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Preface

One of the major open problems in theoretical physics is the lack of a unified
description of the theory of general relativity and the theory of quantum fields.
During the last decades string theory has provided a promising framework for the
investigation of this issue. The basic idea is simple and revolutionary at the same
time: by replacing the concept of a point particle with a one-dimensional string a
whole new field of research has been opened up. The consequences of this are not
yet fully conceivable today. Up to now string theory has offered a new way to view
all particles as different excitations of the same fundamental object, it has cele-
brated success by discovering the graviton in its spectrum, it has forced us to
consider space-times with more than four dimensions containing dynamical
hypermanifolds, D-branes, in their vacuum structure and it has triggered numerous
interesting developments in fields as different as condensed matter physics and
pure mathematics. Still, as a physical theory string theory is not yet fully under-
stood and remains a very active area of research.

In this book it is our aim to collect pedagogical lectures by leading experts in
string theory introducing the reader to some of the newest developments in the
field. In no way it is possible to give an overview over the whole research spectrum
of string theory. Rather we have carefully selected topics which are at the cutting
edge of research in string theory. This includes new developments in topics with
long history like for example topological strings or AdS/CFT dualities, but also
topics which appeared only recently like doubled field theory and holography in
the hydrodynamical regime.

The contributions to this book are selected in a way so that it can be considered
as a self-contained textbook. Readers with a basic familiarity with string theory
will find it possible to use these lectures to catch up with some of the latest
developments, enabling them to follow recent research articles on the subjects.

These lectures were given at the summer school “Strings and Fundamental
Physics 2010 in the framework of the Excellence Cluster ‘Universe’, Munich,
Germany, and was attended by numerous students and postdoctoral researchers.
Videos of the lectures and additional material like exercises can be found on the
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webpage of the school: www.theorie.physik.uni-muenchen.de/activities/schools/
archiv/sfp10

We want to thank all those who contributed to the success of this summer school
and helped in one way or another to compose this book. Primarily we want to thank
the contributors Ralph Blumenhagen, Atish Dabholkar, Johanna Erdmenger, Neil
Lambert, Suresh Nampuri, Hirosi Ooguri, Dam Thanh Son and Barton Zwiebach.

In addition, we are most grateful to Rosa-Anna Friedl-Griindler for her
invaluable support in all organizational matters before as well as during the school.
Finally, we would like to thank Martin Ammon, Michael Kay, Nicolas Moeller
and Daniel Plencner for their help in typing up some of the lectures and Stefan
Theisen for giving us the opportunity to publish this set of tutorials in the Lecture
Notes in Physics.

We acknowledge financial support by the Cluster of Excellence for Funda-
mental Physics “Origin and Structure of the Universe,” the German Academic
Exchange Service DAAD, the Elite Master Course Theoretical and Mathematical
Physics TMP (at the Ludwig-Maximilians-University of Munich LMU) and the
Arnold Sommerfeld Cernter for Theoretical Physics ASC (LMU). Finally we
thank the Technical University of Munich TUM for providing the lecture hall and
the TUM and LMU for providing the necessary infrastructure.

Hamburg, Munich, August 2011 Marco Baumgartl
Ilka Brunner
Michael Haack
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Chapter 1
String Theory 101

Neil Lambert

1.1 Introduction: Why String Theory?

The so-called Standard Model of Particle Physics is the most successful scientific
theory of Nature in the sense that no other theory has such a high level of accuracy
over such a complete range of physical phenomena using such a modest number of
assumptions and parameters. It is unreasonably good and was never intended to be
so successful. Since its formulation around 1970 there has not been a single exper-
imental result that has produced even the slightest disagreement. Nothing, despite
an enormous amount of effort. But there are skeletons in the closet. Let me mention
just three.

The first is the following: Where does the Standard Model come from? For
example it has quite a few parameters which are only fixed by experimental observa-
tion. What fixes these? It postulates a certain spectrum of fundamental particle states
but why these? In particular these particle states form three families, each of which
is a copy of the others, differing only in their masses. Furthermore only the lightest
family seems to have much to do with life in the universe as we know it, so why the
repetition? It is somewhat analogous to Mendelev’s periodic table of the elements.
There is clearly a discernible structure but this wasn’t understood until the discovery
of quantum mechanics. We are looking for the underlying principle that gives the
somewhat bizarre and apparently ad hoc structure of the Standard Model. Moreover
the Standard Model also doesn’t contain Dark Matter that constitutes most of the
‘stuff” in the observable universe.

The second problem is that, for all its strengths, the Standard Model does not
include gravity. For that we must use General Relativity which is a classical theory
and as such is incompatible with the rules of quantum mechanics. Observationally
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2 N. Lambert

this is not a problem since the effect of gravity, at the energy scales which we probe,
is smaller by a factor of 107#7 than the effects of the subnuclear forces which the
Standard Model describes. You can experimentally test this assertion by lifting up
a piece of paper with your little finger. You will see that the electromagnetic forces
at work in your little finger can easily overcome the gravitational force of the entire
earth which acts to pull the paper to the floor.

However this is clearly a problem theoretically. We can’t claim to understand the
universe physically until we can provide one theory which consistently describes
gravity and the subnuclear forces. If we do try to include gravity into QFT then we
encounter problems. A serious one is that the result is non-renormalizable, apparently
producing an infinite series of divergences which must be subtracted by inventing an
infinite series of new interactions, thereby removing any predictive power. Thus we
cannot use the methods of QFT as a fundamental principle for gravity.

The third problem I want to mention is more technical. Quantum field theories
generically only make mathematical sense if they are viewed as a low energy theory.
Due to the effects of renormalization the Standard Model cannot be valid up to all
energy scales, even if gravity was not a problem. Mathematically we know that there
must be something else which will manifest itself at some higher energy scale. All
we can say is that such new physics must arise before we reach the quantum gravity
scale, which is some 10!7 orders of magnitude above the energy scales that we have
tested to date. To the physicists who developed the Standard Model the surprise is
that we have not already seen such new physics many years ago. And we are all
hoping to see it soon at the LHC.

With these comments in mind this course will introduce string theory, which,
for good or bad, has become the dominant, and arguably only, framework for a
complete theory of all known physical phenomena. As such it is in some sense a
course to introduce the modern view of particle physics at its most fundamental
level. Whether or not string theory is ultimately relevant to our physical universe is
unknown, and indeed may never be known. However it has provided many deep and
powerful ideas. Certainly it has had a profound effect upon pure mathematics. But
an important feature of string theory is that it naturally includes gravitational and
subnuclear-type forces consistently in a manner consistent with quantum mechanics
and relativity (as far as anyone knows). Thus it seems fair to say that there is a
mathematical framework which is capable of describing all of the physics that we
know to be true. This is no small achievement.

However it is also fair to say that no one actually knows what string theory
really is. In any event this course can only attempt to be a modest introduction that is
aimed at students with no previous knowledge of string theory. There will be much
that we will not have time to discuss: most notably the Veneziano amplitude, anomaly
cancellation and compactification. The reader will undoubtedly benefit from the other
courses in the School, in particular the notes of Ralph Blumenhagen on D-branes.
Furthermore much more extensive and detailed discussions can be found in ref. [1-4]

We will first discuss the bosonic string in some detail. Although this theory is
unphysical in several ways (it has a tachyon and no fermions) it is simpler to study
than the superstring but has all the main ideas built-in. We then add worldsheet
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fermions and supersymmetry to obtain the superstring theories that are used in current
research but our discussion will be relatively brief.

1.2 Classical and Quantum Dynamics of Point Particles

1.2.1 Classical Action

We want to describe a single particle moving in spacetime. For now we simply
consider flat D-dimensional Minkowski space

ds® = —(dx")? + (dx")? + @x»? + ...+ dxP71)? (12.1)

A particle has no spatial extent but it does trace out a curve—its worldline—in
spacetime. Furthermore in the absence of external forces this will be a straight line
(geodesic if you know GR). In other words the equation of motion should be that the
length of the worldline is extremized. Thus we take

S,,,,:—m/ds
—n{/}/—nMWXMXVdT (1.2.2)

where T parameterizes the points along the worldline and X* (t) gives the location
of the particle in spacetime, i.e. the embedding coordinates of the worldline into
spacetime.

Let us note some features of this action. Firstly it is manifestly invariant under
spacetime Lorentz transformations X* — Al X" where AT nA = 1. Secondly it is
reparameterization invariant under T — t’(t) for any invertible change of worldline
coordinate

dt . dx* dt’ dX*
dt = —dt . XM = —
dt’ dt dt dt’

dX" dX"
Srp =T [T g e
/‘ dr'\? dX" dXv dr
=-m —Nw |\ ——) ———--d7
dt dt’ dt’ dt’

/ / axm dXVd , (1.2.4)
=—-m —Nyy—— ——dT 2.
My dt’ dt’

(1.2.3)

thus
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Thirdly we can see why the m appears in front and with a minus sign by looking at
the non-relativistic limit. In this case we choose a gauge for the worldline reparame-
terization invariance such that = X i.e. worldline ‘time’ is the same as spacetime
‘time’. This is known as static gauge. It is a gauge choice since, as we have seen, we
are free to take any parameterization we like. The nonrelativistic limit corresponds
to assuming that X< 1. In this case we can expand

Sppz_m/ /1—Sl-leXJdt:/—m+§m8inldet+... (1.2.5)

where the ellipses denotes terms with higher powers of the velocities X*. The second
term is just the familiar kinetic energy %mvz. The first term is simply a constant and
doesn’t affect the equations of motion. However it can be interpreted as a constant
potential energy equal to the rest mass of the particle. Thus we see that the m and
minus signs are correct.

Moving on let us consider the equations of motion and conservation laws
that follow from this action. The equations of motion follow from the usual
Euler-Lagrange equations applied to S :

d XY
dt /_me;\Xp

These equations can be understood as conservation laws since the Lagrangian is
invariant under constant shifts X* — X* 4 b*. The associated charge is

=0 (1.2.6)

mxH"
pt=—— (1.2.7)

/_nApX)LXp

so that indeed the equation of motion is just p* = 0. Note that I have called this a
charge and not a current. In this case it doesn’t matter because the Lagrangian theory
we are talking about, the worldline theory of the point particle, is in zero spatial
dimensions. So I could just as well called p* a conserved current with the conserved
charge being obtained by integrating the temporal component of p* over space. Here
there is no space p* only has temporal components.

Warning: We are thinking in terms of the worldline theory where the index u
labels the different scalar fields X*, it does not label the coordinates of the worldline.
In particular p° is not the temporal component of p* from the worldline point of
view. This confusion between worldvolume coordinates and spacetime coordinates
arises throughout string theory.

If we go to static gauge again, where 7 = X and write v/ = X' then we have the
equations of motion

- =0 (1.2.8)
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and conserved charge

i
p=m— (1.2.9)

V1—y?

which is simply the spatial momentum. These are the standard relativistic expres-
sions.

We can solve the equation of motion in terms of the constant of motion p' by
writing
i v2 2

V! .
=p/m = p*/m*= S == (1.2.10)
1—v p+m

VA

hence

i

pT

X'(r) = X'(0) +
p2+m2

(1.2.11)

and we see that v is constant with v2<1.

1.2.2 Electromagnetic Field

Next we can consider a particle interacting with an external electromagnetic field.
An electromagnetic field is described by a vector potential A, and its field strength
Fuy = 0, Ay — 0,A,. The natural action of a point particle of mass m and charge g
in the presence of such an electromagnetic field is

Spp = _m/ [ —nu XPXVdT +q/AM(X)5(“dr (1.2.12)

For those who know differential geometry the vector potential is a connection one-
form on spacetime and A M)‘( *dt is simply the pull-back of A, to the worldline of
the particle.

The equation of motion is now

d XV d )
i —g—A, +qd,AX" =0 (1.2.13)

S S
dt /_nkpXAXp dt

which we rewrite as

d XV .
m— [ | = gF, X (12.14)

dt ’—meAXp
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To be more concrete we could choose static gauge again and we find

d

Vi 4
e (—) = qFjo+ qFjjv’/ (1.2.15)

ST
Here we see the Lorentz force magnetic law arising as it should from the second term
on the right hand side. The first term on the right hand side shows that an electric
field provides a driving force.

At this point we should pause to mention a subtlety. In addition to (1.2.15) there
is also the equation of motion for X* = 7. However the reparameterization gauge
symmetry implies that this equation is automatically satisfied. In particular the X°

equation of motion is
d ! Foiv' (1.2.16)
—-m—\——) = iV 2.
dt /—1 — 2 qroi

Exercise 1 Show that if (1.2.15) is satisfied then so is (1.2.16)

Exercise 2 Show that, in static gauge X = t, the Hamiltonian for a charged
particle is

H= \/mz + (pt — gAD(p' — qgAT) — g Ay. (1.2.17)

1.2.3 Quantization

Next we’d like to quantize the point particle. This is made difficult by the highly
non-linear form of the action. To this end we will consider a new action which is
classically equivalent to the old one. In particular consider

1 1 I YV 2

Here we have introduced a new field e(t) which is non-dynamical, i.e. has no kinetic
term. This action is now just quadratic in the fields X*. The point of it is that
it reproduces the same equations of motion as before. To see this consider the e
equation of motion:

1. .
e—zxﬂxvnw +m?>=0 (1.2.19)

we can solve this to find e = m !,/ —X#X YNuv. We now compute the X* equation
of motion
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d (1.
- (tv)
dt \e
d XH
_—m— | —— (1.2.20)

dt /—X)‘Xpmp

This is exactly what we want. Thus we conclude that Sy 7 is classically equivalent

to Spp.

pp
One way to think about this action is that we have introduced a worldline metric
Yer = —e? and its inverse y*T = —1/e? so that infinitesimal distances along the

worldline have length
ds® = y;dt? (1.2.21)

Note that previously we never said that dt represented the physical length of a piece
of worldline, just that t labeled points along the worldline.

There is another advantage to this form of the action; we can smoothly set m> = 0
and describe massless particles, which was impossible with the original form of the
action.

Now the action is quadratic in the fields X* we calculate the Hamiltonian and
quantize more easily. The first step here is to obtain the momentum conjugate to each
of the X*

oL
axH

_ 1 XV
= Enuv

(1.2.22)

There is no conjugate momentum to e, it acts as a constraint and we will deal with
it later. The Hamiltonian is

H=p,X"—L

e
=2 (r,,wpﬂpv + m2) (12.23)

To quantize this system we consider wavefunctions ¥ (X, t) and promote X* and
Py to the operators

o

YHW — YH 5 - —j
Xt =Xty  p,¥ = laxﬂ

(1.2.24)

We then arrive at the Schrodinger equation

v 3w
PR T - (1.2.25)
It 2 IXHIX"
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Lastly we must deal with e which we saw has no conjugate momentum. Classically
its equation of motion imposes the constraint

Plpu+m?=0 (1.2.26)

which is the mass-shell condition for the particle. Quantum mechanically we realize
this by restricting our physical wavefunctions to those that satisfy the corresponding
constraint

G

A TR m> =0 (1.2.27)

However this is just the condition that HW¥ = 0 so that the wavefunctions are 7
independent. If you trace back the origin of this time-independence it arises as a
consequence of the reparameterization invariance of the worldline theory. It simply
states that wavefunctions must also be reparameterization invariant, i.e. they can’t
depend on t. This is deep issue in quantum gravity. In effect it says that there is no
such thing as time in the quantum theory.

This equation should be familiar if you have learnt quantum field theory. In partic-
ular if we consider a free scalar field ¥ in D-dimensional spacetime the action is

1 1
S = —/de (Eaﬂw*a“w + Emzw*w) (1.2.28)

and the corresponding equation of motion is
U —m’w =0 (1.2.29)

which is the same as our Schrodinger equation (when restricted to the physical Hilbert
space).

Thus we see that there is a natural identification of a free scalar field with a
quantum point particle. In particular the quantum states of the point particle are in a
one-to-one correspondence with the classical solutions of the free spacetime effective
action. However one important difference should be stressed. The quantum point
particle gave a Schrodinger equation which could be identified with the classical
equation of motion for the scalar field. In quantum field theory one performs a
second quantization whereby particles are allowed to be created and destroyed. This
is beyond the quantization of the point particle that we considered since by default
we studied the effective action on the worldline of a single particle: it would have
made no sense to create or destroy particles. Thus the second quantized spacetime
action provides a more complete physical theory.

Here we also can see that the quantum description of a point particle in one
dimension leads to a classical spacetime effective action in D-dimensions. This is
an important concept in string theory where the quantum dynamics of the two-
dimensional worldvolume theory, with interactions included, leads to interesting
and non-trivial spacetime effective actions.
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Exercise 3 Find the Schodinger equation, constraint and effective action for a quan-
tized particle in the background of a classical electromagnetic field using the action

1 1. . .
Spp = _/ 3¢ (—e—zX”X”mw +m2) — A X", (1.2.30)

1.3 Classical and Quantum Dynamics of Strings

1.3.1 Classical Action

Having studied point particles from their worldline perspective we now turn to our
main subject: strings. Our starting point will be the action the worldvolume of a
string, which is two-dimensional. The natural starting point is to consider the action

1
Saring = 5— / dzo\/— det(d, X135 X V110 (1.3.1)

which is simply the area of the two-dimensional worldvolume that the string sweeps
out. Here 0%, o = 0, 1 labels the spatial and temporal coordinates of the string: t, o.
Here Vo' is a length scale that determines the size of the string.

Again we don’t want to work directly with such a highly non-linear action. We
saw above that we could change this by coupling to an auxiliary worldvolume metric
Yop-

Exercise 4 Show that by solving the equation of motion for the metric yug on a
d-dimensional worldsheet the action

1
Sur = —E/ddo«/—y (y“ﬁaaX"BﬁXVnW +m?(d — 2)) (1.3.2)

one finds the action

Sy = m> / ddo\/— det (9 X195 X", (13.3)

for the remaining fields X", i.e. calculate and solve the y,g equation of motion and
then substitute the solution back into Syt to obtain Syg. Note that the action Syt
is often referred to as the Howe-Tucker form for the action whereas Syg is the
Nambu-Goto form. (Hint: You will need to use the fact that §./—y/8y*f =
—%yaﬁ /=V). If you have not yet learnt much about metrics just consider the case
of d=1 where yug just has a single component yrr.
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So we might instead start with

1
Sstring = _47'[05’ /dzo" /_V)/aﬁaax'uaﬁxvn;w (1.3.4)

where we have taken d=2 in (1.3.2).

Exercise S What transformation law must yup have to ensure that Syying is repara-
meterization invariant? Hint: Use the fact that

v 9B
dc”V do P

80_"‘80_/1’_ e (135)

However this case is very special. If we evaluate the y,g equation of motion we
find

1
Tup = 0 X" 05X 10y — Eyaﬁyﬁayx“asxvnw =0 (1.3.6)

Once again we see that y,g = bd, X" g X"y, for some b. However in this case
nothing fixes b, it is arbitrary. This occurs because there is an addition symmetry of
the action that is unique to two-dimensions: it is conformally invariant. That means
that under a worldvolume conformal transformation

Yap = € Vap (1.3.7)

(here ¢ is any function of the worldvolume coordinates) the action is invariant.

There are other features that are unique to two-dimensions. The first is that, up
to a reparameterization, we can always choose the metric yyg = e2r Nap- To see this
we note that under a reparameterization we have

, do? dod

Yap = 5o 3op V73 (1.3.8)

Thus we simply choose our new coordinates to fix ¥, = 0 and yj, = —yy,. This
requires that

9oV 9o
327 5o Yys =0 (1.3.9)
and
da? 9o’ da? 9o’
do'l 9ol Yot 90’0 950 vy =0 (1.3.10)

These are two (complicated) differential equation for two functions %00, ¢’ and
o1(6’°, 6'1). Hence there will be a solution (at least locally).
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The second feature is that in two dimensions the Einstein equation
1
Raﬁ_EVaﬂRZO (1.3.11)

vanishes identically. The reason for this is that in two dimensions there is only one
independent component for the Riemann tensor: Ryojo1 = —Ro110 = —Rioo1 =
R1010- Therefore Roo = Roio1y'", Ri1 = Roi01y® and Ro1 = —Ro101"". Thus
we see that

R =2Roi01 (y %y — 1y
= 2Ro101 det(y 1)

2
= R 1.3.12
ety 0101 ( )
Now we note that
00 .,01 1 _
y01 y“ = vir ol (1.3.13)
Yoy det(y) \ —Yo1 Y00
and the result follows.
Thus Einstein’s equation
1
Rap — EyaﬁR = Typ (1.3.14)

will imply that T, = 0. Hence even if we include two-dimensional gravity the
Yap €quation of motion imposes the constraint that the energy-momentum tensor
vanishes

0.7
Totﬁ = 87/0113 =0

(1.3.15)

Thus we can use worldsheet diffeomorphisms to set s = €214 and then use
worldsheet conformal invariance to set p = 0, i.e. youp = 7gp. This means that
the worldvolume metric y,g actually decouples from the fields X#. This conformal
invariance of two-dimensional gravity coupled to the embedding coordinates (viewed
as scalar fields) will be our fundamental principle. It allows us to simply set
Yap = Nap- Thus to consider strings propagating in flat spacetime we use the action
(known as the Polyakov action)

1
Suring = ~ 73— / d*on“P 3, X" 95 X 1 (1.3.16)
subject to the constraint (1.3.15) which becomes

1
B X" X Ny — Enaﬁnyaayxﬂangnw =0 (1.3.17)
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1.3.2 Spacetime Symmetries and Conserved Charges

We should also pause to outline how the spacetime symmetries lead to conserved
currents and hence conserved charges in the worldsheet theory.

First we summarize Noether’s theorem. Suppose that a Lagrangian .2’ (®4,
04D 4), where we denoted the fields by @4, has a symmetry: £ (®y) = L (P +
8D 4). This implies that

0.7 0.7

—5D ———— 3804 P4 =0 1.3.18
30 A+8(8a<bA) e @A ( )

This allows us to construct a current:

0.7
= —-09P
(3P a)

o

4 (1.3.19)

which is conserved

O0gJ* = 0y (ﬂ) Dy + ﬂaaaqu
(0D A) (0P a)
= Oy (ﬁ)gcpf‘ _ ﬁg@A
0(04Pa) 0Dy
=0 (1.3.20)

by the equation of motion. This means that the integral over space of J is a constant
defines a charge

0= o’ (1.3.21)
space
which is conserved
d
a9 _ 30J°
dt space
=- / 3 J'
space
=0

Let us now consider the action

Sstring = / d*onP 3, X" 95X 1 (1.3.22)

4o’

This has the spacetime Poincare symmetries: translations § X* = a* and Lorentz
transformations  X* = A} XV In the first case the conserved current is
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P& = ——— 99X ,,a" (1.3.23)

The associated conserved charge is just the total momentum along the direction a*
and in particular there are D independent choices

Pu / do X, (1.3.24)

- 27/
We can also consider the spacetime Lorentz transformations which lead to the
conserved currents

1

J§ = =0 X ALK (1.3.25)

The independent conserved charges are therefore given by (here Q4 = [doJ 0=
MHM,AY L)

1 . .
My = //daXMXV — X"X, (1.3.26)
T

The Poisson brackets of these worldsheet charges will, at least at the classical level,
satisfy the algebra Poincare algebra. In the quantum theory they are lifted to operators
that commute with the Hamiltonian.

1.3.3 Quantization

Next we wish to quantize this action. Unlike the point particle this action is a field
theory in (1+ 1)-dimensions. As such we must use the quantization techniques of
quantum field theory rather than simply constructing a Schrodinger equation. There
are several ways to do this. The most modern way is the path integral formulation
and Fadeev-Popov ghosts. However this requires some techniques that are possibly
unfamiliar. So here we will use the method of canonical quantization.

Canonical quantization is essentially the Heisenberg picture of quantum mechanics
where the fields X* and their conjugate momenta P,, are promoted to operators which
satisfy the equal time commutation relations

[X*(1,0), Py(1,0)] = i8(c — o")8}!

[X*(z,0), X"(z,0)] =0

[Pu(z,0), Pu(z,0)] =0 (1.3.27)
as well as the Heisenberg equation

dxm A dp A
=i[A,X"] —X=i[H,P 1.3.28
e i[ 1 e if ] ( )
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In the case at hand we have

~ 1 AR RV A, A
L= m/danwx X —nuX"X" (1.3.29)
hence
~ 1 2V
and

A A 1 ~
=/d027ro/n’“’PMPV—/d04—(2na )y Py Py + —— o n,wx/ﬂx/v

A A 1 AL A
:/dano/n’”PMPv+ man“‘X”

(1.3.31)
We can now calculate
X(0) = i[A, R"(0)]
=ndi / do'nV[P,.(c") P,(c"), X" (0)]
= 2710/1’/da’n}‘vﬁk(a/)[ﬁv(d/), XH(0)]
=27d / do'n™ P.(c")8"8(0 — o)
=2/ 0" Py (o) (1.3.32)
which we already knew. But also we can now calculate
Pu(o) = ilH, X, (0)]
- / do’m X (0)X" (o), Bu(o0)]
= oo [ do R HR ), Buto)
- Zn’a do'nu X (0" 5 [XV(a ), Pu(o)]
= da’nm?%a’)[)?%a/), Bu(o)]
— ﬁ do'n, X" (0)8),8(c — o)
— ﬁnw}?”"(o) (1.3.33)
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or equivalently
—XF 4 X" =0 (1.3.34)

Of course this is just the classical equation of motion reinterpreted in the quantum
theory as an operator equation. In two-dimensions the solution to this is simply that

Xt =Xt + o)+ Xkt —0) (1.3.35)

i.e. we can split X" into a left and right moving part.
To proceed we expand the string in a Fourier series

a0 nw /o o a# —in(t+o0) a# —in(t—o)
Xt =xt+ao'prc+ El z 76‘ + 76 (1.3.36)
n#0

The various factors of n and o’ will turn out to be useful later on. We have also
included linear terms since X* need not be periodic (more on this later). Or if you
prefer

o1 12 1 [ Ol/. a# —in(t+o)
XszL+§ozp (t+o0)+ 31%76

A 1 o’ al .
X =xh+-dpl(t—o)+ /=i D —e ) (1.3.37)
2 2 s n

Note that we have dropped the hat on the operators a* and a* since they will appear
frequently. But don’t forget that they are operators! Note also that we haven’t yet
said what 7 is, e.g. whether or not it is an integer, we will be more specific later.
The a!; and @), have the interpretation as left and right moving oscillators. Just as in
quantum mechanics and quantum field theory these will be related to particle creation
and annihilation operators.

Since X" is an observable we require that it is Hermitian in the quantum theory.
This in turn implies that

@t =d",, @t =a", (1.3.38)
and (x*)T = x#, (p"*)" = p*. In this basis
pr— L fu
2ma’
1 ’ a/ . a/ .
- / ~in(tto) || ~u—in(z—0)
iy o' pt+ 3Zajfe o) 4 3Za#e nir=o

—n#0 n#0
(1.3.39)
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We can work out the commutator. First we take x* = p* =0
[)A(“(r, o), ﬁv(.[’ o] = ﬁ ZZ %e—i(n+m)re—i(no+ma’)[a#’ a’
n m
+ ﬁ Z Z %e—i(n+m)rei(na+ma’)[&#’ [l’\;l]
n m
+ # Z z :_le—i(n+m)tei(na—mo’) [dllf’ a;)rz]
n m

. 1 . . ’
+#ZZ;e—l(n—‘rm)fe—l(”o-_mo-)[a:ll“’&l‘;l] (1340)
n m

In order for the t-dependent terms to cancel we see that we need the commutators
to vanish if n % —m. The sum now reduces to

~ ~ i 1 . ’
" v INT — —in(lc—=o ) m v
[X*(t,0), P (r,a)]——4n E e lay,a”,
L lein(U—U’)[aM a1
4 n neen

n
i 1 . N
G 2 )
n
J 1 —in(c4+c")r 1 ~v
_ — ca” 1.3.41
i 2 ¢ la,,a’,] ( )

Next translational invariance implies that the o + ¢’ terms vanish and hence
[ak,a,1=0 (1.3.42)

A slight rearrangement of indices shows that we are left with

—n

5 A R
[X"(z,0), P'(z,0")] = # D e g at ) 1@ A, ) (13.43)

n

In a Fourier basis

1 : ,
S(c —o') = > 2 e in(0=o) (1.3.44)
T
n

Note that there is a contribution from n = 0 here that doesn’t come from the oscilla-
tors, we’ll deal with it in a moment. Therefore we see that we must take

V1= Sy (1.3.45)

lal, ay] =nn""8, _p,  lalf,a,

Next it remains to consider the zero-modes (including the n =0 contribution in
(1.3.44)).
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Exercise 6 Show that if x**, p"* # 0 then we also have
[x*, p"1 = in™” (1.3.46)
with the other commutators vanishing.

We also have to consider the constraint faﬁ = 0. Its components are
N 1 /'\M ;\V 1 "/H A/v
Too = EX X nuv+§X X me
A 14 n AV 12 x
T = EX’ PX" nuv + EX“X"nW
Tor = X* X" n (1.3.47)

It is helpful to change coordinates to

t=—r 4 = o 4o”
(g_ . _Z) — (U 2 (1.3.48)
- 2

Exercise 7 Show that in these coordinates

Try =0, X0, X"y
T =0_X"0_X"nu (1.3.49)
f+_ == T_+ == 0

Let us now calculate 7 in terms of oscillators. We have

R )
G =,/% > altem i) (1.3.50)

n=—oo

a =‘/a—/p“+,/Lw“ (1.3.51)
0 2 2d/

where we have introduced

thus
A a/ .
T++ — 3 Za’;;,a;/nefz(n+m)(r+o)nuv
nm
=o Z Lye~"T+o) (1.3.52)
n
with
1 123 v
Ln=3 > alannu (1.3.53)
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where again we’ve dropped a hat on L,,, even though it is an operator. Similarly we
find

T =o' Lye ™ (1.3.54)
n
with
- 1 - -
=3 >y annu (1.3.55)
m
and

. o 2
ag =,/ ?p” —/ JWM (1.3.56)

We can rewrite the commutators (1.3.45) using (1.3.38) as
[ala) T =nn® @l a1 = nn™” (13.57)

.

. . ~ . . . [
with n > 0. Thus we can think of g}y and &}, annihilation operators and @, and

2t . . . .
alf as creation operators. Following the standard practice of QFT we consider the

ground state |0) to be annihilated by a,, and ay:
a,|0) =0, a,|0) =0, n>0 (1.3.58)

The zero modes also act on the ground state. Since x* and p* don’t commute we
can only chose |0) to be an eigenstate of one, we take

p"10) = p*|0) (1.3.59)

when we want to be precise we label the ground state |0; p). You will have to excuse
the clumsy notion where I have reintroduce a hat on an operator to distinguish it
from its eigenvalue acting on a state. We can now construct a Fock space of multi-
particle states by acting on the ground state with the creation operators a”, and @”,,.
For example

atav 10y, a",a*,a’ 0y, etc. (1.3.60)

These elements should be familiar from the study of the harmonic oscillator. In a
string theory each classical vibrational mode is mapped in the quantum theory to an
individual harmonic oscillator with the same frequency.

Note that we really should considering normal ordered operators, where the anni-
hilation operators always appear to the right of the creation operators. For L, and
L, with n # 0 there is no ambiguity as a}, and a_,, will commute. However for L

and io one finds
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1 H_v I3 v 1 I3 v
Lo = an agNuy + Z a_,, My — 2 Z[a_m, a1y (1.3.61)
m>0 m>0
The last term is an infinite divergent sum
D
5 >om (1.3.62)
m>0

This can be thought of as sum over the zero-point energies of the infinite number of
harmonic oscillators. We must renormalize. Clearly L¢ has the same problem and
this introduces the same sum. Since this is just a number the end result is that we
define the normal ordered L and I:o to be

1
. . I / "
:Lo = zapagnu + o E a,annuy

2
m>0
- 1., . 5 5
:Lo:= =ajajnu + o Z at,alnu (1.3.63)
2 m=>0

In string theory : L, : and : Ly: play a central role.

How do we deal with constraints in the quantum theory? We should proceed by
reducing to the so-called physical Hilbert space of states which are those states that
are animated by : faﬁ .. However this turns out to be too strong a condition and would
remove all states. Instead we impose that the positive frequency components of : faﬂ :
annihilates any physical state

Lyt |phys) =: L : |phys) =0,n>0  (: Lo : —a)|phys) = (: Lo : —a)|phys) =0

(1.3.64)

Here we have introduced a parameter a since : L : differs from L¢ by an infinite

constant that we must regularize to the finite value a. For historical reasons the

parameter a is called the intercept (and &’ the slope). However it is not a parameter

but rather is fixed by consistency conditions. Indeed it can be calculated by a variety

of methods (such as ¢ -function regularization or by using the modern BRST approach

to quantization). We will see that the correct value is a = 1.

This is then sufficient to show that the expectation value of : f"aﬁ : vanishes

(phys| : Ly : |phys) = (phys| : L, : |phys) =0 Vn #0 (1.3.65)

since the state on the right is annihilated by the postiche frequency parts where as
by taking the Hermitian conjugates one sees that the state on the left is annihilated
by the negative frequency part.

It is helpful to calculate the commutator [: L,, :,: L, :]. There will be a similar
expression for [: I:m L im :] and clearly one has [: L,, :,: I:n :] = 0. To do this
we first consider the case without worrying about normal orderings
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1 I3 v A P
(L, Lnl= 7 Z[am_,,ap,an,qaq]nwmp
=—memp( ah_pa. ay_ lal +ay_ la,_,ay.a "])

12 VoA P 123
Zanwnxp(am_p[ap, an_q]aq +[a Am—ps Ap— q]ap q
2

s I3 v o_p aPla’
gt play, agl + a;_lay_p.a ]ap)
1
=7 Z”W’ (paz_pa,f_,_p + (m — p)af,fa,'(,)+m_,,
p

+ pay yap_p, + (m — p)a,’,)+m_,,aﬁ)

Znup((p n)am_m p p—i-(m p)apan+m pnw,) (1.3.66)

Here we have used the identities
[A, BC] =[A, B]IC + B[A, C], [AB,C]l=A[B,C]+[A,C]B (1.3.67)
and shifted the p = variable in the sum. Thus we find
(L, Lyl = (m —n)Lytn (1.3.68)

This is called the classical Virasoro algebra and is of crucial importance in string
theory and conformal field theory in general. Recall that it is the algebra of constraints
that arose from the condition faﬂ = 0 which s the statement of conformal invariance.

In the quantum theory we must consider the issues associated with normal
ordering. We saw that this only affected : Lg:. It follows that the only effect this
can have on the Virasoro algebra is in terms with an : Lg:. Since the effect on : Lo:
is a shift by an infinite constant it won’t appear in the commutator on the left hand
side. Thus any new terms can only appear with : Lo : on the right hand side. Thus
the general form is

Lm::Ly:l=@m—n): Lyyn:+Cn)om-n (1.3.69)

The easiest way to determine the C(n) is to note the following (one can also perform
a direct calculation but it is notoriously complicated and messy). First one imposes
the Jacobi identity

L Lp sy Ly )14+ Ly st Ly sy L]l + L s, L iy L 2] =0
(1.3.70)
If we impose that k +m + n = 0 with k, m, n # 0 (so that no pair of them adds up
to zero) then this reduces to
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(m—-n)C(k)+ (n—k)C(m)+ (k —m)C(n) =0 (1.3.71)

If we pick k=1 and m = —n — 1 one finds
—-2n+DCH))+m—-1DC(—n -1+ m+2)C(n) =0 (1.3.72)
Now we note that C(—n) = —C (n) by definition. Hence we learn that C(0)=0 and

Cnt1) = (n+ 2)C(n)n—_(12n + 1) (13.73)

This is just a difference equation and given C(2) it will determine C(n) for n>1
(note that it can’t determine C(2) given C(1)). We can look for a solution to this by
considering polynomials. Since it must be odd in n the simplest guess is

c(n) = c1n3 + con (1.3.74)
In this case the right hand side becomes

(n+ D(e1n® + can) — @n+ )(e1 +2)

n—1
cn® + 2c1n® + can? — 2¢yn — (c1 + ¢2)

n—1
_ (n — 1)(cln3 +3cin? + Bcr 4+ c)n+c1 +¢3)

(1.3.75)
n—1

Expanding out the left hand side gives
ci(n + 1)3 +con+1)= cln3 + 3c1n2 + @Bci+e)n+cy+ (1.3.76)

and hence they agree.

Note that if we shift L by a constant / then C(n) is shifted by 2n/ (note that in so
doing we’d have to shift a as well). This means that we can change the value of c;.
Therefore we will fix it to be c; = —c». Finally we must calculate c¢1. To do this we
consider the ground state with no momentum |0; 0, 0) This state is annihilated by
: L, :forall n > 0. Thus we have

(0,0;0]: Ly :: L5 :10;0,0) =(0,0;0|[: L2 :,: L_3 :]]0; 0, 0)
=4(0,0; 0] : Lo : |0; 0, 0) 4+ 6¢1(0, 0; 0]0; 0, 0)
= 6¢] (1.3.77)

where we assume that the ground state has unit norm.

Exercise 8 Show that

D
(0.0:01: Ly = L2 [0:0.0) = — (1.3.78)
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So we deduce that

D
[:Lm::Ly:]=m—n): Lyptn: —i—ﬁ(m3 — m)ém—n (1.3.79)

Of course there is a similar expression for [: I:m L I:m :]. This is called the central
extension of the Virasoro algebra and D is the central charge which has arisen as a
quantum effect. From now on we will always take operators to be normal ordered
and we will drop the :: symbol, unless otherwise stated.

Let us return to our Fock space of states. It is built up out of the ground state which
we take to have unit norm (0]0) = 1. One sees that the one-particle state a 110)
has norm

(Ola'a,10) = (Ol[a]', a",1]0) = n"* (13.80)

where we do not sum over w. Thus the state 091 |0) has negative norm!

Problem Show that the state (an +al 1)10) has zero norm.

Thus the natural inner product on the Fock space is not positive definite because
the time-like oscillators come with the wrong sign. This also occurs in other quantum
theories such as QED and doesn’t necessarily represent any kind of sickness.

There are stranger states still. A physical state |x ) that satisfies (x| phys) = 0 for
all physical states is called null (or spurious if it only satisfies the n = 0 physical state
condition). It then follows that a null state has zero norm (as it must be orthogonal
to itself).

There are many such states. To construct an example just consider

lx) = L_1]0; p) with p2 =0 (1.3.81)

Note that the zero-momentum ground state satisfies L,|0; 0) = 0 and for alln > 0
and this remains true if for |0; p) if p> = 0. First we verify that |x) is physical.
We have form > 0

Liulx) = LyL_1]0; p)
= [Lm, L_1]|0; p)

D
= (m + DLyu-110; p) + E(mg —m)3m1(0; p) (1.3.82)

The last term will vanish automatically whereas the first term can only be non-zero
for m =0 (since L,|0; p) = 0 for all n > 0). Here we find Lo|x) = |x) which is
the physical state condition for ¢ =1 which will turn out to be the case. Next we see
that (x|phys) = (0|L{|phys) = 0. Note that we could have used any state instead
of |0; p) that was annihilated by L,, for all n > 0 to construct a null state.

Thus if we calculate some amplitude between two physical states (phys’|phys)
we can shift |phys) — |phys) + |x) where |x) is a null state. The new state
|phys) + | x) is still physical but the amplitude will remain the same—for any other
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choice of physical state | phys’). Thus we have a stringy gauge symmetry whereby
two physical states are equivalent if their difference is a null state. This will turn
out to be the origin of Yang-Mills and other gauge symmetries within string theory.
And furthermore one can prove a no-ghost theorem which asserts that there are no
physical states with negative norm (at least for a=1 and D=26).

1.3.4 Open Strings

Strings come in two varieties: open and closed. To date we have tried to develop
as many formulae and results as possible which apply to both. However now we
must make a decision and proceed along slightly different but analogous roots. Open
strings have two end points which traditionally arise at 0 = 0 and 0 = 7. We must
be careful to ensure that the correct boundary conditions are imposed. In particular
we must choose boundary conditions so that the boundary value problem is well
defined. This requires that

Nuwd X" 9, XV =0 (1.3.83)

ato =0, .
Problem Show this!

There are essentially two boundary conditions that one can impose. The first
is Dirichlet: we hold X** fixed at the end points so that X* = 0. The second
is Neumann: we set 9, X* = 0 at the end points. The first condition implies that
somehow the end points of the string are fixed in spacetime, like a flag to a flag
pole. At first glance this seems unphysical and we will ignore it for now, although
such boundary conditions turn out to be profoundly important. So we will start by
considering second boundary condition, which states that no momentum leaks off
the ends of the string.

The condition that BU)A( (7, 0) = 0 implies that

al = Gt (1.3.84)

i.e. the left and right oscillators are not independent. If we look at the boundary
condition at o = 7 then we determine that

> e sin(nr) =0 (1.3.85)
n#0
Thus 7 is indeed an integer. The mode expansion is therefore
n
X = xt 420 plr + V200 > e cos(no) (1.3.86)
n

n#0
(Note the slightly redefined value of p* as compared to before.)
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For the open string the physical states are constrained to satisfy
Ly|lphys) =0,n >0 and (Lo — D)|phys) =0 (1.3.87)

in particular there is only one copy of the constraints required since the L,, constraints
will automatically be satisfied. The second condition is the most illuminating as
it gives the spacetime mass shell condition. To see this we note that translational
invariance X* — X" 4 x* gives rise to the conserved current Pr = ﬁX ®. This
is a worldsheet current and hence the conserved charge (from the worldsheet point
of view) is

" 1 " v 1L
pt = - doX
2ra 0

1 T .
= / do2p" + ~2a' Za,‘fe”” cos(no)
0

l4
2ra o

= pt (1.3.88)

where again we have abused notation and confused the operator p* that appears in
the mode expansion of X* with its eigenvalue p** which we have now identified
with the conserved charge. In any case we do this because we have shown that p* is
indeed the spacetime momentum of the string. Note that this also explains why we
put in the extra factor of 2 in front of p*t in the mode expansion.

Next we let

N =Y nuna,a, (1.3.89)

n>0

Which is the analogue of the number operator that appears in the Harmonic oscillator.
Again this is an operator even though we are being lazy and dropping the hat. It is
easy to see that for m > 0

[N, a*, 1= nud,la,, d*,]

n>0

=ma",, (1.3.90)
Thus if |n) is a state with N|n) = n|n) then

Na*,In) = (IN,a",1+a*, N)n)
= (maﬁm + a)_‘mn)|n)

= (m +n)a,,|n) (1.3.91)

Therefore a’ ,, |n) is a state with N-eigenvalue n +m . You can think of N as counting

the number of oscillator modes in a given state.
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With this definition we can write the physical state condition (Lo — 1)|phys) = 0
as

1
(pup" + — (N = 1)lphys) =0 (1.3.92)

Thus we can identify the spacetime mass-squared of a physical state to be the eigen-
value of

M? = l(N— 1)) (1.3.93)
== 3.

We call the eigenvalue of N the level of the state. In other words the higher oscillator
modes give more and more massive states in spacetime. In practice one takes a /2
to be a very high mass scale so that only the massless modes are physically relevant.
Note that the number of states at level n grows exponentially in n as the number of
possible oscillations will be of order of the number of partitions of n into smaller
integers. This exponentially growing tower of massive modes a unique feature of
strings as opposed to point particles.

Of course we must not forget the other physical state condition L, |phys) = 0
for n > 0. This constraint will take the form of a gauge fixing condition . Let us
consider the lowest lying states.

At level zero we have the vacuum |0; p). We see that the mass-shell condition is

'—o (1.3.94)

p2 —a
The other constraint, L,|0; p) = 0 with n > 0, is automatically satisfied. This has
a negative mass-squared! Such a mode is called a tachyon. Tachyons arise in field
theory if rather than expanding a scalar field about a minimum of the potential one
expands about a maximum. Thus they are interpreted as instabilities. The problem
is that no one knows in general whether or not the instability associated to this open
string tachyon is ever stabilized. We will simply ignore the tachyon. Our reason for
doing this is that it naturally disappears once one includes worldsheet fermions and
considers the superstring theories. However the rest of the physics of bosonic strings
remains useful in the superstring. Hence we continue to study it.

Next consider level 1. Here we have

|AL) = Au(p)a”,10; p) (1.3.95)

Since these modes have N =1 it follows from the mass shell condition that they are
massless (for a =1!), i.e. the Lo constraint implies that 192AM = 0. Note that this
depends crucially on the fact that a=1. If a > 1 then |A,) would be tachyonic
whereas if a(1 [A,) would be massive. In either case there is no known constituent
theory of a massive (or tachyonic) vector field.
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But we must also check that L,,|A) = 0 for n > 0. Thus
1
LalAu) = A > nway,_,ahad"10; p)
m

1
= S A D panay[0; p)
m=<1

1
=-Auna D ay_,ana 10; p) (1.3.96)

2
n—1<m<l

In the second line we’ve noted that if m > 1 we can safely commute a’, past a”* 1
where it annihilates the vacuum. In the third line we’ve observed thatif n —m > 1
then we can safely commute a),_,, through the other two oscillators to annihilate the
vacuum (recall that forn > 0 a),_,, always commutes through a}}). Thus forn > 1
we automatically have L,|A,) = 0. For n =1 we find just two terms

1
Li|A) = EAanuaraéaﬁl + ajata"))|0; p)

= Aua}|0; p)
= V2a/p" A,,|0; p) (1.3.97)

Thus we see that |[A,,) is represent a massless vector mode with p#A, = 0. In
position space this is just 9" A, = 0 and this looks like the Lorentz gauge condition
for an electromagnetic potential.

Indeed recall that before we found the null state, with p2 =0,

|A) =iA(p)L-1]|0; p)
= in,wAagail |0; p)
= iv/2d pyAd” | 0; p) (1.3.98)

provided that p?> = 0. Thus we must identify A, = A, + i+/2a'p, A which in
position space is the electromagnetic gauge symmetry A, = A, + V2a! 0, A. Again
this occurs precisely when @ = 1, otherwise L_1|0; p) is not a null state and their
would not be a gauge symmetry.

There is one more thing that can be done. Since and open string has two preferred
points, its end points, we can attach discrete labels to the end points so that the ground
state, of the open string carries two indices

|0; p, ab) (1.3.99)

wherea = 1,.., N refersthe 0 = Oendand b = 1,..., N referstothe 0 = 7
end. It then follows that all the Fock space elements built out of |0; p, ab) will carry
these indices. These are called Chan—Paton indices. The level one states now have
the form
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|A%)y = A%Pa™ 0; p, ab) (1.3.100)
The null states take the form

| APy =i AP L_1)0; p, ab) (1.3.101)
and the gauge symmetry is

AP = A% + V209, A7 (1.3.102)

These are the gauge symmetries of a non-Abelian Yang—Mills field with gauge group
U(N) (atlowest order in the fields). Thus we see that we can obtain non-Abelian gauge
field dynamics from open strings.

1.3.5 Closed Strings

Let us now consider a closed string, so that o ~ o + 2. The resulting “boundary
condition” is more simple: we simply demand that Xn (t,0+2m) = Xn (t,0). This
is achieved by again taking » to be an integer. However we now have two independent
sets of left and right moving oscillators. Thus the mode expansion is given by

n i [ Ol/. a’lj —in(t+o) &’lf —in(t—o)
XP = x" + o phtr + EZZ e + e (1.3.103)
n7#0

note the absence of the factor of 2 in front of p#t. The total momentum of such a
string is calculated as before to give

i 1 2w -
pl=-— do X!
2ra 0
Y [« in(z+o) in(t—o)
dop* + [ = atein@+o) | gu—in(t—o
27'[0[ 0 P 2 % n n
= pt (1.3.104)

so again p* is the spacetime momentum of the string.
‘We now have double the constraints:

(Lo — V)| phys) = (Lo — 1)|phys) =0

- (1.3.105)
L,|phys = Ly|phys) =0

with n > 0. If we introduce the right-moving number operator N

= > nwa,ay (1.3.106)

n>0
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then the first conditions can be rewritten as

4 -
(pur™ + 07(1\/ — 1)Iphys) =0 (N — N)|phys) =0 (1.3.107)

where we have recalled that, if w* = 0, aff = a}) = ./ %p“ and Lo = %nwa(’;ag +

N, Ly = %nwé(’f ay + N. The second condition is called level matching. It simply
says that any physical state must be made up out of an equal number of left and right
moving oscillators. Again the remaining constraints will give gauge fixing conditions.

Let us consider the lowest modes of the closed string. At level 0 (which means
level O on both the left and right moving sectors by level matching) we simply have
the ground state |0; p). This is automatically annihilated by both L, and L, with
n > 0. For n =0 we find

, 4
p-——=0 (1.3.108)
o

Thus we again find a tachyonic ground state. No one knows what to do with this
instability. It turns out to be much more serious than the open string tachyon that
we saw, which can sometimes be dealt with. Most people today would say that the
bosonic string is inconsistent although this hasn’t been demonstrated. However for
us the cure is the same as for the open string: in the superstring this mode is projected
out. So we continuing by simply ignoring it, as our discussion of the other modes
still holds in the superstring.
ext we have level 1. Here the states are of the form

|G ) = Gva,a’10; p) (1.3.109)
Just as for the open string these will be massless, i.e. p? = 0 (again only if a=1).
Next we consider the constraints L, |G v) = Ly |Gy) = 0 withm > 0.

Exercise 9 Show that these constraints imply that p"* G, = p*'Guy, =0

The matrix G, is a spacetime tensor. Under the Lorentz group SO(1, D — 1) it
will decompose into a symmetric traceless, anti-symmetric and trace part. What this
means is that under spacetime Lorentz transformations the tensors g, by, and ¢
will transform into themselves. Here

— _ 1 Ap
8w = Gy 577 Gpluy
buv = G
¢ =n"G, (1.3.110)

i.e. GHV = 8uv + buv + %rluvcb-
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Exercise 10 Show this.

Thus from the spacetime point of view there are three independent modes labelled
by guv, by and ¢. Just as for the open string there is a gauge symmetry

1G ) = 1G ) + i, L1a" 10; p) +i¢,L_1a",|0; p) (1.3.111)

where we have used the fact that SHL,lc”zﬁl |0; p)and {Mi,lafl |0; p) are null states,
provided that p? = 0. The proof of this is essentially the same as it was for the open
string. We need only ensure that the level matching condition is satisfied, which is
clear, and that ZnL_1&_1|0; p) = L,,f,_la_1|0; p) = 0 for n > 0. Thus we need
only check that

~ 1.~
LuLo1a?110; p) = SL1 > mipayyala10; p) =0 (1.3.112)
m
Just as before the n > 1 terms will vanish automatically. So we need only check

LyL_ya"|0; p) =

N =

L_4 Z Mapay ma’ a1 10; p)
m

I
~

AP0
—1Mpagaia_,10; p)

I
~

_impablal, a" 110; p)

L_1aly|0; p)

/~
\/207L_1p“|0; D) (1.3.113)

Similarly for ZnL_ldfl |0; p). Thus we also find that p#§, = p*¢, = 0. This of
course is required to preserve the condition p* G, = p"G,, = 0.
In terms of G, this implies that

o o
Gy —> Gy +i ?pﬂév +1i ?pvg“u (1.3.114)

or, switching to coordinate space representations and the individual tensor modes,

we find
1 /o 1 /o
8uv _)guv‘i‘z Eau(§v+€v)+§ Eav(%_,u'i‘gu)

1 o’ 1 o/
bp,v —> B, + 5 ?&u(g\) — &) — 5 ?av(su — &)

¢ —>¢+ 2\/% W(EM 4 ¢H) (1.3.115)

Ifweletv, = %\/g(éﬂ—i—gu) and A, = %\/g(gu—gu) anduse ", = p*¢, =0
then we find
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&uv —>&uv + 0 vy + Oyvy
buy = byy + 09,4, — 0,4,
¢ —¢ (1.3.116)

The first term line gives the infinitesimal form of a diffeomorphism, x* — x* —
v and thus we can identify g,, to be a metric tensor. The second line gives a
generalization of and electromagnetic gauge transformation. The analogue of the
gauge invariant field strength is

Hkuv = 3)\17,” + aubvk + avbku (1.3.117)

Thus the massless field content at level 1 consists of a graviton mode g, an
anti-symmetric tensor field b, and a scalar ¢, subject to the gauge transformations
(1.3.115). Finally the massless condition szw = 0 leads to

82guv =0
3%byy =0
3¢ =0 (1.3.118)

The conditions p* G, = p"G, = 0 now reduce to the linearized equations

8ugp,v +dp =0
b, =0 (1.3.119)

These equations can be viewed as gauge fixing conditions (in effect ¢ = % 2.01).
The fields gy, b, and ¢ are known as the graviton (metric), Kalb—Ramond (b-field)
and dilaton respectively.

1.4 Light-Cone Gauge

So far we have quantized a string in flat D-dimensional spacetime. Apart from D
we have the parameters a and o’. In fact @’ is not a parameter, it is a dimensional
quantity—it has the dimensions of length-squared—and simply sets the scale. What
is important are unitless quantities such as p?a’. For example small momentum
means p2a’ < 1.

We are left with D and a but actually these are fixed: quantum consistency demands
that D =26 and a = 1. We have seen that things would go horribly wrong if a # 1.

The easiest way to see this is to introduce light-cone gauge. Recall that the action
we started with had diffeomorphism symmetry. We used this symmetry to fix yup =
e nap- However there is still a residual symmetry. In particular in terms of the
coordinates o * then under a transformation

1+

o =0Tt o =0"(067) (1.4.120)
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we see that yo’[ﬂ = ez'o/no,,g with

Ry (A (14.121)
— —In A
p=r 2 o't 80’~

i.e. this preserves the conformal gauge. In terms of the worldsheet coordinates o, T
we see that

1 _
T = E(a/++cr’ ) (1.4.122)

and since o’* are arbitrary functions of o* we see that any 7 that solves the two-
dimensional wave equation can be obtained by such a diffeomorphism. Therefore,
without loss of generality, we can choose the worldsheet ‘time’ coordinate t to be any
of the spacetime coordinates (since these solve the two-dimensional wave-equation).
Of course there are many choices but the usual one is to define

. 1 . 1
Xt = E(XO +xP-y x- = z(XO —xPh (1.4.123)
and then take
Xt=xT+dpts (1.4.124)

This is called light cone gauge.
Next we evaluate the conformal symmetry constraints (1.3.15). We observe that
in these coordinates the spacetime 7, is

Nt =N4—=—2  1mij =3 (1.4.125)
Thus we find that
. 1.... 1 . .
Too =T = —2'p" X~ + S X' X8 + zX”X”(S,-, =0
Tor = Tho = —2/pt X'~ + X'X"8;; =0 (1.4.126)

wherei, j =1,2,3,...,D - 2. This allows one to explicitly solve for X~ in term
of the mode expansions for X'.

Problem Show that with our conventions

X~ =x 4 p i > Mgty D pmine (1.4.127)
n n
n#0
where
_ 1 ; -
@ =57 Za;_ma/na,-j (1.4.128)
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and the massshell constraint is

—4o/p+p7+a/pipj5ij +2(N+N)=0 (1.4.129)
with
o S
N+ N = Eaij Za,llain + El,zdj_n (1.4.130)
n#0

To continue we note that in the quantum theory there is a normal ordering ambi-
guity in the definition of N + N and we must include our constant a again into the
definition. Hence we must take (temporarily putting in the :: symbols for normal
ordering)

(0.¢]
N+ N =8 > oo +d,a (1.4.131)

n=1

However since we have dropped an infinite constant, the intercept a will now show
up in the mass shell constraint as

—4a/p+p_+Ot/pipj5ij+2(N+N_2a)=O (1.4.132)

Note that —4pTp~ + pipj(Sij = Ny p’ p” so this really just tells us that the mass
of a state is

2 -
M? = J(N + N —2a) (1.4.133)

Where we have dropped the :: to indicate normal ordering.
We still have a level matching condition for closed strings

N=N (1.4.134)

This arises because we only have one spacetime momentum p* (not separate ones
for left and right moving modes).

Note that this breaks the SO (1, D — 1) symmetry of our flat target space since we
choose X and X P~1 whereas any pair will do (so long as one is timelike). Thus we
will not see a manifest SO (1, D — 1) symmetry but just an SO (D — 2) symmetry
from rotations of the X’. However it is important to realize that the SO(1, D — 1)
symmetry is not really broken, we have merely performed a kind of gauge fixing
(recall there was this underlying gauge symmetry of the string spectrum). It is just
no longer manifest.
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141 D=26,a=1

On the other hand the benefit of this procedure is that the physical Hilbert space is
manifestly postive definite because we remove the oscillators a’, a0, aP~!, aP~1.
This is often a helpful way to determine the physical spectrum of the theory.

For example we can reconsider the low lying states that we constructed above.
The ground states are unchanged as they do not involve any oscillators. For the open

string we find the D — 2 states at level one
|4i) = L]0 p) (1.4.135)

These are the transverse components of a massless gauge field. For the closed string
we find, at level one,

|Gij) = Gyjal @ 10; p) (1.4.136)

These correspond to the physical components, in a certain gauge, of the metric,
Kalb-Ramond field and dilaton Note however that there is no remnant at all of gauge
symmetry which is a crucial feature of dynamics

Now formally a is given by

D-2
:——Zm (1.4.137)
This is divergent however it can be regularized in the following manner. We note that

D -2
a= —Tg(—l) (1.4.138)

where ¢ (s) is the Riemann ¢-function
1
£(s) = Zl — (1.4.139)
m=

This is analytic for complex s with Re(s) > 1. Thus it can be extended to a holo-
morphic function of the complex plane, with poles at a discrete number of points.
Analytically continuing to s = —1 one finds {(—1) = —1/12 and hence
D -2
a=—- (1.4.140)
24

We have seen that in order to have a sensible theory we must take a = 1 (otherwise
there are no massless states or nice gauge invariances). Hence we must take D = 26.
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This is not a very satisfactory derivation of the dimension of spacetime. A more
convincing argument is the following. Light cone gauge is just a gauge. Therefore
although the manifest spacetime Lorentz symmetry is no longer present there is still
an SO(1, D — 1) Lorentz symmetry, even though only an SO (D — 2) subgroup is
manifest in light cone gauge. In light cone gauge the spacetime Lorentz generators
M", split into

M M+j, M, Mt (1.4.141)
The quantization procedure preserves SO (D — 2) so the commutators [ M’ M k1
are as they should be. However problems can arise with [M i M 1] etc. It is too
lengthy a calculation to do here, but one can show that the full SO (1, D — 1) Lorentz
symmetry, generated by the charges (1.3.26), is preserved in the quantum theory, i.e.
once normal ordering is taken into account, if and only if @ = 1 and D = 26. You are
urged to read the Sect. 2.3 of [1] and Witten or Sect. 12.5 of [3] where this is shown
more detail.

1.4.2 Partition Function

A useful concept is the notion of a partition function which ‘counts’ the phys-
ical states. Since light cone gauge only contains physical states this is most easily
computed here.

Let us start with an open string and define

z=> g""! (1.4.142)
where the sum is over states (at zero momentum) and ¢ = e~ > is ‘place-holder’.
First note that for a string in flat spacetime L is a sum of 24 independent free bosons.
Thus

zZ=zn* (1.4.143)
where
Z) = Zqu a_ja;— 5
=> g = [[q" (1.4.144)
I
For a single boson we have the oscillators a_1, a_s, . ... Each oscillator a_; can be

used k times in which case a_;a; contributes k to the exponent. We need to sum over
all k and using > 72, ¢¥ = (1 — ¢")~! we find
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o0
Zi=q # [ -¢)" (1.4.145)
=1

and hence
o0
Z=q'[Ja =g =n0 (1.4.146)
=1

where 7(¢) is known as the Dedekind eta-function. It can be extended to the upper
half complex plane t = 6 +it, t > 0 and is known to posses the following property:

n(—t~1 =n(r) (1.4.147)

In particular it is invariant under + — 1/¢ when 6 = 0. This property is known as
modular invariance. This is a crucial feature of strings (and requires that we have 24
physical oscillators—another important feature of D=26).

We can provide a physical interpretation of Z by noting that

X —ami(Lo-1 ! !
/ dre= 21 (Lo=D — (1.4.148)
0 2 L() —1

and 1/(Lo — 1) is the propagator. Thus Z has the interpretation of a vacuum one-loop
diagram:

Z = Tr(0| (% LOI_ 1) 0) (1.4.149)

(hence the restriction to zero momentum). The variable ¢ arises in the Schwinger
proper time formalism. The worldsheet of an open string is a cylinder of radius R
and length L. By conformal invariance the only parameter that matters is t = R/L.
In the large ¢ limit the open string is relatively short compared to the size of the loop.
In this case the important states that propagate around the loop are the light modes,
corresponding to the IR limit of open strings. Indeed here we see, taking g — 0

Z~q ' +244° + 0(¢) (1.4.150)

here we see the tachyon dominants, followed by the 24 massless modes and then the
massive spectrum gives ever vanishing corrections.

What about the t+ — 0 limit? In this case the the cylinder has a very short radius
compared to its length. This corresponds to the UV behaviour of the open string and
the massive states dominate. Here we can use modular invariance to evaluate

lin(l) ne ") = 111% n(e 2"y = lim n(e ") ~ G~ +243° + 6(§) (1.4.151)
— — f—00
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where § = e~ 2!, An alternative interpretation of such a diagram is that it can be
viewed as a closed string of radius R propagating at tree-level along a distance L, i.e.
no loops. Again Z dominated by the closed string tachyon and then the 24 (left-right
symmetric) massless closed string modes.

This is one of the most important features of string theory. The UV description of
open strings has a dual interpretation in terms of an IR propagation of closed strings
and vice-versa.

Exercise 11 Show that for a periodic fermion, where Lo = >, d_jd; + ﬁ and
{dna dm} = nan,—m, one has

o0
Zi=q¢% []0+4" (1.4.152)
=1

and for an anti-periodic fermion, where Ly = Zr b_,b, — ﬁ, {br, bs} = rép—s
andr,s € 1.+ %, one has

o0
Zi=q 5 [[(1+4"%) (1.4.153)
=1

1.5 Curved Spacetime and an Effective Action

1.5.1 Strings in Curved Spacetime

We have considered quantized strings propagating in flat spacetime. This lead to a
spectrum of states that included the graviton as well as other modes. More generally a
string should be allowed to propagate in a curved background with non-trivial values
for the metric and other fields. Our ansatz will be to consider the most general two-
dimensional action for the embedding coordinates X* coupled to two-dimensional
gravity subject to the constraint of conformal invariance. This later condition is
required so that the two-dimensional worldvolume metric decouples from the other
fields. We will consider only closed strings in this section. The reason for this is
that these days one views open strings as description soliton like objects, called
Dp-branes, that naturally sit inside the closed string theory.
Before proceeding we note that

1
SEH = 4—/d2m/—yR =y (1.5.1)
TT

is a topological invariant called the Euler number, i.e. the integrand is locally a total
derivative. Thus we could add the term Sg  to the action and not change the equations
of motion.
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With this in mind the most general action we can write down for a closed string is

1
Setosed = = 7— / d*o0 =y $(X)R + /=y y*P 0, X" 9p X" g, (X)
+ 6%P 9 X105 X b 1y (X) (1.5.2)

where ¢ is a scalar, g, symmetric and b,,, antisymmetric. These are precisely the
correct degrees of freedom to be identified with the massless modes of the string.
One can think of this worldsheet theory as two-dimensional quantum gravity coupled
to some matter in the form of scalar fields. More generally one can think of and
conformal field theory (with central charge equal to 26) as defining the action for a
string.

Furthermore this action has the diffeomorphism symmetry X* — X'*(X)

X'
aaX/M: oxv BOZXV ¢/:¢
aX* axr , axX* ax”°

/
gpLV = a)(_/llmg)hp bllv = M_mekp (153)

automatically built in. It also incorporates the b-field gauge symmetry
b;w = buy + 0pry — Ipdy (1.54)

however to see this we note that

1
3Sciosed = _m dzo-gaﬁaaxﬂaﬁxvau)w
=5 / d* 00, (ePagX 1)
=0 (1.5.5)

where we used the fact that £*#9, dgX" = 0 in the second to last line and the fact
that the worldsheet is a closed manifold in the last line, i.e. the periodic boundary
conditions.

