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Foreword

The much-lamented “innovation gap” often referenced by current authors
with respect to drug discovery in the pharmaceutical industry is a sure
sign that an era has passed. The reductionist view of disease as the di-
rect consequence of isolated errors of metabolism that could be explained
and understood as simple enzyme alterations is a thing of the past. Like-
wise the naı̈ve view that the system-wide consequences of small molecule
interventions could be predicted through simple in vitro assays has be-
come obsolete. Infectious diseases, representing an evolved and complex
evolutionary conflict between two life-forms, have been at the vanguard
of embracing systems biology concepts due to the obvious failure to cure
such diseases by simply studying an invading parasite’s physiology in a test
tube. Driven by a virtual renaissance in technology the simple approaches
of the previous era have given way to a vast new array of integrative sci-
ences aimed at modeling and understanding the complex and dynamic
interactions that characterize real human diseases. Although still strug-
gling for granularity these integrative sciences share a common vision –
erasing the differences between disciplines and embracing complexity in
tools that offer glimpses of whole biological systems and mesh seamlessly
with infinite chemical space.

Rather than focus this book on the tools, approaches, successes and
failures of the old era we challenged our contributors to look forward and
project the tools that will become indispensable to the new era – the tools
that would turn this “innovation gap” into an “innovation leap”. The
“omic” sciences are one prime example of the integrative approach to in-
fectious disease. With hundreds of genome sequences of organisms from
all branches of the tree of life literally at our fingertips, transcriptomics,
proteomics and metabolomics are proving to be only the first wave of
large, complex datasets that are now being augmented by protein interac-
tion networks, reverse protein arrays, the protein-DNA interactome, etc.
The magnitude of these datasets has challenged experimental, mathemat-
ical and computational scientists who are banding together around the

vii



emerging discipline of “Systems Biology”. Systems biology aims towards
nothing less than the complete reconstruction of the biological complex-
ity of living organisms in chemically and mathematically defined terms.
Complete models for simple prokaryotes are within our grasp and mod-
els of complex multi-cellular organisms will emerge within our scientific
careers and these models will have a profound impact on drug discovery.

Systems biology at present is defined by the tools employed to gen-
erate large-scale datasets. There remains a gap between those tools that
have been reduced to practice and give reproducible, reliable datasets with
information that allows us to model part of the system, for example tran-
scriptomics, and tools that have critical information but cannot currently
provide robust datasets such as metabolomics. Transcriptomics has been
applied widely in infectious disease research and has already resulted in
significant insights with therapeutic consequences. Metabolomics, how-
ever, is the frontier between analytical chemistry and biology, and the
tools required for the simultaneous identification and quantitation of all
the relevant small molecules in even a simple prokaryote are still being
developed. Metabolomic analyses, however, have the potential to inform
many aspects of the drug discovery pipeline from target identification to
biomarkers of response to therapy. As the complexity of the link between
transcription, translation and metabolic flux has expanded, so too have
the models required to explain and interpret such data.

The information emerging from measurements and models of host-
pathogen systems also requires bridging another gap between chemists
with a desire for simple isolated enzyme assays and biologists with a desire
for complex whole-cell based assays. Chemical genetics is one element of
such a bridge and is on the verge of becoming a core large-scale technology.
“Reverse chemical genetics” is perhaps the more intuitive approach where
a candidate target is screened for small molecule ligands that are then
used to examine the influence of target interruption in a whole-cell con-
text. “Forward chemical genetics”, however, is arguably a more powerful
approach for target identification in anti-infectives programs. In this ap-
proach small molecules are directly screened for a desired phenotypic effect
followed by identification of the relevant protein target in the pathogen
or in the host – an exercise that minimizes the “biological uncertainty”
associated with target selection. More and more often decreasing biologi-
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cal uncertainty involves an intense integration of the full suite of “omics”
technologies. The approach is a natural complement of traditional genetic
approaches since it directly asks the therapeutically relevant interruption
of protein function question in an appropriately complex system.

In a sense what all of these large-scale biology approaches are pushing
towards is accurate information in highly disease-relevant environments
in an effort to choose smarter targets and minimize the risk of drug de-
velopment. While this is a direction that the pharma industry has been
evolving towards in many ways, systems biology is pushing the fringe of
what is possible. The future of many development compounds is dramat-
ically affected by their performance at a systems level. Nowhere is this
more acute than in the area of predictive toxicology where current guide-
lines specify increasing numbers of standard assays. The number of in vitro
toxicology examinations that are mandatory is increasing and this trend
is likely to continue. As these tests grow increasingly sophisticated (e.g.
whole rabbit heart screening for cardiac toxicology assessment) they are
increasingly being informed by systems biology data, and in the future
toxicogenomics is likely to play a large role in preclinical development.

We think that the impending “innovation leap” in anti-infectives ther-
apeutics development lies squarely within the sort of interdisciplinary, in-
tegrative efforts described within the systems biology framework in this
book. Every step of the drug-development pathway will benefit directly
from assays and models that do not make reductionistic assumptions to
make predictions but rather are based upon embracing biological complex-
ity to gain true insight into the consequences of therapeutic strategies as
early as possible.

July, 2006 Helena I. Boshoff
Clifton E. Barry III
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Systems biology and its impact on anti-infective drug development

Abstract

Systems biology offers the potential for more effective selection of novel targets for anti-
infective drugs. In contrast to conventional reductionist biology, a systems approach
allows targets to be viewed in a wider context of the entire physiology of the cell,
with the potential to identify key susceptible nodes and to predict synergistic effects
of blocking multiple pathways. In addition to the holistic perspective provided by
systems biology, the emphasis on quantitative analysis is likely to add further rigour to
the process of target selection. Systems biology also offers the potential to incorporate
different levels of information into the selection process. Consideration of data from
microbial population biology may be important in the context of predicting future
drug-resistance profiles associated with targeting a particular pathway, for example.
This chapter provides an overview of major themes in the developing field of systems
biology, summarising the core technologies and the strategies used to translate datasets
into useful quantitative models capable of predicting complex biological behaviour.

Keywords: imaging, integrative systems biology, mathematical models, metabolic net-
works, protein interaction network, targets for anti-infective drugs, transciptional net-
works

1 Introduction

The current approach of target-driven drug discovery is underpinned by
dramatic progress that has been achieved in molecular and structural biol-
ogy within a framework provided by the revolution in genome sequencing.
Sequences are available for most of the major pathogens and straightfor-
ward procedures are in place for the production of recombinant proteins
required for drug discovery efforts based on high-throughput screens and
structure-based compound optimisation. The challenge for the future of
anti-infective drug development lies in target selection. Can we develop
a rational approach to target identification that will allow us to produce
new drugs and drug combinations that act faster than existing compounds,
that are effective against the range of adaptive microbial phenotypes gen-
erated during infection, and that reduce the evolution of drug-resistant
strains? To address this challenge we have to be able to evaluate potential
targets within the context of the overall physiology of both pathogen and
host with a level of predictive accuracy that matches the precision that we
currently apply when working with the isolated targets (see Chapters 10
and 12). This will involve taking a step back from conventional reduc-
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tionist approaches and entering the domain that is commonly referred to
as systems biology, a conclusion also reached by the US Food and Drug
Administration (FDA) in its report Challenge and Opportunity on the Critical
Path to New Medical Products [1].

Investigation of intact biological systems is a relatively recent concept
in the molecular biosciences. In ecology and epidemiology system-level
descriptions of biological processes – often coupled with a rigorous quan-
titative framework – have a longer history, reaching back certainly to the
first half of the 20th century. Advances in molecular biosciences have been
achieved by a predominantly reductionist approach, based on isolation
and analysis of individual components in preference to study of the sys-
tem as a whole. As a result we now have rich and detailed data about
the function of many genes and their protein products in an increasing
number of species spanning all three kingdoms of life, and often a good
understanding of how these are organised into local modules responsible
for a range of cellular processes and signalling. The fledgling discipline of
systems biology now aims to provide a global framework for the integra-
tive, coherent and consistent analysis of all of the available data, moving
beyond the purely descriptive towards a quantitative and predictive level
of understanding.

From the perspective of infectious disease biology, an important goal
of a systems-based approach will be to integrate information across a spec-
trum of biological complexity, with the ‘system’ ranging from an isolated
microbe, to an individual infected host, and on to microbial and host
populations. The evolution and spread of antibiotic resistance clearly in-
volves a complex feedback between processes at the molecular and popula-
tion levels for example, and an ability to link the molecular information
emerging from functional genomics with the rich literature addressing
host–pathogen (or host–vector–pathogen) systems from a population per-
spective will be essential for understanding and ultimately controlling in-
fectious diseases.

Here we provide an outline of some of the experimental, theoretical and
conceptual approaches that are involved in integrative systems biology
and are considered in detail in subsequent chapters.
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2 Data for systems biology: ‘Omics, images and
chemistry

A major impetus for the development of systems biology derives from
technical advances associated with high-throughput sequencing [2] and
chip-based systems [3, 4]. With the widespread availability of microarray
formats for expression profiling, biologists whose primary focus was largely
on the study of individual molecules or pathways were deluged with vast
datasets comprising information on the simultaneous level of expression
of every single gene in a cell or organism (the transcriptome) (see Chap-
ter 2). While some simple clustering algorithms [5] provide an approach
to analysing such datasets, it is clear that they contain a wealth of infor-
mation that is not interpretable by conventional reductionist techniques.
Analogous study of the total complement of proteins at a whole system
level presents a greater technical challenge on account of the heterogeneity
in their chemical and physical properties, but progress has been achieved
by combining fractionation techniques such as two-dimensional gel elec-
trophoresis with increasingly sophisticated mass spectrometry analysis [6,
7] (see Chapter 4). The ability to identify protein–protein interactions us-
ing yeast two-hybrid [8] and tandem affinity [9] purification systems has
been particularly informative in mapping proteome networks (see Chap-
ter 8). Analysis of protein-nucleic acid interactions [10, 11] at the level
of transcriptional regulation generates an additional source of data that
begins to link proteome and transcriptome information (see Chapter 4).
Glycomic analysis based on mass spectrometry and nuclear magnetic res-
onance (NMR) techniques has provided insights into the further diversity
generated by post-translational modification of proteins [12], and the same
tools derived from physical chemistry allow quantitative analysis of the
repertoire of small molecules that represent the cellular metabolome [13,
14] (see Chapter 5). At a higher level of complexity, metabonomic analysis
provides an overview of metabolites in multicellular organisms, including
the sharing of metabolite pools between host and microbe that is central
both to commensal colonisation and to pathogen infection [14, 15] (see
Chapter 10). Taken together, these ‘omics datasets represent the starting
material for the systems biologist, who faces the challenge of finding ways
of maximising their integration and translation into usable information.
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A second key source of data derives from imaging techniques. High-
thoughput ‘omics datasets are derived from analysis of biological systems
at a population level, with differences between individual members of the
population subsumed within an overall average. Technologies that derive
data from single cells demonstrate that there is a significant underlying
stochastic heterogeneity in the level of expression and in the spatial dis-
tribution of molecules within individual members of genetically clonal
populations. In some cases these stochastic variations have been shown
to be crucial in determining biological functions of the system [16], and
an understanding at this level is a major component of systems biology.

Recent advances in fluorescent microscopy [17] have revealed an un-
precedented degree of organisation and complexity in bacterial cells, de-
spite their lack of membrane-bound cellular compartments. During the
cell cycle many bacterial proteins localise to particular sites at specific
times; understanding how such topological specificity is achieved is a fun-
damental question in cell biology. A recent example of proteins display-
ing previously unexplained dynamic protein localisation are the Spo0J/Soj
proteins of B. subtilis, which are involved in chromosome segregation and
transcriptional regulation. Using fluorescence microscopy Howard and
colleagues [18] showed that Spo0J organises into compact foci associated
with the nucleoid, while Soj undergoes irregular relocations from pole to
pole or nucleoid to nucleoid. They propose that these irregularities are
due in part to low copy number fluctuations: the relatively low numbers
of the Spo0J/Soj proteins in a cell, together with the intrinsic probabilistic
nature of their interactions, leading to large fluctuations in their dynamic
behaviour. Stochasticity is vital for capturing the observed irregularity of
the spatiotemporal protein dynamics for the Spo0J/Soj system.

The phenotypic tolerance to antimicrobial drugs associated with par-
ticular growth states of many microorganisms has also been shown to have
a stochastic element [19, 20]. Integrating spatio-temporal information de-
rived from single cell imaging with the type of information provided by
high-throughput analysis of bulk populations is another central challenge
for the systems biologist.

Biological systems are dynamic and observations recorded over time –
particularly in response to some defined perturbation – provide critical
information that is missing from a static analysis. Techniques for in-
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duction of relatively simple perturbations include changes to the cellu-
lar environment, induction or repression of selected genes, and addition
of small molecule inhibitors (see also Chapter 3) [21, 22]. The use of
chemical modulators is particularly informative in the context of anti-
infectives. Changes in bacterial gene expression profiles induced by expo-
sure to known drugs allows mapping of characteristic response networks
[23], facilitating screening for compounds with novel mechanisms of ac-
tion (see Chapter 2). Advances in genome re-sequencing technologies
[24–26] present exciting opportunities for a chemical genomics approach
to rapid target identification based on an initial chemical lead (see Chap-
ter 3). Starting with a compound (of known or unknown structure) which
has activity against a whole microbe, the target can be identified by isolat-
ing resistant mutants and identifying the corresponding genetic changes.
This represents a very attractive approach to integration of chemistry, func-
tional biology, and genetics.

3 Making models

When describing a biological system we have to determine first the level at
which we wish to study the constituent processes and interactions. Often
this will be determined by the nature and quality of the experimental data:
if the data are plagued by high error levels it may not be possible or even
desirable to formulate a detailed mathematical or conceptual model. In
practice, most biological models are hybrids containing qualitative and
quantitative elements.

3.1 Qualitative systems approach

Biologists have always relied on models to conceptualise how organisms
work. Such models can be purely verbal models or descriptions of bio-
logical structures or processes. In a qualitative approach one uses only
the most coarse-grained information about the constituents of a biolog-
ical system. In the context of the Krebs cycle, for example, we do not
care about the three dimensional structure of the enzymes or substrate
molecules and their molecular interactions. In general no attempt is be-
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ing made at predicting quantitative responses of a system or at quantifying
results [27]. Qualitative (including verbal) models of the same system are
very difficult to compare; if different researchers propose their own verbal
models for a biological process it can be extremely difficult to decide to
what extent these models are similar or not. Moreover they make almost
exclusively linear assumptions: i.e., they make statements of the type “if A
increases then B decreases”. Incorporating feedback into a verbal model,
for example, can become enormously cumbersome.

3.2 Quantitative systems approach

In a quantitative approach, as many details of a system are ignored as is
possible (generally by trial and error). Again, for example, molecular struc-
tures may be ignored, but instead of a purely qualitative description of
interactions and processes a mathematical description or function is now
chosen to represent the entities making up the system and the interactions
among them [28]. The mathematical model now requires us to specify our
assumptions explicitly and from the outset and, once these have been de-
termined, mathematical or computational analysis of the model will allow
us to study its change over time (see Chapters 7 and 11). This is then com-
pared to experimental data. Depending on the question at hand or the
experimental data available the mathematical models can be very abstract
and generic, or directly targeted at a particular biological problem. In
the former case it may be possible, for example, to investigate systemati-
cally the expected behaviour of a certain type of theoretical model. This
can then be compared qualitatively against experimental data. Especially
when there is little data available such an approach has been very popular.
This type of approach has also been used extensively in theoretical physics
where, for example, highly simplified models of magnetic materials have
been studied to qualitatively reproduce experimental results [29].

If more detailed data are available, and if a statistical approach can
be devised which allows us to estimate the parameters of a mathemati-
cal model from such data, then more detailed predictive modelling ap-
proaches become possible. Such approaches have been highly successful,
for example, in modelling the immune response to human immunodefi-
ciency virus (HIV) [30], or in developing very detailed models of the human
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heart which can be used [31, 32], with some success, to model the effect
of certain cardiovascular drugs (see Chapter 9).

Models of biological systems must, however, be understood not as re-
alistic descriptions but as simplified representations of much more com-
plicated entities. Almost all models will eventually be superseded by more
sophisticated and more powerful models. In some areas – including for di-
dactic purposes – even simple models retain their usefulness even if their
limitations are known.

4 Networks

Molecular networks – in particular, metabolic, transcription regulation,
and protein-interaction networks – offer the possibility of a coherent and
consistent framework for the description of the whole complement of bio-
logical processes inside a cellular system [33] (see also Chapters 6 and 11).
These networks have taken on a central role in computational systems biol-
ogy. Statistical inference of networks [34–36], in particular co-expression
networks estimated from microarray data, and the analysis of network
structures have become important fields of research.

Networks can be described mathematically in terms of graphs (Fig. 1).
Graphs occur in many different settings and as a result the theoretical de-
scription of graphs/networks has progressed independently in disciplines
as varied as mathematics [37], computer science, statistical physics [38,
39], engineering and sociology. Integrating the different techniques de-
veloped in these disciplines and adapting them for the use in the modern
life-sciences will allow us to analyse the increasing amount of network data
currently being generated in systems biology [33].

One of the central features of natural networks is that they are highly
heterogeneous: some nodes (whether genes, proteins or metabolites) have
a large number of interaction partners, while most nodes interact with
only a few other nodes in the network [38, 40]. This reflects some bio-
logically intuitive relationships: we now know that some proteins are in-
volved in many different processes and take an almost pivotal position in
an organism’s functional organisation (just like some highly promiscuous
individuals – so-called super-spreaders – contribute to the spread of sexual
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Figure 1.
Edges (left) connect nodes A, B and C. In this case there are direct pairwise interactions
between nodes A and C and between B and C, but not between A and B. In the right part of
the figure we show a hyper-edge which connects all three nodes. Interaction data collected
from mass spectrometry surveys generally only allows us to construct such hyper-edges but
not to determine pairwise interactions reliably.

transmitted diseases) [41]. This heterogeneity is further exacerbated by
the modular architecture of biological processes: hierarchies and modules
appear to be natural attributes of biological (and evolving) systems [42–44]
(see Chapter 6). This, however, also poses considerable challenges to the
simple models which have been so successful in the past. The complexity
(and evolutionary contingency) of such detailed data pose considerable
statistical challenges [45, 46] (see Chapter 10).

4.1 Protein interaction networks

Yeast two-hybrid (Y2H) [8], tandem affinity purification and mass spec-
trometry (MS) [9] have been used to map interactions among proteins (see
also Chapter 8). We now have fairly extensive protein interaction data for
S. cerevisiae [47–49] and partial data for D. melanogaster [50], C. elegans [51]
and, more recently, two partial datasets for humans [52, 53]. There is also
interactome data for three pathogens, E. coli [54], H. pylori and P. falciparum
[55], with more data becoming available all the time (Fig. 2).This data has
to be considered with great care, however: it is prone to false-positive and
false-negative results (error rates of 40% have been suggested). Moreover,
these networks are biased or skewed because of the methods used to detect
them. Y2H appears to be the noisiest experimental technique while MS
data are subject to bias in favour of interactions among highly expressed
proteins and, if complexes are formed, cannot tell us which pair-wise in-
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teractions exist within the clusters [56, 57]. These techniques provide
mostly qualitative descriptions of what interacts with what, but can in-
clude quantitative data on the frequency of interactions or the strength of
interactions. In terms of networks, they do not provide directional infor-
mation about whether one or other partner is driving the interaction.

Figure 2.
Protein Interaction network (PIN) of H. pylori. This network is based on the available data
in the database of interacting proteins (DIP) and thus does not represent the complete PIN.
The heterogenous nature is however already apparent with most nodes having only one
or two interaction partners, whereas a small number of nodes (so-called hubs) have many
interaction partners.
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Protein interaction network data (just as the other network data dis-
cussed below) offer a highly idealised and partial representation of cellular
processes. They will change over three different time-scales: changes will
occur at the evolutionary (between species), developmental and physio-
logical levels. At the moment the data will at most allow us to resolve
differences between species. This, as well as the fact that present experi-
mental techniques may only capture a subset of the interactions has to be
kept in mind.

4.2 Transcriptional networks

Initiation and regulation of gene expression is currently best understood
at the level of transcriptional gene regulation. Transcription factors bind
to regulatory elements upstream of the genes they regulate and these re-
lationships can be depicted using directed graphs [58]. In addition to ex-
perimental and labour-intensive validation of transcription factors and
their binding sites in genomes a growing number of in silico approaches
are being developed and applied across all domains of life [59]. These
use either co-expression patterns of genes to identify those that are pre-
sumably regulated by the same (or a similar) transcription-factor; or they
employ linguistic/evolutionary arguments to find regulatory elements in
sequenced genomes [60]. At present our data on transcriptional networks
is also incomplete and suffers probably from ascertainment problems (i.e.,
researchers have focussed on their ‘favourite’ genes and mapped them
with great care without gaining a global overview). For other processes
of gene regulation there is even more rudimentary understanding of the
involved mechanisms/molecules and the structure of the underlying net-
works. Transcriptional networks include both qualitative descriptions and
quantitative data in terms of fold changes in gene expression, as well as
information about direction of the interaction: e.g., there is a difference
between gene A coding for a transcription factor which initiates transcrip-
tion on gene B or gene B controlling expression of A. It is still frequently
overlooked that transcriptional regulation encompasses only a tiny frac-
tion of gene expression regulation. Incorporation of post-transcriptional
and post-translational processes is only starting to be considered.

12



Systems biology and its impact on anti-infective drug development

4.3 Metabolic networks

The whole complement of enzymes and substrates inside cellular systems
(or whole organisms) are increasingly described in terms of metabolic net-
works [61, 62] (see Chapter 5). These are a straightforward conceptual
development from the notion of individual biochemical pathways (such
as the Krebs cycle) towards a more integrative perspective (see Chapter 7).
To a certain extent the integrative analysis of metabolic networks has pro-
gressed furthest as biochemical pathways are relatively straightforwardly
described quantitatively using the familiar Michaelis-Menten theory of en-
zyme kinetics [27, 28]. Metabolic networks contain both qualitative and
quantitative information.

In metabolic networks we can choose whether we want the enzymes or
the substrates to be the nodes in the network. Over the past few years the
view to denote enzymes as nodes of the metabolic network has prevailed.

Considerable work has gone into characterising the structure, evolution
and functional organisation of these networks (see Chapters 6 and 11).
Very simple mathematical models of network growth give rise to networks
with structural properties similar to those observed in molecular networks
[38, 63–65]. These networks offer an attractive perspective on biological
systems but it is important to keep in mind their present limitations: (i)
present network data are incomplete [66] and it is difficult to extrapo-
late from incomplete network data to the true network; (ii) experimen-
tal – in particular high-throughput – methodologies are notoriously noisy
and data may be unreliable; (iii) some interactions may be too short-lived
or weak to be observed experimentally but nevertheless have profound
physiological importance; (iv) molecular networks are generally described
in terms of (necessarily) simplified mathematical models, such as static
graphs. In reality, however, they are highly dynamic and responsive ob-
jects. Simple models are slowly but steadily becoming too simplistic to
capture the complexity of biological processes [67].
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5 Integrative systems biology

While networks generated by different techniques are currently viewed
independently, linking these together in integrated models is a central goal
of systems biology (see Chapters 10 and 11). Clearly protein interactions
depend in the first instance on genes being transcribed and translated;
initiation of transcription in turn requires transcription factors which are
themselves proteins. Enzymes, of course, are also proteins and are required
for the metabolism inside a cell just as metabolic products are necessary
to keep the protein synthesis going. By integrating the different forms of
data, it should ultimately be possible, for example, to predict the proteome
from knowledge of the genome, and to use knowledge of the transcriptome
to derive insights into the metabolome.

Two examples serve to illustrate some of the challenges that need to be
addressed in moving towards these ambitious goals. One hypothesis put
forward in the context of linking genome to proteome, is that proteins
involved in interactions with multiple other proteins (highly connected
‘nodes’) will be subject to increased pressure in favour of evolutionary con-
servation. While this is intuitively attractive, statistical analysis of data
on protein interaction networks and genome conservation in S. cerevisiae
and C. elegans showed that it was not the case [45]. An association was
identified, however, between the degree of evolutionary conservation of a
protein and its level of expression within the cell. A second example con-
cerns the relationship between transcriptomic data and essential function.
The adaptive responses that pathogens undergo during infection are most
readily studied in terms of changes in gene expression (see Chapter 12). It
would seem reasonable to infer that the induction of a gene in response to
a particular environment will relate in some way to its required function
but a simple comparison of list of genes that are upregulated – for exam-
ple, in the case of a mycobacterial pathogen entering a host phagocyte
[68] – displays little or no overlap with a list of genes identified as essential
for survival. In a recent study of the factors underlying fungal virulence
(using S. cerevisae as a model system), we have found that inclusion of
protein interaction data does allow us to begin to link expression and es-
sentiality datasets (M. Stumpf, unpublished observations). The usefulness
of molecular network data has now been demonstrated for a number of
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different phenotypes, especially in S. cerevisiae; in light of such successes it
seems natural to further explore whether it is possible to detect associations
between network structures – rather than individual genes – and complex
phenotypes. This would mean that rather than looking at individual genes
or their protein products we would shift focus to the interactions directly.
Given the lack of tangible success in mapping human genes underlying
complex (disease) phenotypes, such a network centred approach ought to
be worth considering.

6 New targets for anti-infective drug development

The initial impact of wide-scale pathogen genome sequencing has been to
allow conventional charts of biochemical pathways to be annotated with
gene names. Saturation mutagenesis tools have provided information on
genes that are essential in particular growth media and, in some cases, un-
der infection conditions. Systems biology aims to convert this static and
informationally sparse framework into a dynamic network of nodes and
fluxes. Quantitative models will highlight bottlenecks and nodes that are
crucial for microbial viability and will distinguish between those at which
a small or a large reduction in activity would be required for significant
biological impact (see Chapter 7). The ability to input different types of
data will allow models to be customised using information from genotypic
data and from in vivo expression profiling to optimise for selection of tar-
gets that are appropriate in the context of existing drug resistance or in the
context of phenotypic drug tolerance associated with latent tuberculosis
and treatment of biofilm infections, for example. It can be anticipated
that a systems biology framework will allow a rational approach to iden-
tification of synergistic drug combinations that will result in more rapid
action and perhaps reduction in the evolution of resistance. Genetic exper-
iments have shown that combining mutations which independently have
no detectable impact on survival can result in ‘synthetic lethality’ [69, 70].
Similarly, it may be possible to identify drug combinations which result in
a novel enhanced lethality by hitting two or more independent targets.

Systems biology may also help us in understanding infection processes
in more detail. An illustrative outlook on what may be to come in the
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future is provided by a recent study by Uetz et al. [71] who studied in-
teractions among human proteins and herpes-virus proteins. If or when
the enormous experimental problems can be overcome – there is as yet
no reliable experimental technique which allows us to test for transient
or weak interactions – then such studies give much more detailed insights
into infection biology at the molecular level with a distinct focus on the
physical interaction per se. If we are willing to speculate for a moment
then such approaches harbour a host of exciting possibilities waiting to be
explored: we may for example be able to study why different species have
different susceptibilities to different infectious agents – Simian Immuno-
deficiency Virus (SIV) and HIV are good examples for the subtle impact of
cross-species effects – or we may study whether the molecular interactions
between P. falciparum and their human hosts and fly vectors, respectively,
can be exploited for clinical purposes.

As models evolve, they will integrate increasingly diverse sources of
data. This could include information from structural biology and func-
tional biochemistry that relate to the ‘drugability’ of targets. Pathogen–
host systems biology comes with an additional component as infectious
disease biology can only really be understood in an ecological and evolu-
tionary framework: pathogens compete for a potentially limited host pop-
ulation, while hosts in turn mount an immune response against pathogens
and may even develop suitable strategies against pathogens. There are
a host of beautiful examples of apparent host–pathogen co-evolutionary
dynamics (for example between lizards and some species of Plasmodium)
[72]. In addition we must consider the interaction between the host and
the drug (see Chapter 9); host metabolism or modification of the drug will
also influence the way it interacts with its target and the system as a whole.
Every effect we study at the molecular or cellular levels may lead to com-
plicated (and long-term) feedback processes at the population level. Thus
host–pathogen systems biology has to be even more immodest than other
branches of the fledgling discipline of systems biology: it encompasses all
levels from molecules all the way up to epidemiological dynamics at the
eco-system level.
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Applications of transcriptional profiling in antibiotics discovery and development

Abstract

This chapter will review specific applications of microarray technology and related data
analysis strategies in antibacterial research and development. We present examples
of microarray applications spanning the entire antibiotics research and development
pipeline, from target discovery, assay development, pharmacological evaluation, to
compound safety studies. This review emphasizes the utility of microarrays for a sys-
tematic evaluation of novel chemistry as antibiotic agents. Transcriptional profiling
has revolutionized the process of target elucidation and has the potential to offer sub-
stantial guidance in the identification of new targets. Microarrays will continue to be
a workhorse of anti-infectives discovery programs ranging from efficacy assessments of
antibiotics (‘forward pharmacology’) to drug safety evaluations (‘toxicogenomics’).

1 Introduction

Since Fleming’s discovery of the antibacterial activity of penicillin in 1928,
discovery efforts in antibiotic research were mainly based on random cell-
based screening and on the modification of already established chemical
structures with antibacterial activity. However, the traditional approaches
to antibiotic discovery are increasingly challenged by bacterial pathogens
that rapidly develop resistance to established drugs. Although classical
approaches to anti-infective drug discovery are still being used, new tech-
nologies show promise to significantly accelerate the discovery and de-
velopment of novel drugs that are required to keep up with the increas-
ing incidence of drug resistance [1]. In this context, molecular profiling
technologies that enable the highly parallel quantification of mRNA, pro-
teins or metabolites in a bacterial cell have attracted significant attention.
In this review, we focus on applications of mRNA profiling technologies,
sometimes referred to as microarray or DNA chip technologies.

Microarray technologies have greatly benefited from the availability of
whole genome sequence data. In 1995, the genomic DNA sequence of the
bacterium Haemophilus influenzae was deciphered as the first genome of a
cellular organism [2]. In the decade since then, the complete genomic in-
formation of the majority of medically relevant bacterial species has been
made available. Today, hundreds of microbial genomes are publicly avail-
able and can be used for developing specialized expression profiling tech-
nologies. In parallel, microarray technology has advanced tremendously
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for the investigation of whole-genome transcription profiles. Miniatur-
ized arrays carrying DNA probes immobilized on solid surfaces enable the
simultaneous measurement of the abundance of each transcript within a
cell. Such a highly-parallel quantification of the transcriptional activity of
each cellular gene has been shown to be an extremely valuable indicator
for the physiological status of a cell and can provide in-depth information
into regulatory networks of gene expression [3, 4].

Transcriptional profiling has been shown to be capable of supporting
infectious disease research in various ways. The many diagnostic, prophy-
lactic and therapeutic approaches, which are currently followed, comprise
vaccine design [5], probiotic strategies [6, 7], resistance monitoring [8,
9] and discovery of novel natural product-derived or chemically synthe-
sized drugs. In this review, we focus on the discovery and development
of novel antibacterial agents. Transcriptional profiling has proven to be
a key technology with many applications along the drug discovery and
development pipeline, including (1) target identification and validation,
(2) efficacy mechanism-of-action (MOA) characterization of drug candi-
dates, sometimes referred to as ‘forward pharmacology’, (3) development
of novel types of whole-cell assays, including pathway-specific reporter as-
says and biomarker assays, and (4) prospective drug safety and toxicology
studies (see Fig. 1). Lastly, we will conclude by discussing systems biology
concepts that aim at relating transcription profiling and quantitative path-
way simulations, and the impact of these new strategies on antibacterial
research and development.

2 Transcriptional profiling – highly parallel
measurement of gene expression

Microarrays enable the simultaneous measurement of the expressionof vir-
tually all genes in a bacterial cell. Thus, a microarray experiment provides
in-depth information about the transcriptional activity of all pathways and
functional systems in a cell. In technical terms, different microarray types
can be used. Depending on array size and spot density, microarrays or
chips (usually glass slides) and so-called ‘macroarrays’ (nylon membranes)
can be distinguished. While polymerase chain reaction (PCR)-products
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Figure 1.
Transcriptional profiling supports key steps of the antibiotics discovery and development
pipeline. A schematic overview of the processes in which transcription profiling technolo-
gies are being used successfully or for which the potential utility of microarrays has been
demonstrated. This includes (1) target identification and validation, (2) efficacy mechanism-
of-action (MOA) characterization of drug candidates, (3) development of novel types of drug
screening assays, and (4) prospective drug safety and toxicology studies (see text).

can be spotted on both types of arrays, oligonucleotides are generally im-
mobilized on glass slides. For analysis of bacterial gene expression, PCR-
products have the practical advantage that probes can be amplified directly
from genomic DNA with each PCR-product representing one open reading
frame (ORF) or gene. In fact, many of the currently available commercial
microarrays are based on PCR products. However, the variable lengths
of the PCR-products (especially for sequences shorter than 300 bp) and
cross-hybridization of different transcripts to paralogous genes (typically
for sequences showing >70 % nucleotide identity over >200 bp sequence)
may affect the specificity of the signals [10]. As a consequence, the PCR-
based approach allows only the determination of the relative abundance
of single transcripts when comparing two different samples. The PCR-
based approach is not suitable for measuring the absolute amounts of dif-
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ferent mRNA species, but is sensitive only to the fold changes of mRNA
concentrations (which is why it is sometimes referred to as a ‘two-channel
technology’). By contrast, microarrays with gene-specific oligonucleotides
of 50–100 bp are preferrable for measuring absolute mRNA concentra-
tions [11]. Currently, the most commonly used oligonucleotide arrays are
Affymetrix chips (http://www.affymetrix.com), which represent each gene
by several pairs of perfectly matching oligonucleotides (‘features’) as well
as mismatched controls. The feature signals can be used to estimate the
absolute mRNA concentrations, using so-called ‘condensing’ algorithms.
Remarkably, this oligonucleotide technology also allows for the experi-
mental localization of the transcription start and termination sites as well
as the determination of promoter sites and strand-specificity of bacterial
mRNA [12].

About a decade ago, pre-made whole-genome microarrays were rela-
tively pricey and only available for a few bacterial model organisms such
as Escherichia coli, Helicobacter pylori and Bacillus subtilis. In addition, array
suppliers often offered so-called ‘custom-design’ arrays, i.e., microarrays
individually tailored to a customer’s specific needs. However, the consider-
able set-up fees rendered this approach only viable for large-scale industrial
research laboratories aiming at hundreds to thousands of microarray hy-
bridization experiments per year. Apart from commercial suppliers, some
laboratories have chosen to produce their own microarrays, as for instance
successfully demonstrated at Stanford University (http://cmgm.stanford.
edu/pbrown/mguide/index.html). Today, commercial off-the-shelf micro-
arrays dominate the field. Commercial microarrays are now available for
more and more bacterial species [13]. In the early days of microarray tech-
nologies, prokaryote-specific technical challenges of sample preparation
including poor mRNA stability and the fact that bacterial transcripts lack
polyadenlyation tails hindered the establishment of standardized experi-
mental protocols for bacteria. In the meantime, optimized experimental
protocols tailored to bacterial mRNA have been developed and are widely
used within the microbiology research community. The recent drop in
cost of commercial microarrays will certainly make transcriptional profil-
ing more accessible for the various antimicrobial research applications in
industrial as well as academic environments.
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3 Comparison of the capabilities of transcriptomics
and proteomics

RNA polymerase produces mRNA molecules, which represent the tem-
plates for protein synthesis. The transcriptome of a bacterial cell is there-
fore only an indirect indicator of a bacterium’s physiological state, as it
does not provide information about the proteins and metabolites, which
determine the biochemical processes in the cell. Also, besides transcrip-
tional control mechanisms, additional post-transcriptional processes can
alter the amounts of active proteins, such as various translational con-
trol mechanisms as well as post-translational processes such as proteolysis
and the processing and modification of proteins. However, several studies
aimed at the comparison of the data derived from both mRNA and pro-
tein profiling technologies suggest that the majority of regulatory trends
on the protein level are reflected by similar changes in the mRNA profiles
[14–20]. Currently, proteomic technologies are not as well established as
microarray technologies, especially with respect to reproducibility of data
and ability to profile most of the protein species expressed at any one time,
and protein analysis techniques are typically more labour-intensive due to
their lower degree of automation. Also, some proteomic technologies such
as the widely used 2-D gel electrophoresis technology focus only on the
cytoplasmic subset of the cellular proteome, or are for technical reasons re-
stricted to only a limited range of molecular weights and isoelectric values.
Thus, microarray technology is advantageous for many drug discovery ap-
plications due to its comprehensive monitoring of all bacterial genes, its
inherent high level of standardization and its ease-of-use. Nevertheless,
protein profiling technologies are indispensable for studying processes on
the post-transcriptional or post-translational level, such as for instance the
effects caused by actinonin treatment [21, 22] (see Chapter 4).

4 The importance of experimental design and
integrated data analysis systems

Any individual microarray experiment harbors a wealth of information,
and many studies based on the biological interpretation of individual
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experiments have been published. However, the comparison of expres-
sion profiles across many different experimental conditions (e.g., different
drug-induced stress responses) is of particular interest for understanding
a bacterium’s regulatory network. Incorporating larger numbers of mi-
croarray experiments enables comparisons based on statistical analyses, a
critical requirement for well-educated decision making in pharmaceutical
research. For instance, the comparison of a pathogen’s transcriptional re-
sponse to structurally different growth inhibitors is critical for deducing
the regulatory networks underlying a pathogen’s drug defense mechanisms
or to predict mechanisms-of-actions (MOAs) of novel antibiotic structures.
When dealing with such data sets, two major challenges arise.

Firstly, consistent and standardized conditions for drug treatment such
as concentrations and exposure times have to be carefully chosen to enable
comparison of profiles triggered by different compounds. Typically, com-
pound concentrations are measured in units of the minimal inhibitory
concentration (MIC), while treatment times are normally measured in
units of the average bacterial replication time. For instance, previous stud-
ies report as optimal treatment times for B. subtilis a range of a few minutes
after compound exposure up to more than one generation time (e.g., >40
minutes for B. subtilis in minimal medium [23]). The recent B. subtilis
reference compendia approaches suggest that the optimal concentration
window for compound MOA studies lies in the order of magnitude of the
MIC, although generally concentrations are required that do not result in
more than 15–25 % reduction of growth rate [24, 25].

Secondly, the typically large datasets comprising hundreds to thou-
sands of experiments require standardized and statistically well-founded
approaches. While standard clustering algorithms work well with rela-
tively small data sets as has been successfully applied to the mRNA profiles
induced by three anti-tuberculosis agents [26], the results of such methods
are difficult to interpret when comparing dozens or more of stress-induced
mRNA profiles. Also, most unsupervised clustering methods do not pro-
vide objective decision rules for characterizing the MOA of novel com-
pounds. As known from studies with eukaryotic systems, more elaborate
statistical methods are needed to optimally compare, cluster, categorize
and annotate experiments and expression-relevant genes. For instance,
algorithms that have been suggested for MOA classification purposes in-
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clude support vector machines (SVMs), K-Nearest Neighbor Analysis, and
Sparse Linear Discriminant Analysis [27–31]. Typically, in pharmaceutical
research, whole data analysis workflow systems are required to systemati-
cally analyze drug-induced expression profiles in a standardized manner.
Interactive, highly integrated visualization tools are required to discover
trends in large and complex data sets (see Fig. 2). These systems can be set
up and configured to combine sample and experiment data management
systems with various normalization, filtering and statistical algorithms.

5 Discovering therapeutic targets

Despite the availability of so many complete genome sequences, the func-
tions of many genes remain unclear, in particular if they share little se-
quence similarity with genes of known function. Expression profiling can
be an efficient way to functionally characterize such genes. Co-expression
of functionally uncharacterized genes across many experiments with oth-
ers, of which the functional roles are known, indicates that the corre-
sponding gene products are likely to be involved in the same pathway or
protein complex. For instance, genes involved in motility and chemo-
taxis are controlled by an alternative sigma factor in many bacteria, which
is part of the RNA polymerase complex. In the model bacterium B. subtilis
the corresponding regulatory network could be comprehensively mapped
by the identification of genes that are co-expressed with this sigma factor
[13]. Using this approach, genes of unknown function could be function-
ally characterized. Similarly, expression profiles of bacteria growing under
conditions thought to mimic the relevant environment of the organism
during parasitism of the host, can lead to a more profound understanding
of a pathogen’s cellular processes during infection. For instance, transcrip-
tional profiling of the lyme disease causing agent Borrelia burgdorferi under
conditions simulating parasitism of the tick vector or during adaption to
its mammalian host revealed a set of 150 genes that were differentially
regulated in these environments [32]. This information enables the for-
mulation of new testable hypotheses regarding the life cycle and virulence
mechanisms of B. burgdorferi.
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Figure 2.
Interpreting bacterial expression profiles requires integrated computational systems for a
comprehensive statistical analysis and biological context analysis. (a) P-value distribution
of B. subtilis genes expression profiles (left) when comparing the effect of treatment with
trimethoprim (blue horizontal bar) and a quinolone (violet horizontal bar), both represent-
ing DNA replication inhibitors. The gene expression profiles discriminating best between
the two compounds are colored in red. (b) Hierarchical clustering of antibiotics-induced
gene expression profiles, based on the transcriptional activity of only a limited number of
MOA-biomarkers. The visualized tree reflects the major categories of antibiotic mechanisms-
of-action: inhibition of DNA replication (grey), cell wall biosynthesis (green), and protein
biosynthesis (red and blue). (c) Integrating expression data and genome structure data
to identify antibiotics-responsive operons. Tailored algorithms have been developed that
consider whole genome organizations and microarray data across many different antibiotic
stress experiments. The top row shows a subsection of the B. subtilis genome sequence with
arrows corresponding to individual genes, while the rows underneath represent individual
experiments, with the expression induction levels represented as red rectangles (= upregu-
lated) and green rectangles (= downregulated). (d) Pathway context analysis. By overlaying
expression data onto metabolic-, regulatory- or signaling pathway maps, new functional re-
lationships can be discovered. Here, the characteristic response of the B. subtilis nucleotide
biosynthesis pathway to treatment with the antibiotic novobiocin is demonstrated. Pathway
context analyses are also very helpful for understanding a pathogen’s resistance and defense
mechanisms (screenshots from Genedata Expressionist® and Genedata Phylosopher®).
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Expression profiling was also instrumental in identifying novel thera-
peutic targets in innovative approaches aimed at reduction of drug resis-
tance or virulence of pathogens. For instance, studies with Pseudomonas
aeruginosa, a medically relevant pathogen that infects especially immuno-
compromised individuals such as cystic fibrosis patients, have been utilized
in approaches to develop drugs that target its virulence factors. Pseudo-
monas infections are extremely difficult to treat due to limited drug per-
meability through the cell envelope, very efficient drug efflux systems, and
the capacity of the organism to form drug-resistant biofilms. Pseudomonas
cells are known to communicate with each other via signaling molecules
such as acyl-homoserine lactones which trigger expression of genes be-
longing to the so-called quorum-sensing regulon. Quorum-sensing is sus-
pected to play an important role in chronic bacterial colonization leading
to drug resistant biofilms. Hentzer et al. isolated a furanone derivative
that was reported to block quorum-sensing [33]. Microarrays were used to
obtain a transcriptional ‘fingerprint’ of the compound, showing that its
underlying MOA is quorum-sensing inhibition. Rasmussen et al. found
additional inhibitors of quorum-sensing in extracts of Penicillium strains
[34]. In this study, microarrays were also used to determine the target
specificity of those compounds. Such studies are pioneering the identifi-
cation of novel targets of chemical entities that interfere with virulence or
resistance mechanisms of bacteria.

In contrast to the previous examples, it should be noted that the tar-
gets currently preferred in the pharmaceutical industry are in vitro and
in vivo essential targets, which are expressed under all growth conditions
in a bacterium. In fact, the targets inhibited by the anti-infectives es-
tablished in medicinal practice are largely represented by such ‘essential’
gene products. In the last decade, a number of genomics technologies
such as parallel gene knock-out and conditional silencing methods have
allowed the identification of most of the in vitro essential gene products
of major bacterial pathogens (for a review, see [35, 36]). Although sys-
tematic knock-outs potentially reveal all essential genes by virtue of the
inability to disrupt all ORFs, they do not provide any direct hints about
their function; however, functional information is critical for developing
target-based screening assays [37]. Expression profiling may be considered
a complementary technology for elucidating the molecular and cellular
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function of uncharacterized essential genes. Thus, expression profiling
has become a key component in the early stages of the antibacterial target
discovery and validation process, supporting classical discovery strategies,
but also guiding the way to innovative targets intended to interfere with
the pathogen’s resistance or virulence mechanisms.

6 Forward pharmacology

The systematic screening and characterization of compound libraries using
microarrays is increasingly attracting attention. Natural product libraries
as well as synthetic compound banks have great potential for harboring
novel anti-infective lead structures; however, the systematic evaluation of
their mechanisms is hampered by conceptual and technical hurdles. The
measurement of changes in cellular mRNA levels triggered by compound
treatment can help in elucidating the inhibitory mechanism of poorly un-
derstood drug candidates. Such compound-centric strategies aiming at
deducing a chemical entity’s cellular MOA are sometimes referred to as
‘chemogenomics’ [38] or ‘forward pharmacology’ [39]. In the context of
the pharmaceutical drug discovery process, ‘forward pharmacology’ seems
the most appropriate term, since the MOA identification represents an es-
sential step in order to pharmacologically characterize a drug candidate.
Indeed, microarrays were key in demonstrating that effects on the tran-
scriptional level can be related to the physiological functions targeted by
the respective compounds [14, 26, 40–43]. However, drugs generally also
change the expression of a wide range of genes not directly linked to the
target’s function, which can obscure the primary antibiotic effect [44].
For instance, Brazas and Hancock discovered that the fluoroquinolone
ciprofloxacin induces toxic gene products (so-called pyocins derived from
latently integrated bacteriophages in the genome) making certain Pseu-
domonas strains more susceptible than the corresponding mutants with
inactivated pyocin genes. Such induced pyocin genes are not the molecu-
lar target of ciprofloxacin or other fluoroquinolones, but obviously medi-
ate antibiotic susceptibility [45].

To systematically deduce characteristic transcriptional ‘fingerprints’
that can be associated with specific drug mechanisms, the use of a com-
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prehensive collection of diverse expression profiles that represent differ-
ent cellular stress states (a so-called ‘reference compendium approach’) has
been suggested. In an early pioneering study, Hughes et al. measured the
levels of 6,000 yeast transcripts of knock-out mutants as well as compound-
stressed cells, leading to expression profiles corresponding to 300 different
physiological cell states [46]. Solely by a basic comparison and clustering
of mRNA profiles, the topical anesthetic dyclonine, a drug with an as yet
unknown MOA, could be predicted to interfere with ergosterol biosyn-
thesis. This early yeast-based study pointed the way to how comparative
expression analyses can be used for systematically classifying MOAs of
anti-infectives with previously unknown targets. Since industrial antibac-
terial research has been primarily focused on combating multi-resistant
Gram-positive bacteria, the phylogenetically related but non-pathogenic
species B. subtilis has been chosen to become the first model bacterium
for functional genomics-based antibacterial drug discovery. Freiberg et al.
and Hutter et al. investigated the genome-wide transcriptional response
of B. subtilis to a variety of drugs [24, 25]. These studies demonstrated the
feasibility of microarray-based MOA classifications for antibacterial agents.
For instance, the mechanism of inhibition by a novel antibacterial class of
phenyl-thiazolylurea-sulfonamides originating from a lead optimization
program on a screening hit from a biochemical target assay could be cor-
rectly characterized, just using the characteristic whole-genome expression
response of B. subtilis to this compound. A comparison with a compre-
hensive expression profile compendium revealed that these compounds
triggered the increased expression of the direct target phenylalanyl-tRNA
synthetase as well as the stringent response, a regulatory event that was
shown to be typical for aminoacyl-tRNA synthetase inhibition [24]. Sim-
ilarly, a study using the pathogen Mycobacterium tuberculosis successfully
demonstrated how a database of transcriptional profiles for diverse sets
of drugs and growth-inhibitory conditions enabled to predict MOAs of
agents lacking any mechanistic information [31]. For instance, the pyri-
doacridine alkaloid ascididemin, known to show anti-tumor, antiparasitic
and anti-mycobacterial activity, was predicted to interfere with iron ac-
quisition processes in Mycobacterium tuberculosis, a hypothesis that was
subsequently independently validated. In addition, the upregulation of
respiratory genes during treatment of Mycobacterium tuberculosis with phe-
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nothiazines led to the hypothesis that this class of drugs interfered with
dehydrogenase function in the respiratory chain which was subsequently
biochemically confirmed.

As the prediction of MOAs of uncharacterized substances is typically
done by comparing the compound-induced mRNA profile with the ones
triggered by reference compounds, it is important that the reference data-
base includes compound-triggered mRNA profiles representing a broad va-
riety of MOAs. However, for completely novel mechanisms the absence of
reference compounds in the reference compendium means that MOA can
not be elucidated based on simple comparison and/or clustering of tran-
scriptional profiles. It has been proposed that this conceptual difficulty can
be overcome by including mRNA profiles derived from mutants in which
expression of genes representing potentially novel antimicrobial targets is
controlled by regulatable promoters or by temperature sensitive mutations.
The genetic downregulation of the target was proposed to mimic chemical
inhibition of the gene product, resulting in similar mRNA profiles as would
be expected during treatment with an inhibitor targeting the gene prod-
uct under investigation. Again, studies using yeast were used to pioneer
this strategy by including transcriptional profiles of promoter ‘shut-off’
strains for essential genes in the reference compendium [47]. Di Bernardo
et al. used an expression profile compendium including the mRNA profiles
of 215 strains carrying down-regulatable promoters upstream of essential
genes as well as 300 additional profiles [38, 46]. The validity of their ap-
proach was proven by predicting the thioredoxin–thioredoxin reductase
system as the target of the mechanistically uncharacterized anti-cancer
compound (1-phenyl-1H-tetrazol-5-ylsulfonyl-butanenitrile; PTSB) which
was subsequently independently confirmed.

In contrast to yeast, however, the experimental handling of conditional
mutants under-expressing essential genes is non-trivial for many bacteria.
In bacteria essential genes often need to be repressed by more than 99 % in
order to have an impact on the growth curves. Bacterial promoter systems
are often too leaky to result in a transcriptional profile that clearly repre-
sents the cellular response that attempts to counteract the simulated effects
of a chemical inhibitor of the gene under investigation. Thus, large-scale
bacterial applications as required for reference compendium strategies are
hampered for technical reasons. Nevertheless, in a recent proof-of-concept
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study, it could be shown that the approach of supplementing chemical
reference compendia with conditional mutant profiles can be utilized suc-
cessfully in bacteria. Expression profiles of B. subtilis conditional mutants
enabled a characterization of the MOA of the natural product moiramide
B, a compound known to possess antibacterial activity [24]. As a result of
these studies, moiramide B was predicted to be the first antibiotic target-
ing the bacterial acetyl-CoA carboxylase. Moiramide B triggered a char-
acteristic transcriptional response strongly resembling the profiles of mu-
tants downregulating the enzyme’s corresponding subunits. This example
demonstrates that transcriptional profiling can lead to testable hypothe-
ses, providing insights into drug-pathway or even drug-target interactions
that were not previously anticipated. Indeed, the inhibition of the acetyl-
CoA carboxylase by moiramide B could be independently confirmed by
biochemical and genetic tests [48], validating the general applicability of
reference compendium strategies for the elucidation of completely novel
antibacterial mechanisms.

7 Developing reporter assays for pathway-specific
compound screens

Reporter strains using gene promoters showing a transcriptional activation
that is a signature for a specific MOA have been recognized as an efficient
way to detect bioactive compounds interfering with specific pathways [13].
Such assays combine the advantages of the traditional whole-cell screen-
ing approaches and the directed, rational strategies of target-based assays.
For the MOA-reporter assay approach, drug stress-specific promoters are
fused to reporter genes such as the firefly luciferase gene. The resulting
reporter strains are then used for assaying pathway-specific antibacterial
compounds, and are typically applied in high-throughput compound li-
brary screening. Currently, the major bottleneck for following this ap-
proach is the identification of appropriately responding MOA-specific pro-
moters. Microarray data have been shown to be key in the systematic
discovery of suitable promoters for reporter assay development [49–51].
Microarrays are used to elucidate the regulatory architecture of the bacte-
rial stress response to identify and characterize drug-responsive regulatory
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Figure 3.
A microarray-guided approach to drug screening assay development and high-throughput
compound screening. To develop cell-based reporter assays, promoters are needed that
respond in a highly mechanism-specific manner to compound exposure. An application
from antibacterial drug discovery is exemplified in (a–c). A series of mRNA profiles repre-
senting the stress response of B. subtilis to various antibiotics has been analyzed to pinpoint
stress-specific promoters (MOA biomarkers) in the context of the intended target pathway.
The promoters are fused to a reporter gene resulting in reporter cells appropriate for high-
throughput drug screening (a). In this example, fatty acid biosynthesis represents the target
pathway of interest. The color-coded pathway activation pattern displayed in (b) reflects
the pathways’ reaction to exposure with cerulenin, a compound known to inhibit the gene
product FabF (red dotted frame). Red rectangles indicate an upregulation of the respective
genes, while the black rectangles correspond to non-responsive genes. This information is
critical for identifying optimal promoters for reporter assay development (modified after [49],
Phylosopher®, Genedata, Basel). Subsequently, a fatty acid pathway-specific reporter assay
was developed, based on a new stress-inducible promoter (FabHB). The experimental vali-
dation of this data-driven approach is shown in (c). Luminescent light signals of the reporter
assay were measured in response to ten antibiotics of different mechanisms-of-action. Sig-
nificant signals are only detected for cerulenin and triclosan, the two fatty acid biosynthesis
inhibitors among the tested antibiotics.
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networks. Co-expressed genes and operons are generally controlled by the
same transcriptional regulators, so that it is likely that they share common
regulatory elements, such as transcription factor binding sites. The combi-
nation of DNA sequence-motif detection algorithms and expression-based
correlation analyses allows a prediction of promoters controlling specific
bacterial stress regulons. A genome-wide, systematic approach based on
microarray data has been proposed by Fischer et al. [49]. In this study,
microarray data was used to reconstruct the B. subtilis FapR-dependent
regulon and to identify promoters whose activation is indicative of fatty
acid biosynthesis stress (see Fig. 3). Indeed, Fischer et al. were able to con-
struct assays based on the in-silico predictions and applied them success-
fully in a high-throughput screening setting. From the 900,000 screened
compounds, more than 500 hits were identified, including at least four
chemically novel types of structural hit clusters. These novel compounds
were independently shown to efficiently inhibit the fatty acid biosynthesis
pathway.

