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Preface

This book presents the collective drift and MHD type modes in inhomogeneous
plasmas from the point of view of two fluid and kinetic theory. It is based on a
lecture series given at Chalmers University of Technology. The title of the lecture
notes is Low frequency modes associated with drift motions in inhomogeneous
plasmas. The level is undergraduate to graduate. Basic knowledge of electrody-
namics and continuum mechanics is necessary and an elementary course in Plasma
Physics is a desirable background for the student. The author is grateful to
A. Zagorodny, I. Holod, V Zasenko, H. Nordman, A. Jarmén, R. Singh, P. Anders-
son, J.P. Mondt, H. Wilhelmsson, V.P. Pavlenko, H. Sanuki and C.S. Liu for many
enlightening discussions, to G. Bateman, A. Kritz and P. Strand for collaboration on
transport simulation, to my collaborators at JET, J.Christiansen, P. Mantica, V.
Naulin, T.Tala, K. Crombe, E. Asp and L. Garzotti in modelling JET discharges and
to H.G. Gustavsson for help with proofreading. Thanks are also due to the Ameri-
can Institute of Physics, the American Physical Society and Nuclear Fusion for
allowing the use of several figures. Finally I extend my gratitude to my family,
Wivan, Henrik and Helena for their continous encouragement and support.

Gothenburg, Sweden Jan Weiland
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Chapter 1
Introduction

1.1 Principles for Confinement of Plasma by a Magnetic Field

The dominant purpose for confining plasma on earth is the achievement of nuclear
fusion. The main path to achieve this is by using magnetic fields. Thus a scientific
problem of major potential usefulness is the confinement of plasma by magnetic
fields [1-26]. The necessity of plasma for fusion on earth is that the thermonuclear
way of making nuclei collide by their thermal velocity is the only feasible way and
this requires temperatures of above 100 million centigrades. At such temperatures
matter is in its fourth state, the plasma state. A plasma can simply be described as an
ionized gas where the charge of the particles makes magnetic confinement poten-
tially possible. However, a magnetic field confines particles only in the perpendic-
ular direction. Even in this direction the confinement is perfect only if the magnetic
field is homogeneous and there are no other particles! Here, by confinement we
mean that this single particle is not moving across the magnetic field on the average.
When we have many particles, confinement means that we can maintain gradients
in density and temperature. This, on the other hand, means that the system is not in
thermodynamic equilibrium. For a plasma to be in thermodynamic equilibrium it
must be homogeneous and have a Maxwellian velocity distribution. Thus a con-
fined plasma will always be in a non-equilibrium state with different kinds of
energy available to drive instabilities. An important aspect here is also that the
magnetic field does not confine particles along itself. Attempts to cure this has been
made by various types of mirror fields but the dominant and most successful method
has been to bend the magnetic field into a torus. This introduces particle drifts due
to the centrifugal force and inhomogeneity in the fieldstrength and these can drive
instabilities. When the plasma density becomes sufficiently large, currents set up by
perturbations in the plasma can significantly modify the external magnetic field.

J. Weiland, Stability and Transport in Magnetic Confinement Systems, 1
Springer Series on Atomic, Optical, and Plasma Physics 71,
DOI 10.1007/978-1-4614-3743-7_1, © Springer Science+Business Media New York 2012



2 1 Introduction

Since thermodynamics always tries to take the plasma towards thermodynamical
equilibrium, the currents set up by the plasma generally tends to change the
magnetic field in such a way as to reduce confinement. When the current is mainly
associated with particle motion we have current driven modes (Kink modes) and
when the diamagnetic current is the main source we have pressure driven modes. The
large scale versions of these are called Magneto Hydro Dynamic (MHD) modes.
The instabilities of these mode, when fully developed, are so strong that a discharge
is terminated on a short time scale (disruption) and thus, the system has to be
designed in order to avoid these. Under operation MHD modes put the limit to
pressure and current thus defining Operational limits. When the most dangerous
MHD modes are stable we usually still have fairly large transport due to turbulence.
This is something we can live with and that has been taken into account in the present
ITER design. The turbulence is caused by small scale instabilities (microinst-
abilities) associated with drift motions in the plasma. The drift motions, in turn,
are caused by the inhomogeneities in density and temperature thus closing our
picture of relaxation in nonequilibrium systems. The corresponding eigenmodes
are called Drift waves. While geometry is very important for the large scale MHD
modes, drift modes can usually be described by the WKB approximation. Thus
although geometry is sometimes important also for drift waves, the physics descrip-
tion (fluid, kinetic) is usually more important. Another important aspect is that
transport is an irreversible type of motion and it requires irreversible properties of
the generating equations. Since instability is the very source of the turbulence, the
growth rate, as a part of the eigen frequency, also plays a very important role for
transport. It thus causes the phase shift between potential and density or temperature
(for E x B driven transport) which is needed for transport. The real eigenfrequency,
on the other hand, describes periodic, reversible, behavior that reduces transport.
This is why the dominant instabilities for transport are low frequency modes.
The most important drift waves typically have real frequencies about 2 orders of
magnitude below the ion cyclotron frequency.

In the present work we shall consider both macroscopic MHD modes and small
scale drift type modes. Since we need the more detailed two fluid and kinetic
descriptions for the drift-type modes we shall also use these for MHD-type
modes. This allows us to see the connections and to make the transition between
MHD and drift-type modes. We will, however, briefly discuss also the one fluid
equations. Concerning the two fluid and kinetic approaches, we shall discuss them
in rather much detail, discussing conditions for using two fluid equations.
In particular we will give three different derivations for the lowest order Finite
Larmor Radius (FLR) effect. Concerning wave particle resonances linear and
nonlinear theory may give very different results since the nonlinear resonances
have a tendency to counteract the linear ones. Here we expect the sources in
velocity space to play a crucial role. We may compare this with the situation
in real space where a background gradient is necessary for transport and we need
a source to maintain a background gradient on a long timescale. A special section
has been devoted to advanced fluid closures in toroidal systems.
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Since the magnetic field confines a plasma in only two dimensions, the method
of treating the problem with the third dimension is obviously very important.
In a tokamak the toroidal curvature represents the third dimension. This means
that the toroidal curvature is fundamental for the confinement. Its main obvious
consequences are the presence of curvature driven modes and trapped particles.
Since curvature is driving instabilities only on the outside of the torus, curvature
also leads to eigenmodes that are trapped on the outside. These are generally called
Ballooning modes. We note, however, that the term “ballooning mode” was origi-
nally introduced for the MHD ballooning mode and this meaning is sometimes still
assumed to be understood.

Although the effects of toroidicity mentioned above have been known and
studied for a long time, it is only since the end of the 1980s that strong
efforts have been made to include them fully in calculations of tokamak transport.
The main assumption to be removed from previous calculations of transport is that
the diamagnetic drift, due to the pressure gradient, dominates over the magnetic
drift which is due to toroidal (around the torus the long way) curvature and the
closely related radial variation of the magnitude of the magnetic field. When this
assumption is removed, a completely new regime of transport is introduced. This
regime usually persists in the inner 80% of the small radius in a tokamak. For shots
with highly peaked pressure profiles, such as supershots on TFTR, this regime is
somewhat smaller while it is larger for shots with broad density profiles such as
usual H-modes. In the new regime, transport coefficients tend to grow with radius
which is in agreement with experiment and which was previously a main problem
for drift wave models. In this regime the mode frequency is comparable to the
magnetic drift frequency and this causes a problem with the conventional fluid
closure, i.e. it requires advanced fluid models or interpretations. This will be
discussed in the section on fluid closure. Since kinetically nonlinear effects are
required close to resonances, the only alternative is to use a fully nonlinear
gyrokinetic code. Although much progress has been made in that field, nonlinear
gyrokinetic codes are still too time consuming to be run as transport codes only by
themselves. Thus some combined system of transport code with continuous
advancement of nonlinear kinetic transport coefficients in time is needed.
Concerning advanced fluid models, these generally make use of several moments
in the fluid hierarchy, making the closure at a level where remaining kinetic effects
can be treated by some simplification. The energy equation is generally kept with its
time dependence thus making a continuous transition between adiabatic and
isothermal states possible. While Landau-fluid models here introduce linear dissi-
pative kinetic resonances, the fluid model in Chap. 6 just keeps the diamagnetic
energy flow, arguing that we do not have sources for higher order moments unless
we have a heating source that is close to resonance with the drift waves. This is not
the case for drift waves if we consider usual Neutral Beam (NB) or cyclotron
resonance heating. Such a fluid model is here called reactive since the closure does
not involve dissipation. The situation is, of course, completely different for fast
particle modes (Chap. 8). A more advanced approach is to introduce a nonlinear
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frequency shift in the plasma dispersion function. This turned out to be quite
successful for the case of only three modes but is algebraically chumbersam and
has not been extended to a larger number of modes.

The significance of the ratio of magnetic to diamagnetic drift as the main toroidal
effect for transport is shown by the fact that it is the largest one (this ratio goes to
infinity at the axis), and that it enters dynamically through the pressure gradient.
Such dynamics is important in transitions between different confinement states. It is
also important to note that in the new regime mentioned above the density length
scale drops out of the stability condition giving a condition that depends only on
temperature and magnetic field length scales.

1.2 Energy Balance in a Fusion Reactor

Of course the theory developed for anomalous transport, as outlined in the previous
section, aims at determining the confinement time in a reactor by first principles
methods. In reality, the confinement times of new tokamaks have so far always been
predicted by empirical methods on the design phase. The performance of both the
previous (large) and the present ITER designs have, however, also been predicted
by first principles methods. We will here start by deriving the condition on
the confinement time required for energy balance or ignition in a fusion reactor.
The time derivative of the energy density in a plasma depends on incoming and
outgoing energy flows as:

ow
E:P“+P,«H—PS—PV (L.1)
Where
1,
P, =-n"E,<ov>
4
P 3nT
vV — ‘[E

Py =3.4-10""n,2Z4*\/T,

Ne = Z }’Zij

1
Zofp = — Z nizi®
ne &
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Fig. 1.1 Outgoing
and ingoing powers
in a fusion reactor
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The outgoing and ingoing energy fluxes are (Fig. 1.1):

3nT
P,=P,+P;+—
TE
3nT
Py=—+P;—P,
TE

Now, the electric power obtained from the energy outflux is nP,, and the electric
power required for heating is P;,/n,. Thus the condition for a driven reactor to
produce net energy is:

NNpPu 2 Pin (1.2)

This leads to the condition:

3n*T(1 — ;)
Py +nmyPn — (1 = 1m;,)Ps

ntg> (1.3)

Using the fusion cross section for the DT reaction in Fig. 1.2 we get the
condition:

ntgT > 102 m 3 sKeV (1.4)
where the product ntgT is generally called the fusion product. Equation 1.4 is the
condition for power breakeven Lawson criterion. If we require that we do not have
to heat from outside we get the condition

nteT >5102'm3s KeV (1.5)

which is the condition for Ignition (Fig. 1.3).
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Since experiments show that (1.3) cannot be fulfilled when MHD ballooning
modes are unstable, i.e. when (3.30) is not fulfilled we also obtain the condition

R 2
> L

1021
S
a B*/2u

(1.6)
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which now is a condition on tg alone. Here a is the minor radius, R is the major
radius, q is the safety factor (given by the ratio of toroidal angle to poloidal angle
variations as we move along a field line, Chap. 6) and B is the toroidal magnetic
field. As an example this limit takes the value 4 s for JET with B = 3.5 T and
I = 4.8 MA. The B limit (3.30) is due to MHD ballooning modes. When we also
include the stability limit due to kink modes (Chaps. 3 and 6) the maximum average
beta is given by the Troyon limit (1.8), [4].

1.3 Magnetohydrodynamic Stability

As mentioned above, MHD stability depends on both pressure and current driven
modes. A combination of such modes enter in the Troyon limit for the maximum
ratio of plasma and magnetic field pressures denoted .

nT
B=+7% (1.7)

7B

Ho
The Troyon limit is:
1
<p><g— (1.8)
CIB¢

Where < > indicates volume average, I is the toroidal current, B is the toroidal
magnetic field and g is a numerical factor between 2.8 and 4.4 which depends on
elongation and ellipticity. The Troyon limit, which concerns only ideal modes,
gives maximum average beta around 5%. However, long term confinement is
limited to average beta around 2.5% due to resistive modes. If we look at ballooning
and kink stability separately a usual condition for Ballooning modes is

where a is the small radius, R is the large radius and q is a measure of the pinch
angle of the magnetic field as will be given in detail later. It decreases with current.
Kink stability is on the other hand given by

q>

S 13

Where m is the poloidal (around the cross section) modenumber and n is the toroidal
modenumber. Thus we see that current destabilizes kink modes but stabilizes balloon-
ing modes. Thus the Troyon limit is a compromise between these conditions.
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8 1 Introduction
Another constraint of MHD type is the Greenwald limit.

ng = IMA/(naz) (19)

This is a limitation of the density where I, is the plasma current in MA. This
limit applies only at the edge and seems to be related to resistivity and radiation.

1.4 Transport

When the plasma B is in the MHD stable regime, the confinement is on good grounds
believed to be limited by turbulent transport. This transport has in a rather wide regime
for ohmically heated plasmas been observed to follow the so called Alcator scaling [5].

15 ~ 3.8 x 10*'nd® (1.10)

This scaling has recently been recovered theoretically as due to the dissipative
trapped electron drift mode [6] or the microtearing mode [7]. These modes are both
driven by temperature gradients and the density dependence comes from a depen-
dence on resistivity. A further discussion of the modes is contained in Chap. 6. When
the density reaches high enough values the Alcator scaling is saturated and a region
where 1g is almost independent of n enters. The energy transport in this region is
believed to be due to a drift wave driven by ion compressibility effects in combina-
tion with ion temperature gradients. This is the );mode [8] (n = dInT/dIn n) Asit
turns out both the trapped electron mode and the 1n; mode are in the experiments
typically not far from marginal stability [9] in the so called confinement region, of
the plasma. This is an indication that these modes actually govern the temperature
profiles giving rise to the so called profile resilience [10]. This is a typical feature
observed in tokamak plasmas where the temperature profiles are virtually indepen-
dent of the power deposition profile by neutral beam or radio frequency heating.
A close relation between modes driven by temperature gradients and energy trans-
port is also expected from thermodynamic points of view since a temperature
gradient means a deviation from thermodynamic equilibrium and since an energy
transport would tend to equilibrate the system. In connection with auxiliary
(non Ohmic) heating a degradation in confinement (L mode) has been observed.
In 1982, a new type of confinement mode, the H mode, was discovered on the
ASDEX tokamak in Garching [11]. In this regime the confinement time is a factor
2-3larger than in L mode. The confinement time does, however, degrade with power
also in H-mode. The transport research has, over the years, been conducted both by
empirical and first principles methods. Empirically one has derived scalings of
confinement time with various characteristic parameters of the experiments.
A very fruitful theoretical approach is to derive constraints on these scalings for
consistency with the basic physics description [12, 13] (see the next section).
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1.5 Scaling Laws for Confinement of Plasma
in Toroidal Systems

So far scaling laws have been used to predict the confinement in all new tokamaks.
The foundation for these is that it can be shown that the thermal conductivity in a
toroidal system has the general form:

P\ * L, a
X:DB(_>f(gnaﬁ7q7777_a_a"">
a a R

Where p is the gyroradius, &, = 2L,/Lg, L, and L are length scales of density
and magnetic field according to the general definition Lj = —j/(dj/dr) and Dg =
T/(eB) is the Bohm diffusivity. The coefficient a is a coefficient that characterizes
the transport. Thus while all parameters that are arguments of f are dimensionless,
independent of system size, the factor in front will determine the scaling with
system size and magnetic field. There are, in particular two types of transport that
have been observed and discussed in the literature. They are Bohm diffusion
corresponding to o = 0 and Gyro-Bohm corresponding to o = 1. In Bohm
diffusion, mainly observed near the edge, transport is due to rather global modes
that depend on the system size while Gyro — Bohm diffusion, observed in the core,
is due to local modes that depend more on the gyroradius. Gyro Bohm transport
gives a more optimistic extrapolation to larger systems with stronger magnetic
fields.
A widely used scaling of the confinement time in H mode is IPB98(y,1) [15]:

= 0.0562 - IPOA98n0A4lBT0A15R1.9780A58K0A78P70A69M0A19 (1 1 1)

1.6 The Standpoint of Fusion Research Today

As most of our readers know, ITER (The way in Latin) is now being built in
Cadarache, France. The design is essentially that of ITER Feat from 2001 but after
ITER was approved in 2006, a design review was conducted. ITER will be a tokamak
with 6 m large radius and 2 m horizontal minor radius with elongation 1.6. Its magnetic
field will be 5.3 T and the fusion Q 10 or more depending on plasma current. With
Q = 10 the fusion power will be around 500 MW. It has been constructed from
empirical scaling laws (like the IPB98(y,1)). However, dimensionless scalings from
the performance of today’s large tokamaks, like JET, JT60-U, DIII-D and Asdex
UpGrade have also been used. The ITER design is conservative, i.e. new
improvements that do not have sufficient reproducibility have not been included in
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the design. Examples are internal transport barriers, particle and momentum pinches
and the Hybrid mode.
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Chapter 2
Different Ways of Describing Plasma Dynamics

2.1 General Particle Description, Liouville
and Klimontovich Equations

In order to realize which approximations that are made in the descriptions of
plasmas that we generally use [1-25], it is instructive to start from the most general
description which includes all individual particles and their correlations in the six
dimensional phase space (r,v). I the absence of particle sources or sinks we must
have a continuity equation for the delta function density N:

NX, ) =Y (X = X(1)) X =(r,v) 2.1)

i=1
0 0 or; 0 ovi\
5[N+§[:a—ri(N5> +§i:8_vi(N5) =0, 2.2)

Since we have included all particles this system conserves energy if we ignore
radiation.

Thus there must be a Hamiltonian for the system and we use the Hamilton
equations:

Oy OH  0v; OH

S, S22 2.3a
ot Ov; ot or; ( )
Leading to the form
0 81‘,- ON 8v,- ON
TARDIY T DDt vkl (2:30)
J. Weiland, Stability and Transport in Magnetic Confinement Systems, 11

Springer Series on Atomic, Optical, and Plasma Physics 71,
DOI 10.1007/978-1-4614-3743-7_2, © Springer Science+Business Media New York 2012
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Using acceleration due to the Lorenz force we then get
0 0 0 0
— I L. + QW xe)) —¢NX,t)=0 2.4
{547 gt B 40 x o) AN )

Where we wrote en—lf" = Qcéu. This can easily be generalized to the electromagnetic
case. Equation 2.4 is written as a conservation along orbits in phase space. i.e.

DN
D=0
Where
D o0 _, 0 e= 0 L 0
E—Q‘FV'%-FEE'%-FQ(VX(BH)-%

Is the total operator in (2.4). Equation 2.4 is the Liouville or Klimontovich
equation. Since N(X,t), as given by (2.1), contains the simultaneous location of all
particles in phase space, it can be considered as a probability density in phase space.
It gives the probability of finding a particle in the location (r,v) given the simulta-
neous locations (r;,v;) of all the other particles. This is an enormous amount of
information which is usually not needed. This information can be reduced by
integrating over the positions of several other particles giving an hierarchy of
distribution functions (the BBGKY hierarchy) where the evolution of each distri-
bution function, giving the probability of the simultaneous distribution of n
particles, depends on that of n + 1 particles. Thus we need to close this hierarchy
in some way. This is usually done by expanding in the plasma parameter

1 T
8= 3 5 }~d:

dmen

Which is the inverse number of particles in a Debyesphere. When the plasma-
parameter tends to zero only collective interactions remain between the particles.
The effect is as if the particles were smeared out in phase space. When we study the
equation of the one particle distribution function and include effects of the two
particle distribution function (describing pair collisions) as expanded in g we get the
equation:

0 .0 e= 0 0 (o
{——Fv-_?—i-aE-a—V—i-Q(vxe) 8V}f(r vt = <E>M (2.5)
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where f'is the one particle distribution function and the right hand side approximates
close collisions (first order in g). Here various approximations like Boltzmanns or
the Fokker-Planck collision terms are used. If we can ignore close collisions
completely we have the Vlasov equation:

9 0 e . D -
{&‘FV : E,‘F EE %+Q(V X €H) ~%}f(l’,V,t) =0 (2.6)

2.2 Kinetic Theory as Generally Used by Plasma Physicists

The kinetic equations 2.5 and 2.6 are the equations usually used by plasma
physicists. Equation 2.6 is reversible like (2.4). This means that processes can go
back and forth. Equation 2.6 describes only collective motions. An example of this
is wave propagation. It is also able to describe temporary damping (in the linearized
case) of waves, so called Landau damping, due to resonances between particles
and waves. Since the plasma parameter g in typical laboratory plasmas is of the
order 10® collective phenomena usually dominate over phenomena related to
close collisions. We mentioned above the Fokker-Planck collision term for close
collisions. However, in a random phase situation also turbulent collisions can be
described by a Fokker-Planck equation. It can be written:

0 0 0 0
(5’+Va>f(x,v,t) =5 {ﬁv + DY E]f(x,v,t) 2.7

The Fokker-Planck equation is fundamental and of interest in many contexts.
One aspect is that it, in its original form is Markovian (particles have forgotten
previous events) but recently has been generalized to the non-Markovian case [23].
For constant coefficients it has an exact analytical solution [1]. It is interesting to
note that already two waves leads to stochasticity of particles, giving quasilinear
transport [17]. However, the solution of the Fokker-Planck equation, including
friction, leads to a saturation of the mean square deviation of velocity after a time
of order 1/B. A solution is shown in Fig. 2.1. For the turbulent case (§ and D"
depending on intensities of the turbulent waves), the initial linear growth of
<(Av)*> is according to quasilinear theory and would be predicted by the Chirikov
results. The saturation follows from Dupree-Weinstock theory [12, 13] which is a
strongly nonlinear renormalized theory. Thus in the flat region nonlinearities have
introduced correlations. This is analogous to correlations between three wave
packets introduced by nonlinearities in the Random Phase approximation [11].
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Mean square velocity deviation

<dv2> |
x1.E12

Fig. 2.1 Mean square velocitydeviation <(Av)*> as a function os time showing intitial
quasilinear linear growth and later saturation at t ~1/f

2.3 Gyrokinetic Theory

For low frequency (w<<€.) we can average the kinetic equation over the
gyromotion. This leads to the gyrokinetic equation:

(UJ—COD (VHZ, VLz) — kHVH) (f(l)k,w + &’;‘Ufo) oLk
= | (o — w')%(‘bk,w — v Ao(é) — il—i(éu x k) 'AkJOI]fO (2.82)

We will return to the derivation of this equation, and its nonlinear extension in
Chap. 5.

However, we will mention that the magnetic drift is the sum of gradient B and
curvature drifts as:

Vp = Vyp + Vi (2.8b)
where
v
VyB = mﬂ(e“ x VInB) (2.8¢)
2

v, = ::L (e x x) (2.8)
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and
K= (éH . V)EH (2.8¢e)

The drifts defined by (2.8c) and (2.8d) are the gradB and curvature drifts respec-
tively and (2.8e) defines the curvature vector. We here use & = B/B as a space
dependent unity vector along the magnetic field. In a slab geometry with fixed
magnetic field we instead use the unity vector z.

Since e it is generally used in inhomogeneous systems we will need to solve
eigenvalue equations. Then k| and sometimes even the magnetic drift frequency
will become operators. Since then the eigenvalue problem depends on the particular
velocity we are considering, the total eigenvalue solution will have to be averaged
over velocity space. Thus we have an integral eigenvalue problem. The fact
that magnetic curvature is destabilizing on the outside and stabilizing on the inside
of a torus will show in a dependence of wp on the poloidal angle. The density
perturbation from (2.8a) will be obtained by dividing by the first factor and
integrating over velocity.

Jo(O)*fod’v| (2.9)

on; ep . 1 T ® — [l + n,(mpv?/2T; — 3/2]
n; T; no J w_kHVH —(UD’.(VH2+VJ_2/2)/V‘}]2

We here took the electrostatic approximation just for the purpose of illustration.
The integral in (2.9) will have resonances corresponding to wave particle
resonances. However, as will be discussed later, in the nonlinear regime, nonlinear
frequency shifts may detune these resonances.

2.4 Fluid Theory as Obtained by Taking Moments
of the Vlasov Equation

An alternative to making the full kinetic calculation is to first derive fluid equations
by taking moments of (2.5) or (2.8a) (of course collisions can be added also to
[2.8]). Clearly, in general (2.9) contains less information than (2.5). However, if we
expand the fluid equations obtained from (2.5) in the low frequency limit the results
obtained from (2.5) and (2.8a) the results will be identical. The equations obtained
by taking moments of (2.5) are called fluid equations and the equations obtained
by taking moments of (2.8a) are called gyrofluid equations.

Fluid equations really describe a continuum where the local velocities have been
averaged over the particle distribution at every point. This leads to the presence of
fluid drifts that are not guiding centre drifts in an inhomogeneous plasma.
However, the macroscopic properties like the time derivative of the density are,
of course, the same whether we use fluid or gyrofluid equations. Another aspect
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which is not either a really dividing property is the fact that several authors have
added the linear kinetic resonances to gyrofluid equations. These are then called
Gyro-Landau Fluid resonances. However, this is just a question of habits of
different authors and, of course, there is nothing that prevents us from adding linear
kinetic resonances to fluid equations.

2.4.1 The Maxwell Equations

Since the ordinary fluid equations are what we will mainly use in this book we will
here start by including the Maxwells equations.

VXE:—%—I: (2.102)
V x B = ) +%It)u0 (2.10b)
V-B=0 (2.10c)
V-E:;% (2.10d)

Here (2.10a) is the induction law and (2.10b) is the ampere law. Here the last term is
the displacement current which will generally be neglected here since we consider
low frequencies where quasineutrality holds. Equation 2.10c is general and tells us
that there are no magnetic charges while (2.10d) will mostly be replaced by the
quasineutrality condition.

2.4.2 The Low Frequency Expansion

%—I—(V-V)V:%(E—FVXB)—%(VP+V~7I)+§=O 2.11a)
w<<Q,. =

VIi=VE+V,+V,+V,+V, (211b)

Vg = ! (E x z) (2.11¢)

B
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Fig. 2.2 Diamagnetic drift V.
_ 1! (z x VP) (2.11d)
Vi = an z .
1 /0 -
Vp—Q—C<E+V~V>(Z><V) (2.11e)

A usual approximation is to substitute the E x B drift into (2.11e)
This gives:

1 0
. gxz
7, :gQ_ 2.11g)

However, this needs to be generalized when we include Finite Larmor Radius
(FLR) effects.
Due to the bending of field lines we also have an electromagnetic drift

0B,

oL (2.11h)
By

VsB = V||

Here the diamagnetic drift is a pure fluid drift, i.e. it does not move particles
(Fig. 2.2).

Since the diamagnetic drift does not move particles it does not cause a density
perturbation i.e. (Fig. 2.2)

V-(v,) =0 (2.12)

Equation 2.12 is the lowest order consequence of the fact that the diamagnetic
drift does not move particles. In the momentum equation the stress tensor cancels
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Fig. 2.3 Magnetic drift.
The particle drift is
compensated by the fact that
more particles contribute
from the side with weaker
magnetic field in such a way
that there is no fluid drift

convective diamagnetic effects. Such effects are cancelled also in the energy
equation as we will soon see.

The magnetic drift is not a fluid drift because the guiding centre drift is
compensated by the fluid effect of having more particles from one side (Fig 2.3)

2.4.3 The Energy Equation

The highest order moment equation that we are going to make use of is the energy
equation. It is most commonly written as an equation for the pressure variation as:

3/0 5
2(&+Vj'V>Pj+2Pjv-Vj_—V'qj+ZjS (213)
j=i

where ¢ is the heat flux and Qj; is the heat transferred from species i to species j by
means of collisions. This energy exchange typically contains effects like Ohmic
heating and temperature equilibrium terms. It will be neglected in the following.
The heat flux q is for the collision dominated case (A>>1¢) according to Braginskii:

Wi xu) @14

3
—07ll’leU|| —KHVHT—KJ_VJ_T“"q*l"" Q

where U is the relative velocity between species j and i. The thermal conductivities
for electrons are given by

n.T.v,
KHe—316mEV€ K“:4'66mg‘2
and for ions by
I’l,’T,‘V,
=3. 9 i=2
KH[ m;v; . m,-QL.,-Z
and
5 P
4 =5 é (exVT;) (2.15)
2%
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If we neglect the full right hand side of (2.14) we obtain the adiabatic equation of
state for three dimensional motion, i.e.

% (Pn*) =0 (2.16)

which holds for processes that are so rapid that the heat flux does not have time to
develop. When div v = 0 which is a rather common situation, the pressure pertur-
bation can be taken as due to convection in a background gradient. This will be
further discussed later.

Another usual form of the energy equation is that obtained after subtracting the
continuity equation. It may be written as:

3 0
En/(5t+vj~V)Tj+PjVovjV~qj 2.17)

Equations 2.13 and 2.17 are fluid equations and the velocities thus contain the
diamagnetic drifts. As it turns out these drifts cancel in a way similar to that in the
momentum equation but now due to the heat flow terms, i.e.

%nv* VT —Tv,-Vn= %nv* -VT (2.18a)
3
Env*-VT—TV*-Vn:—V-q* (2.18b)

Where w, = k ® v,. We can then write the energy equation in the form:

%n_; <§ + Ve, - V) T;—T; (% + Ve, - an> ==V Qg (2.19)
Where v, here is defined as the guiding centre part of the fluid velocity, i.e. without
the magnetic drift and qg; is q; as defined in (2.14) but without the diamagnetic
heatflow, i.e. (2.15). As we will see later, in a curved magnetic field also (2.15) will
contain a guiding centre part. Equation 2.19 shows that the relevant convective
velocity in the energy equation is the guiding centre part of the fluid velocity.
The term coming from div v is

8 .
Fr;j + Vg - Vij = =nV - Vgej = V- (nv+))

Where the last term is a pure magnetic drift effect. From this follows also that the
convective velocity in (2.16) does not contain the diamagnetic drift.
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Another useful equation of state may be obtained at low frequencies and
small collision rates for electrons. In this case the energy equation is dominated
by the div ¢ term so that the lowest order equation of state is q = 0 or x|V T = 0.
Now V|| = (1/B)(Bg + 0B) - V so that, after linearization

By -VOT +6B-VTy=0 (2.20)

If the perpendicular perturbation in B is represented by a parallel vector potential
we obtain the equation of state:

[om
oT; = —’i/ﬂj%f‘u (2.21)

where n; = d InTj/d In n;

Although the above expression for  has been derived by assuming domination
of collisions along B(2>>I;) the equation of state (2.21) can also be used to
reproduce the electron density response in the limit <<k v, obtained from the
Vlasov equation. The reason for this is that it arises as a limiting case that does not
depend on the explicit form of .

With regard to the cancellation of the diamagnetic drifts this effect is very
important for vortex modes since typically the perturbed part of v« is of the same
order as vg. The application of (2.16) for such modes thus depends strongly on this
cancellation and the relevant convective velocity in d/dt is the guiding centre part of
the fluid velocity.

2.5 Gyrofluid Theory as Obtained by Taking Moments
of the Gyrokinetic Equation

We will now consider equations obtained by taking moments of (2.8a). These are in
principle equivalent to fluid equations. Finite Larmor Radius (FLR) effects are
included to all orders in gyrofluid equations already at taking the moments while
FLR effects in fluid equations have to be obtained by extensive work with convec-
tive diamagnetic and stress tensor effects. We refer the reader to Ref [25] in order to
see how FLR effects are included in gyrofluid theory. An important difference
between gyrofluid and fluid equations is that gyrofluid equations do not contain the
pressure term perpendicular to the magnetic field. This simplifies a lot although as
mentioned above, taking the moments of the gyrokinetic equation, involving
magnetic drifts and Bessel functions is more complicated in itself.

Averaging the magnetic drift (2.8b) over a Maxwellian velocity distribution
we get:

Vp = Vyp + Vi (2.22a)
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where

T

VvB = 7(6“ X VIHB) (222]3)
mQ,

T
T mQ,

Vi (EH X K) (2.220)

The main particle drifts in gyrofluid theory are the ExB drift, vg, the polarization
drift, v, and the magnetic drift vp. Gyrofluid theory is a theory for the motion of
guiding centres so diamagnetic or stress tensor drifts are not present. While the
perpendicular motion is pretty much given by the drifts just mentioned (the Coriolis
drift is added in combination with a toroidal flow) the parallel motion (without
flow) is given by (2.23) [25]. This equation is interesting since the parallel motion
should be the same for guiding centres and ordinary fluid while fluid equations do
not have a convective magnetic drift.

85UH
ot

+ 2vp - V(SUH = —2’” -V (0p + eng) (2.23)

2.6 One Fluid Equations

A characteristic property of the low frequency expansion of the two fluid equations
(2.11a-h) is that the dominant guiding centre drift, the E x B drift, is the same for
electrons and ions. Thus in some sense we expect the plasma to move as one fluid.
Now we know that this can only be an approximation since the drift velocities due
to pressure gradients are different for electrons and ions. However, for the strong,
global, Magnetohydrodynamic instabilities, the instability is much faster than the
drift frequencies introduced by the density and temperature gradients. In this limit it
can be useful to introduce one fluid equations. These are derived by adding or
subtracting the equations for electrons and ions after multiplication by the respec-
tive masses. If course, this is a formal procedure that can be used to introduce also
the individual drift motions of ions and electrons. Then, however, the equations are
no longer one fluid equations. The basic one fluid equations are:

dv
= B - VP 2.24
P J x v (2.24a)
E+vxB=nlJ (2.24b)
d .
~(Pn’)=0 (2.24¢)

dt
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Here we used the convective derivative d/dt = 9/0t + v e grad, p is the mass
density, m is the conductivity and vy is the adiabaticity index usually taken as 5/3.
Equation 2.24a is the equation of motion, (2.24b) is usually called Ohms law and
(2.24c¢) is the equation of state.

Here (2.24a) retains both ion and electron inertia although electron inertia can
almost always be ignored. Ion inertia corresponds to including the ion polarization
drift in the two fluid equations. The one fluid equations have been used extensively
in order to determine MHD stability of various magnetic configurations. In particular
an energy principle method was introduced which was used for pioneering work in the
beginning of plasma fusion research.

In the present book we will consider both the global MHD instabilities and
microinstabilities important for transport. Since two fluid, or kinetic descriptions,
will be needed for microinstabilities, it will thus be more convenient to use a two
fluid approach in order to obtain a unified description.

2.7 Finite Larmor Radius Effects in a Fluid Description

Up to now we have neglected diamagnetic contributions to the polarization drift
and the stress tensor drift. As it turns out these are related to finite Larmor radius
(FLR) effects. We shall show here how the lowest order FLR effects can be
obtained by a systematic inclusion of these terms.

We will initially for simplicity neglect temperature gradients and temperature
perturbations. This leads to the relation

Vv, = lV -(z x Vn/n) =0 (2.25)
gB

Since also V - vop = 0 we can to leading order use the incompressibility condition
V - vg = 0 when substituting drifts into v, and v,;. We will also assume large mode
numbers, i.e. k>>k = dIn ny/dx and dx/dx = 0.

From the stress tensor as given by Braginslii we can obtain effects of viscosity
related to friction between particles and collisionless gyroviscosity, which is a pure
FLR effect.

The relevant gyroviscous components are:

B T (dvy vy 1 (dq, Oqy
Ty = Tox =50 (ax - a—y) T30, (& ~ oy (2:262)

_ AT (dvy Ov | 1 (0q, D4y
T = 7T =g, (a " ay> T, (ay T (2:265)
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Here q is determined by the fluid truncation and will include higher order FLR
effects. We note, however, that the part of q- corresponding to a flux of perpendic-
ular energy is (compare Eq. (6.30))

PA
q, " =2—1(exVT),)
my c

We will start by including only density background gradient

B Oy Oy T T (Ovy Ovy\dn
Vom = Ty T 0 M T <ax ay) dx
_ Omyy n onyy  nT A T (8vX 8vy> @

v (n)y Ix dy 29, Vot 20, \ ox 8_y dx

These equations can be written in a more compact form as:
nT 1. -
V- (n) =~ [z XA v+ k(Vvy —1z x VX)]
2Q,
We now obtain:

1 nT _ 1 1 -
Vn:ﬁ%(,z xV.n:—ZpZALV—FZp%{(Z X vy + Vvy)

Here p is the gyroradius of a general species. Since we are usually interested in
substituting our drifts into the equation div j = 0 we need to calculate expressions
of the form div(nv). We then find, including only linear terms in k.

V-(nvy) = vz - Vng + ngV - vy,

1 1 1
= —szvno AV — sznoALV -V 4+ ZPZKI’IQALVX

Now assuming div v = 0 We obtain:
L,
V- (nvy) = — 2P Vng - Av (2.27)
The polarization drift can be written in the form:

1 /0 ~
V,,ZQ—E(&—FV-V)(ZXV)

We start by observing that due to our large mode number approximation only
perturbed drifts will enter in the last v. Then in the linear approximation the v term
in the convective derivative can only be a background v. The only background v
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that we are interested in here is the diamagnetic drift. We will then start by
considering the contribution from this term to div(nvp). It is:

n ~ n Ovy  0Ovy
g)—C(Vﬂ< V)V (Z X V) _Q_C(V* V)(ay —g)
771 23 8Vx78vy
= 2Kl’lp By <8y 8x> (2.28a)

Now adding (2.27) and (2.28a) we find (with Vng = —knoXx):

V- (nve) + V- <—(v*~V)V~(i x v)>

0 (Ovy Ov 1 0
=— Av, — —knp* — X2 ) = p*kn—V v = 2.2
prINAYS 5 KIp ady (ay 8x> 2PN Ox v=0 (2.28b)

We thus find that convective diamagnetic contributions to div(nvy) are exactly
cancelled by the stress tensor contribution div(nvy,).

This result can easily be understood from a physical point of view since the
diamagnetic drift is not a particle drift and cannot transfer information by convec-
tion. We now have the general result:

V- [n(vp+va)] =V [Qi g(ﬁ X V)] (2.29)

It is also interesting to compare (2.29) with (2.12). In order to obtain a result
corresponding to (2.12) for the gyroviscous part of the stress tensor drift v it is
necessary to add the convective diamagnetic parts of the polarization drift which
are of the same order in k*p?. We may thus consider (2.29) to express the same kind
of physics as (2.12) but for drifts that are first order in the FLR parameter k?p? .
Since (2.12) is no longer true in the presence of curvature (compare 6.23) the same
is expected for (2.29).

The leading order linear contributions to (2.29) are now:

n 0 - 1,0 e
Q—Ci§V'(ZXVE)7 E laA?l
n 0 ~ 1,0

Q—U&V'(ZXVH)——EI’IP[ E‘A(Sn

Here only the perturbation in density contributes to the last term. We now have
to specialize further to a particular density response. For flute modes, which are of
particular interest in this context, the simplest leading order density perturbation is
the E x B convective, i.e.
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n w

on Wy e
T (2.30)

We then obtain in (®,k) space:

V- [n(vp +va)| & —%nkzp,-z(‘cw + Wse) eT—d) = —ink?p*(w — w.;) ;—(b (2.31)

e e

The result (2.31) is in agreement with kinetic theory (compare Chap. 4). The FLR
effect enters as a convective contribution to the polarization drift but is in fact due to
the time variation of the perturbed diamagnetic drift.

2.7.1 Effects of Temperature Gradients

The main source of modification in the presence of temperature gradients is a
compressibility of v.. Thus (2.24) is changed into:

Vv, =2y [1 (z x VT)} (2.32)
qB n

Since (2.25) contains n only in the combination P = nT, (2.26) remains unchanged
if we change the definition of «k into x, = —(1/Po)dPy/dx. We then have:

1 1 1
V-(nvy) = — ZpZVnO ALV — sznoAlV -V + Z,OZKH()AJ_VX
1, VT 1

= 74mQZAlV'q,} (2.33)

where the last term is due to the q parts of (2.25a,b). As it turns out it cancels the div
v. term. Thus (2.27) is changed into:

V- (nvy) = — lp2 ! VP, - Av (2.34)
20T
Since, in the presence of temperature gradients, v. in the convective derivative of
the polarization drift contains the full pressure gradient we now find that (2.28b) is
unchanged (with our new definition of k) and so is the conclusion in italics
following it and (2.29). Since background pressure gradients in a natural way
lead to convective pressure perturbations we now must write:

n 8 ~ o piza
7iV'(ZXV*)—— 7

—AoP 2.35
o (2.35)

N —


http://dx.doi.org/10.1007/978-1-4614-3743-7_4

26 2 Different Ways of Describing Plasma Dynamics

For the convective pressure perturbation we have:

oP;  wur ed
no w T;

(2.36)

where o, is the diamagnetic drift frequency of ions due to the full background
pressure gradient. Accordingly, (2.31) becomes:

V- [n(vp + V)] = —ink*p* (0 — wir) eT—‘/’ (2.37)
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Chapter 3
Fluid Description for Low Frequency
Perturbations in an Inhomogeneous Plasma

3.1 Introduction

We will now start to apply our fluid equations discussed in Chap. 2 to some
fundamental modes in inhomogeneous plasmas. The literature in this field is
extensive [1-49]. We will here start by studying the effects of the inhomogeneities
themselves, without complicated geometry. We will also usually simplify our
description so as to disregard temperature perturbations and background gradients.
Such effects are very important but lead to considerably more complicated
descriptions and will be considered in Chap. 6.

