompanied by vigorous gas evolu-
tion, contain nano-, meso-, and macro-pores with graded pore size, 
ideally suited for the high-rate operation of batteries and fuel cells. 
After the pioneering works by Shin and Liu on highly-porous elec-
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tro-deposits of copper, tin, and copper-tin alloy,9-11 many interest-
ing studies (both fundamental and practical) based on this concept 
have been reported,12-20 including a couple of successful applica-
tions of the copper foam structure to creation of other metals or 
composites for electrochemical devices.15,16,18 

This chapter reviews some recent developments in fabrication 
of hierarchical 3-D porous structures by an electrochemical deposi-
tion process. In Section II, three typical porous structures are brief-
ly discussed, together with their unique properties for application 
to electrochemical devices. Presented in Section III are the prepa-
ration of 3-D electrodeposits of metals and alloy with micro-/nano- 
hierarchical pores. In Section IV, the effect of electrolyte composi-
tion on porous structure is discussed. Finally, Section V is devoted 
to the applications of these porous structures as electrodes in fuel 
cells and batteries. 

II. UNIQUE POROUS STRUCTURES FOR 
ELECTROCHEMICAL DEVICES 

For lithium batteries, porous electrodes with interconnected open 
pores have several advantages. First, the internal pores can ac-
commodate large volume changes associated with repeated cycling 
to minimize pulverization or disintegration of active materials dur-
ing battery operation. Second, the relatively large surface area will 
reduce the resistance to interfacial reactions and thus accelerate 
electrode kinetics. Further, it will reduce the solid-sate diffusion 
length and thus reduce the resistance to enhance mass transport 
through the electrodes. The following three porous electrode struc-
tures are widely used for electrochemical applications. 

1.  Nano-Powder Based Porous Structures 

Most of nano-structured materials are based on nano-sized parti-
cles of active materials. For lithium batteries, for example, a good 
electronic conductor (e.g., carbon) and binders are uniformly 
blended with nano-sized particles of active electrode materials to 
enhance the electronic conductivity and binding strength among 
the particles, respectively.  
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insertion (alloying)-extraction (de-alloying) of lithium during cy-
cling, possibly suppressing the mechanical disintegration of active 
particles during operation. Furthermore, significantly-increased 
active surface area (or surface-to-volume ratio) may reduce the 
resistance to the interfacial reactions, minimizing electrode polari-
zation. 

However, the high performance of this porous electrode may 
be unsustainable because of the inherent instability of the struc-
ture. As soon as the active species around the nano-particles start 
to be exhausted, the overall electrode process is possibly limited 
by the transport of active species from the outside into the porous 
structure. Analogous to ion transport through a porous separator,21 
the iR loss EiR across the porous electrode can be expressed as 
follows: 

 

  
AP
LTiEiR

2
 (1) 

 
where i is the current transferred; T is the tortuosity; L is the thick-
ness of the electrode;  is the electrolyte conductivity; P is the 
porosity, and A represents the apparent (projected) area of the elec-
trode. Equation (1) signifies the effect of structural tortuosity on 
the energy loss due to mass transfer across the porous structure. 
Clearly, to achieve high-rate performance, the tortuosity must be 
minimized. 

2.  One-Dimensional Porous Structures 

The effect of tortuosity becomes insignificant in 1-D monolithic 
channeled structures, as schematically shown in Fig. 1(b). The 
straight path for ion transport in the electrolyte gives the fast and 
open channel for ionic conduction while 1-D bulk structure pro-
vides short and continuous pathways for electron transport. The 
rapid transport of electroactive species makes the overall process 
facile, leading to increased energy and power densities. Moreover, 
as far as the wall of the 1-D structure can be controlled to be thin 
enough, reaction-induced mechanical disintegration of the elec-
trode can be suppressed and at the same time the extremely short 
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length (virtually, half of wall thickness) of solid-state diffusion 
accelerates whole energy conversion process. 

Long and narrow 1-D nano-porous structures, however, result 
in large loss of the driving force for the reaction, as evident from 
Eq. (1). Accordingly, it is quite unlikely that the ionic species 
moves rapidly inside or out of the 1-D nano-porous structure with 
narrow and deep pores.22 This is unfavorable for sustained high-
rate operation of the electrochemical devices. 

3.  Porous Structures with Graded Pore Size 

It is readily predicted by Eq. (1) that the transport of ionic species 
can be much improved when the structure has graded pores. 
Schematically shown in Fig. 1(c) is a simplified structure with a 
graded pore size. The graded porous structure with large pores 
around the orifice makes the reactants in the bulk electrolyte quite 
accessible to the porous structure and at the same time allows the 
products to move out of it. 