Systematic MOA-biomarker discovery strategies based on transcription-
al profiling technologies produce significantly more suitable promoters
than the traditional approaches based on classical low-throughput tech-
nologies [52–56]. Today, microarray-supported reporter assay develop-
ment is instrumental in the systematic application of this elegant approach
to detect bioactive compounds interfering with specific pathways.

8 Improving the compound selection and
optimization process

The examples outlined above for mRNA profiling-based MOA predictions
demonstrate the major contributions of transcriptional profiling to the
early phases of the drug discovery process. However, microarray experi-
ments are of great value even further downstream in the drug development
pipeline, namely in the lead finding and chemical development process.
Compounds identified in library screening campaigns of target-based as-
says might be profiled in order to confirm that their MOA against whole
cells recapitulates the in vitro predictions. Transcriptional profiling is also
used to prioritize compounds based on indications of undesirable side ef-
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fects, such as transcriptional induction of detoxification or drug efflux
systems. For instance, studies investigating the effect of triclosan on M.
tuberculosis exhibit a striking upregulation of such bacterial defense systems
[31]. Similarly, various antibacterial agents with aromatic character induce
mycobacterial genes most likely involved in drug efflux and in detoxifica-
tion such as monooxygenase, dioxygenase and methylase genes. Thus,
expression profiling can aid in a systematic prioritization of screening hit
compounds by focusing on the molecules showing no or little indications
of drug resistance in their transcriptional response.

Chemical derivatisation programs following target-based screening
campaigns typically result in large lead compound series. Important down-
stream profiling challenges such as cell penetration, pharmacokinetic sta-
bility, physicochemical profile and others cannot directly be addressed by
expression profiling. However, there are valuable applications of transcrip-
tional profiling for assessing and evaluating chemistry. For instance, it is
well known that agents from natural product sources represent an attrac-
tive pool for finding novel antibiotic lead structures. Therefore, starting
with a purified or de novo synthesized natural product and applying a for-
ward pharmacology approach is extremely helpful to accelerate discovery
programs such as described for the above-mentioned moiramide B [24].
Boshoff et al. report that crude extracts containing mixtures of different
natural products can in some instances be successfully screened in tran-
scriptional profiling experiments, since key metabolic responses can be
observed within the expression patterns induced by the extracts [31]. Us-
ing this approach, the labor-intensive process of isolation of the active
principle can be guided by microarray experiments, enabling an early pri-
oritization of extracts with respect to novel or preferred MOAs.

Further downstream in the process of antibacterial drug development,
expression profiling compendia are used to predict the target selectivity of
compounds derived from chemical derivatization programs. For instance,
in the case of acivicin, an antibacterial inhibitor reported to block his-
tidine biosynthesis, the complex transcriptional response pattern of this
compound led to the conclusion that additional off-target effects could
contribute to bacterial growth inhibition [57]. The validation or rejection
of such hypotheses can be optimally addressed by profile comparisons
with a ‘training set’ of mRNA profiles derived from diverse nonspecifically
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acting compounds. Using this approach, expression profiling has promise
of becoming an established tool for directing chemical derivatisation pro-
grams and for prioritising compounds with respect to target selectivity.

9 Assessing drug safety and toxicology

Microarray-based strategies are increasingly used not only to predict drug
efficacy, but also to assess a compound’s toxicity potential. The underlying
hypothesis of this so-called ‘toxicogenomics’ approach (see also Chapter 9)
is that toxicant-specific expressionpatterns in animals or cell lines can help
in an early identification of antibiotics candidates that will exhibit adverse
side effects. Previous studies showed that mRNA profiles generally agree
with what is known from complementary methods, for both expression in
tissues from animals treated in vivo and for cell cultures treated in vitro [58–
62]. For instance, it has been reported that a compendium of expression
patterns representing the transcriptional response of rats to liver toxins,
enables prospective classification of potential hepatoxic mechanisms for
development compounds [63]. Probably the most relevant applications
of toxicogenomics lies in the detection of toxic effects that cannot be de-
tected during preclinical or early phases of clinical trials [64, 65]. Idiosyn-
cratic toxicity represents such a type of effect, which is known among
others to be host dependent, i.e., the toxic effect cannot be detected in
animals, but only in some human patients. For instance, the antibiotic
trovafloxacin inhibiting the bacterial DNA gyrase and topoisomerase IV
belongs to a generally well tolerated class of quinolones. Before the reg-
ulatory approval of trovafloxacin in 1997 there were no cases of hepatic
failure in more than 7,000 patients. Since then, more than 2 million people
have received this drug, resulting in 150 cases of reported liver toxicity [66];
however, the exact mechanism underlying this rare adverse effect has not
yet been determined. Recently, it has been reported that comparative tran-
scriptional profiling of trovafloxacin and other quinolones using isolated
human hepatocytes revealed unique changes in mRNA levels triggered in
the cells treated with trovafloxacin. Apparently, trovafloxacin causes mi-
tochondrial damage and severely affects cellular functions which might
cause hepatotoxicity [66]. It remains to be shown whether these studies
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will help in identifying distinct genes or gene groups that could serve as
biomarkers for predicting a patient’s risk for idiosyncratic hepatotoxicity.

10 Conclusion

Today, expression profiling analyses are firmly established in the pharma-
ceutical industry, in both the early drug discovery phases, as well as during
later chemical development stages. Biomarker discovery strategies relying
on transcriptional profiling are an emerging, highly useful, tool derived
from microarray technology. Biomarker-based assays are already used to
screen for novel chemotypes inhibiting specific targets or target pathways
on a high-throughput scale.

Although driven by anti-infectives development, microarray technol-
ogy has had many spin-off benefits. Microarrays are, for example, utilized
for the development of pathogen diagnostic kits. These kits are employed
in measuring strain-specific mRNA profiles. Related technologies are in-
creasingly used for the identification of the genotype of bacterial strains by
hybridizing genomic DNA on microarrays carrying oligonucleotides that
cover the full genome sequence of the reference strain of the pathogen.
This technique was performed for Helicobacter pylori [67], a bacterium that
was discovered in 1982 by Marshall and Warren (for which they were
awarded the Nobel Prize in 2005) as the infectious agent responsible for
gastric ulcer disease [68]. Helicobacter pylori is distributed in at least half of
the world’s population with the many genomic variants of this bacterium
determining pathogenesis and drug susceptibility [69]. The identification
of bacterial polymorphisms allows a prediction of the resistance patterns
that may be encountered when treating a patient. Hybridizing genomic
DNA derived from a clinical isolate on microarrays containing oligonu-
cleotides representing the sequenced reference strain can be used to iden-
tify deletions and mismatches hereby characterizing the exact nature of
the infection in the patient which, in turn, would support tailored treat-
ment strategies. Improving the currently existing diagnostic tools is an
essential prerequisite for more focused therapies, because only a rapid de-
tection of the causative agent and the properties of the expressed genes of
the isolate allows for treatments based on narrow-spectrum antimicrobials
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[70]. In addition, diagnostic microarrays are expected to provide the ba-
sis for a rational design of molecularly defined vaccines to replace poorly
defined vaccines based on killed or attenuated pathogens, extracts thereof
or on toxins inactivated by chemical treatment [5, 71, 72].

At the same time, with prices of microarrays decreasing to levels that
are in reach of the majority of research institutions, a substantial increase
in experimental throughput can be expected, so that high-content screen-
ing by entirely microarray-based approaches may become routine practice
in the future. Microarrays would then allow for a direct evaluation of large
compound libraries by probing the compound’s effect on the whole bacte-
rial cell. In this way, standardized, highly automated screens for the most
efficacious compounds will significantly facilitate the search for novel an-
timicrobial lead structures. Transcriptional profiling information derived
from microarray analyses is providing the groundwork for applications
in systems biology. In the context of this review, the most noteworthy
systems biology applications are dynamic pathway models that enable a
numeric simulation of the temporal and spatial behavior of signaling and
metabolic pathways. In fact, such comprehensive, predictive models of
the cell will significantly facilitate the target selection process, and will
undoubtedly lead to a better understanding of a pathogen’s defence and
resistance mechanisms. For some prokaryotic and eukaryotic model or-
ganisms, first proof-of-concept studies have been published (for example
[73–76]). These studies indicate that the development of mathematical
models that capture the essential features of metabolic or signaling path-
ways in a cell are indeed possible. For bacteria, initial studies have been
published that aim at reverse-engineering the network of regulatory in-
teractions between genes to determine the pathways and genes targeted
by a compound [38]. As most systems biology studies address the investi-
gation of large-scale properties of pathway networks, whole-genome tran-
scription profiling will add important experimental proof for supporting
specific mathematical models. Microarray data will also help in formulat-
ing hypotheses for expanding and refining existing models, for instance
by fitting kinetic parameters to determine critical reaction constants.

Functional genomics technologies beyond transcription profiling can
supplement the data that is required for gaining a better understanding of
the integrated cellular system. Newly developed proteomics technologies
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(see for example [77] and Chapter 4) as well as innovative technologies
for the parallel quantification of all cellular metabolites (‘metabolic pro-
filing’ or metabolomics [78], Chapter 5) and metabolic flux patterns [79]
represent essential building blocks in getting a holistic view of the bac-
terial cell. Together with integrative computational systems biology ap-
proaches these data will lay the foundation for successfully modeling the
dynamics of biochemical pathways and complex physiological processes.
Undoubtedly, such studies will have a major impact on our current un-
derstanding of the physiology of microbial pathogens, the human host’s
immune response to infection, as well as the effect of chemotherapy on
the infectious agent and the host. This, in turn, will become a solid basis
for discovering and developing innovative antimicrobials for combating
infectious disease. Transcriptional profiling will undoubtedly continue to
play an indispensable role in this process.
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Chemical genetics: An evolving toolbox for target identification and lead optimization

Abstract

Chemical genetics combines chemistry with biology as a means of exploring the func-
tion of unknown proteins or identifying the proteins responsible for a particular phe-
notype. Chemical genetics is thus a valuable tool in the identification of novel drug
targets. This chapter describes the application of chemical genetics in traditional and
systems-based approaches to drug target discovery and the tools/approaches that appear
most promising for guiding future pharmaceutical development.

1 Genomic approaches to identifying drug targets

The availability of complete genome sequences from simple organisms
such as Mycoplasma to complex vertebrates such as humans has acceler-
ated the development of systems biology as a field. The value of genome
sequences does not lie in knowing the number of genes of a particular or-
ganism (approximately 30,000 in humans versus 470 in Mycoplasma, for
example) [1, 2] but in the information gained from exploring the net-
work of interactions between the protein products. Understanding these
networks would greatly benefit drug discovery since the networks provide
information about pathway essentiality as well as redundancy. Successful
drugs ideally target non-redundant, essential pathways of the organism.

Protein interaction networks based on protein–protein interactions
have partially extended our understanding of the network maps, although
in many cases the function of the protein remains elusive. Partial pro-
tein interaction networks have been reported for several pathogens such
as Mycobacterium tuberculosis [3], Helicobacter pylori [4], Plasmodium falci-
parum [5] and Rickettsia sibirica [6]. These have been investigated with the
hope of finding interactions that point to the function of unknown pro-
teins through ‘guilt-by-association’ as well as pinpointing promising drug
targets.

Essentiality screens are another way that investigators have used ge-
nomic information to glean information about processes required for sur-
vival of different organisms. Essentiality screens in Mycoplasma indicated
that approximately 73 % of the genes were required for viability [7] whereas
53 % of Haemophilus influenzae genes appear to be important for growth
[8]. In M. tuberculosis a similar screen indicated that at least 614 of the
4,000 encoded genes were essential for growth in vitro [9]. Of the genes
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that were not essential for growth in vitro, 194 were essential for growth
in vivo in infected mouse tissues with many of these being genes unique
to mycobacteria [10]. Genes that are essential for growth could be poten-
tial drug targets. However, many genes deemed essential have no known
function, and target function is often a prerequisite for drug development.

2 The genomic interface of chemistry and biology:
Chemical genetics

Chemical genetics is a multidisciplinary research field that combines chem-
istry with genetics as a means of probing gene function in cells. It allows
exploration of the genes responsible for specific phenotypes as well as pro-
viding a means for the identification of function of unknown genes. Two
approaches to chemical genetics have been pursued: forward chemical
genetics and reverse chemical genetics (Fig. 1).
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Figure 1.
Comparison of forward and reverse chemical genetics. In forward chemical genetics (top),
small molecule libraries are used to find a compound that results in a phenotype of inter-
est. In this example small molecules are identified that result in cell lysis (1). The protein
target of the compound can subsequently be identified by affinity chromatography using
the molecule linked to a solid support (2). Bound proteins are subsequently identified by
SDS-PAGE (3) where specifically bound protein appears as a unique band (second lane) as
compared to the non-specific control sample (first lane). The protein can be characterized
by mass spectrometric methods (4). In reverse chemical genetics (bottom), the protein of
interest is bound to an affinity column (1) and used to find small molecule ligands (2). The
small molecule is eluted (3) and identified by mass spectrometry (4). The phenotype of the
small molecule is then characterized (5).
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In classical forward genetics, the underlying basis of a cellular pheno-
type is sought by identifying the causative gene. This is usually done by
creating libraries of mutants and screening the mutants for the loss or
gain of a particular phenotype. Mutations can be generated by saturating
transposon mutagenesis, chemical mutagenesis, or by irradiation. Alter-
natively, the gene responsible for a phenotype can be identified through
large-scale gene function screening using expression libraries or libraries of
antisense expression constructs. The drawback of forward genetics is that
generation of random mutations is not possible at the level of genome
saturation since essential genes cannot be functionally deleted. In addi-
tion, overexpression of genes is often not associated with a phenotype
that explains gene function whereas the time required for the functional
consequences of downregulation of gene expression allows buffering by
compensatory systems. These obstacles can be overcome using forward
chemical genetics. In this approach, a small molecule library is used to
perturb protein function and the small molecule that results in the phe-
notype of interest is then isolated. This approach has the advantage that
small molecules rapidly perturb function, are able to interact with a sin-
gle aspect of a protein’s function, can be used to disrupt protein–protein
interactions, and can cause both gain as well as loss of function.

In classical reverse genetics, the function of an uncharacterized gene
can be investigated by the creation of mutants by site-directed mutagene-
sis, overexpression of the corresponding protein product, or by creation of
an allelic knockout. The expression of a gene can also be downregulated or
aborted through titratable promoters, antisense RNA or short-interfering
RNAs. The disadvantage of classical reverse genetics is that knockouts can-
not be created of essential genes and that cellular networks can adapt to
genetic perturbations within a timeframe required for generation of mu-
tant cell lines which can mask the phenotypic effects of functional knock-
outs. More recent approaches using regulatable systems to downregulate
gene expression can overcome such drawbacks [11, 12]. In reverse chem-
ical genetics, the function of uncharacterized proteins is studied through
the use of membrane-permeable small molecule inhibitors of the protein
under investigation to probe the effect of perturbation of function on cel-
lular physiology. In this way, a small molecule, known to interact with a
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particular in vitro target, yields information about how inhibition of that
target affects cellular processes.

2.1 Chemical genetics as a tool in systems biology

The advantage of a small molecule chemical genetics approach is that the
phenotypic effect of the perturbation is obtained with cells having little
time to adapt to the small molecule through altering expression and func-
tion of compensatory pathways which directly mimics pharmacological
interventions. In forward chemical genetic screens, one particular pheno-
type such as mitotic spindle arrest, protein acetylation, or secretion of a
protein, can be the result of inhibition of one (or under non-ideal condi-
tions, more) of a series of proteins in a sub-network of cellular metabolism.
Thus, deciphering the mechanism of action of a small molecule inhibitor
can be used in mapping components of the perturbed network. Small
molecule ligands may inhibit one aspect of a protein’s function while not
affecting another aspect of its activity, and some small molecule inhibitors
can augment or diminish the effect of another small molecule. Establish-
ing the network of chemical genetic interactions using small molecules
can shed further light on the protein and genetic network maps.

An example of the use of small molecules to map a protein network
was reported by Huang et al. [13] where a map of the target-of-rapamycin
(TOR) signaling network in yeast was compiled. A library of 16,320 small
molecules was screened to find compounds that modulated the growth in-
hibitory effect of rapamycin on yeast cells using an assay based on visual in-
spection of growth phenotype during compound exposure in rapamycin-
containing medium. From this screen, six compounds were identified
that abrogated the antiproliferative effect of rapamycin, while 57 com-
pounds were identified that were synthetically lethal in combination with
rapamycin. To unravel the effects of these small molecules on the TOR
signaling network, transcriptional profiling experiments of yeast exposed
to various concentrations of these molecules and/or rapamycin, were per-
formed. To identify the targets of two of the small molecules, a biotin-
capture approach was employed. The two compounds were labeled with
biotin in a position which did not affect their in vivo phenotype. These
biotinylated ligands were used to probe protein chips containing nearly
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the entire yeast proteome. Fluorescently labeled streptavidin was used to
identify spots that contained bound biotin-conjugates. In this way, new
members of the TOR sub-network were identified.

Koeller et al. [14] used small molecule inhibitors of histone and/or
tubulin acetylases as molecular probes to partially elucidate cellular net-
works affected by acetylation of these proteins. To identify the relation-
ship between pharmacophores and the resulting biological phenotypes,
Haggarty et al. [15] mapped phenotypes of protein deacetylase inhibitors
onto the chemical space computed by principle component analysis of
the molecular descriptors of their 1,3-dioxane-based library of 7,200 com-
pounds. In this way regions in chemical space could be correlated with
phenotypic effects. Systematic mapping of chemical space using biological
phenotypes would accelerate interpretation of chemical genetic networks.

Much of the data that has been generated from chemical genetics has
been collected in several databases, many of which are publicly available.
The KEGG resource contains information on small molecule ligands, their
interacting proteins, and the metabolic networks that are associated with
the pathways containing these proteins (http://www.genome.jp/kegg/).
Public databases of small molecules such as ChemDB (http://cdb.ics.uci.
edu) provide information on properties such as predicted solubility, three-
dimensional structure and availability of more than 4 million compounds
with more than 8 million isomers [16]. ChemBank (http://chembank.
broad.harvard.edu/) and PubChem (http://pubchem.ncbi.nlm.nih.gov/)
are two databases of small molecules and their associated biological ac-
tivities.

2.2 Phenotypic screens in forward chemical genetics

Screening of large compound libraries efficiently requires the use of high-
throughput screens (HTS). In reverse chemical genetics where a single or a
few proteins are used to find small molecule binders, assay development is
often straightforward, requiring an assay based on a property of the library
or the protein’s known function. In forward chemical genetic screens,
however, a particular phenotype on a whole cell or whole organism level
is sought. This makes high-throughput screening more difficult, often in-
volving sophisticated components. Recently, several screens have been
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developed to detect agents with antiproliferative properties in an effort to
map cellular mechanisms in cancer. Some of these screens have relied on
microscopic detection of changes in cellular proliferation using automated
microscopes linked to analysis software that can process data generated
from 96-, 384- and 1536-well plates with cells and reagents dispensed by
automated liquid handling systems [17, 18]. Screens based on microscopic
analyses can detect complex phenotypic characteristics including cell mor-
phology, changes in fluorescence in one or more channels, changes in pa-
rameters such as nuclear size, cytoplasmic area, cell perimeter, shape and
biogenesis of the mitotic spindle, and changes in fluorescence intensity
[19]. Wilson et al. [20] identified a quinazolinone inhibitor of tubulin
polymerization using incorporation of a fluorescent DNA stain as a micro-
scopic readout of change in DNA polymerization state to screen a library
of 13,399 compounds.

Simpler cellular assays have been used where expressionof reporter con-
structs, such as green fluorescent protein or firefly luciferase under control
of the promoter of a gene associated with a particular phenotype, are moni-
tored after compound exposure [18, 19]. Other screens depend on changes
in expression of surface markers that can be detected by surface labeling
with antibodies [21].

Large-scale screening is not only possible with cell cultures, but can
also be performed on whole organisms such as zebrafish embryos [22–24].
Zebrafish are amenable to HTS because they are easy to culture in 96-well
plates, develop outside the mother, are a good example of vertebrate devel-
opment, are transparent, and are a good model for certain aspects of hu-
man disease. In recent years, a wealth of genetic information on zebrafish
has become available. This includes large-scale mutagenesis screens and
gene inactivation studies by short interfering RNAs and antisense mor-
pholinos [24]. This information facilitates interpretation of data gathered
from such chemical genetics endeavors. Peterson et al. [22] applied for-
ward chemical genetics by screening a library of 1,100 small molecules for
morphological defects on 1-, 2-, and 3-day old embryos. Several molecules
were found that affected various aspects of development. Khersonsky et
al. [23] screened a tagged triazine library of 1,536 small molecules against
zebrafish embryos with the tags allowing subsequent affinity purification
of proteins that bound to the triazine hit. Zebrafish have also been used in
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high-throughput screening of drugs to detect changes in heart rate by use
of continuous video monitoring [25], a study that showed that molecules
that caused QT prolongation in humans resulted in bradycardia in fish.

Small molecule microarrays have also been used in screens. In one
study [26] a poly-lactide/glycolide copolymer impregnated with small li-
braries of molecules was used as the small molecule microarray. This cir-
cumvented the requirement for attachment of the compounds to the array
surface. Monolayers of cells were then grown on top of the microarray, and
phenotypic effects due to slow release of embedded small molecules were
screened by microscopic analysis. The drawbacks to this approach include
the fact that compounds are released to the cells from the onset of the
experiment, only cells that grow as monolayers can be screened, and the
size of the microarray is dictated by the distance required between spots
in order to prevent cross-contamination.

2.3 Target identification strategies

The targets of hits obtained in phenotypic screens must subsequently be
identified using affinity matrices, affinity linkers, or other methods. In
some cases the targets of inhibitors can be deduced from their known
biological activities in combination with information gained from the use
of genetic mutants. The mode of action of Taxol, a natural product with
potent antiproliferative activity, was deduced from the existing knowledge
of other poisons, many targeting microtubules, which similarly caused
cells to arrest in mitosis. In vitro studies with purified tubulin were used
to demonstrate that Taxol promoted microtubule assembly and stabilized
polymerized tubulin in contrast to several other microtubule poisons that
destabilized microtubules [27]. The target of the antibiotic rifampicin was
found through the use of rifampicin-resistant bacteria which were found
to harbor mutations in the genes encoding RNA polymerase [28].

2.3.1 Target identification: Affinity-based methods

In affinity chromatography, the small molecule is derivatized with a chem-
ical group that allows attachment to a solid support (Fig. 1). Derivatiza-
tion of the small molecule carries the risk of losing affinity to its original
target due to steric hindrance or alteration of attractive properties of the
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molecule. Attachment of a linker, such as triethyleneglycol, to the small
molecule has been successfully used in affinity chromatography [29]. A
good example of target identification through the use of affinity chro-
matography is the identification of the target of FK506 [30]. Structure-
activity relationships had previously revealed important structural features
required for FK506 activity which facilitated the placement of an amino-
tag. This derivatized analog of FK506 was linked to a solid support. A
protein from the cell lysate was identified that specifically bound to the
FK506-affinity matrix. This was called FKBP for FK506 binding protein. It
was later demonstrated that FK506 bound to a family of proteins (FKBPs)
with the original protein target designated FKBP12.

The protein target of a small molecule can also be found by direct
affinity labeling. Small molecule libraries can be designed so that the
library members contain specific electrophilic or chemical crosslinking
groups. These groups will form a covalent attachment to one or more
amino acid residues on the target involved in ligand binding. Alterna-
tively, the small molecule can be modified with a reactive moiety after
its initial identification, but ideally this requires knowledge of structure-
activity relationships (SAR) so that the modification does not affect the
desired phenotypic change. Modified proteins can subsequently be iden-
tified based on intrinsic properties of the small molecule binder such as
fluorescence or radioactivity. The target of L-583916 [31] was found by
direct labeling of the protein. This compound inhibits leukotriene pro-
duction by macrophages, neutrophils, and mast cells by a mechanism that
did not involve any enzymes known to be involved in leukotriene produc-
tion. Based on structure-activity relationships of similar compounds that
modulated or were inactive in inhibition of leukotriene production, an
analog of L-583916 was produced that contained an aromatic azide. The
azide could be used for affinity labeling of the target. The small molecule
was further labeled with 125I. After incubation with cell lysates and pho-
toactivation of the compound, the target protein was identified by SDS-
PAGE and autoradiography. Competition experiments using unlabeled
L-583916 revealed that an 18 kDa protein was specifically labeled. Inter-
estingly, this protein was detected using affinity chromatography with an
analog of L-583916, but would not have been identified as the specific tar-
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get of the small molecule inhibitor since several proteins in addition to
the 18 kDa target bound weakly to the column.

2.3.2 Target identification: Proteomic approaches

The target of a specific small molecule has also been found using a more
global approach: looking at changes in the organism’s proteome in re-
sponse to treatment by the small molecule. The target of FK506 was found
using a global proteomics approach. In this report, a tritiated FK506 analog
was incubated with cell lysate from a T cell line and subsequently fraction-
ated by protein chromatographic procedures. SDS-PAGE analysis led to the
identification of a 12 kDa FKBP [32, 33]. The target of bengamides, a group
of natural products with antiproliferative activities isolated from marine
sponges, were found by analyzing 2D gels of treated versus untreated cells.
This analysis revealed that a few proteins from the treated cells had altered
isoelectric points due to retention of the methionine initiator. This led to
the demonstration that the bengamides inhibited methionine aminopep-
tidase [34].

2.3.3 Target identification: Target titration

An approach utilized by Lum et al. [35] to identify protein targets of small
molecule inhibitors used a library of 3,503 yeast strains, each containing a
unique molecular barcode in one allele of a specific gene. The heterozygous
strains were combined and grown in the presence of an inhibitor. The
barcode tags of the cultures before and after exposure to the inhibitor were
amplified, labeled with different fluorescent dyes, and used to probe DNA
microarrays of yeast genes. Changes in relative abundance of a barcode due
to altered susceptibility of a mutant strain to the inhibitor were detected
by measuring changes in fluorescence intensities of the two fluorophores
between DNA amplified before and after treatment. In this way, strains
that were hypersusceptible to a particular inhibitor due to deletion of one
gene in a heterozygous mutant were useful in identifying the targets of
known and unknown inhibitors.

Multicopy suppression of a phenotype can be used to identify a target.
Li et al. [36] screened a library of 8,640 compounds in an E. coli growth
inhibitory assay. The protein targets of the hits were subsequently sought
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by screening for restoration of growth in clones expressing a genomic li-
brary. Restoration of growth was in most cases due to overexpression of
multi-drug efflux systems although the target of two leads was identified
and confirmed to be dihydrofolate reductase.

2.3.4 Target identification: Expression cloning

McPherson and co-workers [37] utilized an expression cloning approach
to identify the target of a small molecule. In this approach, cDNAs are gen-
erated by polymerase chain reaction (PCR) with primers that allow tran-
scription, ligation to a puromycin DNA linker, and in vitro translation to
generate a protein–nucleic acid conjugate. This complex is incubated with
the small molecule under investigation which has been immobilized to a
solid support. Unbound protein–nucleic acid complexes are subsequently
washed off and bound complexes are eluted with excess free ligand or with
sodium hydroxide. The resulting DNA can now be amplified by PCR and
subjected to further rounds of selection followed by cloning and identifi-
cation of the protein.

The validity of this approach was demonstrated by the use of an im-
mobilized FK506-biotin conjugate using protein–nucleic acid fusions gen-
erated from human kidney, liver and bone marrow transcripts to pull out
FKBP12 , a known FK506 binding protein [37]. This approach would be es-
pecially useful for target proteins that are present in low abundance since
these targets would easily be disregarded by methods that depend on di-
rect detection of bound protein from complex extracts. The disadvantage
of this approach, in addition to the requirement for an active immobi-
lized ligand as previously discussed and the lengthy procedure, is that suc-
cess depends on the size of the protein required for binding to the small
molecule since full-length long cDNAs are not easily obtained. Thus, the
method selects against large proteins. This is demonstrated by the fact
that the known larger FK506 targets were not pulled out by this method.

2.3.5 Target identification: Transcriptional approaches

Databases of transcriptional profiles elicited by small molecule inhibitors
can aid in identification of both the protein targets and the cellular sub-
networks that are affected by these agents [38, 39]. Kung et al. [40] used
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transcriptional profiles generated from analog-sensitive mutants of specific
kinases to identify the targets of uncharacterized kinase inhibitors. Their
strategy used yeast kinase mutants with functionally silent mutations in
the highly conserved ATP-binding site which are sensitive to inhibition by
specific small molecule inhibitors. Transcriptional profiles of the kinase
mutants during exposure to characterized inhibitors could be compared to
transcriptional profiles generated by the uncharacterized kinase inhibitors.
This analysis aided in the identification of the targets of these molecules.
Gene clusters were also identified that were predictive of inhibition of each
kinase. The combination of gene clusters that were affected by the agents
under investigation pinpointed the kinase targets of the drugs. This is an
especially useful approach for kinases since the highly conserved nature of
the ATP binding pocket of these proteins results in several kinase inhibitors
inhibiting more than one kinase so that the signaling sub-networks per-
turbed by such small molecules can be difficult to map.

2.4 Hurdles in target identification

While the above discussion depicts a variety of methods for target identi-
fication, it should be understood that such processes have obstacles that
must be overcome. Firstly, identification of a protein target depends on a
reasonable affinity between the small molecule and its target protein. As
is often the case, concentrations required to detect a phenotypic change
can be on the order of 1 ‹M which is far from the ideal of nM range po-
tencies [41]. As a result, the true target proteins of hits found in many
phenotypic screens remain unidentified. Secondly, many compounds in
small molecule libraries are quite hydrophobic which leads to significant
non-specific binding to cellular components. Thus, target identification
through affinity selection requires stringent wash conditions to dissoci-
ate non-specific hydrophobic interactions. Compounds with low binding
affinities are inevitably dissociated in such washes. Thirdly, the abun-
dance of the target protein affects the success of its identification. Highly
abundant proteins that bind to the small molecule in an affinity-based
method are easily enriched and subsequently detected. However, proteins
expressed in low-copy numbers are not easily detected above the non-
specific background. The success of detection of FKBP as the FK506 target
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was in part due to the highly abundant nature of this cytosolic protein [30,
41]. In general, the molar ratio between compound and target is far from
ideal. Specific binding of a protein would be improved if the target protein
is present in excess of its ligand since this would allow the target to effec-
tively compete with proteins of lower specificity. However, during most
affinity selection methods, the amount of small molecule ligand vastly
out numbers its target, leaving excess binding sites available to non-target
proteins.

There are several solutions to overcome these practical hurdles. To dis-
cern target from non-target protein hits, one can increase the amount of
protein loaded on the affinity matrix by, for example, including cell lysate
from Escherichia coli. Alternately, two affinity matrix purifications can be
run in parallel. One affinity matrix should contain the small molecules
of interest, and the other should contain a structurally similar but inac-
tive molecule. In this way, proteins that bind to the two matrices can be
compared, and the true target can be found [41]. Finally, comparison of
differentially bound proteins can be done by labeling each set differently.
For example, one set could be labeled with a light label and the other with
an isotopically heavy label (e.g., ICAT reagents [42]) or by two different
fluorophores.

Identification of the target can further be complicated by the presence
of more than one target in the cell and non-specific interactions. The
potency of compounds that give positive hits in phenotypic screens can
subsequently be improved by medicinal chemistry efforts even before the
target has been identified, but the maturation of libraries into molecules of
high affinity depends on the success of finding initial hits and being able
to distinguish apparent hits from non-specific effects. Fantin et al. [43]
developed a parallel screening assay where an immortalized cell line was
transformed with the neu oncogene whereas the negative control screen
consisted of non-transformed cells. Compounds that affected membrane
potential in a neu-dependent manner could thus be distinguished from
compounds with non-specific effects. Co-screening of control cell lines
and cells transformed with a variety of reporter constructs have been used
in other studies to find drugs that kill cells in a gene-specific manner
[44, 45].
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2.5 Library design

One of the most important components of a chemical genetics approach
using small molecules, forward or reverse, is the design of the chemical
library to be used. Chemical libraries can be broadly classified as arising
from diversity-oriented synthesis (DOS) or focused library synthesis (FLS).
DOS libraries, most useful in forward chemical genetics, examine a variety
of scaffolds and structural classes of compounds. The goal of the library
is to examine as much structural space as possible. The result can be the
identification of multiple new targets. FLS libraries, by contrast, center
around one or a small number of closely related scaffolds. The molecules
in an FLS library are closely related and can be used in either forward or
reverse chemical genetics approaches.

When designing a library, several points are to be considered. These
points have been described by YT Chang in a series of reviews on the
topic [29, 46, 47]. Briefly, the ideal scaffold should contain three ele-
ments: 1) several diversity points; 2) undemanding chemical synthesis;
and 3) rigidity to minimize nonspecific protein binding. The reasons for
these elements are two-fold: to increase the number of compounds with
maximal diversity and purity and to decrease the rate of false positives.

Over the past few years, there have been several examples of chemical
library synthesis that has resulted in biologically active molecules (see re-
views [29, 46–48]). The choice of scaffold in these examples can be seen as
coming from natural product origin or compounds with known biological
activity. Natural products have been very important for the discovery of
novel biologically-active structural classes as well as new targets. Because
of this, using a structural moiety that arose from a natural substance can
be a fruitful starting point for a chemical library. Libraries have been built
around shikimic acid and dimethylbenzopyran, both moieties found in
several natural products [49–52]. Alternatively, chemical libraries can be
built upon scaffolds with known biological activity. In a forward chemical
genetics approach, Schultz’s group prepared a combinatorial library using
purine as a scaffold with variation at three positions. The library was ini-
tially made and examined to identify novel inhibitors of kinase family
members [53]. In addition to kinase inhibitors, compounds were identi-
fied with a variety of other activities including sulfotransferase inhibitors
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[54, 55], osteogenesis induction [56], and microtubule assembly inhibitors
[57, 58]. Libraries based on ceramides [59] and sulfonamides [60–62] have
been produced as well.

More recently, libraries have been designed to facilitate identification
of the target. In classical forward chemical genetics, the target of an active
compound would be elucidated by some means of labeling, purification,
and identification. Practically, this often involves modifying the active
compound with a new structural motif that will covalently bind to the
target. This type of modification can often be deleterious to the activity of
the compound so an extensive synthetic effort must be made in order to
put the ‘tag’ in the most appropriate place. Recent work by YT Chang and
others has produced tagged libraries where the compounds to be screened
already contain the motif required for target labeling. Therefore, no ad-
ditional SAR or synthetic work is necessary before identifying the target.
An example of a tagged library was reported by the Chang group. In this
report, a series of triazines were prepared with a triethyleneglycol linker
attached [23]. Upon identifying an active molecule, the linker was at-
tached to an agarose bead. This combination was used to identify the
target molecule.

2.6 Fishing for small molecule ligands in reverse chemical
genetics

In reverse chemical genetics, small molecules that bind to a protein of
interest are selected from a compound library. These small molecules are
subsequently used in whole cell/organism assays to explore the function
of the protein under investigation. Traditional methods of identifying
small molecule ligands are affinity chromatography, affinity labeling of
the target protein (as previously discussed), and screening libraries of small
molecules for enzyme inhibition.

Recently, several strategies to discover novel lead compounds against
specific targets have been reported. Many of these approaches are frag-
ment-based, relying on an improved entropic gain after tethering two low-
affinity ligands (Fig. 2). Several of these approaches also take advantage
of recent advances in synthetic and analytical techniques such as combi-
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Library 1
Family of Hits 1Target

Library 2

Family of Hits 2Target

Tethered hits

Target Ligand with improved

affinity for the target

Step 1. Identification of low affinity hits occupying first binding site.

Step 2. Identification of low affinity hits occupying second binding site.

Step 3. Synthetic chemistry to link two hits with flexible tether.

Step 4. Measurement of higher affinity between target and tethered ligand.

Figure 2.
General scheme for NMR-based screening strategies. This approach to ligand discovery uses
two rounds of small molecule screening to identify two low-affinity ligands which bind to
separate sites on the protein of interest. Linking the two low-affinity small molecules with a
flexible tether results in a single molecule with increased affinity to the protein. This process
is facilitated by using the protein’s structural information to guide tether design and location
on the small molecules.

natorial chemistry, 2D nuclear magnetic resonance (NMR), or orthogonal
reactions.

2.6.1 NMR-based approaches

In pioneering work, Steve Fesik’s group at Abbott Laboratories developed
‘SAR by NMR’ [63]. In this approach, binding of a series of small molecules
to the target protein is examined by 2D NMR. From these experiments,
the relative binding locations of small molecules can be mapped onto
a target. The small molecules may have weak (mM–‹M) binding affini-
ties. Two small molecules that bind to proximal sites on the protein are
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then synthetically linked (Fig. 2). The resulting tethered ligand displays
stronger affinity (‹M-nM) to the target due to the entropic gain from the
tether. This fragment-based method was used to identify ligands for FKBP
[63], stromelysin [64, 65], and the antiapoptotic protein Bcl-XL [66] among
many other targets.

In a second NMR-based approach termed SAR by interligand nuclear
Overhauser effect (SAR by ILOEs), Becattini et al. measured interactions
between ligands to gain information about small molecules that bind in
proximal binding sites on the target [67]. They then used molecular mod-
eling and synthesis to generate a small number of compounds to be evalu-
ated. Their work resulted in the identification of a series of bidentate small
molecule inhibitors of Bid, a protein important in apoptosis.

A third NMR-based approach is called SHAPES [68]. This approach
uses NMR to screen a small library of compounds. The compounds in
the library are chosen based on common structural shapes and drug-like
qualities found in biologically active molecules. NMR experiments are
conducted using mixtures of the target and sets of compounds from the
SHAPES library. Either 1D 1H NMR or 2D NOESY NMR can be used in the
screening process, the latter giving clear binding results for mixtures of
compounds. The hits, many of which are weak (‹M–mM) binders, are used
to refine larger collections of compounds for additional rounds of screen-
ing. The SHAPES approach has distinct advantages in that 15N-labeled
protein is not required and it is amenable to targets of variable size. For
example, the authors screened their SHAPES library against several enzyme
targets including p38 MAP kinase (42 kDa) and inosine-5’-monophosphate
dehydrogenase (224 kDa).

2.6.2 Systems-based ligand design

In a novel approach, Sem et al. focused on structurally-related targets and
the development of bivalent ligands for these related targets [69]. Their
method relied on the hypothesis that members of the same ‘pharmacofam-
ily’ will have similar binding sites for ligands. In their pharmacofamily,
the oxidoreductases, a co-factor binding site was common to all members
of the pharmacofamily. All members of the family also had an adjacent
binding site that bound substrate. The authors created bivalent ligands
comprised of a co-factor moiety (common binding element) and a vari-
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able element that gave target specificity to the ligand. NMR SOLVE was
used to determine the placement of a linker between the common binding
element and the specificity ligand. Specific inhibitors for the related en-
zymes lactate dehydrogenase, DOXPR (1-deoxy-D-xylulose-5-phosphate
reductoisomerase), and DHPR (dihydrodipicolinate reductase) were found
by this approach.

2.6.3 Site-directed ligand discovery

In this approach, a protein target with a free cysteine is exposed to a library
of disulfide-containing small molecules [70]. The experiment is conducted
in partially reducing conditions such that disulfide exchange occurs be-
tween the small molecules and the target. Adducts formed between the
target and compounds with weak binding affinity are then detected by
mass spectrometry. The hits were then optimized with the aid of X-ray
crystallography to generate nM inhibitors of thymidylate synthase.

2.6.4 Combinatorial small molecule libraries

Maly et al. used an approach that combined identification of weak binding
fragments, combinatorial chemistry, and facilitated tether synthesis [71].
They screened a small molecule library where each molecule contained
a common chemical linkage group. Pairs of hit molecules are linked to-
gether combinatorially using a flexible linker. The combinatorial library
is screened to ascertain the tightest binding ligands. An inhibitor of c-Src
with an IC50 of 64 nM was identified by this approach. This method does
not require 3D knowledge of the target and incorporates tether synthesis
early in the strategy hereby decreasing required synthesis.

2.6.5 In situ click chemistry

Several years ago, a novel approach to identifying small molecule ligands
was reported which took advantage of a unique chemical reaction between
an azide and an alkyne (Fig. 3). This reaction, to yield a triazole, occurs
in aqueous solution and in the presence of most other functional groups.
It is referred to as the ‘click’ reaction [72]. The application to chemical
genetics came when the click reaction was used with a biological target to
assemble complementary small molecule ligands [73, 74]. Using a small
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Figure 3.
The use of click chemistry to find novel in-
hibitors. Small molecule building blocks are in-
cubated with a protein of interest. The build-
ing blocks consist of two small molecule libraries
containing either an azide or terminal alkyne
group. Binding of the building blocks in adja-
cent sites on the protein may position the alkyne
and azide substituents in close proximity to one
another, leading to the formation of a triazole.
The triazole product is identified by mass spec-
trometry. When tested in a subsequent experi-
ment, the triazole hit is expected to have higher
affinity for the protein than the individual build-
ing blocks.

library of tacrine and phenylphenanthridinium azides and acetylenes, a
series of fM inhibitors for acetylcholinesterase were identified.

2.6.6 Small molecule microarrays

Identification of small molecules that bind to a protein of interest can be
facilitated by the use of small molecule microarrays (reviewed in [75]). In
small molecule arrays, surface-attached compounds are spatially separated
on a solid surface such as a glass slide. The protein of interest is labeled,
for example by a fluorophore or radioisotope, incubated with the array,
washed, and the spots with bound protein are identified by fluorimetry
or autoradiography. Koehler et al. [76] used a library of 12,396 mem-
bers attached to a glass slide to find ligands that bound to a glutathione
S-transferase-transcription factor fusion protein. Bound protein was de-
tected using an antibody recognizing glutathione S-transferase.

2.6.7 Barcode tags

Another approach utilizes polyamide nucleic acid (PNA) tags on library
members. The sequence-specific PNA tag encodes the identity of the small
molecule based on its synthetic history. The protein of interest is incubated
with the fluorescently labeled PNA-tagged library, the complexes are sep-
arated from unbound library members by size exclusion chromatography,
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Figure 4.
Reverse chemical genetic screen using a polyamide
nucleic acid (PNA) tagged chemical library. The PNA-
tagged library is incubated with the protein of in-
terest. Unbound library members are subsequently
removed by size exclusion chromatography. The
purified PNA-tagged protein is hybridized to an ar-
ray carrying oligonucleotides complementary to the
original PNA library. Positive identification of the
small molecule hit is achieved from the array as the
PNA tags encode the synthetic history of the small
molecule.

and the ligand is subsequently identified by a microarray containing com-
plementary oligonucleotides (Fig. 4). The PNA-tagged approach was used
to identify substrates of proteases [77, 78] using a library of 192 PNA-tagged
potential protease substrates prepared by split and pool combinatorial syn-
thesis.

2.6.8 Affinity selection – Mass spectrometry

Affinity selection of small molecule binders followed by identification of
the compound by mass spectrometry (MS) is another convenient approach
for finding small molecules that interact with unknown proteins (Fig. 5).
This is performed by incubating the protein of interest with a library of
small molecules. The protein–ligand complexes are subsequently sepa-
rated from unbound molecules by standard chromatographic techniques
such as gel filtration, the complexes are dissociated by, for example, reverse
phase chromatography, and the small molecule in question is identified
by MS or tandem MS. The advantage of this approach is that the protein
under investigation does not need to be modified, thereby retaining its
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Figure 5.
Reverse chemical genetic screens through affinity selec-
tion of ligands followed by mass spectrometric identifi-
cation. Novel ligands that bind to a protein of interest
are identified by incubation of the protein with a small
molecule library. The ligand–protein complexes are sepa-
rated by size exclusion chromatography, then the small
molecule is dissociated by reverse-phase chromatogra-
phy. The small molecule ligand is then identified by mass
spectrometry. Mass spectrometric identification is greatly
facilitated through the use of mass-encoded libraries.

functionality. In addition, other non-specific effects such as binding of
small molecules to the matrix in affinity chromatography are avoided.

Annis and co-workers [79] used an affinity selection – MS method to
identify compounds that bound to the E. coli dihydrofolate reductase en-
zyme. In their approach, they utilized a 2,500-member combinatorial li-
brary of mass-encoded compounds. After solution-phase binding to the
protein, complexes were separated from unbound molecules by rapid size
exclusion chromatography performed at low temperature, to allow re-
trieval of low affinity complexes, followed by dissociation by reverse phase
chromatography and drug identification by liquid chromatography (LC)–
MS. The precise chemical identity of small molecule binders was performed
using LC-MS/MS. In another approach, a library of 44,440 compounds dis-
tributed in multi-well plates in groups of four was incubated with fluores-
cently labeled Staphylococcus aureus YihA, a protein of unknown function
that is essential in E. coli and B. subtilis [80]. The mixture was directly as-
sayed by capillary electrophoresis and fluorimetric detection. Binding of
ligand resulted in altered mobility of the protein. The identity of a hit was
deduced by deconvolution of the compounds in the wells. From the 115
small molecule ligands detected in the capillary electrophoresis assay, 80
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compounds inhibited the growth of at least one of five bacterial pathogens
tested.

Compounds that are identified as small molecule ligands in reverse
chemical genetic screens are subsequently assayed against whole cells in
order to probe the function of the protein in question. The advantage of
the chemical genetic screens is that potential binders can be found that
potentially bind to a variety of surfaces of the protein. Thus, binders may
inhibit enzymatic activity of a protein, modulate enzymatic activity of the
protein, or affect protein–protein interactions.

2.7 Orthogonal chemical genetics

Chemical genetics is a term also used to describe the methodology in which
proteins are engineered to alter their substrate selectivity. This allows mod-
ified chemical analogs to be employed that can distinguish the activity
of the protein of interest from other enzymes/proteins in the cell. This
approach has been widely used to investigate the function of kinases us-
ing chemically modified substrates or inhibitors that specifically interact
with the genetically modified kinases. Juris and co-workers [81] identified
otubain 1 as a substrate for the Yersinia protein kinase YpkA by genetically
engineering YpkA to alter its ATP substrate selectivity. YpkA is a virulence
factor in Yersinia spp. that is activated in the host cell resulting in disrup-
tion of the actin cytoskeleton. The only previously identified substrate
of YpkA was actin. The ‘gatekeeper’ residue of YpkA, a conserved bulky
hydrophobic amino acid, was mutated to the smaller amino acids ala-
nine or glycine, thereby allowing binding of analogs of ATP with a bulky
substituent at the N6 position of ATP. Radiolabeled � −32P,N6-phenylethyl
ATP was preferentially utilized by the mutated YpkA, distinguishing its
activity from other cellular kinases. Mutant YpkA phosphorylated actin
as expected, as well as a 36 kDa protein which was identified as otubain
1 by a combination of MALDI-TOF (matrix-assisted laser desorption ion-
ization time-of-flight) and MALDI-PSD (matrix-assisted laser desorption
ionization post source decay) mass spectrometry. This result was further
confirmed by in vitro demonstration of otubain phosphorylation by YpkA
in the presence of actin as well as the interaction of these three proteins
in vivo.
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3 Conclusion: Chemical genetics and drug
development

Advances in both biology and synthetic chemistry have made possible the
examination of large numbers of small molecules and identification of
their molecular targets on a tremendous scale. With the advent of resis-
tance to therapeutic intervention in both bacterial and eukaryotic diseases,
the need for novel targets and ligands has never been greater. Chemical
genetics as a field will, therefore, only continue to evolve as a mainstay in
the process of drug development.
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Proteomic profiling of cellular stresses in Bacillus subtilis reveals cellular networks

Abstract

Proteomic profiling provides a global view of the protein composition of the cell. In
contrast to the static nature of the genome sequence, which provides the blueprint for
all protein-based cellular building blocks, the proteome is highly dynamic. The protein
composition is constantly adjusting to facilitate survival, growth, and reproduction
in an ever-changing environment. In a quest to understand the regulation of cellu-
lar networks in bacteria and the role of individual proteins in the adaptation process,
the proteomic response to stress and starvation was analyzed in wild-type and mutant
strains. The knowledge derived from these proteomic studies was applied to investi-
gating the bacterial response to antibiotics. It was found that proteomics presents a
powerful tool for hypothesis generation regarding antibiotic mechanism of action.

1 Introduction

Bacillus subtilis has long been the Gram-positive model organism for stud-
ies of bacterial physiology. Since it is a non-pathogenic bacterium that lives
in the soil, one may wonder what attributes led B. subtilis to this modest
fame. Besides being easily grown and handled under laboratory conditions
two reasons stand out. First, physiologists were fascinated by the ability of
B. subtilis to survive hostile environmental conditions by producing robust
dormant endospores that germinate when conditions become more favor-
able. Sporulation and germination presented the opportunity to study cell
differentiation in an organism of relatively low complexity (for recent re-
view see [1]). Secondly, B. subtilis was a great organism for functional anal-
yses because it was easily genetically modified due to natural competence –
which enables the cells to take up intact DNA from the growth medium
and incorporate DNA into their own genome via homologous recombina-
tion. Proteomic analyses have been part of physiological and functional
investigations of B. subtilis since the early 1980s and have contributed to
the understanding of the sequential expression of proteins during sporula-
tion [2, 3]. At that time, two-dimensional gel electrophoresis, now consid-
ered the classic platform for proteomic profiling, had only recently been
described by O’Farrell [4] and Klose [5]. It was capable of separating hun-
dreds of proteins with great resolution but comparative analysis relied on
visual inspection of gels or gel images and was therefore qualitative in
nature and hardly comprehensive. Later, proteins were identified using
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N-terminal sequencing or amino acid composition analysis, cumbersome
processes that many times were in vain because no matching protein or
DNA sequence could be found in the sparsely-populated databases.

A series of major developments have caused the landscape of proteomic
profiling to look quite different today: (1) the availability of genomic se-
quences of entire organisms combined with (2) huge progress in the field of
protein mass spectrometry (MS) have enabled the high throughput iden-
tification of proteins from 2D gels; (3) 2D gels can now be run with much
higher reproducibility, and (4) the development of specialized image anal-
ysis software has facilitated the study of large numbers of samples, allowing
statistical analysis of protein expression. ‘Proteomic maps’, annotated gel
images on which identified proteins are labeled, are rapidly established
with these methods and in the case of bacteria cover a high percentage of
transcribed open reading frames. Together with the growing knowledge
on protein function and the mapping of proteins to metabolic and reg-
ulatory pathways these proteome maps provide a good starting point for
comparative analyses that lead to new hypotheses or biological insights.

Comprehensive proteome maps for B. subtilis have been published [6, 7]
that cover about 40% of the open reading frames expressedunder exponen-
tial growth conditions and about 20% of all encoded open reading frames.
Importantly, the majority of proteins belonging to major metabolic path-
ways like citric acid cycle, amino acid or nucleotide metabolism, as well
as transcription elongation and translational apparatus are identified on
standard 2D gels and allow detailed monitoring of vital cellular functions.
In this chapter, we will briefly discuss the relevant methods and then turn
to the important contributions of proteomics to understanding the enor-
mous capacity of bacteria to adapt to changes in their environment and
growth conditions. Proteomic studies have also provided key insights into
the make up of bacterial regulatory networks and functional units and re-
solved their interplay over time. We will further show how the study
of bacterial survival strategies led to practical applications in antibacte-
rial drug discovery, providing insights into compound mechanism of ac-
tion, confidence in safety of compounds, as well as generating hypotheses
around new targets.
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2 The tools of proteomic profiling

The vast majority of proteomic studies in B. subtilis that aimed at answer-
ing physiological questions were performed utilizing pulse labeling with
L-[35S]-methionine to capture ‘snapshots’ of protein synthesis, followed
by two-dimensional gel electrophoresis for protein separation, and mass
spectrometry for protein identification. We will briefly summarize the
principles of these technologies here.

