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Supervisor’s Foreword

The importance of diffusion for various processes in materials with discrete,
crystalline structure or quasi-continuous like liquids and glasses is unquestionable.
Diffusion takes place in solids also at moderate temperatures, although it was for a
long time doubtful because of the lack of direct experimental evidence. Today, it is
widely accepted that determining the temperature-driven motion of atoms in solids
is more complex than figuring out the structure of solid matter. Nevertheless, it is
evident that dynamical properties and especially atomic motion play a crucial role
in microstructural changes occurring during preparation, processing and heat
treatment of many materials, particularly in nanostructures.

Nearly all information on diffusion was derived hitherto from studies of
radiotracer atoms. These studies, however, could not provide direct information
about the atomistic diffusion mechanism. Gaining knowledge how individual
atoms move and measuring their hopping rate is hence the aim of many experi-
ments and theoretical studies. The full information about the mechanisms at work
can be obtained by scattering methods being sensitive to the relevant length- and
time-scales. Only few methods have satisfactory properties, such as Mößbauer
spectroscopy, quasi-elastic neutron scattering and resonant scattering of synchro-
tron radiation. The highly desirable feat of probing the dynamics with atomic
spatial and temporal resolution turns out to be extremely challenging due to
several serious limitations, such as the restricted number of suitable isotopes or the
limited achievable energy resolution, which necessitates very high temperatures of
measurements where most matter is not even in the solid state any more.

New methods for diffusion studies were therefore greatly appreciated. Dynamic
light scattering of visible light is clearly such a method and it has grown over the
last three decades into a mature technique for studying dynamics in polymers,
solutions of macromolecules, microemulsions, gels etc. However, it is impossible
to study the atomic-scale dynamics by light scattering because atomic length
scales are inaccessible and moreover solids are typically opaque for the visible
light. The availability of coherent X-rays of sufficient intensity in the last decade
has enabled photon correlation spectroscopy studies of diffusion. This thesis deals
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with the application of X-ray Photon Correlation Spectroscopy (XPCS) for
answering the question how individual atoms move.

The merit of this thesis is that it could for the first time prove that atomistic
dynamics is indeed measurable by XPCS using the well known model system
copper-gold as a sample. While XPCS is an established method for the study of
slow dynamics on length-scales of a few nanometres, it has up to now never been
applied to the region of high wave-vector transfers (or large scattering angles). The
scattered intensity in the diffuse regime, i.e. corresponding to atomic distances, is
much lower, therefore using XPCS for this problem has always been thought
impossible.

The progress achieved within this thesis is threefold: it proposes a number of
systems selected for high diffuse intensity, it optimizes the photon detection and
data evaluation procedures in order to obtain as much information as possible,
and it establishes the theoretical models necessary for interpretating the results.
These advances allowed the first successful atomic-scale XPCS experiment,
which elucidated the role of preferred configurations on the atoms’ jumps in a
copper-gold alloy.

The copper-gold system and the few other systems treated in this thesis could
still be studied with contemporary synchrotrons. The results of this thesis have
already inspired a number of further investigations in different metallic and non-
metallic ordered systems, as well as in solids with structural disorder such as
glasses. Further work on even more elaborated systems is in progress. Moreover,
more powerful sources of coherent radiation like energy recovery linacs or free
electron lasers guarantee that the number of systems accessible for diffusion
studies will enlarge to practically all compositions including even light-element
alloys, but will also extend the upper limit of hopping rates. Thus it seems to me
that this technique is the most realistic and future-oriented from the whole spec-
trum of experimental atomistic methods.

Vienna, July 2011 Bogdan Sepiol
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Chapter 1
Introduction

Solid matter is the very embodiment of permanence. In most aspects in every-day life
this permanence is also a deciding factor dominating the choice of used materials: you
want your can opener to cut the can without being affected, you want your bicycle
to still work after being left in the rain, your house to withstand a storm, and the
tungsten filament in your light bulb should survive temperatures of even thousands
of degrees.1

This solidness on the macroscopic scale does not necessarily translate to the
microscopic scale, however. The atoms oscillate about the places where they are
supposed to be, and sometimes they even jump from one lattice site to the next.
This perpetual motion on the atomic scale is called dynamics. Especially diffusion,
which is the smearing-out of concentration gradients brought about by the stochastic
jumps of the atoms, is a phenomenon with far-reaching consequences. It is important
from the first stages of the lifespan of a product, for instance in surface hardening
of tools, precipitation hardening of aluminium elements, or the doping of semicon-
ductors, to the last stages, being responsible for corrosion or the disappearance of
the doped layers due to interdiffusion. Therefore it is necessary to know about diffu-
sion for controlling the material properties during production or for preventing their
deterioration.