In spite of the reduced volumetric energy density to some ex-
tent, as compared to nano-powder based or 1-D porous structure, 
the graded porous structure must be one of the promising architec-
tures for high-rate and high-efficient operation of electrochemical 
devices. However, practical and cost-effective ways of fabricating 
the graded porous structures are yet to be developed for specific 
applications. The unique electrochemical methods to be presented 
in the subsequent Sections might open up a new possibility of cre-
ating the ideal porous structures needed. 

III.  PREPARATION OF THREE-DIMENSIONAL 
HIERARCHICAL POROUS ELECTRO-DEPOSITS 

1.  Fractals: Unique Porous Structures for Energy  
Applications 

A Fractal is defined as any curve or surface that is independent of 
scale. If it is blown up, any portion of curve or surface appears 
identical to the whole curve or surface. The fractal character of the 
object is quantitatively expressed in terms of fractal dimension. 
The objects with fractional fractal dimension are frequently ob-
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served in the universe, which indicates that the structural and other 
related properties are intermediate between the properties of the 
objects with integer dimension.23-25 

Exemplified fractal structure found in the electro-deposits of 
metal is the ramified copper, the shape of which is analogous to a 
tree with a lot of branches.26 Although highly-branched character 
of fractal electro-deposit of copper has a great possibility for high-
power applications where the large surface area of active materials 
is favorable, copper fractal has a couple of critical issues to be 
overcome before its practical use. One originates from the ductility 
of copper. 3-D electro-deposits of fractal copper are readily formed 
on the metal substrate. But, the copper trunks and branches with 
low mechanical strength hardly support the weight of sub-branches 
or their shaking due to the convective force in the electrolyte, re-
sulting in structural collapses and losing its original fractal struc-
ture. The other issue is the overgrowth of branches located inside 
the structure, reducing the internal pore volume and increasing the 
resistance to rapid transport of electroactive species through the 
porous structure. 

Under the circumstances, fabrication of self-supported 3-D 
fractal structures with high porosity and good pore connectivity 
would be the starting point to utilize the extraordinary character of 
fractals. The structural integrity (i.e., self-standing structure) may 
be achieved by tuning the macroscopic structure consisting of nu-
merous branches of copper. Further, overgrowth of branches with-
in the porous structure must be suppressed to retain sufficient po-
rosity for mass transport. These two critical issues will be dis-
cussed in the subsequent Section. 

2.  Formation Mechanism of Hierarchical Porous Structures 
with Graded Pore Size 

Generally, gas evolution is deliberately suppressed during the elec-
trochemical metal deposition process to enhance the qualities of 
deposits such as their compactness and adhesion to the sub-
strate.27,28 Thus, the potential for the creation of highly-porous 
structures by gas evolution during electrochemical deposition of 
metals has not attracted much attention. 

When gas evolution takes place simultaneously with metal 
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by applying constant voltage of 5 V. Well-defined foam structure 
with a porous wall was formed throughout the wire length, indicat-
ing the flexibility of the surface shape of substrate for creating 
foam structures. 

 (ii)  3-D Electro-Deposits of Cu-Sn Alloy 

 Since copper and tin electro-deposits have similar microscopic 
features, it would be interesting to explore the structure of electro-
deposits of copper-tin alloys. Here, adjusting the ratio of copper to 
tin ions in the electrolyte solution to get a required stoichiometry 
may be essential. Fortunately, the fact that large cathodic polariza-
tion makes the electrode potential far away from the reduction 
potential of deposited metal, gives a useful clue for preparing stoi-
chiometric Cu-Sn alloy: the atomic ratio of the metals in the de-
posits is virtually the same as the ratio of the metal ions in the 
electrolyte solution. This is supported by the experimental finding 
that the coulometric efficiency of the deposition was only about 35 
%, irrespective of copper and tin, indicating that the deposition 
rates of copper and tin are comparable during the foam formation 
process. 