Notice something important. If the dilaton ¢ is constant then the first term in the
action is a topological invariant, the Euler number. In the path integral formulation
the partition function for the full theory is defined by summing over all worldsheet
topologies

o
Z = Z/ DyDXe S (1.5.6)
g=0

Here the path integral is over the worldsheet fields y,s and X*. Now each genus g
worldsheet will appear suppressed by the factor e #Xs = ¢=2¢@~D_ Thuys g, = ¢?
can be thought of as the string coupling constant which counts which genus surface
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is contributing to a calculation. In particular for gg — 0 one can just consider the
leading order term where the worldsheet is a sphere.

However if one wants to consider the splitting and joining of strings then one must
take g, >0 and include higher genus surfaces. In particular the first non-trivial string
interactions arise when the worldsheet is a torus. To see the analogy with quantum
field theory note that a torus can be thought of as the worldvolume of a closed string
that has gone around in a loop. Thus it is analogous to 1-loop processes in quantum
field theory. Similarly higher genus surfaces incorporate higher loop processes. One
of the great features of string theory is that each of these contributions is finite. So this
defines a finite perturbative expansion of a quantum theory which includes gravity!

As stated above our general principle is the conformal invariance of the world-
sheet theory, which ensures that the worldsheet metric y,g decouples. The action
we just wrote down is conformal as a classical action. However this will not generi-
cally be the case in the quantum theory. Divergences in the quantum theory require
regularization and renormalization and these effects will break conformal invari-
ance by introducing an explicit scale: the renormalization group scale. It turns out
that conformal invariance is more or less equivalent to finiteness of the quantum
field theory. This restriction leads to equations of motions for the spacetime fields
¢, guv and by, (which from the worldvolume point of view are just fancy coupling
constants). It is beyond the scope of these lectures to show this but the constraints of
conformal invariance at the one loop level give equations of motion

1
0=R, + ZH,W)HVM — 2D, Dyp + O(a)
0= D"*Hj,y, — 2D ¢ Hypy + O)

1
0=4D%p +4(D¢)* — R — EH2 +0(d) (1.5.7)
where Hy,, = 30[,by;). In general there will be corrections to these equations
coming from all orders in perturbation theory, i.e. higher powers of «’. However
such terms will be higher order spacetime derivatives and can be safely ignored at
energy scales below the string scale.

1.5.2 A Spacetime Effective Action

A string propagating in spacetime has an infinite tower of massive excitations.
However all but the lightest (massless) modes will be too heavy to observe in any
experiment that we do. Thus in many cases one really just wants to consider the
dynamics of the massless modes. This introduces the concept of an effective action.
This is a very general concept (ubiquitous in quantum field theory) whereby we
introduce an action for the light modes that we are interested in (below some scale
M). The action is constructed so that it has all the correct symmetries of the full
theory and its equations of motion reproduce the correct scattering amplitudes of
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the light modes that the full theory predicts. In general effective actions need not
be renormalizable and they are not expected to be valid at energy scales above the
scale M where the massive modes we’ve ignored can be excited and can no longer be
ignored. Often one says that the massive modes have been integrated out. Meaning
that one has performed the path integral over modes with momenta larger than M
and is just left with a path integral over the low momentum modes.

In our case we have considered a string propagating in a curved spacetime that can
be thought of as a background coming from a non-trivial configuration of its massless
modes. In particular in our discussion we implicitly assumed that the massive modes
were set to zero. The result was that quantum conformal invariance predicted the
equations of motion (1.5.7). These are the on-shell conditions for a string to propagate
in spacetime as derived in the full quantum theory. Note that they pick up an infinite
series of &’ corrections and also an infinite series of gy corrections (where we allow
the splitting an joining of strings). In other words, at lowest order in o’ and g these
are the equations of motion for the spacetime fields. Furthermore these equations of
motion can be derived from the spacetime action

1
_20[/12

_ 1
Seffective = /d26x\/ —ge ¢ (R - 4(8¢)2 + — [,LV)LHILV)\> + ...

12
(1.5.8)

Exercise 12 Show that the equations of motion of (1.5.8) are indeed (1.5.7). You

may need to recall that §\/—g = —%J—gg,wég‘” and g"VS R, = D, D,ég"" —
D?sgh

8y 8-

This is therefore the effective action for the massless modes of a closed string. It
plays the same role that the free scalar equation played for the point particle (although
Seffective does not include the infinite tower of string states which isn’t there for
the point particle). The ellipsis denotes contributions from higher loops which will
contain higher numbers of derivatives and which are suppressed by higher powers
of o’. Note that string theory also predicts corrections to the effective action from
string loops, that is from higher genus Riemann surfaces. These terms will come with
factors of e~28% where g = 0, —1, —2, ... and can be ignored if the string coupling
g = e? is small.

1.6 Superstrings

In the final section let us try to extend the pervious sections to the superstring.
Conceptually not much changes but there are several additional bells and whistles
that need to be considered.
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1.6.1 Type II Strings

The starting point for the superstring is include fermions ¥* on the worldsheet so
as to construct a supersymmetric action

1 _
S= 1o /dszf’ax“aﬁxvnwnaﬂ + iy 9 ¥ Ny (1.6.9)

where ¥ = ¥y and y* are real 2 x 2 matrices that satisfy {y,, vg} = 2N4p.
A convenient choice is y° = io? and y' = o!. This action is also conformally
invariant and in addition has the supersymmetry

SXM =iy, Syt =y%9,X e (1.6.10)

for any constant €.
Exercise 13 Show this.

The mode expansion for the X* remains as before with the @/, and &, oscilla-
tors. When we expand the fermionic fields we can allow for two types of boundary
conditions (let us just consider boundary conditions consistent with a closed string
where 0 ~ o + 27 and X*(t,0) = X* (1,0 + 27):

R: vy (t,0+27)=vy"(r,0)
NS : w’u(‘[,U +2T[) = —wﬂ(l’,g) (1611)

these are known as the Ramond and Neveu-Schwarz sectors respectively. Thus
we find

R: yM(z,0+4+27)= Zd,le_i"‘7+ +dye im0
neZ
NS: yl(ro+2m)= D be "7 +he " (1.6.12)
reZ+%
One finds that these satisfy the anti-commutation relations
{dy, dpy = 0" —n D), bg} =n""8, s
{dly, &) =08 n DI DY) = n*"8, s (1.6.13)
with all other anti-commutators vanishing.
One important consequence of supersymmetry is that the algebra of constraints
generated by L, is enhanced to a super-Virasoro algebra with odd generators G,

and F, (depending on whether or not one is in the NS or R sector respectively). The
super-Virasoro algebra turns out to be (see references [1-4])
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D
(L, Lyl = (m —n)Lyin + gm(m2 — 1D, —n
m
L Gl = (5 =7) Gursr

(Gr.Gs) = 2Lrgs + 7 (1 = 7 ) 8 (1.6.14)

in the NS sector and

D 3
(L, Lyl = —n)Lyqp + gm 8m,—n

m
(L, Fyl = (3 1) Ft
D 2
(Fa. Fn) = 2L + 5”8, (1.6.15)

in the R sector. Here all operators are normal ordered. Just as before this only affects
Ly and Fy however there is no associated intercept a for Fy since it is fermionic
(and in addition this is not allowed by the {Fp, Fp} anti-commutator). Note that
the fermionic generators are in effect the ‘square-root’ of L,, as we expect in a
supersymmetric theory. We won’t go into more details here but we must impose the
physical constraints for the positive modded generators. Just as L gives a spacetime
Klein—Gordon equation, Fy gives a spacetime Dirac equation.

Let us compute the intercept a. As before we go to light-cone gauge where we fix
two of the coordinates X* and their superpartners ¥/*. We then compute the vacuum
energy of the remaining D — 2 bosonic and fermionic oscillators. The result depends
on the boundary conditions we use. Noting that the sign of the fermionic contribution
is opposite to that of a boson one finds

-0 (1.6.16)

The vanishing of ag is a direct consequence of the fact that there is a Bose—Fermi
degeneracy in the R-sector. In particular each periodic fermion contributes —ﬁ
to a. In the NS sector we find

ad 1
e LE (+§)

r=0

o0

Zn+ n

n=odd



42 N. Lambert

D-2 D-2(& >
225 22 (2 3 0)
n=l1 n=1 n=even
D-2 D-2(& ad
=-—— n—}—T(Zn—ZZm)
n=1 n=1 m=1
D-2 D-2
SREED IR W
n=1 n=1
1 1
=D-2)=+—
24 ' 48
_b-2 (1.6.17)
T16 -

Note that this shows that each anti-periodic fermion contributes ﬁ to a. Having
determined the incepts we can now go out of Light cone gauge and consider the
covariant theory.

Let us now look at the lightest states. There is a different ground state for each
sector which we denote by |R; p) and |NS; p) where p/ labels the spacetime
momentum. As before we assume that these states are annihilated by any oscillator
with positive frequency.

We see that |R; p) is massless and hence all the higher level states created from
it by the action of a creation operator will be massive with a mass of order the
string scale. However the Ramond ground state |R; p) is degenerate. In particular
we see that there are fermion zero-modes dj) which satisfy {d}, d}} = n"", u,v =
0, ..., D—1inlight cone gauge. This is a Clifford algebra and it is known that there
is a unique representation and it is 21%1_dimensional. Thus the Ramond ground state

is in fact a spinor with 2! 2 independent components.

Let us look at the Neveu—Schwarz ground state |N S, p). It is clear that since
ays > 0 this state is a tachyon. We can then consider the higher level states (for
simplicity we just consider open strings)

D-2
kNS, MP=1-—""=
a_ll p) 16

1 D=2
b" | INS, MP=- "=
~yINS.p) 27 16

Ot
Thus if D<10 then these states zzlre also tachyonic. However as before the magic
(that is gauge symmetries from null states) happens when these states are massless,
i.e. D=10. In this case the states aﬁl NS, p) are massive. Thus we take D=10 and
anys = 1/2. Indeed as before this is forced upon us if we want the SO(1, D — 1)
Lorentz symmetry of spacetime to be preserved in the quantum theory.
Nevertheless we are still left with some bad features. For one the Neveu—Schwarz
ground state is still a tachyon. There is also another puzzling feature: |[N S, p) is a

Thus the next lightest state is b‘_‘l INS, p) and its mass-squared is M? = —
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spacetime scalar and hence it must be a boson. We can then construct the spacetime
vector bﬁ 1 INS, p). From the spacetime point of view this state should be a boson

since it traznsforms under Lorentz transformations as a vector. However it is created
from |N S, p) by a fermionic operator and thus will obey Fermi-statistics. This is
contradictory.

The solution to both these problems is to project out the odd states and in particular
NS, p). This is known as the GSO projection. More specifically we declare that
INS, p) is a fermionic state. Mathematically we introduce the operator (— 1) which
acts as (—1)F|NS, p) = —|NS, p) and {y*, (=DF} =0, [X*, (=] = 0. We
then project out all fermionic states, i.e. states in the eigenspace (— DF = —1. Thus
INS, p) and a" 1INS, p) are removed from the spectrum but the massless states
b" | INS, p) remain.

2

Let us now consider the Ramond sector states. We already saw that the ground
state here is massless but degenerate. Indeed it is a spinor of SO(1,9), that is to say
it can be represented by a vector in the 32-dimensional vector space that furnishes
a representation of the Clifford algebra relation {d", dg} =", u,v=20,...,9.
We need to discuss how (—1)% acts here. There is a natural candidate where we
take (—1)¥ = +1I'; = £ ... T, the chirality operator in the 10-dimensional
Clifford algebra. Thus after the GSO projection |R, p) is a chiral spinor with 16
independent components. More generally in the Ramond sector we project out states
with (—1)F = —1. The GSO projection is also required to ensure modular invariance.

In the Ramond sector of the open superstring either choice of sign is equivalent to
the other, it is just a convention. Thus for the open superstring the lightest states are
massless and consist of a spacetime vector (and hence a boson) b‘i NS, p) along
with a spacetime fermion |R, p) which can be identified with a chiial spinor. Note
that there is a Bose-Fermi degeneracy: on-shell, and gauged fixed we find 8 bosonic
and 8 fermionic states (Why?—you can see this in lightcone gauge).

Let us consider closed strings. Here the states are essentially obtained by taking a
tensor product of left and right moving modes and hence there are four possibilities:

INS)L®INS)g
IR)L®IR) R
INS).®IR)g
IR) ®INS), (1.6.18)

In this case the relative sign taken in the GSO projection is important. There are two
choices: either we chose the same chirality projector for the left and right moving
modes or the opposite. This leads to two distinction theories known as the type I1IB
and type IIA superstring respectively. The states one find are of the form
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L®INS)L (1.6.19)
for type IIA and

INS)L®INS) g
IR+ ) ®IR+)g
INS) ®IR + )
IR+ ). ®INS) (1.6.20)

for type IIB. Here the + sign corresponds to the different choice of GSO projector
for the left and right moving modes.

The spacetime bosons come from either the NS-NS or R-R sectors whereas the
spacetime fermions from the NS-R or R-NS sectors. One sees that in the type IIA
theory there are fermionic states with both spacetime chiralities but in the type I1IB
theory only one chirality appears.

Let us look more closely at the massless bosonic states. The NS-NS sector is
essentially the same as the spectrum of the bosonic string only now they are created
from the vacuum by " | and 5" | rather than a’| and @" . In particular we still find

a graviton, Kalb-Ramond field and a dilaton. This sector is universal to all closed
string theories.

However we also have R-R fields. These arise as a tensor product of a left and
right spinor ground state. As such they form a ‘bi-spinor’:

Fop =|RE )14 @R L )pp (1.6.21)

Any bi-spinor can be expanded in terms of the associated I"-matrices:

10
Fap = D Fpuyogu, (T2 1) 0 (1.6.22)
p=0
Here we have used the fact that {1, I"'*, ['*#1#2 [H1--H10} form a basis of 32 x 32

matrices and used C~! = I'? to lower the spinor index. Next we note that

Flll“#l-nﬂp — 1 8ﬂl~--ﬂpvl---V107p[‘

(10 — p)! V0Vi0—p (1.6.23)

Using the GSO projection on the left movers implies that (I” 11)]/"‘Ft),ﬁ = F,p and
hence we see that
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Fﬂl---ﬂp — 1 gﬂln-ﬂpvl---VlOpr

(10 _ p)| Vi...V10—p (1624)

This implies that only the fields with p < 5 are independent of each other. In
addition F,, . is self-dual. Finally the GSO projection on the right movers tells
us that Fay(F“)V g = L Fus where the sign is—for type IIA and + for type IIB.
This implies that p =even for type IIA and p =odd for type 1IB. The physical state
conditions, in particular the vanishing of F and Fo, imply that dp, ot Fui.u )= 0
and 0" Fy, ., = 0.

We motivated superstrings by considering a worldsheet action that was super-
symmetric. However it turns out that, after the GSO projection, these theories also
have spacetime supersymmetry with 32 supersymmetry generators, the maximum
possible. In particular the massless fermionic states arising from the NS-R and R-NS
sectors give two gravitini and a dilatino.

1.6.2 Type I and Heterotic String

There are three other possibilities. For example one can introduce open strings. Since
open strings can combine into a closed string this theory must also contain closed
strings but the presence of open strings leads to SO(32) gauge fields in spacetime.
This is known as the type I string. It is further complicated by the fact that the
worldsheets of the strings are not oriented. The resulting theory has half as much
spacetime supersymmetry as the type Il theories. Indeed these days the type I string is
generally viewed as an ‘orientifold’ of the type IIB string in the presence of so-called
D9-branes. It is also thought to be dual to the heterotic SO(32) string.

A more bizarre construction is to exploit the fact the left and right moving modes
sectors of the string worldsheet do not talk to each other (in a closed string). Thus one
could take the left moving modes of a superstring living in 10 dimensions and tensor
them with the right moving modes of a bosonic string, which live in 26 dimensions.
Remarkably this can be made to work and leads to two types of string theories known
as the heterotic strings. These theories contain Eg x Eg or SO(32) spacetime gauge
fields.

Thus the right moving sector contains 16 extra bosons. A fact about two-
dimensions is that a right moving boson is the same as a pair of right moving fermions
(since the Lorentz group in two dimension splits into two commuting, Abelian, parts
that act on left and right movers respectively). This is known as bosonization (or
sometimes fermionization, depending on your point of view). Since a right moving
fermion is more natural than a right moving boson we will work with 10 scalars X*
and left-moving fermions Wf , 0 =0,1,...,9along with 32 right moving fermions
)\ﬁ, A =1,...,32. In this case left and right moving means:

vt ==y oy =24 (1.6.25)
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The worldsheet action of a heterotic string is now given by

1 -
S=~tnw /dz(faax“aﬂX%v + iy Y npy (1.6.26)

+iriy®* 9,18 4p (1.6.27)

This has (1,0) supersymmetry:

Exercise 14 Show that this action is invariant under

SXH =iz Yyt
Syl = y¥0u X" ey
A =0 (1.6.28)

provided that yp164+ = €4.

Exercise 15 Show that the action can be written as

1
S = / d*0 0 X" 0P X 0y +i (W) (0 — 39 My (1.6.29)

+i)T B + 0,07 B 845 (1.6.30)

So that ¥" and )»f_ are indeed left and right-moving respectively.

Quantization proceeds much as before, but with all the bells and whistles turned
on. The scalars are expanded in terms left and right moving oscillators a/; and @/, .
The ¥ have NS and R sectors with left moving oscillators b¥ and d¥. And Aﬁ has
an expansion in terms of right moving oscillators 15;4 and cf;f for NS and R sectors
respectively. In the left moving sector we have ays = 1/2and ag = 0, just as for the
type II superstrings. In the right moving sector we have (going to light cone gauge
removes two X* fields but none of the /\fr fields)

1 1
ins =8 — 432 — =1
ans VIR

1 1
iR =8+ — —32. — =—1 1631
ar=85;—32 (1.631)

In particular we see that the right moving Ramond vacuum is massive.

Again the GSO projection is need to give modular invariance and to get rid of the
tachyons. Let us look at the massless modes. For the left moving sector again we
must take states of the form bf 1 INS) and |R), where again |R), is a degenerate

spinor ground state with 8 physical states. However in the right moving sector we
need only consider the NS states of the form Ezfl INS)g and b4, b8, INS)g-
—2 72
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Looking at the massless spacetime bosons we find the metric, dilaton and
Kalb-Ramond field from b | [N S); ® a_1 |NS) . However we also obtain a vector
-2

state b" | [NS); ® b* b® | |NS)g. This vector state has index structure A, and

can indeed be identified with a 10-dimensional gauge field. The fermionic states
then give gravitini, dilatinio and gauginos. The resulting theory has 16 spacetime
supersymmetries: half of the maximum of 32 that the type II theories enjoy.

Finally modular invariance and anomaly cancelation (the spacetime spectrum is
chiral and for a general gauge group has anomalies) fixes the possible gauge groups
to be either Eg x Eg or SO(32).

1.6.3 The Spacetime Effective Action

The superstrings have a spacetime supersymmetry and include gravity. Therefore
their low energy effective actions are those of a supergravity. Such theories are so
tightly constrained by their symmetries that, at least to lowest order in derivatives,
their action is unique and known. In particular the bosonic section of these theories
is given by

1 1 1 1
Sua = —7 [ d'%xy= ( TR +409) - SHD - - o F4) +.
1 1 1
Sup = — /dlox«/ ( 2 (R + 4(3¢)* — —H%) -5 F? — EF32 - mFg) +...

where the ellipsis denotes additional terms (known as Chern—Simons terms) and the
subscriptn = 1, 2, 3, 4, 5 indicates the number of anti-symmetric indices of the field
strength F,, = F),, .. Note that in the Syp case there is field strength F,, = d,a
which can be thought of as arising from an additional scalar. In addition the equation
of motion that arises from Syp must be supplemented by the constraint that the
five-index field strength Fy, 15050405 18 self-dual:

1
— _— / V1V2V3V4V5
Fuiopspaps = 5V 8E 1 papspapsvivavsvavs F (1.6.32)

We can also construct (in limited detail) the effective action for the heterotic and
type I superstrings. These are fixed by supersymmetry and gauge symmetry to be of
the form

S; = 1 d'Ox/=ge (R +4(3¢)% — 1 2 — %tr(F)z + .. ) (1.6.33)

12
where again the ellipsis denotes fermionic and Green—Schwarz terms that are crucial
for anomaly cancelation.
When compactified on a circle the bosonic string admits a new duality known as
T-duality. In the superstring case one finds that type IIA string theory on a circle of
radius R is equivalent to type IIB string theory on a circle of radius &’/ R. However
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one finds more remarkable dualities. It turns out that the type IIB supergravity has
a symmetry ¢ <> —¢.! From the point of view of the string theory this is suggests
a duality between strongly coupled strings with g, large and weakly coupled stings
with g; small. This self-duality of the type IIB string is known as S-duality.

What happens in the strong coupling limit, g; — oo of the type IIA superstring?
Well is it conjectured that ~/a’e??/3 can be interpreted as the radius of an extra,
eleventh, dimension. There is a unique supergravity theory in eleven dimensions and
indeed the type IIA string effective action comes from dimensional reduction of this
theory on a circle. However there is now a great deal of evidence that the whole of
type IIA string theory arises as an expansion of an eleven-dimensional theory about
zero-radius (in on of its dimensions). This theory is known as M-theory and is rather
poorly understood. However it’s existence does seem be justified. The lowest order
term is in a derivative expansion is fixed by supersymmetry to be

1 1
Sy = K_g/dﬂx«/—_gue — 5D+ (1.6.34)

where again the ellipsis denotes Chern-Simons and fermionic terms. One also finds
the heterotic Eg x Eg string by compactification of M-theory on a line interval.

Furthermore it promises to be very powerful as it controls not only the strong
coupling limit of the type ITA string but, as a consequence of duality, the strong
coupling limit of all the five known string theories. Thus one no longer thinks of there
being five separate string theories but instead one unique theory, M-theory, which
contains five different perturbative descriptions depending on what one considers to
be a small parameter.
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Chapter 2
D-Branes and Orientifolds

Ralph Blumenhagen

2.1 The Free Boson with Boundaries

2.1.1 Boundary Conditions

We start by discussing the Boundary Conformal Field Theory of the free boson theory
in order to illustrate the appearance of boundaries from a Lagrangian and geometrical
point of view.!

Conditions for the Fields

The two-dimensional action for a free boson X(t, o) is given by

I
S = E/do’ dr ((2:X)" + (9:X)%). @.1)

Note that we fixed the overall normalisation constant and we slightly changed our
notation such that T € (—oo, +00) denotes the two-dimensional time coordinate and
o € [0, ] is the coordinate parametrising the distance between the boundaries.

The variation of the action (2.1) is obtained in the usual way, but now with the
boundary terms taken into account. More specifically, we compute the variation as
follows
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by S = % / do dt ((25X) (358X) + (8:X) (3:5X) )

= %/a’a dt (—(33 +02)X - 8X + 8- (3:X - 6X) +30(8<,X~8X)),

(2.2)
The equation of motion is obtained by requiring this expression to vanish for all
variations 6X. The vanishing of the first term in the last line leads to OX = 0 which
we already obtained previously. The remaining two terms can be written as follows

1
;/da dt (9 (9:X - 5X) + 8o (3, X - 6X) )

1
=;/dodtV~(VX8X)
1
= —/ dlg (VX -m) 6X
7 Ja

where we introduced V = (3;, 9,)” and used Stokes theorem to rewrite the integral
[ dodt as an integral over the boundary 8. Furthermore, dlz denotes the line
element along the boundary and n is a unit vector normal to %. In our case, the
boundary is specified by 0 = 0 and 0 = 7 so that n = (0, =1)7 as well as
dlg = dt. The vanishing of the last two terms in (2.2) can therefore be expressed as

O=T

0= i/dr (3,X) 6X
T

o=0

This equation allows for two different solutions and hence for two different boundary
conditions. The first possibility is a Neumann boundary condition given by
05 X|o=0.x = 0. The second possibility is a Dirichlet condition §X|,~0, = O for all
7 which implies 0; X |s=0, = 0. In summary, the two different boundary condition
for the free boson theory read as follows

06 X|6=07r =0 Neumann condition, 2.3)
8X|o=0r =0 =0:X|,—0.r  Dirichlet condition. ’

Remark

Let us remark that in string theory, a hypersurface in space-time where open strings
can end is called a D-brane. In order to explain this point, let us consider a theory
of N free bosons X*(t, o) with u = 0, ..., N — 1 which describe the motion of a
string in an N-dimensional space-time. We organise the fields in the following way

xO x' oo xloxr o xN

Neumann conditions  Dirichlet conditions
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Fig.2.1 Two-dimensional
surface with boundaries
which can be interpreted as
an open string world-sheet
stretched between two
D-branes

where r denotes the number of bosons with Neumann boundary conditions leaving
(N — r) bosons with Dirichlet conditions.

Let us now focus on one endpoint of the open string, say at o = 0. A Dirichlet
boundary condition for X* reads §X*|,—o = O which means that the endpoint
of the open string is fixed to a particular value x(’; = const. However, in case of
Neumann boundary conditions, there is no restriction on the position of the string
endpoint which can therefore take any value. Clearly, since the string moves in time,
there are Neumann conditions for the time coordinate X°. Then, the r-dimensional
hypersurface in space-time described by X* = xg“ =const. foru=r,...,N—1is
called a D(r — 1)-brane where D stands for Dirichlet.

As an example, take N = 3 and consider Fig. 2.1 where we see a world-sheet of
an open string stretched between two D1-branes.

Conditions for the Laurent Modes

Above, we have considered the BCFT in terms of the real variables (z, o) which was
convenient in order to arrive at (2.3). However, for more advanced studies a descrip-
tion in terms of complex variables is very useful. Similarly as before, a mapping
from the infinite strip described by the real variables (t, o) to the complex upper
half plane H™ is achieved by z = exp(t + ic’). Note in particular, as illustrated in
Fig. 2.2, the boundary o = 0,  is mapped to the real axis z = Z.

Having this map in mind, we can express the boundary conditions (2.3) for
the field X (o, ) in terms of the corresponding Laurent modes. Recalling that
j(@) =1i0X(z,7), we find

0, X =i(0 =0)X =j@ —j@ =D (o " =y 7""),
nez

i 0:X=i(0+0)X =j@+i@ =D (nz " iz ")
nez
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T+io

7=0

o=z o=0 =0 =1

o

Fig.2.2 Illustration of the map z = exp(r + io) from the infinite strip to the complex upper half
plane H*

where we used d = 1(3p — id1) and @ = (3o + idy). For transforming the right-
hand side of these equations as z — ¢" with w = t 4 io, we employ that j(z) is a
primary field of conformal dimension 4 = 1. In particular, recalling that conformal
transformations act on primary fields of dimension (h, &) as

9@ ¢ = (%)h(gi;)% (r@.J@). 24

we have j(z) = (g—fv)lj(w) = z j(w) leading to

X = Z (]n e*n(H“i(T) _]'-n efn(rfia) )7
nez

i- 8-[X — z (]n e—n(r+ia) +]'-n e—n(r—itr) )
nez

2.5)

The Neumann as well as the Dirichlet boundary conditions at o = 0 are then easily
obtained as

05X |, =2 (n—Jn) €7 =0,
nez

0X |, _g=D (in+in) e " =0.
neZ

Since for generic t the summands above are linearly independent, these two equations
are respectively solved by j, &, = 0 for all n. In summary, we note that boundaries
introduce relations between the chiral and anti-chiral modes of the conformal fields
which read

i —7i =0 Neumann condition,
Jn=Jn (2.6)

Jn +}n =0, (mp = 0) Dirichlet condition.

From a string theory point of view, (2.6) implies that an open string has only half the
degrees of freedom of a closed string.
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A computation of the center of mass for the open string gives

1 1-
0 = 5Jo =7 Jo 2.7)
In view of (2.6), we thus see that there are no restrictions on 7t for Neumann boundary
conditions and so the endpoints of the string are free to move along the D-brane. For
Dirichlet conditions on the other hand, we have 7y = 0 implying that the endpoints
are fixed.

Combined Boundary Condition

In the previous paragraph, we have considered the boundary at o = 0. Let us now
turn to the other boundary at ¢ = m. Performing the same steps as before, we see
that Neumann—Neumann as well as Dirichlet-Dirichlet conditions are characterised
by the constraints found in (2.6).

However, mixed boundary conditions, e.g. Neumann-Dirichlet, require a modifi-
cation. In particular, j, — j, = 0 at o = 0 and j, +]_'ne_2i"“ = 0 at 0 = 7 can only
be solved forn € Z + % All possible combinations of boundary conditions are then
summarised as

Jn —jn =0, nez Neumann—-Neumann,
= 1

Jn—=Jjn=0, neZ+ 3 Neumann-Dirichlet,
- 1

Jntin=0, neZ+ 3 Dirichlet-Neumann,

Jntin=0, neZ Dirichlet-Dirichlet.

Solutions to the Boundary Condition

Next, let us determine the solutions to the boundary conditions stated above. First,
we integrate equations (2.5) to obtain X(t, o) in the closed sector

X(r.0) =xo—i(t+io)jo—i(t—ic)jo+ D i(jne*n(tJrin) 1] ent=io) )
n#0 "
(2.8)

where x is an integration constant. We then implement the boundary conditions to
project onto the open sector. For the Neumann—Neumann case we find

XN (2, 6) = 30— 2itjo+2i 32 e cos(no),
n#0 n
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and for the Dirichlet—Dirichlet case we obtain along the same lines

x®-D) (r, a) =x09 + 20jo + 2 Z];n e "’ sin(na).
n#0
Having arrived at this solution, we can become more concrete about the Dirichlet—
Dirichlet boundary conditions. We impose that X(r,0 = 0) = xj and X(7,0 =
T) = xg, which means that the endpoints of the string are fixed at positions x§ and
xg. Using the explicit solution for X(®-P)(z, o), we obtain the relation

b a
X0 — %o

21

Jo= (2.9)

Finally, for completeness, the solutions for the case of mixed Neumann—Dirichlet
boundary conditions read as follows

(N.D) — i jﬁ -
X (r,a)—xo+2l Z | e "rcos(na),
neZ-i—%

ON) _ Jn ne
X (t.o) =xo+2 Z e "Tsin(no) .
nEZ+%

Conformal Symmetry

Let us remark that equations (2.6) apply to the Laurent modes of the two U(1)
currents j(z) and j(Z) of the free boson theory leaving only a diagonal U (1) symmetry.
However, in addition there is always the conformal symmetry generated by the
energy-momentum tensor. Since boundaries in general break certain symmetries,
we expect also restrictions on the Laurent modes of energy-momentum tensor.

Indeed, recalling that 7'(z) and T(Z) can be expressed in terms of the currents j(z)
and j(Z) in the following way

1 — 1 _
T@) =3 N(jj)@, TE@ = 3 N(j )@,

we find that the Neumann as well as the Dirichlet boundary conditions (2.6) imply
for L, = %N (jj)n that

L,—L,=0]|. (2.10)

Let us emphasise that this condition can be expressed as T'(z) = T(Z) which in
particular means the central charges of the holomorphic and anti-holomorphic theo-
ries have to be equal, i.e. ¢ = ¢. For string theory, this observation has the immediate
implication that boundaries, that is D-branes, can only be defined for the Type II
Superstring Theories, as opposed to the heterotic string theories.
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T, .,

Fig.2.3 Illustration how the cylinder partition function is obtained from the infinite strip by cutting
out a finite piece and identifying the ends

2.1.2 Partition Function

Definition

Let us now consider the one-loop partition function for BCFTs. To do so, we first
review the construction for the case without boundaries and then compare to the
present situation.

The one-loop partition function for CFTs without boundaries is defined as follows.
We start from a theory defined on the infinite cylinder described by (t, o) where
o is periodic and T € (—o0, +00). Next, we impose periodicity conditions also
on the time coordinate t yielding the topology of a torus. The partition function is
then determined as

P (1, %) = Trp(go figh—%). Q.11

In the present case, the space coordinate o is not periodic and thus we start from a
theory defined on the infinite strip given by o € [0, r] and t € (—o0, +00). For
the definition of the one-loop partition function, we again make the time coordinate
T periodic leaving us with the topology of a cylinder instead of a torus. This is
illustrated in Fig. 2.3.

Similarly to the modular parameter of the torus, there is a modular parameter ¢
with 0 < ¢ < oo parametrising different cylinders. The inequivalent cylinders are
described by {(t,0) :0 <o <m,0 <71 <t}.

For the partition function, we need to determine the operator generating transla-

tions in time circling the cylinder once along the t direction. Because boundaries
lead to an identification of the left- and right-moving sector as required by (2.10),
we see that this operator is the Hamiltonian say in the open sector

C
Hopen = (Lcyl.)O =Ly— ﬁs
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which we inferred from the closed sector Hamiltonian Hejosed = (Leyl.)o + (chl.)o.
In analogy to the case of the torus partition function, we then define the cylinder parti-
tion function as 2 = Trexp(—2mtHopen) Which can be brought into the following
form

(1) = Trp, ( gl = ) where g =e 2",

Here, the superscript 4 on 2 indicates the cylinder partition function and %74
denotes the Hilbert space of all states satisfying one of the boundary conditions
(2.6). Clearly, from a string theory point of view, this is just the Hilbert space of an
open string.

Free Boson I: Cylinder Partition Function (Loop-Channel)

We close this section by determining the cylinder partition function for the free boson.
For the free boson, the Laurent modes of the energy-momentum tensor are written
using the modes of the current j(z) = i dX(z). In particular, we have
1. o
Lo = S Jojo+ 2 J—kJk:
k>1

Since the current j(z) is a field of conformal dimension one, we find that jn|0) =0
for n > —1 and that states in the Hilbert space have the following form

|ni,na nz, ) =j" 0% 0" .0)  with ;>0 (2.12)
and n; € Z. The current algebra for the Laurent modes reads
[imsin] = m 8m.—n.
Next, let us compute the action of Ly on a state (2.12). Clearly, jo commutes with

all j_j and let is first assume that it annihilates the vacuum. For the other terms we
calculate

[i—kix, 7™ ] = m k j™,. (2.13)

and so we find for the zero Laurent mode of the energy-momentum tensor that

Lo [nmaons, ) =0 0" % (ki) - |0) = D kg [nyng.n. ).
k=1 k=1

We will utilize this last result in the calculation of the partition function where for
simplicity we only focus on the holomorphic part. We compute
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Tr (qLO 24)
1 o o o0 o0
=q 24 Z Z Z ...(nl,nz n3, | Z—‘(Znt) (Lo) !nl np, n3, )
n1=0n,=0n3=0 p=0 p:
1 o0 o o
=q % z Z z (nl,nz,n3,. | Z 2711: (ank) ‘nl np, n3, )
n1=0n2=0n3=0 p=0

n;=0 ny=0 n3=0
2 X =X 1
_ 1 k _1
—d [T St I
k=1 ng=0 k=1 4

where in the last step we employed the result for the infinite geometric series and the
ellipsis indicate that the structure extends to infinity. We then define the Dedekind
n-function as

1
n(t) =qx

’:18

(1-4") (2.14)

n=1

so that
1

without jo n (it)

Tr ( g )

However, recall that we have assumed the action of jy on the vacuum to vanish
which is in general not applicable. Taking into account the effect of jy, we now study
the three different cases of boundary conditions in turn.

¢ For the case of Neumann—Neumann boundary conditions, the momentum mode
Ty = % Jo is unconstrained and in principle contributes to the trace. Since it is a
continuous variable, the sum is replaced by an integral

L2 2 2 00 5
Ttz (qi./o) - Z <n0| e~ Tlio |n0) — ze—mno N / drm ATty
no no J—00

where we utilised nyp = 2m. Evaluating this Gaussian integral leads to the
following additional factor for the partition function

2—\/; . (2.15)
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* For the Dirichlet-Dirichlet case, we have seen in equation (2.9) that jy is related
to the positions of the string endpoints. Therefore, we have a contribution to the
partition function of the form

2
; 1 xt—x@ t 2
Wi (a3 (455 ) o (- 6 ))

¢ Finally, for the case of mixed Neumann—Dirichlet boundary conditions, the Laurent
modes j, take half-integer values for n. We do not present a detailed calculation for
this case. We just mention that there is a twisted sector where the Laurent modes ji,

also take half-integer values for n. It is then possible to extract Tr, _; , 1 (qLO_ﬁ)
2
giving us the partition function in the present case.

In summary, the cylinder partition functions for the example of the free boson read

Qﬂ t 2 1
bos(D D () = exp (_ ar (x(l; - X(L)l) )

n (ir)’
FEON) () _ 1 1
bOS 2\/‘ n (lt) (216)
& (mixed) | (ir)
%DOS (t) - ,&4(”) .

2.2 Boundary States for the Free Boson

In the last section, we have described the boundaries for the free boson CFT implicitly
via the boundary conditions for the fields. However, in an abstract CFT usually there
is no Lagrangian formulation available and no boundary terms will arise from a
variational principle. Therefore, to proceed, we need a more inherent formulation of
a boundary.

In the following, we first illustrate the construction of so-called boundary states
for the example of the free boson and in the next section, we generalise the structure
to Rational Conformal Field Theories with boundaries.

2.2.1 Boundary Conditions

Boundary States

Let us start with the following observation. As it is illustrated in Fig. 2.4, by inter-
changing t and o, we can interpret the cylinder partition function of the Boundary
Conformal Field Theory on the left-hand side as a tree-level amplitude of the under-
lying theory shown on the right-hand side. From a string theory point of view, the
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Fig.2.4 Illustration of world-sheet duality relating the cylinder amplitude in the open and closed
sector

tree-level amplitude describes the emission of a closed string at boundary A which
propagates to boundary B and is absorbed there. Thus, a boundary can be interpreted
as an object, which couples to closed strings. Note that in order to simplify our
notation, we call the sector of the BCFT open and the sector of the underlying CFT
closed. The relation above then reads

(0, T)open <> (T, 0)closeds (2.17)

which in string theory is known as the world-sheet duality between open and closed
strings.

The boundary for the closed sector can be described by a coherent state in the
Hilbert space .# ® . which takes the general form

Bl= 2. o

ije QA

i j)-

Here i, j label the states in the holomorphic and anti-holomorphic sector of .77 ® 7,
and the coefficients «;; encode the strength of how the closed string mode |7, j) couples
to the boundary |B). Such a coherent state is called a boundary state and provides
the CFT description of a D-brane in string theory.

Boundary Conditions

Let us now translate the boundary conditions (2.3) into the picture of boundary states.
By using relation (2.17), we readily obtain

0 Neumann condition,
. . (2.18)
0 Dirichlet condition.

07 Xclosed |t =0 |BN) =
95 Xclosedlr=0 |BD) =

Next, for the free boson theory we would like to express the boundary conditions
(2.18) of a boundary state in terms of the Laurent modes. To do so, we recall (2.5)
and set T = 0 to obtain



60 R. Blumenhagen

i 8rX(:losed|.[=() = Z (]n e_ma +jn e-‘,—ina ),
neZ

aGXClosed|,L_:0 = z (]n e~ ino _]'-n e Tino )
nez

(2.19)

We then relabel n — —n in the second term of each line and observe again that for
generic o, the summands are linearly independent. Therefore, the boundary condi-
tions (2.18) expressed in terms of the Laurent modes read

(jn +J—n) |BN) =

BN
(jn _j—n) |BD)

0, o |BN) =0 Neumann condition,
(7o IBN) ) (2.20)
0 Dirichlet condition,

for each n. Such conditions relating the chiral and anti-chiral modes acting on the
boundary state are called gluing conditions. Note that for the case of Neumann
boundary conditions, in the string theory picture the relation 7y = O means that
there is no momentum transfer through the boundary. On the other hand, for Dirichlet
conditions there is no restriction on 7.

Solutions to the Gluing Conditions

Next, we are going to state the solutions for the gluing conditions for the example of
the free boson and verify them thereafter. For now, let us ignore the constraints on
Jo. We will come back to this issue later.

The boundary states for Neumann and Dirichlet conditions in terms of the Laurent
modes j;, and J_'n read

1 — 1. - .
’BN) = e exp(— ]; P Jk)| O) Neumann condition,
~ (2.21)
|Bp) = 1 exp( + Z ! j—kj_; )| 0)  Dirichlet condition
A iy o ’

where A and .4p are normalisation constants to be fixed later. One possibility
to verify the boundary states is to straightforwardly evaluate the gluing conditions
(2.20) for the solutions (2.21) explicitly. However, in order to highlight the underlying
structure, we will take a slightly different approach.

Construction of Boundary States

In the following, we focus on a boundary state with Neumann conditions but comment
on the Dirichlet case at the end. To start, we rewrite the Neumann boundary state in
(2.21) as
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1 & = =1 (™ 1 (= \™ =
= — — 0) @ —|—— 0),
J‘f\lzz [ mk'(ﬁ)” mk'(ﬁ)”

(2.22)

where we first have written the sum in the exponential as a product and then we

expressed the exponential as an infinite series. Next, we note that the following
states form a complete orthonormal basis for all states constructed out of the Laurent

modes j_x
L (4 ™0 2.23
|m>_|m1,m2,...>_gm(ﬁ) 0). (2.23)

The orthonormal property can be seen by computing

n’m

1 [o)e]
kl_[l W NG (o] /¥ Tk 7 ‘O :kl:[] Sy

where we used that
(O] 7y 2y 0) = K n (O] 1" S 10) = Sn K

We now introduce an operator U mapping the chiral Hilbert space to its charge
conjugate U : s — s and similarly for the anti-chiral sector. In particular, the
action of U reads

Ujr U = —ji = —(ifk)i Ujp Ut =—j = —G_k)T, UcUt=¢*,

where c¢ is a constant and * denotes complex conjugation. In the present example,
the ground state |0) is non-degenerate and is left invariant by U.> Knowing these
properties, we can show that U is anti-unitary. For this purpose, we expand a general
state as |a) = Zm Am|m) and compute

= 1 Uj_r UTT\™
= UAp U™ ( ) Ulo
; " H mG! \/E ‘ )
o0

—ZA [T(=1)"|m). (2.24)

k=1

where m denotes the multi-index {m, m», ...}. By using that |[m) and |n) form an
orthonormal basis, we can now show that U is anti-unitary

2 For degenerate ground states a non-trivial action on the ground state might need to be defined.
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(Ub|Ua)=>"(n|Ba 10__0[(— 1) A% |m ZA* m={al|b)

After introducing an orthonormal basis and the anti-unitary operator U, we now
express (2.22) in amore general way which will simplify and generalise the following
calculations

== §|m)®|Uﬁ).

Verification of the Gluing Conditions

In order to verify the gluing conditions (2.20) for Neumann boundary states, we note
that these have to be satisfied also when an arbitrary state ( @ | ® ( b | is multiplied
from the left. We then calculate

(@l @(b]n+i |B):% D ale(b|jn+iy|me|Um)
= S0 L ) (0 + (5 ) (] |0,

Next, due to the identifications on the boundary, the holomorphic and the anti-
holomorphic algebra are identical. We can therefore replace matrix elements in
the anti-holomorphic sector by those in the holomorphic sector. Using finally the
anti-unitarity of U and that " |m)(m| = 1, we find

(@|@b|jn+in|B)

} ; (b | jn |m){a|Um)+{b|m)(alj-n|Um)

S0 L m) (m [0+ (b fm) [ m | () [0

=;V ((b|jn|U a) = (b | jn }U_la))zo.

Therefore, we have verified that the Neumann boundary state in (2.21) is indeed a
solution to the corresponding gluing condition in (2.20).

For the case of Dirichlet boundary conditions, the action of U on the Laurent
modes j, and j, is chosen with a + sign while we still require U to be anti-unitary, i.e.
U ¢ U~! = ¢*. The calculation is then very similar to the Neumann case presented
here. Note furthermore, the construction of boundary states and the verification of
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the gluing conditions is also applicable for more general CFTs, for instance RCFTs,
which we will consider in Sect. 2.3.

Momentum Dependence of Boundary States

In (2.7) we gave the result for the center of mass for an open string. This differs
from the closed string case by a factor % due to the fact that open strings have by
convention length 7 while closed string have length 2. In the following, the relation
between jj, ]_'0 and 7o should be clear from the context, but let us summarise that

. 1. 1-
(no)closed =jo =Jo, (no)open = 5]0 = 5]0. (2.25)

From a string theory point of view, in addition to the boundary conditions (2.20)
there is a further natural constraint on a boundary state with Dirichlet conditions.
Namely, the closed string at time 7 = 0 is located at the boundary at position x§. We
therefore impose

Xclosed (t =0, U) |BD) = )Cg |BD)

and similarly for t = . An easy way to realise this constraint is to perform a Fourier
transformation from momentum space |Bp, 1) to the position space. Concretely, this
reads

|BD,x8) =/dno &m0 |BD,7r0).

For the boundary state with Neumann conditions, we have mp = 0 and in position
space, there is no definite value for xo. We thus omit this label.

Conformal Symmetry

In studying the example of the free boson, we have expressed all important quantities
in terms of the U(1) current modes j, and j,. However, in more general CFTs such
additional symmetries may not be present but the conformal symmetry generated by
the energy-momentum tensors always is. In view of generalisations of our present
example, let us therefore determine the boundary conditions of the boundary states
in terms of the Laurent modes L,, and L.

Mainly guided by the final result, let us compute the following expression
by employing that T(z) = %N (j/))(z) which implies L, = % D ke 1 in—kik +

%Zkf—]jkjn—k
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(Ln = L) [Bx.D)

=5 | 22 Uik ~Tmidi) + 2 G =it | [B)

k>—1 k<—1

| —

Jnjo = J_njo + Z(in—kfk —Jnidk FJ—tintk = J i —nsx) | |BN.D):
k=1

N —

Note that here we changed the summation index k — —k in the second sum. Next,
we recall (2.20) and jo = j to observe that the terms involving jo and j, vanish when
applied to |Bn,p). The remaining terms can be rewritten as

1 - - - - -
3 Z(jn—k Uk £i-k) Fintit Flon—i ok £Ji) £j-n—iik
k>1

ok Gk £J k) Fiatd ok Fitlink £i_nis) :tj—kjn—k) |BN.D)-

By again employing the boundary conditions (2.20), we see that half of these terms
vanish when acting on the boundary state while the other half cancels among them-
selves. In summary, we have shown that

(Ln —L—,) [Bnp)=0.

2.2.2 Tree-Level Amplitudes

Cylinder Diagram in General

We now turn to the cylinder diagram which we compute in the closed sector. Referring
again to Fig. 2.4, in string theory we can interpret this diagram as a closed string
which is emitted at the boundary A, propagating via the closed sector Hamiltonian
Heosed = Lo + Lo — % for a time v = [ until it reaches the boundary B where it
gets absorbed. In analogy to Quantum Mechanics, such an amplitude is given by the
overlap

FO1) = (o8] ¢ (oo )

|B) , (2.26)
where the tilde indicates that the computation is performed in the closed sector (or
at tree-level) and [ is the length of the cylinder connecting the two boundaries.

Let us now explain the notation (®@B|. This bra-vector is understood as the
hermitian conjugate of the ket-vector |®B). Furthermore, we have introduced the
CPT operator @ which acts as charge conjugation (C), parity transformation (P)
o +— —o and time reversal (T) T — —t for the two-dimensional CFT. The reason
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for considering this operator can roughly be explained by the fact that the orientation
of the boundary a closed string is emitted at is opposite to the orientation of the
boundary where the closed string gets absorbed. For the momentum dependence of
a boundary state |B, mp), this implies in particular that

(7§ | 7l ) =8(n§ +=b). (2.27)

Without a detailed derivation, we finally note that the theory of the free boson is
CPT invariant and so the action of ® on the boundary states (2.21) of the free boson
theory (and on ordinary numbers ¢ € C) reads

2] B,m), ©cO'=c" (2.28)

1
B,]T()) = m

where * denotes complex conjugation.

Free Boson II: Cylinder Diagram (Tree-Channel)

Let us now be more concrete and compute the overlap of two boundary states (2.26)
for the example of the free boson. To do so, we note that for the free boson CFT we
have ¢ = ¢ = 1 and that

1
[P e
0 2]0]0+k§1 k Jk

and similarly for L. Next, we perform the following calculation in order to evaluate
(2.26). In particular, we use j_ji j"% |0) = my k j"%|0) to find

Seriiit fm) = TTS° E2H0 0 err (=)

e =13 5 g T () 1o
_OOOO(—Zﬂi‘L’)pm poo; j;lm[
_k:IP:O p i 4 = V! (*/7) o

—

g™ * |m). (2.29)

~
Il
—_

The cylinder diagram for the three possible combinations of boundary conditions is
then computed as follows.

* For the case of Neumann-Neumann boundary conditions, we have jo|Bn) =
JolBN) = 0 and so the momentum contribution vanishes. For the remaining part,
we calculate using (2.29) and (2.24)
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FENN Gy 2 € T 3 | e Dt/ |m)x

x (U] e 2 Zizti -k |Um)

271]( ) O 21k >im —2wl mpk >Rim

_ ZHe 7l my ) =11 =27l my (_1) =11
m j—

ll 1 g 1
HZ(“"”‘) = =

k=1m;=0 k=1

where in the last step we performed a summation of the geometric series. Let us
emphasise that due to the action of the CPT operator @ shown in (2.28), .4 is
just the square of .4~ and not the absolute value squared. Then, with g = ¢>**
and t = 2il we find that the cylinder diagram for Neumann—Neumann boundary
conditions is expressed as

FENN) 1 1
2, ) = —. (2.30)
o M2 n(2il)

* Next, we consider the case of Dirichlet-Dirichlet boundary conditions. Noting that
U now acts trivially on the basis states, we see that apart from the momentum contri-
bution the calculation is similar to the case with Neumann—Neumann conditions.
However, for the momentum dependence we compute using (2.27) and (2.28)

9
a b +ixdnd +ixbw a| —2mwl(jo)?| b
/ drf df 678 &+ (e 7o)
-0

o0 b s a_a b b 72711(7Tb)2 b
:/ dn§ dmg et T ¢ 0 8(71(‘)‘ +rr0)

—0Q

b_.a\? 2 2

0 —2nl(n0+l 7,) _ (X(b)_xg) 1 _ (Xg "3)

= dn(‘)‘ e e il = —— ¢ 87l
0 V21

where we completed a perfect square and performed the Gaussian integration.

In order to arrive at the result above, we also employed that in the closed sector

o =jo = ]_’0. The cylinder diagram with Dirichlet—Dirichlet boundary conditions
therefore reads

b _ ,a 2
FEOD) ) _ exp( (x5 — x6) ) B
A2 87l V21 n(2il)

¢ Finally, fgr mixed Neumann—Dirichlet conditions, the boundary state satisfies
Jo!Bp) = jo|Bp) = mo|Bp) which leads us to

/d?‘[() eizroxo(n,o — 0| e—27rlj§ |7TO) — /dﬂo eiﬂoxoe—anzrg 8(7‘[()) = 1.
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In the anti-holomorphic sector of the Dirichlet boundary state, the action of U on
the basis states |m) is trivial and so we obtain a single factor of (— 1)Zk "k, For the
full cylinder diagram, this implies

nl

nl oo 00 nl o0
% (mixed) ,,\ _ €°© —4mlk\™ _ _e°® 1
Zhos. (D= MAND [12 (_e ) R [1 1+ e4nlk’
k=1m;=0 k=1
One defines the [2 ](r, z)-functions as

4 I:Ol :I(‘L', z7) = z q%(nJrot)2 627”'(”+0£)(z+/3)’
IB nez

which can be shown to also have a representation as an infinite product

o
9|50 , | |
_ 2miaz+p) %5 —ng (1 n+o—5 27ri(z+/3))
— =e q +4q e
n(t) H

n=1

« (1 _i_qnfaf% 672ni(z+ﬂ))'

In particular one can write

n@=o[1P]eo= 3 ¢otd? 231)

n=—0oo

so that we can express the cylinder diagram for mixed boundary conditions as

Fomned V2 [0 QiD
bos. M | 922iD)

Loop-Channel—Tree-Channel Equivalence

Letus come back to Fig. 2.4. Asitis illustrated there and motivated at the beginning of
this section, we expect the cylinder diagram in the closed and open sector to be related.
More specifically, this relation is established by (o, T)open <> (T, 0)closed Where o is
the world-sheet space coordinate and t is world-sheet time. However, this mapping
does not change the cylinder, in particular, it does not change the modular parameter t.
In the open sector, the cylinder has length % and circumference ¢t when measured
in units of 277, while in the closed sector we have length / and circumference 1.
Then, the modular parameter in the open and closed sector are
o it o i

Topen = — = —= = 2if, Telosed = — = -
open al 1/2 close al l
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As we have emphasised, the modular parameters in the open and closed sector have
to be equal which leads us to the relation

= —

21

This is the formal expression for the pictorial loop-channel—tree-channel equivalence
of the cylinder diagram illustrated in Fig. 2.4.

We now verify this relation for the example of the free boson explicitly which
will allow us to fix the normalisation constants .4p and .44 of the boundary states.
Recalling the cylinder partition function (2.16) in the open sector, we compute

, o1 =5 I 1 M
7eN0) = s T f e s = T i),
: 2.1 n(it) 2, (_ 1 ) 2 n(2il) 2 08.
2il
where we used the modular properties of the Dedekind » function

7 (—fl) — VZit(o). (2.32)

Therefore, requiring the results in the loop- and tree-channel to be related, we can fix

SM=~2]. (2.33)

Next, for Dirichlet-Dirichlet boundary conditions, we find

% (D,D) 4 b z _1
Zos, (t) =CeXp (_ A (xo N xg) ) n (it)

1 2 1 =% (D,
1 (8-0)) gy =8 7L,
T n (=)

t:%
— eXp |—

which allows us to fix the normalisation constant as
N =1].

Finally, the loop-channel-tree-channel equivalence for mixed Neumann—Dirichlet
boundary conditions can be verified along similar lines. This discussion shows that
indeed the cylinder partition function for the free boson in the open and closed
sector are related via a modular transformation, more concretely via a modular
S-transformation.

Summary and Remark

Let us now briefly summarise our findings of this section and close with some
remarks.



2

D-Branes and Orientifolds 69

By performing the so-called world-sheet duality (o, T)open <> (T, 0)closed, W€
translated the Neumann and Dirichlet boundary conditions from the open sector to
the closed sector. In string theory, the boundary in the closed sector is interpreted
as an object which absorbs or emits closed strings.

Working out the boundary conditions in terms of the Laurent modes of the free
boson theory, we obtained the gluing conditions

(jn=Ej_n)|Bnp)=0

which imply that the two U(1) symmetries generated by j(z) and j(Z) are broken
to a diagonal U(1).

For the example of the free boson theory, we stated the solution |B) to the
gluing conditions and verified them. Along the way, we also outlined the idea
for constructing boundary states for more general theories.

The cylinder amplitude in the closed sector (tree-level) is computed from the
overlap of two boundary states

-
—onl (L0+L0JT4‘)

FC() = (OB e B) .

We performed this calculation for the free boson and checked that it is related to the
cylinder partition function in the open sector via world-sheet duality. In particular,
this transformation is a modular S-transformation.

Finally, the BCFT also has to preserve the conformal symmetry generated by
T(z). The boundary states respect this symmetry in the sense that the following
conditions have to be satisfied

(Ly =Ly )|Bnp) =0,

which we checked for the example of the free boson theory.

Very similarly, one can generalise the concept of boundaries and boundary states to
the CFT of a free fermion which is very important for applications in Superstring
Theory.

As we mentioned already, in string theory boundary states are called D-branes to
emphasise the space-time point of view of such objects. They are higher dimen-
sional generalisations of strings and membranes, and indeed they play a very
important role in understanding the non-perturbative sector of string theory. It was
one of the big insights at the end of the last millennium that such higher dimen-
sional objects are naturally contained in string theory (which started as a theory
of only one-dimensional objects) and gave rise to various surprising dualities, the
most famous surely being the celebrated AdS/CFT correspondence.

2.3 Boundary States for RCFTs

After having studied the Boundary CFT of the free boson in great detail, let us now
generalise our findings to theories without a Lagrangian description. In particular,
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we focus on RCFTs and we will formulate the corresponding Boundary RCFT just
in terms of gluing conditions for the theory on the sphere.

Boundary Conditions

We consider Rational Conformal Field Theories with chiral and anti-chiral symmetry
algebras <7 respectively <. For the theory on the sphere the Hilbert space splits into
irreducible representations of .7 ® <7 as

H =P My A @ H;
ij

where M; are the same multiplicities of the highest weight representation appearing
in the modular invariant torus partition function. Note that for the case of RCFTs we
are considering, there is only a finite number of irreducible representations and that
the modular invariant torus partition function is given by a combination of chiral and
anti-chiral characters as follows

Z(1,7) = D M xi(®) 4D
ij

Generalising the results from the free boson theory, we state without deriv_ation
that a boundary state |B) in the RCFT preserving the symmetry algebra &/ = 7 has
to satisfy the following gluing conditions

(Ly—L_,) |B)=0 conformal symmetry,
(2.34)

(W) — (= Wi_n ) |B) =0 extended symmetries,

where W}; is the holomorphic Laurent mode of the extended symmetry generator

Wi with conformal weight /' = h(W'), and W' denotes the generator in the anti-
holomorphic sector. However, the condition for the extended symmetries can be
relaxed, so that also Dirichlet boundary conditions similar to the example of a free
boson are included

(Wi— D" 2(W.,)) [B)=o0.

where §2 : o/ — ¢/ is an automorphism of the chiral algebra 7. Such an automor-
phism §2 is also called a gluing automorphism and for our example of the free boson
with Dirichlet boundary conditions, it simply is £2 : W, — —W,,.

Ishibashi States

Let us introduce the charge conjugation matrix C which maps highest weight repre-
sentations i to their charge conjugate i ™. Denoting then the Hilbert space built upon
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the charge conjugate represention by ij*, we can state the important result of
Ishibashi:

For o/ = o/and #; = I *, to each highest weight representation ¢; of

&/ one can associate an up to a constant unique state |%;)) such that the

gluing conditions are satisfied.

Note that since the CFTs we are considering are rational, there is only a finite number
of highest weight states and thus only a finite number of such so-called Ishibashi
states | %;)) .

We now construct the Ishibashi states in analogy to the boundary states of the
free boson. Denoting by |¢;, m) an orthonormal basis for .7, the Ishibashi states are
written as

|2) =D |, m) @ Ulg;, m), (2.35)

m

— —+. .. .
where U : 5 — 2 is an anti-unitary operator acting on the symmetry generators
W' as follows

Uw, Ut =" (w',)"

—n

The proof that the Ishibashi states are solutions to the gluing conditions (2.34) is
completely analogous to the example of the free boson and so we will not present it
here.

The Cardy Condition

For later purpose, let us now compute the following overlap of two Ishibashi states

ct+c

((93]| o2l (LO+Z0_ﬁ) |%l» (2.36)

Utilising the gluing conditions for the conformal symmetry generator (2.34), we see
that we can replace Lo by Ly and ¢ by c. Next, because the Hilbert spaces of two
different HWRs ¢; and ¢; are independent of each other, the overlap above is only
nonzero for i = j*. Note that here we have written the charge conjugate j of the
highest weight ¢; because the hermitian conjugation also acts as charge conjugation.
We then obtain

ctc

(] e Wt Do) | ) = 50 (1] 27 @D (0=5) | )
= 8+ xi(2il) (2.37)
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with x; the character defined as
xi(t) :=Tryp (qLU*ﬁ) (2.38)

over the Hilbert space .77 built on the highest weigth state ¢;. Performing a modular
S-transformation for this overlap, by the same reasoning as for the free boson, we
expect to obtain a partition function in the boundary sector. However, because the
S-transform of a character x;(2il) in general does not give non-negative integer
coefficients in the loop-channel, it is not clear whether to interpret such a quantity
as a partition function counting states of a given excitation level.

As it turns out, the Ishibashi states are not the boundary states itself but only
building blocks guaranteed to satisfy the gluing conditions. A true boundary state
in general can be expressed as a linear combination of Ishibashi states in the
following way

By) = Z Bl, | %)). (2.39)

The complex coefficients B(’;[ in (2.39) are called reflection coefficients and are very
constrained by the so-called Cardy condition. This condition essentially ensures the
loop-channel-tree-channel equivalence. Indeed, using relation (2.37) and choosing
normalisations such that the action of the CPT operator ® introduced in (2.28) reads

O |By) = Z (BL)" | B:+)), (2.40)

the cylinder amplitude between two boundary states of the form (2.39) can be
expressed as follows

Fop(l) = { OB,] 20 (0+T0=5) g
. . _on _(;-}—7[‘
= > B By (| TS |
= ZB;'X Bly xi(2il).

Performing a modular S-transformation [ +— % on the characters y;, this closed

sector cylinder diagram is transformed to the following expression in the open sector
E’Exﬂ(l) — %lg ZB’ Bﬂ Sij X] zt Z p X] Lt Zap (1),

where §;; is the modular S-matrix and where we introduced the new coefficients nfy 8
Now, the Cardy condition is the requirement that this expression can be interpreted
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as a partition function in the open sector. That is, for all pairs of boundary states |B,)
and |Bg) in a RCFT the following combinations have to be non-negative integers

Wy => BLByS; € If
i

Construction of Boundary States

The Cardy condition just illustrated is very reminiscent of the Verlinde formula,
where a similar combination of complex numbers leads to non-negative fusion
rule coefficients. For the case of a charge conjugate modular invariant partition
function, that is when the characters x;(r) are combined with ¥;+(7) as & =
> xi(t) X+ (T), we can construct a generic solution to the Cardy condition by
choosing the reflection coefficients in the following way

B = Sai |,
VLYY

Note, for each highest weight representation ¢; in the RCFT, there not only exists an
Ishibashi state but also a boundary state, i.e. the index « in |By) also runs from one
to the number of HWRs. Employing then the Verlinde formula

SinSjnS™"
k mnjn
Nf=Y T (2.41)

n

and denoting the non-negative, integer fusion coefficients by N;" , we find that the

Cardy condition for the coefficients n’a 8 is always satisfied

: Sai Spi Si Sai Spi S _ it -
= 3 IS S R N e 2

i i

Note that here we employed S;“j = S+ which is verified by noting that § I =§*as
well as that $? = C with C the charge conjugation matrix Cij = d;+.

2.4 CFTs on Non-orientable Surfaces

Up to this point, we have studied Conformal Field Theories defined on the Riemann
sphere respectively the complex plane, and on the torus. For Boundary CFTs, the
corresponding surfaces are the upper half-plane and the cylinder. We note that all
these surfaces are orientable, that is an orientation can be chosen globally.
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However, in string theory it is necessary to also define CFTs on non-orientable
surfaces. One such surface is the so-called crosscap RP? which can be viewed as
the two-sphere with opposite points identified. Other non-orientable surfaces are the
Mobbius strip and the Klein bottle, and a summary of all surfaces relevant for the
following is shown in Fig. 2.5.

Orientifolds

Before formulating CFTs on non-orientable surfaces, let us briefly explain the string
theory origin of such theories. Recalling the action for a free boson (2.1), we observe
that this theory has a discrete symmetry denoted as §2 which takes the form

2 X('L’, 0) = )?(r a) = X('L’, —a), (2.42)

with 7 and o again world-sheet time and space coordinates. To see that the action
(2.1) is invariant under 2, observe that

2 (0:X)(1,0) 27" = —(3,X) (1, —0),

2.43
2 (3:X)(r,0) 27" = +(8:X) (r, —0). (249

Next, let us note that from the mapping (2.42), we see that £2 acts as a world-
sheet parity operator. In the string theory picture, this means that §2 changes the
orientation of a closed string. As with any other symmetry, we can study the quotient
of the original theory by the symmetry. Since §2 changes orientation, in analogy to
orbifolds, such a quotient is called an orientifold.