2.1 Pulse labeling experiments

Pulse labeling experiments (Fig. 1) have played a key role in the analysis
of bacterial stress responses. In particular, they enabled the study of phys-
iological changes over time. Profiling of the total accumulated protein of

Figure 1a and b.
Pulse labeling experiments allow comparison of protein amount and protein synthesis. Expo-
sure to chloramphenicol at a concentration of 15 ‹g/ml for 10 min is used here as an example
for proteomic profiling of protein synthesis using pulse labeling with L-[35S]-methionine and
protein amounts using silver staining. (A) Growth curve of B. subtilis. The arrow indicates
the addition of chloramphenicol to the medium. Aliquots of the control culture and chlo-
ramphenicol treated culture are labeled with L-[35S]-methionine for 5 min beginning 10 min
after addition of the antibiotic. Cells are then harvested and lyzed for proteomic profiling.
(B) Total protein is measured by Bradford assay and radioactivity is measured using a scin-
tillation counter. The addition of the protein synthesis inhibitor chloramphenicol leads to a
decrease in protein synthesis rates, which is reflected by the smaller fraction of radio labeled
protein in the antibiotic-treated sample.
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amounts during the
adaptation to stress

Dual
Channel
Images

Figure 1c.
(C) Proteins are separated on 2D gels and stained with silver nitrate. Gels are then dried and
exposed to phosphor screens, which are scanned to generate autoradiographic images. The
overall pattern of the accumulated protein is not changed much between the control and
the chloramphenicol treated cells (top row). When comparing the proteomic profile of the
proteins newly synthesized during the pulse in the control and antibiotic treated samples
(second row) the differences in translation capacity allocation become apparent. The dual
channel images (third row) are overlays of the silver stained gel images (green) and the
autoradiographs (red). These dual channel images allow comparing protein synthesis and
amount. The control sample shows a balance of protein synthesis and amount which is
evidenced by most proteins being yellow, whereas in the chloramphenicol treated sample
most proteins appear green, which means that they are no longer synthesized but still present
in stainable amounts (consistent with protein synthesis inhibition).
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cell cultures under different conditions is not a sensitive enough tool to
analyze the rapid changes occurring in bacterial responses because of the
relatively long in vivo half-life of proteins. Rather than looking at the total
cellular protein, a lot of which comes as a legacy of growth in ‘good times’
it is much more informative to examine changes taking place in the short
transition period during which cells adapt to meet current challenges. This
is achieved by metabolic labeling of newly synthesized proteins with radio-
labeled amino acids for a short period of time (5 min) before cell harvest.
The readout is not unlike that of RNA profiling studies in principle, how-
ever, the relatively long half-life of proteins is in contrast to the snapshot
of RNA profiling that is often dominated by the relative instability of bacte-
rial RNA (the half life of most mRNAs in B. subtilis is less than 5 min under
exponential growth conditions). Dual channel imaging has been devel-
oped and applied in the context of studying the adaptation of B. subtilis to
heat shock and oxidative stress [8]. This very intuitive graphical tool aligns
the autoradiograph of a 2D gel depicting only newly synthesized proteins
with the image of the stained gel showing the total accumulated protein,
thereby directly visualizing changes in the relative rates of specific protein
synthesis. The image of the autoradiograph is assigned the false-color red
and the image of the stained gel is colored green. Proteins synthesized in
higher amounts in response to an imposed change in growth conditions
stand out in bright red while proteins whose synthesis is downregulated
appear green. The magnitude of the change in synthesis rates can also
be quantified using image analysis software. Where protein amount and
synthesis are balanced, the protein spots appear yellow. Under exponen-
tial growth conditions this is the case for most protein spots. However,
when the cells are adapting to changes in their environment they shift
protein production predominantly to those proteins that are vital to the
adaptive response to the stress imposed. At the same time cells often stop
producing proteins that are not required any longer in non-growing cells
to avoid wasting nutrients. The majority of the downregulated proteins
remain abundant, and are often still present at levels sufficient to continue
to fulfill their cellular function. This aspect of the stress response cannot
be monitored on the mRNA level.
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2.2 2D gel electrophoresis and mass spectrometry

Two-dimensional gel electrophoresis, first developed in 1975, is still the
major workhorse in comparative proteomic profiling analysis. Complex
protein mixtures like cell lysates are separated into individual protein com-
ponents based on two physicochemical properties, the isoelectric point
(first dimension) and molecular weight (second dimension). Isoelectric
points are a function of the globular structure of proteins and are per-
formed under mostly native conditions. The isoelectric focusing for the
experiments described in this chapter was for the most part performed in
immobilized pH gradient gel (IPG) strips [8]. After the isoelectric focusing
protein disulfides are reduced and alkylated in situ in separate steps be-
fore the plastic-backed gel is placed onto a large denaturing SDS-PAGE gel
for the second electrophoresis step. Unfortunately, these separation tech-
niques do not extend well to membrane proteins, primarily because of the
difficulties of maintaining native structure for the isoelectric focusing step
(denatured proteins migrate primarily as a function of their amino acid
composition) which is an important limitation of proteomic approaches.
Over the years visualization methods have also evolved. Coomassie Bril-
liant Blue G-250 and silver stains have gradually been supplemented by
the sensitive and more quantitative fluorescence-based Sypro Ruby stain.
Likewise, different methods have been used for analysis. As image anal-
ysis software tools improved in accuracy and speed the visual inspection
of hundreds of protein spots across many gel images was mostly replaced
by automated quantitative analysis (although it is fair to say that a good
amount of time is still spent on visual quality control). Protein spots of in-
terest are excised from the 2D gel for mass spectrometric analysis. Peptide
mass fingerprinting (PMF) provides high-throughput protein identifica-
tion [9]. Peptide masses detected in a tryptic digest of an isolated protein
spot are compared to a database containing peptide masses of all proteins
predicted by in silico calculation based on the genome sequence. In cases
where PMF is not conclusive peptides can be analyzed by tandem mass
spectrometry [10], which provides partial amino acid sequence informa-
tion and is similarly interpreted through searches against a database.
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3 Proteomic contributions to understanding bacterial
physiology

Proteomics has greatly contributed to our knowledge of physiological adap-
tive responses. The following sections will describe what we have learned
about the major proteins and pathways in adaptation processes, how they
are connected and how they are regulated.

3.1 Uncovering stimulons, regulons, and proteomic signatures

During exponential growth bacterial cells produce and turn over proteins
maintaining a steady state that supports regular cell growth and division.
Experiments that disturb this steady state force the cells to respond to the
perturbation by adjusting their protein composition in order to overcome
the challenge and survive. By exposing cells to a variety of metabolic in-
sults, regulatory processes are exposed, revealing key protein components
whose concentrations are adjusted to facilitate successful adaptation. Any
particular factor chosen to disturb the system is referred to as stimulus.

Proteomic experiments first addressed those stimuli that B. subtilis is
likely to routinely encounter in its natural environment such as heat shock,
salt stress, oxidative stress, oxygen, amino acid, or glucose limitation
[2, 8, 11–13]. Adaptation to glucose limitation [13] is a practical exam-
ple of how the proteomic response can be monitored over time. Pulse
labeling was performed as a function of time, beginning with a control
time point reflecting the steady state of exponential growth phase and dif-
ferent time points along the course of adaptation. At each time point a
fraction of the culture was labeled with L-[35S]-methionine for 5 min pro-
viding insight into which proteins are synthesized at any given point in
the process. These snapshots put together in sequence provide a ‘time-
lapse movie’ showing which components of the proteome come into play
at particular stages of adaptation. Any component that is either upregu-
lated or downregulated in response to the disturbance of the steady state
is part of the stimulon – the total of all changes induced by a stimulus.

Bacteria are extremely fast responders. Within minutes the protein ex-
pression pattern can change completely if the stimulus warrants dramatic
changes, leaving no group of proteins untouched. In the case of heat
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Figure 2.
Elucidation of stimulons and regulons using proteomics. All proteins that are differentially
produced in response to a particular change in conditions (stimulus) form a stimulon. The
upregulation and downregulation of proteins can be identified on 2D gels. Often times
multiple regulators are involved in orchestrating the cellular response to a stimulus, each
one controlling those proteins that belong to its regulon. The protein profile of knock out
mutants lacking a critical regulator can be compared to the wild type to identify the members
of the regulon.

shock and glucose limitation, expression rates of the majority of proteins
are either upregulated or downregulated [8, 13]. Mutant analyses are a
useful tool to analyze how these changes are orchestrated. Performing
the same stress or nutrient limitation experiment with mutants that lack
crucial regulators like transcription factors, repressors, or alternative sigma
factors reveal which proteins are coordinated by a regulator under the con-
ditions tested (Fig. 2). Heat shock experiments revealed that at least four
different regulators are involved in coordinating a large number of heat
shock responsive proteins in B. subtilis: for example, the repressor HrcA
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which binds to the controlling inverted repeat of chaperone expression
(CIRCE) element [14], the alternative sigma factor SigB [15], the repressor
CtsR [16, 17], and the two-component system CssR/S [18]. Each regulator
controls a specific set of proteins referred to as a regulon. Interestingly,
many regulators react in response to more than one stimulus and there-
fore the proteins controlled by them are part of more than one stimulon.
Proteins can also be regulated by more than one regulator and therefore be
part of more than one regulon. The clpC operon is a prototypical example
of an operon under dual control. Upon heat shock it is transcribed from
a SigB-dependent promoter, but a SigA-dependent promoter can compen-
sate in a sigB mutant exposed to heat shock. This promoter, recognized
by the house-keeping sigma factor SigA, is responsible for clpC induction
upon hydrogen peroxide stress or puromycin treatment in the wild-type
[19]. It is evident that the adaptational networks are of considerable com-
plexity. In addition to different regulators acting in parallel there are also
regulators that are activated in sequence. Glucose limitation is an excel-
lent example of sequential regulation [13]. In the transient phase, at the
onset of glucose limitation, the cells respond by inducing a set of pro-
teins known as SigB-dependent general stress proteins, which are thought
to protect the cell from future damage [20, 21]. Cells then activate the
stringent response, shutting down many house-keeping proteins in order
to conserve metabolites in nutrient-limited conditions. This response is
initiated by the alarmone guanosine tetraphosphate (ppGpp) and leads
to downregulation of the translational machinery, proteins involved in
amino acid synthesis and other vegetative proteins [22]. At the same time,
cells express proteins that help them access alternative carbon sources,
which in the presence of glucose are repressed by CcpA. In parallel, at least
some cells seem to initiate sporulation in a Spo0A-dependent fashion. This
protein expression profiling experiment of glucose-starved cells was sup-
plemented by mRNA profiling confirming most of the protein data [23].
This transcriptional analysis, however, did not reveal those proteins whose
synthesis has been switched off in glucose-starved cells but that were still
present and probably still active.
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3.2 Revealing complex responses

In analyzing a variety of different stress factors and growth conditions it
was recognized that regulons and subsets of regulons could be simulta-
neously part of the response to a variety of stimuli. In analyzing the re-
sponse to cold and heat shock in Escherichia coli as well as treatment with
antibiotics that inhibit translation, Van Bogelen and Neidhardt [24] found
that there was overlap between the response to cold shock and the treat-
ment with erythromycin and chloramphenicol, antibiotics that target the
peptidyl-transferase step in translation, whereas the response to heat shock
had many responder proteins in common with those inhibitors causing
mistranslation. This led to the introduction of the term proteomic sig-
natures, which consist of one or more proteins that are diagnostic of a
physiological condition [25]. As we will see later, particularly the concept
of proteomic signatures has greatly benefited the mechanism of action
studies for novel drugs. Thus, certain antibiotics result in a proteomic sig-
nature identical to the cold shock-like response by virtue of their ability to
upregulate proteins of the translation apparatus. This suggests that trans-
lational capacity is the limiting factor for cell growth at cold temperatures
as well as when peptidyl-transferase is inhibited. On the other hand, the
induction of chaperone systems like GroES/GroEL is an indication of an
increase in the number of misfolded proteins in the cell which occurs upon
heat shock and treatment with aminoglycosides. In addition to proteomic
signatures that consist of upregulated or downregulated proteins, 2D gel-
based proteomics can also reveal direct effects of stimuli if they modify
or damage proteins. Oxidative stress is a good example: several regulons
are induced in response to hydrogen peroxide, paraquat, and/or diamide
(PerR, Fur, CtsR, OhrR) serving as indicators for oxidative damage [26, 27].
An additional change reveals direct evidence of alteration of several pro-
teins particularly sensitive to oxidative damage, because protein migration
patterns are altered if cysteines are oxidised to sulfonic acid resulting in
migration at a more acidic pI. With different labeling strategies non-native
disulfide bonds formed as a result of protein oxidation can also be visual-
ized on 2D gels [28, 29]. Attempts have also been made at deciphering the
S-nitrosoproteome of organisms. Nitrosylation of proteins can be rapid
and reversible and often occurs by formation of S-nitrosothiols of cysteine
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residues. S-nitrosothiols decompose in the presence of thiols and reduced
metal cations and determining the extent of S-nitrosylation can be diffi-
cult. One method for stabilizing these groups involves firstly blocking thi-
ols with a rapidly acting thiol-reactive agent, reduction of S-nitrosothiols
with subsequent labeling of the resulting thiol groups with a fluorescent or
biotinylated methanethiosulfonate derivative [30]. The nitrosoproteome
of Mycobacterium tuberculosis that results from exposure of the organism to
nitric oxide was established as a way of identifying the vulnerable targets
of this antimicrobial [31]. The nitrosoproteins identified were all enzymes,
many of them essential, and could indicate their potential as drug targets.
The phosphoproteome of B. subtilis has also been established as a means
of probing dynamic metabolic processes in bacterial cells [32].

4 Proteomics in antibacterial drug discovery

The proteomic analysis of bacterial response to stress demonstrates that
the expression pattern is exquisitely fine-tuned and provides a very sensi-
tive monitor of environmental changes. Approaches in antibacterial drug
discovery are changing. For decades the discovery of novel antibacterial
agents began with the observation that bacterial growth was inhibited by
a compound in vivo and/or in a host. Subsequent efforts to elucidate the
mechanism of action often took many years, during which compounds
were often already in use to treat patients. Since the mid 1990s, with the
availability of entire bacterial genome sequences, this approach was mostly
replaced by rational drug discovery. Drug targets were picked based on
essentiality of a gene and evolutionary conservation of the target across
species yet evolutionary divergence from potential host homologs [33, 34].
High throughput in vitro assays are designed to search for specific inhibitors
of these ‘golden targets’. Out of thousands of compounds screened, the
few compounds that successfully inhibited the target were tested for an-
tibacterial activity in vivo.

Proteomics can make contributions to both general approaches to an-
tibacterial discovery programs. When antibacterial activity is observed
but the mechanism of action is not known, proteomic profiles can re-
veal the mechanism of action by comparison to inhibitors with known
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mechanism of action. Even when no reference compound with match-
ing profile is available, marker proteins and proteomic signatures can be
used to interpret the physiological changes invoked by the compound.
This may very well lead to testable hypotheses about the mechanism of
action. If compounds found in an in vitro assay are tested for antibacterial
activity, proteomic profiles can be used to confirm that this same target is
affected during treatment of whole cells with the inhibitor. Protein pro-
files of conditional mutants of the target gene will generally resemble the
protein profile of the inhibitor. Protein profiling can additionally identify
compounds that have undesired effects by comparing compound profiles
to profiles of agents that exhibit general toxicity. RNA profiling can con-
tribute in a similar way to mechanism of action studies [34, 35].

The best time point for antibiotic proteomic profiling is typically early
exponential growth phase. Cells have ample nutrients and are in a steady
state of regular division where the protein pattern is quite stable. In this
growth phase cells have the greatest ability to respond to stress imposed on
them because neither energy nor nutrients limit their ability to respond.

4.1 Reference compendium

A reference compendium of protein profiles contains annotated protein
profiles that visualize differences and provide quantitation of the changes
in protein expression compared to control conditions [36, 37]. It is most
helpful when these changes can be related to the knowledge about the
physiological state of the cells. The power of a reference compendium
depends on the diversity of conditions and treatments represented in the
database. Ideally, the database will contain groups of protein profiles corre-
sponding to a number of similar stimuli, for instance structurally different
inhibitors of the same molecular target or inhibitors that target different
steps in a metabolic pathway, so that protein signatures or marker pro-
teins can be defined for particular physiological conditions. The largest
and most diverse compendium to date has been published for B. subtilis
[38]. It contains the protein profiles for 30 different agents with antimi-
crobial activity, some of which are antibiotics with established as well as
unknown mechanisms of action, others are general cytotoxic agents such
as detergents and DNA intercalators which in themselves have no value

92



Proteomic profiling of cellular stresses in Bacillus subtilis reveals cellular networks

as drugs due to universal toxicity, but which serve to define the metabolic
pathways that are activated after defined cellular insults. Furthermore,
the reference compendium contains protein profiles of a conditional mu-
tant that provide proof of concept for the regulation of particular proteins
in response to certain stresses [39]. Profiles of compounds with unknown
mechanism of action stemming from antibacterial research programs were
compared to the reference profiles [38, 40, 41] and are now included. Large
numbers of well-characterized physiological conditions in the reference
compendium increase the chances of finding a match for compounds with
unknown mechanism. A reference compendium that includes profiles for
all essential gene products would be very helpful in assigning mechanisms
of action to novel antimicrobial agents.

4.2 Stress response studies give insight into mechanisms of
drug action

The extensive study of the responses of B. subtilis to different stress con-
ditions provided important insights into the structures of bacterial adap-
tation networks and therefore was an invaluable prerequisite for the an-
tibiotic studies. Beyond the general understanding of regulatory networks
specific aspects discovered in these initial experiments benefited the in-
terpretation of drug response analyses. Antibiotic exposure is not unlike
exposure to other life threatening stress factors and the resulting adapta-
tional responses evolved securing a competitive advantage in the environ-
ment. Protein signatures established for different physiological conditions
can prove very useful in the interpretation of antibiotic protein profiles.
Cells treated with a novel inhibitor of phenylalanyl-tRNA synthetase for
example showed a proteomic signature known to be characteristic for the
stringent response [41] – a mechanism triggered by uncharged tRNAs oc-
cupying the A-site of the ribosome. The stringent response is mediated by
ppGpp synthesis that results in subsequent shut-down of protein synthe-
sis and other growth-oriented activities like expression of ribosomal pro-
teins and is therefore metabolically similar to aminoacyl-tRNA synthetase
inhibition. Additionally, the protein profile was highly similar to that
elicited by Mupirocin – a known inhibitor of isoleucyl-tRNA synthetase –
with the important difference that the phenylalanyl-tRNA synthetase in-
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hibitor induced the targeted phenylalanyl tRNA synthetase instead of the
isoleucyl-tRNA synthetase.

4.3 Novel compound classes with unknown mechanisms
of action

A novel pyrimidinone compound, BAY 50-2369, which was structurally
related to a natural compound TAN 1057 A/B, was discovered to have an-
tibacterial activity but the mechanism of action was unknown. The protein
profile of B. subtilis after treatment with this compound was highly sim-
ilar to that of erythromycin, chloramphenicol, tetracycline, and fusidic
acid – all compounds known to directly or indirectly inhibit peptidyl-
transferase activity. Protein synthesis inhibitors are strongly represented
in the reference compendium. Based on their protein profiles and sig-
natures in B. subtilis they can be sorted into three distinct groups: (1)
those that interfere directly or indirectly with peptidyl-transferase activity
(erythromycin, chloramphenicol, tetracycline, fusidic acid), (2) those that
cause mis-translation and, as a result, incorrectly folded proteins (amino-
glycosides), and (3) those that lead to abortive translation (puromycin).
Based on the similarity of the proteomic profile of Bay 50-2369 to that of in-
hibitors of peptidyl-transferase activity, the mechanism of action could be
narrowed down rapidly [38] (Fig. 3). In independent experiments peptidyl-
transferase was confirmed as the target for TAN 1057 A/B [42].

4.4 Proteomic analysis of conditional mutants – a powerful
tool for target validation

Essential genes hold valuable promise as targets for antibiotics since dis-
ruption of essential functions should inhibit bacterial growth. Several po-
tential new targets have been identified based on essentiality and the ab-
sence of close homologs in humans, whose inhibition could potentially
cause cessation of bacterial growth. To analyze cells that lack essential
gene functions, conditional mutants have to be generated that are able
to grow under permissive conditions, while providing the possibility to
tightly downregulate the expression of the essential gene. While com-
plicated to construct and often unstable, these mutants provide excellent
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Figure 3.
Reference compendium. Comparing protein profiles of novel compounds to the reference
compendium can generate hypotheses about the mechanism of action. The example shows
how the mechanism of action of Bay 50-2369 was identified.

tools to study changes in the protein profile upon limitation of an essen-
tial gene function. The change in the protein profile is very similar to
that of cells in which the same cellular function is inhibited by a small
molecule inhibitor. This was shown in a proof of concept study, which
compared protein profiles of a conditional B. subtilis deformylase mutant
and the protein profiles of wild-type B. subtilis treated with the deformy-
lase inhibitor actinonin [39]. Regardless of whether deformylase function
was impaired genetically or by the inhibitor, the protein profiles revealed
the same dramatic changes in the protein expression pattern. New protein
spots with slightly more acidic pIs appeared next to existing protein spots.
These pI shifts of newly synthesized proteins are caused by the uncleaved
formyl-residue that masks the N-termini of proteins.

Conditional mutants have been used for proof of concept studies to ver-
ify that downregulation of the gene has the desired effect of ceasing bac-
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terial growth [43]. Protein profiles of these conditional mutants greatly
enhance the value of the reference compendium, as they provide a ref-
erence profile for inhibition of targets for which inhibitors have not yet
been identified. Compounds that are identified in in vitro target inhibition
screening and show inhibition of growth can be tested in proteomic profil-
ing experiments to confirm the in vivo mechanism of action by comparison
to the reference profile.

4.5 Identification of potential safety issues

In some cases proteomics can reveal potential issues that are related to
safety profiles of compounds. For instance, the reference compendium
contains chemicals that are known DNA-damaging agents. Marker pro-
teins for DNA damage include RecA, a regulatory protein involved in the
DNA repair process. In B. subtilis the expression of prophage PBSX is RecA-
dependent and the prophage proteins are induced upon treatment with
DNA-damaging reagents mitomycin C and 4-nitroquinoline-1-oxide [38].
If these proteins are induced they warrant scrutiny in investigating the
potential of the tested compounds being DNA-damaging and thus their
suitability as anti-infectives. However, agents that result in DNA damage
are not necessarily poor drug candidates since inhibition of specific pro-
teins involved in maintenance of DNA metabolism may also result in a
profile indicative of DNA repair. This is seen in the upregulation of the
RecA-dependent SOS regulon during treatment of bacteria with fluoro-
quinolones [44] as a result of double-stranded DNA breaks introduced in
the chromosome by topoisomerase inhibition. Protein signatures contain-
ing proteins that serve as markers for interference with membrane integrity
are currently being characterized. Compounds in this class of inhibitors
span a range of mechanisms of action: agents such as gramicidin A that
result in the formation of ion channel for monovalent cations, agents
such as gramicidin S that cause membrane depolarization, molecules such
as monensin that complex of Group IA and IIA metal cations and inter-
fere with their transport across the membrane, valinomycin which creates
potassium channels across the phospholipid bilayer and detergents such as
Triton X-100. Interestingly, the profiles of the tested compounds are very
dissimilar [38]. The variety of responses elicited by these various mem-
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brane function disruptive agents indicates that B. subtilis has evolved to
respond specifically to mechanistically different challenges of membrane
integrity. This suggests that different sensory and response mechanisms
exist in B. subtilis to counteract the loss of critical functions of the cell
membrane. To date, not enough membrane-targeting inhibitors have been
tested to link specific proteomic signatures to the impairment of particular
physiological membrane functions.

4.6 New targets – a rare proteomics contribution

When the genome sequencing projects were first launched, it was antici-
pated that global profiling methods would reveal new targets. The cross-
species comparison of essential bacterial genes on the DNA level has led
to the identification of potential antibacterial targets that were not yet
exploited [33]. Proteomics has traditionally not been used in identifying
new potential targets since protein expression profiles reveal the cellular
response to a stimulus rather than the actual target. However, recently
an example of proteomics aiding new target identification has been de-
scribed [40]. The mechanism of action of a novel class of bactericidal
compounds, the acyldepsipeptides, was investigated using two different
approaches: proteomic profiling and the mapping of mutations in resis-
tant mutants utilizing a genomic plasmid library. The proteomic profile
did not match any of the previously obtained profiles. The protein ex-
pression profile elicited by the acyldepsipeptides was characterized by the
accumulation of the degradation products of GroEL, DnaK, Tig, and EF-Tu
in new protein spots on the gel as well as the induction of ClpP. The induc-
tion of these proteins is consistent with the presence of protein degrada-
tion products or misfolded proteins in the cell as has been observed during
treatment with aminoglycosides. However, accumulation of specific pro-
tein fragments was not observed with aminoglycosides, indicating that
this presented a new proteomic signature. The hypothesis generated from
these profiling experiments was that the compound activates a protease
that induced the degradation of the proteins of which the degradation
products were observed and, in turn, that the protein fragments induced
the production of the Clp protease and chaperones. This hypothesis was
tested and confirmed by transforming the sensitive parental strain with a
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genomic library created from resistant mutants, which revealed that ClpP
was the target of acyldepsipeptides. These studies were extended by subse-
quent binding studies between the protease and the acyldepsipeptides and
protein activity measurements. Acyldepsipeptides initiate a catastrophic
cycle in which newly synthesized proteins are vulnerable to degradation
by the deregulated protease. This provides an example of how proteomics
can shed light on the mode of action of unknown drugs leading to the
generation of testable hypotheses. Interestingly, unlike most drugs which
inhibit a specific target, the acyldepsipeptides perturb the balance of the
cellular system by activating the ClpP protease, a function that is usu-
ally tightly controlled, and uncoupling ClpP activity from auxiliary pro-
teins that normally function as regulatory safeguards. This highlights the
value of proteomics in elucidating mechanistically and conceptually novel
mechanisms of action of new anti-infectives.
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Elucidating the mode-of-action of compounds from metabolite profiling studies

Abstract

Metabolite profiling has been carried out for decades and is as such not a new research
area. However, the field has attracted increasing attention in the last couple of years, and
the term metabolome is now often used to describe the complete pool of metabolites
associated with an organism at any given time. Mass spectrometry (MS) and nuclear
magnetic resonance (NMR) spectroscopy are the best candidates for comprehensive
analysis of the metabolome and the application of these technologies is presented in this
chapter. In this relation, the importance of efficient metabolite screening for discovery
of novel drugs is discussed. Related to metabolite profiling, the principals underlying
the application of labeled substrates to quantify in vivo metabolic fluxes are introduced,
and the chapter is concluded by discussing the perspectives of metabolite measurements
in systems biology.

Keywords: drug discovery, metabolite profiling, fingerprinting, MS, CE-MS GC-MS,
LC-MS, flux analysis, systems biology, metabolite analysis

1 Introduction

Although metabolite profiling studies have been carried out for decades
they have recently attracted increased attention as a tool in functional
genomics and systems biology [1–6], and the term metabolome has been
coined to described the complete pool of cellular metabolites. The metab-
olome is the concentration of all low molecular weight metabolites under
specified conditions by analogy to the use of the terms genome, transcrip-
tome and proteome, and was first mentioned in the literature in 1998 [7,
8]. A major component of the metabolome (the primary metabolites in
central metabolism) is conserved across species which makes it possible
to develop generic analytical techniques that can be applied uniformly, in
contrast to the situation for genes, transcripts and proteins that are species-
specific. The metabolome can be further divided into the endo- and the
exo-metabolome that cover the metabolites inside and outside the cell,
respectively, although obviously some metabolites are present in both the
endo- and the exo-metabolome since they are transported across the cell
membrane.

Metabolite profiles are the signature of physiological states. The central
dogma in biology hierarchically links genes, transcripts and proteins, but
metabolites cannot be simply characterized as a direct product of proteins.
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However, proteins catalyze the conversion of metabolites and the catalytic
activity of enzymes is a prerequisite for most metabolic reactions. Metabo-
lites are therefore indirectly a downstream consequence of patterns of gene
expression [9, 10]. Metabolites are also the intermediates of biochemical
reactions that form metabolic pathways. These pathways are highly in-
terconnected and constitute a metabolic network that serves many differ-
ent functions in a living cell. Metabolite concentrations are determined
by the kinetics of the different enzymes that produce and consume the
metabolite, hence the metabolite concentrations are indirectly influenced
by gene transcription, mRNA translation and stability, protein–DNA in-
teractions, protein–protein interactions, post-translational modifications
etc. Metabolite concentrations therefore provide dynamic and integrative
information on the many different processes operating in a living cell, and
are therefore very likely to be direct indicators of developmental, genetic
and environmental changes, which to some degree is complementary to
the genetic information [7, 11–13]. The mode-of-action of small molecule
enzyme inhibitors is also theoretically directly reflected in the metabolite
profiles [13, 14] and an analysis of extracellular metabolite profiles from
biofluids or fermentation broths has the potential of providing reporters
of mode-of-action [15, 16]. Adaptive changes in metabolism often are ac-
cumulated outside the cells and the effects will be amplified as a function
of time.

In this chapter we will present some of the current analytical techniques
for metabolite profiling and discuss the potential of metabolite profiling
in the context of identification of novel anti-infectives and systems biol-
ogy with a special emphasis on metabolite profiling of microorganisms.
Metabolite analysis contributes to various research fields, but the type of
data sought depends on the actual application. Table 1 lists examples of
application of metabolite data.

2 Microbial metabolite profiling

In principle, metabolite profiling includes the chemical analysis of a broad
range of molecules. A metabolite profiling strategy typically consists of an
analytical method that – although it might be directed towards certain
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Table 1.
Examples of application of metabolite data and the metabolite analysis strategy supporting
this application

Application Metabolite Analysis Strategy
Classification Comprehensive (and qualitative) metabolite profiling
Drug discovery Comprehensive and qualitative metabolite profiling
Pathogenicity Specific and targeted analysis of a limited number of metabolites
Systems biology Quantitative analysis of (primary) metabolites

chemical classes of molecules – covers detection of both known and un-
known molecules. The ideal metabolite profiling method would cover the
whole metabolome; but the distinct physical and chemical properties of
metabolites make a joint analysis of all of them difficult (or perhaps even
impossible). It is therefore most likely that an array of analytical tech-
niques will be required to cover the whole metabolome, with the detection
methods requiring a very wide dynamic range since specific metabolite
concentrations typically cover nine orders of magnitude (mM – pM) [17].

Several different definitions of metabolite analysis strategies have been
suggested in the literature [17–20] and to avoid misunderstandings we have
outlined the definitions used in this chapter in Table 2. Whereas metabo-
lite profiling typically includes qualitative and even quantitative identifi-

Table 2.
Overview of definitions used in relation to metabolite analysis

Term Definition

Metabolite profiling Chemical analysis of several metabolites aiming at identifica-
tion and quantification

Metabolite fingerprinting Metabolic signature of intracellular metabolites

Metabolite footprinting Metabolic signature of extracellular metabolites

Metabolome The metabolome is the comprehensive set of low-
molecular-weight molecules (metabolites) associated with
an organism at any given time. The metabolome com-
prises the endometabolome (intracellular metabolites) and
the exometabolome (extracellular metabolites)

Metabolomics Application and integration of metabolite data in a genomics
context [20] e.g., functional genomics, metabolic engineer-
ing or systems biology
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cation of metabolites, metabolic fingerprinting [11] and footprinting [12,
16] are metabolite analysis strategies that return a metabolic signature as
a qualitative view of the intracellular or extracellular metabolites, respec-
tively. As such, identification of the chemical structure of each metabolite
is not required, and these techniques are typically fast and capable of being
automated, which makes them well suited for screening.

Sample preparation is a critical issue whenever one is dealing with
metabolite profiling, but beyond the scope of the chapter hence we re-
fer to the literature for more details on this issue [21–24]. Our main focus
will be on mass spectrometry (MS) and nuclear magnetic resonance (NMR)
spectroscopy, since these are very likely to be the leading techniques for
metabolite profiling in the future. Table 3 compares MS- and NMR-based
methods and outlines the respective advantages and disadvantages for the

Table 3.
Comparison of specific metabolite profiling techniques

Technique (+) Advantages
(−) Drawbacks

Reference

Direct infusion
MS

(+) Fast
(+) High sensitivity
(−) Matrix effects

Smedsgaard et al. (2004)
[28]
Castrillo et al. (2003) [92]

GC-MS (+) High resolution
(+) Spectral libraries available
(−) Derivatization usually required

Strelkov et al. (2004) [42]

LC-MS (+) Complement GC-MS
(−) Matrix effects, but less than direct
infusion MS

Wu et al. (2005) [54]

CE-MS (+) High resolution
(−) Complex setup

Soga et al. (2003) [59]

NMR (+) Unbiased
(−) Limited sensitivity
(−) Limited resolution

Raamsdonk et al. (2001)
[11]

LC-NMR-MS (+) Combination of comprehensive
and complementary techniques
(−) Slow

—

References are selected from a microbial point of view
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two techniques. A more detailed description of the technologies is pre-
sented in the following sections.

2.1 Mass spectrometry

MS has more or less been the driving force for development of metabolom-
ics, especially because it allows high sensitivity and selectivity [19, 25].
Any technology related to MS relies on measuring the mass-to-charge ra-
tio of ions and there are several mass analyzer technologies available for
acquiring mass spectra. In Table 4 the four most common technologies
are described. The quadrupole mass analyzer is the most popular mainly
because it is robust and fairly cheap. The time-of-flight (TOF) instruments
have been widely applied for protein analysis, but lately they have also
been used for metabolite profiling. These instruments have become more
and more popular due to the development of detection systems giving
higher mass resolution and better mass accuracy.

2.1.1 Direct infusion MS

The introduction of atmospheric pressure ionization (API) techniques in
the late 1980s revolutionized mass spectrometric analysis of biomolecules
by enabling an easy coupling of MS to liquid chromatography. The most
popular API technique is electrospray ionization (ESI) that allows analysis
of polar molecules up to several thousand Daltons.

Direct infusion MS is carried out by injecting the sample directly into
the ion source without any prior separation. This allows the determination
of a signature of the masses of molecules present in the sample. Typically
the analysis time is 2–3 min and direct infusion MS is well-suited for high-
throughput screening. The data is compact and the acquisition is fast,
but one should be aware of matrix effects that might reduce the signal for
some compounds, as they loose the ‘battle’ for charges in the ESI process
(see more about matrix effects in the section about liquid chromatogra-
phy MS). Nevertheless, direct infusion MS is powerful for screening. For
ESI molecular ionization is typically obtained by protonation [M + H]+ or
deprotonation [M − H]−, but adduct formation with e.g., Na+, NH4

+ and
Cl− is also common. When more complex molecules are analyzed, solvent
adducts also appear, e.g., [M + H2O + H]+ and [M + CH3OH + H]+, and more
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Table 4.
Description of common mass spectrometry (MS) technologies in relation to metabolites
profiling

MS Technology Description

Quadrupole (Q) The quadrupole functions as a mass filter that only allows pas-
sage to the detector of ions with a set mass-to-chargeratio. The
quadrupole can be operated in single ion monitoring mode for
a specific mass or scan mode to acquire a mass spectrum. The
quadrupole is constructed by four metal rods on which an os-
cillating and a constant potential is applied to control the trans-
mission of ions. The quadrupole is a low resolution detector
and the accuracy of mass is within unit mass.

Ion-trap (TRAP) The ion-trap operates by trapping the ions and sequentially
ejecting them to the detector where they are counted. Addi-
tionally, the ion-trap enables fragmentation experiments that
are useful for determining structures or for increased specificity.
Theoretically there are no limitations on the number of frag-
mentations one can perform, thus MSn is possible. Similarly
to the quadrupole the ion-trap normally returns masses within
unit mass.

Time-of-flight (TOF) The ions are accelerated through an electrical field to obtain
the same kinetic energy of E = 1/2 (m/z)v2 . The ions then pass
through an evacuated flight tube of constant length (s) and the
time of flight (t) is measured. From the flight time the mass-
to-charge (m/z) is easily calculated, since v = s/t. The TOF
technology returns high-resolution data and mass accuracies
around 5 ppm can be obtained.

Fourier transform ion
cyclotron resonance
(FTICR)

FTICR is one of the more recent technologies for MS. The heart
of a FTICR MS is a trapping cell located in a magnetic field.
The ions are excited and will move in a circular orbit with a
specific frequency that is determined by the mass, charge and
velocity. The frequency signal is Fourier transformed and used
to deduce the mass spectrum. FTICR is superior when it comes
to resolution and accuracy, and masses can be determined with
< 1 ppm error.

Hyphenated
technologies

Combination of the above mentioned technologies expands
the MS capabilities. Triple quadrupole detectors are suited for
tandem MS and allow high sensitivity for trace analysis. The
Q-TOF also enables tandem MS and accurate masses is ob-
tained. These are just two examples of hyphenated technolo-
gies.
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complex ions like [2M + H]+ and [M − H + 2Na]+ are frequently observed.
For larger molecules like peptides and proteins multiply charged ions [M
+ nH]n+ are also very common.

Direct infusion MS has been successfully used in several different classi-
fication studies. Smedsgaard and co-workers [26–29] have used direct infu-
sion MS to profile secondary metabolites from filamentous fungi in relation
to chemotaxonomy, allowing the classification of closely-related species of
Penicillium. From the mass spectra several secondary metabolites could be
identified based on their mass and isotope patterns. Similarly, direct in-
fusion MS was used for identification of bacteria by analysis of crude cell
extracts [30]. Here, five bacterial strains were studied and the predominant
biomarkers from the analysis were found to be phospholipids, glycolipids
and proteins. Application of high resolution mass spectrometers (Table 4),
e.g., Time of Flight (TOF) or Fourier Transform Ion Cyclotron Resonance
instruments, can further increase the chemical information from direct
infusion MS, since they make it possible to determine the accurate mass
of compounds. Here compositionally different compounds that have the
same unit mass can be separated on the mass scale, e.g., lysine (C6H14N2O2;
M = 146.1055 Da) and glutamine (C5H10N2O3; M = 146.0691 Da), and from
the accurate mass measurement the elemental composition can be directly
computed [29, 31, 32].

Figure 1 shows a mass spectrum resulting from direct infusion of a syn-
thetic fermentation medium into a mass spectrometer via ESI. The spec-
trum was acquired on a high-resolution TOF instrument and from the
accurate mass data it was possible to confirm the identity of numerous
metabolites from the medium. Table 5 lists the metabolites with their
respective masses. Although several ions are identified in the mass spec-
trum, there are still a considerable number of ions that remain unknown.
These might arise from solvent clusters, unpredicted ion clusters, ion frag-
mentation, redox reactions during ESI etc. The calculated errors are all
within positive 10 mDa, which demonstrates the power of accurate mass
spectrometry and reduces the molecular search space remarkably. Another
observation is that the error is positive for all identified ions, which might
indicate that there is a small off-set in the calibration since the mean error
of 6.8 (± 1.2) mDa is different from zero.
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Figure 1.
Direct infusion MS of a synthetic fermentation medium. The spectrum is acquired on a
high-resolution TOF instrument.

Table 5.
Identified ions from direct infusion MS of a fermentation medium

Metabolite Ion Observed Mass Calculated Mass Error

Serine [M + H]+ 106.0550 Da 106.0504 Da 5.5 mDa

Cytosine [M + H]+ 112.0567 Da 112.0511 Da 5.6 mDa

Valine [M + H]+ 118.0927 Da 118.0868 Da 5.9 mDa

Threonine [M + H]+ 120.0726 Da 120.0660 Da 6.6 mDa

Leucine [M + H]+ 132.1089 Da 132.1024 Da 6.5 mDa

Aspartic acid [M + H]+ 134.0511 Da 134.0453 Da 5.8 mDa

Lysine [M + H]+ 147.1203 Da 147.1133 Da 7.0 mDa

Glutamic acid [M + H]+ 148.0679 Da 148.0610 Da 6.9 mDa

Methionine [M + H]+ 150.0658 Da 150.0588 Da 7.0 mDa

Histidine [M + H]+ 156.0838 Da 156.0773 Da 6.5 mDa

Arginine [M + H]+ 175.1269 Da 175.1195 Da 7.4 mDa

Tryptophane [M + H]+

[M + Na]+
205.1071 Da
227.0884 Da

205.0977 Da
227.0797 Da

9.4 mDa
8.7 mDa
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In a functional genomic context Allen et al. [12] analyzed the extra-
cellular metabolite profiles of single knockout strains of the yeast Saccha-
romyces cerevisiae by direct infusion MS. The results proved that mutants
with related genotypes express similar extracellular metabolite profiles and
that this method was thus applicable for assignment of gene functions
through guilt-by-association. Expanding this strategy, it was demonstrated
that metabolic footprinting also can be used to determine mode-of-action
of antifungal compounds [13]. Quantitative analysis by direct infusion MS
is rare, but Nagy et al. [33] analyzed amino acids in blood spots by direct
infusion tandem MS, where addition of isotope-labeled internal standards
allowed quantification of 19 native amino acids.

Conformational isomers cannot be resolved by MS alone simply be-
cause they will have the same mass, but tandem MS or coupling of separa-
tion techniques prior to MS analysis can help to identify conformational
isomers. Combination of separation techniques with MS tremendously
improves the resolution of complex samples.

2.1.2 Gas chromatography coupled to MS

Any chromatographic technique is based on equilibrium between a sta-
tionary phase and a mobile phase. In gas chromatography (GC), the mo-
bile phase is a gas and therefore the molecules that are to be analyzed
must be volatile. Although this part of the metabolome has often been
neglected, it does provide insight into metabolism and taxonomy [34]. On
the other hand, many metabolites are small polar molecules that not are
readily evaporated into the gas phase. This can be overcome by derivatiza-
tion that converts the functional polar groups in such molecules into non-
polar groups. A classical derivatization reaction is silylation, where active
hydrogen atoms from hydroxyl, amine, thiol and carboxylic acid groups
are typically substituted by silyl groups, e.g., trimethylsilyl [–Si(CH3)3]
or tert-butyldimethylsilyl [–Si(CH3)2C4H9]. The reactions proceed under
strictly anhydrous conditions at slightly elevated temperature and pro-
duces derivates that are generally less polar, more volatile, and thermally
more stable than the parent compound. The derivatization reaction is very
versatile and covers most primary metabolites although not all of them
will end up being volatile. [19, 35, 36]. Alternatively, alkylation can be
used for derivatization of functional groups with acidic or basic hydrogen
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atoms, e.g., carboxylic acids, and primary and secondary amines. Chlo-
roformates have been suggested as a good alternative for silylation and
have been successfully applied in analysis of amino and organic acids in
blood [37, 38] and in metabolite extracts [39, 40]. One of the major advan-
tages of the chloroformate reaction is that it can be performed under partly
aqueous conditions and at room temperature, but it does not enable anal-
ysis of sugars and sugar derived compounds. One thing to keep in mind
is that the derivatization reaction rarely results in a single product, and
multiple byproducts can be formed. This complicates the chromatograms
and makes the data analysis more cumbersome, since one peak does not
necessarily correspond to one metabolite.

Coupling of capillary GC and MS combines two robust technologies.
GC offers high resolution between similar compounds and MS produces
compound-specific mass spectra that may further resolve co-eluting com-
pounds. An electron impact (EI) ionization source is often used for inter-
facing the GC and the MS. EI is a classic technique within the field of MS
and is frequently used in connection with GC. The EI process takes place
in vacuo where the analyte molecule is ionized by passing through a beam
of electrons. The electrons are accelerated through a potential of 70 eV
and when an electron hits the molecule it results in ionization. The EI
process is considered a hard ionization process since the ionization energy
of 70 eV is high compared to the energy of a covalent bond (3–7 eV). This
leaves excess energy in the ions and frequently results in fragmentation
of the ionized molecule, yielding a specific fingerprint of the molecule.
This fragmentation is compound specific and makes the EI spectra suited
for identification based on reference spectra. The ionization is very ro-
bust and gives reproducible fragmentation patterns over time and with
different instruments. This allows construction of libraries for searching
and identification of metabolites [36, 41]. Metabolite profiling of plants
has significantly contributed to the field of metabolite profiling by GC-MS
[1, 2, 35] and the methodologies can readily be transferred to microbial
metabolite profiling [42].

Recently, two-dimensional GC (GC×GC)-TOF-MS instruments have
been applied for metabolite profiling and this is currently the most com-
prehensive GC-based technology available. Two-dimensional GC enables
very high chromatographic resolution and this, coupled with high scan
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rates from the TOF mass spectrometer, makes it possible to resolve very
complex samples with high sensitivity [16, 43].

2.1.3 Liquid chromatography coupled to MS

The introduction of API techniques opened up new possibilities for metab-
olite profiling by enabling the coupling of liquid chromatography (LC) to
MS. LC-MS instrumentation is now standard equipment in many labs. To
date, the major applications of LC-MS have been within the analysis of
pharmaceuticals and profiling of biofluids. Although liquid chromatogra-
phy (LC)-MS has not been as widely applied for primary metabolite profil-
ing it has a major potential to complement GC-MS. Derivatization is not
required and low separation temperatures compared to GC-MS reduces the
degradation of heat labile compounds. Metabolites from the central car-
bon metabolism [44–46] as well as nucleotides [47] can be analyzed by LC-
MS. Separation of highly polar and ionized metabolites can be achieved by
ion-exchange chromatography that includes gradient elution at high salt
concentrations. This is not readily compatible with ESI, but insertion of a
desalting device in between the LC and the MS is a solution for improved
sensitivity and robustness. Reversed phase ion-pair chromatography is
another option for separation of ionic metabolites. The only requirement
is that the counter-ion used for ion-pairing should be volatile, e.g., alkyl
amines and perfluoro-carboxylic acids, such compounds minimize, but do
not eliminate the problem of contamination of the ion-source.

The ESI process is known to be prone to matrix effects that change
the ionization efficiency and lead to suppression or amplification of the
ionization. One of the major reasons for this phenomena is that changes
in the ion strength of the liquid will affect the charge distribution in the
droplet and on its surface due to co-eluting substances [48, 49]. High con-
centrations of buffers and especially non-volatile buffers are incompatible
with ESI and will result in low signals, if any at all. The buffer will simply
snatch the charge from the molecules of interest. Application of volatile
buffers consisting of, e.g., formic or acidic acid and ammonia are however
a way to reduce the ion suppression caused by buffers [50].

Matrix effects are especially critical for quantitative studies. Although
tandem MS allows highly specific and sensitive detection of metabolites,
matrix effects during ionization are deleterious to quantification. Addi-
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tion of isotopic-labeled internal standards can overcome the discrimina-
tion observed during ionization. The labeled standard is ionized together
with the compound of interest and the ions will be separated by the mass
spectrometer [51]. The only drawback is that only a limited number of
labeled metabolites are commercially available and they tend to be expen-
sive; however, in vivo synthesis by feeding labeled substrates is an option
[52–54].

Derivatization is also an option for LC-MS in order to change the chro-
matographic selectivity or improve the sensitivity [36]. Furthermore, ad-
vances in LC column technologies pose new possibilities through novel
stationary phases and improved resolution. One of the most recent tech-
nologies is ultrahigh pressure liquid chromatography. Here reduction of
the particle size of the column material to sub-2 �m and high linear flow
rates have significantly improved the chromatographic resolution to levels
only seen for GC previously [55].

2.1.4 Capillary electrophoresis coupled to MS

Separation by capillary electrophoresis (CE) relies on differential migration
of ions in an electrical field and is performed in a buffer-filled capillary
of fused silica. The capillary is placed in two separate buffer reservoirs
with a potential difference of up to 30 kV. The potential over the capillary
mediates an electroosmotic flow that carries the analytes along while they
are separated by differential migration. The electroosmotic flow can be
varied by changing the applied potential and the ion strength in the buffer.
The migration velocity is determined by the charge-to-volume ratio of the
ion and the overall migration velocity will be a sum of the electroosmotic
flow and the migration of the individual ions.

CE offers high separation efficiencies, which makes it powerful for anal-
ysis of complex samples although sensitivity might be limited by fairly
small injection volumes of 1–30 nL. Coupling of CE to mass spectrom-
etry is possible, but currently not that widespread. This might change
in the future though. Due to the low flow rates the ionization is mostly
performed by ESI, and the interface between the CE instrument and the
ESI source often includes a coaxial sheath flow to maintain a stable spray.
A thorough review of CE-MS has been written by Schmitt-Kopplin and
Frommberger [56].
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There is no requirement for derivatization and many different com-
pound classes can be analyzed, e.g., organic acids, amino acids, nucleotides
and carbohydrates with indirect UV detection [57]. Soga et al. [58] coupled
CE to MS enabling analysis of 32 central anionic metabolites from glycoly-
sis and TCA cycle, and in a study of the bacteria Bacillus subtilis more than
1,500 metabolites were detected [59]. This was done by combining three
different CE methods that covered cationic metabolites, anionic metabo-
lites, and nucleotides and coenzymes, respectively.

2.2 Spectroscopy

Spectroscopy is another option for analysis of metabolites. All spectro-
scopy technologies are non-destructive in contrast to MS and therefore
any analyzed sample can be recovered and analyzed by another technique
if desired.

2.2.1 Ultraviolet and visible spectroscopy

The ultraviolet (UV; 200–400 nm) and visible (VIS; 400–780 nm) light ab-
sorption of most primary metabolites is unspecific and absent above 210
nm, which hinders widespread use for the profiling of primary metabolites
in complex mixtures. Of course derivatization reactions that add UV-VIS
active groups to the metabolites are an option to overcome this limita-
tion. However, when it comes to profiling of secondary metabolites, e.g.,
polyketides, alkaloids and isoprenoids, the UV absorption can be quite dis-
tinct and useful for compound identification. The UV absorption relates to
changes in energy levels of the electrons in the �-bonds and is character-
istic for conjugated double bounds (chromophores). Thus, UV absorption
spectra contain structural information of the electronic arrangement in
the molecule and similar molecules have similar spectra. We will return
to this later when we discuss natural products and drug discovery. UV-VIS
detectors or diode-array-detectors (DADs) are usually coupled to LC that
can be further coupled to MS to obtain increased specificity [60].
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2.2.2 Nuclear magnetic resonance spectroscopy

Nuclear magnetic resonance (NMR) spectroscopy is a versatile technology
and probably the technique of choice when it comes to detailed structure
elucidation of metabolites. NMR relies on the nuclear spin of atoms. The
nuclear spin is determined by unpaired protons and neutrons and makes
the nuclei act like small magnets. Thus 1H, 13C, 15N and 31P can all be
analyzed by NMR. When an external magnetic field is applied to nuclei that
have a non-zero spin they will align according to the field. The nuclei can
be flipped to a high-energy level by a radiation with a given frequency. The
electrons around the nuclei affect the local magnetic field for the nuclei
and therefore change the energy needed to flip the nuclei. The normalized
frequency for flipping the nuclei is known as the chemical shift, which is
specific for the nucleus dependent on the local chemical environment.

NMR is widely applied for metabolic profiling. The sensitivity is not as
high as for MS; however, NMR does not discriminate between metabolites
in the samples and therefore represents an unbiased technique for metabo-
lite profiling. Nicholson and co-workers have pioneered the application
of NMR for metabolite profiling [61, 62]. In particular, they have ana-
lyzed urine and blood by NMR and successfully identified biomarkers for
diagnostics. Fingerprinting by 1H-NMR of metabolite extracts from yeast
was proposed for assignment of unknown gene functions. The analysis
of six yeast knockout strains using NMR-based metabolite identification
was utilized to classify and relate the genotypes by multivariate statis-
tics, which has potential implications for the application of NMR-based
metabolomics in functional genomics [11]. Another example is the inves-
tigation of mode-of-action of bioactive compounds in plants using NMR
followed by spectral analysis using neural networks [63]. Furthermore,
NMR is non-destructive and therefore in vivo analysis is possible. Insertion
of a special probe into the NMR instrument makes it possible to grow mi-
crobial cell in suspension and hereby perform non-invasive studies of the
metabolite concentrations in a dynamic state [64–67].
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3 Novel drug discovery

From an evolutionary point of view, many natural products are produced
to attract or eliminate other organisms, which make them of particular
interest and a good hunting ground for new drugs or other bioactive com-
pounds. This is especially clear from the significant contribution of natural
products to the discovery of new drugs [68]. There is a large chemical di-
versity among natural products that in many cases is superior to what can
be obtained by pure combinatorial chemistry. However, applying com-
binatorial chemistry on natural products can efficiently lead to new drug
analogous that can be even more potent [69].

To explore natural products, metabolite profiling has a key position
in the search for new drug candidates. Whenever a new drug candidate
shows up it is relevant to clarify whether this compound is already known.
This is done by dereplication in order to rapidly determine already known
and trivial compounds – and basically answers the simple question: Have
we seen this compound before? – and, if yes, what is it? This ensures
that isolation, structure elucidation, and pharmacological investigations
can be focused on novel compounds and thereby improves the efficiency
of discovery and making discovery more cost-efficient. MS and especially
high-resolution MS is a core technology for dereplication, since this can be
used for deduction of molecular compositions. Tentative molecule com-
positions from accurate MS data along with UV data, chromatographic
retention index etc. can be used for database searches in, e.g., SciFinder,
Antibase or MarinLit to possibly identify the unknown compound [70].

As already mentioned UV-spectroscopy can also be used for guided
screening of structurally similar compounds. Recently, Hansen et al. [71]
proposed an algorithm, called X-hitting, for automatic dereplication (cross-
hitting) and automatic finding of potentially new and similar compounds
(new-hitting). X-hitting extracts UV-VIS spectra from HPLC-DAD (high
pressure liquid chromatography with diode array detector) data and com-
pares shapes of these spectra across samples using a similarity measure.
Cross-hitting reports compounds with similar spectra and retention times,
whereas new-hitting finds compounds with similar spectra, but different
retention times indicating a new but related compound. This way, two
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novel spiro-quinazoline metabolites where tracked, isolated and structure
elucidated as a proof of concept [72].