Shown in Fig. 8 is a typical copper-tin foam structure prepared 
in an electrolyte of 1.5 M sulfuric acid containing 0.24 M copper 
sulfate and 0.20 M tin sulfate. The electro-deposit is characterized 
by typical foam structure like copper and tin. Moreover, the foam 
wall is highly-porous and full of numerous small grains. Pores of 
less than a few microns in foam wall are possibly caused by the 
hydrogen gas evolution on newly-developed copper-tin deposits, 
similar to the case of copper deposition. The atomic ratio of copper 
to tin of the deposit was estimated to be 1.18 using energy-
dispersive X-ray spectroscopy and the X-ray diffraction analysis 
showed the deposit was ’-Cu6Sn5, a low-temperature variation of 
Cu6Sn5.11 

The grain shape of the deposits is particularly noteworthy. 
Both the ramified character of copper branches and dendritic fea-
ture of tin branches totally disappear. Instead, the wall contains 
spherical grains of the order of hundreds of nanometers. This indi-
cates the growth habit of the deposits is drastically modified when 
copper and tin are electrochemically co-deposited. Copper-tin al-
loy is a promising option to substitute the graphite for negative  
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ramified feature of the foam wall remained relatively constant. 
This strongly indicates that the content of copper ions in the elec-
trolyte doesn’t affect the foam structure itself, but changes its for-
mation rate.10,31 

It is noted that the copper substrate was seen through the 
structure formed at 0.1 M copper sulfate. This implies the structure 
consists of one or two pore layers at most and the concentration of 
copper sulfate is very close to the minimum for the foam creation. 
On the other hand, there is no sign of the deviation of the electro-
deposit from typical foam structure even at 1.0 M copper sulfate, 
implying that well-defined copper foam structures can be prepared 
very quickly using concentrated copper sulfate solutions. 

Unlike copper electro-deposits, morphological change of tin 
electro-deposits with the tin sulfate content is quite visible. Figure 
10 tells us that the 3-D foam structure was barely developed at the 
very low content of tin sulfate (0.1 M). The foam structure starts to 
form in a 0.5 M tin sulfate solution and the structure formed in a 
1.0 M solution is characterized by relatively dense foam wall as 
compared to that prepared in a 0.5 M solution. This means the 
concentration of tin sulfate in the solution critically influences the 
foam structure and the details of the wall. Under the experimental 
conditions studied in this work, well-defined 3-D tin foam struc-
ture was formed in solutions with tin sulfate concentrations be-
tween 0.1 and 1.0 M.31 

The effect of metal ion concentration on foam formation be-
havior for copper and tin can be understood from the larger hydro-
gen over-voltage of tin than that of copper. As explained in the 
previous section, there is no virtual hydrogen evolution on the tin 
electro-deposits. Keeping in mind that hydrogen bubble liberated 
from the copper electro-deposits passes between the copper depos-
its and their branches, and thus makes the foam wall highly-
porous, the absence of hydrogen evolution on tin deposits is not 
desirable to form porous walls. It might reduce the porosity of 
foam wall and at the same time let the internal tin branches over-
grow esp. in solutions with high concentration of tin sulfate. 

It is still not clear why 3-D tin foam structures are difficult to 
form in solutions with low concentration of tin sulfate, as com-
pared to 3-D copper foam structures. Nevertheless, micrographs 
shown in Figs. 9(a) and 10(a) reveals that the bundles of copper 
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2.  Control of the Pore Size of 3-D Foam Structure 

As seen from the mechanism of foam formation illustrated in Fig. 
2, the details of the foam structures are critically influenced by the 
bubble size of the liberated hydrogen. In particular, the coales-
cence kinetics of hydrogen bubbles is of significant importance 
since the variation of bubble size during metal deposition process 
determines the pore size distribution inside the foam. The coales-
cence of bubble is known to be driven by the hydrophobic force of 
bubbles.38,39 When this force is sufficient to overcome the hydro-
dynamic repulsive force needed to expel water molecules between 
two bubbles, bubbles start to approach each other and are eventual-
ly combined. Accordingly, controlling the hydrophobic force is a 
key to achieving the control of bubble coalescence and hence the 
pore size and distribution of the foam structures. 

Researchers on the bubble dynamics have suggested that the 
inhibition of bubble coalescence in aqueous solutions can be real-
ized by the addition of specific additives that affect the water 
structure and hence the hydrophobicity of bubbles.38-42 Among the 
possible additives, acetic acid is known to be a strong bubble-
stabilizer.38,39 Further, it doesn’t introduce any metal ions that 
could be co-deposited as impurity to the copper deposits. Figure 11 
shows the effect of acetic acid on the pore size of the foam. The 
size of surface pores created in the solution containing 0.1 M ace-
tic acid, as shown in Fig. 11(b), was about half of the size of the 
pores created in the same solution without acetic acid, as shown in  
Fig. 11(a). This indicates that coalescence of hydrogen bubbles are 
effectively suppressed by the addition of acetic acid. However, it is 
noted that the foam layer was about 20 % thinner with the addition 
of 0.1 M acetic acid, implying that the overall deposition rate may 
be somewhat suppressed as well. 