The Example of the Free Boson in More Detail

Let us further elaborate on the action of the orientifold projection §2 for the free
boson. We first note that —o has to be interpreted properly because we normalised the
world-sheet space coordinate as o € [0, 2) for the closed sector and as o € [0, 7]
in the open sector. The correct identification for —o then reads

—Oclosed ~ 27T — Ocloseds —Oopen ™~ 7T — Oopen-

Next, we consider the free boson in the closed sector and express d;X in (2.43) in
terms of the Laurent modes j, and j, using (2.5)

2 3:X) (1,0) 27" = — (3, X) (r, —0)

Z( 2 jn 01 pnlrtio) _ _QJ-n o1 e—n(r—icr))
nez
_ Z (_jn (T +i2n—0)) +.;n e—n(r—i(Zn—a))) .

nez
(2.44)
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Complex Plane

Upper Half-Plane
Cylinder @
Torus A A
Mébius Strip
(non-orientable)
Klein Bottle A A
(non-orientable)
Crosscap A Y
(non-orientable)

Fig.2.5 Two-dimensional orientable and non-orientable surfaces. On the left-hand side, the funda-
mental domain can be found and it is indicated how opposite edges are identified leading to the
surfaces illustrated on the right-hand side. Note that for the identification of opposite edges the
orientation given by the arrows is crucial
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From this relation we can determine the action of 2 on the modes in the closed sector
as follows

Q. '=j, 2j 27" =j,. (2.45)

For the open sector, we have to replace 2w on the right-hand side in (2.44) by &
which leads to an additional factor of (—1)". Using then the boundary conditions
of an open string (2.6) which relate the Laurent modes as j, = +j,, we obtain the
action of §2 in the open sector as

Qi 27 =+(=1D"j, (2.46)

where the two signs correspond to Neumann—Neumann respectively Dirichlet—
Dirichlet boundary conditions. For the case of mixed boundary conditions, we recall
that the Laurent modes have labels n € Z + % and we note that §2 interchanges the
endpoints of an open string as well as the boundary conditions. In particular, we find

ijlN,D) Q*l — _(_l)n jle,N)’ QJE[D’N) 9*1 — +(_1)l’l j,(zN’D)- (247)

Partition Function: Klein Bottle

Let us now consider partition functions for general orientifold theories. We start with
the usual form of a modular invariant partition function in a CFT

2@ =T,y 5( a5 70F), (2.48)

where we indicated the trace over the combined Hilbert space .7 x . explicitly.
Next, we generalise our findings from the example of the free boson and define the
action of the world-sheet parity operator £2 on the Hilbert space as follows

Q1ij)==%|2(),20G)), (2.49)

where i denotes a state in the holomorphic sector of the theory and j stands for the
anti-holomorphic sector. The two different signs originate from the two possibilities
of §2 acting on the vacuum |0) compatible with the requirement that £2%> = 1. The
simplest choice for £2(i) is £2(/) = i, but also more general Z, involutions are
possible, for instance $2 (i) = i where T denotes charge conjugation.

In order to obtain the partition function we project the entire Hilbert space ¢ x
J onto those states which are invariant under £2, i.e. we introduce the projection
operator %(1 + £2) into the partition function (2.48). We therefore obtain

— 1+82 ;e 1<
79 (r,7) = Tr}fxf/f( — gz gho 24)

1 1 C T,
= 5 Z(t,7) + E Trﬂxy( 2 qLO_T q 0_24)'
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The first term is just one-half of the torus partition function which we already studied.
Let us therefore turn to the second term

ZH (@7 =Tty 7 (2 475 7F). (2.50)

The insertion of §2 into the trace has the effect that by looping once around the
direction t of a torus, the closed string comes back to itself up to the action of £2,
that is up to a change of orientation. Geometrically, such a diagram is not a torus but
a Klein bottle illustrated in Fig. 2.5. This is also the reason for the superscript 2 of
the partition function and for its name: the Klein bottle partition function.

We will now specify the action of £2 as £2(i) = i and £2 |0) = +]0) in order to
make (2.50) more explicit. For this choice we obtain

(ijls]ij)={ij

where we used Eq. (2.49). Therefore, only left-right symmetric states |i, i) contribute
to the trace in (2.50) and we can simplify the partition function as follows

i) =8, (2.51)

20%(1-’ T) = Trﬁ”x%( 0 qLo—ﬁ qzo—%)

=SVij|led el ed el @

ij

ij)
=Sii| 2o e egh i o

1

ii)

where we employed (2.51). Since only the diagonal subset will contribute to the

trace, we see from this expression that effectively Lo and Ly as well as ¢ and ¢ can
be identified. Observing finally that g = e~*7™, we arrive at

77 @ n = (iil(gg)" "

i

i) =Trg, ( et (Lo=57) ) (2.52)

with t = 15 and J%y,. denoting the states | ii ) in the Hilbert space which are
combined in a left-right symmetric way.

Free Boson III: Klein Bottle Partition Function (Loop-Channel)

Let us now determine the Klein bottle partition function for the example of the free
boson. As it is evident from (2.52), this partition function is the character of the
free boson theory with modular parameter t = 2it. However, for the momentum
contribution, we need to perform a calculation similar to the one in the open sector
shown on page 57. In particular, from (2.52) we extract the jj part, replace the sum
by an integral and compute

—4mr L 2 oo Azt L 72 1
Tr sty ( ¢ 270 ) - dmg e 270 = E ;
—0o0



78 R. Blumenhagen

where we observed that in the closed sector jo = mp. Combining this result with the
character of the free boson theory, we obtain the following expression for the full
Klein bottle partition function

1 1
ﬁ n (Zit) '

%X (1,7) =

(2.53)

Partition Function: Mobius Strip

After having studied CFT's on non-orientable surfaces in the closed sector, let us now
turn to the open sector. Again, the partition function has to be projected onto states
invariant under the orientifold action §2. Following the same steps as for the closed
sector, we find

14 £ 1 1 ¢
Z2(1) = Try, ( +T e—2m(Lo—ﬂ)) = (1) + 3 Tr%( Q o 2mt(Lo—33) )

The first term is the cylinder amplitude, but the second term
2 (1) = Try, ( Q ¢ 21(Lo—5) ) (2.54)

describes an open string whose orientation changes when looping along the ¢ direc-
tion. The geometry of such a surface is that of a Mobius strip also shown in Fig. 2.5.
The corresponding partition function is called the Mobius strip partition function
and hence the superscript . .

Free Boson IV: Mobius Strip Partition Function (Loop-Channel)

We now calculate the Mobius strip partition function for the free boson. The Hilbert
space of the the free boson is spanned by states of the form

It mana, ) =" (0, withn; >0, (2.55)

where j,, are the modes of the current j(z). Recalling then the mapping (2.46), we
see that the action of £2 on a state in the Hilbert space is

o0
2 nimpng, )= [ED™ (=D |ny.ng.ns, ).
k=1

Taking the action of £2 into account we arrive at

—L g ny kne kn
=q % [ D™ (—nfm gt

without jo k=1 n=0

i T 1
(—q) 2 IN—- (2.56)
k=1 1F (—q)

Tr(yfg8 (.Q qLO_ﬁ )

‘ Bl

=
N

= e2
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We also note that —g with modular parameter T can be expressed as +¢ with modular
parameter T + %

For Neumann—Neumann boundary conditions, i.e. for the upper sign in the expres-
sion above, we employ the definition of the Dedekind n-function (2.14). However,
since the momentum 7 is unconstrained, we compute

—271 L j2 oo —27t L 2mp)? 1
Tror,| 2 e 270 — dmg e 2 [
—0o0

2t

where we used that jg is invariant under §2 as well as that in the open sector jo = 2.
The full Mobius strip partition function in the Neumann—Neumann sector then reads

1
g ONN) gy 5 (2.57)
bos. 2\/— 77( + lt)

For Dirichlet-Dirichlet conditions, that means the lower sign in (2.56), we find
for instance from (2.46) that jo = 0O so that there is no additional factor from the
momentum integration. Recalling the expression for the ¥;-function from equation
(2.31) we obtain

ZOD) 1y _ 51

bos.

(2.58)

For mixed boundary conditions, the Mobius strip partition function vanishes as §2
exchanges Neumann—Dirichlet with Dirichlet—-Neumann conditions and so there is
no contribution to the trace.

Loop-Channel-Tree-Channel Equivalence

For the cylinder partition function, we have seen that the result in the open and closed
sector are related via a modular S-transformation. One might therefore suspect that
this equivalence between partition functions and overlaps of boundary states can also
be found for non-orientable surfaces.

This is indeed the case which we illustrate in Fig. 2.6 for the Klein bottle partition
function.

1. The fundamental domain of the Klein bottle shown in Fig. 2.6a is that of a torus
up to a change of orientation. However, as opposed to the torus, the modular
parameter of the Klein bottle is purely imaginary.

2. InFig. 2.6b, the fundamental domain is halved and the identification of segments

and points is indicated explicitly by arrows and symbols.

Next, we shift one half of the fundamental domain as shown in Fig. 2.6c.

4. In Fig. 2.6d, the shifted part has been flipped and the appropriate edges have been
identified.

et
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Fig.2.6a—e Transformation of the fundamental domain of the Klein bottle to a tree-channel diagram
between two crosscaps

5. A fundamental domain of this form can be interpreted as a cylinder between two
crosscaps as illustrated in 2.6e.

Analogous to the cylinder diagram (2.26), we expect now that the Klein bottle ampli-
tude can be computed as the overlap of two so-called crosscap states |C) in the
following way

3,:;;((1) — (6 (| 872711(Lo+207%45)

IC) . (2.59)
Considering then again Fig. 2.6d we find the modular parameter in the tree- and
loop-channel as

o 2it o i

Topen = —— = ; = 4it, Tclosed = a = 29
and because of the tree-channel-loop-channel equivalence, they have to be equal.
This implies that the length of the cylinder in Fig. 2.6e and equation (2.59) can be
expressed as [ = %. We will elaborate on these crosscap states in more detail in the

next section.
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Fig.2.7a—e Transformation of the fundamental domain of the Mobius strip to a tree-channel
diagram between an ordinary boundary and a crosscap

For the Mobius strip amplitude, we can apply the same cuts and shifts as for
the Klein bottle amplitude. As it is illustrated in Fig. 2.7, the resulting tree-channel
diagram is a cylinder between an ordinary boundary and a crosscap. We thus expect
that in the tree-channel, we can calculate the M6bius strip in the following way

_ Lo—ctc
2wl(Lo+To=5F) |y | (2.60)

F() = (O Cle
Finally, for the modular parameters in the tree- and loop-channel, we obtain

o 4it . o i
Topen = — = T = 8it, Telosed = — = -,
(03] = ol l
2
which leads us to [ = %.

Remarks

* A summary of the various loop-channel and tree-channel expressions together with
their modular parameters can be found in Table 2.1.
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Table2.1 Summary of loop-channel-tree-channel relations

Loop-channel T=... Tree-channel l=...
Torus Tr%x?(qm_ﬁ 520_%) T=71+in
Cylinder Tr e, (qL“_ﬁ) T =i ©Ble ™ (LO+Z{ _%) IB) =5
Kleinbotle  Trye,, (4~ ) T = 2it (© e (T 5F) 10y L
Mobius strip  Tr s, (.Q qLD*ﬁ) T=it (© B| s (LO+Z07%) IC) = %

e Almost all §2 projected CFTs in the closed sector are inconsistent and require
the introduction of appropriate boundaries with corresponding boundary states. In
string theory, these conditions are known as the tadpole cancellation conditions
which we will discuss in the final Sect. 2.7.

2.5 Crosscap States for the Free Boson

Similarly to boundary states which describe the coupling of the closed sector of
a CFT to a boundary, for orientifold theories there should exist a coherent state
describing the coupling of the closed sector to the crosscap. In particular, analogous
to the observation that a world-sheet boundary defines (or is confined to) a space-time
D-brane, we say that a world-sheet crosscap defines (or is confined to) a space-time
orientifold plane.

In this section, we will discuss crosscap states for the example of the free boson,
and in the next section we are going to generalise the appearing structure to RCFTs.

Crosscap Conditions

We start our study of crosscap states by recalling the transformation of the Klein
bottle respectively Mobius strip amplitude from the open to the closed sector shown
in Figs. 2.6 and 2.7. There, we encountered a new type of boundary, the so-called
crosscap, where opposite points are identified. For the construction of the crosscap
state, we will employ this geometric intuition, however, later we also compute the
tree-channel Klein bottle and Mobius strip amplitudes to check that they are indeed
related via a modular transformation to the result in the loop-channel.

As it is illustrated in Fig. 2.8, in an appropriate coordinate system on a crosscap,
we observe that points x on a circle are identified with —x. Parametrising this circle
by o € [0, 27), we see that the identification x ~ —x corresponds to ¢ ~ ¢ + 7.
For a closed string on a crosscap, we thus infer that the field X at (z, o) should be
identified with the field X at (7, o + 7). More concretely, this reads

X(t.0) |C)=X(r,0 +7) |C), (2.61)
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Fig.2.8 Illustration of how
points are identified on a
crosscap, and how a closed
string couples to a crosscap. xo0
a Identification of points on a
crosscap. b Closed string at a
cross-cap

—X<—O0+7

(a) (b)

and for the derivatives with respect to T and o, we impose

(3:X)(x,0) |C) = +(3:X)(r, 0 + ) |C),

2.62
(3:X)(z,0) |C) = —(3:X)(x, 0 + 1) |C). (2:62)

Let us now choose coordinates such that ¢ = 0 describes the field X(z, o) at the
crosscap |C). Using then the Laurent mode expansions (2.5) as well as (2.62) with
t = 0, we obtain that

Un =
Un +
where, similarly as in the computation for the boundary states, we performed a change

in the summation index n — —n. By adding or subtracting these two expressions,
we arrive at the gluing conditions for crosscap states

) €)= +(=D"(jn =j-a) |C),

Jon
Jo) €)= =(=1)" (i +7_y) |C).

(n + (=" j_,) [Cot) = 0. (2.63)

Note that we added the label O1 which stands for orientifold one-plane. The
reason is that by inserting the expansion (2.8) of X(z, o) into (2.61), we see that
the center of mass coordinate x( of the closed string is unconstrained. In the target
space, the location of the crosscap is called an orientifold plane which in the present
case fills out one dimension because there is no constraint on x¢. This explains the
notation above.

Construction of Crosscap States

Apart from the factor (—1)", the gluing conditions (2.63) are very similar to those
of a boundary state (2.20) with Neumann conditions. The solution to the gluing
conditions is therefore also similar to the Neumann boundary state and reads



84 R. Blumenhagen

—1)k
|C01)=%exp( Z( k) jJ k)}o) (2.64)

k=1

where we employed (2.33) and allowed for a relative normalisation factor ¥ between

the boundary state with Neumann conditions |Byn) and the crosscap state |Coy).
The proof that (2.64) is a solution to the gluing conditions (2.63) is analogous to

the one shown on page 62. Note in particular, the crosscap state can be written as

|Cot) = Z Im) ® |Um) (2.65)

with the anti-unitary operator U acting in the following way

Uj, U™ === (_,)". (2.66)

Remark

Letus make the following remark. In equation (2.42), we have chosen a specific orien-
tifold action 2 for the fields X (z, o) which leaves the action (2.1) invariant. However,
we can also accompany §2 by another operation, for instance #Z : X(t,0) +—
—X(t, o), which also leaves (2.1) invariant. The combined action then reads

LA X(r,o') I—))?(‘L’,U) = —X(r, —a).

Note that this orientifold action describes a different theory and that there is no direct
relation to the results obtained previously.

Performing the same steps as before, we arrive at the following expressions for
the combined action £2% on the Laurent modes j, and j,

closed sector 2 Z ju($2 %)_1 =—jp R%j,(2 %’)_1 = —j,,

open sector 2 R jn (82 %)_1 FD" g

For the action of Z on the states, we find
% [m) = (=1)>" |m),

which results in additional factors of (—1) in various loop-channel amplitudes.
Concerning the construction of crosscap states, also the identification (2.61) receives
an factor of (—1) which results in gluing conditions of the form

(in — (=" j_,) |Coo) =0,

which is similar to the Dirichlet conditions for boundary states. The notation OO0 indi-
cates that the orientifold plane does not extend in one dimension but is only a point.
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And indeed, using the expansion (2.8) of X(z, o) for X(z,0)|C) = —X(7, 0)|C),
we see that the center of mass coordinate xq is constrained to xo = 0. Finally, we
note that the solution to the gluing conditions in the present case reads

o0 k

|Coo) = « exp(—i—z { kl) j—kjk)’ 0).

k=1

After this remark about a different possibility for an orientifold projection, let
us continue our studies with our original choice (2.42) which leads to O1 crosscap
states |Co1).

Free Boson V: Klein Bottle Amplitude (Tree-Channel)

As we have argued in the previous section, from the overlap of two crosscap states
we can compute the Klein bottle amplitude (2.59) in the closed sector, that is in the
tree-channel. In order to do so, we recall the crosscap state (2.65) with the action of
U given in (2.66). Noting for a basis state (2.23) that

o0
U jm) = [T(=1)™ (=)™ |m), (2.67)
k=1
and following the same calculation as on page 65 for the overlap of two boundary
states in the Neumann—Neumann sector, we obtain

K2

2 Qi)

55;%(01,01)(1) =(© Co| o2 l(Lo+Lo—5) |Col) =

bos.

(2.68)

Note that @ is again the CPT operator introduced in equation (2.28) which, in partic-
ular, acts as complex conjugation on numbers. Finally, recalling from Table 2.1 the
relation [ = 417 between the tree-channel and loop-channel modular parameters, we
find the loop-channel amplitude to be of the form

~ K =L I{2 K2 1
dei/(Ol,Ol)(l) 4

bos. =

29l 29 (—%) 22 Qi

where we employed the modular property of the Dedekind n-function from equation
(2.32). By comparing with the loop-channel result (2.53), we can now fix

Kk =2

Free Boson VI: Mobius-Strip Amplitude (Tree-Channel)

Eventually, we compute the overlap of a crosscap state and a boundary state giving
the tree-level Mobius strip amplitude. Employing equation (2.67) and performing



86 R. Blumenhagen

a similar calculation as on page 65, we find for the Mdbius strip diagram in the
Neumann sector that

FMOWN () = (@ Coy| e otTo=50) |y

bos.

o
pas
et [1

Pl —4nl)k

[\
9|
£l

(2.69)

Sl= Sl-

1—
;
n (3 + 2il)

where we expressed (—1) as e” " and absorbed the additional factor into the definition
of the modular parameter. The computation of the Mdbius strip amplitude in the
Dirichlet sector is very similar to the Neumann sector. We find

47 (01.D) (l) _ <@ Coﬂ e~ 2ml(Lo+Lo—5) }BD)

bos.

where we used again the definition of the -functions. The momentum integration
in this sector is trivial since jo acting on the crosscap state vanishes. This is again
similar to the computation of the cylinder amplitude for mixed boundary conditions
shown on page 67.

Modular transformations

After having computed the tree-channel Mobius strip amplitudes, we would like to
transform these results to the loop-channel via the relation / = 8t However, by
comparing with the loop-channel results (2.57) and (2.58), we see that this cannot be
achieved by a modular S-transformation. Instead, we have to perform the following
combination of 7- and S-transformations

P = TST? S. (2.70)
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For the n-function with shifted argument, this transformation reads

(l +2'l) s 1 i
"2 "\ Tau )\ Taau
T2 4il i xi
— 7 + ] - i - e o6
5 +2il 5 +2il
2+2ll
+211 V

Ry ( 2+211
H T) J—
T 1
— = Vie™ 6612
81
B 1+i
“"\27T s

where in the last step we employed that /i = ¢4 . For the Mobius strip amplitude
with Neumann boundary conditions, we then compute the transformation from the
tree-channel to the loop-channel as follows

N

\_/

§\~§\

=>4 (01,N) e 1 P zi 1 1

bos. (l) = E n (% + 2il) =& . 2\/_ 77( + ll)

By comparing with the loop-channel result (2.57), we have verified the loop-
channel—tree-channel equivalence for the Mdbius strip amplitude in the Neumann
sector.

In passing, we note that the Mobius strip loop- and tree-channel amplitudes for the
Dirichlet sector are also related via a modular &7-transformation. In the same manner
as above, one can then establish the loop-channel—tree-channel equivalence.

New Characters

In the last paragraph of this section, let us introduce a more general notation for
the Mobius strip characters. We define hatted characters X () in terms of the usual
characters x () as follows

(@) =™ =2 y (v 4+ %) : (2.71)

The action of the Z-transformation (2.70) for the new characters x(t) can be
deduced as follows. From the mapping of the modular parameter T = 2il under
the combination of S- and 7-transformations

T3 1 TST2S i 1 T

26— 2ty G .
2 81 81
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we can infer the transformation of the hatted characters ¥ (t) as
0 ~n . 1 2 1
%i(g;) = ZP,, %(2i) with P=T2ST*ST2,
J
where 7'7 is defined as the square root of the entries in the diagonal matrix
Tij = 8,’1'627”-(}”_&). (272)
Note that the P-transformation corresponds to the S-transformation of the usual
characters, in particular, P realises the loop-channel—tree-channel equivalence.
Finally, using some properties of the S-matrix
sts=s5"=1, sT=¢ (2.73)
as well as the relation > = (ST)? = C with C the charge conjugation matrix

»*=c, P=c, pPP=pPP=1, P =P (2.74)

2.6 Crosscap States for RCFTs

Let us now generalise the construction of crosscap states to Conformal Field Theories
without a Lagrangian description. In particular, we focus on RCFTs and we mainly
state the general structure without explicit derivation.

Construction of Crosscap States

The crosscap gluing conditions for the generators of a symmetry algebra & ® &7
are in analogy to the conditions (2.63) for the example of the free boson and read

( Li—(=1)"L_, ) |C) =0 conformal symmetry, 2.75)
(W= (=1)" (= Wi_n ) |C) =0 extended symmetries, .

with again ' = h(W'). For & = < and #; = z%”ﬁ, we can define crosscap
Ishibashi states |%7)) satisfying the crosscap gluing conditions. A crosscap state |C)
can then be expressed as a linear combination of the crosscap Ishibashi states in the
following way

C)=>"T"1%). (2.76)
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In fact, the crosscap Ishibashi states and the boundary Ishibashi states are related via
| €)= e T 1) 2.77)

Indeed, knowing that the boundary Ishibashi states | %;)) satisfy the gluing conditions
(2.34), we can show that the (2.77) satisfy the crosscap gluing conditions. To do so,
we compute

e—JTiLO Ln e+JTiL0 — (_l)n Ln’ e—ﬂiL() W:l e+7TiL0 — (_1)}1 erl’

where we used that W' is a primary field. For the generators of the conformal
symmetry, we can then calculate

o T IO (L) — (=1)" Ly ) | 63))

— ¢~ 7 iLo—h(¢i) (Ln — (=1 L_, ) o7 {Lo—h(¢) | B;))

= (_])n (Ln - Z—n ) | %))

= O7
and the condition for the extended symmetry generators is obtained along the same

lines. Therefore, the crosscap Ishibashi states (2.77) satisfy the gluing conditions
(2.75).

The Cardy Condition

Similarly to the boundary states, we expect generalisations of the Cardy condition
arising from the loop-channel—tree-channel equivalences of the Klein bottle and
Mobius strip amplitudes. In order to study this point, we compute the Klein bottle
amplitude in the following way

~ ., _ Lo— €€
Z7 (1) =0 Cle 2mi(Lo+Lo 24)| C)
— ZFI Fj ((%l+| eﬂ i(Lo—h(¢j)) 62711'(2l'1)(L0—§) eJT l(L()—h((PJ)) |@1)>
i.j
— ZFZ FJ 81] e—2m(h(¢,)—2‘—4) ((t%]' 62711'(21'14'1)([‘0—&) |%]>)

ij
= ()2 e 2@ 5) il + 1)
i

= Z(rl)z o 2mi(h(g)— %) Z Ty x;Qil) = Z(rl‘)2 ¥i (2il),
i j i
where © is again the CPT operator shown for instance in (2.40), and where we

employed Eq. (2.37) as well as the modular 7-matrix given in (2.72). In the next
step, we perform a modular S-transformation to obtain the result in the loop-channel
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= 2 ; 2 .
FX() =D (I @il = (I') S xi(2in).
i ij
Now, the Cardy condition is again the requirement that the expression above can be
interpreted as a partition function. Since this partition function includes the action of

the orientifold projection §2, the coefficient in front of the character has to be integer
but does not need to be non-negative

Z(Fi)zsl‘jZKj e Z.
i

For the Mobius strip amplitude, we compute along similar lines

~ _ Lo— &€
F (1) = (O Cle 2711(L0+Lo 24)|Ba)
— Zrl B]a <(=@[+| en’ l(L()*/’l((P,)) ezni(zil)(L()*i) |%j)>
]

o . B i(2i1+1 _c

5 g D

i.j
=D 1" B, e ™= y;(2il + 1)

i
= > I B, 7i@il) = > ' B, P %(it).

i i.j

where we employed the hatted characters (2.71) together with their modular trans-

formation. Interpreting this expression as a loop-channel partition function, we see
that the coefficients have to be integer

ZFiBéPijZmaj e 7Z.
i

Similar to the Cardy boundary states, for the charge conjugate modular invariant
partition function explained on page 73, one can show that these integer conditions
are satisfied for the reflection coefficients of the form

ri— Py; B — S i
VSoi Y VSoi
The Klein bottle and Mdbius strip coefficients can then be written as two Verlinde
type formulas

PoiPoiSij 0 SaiPoiPjj 0
G=2, —o=Yp,  myg=, S =Y
SO: S()l

i i

From the relations (2.74), we can deduce P;;- = P+ and in particular P(’)"l. = Py,
which allows us to establish the connection to the general coefficients
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Y.’?=ZS”P]'1P;§1
v Soo

!

As it turns out, the coefficients Yl.]j‘. are integer, guaranteeing that the loop-channel
Klein bottle and Mobius strip amplitudes contain only integer coefficients.

Remark

With the techniques presented in this section, it is possible to construct many orien-
tifolds of Conformal Field Theories. However, one set of essential consistency
conditions for the co-existence of crosscap and boundary states is still missing. These
are the so-called tadpole cancellation conditions which we are going to discuss in a
simple example in the final section of these lecture notes.

2.7 The Orientifold of the Bosonic String

We finally apply the techniques developed in this lecture to orientifold theories with
boundaries and crosscaps. In particular, we are going to consider a string theory
motivated but still sufficiently simple orientifold model which is the §2 projection
of the bosonic string. More interestingly, this theory is actually analogous to the
orientifold construction of the Type IIB superstring leading to the so-called Type I
superstring. However, this needs a more detailed treatment of free fermions which we
have not presented here and which is not necessary to understand the mathematical
structure of such theories.

Details on the String Theory Construction

The bosonic string is only consistent in 26 flat space-time dimensions and is thus
described by 26 free bosons X* (o, t) with u = 0, . . ., 25. The quantisation of string
theory in this description, the covariant quantisation, is slightly involved. However,
by defining

Xt = %(XO(G, O +X', r)), X~ = %(XO(G, 0 - X', r)), (2.78)

imposing so-called light-cone gauge and using constraint equations, we are left only
left with the momentum p™ as a degree of freedom. For the computation of the char-
acters, we can therefore simply ignore the contribution from X 0 (0, 1) and X! (o, 7)
so that we are left with the Conformal Field Theory of 24 free bosons X/ (z, o) where
I =2,...,25. Since the bosonic string is made out of 24 copies of the free boson
CFT, for the computation of the partition functions we can use our previous results.
These have been summarized in Table 2.2 for later reference.
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Table2.2 Summary of all loop- and tree-channel amplitudes for the example of the free boson with
orientifold projection (2.42)

Loop-channel Tree-channel
1
%7 (1,7) = —— —1
bos. ) !’Z(f)}z
_ 1 1 X (01,01 (y _ 1
22X @) =75 ) Zgs. () = 5am
€ (N.N) 1 1 ;7€ (N,N) 1
Zhos. o = 21 1 @n Zios, 0 = T(Zil)
FEOD) e—ﬁ(x(’i—xs)z FEOD () _ L e—ﬁ(xl?—xs)z
bos. n (n) bos. V20 (20
n
€ (mixed) 7 (it) - € (mixed) _ n (2il)
"@,i)os n= 194(1t) » EO'Z)bOSA 0 = V2 (2il) )
A (N,N) 1 zi . (01,N) 1 1 xi
Z 1)=—F —F——— e2A A ) = —= e
bos. (1) = Zﬁ T](%‘Fl‘l) bos. ( ) V2 n(%+2i1)
L
+ 7i ~ n| 5 +2il 7i
200 - vz [ x Fzow =vi [
) : 02(4+2i1)

In our previous definition of the open and closed sector partition functions, we
employed the notion common to Conformal Field Theory. However, for the relevant
quantities in string theory, we have to integrate over the modular parameter of the
torus, Klein bottle, cylinder and Mobius strip. After performing the integration over
the light-cone momentum p™, the expressions relevant for the following are

7 It g ¢ _ [T A e
VA — Z7 (7, 7), z =/ — Z ),
Teich r2 0o 41 (2.79)
H A M M
z / S5 270, z / T 270,

The domain of integration for the torus amplitude Z 7 is the so-called Teichmiiller
space. Itis the space of all complex structures 7 of a torus T> which are not related via
the SL(2, Z)/Z, symmetry. An illustration can be found in Fig. 2.9 and the precise
definition reads

1 1
Teich:{re(C —§<r1<+—

7| > 1} (2.80)

Torus Partition Function for the Bosonic String
Let us now become more concrete and determine the torus partition function for the

bosonic string in light-cone gauge. Since this theory is a copy of 24 free bosons, we
recall from Table 2.2 the form of -Q%Z and combine it into

d d*t 1 1
77 — C (%7 ) = ar (2.81)
bos. . 2 12 2
Teich 752 Teich Ty Tp ‘7724(T)|

In order to become more explicit, let us expand the Dedekind n-function in the
following way
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Fig.2.9 The shaded region y
in this figure corresponds to
the Teichmiiller space of the
two-torus T2

+i

1

mzq_l(1+24q+324q2+...). (2.82)

Using this expansion in (2.81) together with the string theoretical level-matching
condition which leaves only equal powers of ¢ and g, we arrive at

d*z . 2
Zyz/ —g ette 1+24e2””+...‘
Teich T
d2
N L et ( 14 (24)2 e ) . (2.83)
Teich Ty

Let us now study the divergent behaviour of this integral.

* Although the integrand in (2.83) diverges for 7 — 0 due to the factor of 7, 14 the
whole integral is finite because the domain of integration (2.80) does not include
72 = 0. Therefore, this expression is not divergent in the infrared, i.e. there is no
singularity for small ;. Let us emphasize that the finiteness in this parameter region
is due to the modular invariance of the torus partition function which restricts the
domain of integration to the Teichmiiller space.

* Next, we turn to the behaviour of (2.83) for large 7. We see that the first term gives
rise to a divergence in the region t; — oo which corresponds to a state with nega-
tive mass squared, i.e. a tachyon. Thus, the theory of the bosonic string is unstable.
In more realistic theories, for instance the superstring, such a tachyon should be
absent and we do not expect problems due to divergences in the ultraviolet.

* In summary, the torus partition function of the bosonic string is finite in the infrared
due to modular invariance. In the ultraviolet, the partition function is divergent due
to a tachyon which renders the theory unstable.
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Klein Bottle Partition Function for the Bosonic String

As the title of this section suggests, we want to study the orientifold of the bosonic
string and so we have to determine the Klein bottle amplitude. Following the same
steps as for the torus, we arrive at

., 1 [ dt ) 24 1 © dt 1
K _ - “© H — “
=3 /0 2 (#50) =5m /0 20

In order to simplify the integrand, we perform a transformation to the tree-channel
with modular parameter ¢ = % by employing the modular properties of the Dedekind
n-function (2.32)

Zl/(t) =g ngf(ozs,ozs)(l)_L mﬂ@l)m 1
2B fy 42 2

o0 1
= 2/ dl ———.
o nei

The notation O25 deserves some explanation. Since we are studying the bosonic
string in a 26-dimensional space-time, the orientifold projection naturally acts also
on the light-cone coordinates (2.78). By choosing the orientifold projection (2.42), we
have an orientifold plane extending over all 26 dimensions. However, the convention
in string theory is such that only the space dimensions are counted which explains
the term O25.

Similarly as for the torus partition function, let us now expand the tree-channel
Klein bottle amplitude. Using Eq. (2.82) we obtain

o0
77X (025025 1) — 2 / dl (e“” Ly24 43240 4 ) (2.84)
0

The first term in (2.84) corresponds again to the tachyon and should be absent in
more realistic theories. We therefore ignore this problematic behaviour. However,
the second terms corresponds to massless states and gives rise to a divergence since
in the present case, the domain of integration includes t = % = 0. This term will not
be absent in more refined theories and so at this point, the orientifold of the bosonic
string is not consistent at a more severe level.

A Stack of D-Branes

As it turns out, the divergence of the Klein bottle diagram can be cancelled by
introducing a to be determined number N of D25 branes. The notation D25 means
that these D-branes fill out 25 spatial dimensions and it is understood that they always
fill the time direction.

If we put a certain number of D-branes on top of each other, we call it a stack
of D-branes. However, since there are now multiple branes, we can have new kinds
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of open strings. In particular, there are strings starting at D-brane i of our stack and
ending on D-brane j. We thus include new labels, so-called Chan—Paton labels, to
our open string states

m. i.j) = [m) ®i. )

where |m) denotes the states for a single string and i, j = 1, ..., N label the starting
respectively ending points. We furthermore construct the hermitian conjugate (i, j|
in the usual way such that

(ij|i.J )= 38w (2.85)

Next, we define the action of the orientifold projection acting on the Chan—Paton
labels. Since §2 changes the orientation of the world-sheet, it clearly interchanges
starting and ending points of open strings. But we can also allow for rotations among
the D-branes and so a general orientifold action reads

N

)= vl ) s (2.86)

=1

2

where y is a N x N matrix. Without presenting the detailed argument, we now require
that the action of £2 on the Chan—Paton labels squares to the identity. For this we
calculate
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from which we infer the constraint on the matrices y to be symmetric or anti-
symmetric

yT =4y, (2.87)

In string theory, the two different signs correspond to gauge groups SO(N) and SP(N)
living on the stack of D-branes.

Let us now come to the final part of this paragraph which is to determine the
contribution of the Chan—Paton labels to the partition function. For the Cylinder
partition function, we calculate with the help of (2.85)
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Z(t) = Trpy, (quﬁ) — Z(n | 2% | n) x Z( i)

= Z(n } qLO_ﬁ | n) x NZ.
n

Therefore, the effect of N D-branes is taken care of by including the factor N for the
cylinder partition function. Let us next turn to the Mdbius strip partition function.
Concentrating only on the Chan—Paton part, we find using (2.85) and (2.86) that

N N
Z( L, ] , '>: Z ( ) )(y_l)i’i
ij=1 R j’=1

Z Sijr jir VJJ )i’i
i,j,i',j'=1

:Tr(y )/_1)=:|:N,

where in the final step we also employed (2.87). In summary, by including a factor of
£N in the Mobius strip partition function, we can account for a stack of N D-branes.

Cylinder and Mobius-Strip Partition Function for the Bosonic String

After this discussion about stacks of D-branes, let us now compute the cylinder and
Mobius strip partition functions for a stack of N D25-branes. Since the D-branes fill
out the 26-dimensional space-time, the open strings always have Neumann—Neumann
boundary conditions.

For the cylinder, we recall from Table 2.2 the form of a single cylinder partition
function and combine it with the relevant expression from (2.79) to obtain

ZENN) () = Nz/ d( é(NN)())%:N_z/Ooﬂ_l
4 ), 2 \Fbos 226 J, % %

where we included the factor N? as explained above. In order to extract the diver-
gences, we perform a transformation from the loop- to the tree-channel via t = % to
find

1 2 00
%€ (N,N) =x S€(N,N) N / dl 14 1
V4 t —_— Z )= — — (21 _
@) @ 226 fo 212 @) n* (——1.)

N2 [o° 1
=5 / dl —3 5
2= Jo n=*(2il)

With the help of (2.82), we can again expand this expression. The first terms read as
follows
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0 N2 o)
26N ) = 2 / dl (e“" Lyo4+34e !y )
0

Next, we turn to the Mobius strip contribution. Along similar lines as above, we
recall from Table 2.2 the expression for the partition function of a single free boson
and combine 24 copies of it into the M&bius partition function

N [*>dt 24 N [ dt
ZANN) () — 4 _/ a (%ﬁ/(N,N)m) . Tﬁ/ A
4ot h 270 Jo 1'% (5 +it)

i

In order to extract the divergences more easily, we transform this expression into the
tree-channel via the relation t = é and the modular &2 transformation (2.70)

M (N,N) =g =4 (N,N) N [* d 14 e
0 (3 +5)
N o0 eJTi

=+ EYREPY
2 Jo n?4(5 + 2il)

Expanding this expression with the help of (2.82), we find

~ N o0
Z7ON () =+ S [l (7 - 244324 L),
0

Tadpole Cancellation Condition
After having determined the divergent contributions of the one-loop amplitudes, we

can now combine them into the full expression. Leaving out the torus amplitude,
we find

(z%(ozs,ozs) ) +Z%”(N,N)(l) _’_Z///(N,N)(l))

oo
- / di (e‘“” (22 +2-25N +2)
0

N =

+24(226:F2-213N+N2)
+324e’4”1(226:i:2-2]3N+N2) T ) (2.88)

The first terms with prefactor ¢*"/ stem again from the tachyon which in a more

realistic theory, e.g. Superstring Theory, should be absent. We will therefore ignore
this divergence. The next line with prefactor 24 corresponds to massless states which
will not be absent in more refined theories. However, we can simplify this expression
by noting that
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2
(2% F2-28N 4N ) = (225N

We thus see that by taking N = 2!3 = 8192 D25-branes and choosing the minus
sign corresponding to SO(N) gauge groups, the divergence is cancelled. In summary,
we have found that

For the orientifold of the bosonic string with N = 8192D25-branes and gauge
group SO (8192), the divergence due to massless states is cancelled. This is

the famous tadpole cancellation condition for the bosonic string.

Finally, it is easy to see that the proceeding terms in (2.88) with prefactors e~#*/ and
powers thereof do not give rise to divergences in the integral.

Remarks

* Here we have discussed a very simple example for a CFT with boundaries. The
next step is to generalise these methods for the superstring, in which case we
have to define boundary and crosscap states for the CFT of the free fermion. The
orientifold of the Type IIB superstring defines the so-called Type I string living in
ten-dimensions and carrying gauge group SO(32) instead of SO(8192).

* Many examples of such orientifold models have been discussed for compactified
dimensions. These include orientifolds on toroidal orbifolds and also orientifolds
of Gepner models. For this purpose, one first has to find classes of boundary and
crosscap states for the .4~ = 2 unitary models and then for Gepner models, in
which the simple current construction is utilised in an essential way. Finally, one
has to derive and solve the tadpole cancellation conditions. All this is a feasible
exercise but beyond the scope of these lecture notes.
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Chapter 3
Introduction to Gauge/Gravity Duality

Johanna Erdmenger

3.1 Introduction

The AdS/CFT correspondence and its generalizations to gauge/gravity duality are
undoubtedly one of the major developments in theoretical physics of the last decade.
Following the original paper by Maldacena [1] in 1997, with the additions of Witten
[2] and Gubser, Klebanov and Polyakov [3] in early 1998, a wealth of achievements
has been obtained, as far as both our understanding of string theory and applications
to strongly coupled systems are concerned. In its original form, the correspondence
maps string theory on Anti-de Sitter spaces (AdS) to conformal quantum field theories
(CFT), which have a high degree of symmetry. This is referred to as the AdS/CFT
correspondence. In the meantime, many generalizations to maps between gravity
theories and quantum field theories with less symmetry have been proposed. These
are summarized under the notion of gauge/gravity duality.
Let us start by giving the (rough) statement of gauge/gravity duality:

* Some quantum field theories are equivalent to (quantum) gravity theories;
e In particular limits, the gravity theory becomes classical and the corresponding
quantum field theory (QFT) strongly coupled.

The second point makes the duality particularly useful since by other methods,
dynamical processes are inaccessible in the strongly coupled regime of QFTs:
Normally, QFT calculations are done by means of perturbation theory, but this only
works at weak coupling. Lattice gauge theory is a powerful way out of this dilemma
in some cases, but it is hard to use for capturing dynamics, in particular at finite
temperature and density.
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Since the AdS/CFT correspondence links different areas of theoretical physics,
in particular quantum field theory, general relativity, string theory, supersymmetry
and conformal symmetry, we begin these lectures with an overview over some pre-
requisites which are essential for understanding the correspondence. These include
conformal symmetry and .#" = 4 supersymmetry, large N gauge theory, the geome-
try of Anti-de Sitter space, and D-branes. Then we move on to explaining the corre-
spondence in its simplest example, which is the map between .4 = 4 SU(N) Super
Yang-Mills theory and type IIB superstring theory on AdSs x S°. In a subtle limit,
which we explain, this becomes a duality between ./* = 4 SU(N) Super Yang—Mills
theory in the limit N — oo at strong coupling and classical type IIB supergravity
on AdSs x §°. There is no mathematical proof of the AdS/CFT correspondence as
yet, but overwhelming evidence for its correctness. The conjecture states that the
two theories are equivalent including observables, states, correlation functions and
dynamics.

The ten-dimensional spacetime of the string theory side contains a five-dimensio-
nal Anti-de Sitter spacetime with a four-dimensional boundary. The four-dimensional
QFT can be regarded as living on this four dimensional boundary. In analogy to
conventional holograms (which encode three dimensional information on a lower
dimensional surface), the AdS/CFT correspondence is said to realize the holographic
principle.

As in any field theory, symmetries are of central importance for gauge/gravity
duality. The two equivalent theories have the same symmetries. Moreover, the corre-
spondence provides a one-to-one map between classical gravity fields and quantum
operators of the field theory, i.e.a holographic dictionary. This map then identifies
representations of the common symmetry group.

We conclude these lecture notes with a brief outlook on more general examples
of gauge/gravity duality by explaining how to include finite temperature and density
on the field theory side. This is the starting point for applications for instance to
the quark-gluon plasma within heavy ion physics or to strongly coupled systems of
relevance for condensed matter theory.

As to the literature to this subject, let us refer to the original papers [1-4] which
marked the birth of the AdS/CFT correspondence. Several review articles for the
AdS/CFT correspondence followed [5—8]. Finally, [9-12] are helpful references for
generalizations and applications in the context of gauge/gravity duality.

Note: The AdS/CFT correspondence can be formulated equivalently either in
Minkowski or in Euclidean signature. Depending on the aspects considered, either
Minkowski or Euclidean signature may be more appropriate. For instance, the
calculation of n-point correlation functions is most easily performed in Euclidean
signature. On the other hand, for describing time-dependent processes such as trans-
port phenomena, using Minkowski signature is essential. In these lecture notes, we
will use both signatures alternatively, while clearly indicating in each case which
one is used.
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3.2 Preparations

Understanding the AdS/CFT correspondence involves background knowledge in a
number of areas. Most prominently, quantum field theory, general relativity, super-
symmetry and some aspects of string theory are essential. In this section we recapitu-
late a few necessary prerequisites for AAS/CFT: These include conformal symmetry
in more than two dimensions, .4/~ = 4 supersymmetry, the geometry of Anti-de Sitter
spaces and some aspects of D-branes.

3.2.1 Conformal Field Theory in d Dimensions

Conformal symmetry is of central importance for the AdS/CFT correspondence. In
fact, the best known example for AdS/CFT, relating ./~ = 4 Super Yang-Mills
theory to an appropriate supergravity theory on AdSs x S, involves a conformal
field theory in four dimensions. The symmetry group of conformal transformations
in d dimensions coincides with the group of isometries in d + 1-dimensional Anti-de
Sitter space. This is one of the key ingredients of the correspondence.

3.2.1.1 Conformal Coordinate Transformations

Conformal coordinate transformations are defined as those local transformations
x* > x"*(x) that leave angles invariant. In a Euclidean d-dimensional space R? we
therefore can write

dxy, dx = Q27 (x) dx], dx'™. (3.1)
The corresponding infinitesimal coordinate transformation from old coordinates x to
new coordinates x’ is given by
xP = x4 v (x), (3.2)
where

Lx)=1—-0ckx), okx)= é d-v(x). (3.3)

Equivalently to (3.1) we can formulate an equation for the vector v, the conformal
Killing equation,

vy + 0y =20 (%) Ny (3.4)
Taking its trace yields the expression (3.3) for o (x). We will work in d dimensional

Euclidean space where 7, = §,,. Solutions v to (3.4) are referred to as conformal
Killing vectors, the most general one reads
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v =ay + o x’ +Axy Fbux* =20 -x)xy, wpy=—wy. (3.5

This Killing vector leads to the scale factor o(x) = A — 2(b - x). Equation (3.5) is
valid for any d. Note that in the special case of d = 2 the conformal Killing equation
(3.5) is nothing but the Cauchy-Riemann equations

d01v] = dpvo, 01V = —0pVy. (3.6)

Thus, in d = 2 all holomorphic functions v(x) are solutions and generate conformal
coordinate transformations. In this case we have an infinite number of functions
solving (3.5), accompanied by an infinite number of associated conserved quantities.
However, we will mostly consider theories in d = 4 dimensions, for example on the
boundary of AdSs. Here we have a finite amount of conserved quantities. Counting
the independent components of the factors in the solutions (3.5) amounts to a total
number of 15, namely

ay 4
wuy + 6
A+ 1
b, + 4
total  15.

On curved space, conformal transformations amount to a Weyl rescaling of the metric,

guv(x) = " Pg(x). (3.7)

The general conformal Killing vector (3.5) may be viewed as the combination
of elementary transformations. The group of “large” conformal transformation is
generated by infinitesimal elements of the conformal algebra. Following [13, 14],
we define locally orthogonal tranformations & corresponding to a group element g
of the conformal group as

/

3
RS (x) = 28 (x) ;TZ (3.8)

One can easily show that #Z € O(d), i.e. that %ﬁa ()R, (x) = 8,v. The group
multiplication and the inverse are given as follows

B (gx) BE(x) = B8 (0, (#40) T =A% (gn) . (3.9)
With these we can construct translations and rotations as
XL =Zuxy +a,, 2 =1 (3.10)

Scale transformations (<> 1) and special conformal transformations (<> b, ) involve
a non-trivial 2 factor



3 Introduction to Gauge/Gravity Duality 103
Xy =Ax, £20) =2, (3.11)

2
T T : 2
X, = 250 25(x)=1+2b-x+ bx“. (3.12)
Together, these transformations form a group isomorphic to SO(d+1, 1) (or SO(d, 2)
in Minkowski spacetime). All transformations belonging to this group can be con-
structed by performing translations, rotations, and inversions; the latter are given by

X, =: (ix), =

i Qi) =2, (3.13)

el
x2’

R}y (x) =t Ly (x) = 8y — 2 (3.14)

Special conformal transformations can be composed by concatenating inversion +
translation + inversion.

3.2.1.2 Conformal Fields and Correlation Functions

So far we examined coordinate transformations. Now we will investigate the behav-
iour of fields. For instance, the .4~ = 4 Super Yang-Mills theory (SYM) mentioned
in the introduction only contains fields transforming covariantly under the conformal
group. In general QFTs (such as QED or QCD), conformal symmetry is generically
broken by quantum effects (anomalies).

A necessary condition for a field theory to be conformally symmetric is a vanishing
B-function. The latter describes the change of a coupling g with energy scales u, i.e.

0
B(g) = a—g (3.15)
w

so B(g) = 0 is a necessary condition scale invariance. Generically, 8(g) = 0 occurs
for specific values of g only, which correspond to the renormalization group fixed
points. However, for .4/~ = 4 Super Yang-Mills theory, it has been shown that the
beta function vanishes for all values of the coupling g.

A conformally covariant operator & of a conformal field theory (CFT) transforms
as follows under infinitesimal conformal transformations (with Killing vector v and
o=09-v/d)

1
8,0 =—(L,0), L,=v(x)-0+Ac(x)— 3 O (X) Sy - (3.16)
Here, A denotes the scaling dimension of the operator ¢ and S,,,, a generator of O(d)

in an appropriate representation. It only affects spinor, vector and tensor fields but
no scalars ¢
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Svp=—(vx)-d+A0)e. (3.17)

In this section, we work in Euclidean signature and follow again [13, 14]. In general
QFTs, correlation functions are defined as time ordered vacuum expectation values,
e.g. a two-point function of some field ¢ is given by

() 9() == (O[T ¢(x) () |0), (3.18)

three-, four- and higher point functions by analogous expressions. Generically, their
computation is quite involved and possible only in the framework of perturbation
theory.

Let us also give the path integral analogue of the definition (3.18) in the operator
approach. In a scalar field theory governed by action S[¢], the partition function Z
and a general correlation function (&) is defined by the path integrals

1
Z::/@(pe_s[w], (0) = Z/%p Oe Sl (3.19)

In CFTs, conformal symmetry is so strong that it determines the form of the two- and
three-point correlation functions up to a manageable number of parameters. In the
notation (x — y)2 = (x — y) w(x — y)#, the two- and three-point functions of scalars
@; with scale dimensions A; are given by

8
(01(0) 92(7)) = (;_Aﬁ (3.20)
k
(@10 0200 ¢3(2)) = (x — y)A1+A2*A3 y— Z)*A|+A2+A3 (x — Z)A17A2+A3
(3.21)

with constants ¢,k determined by the field content.

Four-point correlators (@1 (x)@2(y)@3(2)@4(w)) are less constrained by the sym-
(x—y)? -2’

G A G

metry since they involve dimensionless cross ratios

3.2.1.3 The Energy Momentum Tensor in a CFT

The symmetric energy-momentum tensor T, generates the Noether currents asso-
ciated with conformal symmetry if the conservation law 9, 7" = 0 (or rather
V. T* = 0 in curved spacetime) is imposed. The infinitesimal transformations
with conformal Killing vector v** gives rise to the conserved current

=Ty, (3.22)

In this subsection, we will show an important property of the energy momentum
tensor in a conformal field theory, namely its tracelessness Tﬁ =0.

Itis acommon method in QFT to introduce sources for operators in a QFT’s action,
and then express the operator (in correlation functions) as the functional derivative
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of the generating functional. To do so, the action Sy of our theory is modified by an
additive term which couples the operator to its source. For instance consider some
scalar operator ¢ and its source J,

Sle, J]1 = Sole] + / d%x (x)J (x). (3.23)

Correlation function of that operator ¢ may now be calculated as the functional
derivative of the generating functional W[J] := — In Z[J] of the theory with respect
to the source J, e.g.

SWIJ]

(p(x)) m (3.24)

One can also apply this procedure to vector and tensor operators,
S =S —i—/ddx (9J + Vy A* + Ty g™). (3.25)

It can be shown that the source of the energy momentum tensor is exactly the object
that has the properties of a metric. So the energy momentum tensor is obtained by
calculating

2 Wigl

- Jldetg| 88" (x)

The metric transforms under conformal coordinate transformations induced by a
vector field v as §,¢"" = 20g"", so requiring invariance of W implies

_ . a. SWigl
0=46W[g]l = /d x—gng(x) 8

detg| T,
Z/ddX(—W)-(Zog“V)

= —/ddx‘/|detg| " o. (3.28)

Typ(x) = (3.26)

v8MY (x)
(3.27)

Since T, ** vanishes upon integration against an arbitrary function o, one can conclude
the announced tracelessness of the energy momentum tensor

T, =0. (3.29)

3.2.2 . = 4 Super Yang-Mills Theory

In this section we want to develop the field theory side of the AdS/CFT
correspondence—the maximally supersymmetric SU (N) gauge theory. This A4~ = 4
Super Yang—Mills theory is an example for a d = 4 dimensional CFT. In the follow-
ing, the ingredients will be introduced step by step.
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3.2.2.1 Non-Abelian Gauge Theories

Super Yang-Mills theory is a non-abelian gauge theory, i.e. its fields take values
in the algebra of a non-abelian gauge group. QED, on the other hand, is associated
with the abelian gauge group U(1). Let us take it as an introductory example for the
necessity of a gauge field.

Consider a complex scalar field ¢ (x) transforming under local U (1) transforma-
tions as

() = "D o), @) = 3, (7D o) £ TP 900, (3.30)

The derivative 9, ¢ obviously does not transform like the field ¢ itself, so a connection
A, is required in order to define a gauge covariant derivative:

Dup(x) = (8 + iAu) o(x) — €W Do) & Ay — Ay — 3,0 (3.31)

With A, transforming like that, we can use the covariant derivative D, to con-
struct gauge invariant objects (e.g. kinetic terms in the action). Furthermore, the field
strength tensor

Flyp = 0,4, — 3,A, (3.32)

is unaffected by gauge transformations of A,, since 90,10 = 0.

The most important examples of non-abelian gauge groups in these lectures are
SU(N) with N > 2. One has to distinguish two transformation properties of fields
under the non-abelian SU (N):

* Fields transforming in the fundamental representation of the gauge group are
elements of an N dimensional vector space

q,-(x)—>(eiﬂa(x)Ta)ijqj(x), i,j=1,2,...,N, a=1,...,.N*—1. (3.33)

The SU(N) generators T¢ are traceless hermitian N x N matrices and ensure that
7T is unitary. If the parameters 9% (x) are infinitesimal, the field g; is shifted by
an algebra element

qi(x) > gi(x) + i9°(x) (T g;(x) . (3.34)

* Fields transforming in the adjoint representation of the gauge group are aligned
into the N2 — 1 dimensional algebra su(N),

o7 =0 (1] > (77) Ko (1! (7T (335)

Infinitesimally, conjugation by a group element ¢/”“7" involves the commutator

[T%, T?] = if®>“T¢ of the su(N) generators
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Fig.3.1 A cartoon of the
3-point and 4-point vertices.
The 3-point vertex is
proportional to the coupling
constant g, and the 4-point
vertex to g>

¢a Ta _>¢a Ta+l(19b Tb¢a Ta _¢(l Ta ﬁb Tb)
=¢aTa _ ll?bd)a [Ta’ Tb]
= @I T + f¢ ¢ 9P T . (3.36)
Non-abelian gauge fields A, = AjT“ give rise to a non-abelian field strength
tensor in the adjoint representation
Fuy = 04A, — 0A, +ig[Au, Ay
= (9uA% — 9,A% — g f° AL AC) T (3.37)
The transformation properties of F,, can be deduced from its alternative definition

as a commutator of (non-abelian) gauge covariant derivatives (with g denoting the
gauge coupling)

. . ) . i
(Dy)i? =817 9, +igAS, (T)/, Fpuy=— . [D,.. Dy]. (3.38)

One can thus form a gauge invariant action for the field strength by taking a trace
over the i, j indices of the generators

S[A] ~ / d*xTe{F" F ) (3.39)

The non-linear contribution to F,, gives rise to interactions with the vertices
(Fig. 3.1).

It turns out that in .4/ = 4 Super Yang—Mills theory, due to the large amount of
supersymmetry all fields are in the adjoint representation of the gauge group. On
the other hand, in QCD, the quark fields are in the fundamental representation of
the gauge group. Given the success of the AdS/CFT correspondence, extensions of
AdS/CFT have been considered where quark degrees of freedom are added to the
original setup, in view of describing theories more similar to QCD in at least some
respects. For a review of these extensions, see for instance [10].
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3.2.2.2 The 1/N Expansion

As first pointed out by Gerard t’Hooft in 1974, SU(N) gauge theories simplify
considerably in the limit N — oo. This limit also enters gauge/gravity duality in a
crucial way.

The large N limit is motivated by an expansion used in statistical mechanics, where
the number of field components is taken to be large and an expansion in the inverse
of this number is performed. The expansion of SU(N) theory in 1/N rearranges the
Feynman diagrams in such a way that they correspond to a string theory expansion
with string coupling 1/N. This suggests that SU(N) gauge theories are equivalent to
string theories, at least at large N. A particular virtue of the AdS/CFT correspondence
is to make this mapping between field theory and string theory precise for a well-
defined class of examples.

Forillustrating the relation between a field theory expansion in the large N limit and
a string theory expansion, let us consider a toy model originally advocated by Sidney
Coleman [15]: This model involves a scalar field ¢ in the adjoint representation of
the gauge group SU(N), with ¢ = ¢T“. More explicitly, writing out the indices of
the matrices 7%, we have

o = ¢ (T . (3.40)

Moreover it is assumed that the interaction vertices mimic Yang-Mills theory—a
three point vertex ~g and a four point vertex ~g2. The toy model’s Lagrangian then
reads

& ~Tr{dpdo} + g Tr{¢’} + ¢* Tr{e"} . (3.41)

A rescaling g¢ — ¢ turns this into
1
L~ (Tr{d¢ g} + Tr{¢®} + Tr{(b4}) . (3.42)

To have a well-defined N — oo limit, it is convenient to introduce the t’Hooft
coupling

A= gym>N. (3.43)

If we send N — oo at constant X, the coefficient of (3.42) diverges but the number
N? — 1 of components in the fields diverges as well. In fact, a subtle cancellation
mechanism between the two infinities will take place. To see this at work, we analyze
particular Feynman graphs in the t’"Hooft limit. In the notation (3.40), the propagator
of the field ¢ has the structure

. . 1 .
(B () o' () = (si’akf - 8 ’) (3.44)

4m2(a—y)?
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>
j <« k

Fig.3.2 The double line notation: fundamental and anti-fundamental fields are represented by
directed lines with the color indices at both ends. An adjoint field may be seen as a direct product
of a fundamental and an anti-fundamental field

which is found using the SU(N) completeness relation

N2—1 ‘ | . 1
D@ = 3 (ai’(skf — 5 87 % l) : (3.45)

a=1

The space-time dependence of the propagator is the appropriate one for a scalar
field in four dimensions. In the N — oo limit, the term removing the trace, i.e.the
second term in the bracket in (3.44), is subleading and may be ignored. Then the
expression (3.44) for the propagator suggests a double line notation according to
Fig. 3.2. Feynman diagrams then become networks of double lines. Vertices scale
as %, propagators as %, and the sum over indices in a trace contributes a factor
of N for each closed loop. If we introduce the shorthand notation (V,E,F) for the
numbers of vertices, propagators (edges) and loops (faces) respectively, diagrams
are proportional to

diagram(V, E, F) ~ NV 7EFF JE=V — Nx R BV (3.46)
The power of the expansion parameter N is precisely the Euler characteristic
x=V—-E4+F=2-2g, (3.47)

related to the surface’s number of handels (the genus) g. Any physical quantity in
this theory is given by a perturbative expansion of type

o0 oo ) oo
DINTED g idi =D NTHEL() (3.48)
g=0 i=0

§=0

with f, (1) a polynomial in the t’Hooft coupling. For large N, the series is clearly
dominated by surfaces of minimal genus, the so-called planar diagrams. As an
example let us compare the vacuum amplitudes shown in Fig. 3.3. In this simple toy
model, it is not known which string theory fits to the perturbative series. For 4" = 4
SYM, however, the AdS/CFT correspondence tells us which string theory leads to
the correct expansion, namely to the ten-dimensional type IIB superstring theory on
AdSs x 5.
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Fig.3.3 The Feynman diagrams (/eff) can be translated to double line diagrams (middle), which
in turn can be interpreted as Riemann surfaces of well defined topology (shaded). These surfaces
(deformed to the shape on the right) can be interpreted as stringy Feynman diagrams. While the
upper diagrams are planar (o< N2), the lower diagrams are non-planar of genus g = 1 (o< N°). The
propagator and the interaction vertex of a closed string are depicted on the right pictures

|

|
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o
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3.2.2.3 Supersymmetry

We know to have Poincaré symmetry in the flat Minkowski spacetime, which is
equipped with a “mostly positive” metric of signature n = diag(—, +, +, +). Gen-
erators of translations and Lorentz transformations will be denoted as P, and L,
respectively. Supersymmetry now enlarges the Poincaré algebra

[Lp,v s PA] =—i (nuk Py — s, P;,L) > (3.49)

[Lp,v s Lkp] =—i (mm va — Nupp Ly, + Mvp Lp,A — v Lup) (3.50)

by including spinor supercharges Q. In so-called Weyl notation we have a left-handed
spinor Q4 and its right-handed counterpart Ous = (Qg‘()T where the SL(2, C) indices
a, & take values 1, 2 and a counts the number of independent supersymmetries
a=1,...,.4.The Q’s transform as Weyl spinors of SO(1, 3) = SL(2, C)/Z;. The
two-component Weyl spinor notation is related to the Dirac four-spinor notation by

a 0 o,
0 = (gzd) L oyt= (Wﬁ O“ﬁ), (351)

where o* = (—1, o) and 6* = (—1, —o'') are four vectors of 2 x 2 matrices with
the standard Pauli matrices o/ as their spatial entries.

The supercharges commute with the generators of translations but otherwise obey
the algebra
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{04, Ops} =— 2"513 P, sh. {04, Q%) =2e4p 2. (3.52)

Here the operators Z% are referred to as central charges. They commute with all the
Poincaré- and supersymmetry generators Q¢ and need to be antisymmetric Z% =
—7b in order to respect the anticommutator’s symmetry. Therefore, for .4 = 1
supersymmetry, we have Z = 0.

The supersymmetry algebra (3.52) is invariant under global phase rotations of
the supercharges Qf , into each other. This forms an R symmetry group denoted as
U(1)Rr. In addition, when .4 > 1, the different supercharges may be rotated into
one another under the unitary group SU(N)r which extends the R symmetry.

The field theory in the AdS/CFT dictionary has .4/~ = 4 supersymmetries. Let
us briefly explain why this is the maximal supersymmetry for a pure gauge theory
without gravity: Each supercharge Q¢, Q. changes the spin of the state it acts on
by 1/2. In absence of gravity, helicities between —1 and +1 occur, hence no spin
modification greater than 2 = A« - 1/2 is allowed.

In the .4 = 4 theory we have R symmetry SU(4) = SO(6). This is exactly the
isometry group of the sphere in the AdS5 x S° background on the string theory side
of the correspondence. The AdSs factor has the symmetries encoded by SO(4, 2)
in Minkowski space or SO(5, 1) in an Euclidean formulation. These groups are
isomorphic to the conformal group in d = 4 dimensions according to our analysis
in Sect. 3.2.1.1.

3.2.2.4 Field Content of . /" = 4 Supersymmetric Field Theory

Representations of the supersymmetry algebra make up the SUSY multiplets. Their
components are spin 1 vector fields, spin % fermion fields and spin O scalar fields.
In A" = 4 supersymmetry we encounter maximal supersymmetry if s = 1 is the
highest spin in a SUSY-multiplet. This implies that we cannot describe gravity with
this theory, because the graviton is supposed to have spin 2.

For any .4 with 1 < .4 < 4 we encounter one gauge multiplet, which is a
multiplet transforming in the adjoint representation of the gauge group (while we are
used to have matter fields in the fundamental representation in non-supersymmetric
theories). For .4 = 4 this is the only possible multiplet.

Lower symmetry .4 = 1 and .4~ = 2 also admits matter multiplets which we
will not discuss here, though. (But to make you familiar with the names, the multi-
plet in the fundamental representation in .4~ = 1 SUSY is called chiral multiplet,
and the multiplet in the fundamental representation in .4 = 2 SUSY is called the
hypermultiplet). The content of the .#” = 4 multiplet is given in Table 3.1. Note that
this theory is non-chiral. The Lagrangian may be written as
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Table3.1 The field content of the .#” = 4 supersymmetry multiplet and the representation in which
these fields transform with respect to the R symmetry group SU(4)r = SO(6)r

Field Range Representation of SU (4)r
Vector Ay . (1) singlet
Weyl fermions AL, XS, a=1,2,3,4 (4) fundamental
Real scalars Xt i=1,2,..., 6 (6) adjoint

1 0! - N g
L= Tr[ —2—g2FWF’”—i—Sn—ZFWF‘”—zZA“J"DuAa
a
— > DX DMX g > C g [X, 1]
i

a,b,i

2
+8 > Ciap A [X7, A7) + ‘% S x0T ] (3.53)
a,b,i i

Here the trace is summing over gauge indices &, 8 which are suppressed in the
expression above. They appear if we rewrite the adjoint fields correctly as linear

combinations of the generators 74 of the gauge group, e.g. (X ’)g = XAT4p. The
symbol 6! denotes the instanton number and F ., = 5 &5, F**

The C ?b are the structure constants of SU(4)r. Note that there is only one cou-
pling constant g. On the classical level this theory is conformal with engineering
dimensions of the fields as [A,] = 1, [A] = 3/2, [X] = 1 and therefore [g] = 0. The
dimensionless coupling and absence of any mass term are necessary for conformal
invariance.