In a microbial context, filamentous fungi have a high potential of pro-
viding lead compounds, since they are known to produce a vast number
of bioactive molecules [70]. To explore the chemical capabilities of mi-
crobes through biodiversity they first of all have to be viable in the lab
and secondly the secondary metabolism has to be stimulated. Induction
of the secondary metabolism is not trivial and typically the optimum con-
ditions are rather different from the conditions optimal for growth and
furthermore, the optimum varies from microbe to microbe [73]. Thus, the
nutrient sources have major impact on the fluxes through the pathways
producing secondary metabolites, and often there is carbon catabolite re-
pression on secondary metabolite production.

4 In vivo metabolic fluxes

Quantification of metabolic fluxes is an important technique in terms of
basic understanding of metabolism and metabolic activity (see also the
chapter of Hornberg et al. in this volume). The actual cellular phenotype
is closely related to fluxes whether it is simple growth or formation of a
certain product [74]. Unfortunately, it is rare that there is a simple correla-
tion between intracellular metabolite concentrations and metabolic fluxes,
since a high concentration is not necessarily the result of high flux. This
is simply because the flux is seldom determined by simple kinetics with
one or two variables, but multiple variables affect the actual reaction rate
in terms of multiple substrates and products as well as regulatory mecha-
nisms may superimpose the influence of the metabolites. Thus, metabolic
profiling cannot alone reveal actual metabolic fluxes (except when the in
vivo enzyme kinetics is fully known), but analysis of isotope isomers – also
know as isotopomers – is powerful in relation to in vivo metabolic flux
calculations [75–77]. Typically flux estimation experiments are conducted
by introducing substrates with specific isotopic labeling e.g., glucose la-
beled with a 13C-atom in the first position ([1- 13C]glucose). The labeling
will then be distributed throughout the metabolic network dependent on
the fluxes through the different branches of the metabolic network. Dif-

120



Elucidating the mode-of-action of compounds from metabolite profiling studies

Figure 2.
Resulting labeling patterns when [1-13C]glucose is metabolized through the Embden-
Meyerhof-Parnas (EMP), Entner-Doudoroff (ED) or pentose phosphate (PP) pathway. • indi-
cates the 13C-labeling position; © is the unlabeled C-atoms).

ferent metabolic routes result in different isotopomer distributions aris-
ing from different carbon atom transitions. To illustrate the concept, Fig-
ure 2 summarizes the labeling resulting from conversion of [1- 13C]glucose
through the three glycolytic pathways: Embden-Meyerhof-Parnas (EMP),
Entner-Doudoroff (ED) or pentose phosphate (PP) pathway. Pyruvate is
the end-product of the EMP- and ED-pathway and the pyruvate ends up
being 50 % labeled in the 3rd and 1st position, respectively. When glucose
is converted through the PP-pathway, the labeling is lost by decarboxyla-
tion of 6-phospho-gluconate to ribulose 5-phosphate. Thus, any pyruvate
produced from the PP-pathway is unlabeled. The actual labeling patterns
(isotopomers) are mostly determined by GC-MS [78–80] or NMR [81, 82],
but there are a few examples using LC-MS [83, 84].

The mathematical formalism of flux analysis relies on simple mass
balances of the metabolic reactions together with carbon atom balances
that map the transitions of the individual carbon atoms throughout the
metabolic reactions. This results in a set of bilinear equations that can be
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solved by an iterative algorithm, where the objective is to minimize the
deviation between measured and calculated isotopomers [75].

5 Metabolites in systems biology

Moving into systems biology and integrating data from different cellular
levels will surely improve the understanding of microorganisms, and this
may be used to both guide the identification of new targets for antimi-
crobials as well as guiding the development of improved cell factories for
production of bioactive compounds. Especially the unraveling of regula-
tory mechanisms will allow discovery of novel specific drug targets. In
systems biology, dynamic experiments might even play a key role in elu-
cidating specific functions in this context [15, 85]. Here dynamic experi-
ments will be more likely to capture the cascade of changes arising from
a system perturbation compared to a classical steady-state experiment of
two conditions representing before and after perturbation.

Construction of genome-scale metabolic models has generated insight
into the structure of metabolic networks [86, 87]. It turns out that meta-
bolic reaction networks are highly connected and for S. cerevisiae [88] <30 %
of the metabolites participate in two or fewer reactions, whereas 12 % of
the metabolites are involved in >10 reactions and 4 % of the metabolites are
involved in >20 reactions. Additionally, the majority of reactions includes
more than one substrate and one product [89]. This shows the integrative
information available in the metabolome, which makes the metabolome
data valuable, but also highly convoluted, making the data interpretation
challenging. Given the highly connected metabolic networks it is most
likely that the metabolite concentrations will change rather than the fluxes
and therefore to make metabolite data useful in relation to systems biology,
emphasis should be placed on (semi-)quantitative data.

Mathematical models will be pivotal for deconvolution of metabolite
data in order to infer biological functions [90]. The application of already
known structural relationships can be represented as a graph which may
serve as a scaffold for analysis of the data. Recently the use of metabolic
graphs as a scaffold for analysis of microarray data was identified, and
it was shown possible to identify parts of the metabolic network that are
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transcriptionally co-regulated and hence may be under some kind of global
control [91]. The approach is extendable and can potentially be designed
to cover protein and metabolite data, and even integration of these data.

Systems biology formulates a quantitative science and in order to ap-
ply metabolite data in a systems biology context, (semi)quantitative data
is required [89]. This differentiates metabolite profiling in relation to sys-
tems biology from many of the previous applications, where metabolite
data has mainly been used for classification (see examples above). The de-
sire for quantitative data poses a schism in systems biology especially for
metabolite data, because the accurate quantity of a certain metabolite is
typically obtained at the cost of the number of metabolites detected. On
the other hand, systems biology aims at understanding the whole, which
implies a requirement for analysis of many metabolites. The schism arises
from a trade-off between detected and quantified metabolites, which we
illustrate in Figure 3. The more metabolites that are detected the fewer
are quantified (or known). However, continuous advancement for analyt-
ical technologies will move the curve in Figure 3 to the right and thereby
increase the impact of metabolite profiling in systems biology.

Figure 3.
The trade-off between (qualitative) detection and quantitative measurement of metabolites.
The degree of quantification expresses the percentage of quantified metabolites relative to
the detected metabolite.
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A subsystems-based approach to the identification of drug targets in bacterial pathogens

Abstract

This chapter describes a three-stage approach to target identification based upon subsys-
tem analysis. Subsystems analysis focuses on related metabolic pathways as a unit and
is a biochemically-informed approach to target selection. The process involves three
stages of analysis; the first stage, selection of the target subsystem, is guided by infor-
mation about its essentiality and on the predicted vulnerability of the targeted pathway
or enzyme to inhibition. The second stage involves analysis of the target subsystem by
means of comparative genomics, including genome context analysis and metabolic re-
construction. The third stage evaluates the selection of the specific target genes within
the subsystem by target prioritization and validation. The whole process allows for a
careful consideration of spectrum, drugability, biological rationale and the metabolic
role of the specific target within the context of an integrated circuit within a specific
metabolic pathway.

1 Introduction

In this chapter we will outline the principles and the applications of com-
parative genomics for the identification of anti-infective drug targets. The
approach described will use a collection of annotated subsystems projected
across a variety of sequenced bacterial genomes. We use the term sub-
system to refer to a compilation of functional roles (e.g., enzymes, trans-
porters, etc.) that captures the existing knowledge of a biological pro-
cess [1]. One may think of a subsystem as a generalization of the con-
cept of a biochemical pathway, extended to include ancillary components
and alternative reactions reflecting all functional variants [2] found in var-
ious species. The inclusive nature of subsystems allows us to capture a
broader biological context and, most importantly, to cope with an emerg-
ing diversity of biological networks revealed by the growing body of se-
quenced genomes. Tools supporting subsystem annotation and a large
collection of draft subsystems, reflecting upon many aspects of the cen-
tral machinery of life, are provided within The SEED genomic platform
(http://theseed.uchicago.edu/FIG/subsys.cgi and [1]).

A subsystems-based approach to the identification and prioritization of
drug targets consists of three major stages (see Fig. 1):
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Figure 1.
Three stages of the subsystems-based approach to drug target identification and prioritiza-
tion

1. Choosing target subsystems. The choice of target subsystem is
dictated by the desired drug features (e.g., spectrum of target pathogens),
and by various types of available implicating evidence (e.g., biochemical
and functional genomics data).

2. Analyzing target subsystems. Subsystem annotation and cross-
genome comparative analysis provides a detailed picture of species-to-
species variations in the underlying biological process. This analysis usu-
ally reveals gaps in knowledge (e.g., missing genes), which may be addressed
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by genome context analysis followed by experimental validation of func-
tional predictions.

3. Selecting target genes. Classification and analysis of subsystem
functional variants leads to the identification of critical modules (enzymes,
pathways, interactions), which may comprise actual drug targets. Prior-
itization of candidate target genes includes a combination of established
criteria, such as expected essentiality and conservation in a set of target
pathogens, distinction from the human host, etc.

The defining feature of this approach is that it begins with the selection
and analysis of target subsystems instead of the direct selection of target
genes (as in many described genomics-based strategies [3–9]). Therefore,
the experimentally observed and computed characteristics of individual
genes are used to implicate possible target subsystems. The dissection of
the entire cellular network into quasi-independent sub-networks provides
a viable strategy for the identification of novel targets and for the critical
reevaluation of existing targets. Among the specific advantages of the
subsystems-based approach are:

• The generalization of experimentally or computationally derived fea-
tures of individual genes in the form of target subsystems makes the
identification of target genes more robust and better protected against
the inevitable false positives and false negatives. Every target gene gets a
‘second chance’.

• Annotated subsystems provide a natural framework for the projection
and comparative analysis of various types of data. Subsystems provide a
functional context for Functional Genomics.

• While less rigorous than whole-cell modeling, the subsystems-based ap-
proach is more applicable to a large number of relatively poorly studied
species. At the same time, it constitutes a significant step forward com-
pared to the single-gene model for target identification. Subsystems pave
the way towards systems biology.

• The detailed analysis of variations in a subsystem facilitates the iden-
tification of alternative pathways, genes and resistance mechanisms.
Subsystems contribute to the understanding of microbial physiology.
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In the following sections, we will describe in more detail the three-stage
approach to target identification and analysis using selected examples. We
will focus mostly on the second stage, which involves encoding and cross-
genome comparative analysis of target subsystems. This analysis often
reveals problems with gene assignment and with the reconstruction of
pathways, especially for divergent and poorly characterized species. Appli-
cation of genome context analysis, most notably chromosomal clustering
of functionally coupled genes, predicts gene candidates for missing func-
tional roles identified by subsystem analysis [10]. Such missing genes often
emerge due to nonorthologous gene displacements [11, 12], which pre-
cludes the possibility of finding them by straightforward homology-based
searches. Gene candidates predicted by a combination of bioinformatics
techniques then become the subject of direct experimental validation.

Although this approach is, in principle, applicable to various types of
biological processes, including those directly associated with virulence,
here we will focus on universal metabolic subsystems, such as the biosyn-
thesis of the essential cofactors. This focus will enable us to clearly describe
target selection and unexplored opportunities for the development of new
anti-infective therapies. The examples discussed will include several cases
where ‘missing genes’ were predicted using genome context analysis and
validated by biochemical and genetic experiments.

2 Stage I: Choosing target subsystems.
Genome-scale essentiality and conservation analysis

Although the target-driven drug discovery paradigm is built around molec-
ular targets (individual genes or proteins), the actual target of anti-infective
therapy is, obviously, the whole organism. A subsystems-based approach
is a first step towards target identification at the whole-organism scale. It
is based on a hierarchical decomposition of the cellular machinery, which
allows us to: (i) rationalize the possible impact of disrupting a subsystem
at the whole-cell level, and (ii) evaluate the subsystem-level consequences
of targeting its individual components. This approach efficiently supports
application of comparative and functional genomics techniques. It pro-
vides a natural framework to analyze various types of implicating evidence
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generated by different techniques and in different species, and it allows us
to project the accumulated knowledge across the whole spectrum of target
pathogens.

The choice of possible target subsystems strongly depends on the spe-
cific goals, priorities and constraints of a particular drug development
project. For example, different types of implicating evidence would be
used, and different subsystems would be considered for niche-specific ver-
sus broad-spectrum targets. Likewise, prodrug-activating targets and viru-
lence targets are unlikely to come from the same set of subsystems. Nev-
ertheless, certain types of evidence and considerations are equally useful
for implicating target subsystems of different kinds.

In general, we would expect a target subsystem to minimally meet
the following criteria: (i) essentiality – it should play an essential role in
pathogen survival and/or propagation in its natural niche; (ii) vulnerability
– it should contain critical (non-redundant) components, whose inactiva-
tion would largely block this essential role, and (iii) conservation – at least
some of these components should be present in the whole spectrum of
target pathogens.

2.1 Collecting the evidence

The large body of biochemical, physiological, genetic, and functional gen-
omics data on model bacteria is a rich source of information for the iden-
tification of candidate target subsystems. For example, in most bacteria,
NAD(P) cannot be imported. This observation suggests that the NAD(P)
biosynthetic subsystem is a potential source of anti-infective targets, with-
out explicitly referring to any gene. Convincing evidence implicating a
subsystem may also be deduced from the mechanism of action of an an-
tibacterial agent (irrespective of its therapeutic value). For example, pyraz-
inamide and isoniazid manifest their anti-tuberculosis activity via inter-
ference with fatty acid biosynthesis [13]. This knowledge points to the
possible target subsystem even if the exact protein target is unknown.

2.1.1 Metabolic modeling

The rapidly progressing techniques of metabolic modeling [14, 15] allow us
to predict critical fluxes within the whole-cell network. This approach can
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be used for the tentative identification of essential genes, as was recently
demonstrated in a number of model systems, including Escherichia coli [16],
Helicobacter pylori [17], Staphylococcus aureus [18] and Saccharomyces cere-
visiae [19]. It is important to emphasize the complementarity of the semi-
quantitative whole-cell modeling and the qualitative subsystems analy-
sis. An insufficient knowledge of metabolism, beyond a handful of model
organisms, currently limits our ability to accurately model multiple di-
verse species. However, individual predictions generated by the analy-
sis of model species may be efficiently projected over a wide spectrum of
pathogens via implicated subsystems. At the same time, the annotation of
multiple metabolic subsystems (as recently launched by the SEED project
[1]), along with other community efforts [20–23] contributes to improving
the accuracy of genome-scale modeling technology.

2.1.2 Comparative genomics: The minimal gene set

The most abundant data that can be used to identify candidate target
subsystems derive from comparative genome analysis and from genome-
scale gene inactivation studies. These data provide the initial evidence
for conservation and essentiality, the key criteria for subsystem selection
mentioned above. Each of these criteria has been broadly exploited by
academic and industrial research groups for the direct identification and
prioritization of drug targets (e.g., see [9, 24–28]).

Attempts to use genome comparison to define the minimal gene set that
is required to support a prokaryotic life style began immediately after the
appearance of the first pair of complete genomes [29], both of bacterial
pathogens, H. influenzae [30] and M. genitalium [31]. Although the funda-
mental scope of this effort is distinct from drug target identification, its
methodology has obvious implications for the subject of this chapter. In
line with early expectations, a subset of protein families, broadly conserved
in diverse microbial genomes, are substantially enriched with indispens-
able components of the Central Machinery, most notably of DNA replica-
tion, transcription and translation, which may constitute potential drug
targets. Various criteria were applied for further prioritization of univer-
sally conserved genes, the absence of eukaryotic (human) homologs being
the most common. This criterion, however, is not undisputable. For ex-
ample, successful antibiotics such as trimetoprim and quinolones display
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selectivity towards bacterial targets despite the existence of their human
homologs (as discussed in [4]).

2.1.3 Functional genomics: Essential genes

The importance of gene essentiality data was recognized long before gen-
ome-scale studies became feasible. Various gene inactivation techniques
(such as chemical and transposon mutagenesis) have been used in numer-
ous single-gene studies, and, hundreds of gene essentiality assignments
have been accumulated for model microorganisms. The genomic revolu-
tion has triggered the development of genome-scale essentiality technol-
ogy. After the first groundbreaking efforts in Mycoplasma species [32] and
in S. cerevisiae [33, 34], several genome-scale essentiality studies were ac-
complished. Comprehensive data sets were published for: H. influenzae
[35], B. subtilis [36], E. coli [37], M. tuberculosis [28], and P. aeruginosa [38].
For some of these and related species, the analysis of gene essentiality was
also performed in the model of infection [39–41]. Although genome-scale
essentiality studies of major clinical pathogens have been performed in
many pharmaceutical and biotech companies, only partial data sets have
been published for S. aureus [25, 27] and S. pneumoniae [26].

The various techniques used in these studies may be divided into two
groups: 1) targeted disruption or deletion, and 2) random transposon mu-
tagenesis followed by the analysis of individual viable clones or of the
whole population after competitive outgrowth. Among other methods
are: complementation of temperature-sensitive mutant collections [42],
and gene ‘knock-downs’ by antisense RNA (reviewed in [43]). Due to the
substantial differences in gene inactivation techniques and growth condi-
tions, the exact meaning of gene essentiality inferred by different studies
varies from ‘strictly indispensable’ to ‘contributes to fitness’. Moreover,
various pitfalls, as well as significant variations in sensitivity and accu-
racy of detection protocols, lead to technical failures, false positive and
false negative essentiality assignments for a significant number of genes.
Therefore, choosing drug targets directly from single-genome essentiality
data, even if generated in one of the relevant pathogens, is a risky ap-
proach. In addition to technical limitations, lists of essential genes do not
provide any indication of whether these genes should be essential or even
present in other pathogens of the desired spectrum. The integration of
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essentiality data, acquired in different species, in a single database (such as
[44]) provides us with a very useful resource for their comparative analysis.

2.2 Integrating the evidence

Combining essentiality data with gene conservation analysis is a powerful
approach that helps to overcome some of the problems mentioned above.
A strong correlation between essentiality and conservation, observed for a
subset of core bacterial genes [36, 37, 45], leads to significant refinement
of a list of potential targets. An early implementation of this approach
was described for a small subset of essential and universally conserved
genes with unknown functions [24]. Among more recent examples of
large-scale integration of gene conservation and essentiality data are the
minimal gene set surveys [46, 47]. A set of ∼60 genes, derived by combining
cross-taxon gene conservation with essentiality data in bacteria, yeast and
worm, represents mostly genes involved in translation, transcription and
replication [46]. Such a small set is a likely result of a high frequency of
nonorthologous gene displacements, and is insufficient to support life in
any conceivable form. Another derived set of ∼206 conserved and essential
bacterial genes was substantially refined via the reconstruction of minimal
bacterial metabolism [47]. Although the latter analysis was geared more
towards metabolic engineering, its methodology and some of the specific
findings have implications for subsystems-based drug target analysis.

2.2.1 Case study: Broad spectrum target subsystems

A similar approach was applied to the analysis of ∼620 E. coli genes shown
to be required for the robust competitive growth in rich medium by ap-
plying transposon mutagenesis combined with genetic footprinting [37].
Here we use these data to illustrate the approach to selection of candidate
subsystems expected to contain broad-spectrum antibacterial drug targets.
This was accomplished by: (i) selection of a subset of essential E. coli genes
conserved in a broad range of diverse bacterial genomes, and (ii) projec-
tion of this subset to a collection of annotated subsystems present in the
first release of The SEED database [1]. Some of the results are illustrated in
Table 1.
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The original set of essential genes was supplemented by essentiality as-
signments from previous studies (http://www.shigen.nig.ac.jp/ecoli/pec/
index.jsp) to minimize the effect of false negatives and to compensate for
the ∼10 % technical failure in the genetic footprinting experiment [37].
Gene conservation was approximated using the evolutionary retention
index (ERI) as in [37]. A total of 250 genes with ERI >0.75 (e.g., having
putative orthologs in >75 % of 32 bacterial genomes selected to represent
maximum phylogenetic diversity) were further analyzed. Remarkably, or-
thologs of all but 15 genes in this set (94%) were found to be essential by
at least one of the genome-scale studies in other bacteria as indicated in
Table 1. Of no less importance, ∼95 % of these genes have well-defined
functional roles (annotations), most of which (>85 %) map to our collec-
tion of subsystems. Not surprisingly, a significant fraction of the mapped
genes (total of 115, not shown) belong to non-metabolic subsystems re-
lated to replication, transcription, translation, protein folding, secretion
and cell division. At the same time, a comparable fraction of ∼90 genes can
be mapped to core metabolic subsystems, and 80 of them (implicated by
an additional essentiality screen in at least one more organism) are listed
in Table 1.

2.2.2 Essential and conserved metabolic subsystems: An unexplored target
landscape

Altogether, these genes implicate a very limited number of metabolic sub-
systems (total of 22) with some remarkable features. From this list, 16
subsystems are implicated by more than one gene and about half of those
by three genes or more, providing additional prioritization criteria. The
derived list of broad-spectrum target subsystems covers <10% of the bac-
terial Central Machinery. Even before considering what is in this list, it is
worth noting what is not. For example, it does not contain de novo biosyn-
thesis of amino acids (except lysine, see below), purines or pyrimidines, as
these can be replaced by salvage. The absence of catabolic pathways such
as utilization of exogenous carbon sources, is due to their redundancy and
variability between species. On the other hand, this list contains subsys-
tems involved with biogenesis of indispensable cofactors (NAD, Coenzyme
A, FAD) and nucleotides (of note, all of them being phosphorylated com-
pounds, which, in general, cannot be imported from the medium). Not
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surprisingly, the largest component of the list is a set of subsystems related
to cell wall biogenesis, including the biosynthesis of fatty acids, lipids,
isoprenoids and peptidoglycan. The importance of the latter process pro-
vides the rationale for the apparent essentiality of the lysine biosynthetic
pathway. While lysine requirement per se may be satisfied by salvage from
the host, diaminopimelate (DAP), a penultimate intermediate of the same
biosynthetic pathway is a common essential component of peptidoglycan.
Not surprisingly, only the last step of this pathway, conversion of DAP to
lysine, appears to be dispensable for the growth of E. coli in a regular rich
medium (as discussed in [37]).

Overall, one may notice a surprising consistency in the results ob-
tained by this unbiased and strictly formal analysis with the previously
accumulated knowledge of microbial physiology. Moreover, almost all of
the known targets of antibiotics and other antibacterial compounds ap-
pear in the subsystems revealed by this approach. Although most of these
targets occur in the information processing subsystems (not shown), in-
cluding DNA replication and transcription (e.g., quinolones, ofloxacin, ri-
fampin groups) and protein synthesis (indolmycin, kirromycin, mupirocin
groups), others occur in implicated metabolic subsystems, e.g., fatty acid
(isoniazid, cerulenin, triclosan) and folate (trimetoprim, sulfonamides)
synthesis.

Although it is tempting to perceive the list of genes in Table 1 as a list
of targets, in our approach we use it for the sole purpose of compiling the
‘list of target subsystems’. Therefore, even if some of the subsystem com-
ponents were missed in the initial analysis, due to a technical failure or
redundancy in the model organism, they would still be considered at the
next stage. That is what we mean by saying that every target gets a second
chance. For example, the nadD gene was deemed nonessential in our ge-
netic footprinting studies in E. coli [48]. Nevertheless, a subsystem analysis
strongly implicated it as a good target candidate. This was later confirmed
by a single-gene knockout experiment and by essentiality studies in other
species. Likewise, some of the implicated genes may be ‘downgraded’ by
the subsequent subsystem analysis. For example, all of the genes of ri-
boflavin de novo biosynthesis (ribH, ribA, ribD and ribE in Table 1), which
are essential in E. coli and H. infuenzae, should be dispensable in many
Gram-positive pathogens due to the existence of active transport of ex-
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ogenous vitamin B2. Therefore, only one of the five initially listed genes
of the FMN and FAD biosynthesis subsystem (ribF) should be considered
as a prospective broad-spectrum drug target.

A detailed subsystem analysis across the whole spectrum of target spe-
cies (see next section) provides a solid foundation for prioritizing indi-
vidual targets depending on many criteria, which will vary between drug
development projects (as discussed in the last section of this chapter).

3 Stage II: Analyzing target subsystems. Metabolic
reconstruction and functional predictions

A preliminary notion of the subsystems corresponding to experimentally
identified essential genes or other types of evidence (discussed in the Sec-
tion I) may be obtained from a variety of sources, including biochemi-
cal textbooks (such as [49]) and web-resources, such as KEGG pathways
[21], GO terms [22], and functional categories of COGs [50]. An insightful
integration of functional and genomic context, in the format of genome
properties, was recently described [20]. The breadth and the depth of ge-
nomic annotations in a growing collection of subsystems within The SEED
database is gradually improving due to a community effort and the contri-
butions by experts [1]. While expecting that this and similar developments
will soon provide us with substantial coverage of many target subsystems,
we realize that for any new drug development project, an additional sub-
system analysis may be in order. The scope of such analysis may range
from the extension and refinement of existing subsystems in order to ac-
commodate new genomes and experimental data, up to de novo encoding
of subsystems implicated by new data and not present in the existing col-
lection.

Therefore, in this section we will briefly outline the key principles and
practical steps of subsystem development and analysis. We will illustrate
this process, as implemented in the SEED environment, using NAD(P)
biosynthesis as an example. An early analysis of this target subsystem
identified by essentiality and conservation data (see Tab. 1), allowed us
to select nicotinic acid mononucleotide adenylyltransferase (NAMNAT,
encoded by nadD gene in E. coli) as the most attractive drug target for
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follow-up studies [48] (see Section III for more details). This subsystem,
covering >270 diverse genomes, and a shorter version focusing on bacte-
rial pathogens, is a part of The SEED subsystem collection available on-line
(http://theseed.uchicago.edu/FIG/subsys.cgi).

Subsystem encoding uses the inference of pathways and individual re-
actions based on the presence of respective genes [51, 52]. A subsystem
is initially defined by a set of functional roles (e.g., enzymes), based on
available knowledge. Genes in the analyzed genomes are connected to
these roles via tentative annotations. An initial set of annotations is gener-
ated by homology-based projections from a limited number of genes with
experimentally confirmed function. These semi-automated annotations
are further refined using additional evidence provided by genome context
(e.g., clustering on the chromosome) and functional context (pathway re-
construction) analysis.

Homology and genome context analysis are established techniques,
and they are supported by a number of advanced tools [53], including
tools in the SEED. Functional context-based reasoning is less formalized
and includes a significant element of subjective judgment. This amounts
to reconciling an observed pattern of relevant genes with biochemical
transformations within established or inferred pathways. Classification
and consistency analysis of subsystem variants [2], over a wide range of
diverse genomes, has at least three important implications: (i) it signif-
icantly improves the quality and the reliability of genomic annotations;
(ii) it allows us to infer novel pathway variants, and (iii) it efficiently re-
veals missing genes [10, 54]. In some cases, the apparent absence of a gene
ortholog for a functional role inferred by metabolic reconstruction is due
to ‘technical’ reasons, such as Open Reading Frame (ORF) identification
problems or gaps in genome sequence/assembly. Individual occurrences
of such technical problems are randomly spread in genomes, and they
are usually easy to diagnose and reconcile. However, the appearance of a
missing gene in the middle of an ‘almost complete’ pathway (functional
variant) in a number of related species often points to a nonorthologous
gene displacement.

147



Andrei L. Osterman and Tadhg P. Begley

3.1 The NAD(P) biosynthesis subsystem

A table of functional roles, which are known to be involved in the biogenesis
of NAD and NADP in various species is shown in Table 2. A general subsys-
tem diagram, illustrating respective biochemical transformations, is shown
in Figure 2. Once the initial set of functional roles is defined and matched
with annotations from model organisms, the system automatically fills in
gene identifiers (IDs) in the respective cells of a subsystem spreadsheet. This
spreadsheet is a key representation of a subsystem, showing functional
roles as columns and organisms as rows. Populating a subsystem amounts
to the gradual expansion of the initial spreadsheet by adding genomes and
by carefully projecting annotations. Table 3 provides a condensed form
of the original NAD(P) subsystem spreadsheet. It reflects the gene occur-
rence patterns of all functional variants identified in the ∼100 genomes
of pathogens, commensals and related bacteria in The SEED database. In
this condensed presentation, gene IDs are replaced by symbols, and each
functional variant is illustrated by a single representative species.

The NAD(P) subsystem can be divided into six modules: two distinct
de novo pathways – one from aspartate as in many bacterial pathogens
and the other from tryptophan as in humans; three alternative salvage
pathways – two involving either the deamidating or the non-deamidating
salvage of niacin (vitamin B3) and the third involving the utilization of
nicotinamide ribose. The final module is the ‘universal’ pathway for the
conversion of nicotinic acid mononucleotide (NaMN) to NAD and NADP
(see Fig. 2 and Tab. 3). Different combinations of these modules, along
with some nonorthologous gene displacements, results in the substantial
diversity reflected here involving >20 distinct functional variants clustered
in five major groups (see Tab. 3). None of the organisms contain all six
modules. E. coli and H. sapiens are among the richest functional variants,
while some obligate intracellular pathogens such as Chlamydia and Rick-
ettsia spp., manifest extreme pathway truncation. These organisms may
have developed a unique transport machinery to scavenge the NAD co-
factor from the host [48], and the recent identification of a possible NAD
transporter in one of the plant-borne Chlamydia provides the first experi-
mental evidence supporting this prediction [55].
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The most common type of incomplete functional variants involves a miss-
ing gene for the Gln-amidotransferase component (GAT) of NAD syn-
thetase (NADS), as indicated by ‘?’ in the respective cells of the spread-
sheet. This component was experimentally identified as an N-terminal
nitrilase-like domain of a two-domain (‘long’) form of NADS in eukaryotes
[56] and some bacteria [57]. At the same time, many other bacterial NADS
homologs lack the corresponding amidotransferase domain, and they are
unable to utilize glutamine as an amide donor in vitro [58–61]. Among
other missing gene problems in this subsystem are possible nonorthol-
ogous gene displacements of aspartate oxidase (AOX) and NAD kinase
(NADK) in a limited number of species (marked by ‘?’ in Tab. 3).

Table 2.
Functional roles and subsets (pathways) in NAD (P) biosynthesis subsystem

Abbrev Functional role Subset (pathway) 

TDO   Tryptophan 2,3-dioxygenase (EC 1.13.11.11) 

IDO  Indoleamine 2,3-dioxygenase (EC 1.13.11.42) 

KFA_e  Kynurenine formamidase (EC 3.5.1.9) 

KFA_b  Kynurenine formamidase, bacterial (EC 3.5.1.9) 

KMO  Kynurenine 3-monooxygenase (EC 1.14.13.9) 

KYN  Kynureninase (EC 3.7.1.3) 

HAD  3-hydroxyanthranilate 3,4-dioxygenase (EC 1.13.11.6) 

De novo biosynthesis I, 
from tryptophane 

(includes QAPRT) 

ASPOX  L-aspartate oxidase (EC 1.4.3.16) 

QSYN  Quinolinate synthetase (EC 4.1.99.-) 

QAPRT  Quinolinate phosphoribosyltransferase (EC 2.4.2.19) 

De novo biosynthesis II, 
from aspartate 

NAMNAT  Nicotinate-nucleotide adenylyltransferase (EC 2.7.7.18)

NADS  NAD synthetase (EC 6.3.1.5) 

GAT  Glutamine amidotransferase chain of NAD synthetase 

NADK  NAD kinase (EC 2.7.1.23) 

Universal pathway 

NAM  Nicotinamidase (EC 3.5.1.19) 

NAPRT  Nicotinate phosphoribosyltransferase (EC 2.4.2.11) 

Nicotinamide salvage I, 
deamidating pathway 

NMPRT  Nicotinamide phosphoribosyltransferase (EC 2.4.2.12) 

NMNAT  Nicotinamide-nucleotide adenylyltransferase (EC 2.7.7.1) 

Nicotinamide salvage II, 
nondeamidating pathway

PNUC  Ribosyl nicotinamide transporter, pnuC-like 

RNK_b  Ribosylnicotinamide kinase (EC 2.7.1.22) 

RNK_e  Ribosylnicotinamide kinase, ekaryotic (EC 2.7.1.22) 

Salvage/recycling of 
nicotinamide ribose 
(includes NMNAT) 
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Figure 2.
NAD(P) biosynthesis subsystem diagram. A) A general map of possible biochemical transfor-
mations. Functional roles (mostly enzymes) are shown by boxed abbreviations (as defined
in Tab. 2). Boxes with red borders correspond to possible broad-spectrum, drug targets
(as in Tab. 1). The reactions are shown by thin lines and arrows. Main intermediates are
shown in circles: Asp – L-Aspartate; I – Iminoaspartate; II – Quinolinic acid; III – Nicoti-
nate mononucleotide; IV – Deamido-NAD; B3 – Nicotinamide; V – Nicotinic acid; NmR –
N-Ribosylnicotinamide; VI – Nicotinamide mononucleotide; Trp – L-tryptophan, Ind – In-
doleamine; IA – N-formylkynurenine ; IIA – Kynurenine; IIIA – 3-hydroxykynurenine ; IVA
– 3-hydroxyanthranilate; VA – alpha-amino-beta-carboxymuconic semialdehyde. Other in-
termediates are shown using standard abbreviations including: PRPP – 5-Phosphoribosyl
1-pyrophosphate; DAHP – Dihydroxyacetone-P. Subsets of roles (pathways) are outlined by
thick arrows using the same color-coding as in Tables 2 and 3. B) Examples of six functional
variants, which are schematically shown by the presence of functional roles highlighted by
a respective color.
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Table 3.
Distribution of functional variants of NAD biosynthesis subsystem in bacterial pathogens and
related species

De novo pathways Universal Salvage/recycling  
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15

Yersinia pestis 1.1B 

B3 and V-factor 
salvage 

+ + + + + + + + + + + + 9

Pseudomonas aeruginosa 1.1C ± ± ± + + + + + ? + + + + + 2

Bacillus anthracis 1.2A ± ± ± + + + + + ? + + + 23

Burkholderia pseudomallei 1.2B + + + + + + + + + 8

Fusobacterium nucleatum 1.2C + + + + + ? + + 2

Coxiella burnetii    1.2D + + + + + + + + 4

Acinetobacter sp. 1.2E + + + + + + + + + + + 9

Francisella tularensis 1.2F 

B3 salvage 

+ + + ? + ? + + + 1

Helicobacter hepaticus 1.3A + + + + + ? + 1

Mycobacterium leprae 1.3B + + + + + + + 1

Leptospira interrogans 1.3C 

No B3 salvage 

+ + + + + + ? 2

Shigella flexneri  1.4A ? + + + + ? + + + + + + 2

Corynebacterium efficiens 1.4B ? + + + + ? + + + + 2

Helicobacter pylori 1.4C ? + + + + ? + + 2

Ehrlichia canis 1.4D 

Missing ASPOX 

? + + + + + + + 1

Group 2. De novo biosynthesis from tryptophan (mostly in eukaryotes):                 

Homo sapiens 2.1A + + + + + + + + + + + + + + +

Group 3. Universal pathway without de novo biosynthesis:                       

Proteus mirabilis 3.1A + + + + + + + + + 1

Staphylococcus epidermidis  3.2A + + ? + + + 33

Brucella melitensis 3.2B + + + + + + 11

Mycoplasma penetrans  3.2C + + ? + + 3

Treponema denticola 3.2D + + + + + 2

Streptococcus suis  3.2E + + ? ? + 2

Mycoplasma genitalium 3.2F + + ? + + 2

Group 4. No universal pathway (NMN shunt, bypassing NADS):                     

Mannheimia haemolytica 4.1A + + + + + 5

Haemophilus influenzae 4.1B 
    

+ + + + 5

Group 5. Salvage of NAD and/or NADP:                                 

Rickettsia prowazekii 5.1A + 5

Chlamydia trachomatis none 9

A condensed subsystem spreadsheet (modified from “NAD and NADP biosynthesis in pathogens”
subsystem at http://theseed.uchicago.edu/FIG/subsys.cgi) shows gene patterns characteristic of
functional variants identified in ∼160 complete bacterial genomes (and in the human genome).
Presence of genes assigned with respective functional roles (abbreviation are as in Tab. 2) is in-
dicated by: ‘+’ – required to implement a functional variant; ‘±’ – optional; ‘?’ – inferred by
pathway analysis but a gene is unknown (cannot be projected by homology). Representative
genomes and a total number of genomes implementing each variant are shown in the last and in
the first columns. Background colors correspond to subsystem modules (pathways).
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Despite a few remaining problems, this example reveals a very clear pic-
ture, which allows us to reliably predict the phenotype and even the details
of the NAD(P) biosynthetic sub-network in hundreds of species. For exam-
ple, we can predict that ∼50 diverse bacterial species, which implement
functional variants clustered in Group 3 (Tab. 3), are strictly dependent
on exogenous nicotinamide or nicotinic acid (vitamin B3). Straightforward
conjectures of this type may have immediate implications for the devel-
opment of new therapies, and for the reevaluation of existing therapies.

The most substantial difference between the human and bacterial vari-
ants of the subsystem is related to the de novo biosynthesis of quinolinate
(see Fig. 2). Although for many years the pathway from tryptophan to
quinolinate was thought to be a eukaryotic pathway, it was recently iden-
tified in a small group of bacteria by a comparative genomics study fol-
lowed by experimental verification [62, 63]. None of the analyzed human
pathogens belong to this group, although some of them (e.g., P. aerugi-
nosa and B. anthracis, see Tab. 3) contain a ‘nonfunctional’ variant of this
pathway leading to anthranilate instead of quinolinate [64].

The observed picture of conservation and nonrandom variations in
the NAD(P) biosynthesis subsystem is consistent with an emerging under-
standing of the intrinsic modularity of cellular networks and the conservation
of functional modules in the Central Machinery of Life [65–68]. A crucial
aspect of this cross-species subsystem analysis is the identification of the
most conserved modules, which potentially contain possible drug targets.
For the NAD(P) subsystem, such a module is the three-step ‘universal’ path-
way (see Fig. 2 and Tab. 3), since: (i) it is conserved in most bacterial
pathogens; (ii) its indispensable role is supported by the observed essen-
tiality of all three enzymes involved (see Tab. 1); and (iii) this essentiality
is in agreement with the fact that all of the intermediates and products of
this pathway are phosphorylated compounds (see Fig. 2), which cannot
be directly imported from the medium.

Comparative genomics helped to fill in many gaps in our knowledge
of NAD(P) biosynthesis. Several ‘missing’ genes were identified using a
combination of bioinformatics techniques such as long-range homology
and genome context analysis. These techniques and their applications in
gene discovery have been discussed in a number of recent surveys [10, 20,
23, 67, 69]. Here, we will briefly illustrate the gene discovery aspect of
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subsystems analysis using selected examples immediately related to drug
target development.

3.1.1 Example 1: Nicotinic acid mononucleotide adenylyltransferase

Although, this enzymatic activity was for a long time known to play a
central role in NAD biosynthesis [70], a respective gene was only recently
identified by bioinformatics techniques followed by experimental verifi-
cation. This was accomplished using a combination of its approximate
chromosomal location with long-range similarity searches [71], and, in-
dependently, based on the observation of chromosomal clustering of a
putative nucleotidyl transferase gene with other NAD biosynthetic genes
in a number of analyzed genomes (see Fig. 3). The latter approach, which
allows us to infer functional coupling of genes based on their operon-like
clustering on the prokaryotic chromosome, is one of the most powerful
techniques of genome context analysis. It was pioneered by R. Overbeek
and colleagues [72, 73], later implemented in a number of web-based tools,
including The SEED, and successfully applied to the identification of sev-
eral missing genes [10]. Although the E. coli nadD gene, as well as its
orthologs in most bacterial pathogens, is not involved in any ‘suggestive’
chromosomal clustering, its assignment was a straightforward homology-
based expansion of the implicated protein family. These assignments were
directly verified by the cloning overexpression and characterization of sev-
eral representatives of this family from divergent bacterial pathogens, in-
cluding S. aureus, H. pylori and F. nucleatum [48]. In addition, a long-range
similarity analysis allowed us to expand this new family to include previ-
ously missing enzymes playing the same role in human NAD biosynthesis.
Three identified human isoforms were experimentally verified and char-
acterized [74–78], revealing a number of fundamental differences between
these enzymes and their bacterial counterparts (as reviewed by [79]). Some
of these findings, relating to the development of NadD as a potential anti-
infective drug target, are further discussed in the next Section.
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Figure 3.
Missing genes and genome context analysis. Example 1: Nicotinic acid mononucleotide
adenylyltransferase (NAMNAT), a possible broad-spectrum drug target. A) Until recently, a
gene encoding NAMNAT remained unknown. In addition to biochemical and genetic data
in some model species, the presence of this enzyme could be inferred by metabolic recon-
struction of NAD biosynthesis in most bacterial genomes (see Tab. 3). A shown segment of
NAD subsystem (as in Fig. 2) includes the two known genes (pncB and nadE in E. coli), which
constitute a functional context of the missing gene (designated nadD). B) A chromosomal
cluster conserved in many cyanobacterial genomes, contained a previously uncharacterized
putative nucleotidyl transferase of HIGH-superfamily. A respective gene (black arrow marked
by ‘?’) was predicted to encode the missing NAMNAT.C) This tentative assignment was pro-
jected to putative orthologs in most other bacteria, including gene ybeN of E. coli. D) Three
isoforms of putative human NAMNAT were identified by homology searches. E) The pre-
dicted activity was verified for several representatives of the family, including recombinant
enzymes of E. coli, H. pylori, S. aureus and H. sapiens. F) Essentiality of NAMNAT was con-
firmed by directed gene knockout experiments in E. coli and S. aureus. Steady state kinetic
analysis revealed a strong preference of bacterial NAMNAT for NaMN over NMN, in contrast
with a dual specificity of human NAMNAT/NMNAT enzymes. Topological differences in the
active sites of bacterial and human enzymes were employed to design a structural template
for in silico screening of a small molecule compound library.
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3.1.2 Example 2: The bi-functional nicotinamide mononucleotide
adenylyltransferase/ribosylnicotinamide kinase (NMNAT/RNK,
NadR family)

The inference of functional coupling, based on protein domain fusion
events, is another important strategy of genome context analysis [80]. This
approach played a critical role in the prediction and verification of the
previously unknown gene encoding bacterial ribosylnicotinamide kinase
(RNK) (see Fig. 4) [81]. This prediction was triggered by the analysis of one
of the extremely truncated NAD biosynthesis subsystem variants (Group 4
in Tab. 3) – an NADS-independent salvage of nicotinamide ribose, which is
essential for the survival of H. influenzae [82] and related Pasteurellaceae.
Remarkably, both essential enzymatic activities, RNK and NMNAT, were
found within a single fusion protein, a homolog of E. coli NadR, originally
described as a transcriptional regulator of the nadA-pnuC operon [83], and
later shown to possess NMNAT activity [84]. An additional RNK activity
was predicted based on the presence of a domain with unknown function
containing Walker A and B motifs characteristic of many kinases. Both
activities were experimentally verified, and confirmed to be essential for
the survival of H. influenzae in culture [81], and later, in vivo [85, 86]. How-
ever, only one of these activities, namely NMNAT, is expected to be essen-
tial in H.ducreyi, a related bacterial representative of the V-factor indepen-
dent Pasteurellaceae, which contain an additional gene (nadV) encoding
nicotinamide phosphoribosyl transferase (NMPRT) [87]. The addition of
this enzyme enables the non-deamidating salvage of exogenous vitamin
B3, bypassing the requirement for V-factors and RNK activity. More repre-
sentatives of this functional variant, which include Manheimia haemolytica
(see Tab. 3) and Actinobacillus actinomycetemcomitans, are predicted by the
subsystem analysis. This is another example illustrating the importance
of subsystem analysis for drug target identification and evaluation. The
3D structure of the H. influenzae NadR protein was solved, providing more
insights into the structure-function relations in the NaMNAT/NMNAT su-
perfamily [88] and setting the stage for niche-specific drug development.

Two additional examples provide a brief illustration of using similar
techniques for the analysis of Coenzyme A and Fatty acid biosynthesis
(see Tab. 1).
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Figure 4.
Missing genes and genome context analysis. Example 2: Nicotinamide mononucleotide
adenylyltransferase/ribosylnicotinamide kinase (NaMNAT/RNK) a possible drug target in H.
influenzae. A) A gene encoding RNK activity, which is required for the Nicotinamide Ribose
(NmR) salvage pathway was unknown. This pathway is the only route of NAD biogenesis in
H. influenzae (see Fig. 2). B) A putative kinase domain fused with NMNAT-domain of NadR
protein was predicted to constitute a missing RNK. This conjecture is additionally supported
by chromosomal clustering of NadR and PnuC homologs in several bacterial genomes. C)
Both enzymatic activities, RNK and NMNAT, were verified and characterized for recombinant
NadR proteins of H. influenzae and S. enterica. Essentiality of nadR gene in H. influenzae was
confirmed by transposon mutagenesis.

3.1.3 Example 3: The human bi-functional phosphopantetheine
adenylyltransferase/dephospho-CoA kinase/(PPAT/DPCK)

The host/pathogen comparative analysis of the universal subsystems (such
as many of those in Tab. 1) plays an important role in target prioritization.
In addition to that, this analysis helps to significantly refine our knowledge
of the human variants of subsystems, which is still incomplete. For exam-
ple, until recently, four of the five genes in the human CoA biosynthetic
pathways were unknown, and even the relative order of the biosynthetic
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steps in this pathway remained controversial. The identification of the
complete set of genes implementing this pathway in E. coli [89–91] and its
homology-based projection across the collection of genomes, allowed us
to reliably predict three out of the four unidentified human genes. The last
missing gene, encoding a nonorthologous human PPAT enzyme, was iden-
tified using the same domain fusion analysis technique as described in the
previous example. An uncharacterized human protein containing a do-
main of unknown function with a nucleotidyl transferase signature fused
with another domain homologous to bacterial DPCK, was predicted and
experimentally verified to be a bi-functional PPAT/DPCK enzyme [92]. The
four-step human CoA biosynthetic pathway from phosphopantothenate
was verified by reconstitution in vitro using a mixture of purified recombi-
nant enzymes. This analysis contributed to the selection of bacterial PPAT
as a high-priority drug target [48]. Functional variants and remaining un-
solved problems in the Coenzyme A biosynthesis subsystem were briefly
discussed in [2].

3.1.4 Example 4: The nonorthologous displacement of enoyl-ACP
reductase (FabI) in Streptococcus pneumoniae

Sequence analysis of the first S. pneumoniae genome provided an immediate
rationale for its resistance to triclosan: an apparent loss of the target, enoyl-
ACP reductase, which is encoded by an essential gene (fabI) in E. coli and
many other bacteria. Considering the absolute requirement for this enzy-
matic step in the elongation cycle of fatty acid biosynthesis, nonortholo-
gous gene displacement was the most likely explanation for the missing
fabI. Indeed, a putative oxidoreductase gene embedded in a large chromo-
somal cluster of FAS genes, was predicted and experimentally confirmed as
an alternative FMN-dependent and triclosan-insensitive enoyl-ACP reduc-
tase [93]. Although, initially, the replacement of fabI with a nonortholo-
gous gene termed fabK appeared to be a characteristic feature of Streptococci,
our recent analysis of the FAS subsystem in the SEED database revealed a
substantial number of diverse bacteria carrying fabK instead of, or in ad-
dition, to fabI. Such an analysis of distribution of nonorthologous gene
displacements allows us to rapidly assess which species may be sensitive
or resistant to a particular antibacterial agent.
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4 Stage III: Selecting target genes.
Target prioritization and validation

The comparative analysis of functional variants helps to reveal critical
components of subsystems that may constitute potential targets, as illus-
trated for the example of NAD(P) biosynthesis. The selection and prior-
itization of drug targets is dictated by a combination of criteria, most of
which are widely used and have been extensively discussed in a number
of surveys (see Section I). Here we will briefly illustrate their application
using the NAD(P) subsystem as an example.

The spectrum of target species defined by the specific goals of a drug de-
velopment project is one of the most important and straightforward prior-
itization criteria. The strategy described in this chapter for the identifica-
tion of targets for broad-spectrum drug development can also be applied
to a narrower spectrum (e.g., Gram-positive) or niche pathogens (e.g., H.
influenzae or H. pylori). The growing availability of genomes, including
avirulent and attenuated strains and isolates, improves the quality of sub-
system analysis and facilitates the selection of optimal drug targets.

4.1 Biological rationale and subsystem topology

A detailed analysis of metabolic subsystems, including all biochemical
transformations, transport as well as the availability of precursors and in-
termediates in the cell and at the site of infection, makes it possible to as-
sess the relative importance of the subsystem components. The analysis of
functional variants of a subsystem enables us to make reliable projections
across species, even in the absence of physiological data. As mentioned
above, we may expect the three-step universal pathway of the NAD(P) sub-
system to be essential for most of the bacterial species due to: (i) the strict
requirement of NAD(P) for a large number of redox reactions in all types
of living cells; (ii) the anticipated inability of the cell to import NAD(P) or
phosphorylated intermediates, (iii) the merging of the most common de
novo and salvage pathways at the start of the universal pathway, (iv) the
non-redundance of this pathway. The existence of the non-deamidating
salvage pathways, which in some species may generate enough NAD for
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cell survival, implicates NAD kinase (NADK) as the most universal drug
target candidate (see Fig. 2).

4.2 Projection of gene essentiality

Despite some similar aspects, the scope of gene essentiality analysis at
this stage is quite different from the initial subsystem selection process
(Stage I). As already mentioned, two sets of genes – one that provided
evidence implicating a target subsystem, and another one, representing
selected targets, may not fully overlap. Although in the specific exam-
ple of NAD(P) biosynthesis, both sets happened to be identical, in gen-
eral it may not be the case, depending on the quality of essentiality data,
the choice of filtration strategy, etc. While a certain level of ‘noise’ in
the data, has almost no effect on the selection of target subsystems, it
may not be acceptable for the evaluation of individual targets. For the
broad-spectrum targets, this problem can be addressed by the integration
of several essentiality data sets in different species or by single-gene disrup-
tion experiments. Emerging efforts in systematic targeted gene knockouts,
such as the E. coli projects in Japan (http://ecoli.aist-nara.ac.jp/) and the
USA (http://www.genome.wisc.edu/functional/tnmutagenesis.htm), open
excellent opportunities for acquiring reliable gene essentiality assignments
at the whole-genome scale. The biggest challenge however is the projec-
tion of gene essentiality across the entire spectrum of target pathogens.
Comparative analysis of subsystem functional variants, including alterna-
tive routes and nonorthologous displacements, provides a natural frame-
work for the tentative projection and even prediction of essentiality of
certain genes. For example, the essentiality of the nadD gene, projected
from E. coli to S. aureus, was confirmed by a directed knockout experiment
[48]. In another example discussed in Section II, orthologs of nadR and
pnuC (nicotinamide transporter), which are dispensable in E. coli, were
predicted and experimentally proven to be essential in H. influenzae [81].
Likewise, analysis of the subsystem leads to the prediction of essentiality
for the de novo pathway genes in H. pylori, and for the niacin salvage genes
in S. aureus (see Fig. 2B). Such predictions, if proven experimentally, would
allow us to consider these genes as possible drug targets in a number of
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pathogens implementing the respective functional variants of the NAD(P)
biosynthesis subsystem.

4.3 Target conservation

Two aspects of target conservation play a role in target prioritization. The
first is the requirement for the presence of the corresponding orthologs
across the entire spectrum of target pathogens. Instead of the global ho-
mology screening, which was used for the initial subsystem selection (Stage
I), target prioritization requires more stringent orthology analysis sup-
ported by subsystem-based functional assignments. Likewise, the thresh-
old used in the initial conservation analysis (ERI >0.75) is irrelevant when
selecting a common target for a strictly defined set of pathogens. The ab-
sence of a target in a pathogen would automatically exclude this organism
from the spectrum, which may or may not be acceptable, depending on
the scope of a particular drug development project. For example, two of
the three potential targets in the universal pathway of NAD(P) biosynthe-
sis, NaMNAT and NADS, are not present in a relatively small but important
group of pathogens, including H. influenzae (see Tab. 3). That alone may
exclude both of these, otherwise attractive, targets from a high-priority list
of anti-respiratory drug development programs.

The second and a more subtle aspect of conservation analysis is the level
of sequence similarity within the target protein family. The structural com-
pactness of a protein family may be roughly assessed by building an HMM
consensus profile and by computing the relative distance of each represen-
tative from this profile, as described in [48]. This analysis, however, may be
used only for preliminary target prioritization, for the detection of outliers
and the evaluation of the range of susceptible pathogens. Since the scope
of sequence conservation analysis is to assess the likelihood of developing
a universal inhibitor, the actual comparison should focus on the topology
of the active site (or, more generally, binding pocket), rather than on the
overall sequence conservation. The availability of a 3D structure for at least
one target in a complex with substrate(s), product(s) or their analogs sub-
stantially improves the quality of such analysis. For example, 3D structures
are available for two, rather divergent bacterial NAMNAT of the NadD fam-
ily, one from E. coli [94] and the other from B. subilis [95].The comparative
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analysis of their active sites (revealed by co-crystallization with substrates)
supports the selection of this enzyme family as a potential drug target for
a relatively broad spectrum of bacterial pathogens.

4.4 Target validation and drugability

The most important aspect of target validation is the experimental confir-
mation of essentiality in representative pathogens. Functional comparison
of divergent representatives of a target family, e.g., substrate specificity pro-
filing, provides an additional assessment of the conservation of their active
sites. For example, both analyzed representatives of the NadD family from
gram-negative (E. coli) and gram-positive (S. aureus) bacteria, displayed a
strong preference for NaMN over NMN in the adenylyl transferase reaction
[48]. A steady state kinetic analysis indicated that this preference was man-
ifested mostly at the level of substrate binding, contributing to the likeli-
hood of finding a common inhibitor. The importance of structural data
for conservation analysis was already emphasized. In addition to that, the
availability of 3D structure opens up the possibility of assessing the ‘dru-
gability’ of a target. This is another validation criterion, which requires
a well-defined binding site on the protein suitable for the development
of bioavailable, synthetically accessible small molecule inhibitors. While
some non-metabolic targets do not meet this requirement, it is a character-
istic feature of most metabolic enzymes with active sites that have evolved
to interact with small molecule substrates and cofactors. The results of
the 3D structural analysis of the E. coli NaMNAT were in line with such
expectations and enabled us to define a structural template for the virtual
screening of a small molecule library.