The main reason for our interest in these modes is their potential importance for
anomalous transport and also for more macroscopic convective instabilities as, e.g.
the kink instability. Since we are here going to avoid too strong effects of geometry
and boundaries we will restrict consideration to the WKB case, i.e.
k, >>grad(In n) corresponding to large mode numbers in a torus. These modes
also have k| <<k and if toroidal effects are included they require the solution of an
eigenvalue problem along the magnetic field. The effects of this eigenvalue prob-
lem will here only be hinted.

Our basic geometry will be that of a plasma slab with the density gradient in the
negative x direction and the magnetic field in the positive z direction (Fig. 3.1). Ina
toroidal machine x corresponds to the radial coordinate, y to the poloidal coordinate
and z to the toroidal coordinate. A local mode will have an extent in the radial
direction which is much smaller than the typical scale of background variation.
The most rapid variation, however, often takes place in the poloidal, y direction and
when ky>>k, the equations can be conveniently simplified by neglecting k, as will
sometimes be done in the following. This also has the advantage that we avoid the
radial eigenvalue problem. Details of eigenvalue problems will be postponed to
Chap. 6 (Fig. 3.2).

J. Weiland, Stability and Transport in Magnetic Confinement Systems, 27
Springer Series on Atomic, Optical, and Plasma Physics 71,
DOI 10.1007/978-1-4614-3743-7_3, © Springer Science+Business Media New York 2012
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Fig. 3.1 Slab picture of
a magnetized plasma
with a density gradient

Fig. 3.2 A perturbation
following a field line in
a torus

As mentioned in Chap. 2, electron motion along the magnetic field lines has a
stabilizing influence on the modes we consider. For small k| the electron motion
along the field lines is less efficient for cancelling space charge. This is the reason
for our interest in modes with, small k||, 1.e. we assume:

k‘|<<kl

In this case the main variation of the mode is in the perpendicular plane.
The parallel electron motion is quite different for different modes that we will
consider in the following. We may here separate two classes. The first class is that
of drift waves for which E| # 0. The second class is the Magnetohydrodynamic
(MHD) type modes for which E; = 0. In the first case the electrons are essentially
free to cancel space charge by moving along the magnetic field while in the second
case the parallel electron motion is strongly impeded either by a very small k;| or by
electromagnetic induction. As will be shown in Exercise 8 also the effects
of magnetic induction on E;| increase for small k|| but the direction of propagation
(sign of ) also strongly influences Ej which has a maximum close to the electron
diamagnetic drift frequency.
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Fig. 3.3 Convective cells
y A

¢ max ¢ min

v

As shown in Chap. 2 a vorticity Q = V x g = (1/Bg)A, is associated with the
perpendicular motion of all these modes. This means that the fluid motion forms
rotating whirls. For periodic variation in x and y the velocity typically has a structure
as shown in Fig. 3.3 where we have shown one wavelength in the y direction.

The figure shows the characteristic “smoke ring” structure caused by the opposite
senses of rotation of the E x B drift around potential minima and maxima. The actual
fluid velocity is that shown in the figure while the structure as such moves with the
phase velocity of the wave. It is rather obvious from this picture that vortex modes are
strong potential candidates for causing anomalous transport, i.e. the fluid motion
(convection) tends to mix regions of higher and lower density. As is intuitively
clear, however, if the perturbation is purely harmonic in time and space also the
fluid motion will be completely harmonic and no net transport takes place. When there
is a net damping or growth, however, this coherent picture is modified and a transport
takes place. This will be shown in the end of this chapter as quasilinear diffusion.
Of particular interest in connection with convection is the convective cell mode. It has
zero real part of the eigenfrequency and thus corresponds to a stationary convection in
Fig. 3.3. In this situation a very small irreversible effect in terms of linear damping or
growth or spatial “phase mixing” is enough to cause a substantial transport.

3.2 Elementary Picture of Drift Waves

Drift waves are basically electrostatic modes introduced by inhomogeneities in
density and as we will show in Chap. 6 in temperature. However, electromagnetic
effects on drift waves are often needed and introducing electromagnetic effects will
make it possible to make the transition between drift type and MHD type modes.
A characteristic feature of drift waves is that their parallel phase velocity is between
the ion and electron thermal velocities:

Vani < kﬂ <<Vihe 3.1)
[l
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Fig. 3.4 Elementary drift
wave geometry

We now specify the background density gradient to be in the negative x direction
while the background magnetic field is in the positive z direction.

The zero order diamagnetic drift v.. of the electrons due to the background
density gradient will then be in the positive y direction and takes the value:

_ KT
- CBO

Ve

where kK = —(1/ng)dny/dx.
In the analysis of low frequency waves, the magnitude of k| is very significant.
We may write the parallel equation of motion of electrons as

6V‘|e
el "ot

(3.2)

The left hand side of (3.2) is due to electron inertia. It enters only under extreme
conditions such as e.g. for the collisionless skindepth or collisionless tearing modes.
For drift waves it is neglected due to the electron part of (3.1). For a slow process
we can also use an isothermal equation of state. Then (3.2) leads to:

29 _T. on,

eaz_ne 0z

Which can be integrated to:

e _ ped/Te (3.3a)
ny

Equation 3.3a is the Boltzmann distribution which is usually a good approxima-
tion if k)| is not too small. Writing n. = ng + on. and expanding the exponential for
ew/T. we find (Figs. 3.4, 3.5):

on. ed
. T—e (3.3b)
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Fig. 3.5 Mechanism of y
drift wave propagation

«—Vg

V}’lo —PVE
N
X

Fig. 3.6 Convective density n A
perturbation

This result is in agreement with our previous estimate for the validity of
quasineutrality. This field will cause an E x B drift vg, in the x direction as
shown in Fig. 3.6. This drift will, due to the background density gradient cause a
change of density in such a way that the perturbation moves in the positive y
direction. Now ignoring magnetic curvature, V - (nv,) = 0, and V - (vg) = 0, we
obtain from the linearized continuity equation for ions by including only vg,

on i dno

-1 «— =20 3.4
(9t+VE dx 34
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In (3.4) we dropped the parallel motion of the ions. This is permitted for small
enough k| since then the first inequality in (3.1) becomes strong. Equation 3.4
describes the density variation due to convection mentioned above. It corresponds
to an incompressible motion Introducing

1 9¢
VBT TR, oy

We now obtain from (3.4)

1 Ony 18q§1dn0_0

ny Ot By 8y ng dx

We now use quasineutrality

oni _ one (3.5)
n; Ne
Then using also (3.3b) we arrive at
¢ 99
Gty =0 (3.60)

We now assume a perturbations varying sinusoidally in time and along y.
We then obtain the simpliest possible dispersion relation for drift waves:

= W, (3.6b)

where we introduced the electron diamagnetic drift frequency w.. = KyVee.

3.2.1 Effects of Finite Ion Inertia

We are now interested in extending the result of the previous section. As it turns
out, effects of ion inertia, which cause the drift motion of electrons and ions to be
different, are also associated with compressibility. First we note that the Boltzmann
distribution for the electron density (3.3b) is also obtained for ion acoustic waves
propagating along B, and corresponds to an expansion of the kinetic integral for the
density perturbation in the upper limit of (3.1).

If we assume the ion temperature to be very small, so that the region (3.1) usually
considered for drift waves is wide, we may drop the ion pressure term and obtain:

_kyjed
Viji == —
w m;

3.7
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Including now also the ion polarisation drift for the perpendicular motion and
still assuming k, = 0 we have

¢ - i 0 ¢ -
Box k QCiy—i—v., (3.8)

Vli:lky yB—Oa

Introducing now (3.8) into the ion continuity equation assuming ky>>k using
(2.12) and vg = 0 we find

on; w KT Tk’
_n:<w__>_+_|_>@ (3.9)

no (&) m[QC[Z m; ? T,

Combining now (3.9) with (3.3), using the continuity equation we obtain the
dispersion relation:

o’ (1 4+ k7°p%) — wwee — ke =0 (3.10)
where we introduced
c
Py = Q— (3.11)

and ¢y = Tc/m;. The term kyp, originates from the ion polarisation drift and
represents the influence of ion inertia. p is the ion Larmor radius at the electron
temperature. The dispersion relation (3.10) is represented in Fig. 3.7.

Thus we have seen that the polarization drift enters in the same way as an FLR
effect. Because of this it is convenient to rewrite the expression (2.11f) for the
polarization drift in the electrostatic case as:

)
v, = —p52<5+v-v>v% (3.12)

From Fig. 3.7 we realize that for large k| the drift wave turns into the ion acoustic
wave. Clarly ion parallel motion may be neglected when kjci<<w.e if

(kyp,)’<<1.

For comparison we note that for typical JET parameters we have ¢, ~ 10°m/s
and ve. ~ 10° m/s, i.e. we have to require kj<<k,10™* in order to drop the
parallel ion motion. For the Boltzmann distribution of electrons to be valid
we require Kjvie>>Kky vee Which means k;>>0.25 k, 10~ for JET. The interest
in such small k|| is mainly due to the fact that instability is likely to occur in this
region.
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Fig. 3.7 Two dimensional .
dispersion diagram for drift ,."""'K11C5
waves
y
-Ky1Cs

3.2.2 Drift Instability

As long as the electrons are free to move along Bg to cancel space charge, the
Boltzmann relation (3.3) is fulfilled and the drift wave is stable. There are, however,
several effects that may limit the mobility of the electrons so as to modify (3.3).
These effects are generally more important for small k; and may be, e.g. electron
ion collisions, Landau damping, electron inertia or inductance.

If the electrons are not able to move completely freely there will appear a phase
shift, corresponding to a time lag between density and potential in (3.3). We then
modify (3.3b) as

on. ed :
n—O_T—e(l—lé) (3.13)

By replacing (3.3b) with (3.13) in the derivation of (3.6) we obtain the result:

Wee ~ .
w:mwahe(l +15) (314)

if we assume & << 1. We note that due to the time variation efi““, 6 > 0 means
that the potential lags behind the density. This situation corresponds to an
instability.
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3.2.3 Excitation by Electron-Ion Collisions

As an example we will now consider the collisional drift instability. We assume the
ordering

O< <V <<Qy (3.15)
where vy; is the electron-ion collision frequency. In the regime (3.15) we may for

small k; include the effect of electron ion collisions on the electron parallel motion
but continue to drop electron inertia. Dropping the parallel ion motion we then find:

kT .
Vije A i— <@—5i) (3.16)

Taking the limit k, = O we have:
Vie= —ikygi + Vee

We then get from the electron continuity equation:

. one . kT, ep kuzTe ep on,
— % eBo Te  vem, \Te no

Which reduces to:

on,  ep We + ik*Dy,

= 3.17
no Te w+lk||2DH ( )
where
T,
D= (3.18)
MmeVei

is the parallel diffusion coefficient.
For the orderings already introduced it is reasonable to assume that k||2D|| >> o
Thus expanding (3.17) we obtain:

one _ 6@5 . MeVei
T [1 PR w)l o
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By identifying 6 in (3.14) with the corresponding expression in (3.19) we find
from (3.14) that we have an instability if ® < ®.. We find:

MeVei

5 Wee(Dee — ) (3.20)

[l e

Imw =

Since, however, we have Re w<w,e, from (3.6b) we realize that we need some
additional effect in order to have an instability. Since the ions are not so strongly
influenced by collisions with electrons we use (3.10) with k; = 0 for the ion density
perturbation. Combining this equation with (3.19) we find the dispersion relation:

e ee(@ee — ) =0 (3.21)

1 k2 2 = o ei

Writing the solution as ® = ®, + iy where y<<®, we find

O R Wepe (1 — kyszZ) (3.22a)
me 2,2 2

VY= Vi Wee ky Py 3.22b

Y k||2Te y Ps ( )

We see from (3.22b) that the ion inertia, kyp, is essential for an instability to
develop. We may explain the instability in the way that the ion inertia causes the
particle drifts of electrons and ions in the perpendicular plane to become different.
This leads to charge separation effects if we have a density perturbation and due to
the electron-ion collision the electrons are not able to instantly neutralize the charge
separation by moving along the magnetic field.

3.3 MHD Type Modes

As mentioned in the beginning of this chapter there are two classes of low frequency
modes, drift modes and MHD type modes. While the drift modes are characterized
by essentially free electron motion along the field lines leading to the Boltzmann
distribution (3.3b) or minor modifications thereof, the MHD type modes are modes
where the parallel electric field to lowest order vanishes. This can in the electrostatic
case be accomplished by a very small k| (w>>k| vie) and in the electromagnetic
case by a cancellation between electrostatic and induction parts of E. In both cases
the parallel electron motion is strongly impeded and as a consequence new types of
instabilities may arise. These unstable modes may be divided into two classes:
pressure driven modes, here represented by interchange and ballooning modes,
and current driven modes, here represented by kink modes. The transition between
MHD and drift type modes in a simple case is shown by Exercise 3.8.
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3.3.1 Alfven Waves

As an example of a simple two fluid derivation of an MHD mode we will now show
the derivation of Alfve’n waves. This is the most fundamental MHD type eigen-
mode and Alfve’n waves were originally called Electromagnetic hydrodynamic
waves. We start from the quasineutrality condition

V.j=0 (3.23a)

Since V- (nv,) =0 and the E x B drifts are equal, only the polarisation drift
contributes to the perpendicular current. Thus (3.23a) becomes:

1
V. (nvp) ==V ‘jH =—AA (3.23b)
Ho
Where we used
Now the MHD constraint
E; =0 (3.24a)
or
1
Aj=—9¢ (3.24b)
w

can be used to express (3.23b) in only the potential. We then get the dispersion
relation for Alfve’n waves:

w® =Kk *va® (3.25)

~Bs_ s the Alfve'n velocity.

oI
This derivation is probably simpler than with the one fluid equations.

where vy =

3.3.2 Interchange Modes

One of the most dangerous modes in fusion machines is the Interchange mode,
sometimes also called flute mode, which tends to interchange “flux tubes” of
different pressure, thus causing a convective transport. (Compare also the section
“Interchange modes analyzed by the energy principle method”). Interchange modes
are unstable when the magnetic curvature generates a centrifugal force, due to
thermal motion along the field lines, which is directed in the opposite direction of
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Fc  centrifugal force

equivalent to gravity

cross section

Fig. 3.8 Interchange of fluid elements in a cylinder

Ny
b ———————  [1{>)

g Ny

Fig. 3.9 Rayleigh-Taylor instability

the pressure gradient. As a simple example we consider a z-pinch with only poloidal
magnetic field. The figure shows fluid elements that would tend to change places.
A simple fluid analogue of this instability is the Rayleigh-Taylor instability when a
heavy fluid is resting on a light fluid. The density gradient here corresponds to the
pressure gradient for the interchange mode while the gravity represents the centrif-
ugal force (Figs. 3.8, 3.9).

The gravity may thus be used to simulate a curvature and this is the main reason
why we included it in Eq. (2.11a). We will here neglect finite Larmor radius effects
that would correspond to diamagnetic drift contributions to the polarization drift
and stress tensor drifts. We will also make the approximation k| = 0 (flute mode).
This is the most unstable mode since a mode with k; # 0 would tend to bend the
frozen in magnetic field lines, thus increasing the magnetic energy. We may obtain
a dispersion relation by substituting the drifts into the low frequency condition:

V.j=0
In the present case this gives

V- [en(vpi + Vgi — Vge)] =0
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A linearization, using again k| <<k, leads to:

1 0
noV - [—m (aﬁ- Vi - V) VJ_(]S:| + (Vgi — Vge) -Véon=0 (3.26)

The density perturbation can here be obtained from the electron continuity
equation. Note that this is a special case! We consider v, to be small. We may
then ignore it in the continuity equation:

99
a?e-i-vE-Vno =0
Or
0 o
e _ ac €¢ (3.272)
ny o T,
Substituting (3.25) into (3.24) we obtain the dispersion relation:
m, k2
o(w —kyvg) = —K(gi + —g(,> =2 (3.27b)
m; kJ_

where k¥ = —dIn(n)/dx. We note here that if the gravity is replaced by a real
curvature ¥ = —dIn(P)/dx. We here easily recognize the part w? = —k g
corresponding to the Rayleigh-Taylor instability. When g; is due to curvature we
have g, =2 T;/m; R. where R, is the radius of curvature. Then the dispersion
relation may be rewritten as

(T, +Ti) k>

o(w —kyvg) = — P R

(3.28)

The drift kyv,; here is stabilizing. This means that modes with small k, are the
most unstable modes. As it turns out the lowest order FLR correction has the same
influence but is typically larger than the drift term kept here. In the fluid description
this instability is due to the density gradient in a very simple way, i.e. the fluid
motion happens in the direction of the gradient. In a plasma the convection is also in
the direction of the pressure gradient but the actual physical process is more
complicated since in a plasma forces in the perpendicular plane primarily give
rise to motion perpendicular to the force. The source of the instability is the
difference in gravity (curvature) drifts of electrons and ions which in combination
with a density perturbation leads to a charge separation. When k)| =0 the electrons
cannot short circuit this charge separation which leads to an electric field that is
perpendicular to the pressure gradient and the magnetic field. When the pressure
gradient and the gravity have opposite directions this electric field causes an E x B
drift which enhances the original perturbation (Fig. 3.10).

The real frequency caused by k,v,; is stabilizing since it changes the polarity of
the field. A gravity due to field curvature is shown in Fig. 3.11.
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Fig. 3.10 The mechanism TVn g
of interchange instability 0 X l
E— |. «— Vg
2 3 = - g —_- - X
_____ T o .

Fig. 3.11 Gravity
representing a centrifugal
force

3.3.3 The Convective Cell Mode

If we let kK — 0 in (3.27) the two branches become uncoupled and we have one
mode with ® = 0 and one with ® = kyv,; {The mode ® = 0 corresponds to a
stationary convection (compare Fig. 3.3) and is called the convective cell mode}.
When finite ion Larmor radius effects are included, the ion diamagnetic drift
frequency is added to v,;. This means that we have two different modes also if
we let R, — o0. In areal system with curvature and density gradient the convective
cell thus turns into the interchange mode. Since it has no variation along the field
lines it will experience the average curvature along the field line. This curvature is
usually favourable in a tokamak leading to a real eigenfrequency. This will tend to
reduce the transport (compare Chap. 9).

3.3.4 Electromagnetic Interchange Modes

In a physical system with magnetic shear (see Sect. 6.2) the approximation k| = 0
cannot be exactly fulfilled since the mode has a finite extension in space and since
the magnetic field direction is space dependent. Another situation may be when the
average curvature is stabilizing but there are local regions along a field line where
the curvature is destabilizing. In order to see qualitatively what the consequences of
a finite k|| will be, we shall here simply include a finite k; into our simple slab
geometry. In this case our previous description for the perpendicular motion
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Fig. 3.12 The magnetic B,
energy increases when a

field line bends. This effect

is stabilizing

continues to hold. For the parallel direction we may neglect ion motion assuming
®>>k| ¢s compare (3.11). The parallel electron motion can in the simplest case be
described in the same way as for shear Alfve’n waves, i.e. we combine the Ampe’re
law along the field lines (2.18) with the perfect conductivity condition (2.19). Then
using (2.17) in the form

V-j,=-V 'j||
we arrive at the dispersion relation

26(Te + T;) ky*
w(w = kyvgi) — kjPva® = — % ﬁ (3.29)

The new effect here is the bending of the field lines, represented by the Alfv’en
frequency. This effect is stabilizing since the line bending increases the magnetic
energy as (Fig 3.12). For small k, the dispersion relation (3.28) leads to a pressure
balance condition for stability. In a torus with periodic curvature and unfavourable
curvature regions of length L. ~ 2nqR.. where q is the safety factor (compare the
chapter on toroidal mode structure) we may to order of magnitude take k)| ~ 1/qR
where R is the large radius and ¥ = 1/a where a is the small radius. The pressure
balance condition for stability then takes the simple form

B<B. = 7R (3.30)

where f = 2uon (Ti + Te)/B? is the ratio of plasma and magnetic field pressure
(or energy density). This [ limit is typical of ballooning modes in toroidal
machines. These modes are interchange modes localized in regions of unfavourable
curvature and are one of the main limiting instabilities for the achievable B in
tokamaks (Fig. 3.13).
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Fig. 3.13 Field line curvature

Another source of finite k| is the radial extent of a mode in a system with shear.
We may here think of the previous slab quantities as averaged over the mode
profile. The averaged curvature may be written:

K\ o1dpP
R./ ¢ RPar

where 6 is a factor due to averaging and we introduced the radial coordinate
r instead of x.
The averaging of k)| leads to (compare Chap. 6).

<kj>~ A's/qR

where s = dIng/dlnr and r is the radial coordinate. We then obtain the stability
condition:

dlnp

A's)*> — 5B4*R
(A's)™> —ofg"R—

(3.31a)

As it turns out (a discussion of this result will be given later) (Fig. 3.13).

For a z-pinch where the magnetic field is purely poloidal the problem becomes
singular since q = 0. If we, however, treat q as small but finite we obtain § = —r/Rq?
and the q dependence disappears. We then obtain the Suydam criterion [2]

1,  dp
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Fig. 3.14 Ballooning mode
perturbations on a torus

For a torus with both poloidal and toroidal magnetic field it can be shown that
6 = (r/R)(1 — 1/q2) and the stability condition turns into the Mercier criterion [2]
(Fig. 3.14).

1 2 dﬁ 2
25 o (1=)>0 (3.32)

This means that the average curvature is stabilizing for q > 1 and instability is
only possible for ¢ < 1. The Mercier criterion holds only for modes that are highly
elongated along the field lines and experience only the average curvature. When
localized ballooning modes are taken into account the possibility for instability
increases strongly and a rather typical B limit is /2.

3.3.5 Kink Modes

One of the most dangerous instabilities in current carrying cylindrical and toroidal
plasmas is the kink instability. It corresponds to a bending of the whole system
(global mode) so that the change in magnetic pressure tends to increase the
perturbation (see Fig. 3.15).

Although this mode is most easily visualized for global perturbations in combi-
nation with sharp current boundaries, the only necessary ingredient is a background
current gradient perpendicular to the magnetic field.

We will here include the kink mode in our previous analysis by including a
background current with a gradient in the x (radial direction). If we neglect the
associated frequency shift (w>>k; v||) the only new terms we need to include are the
vgp drifts in (2.11h) for electrons and ions. This leads to a new contribution to div JL as

oB oB
m0¥ - [e(nivyon = nevioe) 5| =5+ Vo (3.33)

where J|o is the background current. Keeping also our previous driving pressure
term we may write the equation div j = 0 as
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Fig. 3.15 Kink perturbation

1 B
——2-VAA| =~V - |envy + en(Vgi — Vge) +J |0 (3.34)
Ho Bo

where A = —(i/®)zegrad¢ according to the condition that E|; = 0. Proceeding as
before but now neglecting for simplicity also the frequency shift due to the ion
gravity drift we obtain the dispersion relation for k; >>| grad In n |:

W0 = kPva 2(T. +Ti) k* | Bo kjky dJjo

3.35
mR. k2 nom; ki dx (3.35)

Since div 6B = 0 the dive has to operate on the background quantity Jjjo in the
last term of (3.35).

This has the consequence that the kink term usually is small for local modes
since also k|| is small. As it turns out, however, the only new term that arises if we
relax the condition k| >>| grad In n |, | grad In Jjo| is the density gradient contri-
bution from the polarization drift. This effect is usually neglected for global modes
so that (3.35) can in fact be written as an eigenvalue equation for such modes.
The kink term may also become important locally if the background current
gradient is locally large. With grad(ln ny) &~ —1/a where a is the small radius,
the B limit (3.29) is modified to:

pe @y e Yo
~ ¢*R  Bogk, dx

(3.36)

where we used k|| ~ 1/qR. The condition (3.36) shows that the kink term decreases
the B limit (destabilizing) if d J;o/dx <O which is the typical case. If we write

d JHo/dx = — Kpen v|o we obtain the B limit in the form:
a Q”‘VHO
= G*R  kiva? bd (3-37)

For the kink term to change the f limit appreciably we need k,a = 5 for typical
tokamak parameters if kiva =~ Q.
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3.3.6 Stabilization of Electrostatic Interchange Modes
by Parallel Electron Motion

In the preceding section we have found that interchange modes may be unstable for
zero kj or when kg >kH2 vaZ. In the opposite case when k| va becomes large the
mode becomes electrostatic. (This will come out of the kinetic treatment in Chap. 4
but can also easily be seen from the fluid equations as shown by exercise 8).

In the electrostatic limit when w<<kjvpe the electrons are Boltzmann
distributed, i.e.

one e
T (3.38)

This relation comes out of the parallel equation of motion and is not influenced
by gravitation. For the ions we may use (3.29) where the gravitation introduces
a doppler shift, i.e. @ — w — kyvg; and where we neglect kuzcsz.

% _ < Wee ky2,052> % (3.39)

no @ — kyVgi T,
Then using quasineutrality we obtain the dispersion relation

Wee
o= m — kyvgi (3.40)
This is just the dispersion relation for an ordinary drift wave where a frequency shift
kyv,i has been added. Thus there is no instability. The reason for this is that the
electrons are free to move along the field lines to cancel space charge. In the
electromagnetic case the electron motion along the field lines is impeded by magnetic
induction, thus providing the necessary conditions for instability.

3.3.7 FLR Stabilization of Interchange Modes

As it turns out the lowest order FLR effect is often significant and introduces
qualitatively new effects while the higher order effects usually only modify previ-
ously known results. We shall here demonstrate the stabilizing influence of FLR
effects on interchange modes. This is now very easily done by just replacing div
(nvp;) with (see Chap. 2)

V- [n(vp +v2)] = —ink?*p* (0 — wur) ;—4’ (2.37)

e
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_>
VX.
_>
_> g
vn, Ve,
4—
VE
<

Fig. 3.16 The ion diamagnetic drift causes a propagation which changes the polarity of the charge
separation

This result can be verified by using the stress tensor v,;. This means that the
lowest order FLR term can be obtained by just shifting ® by m.; in the ion
polarization drift. This effect is, according to conventional estimates, larger than
the shift due to the gravity drift in (3.26) due to the following estimate. When v; is
due to curvature and gradB drifts it may be written:

T Piy, (3.41)

The diamagnetic drift may be written:

T,‘K 1
~ - kP 3.42
mRCQCi 2 Kprth ( )

[Vei| =

Now R, is typically approximated by the large radius R in a torus and x is on the
average over the profile 1/a where a is the small radius. We thus arrive at the estimate

Vgi

a
~2— 3.43
R (3.43)

Vei

When a << R we may thus consider the gravity drift to be small (this is no longer
fulfilled for the newest generation of large tokamaks). As will be pointed out later,
Kk is typically much smaller than 1/a in the interior of tokamaks so the magnetic drift
should usually not be considered to be small. However, this leads to major
complications for using fluid models and particular advanced closures have to be
used. Thus for the time being we will consider the magnetic drift to be small.

The dispersion relation then takes the form (Fig. 3.16):

21(Te + T;) ky?
(0 — wur) — kPva® = —% ﬁ (3.44)
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With the solution

1 1 2k(T, + T;) k2
= et £ || = Our + k) PVa2 - 2 3.45
w 2w T \/460 T+ K||"VA MR k.2 ( )

The stabilizing FLR term changes the 3 limit as given by (3.29) to

1
B < qziR g Ouir’aR [va? (3.46)

This is an important effect for modes with large k. In a tokamak there are,
however, unstable modes with so small ky that FLR effects can be neglected within
the present description. When curvature effects that are higher order in a/R and
geometrical effects in D-shaped tokamaks are included, however, it appears that
finite Larmor radius effects have to be included as well. In addition to the stabilizing
effect we also notice from (3.45) that the mode now has a finite real part of the
eigenfrequency also at marginal stability and in the unstable case. This real part of
 corresponds to propagation in the y direction and is in fact the reason also for the
stabilizing effect.

The interchange of fluid elements by convection, which is the fundamental
instability we are considering, is a fluid motion and the fluid only moves in the x
direction (if we neglect k). The perturbation, however, propagates in the y direc-
tion, causing a change in the direction of convection after a time T = 2 m/w.;r. We
then realize that if this time is short as compared to the time needed for the
instability to develop it will become stabilized. The physical interpretation of
the FLR effect is a modification of the E x B drift due to the inhomogeneity of E
along the gyro orbit. This effect is usually only important for ions and leads to a
charge separation in the presence of a density gradient. This charge separation will
have different sign in region where vg is directed in the positive or negative x
direction and leads to a propagation of the perturbation in the y direction.

3.3.8 Kinetic Alfve’n Waves

In order to exemplify the modification of MHD type modes in the presence of a finite E}|
we will now study a mode which is of a particular interest for the heating of fusion
plasmas, the kinetic Alfve’n wave. For simplicity we will here take the limit of a
homogeneous plasma and assume that T;<<T.. We will start by generalizing the
Boltzmann distribution (3.3) to the electromagnetic case. This is straightforward by
just adding (e/m)dA /dt to the right-hand side of (3.2). This leads to

%_6(/) w €AH

no o Te kH Te

(3.47)
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In the case of a homogeneous plasma we may completely neglect perpendicular
electron motion. The electron continuity equation may then be written

__zv'jHe =0 (3.48a)

Now, neglecting parallel ion motion (w>>k|cs) we may write Jjle & Jj and
make use of (3.23b). This leads to

one  kyki? 1

n w  ppen
Since
1 _32 mi_VAz_pzvze
2 — — A2
Upen  ponm; eB* QB § T,

We then obtain

5}19 k” eAH
g 2p 2l 2200
1 Ps wVA T,

(3.48b)

Combining (3.47) and (3.48b) we obtain:

Ay = kH/w
I 1 —klzpszkusz2/0)2

Using this result instead of (3.24) in the derivation of (3.25) we obtain the
dispersion relation of the kinetic Alfve’n wave

o =kva®(1+ k. %p) (3.49)

This is the most simple form of the kinetic Alfve’n wave. The heating properties
of this mode are related to singularities in the mode structure in plasmas with
magnetic shear. The origin of such singularities is discussed in the section of kink
modes in Chap. 6. As is easily verified the k*p? part of (3.49) is due to a parallel
electric field which may be expressed as

kZPZkHZVAZ

2 2 |
w? — /Q_ pszk” VA2

E|=i

These results can easily be generalized to inhomogeneous plasmas as we will
soon see (Exercise 8).
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3.4 Quasilinear Diffusion

We shall now consider the particle transport due to low frequency modes in
magnetized plasmas. We start by observing the correspondence between the conti-
nuity equation and the diffusion equation, i.e.

On
E + V- (l’lV) =0
may be written
on
i -V () (3.50)

where I is the flux which, according to Fick’s law fulfills
I'=—DVn (3.51)
where D is the diffusion coefficient and (3.50) reduces to the diffusion equation

on
e V - (DVn) (3.52)

Equation 3.52 is only of interest in so far as it describes a secular steady state
diffusion. We thus want to average (3.52) over the harmonic time and space
variation of the fluctuations. In an inhomogeneous plasma a harmonic wave will
always obtain a superimposed slow space variation of the amplitude due to the
inhomogeneity, i.e.

o= ¢ (x)e k) L e (3.53)

Where the inhomogeneity is in the x direction. The flux in the x direction
averaged over the harmonic variation is now:

<TIy>= Z S + c.c. (3.54)

Where

ky
-y
Vkx = VEx = 7IE¢I<

The electrons are assumed to be close to Boltzmann distributed but with a small
imaginary correction due to dissipative effects, i.e.

one L€
™ (1- 15)T—e (3.55)
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We may then rewrite (3.54) as:

<T>= zn0§2 ej‘fik kO (3.56)
or, as a result of (3.51)
D, = 2o 5| ko (3.57)
¢ keB T, |’
__Ldn
ng dx

We notice that the diffusion is due to the imaginary part of the deviation from the
Boltzmann distribution. This dependence is such that unstable waves cause diffu-
sion in positive x, i.e. towards the plasma boundary. As it turns out §, will be
proportional to k in most cases of practical interest so that D remains finite when
k — 0. It is also interesting to consider the ion diffusion. In the simpliest case with
only E x B convection the ion density perturbation is:

Onj _ ee e‘/’k

3.58
no Wy, Tg ( )
in the region wy>>k|(cs, klzpsz<<1. Equation 3.54 then becomes
<I'kx>=n Zed)k ik w.e—&-cc
YeBLe T, | Vo T
Now writing wx = o, + iy, we obtain
e¢k kka
I''>=2 — W,
<T> =S| o +72 7
and
ka Cs €¢k 2
Zky P, (3.59)
,% + ;2

The instability saturates when k has decreased to zero due to the diffusion.
Another possible mechanism for saturation is when the nonlinear contribution to
the radial derivative of the convective density perturbation becomes comparable to
that of the linear i.e. when k,0n = xng or

5nik - 1
no B kan

(3.60)
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where L, = 1/x is the density inhomogeneity scale length. This is reasonable since
the radial (x) inhomogeneity is driving the instability. This estimate is called the
mixing length estimate. It typically leads to a turbulence level of a few percent.
Since the linear perturbation is

on=—&-Vny = —g% — g? (3.61)
And
Vix = —iwé,
We obtain from (3.54)
<> = Z—OZ —ion|&,]" + c.c. (3.62)
Now combining (3.60) and (3.61) we obtain
keléel <1 (3.63)

This means that the displacement is a sizeable fraction of a wavelength.
Now, using (3.63) in (3.62) we obtain the estimate

L
D,=T=2<2Y 5, /k2
o = Z/k/

If we interpret k, as a correlation length of the full space variation we omit the
summation. The estimate is then actually written in the form

D; ~ 7, /k,? (3.64)

This result can also be obtained by renormalization (Dupree 1987), When the
dominant nonlinearity is of the E x B convective type as in the continuity or
energy equation

On 0
5 = VEx a n

we can estimate the saturation level by balancing the linear growth, i.e. 0/0t — y
with the nonlinearity. Then, representing “grad” by the inverse space scale of the
full perturbation, the density (or temperature) perturbation cancels and we obtain
the saturation level [44, 49].

P _ (3.65)
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Equation 3.63 is then replaced by

7

1
<= — 3.66
&< i (3.66)

Equation 3.66 shows that a real eigenfrequency reduces the step length because
the convection oscillates in time. Using (3.66) in (3.62) we now obtain [44]:

Pk
N ot (3.67)
which turns into the mixing length estimate [3, 10] when y > ®, While (3.64) has
the character of upper limit, (3.67) is a more direct estimate of the transport level.
Recently a more general derivation has been made of (3.67) from a non-Markovian
Fokker Planck equation [3.48, 3.49]. It shows that (3.67) is a quite general expres-
sion, which only lacks off diagonal elements. In the general expression, ®, also
contains the non-linear frequency shift.

3.5 Confinement Time

It is important to relate the diffusion coefficient to the confinement time, .
The confinement time is defined as the characteristic time for the decrease in total
number of particles N or total energy due to diffusion. For particle diffusion from a
cylinder of radius r and length L we have

N nnr’l  nr
=M 3.68
"TUNJdt 2mLD 2T (3.68)

Where n is the particle density and I is the particle flux given by (3.51). We then
obtain

rL,
=— 3.6
= (3.69)

where L,, = 1/x is the characteristic length scale of density variation. If we take
L, = r we find that for classical diffusion T ~ r’B* which would mean that by
increasing the magnetic field we can build a smaller machine obtaining the same
confinement time. For quasilinear diffusion two cases are usually discussed. These
are Gyro Bohm diffusion where D will scale as B~ and Bohm diffusion where
D ~ B, For Bohm diffusion a stronger increase in the magnetic field is necessary
for a reduction in size. Fortunately Gyro Bohm diffusion has been found to dominate
in the core. An increase in B also allows higher confined pressure and density.
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Clearly we can make the same derivation of the energy confinement time Ty in
terms of the thermal conductivity y. As is evident from (1.8) the dependencies of
Tg on a and R are much more complicated in a real toroidal system. The scaling with
R seems to be, at least partly, due to the curvature radius of curvature driven modes.
It is, in fact, possible to obtain the scaling R’ from (3.67) when the real
eigenfrequency dominates and the growthrate is given by the root of Kg .

3.6 Discussion

We have in the present chapter studied new eigenmodes associated with the
inhomogeneity of a plasma. These modes are very fundamental since they are
the plasmas response to an inhomogeneity. They will, accordingly, have the effect
to cause anomalous transport that tends to reduce the driving inhomogeneity as also
demonstrated. The modes studied were either of an MHD type with no parallel
electric field or of a drift type with electrostatic, Boltzmann electrons. As seen from
Exercise 8, where a transition between these two types is made, the MHD type
modes are more global. They also generally have larger growth-rates. In this
chapter we have used a simple slab geometry to show the most fundamental
properties of the modes. In Chap. 6 more realistic geometries will be introduced.
We will first in Chap. 4 use a kinetic theory to rederive dispersion relations for
modes studied here.

Exercises

1. Explain why v. does not contribute to (3.9).

2. (a) Generalize the derivation of (3.6) to the case of finite k,.
(b) Do the same with (3.10).

3. Discuss which of the effects included in (3.10) that corresponds to
compressibility.

4. An effect of finite Larmor radius (FLR) is that the ion particle E x B drift is
reduced to

1

VEi = 5
B

(z x V) <1 - %k%,)

As explained in the section “Interpretation of drifts” in Chap. 2 we are
allowed to replace fluid drifts by particle drifts throughout in the equation div
Jj = 0. Use the FLR corrected ion E x B drift to derive modified versions of the
dispersion relations (3.28) and (3.29).

5. Show that we by adding electron-ion collisions in the same way as in (3.17) can
obtain an instability driven by gravity in (3.40), i.e. for <<k vge. This is a
resistive interchange mode. The derivation may be simplified by assuming that
|kyvg|<cu.e holds for both electrons and ions.
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6. Assume a simple cylindrical geometry where the magnetic field is in the 0
direction and where the pressure decreases in the radial direction. Derive the 8
limit as a function of mode number m, ¢ ~ ¢'™° when we make the replacement
K — (1/P)dP/dr.

7. In a torus with both toroidal and poloidal magnetic field the magnetic field lines
will move between outside and inside of the torus. This effect is described by
q = Ap/AB, where Ap and A8 are the changes in toroidal and poloidal angle
along a field line. We realize also that the relative direction between g and grad
n will change so that some regions have favourable and some have
unfavourable curvature. In this case we may write

11 2nz
—=—(cos——9
R. R ( L )

Since the space dependence along z is now no longer harmonic we also have to
make the replacement k; — —i0/0z. The resulting Mathieu equation

? 1 2
4 (p—i—ocE(cos%—é)q{):O

2

has the eigenvalue § = aL.?/8nfor al.><<2n”. Determine the B limit in the
case fL?<<2n%aR when k,>>>k,? k ~ 1/a,6 = a/2R and L = 2zRq.

8. The approximation E; = 0 is one of the most frequently used approximations
for flute modes (kH ~ 0). It is, however, not a good approximation for drift
waves which have a slightly larger k. In order to see this it is necessary to
consider the details of the electron dynamics. As is evident from the derivations
of (2.21) and (3.29) we need only A in order to describe 0B .

(a) Show that the Boltzmann relation (3.3b) is generalized to

(Sllk N eqﬁk Wee — W EAH

3.70)
ngp Tg kH T() (

when we include 6B1 = Vx(A|2)

1 1

eVile = = L Jlle = = LIl

(b) Derive another expression for 0n./0t from the electron continuity equation
using i.e. neglecting the parallel ion current and express j| in A) by using
Ampe’res law. Put this expression equal to (3.70) and show that

k*p?k)*va?

k
CO(CU — (D*g) — kl2p32k”2VA2 I

Ej=i 3.71)
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(c) Eliminate A); and show that

%:% 1+ (w°(’_w)2

3.72
No Te (/)(CO*g - 60) — kszxzkHZVAz ( )

which turns into (3.27a) for small k|| and into (3.3b) for large k.

9. Generalize (3.71) to include parallel ion motion when v is given by

8vHi/8t = (e/mi)EH.

10. Use the tokamak parameters in Appendix I to estimate for which mode number

11.

(ky ~ m/a) the FLR correction to the B limit in (3.46) exceeds 20% of the B
limit for low mode numbers.
Include the effects of finite ion Larmor radius in the dispersion relation (3.10).