Shown in Fig. 12 are the morphological changes in copper 
foam structures with the content of acetic acid. It is noted that the 
local abnormal growth of foam wall is clearly seen at the acetic 
acid content more than 0.1 M, as shown in the dotted circles of  
Fig. 12(a)-(c). In order to further investigate the overgrowth, cop-
per was electro-deposited for 90 s at 0.2 M acetic acid (Fig. 13). 
Overgrown foam wall is much thicker than the normal ones and its 
apparent porosity becomes significantly reduced. Also, it is notice-
able that 3-D foam structure is hardly developed when the content  
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cluding controlling the size of the branches in the foam wall, the 
composition of the material, and the mechanical integrity of the 
porous structure. 

A variety of additives have been studied to enhance the quality 
of the copper electro-deposits.47-54 In particular, chloride-
containing solutions, polyethylene glycol and bis-(3-sulfopropyl) 
disulfide (SPS), are known to help form void-free, seamless depos-
its. Among these, chloride ion is worthy of attention because a 
trace amount of it changes the electron transfer mechanism from 
outer-sphere reaction (water-water bridge) to inner sphere reaction 
(chloride bridge)55 and then accelerates the copper reduction reac-
tion.55-58 The effect of chloride ion on the wall structure of 3-D 
copper deposits has been recently reported.10 Shown in Fig. 14 is 
the morphological change of copper foam wall with the content of 
chloride ions in the electrolyte. It is noticeable that the wall struc-
ture became denser and the branch size was reduced to less than 50 
nm with increasing chloride content. This indicates that the growth 
habit of copper branches of 3-D foam structure is tunable by addi-
tion of relevant ions to the deposition bath, yielding much smaller 
branch size and higher wall densities. 

V.  APPLICATIONS OF HIERARCHICAL POROUS 
STRUCTURES TO FUNCTIONAL ELECTROCHEMICAL 

DEVICES 

1.  Copper-Ceria Composite Anode for Solid Oxide Fuel Cell 

The copper foam structure has been tested for construction of 
nano-composite anodes in solid oxide fuel cells. Shown in Fig. 15 
are the cross-sectional views of SSC (Samarium Strontium Cobalt 
Oxide) | GDC (Gadolinium-doped Ceria) | copper foam for the 
application of copper foam structure to solid oxide fuel cells. The 
copper foam has been created on the GDC electrolyte covered with 
thin gold layer. Then, the copper-ceria composite has been pre-
pared by the impregnation of Cu2+/Ce3+ solution, followed by 
high-temperature firing. It is noted that the microstructure of cop-
per-ceria composite was essentially the same as that of Cu foam in 
spite of the agglomeration of the copper branches in the foam wall 
during firing, as shown in Fig. 16. 
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surface area, and the length of triple phase boundary (TPB) where 
electrode, electrolyte, and gas meet. To achieve high performance, 
it is imperative to develop a process for fabrication of copper 
foam-based electrode structures on an electrolyte substrate that can 
preserve the unique microstructure of the copper foam. 

2.  Tin and Copper-Tin Alloy for Lithium Ion Battery 

Metal foam structure with highly-porous wall might find its best 
application in negative electrode for lithium ion batteries. While 
foam structure itself is quite beneficial to power density, the struc-
ture needs to be accompanied by active materials with high capaci-
ty, in order to maximize the battery performance. Tin is one of the 
most attractive candidates because it has much higher theoretical 
capacity (991 mA h/g) than graphite (372 mA h/g).59-61 However, 
its poor cycling stability due primarily to large volume change 
during lithium alloying/dealloying process makes it impractical to 
use pure tin metal as electrode for rechargeable lithium batteries.59 
At this point, it would be interesting to test if the tin foam structure 
of Fig. 6 can effectively accommodate the volume changes associ-
ated with alloying/de-alloying to improve the stability during cy-
cling. 

Tin foam and lithium metal are used as the working and coun-
ter electrode, respectively. The electrolyte was a 1 M solution of 
LiPF6 in a 50/50 (v/v) mixture of ethylene carbonate and diethyl 
carbonate. Figure 18 shows the initial capacity for lithium alloying 
reached as high as 750 mA h g-1. Unfortunately, however, the ca-
pacity loss was unacceptably large with cycling (10%/cycle). 
While it is likely that the disintegration of tin metal itself due to 
drastic volume change is suppressed by the capability of the struc-
ture to accommodate the alloying/de-alloying-induced stress, the 
separation of the foam structure from the copper substrate during 
cycling seems to be critical to poor cycling stability. The strategy 
for reducing volume change of active material is still necessary to 
improve the cycling stability of tin-based electrode. 