4.5 Comparison with human countertargets

While the absence of human homologs has been perceived as a very im-
portant target prioritization criterion, the existence of successful coun-
terexamples suggests that this point of view needs to be refined. These
counterexamples, [4] include trimetoprim, which specifically inhibits bac-
terial dihydrofolate reductase despite 28% sequence identity with its hu-
man ortholog, and quinolones, which specifically inhibit bacterial gyrase A
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despite 20% sequence similarity with human topoisomerase II. However,
ideally, a target that has a minimal sequence similarity with its human
counterpart is preferable. Mostly based on this consideration, of the three
possible targets in NAD(P) biosynthesis, NaMNAT of the NadD family was
preferred over NADS and NADK [48]. In our example, both, the functional
and structural comparison of the bacterial and human enzymes provided
support for this choice of target. In agreement with previous data, and
in contrast to the bacterial NAMNAT, all three isoforms of the human
enzyme displayed an almost equal preference for NMN and NaMN. This
dual specificity of the human bifunctional NAMNAT/NMNAT is consistent
with its biological role in the deamidating and non-deamidating pathways
inferred by metabolic reconstruction (see Fig. 2). Although sequence com-
parison alone reveals almost no appreciable similarity between the E. coli
NAMNAT and the human NAMNAT/NMNAT, their overall 3D structures
are quite similar [75]. At the same time, substantial differences in the
regions of the active site, presumably responsible for the difference in sub-
strate specificity, provided an opportunity for selective targeting.

5 Concluding remarks: From targets to drugs

The central paradigm of target-based drug discovery is the development
of small molecules that disrupt the functional activity of a target protein
via specific binding with its active (or allosteric) site. To that end, vari-
ous high-throughput screening strategies are usually applied, including in
silico screening of virtual compound libraries. The latter approach is de-
pendent on the availability of a high-quality 3D structure of at least one
representative target. The rapidly improving efficiency of virtual dock-
ing algorithms, including freely available or affordable software packages
(such as AutoDock, http://www.scripps.edu/mb/olson/doc/autodock/), ac-
cess to growing electronic libraries of compounds (such as ZINC, http://
blaster.docking.org/zinc/) and to new chemical web-resources (such as Pub-
Chem, http://pubchem.ncbi.nlm.nih.gov/), are factors that strongly affect
the routines and perceptions in the field. For example, in contrast to a
traditional high-throughput screening, a virtual screening of millions of
compounds, followed by experimental testing of ∼100 of the best-scoring
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compounds (available from several providers) is perfectly feasible for aca-
demic research groups. Moreover, this rapid and rather inexpensive proce-
dure may become a routine aspect of target validation. The goal of such a
prescreening effort would be to evaluate the drugability of a selected target,
not to find actual lead compounds. Structural analysis of the target, com-
plexed with some of the identified compounds, may provide very useful
information for adjusting a screening template, various docking parame-
ters and constraints.

Finally, it is worth noting that the small molecule library screening (vir-
tual or experimental) is not the only strategy of target-driven drug develop-
ment. Alternative approaches include rational inhibitor design based on
the substrate or product structure or on the reaction mechanism. Covalent,
enzyme-activated (or suicide) inhibitors represent a particularly sophisti-
cated version of this approach. For example, difluoromethyl ornithine ef-
ficiently kills Trypanosoma brucei by covalently binding at the active site of
ornithine decarboxylase. A similar but distinct strategy involves pathway-
activated prodrugs. Previously we described pyrazinamide, an antitubercu-
losis prodrug that is converted to pyrazinoic acid by NAM, the first enzyme
of the niacin salvage pathway. Another interesting example related to NAD
biosynthesis beyond anti-infective disease research, is the anticancer pro-
drug tiazofurin. This nicotinamide ribose analog is known to hijack the
RNK/NMNAT-dependent salvage pathway in human cells, which leads to
formation of tiazofurin adenine dinucleotide (TAD), a toxic analog of NAD.
The latter is known to inhibit IMP dehydrogenase, a key enzyme in purine
biosynthesis, ultimately suppressing the growth of certain cancer cells [96].
Although the notion of target for these pathway-activated antimetabolites
is quite different from the main drug development paradigm, even in this
case, certain techniques of target selection discussed in this chapter may
be applicable. For example, both activities (subsystems), responsible for
prodrug activation and the actual target of the ultimate antimetabolite,
should be conserved and essential in the desired spectrum of pathogens.

The impact of subsystem analysis on the development of pathway-
activated antibacterial agents, may also be illustrated by the mechanism
of action of pantothenate analogs, such as N-pentylpantothenamide. The
antibacterial activity of this compound was initially thought to be a result
of inhibition of some of the CoA biosynthetic enzymes [97]. However, in a
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series of recent studies, it was shown that this compound is a prodrug acti-
vated by the CoA biosynthetic pathway, leading to formation of the toxic
ethyldethia-CoA [90]. The latter ultimately inhibits fatty acid biosynthesis
through the formation of the nonfunctional holo-acyl carrier protein [94].
While N-pentylpantothenamide does not appear to be a likely drug candi-
date due to its rather modest antibacterial activity, its mechanism of action
provides an illustration of an alternative drug development strategy.
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Metabolic control analysis to identify optimal drug targets

Abstract

This chapter describes the basic principles of Metabolic Control Analysis (MCA) which

is a quantitative methodology to evaluate the importance and relative contribution of

individual metabolic steps in the overall functioning of a particular system. The control

on the flux through a metabolic pathway or subsystem can be quantified by the control

coefficients of the individual enzymes or components which reflects the extent to which

the component is rate-limiting. The perturbation of an individual step is measured by its

elasticity coefficient. The effect of perturbation of a single step on the entire pathway or

subsystem is, in turn, measured by the response coefficient. Differential control analysis

can be used to compare flux through a single metabolic pathway in a pathogen with

the same pathway in its host to identify uniquely vulnerable steps with the greatest

potential for specifically inhibiting flux through the pathogen metabolic pathway. The

utility of this methodology is illustrated with the glycolysis in Trypanosomes and with

oncogenic signaling.

1 Introduction

With the development and application of high-throughput techniques
in the molecular biosciences, the amount of information on the com-
ponents of living organisms is growing rapidly. The sequences of en-
tire genomes have become available in recent years and measurements
of gene-expression profiles as mRNA abundances, protein concentrations,
fluxes and metabolite concentrations are now possible. More and more
they are or will be carried out on a genome-, transcriptome-, proteome- or
metabolome-wide scale. As a result, biological science is currently moving
from a molecular biology era into a systems biology era [1]. One of the
major tasks ahead is fulfillment of the high expectations that this next era
will lead to a quantitative understanding of biological systems ‘in disease
as well as in health’.

Apart from being accessible to the administered drug, a successful drug
target must be important for the functioning of the causative agent, both
in an absolute (the drug must be effective against the disease) and in a
relative sense (the drug must be selective, i.e., effective against the culprit
of the disease but not against healthy processes in the patient) [2]. When
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searching for a good drug target, potential targets have to be screened for
their absolute and relative importance. By applying Metabolic Control
Analysis (MCA), one can quantify this importance. In this chapter, we
introduce the basic principles of MCA and explain how MCA can be used to
identify promising drug targets. Furthermore we discuss how this strategy
can be used for the discovery of targets for drugs against parasitic diseases
(in particular trypanosomiasis) and cancer.

2 Mathematical models: Assistants for the human
brain

Biological systems often contain many components (e.g., enzymes) that
jointly determine the behavior of the entire system. The concentrations
and activities of those components are regulated at many hierarchical lev-
els (transcription, translation, post-translational modification). The bio-
chemical reactions they catalyze usually obey non-linear reaction kinetics,
such as given by Michaelis-Menten type and Hill equations. Together, this
complexity hampers our ability to understand large biological systems and
to predict their behavior in response to perturbations. Such perturbations
can include changes in the environment (e.g., extracellular glucose con-
centration), mutations (e.g., oncogenic K-Ras), epi-genetic alterations (e.g.,
loss of imprinting) or addition of an enzyme inhibitor (e.g., a drug). In
order to understand complex biological systems, the human brain needs
assistance. Systems biologists do therefore not only focus on collecting
experimental data on a system or a part thereof, they additionally strive to
integrate the knowledge obtained into mathematical models [3]. Many of
those models can be used to run computer simulations of the behavior of a
biological system. Models of some biological systems are available on the
internet (www.siliconcell.net) such that they can be interrogated interac-
tively [4], with the ultimate aim of merging them to construct a so-called
Silicon Cell [5, 6].

Computer simulations can be helpful in several ways. First, by compar-
ing the experimentally observed behavior of a system with the behavior
of it’s in silico counterpart, one can examine whether the available knowl-
edge about the parts of a system (which are integrated in the model) is
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sufficient to explain the behavior of the system. In this way, the biochem-
ical knowledge of the glycolytic enzymes in yeast has been integrated and
compared with the empirical behavior of the pathway [7]. Other exam-
ples of such modeling exercises exist, dealing with systems ranging from
metabolic pathways to signal transduction networks [6, 8]. The number
is still limited however, mostly because it is rare that all kinetic properties
required for the modeling have been determined experimentally. More
often therefore models are hybrid, parts being known experimentally and
parts being fitted to actual or suspected system behavior. Where model
prediction and experimental results do not match, one may discover not
yet observed regulatory [9] or catalytic processes, or of course fallacies in
the experimental methodology. With present day complexities, the com-
putational aspects of most biological modeling are not problematic.

Second, one can carry out in silico experiments, for instance to test the
effects of perturbations made to the system (such as the administration
of drugs or changes in nutrient levels). The advantages of such ‘dry ex-
periments’ are that they have less experimental constraints. Some experi-
ments are indeed only practicable in the computer [10]. In addition, they
are generally less laborious and they require fewer resources than wet lab
experiments. Clearly, if one requires an accurate description of the in vivo
system, then results generated by computer simulations are only reliable
when the model is accurate. As it is often difficult to know whether a model
is 100% accurate, predictions that originate from the simulations should
be tested in the lab as much as feasible. The simulations can guide the pro-
cess of designing an experimental strategy, by providing indications as to
which experiments (under which conditions) are most promising to lead
to a satisfactory answer to the research question. In turn, the experimen-
tal results can be used to further optimize the model. Modern methods
of analysis are now combined with the paradigms of MCA, which will be
discussed below [11].

Third, by analyzing a model of a biological system, one can examine
why a system behaves or responds as it does [10]. If for example, in the case
of a network containing a negative feedback loop, removing that feedback
loop from the model dramatically changes the adaptive behavior of the
system, then this feedback loop explains the adaptation [12]. Such anal-
yses enable the researcher to understand the behavior of the network in
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terms of its organization. Systems biologists thus combine wet lab experi-
ments with mathematical modeling in cycles, resulting in a spiral towards
better understanding of the system of interest.

A fourth point that argues for the use of mathematical models, is that it
is impossible to know exactly how important a system component (gene,
enzyme, pathway, etc.) is for the functioning of that system (pathway,
cell, etc.), only by looking at the interaction map or reaction scheme of a
biological network. Classical gene knockout studies cannot overcome this
since they identify all essential components as important, without assign-
ing a relative quantification to this importance. Likewise they classify all
non-essential components as unimportant. If an essential function of an
organism is carried out by two parallel processes, both processes will be
classified as unimportant. MCA was developed for this purpose, in partic-
ular to quantify the extent to which individual enzymes control the flux
through a metabolic pathway [13, 14]. This can be done by quantitative
experimentation [16]. With a mathematical model of a system, one can
calculate this control precisely.

3 Metabolic control analysis: Basic principles

In MCA the extent to which any system property (gene expression, meta-
bolic flux, enzyme concentration, cell division rate, etc.) is controlled by
a process of that system (catalytic conversion, transport, diffusion, etc.) is
quantified in terms of a control coefficient. A control coefficient is defined
as the relative change in a system property divided by the small relative
change in the activity of the enzyme that catalyzes it [13–18]. The exact
control of an enzyme over, for instance, the flux through an enzyme-
catalyzed step in a network in steady state is quantified by a flux control
coefficient. Hence CJ

i , i.e., the control of enzyme i over flux J, represents
the fractional change in flux J that is caused by a fractional change in the
rate v of the reaction catalyzed by enzyme i. Mathematically:

CJ
i =

dJ
dpi

/
J

∂vi

∂pi

/
vi

=

d ln J
dpi

∂ ln vi

∂pi

(1)
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This is also often written in shorthand form as d ln J
d ln vi

, but this expression is
equivocal: if the flux runs through the enzyme, then one might interpret
this to be always equal to 1. The meaning of the definition is that one
measures the extent to which the activation of an enzyme leads to a pro-
portional increase in flux J. For enzymes that are not in physical association
with others and catalyze only a single reaction, this extent is independent
of the way in which the enzyme is activated [19]. A frequently used ‘work-
ing definition’ for a control coefficient is the percentage change in flux
that is caused by a 1% change in the activity of the reaction. The change
in reaction activity equals the change that would occur in the enzyme’s
reaction rate if all other factors around the enzyme were held constant.
The latter condition is indicated by the symbols ∂ in equation 1.

Clearly, when an enzyme has a flux control coefficient of 0, it is not
‘rate-limiting’ for the flux. When the control coefficient is 1, then the
change in flux is proportional to the change in the activity of the reaction.
Then the reaction determines the flux completely. In principle, the values
of flux control coefficients are not bounded. Depending on the structure
of the network and on the kinetic properties of its enzymes, they can be
negative and their absolute values larger than 1. For simple linear path-
ways however, flux control coefficients tend to range between 0 and 1.
‘The’ rate-limiting enzymes are the enzymes with the flux control coeffi-
cients equal to 1. Enzymes with higher control coefficients may be called
super rate-limiting, if so desired. Interestingly, the sum of the flux control
coefficients for all enzymes in the system with respect to any flux equals 1
[13, 14]:

n∑
i=1

CJ
i = CJ

1 + CJ
2 . . . + CJ

n = 1 (2)

This summation theorem can be understood intuitively: if the activities of
all enzymes involved in a metabolic pathway are increased by 1%, then the
flux through that pathway will also increase by 1%. This has several inter-
esting consequences. It shows for instance that there is always at least one
enzyme that controls the flux. The flux through a metabolic pathway is
thus always controlled, which is good news for those who wish to change
a metabolic flux for biotechnological or medical applications. It is also
possible, however, that all enzymes in the pathway control the flux to a
certain extent, which implies that the flux is not necessarily dictated by
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one rate-limiting enzyme, but can be distributed over multiple enzymes.
This is in fact what has been found for many systems, including mito-
chondrial respiration [20], trypanosome glycolysis [21] and mammalian
signaling networks [22] such as Wnt/ˇ-catenin [23], NF-�B [24] and MAPK
[25]. Control coefficients have been defined in MCA for a wide variety of
system properties and in many of those cases summation theorems have
been derived [22, 26]. In some cases metabolic networks can be subdivided
into mass flow connected modules, in an approach called modular control
analysis [27]. In addition, MCA has been expanded to Hierarchical Con-
trol Analysis, which deals with networks involving gene expression, and
signal transduction [27–30]. Here various levels are discerned which essen-
tially do not share mass flux. This special aspect gives rise to a substantial
number of additional principles and enables one to describe adaptation.

A control coefficient thus quantifies the change in flux (or another
property) caused by a change in the activity of a process in the system.
The activity of an enzyme can be regulated directly by a change in the
concentration of the enzyme itself (e.g., as a result of gene induction or
silencing), but also indirectly by a change in a variable or parameter ad-
dressing that enzyme. Such perturbations include changes in the con-
centration of a metabolite (e.g., the substrate or product of the reaction
catalyzed by the enzyme) or modifier (e.g., an inhibitor or activator) or
changes in the properties of the enzyme (e.g., a binding constant as a re-
sult of a mutation). In MCA, the relative extent to which the activity of
an enzyme changes divided by the relative change in a parameter or vari-
able metabolite concentration p that is the unique cause of that change,
is termed an elasticity coefficient. Hence "vi

p , i.e., the elasticity of the en-
zyme i towards parameter p (or equivalently, towards the concentration of
a metabolite or modifier), represents the fractional change in the rate v of
the reaction catalyzed by enzyme i that is caused by a fractional change in
the parameter. In mathematical terms:

"vi
p =

∂vi
/
vi

∂p/
p

=
∂ ln vi

∂ ln p
(3)
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Again the symbol ∂ refers to the condition that p is the only one of the
factors that may affect the enzyme’s rate, that is allowed to change here
(in mathematics this is called a partial derivative).

In many cases, one is not ultimately interested in how the activity of
an enzyme responds to a perturbation, but rather how such a perturba-
tion percolates through the network eventually to bring about a change
in a systemic property (e.g., flux). This can be quantified by a response
coefficient, which is defined as the relative change in flux divided by the
relative (small) change in the value of the perturbed parameter (or vari-
able) that causes the change in flux. Hence RJ

p, i.e., the response of flux
J to parameter p, represents the fractional change in flux J caused by the
(small) fractional change in p. Mathematically,

RJ
p =

dJ/
J

dp/
p

=
d ln J
d ln p

(4)

As an elasticity coefficient quantifies the effect of a change in a parameter
on an enzyme activity (3) and a control coefficient quantifies how the
flux is controlled by this enzyme activity (4), the response of the flux to
a change in a parameter can be quantified by multiplying the elasticity
coefficient by the control coefficient [31]:

RJ
p = CJ

i · "vi
p (5)

Until now we have not described what is meant with flux J, as distin-
guished from rate vi. A rate is a property of an individual enzyme; it exists
independent of the existence of a steady state. A flux is a systems property;
it typically runs through at least two consecutive enzymes in a metabolic
pathway, and requires the rates of those two processes to be equal, i.e., to
be at (quasi) steady state. Similarly all the ‘straight’ d’s in the above defini-
tions refer to differences between such steady states, where all metabolic
variables are allowed to evolve from one steady state to another.

Taken together, MCA provides a theoretical framework for the (exact!)
quantification of (i) the importance of a component for the functioning of
the system (control coefficient) as well as of (ii) the effect of a perturbation
(response coefficient) by taking into account the local effect of the pertur-
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bation on the affected component (elasticity coefficient) and the system
effect of changes in activity of the latter. How such quantifications can be
used for drug target discovery will be discussed in the next sections.

4 Effective drug target identification using MCA

As mentioned above, a good drug has to be effective against the cause
of the disease. If a drug is administered that inhibits an enzyme to alter
a particular metabolic flux, then the drug could be termed effective if it
causes a relatively large change in this flux. In other words: for a drug to
be effective it should have a high response coefficient. This response co-
efficient is the product of the elasticity coefficient of the enzyme towards
the drug and the control coefficient of the enzyme on the flux. The ef-
fectiveness of the drug therefore depends not only on how efficient the
drug inhibits the enzyme, but also on how important the enzyme is for
the flux. Hence, a good drug target is a target that exerts much control on
the system. One can thus determine the best drug target in a particular
system by rank-ordering its components on the basis of the magnitude of
their control coefficients on its function [32].

MCA has been applied to understand the onset and treatment of meta-
bolic diseases. Impaired mitochondrial respiration during brain edema,
for instance, can be treated by increasing succinate dehydrogenase activ-
ity with naftidrofuryl. This could be explained by the fact that succinate
dehydrogenase was found to become a controlling step for mitochondrial
oxidative phosphorylation during the onset of edema [33]. MCA also ex-
plains the so-called threshold effect often found in mitochondrial dysfunc-
tion, i.e., that deficiencies in enzyme complexes often need to be large to
trigger metabolic disease. As flux control is distributed among multiple en-
zyme complexes, many complexes have low flux control coefficients [34].
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5 Enhancing anti-parasite drug selectivity with
differential control analysis

Apart from being effective, a drug must also be selective against the causa-
tive agent of the disease. This is particularly important when the drug is
directed against a target that also functions in healthy cells of the host. An
illustrative example is the case of the protozoan Trypanosoma brucei. This
parasite resides in the bloodstream of a mammalian host and causes the
fatal African sleeping sickness. As trypanosomes rely on glycolysis for their
ATP production, a major strategy in drug design has been to decrease the
glycolytic flux by enzyme inhibition [35]. The challenge of this effort is
not reducing the glycolytic flux in the parasite such that it cannot survive:
the bigger challenge is that glycolytic flux in the cells of the mammalian
host must remain intact, such that the host is not affected (or at least not
to a significant extent) by the drug [32]. This selectivity can be defined in
terms of MCA as the ratio between the response coefficient of the glycolytic
flux in the parasite towards the drug and the response coefficient of the
glycolytic flux in the host towards the drug. If a drug inhibits enzyme i,
this selectivity can be written mathematically as follows:

selectivity =
RJ(tryp)

drug

RJ(host)
drug

=
CJ(tryp)

i · "
vi(tryp)
drug

CJ(host)
i · "vi(host)

drug

(6)

Part of this selectivity is determined by the ratio of the elasticity coefficients
towards the drug of the respective equivalents of enzyme i in trypanosomes
and in the host. Among other factors, this elasticity depends on the pro-
tein structure of enzyme i. The selectivity of anti-parasitic drugs can there-
fore be increased by designing drugs that specifically inhibit glycolytic
enzymes of the parasite, based on structural differences with their mam-
malian equivalents [35]. Many enzyme inhibitors are, however, derivatives
of a metabolic substrate of their target, and compete with this substrate
both in the parasite and in the host. Applying the drug may increase
the concentration of the competing substrate and thereby render the drug
fairly ineffective [36]. Therefore, it is necessary to take the network dif-
ferences between the parasite and the host into account, to increase drug
selectivity beyond that based on the differences in protein structure of the
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drug target. This can be achieved by identifying a process that is relatively
important for the glycolytic flux in the parasite but relatively unimportant
for the glycolytic flux in the host. The approach in which the control dis-
tribution on the same biological system in two different organisms (or cell
types) is compared is called differential control analysis.

In order to identify the most important steps in trypanosome glycol-
ysis (Fig. 1), a detailed mathematical model was constructed containing
measured kinetics for most enzymes in the pathway [37]. Predictions
from model simulations regarding the metabolite concentrations and gly-
colytic flux accurately resembled experimental measurements. The model
was used to calculate the flux control coefficients for all enzymes in the
pathway. It turned out that the glucose transporter had the highest con-
trol, which is a prediction that this enzyme be a good target for a drug
to influence the glycolytic flux [21]. Whereas the glucose transporter was
fully rate-limiting at low (0.36 mM) extracellular glucose concentration,
it lost some of its control to aldolase (ALD), glyceraldehydes-3-phosphate
dehydrogenase (GAPDH), phosphoglycerate kinase (PGK) and glycerol-3-
phosphate dehydrogenase (GDH) at a more physiological (5 mM) extracel-
lular glucose concentration [38]. Interestingly, the model predicted hex-
okinase (HXK), phosphofructokinase (PFK) and pyruvate kinase (PYK) to
have a very low control coefficients [21]. This was recently confirmed
experimentally [39].

An interesting mammalian cell type to compare with the parasite, in
terms of the distribution of the control on glycolytic flux, is the erythro-
cyte. Like the parasite, erythrocytes occur in the bloodstream and also
depend on glycolysis for their ATP supply. Realistic computational mod-
els are available for glycolysis in the human erythrocyte [40–42]. Inter-
estingly, the glycolytic flux in the erythrocyte appears to be mainly con-
trolled by ATP utilization and not by the glucose transporter, ALD, GAPDH
or PGK [42].

Taken together, the glucose transporter and to a lesser extent ALD,
GAPDH and PGK, exert high control on glycolysis in the parasite but low
control in the erythrocyte. This suggests that these enzymes should make
effective and selective drug targets.
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Figure 1.
Control of glycolysis in bloodstream form Trypanosoma brucei. The metabolites are con-
verted by glycolytic enzymes, of which the abbreviated names are depicted in the circles.
The control coefficients on the oxygen consumption flux, depicted for each enzyme by the
number next to the respective enzymes, were calculated with a mathematical model of the
system [21, 39]. Adenylate kinase was considered to be in equilibrium and is not indicated.
ADP, ATP, Pi, NAD, NADH are also not indicated. THT, glucose transporter; HXK, hexoki-
nase; PGI, phosphogluco-isomerase; PFK, phosphofructokinase; ALD, aldolase; TIM, triose
phosphate isomerase; GAPDH, glyceraldehydes-3-phosphate dehydrogenase; PGK, phos-
phoglycerate kinase; GPDH, glycerol phosphate dehydrogenase; GK, glycerol kinase; GPO,
glycerol-3-phosphate oxidase; MUT, phosphoglycerate mutase; ENO, enolase; PyK, pyruvate
kinase.
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6 Control of tumor cell growth

In addition to infectious diseases, MCA holds promise for identifying drug
targets for treatment of multi-factorial diseases such as cancer, multiple
sclerosis, diabetes type 2 and atherosclerosis. These diseases are com-
plex by nature, hence difficult to understand. For cancer, for instance,
many genes have been causally implicated in oncogenic transformation
[43]. Most of these genes function in signal transduction pathways gov-
erning cell proliferation, apoptosis, angiogenesis, metastasis or invasion
[44, 45]. Complicated network organization (regulatory circuitry, cross-
talk between pathways, etc.) and non-linear kinetics of biochemical reac-
tions and the multitude of factors involved, complicate understanding of
signaling. Furthermore, interactions between tumor cells and other cell
types generate a complex supra-cellular communication network. There-
fore, even though many molecular differences have been identified be-
tween cancer cells and their healthy counterparts, the emerging picture is
overwhelmingly complex. It has therefore been argued by us and others
that cancer should be studied from a systems biology perspective, comple-
mentary to the current molecular and cellular biology research strategies
[46–52]. Upon integration of the many pieces of knowledge on the biology
of cancer, MCA can become a valuable tool to determine which compo-
nents (genes, pathways, etc.) are important for the functioning of the
system as a whole [51].

More than for infective diseases, drug target selectivity is an enormous
problem for cancer treatment, because tumor cells are so very similar to
their normal counterparts. Conventional cancer treatment relies on ra-
diotherapy and chemotherapy, which is based on the generally higher
susceptibility of cancer cells to damage induced by irradiation or chemical
compounds than their normal non-transformed counterparts [53]. This
therapeutic strategy, although successful to some extent, is rather nonspe-
cific, leading to potentially severe side-effects and many cases where the
disease becomes refractory to treatment. In addition, due to the increased
mutation rates in many tumor cells, resistant cells often arise which, due to
their selective advantage for growth during treatment, may out-compete
their sensitive counterparts.
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New therapies are currently emerging that aim to impair ‘oncogenic’
signal transduction by tyrosine kinase inhibitors or antibodies that block
growth factor receptors [54–57]. The rationale behind this is that over-
active signaling pathways, such as the mitogen-activated protein kinase
(MAPK) pathway, are responsible for the transformed phenotype and that
inhibition of those pathways should therefore reverse this. The question
is however: which protein in a pathway would make the best drug target?
Furthermore, the selectivity problem may remain, because some healthy
cell types require the same enzymes and pathways for functional viability.

MCA may thus serve as a method to determine which reactions in a
complex signaling network are actually controlling its behavior [51]. The
control on the amplitude and duration of signaling (i.e., the extent to
which a pathway is activated and the period of time this activation lasts,
respectively) was found to be distributed over multiple enzymes, but not
uniformly [22]. This means that inhibition of more than one enzyme
might prove more effective than inhibition of a single enzyme. Recently,
MCA was applied to the epidermal growth factor-induced MAPK pathway
in order to calculate the extent to which the individual reactions and pro-
teins control its output [25]. This was done on the basis of an updated
version of a detailed kinetic model of this system [58]. An interesting ob-
servation was that most of the 148 studied reactions did not control the
network at all (or to a very low extent). The activity of the Raf protein
exerted the strongest control on the network, which may explain why
mutated Raf confers a growth advantage to the affected cells and therefore
why it is frequently reported to be mutated in cancer cells [25]. In line
with what was discussed for trypanosomiasis, above, optimal drug targets
could then be identified by differential control analysis, i.e., by comparing
what controls the output of the network between normal cells and cancer
cells.

Besides aberrant signal transduction, cancer cells also display alter-
ations in metabolism. The enhanced proliferation rate, induced by onco-
genic mutations, requires high glucose turnover for the synthesis of nu-
cleotides. The resulting sensitivity of transformed cells to nutrient short-
age could be exploited for therapeutic purposes [59]. As normal cells
use glucose mainly for energy supply, it has been suggested to determine
which enzymes in glucose metabolism strongly control nucleotide synthe-
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sis, hereby identifying these proteins as potential drug targets [60]. A good
example would be transketolase, which was found to be enzyme exerting
the most control in glucose metabolism over nucleotide synthesis [61].

Taken together, control analysis methods have a great potential in the
discovery of targets for anti-cancer therapies, since controlling reactions in
both signal transduction networks and metabolic pathways can be identi-
fied with MCA.
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The protein network as a tool for finding novel drug targets

Abstract

Proteins are often referred to as the molecular workhorses of the cell since they are
responsible for the majority of functions within a living cell. From the generation of
energy, to the replication of DNA, proteins play a central role in most cellular functions.
Because of their importance to cellular viability, proteins are commonly the target of
therapeutic drugs, ranging from antimicrobial to anticancer drugs. With the rise of
drug resistant and multi-drug resistant forms of many diseases, it has become increas-
ingly important to develop new strategies to identify alternative drug targets. One such
strategy arises from the analysis of protein networks. Protein networks help define in-
dividual proteins within the context of all other cellular proteins. In this chapter we
discuss methods for the identification and analysis of genome-wide protein networks,
and discuss how protein networks can be used to aid the identification of novel drug
targets.

Keywords: protein network, protein interactions, protein linkages, drug targets

1 Protein linkages

Proteins can function together in many ways, ranging from direct phys-
ical associations among proteins in a complex, to transient interactions
that occur among members of certain protein pathways. Proteins can also
function as non-interacting members of the same pathway. As a result, it
has been of great interest to develop methods to identify these protein as-
sociations, or protein linkages, on a genome-wide basis [1]. The detection
of protein linkages has been aided by advances in both biochemical [2–6]
and computational methods [7–15], which have yielded valuable insight
into the underlying architecture of cellular networks [16–20].

2 Biochemical methods to identify protein-protein
interactions

2.1 Yeast two-hybrid assay

One of the most widely used methods for identifying physically inter-
acting proteins is the yeast two-hybrid assay (Y2H) [21]. The yeast two-
hybrid assay enables the detection of physically interacting proteins, by
exploiting the modular organization of transcriptional activators. Tran-
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scriptional activators contain two domains, a DNA binding domain and a
transcriptional activator domain, which together can initiate transcription
of a target gene. When separated, however, these domains cannot initiate
transcription on their own, unless they are brought into close proximity
by additional factors.

In the yeast two-hybrid assay, the DNA-binding domain (DBD) of a
transcriptional activator is fused to one protein of interest. This fusion
protein is known as the ‘bait’ protein. The transcriptional activating do-
main (AD) is fused to another protein, known as the ‘prey’ protein. If there
is a physical interaction between the ‘bait’ protein and the ‘prey’ protein,
then the DNA-binding domain and the transcriptional activating domain
come into close proximity and activate a specific reporter gene [21]. If
the bait protein and the prey protein do not interact, however, then the
DNA-binding domain and the transcriptional activating domain do not
come into close proximity, and thus do not activate the reporter gene.
This method has been scaled up to enable the high-throughput detection
of genome-wide protein–protein interactions [22], and has greatly aided
the identification of protein interactions in organisms including yeast [2,
3], C. elegans [23], Drosophila [24], and humans [25].

2.2 Co-immunoprecipitation method

Another widely used method for detecting protein–protein interactions is
the co-immunoprecipitation method (Co-IP) [26]. In the Co-IP method,
an antibody is made to target a particular protein of interest. The antibody
is then added to a mixture of proteins, often comprising the total cellular
lysate of a particular cell type, and allowed to bind to the target protein. If
the target protein interacts with additional proteins, then protein–protein
interactions can be identified by capturing the antibody and all attached
proteins on a solid support. After washing unbound proteins away, the
antibody and attached proteins can be eluted and analyzed by a variety of
methods ranging from gel electrophoresis to mass spectrometry. Proteins
that interact with the target protein are identified in this manner [26].
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2.3 Co-affinity purification coupled with mass spectrometry

Variations of the Co-IP method have also been employed to detect phys-
ically interacting proteins, including the co-affinity purification (Co-AP)
method coupled with mass spectrometry (AP-MS) [4, 5]. In this strategy, a
specific target protein is tagged with an affinity tag, expressed with other
cellular proteins, and affinity purified. Protein–protein interactions are
detected by the co-purification of additional proteins with the tagged pro-
tein. Mass spectrometry is then used to identify interacting proteins. This
application has been applied to investigate the proteome of Saccharomyces
cerevisiae [4, 5], where it has enabled the identification of hundreds of
protein complexes [4, 5].

2.4 Protein–protein interaction databases

To date, over 50,000 protein–protein interactions have been reported in
the literature and catalogued into various databases [27]. Among these
databases are the Database of Interacting Proteins (DIP) [28], the Biomolec-
ular Interaction Network Database (BIND) [29], and the Molecular Inter-
actions Database (MINT) [30]. Additionally, a number of web servers have
arisen to catalog both known and putative protein pathways. These servers
include the Kyoto Encyclopedia of Genes and Genomes (KEGG) [31], the
Encyclopedia of E. coli Genes and Metabolism (EcoCyc) [32], and the Mu-
nich Information Center for Protein Sequences (MIPS) [33]. Together these
databases and web servers provide a useful source for investigating protein–
protein interactions in organisms ranging from E. coli to human.

3 Computational methods to identify protein linkages

In addition to biochemical methods to identify linked proteins, a num-
ber of computational methods have been developed to identify function-
ally linked proteins, including the Rosetta Stone [8], Phylogenetic Profile
[11], conserved Gene Neighbor [14, 15], and Operon/Gene Cluster [13, 34]
methods. Each of these methods utilizes genomic sequence information
garnered from genome sequencing efforts. Currently there are over 300
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completed genomes available [35, 36], and over 1,000 ongoing genome
sequencing efforts [35]. Together these efforts provide us with a tremen-
dous amount of information regarding not only the genetic blueprint of
hundreds of organisms, but also facilitate the computational inference of
protein linkages and protein networks.

3.1 Rosetta Stone method

The Rosetta Stone method provides a means for inferring protein linkages
based on genomic analyses [8]. The Rosetta Stone method identifies indi-
vidual genes in one genome that occur as a single fusion gene in another
genome. For example, the leuC and leuD genes of Mycobacterium tuberculo-
sis (Mtb) occur as two separate genes [37], but in Schizosaccharomyces pombe
these two genes occur as a single fused gene. Based on this observation, it
can be inferred that the M. tuberculosis leuC and leuD genes are ‘function-
ally linked’. Functionally linked genes may represent genes that encode
members of a common protein complex, a common protein pathway, or
proteins that serve related functions within the cell [1]. While the leuC and
leuD example demonstrates a Rosetta Stone linkage between two genes of
known function (both genes are involved in leucine biosynthesis), many
Rosetta Stone linkages involve uncharacterized proteins [8].

3.2 Phylogenetic Profile method

A second method for inferring protein linkages is the Phylogenetic Profile
method [11]. The Phylogenetic Profile method identifies genes that occur
in a correlated manner across many genomes, specifically identifying genes
that are present or absent in a correlated manner [11]. For example, the
fliC and fliG genes of E. coli share similar Phylogenetic Profiles. Both fliC
and fliG are present in genomes of flagellated motile bacteria, while both
proteins are absent in genomes of non-motile bacteria. We might expect
that genes that participate in a shared biochemical pathway or protein
complex would share similar phylogenetic profiles.
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3.3 Conserved Gene Neighbor method

A third method for inferring protein linkages is the conserved Gene Neigh-
bor method [14, 15]. This method identifies genes that tend to be located
in close chromosomal proximity in multiple genomes. For example, the
E. coli otsA and otsB genes are both involved in trehalose biosynthesis, and
are located in close chromosomal proximity in a number of genomes in-
cluding E. coli, S. typhi, and M. loti. The close chromosomal positioning
of genes across many genomes is a common feature of genes in bacterial
operons, and suggests related functions. This is also observed in eukaryotic
organisms, although to a lesser extent.

3.4 Operon/Gene Cluster method

The Operon method [13], also referred to as the Gene Cluster method
[38], utilizes information from a single genome to identify putative operon
members based on the distance between adjacent genes in the same ori-
entation [13]. Genes that are separated by minimal intergenic distances
are more likely to belong to common operons than genes separated by
larger distances [10, 12, 39]. This method has been applied to identify
linked genes in organisms ranging from E. coli [12] to M. tuberculosis [13],
and this method is particularly useful in instances where no identifiable
gene homologs are present. To date, most genome sequencing ventures
have identified genes that are completely unique to a particular organism,
and in these cases, the Operon/Gene Cluster method may be particularly
useful for assigning putative function or linking uncharacterized genes to
characterized genes.

3.5 Databases of inferred protein linkages

Collectively, the described computational methods provide a powerful tool
to infer protein linkages, which can then be used to construct genome-
wide protein networks. As the number of completed genomes continues
to increase, these methods are likely to become more powerful. Currently
the ProLinks Database [38] contains inferred protein linkages for over 160
sequenced genomes, and includes over 17 million high confidence link-
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ages [38, 40] identified by the Rosetta Stone, Phylogenetic Profile, con-
served Gene Neighbor, and Operon/Gene Cluster methods. Another useful
database of inferred protein linkages is the EMBL STRING server [41].

4 Protein networks

Biochemical and computational methods have greatly facilitated the iden-
tification of protein linkages on a genome-wide scale. The next question
we can ask is “How are these protein linkages organized on a genome-wide
scale?” This question can be answered by the construction and analysis of
protein networks. Protein networks provide a useful graphical method to
investigate the connectivity of individual proteins, as well as sets of pro-
teins [16–18]. Figure 1 depicts a protein network centered on the human
cellular tumor antigen p53. p53 is an important tumor suppressor gene
[42] that is frequently mutated or inactivated in human cancer cells [43].
As a result, this protein has been thoroughly studied at both the cellular
and molecular level.

Figure 1a shows a list of proteins that p53 has been found to physi-
cally interact with, as retrieved from the Database of Interacting Proteins
[28]. p53 interacts with a number of proteins, including other important
cancer-related proteins such as the Breast cancer type 1 (BRCA1) and type
2 (BRCA2) susceptibility proteins, as shown in Figure 1a. Figure 1b depicts
the same interactions listed in Figure 1a, but in this case the data are rep-
resented as a protein network. In the network, each protein is represented
as a circular ‘node’, and each interaction is indicated as a connecting line,
better known as an ‘edge’. The p53 protein serves as the central node in
this network. The network depicts proteins that interact directly with p53,
as well as proteins that are linked by two edges. Protein networks facilitate
the analysis of protein linkages and provide a useful graphical interface for
analyzing and interpreting large amounts of data.

While the p53 protein network of Figure 1b was constructed using ex-
perimentally identified protein–protein interactions, protein networks can
also be constructed using computationally inferred protein linkages [38].
Such methods have the advantage of providing information regarding or-
ganisms in which extensive biochemical or genetic experiments have not
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Figure 1.
Protein network of the cellular tumor antigen p53. a) List of proteins that p53 interacts with,
as retrieved from the Database of Interacting Proteins [28]. b) p53 protein network. P53
serves as the central node in this network, with 1st and 2nd shell nodes depicted.

been done. Figure 2 depicts a computationally inferred protein network
centered on the yeast prion protein Sup35. This network was constructed
using a combination of the Phylogenetic Profile method (PP), the Rosetta
Stone method (RS), the conserved Gene Neighbor (GN) method, and the
Operon/Gene Cluster (GC) method [38].

The yeast prion protein, Sup35, has been shown to exhibit properties
of prion-like infectivity [44, 45], resulting from the formation of amyloid-
like fibrils [46–49]. The Sup35 network reveals a number of linkages to
proteins involved in transcription and translation activities, which may
be related to the natural cellular function of Sup35. The use of computa-
tionally inferred protein networks, such as the Sup35 network, as well as
biochemical-based protein networks, such as the p53 network, may help us
better understand the molecular framework in which normal and disease-
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Figure 2.
Protein network of the yeast prion protein Sup35. Linkages indicated in this type of network
are inferred by the Phylogenetic Profile (PP), Rosetta Stone (RS), conserved Gene Neighbor
(GN), and Operon/Gene Cluster (GC) computational methods.

associated proteins function, and in turn may suggest new strategies to
combat a variety of diseases.

Figures 1 and 2 represent somewhat simplified protein networks with
only the 1st and 2nd shell nodes depicted. Many protein networks, how-
ever, exhibit higher complexity, as shown in Figure 3. In some cases, pro-
tein networks comprise hundreds or even thousands of linkages. While
the classical method of protein network representation has relied on the
node and edge type network (Fig. 3), recent work has demonstrated useful
advantages of matrix-represented protein networks [19, 20, 50].
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Figure 3.
Classical protein network depicting M. tuberculosis protein linkages. Figure adapted from
Strong et al. [50].

4.1 Matrix-represented protein networks – genome maps

An alternative approach to represent genome-wide protein networks is
shown in Figure 4. In this approach, each linked pair of proteins is in-
dicated as a single point on a two dimensional matrix, corresponding to
the position of the genes on the chromosome [50]. Each axis of the graph
represents a monotonically ordered list of genes, starting at the origin of
replication and proceeding along the chromosome. The M. tuberculosis
genome has approximately 4,000 genes, as indicated on the x and y axis
of the matrix in Figure 4c. Each point on this graph indicates a com-
putationally inferred protein linkage between two proteins [50]. Figure 4a
depicts a zoomed in region of the map, representing only the first 50 genes.
The point at coordinate x=1, y=5 represents a linkage between the 1st gene
on the M. tuberculosis chromosome (Rv0001, dnaA) and the 5th gene on
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Figure 4.
Genome-wide functional linkage map. a) Zoomed in region of the genome-wide functional
linkage map depicting the first 50 genes. Genes are organized according to the order on the
chromosome. Each ‘point’ on the matrix represents a pair of functionally linked genes, for
instance the point at coordinate x=1, y=5 indicates a linkage between the first gene, Rv0001
(dnaA) and the fifth gene, Rv0005 (gyrB). b) Functional categories of some of the proximal
genes. c) Complete genome-wide functional linkage map depicting nearly 10,000 high
confidence functional linkages in M. tuberculosis. Figure adapted from Strong et al. [50].

the chromosome (Rv0005, gyrB). Both these genes are involved in DNA
replication or repair.

The representation of protein networks as two dimensional genome
maps reveals certain characteristics that are not observable using tradi-
tional node and edge protein networks. Since information regarding chro-
mosomal organization is maintained in the genome maps, we can analyze
protein connectivity in relation to genome organization. One feature that
is readily apparent in the genome map of Figure 4 is the local connectivity
of genes that are located in close chromosomal proximity [50]. In many
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cases these clusters of highly connected genes correspond to known or
putative operons. Often these clusters contain genes that perform related
cellular functions. For instance in Figure 4b, cluster A, most of the genes
are involved in DNA replication or repair. In cluster B, there are two genes
encoding serine threonine kinases, one phosphatase, and two cell wall
metabolism genes. Due to the functional connectivity among the genes
of this region, it can be hypothesized that the genes of this cluster par-
ticipate in a cell wall signaling cascade [50]. This hypothesis was further
supported by the presence of a putative peptidoglycan-sensing domain on
one of the serine-threonine kinase proteins [51].

The Genome-wide Functional Linkage Map represented in Figure 4c
contains approximately 10,000 high confidence protein linkages, inferred
by two or more computational methods. To further facilitate the analysis
of these protein networks Strong et al. also developed a method to hier-
archically cluster the genes of the matrix, based on the similarity of the
functional linkage profiles [50]. A functional linkage profile indicates all
genes a particular gene is linked to, represented as a bit vector. A ‘1’ in the
bit vector indicates a protein linkage and a ‘0’ indicates the absence of a
linkage. In the hypothetical example shown in Figure 5a, Gene A is linked
to Gene B, Gene C, and Gene D, as indicated by the ‘1’s in the profile. Pro-
files are then clustered using a hierarchical clustering algorithm, bringing
together genes that share similar functional linkage profiles.

The resulting clustered map, shown in Figure 5b, reveals important
characteristics of protein network connectivity and hierarchy. Many of
the genes cluster into distinct modules, participating in related cellular
functions [50]. Some of these modules correspond to protein pathways
or complexes, while others contain genes that serve related cellular func-
tions. Some of the functional modules are indicated in Figure 5b. Figure 5c
depicts a zoomed-in region of the clustered map, indicated by the black
square. Functional modules in this region correspond to genes involved in
detoxification, polyketide synthesis, energy metabolism, and the degrada-
tion of fatty acids. This example illustrates how hierarchical clustering of
genomic maps can enable the rapid identification of functional modules
on a genome-wide basis [50].

Figure 6 shows ten representative clusters of the hierarchically clus-
tered map. In some cases, the gene clusters can be used to infer protein

203



Michael Strong and David Eisenberg

Figure 5.
Hierarchical clustering of the genome-wide functional linkage map. a) Outline of the
method. b) Hierarchical clustering reveals the inherent modularity of the M. tuberculosis
genome. c) Representative M. tuberculosis functional modules. Figure adapted from Strong
et al. [50].

function for uncharacterized genes. In Figure 6a, a group of chaperone
proteins cluster with a non-annotated gene, Rv2372c. Based on this ob-
servation, it can be inferred that Rv2372c has a function associated with
that of the chaperones of this cluster. In Figure 6b, a number of genes in-
volved in the synthesis and modification of polysaccharides cluster with
the uncharacterized gene Rv0127. Based on this clustering, Rv0127 is hy-
pothesized to be involved in polysaccharide synthesis or modification. In
other cases, clusters contain a large percentage of non-annotated genes
(Fig. 6d–j). These clusters may suggest previously uncharacterized mod-
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Figure 6.
Representative clusters of functionally linked genes. Gene clusters can aid the inference of
gene function for uncharacterized genes as well as can identify novel groups of genes that
may function together as a unit. Figure adapted from Strong et al. [50].

ules, possibly corresponding to members of common pathways or com-
plexes, yet to be characterized. A more comprehensive understanding of
the modularity of genome-wide protein networks in human pathogens
may enable researchers to better devise strategies to combat the pathogenic
effects that certain modules are responsible for.

Gene expression analyses have also become an essential tool to identify
genes that play important roles during disease states or during infection.
While gene expression analyses alone can be used to identify important
genes, the examination of gene expression within the context of protein
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Figure 7.
Examination of gene expression patterns within the context of protein networks. Upregu-
lated genes are indicated by the arrows. Figure adapted from Rachman et al. [52].

networks may further help us to understand the mechanisms by which
certain systems are triggered during disease states or infection [52]. Fig-
ure 7 shows an example of M. tuberculosis gene expression profiling within
the context of computationally inferred protein networks. In this case, M.
tuberculosis genes that are upregulated during macrophage infection are
indicated by arrows. Analyses such as these may aid the identification of
modules that are important during infection, and may be useful in nar-
rowing the field of potential drug targets.

5 Drug targets

One of the major challenges confronting many branches of infectious dis-
ease control is the emergence of drug resistant strains of many viral and
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bacterial pathogens [53]. Amplifying this concern is the emergence, in
some cases, of multi-drug resistant strains [54]. As a result, there is a dire
need for the identification of effective, alternative drug targets that may
be used to combat these pathogens as they become resistant to current
drugs. Often, drug resistance emerges as a result of specific amino acid
alterations in targeted proteins [55]. In some cases, these mutations ren-
der drugs ineffective, while in other cases they decrease the efficiency of
the drug. Resistance to penicillin, for example, is associated with specific
amino acid mutations in the penicillin binding proteins [56].

While many drugs target a specific protein, the resulting activity of a
drug is often the disruption of a particular cellular function, pathway, or
complex. For example, fluoroquinolones inhibit the DNA unwinding ac-
tivity of the gyraseAB complex, penicillin inhibits cell wall biosynthesis
by targeting the penicillin binding proteins, rifampin inhibits the tran-
scriptional activity of the RNA polymerase complex by targeting the RpoB
protein, and streptomycin inhibits protein synthesis which can be allevi-
ated by mutations in the rpsL gene [57]. In effect, each drug, by targeting
a specific protein or small group of proteins, inhibits or disrupts an impor-
tant cellular pathway, complex, or function. As protein targets become
resistant, it may be useful to target other members of the same pathway or
complex, as well as proteins that serve related cellular functions. In these
cases, protein networks can be useful for the identification of new drug
targets that are linked directly or indirectly to current drug targets.

Figure 8 shows computationally inferred protein networks involving
four anti-tuberculosis drug targets, RpoB (the target of Rifampin), KasA (a
target of Isoniazid), GyrA (the target of Fluoroquinolone drugs), and RpsL
(the target of Streptomycin). Each of these networks was generated using
the ProLinks server [38]. In each of these cases, we see that proteins of
similar cellular function are linked. In the case of RpoB, the Rifampin
drug target, there are linkages to other transcription related proteins such
as RpoC (the RNA polymerase beta’ subunit) and NusG (the transcription
antitermination protein), as well as a number of ribosomal proteins.

In the GyrA protein network, GyrA is linked to GyrB (the other mem-
ber of the DNA gyrase AB complex), the DNA replication initiator DnaA,
the DNA replication and repair protein RecF, and the DNA polymerase III
protein DnaN. GyrA is also linked to the uncharacterized gene Rv0007.

207



Michael Strong and David Eisenberg

Figure 8.
Protein networks involving known M. tuberculosis drug targets. a) rpoB protein network (ri-
fampin drug target), b) gyrA protein network (fluoroquinolone drug target), c) kasA protein
network (isoniazid drug target), d) rpsL protein network (streptomycin drug target).

Linkage of known drug targets to uncharacterized proteins may not only
suggest a potential function for these uncharacterized proteins, but may
also suggest relevant leads for drug target discovery. Figures 8c and 8d show
protein networks of the Isoniazid drug target, KasA, and the Streptomycin
target, RpsL.

Protein networks in Figure 9 illustrate two Streptococcus pneumoniae drug
targets, the penicillin binding proteins and the gyrase A subunit. Inter-
estingly, the penicillin binding protein network also contains the van-
comycin resistance operon member, VncR, as well as the Mur gene prod-
ucts, which are also involved in cell wall biosynthesis. Together, networks
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Figure 9.
Protein networks involving S. pneumonia drug targets. a) penicillin binding protein network,
b) gyrA/parC protein network (quinolone drug targets). Protein networks such as these can
be useful in identifying alternative drug targets.

such as these may suggest alternative drug targets as bacteria become re-
sistant to current drugs.

In addition to suggesting alternative targets linked to current drug tar-
gets, protein networks can also help identify new drug targets that are
associated with novel protein pathways, complexes, or cellular functions.
Jeong et al. demonstrated that protein networks could be used to identify
essential proteins, or proteins that are necessary for growth and survival.
They found that proteins with higher connectivity in protein networks
were more likely to be essential proteins, as compared to less connected
proteins [58]. Essential proteins may provide useful drug targets, since the
disruption of individual proteins may result in non-viable pathogens [59].

The methods described are not without noise, and methods such as the
yeast two-hybrid assay are known to yield false positives in several cases.
To address this situation, a number of methods have been developed to
assess the reliability of various protein interaction datasets and methods for
detecting protein interactions and protein linkages [60–62]. Such analyses
are important, particularly when deciding which targets to pursue further.
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From malaria to tuberculosis, protein networks have enabled research-
ers to identify and probe the global connectivity of proteins in relevant,
disease-causing organisms [50, 63]. In some cases, such as in Plasmodium
falciparum, protein connectivity differs from pathogenic to non-patho-
genic organisms [64]. These networks enable researchers to better under-
stand pathogens at the molecular level, and in turn can be used to identify
novel drug targets. Such an approach facilitates a molecular approach to
drug discovery, since drug targets are selected first at the molecular level,
and then later tested at the cellular level. This is in contrast to the classi-
cal method of drug discovery, which identifies new drug compounds first
at the cellular level, and later identifies the molecular target of the drug
[65]. It is likely, that a combination of the two methods will yield the most
promising results.

Some drugs, such as the breast cancer drug Herceptin, target the inter-
actions between proteins. Specifically, Herceptin inhibits protein–protein
interactions by binding to the extracellular domain of the human epider-
mal growth factor receptor, HER-2. Since protein networks often repre-
sent or suggest proteins that physically interact, protein networks may be
useful for identifying relevant protein–protein interactions to target for
disruption. Such a strategy is not without its challenges [66, 67], since
interaction interfaces often lack amenable ‘grooves’ or ‘binding sites’ that
are commonly targeted by small molecule drugs. As combinatorial drug
screening advances, however, this may become an increasingly important
area of focus in drug design and development.