12. Show that we recover the linear dispersion relation if we impose ambipolar

electron and ion fluxes from (3.57) and (3.59).
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Chapter 4
Kinetic Description of Low Frequency
Modes in Inhomogeneous Plasma

4.1 Integration Along Unperturbed Orbits

In the previous chapter we derived simple dispersion relations for some of the most
dangerous low frequency instabilities using a fluid description. We will now show
how this can be done by kinetic theory, [1-19], from the Vlasov equation in a
simple slab geometry. We will start by using the method of integration along
unperturbed orbits [1-5], which gives the most general result, i.e. including also
modes with w > Q, full finite Larmor radius effects and wave particle resonances.
We will, however, restrict attention to modes with w<<Q.. We will show how
wave-particle resonances may impede the free electron motion along the field lines,
thus causing drift instability and how the lowest order finite Larmor radius (FLR)
effect agrees with that obtained from the stress tensor in Chap. 2. After the more
general treatment we will show how the wave-particle resonances can be described
by a simpler drift-kinetic equation that does not contain FLR effects and how the
lowest order FLR effect can be obtained by a simple orbit averaging.

As pointed out previously the parallel motion of electrons may be affected by
wave-particle resonances and also by inductance. We are now going to give a
kinetic description of these phenomena. The first problem that arises is to determine
the unperturbed distribution function fy(v,x), where we choose the inhomogeneity
to be the x direction. For generality we include in our description also a gravita-
tional force acting in the x direction. Inhomogeneities in the externally produced
magnetic field may be included in this gravitational force, as well as a centrifugal
force due to the toroidicity. The unperturbed distribution function fy(v,x) may be
written as a function of the constants of motion

1
W=mv: —mgx; Py =m(vy +Qx)  and Pp=mv (4D
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The constant Py can easily be derived from the equation of motion in the form

dv B
dt
dvy _ dx

. = _chx = _Qc_
dt dt

Q.(vx z)

Here we assumed Q. = qB/m to be homogeneous. A Maxwellian distribution
function corresponding to an exponential density gradient may be written:

3/2 29 _
Fo(v,x) = ng (27%) exp [—oc' (x + ;;i)] exp [_ mV/ngUC} 4.2)

It is important to note that Q. here contains the sign of the charge. For a plasma
with perpendicular and parallel temperature gradients we may replace o by
o +0,v, 2+ (3HVH2. We will, however, for simplicity neglect temperature
gradients. For a weak inhomogeneity, i.e. small o’ we may expand the first exponen-
tial in (4.2). To first order in o and g we then obtain the zero order drift velocity.

1 oT kT g\-
= — s d = — = — —_ 4.3
A J Yolvmdv=—_g (mQC +Q(,>y 3

where k = —(1/ng)dng/dx. We note that in this expression we have to take ().
negative for electrons. For simplicity we will in the following continue to use the
previous assumption that k, = 0. We may then write

E(rp = Ekei(k>‘y+k“zf“”) +c.c.

Forvn = fi(w)e®rhzen) 4 e,

The linearized Vlasovequation may then be written:

Q . 2 7 <! . 2 I-(kv)“‘rkHZ*(uI)
[& +v r + [Q(.(V X z)+ gx} 8V}fk(v)e

(Ex + v x By) ~%e"("-“”k”~’-w'> (4.4)

3=

The left hand side of (4.4) is here the total derivative along a particle orbit. In a
linear approximation we use the unperturbed orbit

vV =v(t) = At —)[v(t) — vg] + v,

v =r(f) =Tt = OV(t) — vg] + vo(/ — 1)
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Where v, = —(g/Q) ¥ and

N sin Q¢ 1—cosQ.t O
I't)=|cosQ.t—1 sin Q.t 0

0 0 Q.t
Where

~ 1l
A= —— 4.5
Q. dt 4-5)

Integration along this orbit yields
q [~ o i)

(v)==1 dt(E By) - — 4.6
Fi(v) mL T(Ex + v X By) v ¢ (4.6)

Where

C C

T
a(t) = J[k v — wldt = k, [g (1 —cosQ.1) + VyS; Y8 Sin(Qu7) + VeT| — w1
0

Andt=t—1t

We will here consider the region B<<I1(B = 2uynT/B?). In this region
k;va>>k,vp; and we may disregard the compressional (magnetosonic) wave.
The only electromagnetic effect is then due to the bending of the magnetic field
lines and we have

0A, O0A,

for the perturbed field. This means that we can derive the perpendicular part of A
from a potential. Such a potential has sometimes been introduced. Here, we will
instead continue to use Aj| which is a good low B approximation. Thus we write:

and thus
& = —(Z X VL)W
Now

o (v + 2v )t @8)
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Since k, = 0 we may rewrite (4.6) as

feny=-1 J l[r; (v’ + kv ) + ov)'Ay) + 5y b | - foe ™

mJo
q 0 T o o i
i Jo [Q_Cky(" X X) - YA | - foe 4.9)
Since
d X .
d_eﬂam = —il[kyvy' + kv — o] e (4.10)
T

It is convenient to rewrite (4.9) as

q(rb © . —io(t
fi(v) =— a Jo ilkyvy' + kv — o] - foe ™ Ddr
22 | il — )£y
0
A [ .
- % J i(0 — apg)v) - fo " Pdr (4.11)
0
where
o'T g
Wpg = —kym = w, — kyv, Vg = O

With the help of (4.10) we can immediately integrate the first integral of (4.11).
We note that the limit T— o0 corresponds to a contribution from the perturbation at
t'——o0. We take this to be zero. Observing that the unperturbed distribution
function is invariant along an unperturbed orbit we then find

£1v) = = Lfo(w.v)

w

x {qb +il(@ = op)¢ + o -vydy (1-22)] J:O ¢ ) -dr} (4.12)

In order to evaluate the integral we now make use of the expansion

o0 o0

eiiO((T) = Z Z Jn(é)-[n’(g)

n=—00 n'=—o00

x exp{i[n(Qur+0+7) =0+ kyvjr —ar) } (4.13)
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Where
@ = o+ kyvg E=kyv,/Q

We then obtain

fiv) = _%fo(% V){¢ + l[(cu — wpy)p + o VA (1 B wDS)i|

(03]
Jn(g)‘]n, (é)e—i(n—nf)e}
nQ, + k||VH )

(4.14)

nn'

We can now obtain the dispersion relation from the Maxwells equations

v.E=~ (4.15)
o

By using the formula

T o 1 P’ +4, (pq
J e xS (px) T (gx)dx = 22 &XP {— i I, (ﬁ)
0

where [, is a modified Bessel function, it is possible to show that

Fola(O) (e ay 16 O~
Z Z J : nQ +kHV||—w _Z _”Q W<|k||(T/m)l/2>_1‘|

n=—00 n'=—o0
where Ay (c) = I,(c)e . W(z) is the plasma dispersion function

1/200 X )
W(z) = (2n) J —— e 2ax

X — 2

and ¢ = k, °T/mQ.?
We thus obtain

_ __qn An(9)
B Jf"(v)dv - _TO{¢+ (0 —on)x Y ==

» — nQ.
w -1
: ) <|k<T/m>”2) ] }

— 20 vyay (1= 22) S 4, W<7@_”Q“>
ro (15 A

nn'

(4.17)
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Similarly we obtain

. o q*no c _ O Qe
N = CIJszk(V)dv = —m(w — wps) X ;A"(s)w<|k(T/m)l/2>

) ©ps o w — nQ,
—TW-AHO— )y An(e)(w—"Qc)WQk(T/m)n/z)
4.18)

By using the density and current perturbations (4.17) and (4.18) we obtain the
dispersion relation (4.16). In the following we will mainly consider the frequency
range ®<<n€.. In this region we need to include only the term n = O in the
summations of (4.17) and (4.18). For the last term in (4.18) this is due to the
adiabatic expansion (4.21). We further note that ¢ =k, T/ mQC2 =k szz /2
expresses the ratio between the Larmor radius p and the perpendicular wavelength.
When ¢ is small we may use the expansion

Ao(g) =1 —¢ (¢c<<1) (4.19)

The deviation of Ag(¢) from 1 will in the following be referred to as a finite
Larmor radius effect. It is due to the fact that a particle that gyrates in a Larmor orbit
on the average experiences an electric field that is different from the field at the
center of the orbit. We will always assume that Ay(g) = 1 for electrons, while we
will make different approximations for the ions.

We shall assume that (3.6) is valid also when we replace ® by the shifted
frequency ® — kyv,. The plasma dispersion function is usually expanded in the
adiabatic w>>k) vy, and isothermal w< <k vy, limits. These expansions are:

1/2
W(z):i@ 20741 =2 444 Z|<<1 (isothermal)  (4.20)
and
12 13
W(z):i(%) 2 S S>> (adiabatic)  (4.21)

Now ignoring kyv,. (electron gravity) and using the isothermal expansion for
electrons and the adiabatic expansion for ions (compare Eq. 3.1) we can write the
particle densities

ST\Y2 0 — Wy, e 2/(k2 2)
_ - W [|” Vihe
o+i(3) | @efme) 2 ’

e . 1/2 _ .
+ 2AH (1 @ ) [l + I(E) %e wz/(l‘\\zvlhez)
ki ® 2 |kyl(Te/me)

4.22)
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4.2 Universal Instability

i €
no N Te
Ao(c ki *T 12 i
¢ — (0w — wpyi) OEW) I+ ! ~21 - l(g) — 1/2 e‘“z/(kz"lhez)]
y w m;w |kH|(T,/m,)
i 172 i ey kT
+k2AH (1 — @b )AO(SI l(g) Ll/zefwz/(l‘\\z"“" ) — —H ~2]
I @ Iy |(T/m;) mi
(4.23)
And the parallel electron current
j 62"°< +°"A>(w 1)
. T 744 = Wye
Tk K
a— (4.24)

o\ 1/2
X [1+i(= TS
(2) Iky|(Te /me) "

In (4.22) we recognise the Bolzmann distribution in the first term of the right
hand side. The second term represents the phase shift due to wave-particle reso-

nance and the third term a correction due to induction.

4.2 Universal Instability

The electrostatic limit is easily obtained from the above equations by putting
A = 0. The dispersion relation obtained from (4.15) can be written in the form
&(ky, kjj,w) =0 (4.25)

where
_ d)ind
¢ext

Here @;,q is the induced potential caused by an external potential @.y. In the region

(3.1) we obtain

ke STN\L/2 0 — — /(K Pvae?)
8(/@,/(\\,(,1)) =1+—|[1+i(5 7 e o7 /(K Vine
ky (2) |k\||(Te/me)l/2
kai* —opgi | kT 1/2 i _
I e e
ky @ m;® |k |(T; /m;)
(4.26)
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In the limit kAg<<1 the 1 is negligible in (4.26) and the corresponding disper-
sion relation (4.25) can be obtained by using quasineutrality. Assuming the wave
particle interaction to be weak we can treat imaginary parts of € as perturbations.
Thus writing € = eg + ig; we can solve (4.26) in the usual way as ® =, + iy
where

&g (ky, k, ;) =0 4.27)
and
- Sl(kyakvar)
L Y (4.28)

From (4.27) we obtain the relation

Ao(i) =0 (4.29)

- T, o—w|T, n kuzcs2
C; T: &

For small k| and dropping the gravity we obtain the solution

o — w*eAO(gi)
1+ (Te/Ti)[1 — Ao(ci)]

(4.30)
where we used the relation
Wyj = — 7 Wye

By expanding Ag(¢) according to (4.19) and introducing ¢; = ky2p12/2, we
obtain the solution

1 T,
W = Wy, {1 —Ekyzpf(l +F)} 4.31)
1

Since p* = (T./2T;)p;2, we recognise the last term to be due to inertia
(polarisation drift) by comparison with (3.10). The result (4.31) shows that ion
FLR effects can be added in a simple way for drift waves. The similarity between
ion polarization drift and ion FLR effects can be seen from that the polarization drift
comes from the variation in time of the electric field along a gyroorbit while the
FLR effect comes from the variation in space of the electric field along the
gyroorbit. The rotating particle just sees a varying electric field along the orbit in
both cases. Clearly the ion inertia dominates the Larmor radius effect (FLR) when
T.>>T;. From (4.28) we find
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m12 w2
r=- (E) ()

w, — 2 (2 2 T, ;m\1/2  w, — wy 2 (2 2
, e —o?/ (k) vae?) e (_) i i —0?/ (kPvii?)
X | ————— e + = —_—
[|/€|(Te/me)l/2 Ti N2/ k(T /mi)'?
(4.32a)

We notice that the situation concerning stability is similar to that for the
influence of ion-electron collisions. Due to FLR effects we note from (4.31) that
w<wy. According to (4.32) this means that the interaction between the wave and
the electrons is destabilising. Sincew.,;, <0 for k>0 we find that the ions will cause
damping. Due to the exponential factor, however, this term will usually be small in
the region (3.1). The collisionless instability described by (4.30) and (4.32) is
usually referred to as the universal instability since it was for a long time considered
to be unavoidable in a finite size plasma. We note, however, that the Landau-
damping term will become important in a short device where k| has to take rather
large values. Moreover, in a device with magnetic shear, k|| can take small values
only locally and damping is obtained by convection into regions with larger kj.
Another situation when growth and damping can alternate is when we have a
nonlinear frequency shift. We can understand that from the previous discussion
but this becomes even more easy to see if we simplify (4.32) as:

1/2 —
y = (E) / D W — Wy e—(uz/(k ‘v,g) (432b)
2 kHV“’

where we ignored FLR effects and ion Landau damping. This will be discussed
further in connection with the fluid closure. Finally we note that since
® — wps = o + Ky Ve — wy,the only effect of gravity on the dispersion relation
(4.29) is a shift of the real part of ® equivalent to a change of frame. Thus in a frame
moving with a velocity v, = —(g/Q;)¥, the dispersion relation will take the same
form as in the laboratory frame when the gravity is absent. This is, however, only
true as long as we may drop the frequency dependent terms in the electron part of
the dispersion relation, i.e. as long as the electrons are able to maintain a Boltzmann
distribution. For very small k| this is no longer possible and we obtain a reactive
instability called Rayleigh-Taylor or Interchange instability.

4.3 Interchange Instability

In the limit k; =0 we have W(z,) = W(z;) = 0. The electrostatic dispersion
relation then takes the form

1 W 1 W — Wy
5 Ao(g,-) 4.33)
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Introducing

(Z):w—l—k_vgi:w—kyvgi
ci

where v, = —g/Q; is the gravitational drift and w,; = — (Ti/T.)w.e, we may
rewrite (4.33) as

T,
00,0 (1 — Ag) — 0ykyVei + T (1 = Ag)o(w — kyvgi) =0 (4.34)

Introducing

kT,

e =k,

in the constant term we finally arrive at the dispersion relation

K p?
w [w — ky(vai + v*i)} = —Kg ! (4.35)
1— A
This dispersion relation predicts instability when
Rpi 1., 2
> —ky (Vg + Vi 4.36
Kgl_AO>4)(vg+v) (4.36)

This instability is due to the charge separation created by a density perturbation
when the electron and ion guiding centre drifts are different. Since k| = 0 the
electrons cannot shield the charge separation by moving along By. This is the
Rayleigh-Taylor or Interchange Instability. Clearly a condition for a possibility to
fulfill (4.36) is that x g>0, i.e. the gravity and density gradient have opposite
direction as shown in Fig. 3.9.

In the unstable case the more dense parts tend to change place (interchange) with
the less dense parts thus causing a convective diffusion. When grad n and g have the
same direction a perturbation is counteracted and this results in oscillations. The
instability is analogous to that of a heavy fluid resting on top of a light fluid. In a
toroidal machine the centrifugal force due to the field line curvature may give rise to
interchange instability in regions of unfavourable curvature (kg>0). We note that
also when the different drift velocities of electrons and ions are caused by a
gravitational force, the finite Larmor radius effect is stabilizing, contrary to the
situation for drift waves.


http://dx.doi.org/10.1007/978-1-4614-3743-7-3

4.4 Drift Alfvén Waves and 3 Limitation 67
4.4 Drift Alfvén Waves and 3 Limitation

We will now consider the electromagnetic case in the region (3.1). We write the
equations in a frame where the background guiding centre drift of the electrons is
zero. In this frame the ion background drift will be equal to the difference between
the ion and electron drifts in the laboratory frame. We will assume that we can
neglect the imaginary part of W(z) both for ions and electrons. We then have from
(4.20) and (4.21)

n, e W — Wye
—=— A 4.37
no T. {d) i ki ”] @37
n; e Ao
—=——|1—(w— wpg) — 4.38
" T,[ (0 wD‘)w}b (4.38)
o (s0 — @) (¢> + 2% ) (4.39)
=5 xe T 7 .
Il Tk K| |
From the induction law, (4.16) we obtain
. ki*
Jj =4y (4.40)

Ho

Neglecting parallel ion motion we now obtain from (4.39) and (4.40)

k”(w*e — (U)
Ay =

“4.41)
(W4 — ) + kszszkuszz

Equation 4.41 gives the relation between the parallel and the perpendicular
electric fields. It involves the electron dynamics and can easily be obtained from
the fluid equations. Inserting now (4.41) into (4.37) we obtain the electron response
in terms of .

no Te

e e(,b Wie Wye klzpszkszAz
_[ +(1— )w( (4.42)

T | ® /) (0w = ) + kip, 2k PV

Equation 4.42 which is equivalent to (3.72) shows that for large kjva the
electron response approaches a Boltzmann distribution while it in the opposite
case is of the flute mode type, i.e. proportional to ®+./®. Introducing w — wpsi =
o —kyVgi — 0, and o, = —(Ti/Te)w,. we find from (4.38)
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T
A, Le
o VT,

no T,

n _ed [w (1= Ao) (4.43)

We may now obtain a dispersion relation for drift Alfve’n waves from (4.42) and
(4.43) assuming quasineutrality.

kszszkHZVAz

(W4 — ) + kf,oszkuzv,\2

i

T, . kyv
xe p— Ao —1 *eﬁz — Wse
(w —i—Tw)( 0 )+ o > (0 — W)

We now multiply by the denominator in the right side, divide by (1 — Ag) and
multiply by T;/T.. Observing now that v, = vy — Vg and vgj = gi/€; we may
write

w.ckyvg = k. 2p 2K, (1 n ’:é) (4.44)

and obtain the equation

1k 202 kv m, 1k zpv2

2 2 Pi y 8 L Pi

w[(}) ‘@(Vgi *1)] H Va ’Z 1 _ /\0 <1 w —)Ci ) K 1<1 meg€> 2 1 _AO
*e 157

2 2, 00 20— ky(Ve + Vi)
:kj_ pka VAW

(4.45)

Equation 4.45 is the dispersion relation for drift Alfve’n waves including a
gravitational force and full finite Larmor radius effects. We notice that (4.45) is
identical to (4.35) in the limit k” = 0. We are, however, not allowed to take this
limit of (4.45) since it would correspond to an expansion for a)/kH>>vlhe. The
reason why it gives the correct result is that the electron density distributions
become the same for the two cases as seen from (4.42) and from (4.17). We also
notice that the flute mode response is obtained in the limit E;| ~ ko — wA) = 0.In
this case the induction force prevents the electrons from cancelling space charge by
moving along By and this makes the interchange mode solution possible.

Clearly the Alfvén frequency kv has a stabilizing influence on the interchange
instability. This can be seen as a result of the bending of the frozen in magnetic field
lines which counteracts the interchange of fluid elements. The balance between
these forces leads to a [ limit for stability discussed in Chap. 2. The drift terms are
also stabilizing. The kyv+; term is due to reduction of the convective E x B drift
velocity of ions when averaged over a Larmor orbit and leads to a stabilizing charge
separation effect, compare Sect. 3.3.7. The most unstable situation will obviously
occur for small ky. We also note the term due to v, in the Alfvén term. This term is
often considered to be small and, in fact, should be small in the present treatment
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Fig. 4.1 Dispersion diagram .
for electromagnetic drift K.V

1Va
waves ®

KiCs

.

KiCs

KiVa

since we represented curvature by a gravity force. However, this term is also
present if we use real curvature and gradient B effects. It may then be important.

If we expand (4.45) for small ion temperature keeping only the lowest order
Larmor radius effects and also neglect terms of order k,v,/®m we obtain the disper-
sion relation

m W — Wy
(U((,U — (l)*i) — k||2VA2 + Kg; (1 + Lge) = klzpszkHZVAzm (446)

i8; xe

Equation 4.46 agrees with (3.44) for small electron temperature if the gravity is
expressed as a centrifugal acceleration and thus verifies the lowest order finite
Larmor radius effect as obtained from the stress tensor. The right hand side of (4.46)
is due to the parallel electric field and provides a coupling to the electrostatic drift
wave branch. In studying this coupling we will for simplicity neglect the gravity.

Assuming ky2p12<<1 we then realise that (4.46) splits into two branches the
electric drift wave branch with w = w,. and the electromagnetic drift wave branch
or drift Alfve’n branch.

If we include the term proportional to kHZTi /m;w? in (4.23), (4.46) generalizes to

[0(0 — wie) — kP’ [o(w — w.) — kPva] =k 2p kP vao(o — o)
(4.47)

This dispersion relation shows the coupling between the drift acoustic and drift
Alfvén branches. It has four branches as shown by Fig. 4.1.
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We notice from this figure where v,>c, that instead of an intersection of the
branches corresponding to kyzps2 = 0 the branches change their identity and we
obtain a region of strong coupling. The condition for the existence of this region is
clearly va>c,. On the other hand, in order to remain in the region (3.1) of drift
waves we must have v, <vy,. This condition is equivalent to § > m./m;, which is
the limit of B where the electromagnetic effects have to be included.

4.5 Landau Damping

If we now return to (4.46), neglect the right hand side but include the electron and
ion Landau damping effects from (4.22) and (4.23) to leading order, we obtain the
dispersion

w(w — wyi) = k*va® + D = iol (4.48)
where
D =g, (14225 )
m;g;
and

2 T; W — Wye

1/2 32 0 2i(en
I'= (E) / /’€\|VALA KTQ> D~ B =i/ (kP wa?) me/mi]
Cs

Assuming now that ® = ®, + iy and Y << ®, we obtain by separation

I 1
Wy = E(D*l‘ + \/Zw*j2 + k||2VA2 -D (449)
T
p=— (4.50)
20, — Wy

Here the sign of the denominator in (4.50) is given by the sign chosen for the root in
(4.49). It

;160*12 + kHZVA2>D>k”2VA2

Then the sign of w, does not change with the sign of the root. Then we can always
find an unstable solution. This is exactly the region in which the MHD instability is
stabilised by the FLR effect so the the dissipative effect restores the stability
boundary to that of MHD. We see, however, that the ion and electron contributions
to T tend to cancel for w, ~ w,;/2 so the growthrate may be small in this region.
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The kinetic instability in the FLR stabilized region has been verified by linear
kinetic calculations Ref. [19]. However, there it was also found that the stability
boundary may be lower than the MHD boundary in the presence of magnetic
curvature and an ion temperature gradient.

4.6 The Magnetic Drift Mode

For the drift Alfvén wave we noticed that the electromagnetic effects disappeared
for kH = 0. There is, however, another mode which is electromagnetic and has
kj; = 0. This is the magnetostatic mode which involves only electron motion. The
electron motion along B perturbes the magnetic field and the induction force acts
back on the electrons. In a homogeneous plasma this mode is purely damped and
has zero eigenfrequency. The perturbation of the magnetic field lines form islands
in the perpendicular plane and the motion of the electrons along the perturbed field
lines causes anomalous heat transfer. In a inhomogeneous plasma, however, this
mode has a frequency close to w+. and is no longer static. the mode is linearly
described by a parallel induced electric field and a parallel vector potential A = A
corresponding to a perpendicular magnetic field perturbation. We thus have

~ 0A _
E=Ejz=—— 4.51
12=""5,2 (4.51)
Again assuming k=0 we have
0B = 0BX = ik,AX (4.52)

Introducing these fields into (4.6) we obtain

W =L i"vwar, e Dar — L[ i Xk A xx) - yfo - e PDdr
fr Zq 7 VIr P47 o y 0
0

m )y Q(‘

(4.53)

Which, observing that fj is invariant along the orbit, reduces to

q o
Fev) = —fov) (@ = w*)AJ e g (4.54)
0
Making use of (4.13) we then obtain
.q . Jn(é)-]n’(i)eﬂ-(nin,)o

=—i— —w.)A 4.55
fr(v) lmfo"ll(w W) Z 0 — (4.55)

nn'
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Assuming the average v|| to be zero, we now find the density perturbation to
vanish. The parallel current is

2 2
S _ 470 Vi A(¢)
.]Hk - qukVH dv = Te TA(U)*e — G)) En m (456)

Finally we consider only electron current, take only the term n = 0 and ignore
FLR effects. Then using T = m.Vie2/2 we find

2
J— (1 _ w*e)A (4.57)
M, w

Equation 4.16 for the present case takes the form

1 0*A
W =—— "= 4.58
Tk 1 Oy (4.58)
Combining (4.57) and (4.58) we have the dispersion relation
Dre (4.59)

0=—7F"—
1+ k22 e

This is the dispersion relation of the magnetic drift mode in an inhomogeneous
plasma. It includes the diamagnetic drift frequency but also the skin depth in the
denominator. This is a feature characteristic of including electron inertia.

4.7 The Drift Kinetic Equation

In the limit ky2 p2<<1 and ®<<Q, the previous procedure of integrating along the
Larmor orbits can be avoided. The simplest possible approach in this limit is to
write an equation of continuity for guiding centres. Such an equation can be written
down immediately once the velocity and acceleration of the guiding centre is
known. As it turns out, however, this method requires a more accurate knowledge
of the guiding centre dynamics than more systematic procedures starting from the
Vlasov equation and it does not give an estimate of the magnitude of the neglected
terms. In particular it is difficult to obtain an accurate description of curvature
effects. We will thus here restrict ourselves to a slab geometry and leave the more
complete description to a later systematic derivation.
The velocity of a guiding centre may be written

. 5B,
Vgc = E(E X eH) + VHT—F Vg (460)
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The acceleration is assumed to be directed only parallel to the magnetic field.
The continuity equation may as previously be written in the form df/dt = 0 which
now becomes

o - i
Yo e + Vo) - VF 4 B + (Vee X 9BL) - € 0 (4.61)

I _
ot 8VH -

Since (4.61) no longer explicitly depends on v, we may integrate over the
perpendicular velocity components. We thus have

f=Fflrty) (4.62)

Equation 4.61 is the simplest form of the drift kinetic equation and does not
contain finite Larmor radius effects. It does, however, keep the full parallel kinetic
description and can be used to study wave particle resonances. It is a simple
exercise to rederive the dispersion relation (4.49) for the magnetic drift mode by
using (4.61). A further feature is that (4.61) has not been linearized. Thus it can be
used to study nonlinear wave interactions and transport.

4.8 Dielectric Properties of Low Frequency Vortex Modes
We will start by considering flute like modes subject to the condition

kH2Te /m;w?<1. Dropping the Landau resonance terms but keeping also electron
FLR effects we can write the dielectric function observing that

@p?/Q = p/Ao* (s = K'Tj /mjQq”)
W — Wye kHZTe
— > (l + meZ /\o(Sg>

— Wy k ZT'
_eme <1+ ! 2’>A0(s,-)
w m;w

This expression has several interesting properties which we will investigate.
First we expand for small Larmor radius and treat /o, k||2T/m0)2, and s as small.
Then

2

Wpe
e(ky, ky, o) =1+ pe
(k. kyj, @) 290

+ "
kLZ,O,-ZQu‘z

(4.63)
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Where ¥k = —dln ng/dx.

For a tokamak plasma typically ®,. ~ Q.. while op; ~ 50€; (we observe also
that ®pi/Q; = c/va). We notice that the commonly used expression
mpez

2
)
e=¢r=1+-L +Q 2
ce

2
ch

(4.64)

Is usually hard to fulfil in a realistic situation. In cases when the electron
contribution can be dropped it may, however, sometimes be fulfilled. Assuming
k|| = xk = 0 but keeping the full FLR contribution we obtain

w 5,2 1— Ao(Se) (03] e2 1— Ao(S,‘)
b(kL):l+Qp2 5 +QP2 5

(4.65)

Which shows that € decreases for large Larmor radius.

The question of quasineutrality is also related to the dielectric constant &g.
Assuming e.g. that we are in the drift wave region (3.1) and dropping Landau
resonances, parallel ion motion and FLR, we obtain from (4.26)

1 Wy
(ki) =14 (1 +h2p2 - w) (4.66)
e

The dispersion relation for electrostatic drift waves ¢(k,, @) =0 can now be
written

Wie i Wi
7 + k202 1+ Za’/p,?] 1+ k?p2[1+ Qo Jwy?]

4.67)

since Age/ps = Qci/opi. The condition for applicability of quasineutrality is
k? Jge><<1, which leads us to dropping 1 in (4.66). This corresponds to dropping
Qciz / wpiz in (4.67) which is equivalent to assuming that eg>>1. The reason why
the condition for quasineutrality can be expressed as eg>>1 without involving the
wavelength is that we have compared the deviation from quasineutrality with the
ion inertia term k*p? which also contains the wavenumber.

The wave energy as expressed by the formula

1 0 5
W= Zwa—ws(k,w)<E >

is closely related to the dielectric properties. We shall here consider the wave
energy in two cases.

For electrostatic drift waves, dropping gravity effects but keeping ion FLR
effects, we have
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- kdez T, W — Wy
olki,0) =145 [1 +f(1 —— Ao(s,))] (4.68)

1

Assuming k L2/1<<1(and er.>>1) we can write the dispersion relation

-1
= w*g/\o(sf){l + % [1— Ao(si]} (4.69)

1

From (4.68) we also obtain

2
F A() (Si) (470)
Inserting (4.69) we then have
T;

1 T,
Wi :dee2{1+—[1 _AO(Si]}¢k|2 4.71)

Here the second term includes the ion polarization drift and tends to k> p¢? in the
limit To/T; — oo. For interchange modes (k; = 0) we obtain

k 62 Wye Te 6) — Wy

Assuming quasineutrality we may write the dispersion relation

Wye Te |:1 o w— Wi

Ao(Si):| (473)
Multiplying by ® — kv, we find

k* *e Te ~
KyVe@re (Tw + w) [1— Ao(s)] (4.74)

® i
Alternatively we may write (4.73) as

Wye Wixe Te
AQ(S,') = ? + TI [1 - AO(S,‘)} (475)

)

Differentiating € we find

g0 ki*

Oe kd€'2 |: Wye w*e:| (4 76)

Mol Tz =0
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Which, after substitution of (4.75) can be written

Oe kg 1 [w*ek}.vg+&

8_60:?5 (1)2 T,'

[1— Ao(s,-)]} 4.77)

Then using (4.74) we find

de kg 1 [Tg & . T.

%o 5T e o +T,-] [1— Ao(s)] (4.78)

From which

1., 520 — wy — kyvg

W= gha® = S = Al (4.79)

Here we can see that the energy of flute modes is an FLR effect.

4.9 Finite Larmor Radius Effects Obtained by Orbit Averaging

In a fluid description the lowest order finite Larmor radius effects (FLR) can be
obtained by including the diamagnetic and stress tensor drifts. Such a calculation,
however, becomes rather involved due to cancellation between diamagnetic and
stress tensor drifts that are not real particle drifts. Finite Larmor effects are due to
the inhomogeneity of the electric field and the correction to the E x B drift caused
by it. For a harmonic space dependence of the electric field and ©® << €Q; the FLR
effect averages the electric field over a range of phases in space and this phase
mixing always leads to reduction of the effective field (Fig. 4.2). The efficiency of
this phase mixing clearly must depend on the ratio p/A. The particle equation of
motion can be written

d
md—‘t’:q[E+v x B] (4.80)

For simplicity we use a slab geometry according to Fig. 4.3, where B = Bz and

E = Ejcos(ky — wr)x (4.81)

0 —»

o
N

Fig. 4.2 Finite gyroradius
averaging



4.9 Finite Larmor Radius Effects Obtained by Orbit Averaging 77

Fig. 4.3 Slab geometry y
with electric field

v

S
—» X>
B /
4
In component form we have
dvy q
e Q.vy + EEO cos(ky(r) — wt) (4.82)
dvy
= Qv 4.83
dt v (483)

where we observe that the electric field is evaluated at y(t), i.e. along the orbit. The
coupling between the equations on the time scale Q.~! can be eliminated by
differentiating with respect to t and substitution. This leads to

d*vy 2 q dy .

ol —Q. vy + p (w — ka Ey sinlky(?) — wf] (4.84)
Py o2y 02 B ool — o (4.85)
@ =Y B, cos[ky ) .

We shall now assume that . >> ® so that the time scales are well separated.
We then average over the short timescale obtaining

_ B L ARE AR A
<vy> _BOQ<~<(w kdt> sin[ky(¢) wt]> % < e > (4.86)

_E 1 dzvy
<vy> = “B, (coslky(t) — wi]) — o’ <W> (4.87)

We shall now perform the averaging of (4.86) and (4.87) over the unperturbed
orbit, obtained by solving (4.68) with Eq = 0. This orbit may be written
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y(© = yo + (1) (4.88)

Where
Vi
() = — a [cos(Qt + ¢) — cos P] (4.89)

Is the projection of the Larmor radius along y. The orbit in (4.89) corresponds to
vy = v sin(Qr + ¢)
vy = v cos(Q.t + ¢)

For the orbit (4.89) we have <d2Vx’y/dt2> = 0. we are also interested in the

lowest order FLR effects and take only linear terms in the parameter k’r; ><<1. We
then have

_ , 1 kv, 2 )
sin(ky(t) — wt) =sin(ky, — wt){l ~3 02 [cos(Qct + ¢p) — cos @] }

— cos(kyy — wr) kg\;L [cos(Q.t + ¢) — cos @]
-

1 2, 2
cos(ky(t) — wr) =cos(ky, — wt){l ~3 kaé

C

[cos(Q .t + @) — cos d)]z}

+ sin(ky, — wt) kg\;l [cos(Q.r + ¢p) — cos @]

C

We now perform the averaging over time, keeping wt constant since Q. >> ©.
We then obtain

. . 1 /CZVJ_2 1 2
< sin(ky(t) — wt)> =sin(ky, — wr)q 1 — 20 12 +cos“¢

k
+ cos(ky, — ) L cos ¢ (4.90)

Q.

< cos(ky(t) — wt)> =cos(ky, — wr){ 1 1 Kvy? 1—1— cos’¢
y - Yo 2 ch 2

kVJ_

. cos ¢ 4.91)

— sin(ky, — wt)

We also need

d .
<d_y sin(ky, — wt)> =0
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We now continue to average (4.91) over a Maxwellian distribution. Then v, 2 =
2(T/m) cosp = 0, cos’p = 1/2 and

T
<< sin(ky(t) — wt)>> = sin(kyy — wt) (1 — K —2>
meY;

T
<< cos(ky(t) — wt)>> = cos(ky, — wt) (1 S ?)
m, C

Introducing p*=2T/ (chz) we now have

E 1
<<vi>> = 220 Gnlky, — wf) [ 1 — = 2p? (4.92)
Q. 2
E 1
<LKVy>> = B—O cos(ky, — wt) (1 - §k2p2> (4.93)
0

Here the gyroradius p is for a general species. However, the application will
almost exclusively be to the main ions. These are the averaged drifts we have been
seeking. With the present choice of E and k we have the E x B drift in the y
direction and the polarisation drift in the x direction. As it turns out, the present
averaging is not accurate enough to give correct FLR correction to the polarisation
drift. Thus if the perturbed orbit is introduced into <dzvxyy/dt2>, we obtain new
terms of the same order as the FLR correction to (4.92). Neglecting FLR corrections
to the polarization drift we obtain in vector form

1
<V > = (1 - §k2p2> VE +Vp (4.94)

Where we used only one averaging sign referring to both time and velocity
averagings.

We observe here that the constant of integration, cos, in (4.89) is important in
order to include all particles with orbits through yo. Since y =y, + (v /Qc)cosy
the representation (4.89) means that we include particles with gyrocentres between
Yo — V1 /Qc and yy + v, /Q..

In order to compare our results with those from a fluid theory we now calculate a
density response to an electric field by using the continuity equation. This is a
natural procedure since the density response is uniquely defined while fluid and
particle drifts may differ. Thus using (4.94) for ions in the continuity equation,
neglecting parallel ion motion, we obtain for k >>|d In ny/dx|

2. 2
5_” _ |:w*e (1 kL Tz) kl Te:| @ (495)

- 2] 2
no w m,-QC,- m,-QC[ Te
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Where we included the ion FLR correction to the E x B drift according to (4.94)
and the polarization drift. Equation 4.95 can also be rewritten in the form

(4.96)

no o mQ. w/|T,

on |:w*e ki *T, (1 w*z)} e
Where the FLR term now appears as the —m+/® correction to the polarisation

drift. Equation 4.96 can be obtained by using fluid equations and including the

diamagnetic drift in the convective derivative in the polarisation drift, i.e.

0 0
5—>E+V*j'v

This is also what remains in the fluid description after cancellations between
diamagnetic and stress tensor drifts (compare Chap. 2). It can also be readily shown
by the orbit averaging method that this procedure also can be used for the perturbed
diamagnetic drift, thus giving the lowest order nonlinear FLR effects when used in
the convective derivative in the polarisation drift.

It is also interesting to note the similarity between the FLR effects and the
polarisation drift in their contribution to the density response. Such a similarity may
be expected since the FLR effect is due to the space dependence of the electric field
along the orbit while the polarisation drift is due to the time dependence. A particle
gyrating in the orbit cannot distinguish between these origins of field variation.

4.10 Discussion

We have in this chapter rederived the most important dispersion relations of Chap. 3
using a kinetic description. This has been simplified by using a slab geometry. A
more general Gyro-kinetic description will be given in Chap. 5. We have also
particularly considered the effects of finite Larmor radius and verified the first order
effects that were obtained from fluid theory in Chap. 2 and the consequences of it
for stability found in Chap. 3. Finally the dielectric properties of inhomogeneous
plasmas are fundamental. We will later, in Chap. 7, show how the wave energy of
interchange modes can be recovered to first order in the FLR parameter from a
nonlinear conservation relation. In Chap. 6 we will use more realistic geometries
and also study modes driven by temperature gradients.

4.11 Exercises

1. Perform the integration in (4.3).
2. Derive a relation between @ and A in (4.7) using fluid equations and neglecting
parallel ion motion. Compare with the expression for E; in (3.71)
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3. Derive (4.47) by using fluid equations.

4. Derive a dispersion relation for the ‘Universal drift instability for small Larmor
radius by using (4.22) for electrons and fluid equations for ions, i.e. neglecting
ion Landau damping.

5. Use the tokamak data in Appendix I to compare the different contributions to e
in (4.64).
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Chapter 5
Kinetic Descriptions of Low Frequency
Modes Obtained by Gyroaveraging

We have, in Chap. 4 studied kinetic descriptions in simple geometries. Characteristic
of these has been that inhomogeneities have been assumed to be constant along
particle orbits. This can be achieved by representing magnetic curvature by a simple
gravity force. Then, it is possible to integrate the Vlasov equation in a magnetized
plasma, along the characteristics (linear orbit) for all times. This can be made for
arbitrary frequencies and gyroradii, thus including cyclotron resonances and the full
Finite Larmor Radius (FLR) effects. This can also be done keeping nonlinear terms
although we only did that for the drift kinetic equation which does not involve FLR
effects. In the present chapter we will drop the assumption of inhomogeneities that are
constant in space and include the full kinetic magnetic drifts [1-20]. In this case we do
not know even the unperturbed orbits for all times. This case can still be treated in a
reasonably simple form if we restrict our study to low frequency modes which have
o << Q.. We can then average over the fast timescale. We will start with the simplest
case when FLR effects are small and derive a more general drift kinetic equation than
we did in Chap. 4. We also include a brief survey of this area [1-20].

5.1 The Drift Kinetic Equation

The complexity of a full Vlasov description in a magnetised plasma has led to the
development of a number of simplified approximate descriptions in various limits.
One obvious limit is the case of strongly magnetized particles [16, 20]. In this limit
the particles are well localized in the plane perpendicular to the magnetic field so
that the kinetic description is needed only along the field. This approximation is
usually valid for electrons in laboratory plasmas and sometimes also for ions.
The condition for localization in the perpendicular plane may be written p << A
where p is the Larmor radius and A is the inhomogeneity scale length of the
phenomenon we want to study.
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Another simplification that still leaves a large class of important phenomena
within the description is to assume that the time scale of the phenomenon we are
interested in is much longer than the gyroperiod, i.e ® << Q. When these
conditions are fulfilled it is easy to average the Vlasov equation over a Larmor
orbit since both the distribution function and the electromagnetic fields are almost
constants over the Larmor orbit in this case. We will, however, include magnetic
curvature, thus keeping background drifts proportional to p/Lg where Ly is the
inhomogeneity scale length of the background magnetic field. This effect may
sometimes be more important than finite Larmor radius (FLR) effects of order
p/A since it enters multiplied by the large scale thermal velocity.