The Lagrangian (3.53) is invariant under SUSY-transformations given by

6X)% = [Q%. X'] =C gy,
Orpp)'a = {Q% . Agp} =F;f, (0" €)ap 8% + [X'. X £ap (Ci)% .
(035 % = {Q%. A3} =Ci" ol DX,

@AMy = [Q% . AM] =al 3P (3.54)

Note that F' ;V is the self-dual part % (Fuy +F wv) of the field strength, and the constants
(Cjj)j, are related to bilinears in Clifford Dirac matrices of SO(6)r . Upon quantization
of this theory, one finds that the S-function vanishes to all orders of pertubation theory
(and even non-perturbatively), therefore we are left with a CFT even at quantum level.
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3.2.2.5 The Superconformal Algebra and Its Representations

The concept of supersymmetry together with the conformal group form the super-
conformal group SU (2, 2|14). The SU (2, 2) part represents the symmetry of the Weyl
spinors while the SU(4) refers to the R symmetry group SU(4)r of the A4 = 4
supersymmetry.

The AdS/CFT map will provide a direct one to one mapping between operators
on both sides of the correspondence. This relies heavily on the fact that on both sides
the operators fall into representations of the same symmetry groups. The generators
of the superconformal group are given by

* Conformal symmetry with generators P,,, L,,,, D, K, : In addition to the Poincaré
algebra (3.49) and (3.50), the conformal algebra involves commutators
[D, P =—iP,,
[D, K| =iK,,
[Luv. D] =0, (3.55)
[L;w’ Kp] = =i (Mup Ky — yp Ky
[P, K] =2iLy, —2inu,D.
* R symmetry SO(6)r = SU(4)r with generators TA,A = 1,2,...,15. The
SO(4,2) and SU(4)r subgroups commute. B
¢ Poincaré supersymmetry with generators Q% , Qu4, a = 1, 2, 3, 4 subject to (3.52).

* Conformal supersymmetry generators Sy, and S4¢ which introduce the following
anticommutation relations
{ ff,, Ql;}} = {SO{01 Sﬂb} = {QZ’ S'Z} =0,
{05, 04} =2(0")y3 Pup,
S 3.56
{59, Sp} =200 K53 (3:20)

1
{04, Sgp} = eap D+ 3 8 Ly (01 €)ap .

Central charges are assumed to vanish throughout these lectures.

The fields A, (x), A9 (x), A% (x) and X' (x) of the SUSY multiplet (a = 1,2, 3, 4

andi = 1,2, ..., 6)canbe used to construct composite operators of .4/~ = 4 SYM. A
regularization prescription is needed when multiplying fields at the same spacetime
point.

We define a superconformal primary operator € by
[S, ﬁ] =0, (3.57)

i.e. the &’s are the lowest dimensional operators in a representation of SU (2, 2|4).
This is the generalization of the primary operator condition [K,, '] = 0 in bosonic
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conformal field theory (which is in fact implied by (3.57) since two S generators
anticommute to K’s).
An operator &’ is a superconformal descendant of O if

o' =0, 0], (3.58)

¢ and 0" then belong to the same superconformal multiplet, i.e. the same represen-
tation of SU(2, 2|4). The scale dimension is shifted as Ay = Ay + %

Of central importance are single trace operators (taking a trace is necessary to
ensure gauge invariance)

0 =Te{x"x2 .. X"} =sTr{X" X" ... X"}, (3.59)

They are also referred to as half BPS operators since they are annihilated by half the
spinorial generators S (but not by the other half Q).

3.2.3 Anti-de Sitter Space

In this section we will examine Anti-de Sitter spacetime and compare it to flat
Minkowski spacetime. As mentioned earlier, one side of the AdS/CFT correspon-
dence is so-called type IIB superstring theory formulated on the spacetime AdSs x S°.
We will not discuss string theory now. Instead we want to get familiar with the space-
time and see how it may be connected to the more familiar Minkowski spacetime
RIS,

The most important facts about AdSs x S° spacetime for us are of geometrical
nature. We already stated that the isometry group of this spacetime is the same as the
symmetry group of the quantum field theory on the other side of the correspondence.

The key result of this section will be that the boundary of the Euclidean com-
pactification of AdSs spacetime is equal to compactified R*, which is the Euclidean
compactification of the Minkowski spacetime we live in. To see this equivalence we
will make use of so called conformal diagrams which enable us to draw an image
of the entire spacetime on a single sheet of paper making the causal structure of the
spacetime visible. A short introduction to conformal diagrams is for example given
in appendix H of [1].

The (p + 2)-dimensional version AdS),, of this spacetime can be defined as the
embedding of a hyperboloid (with AdS radius L)

p+1
Xg+X,— D XP =17 (3.60)
i=1

into a flat (p + 3)-dimensional space RP*3 with metric

p+1
ds? = —dX3 —dX2,, + > dX?. (3.61)
i=1
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Fig.3.4 AdSj; spacetime as

a hyperboloid with closed

timelike curves 4
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The AdS radius is a measure for the constant curvature. Riemann tensor and cosmo-
logical constant are given by

_a’(d—l)<

o <0. (3.62)

1
Ruvip = — 17 (gu)» 8vp — 8up gvA), A=
where d is the dimension of the boundary.

One possible parametrization of this spacetime is given by

Xo =L cosh p cost,
Xpy2o =L coshp sint, (3.63)
X; =L $§2; sinhp,

where §2; are the angular coordinates with i = 1, ..., p + 1 such that Zi .le =1
and the remaining coordinates take the ranges 0 < p,0 < 7 < 2m.
Inserting (3.63) into (3.61) yields the metric

ds® = L* (— cosh® pdt® + dp® + sinh? pd2;). (3.64)

It features a timelike killing vector d; on the whole manifold, so T may be called the
global time coordinate. The isometry group SO(2, p + 1) of AdS,,, has a maximal
compact subgroup SO(2) x SO(p + 1), the former generating translations in 7, the
latter rotating the X;’s (Fig. 3.4).

Near p = 0 we have coshp =~ 1 and sinh p & p, so in this environment the
metric of AdSs looks like

ds* ~ L*(—d7® + dp* + p* d$23) (3.65)

and thus is seen to be topologically S' x R*. The S! parametrized by the time
coordinate 7 represents closed timelike curves. To prevent inconsistencies concerning
causality, AdSs is therefore regarded as the causal spacetime obtained by unwrapping
these circles, taking —oo < 7 < oo without any identification.

Introducing a new coordinate 6, the metric (3.64) becomes that of the Einstein
static universe R x SP
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2
(—dt* +do* +5in* 0 d23). (3.66)

L
tan® = sinh p = ds® = 5
cos- 6

However, since 0 < 6 < %, this metric covers only half of R x SP. The causal

structure remains unchanged when scaling this metric to get rid of the overall factor.
Further, adding the point & = 7 corresponding to spatial infinity results in the
compactified spacetime

ds* = — d® + d6® + sin® 0 d 22, 0595%, —oo<T<o00. (367

If we specify boundary conditions on R x S” at & = 7, then the Cauchy problem
is well-posed. As one can easily read off from (3.67), the & = 5 boundary of
conformally compactified AdS,» is identical to the conformal compactification of
(p + 1) dimensional Minkowski spacetime.

Let us take a quick look at the special case of conformally compactified (1 + 1)
dimensional Minkowski spacetime. It is convenient to introduce light cone coordi-
nates,

ur =1 £ x = ds* = —di* + dx* = — du du_ . (3.68)
If we furthermore restrict the coordinates to a finite range, a useful choice is

3 T+ 0 5 —dt? + dv?
U4 =:tan 4, U4 =: = ds* =

2 " 4 cos?ity cos?ii_

(3.69)

Another neat parametrization of AdS, is realized by the Poincaré coordinates
which cover half of the hyperboloid. Introduce (y, ¢, x) such thaty > 0 and x € R”,
then

1
Xo= 2 (14 @ +x° = 19),

1
Xor1 = 5 (1-y* > — x> + 1), (3.70)
Xpt2 =Lyt,
X,‘ =Lyx,-.

The boundary at y — oo can be better analyzed in terms of a new variable u

u:=;=>ds =L u—2+;nijdxdx . (3.71)

After a conformal rescaling by u?, we obtain the Minkowski metric by freezing
u=0.
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3.2.4 D-branes

D-branes (where the ‘D’ stands for Dirichlet boundary conditions) are a central
feature of string theory in view of the second string revolution 1995. They play a
central role for the AdS/CFT correspondence: In fact, D-branes have two different
interpretations within string theory and the origin of the AdS/CFT correspondence
is to identify the two D-brane interpretations, together with applying a subtle limit.

D-branes have an open string and a closed string interpretation. Let us sketch
these briefly in the subsequent.

3.2.4.1 Open String Interpretation

Open strings require boundary conditions for their endpoints. These may be provided
at particular hyperplanes, which define the D-branes. Thus D-branes are hyperplanes
on which open strings may end. Just as fundamental strings, D-branes can couple to
background fields, in particular to gravity. A world-volume action describing their
dynamics may be obtained as a generalization of the worldsheet action for strings.
The background fields act as generalized couplings.

Let us briefly recapitulate the boundary conditions for an open string. A string is
defined on the worldsheet given by the two coordinates (o, 7). In superstring theory,
the fermionic contribution to the worldsheet action reads

S =3 : - / d2o (Y sy + -y, (3.72)
o

with ¥4 the right and left movers, respectively. For the boundary conditions, we

impose 1//ﬁ (r,0) = ¥"(r,0) at ¢ = 0. Then, the boundary condition at 0 = 7

leaves two options corresponding to the Neveu—Schwarz- (NS-) and the Ramond

sector (R) of the theory:

R:yl,m)=+y"( n)

3.73
NS:yhi(r,m) = -y, 7). G.73)

Let us now turn to the D-branes. Let £ denote the coordinates for the world-
volume of a Dp brane (whichreducesto £? = r and&! = o incase of the fundamental
string). Here, ‘Dp’ denotes a brane in one temporal and p spatial directions.

In direct analogy to the string worldsheet area action, the bosonic part of the
D-brane action is given by

St = — Mp/dp+1§€_(p \/det(é’;b + By, + 2m o/ Fap). (3.74)

The action (3.74) is known as Dirac—Born—Infeld action, or in short, DBI action. Its
prefactor p, = 27)Pa/~PtD/2 with o’ = 1,2 the inverse string tension and /; the
string length, relates to the (genuinely non-perturbative) brane tension 7, = u,/gs.
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Moreover, g* is the induced metric on the brane obtained via pullback of the spacetime
metric to the brane worldvolume,

. 0XM 9XY
(3.75)

i = g g
The same applies to the antisymmetric two-form B in (3.74).
Expanding the DBI action in flat spacetime (with g%, = 145) by means of det(1 +
M) =1-— A—ILTr{M 2} for antisymmetric matrices M, we see that the DBI action for
D3 branes is a generalization of Yang—Mills theory,

o ~ 72 / AT Fap F©Y, Fap =By, + 210 Fap. (3.76)

D branes also carry charge under Ramond—Ramond p-form fields C,,. The full action
describing a charged BPS brane (named after Bogomolnyi, Prasad and Sommerfield)
involves a Chern—Simons term, S = Spgi = Scs,

Scs = Mp/df”‘g chﬂ A Tr{e'f”“}. (3.77)
q

The exponential of the two form .% has to be understood in terms of the wedge
product.

BPS branes are stable due to charge conservation. In type ITA/B superstring theory,
Dp branes with p even/odd are BPS stable since Ramond-Ramond gauge potentials
Cp41 are present to which Dp branes can couple. Unlike fundamental strings, D
branes are non-perturbative objects since the tension and therefore their energy scales
as 1/gs, i.e. with the inverse string coupling.

For N coincident D-branes, the gauge group is enhanced to U(N), which may
be written as the semidirect product SU(N) x U(1). For N coincident D3-branes,
the action reduces to .4 = 4U(N) Super-Yang-Mills theory in the limit o’—0:
For D3-branes, there is a SO(6) rotational symmetry in the six spatial directions
perpendicular to the branes. SO(6) is isomorphic to SU (4), which coincides with the
R symmetry group of .4 = 4 Super Yang-Mills theory.

3.2.4.2 Closed String Interpretation

On the other hand, D-branes also arise as solitonic solutions to the supergravity
equations of motion. Let us discuss some aspects of this in detail.

Closed string excitations contain gravity. In particular, the graviton corresponds
to the quadrupole fluctuation of the closed string. The closed sector of superstring
theory can be constructed in four different ways. Each of left- and right movers may
be taken from open string NS or R sectors. From the spacetime point of view, we
find the following statistics for the states: The NS-NS and R-R sectors correspond
to spacetime bosons, whereas the NS-R and R-NS sectors correspond to spacetime
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fermions. The NS-NS sector contains the fields g;,,, By, ¢ which we had already
discussed in bosonic string theory whereas the ‘mixed’ NS-R, R-NS sectors contain
SUSY superpartners such as gravitino and dilatino.

It may be shown that to leading order in o’ (i.e. at low energies when only massless
excitations contribute), Weyl invariance of the string worldsheet action in curved
background is equivalent to certain field equations which can be derived from a
gravity action. In superstring theory, this effective target space action is precisely
that of supergravity. For this reason, the supergravity theories are referred to as type
ITA/B although they can be motivated independent of string theory.

In type IIB supergravity, the bosonic field consists of the massless closed string
states, g, By and ¢ from the NS-NS sector and the R-R form fields Cp, C; and
C4. In addition, there are fermions with an equal number of degrees of freedom as
in the bosonic part.

Moreover, we define the axio-dilaton T and a complex 3 form G3 by

t:=Cy+ie ¥ G3:=F;—1H; (3.78)
where F3, H3 are the field strengths of C; and B (in differential form notation

F3 = dC, and H3 = dB»). The C4 potential is more conveniently represented by the
field strength

- 1 1
F5=dC4~|—§BQ /\F3—§C2 A Hj. (3.79)

Let us finally introduce the rescalings g,, = eW0=9/6 and k = kpe? = /STGN
into the Einstein frame, then the type IIB supergravity action is given by

1 _ 0.t 1Gs* |Fs?
Sup = — [ d"xy/—z (2, — —1_ _ —
B =22 * g( ¢ 2(mr)?  12Imz  4-5!

1 Cs NGy AG
: / P B (3.80)
8i k2 Imt
The field strength Fs has to be self-dual in the sense that
CF) s = Fuy.us (3.81)
where the Hodge dual (xw)y of a k form w in D dimensions is defined by
| det g]
) puypp g = T Evyvpttoipi @S (3.82)
e.g. xFy, = 198, F* in D = 4 dimensions.

Now let us look for solitonic solutions of the equations of motion due to (3.80).
A Dp brane is a BPS solution of 10 dimensional supergravity, i.e. it is annihilated
by half the Poincaré supercharges Q. It has a p + 1 dimensional flat hypersurface
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with Poincaré invariance group RP*! x SO(1, p). The transverse space is then of
dimension D — p — 1.

A p brane in 10 dimensions has symmetries R”T! x SO(1, p) x SO(9 — p). An
ansatz which solves the equations of motion of type IIB supergravity is

dS2 = —,I;Ty) dx" dxﬂ + \/ITY)dY : dy (383)

where x* are the coordinates on the brane world volume and y denote the coordinates
perpendicular to the brane. It turns out by means of the supergravity equations of
motion that

3—p
2 — [H(y)] # | H = harmonic function ofy = ,/y - y. (3.84)

Far away from the brane, i.e. aty — oo, flat space has to be recovered. This boundary
condition uniquely fixes H to be

L D—p-3
H(y) =1+ (;) . (3.85)

L is a length scale related to the only dimensionful parameter «’. For a stack of N
coincident Dp branes, we have

LPP3 = N g, (4m)5 P2 (7%17) o/ @—P=3/2, (3.86)

For D3-branes this reduces to
L* =47 g Na'> = 47 1 a?, (3.87)

where g%{M =gsand A = g%(MN = gsN is the t” Hooft coupling.

3.3 The AdS/CFT Correspondence

3.3.1 General Idea

At the level of string theory, the AdS/CFT correspondence is a duality between the
open and closed string interpretations of D-branes. Thus, in the case of D3-branes,
it is conjectured that the theory of open strings ending on a stack of N D3-branes,
which for small inverse string tension o’ corresponds to .4 = 4 SU(N) Super Yang-
Mills theory, is mapped to superstring theory on the space AdSs x S°, which is a
full theory of quantum gravity. This is an exciting proposal, however so far it has
not been possible to formulate string theory non-perturbatively on a curved space
background, so it is not possible to test this proposal. Nevertheless, in his original
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Duality .
SU(N) gauge theory String Theory

(Quantum) Gravity (Quantum)
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Large N gauge theory Classical Gravity

Fig.3.5 General structure of the AdS/CFT correspondence and the limit involved

paper [1], Maldacena has proposed a subtle low-energy limit, in which the quantum
gravity theory of closed strings reduces to classical supergravity. On the open string
side, this limit corresponds essentially to a saddle-point approximation in which the
planar limit N — oo of the SU(N) gauge theory is taken. In addition, this limit
implies that the gauge theory is strongly coupled while the classical supergravity
theory is weakly coupled. The general idea of AdS/CFT and the limit involved is
summarized in Fig. 3.5.

3.3.2 Maldacena’s Original Argument

Let us now consider the scenario outlined above in more detail, where we follow
Maldacena’s original argument as presented in [5]. We consider type IIB string theory
in 9+1 dimensional spacetime with a stack of N D3-branes. There are two kinds of
excitations, open and closed strings. The closed string fluctuations are excitations
of the vacuum with the graviton as massless mode. Secondly, there are open string
modes which describe excitations of the D3-branes. At energies below the string mass
scale (a')~!/2, only massless string states are excited: The massless closed string
states give rise to the gravity multiplet of type IIB supergravity, while the massless
open string states give rise to the .4~ = 4 gauge multiplet and .4 = 4 SU(N) Super
Yang-Mills theory.

Let us recapitulate the open and closed string interpretations of D3 branes as
introduced in the preceding section.

3.3.2.1 D3-branes From the Open String Point of View

The low energy effective action for the massless excitations of N D3-branes in flat
ten dimensional space has the schematic form
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S = Spuik + Sbrane + Sint , Wwhere
Spulk =D = 10 supergravity incl. higher derivative terms, i.e. o’ corrections
Sprane = DBI and CS action defined on 3+1 dimensional brane world volume:
for smalle’, we get SYM ~ Tr{F,,,F*"} plus interactions
~a'Tr{F*} + ...
Sint = bulk—brane interaction : the leading term comes from the background

metric g in the brane action .

For ' — 0, the bulk action becomes the Einstein—Hilbert action with coupling
k ~ ge'?. In the expansion 8uv = Nuv + Kkhy, about flat space (with Minkowski
metric 1), the leading terms are

1
Shulk = 5 d"x\/|g| %y ~ /allox((ah)2 +x @h)h+ - ) (3.88)

In the low-energy limit k ~ gsa’> — 0, the interaction terms ¢'(«) drop out, so
gravity becomes free at long distances. Similar behaviour can be observed in the Sin¢
sector. The term ‘low energy limit’ means that the relevant energies E are kept fixed
while we send the dimensionful parameter &’ — 0, therefore various dimensionless
quantities such as o’ E? are suppressed.

In the low-energy limit, we are thus left with two decoupled theories: Supergravity
of massless particles in the bulk and .4#” = 4SU(N) Super Yang—Mills theory on the
brane.

3.3.2.2 D3-Branes from the Closed String Point of View
and the Maldacena Limit

In their solitonic interpretation, D branes are viewed as massive charged objects
which act as sources for the various supergravity fields. Specializing (3.85) to D3
branes in ten dimensions (D = 10 and p = 3) yields the metric

1
2 2 2 2
ds® = —(y) Nuy dxt* dx” + \/H(y) (dy +y d.QS)

L 4
H(y)=l+(—).
y

Let us now discuss the limits of this metric: When y* > L* = 4w giNa'?, one
recovers flat 10-D space. When y < L, on the other hand, the metric appears to
be singular as y — 0. To examine this limit more carefully, let us define a new
coordinate u := L?/y. In the limit of large u (where H = 1 + u*/L* — u*/L*), the
metric takes the asymptotic form

(3.89)

1 du?
ds* —12 (—2 Moy i dx” + S 4 dszg) . (3.90)
u— 00 u u
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In this near horizon limity — 0 < u > L, the geometry close to the brane is regular
and highly symmetrical (with isometry group SO(4, 2) x SO(6)). Apart from the S°
sphere represented by d$22, we recover the AdSs metric (3.71).

An important property of the metric (3.89) is its non-constant redshift factor

(H (y)) -4 _ g with an interesting near horizon limit:

—1/4 4,4\ Y+ | ~1 c:largey
(H(y)) - (1 + Ly ) - [N y/L : smally (3.91)

The energy E, of an object measured by an observer at constant position y differs
from the energy E; of the same object, this time measured by an observer at infinity,

Hy) " E, =E. (3.92)

When the object approaches y — 0, it appears to have lower and lower energy to
the observer at infinity. This gives another, geometric notion of low energy regime.
We have to distinguish two kinds of low energy excitations

* particles approaching y — 0,
 and massless particles propagating in the bulk (away fromy = 0).

Their excitations decouple from each other in the low energy limit: Bulk massless
particles decouple from the near horizon region around y — 0. Excitations close
to y = 0 are trapped by the gravitational potential to the AdSs x $° region. Thus
we have two decoupled actions in the low-energy limit: Supergravity of massless
particles in flat space and supergravity in the AdSs x S region.

Comparison

As just discussed, both from the point of view of the field theory limit of open strings
and from the supergravity point of view, there are two decoupled theories in the low-
energy regime. In each case, one of them is supergravity of massless particles. We are
thus led to identify the other theory present in each interpretation in the low-energy
limit:

A = 4 SYM with gauge group SU(N) & type IIB supergravity |.

The () above the arrow indicates that the correspondence claimed in this AdS/CFT
conjecture holds in the N — oo limit at large and fixed ’t Hooft coupling A = gsN.
This field theory limit is implied by the gravity side on which L* = 47 1a'?: Since L
is finite, @’ — 0 implies that the t"Hooft coupling A = g%{MN = g;N must be large.
At the same time, g; — 0, i.e. the classical limit in which the string coupling goes
to zero, implies that N — oo.
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3.3.2.3 Different Forms of the AdS/CFT Conjecture

We may distinguish between different strength of the AdS/CFT conjecture depending
on whether the string coupling g5, the inverse string tension o’ or both are taken to
zZero.

The strongest form of the AdS/CFT correspondence conjectures that the duality
between the supersymmetric SU(N) gauge theory and type IIB supergravity holds
for any value of N and g. This implies that .4 = 4 SYM is exactly equivalent to the
full type IIB superstring theory on AdSs x S°. However, it is at present not possible
to test the strongest form since there is no consistent non-perturbative quantization
of string theory yet, in particular not in curved spacetime.

In the strong form of the AdS/CFT conjecture, we keep A = gsN fixed while
sending N — oo. In this case the ground state is classical type IIB string theory on
AdSs x §7. The perturbative expansion parameter is g5 = A/N < 1 on the string
theory side, this corresponds to a perturbative 1 /N expansion on the field theory side.

Finally, there is the weak form of the AdS/CFT conjecture described above, in
which the Maldacena limit N — oo and XA very large is considered. This relates
A = 4 SYM at strong coupling and with N — oo to classical supergravity. In
contrast to the stronger versions, ’ is assumed to be small now, and the o” expansion
of supergravity is dual to a field theory expansion in A~ !/? powers around the strong
coupling limit. The weak form can be seen as a duality in the following limits,

N — oo - gs—> 0
A — 00 o -0)°

We see that the AdS/CFT map provides a strong/weak coupling duality: Strongly
coupled quantum field theory is mapped to weakly coupled gravity. This means that
if we go on to test the correspondence in the following section, we may compare
only those observables in the two theories which are independent of the coupling.
On the other hand, this strong/weak duality provides an interesting new tool to make
non-trivial predictions about strongly coupled quantum field theories by performing
calculations in weakly coupled gravity.

3.3.3 Field-Operator Map

The aim of this section is to work out the precise dictionary between objects of the
two equivalent theories,

A =4SYM - type IIB supergravity
N, A — o0 on AdSs x §° ’

in particular between representations of the common symmetry groups. We will
relate field theory operators to supergravity fields which transform in the same
representation of the superconformal group SU(2, 2|4) or its bosonic subgroup
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SO(6) x SO(4, 2). This provides a one-to-one map between gauge invariant operators
in ./ = 4 SYM and classical fields in IIB supergravity on AdSs x S°. Moreover,
we explain how to calculate correlation functions for the field theory operators by
considering propagation through Anti-de Sitter space.

3.3.3.1 Correlation Functions

A crucial role in testing the AdS/CFT correspondence is played by the com-
putation and comparison of correlation functions. Correlators which obey non-
renormalization theorems (i.e. which are A independent) will be of particular interest.
Let us give a brief review of correlation functions in QFT.

Consider an n-point function of composite regularized gauge invariant operators

Oy (x),
(O1(x1) O2(x2) ... Op(xn)) .

An important tool to compute this correlator is the generating functional Z[J] (and
its analogue W[J] for connected diagrams) defined by

ZlJ] = <exp (— / de.,zﬂ,)> = W, (3.93)

where .2 is the Lagrangian of a given QFT with added source term coupled to a
basis {0} of gauge invariant local operators:

Ly =L+ 0. (3.94)
i

The n-point correlation function is then given by

8" InZ[J]

(O1601) O202) - Onlin)) = s oy Lo

(3.95)

To calculate correlation functions in AdS5 x $3 it is convenient to work in Euclidean
AdSs with Poincaré coordinates

Hi={0.2.20 > 0,2 R}, ol =R*. (3.96)
The metric
1
a5t = = (dz} + d7) (3.97)
0

diverges at the boundary zg — 0, but it is merely a coordinate singularity, not a
curvature singularity. The divergence may be removed by a Weyl rescaling. As we
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will see later, however, sometimes it is necessary (and useful) to consider a cutoff at
fixed z9p = . The UV cutoff A = % is mapped to an IR cutoff ¢ in AdS.

Given the conformal symmetry, it is natural to assume that .4~ = 4 SYM lives on
the boundary of AdSs. This boundary may be mapped to flat space by a conformal
transformation.

Typical gauge invariant operators in SU(N) SYM with .4 =4 in D = 4 are

Oa(x) = sTr{X" X2 ... X4} = N2 ¢y o Tr{XT X2 .. X4}, (3.98)

Here, A denotes the conformal dimension of the operators, X I are the elementary
scalar fields of .#" = 4 SYM transforming in the representation 6 of SO(6) = SU (4)
and C;, . ;, fall into the totally symmetric rank A tensor representation of SO(6). The
trace is taken over colour indices (recall that all the fields transform in the adjoint
representation of SU(N)). The normalization is chosen such that all planar graphs
scale with N2.

3.3.3.2 The Dual Fields of Supergravity

On the AdS side, we decompose all fields into Kaluza—Klein towers on S5 ie. we
expand the fields in spherical harmonics Y4 (y) of $°

0@ Y) = D 9a@Ya®). (3.99)
A=0

The ten-dimensional Klein—Gordon equation implies a massive wave equation in the
five dimensional AdS sector,

(Os +m%) pa@) =0, mhi =A(A — 4). (3.100)

It has two independent solutions which can be characterized by their asymptotics as
20 — O,

ZOA : normalizable,
020, 2) ~ A A ) (3.101)
7y © :non-normalizable.

The non-normalizable fields define associated boundary fields [3] by virtue of
$a(2) := lim @a(z0,2) 25 " (3.102)
Z()—)O

We may identify the normalizable AdS modes g4 as vacuum expectation values of
the field theory operators &4 and the non-normalizable modes ¢4 as sources for
these operators,

9a(20.2) ~ (Oa) 2 + Gazy *. (3.103)
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The mapping between correlation functions in Super Yang—Mills theory and the
supergravity dynamics is given as follows: The generating functional W@ ] for all
correlators of single trace operators &4 in Super Yang—Mills is given in terms of
the source fields ¢ 4. The boundary values of these supergravity fields at the four-
dimensional boundary of the five-dimensional AdS space become the sources for the
QFT operators. In other words, on the field theory side we have

e Wleal — <exp (— / d*zp A ﬁA)>, (3.104)
oH

where the boundary fields ¢ o correspond to the sources given by (3.94). The AdS side
is governed by an action in terms of the bulk fields S[¢ 4] in the framework of type
IIB supergravity on AdSs x S°. The AdS/CFT conjecture for correlation functions
says that precisely this classical gravity action enters the generating functional for
the subclass {&4} of operators in the .4 = 4 QFT. The AdS/CFT correspondence
for correlators may now be expressed in the formula

Wlpal = Sloal | . ) (3.105)

limzy—0(¢4 (20.2) 25~ =@ (2)

Here, the field theory generating functional as given by (3.104) is identified with the
classical action on five-dimensional Anti-de Sitter space, subject to the boundary
condition that the five-dimensional fields ¢4 assume the boundary values ¢, in
agreement with (3.103). The action S is the generating functional for tree diagrams
on AdS space, i.e. for the classical expansion of correlators. It should be noted that
(3.105) is a very-non-trivial statement!

The tree level graphs in AdS are referred to as Witten diagrams [2]. Let us give
the corresponding Feynman rules:

 Each external source ¢4 (z) is located at the boundary;

» Propagators depart from the external sources either to another boundary point or
to an interior interaction point (in which case they are called bulk-to-boundary
propagators);

* The structure of the interior interaction points is governed by the interaction vertices
of the supergravity action. These are obtained from the Kaluza—Klein reduction
onS>;

» Two interior interaction points may be connected by bulk-to-bulk propagators.

3.3.3.3 AdS Propagators

In this section we will derive the scalar propagator in Euclidean AdS spacetime H
as defined in (3.96). For simplicity, the AdS radius is set to L = 1. The four vector
z in the metric ds®> = 2 (dzO + dz?) parametrizes the boundary 9H. The geodesic

distance is obtained by solvmg the geodesic equation (where the parameter & is called
chordal distance)
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A _ 2
d(z, w) = /ds =1n(1+— Vég) £ = 220 o (3.106)

_z(z)+w(2) + @z—-w)?’

Z

Let us start from the scalar part of the action which we obtain by Kaluza—Klein
reduction of the ten dimensional IIB supergravity on S°. Schematically we get

1 m2
Slpal = /dsz Ig] (5 8" 0,9 0vpa + TA oA+ fim) . (3.107)

where % denotes higher order interaction terms from Kaluza—Klein reduction.
Now the propagators are represented by integral kernels K4, G 4, namely

oaR) = / d*xK 4 (z, X) A (x) = bulk-to-boundary propagator, (3.108)
oH

oa(z) = / d’xG (z, x) J (x) = bulk-to-bulk propagator, (3.109)
H

where x denotes the boundary coordinates and x = (xp, (x)) denotes the bulk coor-
dinates. The scalar Green function satisfies

Mo, 8Gi — x)
Vigl

where the action of the Laplacian [lgon scalar fields is in general given by

(Og +m%) Ga(z,x) = 8 (z,x) = . my=A(A —4), (3.110)

1
O, = — —— 9,+/|gl " dve (3.111)
¢ Vgl ’

and reduces to the following expression

d
— 2505 + 32000 — 25 07 - (3.112)

i=1

O =
§1AdS

This turns (3.110) into a hypergeometric equation. The Green function solving
(3.110) is thus given by a hypergeometric function in the argument £ from (3.106),
namely

C
Ga(z,w) =Ga§) = WA—d) £4Fy (%, A A-1; 52) ,
o I (3.113)
AT ra—-2)"

When x is located at the boundary, G 4 reduces to the bulk-to-boundary propagator

A
Ka(z,x) =Cy (Z—O) . (3.114)

3+ (z—x)?
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SRUVEIve

(a) 2-point (b) 3-point (c) 4-point, 1 vertex  (d) 4-point, 2
vertices

Fig.3.6 Some examples for tree level Witten diagrams in AdS space-time. The circle denotes the
boundary of AdS. The vertices denoted by the dots are in the bulk of AdS. Diagrams (a)—(c) involve
bulk-to-boundary propagators only, while diagram (d) also contains a bulk-to-bulk propagator

3.3.3.4 Two-Point Function

Let us now calculate the two-point function (04 (X)04(y)) as given by the Wit-
ten diagram (a) in Fig. 3.6 Calculation of the two-point function requires careful
treatment of potential divergences at the boundary. For this purpose, we Fourier
transform the boundary coordinates to momentum space. For generality, we work on
(d + 1)-dimensional AdS space with d-dimensional boundary. For the two-point
function, only quadratic terms in the action are relevant. The d + 1 dimensional bulk
action

1 m?
Slel = / a1z /lg] (5 Oug 09 + — goz) (3.115)
gives rise to a boundary term after integration by parts,

Slel =

o= / d'26(2) dog (. 7). (3.116)

This action is regularized by cutting off the zp integral at zop = ¢. In the notation
@(e, p) = ¢(p)e?=4, we Fourier transform

¢(20,2) = / d'pe®* ¢(z0. p). (3.117)
This yields the equation of motion in momentum space,
(9 - @-Dad— @3 + m%)) oo, ) = 0. G.118)

This is a Bessel equation with solutions z) K, (zop) (where v = A — d/2 and
p = /P - p and K|, is a Bessel function). The boundary asymptotics are governed by

lim., 0 22/ 2Ky (zop) = 0 and Ky (zp — 0) ~ 2474,
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The normalized solutions to the boundary problem read

a2

zo' Kyv(zop) d—A
0 v’ . 3.119
2K, (ep) ¢(p)e ( )

We insert the Fourier transform (3.117) into (3.118) and obtain

¢(z0, p) =

1
5T 19l = / d’pdiq2m)? 5 (p + q) ¢(e, p) dop (s, @) - (3.120)

Using (3.119), together with the AdS/CFT conjecture (3.105), we obtain the follow-

ing two-point functions for the dual CFT operators,

&Sl en'slete d
5¢(p)d@(q) g2A=d=1 " de

(O4(D) Oa(@)e = (" K\(ep) ) -
(3.121)

The Bessel index v is a positive integer whenever the associated CFT operator &4

with A = v 4 d/2 is a chiral primary. Bessel functions have an asymptotic u — 0

expansion of the schematic form

Ko@) — u"(ao + aiu® + axu* + ..)+u’ Inuby + byu® + boyu* + ...).
(3.122)
This translates as follows to the level of two point functions

27)4 5 (p + d
(OA(P) OA(@)e = % (—5+V(1 +o+E2pP eyt + )

S22 2 aep)y (1 4 a2 p? + )) :
ap
(3.123)

_1\v+1
by — DT and 62 = £24-4  guch that

Explicitly, we have % = 2hro2

+ B1E2p? + .+ B (ep)?D 2y
(Oa® Oa-p, = AL BIEPE S In(ep) + 06D
(3.124)

The field theory of the first terms is governed by scheme-dependent contact terms
~ [0"8%(x — y),and the second term gives the correct non-local result

2v by

(Oa(D) Oa(=p)) = — —— p*’ In(ep). (3.125)
Transforming the non-local contribution o< p?¥ In p back to position space yields the
e-independent result

ra) 2A — d

(OA(X) Op(y)) = A —d/2) 7 —ypa " (3.126)

which agrees with the spatial dependence expected from conformal field theory. The
coefficient is fixed by our AdS5 toy model. For results in .4 = 4 Super Yang—Mills
theory, we also have to include the S> factor into our discussion. This will be done
in the next chapter.
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3.4 Tests of the Correspondence

3.4.1 Three-Point Function of 1/2 BPS Operators

An impressive test of the AdS/CFT correspondence is the agreement of the three-
point functions of 1/2 BPS operators in .4/ = 4 SYM at large N with the correspond-
ing fields in supergravity. To demonstrate this result, we will proceed as follows:

* Look at the two-point functions to fix the normalization;

* Calculate the three-point function in Super Yang—Mills theory to zeroth order in
the coupling;

 Check that this is not renormalized at higher orders, i.e. prove a non-renormalization
theorem to show independence of the correlator on the coupling;

¢ Calculate the correlation function on the gravity side (spacetime dependence from
the Witten diagrams and couplings from the Kaluza—Klein reduction).

3.4.1.1 Correlation Functions of 1/2 BPS Operators

In this section, we follow the computation of Seiberg and collaborators [16] and
adopt their notation: An 1/2 BPS operator of .4 =4 SYM will be denoted by

ol =], Te{x" .. X%}, (3.127)

0.0

where k = A and the C' are totally symmetric traceless rank k tensors of SO(6).
The SYM action is normalized such that g%M = 4mgg, and the normalization
Tr{T°T"} = §% /2 of the SU(N) generators 7¢ allows to recast it into the form

1
Zg%{M

1
=—— /d4xFZV F 4 SUSY completion . (3.128)

4gym

S = /d4xTr{F,w F‘”} + SUSY completion,

This gives rise to the following scalar propagators

. . 2 ij gab
ia b _ Eym §
(XT ) X7 () = e B (3.129)

The two-point function on the field theory side to lowest order in perturbation theory
is therefore given by

(GL0) Gl )= C],_;, € (Te{X" @) . XE @} T (X () .. X))
Lol 7J1-Jk
) , NK g3k, (871 87272 . §iWk + cyclic permutations)
=Ci i G (2m)2k |x — y|2*
k)xk sV
— e =Pt

(3.130)
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Fig.3.7 Feynman diagram
for the two-point correlation
function (&7 (x) 6] () to
lowest order in the coupling,
ﬁ(gYMO), in the planar limit.
This is referred to as the
rainbow diagram

where last equality only holds at leading order in N. In the large N limit, the corre-
sponding planar Feynman diagram in shown in Fig. 3.7.

Similarly, for the three-point function to lowest order in perturbation theory and
in the limit of large N we have [16]

222 ki ko ks (CT €7 CK)
1 J K _ 3
(Oh, ) O, ) O);(2)) = N =y by — o x o (3.131)

Note that the spacetime dependence is completely determined by conformal invari-
ance. We have used the shorthand notation

X
Y=ki+k +k; ai:?—ki (3.132)

(such that e.g. o) = W) and (C'C’CK) denotes a uniquely defined SO(6)
tensor contraction of indices determined by the Feynman graph.

It is useful to defined normalized operators o = A(k2/]213/k; 0. Their two-point
function is normalized to one,
. ~ u
(0L 6] ) = T (3.133)
and the three point function reads
s . - Vi ky ks (CT ¢’ CK)
(6 (x) 6] (y) OF (2)) = (3.134)

Ny |y — g2 — g

This holds for large values of N. Otherwise, non-planar corrections of order ]% arise.

3.4.1.2 Non-Renormalization Theorem

Next, following [17], we demonstrate the absence of ¢’() terms both in (&) and
in (00 0). The argument will hold for any N [17].

Define complex scalar fields Z/ := X’ + iX'™> making use of the embedding
SU(3) C SU(4). The Euclidean version of the .4 = 4, SU(N) SYM Lagrangian
then reads



3 Introduction to Gauge/Gravity Duality 133

1 1 - . _. 1 —. .
< =Tr[Z Fuy F*" + 2 APh + DuZ' DA Z 4 = 4 Dyt

FiN28f (ha Z) Ll — YIRZ) M), (3.135)
g - . - -
= " e (WL Z b + ViR Z, 0y)
’ 2 (3.136)
8 B2 D+ e 222422
where L R denote the left and right handed chirality projectors.
Due to supersymmetry, it is sufficient to consider
= Pk, 0(N)
(T{EH @} T{ZH D)) = ————— (3.137)
(4712 |x — y|)
with the following polynomial in N
PrioN) = D TefT T . T} TefT%® 7% @ . 7%}
oeSk
N\K
=k (5) + lower order in N. (3.138)

There are various effects to consider at leading order in the coupling, namely

¢ the self energy corrections

—@—
= 8“ NA(x,y) G(x,y), (3.139)

withA(x,y) =ap+aj In (uz(x —y)2) and the scalar propagator G(x, y) = m

and
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* the two particle exchange interactions

a b
s OXO
a’ b’
_ (fpabfpa’b’ _i_fpab'fpa/h) B(x,y) G(x, y)2 , (3.140)

with B(x, y) = by + by In(u?(x — y)?).

The possible corrections to the rainbow graph at order g%M are shown in Fig. 3.8.
It turns out that these three graphs cancel each other for all N and for all k. The proof
goes as follows:

 Use a trace identity valid for any matrices N and M;
n
ZTr[Ml My [My, N Mgy M] -0, (3.141)
i=1

¢ Use combinatorics for colour indices,
+ Insert (3.139) between all pairs of adjacent lines using [T%, T?] = ifeb°T*.
* The result for all exchange graphs (with Sy permutation o) is then

k
i(*2BYﬁ{W””.TW}.z:'ﬁ{T%W.”[T%W,Wq.”[T%W,7W]”.T%W]“
i#j=1
e Then apply (3.14) to one of the two commutators to find

k

gTr{T‘“ LT ZTr{T“am [[T“v<i>, 7], Tf’] T“a<k>}
i=1
_ ZETr{T‘” LT Zk:Tr{T“““) L T0 T“"<k>}. (3.142)
2

i=1

The last step follows from the fact that [[~, TP], TP ] is the Casimir operator of the
adjoint representation of SU(N) such that [[T“, TP1TP ] = NT*“ and the sum over
i yields k identical terms. In the self energy corrections, we also have a factor of k
by similar argument such that the overall contribution is

kN (B + 24)

kN (B +2A) Py . 0(N)
> .

> orefrer 1%} Te{T%m | 7w} = 5

oSk

(3.143)

In [17] it was shown that (3.143) vanishes since B + 2A = 0 due to the non-
renormalization theorem. The reason for that is the following: The two point function
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(a) (b) (0

Fig.3.8 Possible corrections to the rainbow graph at order g%{M

Tr{X?} falls into the same supersymmetry multiplet as the energy momentum tensor
T,y It can be shown that the latter is not renormalized (in agreement with momen-
tum conservation), so by supersymmetry, Tr{X?} is protected as well. This implies
that (0»(x)0>(y)) does not have any quantum corrections of order & (g%{M), and
thus B + 2A = 0. (3.143) then implies that (0} (x) 0y (y)) is non-renormalized and
independent of gy (and thus 1) as well for all k. Note that this non-renormalization
theorem for the two-point function of 1/2 BPS operators holds for all values of N.

A similar analysis applies to the three-point functions of 1/2 BPS operators as
well. Four-point functions, however, are renormalized in general, though there are
special exceptional cases where they are not, see for instance [18, 19].

3.4.1.3 Three-Point Function on the Gravity Side

Having obtained an exact result for the three point function of 1/2 BPS (or chiral
primary) operators on the field theory side, we are ready to compare with a gravity
counterpart. Let us consider three-point functions of scalar fields in AdS spacetimes.
Their Feynman diagram has the structure of a Mercedes star, as displayed in (b)
of Fig. 3.6. It is specified by three edge points X, y, z by three bulk-to-boundary
propagators and a coupling in the center determined by Kaluza-Klein reduction of
$3. The correlation function corresponding to this Witten diagram has first been
calculated in [4], while the coupling has been obtained in [16].

Recall from Sect. 3.3.3.3 that the bulk-to-boundary Green functions in AdS;
is given by

Ka(o.2.%) = — A % ’ (3.144)
AOEN TR Ty \Z ¥ @a—x2) '

Because of its defining property lim,, ¢ [z(f*dl( A(z0, 2, x)] = 89(x — z) we can
express a bulk field ¢ in terms of its values at the boundary

A
@ (-
002 = r ATy | ¢ x(zg - (z—x)2) b0 (X). (3.145)
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Now the Mercedes diagram of the gravity three point functions is evaluated as

s [t (220" (22" (2)"
x,y,Z‘—/ Mo EWIET (v —x2 ((w—y)2 w-22)

(3.146)

Here, we use the notation (w — x)2 = w% + (w— x)z.
The number of functions in denominator can be reduced using the trick of inver-

/

sion [4]: Reexpress integration variable as w;, = o ,)2 and similarly set x = Ix’,lz’
y= Iy Ve andz = Iz’/lz' Consequently, the propagators are affected as
Ka(w,x) = X P2 Ka(W, X). (3.147)
The factor |x'|>2 is a first parallel to field theory since |x'|?4 = |2 . Note that
. Lo . . C -+,
inversion is an isometry of AdS, so its volume element is invariant ddT = d,—dﬂ.
Wy (Wo)

This causes the Mercedes integral to transform as

Ax,y,z) = X P2y P2 12 P AL Y 2). (3.148)

To reduce the number of functions in the denominator of (3.146) from three to two,
proceed as follows:

¢ Set one argument to zero z — 0 using translation invariance,

AKX,y,z) =AXx—12,y—12,0) =:A(u,Vv,0). (3.149)

, A3
This brings the third terms into the nice form ( e )A3 = (%) = (wp)43.

¢ Add an inversion to find

Aq Ay
AV, 0) = 1 a1ty o wo (wh)% .
Y |u|2A1 |V|2A2 (w6)d+1 w — u/)z w — V/)Z 0

(3.150)

By translation invariance of the w integration variable, the integral can only depend on
the difference w' — v/, and dimensional analysis fixes the power to be

[u’ — v/|43=41=42 Hence, we have already found the spacetime dependence
s 0 |u/ _ V/|A37A17A2
1
- |X _ y|A]+A27A3 |y _ Z|A2+A37A| |Z _ X|A3+A]7A2
=f(x,y.2) (3.151)

(Note that good care has to be taken to restore the old variables before the inversion

2
transformation. A useful formula is (u' — v/)? = % )
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An exact calculation of A(u, v, 0) can be done using Feynman parameter methods
[4], the prefactor in A(X, y, z) = a - f(X, Y, z) is found to be

_ T3+ Ay = A)]T5(A2 + Ay = ADIT[3(A3 + A = M) T[5(3; 4i = d)]
B 24 I Ay — 4 T [Ar — 41714 — 4 ’
(3.152)
The Gamma functions due to the Feynman parameter method have a number of poles.
Now we need to consider coupling with which the Mercedes integral (3.146)
enters the three point function

<ﬁ’ x) & (y) 6K (z)> — WK Ax,y, 7). (3.153)

The A part was just calculated, we will next treat the cubic coupling A¥X coming
from KK reduction in supergravity [16].

Recall from Sect. 3.2.4.2 that type IIB supergravity contains a self dual five form
field F. It enters the equations of motion for the graviton via

1 ..
Ry = o Fonijr Fa ™. (3.154)

In the flat AdSs x S° background solution, the five form takes particularly simple

values. Denote the AdSs indices by p;, i = 1,2, ...,5 and the S5 indices by a;,i =
1,2,...,5 then the solution reads

1
ds? = - (d22 + dz(% + d.QSZ) =: gundx™ dx",
20

Fuypus =€urps Foras = €ayas -

(3.155)

Note that the curvatures of the AdSs and S factors cancel

AdSs: R,u)»va = _(g/w 8ro — uo &iv)s Ruv = _4g/w %AdS5 = -20,
S5 Rayps = +(8ap &5 — 8as 8vp)s Rap = +48ap, Hgs = +20.
(3.156)
Observe that Z = Zaass + g5 = 0.

Next we need to look at fluctuations ¢ about this background which couple to
operators ¢ in the dual field theory via interaction terms Sip; = f dx o (x) O (x).
It was investigated in [20] how to decompose the supergravity equations of motion
and how to decouple them from the fluctuations.

Starting point is the ansatz

Gun = gmn + hyn, F =F + 6F, (3.157)
where the fluctiations 4, §F are organized as

ho
5
% hy )

hyy = ) + 5 8w T 3 uvs 8" hwy =0, (3.158)

hag = hap) + — 8ap> %P hpy =0,



138 J. Erdmenger
8Fjjkim = 5 Vi jkimy - (3.159)

It is convenient to work in de-Donder gauge (with respect to S°) where
V%hep = Ve = V¥qpu s = 0. (3.160)

The KK programme requires to expand this ansatz in spherical harmonics ¥/ on 3
W= > Y, h=>Yh,
I I
Aoy..aq4 = Z Ve YI Eaayonazoy b[ s (3.161)

1
_2 1 I
al/v1~~l/~4 - Y ap.l‘../m'
1

Inserting this ansatz into the ten dimensional equations of motion leads to diag-
onalization and decoupling. The modes which couple to the field theory 1/2 BPS
operators ¢! are given by

1_; I I
' = Soaaay = 10G+ ). (3.162)

Note that k = A in the different notations of the original papers [4] and [16]. These
S modes satisfy a five dimensional equation of motion in AdS space

(VuVH —k(k—4)S" = 2K s, sk (3.163)
where A/K is given by

128 X ((X/2)* — 1) ((£/2)? — 4) ajanaz (C!C! CK)

WK — k. ko k
a(ky, ka, k3) (k1 + D2 + (k3 + 1)

(3.164)

We are using the usual shorthands X' = k| + k2 + k3 and o] = W (as well as

cyclic variations thereof) and the numbers a(ky, k2, k3) relate S 5 integrals of spherical
harmonics with the SO(6) tensors (C'C’ CX) of (3.131),

/ dY'(2) Y (2)YX(Q2) = alky, ka, k3) <C’ c’ CK> ,
SS

3 kil kol k3!
(X/2)1242Z=2) gylanlas!’

aky, ky, k3) = (3.165)

This gives rise to the following dimensionally reduced supergravity action for the S/
modes
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4 N2
S =
Q2mn)’

/de@ [% (= VSN2 —k(k—4)(S)? + % Ak STS? SK} .
(3.166)

We can identify the lower dimensional gravitation coupling and the AdS radius as

1 4 N2

ﬁ=w, Lags + 1, (3.167)

and the constant A; is determined from IIB 10d SUGRA action to be

Ay =32 kk-Dk&=2) Z k), / Ayl )Y (2)=:zk) sY. (3.168)
k + 1 S5

Let us now use the action S as given above to calculate the the two point function

(S,()SJ()>_4N2 7 k(kk—=1D2k=22 &Y (3.169)
PTGk 2 - '

then define normalized operators &' (x) ~ S’ (x) such that (& (x) o’ ) = ﬁ
The three-point function is computed on the basis AKX | the operators’ normalization
as given above and the result (3.151), (3.152) for A(x, y, z),

1 Vkik ks (C' ¢’ cK)

N |x = yPes |y — 2P |z — xPe2

<ﬁ’ )6 (v) 6K (z)> - (3.170)
Remarkably, this gravitational correlator coincides with the field theory result
(3.134)!

Note again that for comparing quantum field theory and supergravity, it is essen-
tial to use the two-point function to normalize the operators in the same way on both
sides of the correspondence. Also, it is essential to consider observables which are
independent of the coupling, since the field theory calculation is performed at weak
coupling while the supergravity calculation is dual to a strong coupling result in field
theory. Further impressive and very non-trivial tests of the correspondence beyond
non-renormalized operators, where the results do depend on the coupling, have been
obtained in the ‘integrability’ approach (for a review see [21]). This requires con-
sidering the strong form of the AdS/CFT correspondence where the o' — 0 limit is
not taken.

3.5 Introduction to Gauge/Gravity Duality

Motivated by the successes of the AdS/CFT correspondence in its original form as
discussed in the previous chapters, many physicists have begun to ask the question
whether similar dualities are also possible for less symmetric quantum field theories.
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In particular, it would be extremely appealing to be able to map QCD to a weakly
coupled gravity theory in order to solve the problem of confinement. While this goal
is still a long distance away, important and interesting steps have been taken to use
generalizations of AdS/CFT, i.e. gauge/gravity duality, to use weakly coupled gravity
in order to make predictions for strongly coupled quantum systems which are hard
to describe otherwise.

Within these lectures we have room only to give a brief outlook at this vast
subject. We consider gauge/gravity duality for field theories at finite temperature
and density. This is the starting point for many applications, both to the quark-gluon
plasma of heavy ion physics and to strongly coupled systems of potential relevance
for condensed matter physics. We recommend the reviews [9] for the quark-gluon
plasma, [10] for studying mesons and quark degrees of freedom, and [11, 12] for
condensed matter applications.

We starty by switching on a temperature in .4~ = 4 Super Yang—Mills theory.
This breaks all of the supersymmetry. We still keep the N — oo planar limit.

3.5.1 Gauge/Gravity Duality at Finite Temperature

3.5.1.1 Finite Temperature Field Theory

Finite temperature field theory is obtaine by performing a Wick rotation t — —it
and by compactifying Euclidean time on a circle of radius 8 = bBLT' This has to

effect of modifying the weight factor in the correlation functions, /! — ¢=PH
such that we describe a field theory in thermal equilibrium with temperature 7.
The partition function of a thermal field theory is given by
Zg = Tre P = > (pple PH |pp)
all B-periodic states
= / Dpe el (3.171)
all B-periodic states

for a field theory with fields ¢.

‘We now use the saddle point approximation: Let ¢* be a saddle point of the Euclid-
ean action Sg[¢]. Then we can approximate the generating functional semiclassically
as

Z= / DpeSElP] o= SElY7] (3.172)

3.5.1.2 Finite Temperature on the Gravity Side

According to the weak form of the AdS/CFT correspondence, the partition function of
the classical bulk theory with asymptotically AdS boundary conditions is equivalent
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to the partition function of the large N QFT. The metric g then takes the role of the
¢ field above:

Zgray = e Sels] (3.173)

The gravitational action contains a Gibbons-Hawking boundary term required for
finiteness,

1 d(d
Selgl = — 55 | d**'vE (%+ gl ))

2(d—1)
d
2/(2 /ﬁd xXJg (—2,%/ + 2 ) (3.174)
Here, .# denotes the trace of the extrinsic curvature,
H =y*Vyn,, (3.175)

where y#V is the induced metric on the boundary at r — 0 and n* an outward
pointing unit normal vector on the boundary.
A saddle point, i.e. a solution to the equations of motion, is given by

ds® = L (f(r) dr’ + dr + dx' dx) fr=1- ﬁ. (3.176)
f(r) ’ rh

This coincides with the analytic continuation of the AdS Schwarzschild metric to
Euclidean space, where riy denotes the Schwarzschild horizon. We thus have a black
hole as solution to the equations of motion. The Euclidean metric (3.176) is defined
outside the horizon only. At the horizon, we have r = ry and and the boundary, we
have r = 0.

We now show that regularity at the horizon is obtained only if 7 is periodic. The
period given by B = 7 is identified with the inverse temperature, with kg = 1 for
the Boltzmann constant Consider the behaviour of the metric near the horizon rg.
In this region, the metric in the (z, r) plane becomes, defining r' = ry — r,

ds* = ( —dt 4 gy ’2) : (3.177)
This metric may be rewritten as
2 2 2 4 0 . 2 _
ds*=dp +p Pdr with p° =/rL. (3.178)
This expression corresponds to the metric of a plane in polar coordinates,
2‘[

ds> = dp* + p?do* with 0 = (3.179)
"H
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With this choice for 6 a conical singularity can be avoided. The periodicity of 6 can
be translated into periodicity of t with period

2
—pB =2r. (3.180)
TH
Keeping in mind that 7 = 1/, we identify a relation between the horizon radius rg
and the Hawking temperature of the AdS Schwarzschild black hole,

T=——. (3.181)
T rH
The Hawking temperature of the black hole is then identified with the temperature
of the field theory on the boundary.
We obtain further thermodynamic quantities by evaluating the partition function
at the saddle point e 5E [8"]. The action as given in (3.174), evaluated at the Euclidean
Schwarzschild metric, is found to be

L v @4m) L vy 7!

Sk = — =
E szrl(_ll T 2k2dd

(3.182)

where V;_1 is the spatial volume of the associated QFT.

In order to be in the classical gravity regime, we need that the spacetime is weakly
curved in Planck units, i.e. that % <« 1. The dual field theory analogue of LZ—;I <1
is N — oo, recall that L* = 4w g,Na'?.

From the action given by (3.182) we obtain the free energy and entropy as

@m)yd -ty 1t
2k2dd

F=—TInZ="Sg[g"] = — (3.183)

F 4 de—l V., Td—l
g _ F_ @) d-1 _ (3.184)
oT 212 dd-1

The expression for the entropy is equal to the area of the event horizon divided by
4GN = % This area entropy relation is universally expected to be true for event
horizons.

As an outlook, let us mention that here, we have considered a thermal field theory
in equilibrium, dual to an Euclidean signature AdS-Schwarzschild black hole. For
describing transport phenomena which require evolution in time and small deviations
from equilibrium, it will be necessary to move on to Minkowski signature black holes.

3.5.2 Finite Density and Chemical Potential

To conclude our brief introduction to gauge/gravity duality, let us consider how to
introduce a finite density and chemical potential.
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3.5.2.1 Quantum Field Theory at Finite Density

Consider the Lagrangian of a quantum field theory with a U(1) gauge symmetry and
a scalar and a fermion charged under this symmetry

- 1
L = D) D o + iy y Dy + ?F’“’FW (3.185)

with the covariant derivative D, = 9, +iA . Let’s give the time-component of A, a
non-vanishing value (Ag) = u, suchthat Ay = (Ag) +8Ap. This generates a potential
of the form

V= —plote — uyty, (3.186)

where u is the chemical potential, vy = N gives the number operator and — w?
is the mass square of the scalar field. Note that the scalar field has a negative square
mass, which leads to an upside-down potential and potentially to instabilities.

Recall that the Gibbs energy (free energy in the grand canonical ensemble) is
given by

Q=E—TS—uN. (3.187)

3.5.2.2 Finite Density and Chemical Potential on the Gravity Side

In the following we will introduce finite density and chemical potential into the
gauge/gravity duality. For this, we have to find a solution to the equation of motion of
Einstein-Maxwell theory with A = A;(r)dt. The background Maxwell U (1) potential
of the field theory is read off from the boundary values of the bulk Maxwell field

Au(r) = Af?) + ... asr — 0. The Einstein equations of motion involve the energy-
momentum tensor of the field strength F,,,

R dd—1) K2 ! N
Ry — 28w T T s = 2 FuFy — ZgquApF 7). (3.188)

The solution is given by the Reissner—Nordstrom AdS black hole, whose metric in
Minkowski signature is

f(r)

d 2 2(d—1)
ﬂﬂzl—(l+*m)(—) + ”L(i) , (3.189)
V rH Y 'H

(d—1)Lg?
d—-2x2 "’

ds® = ( ’(’)dl +—+dX)
' V
2

with y =
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’ d—-2
Ao(r) = M(l + (—) ) . (3.190)
'H

This satisfies the boundary condition that A;(r) has to vanish at the horizon since
d; is not well-defined as a Killing vector there. Moreover, (3.190) identifies the
parameter in the solution (3.189) with the chemical potential: In agreement with the
standard AdS/CFT result for the asymptotic behaviour of gravity fields near the AdS
boundary, asymptotically Ao () gives the source and the VEV of the dual field theory
operator. Here, these determine the chemical potential and the density, respectively.
We readily identify the source term u as the chemical potential. For identifying the
density, we proceed as follows:

The temperature is again fixed by analytic continuation to the Euclidean regime

and is given by
1 d—2)rkn?
T = (d - #) (3.191)

and the gauge field

T 4x H y

In the grand canonical ensemble, by evaluating the Euclidean action on the solution,
we find the following Gibbs free energy

Ld71 r2 M2 T
R2=-ThZ=-——|1+ H2 Vi1 :F(—) Vaor TY. (3.192)
2Ky 14 M

From this, we obtain the charge density

19 2L (3.193)
P= Vo O k2rgy?’ '

without loss of generality in d = 3 dimensions.

3.6 Conclusion

In these lecture notes we have reviewed prerequisites for the AdS/CFT correspon-
dence and introduced the correspondence itself. We went on to testing the corre-
spondence via the calculation of correlation functions. Finally, we have considered
more general models of gauge/gravity duality by considering gravity duals of field
theories at finite temperature and density. With these generalizations we are now
ready to consider applications of gauge/gravity duality to strongly coupled systems
such as the quark-gluon plasma and particular condensed matter systems. But this is
another story which will be told elsewhere.
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Chapter 4
Holography for Strongly Coupled Media

Dam Thanh Son

4.1 Motivation

Many problems of modern theoretical physics are related to strong coupling. One
example is the problem of the hot and dense matter in QCD. The creation of hot QCD
matter is the goal of relativistic heavy ion experiments, the most recent of which
are RHIC and LHC. Although there are ample evidence that some form of matter
with strong collective behavior is formed in ultra-relativistic heavy ion collisions,
the theoretical problem of finding whether thermal equilibrium is achieved and at
which temperature has still not been solved. (The problem can be made very sharp
by imagining a world with very small electromagnetic fine structure constant so
that nuclei can be very large. Can we make a quark gluon plasma by colliding very
large nuclei at very high energy? What is the temperature of the system at thermal
equilibration? We still do not have definite answer to these questions.) Assuming
that system reaches equilibrium, one can ask questions about the properties of the
thermal equilibrium state. While thermodynamics of the QGP at finite temperature
and zero chemical potential can be studied by lattice methods, the latter becomes very
inefficient in dealing with real time quantities, for example the viscosities. Current
lattice methods are also incapable of treating QCD matter at finite chemical potential,
a problem that hinders our understanding of the core of neutron stars.

Another example of a strong coupling problem is that of unitarity fermions (unitary
Fermi gas). This system is that of nonrelativistic fermion interacting through a short-
range potential fine tuned to resonance at threshold (see Sect. 4.6 for more discussion).
The simplest version of the problem is the Bertsch problem: given a gas of spin-1/2
fermions, interacting with short-range interaction fine tuned to unitarity (defined
below in the lectures), what are the properties of the ground state? This problem has
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Fig.4.1 The close time path contour

became extremely important when it became possible to realize unitarity fermions
in atomic trap experiments.

Various other strong coupling problems in condensed matter physics are discussed
in Subir Sachdev’s lectures in this school. In these lectures, we will describe some
points of contact between gauge/gravity duality and the physics of the quark gluon
plasma and the unitary Fermi gas.

4.2 Thermal Field Theory

There are two main formalisms used in thermal field theory. The first formalism
is the Matsubara, Euclidean formalism. It is used in lattice QCD, very convenient
for thermodynamic and static quantities (like correlation length), but cannot directly
address dynamic, real-time quantities. The second formalism is the real-time, close
time path formalism. (For more details, see Refs. [1, 2]).

In the Matsubara formalism, the theory is formulated on a Euclidean spacetime,
where the time axis is compactified to an interval 0 <7 < =1/T. In the close-
time-path formalism, one makes a detour into real time, as in Fig. 4.1.

One can turn on source on the upper and lower parts of the contour, J; and J,. The
partition function of field theory now is a functional of both J; and J»>, Z = Z[J1, J>],
and and derivatives of log Z with respect to J gives a 2 x 2 matrix propagators G,p,
where a, b = 1, 2. Changing o rescales the off-diagonal elements by a trivial factor,

G, q) =G5 w, ), (4.1)

Ga(w, q) = e °°G3~(w, ). (4.2)

For o = 0, the propagators G include path-ordered, reversed path-ordered, and
Wightmann Green’s functions. They are related by

Gi1+ G =G+ Gy, 4.3)

but the choice 0 = B/2 leads to symmetric 2 x 2 propagator matrix: G2 = Goj.
This choice of the o is most natural for holography, as we will see.
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From the point of view of the CTP formalism, putting our system in an external
source J corresponds to having, in the o = 0 choice of the contour, J1 = J, = J.
The expectation value of the operator ¢ at a point x on an upper contour is given by
an integral over the whole contour, which can be written as

(1(x)) = —/dy(Gll(x I =Gk =yJy), o=0. (44)

Define the retarded propagator Gg = G171 — G12 (0 = 0). The retarded propagator
governs the response of a system to a small external perturbation:

B) = - / dyGr(x — I (). 4.5)

On the other hand, for the symmetric choice 0 = /2, Ggp = G11 — e POl2G ;.

Normally, the computations of thermal Green’s function rely on summing
Feynman diagrams. The set of Feynman diagrams that one has to sum in order
to compute, say, the viscosity, can be quite complicated [3]. In the low-momentum
limit, however, the forms of many correlation functions are simple and are dictated
by an effective theory—hydrodynamics.