 

Sn-based intermetallic compounds are one of the most promis-
ing options to substitute tin metal. Typically, ductile metal is al-
loyed with tin to form SnxMey (Me: ductile metal such as cop-
per,34-37 nickel,62-64 and iron65,66). While Sn in SnxMey is readily 
alloyed with lithium and volume is accordingly expanded, the ab- 



3

 

324  

 

Figure 18. (a) V
for lithium ion 
of cycles. 

 

Voltage profiles of
battery, and (b) de

Heon

 
 

f the tin foam struc
ependence of spec

n-Cheol Shin and

cture as a negative
cific capacity on th

d Meilin Liu 

 

 

e electrode 
he number 



Preparation of Hierarchical Porous Structures  325 

 

rupt volume change is effectively buffered by a soft inactive ma-
trix, Me.67,68 Since copper-tin alloy proved to readily form the 3-D 
porous foam structure, the performance of SnxCuy alloy has been 
investigated. In particular, Cu6Sn5 intermetallic compound, envis-
aged in Fig. 8, has been chosen for the preliminary test.11 

The capacity retentions of the porous Cu6Sn5 as a function of 
cycle number and discharge rate are shown in Fig. 19(a) and (b), 
respectively. It is noted that Cu6Sn5 foam structure reacts reversi-
bly with lithium to deliver a specific capacity of about 400 mA h  
g-1 up to more than 30th cycle, indicating the cycling stability is 
much improved as compared to pure tin. In addition, rate capabil-
ity of Cu6Sn5 foam was quite encouraging: More than 50% of the 
capacity obtained at 1C rate can be delivered at an extremely high 
current drain of 20C rate.11 

VI.  CONCLUSIONS 

One of the critical challenges in fabrication of highly efficient 
electrochemical energy storage and conversion devices is the prep-
aration of 3-D hierarchical porous electrodes with proper pore size 
distribution, which promote the transport of electro-active species 
to (and products away from) the active reaction sites on the inter-
nal surfaces. The unique porous structures described in Sections III 
to V offer some possibility to the creation of unique electrode 
structures. However, many fundamental issues still remain. For 
example, while the large pores in the Cu6Sn5 foam shown in Figure 
8 are great for rapid transport of electrolyte and lithium ions, they 
are too large to achieve the required volumetric capacity and pow-
er density. In addition, the small grains (with size of hundreds na-
nometers) and the agglomerates of these grains seen in the foam 
wall may not be best suited to endure the stresses and strains in-
duced by volume changes during cycling. In Section IV, it has 
been suggested that the pore size was critically affected by the 
coalescence kinetics of hydrogen bubbles and the appropriate addi-
tive to reduce the hydrophobic force really makes smaller pores in 
the foam structure. The branch structure of foam wall was also 
tunable by modifying the growth habit of the electro-deposits. The 
effect of electrolyte additives on foam structure needs to be exten-
sively investigated to further tailor the 3-D foam structure. 



3

 
F

D

W

326  

Figure 19. Capaci
and (b) the disch
Dimensional Poro
ies, Adv. Funct. M
Wiley-VCH Verla

 

ity retentions of th
harging rate. Rep

ous Copper-Tin All
Mater. 15 (2005) 
g GmbH & Co. K

Heon

he porous Cu6Sn5
printed from H.-C
loy Electrodes for 

582. Copyright 
GaA. 

n-Cheol Shin and

with (a) the numb
C. Shin and M. 
Rechargeable Lith
(2005) with perm

d Meilin Liu 

ber of cycles 
Liu, Three-

hium Batter-
mission from 



Preparation of Hierarchical Porous Structures  327 

Combination of foam structure with functional materials is 
another intriguing topic. Combination of porous metal with active 
materials used for sensors, fuel cells, and batteries are particularly 
promising. Exemplary composites include copper-ceria (for the 
anode in solid oxide fuel cells as suggested in Section V),69,70 a 
variety of copper-tin alloys (for anode in rechargeable lithium bat-
teries),34-37 and copper-sulfur alloys or composites (for cathode in 
rechargeable lithium batteries.)71-73 Exploration of hierarchical 
porous structures of other metals or alloys (in addition to copper, 
tin, and copper-tin alloys) would be quite challenging. The works 
might focus on the optimal combination of electrolyte composi-
tion, driving force (i.e., polarization) and other deposition parame-
ters where the rates of metal deposition and gas evolution are 
comparable each other and at the same time, nucleation of metal 
deposits are extremely vigorous to create highly-branched or  
-particulated foam wall. 
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Surface-to-volume ratio, 301 
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