We shall here use a Lagrangian method of averaging, i.e. we follow the particle
around the gyro orbit instead of averaging over the short time-scale at a point.
The averaging procedure is then considerably simplified since we already know the
average of the particle velocity, i.e. the guiding center drift. We thus have:

OB
<VL> = VeV 5 D (5.1)

Where

1 ~
=—(E
VE Bo( X eH)

Vp = Vg + Vyp

2
v
Vi = g‘!—‘(e” X K)
c

2
AR
VyB = ngc(eu X VIHB)

k= (e Ve

E is the electric field, By is the background magnetic field and 6B is the perpen-
dicular magnetic field perturbation.
We start from the Vlasov equation in the form

of q o _
E+V-Vf+E(E+V><B)-E—O (5.2)

We now separate our description into the directions parallel and perpendicular to
By, using the notations || and L respectively. The velocity is then written

VZVL—FVHEH
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Where e, = Bo/B and the angle is given by ¢ = EH X V).
The velocity gradient may then be written

2—9 i+$ii+é i
aV_ LaVL \AN 8¢ ”aV”
and then

0 - - 0 0

(VXB)E—(VLXBH)(pq%-i-(VXéBL)E

Equation 5.2 then reduces to
of q o B, 9 _
8t+v Vf—i—m(E—&—VxéBL) » B (.ad)—O (5.3)

where the factor B||/B accounts for perturbations in B parallel to the background
field. This factor is always of order 1.

We shall now use the assumption that € is much larger than any other frequency
in (5.3). To lowest order in Qc_l (5.3) then leads to the condition

T g
)

This means that we as a first approximation can treat f as independent of ¢ in all
terms except the last term in (5.3). We now, however, also want to keep curvature
terms proportional to p/Q.. These terms are first order in Q. ' so some care is
needed in treating them. We shall assume that f =f (t,r,vHZ,v Lz,gp). The most
important curvature dependence of f enters in the separation between v|| and v.L.
If we separate out this additional space dependence we may write

19) 19)
oy 00, 0

of
2 2
8VJ_2 VVL +78VH2 VVH

Or

Lo 1 i) (5.4)

i _
vf—a‘“’llv(el\ V) <V—87—q v,

where the space dependence of e| has been separated out. It can now be shown that
v-V(e-v)=v(v-k) (5.5)

and we notice that this curvature depends on the phase angle ¢.
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We now perform the gyroaveraging of (5.2). Then 9f/0t is unchanged. In the
second term vje; ®(Jf /Jr) is unchanged while v is replaced by v, in the perpen-
dicular part. In the third term we can neglect Jf /9. The part containing Of/0v.L
reduces to

1 |:E +VH(8H X 5BL)} V—L 8—f
m V] 8VL
Here the averaging leads to areplacement of v, by vg.. As it turns out, however, the
first two parts of v, do not contribute due to orthogonality so that we are left with
only vp. In the part containing Jf / Ov| we may just replace v.L by v, . The last term
in (5.2) finally is a total derivative in ¢ and vanishes since orbit averaging means
integrating one period in .

Thus writing down our averaged equation directly as we obtain it after orbit
averaging we have

of R of 5 1 of 1 of
o T (V€I + Vee) - v Vg°<V Ov) v ovy
q _10f
+— [EH + (Vee X 0B ) - e”} o
q _ \b») af _
+E [EJrVH(eH « 5BL)‘} v 0 (5.6)

Since now
v —l(é X K) E—i—VH(é X K) - (e X 0B)
K gc _B I K B [l K I

the third term may be written as

q ~ 1 0 1 of
%VK . |:E+VH(CH X 5B):| <V WH—E (?Vl>

We then obtain the drift kinetic equation

o

8V||
19) o)

Vﬂ _f + V_" _f) =0

Vi aVL VH 8vH

- 0
f—|— (VHeH + V) 'l+ d

5 ar a |:EH + (Vgc X 5BL) M é”:|

q ~
“ra E—l—vH(eH PN 5B):| . ( 5.7

We notice that the first three terms can easily be obtained from a continuity
equation for guiding centers (cf Eq. 4.51). Equation 5.7 agrees to first order in the
inverse aspect ratio with the drift kinetic equation derived by D’Ippolito and
Davidson [6.20] except for the presence of the vpe0f/0r term in (5.7). This term
is comparable to the other curvature terms if f; ~ q/T and is usually kept.
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If we replace the dependence on v* and v, * of fby E = v?/2 and pu — (Op/Or)r
where u = v, 2/2B, and r is the perpendicular direction of gradB, we can obtain also
the mirror force terms kept by D’Ippolito and Davidson. The correction — (Op/0r)r
of L is necessary in order to have conservation to lowest order on the Q. time scale.
We then obtain a correction to (5.4) of the form (9f /Ou)gradjp

ie

S (lﬁ—i af)e| VinB (5.8)

The drift kinetic equation (5.7) has here been obtained in a comparatively simple
way. It does not take into account finite Larmor radius effects of the type k*p* but
includes the full parallel dynamics, is fully nonlinear and makes no WKB assump-
tion for the space scale of perturbations.

5.1.1 Moment Equations

In order to see what fluid motion it corresponds to we shall now take moments
of (5.7). This procedure is rather complicated in the presence of v, which in general
depends on both v and v|. For this reason we will in the following for simplicity
neglect curvature effects.

The zeroth moment is then

9
5+ e V) + ngc Vfdv =0

where u is the fluid velocity. Now inserting (5.1) where vp = 0,, we obtain the
continuity equation

F“r |:8Zj + = Vj] (E X eH) Vn=20 (5.9)

where j| is the parallel current. The first parallel moment of (5.7) may be written:

0 ~ [ . . ~
&(HMH) +ep- VJVHZde” + JVgC : VfVHdVH 7% {EH + (Vg X 5BL).e” n=20

where

1
E
VE = B()( ><eH)

Now v = uj + w| where w is the thermal random velocity. Thus

1
JVHZdeH = Ju||2de|| + JWHZdeH = nuH2 + ZP
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where P is the pressure. Substituting now (5.9) for In/dt we obtain

0 _ 1 _ oB |
nau” + nuje| - Vu” + I’lB—O(E X eH) . Vu” + I’lu“T . VMH

1. 1 0B ~
+—e - VP+— 2. vP—L[E + (ve x B, ) |n=0 (5.10)

m m B m

Equation 5.10 is the parallel equation of motion in the absence of FLR effects. It
is important to note here the absence of diamagnetic drifts in the convective part of
the time derivative. It is instructive to rewrite (5.7) slightly. We may define the

perpendicular guiding center fluid velocity

1 ~ oB |
U, =—(E xe))+uy——
we = g0 (Bocey) w5
Introducing now the diamagnetic drift velocity
! (e x VP)
Ve =
qnBo Il
we have
9y, % oB) e =L (e xv.)- 0B, = — L BL gp
m " 1= * YT o B

We may thus rewrite (5.10) in form

0 - q _ 1 -
&MH +ue) 'VMH + uge - VMH = %{EH + [(VE +V*) X 5BL] . .eH} - %QH -VP

(5.11)

Equation 5.11is the usual parallel equation of motion where the diamagnetic
drift is included in the v x B term but not in the convective derivatives.

5.1.2 The Magnetic Drift Mode

We now restrict our consideration to the case e ® grad= 0 and linearize. Equa-
tion 5.11 is then

0 e e -
EMH = _%EH _E(V* X 5BJ_) . .eH
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Using the representation A = Ae;; and

~ - 0A _
5BJ_ZVXA6||:VJ_AXQH E:_vd)_EeH
We obtain
. . e 4 ~ ~
—iou) = —szA - IEV* . {(k X e\l) X CH}A
Or

The parallel current is

) 1 ~ 1 ~ ~ 1
Jji==-(VxB) ¢ =~ [V x (V1A X eH)} e =——AA
u u It
Thus
2
X 1
new) = —KA(l - e) =—k’A
m ) U
or

-1
kLZCZ
W= Wy | 1— 5
Wpe

This is the dispersion relation of the magnetic drift mode (compare Eq. 4.59).
We see here that the inclusion of the diamagnetic drift in the convective derivative
would not cause a negligible modification. We must then conclude that this term is
cancelled by stress tensor effects.

Transport due to an enhanced thermal equilibrium spectrum of magnetic drift
modes is discussed in Sect. 9.2.

5.1.3 The Tearing Mode

In a more realistic geometry with magnetic shear, the condition kj = 0, which
was assumed for the magnetic drift mode, can not be fulfilled everywhere for
modes with finite radial extent. We thus have to solve a radial eigenvalue problem.
The characteristic property @ = 0 of the magnetic drift mode will then enter as a
boundary condition at the rational surface. This type of mode can be driven unstable
by collisions and is called the tearing mode [6.4]. In a shortwave version it is called
the microtearing mode [6.57, 6.58].
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5.2 The Linear Gyrokinetic Equation

We have in Chap. 4 seen how we can obtain general kinetic equations in a slab
geometry by integrating along unperturbed orbits. For more general geometries we
have in the previous section derived a drift kinetic equation valid in the limit
kip << 1. We will here finally consider the case k; p ~ 1 in complex geometry.
Gyroaveraged equations of this type are called Gyrokinetic equations. A pioneering
work along these lines is that by Rutherford and Frieman [1]. A generally used
assumption in this type of equations is: p/L <1 where L is an equilibrium scale-
length. We will here derive gyrokinetic equations by a method that is considerably
shorter than conventional methods. We may write the Vlasov equation in the form:

br_ (5.12)
Dt
where
D 0 Jd q 0

We shall assume a solution of the form:

f(r,V,t) :fO(r7V) +fl(rava t)

Where f is the background distribution and f; is a perturbation fulfilling

fl (l‘, v, t)<<f0(r7 V)

For simplicity we shall here omit background electric fields. The equation for f;
becomes

q _
201 9y By) - T =0 (5.14)

ov

Writing the velocity in cylindrical coordinates we have

SRS B
VLaqS H8V||

Where 1 and || refer to the direction of B. Since

(pZéXﬂ_
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We can rewrite (5.14) in the form

¥ o

V'VfOZQc%

(5.15)

showing that a gyrophase dependence of f, is associated with inhomogeneity
(compare the dependence on the generalized moment in Chap. 4). We may also

write (5.14) in the form
v- [VfO+Q (e| xaf‘)ﬂ =0

Assuming e;.0f,/0r = 0, we obtain the solution

afo 1 oo , - I
— .1
oy Q (eH X Vfo) -i-VJ_a +e €| (9V|| (5.16)
To first order we have
Dofy __a %o
Dr = m [E + v X 0B] oy 5.17)
where
Dy 0
E = a +v -V + —V X BO aV

is the operator along the unperturbed orbit. The unperturbed orbit is given by
V(1) = V(1) + vp(1) + Ve (5.18)

where V(t) is the pure gyromotion as given by (4.4), vp(t) is the magnetic drift
which may be time dependent along the orbit and v|| is the velocity along Bo.
We now invert (5.17) as

fi==L [ ) 30 < B )] - B

(5.19)
m

Where r(t') is the unperturbed orbit. Now, considering Fourier harmonics in time
and space we obtain

fk:—%J [Ex +v x By - f° e gy (5.20)
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where

a(t) =k [r(t) — r(t)] — o1

t
— ka\u [sin(Q.t + ¢ — ) — sin(¢ — 0)] — J o(f)dl
C —1

and

O =w—kyv —k-vp(t),t=1—1 V(0)=vi(cosp,sinp)
k; =k, (cosf, sin6)

We now introduce potentials i.e.
For a Maxwellian distribution (5.16) now leads to

W Yo

=i kv kv — o) (5.21)
Where wer = k ® v,p, Vi, = (T/(mQ)) (e x grad(Inf) ) As we have seen in
Chaps. 3 and 4, A is the most important part of A. In order to include also
compressional parts of the magnetic field perturbation i.e. 6B (Eq. 6.18) we now
include also an A, component. This makes our choice of A general since we have
the freedom of the gauge condition. We then find:

[Ex + v x By - fo fokL Vige iy 20— ook Ve
- i? (kwpk - wAkH)foVH + if (px = V) Ar) @ o (5.22)
Since now
d Zin(t) _ . —ix(7)
22¢ =i(ky -vi(7) + kv —w)e (5.23)

We may rewrite (5.20) in the form
_4 . A sty — —VviAL — Ay - —() | .t (5.24
fk_TfO . P ¢ ti(w.y — ) (¢ — VA — Ak V1 )e T (5.24)
or
. q . 4q > —ia(t)
fe= ?‘Pk.f() + lfof(w*f — o) (¢ — v Ax)) . e "Wdt

- i%fo(w*f - o) J Ag - vie g (5.25)
0
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In an inhomogeneous system the orbit integrals in (5.25) require knowledge of
an, in general, very complicate orbit. We will here avoid this complication by
assuming the gyroperiod to be much shorter than any other time scale and
performing an average over it. Thus a general orbit integral is written

00 oS 1 T+AT
G(t)dr = At — G(t)d 5.26
J, Gz = aeg | Gt (5.26)

where At is a gyroperiod and the integrals, normalized by At are the local
gyroaverages of an arbitrary function G(t), subject only to the above assumption
of time scales. In the gyroaveraging, we can ignore all variation on time scales
longer than At. Since the time steps At are small as compared to the longer time
scales in the system we can convert the summation back to an integral over the long
time scale. Thus

Now since

kv
exp | —i
C

sin(Q1 + ¢ — 0)} = ;J,l (k;)”) exp[—in(Qct + ¢ — 0)]

We obtain

t

oD — Jo(&) expli€ sin(p — 0)] exp {1]

-1

@(r’)dﬂ] (5.27)

Where & =k, v, /Q... Moreover, writing A, @ v, = A v, cos(Q.t+ ¢ —0') we
have
<Ay vge MIs = A v, < cos(Qet+ ¢ — 0’)e_i“(r)>

1

= Ee’“.<2 "1 exp[—in(Qet + ¢) +i(0 — 0)]

+ Jp1explin(Q.t + ) —i(0 — 9/)]}e+quH (7)(1’)dt/>

Vi dly i[’ g ’dt’:|
zlz—i(e\\ Xk)'Ad—ge’Lke Jo
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where

L= ka” sin(p — 0) = (Vx e)) - k/Qe

As mentioned above, the integration on the long timescale requires detailed
knowledge of particle orbits. If we instead differentiate with respect to the long
timescale we obtain the gyrokinetic equation

(@ = kv — wp)g, = %(w —o,) {(d& = VA o() — ilvc—i(éu x K) - Ao (fo
(5.28)

Where

~ . k
Ly=(vxe)): —
=) g
Here wp =k evp (vﬁ7 v2) as given in the derivation of the drift kinetic equation.

The diamagnetic drift frequency contains grad f;, and is also velocity dependent. For
a Maxwellian distribution where both n and T are space dependent we find

2 3
Wy = 0, {1 +77<%—5>} (5.29)

Where n = L,,/Lt and o. is the usual fluid diamagnetic drift with only a density
gradient. Equation 5.28 agrees with the gyrokinetic equation obtained by Antonsen
and Lane [6.53].

5.2.1 Applications

It is straightforward to rederive the results on both electrostatic and electromagnetic
modes in Chap. 4 from (5.28). The advantage of (5.28) is that it allows for
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space dependent coefficients (i.e. ®., ®p etc.). We also note that k| in general has to
be treated as an operator. Another major difference is that (5.28) is valid
for arbitrary op/® while the treatment in Chap. 4 only works to first order in
op/m. We will here explore this property a little in the electrostatic limit.
We will also take the limit w>>k)vy, in which case k;| can be omitted. In this
case the density response may be written:

on_ ¢ [ L [0z aell+alm 2T - S/2U Gl

1——
T no w — Wp (VH2 + VLz/z)/Vzth

] (5.30)

where op is the fluid magnetic drift frequency and all velocity dependence has been
written explicitly. For comparison with fluid theory it is useful to expand (5.30) for
op/® 1 and & = kp < 1. Including terms up to second order in both small
parameters we have

O (2 (1250 ) (14 T2 (22 4 1,2p?)
.

T,

W4jWpiWpe

+ Iy, — PPy (5.31)
(0]

Where weir = we(1 +7;) and I' = 7/4. The expansion in ®p has a very limited
regime if applicability in tokamaks. However this is really the only way of compar-
ing with advanced fluid theory analytically. As we will see in Chap. 6 the same
expansion, except that I' = 5/3 (5% difference) is obtained for a reactive fluid
closure including the diamagnetic heatflow.

We note that (5.31) is also useful for MHD modes since for these ions can
usually be treated in the electrostatic limit. For these modes the natural linear
eigenfrequency is o.;r at which the second part of (5.31) vanishes. The last term
here acts as an additional driving pressure force which is responsible for an
instability below the MHD beta limit (Eq. 6.70). As can be seen from the advanced
fluid model presented later the last term in (5.31) is due to the divergence of the
diamagnetic heat flow which is the term in the energy equation that corresponds to
the lowest order driving term in the continuity equation, i.e. the divergence of the
diamagnetic particle flux.

Another property of (5.31) is that to first order in ®./® and ®p/® it reduces to
o.(1—¢,)/® where &_ wp/w.. Since ®./o leads to the main driving term for
interchange and ballooning modes in MHD, the ¢, part is the main reason for the
reduction of the growthrate of MHD ballooning modes for large €, seen in kinetic
theory (6.70).

However, the most interesting aspect of (5.31) is probably that the last term is the
first in such an expansion to separate between temperature and pressure gradients.
This is so since the first term on the right hand side is due to E x B convection and
thus will cancel with the corresponding electron term when we derive a dispersion
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relation from the condition div j = 0 and in the other terms density and temperature
gradients enter together to form a pressure gradient. Then the last term, as pointed
out above, comes from the heat flow. Thus an adiabatic model would not separate
out temperature gradients (degenerate case).

5.3 The Nonlinear Gyrokinetic Equation

We will now continue the above derivation of a gyrokinetic equation to the
nonlinear regime.

It is straight forward to continue the linear derivation iteratively, thus inserting
the linear relations in the nonlinear terms. This corresponds to an expansion in the
perturbations but this is, in fact, allowed since in the main part of a tokamak,
ep/T ~ 1072, Moreover, the Hasegawa-Mima equation, which is regarded as fully
nonlinear, emerges in the appropriate limit. We will here, for simplicity, omit A.

A convenient way of writing (5.28) is then:

£V = —%fon (5.32a)

Hy = ¢, + e (5.32b)

Te = 2= [y + vy [o(&) (5.32¢)
L= (v x e) - k/Q (5.32d)

For the background variation we will use the formulation

19) ~ .
oo (g0 + v )ty (533

An interesting point is that linearly the phase dependence of ¢'™ disappears into
a Bessel function while it plays an important role in the integration of the nonlinear
terms. The nonlinearity we are interested in can be written

i af(l) 1 J/(‘C/) . ’
/ ,(2) t/ = — —q J E, + B, )| - k=K —RN T _lx"’k/(f)d l.“,
e 0[ w + (VX Bye)] ov ¢ o (5.34)
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Here we need to calculate

6fk“) _q OHj, . 1 OH; . OHj -
N T Q(0+_V foHr — Tfo 8VLVJ_+ v Op <,0+a v e (5.35)

Which we substitute into (5.34) as

Feo™ = (2) Folr,v)

T OH,_p
Hy g — ——— = VA
L (b0 = ViAW) .

X ZJOO iK v e w0 gg

’ ” o X | OH, v
N (%) fO(”V)ZL {ik"(eu XVL) (¢kf—vHAHk,)_L a;k} it (9) gy

v (K by — &' Ajp) — . (b — vy ]

q 2 0 .
— (—) Folr,v) E J e v Wy
" 0 X kak’“i“iz (k”l(ﬁk/ +(A),A‘|A/)a k=K
m ({)VH

(5.36)

Here we assume @' to be associated with k and ®” with k" = k—K'.
Rewriting (5.36) in a similar way as (5.25) the following integrals appear:

G(é)ZiJ k' ve " dr (5.37a)
0
R L / .
R(él):iJ K-y aaif e "Odr (5.37b)
0
o0 . _ R
Q(é’)ziJ k (eHva)aa;k e ®0gr (5.37¢)
0

Where
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Using (5.37a—c) we can rewrite (5.36) in the much simpler form

f(2>k,w = (%) 2fo Z {‘f’k"f’kk'G(f)

k'

[ — VA JiTiw (R(E) + Q(é’))}

(5.38)

T
myv |

The integration of the expressions (5.37) proceed in a way very similar to the
evaluation of the AL part in the linear gyrokinetic equation (Eqs. 5.27-5.28) with
the result:

G(¢) = —ikvl—i@(k < K') - €Jo/(&)e™ (5.392)
REE) +0() =~ (K x K') - /o(&)e™ (5.39b)

Where we introduced k' = k — k’ and Jo' = dJo/dé.

The new feature of the nonlinear terms is that the vector products appear. They
are initially obtained as terms of the type proportional to e.g. sin(0—0") etc. Thus it
is essential to have Kk’ different from k in (5.37). We now observe that G(&) vanishes
upon summation over K’. This corresponds to terms prop to vgegrad ¢. We then
arrive at

2 .
q ! ~
FPio="FFom= D (K xK") - ee™ (¢ = VA ) (brr — vjAjer)
C k/k//
o, — o'
< O o) (5.40)

We now obtain a nonlinear dispersion relation of the form:

D(wv k)¢k,w =

T; ? <5”l(2)e.k,w . 5n(2)i,k,w) 541

e /\0—1 no no

As an example we will now consider the electrostatic approximation. We will
furthermore ignore magnetic drifts. We then obtain the equation:

{a) {1 + T. (1— Ao(s)} - w*e/\o(s)}%,w

T;
1 T, , "~ , " ,
=T Jfo;(k K -6 (J0(E) — 1) (1 - w,,)zoz(g )
X hpppodv (5.42)
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We now take the limit k*p* < 1 keeping only first order terms and limit
consideration to three waves. We can then perform integration over velocity
space obtaining:

1 1
{Cl) (1 + §k2P2s> — Wye <1 - zkzpi2> }(/)k,w

2 11 i
ps- Te ~ 2 W i 2 Wi
_ _Bio f(k, « k//) ¢ |:kL/ <1 . p ) _ kL” <1 _ o ):| ¢k’¢k” (5.43)

This is the Hasegawa Mima equation in (®,k) space generalized to include first
order FLR effects. We note that since this is a nonlinear equation, ® here includes
nonlinear frequency shifts. We note that the role of k1.? in the cascade rules is now

replaced by:
2 2 2 w//*i 2 w*i/
kll 7kLH — |:kLl <1 ”)kLH <1 />:| (544)
w (03]

We note, however that here (w,k) have been kept together. In a strongly
nonlinear situation we should perform the summations over ® and k independently.

5.4 Gyro-Fluid Equations

Since we have here derived kinetic equation fluid that have been averaged over the
gyromotion it may be useful to discuss briefly fluid-type equations obtained by
taking moments of these averaged kinetic equations. We have, actually already
derived such an equation in (5.11). However, this equation does not contain higher
order FLR effects. A special feature of gyro-fluid equations is that they contain only
guiding centre drifts, i.e. there are no diamagnetic or stress tensor drifts. Still they
contain full FLR effects if derived from the gyrokinetic equation. Of course
gyrofluid equations contain less information than the full fluid equations since
they have been averaged over the gyromotion. They are, however equivalent to
the fluid equations obtained by the low frequency expansion in Chap. 2. In order to
obtain higher order FLR effects from the fluid equations we, however, have to make
use of the stress tensor as shown in Chap. 2. This is often tedious. Since the
perpendicular dynamics is due to the guiding centre drifts which we already know,
the main remaining questions now concern the parallel motion. It appears that the
first gyro-fluid equation for parallel motion, including magnetic drifts was obtained
by Waltz et al. [18] (5.45). We note that this equation has a convective magnetic drift
included. This may be surprising since the parallel motion should be the same in
gyrofluid and fluid equations and magnetic drifts are not present in fluid equations.
This was resolved in [19] when (5.45) was rederived from fluid theory using the


http://dx.doi.org/10.1007/978-1-4614-3743-7_2
http://dx.doi.org/10.1007/978-1-4614-3743-7_2

100

stress tensor with magnetic curvature effects. Thus the perpendicular and parallel
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dynamics are coupled by magnetic curvature.

85UH
ot

+ 2vp - V(SuH = 72” : V(ép + end))

A general formalism including magnetic drifts in the stress tensor was presented

in [20].
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Chapter 6
Low Frequency Modes in Inhomogeneous
Magnetic Fields

We have now seen how some typical low frequency modes can be driven unstable
by density, pressure or current gradients in simple geometries. A more accurate
description of collective modes in magnetic confinement systems, in general,
requires more detailed geometry effects as well as separate effects of density and
temperature gradients [1-197]. In the present chapter we will aim at making the
geometrical description more accurate, thus in most cases leading to eigenvalue
problems for the modes concerned. We will also derive a more complete drift
kinetic description, introduce the gyrokinetic equation and present an advanced
fluid model. We will furthermore review briefly the fields of transport due to
magnetic fluctuations and advanced fluid models.

6.1 Anomalous Transport in Systems with Inhomogeneous
Magnetic Fields

Although work on understanding transport in magnetic confinement systems has
been going on for about 60 years, this problem is still an ultimate scientific issue
[167]. Its importance for the size and cost of a reactor is obvious and critical but the
scientific difficulties associated with it are enormous.

Initially, for Ohmically heated plasmas, the interest was mainly focused on
electron transport since it dominated. While the particle transport has to be
ambipolar, the energy transport does not. Thus electron thermal transport, through
magnetic perturbations is an obvious option. The most well known scaling law in
this regime is the Alcator scaling [31]:

Tp X na’ (6.1)
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Several theories have been able to recover the density dependence through a
dependence on collisionality. A candidate for magnetic transport is the
microtearing mode [57, 58] while the dissipative trapped electron mode [10] can
give such a scaling through electrostatic dynamics [85]. We shall return later to
trapped electron modes and will here discuss magnetic perturbations briefly. Sev-
eral papers consider the transport for given magnetic fluctuations (or islands).
Critical for transport is the island width which determines whether islands from
neighbouring rational surfaces overlap. When this is the case we can use the
Rechester-Rosenbluth diffusion coefficient [41].

OB
D = vyeL, (E) (6.2)

where L. is the correlation length which in general, through the mode width
depends on the resistivity. An obvious candidate for creating magnetic
perturbations is the magnetic drift mode (4.59). This mode has k) = 0 and ¢ = 0.
In a realistic plasma with magnetic shear, this mode is localized near rational
surfaces (see the following section), where k| ~ 0. In such a geometry we have a
radial eigenvalue problem with the boundary conditions ¢ = 0 (odd ¢) and even
AH at the rational surface. Such a mode is a tearing mode [4] which is destabilized
by resistivity.

While most confinement systems are designed so as to eliminate the dangerous
global tearing modes with kgL, ~ 1, a localized “micro tearing” mode with
kyL,>>1 can still be unstable if ve;>w,.. The saturation level, due to diffusion,
is [57]:

0B _ p,
5L (6.3)

This level is of the order 10~ to 10~ in typical tokamaks. This mode is thus a
candidate for explaining the Alcator scaling in the Ohmic regime which usually is
collision dominated. It is, however, almost stable in collisionless plasmas, giving a
very small transport.

In the collisionless regime, electromagnetic drift wave turbulence has been
considered as a candidate for generating magnetic transport [34, 88, 97]. The
magnetic fluctuation level is, however, usually too low or the correlation length
too short due to very high mode numbers. A remaining possibility is nonlinearly self-
sustained magnetic perturbations. As an example collisionless tearing modes can be
driven unstable by the turbulent radial diffusion of electrons [119]. The experimental
situation remains unclear. On the one hand evaluations of the magnetic flutter
transport on TEXT [125] conclude that it is considerably smaller than the total
transport while experiments on Tore Supra [126] indicate the presence of magnetic
islands. A recent development in this field is the current diffusive ballooning mode
[124]. It is a MHD type mode which is described by resistive MHD equations.
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A transport model has been based on this mode. It tends to give good agreement with
experiments for electron thermal diffusion but not so good agreement for ion
diffusion [182]. This may be due to the fact that only one fluid equations are used
and a full kinetic derivation is still lacking.

When the density is increased sufficiently, the confinement time saturates and
another instability takes over. Transport code simulations [86, 87] indicate that this
is the ion temperature gradient driven mode [1, 28, 61].

6.2 Toroidal Mode Structure

A general plasma perturbation in a torus must in order to fulfil the boundary
conditions be a superposition of elementary perturbations of the form

f(r,0,¢) = f(r)e ™) (6.4)

where 0 is the poloidal and ¢ is the toroidal angle according to Fig. 6.1. The phase
angle can be represented as

ml —n¢ = k. r0 + kyR

Where

and kg = —

Fig. 6.1 Toroidal mode structure
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We here allow both positive and negative mode number corresponding to
propagation in different directions. Thus the choice of minus sign for k, is arbitrary
and was chosen in order to have the possibility of cancellation between the poloidal
and toroidal phases for positive modenumbers. Such a cancellation is of special
interest since there the parallel k vanishes, corresponding to the most unstable
situation as discussed earlier.

The magnetic field can be written:

B = Byey + B¢E¢
Thus
m n
k-B=—By——-B
r 0 TR

where, in a tokamak B,>>By, R >> r. Thus the two contributions to keB are
usually comparable. It is therefore convenient to introduce

Ap B o T
r)=—=—— 6.5
1) =39 =B, R (6.5)
where Ag and A6 are the changes in @ and 8 when we follow a field line as shown in
Fig. 6.1. Here q is called the rotational transform which is one of the key parameters
for tokamak stability. It is thus also called safety factor. In terms of q we can then

write
k-B= ng [% - q(r)} (6.6)

showing that keB = 0 when q(r) = m/n. This means that the pitch angle of an equi-
phase line o = (r/R)m/n coincides with the pitch angle of the magnetic field lines
0 = rA0/(RAyp). In this situation kj = 0 and the electrons cannot cancel space
charge caused by the mode (m,n) on the magnetic surface (surface containing
magnetic field lines) corresponding to q(r) = m/n. This surface is called the rational
surface. Since q(r) usually is growing monotonously with r, each mode will not
have more than one rational surface. Modes that are well localised around the
rational surface are usually more unstable since the effective k| is small. One
common way of expressing k| is by rewriting (6.6) as

_k-B_nBym

ky = = . B_(/, [; — q(i‘)} = [m—nq(r)]/Rq (6.7)

Where we assumed that Be<<B, so that B ~ B,. The wave number 1/Rq
represents the inhomogeneity of the magnetic field and is related to the connection
length L. defined by

L. = 27mRq
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L. is a measure of the length of a magnetic field line between two points with the
same 0. We then introduce

Lo
L. ¢gR
So that
k| = [m — nq(r)]k, (6.8)

Now Taylor expanding q(r) around the rational surface, ry defined by q(ry) = m/n
we obtain

dq r—ro
k= —nk;—(r—ro)=— k 6.
| = —nke— " (r = r0) Lk (6.9)
Where we introduced the shear length
q 1
Ly=— 6.10
© ke rdg/dr (6.10)

A frequently used measure of the shear strength is also

_dlng rdg
5= dinr g dr

(6.11)

These two parameters are related through

R _
LS:T‘]:(/CC)1

For a tokamak, typically, s is small near the axis and is otherwise of order 1.
Another quantity which is often of interest is the distance between neighbouring
rational surfaces. If q(rp) = m/n and q(ro+A 1) =(m+ 1)/n we obtain for

slowly varying q(r)
dq !
Ar=|n—

If we instead vary n, an additional factor q will appear. Since a mode usually is
localised around its rational surface, the question of overlapping between two
modes and accordingly nonlinear interaction and transport properties, depends
strongly on the distance between rational surfaces.
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Another inhomogeneity which is important for the modestructure is the decrease
of B, along the main radius. This variation can be expressed as

Br

By=— T
Lt (r/R)cosf

(6.12)

Modes which are driven by the curvature of the magnetic field lines are usually
strongly influenced by the different sign of the curvature on the outside and inside
of the torus, introducing a periodicity with period L. along the magnetic field lines.
Although it is still possible to Fourier decompose the modes into components of the
type (6.4) these components will be linearly coupled and an eigenmode will now
have the form

f(r,0,¢) = f(r,0)e"="9) (6.13)

This leads to a two dimensional problem for the mode structure which in general
is difficult to treat exactly and approximate analytical solutions are usually only
available if the r or 6 dependence dominates.

The poloidal variation of f is often, by projection, transferred to a variation along
the magnetic field. A Fourier-decomposition along the magnetic field then leads to a
coupling between components with different k|. Since a convection in the radial
direction changes k| we realize that we will obtain a coupling between the mode
structure along the magnetic field and the position in the radial direction. This
coupling usually tends to inhibit the radial convection, thus reducing the shear
damping. Since f(r,0) will vary at least as fast as the fundamental mode m = 1 it is
not necessary to distinguish between the modes m and m + 1. It is instead common
to express an eigenmode by its independent mode number, n. Close to the rational
surface the poloidal variation is described by m = q(r)n and an additional variation
of f. Due to the poloidal variation we must, however, also introduce a 6 dependent
safety factor v(r,0) so that

1

q(r) = 7 ?l;v(r, 0)do

The representation (6.13) then turns into

f(r,0,¢) =f(r,0)e" [ ve0ra0-9)] (6.14)

This is a very useful eikonal description which for large n describes a mode with
a rapid variation across the magnetic field and a slow variation along the magnetic
field. The r dependent helicity that results from putting m = nq(r) corresponds to a
mode that tends to follow the field lines when it moves in the radial direction,
thereby minimising k| and the restoring line bending force. There is, however,
one disadvantage which has been discussed extensively in connection with
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electromagnetic ballooning modes. It is the lack of periodicity of the phase function
at a distance from the rational surface. This cannot be compensated by the amplitude
f within the eikonal description. The problem was solved by transforming the problem
to an infinite domain in 6 where no periodicity is required and then constructing a
periodic solution by adding the integer Fourier components [26, 39, 42].

6.3 Curvature Relations

We will now discuss some fundamental relations obtained in a curved magnetic
field from a fluid point of view. We start by noting that a curved magnetic field
always also has a gradient perpendicular to the field due to the fact that the magnetic
field is divergence free. In order to simplify we will often just use curvature
although we understand that a curvature drift also means the presence of a gradient
B drift and these are combined to the magnetic drift. We start with the condition for
pressure balance. By adding the equations of motion for ions and electrons and
dropping the inertial terms (error of order ®/Q2.) we obtain

Vp=jxB (6.15)
Combining (6.15) with
V x B = pj (6.16)

We obtain the pressure balance equation

B? 1
v(p+—> =—(B-V)B (6.17)
2u0/) Mo

where (1/2119)B? is the magnetic field pressure and (Begrad)B is the field curvature.
When written for the background quantities (6.17) shows how the magnetic field
pressure varies in space due to particle pressure (diamagnetic effect) and field curva-
ture. In a low  plasma the pressure gradient term is often neglected and (6.17) then
just gives the geometrical relation of the vacuum field. If we, on the other hand, write
(6.17) for perturbed quantities and linearise we observe that

1
(B V)B ~ Boky 0B + (0B - V)By ~ - 0BBy

for kj ~ 1/R where R is the radius of curvature of the background field. This
estimate is typical for quasi-flute modes in toroidal machines and since grad(B)2 ~
k, BodB we realize that the curvature term is normally negligible for perturbations.

We then have



108 6 Low Frequency Modes in Inhomogeneous Magnetic Fields

OB
\Y (517 + —) =0
2y
Since 6B2 = (By + 0B)* ~ 2B 0B we find the relation

_Ho op
By

5B = (6.18)

Which relates the parallel perturbation in B to the pressure perturbation. This can
be seen as a consequence of the magnetic confinement and the pressure balance. We
now return to the derivation of the drift velocities in Chap. 2. Introducing ¢, =
B /B we have

~ 0B
e X (vxB) = VB _BVH =v,Byp 1+B—0

Then linearising the expression for v we find, dropping v, and v, that the only
drift which is modified is v.. The quantity usually needed in the derivation of
dispersion relations is divj. We here note that it is the total parallel magnetic field
(including perturbation) that should appear in the denominator of the fluid drifts.
Thus we are interested in evaluating the expression

v [(n,-v*i —nev*e)(l —‘;—Ii')] ~V [ﬁ(é x Vp)(l —(SB%)} ~

1 /. 0B 1 ~ 2uy -
=— <e X B()) -Vépﬁ-a(v X eH) . V(sp-ﬁ-@(e” x VPy) - Vop
(6.19)

where we started by assuming 6B <<By, then used quasimeutrality, linearized and
finally used (6.17) assuming that

VOB __ VB
5BH B()

We shall now rewrite V x| using standard vector relations


http://dx.doi.org/10.1007/978-1-4614-3743-7_2
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Taking the vector product with e we find
(V X éH)L = EH X (EH : V)éH (6.20)

Since
- ~ 1
€ - (V X e||) ZEeH : (V X B)

is associated with a background current and since k| generally is assumed to be
small we will neglect the parallel component of rot e;|. We can now use (6.17) for
background fields to express the first term in (6.19) in the two others. It then turns
out that the finite beta terms cancel. Then introducing the curvature vector

~ _ R,
k= (e Vey) =~
We can write
0B 2
V- |:(nl-V*i — ngV*e) <1 - B—O):| eBy (eH X K) Vép (6.21)

This result has several interesting implications. First as we already noticed, the
finite B terms cancel, making a low B treatment adequate. Second, we see that the
divergence of the diamagnetic drift flux is a curvature effect (compare Eq. 2.12).
The term given by (6.21) is in fact the leading order curvature effect in an expansion
in a/R (inverse aspect ratio) and is the main driving pressure term for ballooning
modes. It can be represented by an equivalent gravity drift and this gives the same
result as obtained for the kinetic derivation of interchange modes. The drift terms
kyv, in the derivation are, however, higher order in a/R and do not correctly
describe the effect of a curved field. The result (6.21) suggests that we introduce
an effective curvature drift

2T;
Vi & — (e X K) (6.22)
q;Bo

Which is the total magnetic drift in a Maxwellian plasma, including the lowest order
finite B effects. When effects of 0B are not included we have the curvature relations

1
V- (nv.) = ACh Vép (6.23)
and

Vvg=—2vy- -V (6.24)
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Where
Vp = V. + Vya (6.25)
T
Vi = m_QC<eH X K) (626)
and
T /- VB

is the sum of the grad B drift and the curvature drift. These drifts are the same as the
kinetic grad B and the curvature drifts when those are averaged over a Maxwellian
distribution, i.e., <V”2> = T”/m, <v?>= 2T, /m, assuming isotropy. From
the comparison we see that if the fluid equations were generalized to a situation
with different T and T, we should use T, for the grad B drift and T) for the
curvature drift.

For unisotropic temperature we, in fact, get a contribution from the curvature
drift to the fluid drift. It is [137]

T-Tu o
K
Ty

VDfluid = (6.28)

Where v,._ (TH / mQC)é”x;c. Moreover the diamagnetic heat flow is split into two
parts[137]:

1 P,
q*H =5 m—Q(.eH X VTH + (PH —P1)v (6.29)
P,
q*J‘ = Z—Le” X VTL (630)

m€),

For isotropic pressure these add up to the Braghinski q.

6.4 The Influence of Magnetic Shear on Drift Waves

As pointed out in the previous section, in a tokamak the magnetic field has both a
toroidal and a poloidal component. Moreover, since the poloidal field is generated
by the toroidal plasma current it varies with r. Assuming for instance a homoge-
neous current density and applying Ampéres law to a circular contour with radius r
around the center of the plasma in the perpendicular plane we find B, = (1/2)pjr
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where j is the current density. It is thus natural to assume that B, increases with r.
In our previous Cartesian coordinate system the x coordinate corresponds to r and
the y coordinate to the poloidal direction. The simplest possible approximation of
the magnetic field is now:

B(x) = By <i T Ify) 6.31)

where L is the characteristic scale length of the magnetic field variation. It usually
fulfils Ly/a>>1 where a is the small radius. This kind of transverse variation of the
magnetic field is referred to as magnetic shear. In order to describe drift waves in a
system with magnetic shear we have to solve a differential equation for the field
variation in x, and the solution for the mode frequency becomes an eigenvalue
problem. We now consider perturbations of the form:

F(x,y,2,0) = f(x)e b thiz=en) (6.32)

Where f may represent any perturbed quantity. We may then write the perpendicu-
lar velocity, including vg and vy, from (2.11c) and (2.11e) as:

0 _ ~
za—fx —kyp - y> (6.33)

= y_17¢.X+BOQL‘i

_ Lo ik @
_Bo ox Bo

The ion continuity equation now yields

g il 6.34
no @ mchiz Ox? mide m; w? T, ( )

on |o. T. & KM. T, kZ] e
We shall, for simplicity, disregard destabilizing effects and wuse the
approximation:

on. ep
T, (6.35)

for the electron density. We now want to introduce the leading order effect of the
magnetic shear into the system (6.33) and (6.34). The effect of the magnetic shear
will be to twist the magnetic field. A toroidal eigenmode will also be twisted
according to its poloidal and toroidal mode numbers. At a certain value of r it has
the same degree of twisting as the magnetic field and k| = 0. At larger r the poloidal
field will have a projection on z. The simplest model for its variation in a Cartesian
system is (compare Eq. 6.6).