4.3 Hydrodynamics

Consider an interacting quantum field theory at finite temperature. One can visualize
such a system as a collection of particles (or quasiparticles), moving with random
velocities and colliding with each other from time to time. Such a picture is too
simplistic for a strongly interacting system (with no discernible quasiparticles) but
it does tell us that there is an important length scale in the problem—the mean free
path, which is the length which a particle travels before colliding with other particles.

Hydrodynamics can be thought of as an effective theory describing the dynamics
of a finite-temperature system at distance scales much larger than the mean free path.
By definition the degrees of freedom entering hydrodynamics have to have relaxation
time much larger than the mean free time. Such modes include

* Density of conserved quantities. Consider, for example, the QCD plasma, and
imagine a perturbation of the system where there is a net excess of charge in a
volume with size L >> £. If one waits a long time this lump of excess charge
will disappear, with the charge now distributing uniformly over the whole volume.
However, since charge is conserved, causality implies that the time scale for this
process cannot be smaller than L /c, where c is the speed of light (in fact in many
cases the time scale is much bigger than this naive estimate. For example, if the
relaxation is due to diffusion, the length scale is ~ L?/¢).

e Nambu—Goldstone modes. If there is a broken continuous symmetry, Goldstone’s
theorem dictates that there must be a massless particle at zero temperature. If the
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symmetry remains broken at a finite temperature, the Nambu—Goldstone mode
continuously deforms into a hydrodynamic mode. For example, in superfluid “He
the phase of the condensate ¢ is a hydrodynamic degree of freedom (the superfluid
velocity v; is proportional to the gradient of ¢ : vy = Vg /m).

¢ Unbroken U(1) gauge fields. At zero temperature, a U(1) gauge field which does not
suffers from the Anderson-Higgs mechanism corresponds to a massless photon. At
finite temperature, the electric field is screened (Debye screening) but the magnetic
field is unscreened and should be included in the hydrodynamic description. An
example of such a theory is magnetohydrodynamics, describing for example the
interior of the Sun.

In these lectures we will consider only the simplest class of hydrodynamic theories,
where the only slow degrees of freedom are the densities of conserved charges. In
this case, hydrodynamics is given by the conservation equation,

vV, TH =0, (4.6)

supplemented by the continuity equation that expresses 7+ in terms of four variables:
the local temperature T and the local fluid velocity u* :

T = (¢ + Pyulu’ + Pg"" + o/, 4.7)

where /¥ is the correction containing terms proportional to first derivatives. It is
conventional to impose the condition u,, " = 0 which eliminates any ambiguity in
the definition of u* and T. In this case one has

™ = PR PYP (Vaup + Veuy) — ¢ PP (V - ), (4.8)

where 7 and ¢ are the shear and bulk viscosities, respectively. In a conformal plasma,
the stress-energy tensor is traceless, hence s = 3P ~ T#and ¢ = 0. Insuchaplasma,
the shear viscosity has to scale with the temperature as n ~ 7°3.

4.3.1 Hydrodynamics and Two Point Functions

From the hydrodynamic equations, one can easily compute the two-point functions
of between two components of the stress-energy tensor. According to the general
formulas of the linear response theory, the two-point function can be computed by
first turning on a weak gravitational perturbation g,, = 1,y + hyy, hyy < 1, then
measuring the expectation value of the stress-energy tensor (7},,). The two-point
function is the coefficient of proportionality between (7},,) and £,

Ty (x) ~ /dy(T“”(x)T“ﬂ(y))haﬂ(y)- (4.9)
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On the other hand, when &, varies with space and time very slowly, the response
of the system can be determined by hydrodynamics. One first generalizes the hydro-
dynamic equation to curve spacetime. Assuming the system is in thermal equilibrium
in the infinite past, and A, is nonzero in a finite regime in spacetime, the state of
the system can be completely determined.

We can re-derive the well known Kubo’s formula in this way. Let us turn on a
small metric perturbation whose only nonzero component is %, which is assumed
to be homogeneous in space and is time dependent, /1,y = hy(¢). Then by symmetry
one can right away determine that the fluid will remain in a state with constant
temperature, 7 = const, and zero spatial velocity u* = (1, 0) (a tensor perturbation
cannot excite a scalar or vector mode to linear order). Nevertheless, the stress-energy
tensor receives a correction

T = Pg™ — n(Veuy + Vyuty) = —Phy + 20T 0 (4.10)

proportional to the perturbation. Thus we find the two-point function
(TYT?) = P — inw. (4.11)
The real part of this Green’s function is a contact term, and depend on the way the two
point function is defined; but one cannot get rid of the imaginary part by a redefinition

of the Green function. Moreover, the imaginary part gives the value of the viscosity
through the Kubo formula:

1
n=— al)ig]() ;Im Gp (@, 0). 4.12)

4.4 AdS/CFT Prescription for Correlation Function

4.4.1 Euclidean Green’s Function

Let us remind ourselves how the Euclidean Green’s function is computed. For
simplicity we limit ourselves to the case of an operator of dimension 4, dual to
a massless scalar field ¢. Assuming the action for the scalar field is

K
S=-7 /de«/_—ggWa,qua@. (4.13)
Then the prescription tells us to solve the wave equation

Iu(vV—88"" ) =0, (4.14)
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with boundary condition ¢ = ¢ at the boundary. The solution, in momentum
space, is ¢ (z,k) = ¢o(k) fi(z), where fi(z) is the solution to the field equation
(at momentum k). We now rewrite S as a boundary action

- / d5x_ (4.15)

Differentiating the action with respect to the boundary value ¢o, we find the two
point function to be

fk

(PpP)k ~ K llm (4.16)

The boundary condition at the boundary needs to be supplemented by the boundary
condition in the IR. At zero temperature, we require ¢ (z) to vanish as z — 0. At
finite temperature, spacetime is capped off at some z = zo. We require the field to
be regular at the horizon; in the case of the scalar, ¢’(z9) = 0. The solution to the
field equation is then unique, and the AdS/CFT prescription well defined.

4.4.2 Real-Time Green’s Function

In real-time, the formulation of the AdS/CFT prescription is more subtle. The
AdS/CFT rules are best formulated using the whole Penrose diagram of the black
hole.

In the Poincare metric the AdS black hole looks like

2 2
ds? = -2 fa? +axd) + 2 ar?, 4.17)
R2 rzf

where f =1 — r(‘)1 /r*. The metric can be extended pass the horizon, one recovered
four quadrants in the following Penrose diagram (Fig. 4.2).

Let us remind ourselves how it is done. Near the horizon, we expand r = rg + p.
The (z, r) part of the metric can be rewritten as

2
ds? = dnTp (—a? + 9" (4.18)
e @xTy? 2 ) '

where T = ro/m R?. This can be rewritten as ds®> = e*" 7" (—dt? + drf) where
= (47 T)~"In p. Finally, we introduce Kruskal’s coordinates

U=—e &l (4.19)

V= 2T, (4.20)
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Fig.4.2 Penrose diagram MNMVVVVVVVVVVVVVWVV
of AdS black hole
»
0/
L R
\Z
p

and metric is ds> = —dUdV. The Poincare coordinates cover only U < 0, V > 0

part quadrant of the diagram. There is another copy with the same metric, corre-
sponding to the U > 0, V < 0 part. There are two boundaries.

The extension of the AdS/CFT duality was suggested by Maldacena [4], and then
explicitly considered in Ref. [5]. The idea is that the two boundaries correspond to
two horizontal parts of the close time path contour. The AdS/CFT prescription is then
identifies the logarithm partition function of the thermal field theory, with sources
Ji and J; on the two parts of the contour, with the classical action of a configuration
where the bulk field ¢ reaches the values J; and J> on the right and left boundaries,
respectively.

In addition, one should also put boundaries conditions near the horizon. The
choice of the boundary condition should be that when the bulk field ¢ is considered
as function of the complex Kruskal coordinates U and V, it is analytic in the U upper
half plane and V lower half plane.

The solution to the linearized field equation can be written in terms of the mode
function f(r), defined as the radial profile of a solution to the wave equation with
momentum k, and is incoming wave at the horizon. One can write the solution down
separately in the right and left quadrants,

¢k, g = (0 + D fFrR) = nfi(rr)) ¢1(k) +v/n(n + 1) (f(rr) = f(rr)) ¢2(k),

421
dk, )L =Vnm+1) (fFrL) — filrr)) p1(k) + ((n+ D fx(rr) — nff (r1)) g2 (k).
4.22)

Here n = (¢“/T — 1)~ is the Fermi-Dirac distribution function at frequency .
Substituting the solution into the quadratic action, using the boundary form of the
on-shell action,

*/ V=88 ¢ (—k,1)d, ¢ (k, r) /x/_g"qb( k,r)o ¢k, r)

@2n )4 (2m)*

(4.23)
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(where K is a normalization factor) and differentiate it, one obtains the CTP propa-
gators. Taking the appropriate linear combination of G1; and G2 we then find the
retarded Green function,

Gr(k) = —K/=88" f(r)o, ff (N)|r—o0- (4.24)

This formula coincides with the prescription first proposed in Ref. [6]. We now use
this formula to compute the shear viscosity of the ./” = 4 plasma.

4.4.3 Viscosity

Let us compute the a two-point function. We assume the momentum to be g = (w, 0,
0, ¢), and we compute the two-point function 7%, we consider gravitation perturba-
tion with the only perturbation being £,y (¢, z). One can show that the quadratic action
of hyy is that of a minimally coupled theory when written in terms of ¢ = g**hy:

V(SS)

P d’x/—gg"0,pdv¢p.  (4.25)

S = d'%x/=g(R —2A) =

5.2
210

We now the write down the mode equation
f@ ) ( »’ qz)
. — 7) = 0. 4.26
( K o) @ (4.26)

The solution to this equation is

z —iw/4nT
fi(2) = (1 - 5) . (4.27)

Inserting the solution into the formula for G, we find the imaginary part of the
retarded propagator,

V(S5 R3
52 3
Kto <o

ImGr(k) = — iw. (4.28)

To compute the real part of Gg one needs to be more careful with holographic
renormalization. But we can already read out the viscosity from Im G,

V(S°) R?
10 <o

This can be compared with the entropy density,

S 5 R3 21
s=—=V(E) =5 (4.30)
v 23 &fo
and we find that n/s = 1/4m. This is the common feature of all theories with

gravitational dual [7].
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4.5 Fluid-Gravity Correspondence: Diffusion

There is an alternative method to compute the kinetic coefficients. This method,
sometimes called fluid-gravity correspondence, allows one to see directly the emer-
gence of the nonlinear hydrodynamic equations from the field equations in the bulk
[8]. The approach is thus complementary to standard AdS/CFT method based on the
calculations of correlation functions.

We will illustrate the technique of fluid-gravity correspondence on a very simple
example where the higher-dimensional theory is an abelian gauge theory in a black
hole background,

1

4g SZ(M

S = /d"“xFWFW. 4.31)

The background is chosen to be

2
ds® = r*(— f(r)dt® + dx*) + zd;, (4.32)
ref(r)
where f(r) is a function that vanishes at the horizon, f(rg) = 0 and tends to 1 at the
AdS boundary, f(co) = 1. This is the usual back hole (black brane) background.
We are interested in solution to Maxwell’s equations which satisfies outgoing
wave boundary conditions. To enforce the incoming-wave boundary condition, it is
more convenient to use the incoming Eddington—Fikelstein coordinates,

ds®> = —r? fdv? + 2dvdr + r’dx>. (4.33)

The usefulness of the Eddington—Fikelstein coordinates is that regularity at the
horizon in these coordinates correspond to incoming wave boundary conditions in
the usual coordinates. We go on to construct such a solution. The Maxwell equations
are

O (r{Fy) +rit29; F,p = 0, (4.34)
rl9,Fry + r?28; Fyy + frlo;F;, =0, (4.35)
O (r" 2 Foi) + 9, (friFri) + r? 720, Fi + 79740 Fj = 0. (4.36)

We start from gauge field of a charged black hole,

4.37)

This is a one-parameter family of solutions to the Maxwell equations, parameterized
by the charge density ¢. It describes a state in the field theory with a constant charge
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density in complete thermal equilibrium. Note that the solution is translationally
invariant in all field-theory directions, ¢ and X.

What happens if we make ¢ a function of the space and time? As one can easily
verify, now the configuration (4.37) is not an exact solution to the Maxwell equation.
However, when ¢ varies slowly in space and time, one should be able to still find the
solution by expanding it in powers of d;q and d,¢q, which are small parameters. This
is exactly the strategy that we will follow.

First we need to settle on a power counting scheme. Anticipating the end result to
be a diffusion equation 9;p = DV?2p, we shall treat 9;q as O(¢) and 9,q as O(&2),
where ¢ is small. We then expand the solutions, using the gauge A, = 0,

A, x) = Q( ) S+ AN, A=A, (4.38)

‘We can demand that Af)l) falls off faster than r—@=2 at large r. Otherwise, one can
redefine ¢ (x) to absorb any r~(¢~2) piece in A(()l). Consistency requires that we treat

A(l) as a quantity of order &2 and A(l)
Substituting the ansatz in the the Maxwell equations, collecting terms with the
same smallness in &, we find

3,9, Ay 4 ri+23,9,4 = 0, (4.39)
1
d—)dvg + fri9:9,A" — —32¢ =0, (4.40)
r
3 d
—a, +3,(fria,A;) = 0. (4.41)

Integrating the last equation, we find

o_ € . %
i frd frd+q ’
where Cis an x-dependent integration constant. Both terms in the right hand side have

pole at the horizon r = ry, and regularity at the horizon requires that the singularities
cancel out between the two terms. Therefore we find

a9, A (4.42)

C = —rpdiq. (4.43)

Integrating once more, we then can find A;. Actually for our purposes, we just need
to know the asymptotic behavior of A; at large r,

ro 0; q _
A=~ — + 0. (4.44)
We can now substitute A; into the second equation of (4.39), taking the large r limit
and derive the following equation for g:
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r
g — i 0 1v2q =0, (4.45)

which is nothing but the diffusion equation. Thus we have found a more general
solution to the Maxwell equation which is parameterized by solutions to the diffusion
equation. Maxwell equation in the background of black brane metric reduces to the
diffusion equation in the long-wavelength limit.

4.6 Nonrelativistic Conformal Invariance

Fermions interacting through a unitarity interaction form a simplest nonrelativistic
strongly interacting system. This system is beautiful because of its simplicity and
universality. It has attracted enormous attention since being realized in cold atom
experiments.

Let us first define fermions at unitarity. Consider two nonrelativistic particles,
interacting through a potential,

2 2
H=211% 1 yix —xl. (4.46)
2 2
For simplicity, we can consider V of the form of a square well potential, with size rg
and depth —Vp : V(r < rg) = —Vpand V(r > rg) = 0. If the potential is shallow,
it does not have any bound state; but if it is deep enough it may have one, two, or
more bound states. There is a critical value of Vo ~ ry’ 2 at which the potential starts
to have exactly one bound state. We tune V{y to be exactly this value.

Then we take the range of interaction r(y to zero, keeping Vj always tuned to
the critical value (in other words, keeping Vorg fixed). This limit is called the
unitary limit, and the system of fermions interacting with this interaction the unitary
Fermi gas.

The stability of such a system is not a trivial issue. It is relatively easy to see that
for bosons, and for fermions of three or more different species, the finite-density
system is not stable. This fact is related to the so-called Efimov effect: in the limit of
zero range interaction, the Hamiltonian is unbounded from below (there is an infinite
number of bound states, the lowest of which has an energy determined by the UV
cutoff of the theory—the range of the potential).

4.6.1 Quantum Mechanics Formulation:
Boundary Condition

The quantum mechanics of unitary fermions can be formulated in a way which gets
rid of the interaction potential completely. Let us start with the case of two particles,
one spin-up with coordinate x, and another spin-down with coordinate y. Neglecting
the center of mass motion, the Schrédinger equation has the form
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2
8—2111(1') + V(@)Y (r) = —EY(r). (4.47)
ar

In the limit of zero range, the potential V () is zero at any nonzero r. In the limit of
r — 0, the right hand side can be neglected (E < r~2), and we have the Laplace
equation VerI/ = 0. Now it is known that the Laplace equation has two independent
solutions, 1 and r—!. The behavior of the wavefunction at small r is, in general,

Y(r) = g + Ci1+ O(r), (4.48)

where C and C are some numbers. In the usual problem of free particles, the wave-
function is assumed to be regular at » = 0, which means C = 0. On the other hand,
from the mathematical point of view one can impose a general boundary condition

1 1
¥ (r) ~ (; — _) , (4.49)

a

with any value of a (a = 0 corresponding to free particles). Physically a is obtained
by solving the zero-energy Schrodinger equation inside the potential » < rg and
then match it to the solution to the Laplace equation outside the potential r > rp;
a therefore characterizes low-energy scatterings and is called the scattering length.
The fine-tuning of the potential corresponds to the limit a — oo.

For the case of a general number of particles, the Hamiltonian is the sum of the
kinetic terms of all particles,

p; 1 9?
H = L =—— — 4.50
ZI,: 2m  2m ZI: ox? (40
(where i numerates all particles) but the Hilbert space is nontrivial: the wave function
of a system, ¥ (X1, ..., Xy; V1, ..., Yn) satisfies the following condition when one

spin-up and one spin-down particles approach each other,

WXL XN YY) = ﬁ +OM+ 00—y, (@5
where x; and y; are the coordinates of the spin-up particles and spin-down particles,
respectively. The Hamiltonian is trivial, but the nontriviality of the problem is in the
Hilbert space.

For example, we can put a spin-up and a spin-down fermion in a harmonic poten-
tial. The Hamiltonian is now

1 1
H = E(p? +p3) + 5wz(x% +x3). (4.52)

The problem can be solved exactly even when the interaction between particles is
unitary. The ground state is
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e (xiP+x21?)/2

V(x1, X2) ~ W’ (4.53)

and the ground state energy is £ = 2w. This is lower than the ground state energy
in the case of a 3w, in consistency with the attractiveness of the interaction.

The two-particle problem is special because it can be solved analytically. For three
particles in a harmonic potentials, the energy levels are also known exactly (they are
solutions to a trigonometric equation). For four particles and more (unless they have
the same spin), the many-body problem cannot be solved exactly.

4.6.2 Symmetries of Unitary Fermions

A general nonrelativistic system is invariant under translation (in space and time),
rotation, and Galilean boosts. In addition, the conserved mass (particle number)
corresponds to a phase symmetry, ¥ — ¢/*v. These symmetries are enhanced to a
new symmetry group called the Schrodinger group. The Schrodinger group contains
two new symmetries

« Dilatation: t — A%f, X — AX,
 Proper conformal transformatio: t = /(1 — At), x — x/(1 — At).

Saying that a theory theories has these symmetries means that if one has a solution
to the time-dependent Schrodinger equation, W (¢, X;), then one can generate new
solutions. For example, the solution obtained by dilatation is

' (t,x) = AN2w (32, ax) (4.54)

(the prefactor is to keep the normalization of ¥). It is obvious that if ¥ solve the free
Schrodinger equation, then ¥’ also does. More nontrivially, the boundary condition at
short distances for unitary particle is preserved under dilatation. Similarly, the proper
conformal transformation corresponds to the following family of new solutions,

, _ t X
lP(z,x)_C(t,x)lI/(l_M, l—kt)' (4.55)

We leave the determination of C (¢, X) to the reader.

In the theory of unitarity fermions, the dilatation operator D and the proper
conformal transformation C can be expressed in terms of the operators creating
and annihilating a particle,

D= —%/dx, x-Wivy —vyly), C= %/dx, Y @Y x).  (4.56)

One can check that the operators D, C and the Hamiltonian H form a close SO(2,1)
subalgebra of the Schrodinger algebra,
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|[D,C]=-2iC, [D,H]=2H, [C,H]=IiD. 4.57)

The full Schrodinger algebra can be found in Ref. [9].

4.6.3 Local Operators

The local operators (for example ¥, ¥, or ¥ T) depend on time 7 and space x. Its
commutators with time and space rotation are completely defined. The local operators
can be classified by particle number by taking it commutator with the particle number
operator M = [d*, ¥ "y For example ¥ has particle number —1 while for ¢ it is
+1. Each operator can be associated with a dimension by

[D,00)] =iAp0(0). (4.58)

For example, Ay = 3/2 (d/2 in d spatial dimensions). One example of a nontrivial
composite operator is obtained when one tries to construct the product of two anni-
hilation operators of particles with different spins, ¥4+ . We know that the matrix
element of ¥4 (x)¥(y) between a two-body state and vacuum is just the wave
function,

Oy P NIY) =P (X, y). (4.59)

The problem is that when we tries to take X — y to have a local operator Y4/, the
matrix element diverges due to the boundary condition at x — y. On the other hand,
one can define the following operator

02(x) =y1i_r)r§(47T|X—YI'ﬁ¢(X)1/f¢(Y), (4.60)

which has finite matrix elements between states in the Hamiltonian. Another way to
write the equation above is

0w
Y (XY (y) = o

— 4, (4.61)
[x — y|

which has the form of an operator product expansion for unitarity fermions. Operator
product expansions have been applied very recently for unitarity fermions; as in
particle physics they are most useful at short distances. The operator 02T 0> has a
special role: its expectation value is called in the literature the Tan’s parameter, or
the contact.

As in relativistic CFTs, one can introduce the notion of primary and descendant
operators. Primary operators are called those which commute, at
zero coordinates, with Galilean boosts and the proper conformal transformation:
[Ki, O(0)] = [C, 0(0)] = 0. By taking derivatives with respect to coordinates and
time, descendants are obtained.
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The SO(2,1) commutators are important to prove what we call the operator-state
correspondence for systems with Schrodinger symmetry. Namely, a primary operator,
which does not annihilate the vacuum (or its Hermitian conjugate does not annihilate
the vacuum) can be put into correspondence with an eigenstate of the system of a few
particles in a harmonic potential [9]. This statement can be proven by first noticing
(recall the form of the operator C in Eq. (4.56) that the Hamiltonian in a harmonic
potential can be written as

Hose = H + »°C. (4.62)
Then for an primary operator O, one can construct a state ¥p) as follows,
|Wo) = e H/207(0)]0). (4.63)

Physically, first we use O to create a state which is localized at the origin of coor-
dinates, and then evolve that state in imaginary time using the free-space Hamil-
tonian during a time 1 /w. The resulting state, whose wavefunction is a Gaussian-type
wavepacket, can be shown, by using the SO(2,1) commutators, to be an eigenstate
of the Hamiltonian H,s with energy 2w.

This operator-state correspondence can be illustrated explicitly in a few example.
The operator ¥ has dimension 3/2, which matches with the ground state energy
of a single particle in an isotropic harmonic potential, 3w/2. The operator O3 has
dimension 2, and corresponds to the ground state of a system of one spin up and
one spin down particle in a harmonic potential, whose energy was shown above to
be 2w.

4.6.4 Schrodinger Space

If one wants to move in the direction of constructing a gravitational dual of the
unitarity fermions, it seems reasonable to start by asking the question: what is
the space-time that realizes the Schrodinger symmetry? (Recall that in the original
Maldacena’s duality, the symmetry of AdSs x S° space matches with the symmetry
of the quantum field theory). An example of such a space was constructed in
Refs. [10, 11]. The space has two extra dimensions compared to one extra dimensions
in standard holography. The metric is

2(dx™)? N —2dxTdx™ +dx'dx! +dz?

2 _
ds® = 7 2

(4.64)

Z Z

One can check that this spacetime has realizes all generators of the Schrodinger
algebra as Killing vectors. In particular, the total mass and the proper conformal
transformation are
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M:x~ —x +a,

+)i +

X, xT > (1 =—ax™h)

C:z—>(0—axNz, x> (1 —ax o 4.65)

x> x - %(xixi +z2).

One can see that the translational symmetry along the direction x ~ realizes the conser-
vation of mass in the nonrelativistic theory. The simplest action which gives rise to
the Schrodinger spacetime is that of Einstein gravity with negative cosmological
constant, coupled to a massive gauge field with a suitably chosen mass.
Subsequently the five-dimensional Schrodinger spacetime (corresponding to two
spatial directions in field theory) have been constructed in string theory. As by-
product of the construction, one also found black hole solutions, which describe a
medium with finite chemical potential and temperature. One might think that these
solutions may be the first holographic model for the unitarity Fermi gas. Unfortu-
nately, closer inspection reveals a serious undesirable feature: the equation of state

. 4 . . . .
of the black hole is P(T, i) ~ %, which has the correct scaling behavior but is
more restrictive than required. The more general equation of state is

P(T, ) = p>F(T/p), (4.66)

where the function F is not constrained. This is in contrast to the situation in rela-
tivistic holography, where fitting the equation of state of QCD is not really a problem
in the bottom-up approach.

It seems that one should try to devise a more general way to realize Schrédinger
symmetry. Attempts in this direction are being made. At the more general level, one
should not expect the gravity dual of unitarity fermions to be a classical theory due
to the lack of a large N parameter. One can generalize the unitarity fermions to a
many-favor theory with Sp(2N) vector symmetry. This theory is trivial to solve; at
large N the BCS theory becomes exact. The situation is very similar to the relativistic
O(N) vector model. One can hope that there is a nonrelativistic high-spin theory that
is dual to the Sp(2N) version of unitary fermions, similar to the case of the O(N)
model [12]. As far as I know, to date no serious attempt has been made to uncover
such a theory.

4.7 Summary

In these lectures we have considered some applications of gauge/gravity duality
to systems with finite temperature and chemical potential. We have left out some
very important applications of gauge gravity duality, most notably jet quenching and
heavy quark energy loss.

Acknowledgements I thank the organizers of the Munich, Cargese and TASI schools for inviting
me to give this series of lectures. This work is supported, in part, by the DOE grant No. DE-FG02-
00ER41132.



4 Holography for Strongly Coupled Media 163

References

10.

11.

12.

. Kapusta, J.I., Gale, C.: Finite-temperature field theory: principles and applications. Cambridge

University Press, Cambridge (2006)

Le Bellac, M.: Thermal field theory. Cambridge University Press, Cambridge (2000)

Jeon, S., Yaffe, L.G.: From quantum field theory to hydrodynamics: transport coefficients and
effective kinetic theory. Phys. Rev. D 53, 5799 (1996) [arXiv:hep-ph/9512263]

Maldacena, J.M.: Eternal black holes in Anti-de-Sitter. JHEP 0304, 021 (2003) [arXiv:hep-
th/0106112]

Herzog, C.P., Son, D.T.: Schwinger-keldysh propagators from AdS/CFT correspondence. JHEP
0303, 046 (2003) [arXiv:hep-th/0212072]

Son, D.T., Starinets, A.O.: Minkowski-space correlators in AdS/CFT correspondence: recipe
and applications. JHEP 0209, 042 (2002) [arXiv:hep-th/0205051]

. Kovtun, P, Son, D.T., Starinets, A.O.: Viscosity in strongly interacting quantum field theories

from black hole physics. Phys. Rev. Lett. 94, 111601 (2005) [arXiv:hep-th/0405231]
Bhattacharyya, S., Hubeny, V.E., Minwalla, S., Rangamani, M.: Nonlinear fluid dynamics from
gravity. JHEP 0802, 045 (2008) [arXiv:0712.2456 [hep-th]]

Nishida, Y., Son, D.T.: Nonrelativistic conformal field theories. Phys. Rev. D 76, 086004 (2007)
[arXiv:0706.3746 [hep-th]]

Son, D.T.: Toward an AdS/cold atoms correspondence: a geometric realization of the
Schroedinger symmetry. Phys. Rev. D 78, 046003 (2008) [arXiv:0804.3972 [hep-th]].
Balasubramanian, K., McGreevy, J.: Gravity duals for non-relativistic CFTs. Phys. Rev. Lett.
101, 061601 (2008) [arXiv:0804.4053 [hep-th]]

Klebanov, I.R., Polyakov, A.M.: AdS dual of the critical O(N) vector model. Phys. Lett. B 550,
213 (2002) [arXiv:hep-th/0210114]



Chapter 5
Quantum Black Holes

Atish Dabholkar and Suresh Nampuri

5.1 Introduction

The entropy of black holes supplies us with very useful quantitative information
about the fundamental degrees of freedom of quantum gravity. One of the important
successes of string theory is that one can explain the thermodynamic entropy of
certain supersymmetric black holes as a logarithm of the microscopic degeneracy as
required by the Boltzmann relation. These results imply that at the quantum level,
one should regard a black hole as an ensemble of quantum states in the Hilbert space
of the theory.

In any consistent quantum theory of gravity such as string theory, the requirement
that the thermodynamic entropy must equal the statistical entropy of a black hole
is an extremely stringent theoretical constraint. This constraint is also universal in
that it must hold in any ‘phase’ or compactification of the theory that admits a black
hole. It is therefore a particularly useful guide in our explorations of string theory in
the absence of direct experimental guidance, especially given the fact that we do not
know which phase of the theory might describe the real world.

Much of the earlier work concerning quantum black holes has been in the limit
of large charges when the area of the even horizon is also large. In recent years
there has been substantial progress in understanding the entropy of supersymmetric
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black holes within string theory going well beyond the large charge limit. It has
now become possible to begin exploring finite size effects in perturbation theory in
inverse size and even nonperturbatively, with highly nontrivial agreements between
thermodynamics and statistical mechanics. Unlike the leading Bekenstein—Hawking
entropy which follows from the two-derivative Einstein—Hilbert action, these finite
size corrections depend sensitively on the ‘phase’ under consideration and contain a
wealth of information about the details of compactification as well as the spectrum
of nonperturbative states in the theory. Finite-size corrections are therefore very
interesting as a valuable window into the microscopic degrees of freedom of the
theory.

In these notes we describe recent progress in understanding finite size corrections
to the black hole entropy. To simplify the discussion we consider the compactification
of the heterotic string on 7% x T2 which is dual to the compactifcation of Type-II string
on K3 x T?. This leads to a four-dimensional theory with .#" = 4 supersymmetry
and 22 vector multiplets. Our objective will be to understand the entropy of half-
BPS and quarter-BPS black holes in this theory both from the thermodynamic and
statistical view points. A lot is known about generalization of these results to other
compactifications. There has also been more progress both in defining the quantum
entropy using AdS/CFT correspondence and in computing it using localization. We
will not discuss these recent topics here to keep the discussion simple and more
accessible.

The organization is as follows. We review aspects of classical and semiclassical
black holes in Sects. 5.2 and 5.3, and elements of string theory in Sect. 5.4. The
microscopic counting is then described in Sects. 5.5 and 5.6 and the comparison with
macroscopic entropy is discussed in Sect. 5.7. Relevant mathematical background is
covered in Sect. 5.8.

These lecture notes are aimed at beginning graduate students but assume some
basic background in general theory of relativity, quantum field theory, and string
theory. A good introductory textbook on general relativity from a modern perspective
see [1]. For a more detailed treatment see [2] which has become a standard reference
among relativists, and [3] which remains a classic for various aspects of general
relativity. For quantum field theory in curved spacetime see [4]. For relevant aspects
of string theory see [5—8]. For additional details of some of the material covered here
relating to ./~ = 4 dyons see [9].

These notes are based primarily on lectures delivered at the summer school 2010
in Munich on “Strings and Fundamental Physics." As well as at various lectures
courses by AD on “Quantum Black Holes” taught at the Université Pierre et Marie
Curie, Paris VI together with Ashoke Sen; at the ‘School on D-Brane Instantons, Wall
Crossing and Microstate Counting * at the ICTP Trieste in 2010; at the “School on
Black Objects in Supergravity” at the INFN, Frascati in 2010. Some of the material
was used in earlier lecture courses by AD at Shanghai, CERN, Cargese, and Seoul.
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5.2 Classical Black Holes

A black hole is at once the most simple and the most complex object.

It is the most simple in that it is completely specified by its mass, spin, and charge.
This remarkable fact is a consequence of a the so-called ‘No Hair Theorem’. For an
astrophysical object like the earth, the gravitational field around it depends not only
on its mass but also on how the mass is distributed and on the details of the oblate-
ness of the earth and on the shapes of the valleys and mountains. Not so for a black
hole. Once a star collapses to form a black hole, the gravitational field around it
forgets all details about the star that disappears behind the even horizon except for its
mass, spin, and charge. In this respect, a black hole is very much like a structure-less
elementary particle such as an electron.

And yet it is the most complex in that it possesses a huge entropy. In fact the
entropy of a solar mass black hole is enormously bigger than the thermal entropy of
the star that might have collapsed to form it. Entropy gives an account of the number
of microscopic states of a system. Hence, the entropy of a black hole signifies an
incredibly complex microstructure. In this respect, a black hole is very unlike an
elementary particle.

Understanding the simplicity of a black hole falls in the realm of classical gravity.
By the early seventies, full 50years after Schwarzschild, a reasonably complete
understanding of gravitational collapse and of the properties of an event horizon
was achieved within classical general relativity. The final formulation began with the
singularity theorems of Penrose, area theorems of Hawking and culminated in the
laws of black hole mechanics.

Understanding the complex microstructure of a black hole implied by its entropy
falls in the realm of quantum gravity and is the topic of present lectures. Recent
developments have made it clear that a black hole is ‘simple’ not because it is like an
elementary particle, but rather because it is like a statistical ensemble. An ensemble is
also specified by a few conserved quantum numbers such as energy, spin, and charge.
The simplicity of a black hole is no different than the simplicity that characterizes a
thermal ensemble.

To understand the relevant parameters and the geometry of black holes, let us first
consider the Einstein—-Maxwell theory described by the action

= G/ fd“x—— F? /gd*x, (5.1)

where G is Newton’s constant, F,, is the electro-magnetic field strength, R is the
Ricci scalar of the metric g,,,. In our conventions, the indices u, v take values 0, 1,
2, 3 and the metric has signature (—, +, +, +).
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5.2.1 Schwarzschild Metric

Consider the Schwarzschild metric which is a spherically symmetric, static solution
of the vacuum Einstein equations R, — % guwv = 0 that follow from (5.1) when no
electromagnetic fields are excited. This metric is expected to describe the spacetime
outside a gravitationally collapsed non-spinning star with zero charge. The solution
for the line element is given by

2GM 26M\ !
ds® = gupdxtdx’ = — (1 - )dﬂ + (1 — ) dr? + r*d?,

r r

where ¢ is the time, r is the radial coordinate, and §2 is the solid angle on a 2-sphere.
This metric appears to be singular at r = 2GM because some of its components
vanish or diverge, goo — oo and g, — 00. As is well known, this is not a real singu-
larity. This is because the gravitational tidal forces are finite or in other words, compo-
nents of Riemann tensor are finite in orthonormal coordinates. To better understand
the nature of this apparent singularity, let us examine the geometry more closely near
r = 2GM. The surface r = 2GM is called the ‘event horizon’ of the Schwarzschild
solution. Much of the interesting physics having to do with the quantum properties
of black holes comes from the region near the event horizon.

To focus on the near horizon geometry in the region (r — 2GM) « 2GM, let us
define (r — 2GM) = &, so that when r — 2GM we have & — 0. The metric then
takes the form

2§ o 2GM . 25652
d5? =~ ) + QGMYAR?, 5.2)

up to corrections that are of order (ﬁ) . Introducing a new coordinate p,

2GM
0> = (8GM)E so that dszT =dp?,

the metric takes the form

2
P 2 2 271062
ds* = ————d* +d 2GM)*d$2*. 5.3
s oo tde + ( ) (5.3)
From the form of the metric it is clear that p measures the geodesic radial distance.
Note that the geometry factorizes. One factor is a 2-sphere of radius 2GM and the
other is the (p, ) space
0>

2
43 = ~Tecan

dr® +dp?. (5.4)

We now show that this 1+1 dimensional spacetime is just a flat Minkowski space
written in funny coordinates called the Rindler coordinates.



5 Quantum Black Holes 169

5.2.2 Rindler Coordinates

To understand Rindler coordinates and their relation to the near horizon geometry of
the black hole, let us start with 1+1 Minkowski space with the usual flat Minkowski
metric,

ds® = —dT? + ax>. (5.5)

In light-cone coordinates,
U=T+X) V=(T-X), (5.6)
the line element takes the form
ds®> = —dU dV. (5.7)

Now we make a coordinate change

1 1
U= - V=——e, (5.8)
K K

to introduce the Rindler coordinates (u, v). In these coordinates the line element
takes the form

ds* = —dU dV = —e““Vdu dv. (5.9)
Using further coordinate changes

1
u=@G+x), v=_0—x), p=—e, (5.10)
K

we can write the line element as
ds? = 2 (—dt® + dx?) = —p*i2di* + dp>. (5.11)

Comparing (5.4) with this Rindler metric, we see that the (p, ) factor of the
Schwarzschild solution near r ~ 2GM looks precisely like Rindler spacetime with
metric

ds® = —p*ic? di* + dp? (5.12)

with the identification

1
K= ——.
4GM

This parameter « is called the surface gravity of the black hole. For the Schwarzschild
solution, one can think of it heuristically as the Newtonian acceleration GM / rf, at
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the horizon radius ry = 2GM. Both these parameters—the surface gravity « and the
horizon radius ry play an important role in the thermodynamics of black hole.

This analysis demonstrates that the Schwarzschild spacetime near » = 2GM is
not singular at all. After all it looks exactly like flat Minkowski space times a sphere
of radius 2GM. So the curvatures are inverse powers of the radius of curvature 2GM
and hence are small for large 2GM.

5.2.3 Exercises

5.2.3.1 Uniformly Accelerated Observer and Rindler Coordinates

Consider an astronaut in a spaceship moving with constant acceleration a in
Minkowski spacetime with Minkowski coordinates (7, X). This means she feels
a constant normal reacting from the floor of the spaceship in her rest frame:

d*X dT

——=a, —=1 5.13
a2 Y T -13)

where 7 is proper time and a is the acceleration 3-vector.

1. Write the equation of motion in a covariant form and show that her 4-velocity
u == BT s timelike whereas her 4-acceleration a* i lik
:= <5 is timelike whereas her 4-acceleration a'* is spacelike.

2. Show that if she is moving along the x direction, then her trajectory is of the form

1 1
T = —sinh(at), X = —cosh(art) (5.14)
a a

which is a hyperboloid. Find the acceleration 4-vector.
3. Show that it is natural for her to use her proper time as the time coordinate and
introduce a coordinate frame of a family of observers with

T = ¢ sinh(an), X = ¢ cosh(an). (5.15)
By examining the metric, show that v = n — ¢ and u = n + ¢ are precisely the

Rindler coordinates introduced earlier with the acceleration parameter a identified
with the surface gravity «.

5.2.4 Kruskal Extension

One important fact to note about the Rindler metric is that the coordinates u, v do
not cover all of Minkowski space because even when the vary over the full range
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the Minkowski coordinate vary only over the quadrant
0<U<o0, —00<V<<O. (5.16)

If we had written the flat metric in these ‘bad’, ‘Rindler-like’ coordinates, we would
find a fake singularity at p = 0 where the metric appears to become singular. But
we can discover the ‘good’, Minkowski-like coordinates U and V and extend them
to run from —oo to oo to see the entire spacetime.

Since the Schwarzschild solution in the usual (r, r) Schwarzschild coordinates
near r = 2GM looks exactly like Minkowski space in Rindler coordinates, it suggests
that we must extend it in properly chosen ‘good’ coordinates. As we have seen, the
‘good’ coordinates near r = 2GM are related to the Schwarzschild coordinates in
exactly the same way as the Minkowski coordinates are related the Rindler coordi-
nates.

Infact one can choose ‘good’ coordinates over the entire Schwarzschild spacetime.
These ‘good’ coordinates are called the Kruskal coordinates. To obtain the Kruskal
coordinates, first introduce the ‘tortoise coordinate’

(5.17)

—2GM
r* =r+2GMlog (—r )

2GM

In the (r*, t) coordinates, the metric is conformally flat, i.e., flat up to rescaling
2GM
ds? = (1 - —) (—dﬂ + dr*z) . (5.18)
r

Near the horizon the coordinate r* is similar to the coordinate x in (5.11) and
hence u = t+r* and v = ¢ — r* are like the Rindler (u, v) coordinates. This suggests
that we define U, V coordinates as in (5.8) with k = 1/4GM. In these coordinates
the metric takes the form

2G—Me_’/2GMdU dv (5.19)

ds* = —e" VR qU dV = —
We now see that the Schwarzschild coordinates cover only a part of spacetime because
they cover only a part of the range of the Kruskal coordinates. To see the entire
spacetime, we must extend the Kruskal coordinates to run from —oo to co. This
extension of the Schwarzschild solution is known as the Kruskal extension.

Note that now the metric is perfectly regular at r = 2GM which is the surface
UV = 0 and there is no singularity there. There is, however, a real singularity at
r = 0 which cannot be removed by a coordinate change because physical tidal forces
become infinite. Spacetime stops at » = 0 and at present we do not know how to
describe physics near this region.
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5.2.5 Event Horizon

We have seen that ¥ = 2GM is not areal singularity but a mere coordinate singularity
which can be removed by a proper choice of coordinates. Thus, locally there is
nothing special about the surface r = 2GM. However, globally, in terms of the
causal structure of spacetime, it is a special surface and is called the ‘event horizon’.
An event horizon is a boundary of region in spacetime from behind which no causal
signals can reach the observers sitting far away at infinity.

To see the causal structure of the event horizon, note that in the metric (5.11) near
the horizon, the constant radius surfaces are determined by

2 1 2Kx 1 KU ,—KV
pT= e = —ele = —UV = constant (5.20)
K K

These surfaces are thus hyperbolas. The Schwarzschild metric is such that at r >
2GM and observer who wants to remain at a fixed radial distance r=constant is
almost like an inertial, freely falling observers in flat space. Her trajectory is time-
like and is a straight line going upwards on a spacetime diagram. Near r = 2GM,
on the other hand, the constant r lines are hyperbolas which are the trajectories of
observers in uniform acceleration.

To understand the trajectories of observers at radius » > 2GM, note that to stay
at a fixed radial distance r from a black hole, the observer must boost the rockets to
overcome gravity. Far away, the required acceleration is negligible and the observers
are almost freely falling. But near r = 2GM the acceleration is substantial and the
observers are not freely falling. In fact at » = 2GM, these trajectories are light like.
This means that a fiducial observer who wishes to stay at r = 2GM has to move at
the speed of light with respect to the freely falling observer. This can be achieved
only with infinitely large acceleration. This unphysical acceleration is the origin of
the coordinate singularity of the Schwarzschild coordinate system.

In summary, the surface defined by r = contant is timelike for » > 2GM, space-
like for r < 2GM, and light-like or null at r = 2GM.

In Kruskal coordinates, at r = 2GM, we have UV = (0 which can be satisfied
in two ways. Either V=0, which defines the ‘future event horizon’, or U=0, which
defines the ‘past event horizon’. The future event horizon is a one-way surface that
signals can be sent into but cannot come out of. The region bounded by the event
horizon is then a black hole. It is literally a hole in spacetime which is black because
no light can come out of it. Heuristically, a black hole is black because even light
cannot escape its strong gravitation pull. Our analysis of the metric makes this notion
more precise. Once an observer falls inside the black hole she can never come out
because to do so she will have to travel faster than the speed of light.

As we have noted already r = 0 is areal singularity that is inside the event horizon.
Since it is a spacelike surface, once a observer falls insider the event horizon, she is
sure to meet the singularity at » = 0 sometime in future no matter how much she
boosts the rockets.

In our example of the Schwarzschild black hole, the event horizon is static because
it is defined as a hypersurface r = 2GM which does not change with time. More
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precisely, the time-like Killing vector % leaves it invariant. It is at the same time null
because g'" vanishes at r = 2GM. In general, as for a spinning Kerr—Newman black
hole, the horizon is not static but only stationary and null. More precisely, a linear
combination of the time-like Killing vector and a space-like vector leaves it invariant
and moreover, the norm of this vector vanishes on the event horizon.

To summarize, an event horizon is a surface that is simultaneously stationary and
null. Such a surface causally separates the inside and the outside of a black hole.

5.2.6 Black Hole Parameters

From our discussion of the Schwarzschild black hole we are ready to abstract some
important general concepts that are useful in describing the physics of more general
black holes.

To begin with, a black hole is an asymptotically flat spacetime that contains
a region which is not in the backward lightcone of future timelike infinity. The
boundary of such a region is a stationary null surface call the event horizon. The
fixed ¢ slice of the event horizon is a two sphere.

There are a number of important parameters of the black hole. We have intro-
duced these in the context of Schwarzschild black holes. For a general black holes
their actual values are different but for all black holes, these parameters govern the
thermodynamics of black holes.

1. The radius of the event horizon rg is the radius of the two sphere. For a Schwarz-
schild black hole, we have ry = 2GM.

2. The area of the event horizon Ay is given by 471r121. For a Schwarzschild black
hole, we have Ay = 167 G*M?2.

3. The surface gravity is the parameter « that we encountered earlier. As we have
seen, for a Schwarzschild black hole, k = 1/4GM.

5.2.7 Laws of Black Hole Mechanics

One of the remarkable properties of black holes is that one can derive a set of
laws of black hole mechanics which bear a very close resemblance to the laws of
thermodynamics. This is quite surprising because a priori there is no reason to expect
that the spacetime geometry of black holes has anything to do with thermal physics.

(0) Zeroth Law: In thermal physics, the zeroth law states that the temperature 7" of
a body at thermal equilibrium is constant throughout the body. Otherwise heat
will flow from hot spots to the cold spots. Correspondingly for stationary black
holes one can show that surface gravity « is constant on the event horizon. This
is obvious for spherically symmetric horizons but is true also more generally for
non-spherical horizons of spinning black holes.
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Table 5.1 Laws of black hole mechanics

Laws of thermodynamics Laws of black hole mechanics
Temperature is constant throughout a body Surface gravity is constant on the event
at equilibrium. 7 = constant. horizon. k = constant.
Energy is conserved. Energy is conserved.
dE = TdS + udQ + $24dJ. dM = g-dA + pndQ + 22dJ.
Entropy never decrease. AS > 0. Area never decreases. AA > 0.

(1) First Law: Energy is conserved, dE = TdS + nudQ + §2dJ, where E is the energy,
Q is the charge with chemical potential « and J is the spin with chemical potential
£2. Correspondingly for black holes, one has dM = ¢—=dA + udQ + $2dJ. For
a Schwarzschild black hole we have u = §2 = 0 because there is no charge or
spin.

(2) Second Law: In a physical process the total entropy S never decreases, AS > 0.
Correspondingly for black holes one can prove the area theorem that the net area
in any process never decreases, AA > 0. For example, two Schwarzschild black
holes with masses M and M, can coalesce to form a bigger black hole of mass
M. This is consistent with the area theorem, since the area is proportional to the
square of the mass, and (M + My)? > M12 + M22. The opposite process where a
bigger black hole fragments is however, disallowed by this law.

Thus the laws of black hole mechanics, crystallized by Bardeen, Carter, Hawking,
and other bears a striking resemblance with the three laws of thermodynamics for a
body in thermal equilibrium. We summarize these results below in Table 5.1 for a
black hole of mass M, spin J, and charge Q.

Here A is the area of the horizon, and « is the surface gravity which can be thought
of roughly as the acceleration at the horizon, u is the chemical potential conjugate
to O, and §2 is the angular speed conjugate to J.

We will see that this formal analogy between the laws of black hole mechanics and
thermodynamics is actually much more than an analogy. Bekenstein and Hawking
discovered that there is a deep connection between black hole geometry, thermody-
namics and quantum mechanics. Quantum mechanically, a black hole is not quite
black.

5.2.8 Historical Aside

Apart from its physical significance, the entropy of a black hole makes for a fasci-
nating study in the history of science. It is one of the very rare examples where a scien-
tific idea has gestated and evolved over several decades into an important conceptual
and quantitative tool almost entirely on the strength of theoretical considerations.
That we can proceed so far with any confidence at all with very little guidance from
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experiment is indicative of the robustness of the basic tenets of physics. It is therefore
worthwhile to place black holes and their entropy in a broader context before coming
to the more recent results pertaining to the quantum aspects of black holes within
string theory.

A black hole is now so much a part of our vocabulary that it can be difficult to
appreciate the initial intellectual opposition to the idea of ‘gravitational collapse’ of
astar and of a ‘black hole’ of nothingness in spacetime by several leading physicists,
including Einstein himself.

To quote the relativist Werner Israel,

There is a curious parallel between the histories of black holes and continental drift. Evidence
for both was already non-ignorable by 1916, but both ideas were stopped in their tracks for
half a century by a resistance bordering on the irrational.

On January 16, 1916, barely two months after Einstein had published the final
form of his field equations for gravitation [10], he presented a paper to the Prussian
Academy on behalf of Karl Schwarzschild [11], who was then fighting a war on the
Russian front. Schwarzschild had found a spherically symmetric, static and exact
solution of the full nonlinear equations of Einstein without any matter present.

The Schwarzschild solution was immediately accepted as the correct description
within general relativity of the gravitational field outside a spherical mass. It would
be the correct approximate description of the field around a star such as our sun. But
something much more bizzare was implied by the solution. For an object of mass M,
the solution appeared to become singular at a radius R = 2GM /c>. For our sun, for
example, this radius, now known as the Schwarzschild radius, would be about 3 km.
Now, as long the physical radius of the sun is bigger than 3 km, the ‘Schwarzschild’s
singularity’ is of no concern because inside the sun the Schwarzschild solution is
not applicable as there is matter present. But what if the entire mass of the sun was
concentrated in a sphere of radius smaller than 3km? One would then have to face
up to this singularity.

Einstein’s reaction to the ‘Schwarzschild singularity’” was to seek arguments that
would make such a singularity inadmissible. Clearly, he believed, a physical theory
could not tolerate such singularities. This drove his to write as late as 1939, in a
published paper,

The essential result of this investigation is a clear understanding as to why the ‘Schwarzschild
singularities’ do not exist in physical reality.

This conclusion was however, based on an incorrect argument. Einstein was not
alone in this rejection of the unpalatable idea of a total gravitational collapse of a
physical system. In the same year, in an astronomy conference in Paris, Eddington,
one of the leading astronomers of the time, rubbished the work of Chandrasekhar
who had concluded from his study of white dwarfs, a work that was to earn him the
Nobel prize later, that a large enough star could collapse.

It is interesting that Einstein’s paper on the inadmissibility of the Schwarzschild
singularity appeared only two months before Oppenheimer and Snyder published
their definitive work on stellar collapse with an abstract that read,
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When all thermonuclear sources of energy are exhausted, a sufficiently heavy star will
collapse.

Once a sufficiently big star ran out of its nuclear fuel, then there was nothing to
stop the inexorable inward pull of gravity. The possibility of stellar collapse meant
that a star could be compressed in a region smaller than its Schwarzschild radius
and the ‘Schwarzschild singularity’ could no longer be wished away as Einstein had
desired. Indeed it was essential to understand what it means to understand the final
state of the star.

It is thus useful to keep in mind what seems now like a mere change of coordinates
was at one point a matter of raging intellectual debate.

5.3 Semiclassical Black Holes

In the semiclassical treatment of a black hole, we treat the spacetime geometry of
the black hole classically but treat various fields such as the electromagnetic field in
this fixed spacetime background quantum mechanically. This semiclassical inclusion
of quantum effects already reveals a deep and unexpected connection between the
spacetime geometry of a black hole and thermodynamics.

5.3.1 Hawking Temperature

Bekenstein asked a simple-minded but incisive question. If nothing can come out of
a black hole, then a black hole will violate the second law of thermodynamics. If we
throw a bucket of hot water into a black hole then the net entropy of the world outside
would seem to decrease. Do we have to give up the second law of thermodynamics
in the presence of black holes?

Note that the energy of the bucket is also lost to the outside world but that does
not violate the first law of thermodynamics because the black hole carries mass
or equivalently energy. So when the bucket falls in, the mass of the black hole
goes up accordingly to conserve energy. This suggests that one can save the second
law of thermodynamics if somehow the black hole also has entropy. Following this
reasoning and noting the formal analogy between the area of the black hole and
entropy discussed in the previous section, Bekenstein proposed that a black hole
must have entropy proportional to its area [12].

This way of saving the second law is however, in contradiction with the classical
properties of a black hole because if a black hole has energy E and entropy S, then
it must also have temperature 7 given by

1 as

T~ OE
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For example, for a Schwarzschild black hole, the area and the entropy scales as
S ~ M?. Therefore, one would expect inverse temperature that scales as M
2
l:Ew&iva. (5.21)
T oM oM
Now, if the black hole has temperature then like any hot body, it must radiate. For a
classical black hole, by its very nature, this is impossible.
Hawking showed that after including quantum effects, however, it is possible for
a black hole to radiate [13]. In a quantum theory, particle-antiparticle are constantly
being created and annihilated even in vacuum. Near the horizon, an antiparticle can
fall in once in a while and the particle can escapes to infinity. In fact, Hawking’s
calculation showed that the spectrum emitted by the black hole is precisely thermal
with temperature T = % = ﬁ. With this precise relation between the temper-
ature and surface gravity the laws of black hole mechanics discussed in the earlier
section become identical to the laws of thermodynamics. Using the formula for the
Hawking temperature and the first law of thermodynamics

kh

dM = TdS =
87 Gh

dA,

one can then deduce the precise relation between entropy and the area of the black
hole:

_ A’
T AGH

Before discussing the entropy of a black hole, let us derive the Hawking tempera-
ture in a somewhat heuristic way using a Euclidean continuation of the near horizon
geometry. In quantum mechanics, for a system with Hamiltonian H, the thermal
partition function is

Z = Tre PH, (5.22)
where § is the inverse temperature. This is related to the time evolution operator

e~itH/R by a Euclidean analytic continuation t = —it if we identify T = Bh. Let us
consider a single scalar degree of freedom @, then one can write the trace as

Tre™™1/M = / de(ple” /M)
and use the usual path integral representation for the propagator to find

Tre TH/P — /d¢>/Dcpe—SE[4’].

Here Sg[@] is the Euclidean action over periodic field configurations that satisfy the
boundary condition
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Q(Bh) = P(0) = ¢.

This gives the relation between the periodicity in Euclidean time and the inverse
temperature,

h
Bh=1t or T=—. (5.23)
T
Let us now look at the Euclidean Schwarzschild metric by substituting t = —itg.

Near the horizon the line element (5.11) looks like
ds* = ,ozfczdt,zg +dp?.

If we now write kg = 6, then this metric is just the flat two-dimensional Euclidean
metric written in polar coordinates provided the angular variable 6 has the correct
periodicity 0 < 6 < 2m. If the periodicity is different, then the geometry would have
a conical singularity at p = 0. This implies that Euclidean time ¢z has periodicity
T = 27” Note that far away from the black hole at asymptotic infinity the Euclidean
metric is flat and goes as ds*> = dl’é + dr?. With periodically identified Euclidean
time, tg ~ tg + 7, it looks like a cylinder. Near the horizon at p = 0 it is nonsingular
and looks like flat space in polar coordinates for this correct periodicity. The full
Euclidean geometry thus looks like a cigar. The tip of the cigar is at p = 0 and the
geometry is asymptotically cylindrical far away from the tip.

Using the relation between Euclidean periodicity and temperature, we then
conclude that Hawking temperature of the black hole is

_h/c

T=—.
2

(5.24)

5.3.2 Bekenstein-Hawking Entropy

Even though we have “derived” the temperature and the entropy in the context of
Schwarzschild black hole, this beautiful relation between area and entropy is true
quite generally essentially because the near horizon geometry is always Rindler-like.
For all black holes with charge, spin and in number of dimensions, the Hawking
temperature and the entropy are given in terms of the surface gravity and horizon
area by the formulae

hik A

Ty = —, = —.
H= 4Gh

This is a remarkable relation between the thermodynamic properties of a black hole
on one hand and its geometric properties on the other.
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The fundamental significance of entropy stems from the fact that even though it is
a quantity defined in terms of gross thermodynamic properties, it contains nontrivial
information about the microscopic structure of the theory through Boltzmann relation

S = klog(d),

where d is the the degeneracy or the total number of microstates of the system of
for a given energy, and k is Boltzmann constant. Entropy is not a kinematic quantity
like energy or momentum but rather contains information about the total number
microscopic degrees of freedom of the system. Because of the Boltzmann relation,
one can learn a great deal about the microscopic properties of a system from its
thermodynamics properties.

The Bekenstein—Hawking entropy behaves in every other respect like the ordinary
thermodynamic entropy. It is therefore natural to ask what microstates might account
for it. Since the entropy formula is given by this beautiful, general form

Ac?

4Gh’

that involves all three fundamental dimensionful constants of nature, it is a valuable
piece of information about the degrees of freedom of a quantum theory of gravity.

5.3.3 Exercises

5.3.3.1 Reissner-Nordstrom (RN) Black Hole

The most general static, spherically symmetric, charged solution of the
Einstein—-Maxwell theory (5.1) gives the Reissner—Nordstrom (RN) black hole. In
what follows we choose units so that G = A = 1. The line element is given by

M Q? om0\
ds? = — (1 - 4 Q—) ar’ + (1 - 4 Q—2) ar’ + r?d2*,  (5.25)
r r r r
and the electromagnetic field strength by

Fy, = Q/r.

The parameter Q is the charge of the black hole and M is the mass. For Q = 0, this
reduces to the Schwarzschild black hole.

From the metric (5.25) we see that the event horizon for this solution is located
at where g =0, or
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Since this is a quadratic equation in r,

r? —20Mr + Q* =0,
it has two solutions.

re=M%EM? - Q2.

Thus, 4 defines the outer horizon of the black hole and r_ defines the inner horizon
of the black hole. The area of the black hole is 47 ri.

1. Identify the horizon for this metric and examine the near horizon geometry to
show that it has two-dimensional Rindler spacetime as a factor.

2. Using the relation to the Rindler geometry determine the surface gravity k as for
the Schwarzschild black hole and thereby determine the temperature and entropy
of the black hole.

T _K_ﬁ B /M2 — Q2
2T 2mM(M + M2 - Q%) - 07
S =nri =M+ VM2 — 0.

Recover the formulae for Schwarzschild black hole in the limit Q =0.

3. Show that in the extremal limit M — Q the temperature vanishes but the entropy
has a nonzero limit. Show that for the extremal Reissner—Nordstrom black hole
the near horizon geometry is of the form AdS, x S>.

5.3.4 Bekenstein—-Hawking—Wald Entropy

In our discussion of Bekenstein—Hawking entropy of a black hole, the Hawking
temperature could be deduced from surface gravity or alternatively the periodicity
of the Euclidean time in the black hole solution. These are geometric asymptotic
properties of the black hole solution. However, to find the entropy we needed to
use the first law of black hole mechanics which was derived in the context of
Einstein—Hilbert action

1
— | RJzd*x.
167 Ved'x

Generically in string theory, we expect corrections (both in @’ and g;) to the
effective action that has higher derivative terms involving Riemann tensor and other
fields.

1
1:—/(R+R2+R4F4+~-~).
167
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How do the laws of black hole thermodynamics get modified?

Wald derived the first law of thermodynamics in the presence of higher derivative
terms in the action [14—16]. This generalization implies an elegant formal expression
for the entropy S given a general action / including higher derivatives

81
S = 271/ PYCPACINY to;
p? MRpvap

where ¢*” is the binormal to the horizon, 4 the induced metric on the horizon, and
the variation of the action with respect to R;;,qp is to be carried out regarding the
Riemann tensor as formally independent of the metric g, .

As an example, let us consider the Schwarzschild solution of the Einstein Hilbert
action. In this case, the event horizon is $? which has two normal directions along r
and 7. We can construct an antisymmetric 2-tensor &, along these directions so that
e =&y = —1.
ut, 0.7 1

1 1
Y — R _ L oma vB _ e
Ton wap8 g T 16n2(g gr —g"g")

Then the Wald entropy is given by
/ (g‘“"g”ﬁ g“ﬁxswsaﬂ)ﬁd%z
rr 2 — \/_dz.Q —
~3 / £ -

giving us the Bekenstein—-Hawking formula as expected.

5.3.5 Extremal Black Holes

For a physically sensible definition of temperature and entropy in (5.26) the mass
must satisfy the bound M? > Q2. Something special happens when this bound is
saturated and M = |Q|. In this case ry = r_ = |Q| and the two horizons coincide.
We choose Q to be positive. The solution (5.25) then takes the form,

2 27,2 dr? 2702
ds”=—(1—-Q/r)dt” + a—0/r? +reds2°, (5.26)
with a horizon at r = Q. In this extremal limit (5.26), we see that the temperature of
the black hole goes to zero and it stops radiating but nevertheless its entropy has a
finite limit given by § — 7 Q2. When the temperature goes to zero, thermodynamics
does not really make sense but we can use this limiting entropy as the definition of
the zero temperature entropy.
For extremal black holes it is sometimes more convenient to use isotropic coor-
dinates in which the line element takes the form
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ds* = H2(x)dr* + H*(x)dx*

where dx? is the flat Euclidean line element 84,'dxidxj and H (x) is a harmonic function
of the flat Laplacian

8 0
3x’ Bxf

The extremal Reissner—Nordstrom solution is obtained by choosing

HXx) = (l+g),
0

and the field strength is given by Fo; = 9;H (X).
One can in fact write a multi-centered Reissner—Nordstrom solution by choosing
a more general harmonic function

N
= E 5.27)
— |x — xz|

The total mass M equals the total charge Q and is given additively

0=> 0 (5.28)

The solution is static because the electrostatic repulsion between different centers
balances the gravitational attraction between them.

Note that the coordinate p in the isotropic coordinates should not be confused
with the coordinate r in the spherical coordinates. In the isotropic coordinates the
line-element is

2
ds? = — (1 + %) dr® + (1 + %)—2 (d,o2 + p2d92) ,

and the horizon occurs at p = 0. Contrast this with the metric in the spherical
coordinates (5.26) that has the horizon at r = Q. The near horizon geometry is quite
different from that of the Schwarzschild black hole. The line element is

ds* = — @(Zt + Q—(d,o + p%d2%)
= (——dt += Q 2) +(Q%dR?)
0 ‘

The geometry thus factorizes as for the Schwarzschild solution. One factor the 2-
sphere $2 of radius Q but the other (r, ) factor is now not Rindler any more but is
a two-dimensional Anti-de Sitter or AdS>. The geodesic radial distance in AdS; is
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log r. As aresult the geometry looks like an infinite throat near » = 0 and the radius
of the mouth of the throat has radius Q.

Extremal black holes are interesting because they are stable against Hawking
radiation and nevertheless have a large entropy. We now try to see if the entropy can
be explained by counting of microstates. In doing so, supersymmetry proves to be a
very useful tool.

5.3.6 Wald Entropy for Extremal Black Holes

The horizon of extremal black holes has additional symmetries. For non-spinning
black holes, the geometry is spherically symmetric. At extremality, the near horizon
geometry becomes AdS, x S just as in the case of Reissner—Nordstrom black hole.
The formula for the Wald entropy can be simplified considerably by exploiting these
symmetries [17, 18].

The Reissner—Nordstrom metric is

dr?

207002 1 «in2 2
A= /0 —rn + r“(d6” + sin” 6d¢p~).
(5.29)
Here (z, r, 0, ¢) are the coordinates of space-time and r4 and r_ are two parameters
labelling the positions of the outer and inner horizon of the black hole respectively
(r4 > r_). The extremal limit corresponds to r_ — r1. We take this limit keeping

the coordinates 6, ¢, and

ds> = —(1 —ry/r)(1 = r_/r)dt® +

. Qr—ry—ro) . (ry —ro)t

) = ; 5.30
(ry—r-) 2r 430

fixed. In this limit the metric and the other fields take the form:

2
s> = 1% (—(52 — 1dt? + CZJL) +r2 (d92 + sin2(9)d¢2) . (531
o —1

This is the metric of AdS» x §2, with AdS, parametrized by (o, 7) and s2 parametrized
by (0, ¢). Although in the original coordinate system the horizons coincide in the
extremal limit, in the (o, 7) coordinate system the two horizons are at o = £1. The
AdS» space has SO(2, 1) = SL(2, R) symmetry—the time translation symmetry is
enhanced to the larger SO(2, 1) symmetry. All known extremal black holes have this
property. Henceforth, we will take this as a definition of the near horizon geometry
of an extremal black hole. In four dimensions, we also have the 2 factor with SO(3)
isometries. Our objective will be to exploit the SO(2, 1) x SO(3) isometries of this
spacetime to considerably simply the formula for Wald entropy.