6 Conclusion

Just as protein networks have helped us better understand the connectivity
of proteins throughout the cell, protein networks also hold the promise to
aid the identification of novel drug targets. As more pathogens become re-
sistant to commonly used therapeutic agents, it will become increasingly
important to pursue new strategies to combat disease. Specifically, pro-
tein networks can aid the identification of alternative protein drug targets
that are linked to current drug targets, that are likely to be essential (based
on network connectivity), and are linked to essential protein pathways
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or complexes. Protein networks also facilitate strategies that aim to tar-
get multiple proteins of the same pathway or complex. Analysis of gene
expression within the context of protein networks can also help identify
proteins and protein modules that may be important for virulence. To-
gether, protein networks can help us better understand both normal and
disease mechanisms at the protein level, and in turn may provide clues to
identify more effective strategies to combat disease.
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Toxicogenomics applied to predictive and exploratory toxicology

Abstract

Toxicology is the perturbation of metabolism by external factors such as xenobiotics,
environmental factors or drugs. As such, toxicology covers a broad range of fields from
studies of the whole organism responses to minute biochemical events. Mechanis-
tic toxicogenomics is an attempt to harness genomic tools to understand the physio-
logical basis for a toxic event based on an analysis of transcriptional, translational or
metabolomic profiles. These studies are complicated by non-toxic adaptive responses
in transcript, protein or metabolite expression levels that have to be distinguished from
those that are proximally related to the toxic event. Substantial progress has been made
on the identification of biomarkers and the establishment of screens derived from such
toxicogenomics studies. The ultimate goal, of course, is predictive toxicogenomics,
which is an attempt to infer the likelihood of occurrence of a toxic event with exposure
to a new agent based upon comparative responses with large databases of gene, protein
or metabolite expression data. Gene expression databases are currently limited by the
fact that measurable toxic phenotypes generally precede or at best coincide with the
earliest observable changes in transcriptional profiles. Unfortunately, predictive protein
databases have been limited by technical difficulties. Metabonomics-based databases,
which would probably have the highest predictive value, are limited in turn by the
inability to perform high dose studies in humans. This chapter will conclude by re-
viewing those elements of toxicogenomics that apply specifically to the development
of anti-infectives and the potential for accurately modelling the toxicity of future drugs.

1 Overview

Gene profiling, or more exactly mRNA transcript profiling, has relatively
recently invaded all layers of biological sciences [1, 2], from fundamental
research through to biomarker development and toxicology. This disci-
pline, commonly called genomics or more precisely transcriptomics, al-
lows the investigator to monitor the activity of a genome through measur-
ing the relative abundance of thousands of mRNA or even a whole genome
transcriptome, using so-called ‘gene array’ chips, nylon filters or glass slides
[3, 4] (see Chapter 2). More recently, the term genomics has been used to
embrace transcriptomics, proteomics and metabonomics, and systems bi-
ology approaches use the term genomics in its widest sense to include bio-
statistics and mathematical tools used in an attempt to integrate the huge
amount of data generated into meaningful information [5]. Indeed, these
‘omics terms immediately trigger in scientists minds gene arrays, 2D gels
and nuclear magnetic resonance (NMR) spectroscopy techniques respec-
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tively, each of which can produce tens of thousands of data points. How-
ever, these ‘omics also embrace many other complementary techniques,
for example reverse transcription quantitative (RTQ)-polymerase chain re-
action (PCR) for gene arrays ([6], see also Chapter 1). In this chapter, we
use the term genomics in its broadest context; and transcriptomics for
transcript profiling or ‘gene expression profiling’ (GEP) only. Likewise,
the application of gene profiling to toxicology is usually called toxicoge-
nomics; however toxicotranscriptomics is more accurate and will therefore
be favoured in this article. Toxicogenomics will again be used in the mean-
ing of the regrouping of the three disciplines applied to toxicology.

Being able to analyse a snapshot view of genome activity (mRNA, pro-
tein expression and metabolism) in one organ or even a cell subpopulation
of one organ under specific conditions, allows in theory, a thorough under-
standing of biological events at a specific time point. This approach should
allow a better understanding of fundamental biology at a molecular level,
identify new pharmacological targets and biomarkers, and improve under-
standing of toxicology mechanisms [2, 7–10]. Technical issues linked to
the monitoring and analyses of whole transcriptomes have been largely
overcome and a variety of platforms are now available [11, 12]. However,
there are still some technical limitations and every platform has advan-
tages and disadvantages, but the choice is large enough to select or adapt
appropriate, reliable technology from existing commercial or ‘home made’
kits [11, 12]. The very large amount of data generated by any genomics
platform is simply too overwhelming for straightforward human analysis.
Hence, bioinformatics solutions have been developed. There are numer-
ous statistical tools to extract the relevant information or what is thought
to be pertinent for the question under investigation. Here again no single
method is absolute and a careful informed choice of analysis methods is a
prerequisite to biological interpretation of the extracted data [2, 13]. De-
spite common assertions made in the pioneering times that GEP would be
the ultimate tool and become the biological panacea, it has become very
obvious that this was overoptimistic. More reasonably, it is now admitted
that proteomics (see Chapter 4) and metabonomics (see Chapter 5) are ex-
ploratory tools that not only complement each other and gene profiling
but also facilitate interpretation and confirm the biological meaning of
the results [7, 14]. It should also be noted that intrinsic limitations of the
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‘omics’ concept itself may be the most important aspect to consider before
entering the path of genomics [15, 16]. It is therefore necessary to state
that even well handled combined genomics will not solve all biological
mysteries. However, these powerful tools have huge potentials that the
scientific community is just starting to explore. The possibilities are open
to all areas of biological science and toxicology is certainly one that may
start to benefit from the strength of genomics.

The purpose of this chapter is not to detail these technologies, and
excellent reviews dealing with either platforms and/or statistical analysis
of data have been published [1, 2, 5, 7, 13], but to review toxicological
applications in mechanistic and predictive mode applied to the safety as-
sessment of new drugs, and to run a quick survey of its status regarding
anti-infective drug-associated side effects.

2 Toxicogenomics

The field of toxicology is unique in that it engages almost all biological
sciences. Indeed, toxicology can be seen as the disturbance of any aspect
of life by external factors such as xenobiotics, environmental factors or
drugs. Typically such aspects include main organ physiology, hormone
communication, cellular functions, cell interactions, metabolism, central
nervous system (CNS) function and behaviour, genetic integrity, and im-
munological regulation, etc. Information on the perturbation of one or
more of these processes is combined with toxicology-related issues such
as exposure to drug, routes of excretion or metabolism of a drug, pharma-
cokinetics, route of exposure, or risk assessment [17]. Due to the complex-
ities of the interplay of these factors and the large variation in response
observed between humans, toxicology like medicine is often perceived
more as an art than a hard science. Toxicologists are faced with complex
data derived from many different processes that need to be evaluated at
many different levels, from molecules to broad physiological functions,
for which a variety of in vitro and in vivo techniques and studies have
been developed over the years. The latest additions to the toxicologist’s
toolbox are the toxicogenomics platforms. It is hoped that the system-
atic exploration of toxicological events at the molecular level by studying
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the entirety of mRNA, protein and metabolite perturbations in response
to a xenobiotic challenge will yield a deeper understanding of the triggers
of an adverse response. Hence, this knowledge should improve the un-
derstanding of animal models, and allow these models to be refined and
optimised. It should also facilitate the design of improved informative in
vitro assays and should even allow the prediction of toxicity, potentially in-
cluding human idiosyncratic side effects. However, toxicotranscriptomics
does not directly produce informative molecular toxicological insights on
its own; neither will toxicogenomics if not integrated in the overall picture
of a toxic event which often includes clinical pathology, histopathology,
clinical examination, safety pharmacology and genetic toxicology obser-
vations. This rosy picture seems to be within our reach and toxicologists
have embraced toxicogenomics into two different avenues that are quite
contrary in their philosophies:

• A reactive approach consisting of exploring a toxicity event which has
been previously characterised and well described by in vivo studies using
classical approaches like histopathology. This is often referred to as
‘mechanistic or investigative toxicogenomics’.

• A proactive approach which entails the building up of large databases
of GEPs, protein profiles or metabolite profiles, derived from tissue sam-
ples or body fluids of drug-treated animals at sub-toxic and toxic doses,
in order to identify the potential toxicity patterns of new chemical en-
tities (NCE). This is often referred to as ‘predictive toxicogenomics’.

Both approaches have their own distinct value but are anticipated to even-
tually converge to yield an identical outcome. However, each has very
different drawbacks and pitfalls [16].

2.1 Mechanistic toxicogenomics

Small animal in vivo toxicology studies for the assessment of new chem-
ical entities (NCEs) are classically designed with four different groups of
animals: control vehicle treated, low-, medium- and high-dose treatment.
The goal of early regulatory toxicity studies in the pharmaceutical indus-
try is to define the main toxic liabilities. Until recently, describing those
events and having a sufficient margin between the pharmacological or ef-
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ficacious dose of a compound and the dose at which the very first adverse
events are detectable, was seen as the best possible way to progress the
development of a NCE to a usable marketable drug. However, the phar-
maceutical industry together with regulatory authorities around the world
is now increasingly inclined to try to understand toxicity events [18]. Tra-
ditionally, this involved the development of a hypothesis that was tested
and possibly verified by all available techniques and disciplines. Having
molecular clues, rather than just morphological, physiological and clin-
ical observations, is obviously valuable for the generation of a more ac-
curate and a more focussed mechanistic hypothesis. There are now more
published data of classical chemical-, and to a lesser extent, drug-induced
adverse events [19]. One of the best-studied cases is certainly the effect
of acetaminophen toxicity in either mouse or rat liver [20–24]. These
studies rapidly provided new insights into molecular events leading to
acetaminophen-induced liver failure which had not previously been con-
firmed despite results generated by classical biochemical work over the
three or four previous decades. However, the interpretation of this new
knowledge was only possible due to the previous wealth of data regard-
ing acetaminophen hepatotoxicity. There are very few examples of new
mechanisms of toxicity unveiled by toxicogenomics that had not been pre-
viously hypothesised or which had not been partly previously explained
based on classical biochemical and observational approaches [25]. Hence,
the question arises if the genomics approach to unravel a unique toxi-
city event provides any real advantage over more classical approaches.
Nonetheless, toxicogenomics is an important new tool allowing benefi-
cial new angles of attack to a specific issue and will possibly become the
workhorse of this field as the understanding and interpretation of the com-
plex information generated by ‘omic approaches improves.

Such studies have to be carefully designed. As is also the case for predic-
tive toxicogenomics, non-toxic adaptive responses in transcript, protein
or metabolite profiles have to be distinguished from those that are rele-
vant to the toxic event. To achieve this, studies must have a low/medium
dose of compound that would achieve a pharmacological effect without
producing any observable adverse effect. Then, by subtracting the phar-
macological profile from the toxicological profile, the amount of data that
needs to be analysed is somewhat reduced. However, even this amount of
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data is usually too complex for simple manual comparisons and generally
requires statistical informatics tools to extract the relevant information
that can lead to an understanding of the studied event. Also, even in
single dose studies, a time course of tissue sampling is intuitively neces-
sary to obtain meaningful data [22–24]. Indeed, a single sampling time
point will yield limited information compared to sequential observations
after dosing. Likewise, the number of minutes or hours between a single
high toxic dose and the time of necropsy will yield a potentially totally
different panel of upregulated and downregulated effects, leading itself to
potentially diametrically opposite interpretations. Indeed, early tissue col-
lection after dosing will display many stress response proteins and genes
that respond quickly, while very late collection will reveal gross pathol-
ogy such as necrosis or attempts at tissue repair [16]. In other words, it is
crucial for toxicogenomics data to collect tissues and samples during an
appropriate time window, which should be more or less consistent with
the dosing regimen, the dose level, the route of administration, the in-
trinsic clearance of the drug, the solubility of the drug, the vehicle used
and inter-animal metabolic variations. All these parameters would ideally
need to be pre-established for initiating a toxicogenomics study; however,
this information is rarely available with only a few compounds such as
acetaminophen being very well described from this perspective in the lit-
erature [20–24].

Equally important are the differences between toxicity-induced by a
single high dose and that resulting from repeated lower doses. Repeat
dose studies are far more complex and require such a plethora of sample
analyses that as yet, there are very few such studies published. In toxi-
cology it is a broadly accepted concept that the longer the treatment, the
lower the dose necessary to obtain an adverse event. However, short high
dose treatments do not necessarily induce similar pathology to longer du-
ration lower dose treatment. Nevertheless, toxicologists still hope to find
similar molecular features and clues in both cases. Thus, repeat dose regi-
men studies with much lower drug levels to induce toxicity than in single
dose studies, are used to acquire better clues about long-term toxicity. In
this case, the timing of early sampling time points after the last treatment
is intuitively less important than that of single high dosing regimen. It
is therefore common practice to collect less time point samples after the
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last treatment than in single dose-studies. In this regard, the hepatic gene
profiling study induced by peroxisome proliferators published by Corn-
well et al. [26] is a model of this type of approach. First of all, the use
of peroxisome proliferator-activated receptor (PPARs) drugs was an astute
choice, as the mechanism of tumour induction is known to be based on
specific gene regulation [27]. Hence, such a study cannot fail in finding
a whole wealth of gene deregulation directly responsible for the observed
toxicity. Second, the design of the study itself was optimised for disen-
tangling the mechanism of action of the drugs. In this study, six different
but chemically and pharmacologically-related drugs were used at a toxic
dose and an approximately ten-fold lower non-toxic dose, matching the
previously described criteria for extracting relevant mechanistic data. Fur-
thermore, animals were treated repeatedly for either 1, 3 or 7 days and
the pathology which ensued as anticipated was recorded. This combined
most of the parameters required to extract data allowing new insights into
a toxicity event. However, as complete as this study was, only 1 sampling
time after the last dose was used and arguably, maybe more fundamental
knowledge could have been gained by analysing earlier samples than 24 h
post-dosing. Undoubtedly, had the same liver samples been co-analysed
using a proteomics platform, more insight would have been gained from
this study and this would have provided proof that the observed gene ex-
pression changes translated into cellular changes at the protein level to
bring about a biological impact. In any case, as for acetaminophen, this
study did not unveil new mechanistic insights into the cellular basis of tox-
icity, but confirmed previous hypotheses about the toxic effects of these
drugs.

Beside the search for mechanism of toxicity, one logical development
is the identification of biomarkers and establishment of screens derived
from this information [9]. Phospholipidosis (PLD) for example, is a dis-
order of lipid metabolism resulting in the accumulation of phospholipids
and sphingomyelin in intracellular lysosomes, which can be induced in
many organs by many drugs, including some antibiotics [28]. PLD can be
modelled in vitro in different cells [29, 30]. Through the use of cell culture
and about 30 reference phospholipidogenic and non-phospholipidogenic
drugs, Sawada and collaborators [31] extracted a handful of genes common
to inducers, most of them involved in pathways known to be involved in
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either the mechanism or in downstream consequences of PLD, which can
be further used in vitro for screening for compounds that affect phospho-
lipid metabolism and likely in vivo as potential markers of PLD induction.
This is an example where the use of many structurally different drugs were
used to investigate one cellular metabolic process (induction of PLD) lead-
ing to a better toxicological understanding of the mechanism. This ap-
proach falls between investigation of a specific toxicity and its prediction
by analysing GEPs derived from using a variety of drugs with known ef-
fects on a specific cellular phenotype hereby producing sufficient data that
can be statistically processed to start the building of a predictive database
restricted to PLD.

2.2 Predictive toxicogenomics

Although understanding the molecular events underlying a toxic event
is of scientific importance, avoidance of unacceptable toxicities in drug
development would be more advantageous to the pharmaceutical indus-
try. A lot of effort and money are currently devoted to predictive tox-
icogenomics, as the potential repercussion of avoiding toxic side effects
would be enormous for the pharmaceutical industry [2, 6, 10]. Unlike
mechanistic toxicogenomics which tries to unravel intimate mechanisms
of toxicity, predictive toxicogenomics ignores the ‘why’ and tries to ex-
trapolate the likelihood of the occurrence of a toxic event by using large
databases of gene, protein or metabolite expression data. In principal,
electronic databases consisting of gene, protein and/or metabolite profiles
resulting from known toxicants with characterised pathology should al-
low relatively accurate toxicity predictions of new NCEs, by comparison
of the unknown to the known ones [32, 33]. Different statistical tools
have been developed and applied to this end [4, 13, 33, 34] and one of
the most popular, but not necessarily the most informative, is the 3-D
Principal Component Analysis (PCA) graph. Briefly, this approach con-
sists of the collation of a large amount of data into three main features
(or components), that have the most weight to discriminate one sample
from another one [35]. Similar toxicants, i.e., producing identical or sim-
ilar lesions in a specific organ, should produce a similar profile signature
and cluster together in a relatively limited space portion of the PCA graph.
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On the contrary, a different toxicant should have a combination of prin-
ciple components placing it in a remote corner, away from other profiles.
Control samples should cluster on their own, representing the non-toxic
profile or fingerprint. Other statistical tools tend to use similar segregation
approaches in a more or less visual way. Some pioneering studies have
indeed demonstrated that it is possible to cluster a limited number of hep-
atotoxic chemicals and drugs according their induced pathologies in liver
[36]. Based on this philosophy, the overall strategy to predict NCE toxi-
cology becomes simple. Simple, but long and cumbersome in the initial
stages, as the building of such databases is a huge task absolutely essential
for the accuracy of the predictions. It is clear that the quality and the quan-
tity of data available to evaluate a new fingerprint determine the accuracy
of the prediction. Many databases, particularly those based on transcrip-
tional profiles, are currently under construction in both the academic and
industrial world [37, 38]. The aim in developing these databases is to at-
tempt to gather as many fingerprints as possible from different organs from
animals treated with known toxicants. Although these efforts are logical
and straightforward, most efforts are limited to liver and to a much lesser
extent to kidney and bone marrow. The largest databases so far are rat
hepatotoxin-based and the best ones claim to bestow 85% accuracy of pre-
diction [39]. The error in predictive value is produced by many limitations.
For example, for the ability to discriminate genes that are regulated in re-
sponse to a toxic insult, it is important that the database contains profiles
derived from different families of toxicants with each compound family
represented by as many representative members as possible to ascertain
that compounds producing similar events do indeed produce similar fin-
gerprints. In toxicology, broad categories of toxicities to simplify recording
and interpretation of data have been defined (described in detail in [40])
which for liver include necrosis, phospholipidosis, steatosis, peroxisome
proliferators or non-genotoxic carcinogens, cholestatics, tumour promot-
ers. It is unclear how many distinct representatives of each class of toxic
compounds are needed to gain a set of genes that accurately predict a cer-
tain type of toxic event. The precise delineation of a toxic event is impos-
sible since any toxicity is the result of multiple events with multi-factorial
consequences. Hence, building GEPs or other cellular profiles for one type
of toxicity requires many samples, leading to a high cost of data generation
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per organ. Moreover, for every single compound, a meaningful number of
independent replicates are required to attain the desired statistical power
[13]. Intuitively, the data must be obtained from medicines and not from
basic chemicals to be valuable for potential new drug toxicity prediction.
This is introducing another layer of complexity, for those compounds will
impact the fingerprints through their pharmacology, prior to and at lower
doses, than the profiles of toxicological effects. At high doses, the pharma-
cological or adaptive non-toxicity related profiles will mix up with the one
of interest. Hence, such databases must have a control dataset obtained
from the vehicle treated animals, but also a low/pharmacological dose to
be somehow subtracted from the high/toxic dose. This means larger stud-
ies and a larger number of samples to be processed and analysed. This is
needed for every single organ for which a toxicity prediction is desired.
However, there are different interpretations of what is meant by ‘predic-
tive toxicology’. Toxicologists in the pharmaceutical industry do not want
to know if a compound will be toxic or not per se. Since Paracelsus (1493–
1541), each and every one knows that all substances are toxic and only
the dose differentiate the poison from the remedy. We also know that the
duration of the treatment at low dose will have a great impact in the de-
velopment of an undesired side effect or not. Hence, what interests the
drug toxicologist is to be able to predict what dose will produce a toxic
event, what kind of event, in what target organ(s) and which posology
will trigger it. Consequently, databases must have more than one time
point of sample collection and more than one dose for each compound.
Here is the main caveat of predictive pattern recognition databases. It is
hoped that transcript, protein, metabolite profiles or the combination of
all, originating from single very high dose treatment will predict toxicities
of short-term medium dose repeat studies, and that those of short-term
repeat studies will be able to predict events of chronic studies at very low
doses [33]. There is no strong demonstration of this using real case studies
published in the literature at the present time. Also in our hands, it seems
that toxic events defined as a histopathological finding or blood chemistry
or haematology abnormalities, tends to precede or at best coincide with
the very first observable gene changes. Indeed, another fundamental risky
hypothesis is that most toxic events, if not all of them, will be preceded by
gene modulation and even derive from them. This hypothesis is very often
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preached as a divine truth in literature reviews and congresses, but there
are no hard facts so far to back up this belief. Actually, the opposite is likely
to happen and that a single dose high enough to induce a toxic event will
be too sudden and too overwhelming to allow any organism to have the
time to signal and put in effect transcriptional modulations (Fig. 1) that
will in turn induce a toxic event. It is more likely that post-translational
protein modification such as (de)phosphorylation, (de)glycosylation, acti-
vation cleavage, or recruitment of stored enzymes could be of crucial sig-
nificance in triggering a toxicity event. They also are likely to precede any
transcript modulation that in fact may result from protein/transcription
factors activation. Hence, protein databases would have more chances
to be predictive than gene ones, but to date, protein data generation are
impeded by the slow throughput of the cornerstone 2D gel analysis tech-
nique. Protein databases are unfortunately very slow to build up and are
not commonly used for attempts of toxicity prediction. Until a techno-
logical breakthrough in protein technology, protein profiling will not be
used to screen chemical series in the intention of elimination potential
toxicants.

Supporters of predictive databases still point out that modifications de-
riving from a toxic event are still characteristic enough to fulfil their pri-
mary objective. Although a lot of gene modulation will be common to all
injuries, such as heat shock proteins, early stress genes and many chap-
erones, as well as genes that are part of the cell housekeeping like the
proteasome complex, there are still indeed transcript modulations specific
enough to produce GEPs that will cluster in large families [32, 33]. How-
ever, the value of this tends to be lesser if detectable only after readily
observable histopathology. Indeed, the very well established way of char-
acterising toxicity by pathology is simpler, well validated and more cost
effective [16].

There are many more trivial issues associated with predictive databases,
like the fact that not all animals display the expected toxicology pattern
when reproduced for gene transcript profiling studies, but those can be
found elsewhere [16, 41]. All those caveats may be sorted out with time,
but almost all those databases are derived from animal studies, when in the
end, human adverse drug reactions are the real interest. There is however
a certain concordance between animal studies and human clinical toxicity
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Figure 1.
A) A high dose of a toxic compound will induce a rapid onset of a pathology which will
likely be a direct consequence of cell homeostasis disruption rather than gene deregulation.
Hence, GEPs are unlikely to be of predictive value in this case. However, there are some
hopes for protein profiles. Afterwards, GEPs can be used as diagnostics tools and gene up-
regulation and downregulation will be specific of the pathology, eventually allowing the
understanding of its mechanism and the discovery of biomarkers.
B) Repeated compound administration at low doses will trigger toxic effects for which gene
regulation and their products will have an impact on pathological events. These gene regu-
lations may reflect either cellular defences or attempts of repair, as well as being part to the
toxicity itself. In that case, toxicologists hope to find profiles that will predict the toxicity
event.

[42] and if really of value to predict animal toxicity, those databases will
eliminate a certain number of unwanted adverse events. However, they are
very unlikely to provide clues about more specific and idiosyncratic human
toxic side effects that are not even detected in classical animal studies. That
is one of the reasons why non-invasive metabonomics studies may add
so much value as they can be run from human samples. Metabonomics
results present an exquisite challenge to the analysis as they reflect not only
the toxic compound-induced changes, but also the basal metabolism of the
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tested organism as determined by its genetics, the food intake, the diurnal
variation and cycles, male and female hormonal differences and cycles, the
very important microbial metabolism in quantity and quality, pre- or post-
exercise samples and cross-interaction of all the above [43]. However, it
is commonly hoped that pathological effects are overwhelmingly stronger
than endogenous variations and hence relatively easily teased out from
this messy background [44].

Metabonomics-based predictive databases may then be the best option
for all of the above and because of its amenability to high-throughput plat-
forms. However, it is not possible to deliberately dose humans with high
doses of medicines; therefore metabonomics will never provide a thorough
analysis of clinical samples relevant to toxicology. Hence, in vitro cell cul-
ture of human origin may also be used for building prediction databases
[45, 46], but then the predictivity of in vitro versus in vivo as a whole needs
first to be established, which is still very limited despite decades of mul-
tiple attempts by a variety of organisations such as the Interagency Coor-
dinating Committee on the Validation of Alternative Methods (ICCVAM;
http://iccvam.niehs.nih.gov) or the European Centre for the Validation of
Alternative Methods (ECVAM; http://ecvam.jrc.cec.eu.int).

All this taken together may seem to paint a very grim picture, but the
solution to the challenge may be in the realisation that the fundamental
dogma one gene, one transcript, one protein, one function is an oversim-
plified concept and that in fact everything interacts with multiple partners
at all levels, by association, inhibition, activation, translocation, amplifi-
cation and so on. Despite the apparent additional complexity and thus
a possible strengthening of the issue, analysis of those interactions by so-
called pathway analysis and systems biology, may take us to a higher level
of observation and hence enable us to see the true global picture of a toxic
event [5]. Then, it would not be a specific subset of genes seemingly un-
related to each other, either up or down that would provide a predictive
answer, but very well the activation or deactivation of one or several bi-
ological pathways, either partially or in total that would provide a real
prediction of potential toxicity. There is little doubt that this approach is
our best chance in matters of toxicity prediction, but there are so much
more data to produce and collate into easily exploitable databases, that
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this avenue will not be in use before many years despite some efforts to
gather data from many sources together [37, 38].

2.3 Specific considerations for toxicogenomics in
anti-infectives

Toxicogenomics databanks are usually built from a patho-toxicological
viewpoint rather than from a pharmacology perspective. For example,
characteristics transcript profiles will be grouped by toxic event such as
microvesicular steatosis, regardless of the nature of the inducer, which can
range from psychiatric drugs to antivirals. Hence, as far as is known, there
are no toxicogenomics databanks dedicated to anti-infective agents. How-
ever, many transcript-profiling databases include some antibiotics as organ
specific toxicants. Toxicologists are grouping medicine-related side effects
into two broad categories: 1) undesired effects linked to the pharmacology
(exaggerated pharmacology), which may happen in any organ expressing
the drug target, and 2) chemistry-related toxicities which can be either by
direct toxicity (membrane lysis, uncoupling agent, etc. . . ) or by interac-
tion with another biomolecule other than that targeted (enzyme inhibitor,
receptor modulator, etc. . . ). Genomics has brought the possibility to de-
velop a whole new range of microbe specific targets ([47, 48] and Chapter
2). This should decrease the incidence of pharmacology-related toxicities
in preclinical investigations and ultimately in the clinic. However, this
does not prevent chemistry-related toxicities from occurring.

Anti-infectives have not been thoroughly investigated in terms of tox-
icogenomics. In fact, bibliographical searches with numerous terms re-
lated to anti-infectives, antibiotics and antivirals in combination with
genomics-related and toxicity-related items in a combination of databases
like BIOSIS Previews, Current Contents, EMBASE, IPAB and MEDLINE does
not yield a single article or review at the time this paper is written. This
reflects the current pioneering status of toxicogenomics as a whole, but
there is little doubt that anti-infective drugs will soon be included in such
studies, as at least one abstract entitled “Toxicogenomics and anti-infective
agents” has been deposited in the Abstract of Interscience Conference on An-
timicrobial Agents and Chemotherapy in 2001.
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For example, chloramphenicol and the oxazolidinone antibiotics class
represented by ZyvoxTM(linezolid) have a relatively close pharmacology.
They both specifically inhibit bacterial protein synthesis, though through
different mechanisms [49, 50]. Their chemical structures are very different
but their toxic effects on the bone marrow are remarkably similar as they
both specifically induce red cell anaemia [51, 52]. A thorough mechanistic
study comparing the transcript profiling in bone marrow red cell lineage
only would likely bring clues of the mechanism of toxicity of these two
antibiotics, which so far remains unknown. Although of different chem-
istry and similar but not identical pharmacology, molecular clues would
help to dissociate or associate chloramphenicol and oxazolidinones in an
antibiotics specific class of toxicity. In our hands, oxazolidinone com-
pounds also induced blood reticulocyte reduction and bone marrow ery-
throblast diminution. We used a potent erythropenia-inducer oxazolidi-
none to study the total bone marrow transcript profile of mice treated
for 5 days at 100 mg/kg/day, by means of the Affymetrix platform and
U74Av2 chip which displays about 12,500 genes and Expressed Sequence
Tags (ESTs). We found a total of 328 transcripts significantly upregulated
by two-fold or more and 301 transcripts significantly downregulated by
two-fold or more. Without going into details, many red cell specific mR-
NAs were found to be decreased which may or not just reveal the decline of
the targeted population. Interestingly, upregulated transcripts were largely
belonging to granulocytic, myeloid and lymphoid lineages, some of which
like the granulocyte colony-stimulating factor receptor (G-CSF, accession
number: 93198 at) was increased by 14-fold compared to controls. Despite
the number of modulated genes in this short study, it has not been possi-
ble to establish a firm conclusion about the mode of toxicity, but rather to
postulate a number of hypotheses, which all would require many more bio-
chemical investigations to refine a likely mechanism. This demonstrates
that in absence of previous knowledge, a simple but thorough transcrip-
tomics study is not enough to provide deep insight into toxicity mecha-
nisms.

Mammals have a whole range of specific ‘visiting’ and syncytial bacteria
and fungi not just colonising the gastrointestinal (GI) tract, but in and on
almost any possible area like skin, mouth or nasal cavity to mention only
a few [53]. They maintain a complex and intimate relationship with the

233



François Pognan

host, and GI microbial genomes taken altogether may surpass their human
host genetic diversity by a factor 100 [53]. It is also well known that one
of the main side effects of antibiotics is precisely to disturb this gut flora
leading to displeasing digestive malfunctions. These intestinal hosts have a
very active metabolic life, including cytochrome P450s that are interacting
with host drug metabolism, producing active and inactive metabolites,
as well as toxic metabolites, which in turn can display a whole range of
remote toxicity, i.e., away from the intestinal tract [54]. Studying all the
possible interactions between host, endogenous bacteria and antibiotics
appears impossible, even using an ‘omics approach. First, it is unlikely
that we will soon determine the complete genome and the subsequent
biology of the thousand odd species populating our guts, as some are even
not known yet [53]. Second, the level of co-metabolism and metabolic
exchanges are such that only a global approach, ignoring the intermediate
steps could provide some insight [54]. And third, the gut flora is highly
variable from one individual to the next for all the possible reasons of life
style, food variety, environment and so on [54]. Those differences are even
more pronounced between humans and the species that we use for safety
preclinical studies. It is after all possible that the poor concordance of
toxicity between species may reside in large part into the vast differences
of our respective ‘microbiomes’ [54].

Hence, because of all of the above, prediction of anti-infective toxicity
is treated in the same way as for any other drug. However, toxicogenomics
applied to anti-infectives could be centred on their most common target
organs for toxicity like the GI tract, bone marrow, liver and kidney.

3 Conclusion

Toxicogenomics as a tool grouping transcriptomics, proteomics and
metabonomics, is in an even more pioneering stage than genomics ap-
plied to other biological sciences. Investigative toxicogenomics has al-
ready made some respectable advances in the exploration of mechanisms
of drug side effects whereas predictive toxicogenomics still faces many
hurdles. The construction of meaningful databases sufficiently populated
with profiles deriving from medicines administered at toxic level to animal
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models is currently benefiting from a significant effort from the scientific
community. It is unfortunately too early to decide if the reward will live
up to the hopes and promises. Toxicogenomics applied specifically to anti-
infective drugs is so far absent from the literature. However, antibiotics are
being used as model toxicants to populate predictive databases with respect
to the specific toxicities they trigger. By increasing the number of entries in
predictive databanks, it may be possible that anti-infectives will generate
some specific sub-classes of toxicity, which could be further exploited for
accurate toxicity modelling of future drugs. However, the complexities of
the interactions between endogenous bacteria, pathogenic bacteria, hosts
and antibiotics appear so multifaceted that these drugs are currently dealt
with in the same way as any other drug.
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Biological robustness in complex host-pathogen systems

Abstract

Infectious diseases are still the number one killer of human beings. Even in developed
countries, infectious diseases continue to be a major health threat. This article explores
a conceptual framework for understanding infectious diseases in the context of the
complex dynamics between microbe and host, and explores theoretical strategies for
anti-infectives. The central pillar of this conceptual framework is that biological robust-
ness is a fundamental property of systems that is closely interlinked with the evolution
of symbiotic host-pathogen systems. There are specific architectural features of such
robust yet evolvable systems and interpretable trade-offs between robustness, fragility,
resource demands, and performance. This concept applies equally to both microbes and
host. Pathogens have evolved to exploit the host using various strategies as well as effec-
tive escape mechanisms. Modular pathogenicity islands (PAI) derived from horizontal
gene transfer, highly variable surface molecules, and a range of other countermeasures
enhance the robustness of a pathogen against attacks from the host immune system.
The host has likewise evolved complex defensive mechanisms to protect itself against
pathogenic threats, but the host immune system includes several trade-offs that can be
exploited by pathogens and induces undesirable inflammatory reactions. Due to the
complexity of the dynamics emerging from the interactions of multiple microbes and a
host, effective counter-measures require an in-depth understanding of system dynamics
as well as detailed molecular mechanisms of the processes that are involved.

1 Robustness is a fundamental organizational
principle of biological systems

Robustness is the property of systems to maintain a certain function de-
spite external and internal perturbations. This property is ubiquitously
observed in various aspects of biological systems as reviewed extensively
[1, 2]. It is distinctively a system-level property that cannot be observed
simply by looking at isolated components. The specific components of a
system and their interactions, the system functions that are required to be
maintained, and the types of perturbations that the system shows robust-
ness against must be well defined in order to understand the biological sig-
nificance of the particular system and its behavior. For example, modern
airplanes (system) have complex instrumentation allowing them to main-
tain a flight path (function) against atmospheric turbulence (perturbation).
Bacterial chemotaxis is a well documented example of system robustness.
Chemotaxis of a bacterial cell along a ligand concentration gradient is
maintained against perturbations such as dramatic changes in ligand con-
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centration and different rate constants for the interactions involved [3–5].
The network for segmental polarity formation during embryogenesis of
Drosophila robustly produces repetitive stripes of differential gene expres-
sions despite variations in the initial concentration of substances involved,
as well as variation in the kinetic parameters of these interactions [6, 7].

Why is robustness so important? First, it is a feature that is observed
ubiquitously in biological systems; from such fundamental processes as
phage fate decision switching [8] and bacterial chemotaxis [3–5] to devel-
opmental plasticity [6] and even at the level of whole ecosystems [9]. This
implies that robustness may be a basic universal principle of biological
systems.

Second, robustness against environmental and genetic perturbations is
essential for evolvability [10–12]. Evolvability requires the generation of
a variety of non-lethal phenotypes and genetic buffering [13, 14]. Mech-
anisms that attain robustness against environmental perturbations may
also be used for attaining robustness against mutations, developmental
stability, and other features that facilitate evolvability [1, 10–12].

Third, various human diseases can be usefully considered as perturba-
tions that threaten a robust host, or as a separate robust system emerging
with the host as perturbant. For example, cancer can be considered as a
robust system and approaches to interfere with the robustness of tumors
have been argued as essential [15, 16]. Type 2 diabetes may be a result of
robustness mechanisms acquired through human evolution during long
periods of malnutrition, with selection for specific pathogen resistance,
and other hostile environmental conditions that now leave us maladapted
for modern living conditions [17]. This perspective is particularly relevant
in infectious diseases as these are essentially a dynamic interaction be-
tween host and pathogen systems which both have their own robustness
and fragility properties.
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2 Four underlying general mechanisms for robustness

2.1 System control

Extensive system control is typically encountered in robust systems, par-
ticularly negative feedback loops, to make the system dynamically stable
around a specific state. Integral feedback used in bacterial chemotaxis
is a typical example [3–5]. Due to integral feedback, bacteria can sense
changes of chemoattractant and chemorepellant independent of absolute
concentration so that proper chemotaxis behavior is maintained over a
wide range of ligand concentration. In addition, the same mechanism
makes the bacteria insensitive to changes in rate constants involved in
the circuit. Positive feedback is often used to create bi-stability in signal
transduction and cell cycle systems, to make them tolerant against minor
perturbations in stimuli and rate constants [18–20].

2.2 Alternative (fail-safe)

Alternative (or fail-safe) mechanisms increase tolerance against compo-
nent failure and environmental changes by providing alternative compo-
nents or methods to ultimately maintain system functions. Sometimes,
there are multiple components that are similar to each other that are re-
dundant. In other cases, different means are used to cope with perturba-
tions that cannot be handled by other means. This is often called pheno-
typic plasticity [21, 22] or diversity. Redundancy and phenotypic plasticity
are often considered as opposites, but it is more consistent to view them
as different ways to provide alternative fail-safe mechanisms.

2.3 Modularity

Modularity provides isolation of perturbations from the rest of the sys-
tem. The cell is the most significant example. More subtle and less obvi-
ous examples are modules of biochemical and gene regulatory networks.
Modules also play an important role during developmental processes by
buffering perturbations so that proper pattern formation can be accom-
plished [6, 23, 24]. The definition of modules and how to detect such
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modules are still controversial, but the general consensus is that modules
do exist and play an important role [25].

2.4 Decoupling

Decoupling isolates low-level noise and fluctuations from functional level
structures and dynamics. For example Hsp90 provides genetic buffering
in which misfolding of proteins due to environmental stresses is fixed,
and thus the effects of such perturbations are isolated from the functions
of circuits. This mechanism applies also to genetic variations where ge-
netic changes in a coding region that may affect protein structures are
masked because protein folding is fixed by Hsp90 unless such masking is
removed by extreme stress [11, 26, 27]. Emergent behaviors of complex
networks also exhibit such buffering property [28]. These effects may con-
stitute canalization proposed by Waddington [29]. The recent discovery by
Uri Alon’s group on oscillatory expression of p53 upon DNA damage may
exemplify decoupling at the signal encoding level [30], because stimuli in-
voked pulses of p53 activation level, instead of gradual changes, effectively
converting analog signals into digital signals. Digital pulse encoding may
indicate robust information transmission, although further investigations
are required before any conclusions can be drawn.

An example of a sophisticated engineering system clearly illustrates
how these mechanisms work as a whole system. An airplane maintains its
flight path by following the commands of the pilot against atmospheric
perturbations and various internal perturbations including changes in the
center of gravity due to fuel consumption and movement of passengers,
as well as mechanical inaccuracies. This function is carried out by control-
ling flight control surfaces (rudder, flaps, elevators, etc.) and the propul-
sion system (engines) by an automatic flight control system (AFCS). Ex-
tensive negative feedback control is used to correct deviations of flight
path. The reliability of the AFCS is critically important for a stable flight.
To increase reliability, the AFCS is composed of three independently im-
plemented modules (a triple redundancy system) that all meet the same
functional specifications. Most of the AFCS is digitalized, so that low-level
noise of voltage fluctuations is effectively decoupled from the digital sig-
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nals that define the functions of the system. Due to these mechanisms,
modern airplanes are highly robust against various perturbations.

3 Intrinsic features of robust systems: Evolvability and
trade-offs

Robustness is a basis of evolvability, and evolution tends to select indi-
viduals with robust traits [1]. For the system to be evolvable, it must be
able to produce a variety of non-lethal phenotypes [14]. At the same time,
genetic variations need to be accumulated as a neutral network, so that
pools of genetic variants are exposed when the environment changes sud-
denly. Systems that are robust against environmental perturbations em-
ploy mechanisms such as system control, fail-safe alternatives, modularity,
and decoupling. These mechanisms also support the generation of non-
lethal phenotypes and genetic buffering. In addition, the capability to
generate flexible phenotypes and robustness require the emergence of a
bow-tie structure as an architectural motif [31]. One of the reasons why
robustness in biological systems is so ubiquitous is because it facilitates
evolution, and evolution tends to select traits that are robust against en-
vironmental perturbations. This leads to successive addition of system
controls.

Systems that have acquired robustness against certain perturbations
through design or evolution have intrinsic trade-offs between robustness,
fragility, performance, and resource demands. Carlson and Doyle argued,
using simple examples from physics and forest fires, that systems that are
optimized for specific perturbations are extremely fragile against unex-
pected perturbations [32, 33]. Systems that have been designed, or have
evolved, optimally (either global optimal or sub-optimal) against certain
perturbations are called High Optimized Tolerance (HOT) systems. Csete
and Doyle further argued that robustness is a conserved quantity [34]. This
means that when robustness is enhanced against a range of perturbations,
then there must be a trade-off by fragility elsewhere as well as compromised
performance and increased resource demands.

A robust yet fragile trade-off can be understood intuitively using the
airplane example again. Comparing modern commercial airplanes and
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the Wright Flyer, modern commercial airplanes are several orders of mag-
nitude more robust against atmospheric perturbations than the Wright
Flyer, owing to sophisticated flight control systems. However, such flight
control systems rely entirely on electricity. In the inconceivable event of
a total power failure in which all electrical power is lost in the airplane,
the airplane can no longer be controlled at all. Obviously, airplane manu-
facturers are well aware of this issue, and take every possible countermea-
sure to minimize such a risk. On the other hand, despite its vulnerability
against atmospheric perturbations, the Wright Flyer could never have been
affected by a power failure because there was no reliance on electricity. This
extreme example illustrates that systems that are optimized for certain per-
turbations could be extremely fragile against unusual perturbations.

Highly Optimized Tolerance (HOT) model systems are successively opti-
mized and designed (although not necessarily globally optimized) against
perturbations, whereas Self-Organized Criticality (SOC) [35] or Scale-Free
Networks [36] are the unconstrained stochastic addition of components
without design or optimization. Such differences affect the failure pat-
terns of the systems, and so have direct implications for understanding
the nature of disease and therapy design.

Unlike Scale-Free Networks, HOT systems are robust against perturba-
tions such as the removal of hubs provided the systems are optimized
against such perturbations. However, systems are generally fragile against
‘fail-on’ type failures in which a component failure results in a continuous
malfunction, instead of ceasing to function (‘fail-off’), so that incorrect
signals keep being transmitted. This type of failure is known in engineer-
ing as the Byzantine Generals Problem [37], named after a problem in the
Byzantine army that arose when there were multiple generals dispersed
in the field, some of whom were traitors who sent incorrect messages to
confuse the army.

Disease often reflects systemic failure triggered by a fragility of the sys-
tem. Diabetes mellitus is an excellent example of how systems that are
optimized for near-starving, intermittent food supply, high energy utiliza-
tion lifestyle, and highly infectious conditions, are fragile against unusual
perturbations such as high energy content foods and low energy utilization
lifestyle [17]. Due to optimization to the near-starving condition, exten-
sive control to maintain minimum blood glucose level has been acquired
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so that activities of the central nervous system and innate immunity are
maintained. However, no effective regulatory loop has been developed
against excessive energy intake, and feedback regulation serves to reduce
glucose uptake by adipocyte and skeletal muscle cells because it may reduce
plasma glucose level below the acceptable level. These mechanisms lead
to the state that blood glucose level is chronically maintained at higher
than the desired level and for a longer time than it has been optimized for,
leading to cardiovascular complications.

4 Robustness attributes of pathogens

Pathogens exploit host systems for their survival and proliferation. Often,
they exploit host immune reactions to achieve this goal. There are several
means that pathogens employ to attain a certain level of robustness against
host immunity including countermeasures to neutralize the effects of host
immunity, evade host recognition through countermeasures and genetic
variations, and mechanisms to hijack host immune reactions seen in some
of pathogens. Shigella avoids autophage by secreting IcsB effector [38]. In
the initial phase of Salmonella infection of a macrophage, it triggers apop-
tosis by the SipB protein coded on SPI1 that activates caspase-1 [39]. Soon
after the infection, SPI1 transcribed SipB is inhibited, and Salmonella repli-
cate within Salmonella-containing vacuole (SCV) in which SPI2 encoded
genes triggers a series of events for replication and further proliferation
[40]. Listeria monocytogenes escapes the hazards of the phagosome by creat-
ing pores on its membrane with listeriolysin O (LLO) that is encoded by the
hly gene on the Listeria pathogenicity island-1 (LIPI-1) [41]. It is interest-
ing to note that these counter measures depend on the function of a single
gene on a modular DNA region called Pathogenicity Island (PAI) of each
pathogen, and have been acquired through evolution [42, 43]. Knock-
out of such gene disables escape capability of pathogens. Thus, in a sense
each pathogen’s capacity to maintain pathogenicity against mutation is
not robust, but the system can be robust in terms of the global pathogen
population as a whole because genes accountable for pathogenicity may
be horizontally transferred. For example, Vibrio cholerae is a pathogen that
periodically causes epidemics in many developing countries through con-
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tamination of food and water supplies. It produces a toxin that interacts
with G-protein, and causes diarrhea. Cholerae-toxin is encoded by a PAI,
which is considered to have been acquired through horizontal gene trans-
fer (HGT) [44]. Likewise, some pathogenic attributes of enteroinvasive E.
coli, such as O157, have been demonstrated to have resulted from the ac-
quisition of toxic genes in its PAI by HGT. Emergence of drug resistant
bacteria sometimes involves emergence of one or more bacteria that ac-
quired the drug resistance followed by horizontal transfer of genes that
encoded genes responsible to resistant phenotype. The modular structure
of PAI enhances HGT-based acquisition of pathogenicity, thus contribut-
ing to robust maintenance of pathogenicity of the pathogen population,
rather than individual.

It should be noted that within pathogens there are also trade-offs be-
tween robustness, fragility, resource demands, and performance of specific
functions. It is clear that each individual pathogen is not so robust against
host immunity and mutation is the mechanism through evolution to fos-
ter faster replication under minimum resource requirements. Assuming
that each pathogen is built to be more robust against mutation and host
immune responses it must incorporate a range of complex mechanisms
that requires more resources to survive and more time to replicate. Such
trade-off is certainly not desirable for pathogens. This is particularly the
case for a class of pathogens that carry out ‘frontal attack’ strategies, ac-
cording to Merrell and Falkow. They classified host attack strategies of
pathogens into two types: frontal attack and stealth attack [45]. Frontal
attack is to infect the host and quickly replicate itself and possibly over-
whelm the host defense before the host adaptive immune system counter-
acts. This is the strategy taken by many pathogens including V. cholerae,
and exploits the problem of time-lag to activate adaptive immunity. Thus,
one general strategy of some pathogens chosen through evolution is to
sacrifice individual robustness, in favor of population robustness.

Although robustness at pathogen-wide level is an interesting feature
that is unique to microbial populations, each individual often exhibits ro-
bustness against host immune responses by providing variations of surface
molecules to escape from the host immune recognition, and by being to-
tally invisible to the host system. The strategy of evading immune recog-
nition by changing biologic markers that appear on the membrane sur-
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face is illustrated by Trypanosomes that can generate highly variable sur-
face molecules known as variant surface glycoprotein (VSG) coat to evade
B cell response [46]. While the strategy of switching surface molecules to
involves some level of host recognition of the pathogen, another strategy
is to be totally invisible from the host immune system. For example, He-
licobacter pylori, which infects the human stomach and is associated with
stomach cancer [47], has flagellins that are not detectable by the host’s
TLR5. It also inhibits proliferation of T cells and B cell by vacuolating cy-
totoxin (VacA) and CagA that blocks T cell receptor and B cell’s JAK-STAT
signaling, respectively [48]. Thus, these pathogens effectively blind the
host immune system. While these strategies generally enhance survivabil-
ity of pathogens, it does not enhance robustness of pathogens against host
immune response once it is triggered. The strategy exploits the fragility
of the host immune system to allow the pathogen to escape from the re-
sponse.

Hijackers invade the host immune system without being noticed, or
induce the host immune cells to take up such microbes, and proliferate
as well as attack the host using the host immune reactions. The most sig-
nificant example of the hijacker is human immunodeficiency virus (HIV).
Acquired immune deficiency syndrome (AIDS) is a syndrome in which HIV
specifically invades and attacks the core of the innate immune response,
CD4+ T cells [49]. HIV infection depletes CD4+ T cells as the disease pro-
gresses, causing the immune system to be gradually disabled and become
prone to opportunistic pathogens [49]. HIV infection is robust against the
immune response and against various therapies to which drug-resistant
escape mutants readily appear [50]. Thus, HIV can be viewed as a hijacker
of the immune system as actions to remove the virus infection in general
triggers further spread of the HIV virus itself. One countermeasure for the
genetic diversity of HIV is to use combinations of drugs that do not give
cross resistance in their target. A specific mutation that gave resistance to
one drug would leave sensitivity to the other, and vice versa. AZT-3TC com-
bination therapy illustrates a successful case where resistance mechanisms
for two drugs used are independent of each other. The HIV-1 virus can
acquire resistance to 3’-azidothymidine (AZT, zidovudine) by a stepwise
accumulation of four out of five mutations in reverse transcriptase (RT)
at codons 41, 67, 70, 215, or 219 [51]. For HIV-1 to be resistant against
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(-)2’-deoxy-3’-thiacytidine (3TC), it must substitute Val or Leu for Met at
codon 184 in RT [52]. Therefore, AZT-resistant virus is 3TC-sensitive, while
3TC-resistant virus is AZT-sensitive [53].

While chemotherapy can suppress disease progress, the underlying ro-
bustness of this epidemic remains intact. One interesting countermeasure
that has been proposed is to take over mechanisms that provide the ro-
bustness of HIV infection. The idea is to design a decoy, a conditionally
replicating HIV-1 vector (crHIV-1) [54, 55]. It is designed to contain cis,
but does not contain a trans-element that is required for producing virus
packaging proteins. It also carries antivirus genes that inhibit wild type
HIV replication [56]. This is an interesting ‘Trojan Horse’ strategy, because
it sends in decoys with specific agents that exploit essential mechanisms
that ensure the robustness of HIV-1 infection in order to force AIDS into
the latent stage, instead of eliminating the HIV-1 virus itself.

5 Limits of a robust system: Pathogen-triggered
diseases

A major issue for the host immune system is the trade-off between the
ability to cope with a broad range of pathogens without risking misrecog-
nition and possibly harmful inflammation owing to its architectural fea-
tures as well as inherent fragility of the signaling network that entail non-
redundant core in the bow-tie structure in both innate and adaptive im-
munity [57]. Although the immune system evolved to be very robust to
host organisms, there are trade-offs inherent in the system. The fragili-
ties of the immune system arise directly from the inherent properties that
have been optimized on an evolutionary time scale. There are five major
weak links: (1) reliance on MyD88 in TLR signaling, (2) MHC presentation
and recognition, (3) reliance on CD4+ T cells as the cornerstone for adap-
tive immunity, (4) a cytokine network that has been tuned to be highly
proinflammatory and which may cause damage to the host organism when
hyper-activated, and (5) the time lag between detection of pathogens and
activation of adaptive immunity. While no report has been made on in-
fectious disease that actively neutralizes MyD88 functions, all other four
weaknesses have been critical in certain infectious diseases. HIV infects
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CD4+ T cell – the core of adaptive immunity and gradually destroy adap-
tive immunity. ‘Frontal attack’ type pathogens make use of the time lag
between detection of pathogens and activation of adaptive immunity.

5.1 Proinflammatory architecture of the host immune system

Analysis of molecular interaction networks of the host immune system
indicates that it is fundamentally proinflammatory [58], and requires ac-
tive control to reduce inflammatory reactions once started [59–61]. There
are many positive feedback loops that escalate secretion of cytokines and
promote further inflammation. Hyper-activation of a cytokine network,
often called ‘cytokine storm’, is one of the major factors that aggravates
patient health and may results in death. For example, influenza infection
causes a range of cytokine release as its acute response [62, 63]. However,
the infection is generally localized to epithelial cells yet extensive cytokine
release often takes place systemically. This systemic release of cytokines
particularly IL-1˛ and IFN-� aggravates inflammation leading to fever and
lung inflammation, and sometimes leads to fatality. Mice infected with
influenza virus in which IL-1˛ and IFN-� are suppressed show substantial
mitigation of such risks [64, 65]. Similarly, infection with herpes simplex
virus (HSV) triggers elevated production of IL-4 from CD4+ T cells and
aggravates encephalitis [66]. The use of a certain types of drugs, such as
vesarinone, for encephalomyocarditis (EMC) virus induced heart failure
remarkably improved the survival rate of patients by reducing production
of IL-1, IL-6, TNF-˛, and IFN-� [67]. As vesarione is not an antiviral agent,
it was concluded that the improvement in outcome heart failure reduc-
tion was due to suppression of TNF-˛ production that may be induced
by lipopolysaccharide (LPS) stimulation [68]. Perhaps the most dramatic
example of such cytokine overproduction is fulminant hepatitis where sig-
nificant elevation of TNF-˛ and IL-1 has been reported [69].

A series of experimental and clinical observations naturally leads to the
conclusion that control of cytokine production may effectively prevent
escalation of infection-triggered organ dysfunctions, and more generally
systemic inflammatory response syndrome (SIRS). While various mouse
experiments confirmed mitigation of SIRS [70], clinical experiments re-
ported so far have had mixed outcomes. System-level studies that involve
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individual variations of cytokine production and resulting dynamics may
be warranted for proper development of cytokine modulation therapies.