X
b=k (6.36)
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Now combining (6.34) and (6.35), using the quasineutrality condition we obtain
the eigenvalue equation

82 2 2
2079 ¢ x2¢+

p 229 O X7 [w*e
SO vl L

—1-k*p?2¢p=0 (6.37)
w

where we approximated o by .. in the term proportional to x*, since this term is
assumed to be small. Equation 6.37 has a solution of the form

¢ = H,(i&)e*</? (6.38)

Where H,, is a Hermite polynomial of order n and

Qci 1/2
(E N (V*eLs) *

If (6.38) is substituted into (6.37) we obtain the condition

*CQCILS *xe
e {“’w 1 —kyzpf} —+(2n+1) (6.39)

Cs

which determines the eigenvalue ®. Clearly the + in (6.38) and (6.39) is related to
the direction of propagation of the wave. Assuming absorbing boundaries the group
velocity must be outward. Since this corresponds to an inward phase velocity we
have to choose the minus sign in (6.38). This leads to a convective damping for
waves with outgoing group velocity. The mode which is easiest to destabilize is
n = 0. For this mode the solution is [12]:

Ly,
o =o0.(1 -k’ (1 - iL—) (6.40)

A

This case corresponds to
¢ = Te i€/ (6.41)

where I' is a constant. As we found previously drift waves have the strongest
tendency for instability for small k; where the electron shielding is inefficient.
We thus expect drift waves to be generated near k| = 0 and then propagate towards
larger x. When k|| has grown so that kv; = o the ion-Landau damping sets in and
absorbs the wave, thus preventing reflection at the plasma boundary and justifying
the outgoing boundary condition. The extent of the wave in the x direction, due to
the limiting effect of ion-Landau damping can be estimated to be
Vie

Ay = —L;
Vii
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In order to have an absolute instability the growthrate of a drift instability must
exceed the damping due to convection. It has recently been shown both analytically
and numerically that if fully kinetic models are used both the collisional and the
universal drift instabilities are only convective. In toroidal systems with poloidal
variation of By, however, toroidal couplings may introduce absolute instability [26].

6.5 Interchange Perturbations Analysed by the Energy
Principle Method

As mentioned in the first section one common method of determining the stability
of a system is by calculating the change in energy caused by a small perturbation.
We will here apply this method to an exchange of flux tubes (a tube where no
magnetic field lines are crossing the mantle surfaces). Since the most unstable
perturbations are electrostatic (no bending of field lines, k; = 0) we will consider
only electrostatic perturbations.

For a Maxwellian velocity distribution the average particle energy is

1
E =_-NT
2

Where N is the number of degrees of freedom. The equation of state is written

p = C(nm)’
Where
2+N 2
= =N r N =
N y—1
Accordingly
T
=
and the internal energy in a volume v is
T pv
W, = = 6.42
P nv,y 1 y— 1 ( )

where n is the particle density and p = nT is the pressure.
We will now consider the exchange of plasma and magnetic flux from volume 1
into volume 2 and vice versa according to Fig. 6.2. Assuming an adiabatic process
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Fig. 6.2 Interchange of
flux tubes

% (') =0 (6.43)

The change in energy can be written

1 Vi 7 \%) 4
AW, = =1 [pl (V—2> V2 +p (V—l Vi = PiVi = PaV2 (6.44)

Where we used the relation (6.43) in the form
pivi’ = pyva’

For small perturbations we may writep; = p,vi =V p,=p+dpandv, =v +
0 v where dp<<p and ov<<v. Introducing these expressions into (6.44) we obtain

S 2
W, = dpov + yp% (6.45)

Since the second term is always positive a sufficient condition for stability is
opov>0 (6.46)

We may write @ = BS where S is the surface of the cross-section of the flux
tube. Since ¢ is constant along the flux tube we may write

di
ov = 5JSdZ - ¢5JE

When flux tube 2 is closer to the plasma boundary than tube 1, p < 0. Then
condition (6.46) becomes 6v < 0 or

dl
0 JE<0 (6.47)
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Fig. 6.3 Stabilizing and destabilizing
destabilizing curvature region

stabilizing
Plasma

The condition (6.47) shows that configurations where the magnetic field on the
average increases towards the plasma boundary are stable to flute perturbations
kj = 0. Such configurations are denoted ‘average minimum B systems’. For the
simple case when B can be approximated by a vacuum field (low ) generated by an
external current we have

~ 2pl
=R

B
And the condition (6.47) takes the form
o JRC di<0 (6.48)

showing that the plasma is stable when OR. on the average is negative
corresponding to a generating current situated in the direction of decreasing density.
In this situation the magnetic field lines are concave into the plasma.

In the opposite case the contribution dpdv to 6 Wp is destabilising. In practice it
turns out that such a system is normally unstable at least close to the boundary
where p is small and accordingly also the second term in (6.45).

This interchange instability is equivalent to the instability described in Sect.
3.3.2 since the curvature of the magnetic field lines causes a centrifugal force that
can be represented as an equivalent gravity

2
Vith
R,

g:

We then realise that when the curvature is destabilizing the gravity will be
directed opposite to the density gradient corresponding to the necessary condition
for instability k g > 0 in (3.27b). (Fig. 6.3) Finally we emphasize once more that
the condition (6.47) only says something about the average of the curvature along
the field line. A real perturbation in a magnetic confinement device will experience
a weighted average of the curvature which is determined by the mode structure and
only if k| = O (flute mode) will the effective curvature be equal to the unweighted
curvature giving the condition (6.47). Finite k| modes will tend to become trapped
in the destabilizing regions leading to a more unstable situation.
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6.6 Eigenvalue Equations for MHD Type Modes

Since MHD type modes are more global than drift modes, a WKB approximation is
often not valid and a careful inclusion of geometry is required. Thus we generally
have to solve eigenvalue equations in the detailed geometry. We shall give
examples here for simplified geometries, which nevertheless show the main
features of the problem at the same time as an analytical description of the geometry
is possible.

6.6.1 Stabilization of Interchange Modes by Magnetic Shear

As mentioned in Chap. 3, the electrostatic approximation for interchange modes has
to be abandoned in a system with magnetic shear. We thus start from the description
of electromagnetic interchange modes in Sect. 3.3.4 but now replacing the gravity
drifts by the diamagnetic drifts. The condition div j = 0 now takes the form

1 ~
V- (AJ_AHeH) (6.49)

eV - [noVpi + n(Vii — Vae)| = =V - (jj€)) = "
0

Here we make use of the approximation E| = 0 leading to
i
AH = ——e|| . V(/) (6.50)
w

We shall, in the following, use a cylindrical coordinate system as in Sect. 6.2.
The magnetic field will be written as

B = Byey + B(f)é(p (6.51)

where eq and e, are unit vectors. Using the representation (6.14) for perturbations
we find

~ Al 1 B 8f

Here v is essentially the rotational transform q on a rational surface
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and we obtain

Assuming R >> r we furthermore have

0 2
A~ [nz (J g:dﬁ) :2”247; (6.53)
0

Where the r dependence of f was neglected, assuming large mode number n. If we
neglect the 6 dependence of v (v = q), (6.53) reduces to

- 27 2 -
Af =—n? dq P+ Llr= 2L (145200 (6.54)
dr r2 r2
where
sl
" Rdr

The operator expression on the right hand side of (6.49) then takes the form
(6.55)

For the divergence of the diamagnetic flux we use (6.18). This means that we
take into account the lowest order finite  effect from 6B which enters only in this
term. We then also have to know Op which to the lowest order can be taken as a
convective perturbation, i.e.

S5p = co%?(é” X V) - VPy = — (e x VPo) -V (6.56)
0

i
(UBO
Expanding in r/R we now find

1

~ I - ~ . -
(e xK)=—5 [e“ x (B-V)B| ~ —(cos ey + sin fr — dey)
By R

where 0 is an average part that is higher order in r/R. This expression gives the local
curvature of the magnetic field lines entering (6.49). The part & is the only
remaining part when the integral is taken over the whole period in 6. We may
express grad f as i kf where
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_ fdq, | q- 1.
k—n(drel—i-reg Red,)

with the result

" (cos + s0sin 6 — 9) (6.57)

7

(EH X K) -k

Now introducing (6.54), (6.55), (6.56) and (6.57) into (6.49) and replacing 6—n
where 1 is a generalized angle type variable we obtain the eigenvalue equation

0 0

@*(1 + 579 +k2va? = (1 + s°7%) 99 +Dg(n¢ =0 (6.58)

on on

Where
kczi p—oletTi 1 dPo (6.59)
qR m,‘R Po dr
and

g(n) = cosn + snsinn + 0 (6.60)

The reason for introducing m is the ballooning mode formalism where it was
found that n can take into account also the radial variation for large modenumbers.

Equation (6.58) represents the eigenvalue equation for electromagnetic inter-
change modes in a toroidal system with circular flux surfaces (B is assumed not to
have an r component). The average curvature, d is of order r/R and is not given with
sufficient accuracy by the above treatment. We will here just regard it as a constant
of order r/R, using expressions derived in the literature for various systems. As
explained in the section on toroidal mode structure the relevant boundary condition
for (6.58) in toroidal geometry is @—0 as n—oo thus including also part of the
radial eigenvalue problem for large modenumbers. The interchange mode, which
we will consider first as a highly elongated mode, will experience only the average
curvature 9§ in (6.60). A common transformation for simplifying (6.58) is

1
¥ =(1+sn")2¢ (6.61)

Leading to the eigenvalue equation

o’y Ll 5 oo
8772 (1+S27’2)2 1+S2772

¥Y=0 (6.62)

Where Q = /(keva) and o = D/(Keva)®.
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Approximate solutions of (6.62) can be obtained by substituting trial functions
into the quadratic form

[ {5

The asymptotic solution to (6.62) for Q* = 0 is

5 s o

(1+22)? 1+

lp2} =0 (6.63)

v = (1+s7) P (An + By»)
Where

1
V2= -3 1+(1 +4occ3/s2)1/2

It can be shown that the probability of smoothly connecting this solution to the
region 1 ~ 0, and at the same time making Q> < 0 in (6.56) depends on the sign of
1 + 408/s* giving stability when this expression is positive. The stability condition
is thus

1
Es2 + 28>0 (6.64)

Since & = — q°Rdf/dr we now obtain the Mercier condition (3.32) for
6= (r/R)(1 —1/q?) and the Suydam criterion (3.31) for &= —(r/R)q?
corresponding to toroidal and cylindrical geometry respectively.

6.6.2 Ballooning Modes

Another type of solution to (6.58) is a mode that varies strongly on the cosn space
scale. Such a mode may localize in regions where the normal curvature cosn > 0,
thus experiencing unfavourable curvature on the average. For s ~ 1 it turns out that
the sn sinn part of the curvature (named geodesic curvature) substantially extends
the unfavourable curvature region. This is a ballooning mode. Since & ~ a/R we
will here neglect the average curvature. As it turns out, ballooning modes are also
very sensitive to an 1 dependence of v which is the lowest order effect in  of a
deviation from circular flux surfaces. If we assume a harmonic variation of v with

mn, i.e.

v(r,n) =q(r) + vecosn
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we have to modify (6.54) to

q2

~ 2
~ v
A f=-n*% |1 — —si
o f n o + <s17 qsmn) f

and (6.55) accordingly
We also find that (6.57) is replaced by

~ ng
k=24
(e x ) R

cosn + (sn sin 0 — ; sin 77) sin 77] (6.65)

As can be shown by analytical solutions for the equilibrium at small § we have
the relation v/g = o. The eigenvalue equation for ballooning modes then takes the
form

(1 -+ (on — s+ 31 1+ (on — xsinn)] G+ ag)6 =0 (666
Where

g() = gV (n) + &% (n) (6.67)

g (n) = cosn + sysinny (6.68)

g?(n) = —asin’y (6.69)

The eigenvalue equation (6.66) can be solved analytically for small s by deriving
a quadratic form and using a trial function derived for small s and o by symmetric
expansion. We again introduce the transformation (6.61). The lowest order
eigenfunction can then be obtained by ignoring the slow sn dependence as:

)
p) = 28y (6.70)
1+ 5272
where <¥> has a slow background variation and Q? is assumed to be small. The
next order ¥ enters in the second harmonic equation

062

p -
414+ s2n2)2

[(1 — 25%n%) cos 2 + 3snsin 2] < P> (6.71)

The average ¥, < ¥ >, asymptotically has to take the form <¥> ~ e*¥" which
is the same as would be obtained from (6.62). In the inner region we may for



6.6 Eigenvalue Equations for MHD Type Modes 121

ballooning modes at small s make a constant approximation. The transition is
estimated to occur at n} ~ 1/s. we thus take the ansatz for <¥> as:

_ 1 n<K/s
<¥>= { eiQ(n—rc/s) n> K/S (6.72)

where ¥ can, in principle, be determined by maximizing the growthrate variationally.
The result obtained from integrating a variational form in ¥ corresponding to
(6.63) and using
Y =<p>+ 90+ pl

can be written in the form
i(1+a)Q+ (E n b) Q? = 5w (6.73)
S

where dW is the energy change in dimensionless form given by
3 9 5 .
ow =2 [sz — s+ —at — —otel/s] (6.74)

Here the last term in (6.74) is due to a mixing of space scales sm and cosn in the
integration while the constants a and b are due to the overlapping of the space scales
sn and iQn. Since a and b depend on x in a rather complicated way a variational
determination of k is not practical. The solution for < ¥ > can in principle be
obtained from the ‘averaged’ equation

P<y>

&72

> s 205> — (3/8)a*
(L+s2P)? (14 s2p)

<P>=0 (6.75)

As can be verified numerically, the asymptotic solution <¥> ~ e=(n—x/s)

holds essentially from the point of inflection for <¥>. This is in the centre of the
unstable region given by o’ ~ 83and Q* ~ — 7% /1682, Ning = 0.5/s where Ninq is
the inflection point. Now, continuing the asymptotic solution to smaller n we
realize that it will reach 1 somewhere in the interval 0<nN<m;,q. The simplest
possible choice is then to take the matching point in the middle of this interval, i.e.

| 1

Or x = 0.25. This value gives good agreement between numerical and analytical
results for small s. For k = 0.25 we obtain:

a= g [~0.69 + 05702 /s — 0.110* /5] (6.77)
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Fig. 6.4 Stability boundaries 45
of the MHD ballooning mode.
A numerical, B analytical
(From [84], with the 0.4+
permission of the American
Institute of Physics)
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v

b= 4—’2 (0.3 — 0.1802 /s + 0.030* /5] (6.78)

As it turns out the solution of (6.73) is rather insensitive to the constants a and b,
as it seems due to cancellation effects. The iQ term in (6.73) is due to convective
damping and represents the most important part of the frequency dependence in
(6.73). When all terms are included extremely good agreement is obtained between
the growthrate obtained from (6.73) and numerical results for small s. The agree-
ment is, however, still within 20% in the centre of the unstable region for s ~ 0.25.
The stability boundary as given by W = 0 is shown in Fig. 6.4. We note
the presence of the two stability regions, one for small o and one for large o.
The stability for large o is due to the n dependence of v. It is due to a reduction
of the geodesic curvature due to finite pressure modification of the equilibrium.
When the length of the destabilizing region decreases, the electromagnetic restoring
force, through k||, has to increase.

If we include the lowest order FLR effect in a way corresponding to (3.44) we
can simply make the substitution Q* — Q(Q — Q,;). In this case the convective
damping also influences the stability condition which takes the form:

1 1
S +a)+5 (5

7 G+ b) Q.2 + W0 (6.79)

N

This condition should be compared to the condition (3.46) in the shearless case.

6.6.2.1 Kink Modes

While the interchange mode can be unstable inside the plasma (internal mode) the
kink mode is more or less associated with the plasma boundary. It is due to a plasma
current with a transverse gradient and can in the slab description easily be included
as shown is Sect. 3.3.5 where it for a current profile extending over the whole cross
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Fig. 6.5 The sausage
instability corresponding to I
an m = 0 mode in a torus N

Fig. 6.6 A kink perturbation
with m/n = Bt/Bp in a torus

section leads to a driving term Qcik”V() /n where vy is due to the background current
and n is the toroidal modenumber. As a starting point we will consider the simple
pinch in Fig. 6.5.

When the crossection of the current is decreased the magnetic field pressure
increases and enhances the perturbation. For a toroidal configuration the pinch
instability corresponds to m = 0 (no poloidal variation). In a system with toroidal
magnetic field (along I in Fig. 6.5) the simple pinch instability is counteracted by
the bending of the toroidal magnetic field lines. In a new configuration the total
magnetic field will wind around the plasma in a way shown in Fig. 6.6. This system
is now instead unstable to the perturbation shown in Fig. 6.6. Here we can see that
again the instability occurs in such a way that a bending of the magnetic field lines
is avoided. The new perturbation, however, has a finite poloidal variation deter-
mined by the relative magnitude of the poloidal, B, and the toroidal, B;, magnetic
fields. This variation can be expressed by

ky = k= (6.80)

Modes with a slower poloidal variation are stabilized by the toroidal magnetic
field while modes with a more rapid poloidal variation corresponding to a bending of
the plasma current in the case shown in Fig. 6.6 can still occur. For a toroidal machine
with k, = m/r and k; = n/R where r is the small radius and R is the large radius, the
condition (6.80) becomes (compare the section on toroidal mode structure)

m n B,
r RB,

While the stability criterion k,<kB/B,, becomes

> 6.81)
n
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Sinceq ~ B, ~ I"! we realize that (6.81) implies a limitation of the current I.
Since n > 1 for kink modes, a sufficient condition for stability against mode m can
be written q > m. For m = 1 this condition reduces to the Kruskal-Shafranov limit.
The mode m = 1 is the least localized mode and extends over most of the
crossection. It has also the largest growth rate, which for parabolic current profile
can become a considerable fraction of the Alfv’en frequency for ballooning modes
va/qR For larger m the kink modes become more and more localized to the plasma
boundary.

We shall now make a more quantitative analysis of the kink mode, using a
cylindrical geometry. This means that we use the representation (6.4)

f(r,0,9) = f(r)e =7

neglecting the background inhomogeneity of the system in the 6 direction. In this
case the operators take the form

_ 0 m . n._
V=r 8_+l_e9_ll_€e¢ (6.82)

é” -V = l'kH(I‘) = ik.(m — nq)

We shall in the following for brevity use the symbol k| for k.(m—nq), keeping its
dependence on r in mind. As mentioned in Chap. 3 we may neglect the density
perturbation from the polarization drift in (3.34). This equation is written in a
general operator form and all we have to do is to replace z by a space dependent
e|| and use the operator expression (6.76). we shall, however, also replace the
gravity drifts by a real curvature, i.e. diamagnetic drifts with space dependent B,
and e||. This leads to

2
Vo [n(vii = Vie)| = a(eu x k) - Vop

Where
~ ~ R,
k=(e-V)e=——
(e V)ey = —¢
Then using a convective pressure perturbation
op=—<¢, - VP

Where

&= g € x V)
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Leads to the result

m2 1 dP 0

V- [l’l(V*i — V*e)} = 211’72 m ;(f) (6.83)

We then arrive at the eigenvalue equation

10 0¢ m*  n? 10 By dJy, m
o () O R = kv Sk 2l
m\ 2 1 dP()
72(7) m,nR(.W
(6.84)

The question of stability is most easily studied in the energy integral formula-
tion. Thus multiplying (6.84) by r¢ and integrating from r = 0 to a, performing
partial integrations of the terms containing (0/0r) r(0/r) we obtain the energy
formulation

a 2 a 2 “ ?
> J (,g_(’i)) + J (w? — kHZVAZ) T—z(bzrdr - VAZJ (ik¢> rdr
0 0

By (% dly . d¢
o, JO mEqu’) dr = d)ad__k{\VAd)’ k{|VA(,‘l5

r=a

(6.85)

Where we neglected terms of order r/R. Since now
Jﬂ 4 e J 2 (1Y dkH Je ¢21 d( a2\l
J— ) — N [
o \dr L I\ ar rdr dr
dkH

We may write (6.85) for ¢(a) = 0 (internal mode) as

L [f(r) (%)2 + g(r)qbzl dr=0 (6.86)

Where

f(r) = (kj?va® — o?)r (6.87)
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and

2 dk\> 1 ,d [ dk} By dJ
N = (k2 2 oM aférky L oo d | (| IS
8(r) ( vas =@ ) 2 T Va r ! 2VA dr d dr +n0m,- dr gl

(6.88)

If the terms proportional to ®® are separated out, the remaining terms are
proportional to the energy change 8W (w><0 corresponds to the unstable case
where W <0). The expression (6.88) for g(r) can be simplified if we make use of
the relation between magnetic shear dk| /dr and current. To lowest order in inverse
aspect ratio the @ component of Ampéres law may be written

1 d
> (rBo) = toJ ¢ = pol)| (6.89)
while
dkH dk, 1 1 dBy
—=m—=— - 6.90
ar = "ar ‘ (r By dr (6:50)

Combining (6.89) and (6.90) we obtain

1 dk 2
.]|| = B{;(QR+>
Uo dr r

And accordingly

mB() d o 2 d2k|| dkH
We then obtain
m? dk)?
8(r) = (0* = k?va%) == = va® (7 (6.92)

Another simplification is obtained if we change the dynamic variable to & = ¢ /r
(the radial component of the plasma displacement is £ = 1/(wB)(m/r)¢). We then
obtain the energy formulation:

r [f(r) (%)2 + h(r)52] dr=0 (6.93)

0
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Where
fr)= = (kH2VA2 — wz)r
and
h(r) = (m* — 1)(k||2vA2 - a)z)r

for stability we require ®*>0, and obtain the condition

a 2
J (m — ngq)* [(; %) + (m* — 1)52] rdr>0 (6.94)
0 or

This condition is fulfilled for modes with m > 1. If m = 1 a marginally stable
mode with d&/dr = 0 can be constructed if q(0)<1 In this case higher order terms in
/R have to be included in order to determine stability.

For external modes, ¢(a) # 0, and appropriate boundary conditions have to be
imposed at the plasma boundary. These are the conditions of pressure balance
across the surface

By - (0B + ¢ - VBy) = constant
And the condition that the displaced plasma surface remains a flux surface
0B; = [V x (&, x By,

Where &; is the radial displacement,
If there is no stabilization due to a conducting wall this leads to the stability

condition
“ 1 om\? 0¢ 2 5 2|
Jo (5—;) [(7 E) + (m~ = 1)& | rdr

2 /n 1 no 1\’ ,
+l=(=——)+0+m)|—=——) |a®E>0 (6.95)
qq \"M {4, m 4,

Where index a indicates the value at r = a. The condition (6.95) can be violated
only if ng_n < m, i.e. a condition equivalent to (6.81) evaluated at the plasma
boundary.

Another way of writing the stability condition is by using the relation (6.89) in
the other direction, i.e. expressing all effects of magnetic shear in J||. This leads to
the condition
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a 4
J [i OB + By (1 - @) | 5,.2} rdr>0 (6.96)
0 LHo m/ dr

which shows that for dJj/dr<0 which is the usual case, only the regions where
nq<m are destabilizing.
We finally also note that we can use (6.91) in order to rewrite (6.84) in the form

o) o) m? d*k?

- (kHZVAz—(I)Z)r—d) +7(w2—k“2VA2)¢—VA2 ! ¢

or or 7 dr 6.97
m> By dPo (©57
- =0
r 2nom;R dr

Equation 6.97 agrees with (19a) in Ref. [38] if the displacement & ~ ¢/r is
introduced. An important property of (6.97) is the presence of singularities when
1<H2VA2 = w?. Assuming that near such a singularity ¢ /9r>>¢ /r we may neglect
all terms except the first in (6.97). This term can then be integrated to

99 = ¢ 0] (6.98)
or I'(/{HZVA2 — (A)z)

where C is a constant of integration, thus justifying our WKB approximation close to
kHZV A2 = w? and showing the presence of a singularity. Since Kva is usually a
monotonous function of r we may have solutions in a continuous range of ® with the
location of the singularity varying with ®. This continuous range of solutions is usually
referred to as the Alfven continuum. In the presence of toroidicity there will, however,
exist aminimum in k| 2y 2. Then in the region where ®” is smaller than this minimum
there is no singularity and the eigenvalues of ® form a discrete spectrum. These modes
are referred to as global modes since they are not restricted in space by a singularity.

6.7 Trapped Particle Instabilities

In a tokamak, the magnetic field consists of a toroidal (along the torus) and a
poloidal (around the cross-section) component. Thus the magnetic field lines are
wound in the way shown in Fig. 6.7

Banana orbit

Fig. 6.7 Trapped particle
orbits Guiding centre orbit
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When the small radius a is much smaller than the large radius R (a<<R) the
magnetic surface, defined as the surface described by the field line during many
turns around the torus, has an almost circular cross-section. The toroidal magnetic
field, however, is decreasing in the direction from the centre (along R). This means
that a magnetic mirror is formed. A particle with small enough velocity along B will
then be trapped in such a way that it never reaches the point 6 = =. In fact, it turns
out that particles with v|<(,/2)ev, where £ = 1/R become trapped. Assuming an
isotropic velocity distribution function we then conclude that a fraction (v2)e of the
particles will be trapped. Clearly such trapping effects may decrease the
possibilities for electrons to cancel space charge by moving along the magnetic
field. Another important effect of the trapping is, however, to increase the effective
collision frequency. Normally the collision frequency v corresponds to 90° scatter-
ing. For trapped particles, however, clearly a scattering angle of V¢ is very signifi-
cant since it may lead to detrapping. This may be accounted for by introducing a
collision frequency veg = V/e.

When studying systems with trapped particles we have to treat trapped and
untrapped particles separately. For the study of trapped electrons we use the drift
kinetic equation (5.7) in the electrostatic approximation. We will, however, include
a magnetic mirror force as can be obtained by including (5.8) in (5.4). Assuming an
unisotropic Maxwellian distribution with T >>T) (relevant for trapped particles)
we can see that the 0f/Ov. part can be neglected. We then obtain, including a
Krook collision term

o | . 1 of ,
o + ik f— IB—Ok(;(/)E + (%lkqb —
= _Veﬁ‘<f_%f0) =0

The collision term relaxes the distribution function to a Maxwellian at potential
@ in a time ve;~'. In the force along By we have included the effect of the
inhomogeneity of B. This force is proportional to the magnetic moment p. In
order to have a strong influence of the trapping we realize that we must assume
op >> ® where mg is the bounce frequency of particles due to trapping. If this
condition is fulfilled the trapping may prevent the thermalization of the particles in
the wave field. The particles then see a stationary field during a bounce period.
Since then for a closed orbit a contribution v|fr.dt to the orbit integral will be
cancelled by an equal contribution where v — — v, we realize that the orbit
average

ﬁ%)%

m Oz BVH (6.99)

21/ wp
JO Vifredt =0
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Introducing

N ore me
vy T—Eanore

we find that the orbit average of the fourth term is also zero. This follows from the
fact that the energy exchange [ Fvdt is zero where F is the force in (6.99). We then
arrive at the averaged equation

Fre 1, Ofre_ (. _ed _
ot Bok0¢ o Veff | /e TefOTe =0 (6.100)

Since we have now removed all explicit v dependence we can integrate (6.100)
over v|, thus replacing fr. by 6 n. and for by ngr. . Now introducing and

I ore
6?: = kfore

We obtain

. . . . e
— (@ + vy )f 7o + i(Ose + 1Vepr) T—¢f0Te =0

Then, considering the relation integrated over v we have the trapped electron
perturbation

5”Te _ Wye + iVeﬁ' % (6 101)
note o+ iveﬁ' Te .

Assuming that free electrons thermalize (reach a Boltzmann distribution), we
arrive at the electron density

on, Do + Ve € e
= ————= — + 1 — el — 6.102
no |:\/;‘ w + iveﬁ' Te + \/E Te ( )

Where Ve is the fraction of trapped electrons. If the bounce frequency of the ions,

op; fulfills mp; << ® we may disregard the effect of trapping on ions. The ion
density response is then:

0 i *e k 2 Y2
o _ <” —k?p? + )ﬁ (6.103)

no W o )T,

Now, using quasineutrality and treating kozpsz, kH2c52 (but not V&) as small we
arrive at the dispersion relation
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k2 2—k 2 52 0)*62 .
o~ ol - L s/ +1i Ve Ve (0 — Wye) (6.104)
1—Ve Wse(1 = Ve)

Assuming a solution ® = o, + iy, where y << ®, we now find the growthrate

Veff\/ €
y= % (ko*p; — k) cs® Jw.e”) (6.105)
(1)

We thus find that the growthrate is modified by the factor (ve)(1—ve) 2 in
addition to the effect of trapping on the effective collision frequency, vei = V/e.
This instability is the trapped electron instability. When mg;>® we may also have a
trapped ion instability. Because the trapped particle distribution behaves as if
k=0, i.e. as for a flute mode, the trapped particle modes may also be driven
unstable by a magnetic curvature.

In the presence of an electron temperature gradient a new branch of this mode is
introduced by trapping. This mode is believed to be responsible for the Alcator
scaling of the energy confinement time in a tokamak.

6.8 Reactive Drift Modes

The eigenmodes that we have considered till now have basically either been of drift
type, characterized by nearly Boltzmann distributed electrons, or of the MHD type
characterised by small or zero parallel electric field. As shown in Chap. 3, the MHD
modes are, in general, of a more global character and often show reactive instability
i.e. instability without dissipative effects. The drift modes, on the other hand, in
general require dissipation to become unstable. The reason for this is that
Boltzmann distributed electrons are free to move along field lines to cancel space
charge. Accordingly the charge separation caused by gravity or magnetic drifts is
cancelled and the interchange instability does not occur.

There exists, however, also a third class of modes between the MHD modes and
the usual drift waves. This class may be called reactive drift modes and typically
has the maximum growthrate for k?p? ~ 0.1. Since the ideal MHD modes generally
have to be stable in fusion machines the reactive drift modes which are the second
most dangerous class of modes are the potentially most likely candidates for
explaining the observed transport in tokamaks. The first derivation of this new
class of modes, was made by Rudakov and Sagdeev 1961 [1] when they discovered
the slab m; mode (6.120). This was, in fact, also the first work on drift waves as a
whole. Later the trapped particle modes which also belong to this class were
discovered by Kadomtsev and Pogutse [10].
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6.8.1 Ion Temperature Gradient Modes

There are basically two ways through which a reactive instability can be recovered
for drift waves. The first has already been indicated in the previous section. If a part
of the electrons are trapped they will not be able to cancel space charge and an
interchange instability is recovered. As a second possibility we notice that when a
real curvature is used, an interchange mode is driven by the full pressure gradient
[see (6.68)]. Here the temperature gradient part does not correspond to a charge
separation but rather a compressibility. In the fluid sense a compressibility comes
about as a divergence of a velocity. A velocity with a divergence has to vary in its
own direction, thereby causing local rarefractions and bunchings. Since the con-
vective part of div(nv.) is cancelled by a part of div v, the full driving pressure term
appears as a compressibility. If we, however, replace v. by a gravity drift where the
temperature is perturbed, it becomes clear that it is the temperature perturbation
part which is associated with compressibility

V- (nvg) =V, - Vn+nV - v,
where now
1
V-VgZTVg~V5T

When 8T is due to E x B convection in a background gradient, i.e.

oT = —n 2 g¢ (6.106)
(0]
Where
~dInT L, Lo (L™ Lo _(Ldr\™
n_dlnn_LT’ " \ndr) = 7\T ar

we obtain the dynamics shown in Fig. 6.8. Here, as usual, the x and y directions
correspond to the r and 0 directions in a torus. The variation of v, along its direction
gives rise to a density perturbation. We now assume Boltzmann electrons (3.3)

one _ ¢ (6.107)
ne T,

while the ions are subject to the compressibility. Using quasi-neutrality we then
obtain a feedback mechanism as shown in Fig. 6.9.

Whether there is a positive or negative feedback depends on the relative
directions of g and grad T. Not surprisingly it turns out that the feedback is positive
(destabilizing) when g and grad T have opposite directions i.e. in unfavourable
curvature regions.
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Fig. 6.9 Feedback loop of a thermal instability

Now combining (6.23) and (6.106) for the ions we obtain

1 i
V- (nv,) = zvoi V(T,-én — %enqﬁ) (6.108)

Also using (6.24) we now obtain from the ion continuity equation

% _ Wye + Twp; — Tni(wl)iw*i/w) @

no W — Wp;

.1
T, (6.109)

When combined with (6.107) this gives the dispersion relation

1
@) [0) — Wye — Wp; <1 + ;)} = 1);04cWp; (6.110)

In the unstable case, (6.110) may be written ® = o, + iy, where

1 1
w,A:—{w*e—wDe<1—|——>] (6.111)
2 T
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V= Ouetn P\ = T (6.112)

1 1
77[]1:Z|:1_5n<1+;>:| (6113)

The present exercise merely serves to show that there is a reactive instability for
large m;. The magnetic drift terms have here not been treated consistently and
several others should enter into (6.106) as will be shown later. The threshold
(6.113) is thus incorrect. In early treatments the denominator in (6.109) was
expanded for op/® << 1 and the ®p/® term combined with ®.. in the numerator.
This leads to

Where €, = op/m. and

on; 1 e
- = xe 1 i i Wi e
o~ (1 ) (opio/ )

(6.114)

where also the top; term is neglected as compared to ... This corresponds to using
the convective density response directly in (6.108), i.e. the total pressure perturba-
tion is convective. If now the stabilizing linear term in o is ignored (6.114) leads to
the stability threshold n; = —1 which is often quoted in the literature. In this case
part of the ®” term necessary for an instability has been obtained artificially by an
expansion in wp/® . This introduces a spurious instability for n; = 0. The correct
threshold is usually around m; = 1 as will be shown later. The instability obtained
here is a reactive drift instability driven by the temperature gradient and magnetic
curvature. The mode is usually referred to as the toroidal n; mode [28, 61, 74].

We have now shown how an instability is obtained when the compressibility
originates from the divergence of v,;. The original n; mode instability was, how-
ever, obtained due to the compressibility associated with the parallel ion motion.
The feedback scheme in Fig. 6.9. applies also in this case.

For the parallel ion motion we take

aVHi e 0¢ 1 OP;
= ——— 11
ot m; 0z mn Oz (6.115)
Leading to
k 0
Vi :ﬁ (€¢+5T,'+T,'nn) (6.116)

Now using (6.106) for 6T; we obtain

i n

1

k *i 0
vHi:w” {(lni%)e¢+5Ti+T,- ”] 6.117)
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Including parallel ion motion in our derivation of the toroidal n; mode we then
obtain

-1
%— Wye + TW <—er'w*" +kH2C&2 (1 - w*i) ) 4_/‘\\2‘&2 @
no - *e Di w ;i o ;i W Di Te

(6.118)

In order to consider the excitation due to parallel ion motion separately, we now
put wp = 0. The dispersion relation may then be written

1
0’ — o 0, — ok ’e,? <1 + ;) + nio.ikPe =0 (6.119)

The driving term here is the last term and the simplest possible dispersion
relation giving the instability is

o = —no.ik’es’ (6.120)

Since .;<0, " is positive for positive 1;. Taking the phase angle as 21t we obtain
an unstable root with phase angle 2nt/3. This instability, which does not require
curvature, is usually referred to as the slab instability (slab mode) since its eigen-
value can be treated in slab geometry [1].

The n; mode, is among the most serious candidates for explaining the anomalous
ion heat transport in present day tokamaks. This may be anticipated already by its
very fundamental nature as a thermal instability. When we heat a glass of water
from below, we generate convection through a thermal instability. When we heat a
tokamak with a centrifugal force due to field curvature we have a corresponding
situation as when heating water and a similar thermal instability may develop. The
toroidal version has the largest growth-rate in the bulk of the plasma while the slab
version may have larger growth-rate close to the edge where wp << ®.. The slab
version usually has a slightly lower threshold while the parallel ion motion is
stabilizing when the toroidal drive dominates [74, 92, 166]. Fully kinetic treatments
show that both modes have their maximum growth-rate around k, 2p.2 = 0.1.

6.8.2 Electron Temperature Gradient Mode

A mode that is sometimes used to try to explain the anomalous electron and heat
transport in the collisionless regime is the electron temperature gradient mode
(ne mode). Also this mode exists in both slab (6.21) and toroidal [97, 115] versions.
It is a very short wave-length mode fulfilling

P <<ALLP;
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In this limit the ions are unmagnetized and furthermore in the hot regime. We
may thus take

on; e
= —Ti (6.121)

The ions reach thermal equilibrium by moving perpendicular to the magnetic
field. This also requires w<k | vy,; which can now also be fulfilled with ® > Q; The
large mode number makes the frequency comparatively large. All that we will here
require is that

W<<Q (6.122)
In this regime we may still use the drift expansion for the electrons but it may be
possible to ignore parallel electron motion. This means that as compared to the n;

mode the roles of ions and electrons are switched. We may thus follow the previous
procedure. The electron density response (corresponding to (6.109)) is then

5”6‘ Wye — Wpe + e (wDew*e/w) €¢

= (6.123)
no W — Wp, T,
In combination with (6.121) we now obtain the dispersion relation
(W + Wy — 20pe) = —TN), Wse Ope (6.124)

This dispersion relation is very similar to (6.110). An important difference is that
the 1; mode propagates in the electron drift direction and the 1. mode propagates in
the ion drift direction for small |wp|. A correct treatment of the wp terms shows that
for realistic values of €, the n; mode propagates in the ion drift direction and the
M. mode in the electron drift direction. Such a trend can also be seen in our present
treatment which is, however, not accurate enough to justify such a conclusion.

Due to the very short wave-length, the . mode only gives a small direct
transport. It can, however, excite modes with longer wave-length through mode
coupling. Such modes, with a wave-length of the order of the skin depth c/®,.. can
give a neo Alcator scaling [cf Sect. 6.1]. The slab version of this mode is analogous
to that of the n; mode. We will not discuss it here.

6.8.3 Trapped Electron Modes

The most obvious candidates for explaining the large anomalous electron thermal
conductivity in tokamaks are the trapped electron modes [10, 14]. As was men-
tioned previously, trapped electron modes can give a neo-Alcator scaling in the
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collision dominated regime. In the collisionless regime an interchange type of
mode driven by the density gradient is often referred to as the Ubiquitous mode.
We will here consider a collisionless trapped electron mode which is similar to the
N mode but occurs for k; 2p;2 ~ 0.1. Taking the fraction of the trapped electrons
to be f; we may use the response (6.123) for the trapped electrons since their
motion along the magnetic field has been averaged out. We then have to consider
the magnetic drift to be bounce averaged. The free electrons are assumed to be
Boltzmann distributed. Then

—f Wye — Wpe + ne(ﬂ)Deww/w) 6T_¢ + (1 _fr)_qS (6.125)

on, e
no @ — Wpe e Te

Now using (6.109), adding FLR effects for the ion response we obtain

Wse + TP — T (Wi /®) — k1 *p (0 — w.ir)
W — Wp;
Wy — Dpe + ng(wDew*e/w)
W — Wpe

(6.126)

:ft +1_ft

This relation shows a symmetry between ions and trapped electrons. We note
that (6.126) is now a cubic equation in ®. This means that it has at least one real root
and accordingly maximum two complex conjugate roots i.e. it can have no more
than one unstable mode. The more complex fluid description in the next section
gives a quartic equation and accordingly the possibility of having two unstable
modes at the same time.