Consider an arbitrary theory of gravity in four spacetime dimensions with metric
g coupled to a set of U(1) gauge fields Afp (i=1,...,rforarank r gauge group)
and neutral scalar fields ¢ (s = 1,...N).Letx* (u =0, ..., 3 belocal coordinates
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on spacetime and . be an arbitrary general coordinate invariant local lagrangian.
The action is then

I= / d*x/—det(g).Z. (5.32)

For an extremal black hole solution of this action, the most general form of the near
horizon geometry and of all other fields consistent with SO(2, 1) x SO(3) isometry
is given by

2
ds? = v (—(02 — Ddt? + 26 1) + 2 (d6? + sin®(0)d¢?), (5.33)
o2 —
. . i .
Fi) = e, Fy)= ﬁ sin (0), ¢ = us. (5.34)
We can think of ¢; and p; (i = 1, ..., r) as the electric and magnetic fields respec-
tively near the black hole horizon. The constants v, (a = 1,2) andug(s = 1, ..., N)

are to be determined by solving the equations of motion. Let us define

Flu,v,e.p) i= / d6d§/— det(9)Zrorizon- (5.35)

Using the fact that /— det(g) = sin(0) on the horizon, we conclude
f,v, e, p) = 4wvivaLlnorizon (5.36)
Finally we define the entropy function

&(q,u, v, e,p) =2m(eiqi — f(u, v, e,p)), (5.37)
where we have introduced the quantities

=

= 5.38
del (5.38)

qi
which by definition can be identified with the electric charges carried by the black
hole. This function called the ‘entropy function’ is directly related to the Wald entropy
as we summarize below.

1. For a black hole with fixed electric charges {¢;} and magnetic charges {p;}, all
near horizon parameters v, u, e are determined by extremizing & with respect to
the near horizon parameters:

&
— =0 i=1,...r: (5.39)
ael’
0&
— =0, a=1,2; (5.40)

A
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o0&
— =0, s=1,...N. (5.41)
ol

Equation (5.39) is simply the definition of electric charge whereas the other two
equations (5.40) and (5.41) are the equations of motion for the near horizon
fields. This follows from the fact that the dependence of & on all the near horizon
parameters other than e; comes only through f(u, v, e, p) which from (5.36) is
proportional to the action near the horizon. Thus extremization of the near horizon
action is the same as the extremization of &. This determines the variables (u, v, ¢)
in terms of (g, p) and as a result the value of the entropy function at the extremum
&* is a function only of the charges

&E*(q,p) = &(q, u™(q,p).v*(q.p), € (q. ), p). (5.42)

2. Once we have determined the near horizon geometry, we can find the entropy
using Wald’s formula specialized to the case of extermal black holes:

aS
v —8rr8it- (543)

S = —8m [ dod
wald / ¢ athrt

With some algebra it is easy to see that the entropy is given by the value of the
entropy function at the extremum:

Swaia(q,p) = &*(q,p). (5.44)

This ‘entropy function formalism’ described above allows one to compute the
entropy of various extremal black holes very efficiently by simply solving certain
algebraic equations (instead of partial differential equations). It also allows one to
incorporate effects of higher derivative corrections to the two-derivative action with
relative ease.

5.3.6.1 Wald Entropy for a Reissner—Nordstrom Black Hole

To illustrate the use of the entropy function formalism for concrete computa-
tions, consider the Einstein—Maxell theory given by the action (5.1) and a solution
given by

d 2
ds® = v, (—(a2 — dr + 2 ) NI (d92 + sin2(9)d¢2)
o —1 (5.45)

p .
For =e, Fpy =—-—-sin(6
otT 0¢ 4 C)
Substituting into the action we obtain the entropy function

g(Q? v,e, g, P) =2m (eiqi _f(‘}’ e, [7))

) A 2,2y, 1, 1,
=2m|eq —dnvivoy — | —— + — —e— —— .
7 Mier v v T 220 T a2l

(5.46)
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The extremization equations

08 08 08

— =0, — =0, — =0 (5.47)
de av] Vo

can be easily solved to obtain

2 2

q°+p q
vy = Ce=21 5.48
Vi 2 4 ¢ 4 ( )

and

2 2

+p
Swaia(q.p) = E*(q.p) = L — (5.49)

5.4 Elements of String Theory

5.4.1 BPS States in .V = 4 String Compactifications

Superstring theories are naturally formulated in ten-dimensional Lorentzian space-
time .#10. A ‘compactification’ to four-dimensions is obtained by taking . to be
a product manifold R'3 x Xg where X¢ is a compact Calabi-Yau threefold and R'-3 is
the noncompact Minkowski spacetime. We will focus in these lectures on a compact-
ification of Type-II superstring theory when Xg is itself the product Xg = K3 x T?2.
A highly nontrivial and surprising result from the 1990s is the statement that this
compactification is quantum equivalent or ‘dual’ to a compactification of heterotic
string theory on T* x T? where T* is a four-dimensional torus [19, 20]. One can thus
describe the theory either in the Type-II frame or the heterotic frame.

The four-dimensional theory in R'-3 resulting from this compactification has
N = 4 supersymmetry.! The massless fields in the theory consist of 22 vector
multiplets in addition to the supergravity multiplet. The massless moduli fields consist
of the S-modulus A taking values in the coset

SL(2, Z)\SL(2; R)/0(2; R), (5.50)
and the T-moduli u taking values in the coset

0(22, 6; Z)\0(22, 6; R)/0(22; R) x O(6; R). (5.51)

1" This supersymmetry is a super Lie algebra containing ISO(1, 3) x SU(4) as the bosonic subal-

gebra where ISO(1, 3) is the Poincaré symmetry of the R!:3 spacetime and SU(4) is an internal
symmetry called R-symmetry in physics literature. The odd generators of the superalgebra are
called supercharges. With .4 = 4 supersymmetry, there are eight complex supercharges which
transform as a spinor of I1SO(1,3) and a fundamental of SU(4).
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The group of discrete identifications SL(2, Z) is called S-duality group. In the
heterotic frame, it is the electro-magnetic duality group [21, 22] whereas in the
type-II frame, it is simply the group of area- preserving global diffeomorphisms of
the T factor. The group of discrete identifications O(22, 6; Z) is called the T-duality
group. Part of the T-duality group O(19, 3; Z) can be recognized as the group of
geometric identifications on the moduli space of K3; the other elements are stringy
in origin and have to do with mirror symmetry.

At each point in the moduli space of the internal manifold K3 x T2, one has a
distinct four- dimensional theory. One would like to know the spectrum of particle
states in this theory. Particle states are unitary irreducible representations, or super-
multiplets, of the .4~ = 4 superalgebra. The supermultiplets are of three types which
have different dimensions in the rest frame. A long multiplet is 256-dimensional, an
intermediate multiplet is 64-dimensional, and a short multiplet is 16-dimensional. A
short multiplet preserves half of the eight supersymmetries (i.e. it is annihilated by
four supercharges) and is called a half-BPS state; an intermediate multiplet preserves
one quarter of the supersymmetry (i.e. it is annihilated by two supercharges), and
is called a quarter-BPS state; and a long multiplet does not preserve any supersym-
metry and is called a non-BPS state. One consequence of the BPS property is that
the spectrum of these states is ‘topological’ in that it does not change as the moduli
are varied, except for jumps at certain walls in the moduli space [23].

An important property of the BPS states that follows from the superalgebra is that
their mass is determined by the charges and the moduli [23]. Thus, to specify a BPS
state at a given point in the moduli space, it suffices to specify its charges. The charge
vector in this theory transforms in the vector representation of the T-duality group
0(22, 6; Z) and in the fundamental representation of the S-duality group SL(2, Z).
It is thus given by a vector I'’® with integer entries

. o

F”":(Pi) where i=1,2,...28; a=1,2 (5.52)
transforming in the (2, 28) representation of SL(2, Z) x O(22, 6; Z). The vectors Q
and P can be regarded as the quantized electric and magnetic charge vectors of the
state respectively. They both belong to an even, integral, self-dual lattice 17>, We
will assume in what follows that I" = (Q, P) in (5.52) is primitive in that it cannot
be written as an integer multiple of (Qg, Pg) for Qg and Py belonging to I7°>°. A
state is called purely electric if only Q is non-zero, purely magnetic if only P is non-
zero, and dyonic if both P and Q are non-zero.

To define S-duality transformations, it is convenient to represent the S-modulus as
a complex field S taking values in the upper half plane. An S-duality transformation

y = (2‘ z) € SL(2;7) (5.53)

acts simultaneously on the charges and the S-modulus by

0 ab) (0. as+b
(P)a(cd)([,), Sy (5.54)
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To define T-duality transformations, it is convenient to represent the T-moduli by
a 28 x 28 of matrix /L‘? satisfying

wWLu =L (5.55)

with the identification that  ~ ku for every k € O(22; R) x O(6; R). Here L is the
(28 x 28) matrix

—Ci50 0
L= 0 o1}, (5.56)
0 Is 0

with I the s x s identity matrix and Cjg¢ is the Cartan matrix of Eg X Eg. The T-moduli
are then represented by the matrix

M= p'u (5.57)
which satisifies

M =, HNLM=L (5.58)

In this basis, a T-duality transformation can then be represented by a (28 x 28) matrix
R with integer entries satisfying

R'IR=L, (5.59)
which acts simultaneously on the charges and the T-moduli by
QO —>RQ; P—RP; p— uR™! (5.60)

Given the matrix u;‘, one obtains an embedding A22:6 — R22:6 of [722.6 \which
allows us to define the moduli-dependent charge vectors Q and P by

oM = utor PA =Py (5.61)

Note that while Q' are integers @ are not. In what follows we will not always
write the indices explicitly assuming that it will be clear from the context. In any
case, the final answers will only depend on the T-duality invariants which are all
integers. The matrix L has a 22-dimensional eigensubspace with eigenvalue —1 and
a 6-dimensional eigensubspace with eigenvalue +1. Given Q and P, one can define
the ‘right-moving’ charges®> Qg and P as the projections of Q and P respectively
onto the subspace with eigenvalue +1. and the ‘left-moving’ charges as projections
onto the subspace with eigenvalue -1. These definitions can be compactly written as

2 The right-moving charges couple to the graviphoton vector fields associated with the right-
moving chiral currents in the conformal field theory of the dual heterotic string.
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1+L 1+L
( : )Q; PR,LZ( : )

OrL = P (5.62)
The right-moving charges since for the heterotic string, Qg are related to the right-
moving momenta. The central charges Z; and Z, of the .4 = 4 superalgebra can
then be defined in terms of the right-moving charges and moduli (For details of these
definitions and the superalgebra, see Sect. 5.8.1.2).

If the vectors Q and P are nonparallel, then the state is quarter-BPS. On the other
hand, if Q = pQq and P = ¢Qy for some Qg € IT°>® with p and ¢ relatively prime
integers, then the state is half-BPS.

An important piece of nonperturbative information about the dynamics of the
theory is the exact spectrum of all possible dyonic BPS- states at all points in the
moduli space. More specifically, one would like to compute the number d(17)[;,, of
dyons of a given charge I at a specific point (A, p) in the moduli space. Computation
of these numbers is of course a very complicated dynamical problem. In fact, for a
string compactification on a general Calabi-Yau threefold, the answer is not known.
One main reason for focusing on this particular compactification on K3 x T2 is that in
this case the dynamical problem has been essentially solved and the exact spectrum of
dyons is now known. Furthermore, the results are easy to summarize and the numbers
d(I')|,, are given in terms of Fourier coefficients of various modular forms.

In view of the duality symmetries, it is useful to classify the inequivalent duality
orbits labeled by various duality invariants. This leads to an interesting problem in
number theory of classification of inequivalent duality orbits of various duality groups
such as SL(2, Z) x O(22, 6; Z) in our case and more exotic groups like E7 7(Z) for
other choices of compactification manifold Xe. It is important to remember though
that a duality transformation acts simultaneously on charges and the moduli. Thus,
it maps a state with charge I" at a point in the moduli space (A, i) to a state with
charge I'” but at some other point in the moduli space (A’, ). In this respect, the
half-BPS and quarter-BPS dyons behave differently.

e For half-BPS states, the spectrum does not depend on the moduli. Hence
d(I')| v = d(I')|; . Furthermore, by an S-duality transformation one can
choose a frame where the charges are purely electric with P = 0 and Q # O.
Single-particle states have Q primitive and the number of states depends only on
the T-duality invariant integer n = Q%/2. We can thus denote the degeneracy of
half-BPS states d(17)|g, v simply by d(n).

* For quarter-BPS states, the spectrum does depend on the moduli, and d(I7) [, v #
d(I")|, ;.- However, the partition function turns out to be independent of moduli
and hence it is enough to classify the inequivalent duality orbits to label the parti-
tion functions. For the specific duality group SL(2, Z) x O(22, 6; Z) the partition
functions are essentially labeled by a single discrete invariant [24-26].

I = gcd(Q A P), (5.63)



190 A. Dabholkar and S. Nampuri

The degeneracies themselves are Fourier coefficients of the partition function.
For a given value of 7, they depend only on® the moduli and the three T-duality
invariants (m, n, £) = (P%/2, 0%/2,0 - P). Integrality of (m, n, £) follows from
the fact that both Q and P belong to I77>%. We can thus denote the degeneracy
of these quarter-BPS states d(I")[y,, simply by d(m, n, I)|; . For simplicity, we
consider only / = 1 in these lectures. Generalization for higher 7 can be found in
[27, 28].

5.4.2 Exercises

5.4.2.1 Elements of String Compactifications

The heterotic string theory in ten dimensions has 16 supersymmetries. The bosonic
massless fields consist of the metric gyy, a 2-form field B®@ . 16 abelian 1-form
gauge fields A”) r = 1, ...16, and a real scalar field ¢ called the dilaton. The Type-
IIB string theory in ten dimensions has 32 supersymmetries. The bosonic massless
fields consist of the metric gy ; two 2-form fields C (2), B(Z); a self-dual 4-form field
C®:anda complex scalar field A called the dilaton-axion field.

One of the remarkable strong-weak coupling dualities is the ‘string—string” duality
between heterotic string compactified on 7* x T2 and Type-IIB string compactified
on K3 x T?. One piece of evidence for this duality is obtained by comparing the
massless spectrum for these compactifications and certain half-BPS states in the
spectrum.

Exercise 1 how that the heterotic string compactified on T* x S x S! leads a four
dimensional theory with N = 4 supersymmetry with 22 vector multiplets.

Exercise 2 Show that the Type-IIB string compactified on K3 x S' x S! leads a four
dimensional theory with A = 4 supersymmetry with 22 vector multiplets.

Exercise3 Show that the Kaluza—Klein monopole in Type-1IB string associated with
the circle S' has the right structure of massless fluctuations to be identified with the
half-BPS perturbative heterotic string in the dual description.

5.4.3 String—String Duality

It will be useful to recall a few details of the string—string duality between heterotic
compactified on 7% x S! x S! and Type-IIB compactified on K3 x S! x S!. Two
pieces of evidence for this duality will be relevant to our discussion.

3 There is an additional dependence on arithmetic T-duality invariants but the degeneracies for

states with nontrivial values of these T-duality invariants can be obtained from the degeneracies
discussed here by demanding S-duality invariance [26].
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Low energy effective action

Both these compactifications result in .4/~ = 4 supergravity in four dimensions.
With this supersymmetry, the two-derivative effective action for the massless fields
receives no quantum corrections. Hence, if the two theories are to be dual to each
other, they must have identical 2-derivative action.

This is indeed true. Even though the field content and the action are very different
for the two theories in ten spacetime dimensions, upon respective compactifications,
one obtains ./~ = 4 supergravity with 22 vector multiplets coupled to the super-
gravity multiplet. This has been discussed briefly in one of the tutorials. For a given
number of vector multiplets, the two-derivative action is then completely fixed by
supersymmetry and hence is the same for the two theories. This was one of the prop-
erties that led to the conjecture of a strong—weak coupling duality between the two
theories.

For our purposes, we will be interested in the 2-derivative action for the bosonic
fields. This is a generalization of the Einstein—Hilbert—Maxwell action (5.1) which
couples the metric, the moduli fields and 28 abelian gauge fields:

1 1 1
1 :E d4x\/ —detGS[RG + ﬁGﬂV(aﬂsa‘;S — Eauaava)

1 ’ / . )
+ LG T3, MLO,ML) — G G F) (LML) ),

_ gGWGW’FggL,-ng)V,] ij=1,...,28 (5.64)

In the heterotic string picture, the expectation value of the dilaton field S is related
to the four-dimensional string coupling g4

S~ — (5.65)

and a is the axion field. The metric G, is the metric in the string frame and is related
to the metric g, in Einstein frame by the Weyl rescaling

guv = SGuy (5.66)

BPS spectrum

Another requirement of duality is that the spectrum of BPS states should match
for the two dual theories. Perturbative states in one description will generically get
mapped to some non-perturbative states in the dual description. As a result, this
leads to highly nontrivial predictions about the nonpertubative spectrum in the dual
description given the perturbative spectrum in one description.

As an example, consider the perturbative BPS-states in heterotic string theory on
K3 x S' x S1. A heterotic string wrapping w times on S! and carrying momentum n
gets mapped in Type-IIA to the NS5-brane wrapping w times on K3 x S! and carrying
momentum #. One can go from Type-IIA to Type-IIB by a T-duality along the st
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circle. Under this T-duality, the NS5-brane gets mapped to a KK-monopole with
monopole charge w associated with the circle S' and carrying momentum 7. This
thus leads to a prediction that the spectrum of KK-monopole carrying momentum in
Type-1IB should be the same as the spectrum of perturbative heterotic string discussed

earlier. We will verify this highly nontrivial prediction in the next subsection for the
case of w=1.

5.4.4 Kaluza—Klein Monopole and the Heterotic String

The metric of the Kaluza—Klein monopole is given by the so-called Taub-NUT metric

R
dsy = (1 + 70) (dr2 1 12(d6? + sin® 9d¢2))
-1
2 Ro 2
+ R (1 + —) Qdyr + cos 0de) (5.67)
r
with the identifications:
T
0,9,%) = Q2n—0, ¢+, I/I—i-E) =0, ¢+2n, Y+m) = (0, ¢, Y+2m). (5.68)

Here Ry is a constant determining the size of the Taub-NUT space .#7y . This metric
satisfies the Einstein equations in four-dimensional Euclidean space. The metric
(5.67) admits a normalizable self-dual harmonic form w, given by

KK = Loy + Ldr/\a o3 = (d¢+ lcos9d¢>) (5.69)
T rFR T r+Ro)? 9= 2 S

We are interested in the Type-IIB string theory compactified on K3 x St xS'inthe
presence of a Kaluza—Klein monopole, with S identified with the asymptotic circle
of the Taub-NUT space labeled by the coordinate v in (5.67). Thus, we want analyze
the massless fluctuations of Type-IIB string on K3 x S! x .47y space. Let y and y be
the coordinates of ! and S' respectively withy ~ y4+27Randy ~ y+ 277R. When
the radius R of the S! is large compared to the size of the K3 and the radius R of
the S! circle, we obtain an ‘effective string’ wrapping the S' with massless spectrum
that agrees with the massless spectrum of a fundmental heterotic string wrapping S'.
These massless modes can be deduced as follows:

* The center-of-mass of the KK-monopole can be located anywhere in R? and its
position is specified by a vector a. Thus, we have

3_ .3 1_ 1

X’ —a X —a
r:=|x—al, cosf:= , tan¢ = > >
r X —da

(5.70)
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if (x!, x2, x3) are the coordinates of R3. We can allow these coordinates to fluctuate
in the 7 and y directions and hence we will obtain three non-chiral massless a'(z, y)
scalar fields along the effective string associated with oscillations of the three
coordinates of the center-of-mass of the KK monopole.

e There are two additional non-chiral scalar fields b(z, y) and c(¢, y) obtained by
reducing the two 2-form fields B® and C? of Type-IIB along the harmonic
2-form (5.69):

B? =b(t,y) - oK C® =c(t,y) - 0K (5.71)

* There are 3 right-moving ajp(t + y),r = 1,2,3 and 19 left-moving scalars
ai(t —y),s = 1,...,19 obtained by reducing the self-dual 4-form field c®
of type IIB theory. This works as follows. The field C® can be reduced taking
it as a tensor product of the harmonic 2-form (5.69) and a harmonic 2-form wf 3
fora = 1,...,22 on K3. This gives rise to rise to a chiral scalar field on the
world-volume. The chirality of the scalar field is correlated with whether the corre-

sponding harmonic 2-form wf ? is self-dual or anti-self-dual. Since K3 has three

self-dual @3 and nineteen anti-selfdual harmonic 2-forms &>~ we get 3 right-
moving and 19 left-moving scalars:

3 19
CY =D "apt+y) o A+ D @yt =) T A (5.72)

r=1 s=1

The KK-monopole background breaks 8 of the 16 supersymmetries of Type-II on
K3 x S'. Consequently, there are eight right-moving fermionic fields

S‘t+y) a=1,...,8

which arise as the goldstinos of these eight broken supersymmetries. This is precisely
the field content of the 1+1 dimensional worldsheet theory of the heterotic string
wrapping S' as we discussed in the tutorial (Sect. 5.5.1).

5.4.5 Supersymmetry and Extremality

Some of the special properties of external black holes can be understood better by
embedding them in supergravity. We will be interested in these lectures in string
compactifications with .4~ = 4 supersymmetry in four spacetime dimensions. The
A = 4 supersymmetry algebra contains in addition to the usual Poincaré generators,
sixteen real supercharges which can be grouped into 8 complex charges Qf, and their
complex conjugates. Here @« = 1, 2 is the usual Weyl spinor index of 4d Lorentz
symmetry. and the internal index a = 1, ..., 4 in the fundamental 4 representation
of an SU(4), the R-symmetry of the superalgebra. The relevant anticommutators for
our purpose are
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(04, Oy} = — 2P0, 8}
a b ab (7 A 5 (5.73)
Qo> Opt = €apZ™ {Qaa: Qpp} = Zav s

where o are (2 x 2) matrices with o9 = —1 and oifori = 1,2, 3 are the usual
Pauli matrices. Here P, is the momentum operator and Q are the supersymmetry
generators and the complex number Z% is the central charge matrix.

Let us first look at the representations of this algebra when the central charge is
zero. In this case the massive and massless representation are qualitatively different.

1. Massive Representation, M > 0, P* = (M, 0, 0, 0)
In this case (5.73) becomes {04, 0 4 b =2M3, § 8, and all other anti-commutators
vanish. Up to overall scaling, these are the commutation relations for eight
complex fermionic oscillators. Each oscillator has a two-state representation,
which is either filled or empty. These states together define a unitary irreducible
representation, called a supermultiplet, of the superalgebra. The total dimension
of the representation is 28 = 256 which is CPT self-conjugate.

2. Massless Representation M = 0, P* = (E, 0,0, E)
In this case (5.73) becomes {Qf, Qi p} = 2E§; and all other anti-commutators
vanish. Up to overall scaling, these are now the anti-commutation relations of
Sfour fermionic oscillators and hence the total dimension of the representation is
2% = 16 which is also CPT-self-conjugate.

The important point is that for a massive representation, with M = ¢ > 0, no
matter how small ¢, the supermultiplet is long and precisely at M = 0 it is short.
Thus the size of the supermultiplet has to change discontinuously if the state has
to acquire mass. Furthermore, the size of the supermultiplet is determined by the
number of supersymmetries that are broken because those have non-vanishing anti-
commutations and turn into fermionic oscillators.

Note that there is a bound on the mass M > 0 which simply follows from the fact
the using (5.73) one can show that the mass operator on the right hand side of the
equation equals a positive operator, the absolute value square of the supercharge on
the left hand side. The massless representation saturates this bound and is ‘small’
whereas the massive representation is long.

There is an analog of this phenomenon also for nonzero Z,;,. As explained in the
appendix, the central charge matrix Z,, can be brought to the standard form by an
U(4) rotation

5 T ~ _ Zl{;‘ 0 _ 0 1
Z =UZU s U e U(4), Zab = (T’E , &€= 1 0]/ (574)

so we have two ‘central charges’ Z; and Z,. Without loss of generality we can
assume |Z;| > |Z»|. Using the supersymmetry algebra one can prove the BPS bound
M — |Z1| = 0 by showing that this operator is equal to a positive operator (see
appendix for details). States that saturate this bound are the BPS states. There are
three types of representations:



5 Quantum Black Holes 195

* If M = |Z1| = |Z|, then eight of of the sixteen supersymmetries are preserved.
Such states are called half-BPS. The broken supersymmetries result in four
complex fermionic zero modes whose quantization furnishes a 2*-dimensional
short multiplet.

e IfM = |Z1| > |Z>], then and four out of the sixteen supersymmetries are preserved.
Such states are called quarter-BPS. The broken supersymmetries result in six
complex fermionic zero modes whose quantization furnishes a
26-dimensional intermediate multiplet.

e If M > |Z1| > |Z>|, then no supersymmetries are preserved. Such states are called
non-BPS.The sixteen broken supersymmetries result in eight complex fermionic
zero modes whose quantization furnishes a 28-dimensional long multiplet.

The significance of BPS states in string theory and in gauge theory stems from
the classic argument of Witten and Olive which shows that under suitable condi-
tions, the spectrum of BPS states is stable under smooth changes of moduli and
coupling constants. The crux of the argument is that with sufficient supersymmetry,
for example .4/~ = 4, the coupling constant does not get renormalized. The central
charges Z; and Z; of the supersymmetry algebra depend on the quantized charges and
the coupling constant which therefore also does not get renormalized. This shows
that for BPS states, the mass also cannot get renormalized because if the quantum
corrections increase the mass, the states will have to belong a long representation .
Then, the number of states will have to jump discontinuously from, say from 16 to
256 which cannot happen under smooth variations of couplings unless there is some
kind of a ‘Higgs Mechanism’ or there is some kind of a phase transition. *

As a result, one can compute the spectrum at weak coupling in the region of
moduli space where perturbative or semiclassical counting methods are available.
One can then analytically continue this spectrum to strong coupling. This allows us
to obtain invaluable non-perturbative information about the theory from essentially
perturbative commutations.

5.4.6 BPS Dyons in ./ = 4 Compactifications

The massless spectrum of the toroidally compactified heterotic string on 7° contains
28 different “photons” or U(1) gauge fields—one from each of the 22 vector multi-
plets and 6 from the supergravity multiplet.As a result, the electric charge of a state is

4 Such ‘phase transitions’ do occur and the degeneracies can jump upon crossing certain walls in
the moduli space. This phenomenon called ‘wall-crossing” occurs not because of Higgs mechanism
but because at the walls, single particle states have the same mass as certain multi-particle states and
can thus mix with the multi-particle continuum states. The wall-crossing phenomenon complicates
the analytic continuation of the degeneracy from weak coupling from strong coupling since one
may encounter various walls along the way. However, in many cases, the jumps across these walls
can be taken into account systematically.
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specified by a 28-dimensional charge vector Q and the magnetic charge is specified
by a 28-dimensional charge vector P. Thus, a dyonic state is specified by the charge

vector
_ (9
I = (P) (5.75)

where Q and P are the electric and magnetic charge vectors respectively. Both O
and P are elements of a self-dual integral lattice I7°>® and can be represented as
28-dimensional column vectors in R22:¢ with integer entries, which transform in the
fundamental representation of O(22, 6; Z). We will be interested in BPS states.

* For half-BPS state the charge vectors Q and P must be parallel. These states are
dual to perturbative BPS states.

* For a quarter-BPS states the charge vectors Q and P are not parallel. There is no
duality frame in which these states are perturbative.

There are three invariants of O(22, 6; Z), quadratic in charges, and given by P2, Q2
and Q - P. These three T-duality invariants will be useful in later discussions.

5.5 Spectrum of Half-BPS Dyons

An instructive example of BPS of states is provided by an infinite tower of BPS states
that exists in perturbative string theory [29, 30].

5.5.1 Perturbative Half-BPS States

Consider a perturbative heterotic string state wrapping around S' with winding
number w and quantized momentum n. Let the radius of the circlebe Rand o’ = 1,
then one can define left-moving and right-moving momenta as usual,

PLR = \/g (% + wR) . (5.76)

Recall that the heterotic strings consists of a right-moving superstring and a left-
moving bosonic string. In the NSR formalism in the light-cone gauge, the worldsheet
fields are:

* Right moving superstring Xi(q_) Vie™) i=1---8
* Left-moving bosonic string X'(c1), X! (7)) I=1---16,

where X! are the bosonic transverse spatial coordinates, &i are the worldsheet
fermions, and X’ are the coordinates of an internal Eg x Eg torus. A BPS state
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is obtained by keeping the right- movers in the ground state (that is, setting the right-
moving oscillator number N = 2 in the NS sector and N = 0 in the R sector).
The Virasoro constraints are then given by

M? pR
Ly——+-R=0 5.77
0= +2 (5.77)
M? pL
Ly— — + =L =0, 5.78
0~ +2 (5.78)

where N and N are the left-moving and right-moving oscillation numbers respec-
tively.
The left-moving oscillator number is then

Lo = Z(Z na—na" + anB IB—n) —l=N-1, (5.79)

n=1

where a' are the left-moving Fourier modes of the fields X', and B/ are the Fourier
modes of the fields X/. Note that the right-moving fermions satisfy anti-periodic
boundary condition in the NS sector and have half-integral moding, and satisfy
periodic boundary conditions in the R sector and have integral moding. The oscillator
number operator is then given by

1
Lo= ZZ(na_n a +rgl gt — -) -5 (5.80)
n=1 i=1
withr = —(n — %) in the NS sector and by
e 8 . . . .
Lo= 2> mala, +rjL i) (5.81)
n=1 i=1
with » = (n — 1) in the R sector. ~
In the NS-sector then one then has N = % and the states are given by
v’ 110), (5.82)

that transform as the vector representation 8, of SO(8). In the R sector the ground
state is furnished by the representation of fermionic zero mode algebra {wé, w{)} =8V
which after GSO projection transforms as 8; of SO(8). Altogether the right-moving
ground state is thus 16-dimensional 8, @ 8;. From the Virasoro constraint (5.77) we
see that a BPS state with N = 0 saturates the BPS bound

M = 2pg, (5.83)
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and thus +/2pg can be identified with the central charge of the supersymmetry
algebra. The right-moving ground state after the usual GSO projection is indeed
16-dimensional as expected for a BPS-state in a theory with .4~ = 4 supersymmetry.

We thus have a perturbative BPS state which looks pointlike in four dimensions
with two integral charges n and w that couple to two gauge fields g5, and Bs,
respectively. It saturates a BPS bound M = +/2pg and belongs to a 16-dimensional
short representation. This point-like state is our ‘would-be’ black hole. Because it
has a large mass, as we increase the string coupling it would begin to gravitate and
eventually collapse to form a black hole.

Microscopically, there is a huge multiplicity of such states which arises from
the fact that even though the right-movers are in the ground state, the string can
carry arbitrary left-moving oscillations subject to the Virasoro constraint. Using
M = /2pg, in the Virasoro constraint for the left-movers gives us

N—1= %(l’]ze _pl%) = 0%/2 = nw. (5.84)

We would like to know the degeneracy of states for a given value of charges n and w
which is given by exciting arbitrary left-moving oscillations whose total worldsheet
oscillator excitation number adds up to N. Let us take w = 1 for simplicity and denote
the degeneracy by d(n) which we want to compute. As usual, it is more convenient
to evaluate the canonical partition function

Z(B) = Tr (e_'BLO) (5.85)
= Zd(n)q" qg:=e". (5.86)
-1

This is the canonical partition function of 24 left-moving massless bosons in 1+1
dimensions at temperature 1/8. The micro-canonical degeneracy d(N) is given then
given as usual by the inverse Laplace transform

d(N) = zi / dpePNz(B). (5.87)

i
Using the expression (5.79) for the oscillator number s and the fact that

' ] X ) 1
Tr(qféa_nan) =1 + qs +q2A _’_q3~3 + .= (1 — qS)’ (588)

the partition function can be readily evaluated to obtain

> 1

1
Z = - _— 5.89
B = 1:[1 T (5.89)
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It is convenient to introduce a variable T by  := —2mit, so that ¢ := *".
The function

o0
A =q[]a-g¢"*, (5.90)
s=1
is the famous discriminant function. Under modular transformations

at +b
ct+d

T —

a,b,c,d e, with ad —bc =1 5.91)

it transforms as a modular form of weight 12:

at+b 12

A =(ct+d) A7) . (5.92)
ct +d

This remarkable property allows us to relate high temperature (8 — 0) to low

temperature (8 — o0) and derive a simple explicit expression for the asymptotic

degeneracies d(n) for n very large.

5.5.2 Cardy Formula

The degeneracy d(N) can be obtained from the canonical partition function by the
inverse Laplace transform

1
d(N) = — / dpeNzZ(B). (5.93)
2mi
We would like to evaluate this integral (5.93) for large N which corresponds to large
worldsheet energy. Such an asymptotic expansion of d(N) for large N is given by the
‘Cardy formula’ which utilizes the modular properties of the partition function.
For large N, we expect that the integral receives most of its contributions from high
temperature or small 8 region of the integrand. To compute the large N asymptotics,
we then need to know the small B asymptotics of the partition function. Now, 8 — 0
corresponds to ¢ — 1 and in this limit the asymptotics of Z(8) are very difficult to
read off from (5.89) because its a product of many quantities that are becoming very
large. It is more convenient to use the fact that Z(8) is the inverse of A(tr) which is
a modular form of weight 12 we can conclude

4 2
Z(p) = (ﬂ/zmlzz(%). (5.94)

This allows us to relate the ¢ — 1 or high temperature asymptotics to g — 0 or low

temperature asymptotics as follows. Now, Z(8) = Z (4%2) asymptotics are easy to

read off because as  — 0 we have f — 0o or e P = qg— 0.Asqg— 0
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o0

- 1 1 1
ZB =zl ——==7~ = (5.95)
q ,g 1-gm* g
This allows us to write
1 12 4n?
A(N) ~ — / BT N s (5.96)
2mi 2

This integral can be evaluated easily using saddle point approximation. The function
in the exponent is f(8) = BN + 4%2 which has a maximum at

472 2

—0 = 5.97
5 or B Nis (5.97)

The value of the integrand at the saddle point gives us the leading asymptotic expres-
sion for the number of states

F'(B)=0 or N-

d(N) ~ exp (47+/N). (5.98)

This implies that the ensemble of such BPS states of a given charge vector Q has
nonzero statistical entropy that goes to leading order as

Ssiar(Q) 1= log(d(Q)) = 41,/ Q?/2. (5.99)

We would now like to identify the black hole solution corresponding to this state
and test if this microscopic entropy agrees with the macroscopic entropy of the black
hole.

The formula that we derived for the degeneracy d(NV) is valid more generally
in any 1+1 CFT. In a general CFT, the partition function is a modular form of
weight —k

472
Z()~Z (—) p.
B
which allows us to determine high temperature asymptotics from low temperature
asymptotics for Z(8) once again because
47?
B

At low temperature only ground state contributes

B

—o00 as B— 0. (5.100)

Z(B) =Trexp(—B(Lo — c/24))

) fe
~ exp(—Eof) ~ exp(ﬁ),
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where c is the central charge of the theory. Using the saddle point evaluation as above

we then find.
N
d(N) ~ exp (271, / %) (5.101)

In our case, because we had 24 left-moving bosons, ¢ = 24, and then (5.101) reduces
to (5.98).

5.6 Spectrum of Quarter-BPS Dyons

In this section we consider the spectrum of quarter-BPS dyons in the simplest string
compactification with .4~ = 4 in four spacetime dimensions. Surprisingly, the parti-
tion function for counting these dyons turns out to involve interesting mathematical
objects called Siegel modular forms which are a natural generalizations for the group
Sp(2, Z) of usual modular forms of the group Sp(1, Z) ~ SL(2, Z). See Sect. 5.8.2.1
for a review of Siegel modular forms and related Jacobi modular forms.

5.6.1 Siegel Modular Forms and Dyons

Siegel forms occur naturally in the context of counting of quarter-BPS dyons. The
partition function for these dyons depends on three (complexified) chemical poten-
tials (o, 7, 7), conjugate to the three T-duality invariant integers

(P*/2,Q%/2,P- Q) := (m,n, 0)
respectively and is given by

1

28 =g @y

(5.102)

Note that this is very analogous to the case of half-BPS states discussed in the tutorials
where the partition function was

(5.103)

was the inverse of a modular form A(7) of weight 12 of the group Sp(1, Z).

The product representation of the Igusa form is particularly useful for the physics
application because it is closely related to the generating function for the elliptic
genera of symmetric products of K3 introduced in the Appendix. This is a conse-
quence of the fact that the multiplicative lift of the Igusa form is obtained starting
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with the elliptic genus of a single copy K3 as the input. The generating function for
the elliptic genera of symmetric products of K3 is defined by

oo
Z(0,1,2) = D Xmt1(z, 2" (5.104)

m=—1

where (7, z) is the elliptic genus of Sym” (K3) with xo(z,z) = 1 and x(7,2) =
x (7, z). A standard orbifold computation [31] gives

2(0, T,7) = l H

s>0,t>0,r

1
(1 _ psqtyr)C()(4st—r2)

(5.105)

in terms of the Fourier coefficients C¢ of the elliptic genus of a single copy of K3. As
we will explain in the next section, this partition function captures the degeneracies
of bound state of m D1-branes and a single D5-brane carrying momentum and spin.

Comparing the product representation for the Igusa form (5.234) with (5.105),
we get the relation:

I Z,1,2)

72(2) = = :
)= oo - v

(5.106)

This relation of the Igusa form to the elliptic genera of symmetric products of K3

and the degeneracies of D1-D5 bound states has a deeper physical significance and

allows for a microscopic derivation of the counting formula as we explain below.
The the logic of the derivation is as follows:

1. We derive the degeneracy for a special charge configuration in one corner of the
moduli space.

2. Using constraints from wall-crossing, we extend this answer for the same set of
charges to all over the moduli space.

3. Using duality symmetries, we extend this answer to all possible values of charges.

With this general strategy in mind, we turn to the derivation of the dyon partition
function for a special representative set of charges in a certain weakly coupled region
of the moduli space.

5.6.2 A Representative Charge Configuration

Consider four-dimensional BPS-states in Type IIB on K3 x S x §! with the following
charge configuration:

* 1 KK-monopole associated with the circle st
* 1 D5-branes wrapping K3 x S!
* m DI1-branes wrapping S'
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* 7 units of momentum along the circle §1
+ [ units of momentum along the circle S'

We would like to compute d(m, n, [) which is the number of quantum states with
these quantum numbers counting bosons with +1 and fermions with —1 . Let F be
the spacetime fermion number then we could try to compute

Trm,n,l[(_l)F ] (5.107)

However, this vanishes. If a state breaks 2n supersymmetries, then it has 2n real
fermion zero modes which are the Goldstinoes of the broken symmetry. Quantization
of each pair leads to Bose—Fermi degeneracy so the trace above vanishes. This can
be remedied by inserting (24)" where h is the ‘helicity’, that is, the third component
of angular momentum in the rest frame. For states paired by a complex fermion the
effect of this insertion is to ‘soak up’ the fermion zero mode since this mode has spin
half. Thus, we compute

dm, n, [y = Tr,,,,n,l[(—l)F (2h)6] (5.108)

since for a quarter-BPS state, out of the 16 supersymmetries 12 are broken. In practice,
this means we just ignore the 12 fermionic zero modes from broken supersymmetry
and evaluate simply Tr(—1)f" over the remaining modes. The index thus defined
receives contribution only from the BPS states.

It turns out that we can relate these unknown degeneracies d(m, n, [) of 4d-states
to known degeneracies of the D1-D5-P configuration in five dimensions which
are much easier to compute. This is known as the 4-5d lift [32]. The main idea
is to use the fact that the geometry of the Kaluza—Klein monopole (5.67) in the
charge configuration above asymptotes to R x St at asymptotic infinity » — oo but
reduces to flat Euclidean space R* near the core of the monopole at » — 0. Thus
at asymptotic infinity we have a KK-monopole in four-dimensional flat Minkowski
spacetime which near the core looks like a five-dimensional flat Minkowski space-
time. Our charge configuration then reduces essentially to the five-dimensional
Strominger—Vafa black hole [33] with angular momentum [34] discussed in the
previous subsection.

Our strategy will be to compute the grand canonical partition function introducing
chemical potentials (o, T, z) conjugate to the charges (m, n, [) and the ‘fugacities’

pi=eT0 g =TTy = TR (5.109)
The partition function is then

Z(o.7.2) = > p"g"y (=Dld(m.n.1). (5.110)

m,n,l

The factor of (—1)! is introduced for convenience which can be absorbed by
z—>z+1/2.
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Since d(m, n, l) is a topological quantity protected from quantum corrections, the
dyon partition function it does not depend on the coupling or the moduli such as the
radius R. We can focus on the region near the core by taking the radius of the circle
st goes to infinity so that in this limit we have a weakly coupled problem. In this
limit, the charge / corresponding to the momentum around this circle gets identified
with the angular momentum / in five dimensions. The total partition function at weak
coupling at large radius Ris thus a product of three factors

Z(82) = Zp1(p. 4. ) Zkk (@) Zcm (q. Y)- (5.111)

The three factors arise as follows:

1. The factor Zp (o, 7, z) counts the bound states of the D1-brane bound to a single
D5-brane, carrying arbitrary momentum and angular momentum.

2. The factor Zgg (t) counts the bound states of momentum n with the Kaluza—
Klein monopole. The KK-monopole cannot carry any momentum along the s!
directions nor does it carry any D1-brane charge. Hence the partition function
depends only .

3. The factor Zcp (T, z) counts the bound states of the center of mass motion of the
Strominger—Vafa black hole in the Kaluza—Klein geometry [35, 36]. It carries no
D1-brane charge and hence depends only 7 and z.

At weak coupling, these three systems reduce to decoupled bosonic and fermionic
oscillators and our computation is reduced to something very similar to perturbative
calculation described in the previous section. Each oscillator carries certain quantum
numbers (s, 7, r) which can contribute to the total charge (m, n, [) of our interest.
Each bosonic oscillator contributes

o0
Ze2ﬂik(S(T,lT,rZ) — (1 _psql‘yr)71 . (5112)
k=0

Each fermionic oscillator contributes

1
Zezmk(so,n,rz)(_l)k _ (1 _psqtyr) (5.113)
k=0

where the (— 1)k is present because of (— D¥ . The partition function will be thus of
the general form

1
z)~ ] Ty o’ (5.114)

S, t,r

where f (s, t, r) is the difference between the number of bosonic oscillators and
the number of fermionic oscillators for given charges (s, t, r). All physics is now
contained in these numbers. In the remaining subsections we discuss systematically
various contribution to the partition function to determine f (s, ¢, r) for our system.
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5.6.3 Bound States of D1-Branes and D5-Branes

As a warm up, let us first consider D1-brane (or fundamental Type-II string) in flat
space wrapped around a circle S or radius R with coordinate y ~ y + 27 R. The
fluctuations of the D1-brane consists of 8 transverse bosons ¢i (t,y) as well as 8
left-chiral fermions $°(¢ + y) and 8 right-chiral fermions Sa(t — y) where ¢ is the
time coordinate, i = 1,...,8, anda = 1, ..., 8. These constitute the field content
of the 1+1 D CFT living on S'. The fluctuations are of the form

¢'(1.y) = b + it + D dhe R+ Glem kI e (5.115)

n>0 n>0

For the fermions we have similarly

SUt—y) = Ste kR 4. (5.116)
n>0

$U+y) =D St kT 4 e, (5.117)
n>0

We can quantize this system as usual. Then ¢! and ¢/, are bosonic oscillators with
frequencies /R and occupation numbers N and ]V,’l respectively. Similarly, S¢ and
¢ are fermionic oscillators with frequencies /R and occupation numbers M and
1\71,’, respectively. The total left-moving momentum along S' is

8§ o 8§ o0

1 L~ 1 -

= 2 2 2 Ny = N+ D> n(My) — M) (5.118)
i=1 n=1 a=1 n=1

and the total energy is

ZZn(NiJrN’)Jr ZZn(M”+M” (5.119)

lll’l— alnl

To obtain a BPS state we want to minimize the energy given fixed momentum P.
This implies

Ni=0, M\=0 E=P. (5.120)

We would like to know how many BPS states there are for a given charge P. This
is a combinatorial problem of finding d(P) which is the number of ways to choose a
set of integers {N};, My} satisfying the constraint

(Z(anvl —l—Zn(M“)) (5.121)

n=1
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As usual it is easier to pass to the canonical ensemble. Computing

Z(t)y = > " =DdN)qg". q:=e"", (5.122)
(VM) P

ignoring the constraint. Here we have use for convenience N = RP which is an integer
or equivalently can absorb R into t. One can then obtain d(N) by inverse Laplace
transform using

1
Z(1) ::Zd(N)qN, d(N):/O e 2TiNT 7 (1)dr. (5.123)
P

The partition function is readily evaluated and is given by

[152, (1 +¢m8

7 ——n=1r 17
(T) Hzil(l _ qn)S

(5.124)

From this one can find that
d(N) ~ VN (5.125)

which follows also from the Cardy formula applied to the worldsheet CFT living on
the circle, using the fact that for 8 free bosons and 8 free fermions the central charge
is 12.

After this warm-up exercise, let us turn to the problem of motion of m D1-branes
bound to a single D5-brane. Now, a priori the D1-brane can again oscillate in all
8 transverse directions. However, if we switch on a 2-form field along 2-cycles
of K3, then open strings connecting D1-branes and D5-branes become tachyonic.
Condensation into ground state binds the D1-branes to the D5-branes and as a result
they can oscillate only along the directions along the K3.

We are interested in a configuration with m units of D1-brane charge n units of
momentum, and / units of angular momentum. If m is divisible by s then we have to
consider both the configuration with m D1-branes winding number 1 as well as the
configuration with m/s D1-branes with winding number s. Similarly, the momentum
and angular momentum can be shared among these m or m/s D1-branes. As usual,
it is more convenient to relax all constraints on the charges and compute instead the
(grand) canonical partition function. So, we introduce chemical (complexified) chem-
ical potentials o, T, z conjugate to the integers m, n, [ and compute the unrestricted
sum by summing over all possible charges (7; s, f). The degeneracies dpj (m, n, [) can
then be extracted by an inverse Fourier transform.

Consider a D1-brane wound r times along the S!, carrying momentum s along
the ! with angular momentum J;, = t/2. Let

1 1
Zm=- ] T r ey (5.126)

s>0,t>0,r
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Now, a D1-brane wrapping s times around a circle R is like a D1-brane wrapping once
on a circle of effective radius R, = 27 Rs. If we want it to carry physical momentum
t, then since

t s IAY

— = = (5.127)

R nR R,
Because of conformal invariance, the partition function does not depend on the
overall scale R. We thus conclude that the partition function for winding s and phys-
ical momentum ¢ is the same as the partition function for winding 1 and physical
momentum s¢z. In other words,

c(s,t,r) = co(st, r). (5.128)

These coefficients are nothing but the co(n, /) defined in (5.232) of the elliptic genus
x (t, z) of a single copy of K3. Hence c(s, t,r) = co(st,r) = Co(4st — r?) from
(5.233). Indeed, our computation of Zp is one way to derive the generating function
Z for the elliptic genera of symmetric products of K3. In summary,

Zpi(0, 7, 2) = Z(0, T, 2). (5.129)

Comment: The problem of counting microstates of m D1-branes bound to a D5-
brane is the counting problem that arises in computing the microstates of the well-
known Strominger—Vafa black hole in five dimensions [33]. The microscopic config-
uration there consists of Q5 D5-branes wrapping K3 x S!, 0 D1-branes wrapping
the S', with total momentum  along the circle. We have chosen Qs = 1 and Q1 = m
but more generally, we can simply replace m by Q1 Q5. The bound states are described
by an effective string wrapping the circle carrying left-moving momentum n. The
central charge of the system can be computed at weak coupling and is given by 6m. In
this system, the leading order entropy at large charge can be computed by applying
the Cardy formula provided we operate in a certain regime in moduli and charge
space. We work in a region of moduli space where the K3 is small compared to the
S1.In such a situation, the dynamics of the D1-D5 system are encapsulated in a 1+1
D CFT living on S'. The D1-D5-P configuration can then be regarded as a state in
this CFT with the right moving oscillators fixed to their ground state and the left
moving excitation number or CFT temperature proportional to n. Then in the limit
of n > Q105, the Cardy formula for the high temperature expansion of the CFT
can be used to compute the leading order degeneracy of the state. Applying Cardy’s
formula therefore, gives,

dy(n) = exp(2m/mn). (5.130)

This implies a microscopic entropy S = logd = 27 /Q10sn. The corresponding
BPS black hole solutions with three charges in five dimensions can be found in
supergravity and the resulting entropy matches precisely with the macroscopic
entropy [33].
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5.6.4 Dynamics of the KK-Monopole

In the previous subsection we have worked out the low-energy massless fluctuations
of the KK-monopole. If we excite only the left-movers then we have 24 bosons
carrying momentum ¢. The KK-monopole cannot support any momentum along the
S circle. Summing over all momenta gives rise to the partition function

e 1 1

4 . = 5.131
w = G = G130

The factor of 1/g comes because the ground state carries some ‘zero point’
momentum —1. Altogether, we recognize this as precisely the partition function
of the left-moving BPS oscillations of the heterotic string as expected from duality.

5.6.5 DI-D5 Center-of-Mass Oscillations

Now it remains for us to find the contribution to the partition function from the
oscillations of the center of mass of the D1-D5 system moving in the background
the KK-monopole. This is easy to evaluate using the fact that for large radius near
the center of the KK-monopole, the Taub-NUT space is essentially flat Euclidean
space Z*. The partition function of four bosons and four fermions is simply

6
n°(7)
Zey(t,2) = . (5.132)
62, 2)
Putting this all together we find the desired result
Z(o, 1, 1
z(@) = 20nd) _ (5.133)

v(t,2)  Pro(R)

5.6.6 Wall-Crossing and Contour Prescription

Given the partition function (5.103), one can extract the black hole degeneracies
from the Fourier coefficients. However, there is one complication that also turns
out to have interesting physical implications. The Igusa cusp form has double zeros
at z = 0 and its images. The partition function is therefore a meromorphic Siegel
form (5.225) of weight —10 with double poles at these divisors. As a result, different
Fourier contours would give different answers for the degeneracies and there appears
to be an ambiguity in the choice of the Fourier contour.

This ambiguity turns out to have a very nice physical interpretation. The spectrum
of quarter-BPS dyons actually has a moduli dependence. For a given charge vector I',
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there are single-centered black hole solutions that exist everywhere in the moduli
space. However, in addition, there can be two-centered solutions such that one center
carries charge '] and the other I with I = Iy + I'>. A simple example is when
one charge center has charge (Q, 0) and the other has charge (0, P). The distance
between these two centers is fixed in terms of the charges and the moduli fields.

As one changes the moduli, the distance between the two centers can go to infinity
and the two-centered solution can decay at certain walls i.e. surfaces of co-dimension
one. Thus, on one side of the wall, we have only a single-centered black hole whereas
on the other side we have the single-centered black hole as well as the two-centered
black hole. Hence the degeneracy on one side of the wall is different from the degen-
eracy on the other side of the all. Upon crossing the wall, the degeneracy jumps.
This phenomenon is known as the ‘wall- crossing phenomenon’. The moduli space
is thus divided up into chambers separated by walls. The degeneracy is different from
chamber to chamber.

This dependence of the degeneracy on the chamber in the moduli space is nicely
captured by the dependence of the Fourier coefficients on the choice of the contour.
As we will explain below, the choice of the contour depends on the moduli in a
precise way. As the moduli are varied, the contour is deformed. The dependence of
the contour on the moduli is such that as the moduli hit a wall in the moduli space,
the contour hits a pole of the partition function. The poles are thus nicely correlated
with the walls. Crossing the wall in the moduli space corresponds to crossing a pole
in the contour space. The jump in the degeneracy upon crossing the wall is given by
the residue at the pole that is crossed by the contour.

To see this more precisely, note that the three quadratic T-duality invariants of a
given dyonic state can be organized as a 2 x 2 symmetric matrix

_(O-00-PY (2n ¢
A_(Q-PPoP “\ ¢ 2m)’ (5.134)
where the dot products are defined using the O(22, 6; Z) invariant metric A. The
matrix £2 in (5.102) and (5.222) can be viewed as the matrix of complex chemical

potentials conjugate to the charge matrix A. The charge matrix A is manifestly
T-duality invariant. Under an S-duality transformation (5.53), it transforms as

A— yAY' (5.135)

There is a natural embedding of this physical S-duality group SL(2, Z) into Sp(2, Z):

d

ABY _(H7toY) _[-b
(e)=("3)={"
0

The embedding is chosen so that 2 — (y7)™'2y~! and Tr(£2 - A) in the
Fourier integral is invariant. This choice of the embedding ensures that the physical

[

€ Sp(2, 7). (5.136)

S O R
o Q OO
UL O O
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degeneracies extracted from the Fourier integral are S-duality invariant if we appro-
priately transform the moduli at the same time as we explain below.

To specify the contours, it is useful to define the following moduli-dependent
quantities. One can define the matrix of right-moving T-duality invariants

_ (Or-Or Or-Pr
Ag = (QR'PR PR~PR>' (5.137)

which depends both on the integral charge vectors N, M as well as the T-moduli w.
One can then define two matrices naturally associated to the S-moduli A = A1 4+ i,
and the T-moduli u respectively by

1 2 A
5/:—('“ Tl) go_ A (5.138)
A2 \M | det(Ap)|?

Both matrices are normalized to have unit determinant. In terms of them, we can
construct the moduli-dependent ‘central charge matrix’

Z = |det(Ap)|3 (L + T). (5.139)
whose determinant equals the BPS mass
Mg p = |det Z|. (5.140)

We define

~ o —z
o= (_Z T) (5.141)

related to £2 by an SL(2, Z) transformation

2 =808" where §= (_01 (1)) (5.142)
so that, under a general S-duality transformation y, we have the transformation
Q- y2yTas2 - (D '@y L

With these definitions, A, Ag, 2 and £ all transform as X — yX yT under an
S-duality transformation (5.53) and are invariant under T-duality transformations.
The moduli-dependent Fourier contour can then be specified in a duality-invariant
fashion by [37]

¢ ={Im2 =¢"'%; 0<Re(r),Re(o),Re(z) < 1}, (5.143)

where ¢ — 0T. For a given set of charges, the contour depends on the moduli
A, ;o through the definition of the central charge vector (5.139). The degeneracies
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d(m,n, )|, of states with the T-duality invariants (m, n, [), at a given point (A, i)
in the moduli space are then given by’

d(m,n, D)., = / TN 7 B0, (5.144)
¢

This contour prescription thus specifies how to extract the degeneracies from the
partition function for a given set of charges and in any given region of the moduli
space. In particular, it also completely summarizes all wall-crossings as one moves
around in the moduli space for a fixed set of charges. Even though the indexed
partition function has the same functional form throughout the moduli space, the
spectrum is moduli dependent because of the moduli dependence of the contours
of Fourier integration and the pole structure of the partition function. Since the
degeneracies depend on the moduli only through the dependence of the contour %,
moving around in the moduli space corresponds to deforming the Fourier contour.

With this understanding of the wall crossing and the contour prescription, we have
completely specified how to extract dyon degeneracies from the Fourier coefficients
of the partition function. The partition function in turn is constructed explicitly in
terms of Fourier coefficients of known objects such as ¢ or x. We will not here
analyze wall-crossing in any further detail which can be found in [24, 37, 38].

5.6.7 Asymptotic Expansion

Given the exact formula for the degeneracies, one can try to extract the asymp-
totic degeneracies in the limit where m, n are both large and positive. Since the
Fourier integral now involves three variables, the calculation is more involved than
the Cardy formula that we encountered for modular forms of single variable. The
answer however, is simple. The statistical entropy log(d) is obtained by minimizing
the following function with respect to A

Eg(\) = %lQ + AP|> — 6472 (M, A) + 0(Q7?), (5.145)
2
where ¢ (1, 1)
_ 1 _ _
oA, 1) = —a {121og [—2i(A — 1)] + 24 1og [n(L)] + 24 1og [n(L)]} .

(5.146)
For a detailed description of the expansion, see [36, 39].

5 The physical degeneracies have an additional multiplicative factor of (—1)¢+! which we omit

here for simplicity of notation in later chapaters.
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5.7 Quantum Black Holes

Now we turn to the black holes in string theory that corresponds to the ensem-
bles of the BPS quantum microstates. Such dyonic BPS black holes are essentially
generalizations of the Reissner—Nordstrom black hole but now with both electric and
magnetic charges under several different U(1) gauge fields. They are solutions of the
effective action of string theory which contains many more terms compared to the
Einstein—-Maxwell action (5.1).

To view a black hole as an ensemble of states, it is important to find full the
black hole solution of the effective action that connects the near horizon region
that we analyze below to an asymptotically flat spacetime. For the leading two-
derivative effective action of toroidally compactified heterotic string theory, such
exact interpolating solutions for dyonic BPS black holes are known [40, 41]. The
black hole geometry exhibits the attractor mechanism: the values of scalar fields
get ‘attracted’ to their atttactor values at the horizon that are determined entirely by
the charges of the black hole and independent of their values at asymptotic infinity
[42—44]. Incorporating the effect higher-derivative terms in the effective action for
the interpolating solutions is in general much more complicated and can be found in
[45-48].

For our purposes, we are only interested in the near-horizon properties of the
black hole such as its entropy and the attractor values of various scalar fields at
the horizon. This can be analyzed much more simply using the entropy function
formalism developed in Sect. 5.3.6.

In Sect. 5.7.1 we discuss the near horizon solution and the entropy for the leading
two-derivative effective action and consider the correction to the Wald entropy to
the next subleading order in Sect. 5.7.2. They compare beautifully with statistical
entropy given by the logarithm of the microscopic degeneracies computed in the
Sect. 5.6.

The case of black holes corresponding to the half-BPS states is in some ways
more interesting which we discuss in Sect. 5.7.3. In this case, the entropy is actually
zero to leading order because the geometry has a null singularity instead of a smooth
horizon. The area of the event horizon is thus zero to leading order. Subleading
quantum corrections modify the geometry so that the corrected geometry has a string
scale horizon. The Wald entropy associated with this horizon precisely matches with
the statistical entropy computed in Sect. 5.5.

5.7.1 Wald Entropy to Leading Order

For a state with electric charge vector ¢ and magnetic charge vector p, the fields near
the horizon take the form®

6 For an extensive description of this computation see [49].
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d 2
ds* zr—l (—(o Ddr? 4 — 1) = (d92+sm 0d¢ )
16 1 - 6 (5.147)
Ff=ge Foy=1—pin Mj=uy. S=us. a=u.
Substituting into the action (5.64) we get
fus, ug, upg, v, e, p) = /d@d(b«/— detG.¥
1 2 2 2
= —viVus | —— + — + e,(LuML),Je]
8 %) v1
L piLunL) . (5.148)
e o (IuwL)ip: 4 ——% . _
87'[21)%]71 mL)iip; + TUSVIV2 iLijPj

Hence the entropy function becomes
&(q, us, Ug, Up, v, €, p) :=27 (e;q; — f (us, Ua, Uy, v, €, p))

1 2 2 2
=2m|eiqi — Svivausy — — + + —ei(LupL)jje;
8 Vo 1
! (LuyL)ip; + — el
8712‘}%1’! ML)ijPj usvivy ijPj

(5.149)
Eliminating e; from (5.46) using the equation &’ /de; = 0 we get:

E(q. us, uq, up, v, e(u, v, q, p), p)

=27 [—(vz —v) + —q umq + (u§ + ul)p” Luy Lp

64 2v
v

uaunMLp:|.
47TV2MS

We can simplify the formule by defining new charge vectors:

1
0i=2q, Pi= ELz'jpjs (5.150)

which are normalized so that they are integral and satisfy the Dirac quantization
condition. In terms of Q and P the entropy function & is given by:

b4 y
& = ) |:us(vz —v1) + ﬁ (QTMMQ + (u§ + MZ)PTuMP — 2anTuMP) ]
2Us

(5.151)
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Substituting (5.159) into (5.151) and using (5.155, 5.156), we get:

2
& = ”[us(vz—v1)+— Q—+—(u5+u2)—2u—aQ~PH. (5.152)
2 v | U us

Note that we have expressed the right hand side of this equation in an T-duality
invariant form. Written in this manner, Eq. 5.152 is valid for general P, Q satisfying

P2>0, 0°>0, (Q -P)?<Q*P. (5.153)

We now need to find the extremum of & with respect to ug, u,, up;j, vi and v. In
general this leads to a complicated set of equations. We can simplify the analysis by
using the O(22, 6; R) symmetries (5.60) of the two-derivative action (5.64) which
induces the following transformations on the various parameters:

T
e; —> Qije]', pi — Qijpp upy — QMMQ .

- - _ (5.154)
qi = (‘QT)ij lqj’ 0i —~> (*QT),'leja P; — (QT)UIPJ'.

The entropy function (5.151) is invariant under these transformations. Since at its
extremum with respect to uyy;; the entropy function depends only on P, Q, vy, v, us
and u, it must be a function of the O(22, 6) invariant combinations:

Q% = QiLyQj. P*=PiLiPj, Q-P=QL;P; (5.155)

besides vy, v», ug and u,. Let us for definiteness take Q2 > 0, P2 > 0, and
(Q - P)? < Q?P2?. In that case with the help of an SO(22, 6) transformation we can
make

(- —L1);Q;=0, (I —L);P;=0, (5.156)

where I denotes the  x r identity matrix. This is most easily seen by diagonalizing

L to the form
=1 0Og
. 5.157
( 022 I ) ( )

In this case Q and P satisfying (5.156) will have
0i=0, P,=0, forl<i<?22. (5.158)

Let us now see that for P and Q satisfying this condition, every term in (5.151) is
extremized with respect to uy for

uy = 1. (5.159)

Clearly a variation duy; with either i or j in the range [7, r] will give vanishing
contribution to each term in §& computed from (5.151). On the other hand due to the
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constraint (5.58) on M, any variation M;; (and hence duyy;) with 1 < i, j < 6 must
vanish, since in this subspace satisfying (5.58) requires M to be both symmetric and
orthogonal. Thus each term in §& vanishes under all allowed variations of u;.

We should emphasize that (5.159) is not the only possible value of u), that extrem-
izes &. Any uyy related to (5.159) by an O(22, 6) transformation that preserves the
vectors Q and P will extremize & . Thus there is a family of extrema representing flat
directions of &. However, as we have argued in Sect. 5.3.4, the value of the entropy
is independent of the choice of uy;.

It remains to extremize & with respect to vy, vo, ug and u,. Extremization with
respect to vi and v, give:

v = = ug? (Q2 + P23 + u2) — 2u,0 - P) . (5.160)

Substituting this into (5.152) gives:

1
gzl_{ 2—2an~P+P2(u§+u§)}. (5.161)
2 us

It is convenient to write it in a manifestly SL(, Z) invariant way as

w1

E==— AP|%. 5.162
2A2IQ+ | ( )

if we write A = u, + ius := A1 + iAo
Finally, extremizing with respect to u,, us we get

PP —(Q-P? QP

MS: ’ ua— P2 ’

-3 v =vy =2P%. (5.163)

The black hole entropy, given by the value of & for this configuration, is

Spy = 77/ QP2 — (Q - P)2. (5.164)

To get an idea about orders of magnitude let us take Q - P = 0 for simplicity. Then
from (5.164) the radius rg of the horizon of the black hole scales as

g ~ N O2P25 (5.165)

where ¢4 four-dimensional planck length. The four dimensional string coupling gﬁ
at the horizon can be read off from the attractor value of the dilaton in (5.163):

1 [P?
2
— — 5.166
g4 us Q2 ( )

We see that string loop corrections are small if P> <« Q2. The string length £ is
related the Planck length by
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£4 = g4£5_ (5167)

Hence the o’ corrections are small if the radius curvature is large in string units,
that is, if

1/~ P> 1. (5.168)

Hence if we take Q% > P? > 1, we can compute the Wald entropy in a systematic
expansion in 1/Q? keeping both the  and string loop corrections small.