5.2 Autoimmune disorders

The immune system enhances robustness of the host system against broad
range of pathogenic perturbations. It has to be able to react against a
greater variety of pathogens within the resource limitations of the host sys-
tem. The major constraint in immune system is resource limitation. Host
immune systems must cope with an infinite variety of pathogens using
finite number of T cells. Antigen processing and trimming is an effective
mechanism that enables recognition of a broader range of pathogens using
limited numbers of T cells. The trade-off is increased risk of misrecogni-
tion of a pathogen associated signature with the host’s tissues. At the same
time, resource limitation forces the system to take activation-triggered mat-
uration of adaptive immune cells, rather than making themselves ready to
be dispatched immediately. It is conceivable that this requirement has
imposed selective pressures that have shaped the global structure of the
immune system. A typical architecture of a bow-tie, or hour-glass, com-
prises conserved and efficient core processes with diverse and redundant
input and output processes [1, 71]. The host immune system encompasses
a nested tandem bow-tie architecture which can be observed in TLR signal-
ing in innate immunity [58], processing and recognition of MHC-peptides
between APC and T cells, and convergence of signaling from various cells
into CD4+ T cells to foster polarized proliferation involving a complex
cytokine network [57].

The most relevant issue in the current context is the bow tie structure
of antigen presentation and recognition. In this process, various exoge-
nous materials are captured by antigen presenting cells (APCs) through
phagocytosis, macropinocytosis, and fluid phase endocytosis; also it ex-
presses a broad range of receptors that induce receptor-mediated endo-
cytosis. Exogenous materials captured undergo peptide processing to be
loaded onto MHC II followed by trimming. The size of loaded peptides on
MHC II ranges between 13–17 [72], and only a core of short peptides of
9–10 amino acids epitope binds to a receptor on CD4+ helper T cells [73].
A proper binding of TCR to MHC II activates signal transduction path-

252



Biological robustness in complex host-pathogen systems

ways, triggering cytokine secretion and polarization. MHC Class I is yet
another bow-tie structure where a huge variety of peptides of endogenous
origin are processed for loading and trimming on MHC I with the length of
8–10 amino acids and recognized by CD8+ T cells [74]. While this mech-
anism enabled robust host adaptive immune response to a broad range
of pathogens, it is fragile against misrecognition so that, in some cases,
molecular signature for pathogens and that of host tissue systems can be
misrecognized that may trigger autoimmune reactions.

Some autoimmune diseases are now identified as infection-triggered,
such as Crohn’s disease (CD), which is an intestine autoimmune disease
that causes chronic inflammation. Recently, it was shown that inflam-
mation induced by bacterial infection triggers chronic inflammation, and
mutation of NOD2 increases disease susceptibility [75, 76]. Extensive con-
centration of bacteria such as Mycobacterium paratuberculosis and Listeria
monocytogenes has been observed by biopsy of CD patients using 16S rDNA
PCR and DNA hybridization analysis [77]. Such infection-triggered au-
toimmune disorders are not specific to Crohn’s disease reflecting the in-
herent fragility of the immune system where antigen patterns presented
for immune reaction are sufficiently similar to the host’s own signature,
causing the immune system to react against the self [78]. The MHC antigen
presentation and receptor system is the core of the bow-tie architecture,
and so a breach in this system seriously affects its functionality. Dilated
cardiomyopathy is associated with cardiotropic virus infection triggering
dendritic cell-induced autoimmune heart failure [79]. It has been argued
that the broad range of autoimmune disorders discussed above as well as
rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and oth-
ers, are due to multiple exposures to pathogenic bacteria and virus [80].
This class of autoimmune diseases can be attributed to breaches of the
immune response against pathogens, by which invaded pathogens trigger
a sustained immune response by molecular mimicry [78], possibly with
TCR-dependent bystander activation [80].

Chlamydia pneumoniae has been found to associate with atherosclero-
sis [81, 82]. Chlamydia was found to infect lymphocytes and monocytes
to escape host immune reactions and to proliferate [83]. Promotions of
atherosclerosis due to Chlamydia may be due to its ability to transform
macrophage into foam cells as well as possible autoimmune reactions [84]
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as similarity between Chlamydia external membrane protein and human
cardio-muscle myosin has been identified [85].

6 Does microbial flora affect vulnerability against
pathogenic infections?

The immune system is not the only mechanism for the host defense. Mam-
malian species host a range of symbionts, mostly bacterial, which often
provide essential functions for the organism. In human beings, the in-
testinal microbiota contains 500–1,000 species of diverse microorganisms,
and about 1014 bacteria totaling about 1.5 kg of biomass [86]. As a result, a
typical human being considered as a symbiotic system would consist of ap-
proximately 90 % prokaryotes and 10 % eukaryotes [87]. A random shot-
gun sequencing of an individual person would result in predominantly
bacterial genome readouts of about 2 million genes with sporadic mam-
malian genes [88]. Bacterial flora play essential roles in host physiology
by helping to develop the mucosal immune system, rejecting pathogens,
and providing metabolic functions for synthesizing certain vitamins that
cannot be synthesized by the host alone [88].

Germ-free mice that have no commensal bacterial flora have an unde-
veloped mucosal immune system that has hypoplastic Peyer’s patches, as
well as significantly reduced numbers of IgA-producing plasma cells and
lamina propria CD4+ T cells [89, 90]. A recent study on one commen-
sal bacteria species, Bacteroides thetaiotaomicron, revealed that it stimulates
angiogenesis during postnatal intestine development to enhance nutrient
absorbing capability [91]. Due to the intricate relationship between bac-
terial flora and the host, some believe that flora should be considered as
an ‘organ’, rather than unwanted guests [88]. It should also be noted that
evolutionary history indicates that living systems increased robustness by
acquiring ‘non-self’ into ‘self’ through evolution, which the author termed
Self-Extending Symbiosis [92]. Bacterial flora is one of recent additions to
this strategy to enhance robustness.

The central interest in the context of this article is whether commen-
sal bacteria reduce the risk of infection. The bacterial flora functions an-
tagonistically against pathogenic bacteria through a phenomenon known
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as colonization resistance. Continuous flow experiments using a smaller
subset of commensal bacteria revealed that this effect is due to the anti-
pathogen function of commensal bacteria including E. coli and compe-
tition for nutrients and spaces that are sustained by the dynamics of an
inter-microbial metabolic network [93, 94]. In order for commensal bac-
terial flora to function to protect the host from pathogen invasion, main-
tenance of biodiversity of the flora seems to be a critical issue as it may
enhance intestinal epithelial barrier functions [95] and suppress prolifera-
tion and attachment of pathogenic bacteria to the intestine [96]. It is well
recognized that loss of diversity of flora due to extensive use of antibiotics
allows pathogenic bacteria such as Clostridium difficile to proliferate and
cause antibiotic associated diarrhea (AAD) [97]. While a general mecha-
nistic explanation of how high biodiversity flora can reject pathogens has
yet to be proven, it is clear that loss of diversity in an ecosystem leads to
reduced stability and resistance against invasion [98]. A similar conclu-
sion was reached by researchers at the NASA Kennedy Space Center who
investigated the stability of advanced life support systems using a bacteria
ecosystem [99].

In addition, it has been found that loss of biodiversity of the bacterial
flora of the intestine is associated with inflammatory bowel diseases (IBD)
[100], perhaps due to excessive growth of specific bacteria species [101]
triggered by the loss of diversity [102]. Association between loss of diver-
sity in bacterial flora and autoimmune disorders is documented even in
cases of CD and ulcerative colitis. A recent study revealed that diversity of
bacterial flora in Crohn’s disease (CD) patients and ulcerative colitis was
reduced by 50 % and 30 % compared to the healthy control group, respec-
tively, and such reduction of diversity was attributed to the loss of normal
anaerobic bacteria including Bacteroides species, Eubacterium species, and
Lactobacillus species [100]. These bacteria that are significantly lost in the
population are consistent with specific species that are observed to have
high intra-division biodiversity [103] such as Cytophage-Flavobacterium-
Bacteroides (CFB) and the Firmicutes. Extensive concentration of bacte-
ria such as Mycobacterium paratuberculosis and Listeria monocytogenes has
been observed by biopsy of CD patients using 16S rDNA PCR and DNA
hybridization analysis [77]. Combined with the genetic susceptibility of
the subpopulation of CD patients with NOD2 mutation [75, 76], pertur-
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bations of bacteria flora might have lost the capability to suppress such
pathogenic bacteria and allowed them to grow and invade. However, due
to the highly interactive nature of bacteria flora and the mucosal immune
system, it is unclear whether such reduction in biodiversity of flora is a
part of the cause, or the result of disease.

7 Future directions

This paper discussed possible issues related to robustness and trade-offs
particular to the pathogen and host interaction in the context of infec-
tious diseases. There have been a great many molecular details revealed in
recent studies from both pathogen and host systems, and their complex
interactions are starting to be revealed. As living systems have evolved
to acquire robustness against a certain set of perturbations, it results in
intrinsic trade-offs. Pathogens and the host system are no exception.
Pathogens acquire robustness against host immune response by a variety
of counter measures, variable surface molecule presentation, as well as by
being invisible from immune recognition. Some of them are consistent
with mechanisms for robustness observed in more complex living organ-
isms. However, pathogens have generally evolved to be less robust against
mutations, perhaps opting for efficient and faster replication. The modu-
lar PAI structure enables some pathogens to exchange pathogenicity genes.
Effective drugs for such pathogens that specifically target the weaker as-
pects of pathogenesis systems stand the best chance of being meaningful
interventions.

The host immune system is a complex and characteristic structure that
has evolved to defend the host from a broad range of pathogenic threats.
It has, however, several fragile points which are effectively exploited by
a variety of pathogens. At the same time, the proinflammatory nature of
cytokine network and risk of misrecognition by molecular mimicry make
the host system prone to infection-triggered organ dysfunctions, such as
ECM-induced heart failure, fulminent hepatitis, and a series of autoim-
mune disorders such as Crohn’s disease.

Prevention and treatment of infectious diseases has to take into account
the complex nature of the host–pathogen interaction. Bacterial flora has
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been featured as one possible risk factor for a variety of diseases and autoim-
mune disorders by preventing pathogen invasion from mucosal surfaces.
A comprehensive understanding of the whole host system and pathogen
interactions needs to be made to design effective therapeutic and preven-
tive options. ‘Biological robustness’ provides viable conceptual framework
for coherent understanding of infectious diseases and infection-triggered
autoimmune disorders to guide future research and therapeutic efforts.
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Abstract

The increasing availability of various system-level, or so-called ‘omics’, datasets, in con-
cert with existing data from the primary research literature, is facilitating the devel-
opment of genome-scale metabolic models for many organisms. By incorporating the
metabolic reaction stoichiometry as well as other physicochemical properties into sys-
temic network reconstructions, these models account for the constraints that restrict
an organism’s phenotypic behavior. Accordingly, unlike many contemporary model-
ing strategies, this constraint-based modeling approach does not attempt to predict
network behavior exactly; rather, it seeks to clearly distinguish those network states
that a system can achieve from those that it cannot. A variety of analytical tools have
been designed and developed to probe these models, thus enabling studies that in-
vestigate the metabolic capabilities of a number of organisms, that generate and test
experimental hypotheses, and that predict accurately metabolic phenotypes and evo-
lutionary outcomes. This chapter introduces the concepts that underlie the constraint-
based modeling approach, and describes several of its applications with an emphasis
on those potentially relevant to the drug development field. In addition, while this
chapter focuses on the primary application of the constraint-based approach to date,
namely in modeling metabolic networks, the latter sections of the chapter discuss its
relatively recent application to modeling other cellular systems. Finally, the chapter
concludes with an assessment of future directions focusing on the efforts that will be
required to utilize the constraint-based approach in generating a holistic model of a
viable organism.

Keywords: systems biology, Flux Balance Analysis (FBA), mathematical modeling of bi-
ological systems, constraint-based reconstruction and analysis, extreme pathway
analysis

1 Introduction to modeling using the
constraint-based approach

The development of high-throughput experimental techniques in recent
years has led to an explosion of genome-scale datasets for a variety of or-
ganisms. Considerable efforts have yielded complete genomic sequences
for hundreds of organisms [1], from which gene annotation provides a
list of individual cellular components. Microarray technology affords re-
searchers the ability to probe gene expression patterns of cells and tissues
on a genome scale thus providing insight into components available to
the system at a given time and condition. Furthermore, advances in the
fields of proteomics, as well as significant high-throughput gene product
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localization and high-throughput phenotyping efforts further add to the
vast quantity of data currently available to researchers. Integration of these
datasets to extract the most relevant information in formulating a com-
prehensive view of biological systems is a major challenge currently facing
the biological research community [2]. Achieving this task will require
comprehensive models of cellular processes.

A prudent approach to gain biological understanding from these com-
plex datasets involves the development of mathematical modeling, sim-
ulation, and analysis techniques [3]. For many years, researchers have
developed and analyzed models of biological systems via simulation, but
these efforts often have been hampered by lack of complete or reliable
data. Some examples of the modeling philosophies and approaches that
have been pursued include deterministic kinetic modeling [4, 5], stochastic
modeling [6, 7], and Boolean modeling [8]. Many of these approaches are
implicitly limited in that they require knowledge of unknown parameters
that are difficult to experimentally determine or approximate. Further-
more, the above approaches typically require substantial computational
power, thus limiting the scale of the models that can be developed.

In recent years, however, great strides have been made in developing
and using genome-scale metabolic models of a number of organisms using
another modeling technique that is not subject to the above limitations.
This approach, known as constraint-based reconstruction and analysis [9–
13], has been employed to generate genome-scale models for organisms
from all three major branches of the tree of life. While bacterial mod-
els dominate this growing collection, a model from archaea has recently
appeared, and several eukaryotic models are also available (see Fig. 1 and
Tab. 1 for an overview of existing constraint-based metabolic models).

In complimentary efforts, many analytical tools have been developed
to use these models in computational investigations of model organisms
(reviewed in [10]), some of which have the potential to aid drug devel-
opment efforts. For example, Flux Balance Analysis (FBA) [14, 15], is a
powerful mathematical approach that uses optimization by linear pro-
gramming to study the properties of metabolic networks under various
conditions. Additionally, uniform random sampling of the steady-state
flux space defined in these models can be used to assess network structure
and capabilities, and has been used to examine enzymopathies [16, 17].
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Figure 1.
Distribution of constraint-based metabolic models across the tree of life. This approximation
of the tree of life, which is derived from the Taxonomy Browser available through NCBI [101],
lists all currently available genome-scale, constraint-based models of metabolism. Table 1
summarizes model details and lists references for each respective model.

Table 1.
Currently available constraint-based models. This table summarizes content statistics for the
models developed and published to date. *This number is based on the protein species iden-
tified in a proteomics study of the human cardiac mitochondria from which the components
of the reconstruction were derived [106]. NA – Not applicable.

Organism Total Model Model Model Reference
Genes Genes Metabolites Reactions

Bacteria
Bacillus subtilis 4,225 614 637 754 [102]
Escherichia coli 4,405 904 625 931 [58]

720 438 627 [60]
Geobacter sulfurreducens 3,530 588 541 523 [64]
Haemophilus influenzae 1,775 296 343 488 [76]

400 451 461 [103]
Heliobacter pylori 1,632 341 485 476 [62]

291 340 388 [61]
Lactococcus lactis 2,310 358 422 621 [104]
Mannheimia succinciproducens 2,463 335 352 373 [105]
Staphylococcus aureus 2,702 619 571 641 [63]

551 712 682 [80]
Streptomyces coelicolor 8,042 700 500 700 [65]
Archaea
Methanosarcina barkeri 5,072 692 558 619 [66]
Eukarya
Mus musculus 28,287 1156 872 1220 [72]
Saccharomyces cerevisiae 6,183 750 646 1149 [68]

672 636 1038 [69]
708 584 1175 [67]

Human Cardiac Mitochondria 615* 298 230 189 [55]
Human Red Blood Cell NA NA 39 32 [73]
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In this chapter, we provide an introduction to the principles that un-
derlie constraint-based reconstruction and analysis with an emphasis on
modeling metabolic networks. Furthermore, we show directly how FBA
can be used to analyze these models and interrogate their properties. We
also review several published studies that utilize FBA and uniform ran-
dom sampling to illustrate their potential utility in drug development ap-
plications. Finally, we introduce the application of the constraint-based
approach to modeling other cellular systems aside from metabolism and
discuss the steps that remain in generating a holistic model of a viable
organism.

2 Building a constraint-based model

This section outlines the general procedure (Fig. 2) followed in construct-
ing a constraint-based model with a slant towards metabolic network. Fur-
thermore, we introduce FBA as an example of a useful analytical method
that can be used in conjunction with these models. This model building
and analysis approach can be divided approximately into four successive
steps:

1. Network reconstruction

2. Stoichiometric (S) matrix compilation

3. Identification and assignment of appropriate constraints to molecular
components

4. Network analysis (in the presented case using FBA).

2.1 Network reconstruction

The first step in constraint-based modeling, known as network reconstruc-
tion, involves generating a model that describes the system of interest.
This process can be decomposed into three parts typically performed simul-
taneously during model construction. First, data collection is conducted
to define the network of interest; second, a corresponding metabolic reac-
tion list is generated; and third gene-protein-reaction (GPR) relationships
are determined.
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Figure 2.
From ‘omics’ data to constraint-based models. Omics datasets are appearing that describe
the levels, subcellular localization, and interactions between many of the biomolecules within
the cell. These data are facilitating the construction and analysis of genome-scale, constraint-
based models of biological systems. For example, genomics, transcriptomics, and pro-
teomics yield information regarding the cellular components to be included in the network
to be reconstructed (left panel). Protein–protein interaction data helps identify the enzyme
complexes to be included in the network reconstruction, and protein–DNA interactions are
useful when integrating transcriptional regulatory information into the model. Finally, local-
ization data, when available, is extremely useful for multi-compartmental models in which
components must be properly assigned to their respective subcellular compartments. Hav-
ing defined and reconstructed the system based on these and older data from the literature,
the model can be represented in mathematical form as a matrix (right panel). Finally, com-
putational analyses using this matrix can be performed and compared to fluxomics and
phenotyping data for model validation and refinement purposes.

2.1.1 Data collection

Perhaps the most critical component of the constraint-based modeling
approach involves data collection relevant to the system of interest. Not
long ago, this was among the most challenging steps as researchers had
access to very limited amounts of biochemical data. However, the suc-
cess of recent genome sequencing and annotation projects, advances in

271



Andrew R. Joyce and Bernhard Ø. Palsson

high-throughput technologies, as well as the development of detailed and
extensive online database resources, has improved matters dramatic-
ally.

Many high quality data resources exist to help researchers identify and
compile the appropriate metabolites, biochemical reactions, and associ-
ated genes to be included in the network reconstruction. Direct biochemi-
cal information found in the primary literature usually contains the high-
est quality data for use in reconstructing biochemical networks. Important
details, such as precise reaction stoichiometry and reaction reversibility, are
often directly available. Given that scrutinizing each study individually
is an excessively time-consuming and tedious task, biochemical textbooks
and review articles should be utilized when available, relying on the pri-
mary literature to resolve conflicts as necessary. Furthermore, many vol-
umes devoted to individual organisms and organelles, such as E. coli [18],
and the mitochondria [19], are increasingly becoming available and are
typically excellent resources.

High-throughput datasets are also generally excellent resources, partic-
ularly for less-studied, non-model organisms. In recent years, the com-
plete genome sequence of hundreds of organisms has been determined,
and many more sequencing projects are underway [20]. This collection
is dominated by microbial and viral sequences, but several highly pub-
licized higher eukaryotic sequences are also available [21–24]. Further-
more, extensive bioinformatics-based annotation efforts continue to make
great strides toward automatically identifying all coding regions contained
within the sequence [25–27]. Interestingly, efforts are underway to auto-
matically reconstruct networks based on annotated sequence information
alone [28]. However, these automated approaches are limited in that they
can only be as good as the genome annotation from which they are de-
rived. Therefore, considerable quality control efforts should be conducted
prior to extensive use of these networks.

The proteome of a biological system defines the full complement, lo-
calization, and abundance of proteins. Although these data are generally
difficult to obtain, data for some subcellular components and bacteria are
available [29, 30]. Proteomic data are of particular importance in eukary-
otic systems modeling, in which care must be taken to assign reactions to
their appropriate subcellular compartment or organelle. Similarly, when
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modeling a system under a single condition, these data are important in
identifying active components.

In recent years, significant efforts also have been devoted to develop-
ing comprehensive databases that integrate many information sources,
including those data types previously described. Of particular interest for
metabolic modeling efforts are resources that have incorporated these dis-
parate data sources into metabolic pathway maps. Kyoto Encyclopedia of
Genes and Genomes (KEGG) [31] is perhaps the most extensive and well
known among these resource types, providing pathway maps for numer-
ous metabolic processes and information regarding gene orthology across
many organisms.

Additional organism-specific database resources are also available. Eco-
Cyc [32] incorporates gene and regulatory information, as well as enzyme
reaction pathways particular to E. coli. The Comprehensive Yeast Genome
Database (CYGD) [33] and Saccharomyces Genome Database (SGD) [34] are
other examples of S. cerevisiae-specific comprehensive resources. Finally,
the BioCyc resource [35, 36] contains automated annotation-derived path-
way/genome databases for 205 individual organisms.

An additional important wealth of information can be found in re-
sources that provide functional information for individual genes and gene
products. These ontology-based tools strive to describe how gene prod-
ucts behave in a cellular context. The most well-known resource is Gene
Ontology Consortium (GO) [37, 38], which contains information for a va-
riety of organisms. In recent years, organism-specific ontologies, such as
GenProtEC [39] for E. coli, also have appeared. Table 2 lists some popular
online high-throughput data resources as well as integrative organism-
specific and ontological resources.

2.1.2 Metabolic reaction list generation

The next step in putting together a constraint-based model requires clearly
specifying the reactions to be included based on the metabolite and en-
zyme information collected in the previous step. A metabolic reaction
can be viewed simply as substrate(s) conversion to product(s), often by
enzyme-mediated catalysis. In light of this notion, each reaction in a
metabolic network must adhere to the fundamental laws of physics and
chemistry; therefore, reactions must be balanced in terms of charge and
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elemental composition. For example, the biochemical reaction that rep-
resents the first step of glycolysis, in which hexokinase phosphorylates
glucose yielding glucose-6-phosphate, can be depicted as:

C6H12O6 + ATP3− Hexokinase
|||‹ C6H11O6PO2−

3 + ADP2−.

However, this equation is neither elementally nor charge balanced. How-
ever, inclusion of hydrogen, as shown below:

C6H12O6 + ATP3− Hexokinase
|||‹ C6H11O6PO2−

3 + ADP2− + H+

. . . balances the reaction in both regards. This level of detail, however
minor it seems, is very important when building chemically consistent
constraint-based models.

Biological boundaries also must be considered when defining reaction
lists. Metabolic networks are comprised of both intracellular and extra-
cellular reactions. For example, in bacteria the reactions of glycolysis and
the tricarboxylic acid cycle (TCA) generally take place intracellularly in
the cytosol. However, glucose must be transported into the cell via an
extracellular reaction in which a glucose transporter takes up extracellular
glucose. An additional boundary consideration must be recognized partic-
ularly when modeling eukaryotic cells. Given that certain metabolic reac-
tions take place in the cytosol and others take place in various organelles,
reactions must be compartmentalized properly. Data is now being gen-
erated in which proteins are tagged, with green fluorescent protein (GFP)
for example, or recognized by antibodies and localized to subcellular com-
partments or organelles [40–42]. Furthermore, computational tools have
also been developed to predict subcellular location of proteins in eukary-
otes [43].

Finally, reaction reversibility must be defined. Certain metabolic reac-
tions can proceed in both directions. Thermodynamically, this permits
reaction fluxes to take on both positive and negative values. The KEGG
and BRENDA online resources (Tab. 2) are two useful resources that catalog
enzyme reversibility.
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2.1.3 Determining gene-protein-reaction (GPR) relationships

Upon completing the reaction list, the protein, or protein complexes that
facilitate each metabolite substrate to product conversion must be deter-
mined. Each subunit protein from a complex must be assigned to the same
reaction. Additionally, certain individual reactions can be catalyzed by dif-
ferent distinct enzymes. Collectively, each enzyme that fits this criterion
is known as an isozyme for a particular reaction. Accordingly, isozymes
must all be assigned to the same appropriate reaction. Biochemical text-
books often provide the general name of the enzyme(s) responsible; how-
ever, the precise gene and associated gene product specific for the model
organism of interest must be identified. The database resources detailed
in Section 2.1.1 and Table 2 assist this process. In particular, KEGG and
GO provide considerable enzyme-reaction information for a variety of or-
ganisms. Furthermore, protein–protein interaction datasets, derived from
yeast two-hybrid experiments [44], for example, may be useful resources
for defining enzymatic complexes in less defined situations. One must take
care in using these data, however, given their generally high false positive
rate and questionable reproducibility [45, 46].

2.2 Defining the stoichiometric (S) matrix

Having reconstructed the network of interest, the compiled reaction list
can be represented mathematically in the form of a stoichiometric (S) ma-
trix. The S matrix for metabolic networks is formed from the stoichio-
metric coefficients of the reactions that participate in the defined reaction
network. It has m × n dimensions, where m is the number of metabolites
and n is the number of reactions. Therefore, the S matrix is organized such
that every column corresponds to a reaction, and every row corresponds
to a metabolite. The S matrix describes how many reactions a compound
participates in, and thus, how reactions are interconnected and thus effec-
tively represents a two dimensional annotation of the genome [9, 47].

Figure 3 shows how a simple two reaction system can be represented
as an S matrix. In this example, v1 and v2denote reaction fluxes and are
associated with individual proteins or protein complexes that catalyze the
reactions. Element Sij represents the coefficient of metabolite i in reaction j.
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Figure 3.
Generating the stoichiometric (S) matrix. The reaction list on the left is mathematically
represented by the S matrix on the right. As a convention, each row represents a metabo-
lite and each column represents a reaction in the network. Additionally, input or reactant
metabolites have negative coefficients and outputs or products have positive coefficients.
Metabolites that do not participate in a given reaction are assigned a zero value.

Furthermore, notice that substrates are assigned negative coefficients and
products are given positive coefficients. Also, for those reactions in which
a metabolite does not participate, the corresponding element is assigned a
zero value.

2.3 Identifying and applying constraints

Having developed a mathematical representation of a metabolic network
in the form of the S matrix, the next step requires that any constraints
be identified and imposed on the system. Cells are subject to a variety of
constraints from environmental, physiochemical, evolutionary, and reg-
ulatory sources [10, 12]. In and of itself, the S matrix is a constraint in
that it defines the mass and charge balance requirements for all possible
metabolic reactions available to the cell. These stoichiometric constraints
establish a geometric solution space that in principle contains all possible
metabolic behaviors.

Additional constraints can be identified and imposed on the model,
which has the effect of further limiting the metabolic solution space. Max-
imum enzyme capacity (Vmax), which can be determined experimentally
for some reactions, is one example, and can be imposed by limiting the
flux through any associated reactions to that maximum value. Further-
more, the uptake rates of certain metabolites can be determined experi-

278



Toward whole cell modeling and simulation

mentally and used to restrict metabolite uptake to the appropriate levels
when mathematically analyzing the metabolic model. Additional types of
constraints have also been applied, including thermodynamic limitations
[48], internal metabolic flux determinations [11], and transcriptional reg-
ulation [49–52].

2.4 Network analysis: Assessing the model using Flux Balance
Analysis

With a mathematical representation of the network in hand, a variety of
analytical techniques can be utilized to assess its properties. Flux Balance
Analysis (FBA) is a powerful computational method that relies on linear
programming-based optimization [53] to investigate the production ca-
pabilities and systemic properties of a metabolic network. By defining
an objective, such as biomass production, ATP production, or byproduct
secretion, linear optimization may be used to find an optimal flux distri-
bution for the network model that maximizes the stated objective. This
section briefly introduces some main concepts that underlie FBA, with
an emphasis on how FBA can be utilized to assess gene essentiality in a
metabolic network.

2.4.1 Linear optimization

As previously stated, the solution space defined by constraint-based models
can be explored via optimization by linear programming (LP). The LP prob-
lem corresponding to the search for the optimal flux distribution through
a metabolic network can be formulated as follows:

Maximize Z = cTv

Subject to S · v = 0

˛i ≤ vi ≤ ˇi for all reactions i

In the above representation, Z represents the objective function, and c is
a vector of weights on the fluxes v. The weights are used to define the
properties of the particular solution that is sought. The latter statements
represent the flux constraints for the metabolic network. S is the matrix
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defined in the previous section and contains the mass and charge balanced
representation of the system. Furthermore, each reaction flux vi in the
system is subject to lower and upper bound constraints, represented in ˛i

and ˇi respectively.
The solution to this problem yields not only a value for Z but also results

in an optimal flux distribution (v) that allows the highest flux through the
chosen objective function, Z. Furthermore, computational assessment of
gene essentiality is performed easily within this framework. By setting
the upper and lower flux bound constraints to zero for the reaction(s)
corresponding to the gene(s) of interest, a simulated gene deletion strain
may be created. An examination of the results of simulations run before
and after knocking out a gene leads directly to gene essentiality predictions.

Problems of this type can be readily formulated and solved by a variety
of commercial software packages. Box 1 presents a simple, hypothetical
example solved with Matlab for three cases using the system depicted in
Figure 4. It should also be noted that these types of analyses yield a single
flux distribution; however, it is possible that multiple equivalent flux dis-
tributions exist that yield a maximal biomass function value for a given
network and simulation conditions. This topic has been explored using
mixed integer linear programming (MILP) techniques with genome-scale
metabolic models [54, 55], but is beyond the scope of this chapter and will
not be further discussed.

2.4.2 Constraints

As previously stated, the S matrix constrains the system by defining the
mass and charge balances for all possible metabolic reactions within the
system. In mathematical terms, the stoichiometric (S) matrix is a linear
transformation of the reaction flux vector,

v = (v1, v2, . . . , vn)

to a vector of time derivatives of metabolic concentrations

x = (x1, x2, . . . , xn)
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Figure 4.
An example system. (a) A four metabolite, eight reaction system is first decomposed into
individual reactions in (b), and then represented mathematically in the S matrix depicted in
(c). By convention, internal reactions are denoted by v1 , and reactions that span the system
boundary are denoted by b1. External metabolites A0 and D0 need not be explicitly repre-
sented explicitly within this framework as they are outside the system under consideration.
This system is used in the calculations shown in Box 1.

such that
dx

dt
= S · v

Therefore, a particular flux distribution v represents the flux levels through
each reaction in the network. Since the time constants that describe
metabolic transients are fast (on the order of tens of seconds or less),
whereas the time constants for cell growth are comparatively long (on
the order of hours to days) the behavior of cellular components can be
considered as existing in a quasi-steady state. This assumption leads to
the reduction of the previous equation to:

S · v = 0.
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By focusing only on the steady-state condition, assumptions regarding
reaction kinetics are not needed. Furthermore, based on this premise it
is possible to determine all chemically balanced metabolic routes through
the metabolic network.

The second constraint set is imposed on the individual reaction flux
values. The constraints defined by

˛i ≤ vi ≤ ˇi for all reactions i

specify lower and upper flux bounds for each reaction. If all model reac-
tions are irreversible, ˛ equals 0. Similarly, if the enzyme capacity, or Vmax,
is experimentally defined, setting ˇ to the known experimental value lim-
its the allowable reaction flux through the enzyme. In contrast, a gene
knockout is simulated by setting both ˛i and ˇi = 0 for gene i (see Box 1).
If no constraints on flux values through reaction vi can be identified, then
˛i and ˇi are set to −∞ and +∞, respectively, to allow for all possible flux
values. In practice, ∞ is typically represented as an arbitrarily large number
that will exceed any feasible internal flux.

A brief consideration should also be given to specifying input and out-
put constraints on the system. When analyzing metabolic models in the
context of assessing cellular growth capabilities, input constraints effec-
tively define the environmental conditions being considered. For exam-
ple, organisms have various elemental requirements that must be provided
in the environment in order to support growth. Some organisms that lack
certain biosynthetic processes are auxotrophic for certain biomolecules,
such as amino acids, and these compounds must also be provided in the en-
vironment. From an FBA standpoint, these issues mean that input sources
must be specified in the form of input flux constraints specified in v. For ex-
ample, if one desires to simulate rich medium conditions, flux constraints
are specified such that all biomolecules that can be inputs to the system,
in other words all compounds that are available extracellularly, are left
unconstrained and can flow freely into the system. In contrast, when
modeling minimal medium conditions (see [56] for an example of a large-
scale analysis performed of E. coli growth simulations on minimal media)
only those inputs required for cell growth, or biomass formation in the
formalism being considered here, are allowed to flow into the system with
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all other input fluxes constrained to zero. It should also be noted that cer-
tain output flux constraints may need to be set appropriately in order to
allow for the simulated secretion of biomolecules that may ‘accumulate’
in the process of forming biomass.

2.4.3 The objective function

Given that multiple possible flux distributions exist for any given net-
work, linear optimization is used to identify a particular solution that
maximizes or minimizes a defined objective function. Commonly used
objective functions include production of ATP, or production of a secreted
byproduct. When assessing the growth capabilities of a microbe using its
associated metabolic model, growth rate, as defined by the weighted con-
sumption of metabolites needed to make biomass, is maximized. The gen-
eral analysis strategy asks the question “is the metabolic reaction network
able to support growth under the specified growth conditions?” There-
fore, biomass generation in this modeling framework is represented as a
reaction flux that drains intermediate metabolites, such as ATP, NADPH,
pyruvate, and amino acids, in appropriate ratios (defined in the vector c of
the biomass function Z) to support growth. As a convention, the biomass
function is typically written to reflect the needs of the cell in order to make
one gram of cellular dry weight, and has been experimentally determined
for E. coli [57]. In sum, the choice of biomass as an objective function
means that cell growth, depicted as a non-zero value for Z, will only occur
if all the components in the biomass function can be provided for by the
network in the correct relative amounts.

3 Metabolic model applications and computational
challenges

The previous sections provided the basic concepts of constraint-based re-
construction and analysis. We will now turn to the current state of the
field by first touching on some of the computational challenges that are
commonly encountered when scaling up to genome-scale network recon-
struction and analysis. We will also introduce many of the metabolic mod-
els that have appeared in the literature and that are being utilized in many
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follow-up analytical studies. We will then discuss FBA-based analysis of
gene essentiality and uniform random sampling analysis, two applications
that use constraint-based models and have potential utility for drug devel-
opment purposes. Model validation and improvement opportunities will
be discussed in the context of the former application as well.

3.1 The current state of affairs

This chapter presents the basic steps required to build and conduct anal-
yses of constraint-based cellular models with an emphasis on modeling
metabolic networks. These model systems quickly grow in size and scale,
introducing computational challenges that need to be addressed. With
large-scale models it becomes necessary to use a robust computational plat-
form designed specifically for sophisticated optimization problems, such
as those developed by LINDO Systems, Inc (Chicago, Ill) and available
through GAMS (GAMS Development Corporation, Washington, DC).

Furthermore, data management becomes difficult as models scale up in
size. For example, the most current published E. coli model contains 904
genes and 931 unique biochemical reactions [58]. Constructing and ana-
lyzing a genome-scale model within the framework proposed in Section 2 is
possible, but would be slow, unwieldy, and error prone. In recent years, an
integrative data management and analysis software platform called Sim-
Pheny (Genomatica, San Diego, CA) has been developed specifically to
address the data management and computational challenges inherent in
building large-scale cellular models. This versatile platform provides net-
work visualization, database, and various analytical tools that greatly fa-
cilitate the construction and study of genome-scale cellular models.

Currently, more than a dozen genome-scale metabolic models have
been published and are available (Fig. 1 and Tab. 1) for further research
and analysis. Most of these models represent bacteria and range from the
important model organism E. coli [58–60] to pathogenic microbes such
as H. pylori [61, 62] and S. aureus [63]. Furthermore, recently developed
models of G. sulfurreducens [64] and S. coelicolor [65] are potentially impor-
tant for their facilitation of studies that probe these organisms’ respective
potential bioenergetic and therapeutics-producing properties.
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Representative constraint-based models have also appeared from the
other two major branches of the tree of life. The recently developed
metabolic reconstruction of M. barkeri [66], an interesting methanogen
with bioenergetic potential, represents the first constraint-based model of
an archaea that has been used to aid in the analysis of experimental data
from this relatively obscure group of organisms. Furthermore, several eu-
karyotic models also have been developed. The metabolic models of the
baker’s or brewer’s yeast S. cerevisiae [67–69] are second only to the E. coli
models in terms of relative maturity and have been used in a variety of
studies designed to assess network properties (for recent examples, see [70,
71]). Metabolic models of higher order systems are also becoming avail-
able, such as a model of mouse (Mus muculus [72]) as well as human cardiac
mitochondria [55] and red blood cell [73].

As more of these genome-scale models are developed, the issue of mak-
ing their contents available to the broader research community is of pri-
mary concern. Given their inherent complexity there is a need for a stan-
dardized format in which their contents can be consistently represented
in order to circumvent potential problems associated with the current typ-
ical means of distribution via non-standard flat file or spreadsheet format.
In an effort to address this concern, the Systems Biology Markup Lan-
guage (SBML) [74], for example, has been developed to provide a uniform
framework in which models can be represented, and the recently initiated
MIRIAM (‘minimum information requested in the annotation of biochem-
ical models’) project [75] and affiliated databases have appeared to provide
greater transparency as to the contents, and potential deficiencies in mod-
els made publicly available. The adoption of these or similar standards will
be important to the advancement of the field and in promoting its general
utility in biological research.

3.2 Predicting gene essentiality

One application of constraint based modeling in conjunction with FBA
that has been particularly successful in computationally assessing meta-
bolic networks is in studies of gene essentiality. Recent studies have used
genome-scale constraint-based models to assess gene essentiality for sev-
eral organisms under various growth conditions, in particular using models
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of E. coli [52, 60], H. influenzae [76], H. pylori [61], M. barkeri [66] and S.
cerevisiae [68, 77], under various growth conditions. Each study simulated
gene deletions by constraining the flux through the associated reaction(s)
to zero, as described in Section 2.4.2 and Box 1. Interestingly, relatively few
central metabolic genes are predicted to be lethal. This observation likely
reflects the inherent redundancy and high degree of interconnectivity that
is characteristic of central metabolism. In addition, H. influenzae seems to
be less robust than E. coli against single gene deletions as a higher percent-
age of central metabolic genes are predicted to be essential. Furthermore,
given that metabolic networks appear generally robust against single gene
deletions, perhaps future studies should focus on lethal double mutants,
known as synthetic lethal mutants, which are commonly studied in S. cere-
visiae [78, 79]. Results from such studies are beginning to appear [62, 69]
and may provide additional insight into gene and reaction essentiality, as
well as metabolic network robustness.

Beyond being useful for basic research purposes, these gene essential-
ity studies may also have significant importance for drug development
projects. For example, each essential gene identified in these assessments
represents a potential drug target as any therapy directed at these genes or
associated gene products should significantly impact the organism’s via-
bility. A recent gene essentiality analysis using a genome-scale metabolic
model of Staphylococcus aureus N315 revealed that glycan and lipid biosyn-
thetic pathways in particular were sensitive to gene deletions [80]. Given
this organism’s frequent involvement in antibiotic-resistant, hospital-ac-
quired infection, the genes involved in these processes may prove to be
fruitful avenues for novel antibiotic development.

3.2.1 Model performance assessment

Validating model predictions is a critical component in constraint-based
model analysis, and these gene essentiality assessments provide an ideal
testing ground for this purpose. Growth phenotype data, available for a
number of knockout strains and organisms, can be acquired from biochem-
ical literature [81] and online databases, including ASAP [82] for E. coli, as
well as CYGD and SGD for S. cerevisiae. Experimental growth phenotype
data is available to assess directly the predictive power of the model for four
of the five organisms listed previously, and shows that correct predictions
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were made in ∼60%, 86%, 83%, and 92% of cases for H. pylori [61], E. coli
[52], S. cerevisiae [68], and M. barkeri [66], respectively. These comparisons
serve two important functions: validation of the general predictive poten-
tial of the model, and identification of areas that require refinement. In
this sense, constraint-based models are particularly useful in experimental
design by directing research to the most or least poorly understood bio-
logical components. The next section details how to interpret incorrect
model predictions and their likely causes.

3.2.2 Troubleshooting incorrect predictions

In the studies discussed in Section 3.2, the model predictions, when com-
pared to experimental findings, failed most often by falsely predicting
growth when the gene deletion leads to a lethal phenotype in vivo. This
trend indicates that the most common cause of false predictions is due
to lack of information included in the network. For example, certain im-
portant pathways not related to metabolism in which the deleted gene
participates may not be represented. In addition, the objective function
may not be defined properly by failing to include the production of a
compound required for growth. This case was shown to account for many
false predictions when using a yeast metabolic model to account for strain
lethality [69] when a few relatively minor changes to the biomass function
dramatically improved the model’s predictive capability. Alternatively, the
gene deletion may lead to the production of a toxic byproduct that ulti-
mately kills the cell, a result for which this approach cannot account. Fur-
thermore, certain isozymes are known to be dominant, whereas metabolic
models typically assign equal ability to each isozyme. The model would
predict viable growth for the dominant isozyme deletion, whereas in vivo,
the minor isozyme(s) would not sufficiently rescue the strain from the
lethal phenotype perhaps due to lower gene expression or enzymatic ac-
tivity.

An additional major error source stems from the lack of regulatory in-
formation incorporated into the previously described models. Including
transcription factor–metabolic gene interactions, using a Boolean logic ap-
proach, enhances the accuracy of constraint-based model predictions [52].
Regulatory information is available in the primary literature, in addition
to online resources such as EcoCyc and RegulonDB [83]. Furthermore,
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these interactions can be derived from ChIP-chip analysis of transcription
factors and corresponding gene expression microarray data [49]. A more
detailed treatment of this latter topic is presented in Section 4.3.

Incorrect predictions are less often due to false predictions of lethality.
These uncommon cases often suggest the presence of previously unidenti-
fied enzyme activities, which, if added to the model, would lead to accurate
predictions. They may also reflect improper biomass function definition,
but in a different sense from the situation described above. For exam-
ple, rather than failing to include compounds required for growth, it is
also possible that certain compounds are included in the biomass func-
tion erroneously, and may actually not be essential to support biological
growth. In any case, inaccurate [10, 84] predictions are most often at-
tributed to a paucity of information available for inclusion in the model
and not simply a failure of the technique, thus validating the general strat-
egy of constraint-based modeling.

3.3 Uniform random sampling

Uniform random sampling of points throughout a metabolic network’s
solution space (see Fig. 5 for a conceptual representation of the solution
space) can be used to characterize the range of metabolic functions avail-
able to the organism [70, 85, 86]. The basic strategy for using this tech-
nique with genome-scale metabolic models involves choosing an initial
point, defined by a high dimensional network flux distribution vector
within the solution space, by using FBA on a slightly more constrained
space than normal [17]. The second step in the process involves randomly
choosing another point within the space by perturbing one or more dimen-
sions of the original flux distribution vector. This basic process, which can
be thought of as a random walk within the solution space, is repeated many
times, on the order of 105 points with every 500 points or so recorded, ulti-
mately converging to a uniform distribution of points within the solution
space.

This technique can be used to identify network modules by examining
the correlation of elements within each flux distribution vector and also
to readily assess the impact on functional properties of the network with
the addition of new constraints to the system [10]. Interestingly, this latter
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Figure 5.
Constraint-based modeling and analysis. Application of constraints to a reconstructed
metabolic network (left) leads to a defined solution space that specifies a cell’s allowable
metabolic phenotypes (middle). Flux Balance Analysis uses linear programming to find so-
lutions in the space that maximize or minimize a given objective (right). In the graphical
representation on the right, the optimal flux distributions that maximize �, which represents
growth/biomass production for this example, are highlighted. The effects of gene knockouts
on the solution space and resulting metabolic capabilities can be assessed by simulating a
gene knockout and comparing its ability to grow in silico relative to wild type. Impaired
knockout strains are those which have a lower maximum value for the objective function
than wild-type, and lethal knockout strains are those which have a zero value for the objec-
tive function, indicating no growth capability when the strain harbors that particular gene
deletion. As a reference the wild-type flux distribution vector is also depicted by the dashed
line on the impaired and lethal knockout plots.

application has been used to study enzymopathies in the human red blood
cell [16]. By imposing additional Vmax constraints on one or more enzymes,
one can simulate the adverse effect of single nucleotide polymorphisms
(SNPs), for example, on the overall metabolic capabilities of the cell. This
strategy showed that altering the activity level of pyruvate kinase, which
is the most common enzyme deficiency to be reported in the glycolytic
pathway, can have profound impacts on distant network components,
thus having a broad impact on the network as a whole. A further study
using this approach with the human cardiac mitochondria revealed that
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network perturbations designed to mimic diabetic, ischemic, and dietetic
conditions can have broad, system-wide impacts, sometimes quite distant
from the point of specific network insult [17]. Both of these examples
highlight the potential utility of this approach in identifying potential
therapeutic targets (in the case of modeling of diseased or disordered states)
and for assessing potential pleiotropic effects that might be expected from
certain therapeutics (in the case of modeling network impacts associated
with targeted treatments).

4 Future directions for constraint-based modeling

Thus far, constraint-based models have had their primary success in assess-
ing the metabolic capabilities of cells. However, current models generally
fail to account for many other important aspects of cellular biology. In
the past several years, however, several efforts have been initiated to apply
the constraint-based modeling and analysis techniques to other cellular
processes. Below we briefly describe relatively recent work that is setting
the stage for including RNA and protein synthesis [87] as well as other
processes governed by cell signaling [88] and transcriptional regulatory
networks into genome-scale, constraint-based models of the cell.

4.1 Modeling of RNA and protein synthesis

RNA and protein synthesis represent two of the primary energy drains on
the cell [57] and are of obvious vital importance in that these processes
give rise to many of the active components responsible for cellular ac-
tivities. Existing constraint-based genome-scale metabolic models do not
explicitly account for these processes; rather they are included as abstract,
lumped sum quantities of monomeric amino acid and nucleotide triphos-
phate demands required to support cellular growth [89]. The specific val-
ues for these quantities are determined from measurements of biomass
constituents [57] and are independent of the genome sequence. In order
to alleviate this deficiency, a scalable, constraint-based framework was de-
veloped to capture the metabolic requirements for gene expression and
protein synthesis directly from the genome sequence itself [87].
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Figure 6.
Constraint-based modeling of RNA and protein synthesis. (a) A hypothetical system that
represents the RNA and protein synthesis network associated with the transcription and
translation of a single gene is depicted. The processes of transcription initiation, transcrip-
tion, mRNA decay, translation initiation, translation, and tRNA charging are depicted. Also
shown are some of the exchange fluxes required to balance the system. (b) A biochemical
reaction list for the included processes and appropriate exchange reactions can be compiled.
Note that the precise stoichiometry can and should be included in each reaction definition.
In this system the gene and associated protein length can vary. Accordingly, variables for
the number of bases (n) and number of amino acids (a) are included in the reaction stoi-
chiometry. (c) The stoichiometric (S) matrix can then be formulated based on the reaction
list. System components are represented in respective rows and each column denotes indi-
vidual system reactions. AA, amino acid; AAtRNA, charged tRNA; Gene*, gene undergoing
transcription; NMP, nucleotide monophosphate; P, Promoter; Pi, inorganic phosphate; Ri-
bosome*, actively translating ribosome; RNA Pol, RNA polymerase.

The general strategy stems from the observation that RNA and protein
synthesis can be broken down into constitutive biochemical reactions that
underlie the processing of these polymers. As illustrated in Figure 6, the ex-
pression of a given gene and the synthesis of the protein which it encodes
can be modeled by six essential biochemical reactions. These reactions
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include transcription initiation, transcription elongation, mRNA degra-
dation, translation initiation, translation elongation, and tRNA charging.
Biochemical equations representing each of these processes can be com-
piled (Fig. 6b), and used to formulate an associated stoichiometric (S) ma-
trix (Fig. 6c).

Many of the previously introduced analytical tools can then be used
to computationally assess the properties of the S matrix. For example, by
choosing protein production as the objective, FBA can be used to deter-
mine how much protein the RNA and protein synthesis machinery within
the cell can produce for a given set of environmental conditions and re-
sources [87]. One can also incorporate promoter strength, transcription
elongation, and translational initiation constraints on the system if such
information is known or can be approximated. Extreme pathway analy-
sis can also be used to assess the capabilities of these systems and their
characteristic states [87]. Thus far, however, this framework and analysis
methods have only been applied to small biological systems, namely the
malate dehydrogenase (mdh) gene and the lac operon [87]. Accordingly,
the limitations associated with studying large-scale systems in this manner
remain to be assessed, although an ongoing study of the E. coli RNA and
protein synthesis network (I. Thiele and B. Palsson, personal communica-
tion) is certain to be illuminating.

4.2 Modeling cell signaling networks

The signal transduction pathways that comprise cell signaling networks are
responsible for many critical processes. Signaling events operate both on
relatively quick time-scales, such as those that cause post-translational pro-
tein changes, and long time-scales, such as cell-cycle control, cell prolifer-
ation and migration, as well as apoptosis. Cell signaling networks are gen-
erally highly connected, complex, and involve many molecular players.
In an effort to quantitatively characterize their properties, researchers are
beginning to reconstruct these networks and apply mathematical methods
to analyze them.

One approach to computationally analyzing cell signaling networks re-
lies on many of the same constraint-based modeling principles discussed
earlier in this chapter for metabolic networks [88, 90]. The key insight is to
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treat signaling pathways as a series of biochemical transformations starting
with an input (the signal) and resulting in an output (post-translational
protein modification, apoptosis, etc.). Accordingly, just as in modeling
metabolic networks the first steps of this process focus on network re-
construction. One must first identify the components in the signaling
network of interest and the interactions that occur between them. In con-
trast to modeling of metabolic networks where enzymes and metabolites
are the primary players, signaling networks typically include receptors and
their corresponding receptor ligands, metabolites such as ATP and ADP, as
well as intracellular signal-transducing proteins. These networks also of-
ten include transcription factors, transcription factor binding sites, and
the resulting target genes.

The data from which components and their interactions are derived
have been traditionally difficult to obtain due to the often laborious ef-
fort involved in mapping signaling pathways using standard molecular
biology techniques. Recently developed high-throughput, genome-scale
techniques are mitigating this issue, however. For example, whole genome
sequencing and annotation identifies the possible network components,
ChIP-chip assays identify protein–DNA interactions, and yeast two-hybrid
assays identify protein–protein interactions. As previously noted, Table 2
summarizes many useful online resources that contain publicly accessi-
ble data. Several strategies for mapping signaling pathways and networks
have been developed in recent years by integrating these and other high-
throughput data [2]. These methods have been employed to map DNA
damage response as well as developmental pathways [2] among others.

Having identified the components and interactions that occur between
them, a list of biochemical reactions that describes the cell signaling net-
work can be listed. A stoichiometric matrix is then derived from this
list (Fig. 7) in very much the same manner as previously described for
metabolic as well as RNA and protein synthesis networks. It is important
to note that each state of a component must be explicitly accounted for
in the network. For example, a protein must be differentially represented
in separate phosphorylated and unphosphorylated forms [90, 91].

This stoichiometric framework explicitly defines the underlying net-
work reactions in a chemically consistent form. Accordingly, network
properties can be readily and quantitatively assessed using previously in-
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Figure 7.
Constraint-based modeling of cell signaling networks. (a) A schematic that includes a por-
tion of the nuclear factor (NF)-�B signaling-related network is depicted. (b) A reaction list
that corresponds to the schematic in (a) is detailed. Reactions are included for the interac-
tion of I�B kinase (IKK) with the inhibitor of NF-�B (I�B)-NF-�B complex. The subsequent
phosphorylation of I�B and release of NF-�B are also shown in addition to the degradation
of phosphorylated I�B (I�Bpp) and NF-�B translocation to the nucleus, and exchange fluxes
required for the system. (c) The associated stoichiometric (S) matrix is compiled based on
the reaction list. System components are depicted in each respective row, and reactions are
represented in each column.

troduced analytical tools. Extreme pathway analysis, in particular, is an
immensely useful tool for characterizing cell signaling networks. Using
existing software [92, 93], one can enumerate the extreme pathways using
the stoichiometric matrix from the reconstructed cell signaling network.
Further processing of these extreme pathways allows one to derive many
interesting network properties such as crosstalk, signaling redundancy, cor-
related reaction sets, and reaction participation [90].

Thus far, this constraint-based approach to modeling signaling net-
works has only been applied to a prototypic network [90] and the human
B cell JAK (Janus activated kinase)-STAT (signal transducer and activator
of transcription) signaling network [91]. While the prototypic network
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study served simply as proof of concept, the work on the JAK-STAT net-
work showed that the constraint-based approach can be used to analyze
real biological systems and yield quantitative insights into its properties.
Accordingly, as more signaling networks are delineated and reconstructed,
this approach will likely be of great utility.

4.3 Modeling of transcriptional regulatory networks

With the huge success of whole genome sequencing efforts and the ap-
pearance of hundreds of genome sequences [20], there is an increased in-
terest in understanding how the genes within a given genome are regu-
lated through complex transcriptional regulatory networks (TRNs). Con-
sequently, efforts are underway to define and catalog the set of regulatory
rules for model organisms [49]. Due to the large number of regulated genes
and associated regulatory proteins as well as their extensive interconnec-
tivity, there is a significant need for a structured framework to integrate
regulatory rules and interrogate TRN functions in a systematic fashion.

Previous work has integrated models of regulatory networks with con-
straint-based models of metabolism to analyze and predict the effect of
transcriptional regulation on cellular metabolism at the genome-scale [49,
51, 52, 94]. These studies developed and utilized a framework in which
regulatory rules are represented as Boolean logic rules that control the
expression of enzyme encoding genes that ultimately facilitate metabolic
reactions within a constraint-based metabolic model of the type described
previously within this chapter. The regulatory rules are defined such that
metabolic enzyme genes are determined to be present or absent based on
the presence or absence of extracellular and intracellular metabolites. If an
enzyme encoding gene is determined to be absent then the flux through
that enzyme is set to zero in the metabolic model, which adds a temporary
constraint on the system. In effect, this is equivalent to carrying out FBA
on the network following a gene deletion.