For that system it is possible to consider resonant modes where ® ~ wp and in
that way one may decouple the ion density perturbation. Here we will denote the
left hand side of (6.126) by A. The dispersion relation for the trapped electron mode
may then formally be written:

(&) (CO +%(D*C - %wDe) = _% NeWxeWDe (6.127)

Where E =1—f, — A

Equation 6.127 is very similar to the dispersion relation (6.124) for the 1. mode.
The dispersion relation shows only the electron dynamics and is a relevant descrip-
tion when the ion dynamics is subdominant. The ®” term is here entirely due to
electron dynamics and we may have an instability driven only by electron compress-
ibility and temperature gradient. This dispersion relation is accordingly analogous to
(6.110) for the n; mode which is destabilized by only ion dynamics. In fact, if we
take the limit A—0Q in (6.127), the two modes are symmetric for T = 1 except for the
factor f, appearing in (6.127).
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In order to investigate the other modes given by (6.126) we rewrite it in its cubic
form

n; + Tftne klzpsz (

WP, — W — Wp,)
o(w — op.)(® — O + op, — 0p;) — © -, 1—f, -
(CU —w*iT)
S 0(0pi — Ope)(@ve — 0pe) = 05, peep;
1 _fr 1 _fr

(6.128)

Here the single o factor in the left hand side is associated with the temperature
gradients and indeed if the temperature gradients vanish so does the right hand side,
o factors out and we obtain a quadratic dispersion relation. On the other hand we
also note that the right hand side is quadratic in the magnetic drifts. We might thus
neglect it for this reason thus obtaining a quadratic dispersion relation. Then
neglecting also other terms that are quadratic in the magnetic drift we obtain the
dispersion relation

ki’pg? ki’pg?
(0 — wpe) [w(l + 1¢_p} ) — Wy — Oy P + Wpe — Wp;
t
fi

17,

Wye (wDi - CUDe) + Wy Wpj (6129)

We note that in the limit f,—0 (6.129) is similar to (6.110) although the o term
has a different origin. The differences are the inclusion of the FLR effect and the
Doppler shift ®—op, in the first ® factor. The latter difference is due to the
nonadiabatic electron response which was absent in the derivation of (6.110). It is
important to note that in the absence of both trapping and temperature gradients
there is no instability i.e. the product of frequency independent parts in the left hand
side of (6.162) cannot drive an instability. (Compare the discussion after (6.114)).
Thus (6.129) is most conveniently solved by introducing ¢ = ®—op, and first
obtaining the solution for @. In the absence of temperature gradients or compress-
ibility (6.129) gives a pure trapped electron mode. This mode which may propagate
either in the electron or ion drift direction depending on the values of k, >p;% and €,
is usually called the ubiquitous mode [19, 28]. The ®” term there requires the
nonadiabatic responses from both ions and electrons. The ubiquitous mode is, in
fact, stabilized by temperature gradients as we will see in Sect. 6.11. If we multiply
(6.129) by (1—f) and take the limit f—1 we obtain a pure MHD equation in the
limit kH =0.
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6.9 Competition Between Inhomogeneities in Density
and Temperature

As we have seen in (6.110) and (6.119) also very simple models for the temperature
gradient mode indicate that the parameter 1 = L,/L is critical for stability. This is
mainly because the diamagnetic drift ~1/L, introduces a real eigenfrequency that is
stabilizing. A more fundamental reason for the importance of the parameter 7 is,
however, the simultaneous convection in temperature and density gradients. This
leads to a competition between convection and expansion (negative compression)
in the energy equation. When the convection is outward higher density parts move
out into more dilute areas where the expansion takes place. The expansion cools the
plasma and competes with the increase in temperature due to temperature convection

OT = —-¢-VT+aé-Vn

Here o is a coefficient that gives the expansion cooling. From this relation we
immediately see that n has to exceed a certain limit for 8T to be positive. A
corresponding equation for n is obtained because a temperature perturbation,
through vp, or v| leads to compression. Thus

on=—¢-Vn+ BE-VT

where we considered the convective temperature perturbation Fig 6.10. The com-
petition between temperature and density gradients, in the nonlinear regime, leads
to inward contributions to fluxes. When several sources of free energy are present
(coupled relaxations) we may even have net inward fluxes (pinches) of some
thermodynamic variables. The total energy flux is, however, always directed
outward. A realistic threshold including the here discussed effects will be derived
in the next section.

Animportant feature of feedback is that a negative feedback corresponds to a cooling
in the direction of higher temperature. This would give a temperature pinch if the mode
was not stable in this case. However, since the ExB convection is the same for ions and
electrons the loops are coupled (Fig. 6.11) so a negative feedback in the ion loop may
still give a pinch if the electron loop has positive feedback. This usually requires
Ne > N;. Of course the opposite may happen (electron temperature pinch if n; > n).
We can also replace the ion temperature loop with a density loop, shown in Fig. 6.12.

Fig. 6.10 Convective perturbations of temperature and density
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5T, 5T,
Exp/ Exp
Convection Compression Convection Compression
¢ ) on 9 on
Thermalization Thermalization
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Fig. 6.12 Feedback loop of the ubiquitous mode

A density loop here corresponds to the feedback loop of the Ubiquitous mode
which is a type of trapped electron mode. Thus the ubiquitous mode couples directly
to the electron temperature dynamics and we can get a particle pinch if n, < 1.

6.10 Advanced Fluid Models

One of the main problems with creating a first principles transport model, which can
be used in transport codes, is the fact that because of the resonance

w = kv +op(v*,v.i?) (6.130)

kinetic theory is, in principle, needed. On the other hand, not even the most efficient
computers are able to run a fully nonlinear kinetic code as a part of a transport code.
In fact, nonlinear kinetic simulations are usually made on time scales of the order
linear growth time ¥~ ' and nonlinear saturation which is typically a few growth
times while transport codes operate on time scales of the order of the confinement
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Fig. 6.13 Experimentally determined particle diffusivity, effective momentum and diffusivities
for a TFTR discharge. The solid symbols on the curves for ;' and 3. show the corresponding
values of yi and e (x,, et — %, within ~10%). Also shown are the theoretical y¢ (=yi) from
Mattor and Diamond (Phys Flu1ds 31, 1180 (1988)) (labeled yMD) and the i from the toroidal ni
analysis of [103] (labeled ¥B) (Reprinted figure from [110], Fig. 2, with the permission of the
American Physical Society (copyright 2008) and S.D. Scott). http://prola.aps.org/abstract/PRL/
v64/i5/p531_1

time . While the growth time typically is of the order 10~ s, T, is of the order of
seconds. Thus, what we are left with for transport simulations is either kinetic
models that ignore velocity space nonlinearities or some kind of advanced fluid
models that attempt to incorporate the resonance (6.130) in some approximate way.
The latter possibility has not been much explored until the end of the 1980s.

6.10.1 The Development of Research

The beginning of the development of advanced fluid theories, of course, depends on
how we define the concept. With our definition, as will be given shortly, it dates
back to 1986, with the first published papers appearing in 1987. Before this time all
fluid models expanded the dynamic equations such that wp/® < < 1 (adiabatic
state) for the perpendicular dynamics and introduced an equation of state with a free
parameter 7y that can describe adiabatic or isothermal states for the parallel motion.
As it turns out, however, when kinetic or advanced fluid theories are used, ® and ®p
are usually comparable except at the edge. Because of this all previous drift-wave
theories had a basic flaw in that transport coefficients decreased with radius in the
models while they increased with radius in the experiments. As an example we may
mention the work by Scott et.al. [110] where the radial profiles of ion thermal
conductivity from 2 one-pole fluid models were compared with the experimental
ion thermal conductivity for a TFTR shot (Fig. 6.13).

Although, in general, the parallel part of the resonance (6.130) may be important
we will here first focus on the perpendicular part which is associated with the very
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fundamental toroidal effects. As a result of toroidicity, the eigenmodes tend to
localize on the outside of the torus where the curvature is unfavourable. The
ultimate limit, which when it can be reached gives the largest growthrate, is the
local limit where the mode is strongly localized and effects of the parallel dynamics
vanishes. In this limit the eigenvalue equation turns into an algebraic dispersion
relation. Comparisons between local kinetic theory and a two-pole fluid model
[108] showed that the diamagnetic heat flow q. as given by (2.15), through the
magnetic inhomogeneity part of its divergence, reproduces the main kinetic effects
of op in (6.130). By including this term in the fluid equations we obtain a two-pole
fluid density response in the local limit and a three pole response in the 3 D case. It
recovers both adiabatic and isothermal limits for both perpendicular and parallel
dynamics. This was done in the advanced fluid model developed at Chalmers
University of Technology in 1986 as described in Sect. 6.11.

It was first developed from the local limit of an electromagnetic model [90, 91]
but later also the electrostatic eigenvalue problem was solved [92] using the
Ballooning mode formalism, i.e. including also parallel ion dynamics id 3D. The
ion thermal conductivity, based on quasilinear theory and mode-coupling
simulations was published in 1988 [93, 94]. The increased order of the fluid
response due to div q. is significant since it changes the regions of positive and
negative energy modes. This can be seen from the expression:

¢(w, k) :;<%—%> <%>1 (6.131)

7 2
kz/ude n n T,

For the dielectric function in combination with the expression for the wave energy
w2 (we(w, k)| V| (6.132)
Cow '

As an example we note that the electromagnetic version of this fluid model
reproduces the instability of the MHD ballooning mode branch below the ideal
MHD beta limit in the presence of an ion temperature gradient [70, 90]. This
instability is due to divq. and is caused by a shift of regions of negative and positive
energy. From the drift wave point of view, divq. introduces a new stability regime,
with positive wave energy for large €,. This has the effect of giving a strong trend
for 7; to grow towards the edge as shown by Fig. 6.14. The new regime where €, is
stabilizing is generally termed “the flat density regime”. Since €, decreases towards
the edge, the system departs more from marginal stability as we move towards the
edge if the density and temperature profiles have similar shapes (Fig. 6.15).

The flat density regime typically prevails in the inner 80% of tokamak discharges
which means that the new regime is dominant and radically changes the predictions
of drift wave theory. The TFTR shot studied in [110] was also studied by the
advanced fluid model described in [102], giving a y; which followed the experi-
mental trend over the whole cross-section (Fig. 6.14). An upper stability regime in
€, can also be obtained due to div vg in an adiabatic model [98]. This stabilization
is, however, of an FLR type, similar to that discussed in Sect. 4.5 since the wave
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Fig. 6.15 Stability diagram in en and ni showing destabilization towards the edge

energy is still negative. As will be shown in Sect. 6.11.7. parallel ion motion
destabilizes this regime by introducing a dissipative damping due to magnetic
shear. We will thus introduce the following definition of an advanced fluid model:

An advanced fluid model is a fluid model which recovers the stable regime of n; modes for
large €, due to positive wave energy.

In H-modes the density profile is flat over a large part of the discharge. This
regime was investigated in [89] and it was pointed out that the critical parameter for
stability here is R/Ly; rather than n;. As it turns out most of the cross section of
L-modes is also usually in the regime where this type of stability criterion applies.
Such a regime was present in the general stability criterion of [91] but was not
pointed out until in [93] and evaluated as Lt/R = 0.367. In [98] the FLR type



144 6 Low Frequency Modes in Inhomogeneous Magnetic Fields

stabilization in the adiabatic limit was obtained with the threshold Lt/R = 0.28 and
in [108] the full local kinetic result Lt/R = 0.35 was obtained. It is interesting to
note that a local kinetic model using a gradient B approximation of the magnetic
drift [100] gives the threshold Lt/R = 0.375 which has a larger deviation from the
exact kinetic result than the advanced fluid model in [91].

The threshold L/R = 0.350 was also obtained independently in [103] (Note
that [108] originates from 1988). We moreover note that the quasilinear correspon-
dence to the upper stability regime in €, is a pinch flux proportional to €, as seen in
(6.152), (6.153). Here only the div q. part contributes, i.e. the part that changes the
sign of the wave energy. The stabilizing effects of q. are stronger in the hot ion
regime. This is true both linearly and for the pinch flux. This is, in fact the main
reason for the good confinement in the hot ion regime in this type of theory. We
finally note that as a consequence of the upper stability regime in €, the toroidal n;
mode is stable near the axis in tokamaks. This was first pointed out in [96].

6.10.2 Closure

The reason for the truncation of the above advanced fluid model by taking q = q. is
that q. is the highest moment that depends only on the moments that are normally
fed by sources (fuelling, heating) in a magnetic confinement device. In general we
have:

<ViVjvg V> = <ViVi><Vgvi> + + G(l’, t) (6.133)

where G = <v;jvjvyVv|>j is the irreducible part.
The transport equation for G can be written in the form:

oG 190 oG

The formal procedure in deriving the fluid model is to approximate the four
velocity correlation in the heat-flow equation with products of two velocity
correlations which means taking G = 0. Higher order moments (i.e. G above)
will not have sources in their transport equations (Sg = 0) and should decay on a
timescale of the order of the confinement time while the moments that are fed by
sources remain in quasi-stationary states for many confinement times. Thus taking
G = 0 leads to one diamagnetic heat flow for parallel temperature and one for
perpendicular temperature (6.29), (6.30) [137]. For isotropic temperature the
Braghinskii q. is recovered as the sum of these. As it turns out, the energy equations
for parallel and perpendicular temperatures, contain nonlinearities that tend to
isotropize the temperature perturbations. Already in the linear regime we conclude
that the effect of temperature unisotropy is small in the 2D case since this is the only
plausible explanation for the small difference (5%) in the coefficients of the
expansion (5.31).
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A phenomenon which will be discussed in the following is that of inward
“pinch” fluxes. Since these have a tendency to equilibrate length scales (such as
Ly = —T/(0 T/0 r)) we note that a higher moment at a low level becomes very
sensitive (as both T and 0 T/O r are small) and can easily adjust itself to an
equilibration of length scales without affecting the lower moments. An eventual
pinch in the transport equation for the higher moment would thus not replace a
source. A pinch in the interior actually has to be fed by a source in the outer parts.

A relation that holds for temperatures is that the perturbation of a quantity
becomes small if the background of the same quantity is small. Thus extrapolating
this relation to the irreducible part of the perturbed four velocity correlation (6 G)
we expect it to decay to zero in a confinement time. With this closure, which on
timescales longer than the confinement time according to the above arguments will
be valid, we can treat the whole range of states from adiabatic to isothermal i.e. with
arbitrary relations between frequency and magnetic drift frequency.

In the local limit, the ion density response is now a two-pole response and when
parallel ion motion is included it becomes a three-pole response. When we include
higher fluid moments, the order of the density response increases by one for each new
moment. The fluid resonances become more and more densely packed as we increase
the order until they form a continuum in the infinite limit. The product of infinitely
many fluid resonances in the denominator leads to a kinetic, dissipative resonance.

on W— Wyo F eeveennnnn. 20
— = — 6.135
n (o —ojwp)(®w—awp)........ (0 —kyvy)... T, ( )

The fluid closure used here thus includes the fluid resonances that correspond to
moments that have sources in the experiment. These resonances form a part of the
kinetic resonance. We thus include the part of the kinetic resonance that
corresponds to the moments that are maintained by external sources. This part is
then treated self-consistently in the transport calculations.

Another related aspect of the fluid hierarchy is that higher order moments are much
more sensitive to lower moments than vice versa. One example of this is the well known
feature that heat flows are much more sensitive to the temperature profiles than the
temperature profiles are to the heat flow. An experience from dealing with higher order
linear moments in the local limit (e.g. from [137]) is that the introduction of a new,
higher order moment, leads to a large shift in the dispersion function when the former
eigenvalue is used but a small shift in the eigenvalue is sufficient to restore the
dispersion function to its previous value (or smaller). Thus the higher order moment
is very sensitive to the eigenvalue. This may be due to the fact that new poles are
introduced by the higher order moment. Comparisons with kinetic nonlocal theory [121,
166] show that higher order moments here have a larger impact on the eigenvalue.

We also note that the complication of an integral eigenvalue problem in kinetic
theory [140, 148] is absent in the fluid theory. The only possible approximation in
the fluid theory is associated with the closure. In the nonlocal theory with parallel
ion motion, it turns out that the difference in linear threshold between kinetic theory
and the reactive fluid model can be rather large [121, 166] when s/q is of order 1.
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This means that the properties of the fluid model depend on how this discrepancy,
mainly due to linear Landau damping, is treated. Our advanced fluid model just
ignores this difference in linear theory and only retains moments that can be treated
self-consistently. The closure made thus relies on the decay of the moment G on the
transport time scale. With this nonlinear closure, the fluid moments kept do not
have to converge towards a smaller influence for higher moments. On the contrary,
the highest moment kept, q., is one of the most important parts. Some aspects of the
velocity space dynamics, with potential importance to the closure are discussed in
the subsection “Nonlinear kinetic fluid equations”.

Since the closure described here does not make use of dissipation we will call
this type of fluid model a “Reactive fluid model”.

6.10.3 Gyro-Landau Fluid Models

Gyro-Landau fluid models is a class of fluid models that takes a radically different
point of view on the closure problem from that presented above. This class of
models is actually somewhat beside the main scope of the present review and we
will here only make a brief survey without claims of completeness.

Development of Gyro-Landau fluid models was initiated by the work by
Hammett and Perkins on Landau damping in the fluid equations for the slab n;
mode [116] This work introduces Landau damping through an imaginary parallel
heat flow (q) in the energy equation and is able to recover linear kinetic results for
the slab n; mode. A follow up paper discussed the details of the closure and how the
result depends on at which level in the fluid hierarchy the dissipation is introduced
[117]. Toroidal effects and with them magnetic drift resonances were introduced by
Waltz, Dominguez and Hammet [142]. This work also included FLR effects to all
orders. The gyro fluid equations were derived by taking moments of the gyrokinetic
equation (5.28) and agreement was obtained with the reactive fluid model described
in the previous subsection [108] in the appropriate limit. The closure in this Gyro-
Landau model can be written:

q=4q, +iqy (6.136)

where qg represents the contribution to the resonance from infinitely many higher
order moments as obtained by a fit to a Maxwellian velocity distribution. Also this
model gives very good agreement with linear kinetic theory. Turbulence
simulations in three dimensions have been performed with this model [155].

The fundamental assumption in Gyro-Landau models is that the Gyro-Landau
resonance, obtained by a fit to linear kinetic theory, can be used in transport models
operating in a nonlinearly saturated state. More recent Gyro-Landau fluid models
[157, 163] make the closure at a higher level in the fluid hierarchy but the
basic principle of the closure is the same. As we will see in the next section, the
Hammett Perkins model for Landau damping, which is included in most more general
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Gyro-Landau fluid models, has severe problems in a coherent three-wave system.
This, seems to be generally agreed on. However, in an experimental situation we have
a broadband, incoherent, turbulence and for such a system the opinions differ.

6.10.4 Nonlinear Kinetic Fluid Equations

A more complete approach, which can be seen as intermediate to the usual Gyro-
Landau models and kinetic theory, is the analytical solution to the Vlasov equation
obtained by Mattor and Parker [164] in slab geometry. Here the closure is nonlinear
although the background velocity distribution function still is Maxwellian. Reso-
nant particles are assumed to follow the phase velocity of the waves so that an
integration over particle velocities can be replaced by an integration over wave
phases. This model preserves time reversibility and can support a type of trapping
oscillations where the velocity distribution is fixed but the wave phase velocity
oscillates due to a periodic nonlinear frequency shift. In the Mattor Parker work
closure was obtained by including a nonlinear frequency shift in the unexpanded
Plasma dispersion function. However, Landaudamping can be maintained in an
expanded version as seen in (4.32). The simplest form, (4.32b) is displayed below.
It is clear here that a nonlinear frequency shift, as added to o can easily change the
sign of the Landau resonance.

w2 o-—w 2
y= (= = e o= (kyvee) (4.32b)
Wy e .
Y (2) ¢ kHVte

It leads to a considerably lower time averaged saturation level than the Hammet-
Perkins theory and to time reversible oscillations after the nonlinear saturation. The
maxima of these oscillations are close to the Hammet-Perkins saturation level so the
reason for the difference is, in fact, that the Hammet-Perkins model phase locks at
the maxima of the three wave oscillations while the average level in the Mattor Parker
model corresponds to an averaging over the trapping oscillations or rather of the
growthrate in (4.32b). Such oscillations can also be expected to occur when higher
order moments relax to a nonlinear equilibrium state. If we include inertia of the
resonant particles, so that they do not follow the wave phases exactly, we would expect
additional phase mixing and a relaxation to a stationary state. This state would be the
attractor where the average force between resonant particles and waves changes sign.
In systems with many waves, we would expect much stronger phase mixing of
resonant particle orbits and a more quasilinear behaviour. The question of the coherent
state was actually addressed in a follow up paper by Holod et al. [190] where a
diffusion damping was introduced in order to represent the effect of the background
turbulence. We also note that the Mattor Parker system includes both quadratic mode
coupling terms and cubic nonlinear frequency shifts. This is the same situation as for
the turbulent state and, due to self interactions, the turbulent state will also include
nonlinear frequency shifts. The effect of diffusion damping was to make the system
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Fig. 6.16 Development in time of three-wave interaction between two slab ITG modes and a
zonal flow with different fluid descriptions including reactive fluid, fluid with nonlinear closure
and the Hammett Perkins gyro-Landau fluid model (From [197] with permission of the American
Institute of Physics)

approach a stationary nonlinear state which appears to be close to the average of the
oscillations in the Mattor Parker system. While the Mattor Parker work got good
agreement with a fully kinetic system, the work by Holod et al. compared with a
reactive closure. A combined qualitative picture is given in Fig. 6.16.

It is important to notice that the kinetic resonance is stabilizing at maxima and
destabilizing at minima, thus the effect of the kinetic resonance tends to be
averaged out. The work by Holod et al. entered the kinetic integral for the fifth
moment while Mattor and Parker used the third moment. However, the reactive
(“no closure”) result of Holod et al. did not include the fifth moment. It is clear from
the small effect of the closure term that the large scale oscillations, in both systems
is due to three wave interaction. We also note, that just as in the fully turbulent case
there are both quadratic and cubic nonlinearities present. The quadratic
nonlinearities phase mix but the cubic do not. The approach to a stationary state
is shown by the result from [190] as Fig. 6.17.

We note that the damping due to diffusion leads to an approach to a nonlinear
steady state with no energy exchange between particles and waves just as the result
of the Fokker-Planck equation in Chap. 9.

6.10.5 Comparisons with Nonlinear Gyrokinetics

Comparisons between Gyro-Landau models and nonlinear gyrokinetics have been
going on for several years [154]. Recently the Cyclone group in the US has
compared both the magnitude of x; and the stiffness (how rapidly y; increases
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Fig. 6.17 Time evolution of normalized density in a system of three interacting waves with
nonlinear closure. Figure (a) Compares the case with and without diffusive damping with closure
while (b) compares the cases with and without closure both with diffusive damping. (From [190]
with the permission of AIP)

with the temperature gradient above threshold) of several models [183, 189].
A trend for Gyro-Landau models to give too large transport (up to a factor 3
above the gyrokinetic level) is similar to the results found in [164] where the
analytic solution by Mattor and Parker was very close to the full kinetic saturation
level while the Hammet-Perkins saturation level was far above. The global and
flux-tube gyrokinetic simulations gave somewhat different results in that the flux
tube simulations gave more transport and larger stiffness. One of the main questions
that have been discussed regarding the saturation level is the damping due to
nonlinearly generated background flows [181]. Since these flows have a stronger
effect on longer wavelengths, the presence of longer wavelengths in the global
simulations may create a more absorbing boundary condition for these as compared
to the situation in the flux tube simulations. We note that in this respect the reactive
fluid transport model, as described in Sect. 6.11.3, should rather be compared to the
global gyrokinetic simulations since an absorbing boundary condition for long
wavelengths was used. It is also likely that the mixing length leading to the type
(3.67) diffusion coefficient is essential for the stiffness. The scaling ¥; ~ Ni—MNims
just above threshold, has been seen in mode coupling simulations [93, 100, 105],
and was also derived analytically in [130] in the flat density regime. An important
point is also that in the comparison by Mattor and Parker, the same three-wave
system was used for all models so also the boundary conditions in k-space were the
same. This leaves only the different closure schemes as a reason for the differences.
On the other hand, since this system contained only three modes, it corresponded to
a much more coherent situation than that in the gyrokinetic simulations where a
broad spectrum of modes was included. This point was discussed in more detail in
the previous section. In the Cyclone simulations also some comparisons with the
reactive fluid model discussed above have been made. Preliminary results were
reported in [183] and the full results appeared in [189]. An important result was
the very large transport obtained by the IFS-PPPL model while our reactive model
was in fairly good agreement with the gyrokinetic results (Fig. 6.18).
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Fig. 6.18 Predicted transport as a function of temperature gradient for different models (From
[189] with the permission of the American Institute of Physics)

6.11 Reactive Fluid Model for Strong Curvature

As mentioned several times above a more complete fluid model is needed in order
to obtain a correct threshold for m;, n. and trapped electron modes. In typical
fusion plasmas the magnetic drifts are also comparable to the diamagnetic drifts,
except close to the edge. As pointed out above this is the reason for the develop-
ment of advanced fluid models. A circumstance that improves the possibility for
fluid models is that the magnetic drift causes a stream in the plasma. Because of
this a fluid resonance, similar to the fluid-beam plasma resonance, is present.
Another favourable aspect is that magnetic drifts do not appear explicitly in fluid
equations unless the temperature is unisotropic in which case the curvature drift
appears. Without magnetic drifts it is clear that the magnetic field localises the
particles in the perpendicular direction and that the parameter k”p” can be chosen
as a small parameter to truncate the fluid hierarchy. The usual truncation of the
fluid hierarchy is that by Braghinskii. It assumes collision dominance so that the
perturbation of the velocity distribution function is Maxwell distributed. In
combination with the expansion in k*p? this leads to the so-called Righi-Leduc
or diamagnetic heat flow

q=4q, =

5 P _

to lowest order in k?p® In this fluid model the temperature is isotropic. In the
beginning of the 1990s a collisionless fluid model was derived by truncating the
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irreducible part of the fourth moment in the heat-flow equation [137]. In this model
no assumptions of Maxwellian distribution was made and temperatures were just
defined through quadratic velocity moments. This model gave different q. for
transport of parallel and perpendicular energy (6.29), (6.30) but when the parallel
and perpendicular temperatures were assumed equal the Braghinskii energy
equation with the heat flow q. given by (6.137) was recovered. Although the
temperatures are unisotropic in collisionless linear theory, the isotropic fluid
model gives good agreement with Vlasov theory for the toroidal m; mode
concerning threshold and rather good agreement concerning growthrate in the
local limit [108]. The main reason for this seems to be that in the low beta case
the average of the parallel and perpendicular temperatures enter in the driving
pressure term. When parallel ion motion is important, however, unisotropy is
essential. We here rely on the nonlinear closure discussed above.

6.11.1 The Toroidal n; Mode

As discussed above the fluid closure is very important. The energy equation is
written

3 (/0
Eni<§+Vi'V>T,‘+PiV'Vi=—V~q*,- (6.138)
Where
5 5
V- qy = —5nvi - VIi+onvpi - VT (6.139)

Here the first convective diamagnetic part cancels with other convective diamag-
netic terms after substitution of the continuity equation for divv; as shown in Chap. 2.
We will here retain the curvature part of divq.; which will turn out to be very
important. The linearized temperature perturbation is now:

oT; w 201, Wy 2\ e¢
kS AR i )2 6.140
T, w5003 [3 PRI <”’ 3) Te] (6.140)

Using (6.140) instead of (6.106), (6.109) is replaced by:

Sni _ 0(@ee = @pe) + (0 = J+360) 0se0pi = Kp (0 = air) (0 = J0pi) e

n ? = Rwwp; + 3 wp? T,

3
(6.141)
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where
.t = 04i(1. +1;)

and we also included the polarisation drift and the lowest order FLR effect, as
derived in Chap. 2. The density response (6.141) is of higher order in wp than
(6.109) both in denominator and numerator. The most important improvement in
(6.141) is that it has the right asymptotic limit for large ®p, i.e. the isothermal limit

oni - — 4 (6.142)
n T;

for op > o, .. This can be obtained from (6.109) only in the absence of a tempera-
ture gradient. Since 8T influences (6.109) only through the temperature gradient
one can conclude that a careful treatment of the energy equation is required to
make the fluid theory consistent with kinetic theory in the presence of temperature
perturbations. The key property of (6.140), absent in (6.106), is that we obtain the
correct isothermal limit 8T; — 0 when @p>> ©,.. This is entirely due to the curva-
ture part of div q.. This part enters as an additional higher order, contribution to the
pressure force that may be either destabilizing or stabilizing. The response (6.141) was
first applied to MHD ballooning modes [90] where div q. reproduced an instability
below the MHD beta limit previously only seen in kinetic treatments [70]. For ion
temperature gradient modes it is usually stabilizing [91]. It is instructive to compare
the expansion of (6.141) in wp/® with the corresponding expansion of the gyrokinetic
equation, (5.31). These expansions are identical except for the replacement of 7/4 by
5/3.Itis fortunate that the terms of order k*p*wp/em agree since no attempt was made to
systematically include these in (6.141). The last term prop. to 1; is unsymmetric with
respect to —.;t. [t represents a correction of the basic MHD pressure balance and is,
accordingly, responsible for the instability below the MHD beta limit seen in kinetic
theory. The fluid model obtained here has sometimes been called fully toroidal since it
does not expand in €,,. Effects of €, are, in fact, the most important toroidal effects on
drift waves. We emphasize here that the closure (6.137) is treated as exact in the
present fluid model. This means that we assume (6.140) and (6.141) to be valid for
arbitrary op/o and these equations should, in general, not be expanded. Clearly the
fact that we keep the frequency dependence in (6.140) means that we can describe both
slow and fast processes. This increases the number of nonzero poles in the density
response (6.141) by one.

By using(6.141) in combination with Boltzmann electrons we obtain the disper-
sion relation

10 1 5
o’ (1+Kp?2) — ww,, [1 - (1 +§>8" + kzpszg <1 +n; —I—gsnﬂ

7.5 5 5
= (77,- 3 + 38n> W« Wpj — ngi2 - gkzpyzw*iTwDi (6.143)
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The solution may be written ® = ®, + iy where

1 10 1 5
O == Wse {1 - (1 +—)sn — k%f(l - _sn):| (6.144)
T

2 37 37
and
Wi/ En /T
Yy =—"—"—/N —n: 6.145
A e Vi = Nian (6.145)
Where
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Here (6.146) was expanded in k* p,? For very small g, terms of the type ' ot en
and with higher powers in €, have not been calculated consistently since (. has been
obtained only to lowest order in k?p,2. They do, however, give the correct trend
when compared with kinetic theory. The marginal stability curve in a n;,&, diagram
is shown in Fig. 6.15. An important feature as compared to the previous fluid
threshold is the presence of an upper stability regime in ¢,. For large €,, 1 = 1
and k*>p,2 — 0 this threshold is

Nip = 1.36¢, = 2.72L,, /Lg
Here L, scales out and the stability condition becomes
L1;>0.367Lp (6.147)

The correct kinetic threshold here is 0.35Lg [108]. The large €, regime is often
the relevant regime in the bulk of tokamak discharges. This is in particular so for H
mode discharges which usually have flat density profiles. The upper stability regime
in €, also determines how close to the axis the 1;, mode can be unstable, Another
interesting aspect of (6.144) is the presence of an k*p *n, term in ,”> which enters
the stability criterion to the next order in k?p . Since this term does not contain &, it
is in fact consistent and gives an upper stability regime in m;. This has lead to
enhanced confinement states in transport code simulations [114]. In conclusion we
thus find that toroidal effects introduce a completely new regime for large €, which
is dominant in the bulk of tokamaks. The neglect of this regime for a long time
caused discrepancies between 1; mode theory and experiments. The new philoso-
phy in the present fluid model, as compared to simple fluid models, is that the
closure is made by (6.137) and is assumed to be valid for both slow and fast
processes.
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6.11.2 Electron Trapping

Since the kinetic integrals for trapped electrons and ions without parallel motion are
symmetric [9] (Liu 1969) we may use the same fluid model for the trapped electrons
as for the ions. Introducing the fraction of trapped electrons f; we obtain the
dispersion relation [103, 109]:

Dse

7 5 w 5
N, {w(l — &) + <771 3 + §8n> wp;i = K p (0 — w.r) (w*e + 5%)]

Wy 7 5
=f, N, {w(l — &) + <7]e _§+§Sn>wDe:| +1-1,
(6.148)
10 5
Nj:wz—?U)CUDj‘f'ngjz;j:ia e (6.149)

Here the denominators N; act as the resonant denominators in the dispersion
relation of a two-stream instability. When N; < N, the mode propagates in the
ion direction (n; mode) and when N, < N; the mode propagates in the electron
direction (trapped electron mode). Equation 6.148 is the generalization of (6.126) to
arbitrary €, and is a quartic equation. Accordingly, it can have two modes unstable
at the same time. For ¢, of order 1 the modes are rather independent, propagating
in opposite directions, and the dispersion relations can usually be rather well
approximated by neglecting the part with the larger Nj in (6.148). For small ¢,
however, the modes are strongly coupled and the directions of propagation may
change. For large ¢, and n; ~ 1, the n; mode is the most unstables of the modes.
Then ignoring the trapped electron part with denominator N, we obtain the stability
threshold

L
Lyi> 55 B (6.150)

o (1 =f2) + 51y

which is the generalization of (6.147) for finite electron trapping. If we instead
take N; large we obtain a generalization of (6.126) where A = 0. This is actually
the only way of isolating a trapped electron mode which is driven only by com-
pressibility and electron temperature gradient. This was first done in [102].
Since this mode is obtained for N, < N; it is due to a fluid resonance.
A corresponding mode due to the kinetic resonance was included in [9] and also
discussed by Adam et al. [23]. In the same sense also the toroidal 1; mode may
be regarded as resonant. It is clear from this discussion that these modes require
a description valid for ® ~ owp. The stability boundaries for n; = n. = n are
shown in Fig. 6.19

The modes present in this system are most clearly shown if we display the
growthrates as a function of m for an g, where the modes are separated in Fig. 6.20.
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Fig. 6.20 Growth rates as a function of n for en = 0.8. Other parameters are the same as in
Fig 6.19 (From [156] courtesy of the IAEA)

We can see the “Ubiquitous” (trapped electron) mode [19, 28], for small m.
The toroidal m; mode becomes unstable at n just above 1 and then we have the
compressional trapped electron mode that becomes unstable at m just above
2 (Fig. 6.20).
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The compressional trapped electron mode tends to dominate the transport when
Ne > M; which is typical when most heating goes to electrons. This is the case for
alpha particle heating in burning plasmas. As is shown by Fig. 6.20, the Ubiquitous
mode, which is driven by the density gradient (charge separation) is stabilized by
the temperature gradient (compressibility). The opposite is true for the ITG mode
and the trapped electron mode which is driven by compressibility. This shows also,
already at the linear stage, the competition between relaxation of density and
temperature inhomogeneities.

6.11.3 Transport

We may calculate the quasilinear ion thermal conductivity in the same way as we
calculated the particle diffusion in Chap. 2. The thermal conductivity is calculated
using Ficks law from

dT
Tr=—1— (6.151)

and the saturation level (3.65) can also be derived from the energy equation. The
result for the toroidal n; mode without electron trapping is [93, 100].

1 2 10 3 /k,2
ri=— (?7,- ————sn> '/ 3 (6.152)
N 3.9t ) (0 —Fopi)” + 77

Equation 6.152 has proven to give good agreement with mode-coupling
simulations using many modes if the fastest growing mode (k*p? = 0.1 in a slab
system) is used [93, 101]. The pinch terms (with negative sign) in (6.152) are
important. In particular the g, pinch term (due to div q.) significantly improves the
agreement between experimental and theoretical radial profiles of y; by suppressing
%; in the inner region where ¢, is large. The temperature diffusion obtained from
(6.152) is always outward since 7 is zero if the pinch effects would dominate. If we
use the complete fluid model also for the trapped electrons we obtain, as mentioned
above, a quartic dispersion relation where both the n; mode and the trapped electron
mode are included and may be unstable simultaneously. In this system there is a
coupling between the diffusion of T, T. and n with a trend to equilibrate the
equilibrium length-scales Lt;, Lt and L. This system contains a possibility of
inward fluxes (pinch effects) but the total pressure flux is always outward [102, 109].
It is also interesting to note that in the edge of tokamaks typically €, < 1, n; > 1
and ¥ > ;. In this limit (6.152) gives the well known mixing length expression
r=7/ k.2. For the full system with electron trapping the agreement with experimen-
tal tokamak transport is remarkably good. In particular the radial profiles of both
% and ; are usually in rough agreement with experiments at least forr/a < 0.8 where
a is the small radius, and the magnitude is also usually of the right order.
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Furthermore, the ratio y;/y. is typically about 1/2 at half radius with a radial
growth that is somewhat faster than that of f. This is also a very typical experimen-
tal situation. For the TFTR supershots with peaked density profile and t about 0.3,
Yo/ti 1s usually small, often less than 1/4 and for the D-III-D hot ion mode with
T ~ 0.2 and flat density profile, large values of y./y; are obtained (typically about 4).
Both these cases are well reproduced by the fluid model with electron trapping. In
self consistent transport code simulations this model also gives the L mode scaling
of the energy confinement time with heating power in rough agreement with (1.11)
and moreover a spontaneous transition to an H-mode (enhanced confinement
regime) with an improvement of tg by a factor between 2.5 and 3 for sufficiently
strong heating [114]. Here, however, the edge pedestal was not resolved and this
result is more an indication that the model supports both L and H mode equilibria in
the interior.

The transport coefficients for T;, T, and n, with electron trapping included can be
written:

1 2 10 2 3 /k,*
Li=—\m—z—U0-f —sn——fA,) (6.153)
U ( 3 ( ) 9t 37 (CO,- - %COD,')Z + 92
1 2 2 3 k2
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The signs of these in various parameter regimes are indicated in Fig. 6.19.

The most remarkable result obtained with the transport coefficients
(6.153)—(6.155) is that from the simulation [129] of the heat pinch on D-III-D
[128]. In this simulation, the ECH electron heat source was at half radius and ions
were only heated by collisions with electrons. The ECH and Ohmic heating of
electrons were taken from the experiment while the particle source at the edge was
taken as a free parameter. Both the electron energy pinch and the density and
temperature profiles were well reproduced in this simulation. The electron energy
pinch was driven by the m; mode. Also other mechanisms, associated with the
toroidal curvature and trapped electrons have been suggested [161].

6.11.4 Normalization of Transport Coefficients

In deriving the transport coefficients (6.153)—(6.155) we used the saturation level
(3.65). This saturation level was obtained by balancing linear growth with nonlinear
effects at the correlation length scale [93]. Thus the nonlinear effects are here
entirely stabilizing. This corresponds to a situation where nonlinear mode coupling
carries energy and momentum away from the linearly unstable region in k-space
and nothing comes back, i.e. we have absorbing boundaries both at short and long
space scales. This saturation level has recently been recovered by a non-Markovian
Fokker Planck theory [186]. Both the ion thermal conductivity without trapping,
(6.152) and the transport coefficients (6.153)—(6.155) have been normalized and
tested against nonlinear mode coupling simulations with absorbing boundaries both
at short and long scales [93, 101, 109]. Good agreement was obtained when the FLR
parameter k*p” was about 0.1. This corresponds to the linearly fastest growing
mode. Here k should be interpreted as the inverse correlation length. This can be
understood by observing that the correlation length typically is determined by the
shortest space scales that are strongly excited and this is often given by the source
region. It was also verified in mode coupling simulations that the saturation level
(3.67) gave better agreement than the mixing length estimate. The damping for long
space scales was, in the mode coupling code, obtained from viscosity while that for
long wavelengths was artificial. We note, however, that damping due to sheared
background flows increases with the space scale and thus has the properties we need
for absorbing boundaries at large space scales.
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6.11.5 Finite Larmor Radius Stabilization

As seen from (6.143) FLR effects are usually rather marginal for the pure n; mode.
When electron trapping is included it does, however become stronger. A particular
limit, in which we can see this explicitely is for g, < 1, M;, Ne > 1 sothatn ~ 1/g,.
In this limit the dispersion relation splits into two second degree equations, one for
o ~ . and one for ® ~ op_ The first case leads to the dispersion relation [114].

2 10 N Kp2n e
& —w[1—§sn(1——> _Lh %} Z—%(%+f,ne) (6.160)

T T

where A = 1 — f, + k?p,%. The growthrate is

~ &n (M; 1kp4n2
y = \/K (Etsm) — 3532 (6.161)

We note that the FLR stabilization is fourth order in kps and corresponds to an
upper stability regime in n;. It is actually a stability regime for steep temperature
gradients since L, can be taken out of (6.161). For the pure mode this regime
typically starts at 1; ~ 50 for k*p,> ~ 0.1. We note, however, that if f, — 1, A —
k?p,2 and the FLR stabilization is only second order in kp; (due to the denominator
of the first term). For f; ~ 0.6 a stabilization was obtained in predictive transport
simulations for n;, = 15. This leads to an enhanced confinement regime with an
improvement of a factor 2.5 in the confinement time [114].

In the enhanced confinement state only the mode with ® ~ wp remains. Its
dispersion relation can be written:

~ 10 5
w2 - w??,n &= —gsnzé (6.162)
where

. M —fime
=< (6.163)

Th + Tfﬂle
o= M (6.164)

n;i + i

We note that L, cancels out of both & and 6 so this mode is a pure magnetic drift
mode in a regime where L,, <Lg. The direction of propagation depends on the sign
of & and the mode requires div q. for instability. This mode always produces a
particle pinch as is easily seen from (6.155) . However this is even more obvious
from the fact that this is a condensation mode where dp = 0. Thus a temperature



160 6 Low Frequency Modes in Inhomogeneous Magnetic Fields

drive corresponds to a positive temperature perturbation and this has to be
compensated by a negative density perturbation. (Condensation in the usual sense
would mean a positive density perturbation).

6.11.6 The Eigenvalue Problem for Toroidal Drift Waves

We will now also briefly consider the eigenvalue problem of toroidal drift modes.
We will limit our study to the ion temperature gradient driven mode (1; mode) with
Boltzmann electrons. The description of this mode is obtained by combining the
response (6.141) with the influence of parallel ion motion as described by (6.116).
This leads for a parallel wavenumber k| to the response:

oni _ (e — ope) + EIHO.c00p; + k”sz [0 =3 opi — w.i(n; —3)] — FL e¢

n @? —Roop +Fop? =3 (kjes)* (1 =5 T.
(6.165)
7 5
EIH =1, — =+ 2¢, (6.166)
3°3
2 2 5
FL =k“p~ (0 — w4p) (co — ng,) (6.167)

The parallel wavenumber k|| now becomes an operator i.e.