5.7.2 Subleading Corrections to the Wald Entropy

The asymptotic expansion in Sect. 5.6.7 is obtained in the regime when all charges
scale the same way and are much larger than one. In other words,

0> ~Pr> 1. (5.169)

‘We have already computed the leading order entropy for in section (5.7.1). We would
now like to see how to take the effects of higher order corrections. Let us suppose
the Lagrangian is of the form

=L+ ¢4, (5.170)

where the term of order ¢ is a small correction from higher-derivative terms. The
entropy function defined using this Lagrangian will also be of the form

& =&+ eé]. (5.171)
The solutions of the extremization equations will also have an expansion

¢"(q.p) = ey + g€y + ... (5.172)
W' (g, p) =) + e+ viG.p) =i +eviy e

To compute the entropy we have to compute the value of the entropy function &* at
the extermum

E*(q. p) = o(q, u*,v*, ", p) + e&1(q, u™, v*, ¥, p). (5.173)

If we are interested in the first subleading correction to order ¢ we simply expand
these functions to obtain

E*(q, p) = E0(q, uf, vy, €. p) + £61(q, U, v, €5, p) + O(e”). (5.174)
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The important point is that to O(¢e) one could have had terms like

a—éao, %, 3_50’ (5.175)

de av ou
evaluated at the leading order extremum values u(’g, vé, eg. However, these all vanish
because to the leading order, the extremum values of near horizon fields are found
precisely by setting all terms in (5.175) to zero. Hence, to find the first subleading
correction, it is not necessary to solve the extermization equations all over again. It
suffices to evaluate the correction to the entropy &7 at the extremum values found
using the zeroth order entropy function &y. This greatly simplify practical computa-
tions.

To illustrate these ideas, we apply them to the heterotic action for the dyonic
black holes of our interest. The heterotic supergravity action (5.64) is only the leading
2-derivative supergravity approximation to the full string effective action. The theory
has a 4-derivative correction to the effective action given by the lagrangian

AL = ¢(h, A) (RuvapR*™™ — 4R, R™) (5.176)

where ¢ (X, A) is a nontrivial function of axion-dilaton A := a + iS:

O, A) = —# [1210g(8) + 241log (n(a — iS)) + 24log (n(a + iS))] .
5.177)
Note that this is exactly the same function ¢ (A, A) introduced in (5.146). It is easy
to check that addition of this term induces a correction to the entropy function of the
form

& = 6412 (A, X). (5.178)

Consequently, the Wald entropy corrected to this order is then given by

Swald:ﬂ Q2P2_(QP)2+64712¢(a:QP2P,S: QP (Q P) +

P2
(5.179)

As aresult, the thermodynamic Wald entropy given by (5.179) matches beautifully
with the statistical entropy given by (5.145) not only to the leading order but also
the next subleading order. As mentioned in the preface, the subleading finite size
corrections have much more structure than the leading Bekenstein—Hawking entropy
and involve a rather nontrivial modular function ¢.

We should emphasize that the origin of this function in the two computations is
of totally different. In the computation of the Wald entropy S,,414(Q, P), it arises
from specific terms in the effective action of massless fields in string theory. In the
computation of the statistical entropy log(d(Q, P)), on the other hand, it arises from
the asymptotic expansion of the Fourier coefficients of the partition function for
quarter-BPS dyons which for some reason is related the Igusa cusp form. This thus
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points to a highly nontrivial internal consistency in the structure of string theory
and gives us some confidence that we may be on the right track in the search for a
quantum theory of gravity.

5.7.3 Wald Entropy of Small Black Holes

For half-BPS black holes, we can choose a duality frame in which they are purely
perturbative with electric charge vector Q and no magnetic charge, or P = 0. In this
case, it follows from (5.163) and (5.164) that the near horizon solution of the leading
order two derivative action is singular. In particular, the area of the horizon goes to
zero and the attractor value of the string coupling constant goes to zero. Thus, in
this case it is not sensible to study the effects of higher derivative terms as small
corrections to the leading order solution. Rather, one must consider the full entropy
function and find the near horizon geometry by extremizing it. It turns out that upon
the inclusion of &’ corrections, the near horizon geometry is no longer singular but
has a horizon with area of order one in string units. Such black holes with a small
string scale horizon have been termed ‘small’ black holes [50, 51]. Moreover, the
Wald entropy of this horizon precisely agrees with the statistical entropy [52, 53].
This is an interesting phenomenon which illustrates that quantum corrections within
string theory can modify classical geometry to generate a horizon whose properties
are in accordance with the microscopic theory.

To illustrate how this works out, let us analyze for simplicity the effect of the
following four-derivative term in the string effective action

AYL (RuvapR"™ — 4R, ,R™) (5.180)

~ 64n?

Now for the total entropy function, instead of (5.162), one obtains

2
=1 (Q—+8us). (5.181)
2 \ ug

Extremizing with respect to ug, we obtain the attractor value of the dilaton field
us =4/ 0%/8, (5.182)
and hence the Wald entropy is given by
Swald = E(Q) = E(ug(Q)) = 4,/ 0?/2, (5.183)
which matches beautifully with the statistical entropy (5.99).
We should remember though that since the horizon area is of order one in string

units, all & corrections are of the same order and hence the effect of all higher-
derivative terms must be included at once. It turns out, however, that even upon
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including the effect of all supersymmetrized F-type terms [52, 53] one obtains the
same results.’

A general scaling argument [54] shows that up to an over all constant, the Wald
entropy must have the same form as (5.183) even after all &’ corrections are included
up to. Moreover, by viewing the four-dimensional small black hole as an excitation
of a five-dimensional black string it has been shown in [55, 56] the Wald entropy
is related to the coefficient of five-dimensional Chern-Simons terms. Since Chern-
Simons terms are topological in nature, their coefficient is not renormalized even
after including higher quantum correction. Together, these results strongly indicate
that Wald entropy of small black holes upon including stringy all &’ corrections will
agree with the statistical entropy.

The agreement above and also for the entropy of quarter-BPS dyons in Sect. 5.7.2
is obtained using only the F-type terms in the string effective action. This strongly
suggests a nonrenormalization theorem that other D-terms do not renormalize the
‘Wald entropy. For a subclass of D-type terms such a nonrenormalization theorem has
recently been proven [57]. It would be interesting to see how it can be generalized
to all possible D-terms in this context.

5.8 Mathematical Background

5.8.1 N = 4 Supersymmetry

‘We summarize here some facts about the representation of the ./~ = 4 superalgebra.
For more details see for example [58].

5.8.1.1 Massless Supermultiplets

There are two massless representations that will be of interest to us.

1. Supergravity multiplet:

It contains the metric g, six vectors Affb), and two gravitini I/IZ(X.
2. Vector Multiplet:

It contains a vector A, six scalar fields X @b) and the gaugini x.

The low energy massless spectrum of a supergravity theory consists of the super-
gravity multiplet and n, vector multiplets. Supersymmetry then completely fixes the
form of the two derivative action. The compactification of heterotic string theory on
T leads to a theory in four spacetime dimensions with .4~ = 4 supersymmetry and
28 abelian gauge fields which corresponds to 28 — 6 = 22 vector multiplets.

7 F-type terms can be written as chiral integrals on superspace.
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5.8.1.2 General BPS Representations

In the rest frame of the dyon, the .#” = 4 supersymmetry algebra takes the form
(04 QF) = M3, 36° {04, Of) = eapZ. (O}, Q) = £55Z"  (5.184)

wherea, b = 1, ...4are SU(4) R-symmetry indices and ¢, 8 are Weyl spinor indices.
In a given charge sector, the central charge matrix encodes information about the
charges and the moduli. To write it explicitly, we first define a central charge vector
in €°

1
NG
which transforms in the (complex) vector representation of Spin(6). Using the equiv-

alence Spin(6) = SU(4), we can relate it to the antisymmetric representation of Zg,
by

7" = — Q) —tPY), m=1,...6, (5.185)

1
Zap(I') = E(QR —TPR)"AN, m=1,...6 (5.186)

where A;"b are the Clebsch—Gordon matrices. Since Z(I”) is antisymmetric, it can be
brought to a block-diagonal form by a U(4) rotation

5 _ T 5 _ (%] 0 (0 -1
Z=UzZU", UecU®@4), Zab—(T'E e=\_1 0 (5.187)

where Z; and Z, are non-negative real numbers. A U(2) rotation in the 12 plane and
another U(2) rotation in the 34 plane will not change the block diagonal form. Since
¢ is the invariant tensor of SU(2), the U(2) x U(2) transformation can only change
independently the phases of Z; and Z,. We will therefore treat more generally Z;
and Z; as complex numbers.
We now split the SU(4) index as a = (r, i), where r, i = 1, 2 and i represents the
block number. Defining the following fermionic oscillators
i 1 li 2i i 1
JZ{O[ = ﬁ(ga +8aﬂo@ﬁ ), ‘@a = ﬁ

the supersymmetry algebra takes the form

(2} —eap 27, 2°=U;Q" (5.189)

(A ) = (M +Z)baps". (B By} = M — Z;)86,p6" (5.189)

with all other anti-commutators being zero.
Let us conclude by giving an explicit representation for A7, . An SU(4) rotation
which rotates the supercharges, Q' = UQ, acts on the Clebsch-Gordon matrices as

ur"uT = R™,(U)A" (5.190)
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where R™,, is an SO(6) rotation matrix. The Clebsch-Gordon matrices A7 are given
by the components (CI"™),, where I'™ are the Dirac matrices of Spin(5) in the
Weyl basis satisfying the Clifford algebra {I"", I'"} = 2§"", and C is the charge
conjugation matrix. The Gamma matrices are given explicitly in terms of Pauli
matrices by

IN=o/x0o1x1, =0, x1xo0 (5.191)
M=0cxomx1, IMP=0mx1xon (5.192)
M=oxo3x1, I'=0,x1xo03, (5.193)
where the charge conjugation matrix is defined by CI'"C~! = —["*
w (A0
C=o0yxoyxop, I'=0o3x1x1, CI'"= Oa m (5.194)
ab

where the un-dotted indices transform in the spinor representation of Spin(6) or
the 4 of SU(4) whereas the the dotted indices transform in the conjugate spinor
representation of Spin(6) or the 4 of SU(4). The matrices A thus defined have the
required antisymmetry and transform properties as in (5.190).

5.8.2 Modular Cornucopia

We assemble here together some properties of modular forms, Jacobi forms,
and Siegel modular forms.

5.8.2.1 Modular Forms

Let H be the upper half plane, i.e., the set of complex numbers T whose imaginary
part satisfies Im(z) > 0. Let SL(2, Z) be the group of matrices

ab
(c d) (5.195)

with integer entries such that ad — bc = 1.
A modular form f(t) of weight k on SL(2, Z) is a holomorphic function on J#,
that transforms as

f (Zz IZ) =(ct+d'f(r) v (f Z) € SL(2,7), (5.196)

for an integer k (necessarily even if £(0) # 0). It follows from the definition that
f(r) is periodic under T — t + 1 and can be written as a Fourier series
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[e.e]

f@= > amq". q:=e"", (5.197)

n=—0oo

and is bounded as Im(r) — oo. If a(0) = 0, then the modular form vanishes at
infinity and is called a cusp form. Conversely, one may weaken the growth condition at
oo tof(t) = O(g~N) rather than (1) for some N > 0 then the Fourier coefficients
of f have the behavior a(n) = 0 for n < —N. Such a function is called a weakly
holomorphic modular form.

The vector space over C of holomorphic modular forms of weight k is usually
denoted by M. Similarly, the space of cusp forms of weight k and the space of weakly
holomorphic modular forms of weight k are denoted by Sy and M, ,'( respectively. We
thus have the inclusion

Sk C My € M;. (5.198)

The growth properties of Fourier coefficients of modular forms are known:

l.feM}céanzﬁ’(eCﬁ)asne oo for some C > 0;
2.feMk:an=ﬁ(nk’l)asn—> o0,
3. feSi=a,=0w"?)asn - oco.

Some important modular forms on SL(2, Z) are:

1. The Eisenstein series E € My, (k > 4). The first two of these are

o0 3. n

Es(t)=1+240> 1”_"qn —14240g + ..., (5.199)
n=1
o 5. n

Eg(t) =1-504 1”_qqn —1-504g +.... (5.200)
n=1

2. The discriminant function A. It is given by the product expansion

o0
A =q[] (- g)* =q-24¢> +252¢° + ... (5.201)

n=1

or by the formula A = (Ej — E2) /1728.

The two forms E4 and Eg generate the ring of modular forms, so that any modular

form of weight k£ can be written (uniquely) as a sum of monomials Ej‘Eé‘ with

4o + 68 = k. We also have My, = C - E; @ Sy and S, = A - My_13, so that any

f € M also has a unique expansion as > &, Ex_12, A" (with Ey = 1). From
0<n<k/12

either representation, we see that a modular form is uniquely determined by its weight

and first few Fourier coefficients.
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5.8.2.2 Jacobi Forms

Consider a holomorphic function ¢(t, z) from H x C to C which is “modular in t
and elliptic in z” in the sense that it transforms under the modular group as

art + b Z k 27'rimczz a b .
(c‘f +d ct+d —|—d) =(r+die o), ¥ (c d) € SL(2: Z)
(5.202)
and under the translations of z by Zt + Z as
QT 24 AT+ p) = e MWDy Y e 7, (5.203)

where k is an integer and m is a positive integer.
These equations include the periodicities ¢(t + 1, 7) = ¢(t,z) and ¢(7,z+ 1) =
©(t, 2), so ¢ has a Fourier expansion

p(t,2) = ZC(n, NGy (=TT, y =T, (5.204)

n,r
Equation (5.203) is then equivalent to the periodicity property
c(n,r)y = CH@nm — r2; r) where C(d; r) depends only on r(mod 2m). (5.205)

The function ¢(t, z) is called a holomorphic Jacobi form (or simply a Jacobi
form) of weight k and index m if the coefficients C(d;r) vanish for d < 0, i.e. if

c(n,r) =0 unless 4mn > r*. (5.206)

Itis called a Jacobi cusp form if it satisfies the stronger condition that C(d; r) vanishes
unless d is strictly positive, i.e.

c(n,r) =0 unless 4mn > r?, (5.207)
and conversely, it is called a weak Jacobi form if it satisfies the weaker condition
c(n,r) =0 unless n>0 (5.208)

rather than (5.206).

5.8.2.3 Theta Functions

In this section, we collect definitions and useful properties of theta function. The
Jacobi theta function is defined by

IO = D g2 Frit-h—a), (5.209)

nez
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where a, b are real and g = ¢2™'7. It satisfies the modular properties

PEIOIT+ 1) = e Do, 100D

ar (Y 1 2iﬂah+inﬁ a
P (|2 ) = ST a0

The Jacobi—Erderlyi theta functions are the values at half periods,

1 1
Di(zlt) = ﬁ[;](ZIT), D(lT) = v[31ET), Dal) = 2[glelr),

94(z|T) = ﬂ[@](zn)
In particular,
91/, —1/7) = i/—ite™ /79 (v, 7)

The Dedekind 7 function is defined as

(@) =g []a - q".

n=1

It satisfies the modular property
1 .
n\—7)=v-itn®
It is related to the Jacobi—Erderlyi theta functions by the identities

0 3
50100 =27 11 (0)

v
92(0]7)93(0]7)94(0[7) = 27

The partition function of a single left-moving boson is given by

1
Zboson(f) = Tr(CILO) =
n(7)

5.8.2.4 Siegel Modular Forms

(5.210)

(5.211)

(5.212)

(5.213)

(5.214)

(5.215)

(5.216)

(5.217)

(5.218)

Let Sp(2, Z) be the group of (4 x 4) matrices g with integer entries satisfying gJg' = J

where
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_(0-IL
J = (12 0 ) (5.219)
is the symplectic form. We can write the element g in block form as
AB
( C D) , (5.220)

where A, B, C, D are all (2 x 2) matrices with integer entries. Then the condition
gJg' = J implies

AB' = BA'", CD'=DC', AD'—BC'=1, (5.221)

Let H, be the (genus two) Siegel upper half plane, defined as the set of (2 x 2)
symmetric matrix £2 with complex entries

s2=(’z) (5.222)
70
satisfying

Im(t) >0, Im(o) >0, det(Im(£2)) > 0. (5.223)

An element g € Sp(2, Z) of the form (5.220) has a natural action on H under which
it is stable:

Q2 — (AQ +B)(CR +D)~ . (5.224)

The matrix §2 can be thought of as the period matrix of a genus two Riemann surface®
on which there is a natural symplectic action of Sp(2, Z).
A Siegel form F(£2) of weight k is a holomorphic function H, — C satisfying

FI(A2 + B)(CS2 + D)~ '] = {det (CS2 + D)}*F (). (5.225)

A Siegel modular form can be written in terms of its Fourier series

F(2) = Z a(n, r,m)q"y p™. (5.226)

The Siegel modular form which makes its appearance in the present physics
problem of counting .#” = 4 dyons is the Igusa form @ which is the unique (cusp)
form® of weight 10. This Siegel modular form is a very interesting mathematical
object and has a number of useful properties directly relevant for the present physical
application. In particular, it can be constructed very explicitly in two different ways
in terms of familiar modular forms and theta functions by using two different ‘lifts.’
These constructions are called lifts because they allow us to construct the Igusa cusp
form which is a function of three variables using the Fourier expansions of a weak
Jacobi forms which are functions of only two variables.

8 See [35, 59, 60] for a discussion of the connection with genus-two Riemann surfaces.

 Itisa ‘cusp’ form because it vanishes at ‘cusps’ which correspond to z=0 and its images.
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* Additive lift
Consier the function v (t, z)

V(t,2) = '), 2) , (5.227)

which is a weak Jacobi form of weight 1 and index 10 (see Sect.5.8.2.2 for defin-
itions). It admits a Fourier expansion

VU(t,2) = cho(n, NGy q =TTy = PR, (5.228)

n,r

From the properties of weak Jacobi forms, it follows that the Fourier coeffi-
cients cjo(n, r) depend only on the combination 4n — r? and hence we can write
cro(n, r) = Cro(4n — r?) for some function Cjo. The additive lift then gives the
Fourier expansion of the Igusa cusp form in terms of the Fourier coefficients of

V(. z) as

®10(2) = D alm,n,Dp"q"y', p:=e"", (5.229)

n,m,l

where a(m, n, [) are defined by

4 _ 2
an,romy= > dk—lcm(%) . (5.230)

d|(n,r,m)
d>1

This lift is ‘additive’ in that it gives a sum representation of the Igusa form.
e Multiplicative lift
Consider the function x (7, z)

9(1,2)  93(1,2)?  u(r, z)z)

X(I’Z)Zg(ﬁz(r)z 9302 | 0a(r)?

(5.231)

which is a weak Jacobi form of weight 0 and index 1 with a Fourier expansion

X2 =D con. D"y qi=eT, y =T (5.232)
n,r

This function arises in physics applications as the elliptic genus of the K3 surface
(see Sect.5.8.3 for details). Once again, co(n, [) depend only on the combination
d := 4n — [ and hence we can write

co(n, 1) = Co(4n — 1%) (5.233)

which defines the function Cy(d). The multiplicative lift gives a product represen-
tation of the Igusa cusp form in terms of Cy(d):
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2
®10(2) =pgy [] (A =p'qy)H, (5.234)

(s,t,r)>0

in terms of Cy given by (5.231, 5.232). Here the notation (s, #, ) > 0 means that
eithers > 0,t,reZ,ors=0,t>0,reZ,ors=t=0,r <O.

This lift is ‘multiplicative’ in that it gives a product representation of the Igusa
form.

5.8.3 A Few Facts About K3

5.8.3.1 K3 as an Orbifold

“Kummer’s third surface” or K3 has played an important role in many developments
concerning duality. Let us recall some of its properties. K3 is a four dimensional
manifold which has SU(2) holonomy. To understand what this means, consider a
generic 4d real manifold. If you take a vector in the tangent space at point P, parallel
transport it, and come back to point P, then, in general, it will be rotated by an SO(4)
matrix:

Vi(P) — 0y Vi(P) Oy € SO4). (5.235)

Such a manifold is then said to to have SO(4) holonomy. In the case of K3, the
holonomy is a subgroup of SO(4), namely SU(2). The smaller the holonomy group,
the more “symmetric” the space. For example, for a torus, the holonomy group
consists of just the identity because the space is flat and Riemann curvature is zero;
so, upon parallel transport along a closed loop, a vector comes back to itself. For
a K3, there is nonzero curvature but it is not completely arbitrary: the Riemann
tensor is non-vanishing but the Ricci tensor R;; vanishes. Therefore, K3 can alterna-
tively be defined as the manifold of compactification that solves the vacuum Einstein
equations.

Only other thing about K3 that we need to know is the topological information. A
surface can have nontrivial cycles which cannot be shrunk to a point. For example,
a torus has two nontrivial 1-cycles. The number of nontrivial k-cycles which cannot
be smoothly deformed into each other is given by the kth Betti number by of the
surface. The number of non-trivial k-cycles is in one to one correspondence with the
number of harmonic k-forms on the surface given by the kth de-Rham cohomology
[5, 6]. A harmonic k-form F satisfies the Laplace equation, or equivalently satisfies
the equations

d*F, =0, dF, =0 (5.236)
A manifold always has a harmonic O-form, viz., a constant, and a harmonic 4-form,

viz., the volume from, assuming we can integrate on it. K3 has no harmonic 1-forms
or 3-forms, but has 22 harmonic 2-forms. So, the Betti numbers for K3 are:
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bop=1, b1 =0, bry=22, b3=0, by=1 (5.237)

Out of the 22 2-forms, 19 are anti-self-dual, and 3 are self-dual. In other words,
by, =3, b5=19. (5.238)

This is all the information one needs to compute the massless spectrum of compact-
ifications on K3.

K3 has a simple description as a Z, orbifold of a 4-torus. Let (x1, x2, x3, x4) be
the real coordinates of the torus T*. Let us further take the torus to be a product
T4 = T? x T2. Let us introduce complex coordinates (z1,22), 21 = X] + ix
and zp = x3 + ix4. The 2-torus with coordinate z; is defined by the identifications
z1 ~ 21 + 1 ~ z1 + i, and similarly for the other torus. The tangent space group
is Spin(4) = SU(2); x SU(2),, and the vector representation is 4v = (2, 2). If we
take a subgroup SU(2)1 x U(1) of Spin(4), then the vector decomposes as

dv=2,92_. (5.239)

The coordinates (z1,z2) transform as the doublet 24 and (z1,Zz2) as the 2_.
The Z, = {1, I} is generated by

I:(z1,22) = (=21, —22). (5.240)

This Z; is a subgroup and in fact the center of SU(2) 1. Consequently, as we shall see,
the resulting manifold has SU(2), indeed a Z, holonomy. For a torus coordinatized
by z1, there are 4 fixed points of z; — —z; Altogether, on ™ /Z», there are 16 fixed
points.

Let us calculate the number of harmonic forms on this orbifold. To begin with,
we have on the torus T#, the following harmonic forms:

11

4 dx'

6 dx' Adx

4 dx' Adi A dx!

1 dxl Add Adif A dx!. (5.241)
The first column gives the number of forms indicated in the second column where

the indices i, j, k, [ take values 1, - - - 4. Under the reflection /, only the even forms
1,dx' Ady¥, and dx' A d¥' A dx* A dx! survive.

0 — form 1
4
6 '3 6, (5.242)
4
1

—

— o N O~

1
2
3
4
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where the second column give the number of forms on the torus and the third column
the number of forms that survive the projection. Let us look at the 2-forms from the
torus that survive the Z; projection. By taking the combinations

. . 1 ..
dx' Adv + ze’/kldxk A dx!

we see that three of these 2-forms are self-dual and the remaining three are anti-self-
dual.

At the fixed point of the orbifold symmetry there is a curvature singularity. The
singularity can be repaired as follows. We cut out a ball of radius R around each
point, which has a boundary S3/Z,, replace it with a noncompact smooth manifold
that is also Ricci flat and has a boundary S /Z,, and then take the limit R — 0. The
required noncompact Ricci-flat manifold with boundary S /Z, is known to exist and
is called the Eguchi—-Hanson space. The Betti number of the Eguchi—Hanson space
are by = by = 1 and b = 1. Therefore, each fixed point contributes an anti-self-dual
2-form which corresponds to a nontrivial 2-cycle in the Eguchi-Hanson space that
would be stuck at the fixed point in the limit R — 0.

Altogether, we gethg = 1,05 =3, b =3+16=19,bs = 1, and by = b3 =0
giving us the cohomology of K3. It obviously has SU(2) holonomy. Away from the
fixed point, a parallel transported vector goes back to itself, because all the curvature
is concentrated at the fixed points. As we go around the fixed point a vector is returned
to its reflected image (for instance, (dz1, dzo) — —(dz1, dz2)), i.e., transformed by
an element of SU(2).

In string theory there is no need to repair the singularity by hand. We shall see
in Sects. 5.3 and 5.4 that the twisted states in the spectrum of Type-II string moving
on an orbifold automatically take care of the repairing. The twisted states somehow
know about the Eguchi—-Hanson manifold that would be necessary to geometrically
repair the singularity.

5.8.3.2 Elliptic Genus of K3

Consider a two-dimensional superconformal field theories (SCFT) with (2, 2) or
more worldsheet supersymmetry.'? We denote the superconformal field theory by
o (.#') when it corresponds to a sigma model with a target manifold .#. Let H be
the Hamiltonian in the Ramond sector, and J be the left-moving U(1) R-charge. The
elliptic genus x (t, z; .#) is then defined [61-63] as a trace over the Hilbert space
% in the Ramond sector

x(1.2.M) = Tty (qHy’(—l)F) (5.243)

where F is the fermion number. An elliptic genus so defined satisfies the modular
transformation property (5.202) as a consequence of modular invariance of the

10 An SCFT with (r, s) supersymmetries has r left-moving and s right-moving supersymmetries.
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path integral. Similarly, it satisfies the elliptic transformation property (5.203) as
a consequence of spectral flow. Furthermore, in a unitary SCFT, the positivity of the
Hamiltonian implies that the elliptic genus is a weak Jacobi form.

A particularly useful example in the present context is o (K3), which is a
(4, 4) SCFT whose target space is a K3 surface. The elliptic genus is a topolog-
ical invariant and is independent of the moduli of the K3. Hence, it can be computed
at some convenient point in the K3 moduli space, for example, at the orbifold point
where the K3 is the Kummer surface. At this point, the o (K3) SCFT can be regarded
as a Z, orbifold of the o (T*) SCFT which is an SCFT with a torus 7% as the target
space. A simple computation using standard techniques of orbifold conformal field
theory yields [64] the formula for the elliptic genus we introduced earlier in (5.231):

Pa(t, 22 V3(r,2)?  Valt, Z)2) (5.244)

X(T’Z)Zg(ﬂz(rﬂ 9302 T 93(0)2

The first term can be seen to arise from the untwisted projected partition function,
the second from the twisted, unprojected partition function and the third from the
twisted, projected partition function.

Note that for z = 0, the trace (5.243) reduces to the Witten index of the SCFT and
correspondingly the elliptic genus reduces to the Euler character of the target space
manifold. In our case, one can readily verify from (5.231) that x (r, 0; K3) equals
24 which is the Euler character of K3.
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Chapter 6
Lectures on Topological String Theory

Hirosi Ooguri

6.1 Topological Sigma-Models

In string theory, one typically studies embeddings of the string worldsheet X' (which is
a Riemann surface) into a 10-dimensional manifold of the form X : ¥ — RSB x M,
with M a compact 6-dimensional manifold. In the following, we will restrict our atten-
tion to the study of supersymmetric sigma models onto the 6 compact dimensions.
In particular, we will assume M to be a Calabi—Yau threefold so that the theory
possesses ./~ = (2, 2) worldsheet superconformal symmetry.

Let us start by reviewing the .4 = 2 superconformal algebra (SCA). This is
generated by the following fields:

T =D Lz "% GF@ =D Gye "7 J@ =2 Ja "
nez nez nez
6.1)

with the following set of OPE’s:
C/2 ZT(W) awT(W)

z—w)?*  (z—w)? Z—w
3 GEw)

3/2
e _/ e G*w) + E— (6.3)
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J(w) 0ywJ (W)

T(z)J (w) ~ (6.4)
(z —w)? Z—w
ol 2¢/3 20w) 2T (w) + ad (W)

GHRGT ) ~ s T — (6.5)

+
J()GEw) ~ £ 3 (6.6)

Z—WwW

3

R 6.7

which reveal that J and G are primary fields with conformal weights 1 and 3/2,
respectively, and that G* has U (1) charge 41 under Jy. In the following, we will
restrict ourselves to the Ramond sector (i.e. a = 0 in (6.1)).

The superconformal algebra possesses two distinguished vector space isomor-
phisms:

T(z) —» T(2) + %aJ(zx J(@) = J@), GF@) — GF(@), (6.8)
and
T(z) = T(z) — %aJ(zx J(@) = —J (@), G*@z) — G*(2). (6.9)

The above transformations are known as topological twists.
We shall now analyse the twist (6.8). The OPE’s in the new basis are:

2T W) T W)

T&ﬂﬁ@N(Z_Wﬂ p— (6.10)
T ()G~ (w) ~ 2G_(W§ WG (W) 6.11)
(z—w) z—w
+ +
TG () ~ = WG O) 6.12)
(z —w)? 7—w
° Jow)  0uJ(w)
T@IW ~ — s+ ot o, (6.13)
22 20 (w) 2T (w)
GTRGE W z—w)3 (Z—w?2 z—w 614
+
JGEm) ~ W) (6.15)
—Ww
J(2)J (w) ~ (6.16)

(z—w)?
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where we introduced ¢ = ¢/3. The weights of the supercurrents G and G~ with
respect to 7 undergo the following transformations:

Gt:3/2—>1, G :3/2—>2. (6.17)

Therefore, the charge Q corresponding to G™:
0, = / G* (6.18)
14

has weight 0. Here y is one of the 2g generators of Hi (X, Z). It is important to
notice that the commutator of Q with a local field on X is independent of the choice
of y. The supercharge Q is to be thought of as a BRST operator. It is indeed nilpotent,
i.e., 02 = 0. Moreover the modified 7 (z) satisfies the following identity:

1
T(z) = E{Q’ G~ (@)} (6.19)

Now we can give meaning to the topological nature of the twists (6.8), (6.9), by
interpreting the modified T (z) as the energy momentum tensor of a 2-dimensional
A = 2 superconformal field theory. Then (6.19) is the statement that the energy
momentum tensor is BRST trivial. Topological invariance of the theory, i.e., the
independence of its correlation functions on the worldsheet metric n:

1 4 (
NIRY
is then achieved by restricting the space of observables & to [-, Q]-cohomology Hop,
the space of chiral primary fields. These in turn correspond to the highest weights of
positive energy representations of the .4/~ = 2 SCA.
In the process of redefining the energy momentum tensor, it is crucial to understand
that the action will undergo a non trivial transformation. Let So denote the action of

the superconformal field theory with energy momentum tensor 7 prior to the twist,
then S is related to Sy via:

O)=(T 0)={({0,G"}0)=0 (6.20)

S:So+/ Al, (6.21)
P

where A = (i /2)w and w is the spin connection on X' It is left as an exercise to the
reader to verify that this transformation is tantamount to the topological twist (6.8).

6.1.1 The Non-linear Sigma Model

We will now specialize our discussion to the class of .4 = (2, 2) superconformal
field theories with action:
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S = / d*0d%; K (@', o', (6.22)
»@2)

where ¥??) is the supermanifold with bosonic part a closed Riemann surface X and
real spinorial representation S @ S with S the irreducible spinorial representation of
U (1). The function K is the Kidhler potential on the target manifold M, i.e., it locally
defines a Kéhler metric on M by gij = 0i9;K. The &'’s are chiral superfields of
the form

o (yE, 0%) = X' (yE) + Y DT+ 0D + FiyHete,  (6.23)

where y© =z — it  and y~ =7 —i67 60—, and

Xel(X, M) (6.24)
ver(x x*tM19 g s) (6.25)
x e (X, X*TMOD @ §) (6.26)

Fer,x*TM"9 o s®7%) (6.27)
oV, xoXSeS). (6.28)

In terms of the component fields, S assumes the following form:
S = / d*z [\/ﬁgi;nwa,txfavxf —igiX D +igsx! Dsy
b))

_%RifkﬂﬂlkaX’ + 8,7 (F' = Tl VO = It )} '

) (6.29)
The fields F and F' are non-dynamical (auxiliary) and the last term in (6.29) can be
eliminated yielding a classically equivalent theory. Here D, is covariant both with
respect to X' and to the target M, i.e., D; = V; + 13 xI', where V/ is the connection
on the spin bundle X*TM1-0 @ § — ¥

The classical theory possesses a superconformal symmetry with Noether currents:

I =8 0T (6.30)
G+ = g7 0. XT + Y 9:X7) 6.31)
G~ = g0 X + T 0:X7) (6.32)
T = g:@: X 0:X7 4 iy oy + i :0) (6.33)

which are clearly only conserved along the physical trajectories where they decom-
pose as .7 = T + T and similarly for 4+ and Y, i.e., as a sum of generators of



6 Lectures on Topological String Theory 237

the left and right classical superconformal algebra, respectively. For curved Riemann
surfaces X, 41 and ¢~ are not conserved, as their derivation hinges on the exis-
tence of a covariantly constant spinor, which in this case is absent. After twisting the
theory, two of the spinors become scalars, thus restoring half of the supersymmetry.

Upon quantizing the theory, the axial U (1) 4 together with the conformal symmetry
will generically become anomalous. In the following, we will provide a detailed
analysis of the U (1) 4 anomaly. For a thorough discussion of the conformal anomaly
we refer to [1].

6.1.1.1 The Axial Anomaly

Classically, U(1)4 is generated by J(z) — J(2), in particular, the global U(1)4
transformations have the form:

v = eyl o a o —a), (6.34)
VY @ e T a o —a), (6.35)

Let us analyze the U (1) 4 transformation of the path integral measure:
DXDY D x DY Dye'S . (6.36)

Given that the action S and X are invariant under U (1) 4, the only potentially anom-
alous term is

DY Dy DY Dy . (6.37)

In order to see the appearance of the anomaly explicitly, let us express the ¥ fields in
terms of the eigenfunctions of the hermitian operators D; Dz and DZ D.. The Hilbert
space in question is the completion of I'(X, (X*TM"0 @ X*TM*") ® (S @ 3))
with scalar product

(W1, ¥) = / d*z (W1, ¥) = / 4>z g (i W + XU (6.38)
P P

therefore Dg = —D;. The free part of the action for the ¥ fields is then written as
S[¥ Jfree = i (¥, P¥). (6.39)

Therefore, D, and D; have the following domains and ranges:

—=0.1) —(1,0)

D: ', EYeE""y 5 r(x,E 7 @ EY, (6.40)

+(1,0)

D, (=, E"” ¢ E%) & r(x, ECO g EOY), (6.41)
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where we have denoted X*TM 10 ® § as F(l ’0), and similarly for the other subbun-

dles. The fields W, x € I'(XY, F(l 0 ® E" 1) are decomposed in terms of eigenfunc-

tions of —D; D, as:

k [ee)

V= cad + D (6.42)
=1 n=1
k [ee)

x = cut” + > &E" (6.43)
=1 n=1

On the other hand, v, ¥ € I'(¥, E(19 @E(O’ 1)) have the following spectral decom-
position with respect to —D, Dz :

v = buo", (6.44)
n=1
X =D bk (6.45)

Without loss of generality we take
k := dimKerD; D, — dimKerD_D; > 0. (6.46)

Due to the general properties of Dirac operators, the left and right moving modes of
Dz D, and D, Dz, respectively, have the same eigenvalues. Moreover, the eigenmodes
of D; D, and D, D; with non-zero eigenvalues are paired up: let ¢ be an eigenfunction
of D; D, with non-zero eigenvalue, then D,y # 0 and it is an eigenfunction of D, Dz
to the same eigenvalue. It follows that

k 00
DA = DY Dx IV 7% = | | deadéon | | dbadcndbndé, . (6.47)
=1 n=l1

In particular, an infinitesimal U (1) 4 transformation yields

d
da

DA =2% DA. (6.48)

a=0

Thus, we observe that unless £k = 0, the U (1) 4 symmetry of the classical theory is
broken upon quantization. In order to give a geometric meaning to this statement,
we first notice that

k = dimKerD; D, — dimKerD,D; = dimKerD, — dimKerD; =: IndD,. (6.49)
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This follows by observing that Dz Y € KerD <— Dz ¥ = 0, therefore
dim KerD; D, = dim KerD,. By the Atyiah-Singer Index theorem it then follows

k= / AX*TM ® (S® S)). (6.50)
X

This simplifies further by the property of the Chern character Ch(E; ® E2) =
Ch(E1)Ch(Ey), to

k = rank(X*TM)/ c1(S @ §) + rank(S @ S)/ L (X*TM) 6.51)
P P
= dim(M)(2g —2) + 4 / c(TM), (6.52)
X(%)

where g is the genus of X and in the last step we used Gauss—Bonnet and the
naturality property of characteristic classes. We require that for a given target M, the
sigma model should preseve N = (2, 2) supersymmetry on a genus g = 1 Riemann
surface . We hence need

/ cl(TM) =0 VX e I'(Z, M) (6.53)
X(%)
— ¢(TM) = 0. (6.54)

That is, we require M to be a Calabi—Yau manifold.

6.1.1.2 Calabi-Yau Manifolds

Let us briefly recall the notion of a Calabi—Yau manifold. A Calabi—Yau manifold
M is defined as a Ricci flat Kdhler manifold. The Ricci tensor of a Kéhler manifold
with Kihler metric g can be expressed in the form

R;; = 8;9; log det g. (6.55)

The solution to R; i= 0, requiring the metric to be real, is

det g = e/ @@ (6.56)

where f is a holomorphic function on M. It follows that e/ ®dx! A ... A dx" is a
nowhere vanishing holomorphic top-form, which is ensured by the non-degeneracy
of the metric. We have hence showed (M, g) Calabi-Yau — oM ) =1,
in particular, c; (T M) = 0. Yau’s Theorem asserts that also the converse to this
statement is true.

Theorem Let (M, J) be a compact complex manifold admitting Kdhler metrics,
with ¢c1(T M) = 0. Then for each Kiihler class [w] € H" (M, R), there is a unique
representative w whose associated Kdihler metric is Ricci-flat.
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6.1.2 The A-Twist

Consider the non-linear sigma model on a flat Riemann surface with a Calabi—Yau
target M, then the model is .4 = (2, 2) superconformally invariant. The A-twist
consists in applying (6.8) to both the left- and right-moving sectors of the A4 = (2, 2)
sigma model. Restricting to the left-moving part, the fermionic fields undergo the
following transformation of conformal weights:

Yl (1/2,0) — (0,0), (6.57)
X' (1/2,0) = (1,0). 6.58)

Therefore we see that the fermions are not sections of the same bundles as in the
original sigma model, but rather

v er(x, x*Tm"0, (6.59)
xerx xTM% @ 2'0(x)), (6.60)

and similarly for the right-moving fields:
Yver(x xTM e 2% (%)), (6.61)
¥ e 'z, X*TM"h). (6.62)

The action has precisely the same form as (6.29) except that D, and D; are now
covariant derivatives on I'(X, X*T M'%). This is precisely the effect of (6.21) on
both the left and right moving sectors. The BRST operator is then the sum of the
left-moving and right-moving BRST operators:

OBrsT = y{ Gtdz +}1{5+d2 . (6.63)

Note that for genus g # 1, the non-linear sigma model is no longer superconformally
invariant, nevertheless, we can replace the operation of twisting by redefining the
bundles as above, yielding a well defined Qprsr.

We will now restrict attention to the large volume limit where the non-trivial
BRST transformations of the fields are:

5XI =gyl 8X =ex
Syl =0 8x =edX (6.64)
Y =edX 57 =0.

We can now express the action of the A-twisted non-linear sigma model as:

S=ité (/ dsz) +t/ d’7; X*w, (6.65)
P P
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where V = 8i; (lﬂz] 85Xi + 8ZX-/EZZ) , and w is the Kihler form on M. It is hence
clear that under a deformation of the complex structure of M, the action will be
mapped to itself plus a BRST trivial term. Along the same lines of the argument
in (6.20), one can then show that the correlation functions are independent of the
complex structure moduli. Another interesting feature of the model is that it localizes

on holomorphic maps. This can be shown as follows. Consider a general correlator
of fields 0 :

010, = / IXIWES O, - 0, . (6.66)

The integral over X can be split as:

/ 92X = / 7X. (6.67)
[X*(2)]=p

BeHy (M)

Using expression (6.65), we can then rewrite the correlator as:

(OO = > &b / IXPWe s TN 0, ... 0,, (6.68)
BeHy (M) [X*(2)]=p

where we have denoted w - B := |. 5 X*w. We now observe that the integral over
each class B is independent of 7, in particular we can evaluate it in the limit # — oo
(classical limit), where the only field configurations contributing to the integral are the
solutions to § ([ d?zV = 0). One can then show that those in turn are the solutions
to the equations of motion. In particular, the A-model localizes on maps satisfying
dX =0, i.e., holomorphic maps.

A general operator is given by a general combination of all the fields in the theory.
Physical operators are, however, in Qpgrsr-cohomology. Let & denote a general
operator expressed as a sum of operators O;, with distinct conformal weights (n;, m;):

k
= Z o;. (6.69)
i=1

Then, by degree reasons, if [Q, 6] = 0, then [Q, &;] = 0 for all j. Now let &; have
non-zero conformal weight, say n; # 0, then

1 1 1
O; =—I[Lo, 0;1 = —[[Qprs7. G_,1, Oj1 = —[Qprst,[G_;, O;]1]. (6.70)
nj nj nj

From the above argument we can restrict attention to operators of conformal weight
(0, 0). These are of the form

©=0; i, 55, COv T (6.71)
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The action of the BRST differential is then

s = eyl 22 4 4722, (6.72)
W axt T i '

This indicates that we can identify § with the de Rahm differential d = 8 4+ 8 of M
and

{space of (0, 0)-operators} = £23(M), (6.73)

therefore
n
{space of physical operators} = Hg oy = Hj(M) = EB Hf’q(M), (6.74)
p.q=0

where (p, ¢) are the (—J, J) charges. On the other hand, the unitarity constraints on
the highest weight states corresponding to the chiral primary fields impose:

C
Hoppsr = @ Harmonics” 4 (M). (6.75)
r.q=0

This provides further evidence for the identity ¢ = dim(M), which can also be
derived by just analysing the field content of the theory.

6.1.3 The B-Twist

The B-twist consists in redefining the spinors as sections of the following vector
bundles:

verx xTM'°e 20 x)), (6.76)
x e Iz, x*TM%, (6.77)

and similarly for the right moving spinors:

Yverx xTMm0 e 2% (x)), (6.78)
Y ez x*TM%. (6.79)

The BRST operator is given by:

OBRST = j{ G dz —i—]{EerZ, (6.80)
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and in the large volume limit transforms the component fields as follows:

X'=0 X =eGd +7)
wf—saxf x'=0 (6.81)
SY =edX 53 =0.

In terms of the BRST transformation §, the action of the B-twisted non-linear sigma

model reads:
S=it8(/ V)—l—tW, (6.82)
x

where V = g; (w;azxf + 8ZXJT$;) , and

W= / (i9,~ (D, Y% — Dzyrl) + = Rl’]kw ! nfel) , (6.83)
z
with the fields r;’T and 6; being defined as:

n'=x"+%. 0=g;x) —x'). (6.84)

It can be shown that W is invariant, up to a BRST-trivial term, under deformations of
the Kéhler form of M. This then implies that the correlation functions are independent
of Kihler deformations. The B-model is particularly simple as it localizes on constant
maps, turning the path integral over maps X into an integral over the target manifold
M. This follows from the fact that V does not depend on 6, while W depends on it
linearly, allowing to absorb the factor of 7 in front of W by a redefinition of 6. More
precisely:

(O O,) = / 2X9W D2 )™ Uz VIHV T 0 (X, o, n, f‘@) .

(6.85)
Assuming the O; fields are homogeneous in 6, we obtain:

(O Op) = ﬂ(t)/;@x%p%%e*““fz V>+fWH 0; (X,¥,n,0). (6.86)

The above integral is independent of ¢, and we can thus choose to evaluate it in the
classical limit # — 0o, where the only field configurations contributing are the ones
solving the equation § |’ 5 V = 0. In particular, the path integral over X localizes on
constant maps.

The general form of a conformal weight (0, 0) field is:

B = B—jl’”';’}qn;l _“77171,9],1 9/

i

(6.87)

IR
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We can now identify:

[QBrsT, -] <> (6.88)
n < dX! (6.89)

0
0; < X7 (6.90)

Hence, BRST-cohomology can be identified with the Dolbeault cohomology of the
target M:

n q
0,
Hoppsr = @ Hg p)(M, /\T(I’O)M) (6.91)
P,q=0

6.1.4 Deformations

The non-linear sigma model can be deformed by marginal operators, i.e., operators
with left and right conformal weights equal to 1, and R-charge 0. Those correspond
to complex structure and Kéhler deformations of the target space M. In the A-twist
of the model, the marginal operators implementing complex structure deformations
become trivial, while in the B-twist the ones implementing Kéhler deformations.

6.1.4.1 A-Type Deformations

Deformations of the A-twisted model are provided by operators in BRST-cohomology
of R-charges (1,1), i.e., by operators of the form:

o =Ky T, (6.92)
where k* € H1:D (M, R). The associated marginal operator is then:
@)D =G7,G_ 9" = kfiaxiéxf t... (6.93)

Given a basis {k*},_; 1.1 of H®D (M, R), we can deform the action as follows:

.....

hl'l
St S+ Zta(¢a)l’l+h.c. , (6.94)

a=1

where the f,’s are complex numbers called complexified Kédhler moduli. The
hermitian conjugate term in the above expression has the form:
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hl.l

> /E GG, 9" . (6.95)
a=1

This is a BRST trivial term and thus does not contribute to the correlation functions.
It is convenient to express the deformation of the action as follows:

(za+t'a)/ ke (axféx-7+axféxl')+(za—z‘a)/ ke (ax"éxf—axféxi)Jr...
Y Y
(6.96)

The term multiplying (¢, + ) implements the following deformation to the original
action:

g, ) > g, )+ (ta + 1)k, ), (6.97)
where I is the complex structure. The term multiplying (#, — 7,) instead deforms the
imaginary part of the Kihler form, also known as the B-field.

Within this formalism, we can recover the statement that the A-model localizes
on holomorphic maps as follows. The triviality of the deformations parametrized by

t allows us to evaluate correlation functions in the limit £ — oo. The bosonic part
of the trivial deformation has the form

kXTI dX!. (6.98)
z Y

Therefore, the only bosonic field configurations contributing to the correlation func-
tions satisfy X = 0, i.e., are holomorphic maps.

6.1.4.2 B-Type Deformations

In direct analogy to the A-model, deformations of the B-model are provided by
physical fields of R-charges (1, 1), i.e., of the form:

ot =] o' 0. (6.99)
where b* € HOD (M, 709 p). The associated marginal operator is

@D = GG 9" . (6.100)

6.1.5 The Chiral Anomaly Revisited

In (Sect. 6.1.1), we discovered that the non-linear sigma model possesses an anomaly
of the axial U (1) transformation after quantization. The twisted theories (A and



246 H. Ooguri

B-models) can be viewed as possessing the same fields as the NLSM but having a
shifted action (6.21). The shift in the action is, however, invariant under axial U (1)
transformations, therefore we expect to obtain the same anomaly. If we wish to use the
natural fields in the formulation of the twisted theories, then, following the analysis
in (Sect. 6.1.1), we find that the axial anomaly is measured by the discrepancy in the
number of zero modes of the Dolbeault Laplacian operator on holomorphic X*7T M
valued one-forms and X*T M valued zero forms. Indeed, expanding the one forms
and zero forms in the eigenbasis of the Dolbeault Laplacian Ay := 9974979, we find
that the non-zero modes are paired up. Let’s denote I' (¥, X*TM*1@21-0) = !
and I'(Z, X*TMO") = Q0. Let f € 20s.t. Ay f = Af with A 0, then since
[A5,0] =0, Aydf = Adf. While for o € 2's.t. Aya = Ao with A # 0, it follows
(o is a top form) o = 8(%81'05) and Ay(8Tw) = A(dT«). From this discussion,
plugging the expansions in the path integral measure one finds that the anomaly is
equal to:

k =2(dimKerA|y o1 — dimKerA|j o) (6.101)
=2 (2, X*TM) — h°(Z, X*TM)) = 2x(X*TM), (6.102)

where x denotes the arithmetic genus. By the Hirzebruch-Riemann-Roch Theorem
this can be expressed as

k = 2/ ch(X*TM) Atd(TX) =28 N e (T*M) + 2dime (M)(1 — g), (6.103)
X

where 8 = [X(X)] € Hy(M).

6.1.6 Topological D-Branes on Calabi-Yau Manifolds

So far, our discussion was restricted to field theories defined on closed Riemann
surfaces. In order to extend these theories to worldsheets with boundaries, we have to
study the possible boundary conditions that we can impose on the fields. The presence
of a boundary will, in general, break part of the symmetries of the original theory.
In particular, translational invariance in the direction normal to the boundary will
be broken, as a consequence of which we lose some, or all, of the supersymmetries
(since {Q, a} ~ P). The boundary conditions we will be interested in are the ones
that preserve half of the supercharges, namely Q 4 or QO p, so that the resulting theory
is compatible with the A-/B-twist. In the language of string theory, such boundary
conditions are called, correspondingly, A-type/B-type D-branes.

In this section we will focus on the description of D-branes in nonlinear sigma
models with a Calabi—Yau target. We will be working in the large volume region
of the Kihler moduli space, where the sigma model can be studied perturbatively,
and where notions of classical geometry apply. In this limit, the D-brane can be
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interpreted as specifying a certain submanifold L of the target space, on which the
open string has to end (i.e. X(0X) C L). Of course, this picture will break down
in the non-geometric regime of the Kéhler moduli space, and one has to look for a
more appropriate description of D-branes there.

Since the subject of the present section is rather involved, we shall only provide a
simplified account of the main results, leaving the various technical details to [1, 2],
and references therein.

6.1.6.1 Boundary Conditions for the ./ = 2 SCA

In order to preserve the A-/B-type BRST operators one has to impose an appropriate
boundary condition on the supercurrents. Recall that in the A-model, the BRST

operator is given by the supercharge Q4 = [Gtdz + [ G "dz. For this to be
preserved, at z = Z, the supercurrents have to satisfy:

Gt=+G", G =4+G , (6.104)

where the sign corresponds to the usual ambiguity associated with fermions. Simi-

larly, the BRST operator in the B-model, Qp = f Grdz + f G dz, is preserved
under the boundary condition:

GT=+G , G =G . (6.105)
Notice that both (6.104) and (6.105) preserve the .4~ = 1 subalgebra:
T=T, G=%+G (6.106)
withG =Gt +G™.

In this section, it is convenient to choose a slightly different notation for the fermi-

onic fields: ¥/ := (!, x7) and similarly for ¥ . In general, a boundary condition
relates the left-moving and right-moving sector as

ax’ = RIx)ax’, y!'=RIx)y’, (6.107)
for some matrix R, where the indices /, J run through both the holomorphic and
anti-holomorphic coordinates. It is easy to see that for (6.106) to be satisfied, R has
to fulfill:

I pJ _
g1JRy Ry = gkL, (6.108)

i.e. R has to be an orthogonal matrix with respect to the Kidhler metric.
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6.1.6.2 A-Branes

Let us now analyze what kind of submanifolds can an A-type D-brane define. Notice
first that consistency of (6.107) with the BRST transformations of the A-twist (6.64)

requires R; = R. = 0. Let us now take an eigenvector v of R with eigenvalue +1.

J
In this direction we obtain a Neumann boundary condition, and hence, v is a vector
tangent to L. Since the complex structure J is diagonal in holomorphic coordinates:

Jm=ism, Jt = —ism, (6.109)
it is easy to see that the vector Jv has eigenvalue —1 with respect to R, and thus, it
defines a direction normal to L. But J2v = —v, which means that tangent and normal
directions are paired, so L must be necessarily of middle dimension. Moreover, since
for any two tangent vectors v, w, the vector Jw is orthogonal to v, the Kihler form
vanishes on L, which makes it a Lagrangian submanifold.

In general, one can introduce a gauge field A on L, which can be included in the
action by adding the term:

Syx =t/ d*(A). (6.110)
p)

This is to be interpreted as coupling the gauge field to the open string endpoint.
Requiring BRST invariance of the action gives a constraint on A. Namely, the field
strength F' = d A has to be vanishing, or in other words, the gauge bundle has to be
flat.

We have thus shown that A-branes correspond to Lagrangian submanifolds with
flat gauge bundles. Let us note that what we have described are, more precisely, topo-
logical A-branes, which are only required to preserve .4~ = 2 worldsheet supersym-
metry. The physical (stable) D-branes, on the other hand, have to preserve spacetime
supersymmetry, and it turns out that this is achieved when the A-brane corresponds
to a special Lagrangian submanifold.

6.1.6.3 B-Branes

Let us now turn to the discussion of B-branes. Proceeding similarly as in the case of
A-branes, we find that the boundary condition (6.107) is consistent with the B-twist

only if R; = R. = 0. The tangent and the normal bundle of L are now invariant under

the complex structure J, which means that L is a complex submanifold. Furthermore,
inclusion of a gauge field is possible only if the field strength is a (1,1)-form (again
by BRST invariance of the action). We thus arrive at the result that B-type D-branes
correspond to complex submanifolds with a holomorphic vector bundle.

It turns out that the description of B-branes in terms of vector bundles is, in
general, not adequate. One way to see this is to consider bound states of B-branes
of different dimensions. Such a configuration can no longer be represented by a
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vector bundle, and a more appropriate notion is that of a sheaf. Even more generally,
D-branes can be viewed as objects of a category, with the morphisms being the open
string stretching between them. B-branes are then objects of the derived category of
coherent sheaves, while A-branes live in the Fukaya category. We refer to [3, 4] for
a discussion of these topics.

6.2 Coupling to Gravity

We start this section with a brief reminder of the essential features involved in
coupling the bosonic string to gravity. The symmetry group that leaves the action
invariant is G := Diff x Weyl. The path integral measure consists in a measure on
the space of metrics times a measure on the space of maps from the Riemann surface
to the target divided by the action of G. Then one resorts to the Fadeev-Popov proce-
dure to express the path integral as an integral over the moduli space .#, of the
Riemann surface (of genus g) times the path integral of the “matter + ghost” system.
The “matter + ghost” system is an ./#/” = 2 superconformal theory where the BRST
operator is a combination of left and right supercharges and the energy momentum
tensor is BRST trivial.

Coming back to the A and B models, we define coupling to gravity in direct
analogy to the bosonic string, by viewing both models as a “matter + ghost” system.

6.2.1 The Measure on .#

Mg is equivalent to the moduli space of complex structures on a Riemann surface
X of genus g. Infinitesimal variations of the complex structure are parametrized by
elementsn € H (1,0) (X, T7OD» ) called Beltrami differentials. More precisely, these
are first order solutions to the Maurer—Cartan equation for the Dolbeault differential.
One way of computing the (complex) dimension 4! (X, T X) of the space of Beltrami
differentials is via the now familiar Hirzebruch—Riemann—Roch formula:

W, 7)) -2, 1) =/ ch(TX) A td(T X) 6.111)
P

:/ c1(TX) 4+ dimc(X)(1 —g) (6.112)
z

=3g—3. (6.113)
In the case of genus 1, we can use the holomorphic top form to establish

HOO(x 1OLxy = HOO(x) = C as the surface is compact, therefore
W7 =1.
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For genus g > 2, ho(X, TX) = 0. In terms of the dimension of My, § =0,1
are special. For g = 1 we recover the familiar answer dim(.#1) = 1, which is indeed
the dimension of the fundamental domain of the upper half plane H/SL(2, Z). For
genus g = 0 instead, dim(.#,) = h' (X, TX) = 0.

In direct analogy with the bosonic string, we now turn to defining the measure
on .#,. First we restrict attention to Riemann surfaces with genus g > 1. Let
Ns..-sN3g—3 € HOx 70D ) be a basis of T .#,, and choose coordinates
my, ..., m3g_3. In the case of the A-model we define the measure on ///g as:

3g-3 3g—3 3g-3
wg= N\ dm; Adm,-< [T .n]] (5_,ﬁi)>, (6.114)
i=l1 i=l1

i=1

where

(G™,mi) :=/ G, ni)idz A dz, (6.115)
b

and G~ is identified with b, the “b” ghost of the bosonic string. For central charge
¢ = dimgM = 3, the insertion of G~ and G exactly cancels the U (1) 4 anomaly
(6.103). The genus g > 1 partition function of the A-model coupled to gravity is
then given by

Fg=/ wg - (6.116)
M,

8

In the case of the B-model one has to substitute G with G .
For g = 1 we again follow the analysis of the bosonic string, and it is natural to
express the answer in the operator formalism:

1
w1 =3Tr [(—1)FFLFRqHLgHR] , (6.117)

where F (Fr) and Hy (Hg) denote the left (right) fermion number and Hamiltonian
operators respectively, while ¢ = " with t parametrizing the complex structure of
the torus. Here the prefactor of 1/2 reflects the Z; symmetry of the torus. Up to a
constant prefactor, w is essentially the only index for N = (2, 2) theories, which for
sigma models amounts to the statement that it is invariant under trivial deformations
of the metric of the target Calabi—Yau manifold and is consequently well defined on
its moduli space. The measure on . is the one induced by the SL(2, R) invariant
measure on H. We thus obtain
2
F1=/ T, (6.118)

w
., Im(7)

For g = 0 coupling to gravity is trivial, and the correlation functions are the ones
of the topological conformal field theory. The correlator is anomaly free only if the
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total left and right U (1) charge of the inserted local operators is equal to 3. If we
only allow local operators whose integrated descendants are marginal, then the only
well defined correlator is:

(9 (0)¢ (1) ¢y (00)) =: Cijk. (6.119)

The C;j are called Yukawa couplings, as in the effective gauge theory description,
they correspond to the interaction vertices for the vector multiplets. We will now
analyse the 3-point correlation function for the A and B-model.

6.2.2 The Genus Zero Generating Function

6.2.2.1 A-Model

In the A-model, the path integral localizes on holomorphic maps. It is therefore
convenient to consider the moduli space . () of holomorphic maps X : ¥ — M,
with [X(X)] = B € Hx(M,Z). By careful inspection of the path integral, after
integrating over non-zero modes ¥, the 3-point correlator reduces to

Cijk = (i (0)g; (1)pr(00)) = Z eilw'ﬂ/ evi(wy) Aevs(w) Aevi(ws)
BeHr(M,7) M (B)
(6.120)

Here ev; denotes the evaluation map ev; : .#Z(B8) — M at the point z; € CP!
(here z; € {0, 1, 00}), and w; € H"!'(M) is the Kihler form corresponding to ¢;.
Although intuitive, it requires further effort to show that

C,-jk=/ w1 Awr A3+ Z P Ng (w1 N B) (w1 NB)(@1NB), (6.121)
M 0£BEeH>(M,Z)

where Ng is the number of primitive rational curves of class 8, also known as
Gromov-Witten invariants. We define ¢; := ¢>"*"i and decompose w and § as follows:

hl’l /’11’1

0= Ztlel, B = Zrl(el)v. (6.122)
=1 =1

Recall that tw - B := ¢ fC]P)l X*w = ko N B where k is the arbitrary degree of X.
Then we obtain:

Cijk = / W) Awy A w3 + ZrirjrkNO,r qu” Coe gk (6.123)
M r k>1
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ry . In

q -4
= /Ma)] ANwy ANw3 + ZrirjrkNo’rl — (6.124)

- qu...qrn

Here n = h"!, and we have chosen to denote N g by No, to emphasize that these
numbers count genus zero curves.

6.2.2.2 B-Model

In the B-model, the path integral localizes on constant maps, therefore the path
integral reduces to an integral over the Calabi—Yau target M. In particular, one can
show:

Cijk = (9i(0)¢; (1) (00)) = /M<Mi A A ks £2) A 82, (6.125)

where ;i € HOV (M, Xx*T10p1) is the Beltrami differential associated to the
local operator ¢;. Up to rescaling, £2 is the unique holomorphic top-form on
the Calabi—Yau. The above has the following geometric description. Let .’ denote
the line bundle of holomorphic top forms on the moduli space of complex structures
M of M. £ is endowed with the fiberwise metric:

g(.Q,.Q):/ 2r2 =K (6.126)
M
The above is actually not well defined on the line bundle, as under a change of gauge

2 — £, with fholomorphic, K — K — f — f. K is however, the Kihler potential
for a Kihler metric on .#;. Indeed

_ fM 555/\9
8up = — 040K = =0, =——— (6.127)
Jufl s
;2 A 9,82 RN [, 2N0,8
=_.fM b a + fM b fM a (6128)

Ju2n8 ([ 2 A 82)2

is well defined. The labels a and b stand for holomorphic and anti-holomorphic
coordinates on . yet to be defined. 9,2 corresponds to a first order deforma-
tion of the complex structure of M parametrized by §2. A deformation of £2 arises
from a deformation of the holomorphic coordinate one form 8dz’ = (u4,dz'),
where j, € HOV (M, Xx*TGO M In particular, 8,2 € H>O(M) @ H>'(M). g
therefore defines a metric on the Hodge bundle on .#;. This has fiber H>%(M) @&
H>' (M) ® H'2(M) & H*3(M). The Hodge bundle furnishes natural coordinates
on .. These are defined as follows. Let {a, 7},_; 14+41.2 be a symplectic basis
of half dimensional cycles of M, i.e.

.....

arNa; =0, a;np’ =6 . (6.129)
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Consider

x! ::/ 2, Fj:= Q. (6.130)
ay B’

The F7’s enjoy the following integrability property:

a a

—F; = —F/. 6.131
ax ) T ax7 ! (6.131)
This implies the existence of a local potential F:
Fj= 0 (6.132)
T X7 '

As the F;’s are homogeneous of degree 1 in the X g we can choose F as

1
F = Ex’F,. (6.133)

The X’s define holomorphic coordinates on .#;. In terms of them we can express
K as:

K=X'F - Xx'F. (6.134)

F therefore deserves the name prepotential. Let u; denote the Beltrami differential
corresponding to the deformation 337.(2, then

Cpyx = 901050k F. (6.135)

6.2.3 Higher Genera Generating Functions

Contrary to the pre-potential F, the higher genus generating functions are not holo-
morphic, in particular the localization principle does not apply. Instead, the obstruc-
tion to this property is captured by the Holomorphic anomaly equation. Although
of conceptual importance, this equation also turns out useful in the computation
of Fy itself. Next we will consider the case of g > 2. Applying 3% to F, results
in computing the expectation value of the conjugate to a marginal operator. The left
(right) trivial supercharge together with a left (right) b-ghost insertion pair up to yield
the product of a left and right energy momentum tensor. The latter acts as an exterior
differential on the moduli space .#, as it implements infinitesimal variations of the
metric on the worldsheet. In summary, we obtain:

0 - .
gra " * ////g “s (©130)
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Since 99 = dd, we have:

9 _
—F, = 0w’,. 6.137
9ra " ¢ /a%/g “e (137

The holomorphic anomaly therefore is partly due to the non-vanishing boundary of
M. A pictorial description of 3.4, is as follows. Points of the boundary correspond
to degenerations of the Riemann surface X . In particular, these fall in two categories.
The first consists of surfaces where a cycle degenerates to divide X into (Xg g, %) U
(X%, %), where x denotes a marked point. The second consists of surfaces where
a cycle degenerates to reduce Xy to (Xg_1, *1, *2). The process of degeneration
descends properly on BRST cohomology. Indeed, one can consider the degeneration
as the development of an infinitely long and thin cylinder carrying therefore a time
evolution for indefinite time. The only states surviving the evolution are the zero
modes. Those, however, are the harmonic representatives of the chiral ring. The
degeneration of the surfaces reflects the factorisation of the corresponding correlation
functions to yield:

-1

9 U ox i[5

Fe=5e Kl (D DjFy «DiFx+ DjDiF | . (6.138)
k=1

Note that in the above expression we have introduced covariant derivatives D;. These
are the appropriate operators inserting chiral primaries. The corresponding connec-
tion is Levi—Civita with respect to the Kéhler metric on the relevant moduli space
of the Calabi—Yau. The details of such a construction are part of the well known 77*
equations, which however, are beyond the scope of this lecture.