This iterative computational scheme in which Boolean rules are evalu-
ated and FBA simulations are conducted on the appropriately constrained
system has been used in analyses of small prototypic systems [51], and
in genome-scale models of both E. coli [49] and yeast [94]. In the study
of E. coli this analysis was performed in conjunction with dual perturba-
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tion growth experiments coupled with genome-wide expression analysis
[49]. This systematic approach to reconstructing and interrogating the
integrated network of E. coli led to the identification of many novel regu-
latory rules, and an expanded characterization of the genome-scale TRN,
based on a model-driven analysis of multiple high-throughput datasets.
Furthermore, a recent study has also used the integrated E. coli model in
a large-scale simulation project to study all potential network states and
found them to be organized primarily based upon terminal electron ac-
ceptor availability [56]. However, one shortcoming of this framework is
that it does not facilitate a detailed analysis of transcriptional regulatory
network properties.

In an effort to address this limitation, a structured and self-contained
representation of TRNs that can be quantitatively interrogated has been
developed relying on the principles of the constraint-based approach [95].
This strategy, which effectively connects environmental cues to transcrip-
tional responses, is conceptually similar to the previously described con-
straint-based approach to modeling cell signaling networks. The first step
in the process involves defining the components of the system and in-
teractions between them based on legacy data from traditional molecular
biology studies or from recently generated high-throughput data, such as
ChIP-chip data which defines network connectivity, and microarray gene
expression data which helps define upregulation and downregulation of
genes.

Having gathered this type of information that describes the regulatory
system of interest, the next step is to write quasi-stoichiometric, biochem-
ical equations that describe the regulatory logic for each interaction in the
network (Fig. 8b). To illustrate directly some of these concepts, we briefly
consider the lac operon in E. coli. For the purpose of this investigation,
the system is defined to include the lac operon (lacZYA) and the proteins
each gene encodes, the inhibitor of the operon (lacI ), an activator of the
operon (Crp), and the intracellular inducer molecule allolactose, which
inhibits the LacI inhibitor thus activating lacZYA transcription (Fig. 8a) by
way of de-repression.

Having defined the system (Fig. 8a) and Boolean rules that specify the
regulatory logic of this small transcriptional regulatory network (Fig. 8b),
the system can be formulated and the associated R matrix constructed
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Figure 8.
Constraint-based modeling and analysis of transcriptional regulatory networks. (a) The lac
operon regulatory system is depicted and defined to include the lac operon genes (lacZ, lacY,
lacA), the inhibitor gene lacI, the activator Crp, and the inducer allolactose (Allo). (b) A re-
action list that summarizes the Boolean rules that capture the regulatory logic of the system
is shown. (c) The R matrix that corresponds to the regulatory rule list from (b) is depicted
with each row corresponding to system components and each column specifying regulatory
reactions in a quasi-stoichiometric formalism. Accordingly, a ‘−1’ represents a ‘consumed’
component, whereas a ‘+1’ represents a ‘produced’ component. (d) The two extreme path-
ways for this system are listed in r with the corresponding reaction labels listed as well for
reference. A non-zero value indicates that the corresponding reaction is active. The negative
coefficients in the second extreme pathway reflect that Allo and Crp can be thought of as
conceptually flowing into the system. (e) Pathway 1 is graphically illustrated and reflects the
conditions for the LacI-mediated inhibition of the lac operon. (f) The graphical depiction
of Pathway 2 shows the activation of the lac operon (i.e., inhibition of LacI by allolactose,
thus allowing for de-repression and Crp-activated expression of lacZYA). rT, the transpose
of the extreme pathway vectors reported in r (depicted in this way simply out of space
considerations).
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(Fig. 8c) in which each row represents a system component and each col-
umn represents a regulatory interaction or transport reaction. For the
purposes of this analysis, each gene/operon is depicted within the matrix
twice: lacI and lacI*, as well as lacZYA and lacZYA*. The former entity
represents the open form, whereas the latter, asterisk-marked entity repre-
sents the actively transcribed form of the gene. This level of detail is not
required in formulating R as the actively transcribed form of the gene is
only a transient entity between transcription and translation. Rather, this
is meant to show concretely that such mechanistic detail about ORFs and
other network relationships can be readily incorporated into the current
formalism as the data becomes available.

It should be noted that one peculiarity of this methodology is that it
requires the inclusion of the converse of regulatory rules in addition to the
regulatory rules themselves. The converse of the regulatory rules – i.e., the
regulatory reactions that lead to the inhibition of gene transcription in our
sample system – is necessary to reflect the lack of protein production for
a given set of environmental cues. Many regulatory rules are inhibitory,
such that the expression of a protein depends on the absence of a given
metabolite or protein product. Additional reactions that include the con-
verse of the regulatory rules and the absence of metabolites and protein
products where appropriate must be included in the system. Also, note
that regulatory rules of the Boolean type ‘OR’ require two separate reac-
tions to indicate that there are two independent ways in which the target
gene can be transcribed.

The R matrix can be analyzed using many of the tools previously de-
scribed for analysis of the metabolic S matrix. For example, extreme path-
way analysis on this system yields two vectors, denoted in r, (Fig. 8d) that
represent the two possible expression states for the lac system. Each entry
in the r vectors represents the activity of a reaction in the expression state,
or pathway. For reaction names prefaced with a ‘v’, a 1 indicates that the
reaction is active, and a 0 indicates that it is inactive. In the remaining
reactions that specify flow across the system boundary, a 1 indicates flow
out of the system (for example, a protein is produced), a -1 indicates flow
into the system, and a 0 indicates that the associated component is neither
produced nor consumed. Note that the entries are not quantitative but de-
note an active connection, and further, that a series of connections leads
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to a ‘causal path’. As depicted graphically in Figure 8e and 8f respectively,
vector r1 represents the LacI-mediated inhibition of the lac operon and r2

defines the inhibition of LacI by allolactose, thus resulting in de-repression
and Crp-activated expression of lacZYA.

Thus far this approach has only been applied to the small lac operon sys-
tem described above and a larger 25 gene prototypic network [95]. While
this proof of concept study validates the utility of this approach for small
systems, potential complications associated with scaling this approach up
to genome-scale systems remain to be determined. Nonetheless, transcrip-
tional regulatory network matrix reconstructions for model organisms will
likely be important not only in studies of regulatory network properties,
but also in guiding experimental programs based upon results from these
analyses.

4.4 The next big challenge

The constraint-based approach has proven immensely successful for mod-
eling metabolic systems and, as described in this section, is showing prom-
ise for RNA and protein synthesis, cell signaling, and transcriptional reg-
ulatory networks. However, as the field currently stands, each respective
framework produces models that exist as independent entities. Arguably,
the ultimate goal of systems biology is to integrate data from disparate
sources and generate comprehensive models that reflect biological real-
ity for entire cells. Therefore, these constraint-based modeling strategies
present an opportunity to take a significant step forward in realizing this
aim through integrative modeling efforts.

To elaborate, the interconnectivity between these distinct networks is
clear. For example, a simplistic, but illustrative conceptual picture (Fig. 9)
can be envisioned in which system inputs are recognized by cell signal-
ing networks that in turn stimulate regulatory processes. These regulatory
processes mediate RNA and protein synthesis ultimately leading to the
production of enzymes that perform metabolic processes and lead to cell
growth or maintenance. Additional connectivity between the systems also
exists in the form of feedback processes and shared currency metabolites
such as ATP and GTP, for example. Thus, in principle, the stoichiometric
and pseudo-stoichiometric representations of the networks described in
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Figure 9.
The next big challenge: Model integration. This chapter has illustrated the utility of
constraint-based modeling and analysis in computationally representing many cellular pro-
cesses. To date, however, these models have been developed and analyzed in isolation
despite the fact that these systems are all interrelated, as shown in this conceptual figure.
For example, cellular signals, or inputs, are recognized by the cell signaling network, which
in turn stimulate regulatory processes. These regulatory processes mediate RNA and protein
synthesis ultimately leading to the production of enzymes that perform metabolic processes
that result in cell growth or maintenance. The dashed arrows highlight the interconnectivity
of these networks in the form of shared molecular components or feedback mechanisms. In
principle, the constraint-based formalism can be used as a platform to capture these systems
into a single picture. Accordingly, one of the next major challenges facing the field is to in-
tegrate these models of disparate cellular processes, thus pushing toward one of the field of
systems biology’s foundational goals: to computationally represent and analyze models of
entire cells and biological systems.

this chapter could be integrated into a unified model of the cell. While
there are certainly computational challenges that will need to be overcome
in order to facilitate the development and analysis of such a model, this
notion seems feasible and is sure to be tackled in the near future. Repre-
senting additional, more complicated cellular processes, such as differen-
tiation and development, as well as accounting for multicellularity await
novel research efforts and represent open problems to be addressed in the
more distant future.
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5 Conclusions

Despite the challenges outlined in the previous section associated with
pushing the field forward, constraint-based modeling and its associated
analyses are and will remain powerful tools that facilitate system-level
modeling [9, 52, 88] and analysis of biological networks [56, 96–98]. Fur-
thermore, these model-based studies can be used to help researchers priori-
tize experimental projects and save considerable time at the bench. Be-
yond its utility as a tool for basic biological research and in metabolic
engineering applications [99, 100], this computational approach also has
potential medical and drug development relevance. For example, in patho-
genic microbial models, each gene that is predicted to be essential by con-
straint based modeling and analysis represents a potential drug target that
could be used to develop novel antibiotics in the future. Additionally, net-
work analysis of human systems may reveal interesting therapeutic targets
and provide a platform for assessing potentially adverse pleiotropic effects
of novel treatments. As more genome-scale models are developed and ex-
isting models enhanced, additional applications in a broad range of fields
will likely become apparent. Consequently, the flexibility of constraint-
based models will continue to be exploited to drive the exploration of
countless exciting biological questions in the future.
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Genomics of host-pathogen interactions

Abstract

The complete sequences of hundreds of microbial genomes have provided drug discov-
ery pipelines with thousands of new potential drug targets. Their availability has also
stimulated the development of a variety of innovative approaches that allow functional
studies to be performed on the entire genome of an organism. This chapter describes
how these approaches have been applied to the analysis of host–pathogen interactions
and discusses how such studies might facilitate the development of new antibiotics.

Abbrevations: CGHs – comparative genome hybridizations; DARQs – diarylquinolones;
gDNA – genomic DNA; GWM – genome wide mutagenesis; NO – nitric oxide; NOS2 –
nitric oxide synthase 2; ORF – open reading frame; PAI – pathogenicity island.

1 Introduction

In July of 1995 the first sequence of an entire genome of a free-living or-
ganism, that of the bacterium Haemophilus influenzae Rd, was determined
[1]. About 3 months later two techniques, serial analysis of gene expres-
sion (SAGE) [2] and microarray expressionprofiling [3], were described that
allowed to efficiently perform genome-wide expression analyses. Within
the next 10 years, approximately 250 other microbial genomes were fully
sequenced and genome-wide expression profiling has been applied to in-
vestigate a plethora of biological processes in numerous organisms. More
recently, techniques that allow high-throughput analyses of thousands
of bacterial mutants in parallel have also been developed. This chapter
summarizes some of the main findings that were made by applying com-
parative genomics, RNA profiling and genome-wide mutagenesis to the
analysis of the interactions of bacterial pathogens with their hosts and
host cells.

2 Functional genomics of bacterial pathogens

2.1 Comparative genomics

Almost 250 prokaryotic genomes have been sequenced since the first com-
plete genome sequence of a bacterium was determined in 1995 [1]. One
immediate benefit of this number of completed genome sequences has
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been the opportunity to study not only one gene or gene family but the
complete haploid genome of a species. Sequence comparisons within sin-
gle genomes can be informative since horizontal gene transfer represents
one of the main mechanisms that can transform commensal organisms
into pathogens [4]. DNA fragments that recently entered a genome via
horizontal transfer often have a G+C content that is different from the
rest of the genome and are frequently flanked by DNA encoding tRNAs,
sequence repeats, and/or genes encoding integrases or transposases. The
role of horizontal gene acquisition for the evolution of bacterial pathogen-
esis is evident from the location of many virulence genes within so-called
pathogenicity islands (PAIs) [5].

Because of the potential health implications, about two thirds of the se-
quenced genomes are from bacterial pathogens and many others are from
bacteria closely related to at least one pathogen whose genome has been
sequenced as well. Comparisons among these genomes have allowed the
deduction of the metabolic capacities, pathogenicity-specific attributes,
immune evasion mechanisms and evolution of many different pathogens
[6–9]. Inter-genomic comparisons have also demonstrated that there is
considerable variation in the magnitude of genetic diversity among in-
dividual isolates of different species. For example, strains of Streptococ-
cus, Staphylococcus aureus, Helicobacter pylori, and Escherichia coli can differ
in gene content by greater than 25 % [10]. In contrast, the genomes of
Chlamydia trachomatis and Mycobacterium tuberculosis strains are relatively
conserved.

For genetically diverse species, inter-genomic comparisons of related
isolates, for example genomes of different serotypes of the same pathogen,
can be informative. This was perhaps most convincingly demonstrated
for group B streptococci. S. agalactiae is a group B streptococcus (GBS)
that causes neonatal infections and invasive infections in the elderly. The
S. agalactiae strains most frequently isolated from patients in the US and
Europe belong to five different serotypes. The genome sequences of eight
S. agalactiae strains, including representatives of all five serotypes, have
recently been determined [11]. About 80 % of the genes in each individ-
ual genome have orthologs in all other genomes, almost all of which dis-
play sequence identities of >90 %. Most genes that form this core genome
fulfill housekeeping functions or are involved in transport or regulatory
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processes. In addition, each genome contains genes that are present in
only some or none of the other genomes. These strain-specific genes are
enriched in genes of unknown function. Together, strain-specific and core
genes form the so-called GBS pan-genome. Predictions suggest that the
pan-genome is significantly bigger than that of each individual strain and
that each newly sequenced genome will add on average 33 new strain-
specific genes to the known pan-genome. In addition to the insights on the
genetic diversity of S. agalactiae, these studies also provided the foundation
for the development of an universal GBS vaccine [12]. For this, computer
algorithms were used to identify 598 genes within the GBS pan-genome
which are predicted to encode surface-associated and secreted proteins. Of
these, 312 were purified and tested for their ability to protect mice from
killing by S. agalactiae. Four antigens were identified which, if applied
as a combination vaccine, are protective against many GBS strains. Only
one of these antigens is encoded by the GBS core-genome, demonstrat-
ing that the development of a universal vaccine may be facilitated by the
availability of several GBS genomes.

Another benefit of comparative genomics is that it allows the char-
acterization of otherwise intractable pathogens. Mycobacterium leprae, for
example, the causative agent of leprosy, has never been cultured axenically
and can only be isolated from infected humans, armadillos or mouse foot-
pads [13]. Characterization of this bacterium by traditional microbiologi-
cal approaches is therefore difficult. Whole genome sequencing provided
a unique opportunity to gain insights into the biology of this pathogen
[14]. Comparison of the M. leprae genome with that of M. tuberculosis re-
vealed a stunning example of genome decay in the leprosy bacillus. More
than 1,100 homologs of M. tuberculosis genes were identified in M. leprae
that had been inactivated by mutations leading to in-frame stop codons,
frame shifts or deletions. These pseudogenes account for at least one-third
of the M. leprae genome. Abundant inactivation of genes important for
central metabolism and energy generation explains the failure of all at-
tempts to grow this pathogen in liquid culture. Genome decay may have
occurred as a consequence of the adaptation of the leprosy bacillus to a
stable niche within its host. This hypothesis is supported by the highly
reduced genomes found in other obligate intracellular pathogens [15–17].
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While the complete genome sequence of a significant but small num-
ber of clinical isolates has been determined, it is not feasible to character-
ize the hundreds of bacterial pathogens isolated from patients by whole
genome sequencing. For this, comparative genome hybridizations (CGHs)
provide an economical alternative. CGHs employ microarrays containing
hybridization targets for all open reading frames (ORFs) encoded in a se-
quenced reference genome. The microarray is used to compare differently
labeled chromosomal DNA that has been isolated from two bacteria, usu-
ally a clinical isolate and the reference strain. Depending on the array
design, this approach is limited to the detection of deletions of more than
∼100 bps that occurred in the DNA segments represented on the array
and cannot identify genetic diversity caused by point or frame shift muta-
tions. However, the acquisition and deletion of genes are two of the main
mechanisms leading to bacterial diversity [4]. CGHs have therefore been
successfully applied to study the genomic diversity of a number of bacte-
rial pathogens, including M. tuberculosis and H. pylori. Recent advances in
comparative genome resequencing technology have allowed for detection
of single nucleotid polymorphisms (SNPs) [define] and such techniques
have been successfully employed in determining drug mechanism of ac-
tion in M. tuberculosis [18, 19].

In humans, tuberculosis (TB) is most frequently caused by Mycobac-
terium tuberculosis but also by the closely related M. bovis and M. africanum.
To generate a live vaccine against TB, Calmette and Guerin began to seri-
ally passage M. bovis in liquid cultures in 1908. By 1921 a strain, Bacillus
Calmette-Guerin (BCG), was isolated that was no longer virulent in ani-
mals. In the following decades M. bovis BCG was distributed among medi-
cal and research centers and became one of the most widely used vaccines.
Serial passaging was continued for about 40 more years and led to phe-
notypically heterogeneous daughter strains. In the first microarray-based
CGH study, Behr et al. compared chromosomal DNA isolated from strains
of M. bovis and M. bovis BCG to that of the sequenced reference strain M.
tuberculosis H37Rv [20]. This identified 11 regions containing 91 ORFs that
were deleted from all M. bovis and M. bovis BCG strains. An additional five
regions containing 38 ORFs were absent from one or more of the tested
BCG strains but present in M. tuberculosis and M. bovis. These results were
later confirmed in a study using Affymetrix GeneChips instead of spotted
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microarrays [21]. A comparison of the deletion analysis with the history
of 13 different M. bovis BCG strains revealed their genomic genealogy and,
together with a previous study [22], suggested that one deletion, which
occurred in the region of difference 1 (RD1) and is common to all M. bovis
BCG strains, was the primary cause for attenuation of M. bovis BCG in an-
imals. This hypothesis has since been confirmed by studies showing that
(i) restoration of a functional RD1 increases the virulence of M. bovis BCG
[23], and (ii) deletion of the entire RD1 [24, 25] or inactivation of individ-
ual genes within RD1 [26–28] decreases the virulence of M. tuberculosis and
M. bovis.

In subsequent studies high-density oligonucleotide GeneChips were
used to compare the genomes of more than 100 M. tuberculosis isolates
that had recently been collected from TB patients with that of the se-
quenced reference strains [29, 30]. In total, 68 deletions were identified.
Collectively, the deletions contain 224 ORFs corresponding to 5.5 % of all
annotated M. tuberculosis ORFs. Certain regions of the reference genome
were deleted more frequently than expected by chance, suggesting that
they are of low genomic stability. Because all isolates used in this study
were collected from TB patients, the deleted ORFs are not essential for caus-
ing disease in humans. However, most deletions seem to slightly reduce
the fitness of the pathogen [29]. The study also provoked intriguing hy-
potheses regarding the function of some of the strain-specific genes. For
example, genes that are part of the M. tuberculosis DosR regulon, which
is discussed below, were found to be deleted in a group of closely related
strains that may more frequently cause active disease instead of latent in-
fections. Genotypic variability among clinical isolates is a powerful tool
for assessing the value of a potential drug target: high-value targets have
to be conserved in all isolates.

In contrast to M. tuberculosis, Helicobacter pylori, a bacterium able to
persist in the human stomach, is a genetically diverse species. In most
cases, this bacterium causes asymptomatic infections. However, in a small
proportion of individuals, H. pylori causes severe diseases, such as pep-
tic ulcer disease and gastric adenocarcinoma [31]. A comparison of the
full genome sequences of two H. pylori strains demonstrated that many
of the genes present in both strains are highly conserved, but also iden-
tified ∼200 genes that are present in one genome but not the other. The
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full extent of the genetic diversity of clinical H. pylori isolates was revealed
by CGHs. 362 genes that are present in one or both of the sequenced
H. pylori genomes are missing in one or more of 15 clinical isolates ana-
lyzed by CGHs [32]. This includes 184 genes present in both sequenced
genomes. Thus, less than 80 % of the sequenced H. pylori genes is shared
among the 15 isolates. The true fraction of genes shared among all H. pylori
strains might be significantly lower because different strains are likely to
have genes that are not encoded in the two sequenced genomes and were
therefore not represented on the microarrays. Genes present in the core
genome of all strains encode most metabolic, biosynthetic, and cellular
functions. The 362 strain-specific genes are enriched in ORFs that have no
sequence similarity to genes in other species and no known function. In-
terestingly, when strain-specific genes were analyzed with respect to their
absence and presence in different strains by hierarchical clustering, some
of them were identified as having a high probability to be co-inherited
with the cag pathogenicity island (PAI) even though they were located
elsewhere in the genome [32]. The cag-PAI encodes a bacterial secretion
system that translocates the CagA protein into host cells. Within the host
cell CagA interacts with host proteins and has multiple effects on host sig-
nal transduction pathways and host cell morphology [33]. Co-inherited
genes often participate in common pathways, suggesting that some of the
strain-specific genes are functionally connected to one of the main H. pylori
virulence factors. As in the clinical M. tuberculosis isolates, strain specific
genes were also found to be clustered in certain regions of the H. pylori
chromosome [34, 35].

Two recent studies demonstrated that the development of genetic di-
versity in H. pylori can be detected during persistence within an individual
host. In the first study, 30 single colony isolates of H. pylori were obtained
from a patient six years after a duodenal ulcer had been diagnosed [36, 37].
Comparisons by PCR of these 30 strains with an archival H. pylori strain,
which was obtained from the same patient during the initial endoscopy,
revealed the recent isolates to be similar to the archival strain. This and
the fact that the patient had refused antibiotic treatment suggested that
the strains isolated during the second endoscopy were descendants of the
archival strain. CGHs, however, revealed that the recent isolates were ge-
netically distinct from the archival strain and also distinct from each other.
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A total of 2.3 % of the ORFs analyzed were not detected in at least one of
the recent isolates. In this study, it was not possible to rule out that strains
more similar to the recent isolates were present but not captured during
the first endoscopy. However, recent studies using experimentally infected
rhesus macaques, natural hosts for H. pylori, demonstrated that gene dele-
tions occur in vivo with a frequency that may account for the genomic
diversity of the strains obtained before and after persistence in the human
patient [38].

The work discussed here shows how comparative genomics can (i) fa-
cilitate the development of vaccines (demonstrated by the use of a combi-
nation of strain-specific surface proteins as vaccines against Streptococci),
(ii) led to insights into the importance of gene acquisition and gene de-
cay for pathogen evolution, (iii) allow the characterization of otherwise
intractable pathogens (e.g., M. leprae), (iv) help to identify virulence genes
(e.g., the RD1 genes of M. tuberculosis and M. bovis), and (v) provide insights
into the development of genetic diversity during persistence of pathogens
within their natural hosts (e.g., in species with variable genomes like H.
pylori). One of the main advantages of comparative genomics is that it
analyzes the interaction of pathogen populations with humans whereas
other genomic approaches usually depend on the use of animal models.

2.2 RNA profiling

In addition to their use in the comparison of genomic DNA, microarrays
have been extensively applied to the analysis of complex RNA mixtures
(see also Chapter 2). The analysis of RNA does, however, present addi-
tional challenges. While DNA is relatively stable, RNA degrades quickly at
high pH and high temperatures and preventing its enzymatic degradation
requires specific precautions that are not necessary for the preparation and
storage of DNA. The biological stabilities of DNA and RNA are also funda-
mentally different. Bacterial genomes, while evolutionary dynamic, do
not change during the time it takes to harvest cells and prepare chromoso-
mal DNA. In contrast, bacteria can change their mRNA profiles drastically
within minutes, for example in response to cooling or centrifugation for
more than a few minutes. Transcription, chemical and enzymatic degra-
dation therefore need to be inhibited as early as possibly during the prepa-
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ration of RNA. Otherwise, the RNA profile analyzed may have little in
common with the RNA profile one aims to characterize.

In a typical RNA profiling experiment, RNA is prepared from bacteria
grown under a particular experimental condition, reverse transcribed, la-
beled with a fluorescent dye and co-hybridized to a microarray together
with a differently labeled reference cDNA or genomic DNA (gDNA). Analy-
sis of the microarray with a fluorescence scanner allows the determination
of relative mRNA amounts for each gene represented on the microarray. A
main goal of profiling the RNA of bacterial pathogens is to identify genes
that are preferentially expressed within the host. Such studies are the focus
of this section. For details on the experimental procedures that allow ex-
traction of bacterial RNA from infected tissues and host cells and on other
technical aspects on RNA profiling experiments, the interested reader is
referred to previously published reviews [39, 40].

The first genome wide expression analysis of a bacterial pathogen ob-
tained from human samples was performed with Vibrio cholerae [41]. This
study was stimulated by an intriguing phenotype displayed by V . cholerae
isolated from the stool of cholera patients. Such stool isolates were found
to infect mice with a 700-fold higher efficiency than an in vitro grown refer-
ence strain. This phenotype was only transiently expressed and lost after
cultivation of the stool isolates in broth for only 18 h. Comparisons of
RNA directly isolated from stool isolates with RNA from broth-grown bac-
teria identified 237 differentially expressed genes. The majority of these
genes (∼80 %) were repressed in the stool isolates. Predicted functions of
regulated genes suggested that adaptations to oxygen- and iron-limited
conditions occurred in the human-shed V. cholerae. To identify candidate
genes that might be responsible for the increased infectivity of the stool
isolates special attention was paid to the expression of known V. cholerae
virulence factors. Two of the main V. cholerae virulence factors are the
cholera toxin (CT) and the toxin co-regulated pilus (TCP). CT is essential
for V. cholerae to cause severe diarrhea whereas the TCP is essential for host
colonization [42–44]. Regulation of CT and TCP expression is complex but
mainly controlled by the transcription factors ToxR, TcpP and ToxT [45–
48]. Surprisingly, differential expression of these virulence factors was not
observed in the stool isolates suggesting that they were not responsible for
the increased infectivity of stool isolates. Instead, this phenotype might
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have been mediated by ORFs of unknown function that were strongly in-
duced in the stool isolates.

That lack of regulation of the ToxR/TcpP/ToxT regulon should not
be interpreted as a lack of expression was emphasized by a subsequent
study, which used gDNA-cDNA hybridizations to analyze gene expression
in human-shed V. cholerae [49]. This study demonstrated that RNA for
genes associated with the ToxR regulon was indeed present in stool isolates.
Other virulence-associated genes involved in motility, chemotaxis, iron
transport and anaerobic metabolism were among the genes most highly
expressed in stool isolates. Most of these genes were also highly expressed
in V. cholerae isolated from infected rabbit ileal loops suggesting that the
RNA profile of stool isolates is likely similar to that of V. cholerae growing
in the upper intestine of humans [50].

To further explore V. cholerae gene expression in humans and to dif-
ferentiate between genes expressed during early or late stages of human
infections, Larocque et al. compared V. cholerae RNA prepared from vomi-
tus with RNA isolated from stool [51]. This identified 35 genes as vomitus-
associated and preferentially expressed during the early stage of infections.
About a third of these genes were involved in DNA replication, energy pro-
duction, or protein synthesis, which suggested that V. cholerae was more
actively replicating during early infections. Three virulence genes, two
putative hemolysins and tcpA, which encodes the main pilin subunit of
the TCP, were also more highly expressed during early stage infections.
Many other genes of the TCP pathogenicity island also displayed slightly
elevated RNA levels, suggesting that TCP expression is one of the first steps
during colonization of the human intestine.

Isolation of V. cholerae RNA from infected rabbits is relatively straight-
forward because large amounts of bacteria can be isolated from a single
ileal loop. By contrast, M. tuberculosis only grows to approximately 107

CFUs in lungs of immunocompetent mice. A recent study overcame the
challenge of isolating amounts of M. tuberculosis RNA that allow microar-
ray analyses from infected mouse lungs by combining mycobacterial RNA
isolated from 50–100 infected mice to characterize the bacterial RNA pro-
file at individual time points post-infection [52]. Given this tremendous
effort it is unfortunate that due to the way the experiments were carried
out the RNA profile may have changed after the bacteria were removed
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from the infected animal. This study nevertheless provided some inter-
esting observations. By comparing the expression changes that occurred
during growth in broth, immunocompetent (BALB/c) mice and immun-
odeficient (SCID) mice, 703 genes were identified that changed expression
at different growth phases. 63 % of these genes were regulated differently
during growth in mice and broth. A comparison of RNA isolated from
immunocompetent mice with that from immunodeficient mice suggested
that activation of the host immune system had specific effects on M. tu-
berculosis that included modulation of energy and iron metabolism. The
impact of the immune response of the host on bacterial gene expression
was most severe at time points when activation of the immune system
caused a halt of bacterial replication.

Immune-activation also had an impact on the expression of M. tubercu-
losis genes during residence in macrophages [53]. This was revealed in an
analysis that compared the RNA profiles of M. tuberculosis in resting and
IFN� -activated macrophages. 60 genes were found to be specifically in-
duced in M. tuberculosis residing in activated macrophages and eight genes
were repressed. Most of these 68 genes belong to two independent regu-
lons controlled by IdeR and DosR, respectively. IdeR is an iron-dependent
transcription factor that functions as a repressor of iron acquisition genes
and as an activator for genes involved in iron storage [54]. DosR (also re-
ferred to as DevR) is a transcription factor of the two-component response
regulator class that directly controls expression of about 50 genes in M.
tuberculosis [55–58]. Members of the IdeR and DosR regulons were also
strongly expressed in M. tuberculosis isolated from infected mouse lungs
[56, 59, 60]. Interestingly, induction of the DosR regulon in mouse lungs
was only detected after production of IFN� and NOS2, suggesting that reg-
ulation of the DosR regulon in the lungs of mice also depends on activation
of the immune system [59]. Whereas essentiality of the IdeR regulon for
virulence of M. tuberculosis in mice is well documented [54], the role of the
DosR regulon is less clear.

Induction of the DosR regulon in liquid culture has been observed in
response to multiple stresses but was strongest in response to hypoxia and
chemical generators of nitric oxide (NO) [56, 58, 61–63]. The IdeR regulon
can be induced by iron deprivation or treatment with NO or hydrogen per-
oxide. In addition, macrophage activation-dependent regulation was only
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observed in macrophages capable of synthesizing nitric oxide (NO) but not
detected in macrophages defective in NO synthase 2 (NOS2). Together,
these observations strongly suggest that activation-specific changes in the
transcriptome of intraphagosomal M. tuberculosis were directly caused by
NO produced by NOS2 in response to activation of macrophages with
IFN� . Further comparisons of the intraphagosomal RNA profile with RNA
profiles of M. tuberculosis after exposure to diverse conditions were used
to identify additional conditions encountered in the phagosomes of rest-
ing and activated macrophages. These comparisons suggested that the
M. tuberculosis-containing phagosome of primary bone marrow derived
macrophages is oxidative, protein denaturing, low in iron and carbohy-
drates, rich in fatty acids and capable of perturbing the pathogen’s cell
envelope.

In contrast to M. tuberculosis, which resides within phagosomes during
its interaction with host cells, Shigella flexneri escapes from the phagosome
and primarily replicates within the host cell cytoplasm. In humans, S.
flexneri causes bacillary dysentery, a bloody diarrhea that develops as con-
sequence of invasion of the intestinal barrier by S. flexneri. Invasion of the
intestinal barrier involves interactions of S. flexneri with phagocytic and
epithelial cells. Entry of S. flexneri into both cell types is mediated by the
ipa-mxi-spa genes. The Ipa proteins are injected into the host cell by the
Mxi-Spa type III secretion system and allow pathogen invasion by reorga-
nizing the host cell cytoskeleton. Microarrays with specific hybridization
probes for ∼80 % of the genes annotated in the S. flexneri genome were
used to profile the pathogen’s RNA during growth in an epithelial cell line
(HeLa) and a macrophage-like cell line (U937) [64]. About 25 % of the
genome was differentially expressed in bacteria isolated from HeLa cells
or U937 cells compared to broth-grown S. flexneri. Of the regulated genes,
about two thirds were induced and one third was repressed within tissue
culture cells. The repressed genes included the ipa-mxi-spa locus. Overall,
the RNA profiles isolated from S. flexneri growing in HeLa and U937 cells
were very similar. Expression of only 18 S. flexneri genes (∼2 % of all reg-
ulated genes) was consistently different in HeLa and U937 cells. Among
these genes were some that likely respond to acidic pH, suggesting that
a lower pH is encountered within the macrophage-like cells than within
HeLA cells. Genes regulated during growth in both cell lines suggested
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that growth in the cytosol results in downregulation of sugar catabolism,
the expression of microaerobic and less energy efficient respiratory chains
and the acquisition of iron, magnesium and phosphate via specific ion
uptake systems.

The studies described here are only a few examples selected from a
rapidly growing field. Others have characterized the RNA profiles of Salmo-
nella enterica [65], Staphylococcus aureus [66], group A streptococcus (GAS)
[67–69], Neisseria meningitides [70], Pseudomonas aeruginosa [71], enterohe-
morrhagic E. coli (EHEC) [72] and uropathogenic E. coli [73, 74] during the
interaction with phagocytic cells, non-phagocytic cells or animals. While
these RNA profiles are in part as diverse as the survival strategies of differ-
ent pathogens they also reveal some common features: (i) Most pathogens
induce genes involved in iron acquisition during growth within animals
or host cells. Given the well documented importance of iron acquisition
for the virulence of many pathogens, this finding is not surprising, but
reassuring. Attachment to host cells induced iron acquisition genes in
Neisseria meningitides [70] but repressed such genes in EHEC [72] and Pseu-
domonas aeruginosa [71], suggesting that some surface-bound pathogens
can acquire iron directly from their host cell without the need for secreted
siderophores. (ii) The carbon and nitrogen sources used to grow bacteria
in broth are often different from those that are available to or preferred by
pathogens during growth in vivo. This is suggested by the changes in ex-
pression of genes involved in carbon or nitrogen metabolism observed in
host derived urophathogenic E. coli [73, 74], EHEC [72], S. enterica [65], GAS
[68], S. flexneri [64] and M. tuberculosis [53]. (iii) Microaerobic and anaero-
bic respiratory chains are frequently expressed during in vivo growth. This
can either be a consequence of low oxygen availability within the host
or caused by inhibition of aerobic respiration by the host’s immune sys-
tem as observed for M. tuberculosis [53, 56]. (iv) Immune-activation and
immune competence of the host can have a drastic impact on the RNA
profile of bacterial pathogens as shown for uropathogenic E. coli [74] and
M. tuberculosis [53]. (v) Hundreds of in vivo expressed genes are of un-
known function, demonstrating that large aspects of the in vivo biology of
bacterial pathogens remain to be elucidated. (vi) The regulation of known
virulence genes during infections is diverse; some virulence genes are in-
duced during growth in animals or host cells while others are repressed
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and many seem not to be differentially regulated. Thus, regulation during
growth within the host cannot be used to define virulence genes.

2.3 Genome-wide mutagenesis (GWM)

Genome-wide mutagenesis (GWM) experiments begin with generating a
large collection of bacteria each of which contain a single mutation in
the genome. As a whole, the collection contains mutations in every gene
within the genome. Such mutant collections have been constructed us-
ing different methods including homologous recombination [75, 76] and
transposon mutagenesis [77–86]. Next, each mutant is analyzed for its
ability to grow or survive under a certain experimental condition. These
analyses are generally performed either with thousands of cultures each
containing one mutant or with a few cultures containing thousands of
mutants. The analysis of individual mutants within a mixed population
depends on methods that allow the discrimination of the survival of in-
dividual bacteria each with a mutation in a different gene. This is most
efficiently achieved by analyzing mixed populations of transposon mu-
tants with microarrays. Here, the transposon serves as the mutagenizing
agent and also to generate sequence labels that distinguish individual mu-
tants [78, 79].

GWM has been widely used to identify genes essential for growth of bac-
teria on agar plates [78–80, 82, 83, 85, 86]. More recently this approach
has also been applied to the identification of genes essential for bacte-
rial pathogens to establish infections and to grow within animal hosts.
These experiments are conceptually similar to the signature-tagged mu-
tagenesis (STM) approach. STM has been very successful at identifying
virulence genes in a number of different pathogens and for more infor-
mation the interested reader is referred to recent reviews dedicated to this
subject [87–89].

The first GWM analysis of a pathogen-host interaction was published
by Sassetti and Rubin [81]. Mice were intravenously infected with a library
of ∼100,000 M. tuberculosis transposon mutants and bacteria were recov-
ered from spleens 1, 2, 4 and 8 weeks post infection. Survival was analyzed
in spleens instead of lungs, the primary organ of M. tuberculosis infections
in humans, because spleens are more efficiently colonized. Even though
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mice can be infected intravenously with ∼106 bacteria only a small frac-
tion of the bacteria (typically <<1 %) colonizes the lung. Complex pools
are therefore only stochastically represented in mouse lungs. In the ab-
sence of highly sensitive methods that allow the detection of a very low
number of mutants this problem can only be overcome by using low com-
plexity pools. The feasibility of using low complexity pools to interrogate
a significant fraction of the M. tuberculosis genome for its in vivo essential-
ity was demonstrated using pools of ≤100 mutants, which were selected
from an archive of defined mutants, to determine the growth of 530 M.
tuberculosis mutants in mice [72].

Together, these two studies identified >200 genes as important for in
vivo growth. Mutations in only ∼11 % of these genes also decreased in vitro
growth to some extent whereas the others only affected in vivo growth [81].
In vivo growth attenuating mutations were mapped to genes of a wide vari-
ety of predicted functions. Most frequent were genes involved in transport
or metabolism of lipids, carbohydrates, amino acids and inorganic ions.
Some mutations, for example those in genes important for disaccharide
uptake, affected growth and survival during early and late stages of the
infections. Others only affected survival at later stages of the infection.
Mutations in the latter category demonstrated the importance of DNA re-
pair systems for the long-term survival of M. tuberculosis in mice. These
findings are in agreement with a recent study on the importance of uvrB,
a gene involved in nucleotide excision repair, for virulence of M. tubercu-
losis [90].

In contrast to animal infections, pool complexity can be high in ex-
periments that characterize the interaction of pathogens with their host
cells in vitro. Such a study recently identified 126 genes as essential for
growth of M. tuberculosis in bone-marrow derived murine macrophages
[91]. Comparisons of these genes with those essential for growth of M.
tuberculosis in mice revealed that about a third of the genes required in
macrophages were also required in mouse spleens. This group included
genes involved in carbohydrate and phosphate transport. Many genes
were however only essential for survival in either macrophages or mouse
spleens, demonstrating that macrophage infections only mimic some of
the environments encountered in vivo. Another interesting finding was
revealed by the comparison of genes required for survival of M. tuberculo-
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sis in macrophages with genes differentially expressed in intraphagosomal
M. tuberculosis. Only a small fraction of differentially expressed genes were
found to be required for survival of M. tuberculosis in macrophages. Thus,
while RNA profiling can be very informative with respect to the stimuli
encountered within host environments, it does not necessarily identify
genes required for virulence or in vivo survival of bacterial pathogens.

The procedures that allow the use of GWM to analyze the interactions
of bacterial pathogens have only been recently developed and have there-
fore so far only been used in a small number of studies. GWM should,
however, be applicable for many bacterial pathogens and might aid our
understanding of host–pathogen interactions with an impact similar to
that of STM.

3 RNA profiling of host cells after infections

The functional genomics approach most widely applied to explore the re-
sponse of host cells to microbial infections is RNA profiling. In one of the
first studies, Huang et al. showed that ∼20 % of the ∼6,800 genes analyzed
in dendritic cells (DCs) changed their RNA level in response to infection
with E. coli, Candida albicans or influenza virus [92]. Of the ∼1,330 regu-
lated genes, 166 genes were strongly regulated after infection with each mi-
croorganism. A comparison of the host cell RNA profiles from 77 different
host-pathogen interaction studies extended this common host response
to 511 host cell genes that are co-regulated in response to bacterial, fungal
and viral pathogens [93]. This response includes genes that encode proin-
flammatory cytokines such as IL-1ˇ, IL-6, IL-8 and TNF and chemokines
(for example MIP1˛, MIP1ˇ, GRO1) and genes with roles in lymphocyte
activation, antigen presentation and cell signaling [92–94]. The common
host response is, therefore, crucial for the activation of an effective innate
immune response and the development of adaptive immunity.

Induction of the common host response is likely mediated by a vari-
ety of pathogen receptors that include the Toll-like receptors (TLRs), the
non-classical C-type lectin Dectin-1, the intracellular nucleotide-binding
oligomerizationdomain (NOD) proteins and others [95–98]. Among these,
TLRs have been most intensely studied using genomic approaches. TLRs
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are transmembrane proteins characterized by an NH2-terminal extracel-
lular leucine rich domain (LLR) and a COOH-terminal intracellular tail
containing the conserved Toll/IL-1 receptor (TIR) homology domain. The
LLR domain is presumably involved in ligand binding and the intracellu-
lar TIR domain mediates interactions between TLRs and their downstream
signal transduction components [99, 100]. Microbial recognition of TLRs
facilitates TLR dimerization and triggers activation of intracellular signal
transduction pathways that ultimately lead to the activation of NF�B and
AP-1 transcription factors [101].

The human genome encodes at least ten different TLRs, which likely
all recognize molecular patterns present on pathogens and absent from
host cells, but have different ligand specificities. Cell wall components of
Gram-positive and Gram-negative bacteria, for example, stimulate TLR2
and TLR4, whereas double stranded RNA stimulates TLR3 and flagellin
leads to the activation of TLR5 [102]. The importance of specific TLRs
for modulation of the host RNA profile in response to infections has been
analyzed using two approaches. In the first, purified agonists of TLRs are
used to stimulate host cells and the resulting RNA profile is compared with
that obtained from cells infected with whole bacteria. This showed that
the TLR4 agonist LPS is sufficient to stimulate regulation of all genes in
human macrophages that are specifically regulated after infection with
Gram-negative bacteria [103]. The M. tuberculosis 19-kDa lipoprotein, a
TLR2 agonist, is sufficient to regulate ∼33 % of the genes that are reg-
ulated in murine macrophages in response to M. tuberculosis infections
[104]. A comparison of the effects of agonists for TLR1/2, TLR4, TLR2/6,
TLR7 and TLR9 identified LPS as a particularly potent stimulus and revealed
genes that are regulated in response to many TLR agonists as well as genes
that seem to only react to activation of certain TLRs [105]. The second
approach makes use of cells prepared from mice in which TLRs, or com-
ponents of the TLR signaling cascades, have been genetically inactivated.
Such experiments demonstrated that intact, live and virulent M. tubercu-
losis impacts the RNA profile of macrophages through TLR dependent and
TLR-independent signal transduction pathways [104, 106, 107].

The functional consequences of the host cell response for the outcome
of a microbial infection have been tested by experimental challenge of
mice lacking pathogen recognition receptors or components of their sig-
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nal transduction pathways. As expected, TLR2 and TLR4 have been proven
to be critical for the control of several bacterial infections; however, the
increased susceptibility of TLR deficient mice is in many cases dose de-
pendent [108]. For example, TLR2 deficient mice are highly susceptible
to infection with a high dose of Staphylococcus aureus yet resistant to low
dose infections [109]. TLR2-dependent control of group B streptococcus
(GBS) is also dose dependent [110]. Infections of TLR2-deficient mice with
virulent M. tuberculosis led to variable results. In one study, increased sus-
ceptibility to low and intermediate doses of M. tuberculosis was reported
[111] whereas others found a role for TLR2 only in the control of high
dose M. tuberculosis infection [112].

Even though many of the very strongly induced host genes are part of
the common response, genes regulated by specific pathogens often out-
number those that are commonly regulated. For example, expression of
1,330 genes was significantly changed after infection of DCs with E. coli,
C. albicans or influenza virus but only 166 genes were part of the highly
regulated common host response [92]. Results from monocyte-derived hu-
man macrophages were similar. One study reported that of 977 host genes
regulated after infections with one of eight different bacteria, 191 genes
were part of a shared transcriptional response [94]. A second study ded-
icated to the analysis of human peripheral blood mononuclear cell RNA
profiles after infection with different bacteria also observed common and
pathogen-specific responses [113]. In a more recent study, Chaussabel et al.
identified specific expression signatures in human monocyte-derived DCs
and macrophages infected with either M. tuberculosis, Toxoplasma gondii,
Leishmania major, Leishmania donovani and Brugia malayi [114]. These stud-
ies revealedcommon as well as pathogen-specific and host-cell type specific
responses as principal components of the adaptation of immune cells to
infections.

In addition to identifying immune mechanisms, pathogen-specific
changes in the RNA profiles of immune cells can also reveal how bacte-
rial pathogens modulate their host cells. This was first shown by studies
that analyzed the impact of bacterial virulence genes on the RNA profiles
of host cells. PhoP encodes a transcription factor required for virulence of
S. typhimurium. A comparison of the RNA profiles of macrophages after
infection with S. typhimurium or S. typhimurium phoP::Tn10 demonstrated

329



Dirk Schnappinger

that wild type S. typhimurium induced host genes involved in apoptosis
that were not regulated by S. typhimurium phoP::Tn10 [115]. Host cell vi-
ability assays confirmed that phoP is necessary to induce macrophage cell
death, a process that is likely important for S. typhimurium to cause systemic
disease [116]. Host cell RNA profiling was also applied to the analysis of
Yersinia enterocolitica virulence genes, many of which are encoded on a
plasmid called, pYV [117]. These studies suggest that a main function of
pYV-encoded genes is to suppress the induction of host genes involved
in inflammation. A third example for pathogen-induced manipulation of
host gene expression was provided by studies of the interaction of M. tuber-
culosis human monocyte derived macrophages (hMDM) [94]. Infections
of hMDMs with M. tuberculosis induced significantly less IL-12p40 mRNA
than infections with other bacteria, e.g., E. coli. Furthermore, infection of
hMDM with a mix of M. tuberculosis and E. coli also resulted in low levels of
IL-12. In primary mouse macrophages, heat-killed M. tuberculosis induced
significantly more IL-12p40 than live M. tuberculosis [118]. Taken together,
these results point to an active suppression of IL-12p40 induction by live
M. tuberculosis. IL-12 plays a fundamental role in generating a type 1 T cell
response and is critical for the control of tuberculosis in mice [119, 120]
and in humans [121–123]. Interference with transcriptional induction of
IL-12p40 therefore likely contributes to M. tuberculosis virulence.

RNA profiles from epithelial cells, macrophages, neutrophils, and den-
dritic cells (DCs) have been obtained after infections with a plethora of
pathogens. A thorough review of this field is beyond the scope of this chap-
ter (a more extensive review has recently been published [93]). The studies
presented helped to define a common transcriptional program that is im-
portant for the initial innate immune response and for the establishment
of adaptive immunity but also identified numerous pathogen-specific host
cell responses. RNA profiling is beginning to reveal how activation of mul-
tiple receptors through diverse microbial ligands induces common and
pathogen-specific responses. And, as the studies on S. typhimurium, Y. ente-
rocolitica and M. tuberculosis demonstrated, RNA profiling is also a valuable
approach to identify principles and targets used by pathogens to subvert
activation of an efficient immune response.

330



Genomics of host-pathogen interactions

4 Functional genomics and drug discovery

A recent study identified diarylquinolones (DARQs) as promising lead
structures for the development of new drugs against TB by screening chem-
ical libraries for compounds that inhibit growth of the non-pathogenic
M. smegmatis [18]. It thus seems that even at the beginning of the 21st

century new antibacterial drugs can be identified using approaches very
similar to those that led to the discovery of antibiotics in the first half
of the 20th century. If this is so, who needs functional genomics to fight
infectious diseases?

When discussing the potential impact of functional genomics on drug
development it is helpful to distinguish between target-based and whole-
cell based drug discovery strategies. The above cited study is an example of
a whole-cell based strategy; its first step is the identification of a compound
that inhibits bacterial growth. Such a screen can be successful without any
knowledge of the pathogen’s biology. The primary value of functional ge-
nomics for whole-cell based strategies therefore seems to be their useful-
ness in predicting molecular targets and toxicity of lead compounds [124].
For example, the genome sequences of M. smegmatis and M. tuberculosis
mutants resistant to DARQs contained changes in the genes encoding the
ATP synthase suggesting that inhibition of growth was caused by inactiva-
tion of this enzyme.

Functional genomics will likely have a broad impact on target-based
drug discovery. The success of target-based drug discovery strategies de-
pends on the selection of an appropriate target. For an antibiotic to be
effective its target should be essential for survival or at least for growth
of virtually all naturally occurring variants of a bacterial pathogen within
the host during all stages of an infection. A deep understanding of the
pathogen’s biology is required to select such targets. However, the main
biological criterion that is currently used to select bacterial targets is their
essentiality for growth of bacteria in liquid broth. Most other tests per-
formed to evaluate a target predict the likelihood that a target-specific
inhibitor of low toxicity can be found. While necessary, such tests do
not determine if an inhibitor will eradicate a bacterial infection from an
infected individual.
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The merits of using in vitro essentiality to select bacterial targets are, to
some extent, self-evident – all current antibiotics inhibit growth of bacteria
in liquid broth and they have served us well. However, it seems prudent
to acknowledge the finding that bacteria growing in liquid culture differ
physiologically, morphologically and in their essential gene set from bac-
teria of the same species isolated from infected animals or patients. For
example, only 1 out of ∼10 gene deletions that interfere with growth of
M. tuberculosis in mouse spleens also affect growth in liquid broth [81].
Gene essentiality is thus conditional; genes that are essential for growth
under one condition are often dispensable for growth under another. Ex-
cluding genes that are not essential for growth in liquid broth from the
drug discovery process will thus eliminate targets that could lead to the
development of antibiotics with high in vivo activities [125].

Could the focus on in vitro essential genes also lead to antibiotics that
inhibit growth in liquid broth but do not eradicate bacterial infections?
The most optimistic answer to this question seems to be that we don’t
know. There are certainly genes, for example those encoding the core
enzyme of RNA polymerase, that are always essential for bacterial growth.
However, RNA profiling demonstrates that bacterial pathogens perceive
liquid broth to be vastly different from the conditioned encountered in
host cells and tissues. Even though these experiments do not monitor gene
essentiality, they still suggest that not all in vitro essential genes are also
essential in vivo. Carbon and energy metabolism of bacterial pathogens,
for example, seems to be different in vivo and in liquid broth suggesting
that genes necessary to grow with the narrow spectrum of carbon sources
provided in vitro might not all be essential for growth in vivo. Very likely,
this hypothesis will soon be tested by using GWM to define essential gene
sets for a variety of in vitro growth conditions and by combining GWM with
conditional knockout approaches. Such studies will improve our ability
to rationally select targets for the development of antibiotics with high
in vivo activities.

Gene essentiality might not only be condition-specific but also strain-
specific. This is suggested by comparative genomic studies that revealed
a high degree of genomic diversity in some bacterial species. In addition,
one of the few studies that analyzed the role of the same genes in different
strains of the same species found that all of the three genes analyzed were
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essential for the virulence of one but dispensable for the virulence of an-
other strain [126]. Should these findings be confirmed for a broader range
of genes and pathogens, target evaluation might have to be performed
using representative clinical isolates instead of a single laboratory strain.

The analysis of the interaction of M. tuberculosis with macrophages us-
ing RNA profiling and GWM demonstrated that genes that are preferen-
tially expressedwithin host cells are not enriched in genes that are essential
for survival in this environment. Expression studies will, however, be valu-
able to complement GWM experiments. Genes that are essential in vitro
or in animals and are also expressed in bacteria isolated from infected hu-
mans are clearly more attractive targets than those for which expression
in clinical samples cannot be detected. In addition, target-based discovery
strategies are limited to genes of known function. Most in vivo essential
genes and many in vitro essential genes are of unknown function. RNA
profiling provides an attractive approach for assigning putative functions
to such genes [127].

The areas of drug development most profoundly impacted by RNA pro-
filing of eukaryotic cells are perhaps the toxicological evaluation of drug
candidates and the identification of biomarkers that may help predicting
disease progression [128, 129]. However, RNA profiles of immune cells
also stimulated the identification of new targets and the re-evaluation of
existing drugs. Imiquimod, for example, a drug initially approved for the
treatment of genital warts [130], was recently found to stimulate murine
macrophages through activation of TLR7 [131]. This drug and other TLR
agonists are now being evaluated for the treatment of a variety of viral
and parasitic infections and certain cancers [130, 132]. While activation
of TLRs is important for a proper immune response to many infections,
(over-)stimulation of TLRs can also be detrimental to the host. An un-
controlled inflammatory response to bacterial infections can, for example,
lead to septic shock, a frequent cause of death in intensive care units. Mice
lacking genes involved in TLR signaling are resistant to LPS-induced sep-
tic shock [133, 134] suggesting that TLR antagonists might help treating
systemic bacterial infections [135, 136]. In addition, phenotypic screens
are becoming more and more suitable for the identification of drug targets
in eukaryotes [137]. As has been the case for prokaryotes, these screens
will likely identify targets with interesting phenotypes but unknown bio-
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chemical activities. The biggest impact of genomics on drug development
might therefore come from studies that increase our understanding of gene
function in prokaryotes and eukaryotes and thus increase the number of
targets for which high throughput screens can be developed.
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