1 0

but with a simple transformation we can avoid operating on wp(0) with k. Within
the ballooning mode formulation [26, 39], we can interpret 6 as an extended
poloidal angle 6 where the operator (1/qR)0/00 includes both poloidal and radial
projections on the parallel direction. The eigenvalue equation can be written in the
form

2
ZTZ)JF h{ [w — 14k 2p? (cB + #)}A(e) + sng(e)}qs —0  (6.169)

where

<
S

h = 4ky*p,? (6.170)

£,2
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® = w“’ 6.171)
g(0) = cos 0+ s(0 — 0p) sin 0 (6.172)
k2 =ko*(1 + s20%) (6.173)
and
A(0) = %‘% (6.174)

F=w 1—|—5 —l—l 2
o 37 T i 3

G=5(1—|—1>w
3t T

The boundary conditions of (6.169) are 0¢/00 = 0 at 6 = 0 and ¢ — 0 when
0 — o0

Here 0y is a free parameter which can be choosen to maximize the growthrate.
Usually its value is zero but we should keep in mind the possibility of other values.
This eigenvalue problem, in general, has to be solved numerically. There exist,
however, methods of obtaining approximate solutions in most cases of interest. The
most important case where we can obtain an exact analytical solution is the strong
ballooning limit where we can take g(0) ~ g(0) = 1. The applicability of this
approximation is wider than we might expect since the geodesic curvature (second
part of g) increases when the normal curvature decreases. As it turns out, fors = 1,
g(0) increases slowly with 6 up to about 6 ~ 2.8. The first zero of g(0) fors = 1 is
just before 6 = 3. This picture is changed radically for small and negative shear
where the m; mode is considerably more stable. In the strong ballooning limit
(6.169) is of the form

9%

o7 T (E+ 05079 =0 (6.175)

Equation 6.175 has solutions of the form

where the 67 part gives
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or
o=+ % V=52 (6.176)
The constant part gives
a=¢/2 (6.177)
The formal solution is then
&= —|s|ive (6.178)

Here we have used the fact that & contains ®” and that a positive imaginary part
of ® must give a localized mode. The right hand side of (6.178) corresponds to a
convective shear damping, similar to that obtained for usual drift waves in (6.40).
The right hand side of (6.178) also contains the only effect of the parallel ion
dynamics so the condition § = 0 gives the local dispersion relation with the
solution (6.144)—(6.145).

Our nonlocal dispersion relation takes the form:

2 10 . 5 1 5 ~
o (1+kp ) - {1 ‘*’”(1 *37> "<1+§>®‘k02932<1 *"f*%“’"ﬂ”*

(14 n,)ko’p, } +iOT =0

5 5
nF_
—i—s{ 3+32

(6.179)

1 2 5 1
r:;(m—§> +§g,,<1+;> (6.180)
8n|s|\/ 1+771> (6.181)

We note that ¢,|s|/2q = L,/Ls.

Although (6.169) is rather complicated, the stability threshold takes a very
simple form where FLR does not enter [166]. It is (note the difference in the
definition of &, in [166]):

where

Nin = 3 + 97 & (6.182)
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The part of the threshold which is linear in g, is here entirely due to div q.. The
part t/(4¢,) in (6.146) is due to the divergence of the E x B drift and is removed by
the parallel ion motion (there are also other contributions from the divergence of the
E x B drift and div q. which cancel in (6.146)). A trend for a higher threshold for
the pure toroidal mode was also seen in [74]. We also note that for k szsz =0,
(6.146) agrees with (6.182) at g, = 1.

At this point the boundary curve (6.182) is tangent to the stability boundary in
the local limit. The influence of parallel ion motion is thus small for the reactive
model in the regime where the strong ballooning approximation applies. Equa-
tion 6.182 also exactly defines the threshold in n; for the first factor in (6.152) to be
positive. We note that (6.152) is still valid since we eliminated the ion density
response so that k| does not enter explicitely. This is also true for the system
(6.153)—(6.155), including electron trapping. Due to the ® dependence of 0,
(6.181) is now a rather complicated function of ®. However, an analytical solution
that works in most cases of interest has been found [191]. This solution still requires
iterations since the growthrate depends on the modewidth and the modewidth
depends on the eigenvalue.

The success of this solution in combination with flowshear is discussed at the
end of Chap. 7. The order of magnitude of & is, usually, well described by the first
factor 0.5¢,lsl/q. In a recent work [166] it was found that if the total pressure
perturbation is used in (2.47) for the FLR term, (6.182) in fact reduces to only the
first factor. That model for FLR does, however, not agree with the kinetic expansion
(5.31) for terms of the type ek szsz. We note also that the slab n; mode is
contained in the present formulation. Because of this the imaginary part is
destabilizing for small ¢, effectively removing the stability regime for small g,,.

Parallel ion motion also has the effect of reducing the threshold slightly in the
flat density regime. This is, however, usually a very small effect and the growthrate
is somewhat reduced in the region of instability of the local mode. Another
interesting result is that the threshold in n; reduces to 2/3, independent of ¢,, in
the adiabatic limit i.e. when we ignore (..

The adiabatic model, accordingly does not produce the upper stability regime in
€, When parallel ion motion is included. Since, as was pointed out above, the linear
kinetic threshold (and, in fact, also the threshold of Gyro-Landau fluid models)
changes considerably when parallel ion motion is included, unless s/q is small, we
find that our reactive model is less sensitive to parallel ion motion than both the
simpler adiabatic model and the kinetic model in linear theory.

6.11.7 Early Tests of the Reactive Fluid Model

The reactive fluid transport model described here has been tested against
experiments in more complete versions, i.e. including impurities, collisions on
trapped electrons, electromagnetic effects, elongation and Shafranov shifts. The
most successful overall results have been obtained by the Multi Mode Model
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(MMM) in the US [160, 174, 175, 182], which includes our reactive fluid model in
the good confinement region. The MMM uses an artificial (empirical) dependence
on elongation which is required for a good overall agreement with the database. The
pure reactive fluid model has been found to give very good agreement with JET
results [171, 176]. In particular very good agreement has been obtained with high
performance shots when finite beta and elongation effects were included. The
properties of the reactive model can be characterised as: Thermodynamic properties
(power scalings, stiffness): Very good, Geometry properties (magnetic q and shear,
elongation scalings): Fairly good magnetic shear scaling while the elongation poses
problems. One particular aspect of the thermodynamic properties is that the power
scaling has generally been found to be in good agreement with experiment. In
particular the scaling Tz ~ P~%? which is often quoted in the literature is the worst
case obtained with the reactive fluid model. It is obtained for equal ion and electron
heating. The exponent —0.5 has been obtained for mainly ion heating which is in
agreement with some experiments using only neutral beam heating as discussed in
[114]. The good thermodynamic properties are also emphasized by the good
agreement with scans in temperature gradient in the Cyclone tests against nonlinear
gyrokinetic simulations [183, 189]. This was made with the basic electrostatic
version for the pure n; mode. The result can be recovered from (6.152) multiplied
by 3/2 (energy diffusion), using the local eigenvalue i.e. from the theory in [93]. We
note that the background density and temperature profiles were kept fixed in the
Cyclone simulations. This is equivalent to applying ideal sources in density and
temperature that exactly balance the transport.

The electron trapping effects have also recently been compared with linear
kinetic theory [187] and tested against perturbative experiments [188]. More recent
tests mainly involve momentum transport and will be discussed in that section. The
main reference to the MMMO5 is [174]. It used only the strong ballooning approxi-
mation and did not include momentum transport. Nevertheless this model was very
successful. A more recent model is MMMOS8 [192] which includes momentum
transport and the eigenvalue solution described in [191]. Finally MMMyv7.1 has just
been presented with improved momentum transport and edge physics (Chapter 7,
Ref. 58).

6.12 Electromagnetic Modes in Advanced Fluid Description

We will now generalize the MHD type modes discussed previously to an advanced
fluid description. Such a description naturally bridges over to the drift waves in the
previous section. In the ideal MHD limit we hardly need the advanced fluid aspects
since there the growthrate is much larger than the drift frequencies. However,
electromagnetic effects may be important for drift waves. Then, in the edge region
with H-mode pedestal there is a mixture of drift waves and MHD type modes where
we need an advanced fluid description for a unified description.


http://dx.doi.org/10.1007/978-1-4614-3743-7_7

6.12 Electromagnetic Modes in Advanced Fluid Description

165

A key feature of electromagnetic modes is the parallel electric field. We will
here make a fairly general derivation in order to be able to describe also the edge

region in a tokamak.

6.12.1 Equations for Free Electrons Including Kink Term

Parallel electron motion gives:

ot

i) A 1
<+z’ Ve + V- v>ve = e<v ¢ +7t“ — (Vaor X 5B)> — VP (6.183)

Where || indicates the component parallel to the background magnetic field.

Now with
0B =V x (Ae)) = —e| x VA
We obtain
(V*eT X 5B)H = —VieT - VAH

Then ignoring electron inertia we obtain

on, e W — Wyer ) 0T, . Ve
= [T g ) = 4l
ne T, <¢ k” I

where

T,
D, =
myv,

Now using isothermal electrons along a perturbed field line we have
(Bo + 0B) - V(T¢e + 0T,) =0
Linearizing we get

Wye
5T€ =1 —eAH
C K

(6.184)
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The electron temperature perturbations now cancel. Thus:

on, e O — O . Ve
=—(¢— Ay) +i (6.185)
ne T (d) Ky > kD,

The continuity equation of e electrons can be written:

on,
ot

0B ~
+ V. |:ne<VE+V*e+V||OBL—|-Ve>:| =0 (6.186)

Where we introduced a background parallel electron velocity due to the plasma
current.

Then
on, e ne 1 6B
8tf + no(Vie—Vpe) - VT_(f + Vpe - Von, + T—:Vpe -VoT, — - f
“Vjjo + noe - Vv =0 (6.187)
Now
0B | dJHO 1 8AH
B V04 B a0
Then using also the Ampére law
1
Ji=—44
Ho
We obtain
on, w.. —wp, e m 8JH0A
ng ®-—owp, T. eBrng(w— wp,) Or I
WpeWse  CA| KV
+1, i (6.188)
" k(o —wpe) Te  ® — wp,
Then combining (6.185) and (6.188) we obtain
e W — Wye Wye — Wpe €¢ WyxeWpe eAH
—|¢- A = e
T[) kH W — Wpe Te kH((U — G)D()) T()
- =B v (—L—-
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(6.189)
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Fig. 6.21 Growthrates of electromagnetic ballooning modes as a function of normalized B. The
inner curve corresponds to ideal MHD while the outer includes Kinetic ballooning modes with a
larger unstable region. Here ¢, = 0.35, ni = 2 and k2p2 = 0.01 (From [90] with the permission
of the American Institute of Physics)

Now using the Ampére lag again and ignoring parallel ion motion we find

1 1 1 eA
— i a—— = — Ay = —k, 2p vt 2l
Ve en’le | Loen I L Ps VA T,
Then (6.189) reduces to
Ay bl - ..) et
Te w(w - w*e) + wDe(U)*eT - U)) - :21;“’7”'; % - kszSZkH2VA2 (1 — I((:H;—g’jf)) T,
(6.190)

Equation (6.190) is our principal result for electromagnetic modes in an
advanced fluid description.

We can see that electromagnetic effects vanish when kva>>®. We also find
that Ej — Owhen |w|>>|w,|,|wp|. The relation (6.190), without electron
collisions and current has been a standard feature of transport simulations using
the reactive drift modes described by (6.153)—(6.155). Recently the full (6.190) has
been used in transport code simulations of the H-mode pedestal recovering the
peeling mode effects.

6.12.2 Kinetic Ballooning Modes

As mentioned previously, the closure (6.137) leads to the inclusion of the kinetic
ballooning mode in the electromagnetic case. Again using the ballooning mode
formalism but ignoring parallel ion motion we obtain the growth rate of the
ballooning mode branch in Fig. 6.21.
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As was also pointed out above the kinetic ballooning mode is obtained from the last
term in the kinetic expansion (5.31). This is the first term in such an expansion that
singles out the temperature gradient from the pressure gradient. Since the same term is
due to div q. in the fluid equation, it is also a nonadiabatic effect. Although the kinetic
ballooning mode is important for limiting the gradient of the H-mode barrier, it is a
modest effect as compared to the effect of using only the pressure gradient for toroidal
ITG modes. There it gives the ; threshold —1 as mentioned previously.

6.13 Resistive Edge Modes

The modes considered so far in Chap. 6 have been of a collisionless type which is
the most relevant approximation for the core of tokamak plasmas. At the edge,
however, the turbulence changes character and collisionless modes are generally
not able to explain the continued growth of the transport coefficients outside 80% of
the small radius. In the strongly collisional edge (veg > ®) we note that (6.101)
predicts Boltzmann distributed trapped electrons. This means that trapping is not
important. When v.; becomes larger than the bounce frequency, the trapped
electrons behave as free electrons and the most relevant description is to treat all
electrons as free and include collisions on them. In a very simple isothermal
description (8T, = 0) we then arrive at the density response (3.16). Contrary to
(6.101) it leads to an MHD type response for large collisionality. This means that
collisions prevent the electrons from moving along the field lines. When the
electron temperature perturbations are included, the Braghinskii equations lead to
an electrostatic parallel electron current of the form:

. ~ 1 e VHTe
Jlle =enD.e| - ;VHI’I—T—FVH(ﬁ-‘r 1.71 T. (6.191)

where De = T./(0.5meve;). In the electron energy equation we now have to include
the contribution from K| in addition to q.. in (2.26). The perpendicular collisional
heat flow is always smaller than q.. as long as v.; < Q.. We then obtain:

(5& _ o |:g on, + (O (ne . %) %] (6.192)

Te o-3op,+ivy|3 n o 3) T,

where v = 1.06kH2De.

In the absence of vr, (6.192) is of the same form as (6.140) for ions and exactly
the electron temperature perturbation used for collisionless trapped electrons in the
derivation of (6.148). In (6.192), however, the two dimensional expression is
recovered for very strong collisions since electrons are prevented from moving
along the field lines by collisions. We may also point out that fluid closures that
make use of kinetic wave-particle resonances can be obtained by a suitable choice
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of vr. In the collisionless regime, we recover the isothermal limit. By using (6.192),
(6.191) and the electron continuity equation we can now derive the electron density
perturbation in the form

one  (wee — 0pe) + EEHo,c0p, + ik * DT (w) e¢p

n w? — L wwp, +3op2 + ik 2DN(w) e
7 5
EEH =1, -5+ (6.193)

5 2
T(w)=w- ngE — 171wy, (ng — 3> + 1.06(w.. — ®pe)

~ 5
N((l)) = — g(j)De — 1.1460 + 1.06((/0*5 - wDe)

For ions we use our previous reactive drift wave description i.e. (6.141). In order
to obtain an eigenvalue equation we now make the replacement

2
T
q*R” 90
Since we will here only consider the strong ballooning case, k| will not operate
on g(0) and k1(0) as given by (6.172) and (6.173). we can then obtain our
eigenvalue equation directly from (6.193) and (6.141) by letting k| operate only
on ¢ and we have no problem with non commuting operations. This eigenvalue
equation will, however, be of fourth order in general.
Since in the following we will be considering only the strong ballooning
approximation we will neglect the fourth order operator, thus arriving at a second
order equation of the form:

D, ¢

7R 007 —i(As0" + A30° + Ar0* + Ay + Ag (6.194)

Where

5
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— (220w — 1.06wp,) [ww (1 — &,) + EIHw,,0p;]
where N; is given by (6.149) and
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D=o’—w [w*e — Wpe (1 + 3—)} — ElHw..op; + k1 *p>o(0 — w.r)
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7
is the local dispersion function for the toroidal n; mode and EIH = n; — = + = ¢&,.

Furthermore 33
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We note that collisions only enter through D, in the operator. The local limit of
(6.194), corresponding to neglecting the operator is thus identical to the dispersion
relation (6.148) in the limit f, = 1. We also note that in the edge region we actually
have g, < <1 and in connection with strong heating we expect 1n;,n. > 1. Itis thus
interesting to consider the two orderings ® ~ ®.. and ® ~ ®p. discussed in the
section ‘Finite Larmor radius stabilization’. For large ® we have the resistive
ballooning mode.

6.13.1 Resistive Ballooning Modes

Resistive ballooning modes have been studied for a long time both in electromag-
netic and electrostatic models. These modes have generally been weakly ballooning
with small growth rates. It was recently found [159] that such modes are stable
when the shear parameter approaches 1. This effectively rules out this mode as a
candidate for edge transport. In the same work, also the presence of a strongly
ballooning mode was pointed out. This mode has a growth rate of the ideal MHD
order and is thus a very strong candidate for explaining edge transport. The work by
Novakovskii et al. [159], however, ignored temperature perturbations which we
expect to be very important at the edge in connection with strong heating.
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We will here, for simplicity, use the approach of [172] and ignore electron
temperature perturbations. This greatly simplifies the algebra at the same time as
it retains the important effect of ion temperature gradient on the FLR stabilization
(compare (6.161)). Then, including the same geometry as for ion temperature
gradient driven modes, (6.172), (6.173) we obtain an eigenvalue equation of the
form (6.175). The resulting dispersion relation is

Wy Wpj
(0 — Our + iyp) = ——2 (1 + T+ 1) (6.196)
ko~ p,?
Where
|S| . ( (/U*e) De
=—/—ilw—wqur)1 — 6.197
= o | 1 7) o /) ¢R? ©190

Here yp acts as a shear damping. The right hand side of (6.196) gives an ideal MHD
growthrate. When it is fully developed (6.197) can be further simplified. In this
limit the exponent o of the eigenfunction as defined in (6.177) can be written

Is|

O(:?

k 1/2 T 1/2 WxeVei 6.198
alkap,)' ™ [ T2 (6.198)

where I' =14 (1 +17;)/2

We may here realistically estimate the root to be of order 1. For s = 1 we
remember that g(0) is close to 1 for 8 < 3. The condition for the strong ballooning
regime is then o0% > 1ie.a > 1/9. This condition is easily fulfilled by (6.198) . In
deriving (6.196) we neglected &,? terms since ¢, is small at the edge and we have
been considering frequencies of order w. or larger. This means that we could have
used a simpler fluid model, ignoring div q.. Numerical investigations have shown
that the strongly ballooning resistive ballooning mode has its maximum growthrate
around

kop, ~ 0.15
Below this value the convective damping is the dominant stabilizing mechanism
and above this value the FLR stabilization gets more important. In the local limit

the condition for FLR stabilization is

W4;Wpi
2
k@ ps2

1
o1 +m) >

1 e (6.199)

With g, ~ (keps)2 this condition leads to the stability condition

>3 (6.200)
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We note that if electron temperature gradients are included I" generalizes to I' =
1+ 17,4 (14 n,)/t which is the combination appearing in the MHD stability
parameter o in (6.64). This would lead to a slight increase in the threshold (6.200).
It is interesting to compare the threshold (6.200) to that for stabilization due to a
poloidal sheared rotation. The neoclassical poloidal rotation vg is of the order

Vo, ~ MV (6.201)
A simple version of the Waltz rule gives the threshold

dvo

> 6.202
dr v ( )

where v is the linear growthrate in the absence of rotation. A natural estimate of dvg/dr
for steep temperature gradients is

dV() Vo

N — 6.203
dr LT ( )
Then (6.202) leads to the condition
a Tl
ne> koL |~ (6.204)
kop;)

Since the root is here typically of order 1, (6.204) expresses the fact that
stabilization by rotation at reasonably moderate 1 requires an Lt of the order of
the wave-length of the perturbation. Now, since Lt; = 0.5¢, R/n;, we obtain for

&n ~ (kopy)?
n; > (0.56,koR)*> (6.205)

In (6.205) we kept only the m; part of I'. For typical edge parameters (6.207)
gives a threshold m; > 7. Also this threshold would increase somewhat if we
include the electron temperature gradient.

Thus, in conclusion we note that there is a strong ballooning resistive mode for
edge parameters with a maximum growthrate of the ideal MHD magnitude. This
mode is further stabilized by temperature gradients for n; < 2-3 and stabilized for
N; ~ 3-5. This mode is the most likely cause of strong edge transport observed in
experiments. We also note that the FLR stabilization of this mode in the local limit
is also described by (6.161) for f; = 1. We can thus extend the applicability of
(6.161) if we reinterprete f; as the fraction of electrons that does not move along the
magnetic field due to the combined influence of trapping and resistivity. We can, in
fact, extend the picture to include also the effect of magnetic induction which also
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reduces electron motion along the field lines. We may broadly say that (6.160) and
(6.161) describe the transition from drift type modes for f; = 0 to MHD type modes
for f; — 1.

We also note that the FLR stabilization for large n; typically appears to occur for
smaller m; than the stabilization due to a sheared poloidal rotation. In a scenario
when a transition to an enhanced confinement regime is caused by increasing
temperature gradients in connection with increasing heating power, we would
thus expect the FLR stabilization to set in before the stabilization due to a sheared
rotation for neoclassical poloidal rotation. However, as has been found recently, a
turbulent spinup of poloidal rotation may change the picture both for the edge
barriers and for the internal barriers.

6.13.2 Transport in the Enhanced Confinement State

When the resistive ballooning mode described by (6.196) is stable, transport in the
system described by (6.193) is strongly reduced, corresponding to an enhanced
confinement state. In this regime the relevant ordering of ® is ® ~ wp. With this
ordering and &, <<1, g,n ~ 1, &, ~ (kgpy)® and (lqps)2 ~ &"/? we obtain an
eigenvalue equation which is cubic in ® but which becomes quadratic in the local
limit. Again using the geometry defined by (6.172) and (6.173) with solution
(6.178) we obtain the dispersion equation:

w? — ?f&)@pe + %5601)92 = %2 (6.206)
where
gl Met (7/2) = (1/27) 5= it (/om, — 71+ (1/7))/3
nitme+1+r n e+ 1+
and
12 = kap, 2 3y D (6.207)

— l
‘g mi+m\'3 R*wpe

1 10 5
H = <2——)(D2+ (— 1>60Dew__wDe2
T 3t 3

10 5
F = wp.(3.20 — 2. 70p,) — 1.7rE (a)2 - ?wmw + gcoD,-2>

i
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We have here kept terms of order 1 in the local part since these are actually going
to determine the threshold in many cases. In the nonlocal parts we have, however,
strictly ignored terms of order 1 as compared to n. The relative complexity of
(6.207) is due to the fact that we kept also the electron temperature perturbations
and gradients. Here v, represents the effects of electron motion along the field lines
and the left hand, local part, of (6.206) reduces to (6.162) for f, = 1. We note that
for DJ/R? & ®pe, Yp is typically considerably smaller than ® so that the local
approximation is valid. The mode profile is determined by

5 H R*wp,

3'F D,

1
% = SkopyJslg (6.208)

Again we note that for s =~ 1 we need o > 1/9 for the strong ballooning
approximation to br valid. This is easy to fulfil for typical edge parameters. The
local part of (6.206) has the solution

5 5 3
© = 3 Eope £ ope)f & - = (6.209)

A necessary condition for instability is clearly

1 7 1

w3 (1+7) (6210)
T 3 T

oTe  nw. ed

Tg w _%wDe Te

on; 1jWxeMpj ep

10 5 T
no o =Fopo+3op® Te

This mode is of an MHD character corresponding to k; = 0. It can be obtained
from the condition div j = 0 which, when we neglect FLR effects becomes of the
form

SP=0 6.211)

Here dP is the total perturbed electron plus ion pressure. It means that the density is
larger where the temperature is lower and (6.209) is thus a kind of condensation
instability. This mode is symmetric in ion and electron quantities and has its largest
growthrate when 1n; = n.. It cannot be stabilized for large temperature gradients since
& has m to the same power in numerator and denominator. The reason for this is that the
main contributions to the density perturbations come from the convective temperature
perturbations through compressibility. This means that a given density perturbation
gives rise to a potential perturbation which is inversely proportional to 1. This relation
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Fig. 6.22 Feedback loop of T
the condensation instability
Exp /

Convection

Compression

<
<

on
Density response

replaces the Boltzmann relation in the feedback loop of thermal instabilities
(Fig. 6.21). Another consequence of this is that ® would cancel out after taking the
final convective temperature perturbation in the feedback loop unless we include the
effect of the heat flow. This would remove the phase shift neccessary for instability.
Thus the diamagnetic heat flux is required for instability (Fig. 6.22).

Finally we repeat what was pointed out in the discussion following (6.151) that
this mode always produces a particle pinch. The transport coefficients
(6.153)—(6.155) are clearly valid in the local limits for both the resistive ballooning
mode and the condensation mode if we take f; = 1. A tendency for a particle pinch
at the edge has been seen in several H-mode plasmas [105]. We finally note that an
H-mode transition was obtained dynamically in predictive simulations using the
transport coefficients(6.153)—(6.155) [114]. This was obtained for f; ~ 0.65 in
which case an n; of 15 was needed for the transition. In our present resistive system
we expect the transition to instead occur at n; =~ 5.

6.14 Discussion

We have in the present chapter extended the theories of Chaps. 3 and 4 to more
realistic geometries. This gave rise to eigenvalue equations that were solved both
for some drift type modes and for some MHD type modes. We have also included
temperature gradient driven modes. Drift kinetic and gyro-kinetic equations which
apply to realistic geometries have been derived and a transport model based on an
advanced fluid model for n; and trapped electron modes has been presented.
The general closure problem for fluid models has also been discussed in some
detail. Finally we have included a section on resistive edge modes where also a
mechanism for the L to H mode transition has been suggested. A condensation
mode, able to give a particle pinch in H mode, was also presented. The present
chapter essentially shows the present state of research on transport while the MHD
parts mainly are included for educational and reference purposes.
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Exercises

1. Use the simple trial function ¢ = 1 in the quadratic form (6.63) for & = 0.
Compare the result with (6.64).

2. Use (6.101) where v, is neglected for electrons and include a gravity force for
the ions to show that interchange modes can be due to electron trapping.

3. Generalize exercise 4 in Chap. 2 by including curvature effects to a fluid
description.

4. Generalize exercise 4 in Chap. 2 by using the drift kinetic equation (5.7),
assuming a Maxwell distribution.

5. Derive (6.96).

6. Show that (3.70) is unchanged in the presence of an electron temperature
gradient when the equation of state (2.21) is used.
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Chapter 7
Transport, Overview and Recent Developments

7.1 Stability and Transport

The research areas of stability and transport have developed very strongly during
recent years [1-67]. The development in stability and transport up to 2007 has been
reviewed in a very comprehensive way by the ITER Expert groups and the ITPA
groups [1, 2]. The first paper was accompanied by some pure modeling papers
[3, 4]. However several papers on ITER physics basis were published also between
these papers [5—7]. Recents areas of strong interest have been momentum transport
[21-34, 54-58, 60, 61, 66—-67], Impurity transport [20, 43, 44], Finite beta effects
[16, 46, 51, 54, 63]. Critical gradient effects and stiffness [45, 55, 56, 66] and
particle and heat pinches [8, 10, 16, 36, 44, 52, 53, 57].

We will here focus on momentum transport and the associated barrier formation
since this has been the major subject of interest the last years.

7.2 Momentum Transport

Of course there is a major interest in understanding the formation of both Internal
Transport Barriers (ITB) and Edge Transport Barriers (ETB). Edge transport barrier
just means the barrier associated with the H-mode and this interest thus stems from
1982 (Chap. 6, Ref. 67) while internal barriers were discovered during the 1990s. In
Chap. 6 we found some evidence that FLR stabilization may dominate at the edge.
This was, however, for neoclassical rotation and now there is experimental evi-
dence that there is a turbulent spinup of rotation for ITB’s. Our simulations indicate
that this is also a major effect at the edge. A common feature of ETB’s and ITB’s is
that they are formed when the heating is increased. As it turns out, the nonlinear
spinup of the poloidal rotation is triggered by the ion temperature length scale,

J. Weiland, Stability and Transport in Magnetic Confinement Systems, 181
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Lt = —T;/dT;/dr. Thus we need to increase —dT;/dr without increasing T;. At the
edge this happens naturally just inside the separatrix since the temperature there is
kepy low by the large transport in the scrape off layer. This is easily accomplished
in a transport code since the outer boundary is kept fixed. However, it is more
difficult for the generation of an ITB. In the interior T, and dT;/dr are usually both
increased when we increase the heating and it is not clear what happens to L. Thus,
in practice we need something more to increase .dT;/dr locally. This can be obtained
by e.g. small magnetic shear. The reason why small magnetic shear reduces
transport is that the mode profile gets wider for small shear, thus allowing a
tendency for the driving curvature term to average out within the mode profile.
That this mechanism works in our reactive fluid model is strengthened by the most
recent results on stiffness with rotation [66]. We will here reproduce the main
features of a recent paper on this.
The poloidal flux of velocity can be written:

1~ 1~ 1=
Tp: <VErVp> = — DBZk,Ak() E ¢* |:(]5+—Pl:| +c.c (71)
T

Here we consider radial flux of poloidal rotation. This is average flux where all
velocities are perturbations. However, this flux enters in the transport equation for
the background flux. Since the diamagnetic drift does not convect plasma, it is here
only the E x B drift that convects. However, the convected poloidal rotation
includes both E x B and diamagnetic components. Thus the pressure perturbation
and with it the temperature gradient lengthscale enters here. For the toroidal
momentum we use

o . = ~
m,‘N,' <—+2UD, . V>5u| = fm,N,-uE . VUH()

ot
—~ m,-lj ;
— €H~V+UHO T,‘D -V
X (5,:,. +eNip — 2 w*ﬁk(lj m)/TA”) (7.2)
I

Where N is the background density and U denotes unperturbed drifts. This equation
was derived from fluid equations, using the stress tensor [33]. It includes also the
Coriolis pinch as found in gyrofluid derivations [28—30]. The parallel momentum
perturbation is now

koD  dUjo =~ <k>+ wDiUHO/(T . C‘Yz)
+
w — 2COD,* dr w — ZCUD,‘
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5MH = —




7.2 Momentum Transport

Fig. 7.1 Simulated T; (dotted
line) which developed from
the initial condition given

by the full lune (From [58]
with the permission of the
American Institute of
Physics)

Fig. 7.2 Simulated V,,
(dotted line) which developed
from the initial full (From
[58] with permission of the
American Institute Physics)
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The parallel momentum perturbation was used in order to calculate the toroidal

momentum flux in a way analogous to (7.1). The simulated poloidal and toroidal
fluxes were then used to calculate the radial electric field as

E, = B9V¢ — B¢V9 +

1 0P

eZn Or

(7.4)

7.2.1 Simulation of an Internal Barrier

A simulation of JET69454 [58] where the initial conditions had no barrier is shown
in Figs. 7.1-7.3. This was a self consistent simultaneous simulation of Tj, Te Vior

and Vi
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Fig. 7.3 Simulated poloidal JET 69454
spinup (dotted), neoclassical 40|V pol ' ' '
rotation (dashed), initial Km/s
condition (full) (From [58] Itg strong
with the permission of the 20} Itg
American Institute of \ stable C Flux of
Physics) \\ pol rot
—h-“ﬁ% L
0 T
L
20 II‘ ‘:
) “. I Flux of tor rot
v
-40
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Fig. 7.4 Simulated edge JET 69454
barrier, Tj, in JET69454. Ti ' '

(dotted) where the full line

indicates the initial condition

(From [58] with the

permission of the American 10
Institute of Physics)

7.2.1.1 Poloidal Spinup

The transition requires nonlocal and electromagnetic effects. The pinch of poloidal
momentum is driven by the ITG mode and “piles up” at the barrier location where
the ITG mode is stable. An electron mode is marginally stable at the barrier.

7.2.2 Simulation of an Edge Barrier

Also the formation of an edge barrier was simulated in [58] Again basic data were
taken from JET69454. Here the initial temperatures, including the edge boundary,
were reduced by a factor 7 from the experimental condition. As usual in predictive
simulations, the edge boundary was then kept fixed. An edge barrier then developed
with height approximately equal to the experimental (Figs. 7.4, 7.5, 7.6).
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Fig. 7.5 Poloidal rotation in JET 69454
the simulation in 2a (From V pol v
X o 10f2P
[58] with the permission of Km/s
the American Institute of
Physics) 5
o} — o Wk ey
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Nt ot }';
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Fig. 7.6 The same shot with JET 69454

a 50% reduction in density
and 50% increase in B, (From
[58] with the permission of
the American Institute of
Physics)

7.2.2.1 Peeling

We then restored the experimental density keeping only the 50% increase in B,
This activated the kink term and we got peeling (Fig. 7.7).

Both the simulations of the ETB and ITB were made with a code that included
the same physics everywhere and used the same grid size everywhere. Thus no
information of where the barriers should develop was entered.

We can see here how a fluid model containing both poloidal and toroidal
momentum transport can describe the formation of a transport barrier in a
selfconsistent simulation of four channels, ion and electron temperature and
poloidal and toroidal momenta. The poloidal spinup has previously been recovered
also for JET51976 and JET58094 although experimental measurements of the
poloidal rotation are missing for 51976. The barrier location is here a result of
small magnetic shear (optimized shear) and the power deposition. Rotation is
driven by the temperature scale length and this requires both large thermal flux
and an additional mechanism which limits transport so that the scale length is
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Fig. 7.7 This graph JET 69454
corresponds to Fig 7.4 but
with 50% increase in Bj,. We
observe that the outer part of TR
the barrier has been peeled off @
(From [58] with the 10 b
permission of the American \
Institute of Physics) N

0.2 0.4 0.6 0.8

reduced. The Trapped Electron mode dominates transport in the whole region of
small and negative magnetic shear. However, the ITG mode would also be unstable
in the absence of flowshear. Since this model does not include transport due to
perturbed magnetic flux surfaces, it is not sensitive to exact values of magnetic q
(like rationals). The convergence of the results with respect to resolution has been
tested with almost the same results between 50 and 99 radial gridpoints. The results
were also tested in the electrostatic limit and in the absence of electron trapping. No
internal barrier is formed in these cases. In particular electromagnetic effects have
recently been found to be important for the toroidal momentum pinch [54]. This
opens up a possible explanation for the stronger barrier in the simulation. The
model for elongation is rather crude and usually underestimates the effect. Elonga-
tion acts as to reduce electromagnetic effects which, in turn, tend to increase the
toroidal momentum pinch. Thus a stronger effect of elongation is expected to
reduce the momentum pinch. We have here used a separate correlation length for
electron modes using the same method as in [13]. This method has recently been
successful in calculating the correlation length in the presence of flowshear [66].
We have made scaling of the edge barrier with edge density and Bj,. The height of
the barrier is increased when the density is reduced (a factor 0.5 in density increases
the edge barrier height by about 15%) and also increased when B,, is increased but
this effect is even less sensitive. Peeling is also more effective for large B,,. This is
natural since B, is directly linked to the background current. The transport of
toroidal momentum supports, and is actually required for the ITB while the ETB
is counteracted. This is because the toroidal momentum flux usually is inward, thus
building up rotation in the core and reducing it at the edge, As was found in [54]
electromagnetic effects enhance the toroidal momentum pinch and are actually
necessary for the formation of the ITB described in this chapter. The dynamics of
the ITB formation is that the toroidal momentum pinch builds up rotation in the
core and this reduces transport thus increasing the ion temperature gradient. As
shown by (7.1) this increases the poloidal rotation and finally the poloidal spinup of
poloidal rotation gives the ITB.
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7.3 Discussion

We have, in the present chapter given a brief overview of present trends in transport
research with emphasis on plasma flows and transport barriers. The two areas of
main emphasis in present day research are transport barriers and impurity transport.
Impurity diffusion will be of a major importance for ITER. It is essential here that
there is a turbulent pinch for the main ions while impurities may go inward or
outward. The main ion pinch is likely to improve ITER performance strongly [43,
441]. It is also of a general interest to understand particle and heat pinches [52, 53,
57]. Very basic aspects of a particle pinch in the Levitated Dipole at MIT
were studied experimentally in [52] and interpreted theoretically in relation to the
particle pinch in the reactive fluid model described in Chap. 6 in [53]. Also the off
axis ECH experiment in D-III-D [6.128] was repeated in H-mode [57]. While the
experiment in L-mode gave an electron heat pinch as simulated in [6.129], the
experiment in H-mode did not. Although we have not simulated the H-mode case it
is clear from the start that this would not give a heat pinch since the heat pinch
requires a peaked density profile.

Finally the area of stiffness has been studied widely. We will here just discuss
the most recent results on stiffness in the presence of rotation. Experiments on
stiffness in rotating plasmas has been made for several years [55, 56]. Initially
theory models [35] with a spectrum of modes were performing better in relation to
the experimental results than the reactive model (Sect. 6.11) with only one correla-
tion length. In this model the spectrum is simulated by using a parameter dependent
correlation length [13]. However this correlation length did not depend on
flowshear. This has recently been generalized [66]. The result was that the results
with this model are now comparable with those of models using a multi mode
spectrum [66].
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Chapter 8
Instabilities Associated with Fast Particles
in Toroidal Confinement Systems

8.1 General Considerations

As mentioned in Sect. 6.11.3, toroidal drift wave transport gives an unfavourable
scaling of the energy confinement time with heating power, roughly in agreement
with the empirical scaling law (1.11). It is worth observing that this scaling is
obtained with a reactive fluid model where only magnetic drift resonances of a fluid
type were included. The unfavourable scaling with heating power is due partly to
the scaling of transport coefficients with temperature as T~>* and partly to the
threshold behaviour, i.e. (nrnnh)”z. These are effects of a pure (ideal) heating
on the bulk plasma transport and are thus independent of the heating method. We
note the close analogy with Rayleigh Benard convection in usual fluids where the
heating itself leads to convective transport.

A different but somewhat similar picture emerges when we consider how the
energy is transformed into heat for a particular heating method. This process in
general requires the formation of a non-Maxwellian plasma with an energetic
particle population before the external energy is transformed into heat. This is
regardless of whether the heating is made by neutral beams, radiofrequency waves
or alpha particles in a burning plasma. The fast particle population is here either due
to injected or created particles or due to wave-particle resonances with an injected
wave. In both cases we need kinetic theory to understand the details of the relaxa-
tion. The reason for the interest in the energetic particle population is that it may
lead to new instabilities which, in turn, may cause a large transport of the energetic
particles. This could lead to a situation where these particles may leave the system
before depositing their energy to the bulk plasma, thus reducing the efficiency of the
heating method and enhancing the unfavourable scaling of confinement time with
heating power given by (1.11). Although instabilities caused by fast particles have
been observed experimentally [1-5], the most striking example being the “Fishbone
instability” in PDX [1], the scaling (1.11) does not seem to depend strongly on the
heating method as such. It may, however, depend on in which channel the energy is
deposited. (For the driftwave transport coefficients given by (6.152)—(6.154) the
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worst case , P to the power —2/3, is obtained for equal electron and ion heating)
This indicates that so far, instabilities caused by the energetic particles have not had
a strong effect on the overall energy balance. The reason for this seems to be that the
anomalous increase in the transport due to fast particles has been fairly modest. As
it turns out, the fast particles also have a beneficial effect [6-8], on the bulk
transport which may partly compensate an increased transport in the fast particle
channel from an overall energy balance point of view. However, since instabilities
caused by energetic particles [9-36], are potentially harmful and since the situation
may change in large burning plasmas, such as in a reactor, an understanding of the
energetic particle physics may be essential.