The formula (6.138) is recursive in g. This suggests the possibility of solving it
in perturbation theory. Indeed, at present this appears to be the most efficient way of
computing topological string amplitudes. There are of course boundary conditions
that (6.138) has to be supplemented with. Conceptually under control is the depen-
dence on the anti-holomorphic coordinates 7. This is completely fixed by specifying
F, att — oo. Here the localization principle applies and one can derive explicit
expressions. We will encounter later a way of reproducing these expressions via large
N duality. Finally, one has to fix the holomorphic dependence of F,. This, however,
is harder to deal with and to date one has to deal with meticulous case study.

6.2.4 Examples of Calabi-Yau Manifolds

In Sect. 6.1.1.2 we defined the notion of a Calabi—Yau manifold as a Kihler manifold
with vanishing first Chern class. We now provide some explicit examples of Calabi—
Yau manifolds in complex dimension 3 that will be of importance later in these
lectures.



6 Lectures on Topological String Theory 255
6.2.4.1 Local CP?

The first example we will consider is the total space of the holomorphic line bundle
0(—3) — CP?. This space admits a description as a quotient space

X = (CH\ (@222 = 0}) / ~ (6.139)
where the equivalence relation is defined by:
(x,21,22,23) = (A 73x, Az1, Az2, Az3), A€ C*. (6.140)

It is easy to check that the first Chern class of this space is zero:
c1(X) = ¢1(CP?) +¢1 (O(=3)) =3+ (=3) =0, (6.141)

so that the Calabi—Yau condition is satisfied.

In fact, this is an example of a non-compact Calabi—Yau threefold with 2 compact
dimensions represented by the base CP? and 1 non-compact dimension corre-
sponding to the fibres of the line bundle. This non-compact space can, however, also
arise in the study of compact Calabi—Yau manifolds containing a CP?, describing
the local geometry in the vicinity of the CP2.

6.2.4.2 Local CP!

Another simple example is provided by the total space of the vector bundle &'(—1) ®
O(—1) — CP'. This can be again realized as a quotient space

X = (C'\ (1, 22) = 0})/ ~ (6.142)
with the equivalence relation being:
(1, 22,21, 22) ~ (A7 'x1, AT, Azr, Az), A e € (6.143)
The computation of the first Chern class
c1(X) = c1(CPY) 4+ ¢ (O(-1) @ O(=1)) =2+ (-2) =0 (6.144)

reveals that this is again a Calabi—Yau threefold, this time with 1 compact and 2
non-compact dimensions.

6.2.4.3 Conifolds

Of crucial importance in our later discussion of geometric transitions will be the
so-called conifold geometry. This space is defined as the vanishing locus of the
polynomial

p =Xy —uv (6.145)
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in C*. In contrast to the previous examples, this space doesn’t correspond to a smooth

manifold. Indeed, one easily sees that the equations p = 0 and dp = 0 have a

common solution at the origin, and thus the geometry will be singular at this point.
One way to smooth out the singularity is to deform the defining equation as:

Xy —uv = ,u2 , (6.146)

with © a real number, which can be naturally interpreted as a complex structure
modulus. The resulting geometry is called the deformed conifold. Let us discuss this
geometry in some more detail. In order to do this, it will be convenient to change
coordinates in the following way:

X + X —
a== Y =i . Y (6.147)
u-+v u—v
=i = . 6.148
B=i— 24 5 ( )
In these new variables Eq. (6.146) becomes:
B+B+E+E=u. (6.149)

Decomposing z; into a real and imaginary part, z; = ¢; + ip;, this equation yields:
¢ -p*=4% q-p=0. (6.150)

To get a better picture of the geometry, let us study the slices q> + p> = 2 for
r > 0. It is an easy exercise to show that each slice corresponds to an S of radius

(r2 — u2)/2 fibered over an S> of radius /(r2 + 2)/2 . Since any such fibration
is trivial, we obtain S3 x S2. Noting that for r = u the size of the § 2 shrinks to zero,
we can represent the geometry of the deformed conifold as in Fig. 6.1. Note also that
the minimal radius of the S° is equal to x, which means, in particular, that for the
singular conifold (11 = 0) both the % and S° shrink to zero size at r = 0.

It is important to note that the deformed conifold is actually the total space of the
cotangent bundle 7*S>. This can be seen by defining q' = q/+/112 + p? in terms of
which (6.150) becomes:

q¢°=1, ¢ p=0. (6.151)

This is precisely the equation for the total space of T*S3.

There is also another possibility to remove the conifold singularity, namely, by
replacing the singular point by the space CP'." To be more precise, we consider the
space Z C C* x CP' defined by the equation:

AV
(V/ y/) (&) —0, (6.152)

In mathematical literature this is referred to as blowing-up the singularity.

1
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Nﬂ3 t

s3 S3
s2 §2

Fig.6.1 From left to right: the deformed, singular, and resolved conifold

with (x’, y/,u’,v') € C*, and (£1, &) € CP!. It is not difficult to show that this
space is isomorphic to the singular conifold for (x’, y', u’, V) # 0 # (x, y, u, v).
At the point (x, y', u’,v') = 0, we can have (&1, &) arbitrary. In effect, we thus
replace the singularity at the origin by a CP! = §2. The resulting geometry, called
the resolved conifold, can be represented as in Fig. 6.1. Note that the size of the CP!
gives rise to a Kédhler modulus #, and the singular conifold is recovered in the limit
t=0.

Let us finally note that the geometry of the resolved conifold is precisely that
of local (C]P’l, which we discussed earlier. To see this, we decompose Z into two
patches, Uy = {1 # 0} and U = {£& # 0}. Using (6.152) we obtain the coordinates
(s,u’, y") withs = & /& on Uy, and (¢, x’, V') witht = & /& on U,. On the overlap
we have ' = —s~'x"and y' = —t~!V/, which are precisely the transformation rules
for O(—1) @ O(—1).

6.2.4.4 Toric Calabi-Yau Threefolds

A large class of Calabi—Yau threefolds can be constructed with the methods of toric
geometry. Instead of giving a thorough introduction into this subject (which can be
found, e.g., in [1, 5]), we provide only a simplified account which shall be sufficient
for our purposes.

Our starting point will be the space C¥ 3\ {0} which we divide by the action of the
group U (1)N . In order to do this, we have to assign U (1) charges Qf‘, a=1,...N
to the variables z;, in terms of which the U (1)" action is defined as:

7 — el 2910, (6.153)

with 8¢ € [0, 277 ]. Furthermore, we impose the following constraint on the variables:
>0zl =1 (6.154)
i

This condition can be thought of as an analogue of the Gauss law constraint in gauge
theory. Roughly speaking, we are fixing the phase and the modulus of N of the N +3
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complex variables, so, in general, we expect to arrive at a complex three-dimensional
manifold. It turns out that in order to obtain a Calabi—Yau manifold, one has to impose
an additional condition on the charges:

> 0f=0. (6.155)

Let us note that this construction is similar to the way we defined the geometries of
local CP? and local CP', except that in that case, we were dividing by the group
(C*)N. However, it is a standard fact in the theory of symplectic reduction that the
two constructions yield the same result. Let us also note that the parameters ¢ in
(6.154) have an interpretation as Kédhler moduli of the manifold.

We will now explain how the toric construction can be used to obtain a conve-
nient representation of the geometries in terms of so-called foric diagrams. We
illustrate this on the example of local CP?. Let us thus consider the four complex
coordinates (zo, z1, 22, z3), and divide by the group U (1) with Q9 = —3, and
Q; =1, i=1,2,3, thatis, we identify:

(20, 21, 22, 23) ~ (€920, €921, €92, €9 23) . (6.156)
The constraint (6.154) takes on the following form:
=3lz0l* + lz1* + lz2* + |z3)* =7 (6.157)

Writing z; = A/p,'e"‘f"’ with p; > 0, and ¢; € [0, 27], we obtain from (6.154),
(6.156):

(90, @1, P2, $3) ~ (P0 — 30,1+ 0,2+ 0,3+ 0) , (6.158)

=3po+p1+p2+p3=r. (6.159)

These two relations can now be used to eliminate one of the phases and one of the
pi, for example, ¢ and pg. We are thus left with six independent (real) variables
(91, $2, $3), and (p1, p2, p3). The p; still have to satisty:

pi =0, (6.160)

p1+p2+p3>r, (6.161)

where the second inequality comes from (6.159) and py > 0. One can thus visualize
the geometry of local CP? as a T3 fibration (corresponding to ¢1, ¢z, ¢3) over the
region V in R3 defined by (6.160—6.161). Note that at the points where one of the
pi = 0, the corresponding S' degenerates. The toric diagram (6.2a) then represents
the region V, with each plane corresponding to alocus where one of the S! degenerates
(at the lines of intersection, we obtain higher degeneracy). It is also not difficult to
see that the triangular region in the diagram corresponds to the base CP?.

The toric diagrams for other geometries can be obtained in a similar way. It is left
as an easy exercise for the reader to show that the toric diagram for local CP! has
the form as shown in Fig. 6.2b.
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Fig.6.2 The toric diagrams
for: a local CP2, b local CP!

(a) (b)

6.2.5 Geometric Transition and Large N Dualities

The aim of this section is to illustrate the power of large N dualities for the compu-
tation of topological string amplitudes. The basic notion, still widely conjectural, is
the equivalence of pure open string theory and the closed string theory that governs
the back reaction of the open string fields on the background. In [6] it was shown that
open string field theory is governed by a formal Chern—Simons theory. By formal is
meant that, given the Hilbert space of open string fields ¥, the theory is specified by
a skew-symmetric pairing (, ), a differential Q, and an associative product %, with
respect to which Q is a derivation as

Scs = %(III, oY) + %(W, Uy (6.162)

Q is really the BRST operator and * the operator product of vertex operators. The
correlation functions of the string field theory, with the restrictions that the “in” and
“out” states are in O-cohomology, are the correlation functions of open string theory.

In the case of topological string theory, the corresponding string field theory is
often manageable. In fact, in the case of the B-model, the Chern—Simons theory is an
ordinary quantum field theory. Indeed, consider the example of a space-filling brane.
This is specified by a holomorphic vector bundle E over M, the Hilbert space of string
fields ¢ is 77 = .QO*'(E* ®E), x=Aand Q = 9, the Dolbeault differential on E.

Finally, the action is given by:

Sg =/ .Q/\trE(lIﬂ/\él/f—i-lw/\l/f/\w). (6.163)
M 2 3

This is the so-called holomorphic Chern—Simons theory. While in the case of the
A-model, if there are no compact 2-cycles, or in the large volume limit, the open
string field theory corresponding to a single brane, is the ordinary Chern—Simons
theory on a Lagrangian submanifold with complex vector bundle E:

SAz/trE (lwAd¢+lwAw/\¢). (6.164)
L 2 3

We now turn to illustrate the very basics of these models in the simplest non-trivial
examples. These are the deformed conifold for the A-model and the resolved conifold
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for the B-model. Let us pause to sketch the strategy. In the case of the A-model, a
brane has support on a Lagrangian cycle. Its charge can be measured by linking L
with a trivial 2-dimensional cycle S = 9C, thatis C N L = 1. The charge is then
given by

c=wNnS§s, (6.165)

where w is the Kéhler flux generated by the brane. Now one might wonder whether w
can be interpreted as a chiral primary (with marginal operator as integrated descen-
dant) for a purely closed topological A-model on a background where the volume
of S is equal to c, in the spirit of the AdS/CFT correspondence. In the case of the
B-model, a brane has support on a holomorphic cycle, therefore it can have varying
dimension. However, the only one that has a non trivial back-reaction in terms of
the closed B-model, is one that is 2-dimensional so that it can link with a trivial
3-dimensional cycle «. In that case the charge of the brane is given by

c=nNa. (6.166)

This open/closed duality conjecture was explored in great detail and confirmed for
toric Calabi—Yau manifolds. We will sketch the results in what follows. We start with
the open A-model on the deformed conifold.

6.2.5.1 Open A-Model on the Deformed Conifold

Recall that the deformed conifold is a variety in C* defined via xy — uv = . It
can be viewed as T*S3, which can be interpreted as the phase space of a point
particle on $3. Indeed S3 is a Lagrangian submanifold with respect to the Kihler
metric induced by C*. This is the simplest example to test open-closed duality, as it
has a single Lagrangian cycle and no compact 2-cycle. In [7] the following setting
was analysed. Consider wrapping N branes on S each of charge A. The open string
partition function is defined by

Zes(S?) = exp (— Z Fg,nﬂg—ﬂnzv”), (6.167)

&.n

where Fy , is the generating function of connected Riemann surfaces of genus g
with n boundary circles ending on S3. If this theory were to have an A-model closed
string description we would need to have a trivial $3, so that no branes are present
and a non-trivial §? with volume = N . The natural guess is therefore the resolved
conifold. In [7] it was shown that indeed, for

2

= —, 6.168
k+ N ( )

where k is the level of the Chern—Simons theory, F (¢) defined by:
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s3 .

Fig.6.3 The geometric transition from the deformed conifold (/ef?) to the resolved conifold (right).
The figure in the center represents the singular conifold

Fo(t) =) Fyut" (6.169)

coincides with the genus g generating function of the A-model on the resolved
conifold for N — oo. This was achieved by explicit inspection of:

e F(N=DN k+N N-—s
Zes(S?) = TN / H |:2sm( )} (6.170)

The transition from the deformed to the resolved conifold is called a geometric
transition. It turns out to be very convenient to depict the transition using toric
diagrams as in Fig. 6.3. The skew lines hide an S°. Indeed on each line a distinct
S! of T? degenerates, therefore a line segment connecting the two lines is a T2
fibration equivalent to the Hopf fibration therefore equal to an S3. This transition
can be reversed to describe open-closed duality for the B-model. There we start with
the B-model open theory with N branes of charge A each, wrapped on the S? of
the resolved conifold. As was shown in [8] the associated open string field theory
reduces to a gauged gaussian Matrix Model:

- / AMe= 5™ 6.171)
vol(U (N))

where the integral is over N x N matrices M.

6.2.5.2 The Topological Vertex

The conifold transition can be employed to describe geometric transitions involving
general toric threefolds. In fact the general case is essentially captured by the example
involving the closed A-model on local CIP? [9] that we will briefly sketch. Consider
the toric diagram (6.2a). The three semi-lines represent three S>’s of infinite volume.
The trick is to modify (6.2a) by replacing these semi-lines with three segments
representing spheres of finite moduli #, > and #3 respectively, and adjoining two
half-lines at each end. In this way we recover the original geometry in the limit
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11, 1y, 13 — 00. The crucial observation is that the modified diagram is alternatively
obtained by gluing together three toric diagrams, each representing a copy of the
resolved conifold with respective Kihler modulus, so as to form a triangle in the
centre. For each resolved conifold we can then perform a geometric transition so as
to obtain a geometry with no Kéhler deformations and three non-vanishing lagrangian
$3°s. We then expect to recover the closed A-model on the local CP? as the large N
dual of the open theory on this geometry with stacks of Ny, N», N3 branes wrapped
on each lagrangian S3 respectively. The situation in the present case is however,
more involved than in the simple case of the conifold transition. In particular the
string field theory in question is not simply the sum of three Chern Simons theories,
one for each lagrangian brane. Instead there are interaction terms due to open-string
instantons stretching between each pair of brane stacks. In particular the action is
given by [10]:

3 3
(i) —w-Bij
S=D"SE4 DD e it Uyt Uy, (6.172)
i=l1 i<j Bij

The second summation above is over holomorphic curves g;; with 98;; = C; U C;
where C; is an embedded circle (knot) in the ith lagrangian sphere. The matrix U _y; (g,
is the holonomy matrix or Wilson loop:

i fp, A
Ustiipy i= 2e

(6.173)
with A® the connection one-form taking values in the adjoint representation of
U(N;). A careful study reveals that these instantons are (multicovers) of cylin-
ders. Moreover two instantons starting from different branes and ending on the
same brane will form a Hopf link on that brane. Let C; denote a knot of degree 1,
i.e. corresponding to a primitive instanton. The holonomy matrices corresponding
to multicovers of such primitive instantons are powers of the primitive ones. The
Frobenius formula allows to express the former as a linear combination of the latter
holonomies in different representations R of the gauge group. The final formula for
the open-string partition function is then:

Z= > e "Rilsp ge 2RISR, p eI Sp g, (6.174)
RiR2R3

where Sg, g, is the expectation value of the Hopf link with representation Ry on the
first unknot and representation R, on the other, while |R| denotes the number of
boxes of the Young diagram associated to R.

The reasoning just used to employ the conifold transition for the case of local CP?
is clearly generalizable to other toric varieties, however, it comes with the unpleasant
realization, that the large N limit has to be taken at the very end of the computation.
A more general and conceptually sounder method is provided by the topological
vertex developed in [11]. The basic idea behind it is that the toric diagrams of toric
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threefolds can be constructed by glueing copies of that of C> viewed as the geometry
underlying the open string A-model. In particular one has to keep track of three
lagrangian submanifolds in C3 (and corresponding framing), one at every vertex of
the corresponding toric diagram. Then the open string partition function on C> in
the large N limit, is expressed as

3
Z= > Criprs|]tr& Vi (6.175)
R1,R2,R3 i=1

where V; denote degree one unknots in the ith lagrangian submanifold. Through
this expression we have thus defined the amplitudes Cg, , r,. These are collectively
called topological vertex and were originally derived by comparing the above expres-
sion for Z with one resulting from the geometric transition applied to one lagrangian
submanifold of C3. This concludes the program of computing closed partition func-
tions for general toric manifolds.
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Chapter 7
Doubled Field Theory, T-Duality

and Courant-Brackets

Barton Zwiebach

7.1 Introduction

These lecture notes are based on three lectures, each ninety minutes long, given by
the author during the “International School on Strings and Fundamental Physics”
which took place in Garching/Munich from July 25 to August 6, 2010. Aimed at
graduate students, they require only a basic knowledge of string theory and give
a simple introduction to double field theory. These notes were prepared by Marco
Baumgartl and Nicolas Moeller.

We focus on making T-duality explicit in field theory Lagrangians. The ‘T’ in
T-duality stands for ‘toroidal’. T-duality is an old and still fascinating topic in string
theory. We will develop some Lagrangians for T-dual field theories that are quite
intriguing and may have interesting applications. The material covered here is based
on joint work with Chris Hull and Olaf Hohm [1-4]. Earlier work in double field
theory includes that of Siegel [5, 6] and Tseytlin [7]. These notes are informal and
do not attempt to be comprehensive nor to provide complete references. They deal
with the basics of the subject and do not describe any of the recent developments.

Theories implementing T-duality bring up mathematical constructions such as
the Courant-brackets as well as elements of generalized geometry. There is plenty of
mathematical work on these topics, much of it in the context of first-quantized string
theory. In our double field theory context, Courant-brackets and ideas of generalized
geometry appear in a very natural way and help construct the Lagrangians.

Courant-brackets are natural generalizations of the Lie brackets that govern
general relativity. Courant-brackets should be relevant to the effective field theory
of strings and we are beginning to see this. Before entering this fascinating topic
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we will first talk about strings in toroidal backgrounds and some of their important
properties.

7.2 String Theory in Toroidal Backgrounds

Consider a closed string living in a spacetime with a compactified coordinates.
It is well known that upon quantization there will be momentum modes and winding
modes for each compact direction. Let us denote the compact coordinates by x¢ and
the non-compact coordinates by x*, with x = (x4, x"*). The compact coordinates
x“ give rise to string momentum excitations p,. Since strings are extended objects,
there are also winding quantum numbers w®. These should in fact be associated to
some new coordinates X,. If one attempts to write down the complete field theory
of closed strings in coordinate space it will include the x* as well as the x,. Thus,
the arguments of all fields in such a theory will be doubled and we call it a double
field theory (DFT). The doubled fields ¢ (x¢, x4, x**) are said to be functions of
momentum and winding.

Since the field arguments are doubled, actions must include a suitable integration
over the additional dual coordinates:

S:/dx“diadx“f(x“,ia,x“). (7.1)

Itis clear from the basic ideas of closed string field theory that the full string theory
is described by a Lagrangian of this form. With an infinite number of fields included,
however, it is very complicated. A simplification can be achieved by restricting to a
subset of fields only. The natural restriction is to consider only the massless sector,
which includes a dilaton ¢, a metric g;; with Riemann curvature R(g), and a Kalb-
Ramond field b;; with field strength H = db.

The familiar low energy effective field theory of the bosonic closed string for
these massless fields is given by

Sy = /deTge—2¢ [R +4(3¢)* — 11—2H2} +... (1.2)
where the dots denote higher-derivative terms. In the light of the coordinate doubling
on tori, what will this action become?

There will be quite some obstacles in finding the correct action. One leading prin-
ciple which helps in its construction is generalized geometry. Generalized geometry
is in fact a very mild generalization of geometry. Let us look at its gauge symmetry
first. Its gauge symmetry parameters are vector fields £/ € T (M), which parametrize
diffeomorphisms and live in the tangent bundle of the manifold, together with one-
forms & € T*(M), which describe gauge transformations of b;; and live in the dual
tangent bundle. Both are combined naturally in the setup of generalized geometry,

E+EeT(M)®T*(M). (7.3)
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Generalized geometry does not double any coordinates. What it does achieve is to
treat vectors and one-forms on an equal footing, so that it makes sense to add them
to an object living in the sum of the tangent space and its dual.

In generalized geometry the Courant-bracket is the right extension of the Lie
bracket. We will see that it will play a prominent role in our construction. Also, in
generalized geometry and string theory the field &;; = g;; + b;; appears repeatedly,
and one also has the generalized metric #M" . The generalized metric is a key
structure also in string theory. Up to now there were no actions written explicitly in
terms of these fields.

In the following we will write down double field theories that are T-duality
covariant versions of S,. We will find that Courant-brackets, the field &, and the
generalized metric 5" will play an important role.

7.2.1 Sigma-Model Action

In order to construct a first-quantized action, we start with the usual sigma-model
action for strings propagating in a background. It is given by

1

§S=——
4 0

2 00
da/ dr (10, X 05 X1 Gij + e, X 0p X  Byy) . (74)
—0Q

where

1% = diag(—=1,1), % =—1, 8 = (3, d,),

‘ ‘ (7.5)
X = (X% X" X*~X®+2r, i=0,..,D—1.

The X are periodic coordinates for the compact dimensions. The total number of
dimensions is D. The closed string background fields G and B are D x D matrices
and are taken to be constant with the following properties:

Ga 0 Buy 0 y ;
Gz‘/:( 0 mw)’ B"J':(Oa 0)’ GYGjk = §. (7.6)

Both G and B can be combined into the field E defined by

A

E., O

Eij = Gij + Bij = ( 0 n
j7aY;

) , with Eup = Gap + Bap. (1.7)

Exercise 1 By using the action (7.4), prove that the canonical momentum P; is
given by

2n P = Ginj + Bl'jX/j, (7.8)

(dot for 0;, prime for 0,) and that the Hamiltonian density H takes the form
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4nH = (X', 2n P) 57 (E) (zfp) (7.9)

with the 2D x 2D matrix

(7.10)

-1 -1
%(E):(G_BG B BG )

-G~ !'B G!

The matrix 7 (E) is a 2D x 2D symmetric matrix constructed out of G and
B. Tt is called the ‘generalized metric’. More precisely we will identify it with an
object MN with M, N = 1,...,2D. It is convenient to write .5 and its inverse
in product form as

o G-BG'BBG'Y (1B (GO 1 0
“\-G'B ' )J~\otr)J\oGt')\-B1)"

. G!' -G7'B _(10\(G'o\(1-B
“\BG'G-BG'B) " \B1)J\0o G)\o1 -

J is non-degenerate because each of its factors is non-degenerate. It is useful to
define another metric n with constant off-diagonal entries

01
n= (10). (7.12)

With the metric 1 we are able to relate .7 and its inverse, so that, as you can check,

(7.11)

nAHn =" (7.13)

Such a constraint comes about because the generalized metric is a 2D x 2D matrix
symmetric matrix constructed from a single D x D matrix £ = G + B. Thus is has
to be constrained. We can view the parameterization of .77’ in terms of G and B as a
natural and general solution of the constraint.

Let us put indices on .77 like on a metric, so that we can identify

H < MV
| (7.14)
T < FYN-
Then Eq. 7.13 becomes
SHMN =
nem 1INQ PQ (7.15)

AN nupnno = o,

so that lowering the indices of .7# with the metric 7 gives us the inverse .~ !! The
capitalized indices M,N run over 2D values, and will be called O (D, D) indices.
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7.2.2 Oscillator Expansions

The string coordinate X' = x' +w'o +tG" p; + ... has an expansion in terms of
momenta, winding, and oscillators. The zero modes ¢ and &g are given by

1
—=GY(pj — Ejiwh),

o) =
‘/15 (7.16)
ah = —=G" (p; + Exjw").
0=/ Dj J
Written with p; = ll% and w' = 11387,
i a £ 0 i D
apj = —— — —Ejp— ) =——D;,
0i \/5 Ixi ik 9%k \/5 i
; . (7.17)
. i ad VE a i b
agpi=——= | — i— | = ———=D;.
0i ﬁ axi ki aik \/E i
We have thus defined derivatives that will play an important role later
Di =9 — Eyxd*, D' =GYDy,
oo (7.18)
D; = 0; + E; 0", DZEGUDJ'.
It turns out that the Virasoro operators with zero mode number are given by
L J
Lo = EaOGi./O[O + N —1,
(7.19)

- 1.

Lo= Ea(’)Gijaé +N -1,
where N and N are number operators counting the excitations. There is a constraint
in closed string theory which matches the levels of the right and the left moving

excitations in any state. It requires that Lo — Lo = 0. Using the derivatives defined
above we can express Lo — Lg as:

_ S . _ . S .
Lo—Ly = N—N—Z(D’Giij—D’Giij) = N—N—Z(D’D[—D‘Di). (7.20)
Exercise 2 Show that
1 . _. .
E(Dl D, — D'D;) = —29;9". (7.21)

The constraint Ly — Lo = 0 can now be expressed as a constraint on the number
operators in the following way:

N—N=—-9;3=-9-9. (7.22)
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The familiar massless fields with N = N = 0 have the form
> eij(p.wal @l cicilp.w),
[?,W

> d(p,w)(cic—1 = &é-plp, w),

p.w

(7.23)

with momentum space wavefunctions e;;(p, w) and d(p, w). Here the matter and
ghost oscillators act on a vacuum |p, w) with momentum p and winding w. On
account of (7.22) we must require that the fields ¢;; (x, ) and d(x, X) satisfy the
constraint

d-9ej(x,¥)=9-9d(x, %) =0. (7.24)

This constraint is a very important ingredient which any string theory and any double
field theory has to satisty.

7.2.3 O(D, D) Transformations

Itis important to understand the invariance of the physics under background transfor-
mations. In particular, O (D, D) transformations play a prominent role in our case.
In order to study them we start with the Hamiltonian, which can be constructed from
the Hamiltonian density H in (7.9). One can show that

2
H = / doH = —Z’Jf(E)Z +N+ N +. (7.25)

where the dots indicate terms irrelevant to the discussion and

= (5)
Pi
is a 2D column vector consisting of integer winding and momentum quantum
numbers. The Ly — Lo = 0 condition (7.22) on the spectrum gives N — N = piw',
or equivalently,

_1
N—-N = Eanz, (7.26)

where 7 is the matrix defined in (7.12). Consider now a reshuffling of the quantum
numbers

Z=hn'7Zz,

with some 2D x 2D invertible matrix 4 with integer entries (4~! should also have
integer entries). Under such a transformation the physics should not change, and in
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particular the constraint (7.26) should be unchanged. For this it is then necessary that

Z'nz' =70z =27"hyh'Z', (7.27)

which requires hnh' = 7. (7.28)

Exercise 3 Show that (7.28) implies
h'nh =, (7.29)

The h matrices generate the O (D, D) group. We write

h= (‘C’ Z) € 0(D, D), (7.30)

where a,b,c and d are D x D-matrices. The conditions on a, b, ¢, and d following
from (7.29) are

adc+ca=bd+d'b=0, ad+cb=1. (7.31)

The conditions that follow from (7.28) are not independent but they are useful
to have

ab' +ba' =cd" +dc' =0, ad +bc =1. (7.32)

Exercise 4 Show that

cal

= (dt bt). (7.33)

More is still needed in order to ensure the invariance of the spectrum. The energy,
or Hamiltonian must not change. This requires a change of the background field E:
the shuffled quantum numbers are associated to a background field E’. From (7.25)
we demand
72! AH(EVZ = 7" H(ENZ'. (7.34)
We thus have
Z'"hA(EYN'Z = 7" #(ENZ . (7.35)

‘We therefore learn that

H(E") = h(E)h'. (7.36)
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Using the indices introduced in (7.14) we associate with 4 the transformation of
coordinates

xM — M, xN Xzz(i). (7.37)
and then (7.36) becomes
AMN(E"Y = WM phN g P2 (E). (7.38)

Given that JZ is a rather complicated function of the metric G and the field B
associated with £ = G + B, it is not obvious that there is a transformation of E that
induces the covariant transformation (7.36) (or (7.38)) of . The transformation of
E in fact exists and is given by:

Euszysz+m@E+drls(ZZ)E. (7.39)

This is actually a well known transformation which appears often in string theory.
It looks like a modular transformation. The fields G and B in E have much more
complicated transformation laws. This is an indication that E is a good variable to
formulate our theories.

Exercise 5 Show that
E”:(j;j)ﬂ. (7.40)

In order to show that (7.36) holds, we first consider the possibility that E is created
from the identity background / by the action of 4. Is it possible to create any such
background from the identity? If so, then this would be a very convenient insight.
Let us assume it is true for the moment and assign a transformation kg to any E,
so that

E = hg(D). (7.41)

To see that hp € O(D, D) really does exist we re-write the field Gin E = G + B.
Since G is symmetric it can be written as G = AA’, where A appears like a vielbein.
Using now A and B in the explicit expression for 4 g we find that

t\—1
e = (’3 b ) . (7.42)

It is easy to check that i g is indeed an element of O (D, D). In order to see that it
satisfies (7.41) we compute

he(I) = (AT +BAHY™H0-1+AY )™ = (A+BA)Y HA' = AA'+B=E.
(7.43)
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This indeed shows that any background E can be created from the identity background
by the transformation that we have explicitly constructed.

The transformation /g is ambiguous since it is always possible to replace hg by
hg - g where g(I) = 1. These g are elements of O(D, D), and in fact they form a
subgroup.

Exercise 6 Show that the elements g that satisfy g(I) = I form an O(D) x O(D)
subgroup of O(D, D) and g'g = gg' = 1.

With these preparations we can now focus again on (7.36) and show that .77
transforms in the right way. For the construction of A g we have split the metric G
into a product of A and A’, so that only A entered in 4. In order to find a matrix
with G it is natural to consider the product & g h';, which does not have the ambiguity
of exercise 6. This can be calculated in a straightforward manner:

A B(AH™1 (A 0 G- BG~'B BG™!

hEhtE = (0 (At)—l ) (_AIB Al) = (_G—]B G_l ) = e%p(E)
(7.44)

Suppose now E’ is a transformation of E by h, i.e. E' = h(E) = hhg(I). We also
have E' = hg/(I). We thus see that hgr = hhgg, up to the ambiguous O(D, D)
subgroup formed by g. Now we can put all this together to compute

H(E') = hph'y, = hhpg(hhgg)' = hhgh'yh' = hot (E)h'. (7.45)

This proves (7.36).

Our aim is to show that it is natural to replace the standard notation in string
theory based on G and B by E and .7, and in fact we will later re-write the Einstein
action completely in terms of 7. In order to arrive there we still need a little more
formalism.

First we need to understand how G and G’ are related. This relation is not imme-
diately visible. We claim that

(d+cE)G'(d+cE)=G. (7.46)

This expression involves E but neither a nor b (from £) enter. It looks like a trans-
formation law for tensors, but it is in fact a bit more complicated, since we have
E-dependent matrices. In the end this will lead to a new kind of indices which are
characterized by the fact that they transform like (7.46).

The metric G has the peculiar property that in addition it also satisfies

(d—cE"Y'G'(d—cE") =G. (7.47)
This has some deeper meaning, as we will see.

Exercise 7 Prove that

(d +cE)'G'(d + cE) = G,

(d — cE"'G'(d — cE") = G. (7.48)
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Hint: Write G' = %(E’ + E'"y and use (7.39) for the first line. Write G' = %((E’)’ +

(E™") and use (7.40) for the second line.

In order to sharpen notation let us introduce the matrices

M = (d —cE", (7.49)
M =(d+cE). '
With this abbreviation (7.48) becomes
G=MGM,
G MG M (7.50)

It is instructive to write these equations in index notation. These are in fact examples
of O(D, D) “tensors”, which transform in the following way:
= M-PM-AG--
Gij = M;"M;"G 55, (7.50)
L MPMAG ’
Gij = M{"M;1G',,.

Note that we have used two kinds of indices for the same object G. It is possible to
describe G either with barred indices G;; or with unbarred indices G;;. Each type
of indices comes with a different transformation law, but still they describe the same
transformation.

Previously we found indices M, N that are used for O (D, D) tensors. Now we
found other indices for which O (D, D) transformations are generated by matrices M
and M. Thus we want to understand how these two index manipulations are related
to each other. Consider some object with components

0:
@Mz (911).

We call such an object a “fundamental of O (D, D)” if ®' = h®, or in components

(z) - (Z Z) (Z) (7.52)

and we say it transforms in the fundamental representation of O (D, D). Now let us
define two more objects

Y, = _éi + E,‘jej,

- ~ . (7.53)
Y; =6; + Eji0/,

using the 0’s and the E. These objects will not transform just with 4, since they now
depend on E. Still, they have a simple transformation law, involving the M’s:

Yi = M;'Y},
(7.54)

_j_
i

~a~
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Thus the above construction tells us how to move from an object & which transforms
with % to an object Y which transforms with M.

Exercise 8 Prove the first line of (7.54). For this use, and prove, the identity
b' —Ea' = —ME'. (7.55)

This has a useful application. Consider a fundamental object

X;
xM = (xg).

The associated partial derivative is

i ,
oot = (g) oM = MV gy = (g) (7.56)
L

The derivative 3 is also in the fundamental representation. From this it is now
possible to calculate

My =29;0" = 0. (7.57)

This is recognized as the constraint (7.22). In the same way as we have constructed
the objects Y and Y in (7.53) above, we can construct derivatives transforming under
the action of M. When we do that we find that the natural objects to write are

—0; + E,‘jéj =-D;,
- _ (7.58)
di + Ejiaj =D,

which are exactly the derivatives in (7.18). So we see, those derivatives we find
in string theory are in fact O (D, D)-derivatives and transform covariantly under
O(D, D):

M/ D',
o (7.59)
M/D’,.

D;

o
Sl

i

~

The last object whose transformation properties we have to understand better is
that for the variation § E of the background field. We know already that E’ = h(E),
which is a complicated expression when written out. While E does not transform as
a tensor, its variation does. We find

E'+8E' = h(E +8E)
= (a(E + 8E) + b)(c(E + 8E) +d) ™"
= @E +b+aSE)(cE +d + cSE)”!
= E' +aSE(CE +d)™' — E'¢SE(CE +d)™", (7.60)
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where we used (A 4+ &)~ = A~ — A71e A= 4+ O(¢?) in the last step. From this
we get

8E'=(a—E'¢)SE(CE+d) ' =(a—E'c)sSE(M")™". (7.61)

The last hurdle is a bit of manipulation.

Exercise 9 Prove that a — E'c = M. For this check that M(a — E'c) = 1 by
explicit multiplication, using the results of Exercise 8.

From (7.61) and the result of the above exercise one reads off the transformation
law

SE = MSE'M'. (7.62)
‘We see that E has one unbarred index and one barred index:
SE;; = MiPMj._an;,q. (7.63)

We have set up a consistent formalism and have understood the transformation
laws of the fundamental objects in our theory. We can use this in order to construct
actions.

7.3 Double Field Theory Actions

For the construction of actions using the previously developed formalism we start
with a background field E; H and small fluctuations e, Jv(x, X). This should be thought
of as a background configuration which contains a gravitational background as well
as a background Kalb-Ramond field. In addition we include a dilaton d(x, X).

7.3.1 The Quadratic Action

First we focus on the quadratic part of the action, given by
s = [ dxdi | LeliDe,: + L (Biei? + LiDie,? — 2aDi Bie;: — 4dd
= 4 ij Ty ij 4 ij ij )

(7.64)

where indices are raised by the background metric G/ (or G/ ) and the box
operator is given by [ = DiD; = D' D: with constraint D> — D* = 0. This
constraint is equivalent to d - 9 = 0 and must be satisfied by all fields and gauge
parameters.
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Under O(D, D)-transformations the objects under the integral will transform
with M or M. Note that M and M depend on the background field £ and not on the
fluctuations e; ;. This implies that derivatives will not act on M or M. So this action
is manifestly O (D, D)-invariant.

This action must have gauge symmetries, which must include those found in
general relativity. In fact gauge symmetry fixes the relative values of the coefficients
of the terms in the action.

Exercise 10 Prove that the following are gauge invariances of S :

58”7 = l_)i)»i, 56”7 = D,')_LJT,
1 . 1 -:. (7.65)
5d:_ZDZ)\l N Sd:—le)\l'

In order to get a better feeling for this action we write it out more explicitly,
simplifying it by setting the background Kalb—-Ramond field B;; to zero, keeping
only the fluctuations e; j= hij + b;; around the metric G;;. The action becomes

1 .. 1 . .
§P = / dxd)z[zhwa% + E(a’h,-,-)2 —2d9' 97 hjj — 4do°d

1= 1 - -
- Zh’fazh,-j + E(ahij)z +2dd' 87 hij — 4dd*d

1 .. 1 .
- Zb’fazbij + E(afbij)z

1 ..~ 1 ~.
+ 40" 3%bij + 5(afb,,-)2
+ @Bkh™) (@7 b)) + (8% hi) (97 — 4daféfbl~j}. (7.66)

The first line contains the graviton and dilaton in the same way as one would get
from the standard action. The second line is almost identical to the first line but
contains dual derivatives. This is to be expected since the whole action should be
O(D, D)-invariant. The third line contains the contributions of the Kalb—Ramond
field strength, while the fourth line again complements it with terms involving dual
derivatives. The last line contains terms with mixed derivatives. These terms have no
counterpart in conventional field theory actions.

The symmetries of this action are conveniently described in terms of redefined
gauge parameters

1 1 B}
& = E()»i +A) &= E()»i —Xi). (7.67)

Using these the gauge symmetries (7.65) are found to be
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Shij = digj + 0j¢; Sh,'j =5i§j+éj5i
Sb,'j = —(51'8.,' — 5./8,‘) gb,‘j

— (& — 9j&i) (7.68)

1 - ~
5d:—§8~8 dd = -0 -¢&.

| =

To appreciate the novel aspects of the above, consider the familiar linearized gauge
symmetries of the low energy (non-double) action (7.2):

5h,’j=3[€j-|-8j8i Shl'j:(),

8bij =0, dbij = —(;8; — ;&) (7.69)

1 ~
8d=—-0-¢ 46d=0.
2

In (7.69) we have two columns. The left one corresponds to the symmetry of diffeo-
morphisms, with gauge parameter ¢;. The gravity fluctuation transforms, the b field
does not, and the dilaton d transforms as a scalar density. The conventional scalar
dilaton @ is given by @ =d + ;llhii and is gauge invariant. In the double field theory
case (7.68) the b field transforms using the tilde derivatives to form the required
antisymmetric right-hand side.

In the second column of (7.69) the gauge parameter &; generates the b field trans-
formations. No other field transforms under it. But in the corresponding column of
(7.68) we see h transforming under what we could call dual diffeomorphisms and d
transfoming as a dual density. The combination @ = d — A—ILhi ; 1s invariant under the
& symmetry. Since @ is not invariant under the ¢ transformation nor is @ invariant
under & transformations there is no dilaton that is a scalar under both diffeomorphisms
and dual diffeomorphisms.

7.3.2 The Cubic Action

For going beyond the free theory cubic terms should be added to the action. Indeed
there are cubic terms which are O (D, D)-invariant and can be added consistently to
the action. This results in fact in a nonlinear extension of the gauge invariance.

For simplicity we focus only on a few possible terms in the cubic part S of the
action and refer to the literature for complete details:

1 . _ . , _ . o
§A = /dxd)zzeij ((D’ekl)(D/ekl) — D[elelekJ — Dke’lD/ekl)
+ de? terms + d’e terms + d° terms. (7.70)

The nonlinear extension of the gauge symmetry can be seen from the variation of e,
which is given by

_ 1
Sneij = Djhi + 3 [(Dixk)ek]—. — (D*a)eg + kakei;] . 7.71)
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While the construction up to cubic order has been completed, higher orders may be
very nontrivial. It may even happen that higher orders do not exist as long as one
restricts oneself to a formulation involving only the massless fields ¢;; and d.

We have stressed that all fields and gauge parameters must satisfy the constraint
that they are annihilated by d - 3. This was enough for the quadratic action and in
fact for the cubic action. But even for the gauge transformations (7.71) there is an
important subtlety. It is not true that 0 - 3 annihilates a product of two fields, even
if each field is annihilated individually. Thus the terms in brackets in (7.71) do not
satisfy the contraint; they should since they represent a variation of the constrained
field ¢, ;. Thus one must include for those terms in brackets a projector to the space
of functions that satisfy the constraint. Such projectors are not needed in the cubic
action (the integration does the projection automatically) but they complicate matters
considerably when trying to construct the quartic terms of the action.

To be able to proceed more simply we impose a stronger constraint. We simply
demand that the operator 3 - 9 annihilates all fields and all products of fields.

Let A; (x, ) be fields or gauge parameters which are annihilated by 9,0 . When
we require now that all products A; A; be also killed by du dM this leads to the
condition

ImAIMA; =0, Vi, j. (7.72)

We may call this the “strong” O (D, D) constraint.

In fact this is a very strong constraint, and while it makes the calculations easier it
makes us lose much physics. It turns out that this strong constraint makes the theory
independent of the dual coordinates in the following sense:

Theorem 1 For a set of fields A;(x, X) that satisfies (7.72) there is a duality frame
(X!, x"") in which the fields do not depend on X.

Even if it is always possible to find such a frame, we need not specify it explicitly,
i.e. we need not break O (D, D) invariance. The constraint (7.72) is indeed O (D, D)
invariant. Hence we are in a situation where we can formulate a theory using dual
coordinates in the action, keeping the full O (D, D) invariance, while physically only
half of the coordinates matter.

7.4 Courant Brackets

In a theory with a metric g;;(x) and a Kalb-Ramond field b;;(x) the diffeomor-
phisms are generated by vector fields V' (x) and Kalb—Ramond gauge transforma-
tions are generated by one-forms &; (x). These are formally added and thus written as
V+EeTM)DT*(M), where V € T(M) and & € T*(M) are elements of the
tangent bundle and the cotangent bundle, respectively. We can formulate the gauge
transformations in a geometric language
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Syie8 = ZLvg,

(7.73)
8,..b = Lyb+ds,

where %y is the Lie derivative along the vector field V. Recall that when acting on
forms the Lie derivative is

Ly =wd+dry, (7.74)

where vy is contraction with V. It follows that the Lie derivative and the exterior
derivative commute,

Lyd =dLy. (1.75)
Acting on the metric the Lie derivatives gives
(Lvg)ij = @iV + 3V gk + VFrgi;. (7.76)
Lie derivatives satisfy interesting algebraic relations:

[Zx. Lyl = Zx.vs

(7.77)
[ZLx, vl = \x.y]-

The left hand sides are commutators of operators and on the right-hand side we find
brackets of vector fields, defined as [V}, Vo]* = le 0p V2k — (1 < 2).

7.4.1 Motivating the Courant Bracket

Suppose one has a theory of a metric and an antisymmetric tensor field and one has
derived the transformation laws (7.73), how can one determine the gauge algebra?
First we compute the algebra of gauge transformations on the metric g by evaluating
the bracket

[5V2+§2s 5V1+§1]g = $V1$V2g - (1 <~ 2) = ﬁvl,VZ]g~ (778)

On the Kalb—Ramond field b the computation is a little less trivial. We find

[8vyter, Ovive 10 = Ly (v, b +d&r) — (1 < 2) = Ly, v )b + d(Ly, &2 — L, 61).

(7.79)
When we compare this with (7.73) we conclude that acting on the fields
[Bvy+8, Ovits ] = 5[V1,V2]+f/v152—fv2€1' (7.80)

This last expression defines a “bracket” on T (M) & T*(M):
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[Vi+&, Vo +&]= [V, ol + v, & — A& (7.81)

The first term on the right-hand side is a vector field, the last two give a one-form.
One may ask now if this bracket is a Lie bracket. It is because it is antisymmetric
and the Jacobi identity is satisfied (as a calculation shows).

There is, however, an ambiguity in the one-form because this one-form appears
in the gauge transformation acted by the exterior derivative. Indeed,

Syyeb = Lyb+dé = Ly (tvdo)b.

Thus the one-form & is ambiguous up to an exact term do. This ambiguity also is
present in (7.81). To see this we calculate the exterior derivative of the form on the
right-hand side

d(Ly 6 — Lv,61) =d(d v, & + 1y dé — (1 © 2)) (7.82)

The underlined term is killed by the action of d, so without loss of generality we may
change the coefficient in front of it. We will do so by replacing it with 1 — g:

1
d( Ly, 6 — Lv,61) =d (i”vléz - L6 — Eﬂd(tvléz - tvzél)) . (7.83)

This ambiguity should be reflected in our definition of the bracket. So we replace
(7.81) by

1
Vi + &1, Va+ &1 =[Vi, Ll + L6 — L6 — E,Bd(tv] & — 1), (7.84)

One complication with this bracket is that is does not satisfy a Jacobi identity as long
B does not vanish. Does it make sense to consider brackets with 8 % 0 at all ? Yes it
does! One can show that, with Z; = V; 4+ &;, i = 1, 2, 3, the “Jacobiator” takes the
form

[Z1,1Z2, Z3]] 4+ cyclic = dN(Zy, Z2, Z3). (7.85)

The right hand side is not zero but an exact 1-form. Since exact one-forms do not
generate gauge transformations, the failure of the Jacobi identity does not cause
inconsistency.

This bracket is not a new invention, but it has been considered before by T.
Courant in 1990. He had reasons to fix 8 = 1 and therefore defined a bracket called
the Courant bracket as

1
[Vi + &1, Va+ &gy = [V1, Vol + Ly &2 — L0601 — Ed(tv.& —p€1). (7.86)

In fact for B = 1 there is an extra automorphism of the bracket, called
B-transformation. This is what makes it interesting from a mathematical point of
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view. Given a closed 2-form B with d B = 0, the B-transformation acts on a pair
(X, &) of gauge parameters as follows,

B-transformation: X + & — X + (¢ + x B). (7.87)

So this map has the effect that it changes the 1-form. If B-transformations are an
automorphism of the bracket one must have:

[X+&+ B, Y +n+wBl=[X+E,Y +nl+yx.rB. (7.88)

Exercise 11 Show that the existence of this automorphism selects § = 1 in (7.84),
thus giving (7.86).

The reason why automorphisms like the B-transformation are interesting for us
is that they tell us something about the symmetries of a theory. Consider a manifold
with some metric g. We say that some vector field V is an isometry (and therefore
generates a symmetry of the metric) if the Lie derivative .2y g vanishes. If we have
an anti-symmetric field » on a manifold, one is tempted to demand that symmetries
correspond to vector fields for which the Lie derivative of b vanishes. In fact this is
too restrictive. Instead it is reasonable to demand that %y b vanishes up to some exact
form, since any such change of b can be undone by a b-field gauge transformation.
Therefore, V +& € TM & T*M is a symmetry of b if

Lyb = dE. (7.89)

Consider a 2-form B with d B = 0. Imagine changing b by adding B to it. What are
the symmetries of the new b + B field? We claim that the B-transformof V 4§ isa
symmetry of b + B,

Zy(b+ B)=d( +yB). (7.90)

It is straightforward to verify this by explicit calculation. From this we see that
B-transformations of b do not change the symmetries of the theory. Thus it is reason-
able to promote B-transformations to automorphisms of the bracket, thus selecting
the Courant-bracket.

7.4.2 Algebra of Gauge Transformations: From Courant
Brackets to C Brackets

In order to determine the algebra of gauge transformations we switch to a more
uniform notation in which we mark all one-forms by tildes while vectors stay undec-
orated. Hence we consider objects

u_ (&
: ‘(s')’
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denoting gauge parameters in the sum of tangent and cotangent space of the manifold.
In an abuse of notation we sometimes write this as

eM =@+ 5N,

The gauge algebra is governed by a C-bracket [-, -]o, which is closely related to
the Courant-bracket but applies to doubled fields! The Courant bracket does not, of
course. Consider the Mth component of such a bracket:

1
(&, &210)" =&l ope)] — EHMNT)PQSIIfaNSZQ]
1
= £ - 05y — ng[laMfzq, (7.91)

where the brackets on indices indicate anti-symmetrization. Because of the consistent
use of our capitalized indices M, N, ..., this bracket is O (D, D) covariant. Note
that the second term on the right-hand side involves a contraction of indices and
therefore contains the metric 1. In a conventional theory it would be unthinkable
to include a metric-dependent term in a bracket. In our case the use of the constant
metric 7 causes no complications.

Evaluating this bracket between & + &, and & + &, displays the appearance of
some unusual terms:

- ~ 1~ -
[61+ 61,6+ 6] =61, 6] + L 62 — L 61 746 —E8)
- - S -
e Sl + L b — Lo — Sd(g b — i), (71.92)

where the dual exterior derivatives acting on functions give objects with a vector
(upper) index: (d f)' = 9'f. It is unusual to see .Z; &, since Lie derivatives are
taken with respect to vector fields and not one-forms. In our case this alternative is
allowed since we have (dual) derivatives with upper indices, so that a contraction
with a one-form is possible. In the same way it is no surprise to see a bracket of
one-forms giving a one-form (an object with a lower index): [£1, &]; = &[1,0'&2 i

If we drop the x-dependence of the C-bracket this will set i’g —~0,d — Oand
(£, &] — 0. The C bracket reduces to

- ~ - - 1 - -
61+ &1, 6+ 52]c|i50 = (&1, &1+ L1 60 — L6 — Ed(tglfz —15&1). (7.93)

We recognize the right-hand side as the Courant-bracket (7.86). Therefore we can
view the C-bracket as O (D, D) covariant, double field theory generalization of the
Courant-bracket. It can be shown that the S-parameter cannot be incorporated into
the C bracket while preserving O (D, D) covariance.
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7.4.3 B-Transformations

Having identified the algebraic basis of our theory, we now want to understand what
are the B-transformations in our setup. Take an element of O (D, D),

1b
h= (01), (7.94)

where b is antisymmetric and constant. Acting with this map on E it is easy to
compute the transformation

Er E =h(E)=(E+b)(1)"' =E+b. (7.95)

From this one can read off that the transformation % has the effect of leaving G
untouched while B is mapped to B 4 b. So indeed £ is a B-transformation. Now it is
straightforward to see the action of this map on the gauge parameters & . Explicit

evaluation shows that
()~ (1) ()= (") 099

so that in components the B-transformation is given by
g g, e E4byEl, 39 (7.97)

Note that invariance of the dual derivatives implies that B-transformations leave the
constraint %gb = 0 appropriate for the Courant bracket unchanged. One sees that
(7.97) implies

E+E&—E+E+ub,

which is exactly the expected result.

We see now how nicely the parts fit together to form a larger picture: from the
physics point of view we have arrived at this formulation because we took T-duality
seriously and considered it as basic component of our field theory. From the mathe-
matics point of view the B-transformations play a fundamental role as automorphisms
of the Courant-bracket, and in fact now we see that they are just the counterpart of
certain T-duality transformations that must be incorporated in an O (D, D) invariant
formulation.

7.5 Background Independent Action

We now want to put the various parts together and come to a formulation of a
doubled action. We have written down before the perturbative action for a double
field theory in terms of a background E;; and fields e;;(x, x), depending on both
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the usual coordinates x and their duals x. We made an explicit distinction between
the background field and its fluctuation, very similar to the splitting g;; = n;; + h;;
in linearized gravity. In the end, however, one is looking for a manifest background
independent version of the action which does not rely on this distinction.

7.5.1 Background Independent Formulation

To stress the point of background independence we introduce the field
Ej(X) = Ejj +eij(x, %) + 0(eD), (7.98)

which at the linearized level is the sum of E and e. We have seen how E and e behave
under T-duality, and there is also a natural way to transform &. Since X’ = hX
(recall (7.37)) we expect that & transforms like

E'X)=@EX)+b) c&EX)+d)". (7.99)

The dilaton d is expected to be O(D, D) invariant, so its transformation law
should be

d(X') =d(X). (7.100)

This is the analogue of the scalar field Lorentz transformation in conventional field
theory.

All the identities and constructions presented in previous sections above did not
make use of any X-independence of E. Therefore they can be immediately generalized
by replacing E with &, keeping the formal expressions unchanged. For example the
derivatives D; in (7.18) can be generalized to curly Z;, and similarly for the D’s;
but now they are defined with the full metric &,

D, =0; — Eikék — 9= 0; — éz;‘k(X)éka

_ s _ 3 (7.101)
Di =8 + Ed* — =0 + & (X)dk.

These derivatives will now transform with generalized M matrices, that now depend
on &(X) as

M=(d-cE) — MX)=(d-cs), (7.102)

M:(d—i—cEt)l — M(X):(d—}—cé”’)t. -
Indeed, any object will now transform correctly with M (X) and M (X) exactly in the
way as they transformed with M and M before. This is because the transformations
come from (7.99), and one needs no derivatives to derive them. We will also write
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& = g + b without any reference to a background field, and the generalized metric
in (7.10) becomes

—bg™'b bg™!
%(£)=(‘ig_1§ gfil ) (7.103)

In particular, the metric g(X) itself is an O (D, D) tensor, so from (7.50) we have
§(X) = M(X)g' (X"M' (X),

P (7.104)
g(X) =MX)g (X)M (X).
Moreover, the transformation of the Hamiltonian in Eq. (7.36) becomes
H(E (X)) = hH(EX))h'. (7.105)

We can repeat all the steps that gave the transformation law (7.62) for the variation
of &, this time finding

8&(X) = M(X)SE' (XYM (X). (7.106)
This relation applies to any derivative of &, thus, for example,
5E = M(X)9; &M (X), 3E=MX)IEM (X). (7.107)

This also means that the same transformations apply to the calligraphic
derivatives of &:

2:6 = M(X)2:6'M'(X), 9;6 =MX)%:E M (X). (7.108)

The derivatives above can also be transformed, if desired (see (7.111) below). Finally,
the transformation of the dilaton under gauge transformation is given by

1
8d = —EaMsM + EMyyd. (7.109)
This implies that

e~ — 3y [gMe—Zd], (7.110)

which tells us that e =24 is a density. Therefore it is identified as /—ge 2% = ¢~%¢.

There is one small complication which appears when one takes multiple deriva-
tives. To understand this, we observe that the derivatives (7.101) transform
covariantly

I =M (X)),
o (7.111)
D = M{(X).@;.

Since M is not a constant anymore, multiple derivatives would not transform correctly.
We handle this problem simply by not using higher derivatives in the formulation of
our action. We can define O (D, D) covariant derivatives, but they will not be needed
here.
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7.5.2 The O(D, D) Action

After these preparations we can now present the full background independent
O (D, D) action for the fields & and d. The action is given by

1 ., .
Sea= / dxdfe‘”[ — 28"/ D 6Dy
Lkt (gio, gie o Gie Gig,
+28 (26w Ee+ 267 &,
+(@W@%@+@%@%ﬁ44@%%4. (7.112)

Each term is independently O (D, D) invariant, and so is the whole action. This also
means, though, that the action is not completely determined by O (D, D) invari-
ance, since the numerical factor in front of each term is arbitrary. What finally fixes
the action is diffeomorphism and Kalb-Ramond gauge invariance. There is a partic-
ular combination of the coefficients, so that the theory is consistent and exhibits
these expected gauge invariances. Also, one can expand this action and recover to
quadratic and cubic part of the action exactly as in (7.64) and (7.70). Moreover, taking
3=0, S .4 reduces to an action that is identical to the standard Einstein action plus
antisymmetric field plus dilaton, when /—ge~2¢ = ¢~2¢. So all this is consistent
and fixes the action uniquely.
This action is invariant under the following gauge transformations

585 = 0y — 0,5 + Ly + L6 — 6n (e -3 &y a13)

This is in fact quite a natural expression. The first three terms are the standard
terms including the Kalb-Ramond gauge transformation and the usual Lie derivative.
The last three terms are zero in a situation where the theory does not depend on the
dual coordinate x. They are the counterparts to the first three terms which make
the transformation compatible with O (D, D). The field & appears additionally in
the last terms in order to get the right index structure. Hence, all the terms that appear
here are expected and natural. However, proving the gauge invariance directly is hard.

7.5.3 Formulation Using the Generalized Metric

As next step we want to arrive at an even better formulation of the action without
explicit reference to the metric g. Ideally we want to express everything in terms of
the generalized metric only, in a form that resembles the Einstein-Hilbert action as
far as possible.

For example, for the dilaton we previously found the O (D, D) invariant term

49'd Did.
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This is actually a complicated term since the & is contained in the derivatives 2. We
can also try to formulate a dilaton term with usual partial derivatives only, but then
we must be careful how to contract the indices. Certainly a contraction with 7 is not
reasonable, since then the constraint 8™ A3y B = 0 would kill this term. The only
other possibility is to contract the indices with 77, yielding a term

4MN 3y doyd.

It takes only little calculation to see that this terms is identical to the dilaton term used
above. The advantage of this formulation is that we got rid of the explicit appearance
of & and introduced 7 instead.

This does not only work for the dilaton term, but also all other terms in this action
can be rephrased in this way. Doing so one finds the action

1 1
Sy = /dxd)zeizd (gijN(’?M%KLaN%KL — E%MNBN%KLE)L%MK
— 20y day#MN 4 4%”MN8Md8Nd). (7.114)

This action is O (D, D)-invariant since all indices are correctly contracted. This
action is identical to the action in (7.112) although this takes some computation to
verify. Finally, by dropping the x-dependence it reduces to the expected low-energy
action (7.2).

7.5.4 Generalized Lie Derivative

The action (7.114) also comes with a gauge symmetry, and this is quite surprising
and rather elegant. In a conventional setting the Lie derivatives appearing in such a
theory are

LAy =ET0p Ay + duE" Ap, (7.115)
% BN =PapBY —opeV BY. (7.116)

In our setting here we cannot use these; there is a very basic reason why the normal
Lie derivative is not applicable. Since we include the Kalb-Ramond field in our
theory, there are redundant gauge transformations where the one-form gauge para-
meter is d-exact. In double field theory the vector field gauge parameter can also be
trivial. Indeed, consider the gauge parameter £ to be the derivative of some x, in

CompOHthS
5M=(§§)=(g§’;)=aMx. (7.117)
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The one-form &; is trivial because it is a derivative and so is the vector £’ being a
dual derivative. Hence £ is a trivial gauge parameter and it should generate no Lie
derivative. We see, however, that

Loy Ay = 0" x0p Ay + 0ur (aPX)Ap £0. (7.118)

The first term is zero because of the constraint, but the second term is not zero. Since
the Lie derivative does not vanish we should modify its definition. In fact there is a
natural way to do so. Using the metric n™ " it is possible to define a generalized Lie
derivative by

oé’EAM =&P9pAn + (3M§P - 3P§M) Ap,

(7.119)

ZiBY =£PopBY - (apgN —&) B".
The underlined terms are new and writing them uses the metric twice: once to raise the
derivative index and once to lower the gauge parameter index. The conventional Lie
derivative distinguishes very much between covariant and contravariant indices. The
generalized Lie derivative is more democratic and treats covariant and contravariant
indices in a more symmetric way. It is now easy to verify that the generalized Lie
derivative along a trivial field vanishes:

.,’s,%=aXAM=aPXaPAM+(aMaPX—aPaMX) Ap = 0. (7.120)

.7 is the correct Lie derivative to use in our theory. Generalized tensors are objects
with O(D, D) indices M, N, - - - , up or down, for which the (generalized) Lie deriv-
ative takes the form implied by (7.119).

With the new generalized Lie derivative at hand we can now write the gauge
transformations. The gauge transformations of the generalized metric are given by

sHMN = Ze MV, (7.121)
For the dilaton we have
se=2 = g, [gMe—M] : (7.122)

Both transformations vanish for é¥ = 9 y .
The commutator of two generalized Lie derivatives gives a very elegant expression

["g/ﬂél > gﬁ?z] = _ﬁél,&]c' (7.123)

The commutator is itself a generalized Lie derivative with parameter obtained by the
C-bracket. This shows that the C-bracket determines the algebra of symmetries of
this theory.

Exercise 12 Use (7.119) to prove that (7.123) holds when acting on A ;.
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7.5.5 Generalized Einstein—Hilbert Action

We have constructed two Lagrangians .Z¢ ; and ., which look very different since
they are formulated in different variables, but are in fact equal. Both are T-duality
invariant, and they use field variables that reflect the doubling of coordinates. The
second one, %, is perhaps most novel because it completely relies on the use
of the generalized metric, which is some kind of metric for a space with doubled
coordinates.

Although the Lagrangian .Z» is already written in a reasonably nice form, one
can try to take this construction even further. One may ask if there is such a thing as
a generalized Ricci curvature or a generalized scalar curvature. In fact, the answer
is positive and both objects can be constructed out of the generalized metric and
the dilaton. Curiously, it seems that there is no “generalized” Riemann curvature,
although this has not been established for certain. We do not need the Riemann
curvature for writing down a generalized Einstein—Hilbert action, so we will leave
this question aside.

The generalized scalar curvature & is given by the expression

R = 4MN oy ond — pon HMN — 4 MN G dand + 49y MV dnd

1 1
+ §%MN8M%KL8N%KL — E%MNBM%KL&(%NL. (7.124)

It does contain second derivatives, which is indeed expected since just like in gravity
one cannot construct a scalar curvature with just one derivative. Note that the deriva-
tives appearing here are d and not &, so this imposes no problem since they transform
with constant 4. Each term in (7.124) is O (D, D) invariant, but only the full combi-
nation of terms is a generalized scalar.

A simple rearrangement of total derivatives in S~ shows that

Sw = / dxdie MR (A, d). (7.125)

We see that the action takes a very simple form in terms of the generalized scalar
curvature. It looks rather analogous to the conventional Einstein—Hilbert action.

In order to prove the gauge invariance of Sz~ we can calculate 8z % using 8 5
and ¢d. A substantial calculation confirms that % is a generalized scalar:

8 = EMoy . (7.126)
Since Z is a generalized scalar and e ¢ is a generalized density, the action is gauge

invariant. When the dependence on x is ignored (that is, setting 9 = 0)the generalized
scalar curvature reduces to

1
Hli=R+4 (08 — 09)°) = S H. (7.127)
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with H = d B and R being the conventional Ricci scalar. This shows that scalars in
general relativity do not necessarily correspond to generalized scalars in the double
field theory. In general relativity all three terms on the right-hand side of (7.127)
are scalars but are not separately O (D, D) invariant. In & all terms are O(D, D)
invariant, but separately are not generalized scalars.

In these lectures we have given a self-contained introduction to double field theory.
We have constructed Lagrangians that implement T-duality more explicitly than
before. We have seen the natural emergence of the Courant-bracket and how the
generalized metric provides a natural variable for the formulation of the theory. One
can view the Lagrangians built here as rewritings of the familiar theory that make
O(D, D) symmetry manifest. To obtain such Lagrangians we had to impose the
“strong” constraint, and it is not yet clear if this constraint may be relaxed. This also
means that the power of double field theory has not yet been fully unleashed.
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