8.2 The Development of Research

The first theoretical studies of energetic particle effects indicated a possibility for
resonance at the Alfvén frequency [9] and the above mentioned stabilizing effect on
eigenmodes associated with the bulk plasma [6-8]. This effect is a dilution effect
caused by the fact that the fast particles do not take part in the bulk instabilities.
This is true for MHD type modes as well as for drift type modes. Later, however,
fast particles were found to introduce new modes at the precession frequency of
trapped fast particles [12—14]. These modes were basically of an MHD type since
one fluid equations could be used to describe the bulk plasma. The fast particles,
however, destabilized a new branch at the precession frequency of the fast
particles. These types of modes were, in fact, discovered experimentally as the
“Fishbone instability” in the PDX experiment in Princeton [1]. While the main
fishbone mode was identified as a new branch of the internal kink mode [12], a
precursor, with a higher modenumber seemed to be due to an analogous branch of
the high n MHD ballooning mode [14]. Since these modes are driven by resonant
fast particles we here have sources in velocity space and thus expect to have sources
in the transport equations of the type (6.132) for all fluid moments. Experimentally
the fishbone oscillations were obtained for nearly perpendicular neutral beam
injection. This led to a large trapped population of the fast particles and the
instability was entirely due to the magnetic curvature drift resonance of the trapped
particles. (The bounce averaged trapped particles rotate “precess” in the toroidal
direction due to magnetic curvature. The bounce averaged magnetic drift is called
the precession frequency). The threshold in energetic particle beta of the fishbone
instability is due to the continuum damping of the MHD type mode. The MHD
continuum for cylindrical plasmas was discussed at the end of section on kink
modes in Chap. 6. For the MHD ballooning mode the continuum damping
corresponds to the i term in (6.72). Good agreement between theory and experi-
ment was obtained for both threshold and mode signatures for the fishbone modes.
An obvious way to reduce the effect of fishbones was to inject the neutrals more
parallel to the magnetic field. This would reduce the fraction of trapped particles to
below the threshold set by the continuum damping. This method, however, turned
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out to be only partly successful and new types of modes were excited also below the
continuum threshold of the fishbone instability. For these modes the Landau
resonance of the circulating fast particles becomes important. As it turns out, the
plasma current may cause a minimum of the Alfvén frequency as a function of
radius, thus opening the possibility for modes with a discrete spectrum when the
frequency is below the minimum of the Alfvén frequency. These modes were called
Global Alfvén Eigenmodes [15, 16], (GAE) since they could extend over the whole
cross-section (compare the discussion at the end of the section on kink modes in
Chap. 6). Another possible cause of discrete, undamped modes is toroidicity.
(In fact, in a toroidal system also GAE modes can be seen as toroidal since the
current enters in combination with the parallel operator k| prop. to 1/R). The main
effect of toroidicity is to couple modes with different poloidal modenumbers. This
introduces a gap in the Alfvén continuum due to coupling of modes with poloidal
modenumbers m and m + 1. This is the Toroidicity induced Alfvén Eigenmode or
TAE mode [17, 18]. For a while it was believed that GAE modes and TAE modes
had a very small instability threshold set only by electron Landau damping. Later it
was, however, found that these modes can couple to the continuum modes by other
toroidal coupling possibilities. This usually gives the main stabilizing effect. There
are more types of modes of a similar type. We may mention EAE modes caused by
the coupling between m and m + 2 modes due to ellipticity, NAE modes which
couple m and m + 3 modes due to triangularity and BAE modes which are due to
finite beta modifications of the magnetic curvature.

8.3 Dilution Due to Fast Particles

Before going into the new types of instabilities caused by fast particles we shall make

some general considerations of multi ion systems where, in particular, the effect of

dilution becomes clear. We consider a system of electrons, e, main ions, i and fast

ions, f. The main ions have charge 1 and the fast ions charge Z. Quasineutrality
requires:

ne = n; + Zny (8.1)

Let us now introduce the fast fraction & such that
ng = &N, (82)
n; = (1 — Zgr)n, (8.3)

We require (8.1) to hold also for perturbations. Thus

5I’le = (371,‘ + Z&nf (84)
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we obtain after dividing by n. and using (8.2) and (8.3)

one _ (1 —&2) on . sfz% (8.5)
n;

ny

Ne

Equation 8.5 is the basic charge balance equation which needs to be fulfilled
regardless of which physics desceiption we use for electrons, ions and hot ions. If
we now study the influence of fast ions on a mode associated with the bulk plasma
we have opr > ®. Then, using (5.30) or (6.140) for the fast ions we obtain:

ny T

on _ ¢ (8.6)

The Boltzmann response for fast ions means that they do not take part in the
destabilizing process but just responds in an isothermal way to the potential
perturbations. The instability growth rateb is reduced due to the factor 1 — g¢Z in
front of the main ion response. This is the dilution effect. The same principle, of
course, applies if we use a fast particle response which includes the parallel
resonance. If we now consider modes with ® ~ opy, the fast particles can be
destabilizing. We will consider such cases in the following.

8.4 Fishbone Type Modes

Fishbone type modes are basically new branches of MHD type modes, introduced
by fast trapped particles. The pure MHD modes are fairly close to marginal stability
in the sense that the destabilizing effects balance the Alfvén line bending effect to
give a mode with eigenfrequency close to zero. For the fishbone type modes we are
only interested in the trapped population of fast particles. For these we start from
the gyrokinetic equation (5.28) and average it over the bounce motion as described
in the section of trapped particle modes in Chap. 6. This means that the v parts
vanish from (5.28) and the magnetic drift is replaced by the bounce averaged
precession frequency. The fast particle response is then given by (5.30) where the
magnetic drift in the denominator is replaced by its bounce average. Now treating
the fast particles as an additional particle species in the quasineutrality condition we
may derive a dispersion relation by the trial function method described in
(6.69)—(6.70). Ignoring the Q part, the dispersion relation (6.72) is generalized to
the form

iQ = SWmp + oWy (8.7)

Here dWymp is given by (6.73) for the MHD ballooning mode and by the left hand
side of (6.95) for the internal kink mode. It was evaluated for the first time with
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toroidal effects in [37]. The kinetic part Wy is due to the fast particle response as
obtained from (5.28). For a slowing down distribution Wy takes the form:

where B is the beta of the fast particles, & = ®/opy, Opyis the precession frequency
and €,y = opg/o.; where o. is the diamagnetic drift frequency of the fast particles.
For a Maxwellian distribution we have [13]:

” an[l - W(\/Z_oc)} — ey + o6y — 1 — np(2a — 1)]

, (8.9)
“AD-w)

1

The difference between the distributions (8.8) and (8.9) are usually not very
large. Both the real part of the eigenfrequency and the growthrate are of the order of
the precession frequency. This is also true when we use the advanced reactive fluid
model in Chap. 6 for the fast particles [27]. The threshold for the reactive fluid
model does, however, differ significantly. For the distributions (8.8) and (8.9) we
obtain the threshold by balancing the imaginary part of dW; with iQ. For the
slowing down distribution the threshold is:

<wpf> 2s

= = 1
P == i (8.10)

Where I proportional to R/r includes the bounce averaging of the driving pressure
term and <> denotes bounce averaging of the magnetic drift frequency. The
growth rate is

n_Z ﬁ B /))crit

4 ﬁ(,‘rit (811)

Y = <wpf>

When the plasma is heated B increases until it exceeds By Then the fishbone
mode goes unstable and rapidly reduces B¢ to below the threshold. The heating then
again increases PB; and the process repeats itself. This leads to a fishbone like
oscillation.

8.5 Toroidal Alfvén Eigenmodes

We will now consider the potentially most dangerous type of eigenmode which is
the discrete one. This type of mode is, in the simpliest description, not subject
to continuum damping. As mentioned above the Toroidal Alfvén Eigenmodes
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Fig. 8.1 Gap due to toroidal o 4
coupling of Alfvén waves Wp
with poloidal modenumbers

mand m + 1

»
»

r/a

(TAE modes) occur in a gap in the Alfvén continuum, caused by a coupling of
modes with poloidal mode number m and m + 1. In the cylindrical approximation
k| is given by (6.7) i.e.

k, = (m—nq)/qR (8.12)
= Ky (8.13)
Which happens when
q(r)=02m+1)/2n (8.14)
In particular form = —2 and n = —1 we obtain a resonance at q = 1,5. For this

case we show the radial continuous spectra in Fig. 8.1. In the gap between the full
lines there is a solution with only one (discrete) ®, which is the TAE mode. It has a
real eigenfrequency close to the common cylindrical eigenfrequency wq of the
coupled Alfvén modes. Since this frequency is large, a kinetic resonance requires
fast particles. The mathematical formulation usually makes use of the condition
divj = 0. A convenient and rather general formulation was given in [23] as:

1 o(® — Wyr) 8n dP ~
B-VEB -VA$ +V—AZA¢ gy EkQ(K xe) -V

4n
+ Pw(;c X B) - V(0P + 6P1;) =0 (8.15)

Here 0P; and 8 Pyt are the parallel and perpendicular components of the hot
particle pressure tensor and the fact that only the curvature part of the magnetic drift
appears is consistent with (6.21).

In (8.15) the first term is the shear Alfvén line bending term, the second term
comes from the divergence of the polarisation and stress tensor drifts, the third term
is the interchange term due to the driving bulk pressure and the fourth term is the
driving term due to the pressure of the fast particles. An analytical expression for
the growthrate of TAE modes, driven by only the parallel alpha particle pressure
was obtained in [24].
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)= o [ﬂ“ (% - O.5>F _ B, V—A] (8.16)
4 (N \%

€

Here B, and B, are the B values of alpha particles and electrons, respectively, and
@, is the alpha particle diamagnetic drift frequency. F(x) = x(1 + 2x2 + 2x%)
exp(—x?), where x = va/vyrepresents the kinetic distribution. As pointed out
above, we need particles with velocity close to the Alfvén velocity for a significant
growthrate.

8.6 Discussion

We have here studied some of the most important collective effects associated with
fast particles. These can be divided into on the one hand continuum modes and
global modes and on the other hand modes driven by the perpendicular fast particle
pressure through the resonance with the precession frequency of the trapped
particles or by the parallel pressure through the Landau resonance with the
circulating fast ions. As it turns out, the TAE mode, which normally is excited by
the transit resonance, can also be destabilized by the precessing trapped ions [26].

Equation 8.15 can be used to describe both fishbone type ballooning modes and
TAE modes (the only missing part is the kink term). The presence of the ion
diamagnetic drift in the second term means that we can describe also the kinetic
ballooning mode [23]. For perpendicular neutral beam heating, JP ¢ will dominate
and a majority of the fast ions will be trapped. For parallel neutral beam injection
oP; will dominate and the majority of the fast particles will be circulating. In the
latter case we only have the TAE mode in the system. In the first case we can have
both fishbone type modes and TAE modes. A major difference between these is that
the fishbone mode is triggered close to marginal stability, i.e. only close to the
MHD beta limit for the balloning type. On the other hand it can be excited for
general fast ion precession frequency while the TAE mode requires particles with
velocity close to the Alfvén velocity.

An investigation of thresholds for fishbone type and global modes in kinetic and
reactive systems i.e. alternatively using (5.29) and (6.140) for the fast particles was
made in [27].

Recent more detailed kinetic calculations of the stability of TAE’s for reactors
[28, 33, 35, 36] indicate that the modes may be somewhat more unstable than in
TFTR although the situation should be possible to control.

Finally the nonlinear saturation of the instabilities is, of course, fundamental for
the transport they cause. A usual estimate of the saturation level is obtained by
balancing the linear growthrate and the E x B trapping frequency or nonlinear
frequency shift. This leads to an estimate similar to (3.65). Berk and Breizman have
investigated the details of the kinetic saturation process, including relaxation
oscillations and flattening of the distribution function Refs. [29-31, 33, 34]
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Chapter 9
Nonlinear Theory

9.1 The Ion Vortex Equation

We have up to now mainly studied linear and quasilinear phenomena (with the
exception for Sect. 6.10.4 in Chap. 6). Although quasilinear equations, in combina-
tion with an estimate of the saturation level, can be used to derive transport
coefficients, it is important to go beyond this description in order to understand
its region of applicability [1-83]. In particular nonlinear cascade rules [18, 20, 25,
26, 29, 30, 55] are important for the interplay between sources and sinks in k-space
and the resulting saturation level and correlation length. We will thus here consider
some simple nonlinear systems for turbulence in magnetized plasmas. We will also
make a kinetic derivation of the diffusion coefficient which involves the turbulent
transport itself as a decorrelation mechanism [3-5, 7, 8]. As we have pointed out in
Chap. 3, the parallel ion motion may often be ignored in drift and flute modes. This
is possible if w > kj ¢,. For this case it is possible to derive a simple but still rather
general nonlinear equation for the ion vorticity Q = rot v;. We start from the fluid
equation of motion for ions

aV,' e 1
—+vi-V)vi=—(E+v; xB)— VP; + 9.1
G V= (B v B) — o UP g ©.1)
Taking the curl of this equation, introducing
e
Qci =—2B
m
using the Maxwell equation
OB
VXxE=—-——
ot
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and the vector relation

(V'V)V:%VVZ—VXVXV

we obtain
aQi ani 1
a —VX(V,‘XQi):—W‘FVX(ViXQci)"_minzanVP (92)

When grad n x grad P = 0 we may write (9.2) as

g(Qi + Qi) =V x [vi x (Qi + Qqi)] 9.3)

If (9.3) is integrated around a closed line and we make use of Stokes theorem, we
now obtain a generalized form of the familiar theorem of attachment of magnetic
field lines to the plasma which reduces to the usual form when Q; < Q. In its
usual form this theorem is primarily concerned with the perpendicular component
of (9.3) while we will here be interested only in the parallel component of (9.3).
Now since divQ); = divQ, = 0 we find

Vx(vxQ)=-QV.-v—(v-V)Q

where ) represents £); or {2.;. Now we realise that the operator )¢V represents a
variation in the direction of the vorticity or the magnetic field. Since the vorticity
will be due mainly to the E x B drift caused by the background magnetic field and
we assume the magnetic perturbation to be small, we find that this operator
represents a variation along the background magnetic field. Since the ion motion
along the magnetic field is going to be neglected, we then drop this term. (The
neglection of ion motion along B amounts to dropping k| ¢, i.e. kj = 0). Then
collecting terms and introducing

d 0
E = E + (V . V)
we have
d 1
E(Ql + Qci) + (Ql + Qci)v Vi = an x VP (94)

In order to express div v; we now use the ion continuity equation which may be
written
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7; + Vv =0
or
Vv = —% In n;
then
L0+ ) — (@ +0a) L tnny = Vnx VP 9.5)
dt dt m;n?

Since divg = 0 it is often a good approximation to drop (d/dt) In n; completely.
This corresponds to incompressible flow. The equation then describes the genera-
tion of vorticity €); and the magnetic field Q; by the vector grad n x grad P. This
vector is called the baroclinic vector and is present whenever there is an angle
between the temperature and density gradient. It is one of the mechanism responsi-
ble for the generation of magnetic fields in laser pellet experiments. For the study of
the ion vortex motion it is convenient to rewrite (9.5) in scalar form. We then note
that the nonlinear E x B drift is given by (1.5), i.e. for v =0 the nonlinear
contribution disappears and rot v = €. We thus take the parallel component of
(9.5). This means that we disregard perpendicular perturbations of €). in the ion
equation. The approximation k; = 0 was also made in obtaining (4.31) from (4.20).
We may rewrite (9.5) as:

d (Qi + Q) L (VX ¥R 2 9.6)

—In

dr nj in? Qi+ Q
In order to treat consistently the ion temperature effects we have to include the

velocity v, due to the stress tensor. A correct evaluation of (9.6) in the presence of

ion temperature gradient is then rather complicated. We will thus for simplicity

assume the ion temperature to be small and drop the baroclinic vector. we then have

the usually used form of the ion vortex equation

d . (Qi+Q
| = .
7 n( ) 0 (CA))

We now write dn; = ng + dn; where dn; < ng and introduce the weak nonline-
arity assumption €; < €Q;. Then (9.7) takes the form

d Q; on;
—(InQ,;+=-"-1 ——]=0
(s gy =)
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Since we are now going to consider the ion temperature to be small we now use
Vi = Vg + Vg in (9.7). This is correct to first order in ®/€; since the ion inertia
(polarisation drift) is already included in (9.7). We then find

Q= (V xvg) 7= —Ad 9.8)

We can write (9.7) in the form

0 0 1 on; 1 _d
(@) (oo ) 5 @ x V) g o

1 on;
= _EO(Z x Vo) - (Bon A¢p — ) 9.9

where we dropped both time and space derivatives of Q; The grad B drift due to a
variation of By along x may, however, be included in v,. We have now obtained a
nonlinear equation for the ion dynamics. The density perturbation dn; can be expressed
in terms of @ by involving the electron dynamics and assumption of quasineutrality.
We have in (9.9) dropped parallel ion motion, i.e. assumed kj ¢ < @ which means
that (9.9) is equivalent to the assumption k = 0 for the ions. For the electrons,
however, we are still free to choose the region of interest. Remaining in the drift
wave interval (3.5) we can use the Boltzmann distribution (3.2a) for the electrons. In
combination with the quasineutrality condition this gives

e
Inn =1 +—
n n; = Inngy :

which may be substituted directly into (9.7) without expansion. This means that for
a Boltzmann distribution of electrons the electrons will not contribute to the
nonlinearity. Then using the expanded form of In(€; 4+ Q;) we obtain

0 0 1 on; K O¢
el ) Y Y W e I
(81 + Ve 8)7) (B()Qci (b N ) By 8y

| on;
= —B—O(z x V) - <BOQC1 Ap — > (9.10)

We notice that the gravitational drift in (9.9) only gives a Doppler shifted
frequency. Thus moving to the frame with velocity v, we obtain the equation

d 1 on; Kk 0 1 1 dT, eqS 8(;3
Tl pp -2y K@ A
dr (BOQci ¢ no) Body  Boag XV VACH T T, By
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where we included the possibility of an electron temperature gradient in the x
direction. We may compare the two nonlinear terms in the following way. Introducing

T/eBy = cy>/Q4, we can rewrite the first term as 1 /B p? (grad(e(p/Te)x2> egradAg.

We then arrive at the ratio (d/dx)InT /kyk? p? between the nonlinear terms. It is natural
to assume (d/dx)InT < k. Since, however, k*p” may be small, the second nonlinear
term will not always be negligible. We will, nevertheless, in the following assume this to
be the case. We then arrive at the Hasegawa-Mima equation (the quasi-geostrophic
vortex equation)

d, , op  p? ~
a(ﬂ Aqﬁ—d))—v*ea—y—B—o(Vd)xz)-VAd) ©.11)

Where we multiplied by Te/e. Equation 9.11 is the small gyroradius limit of
(5.43) which was derived from the nonlinear gyrokinetic equation. We again
observe that the interchange frequency is absent when the electrons obey a
Boltzmann distribution. Equation 9.11 has the conserved quantities

W= J (0,2 Ad” + ¢*|d°r 9.12)

V= J [pqusz + (pquaQﬂ &r (9.13)

Where W is the energy and V is the enstrophy (squared vorticity). We notice that in
the linear approximation, (9.11) reduces to

Wye
Ow=———7>=
1 + k)'2p52

Which is the usual dispersion relation for electron driftwaves without parallel
ion motion.

We now turn to the case @ >> k| vie. This is the limit of electrostatic interchange
modes. In this limit the electrons are not Boltzmann distributed. Instead, we may
use the approximation kj =0 also for electrons. The electrons can then be
described by the continuity equation

One & 0¢ _ L
6t BO 8)’ _B()

(Vé x z) - Vn, (9.14)

where we used v, = vg since temperature effects do not enter into the continuity
equation. In the limit k < k we can write grad n./ny = grad on, /n.
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Thus dividing (9.14) by ny and subtracting it from (9.9) we arrive at the coupled
system of equations

1 (9 9 & on 1 R

BoQu (5 + vg 8_y) Ap — v, 8_y n_O = B0u (Vo xz)- VAP (9.15)
d (on K 8¢ 1 _ on

()t~ 5 ToxD Vo ©.16)

where we again used the quasineutrality condition and introduced on = dn, = Jn;.
We notice that (9.15) couples to (9.16) only due to the gravitational drift v,. In the
linear approximation we obtain from (9.16)

on_ K

no B()(D

kyeh

which is the same relation as (3.22). Substituting this expression into (9.15) we find
the dispersion relation

(o — kyv,) + 1gk,* /K> =0 (9.17)

where we introduced v, = —g/Q; and K2 =k + kyz. This dispersion relation is
identical to (3.23) if g — g; + (m./my;)g,. It is also of interest to note that when
g= Vin2 /R¢, i.e. is due to the curvature, the gravitational drift of the electrons is of
the same order as that of the ion for equal temperatures. For this case we should
replace g by g; + (m./m;)g, which will, however, only modify the interchange
frequency (kg)"? by a factor v2.

The simplest nonlinear process described by (9.11) is the three wave interaction.
We write

qﬁ = Z ¢k(t)ei(k,Yx+ky)r7(z)t) +ee ©.18)
Substituting (9.18) into (9.11) we now obtain
d
(o) 1+ a0 = v
’ (9.19)
= %0 {(k1 X 7) kaky? + (ka x z) Kk 2 ¥y, ¢kzei(w7w17w2>,

where we assumed the matching condition

k =k +k;
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Fig. 9.1 Dual cascade m

ki

to be fulfilled. Assuming now that o is a solution of the linear dispersion relation,
we obtain the three coupled equations

a¢k o ps2 (k < Kk ) ) i(k 2 k 2)¢ ¢ iAwt (9 20)
o By(I+ k) TP e '
8¢ _y2 - * —IAw
o= Bl f—k12p2) (k x ka) - 2 (ko — k) pypy,"e " 0.21)
0 2 _ .
¢kz - _ Ps (k % kl) . Z(k12 _ k2)¢k¢kl*e—1Awt (9.22)

ot Bo (1 + k2?p?)

Where we introduced the frequency mismatch Ao = ® — ©; — ®,.

We can now substitute the matching condition for the wave vectors into (9.22) in
order to eliminate k. The vector products may then all be expressed in terms of
(k; x ky)ez. This leads, however, to a change of sign in all three equations. This
means that the coupling factor of (9.21) will have opposite sign to the coupling
factors of the other two equations. In this situation mode 1, i.e. the mode with the
immediate magnitude of k will act as a pump wave and we have cascading of wave
quanta towards smaller and larger k according to Fig. 9.1.

The threshold for parametric interaction is

Aa?

2
[ "> 277

(9.23)

Where V, and V, are the coupling factors. By using the dispersion relation in the
form k?p? = KyVee / wx — 1, it is possible to write

k12 — k22 = —oM

K — k%= oM (9.24)
ky* — k> = oM
where
Vi
= m [w(kﬂ — ky1) + o1 (ky + ko) — wa(ky + kyl)}

We then find that when k?p® < 1,i.e. Ao — 0, the pump wave will be the mode
with the largest frequency.
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Assuming the presence of a large amplitude long wavelength mode Hasegawa
and Mima derived, for a random phase situation, a stationary spectrum of the form

e
T,

U )

(9.25)
(1+ kzpz)[g

where oo = 1.8 and [ = 2.2. This spectrum is in reasonable agreement with
spectra observed in tokamak experiments where 10° < I' < 107>, Computer
investigations by Fyfe and Montgomery [14] show a spectrum with the dependence
k™' below and k~® above a source while recent experiments give the variation
k3. The experiments, however, include several effects not included in (9.25) such
as ion temperature effects and linear damping or growth. Another important
phenomenon observed in nonlinear simulations of (9.11) is the generation of
zonal flows [19]. Such flows may cause a stabilization of drift wave turbulence,
leading to internal transport barriers.

For the system (9.15) and (9.16) the derivation of the coupling factors is
considerably more complicated. The result may be written in the form

a9,

o = Vindy, e (9.26)
t
where
(kl X kz) -z
Vip = P‘YZT
2
2|kt — kit = 2 2 (Ve ) (@2 o) | oo
w'w’wy’ \ Ve wy w!')|2w—
(9.27)

Where @' = kyv,. The last factor gives the sign of the energy. The system
described by (9.27) has the same cascade rules determined by k numbers as
(9.20)—(9.22). This is, however, no transition to the usual weak turbulence rule
for perfect matching. The wave energy is given by

2 2 / 2
e \ e 20 — o e
Wk _ k2p52 (pk =+ Ve [k _ k2p52 (pk
T, Vie \N0 o — o T,
This wave energy is contrary to the usual weak turbulence case conserved also in
the presence of mismatch. We also note that this expression for the wave energy,
obtained from a nonlinear conservation relation in a fluid model, agrees with the

expression in (4.79) obtained from a linear kinetic theory, to first order in the FLR
parameter.
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From the ion vortex equation we may derive a simple condition for the applicability
of quasi-neutrality. Using the Poisson equation in (9.7) we have

d Q; + Qi
—In|l —————] =0 9.28
" (ne - 80A</5/e> ©-28)

Since here n. is the total electron density we can expand the denominator for
ne > goAop/e. Using (9.28) for Q; and assuming Q. > Q; we obtain, dropping

QieoA/e
4, iAqs 1+Q“’2 + Q4 | /n.| =0 (9.29)
dt By a)p,'2 “ o ’

We thus find the condition wp;? > Q.;* for quasineutrality. For a tokamak plasma
we have typically o,; ~ 40Q,; so the condition for quasineutrality is well fulfilled.

9.2 The Nonlinear Dielectric

An alternative to the previous formulation of the nonlinear dynamics in terms of the
ion vortex equation is the formulation in terms of a dielectric function. For
electrostatic modes this is

we(@, K)oy = — éjm,k@) (9.30)

where €(w,k) is the linear dielectric function given by (4.66). For k*A3e < 1 and
T; < T, we obtain

_ 1 2.2 Wse
“00) =1 (1+kp —?) 9.31)

The current j® is the nonlinear current. For electrostatic drift waves

Jox® = envy® = =2 (2 x V) - YV (9.32)

i.e. the nonlinear part of the polarisation drift neglecting v.; when T; <T.. Substi-
tution into (~9.30) leads t

T,
eB Q“'

[0(1 = p*A) — ivie - V|V = —iA (zx Vo) -VVe (9.33)
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Taking the divergence of (9.33) we obtain
[0(1 = p*A) — ivie - V]Ap = —ip*A(z x V) - VAP

Then inverting the Laplacian and transforming ® — id/dt we obtain the
Hasegawa-Mima equation

L (PAG — §) — Ve V6 =5 (Vo x 7) - VAG 934
dt By

Which is identical to (9.11).

We note that the particularly simple frequency dependence of (9.31) made it
possible to transform to the time domain without expanding €(®,k) around a linear
eigenfrequency. Because of this (9.34) is valid in the strongly nonlinear regime.

9.3 Diffusion

The main reason for the interest in collective perturbations in magnetized plasmas
is the anomalous transport caused by a turbulence of such perturbations. The low
frequency vortex modes treated here are of special interest for several reasons. First
we observe that a convection across the magnetic field is associated with the
vorticity. Second as we will see in this section low frequency modes cause efficient
transport. Third, these modes are frequently driven unstable by inhomogeneities in
pressure and magnetic field, making them hard to avoid in a confined plasma.
Although the anomalous transport is of convective type it is usually treated as a
diffusive process, This can be justified in a turbulent state where the particle motion
in the wave fields is stochastic and the requirement on particle stochasticity is in
fact more easily fulfilled than the random phase approximation for the waves. For a
stochastic motion of particles the diffusion coefficient is usually defined as

1
D = lim— <A (t)>; ..t — 00 (9.35)

where Ar is the distance from the point where the particle was at t = 0 and <>
denotes an average over all possible initial velocities or more generally an ensemble
average. We now introduce the velocity v(t) so that
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and

1 ! !
D :limz <J dt'J v(t’)v(t")dt”>; .t — 00

0 0

1 ! t
=1im—J dt’J <v(t)v(t")>dt"; ..t — oo

We shall now assume that we have a stationary stochastic process such that
<v(t)v(t")> = <v(t' = t")v(0)>. This means that the correlation between the
velocities only depends on the difference in time T = t'—t” and

1 t !
D = lim — J dt’J <v(t)v(0)>dt"; ..t — oo
2t )o  Jo

which simplifies to

D= rc <v(r)v(0)>dt (9.36)
0

Another usual way of defining D is as the coefficient in the diffusion equation

o*n o*n
—=D— 9.37
Of or? ©-37)

Where n = n(r,t) is the particle density. A solution to (9.37) corresponding to the
initial state where all particles are collected at r = 0 is

N 2
~ —r* /4Dt
(1) = c 9.38)
) (4nDr)"/?

Where N is the total number of particles. Clearly the possibility of finding a
particle between r and r + Ar at time t is fi(r,t)Ar/N if Ar is small enough. This
means that the ensemble average of a quantity Q(r,t) can be written

1 (o)
<Q0> = N J a(r,)Q(r,t)dr (9.39)
As is easily seen we now have
2 L 2
<> =g A(r,t)r<dr = 2Dt

Since r here is the total deviation in position since t = 0 we realise that the two
definitions of D are equivalent. In order to derive a useful expression for D for a
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time and space dependent process it is convenient to start from (9.36) where v(7) is
represented in Fourier form

V(1) = v(r(1),1) = JVk,wei[(’”_k'r(r)]dwdk

1
(2n)’
where the two space dimensions were assumed.

We then obtain from (9.36)

00 1 2 ) )
D= J dr—3J<|vk7w| > < * 0> dodk (9.40)
o (2n)

where we assumed that vy, is uncorrelated with the phase function. In order to
obtain D we now need to know the velocity spectrum and the ensemble average of
the space phase function. The latter can be obtained by using the representation
(7.39) of the ensemble average. This leads to the result

<e kTS — oKDt (9.41)

This result was verified numerically for thermal equilibrium by Joyce,
Montgomery and Emery [10]. The characteristic time (k*D)"' is usually called
the orbit decorrelation time and is the time after which an average particle has
moved so far due to diffusion that the field is uncorrelated with the field at the initial
point. Specializing now to resonant modes where vy, = v d(®—o(k)) where ®(k)
is the solution of a dispersion relation we find

D= J dt—— J<Vk7m2>e“”(k>f‘k2Dwadk = dk (9.42)

1 J <Vk2>
o (2n)?

(2n)? ) —io(k) + k*D
where we assumed convergence at T = oo, i.e. Im © < k’D. We note that (9.40)

and (9.42) contain integration over a nonlinear particle orbit in the diffusive limit if
the diffusion is due to turbulence. Introducing now

(D(k) = Wy + Iy

and the reality condition @y, = —®_j, we obtain
1 K2D + 7,
D=1 J 2 R (9.43)
(2m) wg? + (D + )

Equation 9.43 shows that the orbit decorrelation and the wave growth both
contribute to the transport while the real part of the eigenfrequency decreases the
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transport. for low frequency modes the dominant convective velocity is the E x B
drift velocity. We then have

i, -
Vi = By (z X K)oy
The most efficient mode in a plasma in a homogeneous magnetic field is the
convective cell mode. For this mode oy, and the orbit decorrelation usually
dominates the damping. In this case we can solve (9.43) for D with the result

1 1 2 1/2
b=g (J% |4l dk> (9.44)

Which is the diffusion coefficient for convective cells. It was first derived by
Taylor and Mc Namara [7]. For a thermal equilibrium spectrum in the two dimen-
sional case

KBl T
% =5 (9.45)
Where ¢ is the dielectric function. We thus obtain
1 /2T | Lkpa\ ">
=—(—1 9.46
By ( e | 2n ) (9-46)

where L is the maximum allowed wavelength (system dimension). The influence of
€ was introduced by Okuda and Dawson (9.8). The dielectric constant used was
(compare Eq.4.64).

2 2
e o)

pe pe

e=1+ >+ 5

ch ch

which leads to a Bohm like diffusion D ~ 1/B for wy;* /e < 1 and to a diffusion
independent of B for wpiz / i > 1. This diffusion is, in the plateau regime,
comparable to the classical diffusion but much larger in the Bohm regime. Most
fusion machines are supposed to work in the plateau regime but also here the
anomalous transport will dominate in a turbulent state where the excitation level
will be much larger than that given by (9.45).

Another mode of considerable interest is the magnetostatic mode (see Sect.
5.1.2). This mode is electromagnetic and causes mainly electron diffusion by
perturbing the magnetic flux surfaces. The velocity in (9.43) is here given by

0B
V= VIR,
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where 0B is the perturbation of the magnetic field perpendicular to the back-
ground magnetic field and v)| is the thermal velocity. This process was studied by
Chu, Chu and Ohkawa ([19]) where the diffusion coefficient

T2 Lkmax \ 12
D=—|—1 4

was obtained for a thermal equilibrium. Here L is the system length parallel to the
magnetic field and L is the dimension in the perpendicular direction. This diffusion
coefficient has a Bohm like T/B scaling. Since this is mainly an electron diffusion,
charge separation effects will efficiently prevent it from leading to actual particle
transport. It will, however, instead cause a thermal conductivity and it has been
suggested that processes of this kind could explain the anomalous thermal conduc-
tivity of tokamaks which is about two orders of magnitude larger than the classical.
In the derivations of the diffusion coefficients (9.46) and (9.47) it was assumed that
the real part of the eigenfrequency could be neglected. This is not always a realistic
assumption. For the convective cell mode curvature of the magnetic field lines can
violate this assumption while for the magnetostatic mode a density inhomogeneity
is enough. For both modes magnetic shear can limit the maximum perpendicular
extension of the mode. In such situations nonlinear modes driven by the
ponderomotive force may sometimes be more dangerous.

9.4 Fokker-Planck Transition Probability

The use of the solution of the diffusion equation for calculating ensemble averages
can be generalised to solutions of the Fokker-Planck equation for diffusion in phase
[81]. We consider solutions of the equation:

g 0 b O v 0 g
<8t+v ar>W(X,X,t,t)—8V {[)’V+D aV]W(X,X,t,t) (9.48)

Where X = (r,v) is the phase space coordinate, the diffusion coefficient in velocity
space D" is, in general, a tensor and 3 is the friction coefficient. We can see (9.48) as
the generalisation of (9.37) to include also velocity space, i.e. we now consider the
six dimensional phase space. W is here called the transition probability and is used
to calculate ensemble averages in a way analogous to (9.39). We also note that
(9.48) was derived for turbulent collisions [81]. This means that the friction and
diffusion coefficients have the general forms:

B=> Bl
k
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D' =3 dildf
k

Equation 9.48 has solutions of the form (2.1)

3pt 1
WX, 7)) = @ exp [— 55 (@i0pi0p; + 2hidpidP; + by oPi 6F)) | (9.49)
Y
Where
1

A (Cl,‘jb,’j — h,‘jhj')

3

2 \'%
aj = a;(t,7) = E J D; ;" (s)ds

Va

V—YV

p

oP=r—r +

For the one dimensional case with time independent diffusion coefficient we
obtain

2 1
a==D't b=_D"(" 1)
i B
And

2 v Bt 2

h=—=D"("—-1) A=ab-nh
,82

et ; SoSPhSP?
W(X, X/, T ‘E/) — e—i(a()p2+2h(>pbP+th“) (950)

2nAl?
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Mean square velocity deviation

-7 T T T T T T T T T

<dv2>
x1. E12}

N S S W R S S S—

L i i
1 2 3 t

Fig. 9.2 Time variation of <Av>> as given by the Fokker Planck equation

We may see (9.50) as a weight function to derive ensemble averages. Some
examples are

v
<Ar>=—(1—¢P
p
—ikAr kv A S P _Br—&)\2
<e > =exp l?(l—e )_P dcD"(t—&)(1 —e )
0
In the stationary case we have
] 2y
<e AT — exp (ikvr - r3> (Br< 1) 9.51)
—ikAT kv 12
<e > = exp (7 -k Dr) (Br>1) (9.52)

Where D = D"/B is the diffusion coefficient in configuration space.
We here recognize the t* dependence found by Dupree and Weinstock [4, 5] by
renormalization in (9.51) and the diffusivity in ordinary space, i.e. (9.41) in (9.52).
However we furthermore get

DV
<AV?> = - e ) 4 vo2(1 — e F) (9.53)

Where vy is a fixed initial condition which we will choose to be zero. We then
notice that (9.53) gives the usual diffusion in velocity space for small times while
<Av?> saturates for T > 1/B. The time dependence is given by Fig. 9.2
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As pointed out in Chap. 6 the saturation occurs at t ~ B~'. This is clear from
(9.53). We also note that the friction enters as a complex nonlinear frequency shift
which is expected to wipe out wave particle resonances, as discussed in Sect.
6.10.4. We may now obtain the corresponding solution in the non-Markovian
case as a convolution in time of (9.50). It can be rewritten in terms of Fourier
components in time of DY (t,t) and B(t,t). From this formulation the diffusion
coefficient (3.67) for diffusion in real space emerges in a natural way [81].
The result obtained in [81] is, however, more general since it includes the nonlinear
frequency shift.

9.5 Discussion

In this chapter we have derived the general form of the ion vortex equation which
can be used to describe most types of vortex modes in plasmas as well as in fluids.
Here we used it to derive nonlinear equations for drift waves and interchange
modes. For these types of modes we discussed the dual cascade towards shorter
and longer space scales, typical of two dimensional systems.

The cascade towards longer space scales is particularly important for transport
and we generally need some damping mechanism for long wavelengths to obtain a
realistic level of the transport. This mechanism will most likely be sheared plasma
flows generated nonlinearly or by neutral beams or neoclassical effects.

These flows may create an absorbing boundary condition for long wavelengths if
sufficiently long wavelengths are included in the system, as discussed in Sect.
6.10.5. We also note the discussion of conservation relations and the comparison
between the expressions for the wave energy of interchange modes obtained here
and from the dielectric properties in Chap. 4.

The calculation of diffusion from particle orbit integrations is a complement to
the quasilinear calculations in Chap. 3. We note the convenient use of the solution
of the diffusion equation as a weight function (transition probability) for calculating
ensemble averages. This method was later extended to the general Fokker-Planck
equation for diffusion in velocity space. From this calculation the renormalization
by Dupree and Weinstock was recovered. This result also connects to the discussion
in Sect. 6.10.4 on the long time behaviour of a three wave system with diffusion due
to turbulence.
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Here the citations with titles are books and those without are review papers.\\

Refs. 1 and 2 are comprehensive and include general plasma physics with
applications to magnetic fusion. They treat difficult and fundamental problems
rigourously and provide excellent basic knowledge for a fusion physicist.

Refs. 3 and 4 are similar to the present book in that they treat both MHD and
transport. Ref 4 discusses several instabilities also in the context of space physics
and also includes nonlinear effects.

Refs. 5 and 6 are review papers that discuss many instabilities of interest for
transport. Ref 6 also presents transport coefficients corresponding to many
instabilities.

Ref. 7 is the first and also the most frequently cited book on plasma turbulence.

It is mainly focused towards problems relevant to magnetic fusion and also
contains one of the first renormalizations of plasma turbulence.

Ref. 8 is particularly strong on kinetic nonlinear theory. It includes several
mathematical tools such as e.g. the method of multiple time scales.

Ref. 9 is more directed towards general plasma physics and Laser Fusion.
It does, however, cover problems of nonlinear dynamics and partially coherent
wave interactions relevant to the nonlinear saturation of drift wave turbulence.

Refs. 10 and 11 discuss experimental transport research including diagnostics in
detail. Ref. 12 is more focused on the relevance of different theories for explaining
experimental results.



Answers to Exercises

2.1
2.2

24
3.1
32
32
33

34
3.5

3.6

3.7
3.8

39

3.10
3.11

on ep
n Té’ . . . .
v, equals twice the curvature drift after averaging over a Maxwellian

distribution.

The diamagnetic drift is divergence free when grad P is parallel to grad n.
This is due to the fact that nv. is divergence free, see Eq. 1.4a.

(a) No difference

(b) The only difference is that kyzp2 is replaced by k1 %p>.

These are the effects giving the finite div A (compare the discussion follow-
ing Eq. 1.7). This means that both kinds of ion inertia appearing as ky2p2 and
k||2<:s2 are associated with compressibility.\

In both cases the inertia term o(w — Kkyv, ;) is replaced by o(w-m.; — kyvg ).
The solution of the dispersion relation can be written ® = ®,+iy where

r = 0y (1 — kyzpz) + kyVgi
o MeVei
TR

dInP
2
p<m / dr

= ()

The intermediate result is

Wie [kyzp%% + ky(Vee — Vgi)}

one Wy, e 2 2/<H2VA2 w €A

n o T, o kT,
E " d) k2p2kH2VA2
= —i
I l (W4 — ) + kZkaHZVA2 + kHZCS2
m = 280 forq = 2

@ (14k7p?) — 00 (1 = k7p?) — kP2 = 0
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222 Answers to Exercises

Typical Parameter Values for a Tokamak Plasma

We will here give numerical values of some of the most important quantities
associated with low frequency modes in tokamak plasma. The basic machine
performance is taken from JET.

With magnetic field of

B =27.710"3 Gauss = 2.77 T

we find the cyclotron frequencies

Q. =2.6510%s7"

Q. =487 10" s

A density of

n=10"m"

corresponds to the plasma frequencies
®pe = 5.6 10" 57

oy = 1310057

and the Alfvén velocity

va = B/(nonm;)'? = 0.6 10" m/s
This gives the dielectric constant for flute modes (k) = 0)

e =1+ popnc /B> = 1+ /va’ = 1 + 0 /Qui®
~ 1+ (p)lae)? = 2406(p/lae = 49)

where p,, is the mass density and p = ¢ /Q,;.

We also notice that

Ope = 1.15 Q¢

At fusion temperatures

T.=T,= 10K = 8.6 keV = 1.38 107> J
We find

Ade = (eoTe/me®)”? = 0.69 1072 cm
g=mkie) ' =310"8

Vihe = (2Te/me)"? = 0.55 10% m/s
Vi = Ty/my)"? = 1.29 10° m/s

Pe = Vine/Qee = 1.13 1072 cm
Pi = Vini/Qi = 0.49 cm

Vei = 0.5 10* 57!
D, = Vgi pe> = 0.6 10~* m%/s

With a major radius
R=3m

and a minor radius
a=1m

we find

k=1/a=1m"!
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Ve = KTo/(eB) = 3.2 10° m/s
Ve = g/Q = (Tym)/(r Q) = 1.1 10> m/s
Oine = (Kg)1/2 =510 s7!

For ¢ = 2 and k| = 1/qR we have

kjva = 10° s}

with a plasma current

1=2610°A

we have the average electron current velocity
Vee = 0.5 10° m/s
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