The rates of the atomic jumping cover many magnitudes: in the golden wedding
ring you possibly have on your finger on the order of one atom jumps per second at
ambient temperatures, but in metals at elevated temperatures each atom can easily
jump millions of times per second. Still, because each jump happens on such short
timescales,2 at any given moment the vast majority of atoms does not jump, therefore
the metal retains its macroscopic “solid” properties.

This thesis deals with the random jumping of the atoms in a solid from one
stable site to the next. It will only treat the case of equilibrium dynamics, this means
that there is no change of macroscopic properties with time, changes occur only on
the microscopic level when the distinct atoms change place. Equivalently put, the

1 Hopefully for a long time before you are forced to replace it by a compact fluorescent lamp.
2 On the order of picoseconds, i.e., the inverse of the Debye frequency.

M. Leitner, Studying Atomic Dynamics with Coherent X-rays, 1
Springer Theses, DOI: 10.1007/978-3-642-24121-5_1,
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2 1 Introduction

probability for a system to evolve from state A to state B is equal to the probability
for evolving from B to A. Therefore applying the term diffusion to this process
of random hopping is a bit misleading, because diffusion implies a spreading-out.
In fact this random movement leads to diffusion given a concentration gradient,
but it is not synonymous to it. Methods which treat interdiffusion via preparing a
concentration gradient or treat tracer diffusion via preparing an isotopic gradient
and measuring the smearing-out of this gradient during annealing therefore do not
conform to this criterion. They directly measure diffusion but can deduce information
about the random atomic movement only in an indirect way. This thesis deals in the
description and direct measurement of the underlying dynamics. Unfortunately the
term diffusion has come to be applied also for this random hopping without any
spreading of gradients (as in “a particle diffuses on a lattice”), and in this sense
it will also be used throughout this thesis. I beg the reader to keep this ambiguity
in mind. For on overview on the fundamentals of diffusion in solid matter see the
monograph of Mehrer [5], for a collection of accounts on the different aspects of
diffusion and experimental methods see Heitjans and Kärger [4].

The main point of this thesis is to bring together two physical fields to solve
known problems by a new method: on the one hand there is X-ray photon correlation
spectroscopy (XPCS), a scattering method capable of detecting the dynamics in
the sample via following the fluctuations in the scattered intensity. Until now, this
method has been applied to the study of the dynamics at scattering vectors �q with only
very small absolute values, corresponding to comparatively large scales in real space
[1, 3, 7]. On the other hand there exists a community (with strong contributions from
my group, the group of Sepiol and Vogl in Vienna) devoted to the study of atomic
jumps, using mainly neutron scattering and to a smaller part Mößbauer spectroscopy,
see e.g. [11] for a review. Combining the existing concepts and knowledge with the
non-resonant scattering method XPCS, where we have already gathered experience
[6, 9], gives a very promising new tool, able to overcome the problems inherent in the
existing methods (such as favourable elements or isotopes and high jump frequencies
being necessary for these methods), especially in view of the imminent becoming
operational of new and very powerful X-ray sources such as PETRA III and the
European XFEL, both in Hamburg, and the LCLS in Stanford.

The principle of X-ray photon correlation spectroscopy is very simple: as the
scattered intensity is the absolute square of the Fourier transform of the scatterer
density in the sample, having disorder in the sample will result in disorder (i.e.
fluctuations) in the diffuse scattering. If the atoms in the sample change their position,
the scattered intensity at a given point on the detector will fluctuate over time, and
XPCS essentially just records the time scale of this fluctuating as a function of the
scattering vector �q. The crucial point for this argumentation to hold is the coherence
of the incoming radiation, however. If it is not coherent, one point on the detector
corresponds to a distribution of scattering vectors �q, and incoherent addition of
their intensities smears out the fluctuations. If the incident radiation is coherent
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(that means a well-defined plane wave3), however, the equating of scattering and
Fourier transforming holds, and the scattered radiation shows fluctuations, also called
“speckles”. The first coherent X-ray beam of sufficient intensity and therefore the first
observation of X-ray speckles was reported by Sutton et al. [10]. Coherent optical
light, however, has been available since the invention of the laser in the 1960s, and
the analogous method, which is most often called Dynamic Light Scattering, has
matured to a standard method of characterization of soft matter or emulsions. Many
overviews of the method exist, see, e.g., [2].

Obtaining coherent radiation is in principle not difficult, all one has to do is to take
an incoherent source and cut out a sufficiently small volume in phase space by using
slits (for transversal coherence) and monochromators (for longitudinal coherence).
This is the way it is done nowadays in X-ray physics, as a synchrotron is an incoherent
source. With such an approach one obviously trades intensity for coherence. This
is a fundamental problem, because increasing the detection efficiency is no option,
XPCS is already at the single-photon level. In the future inherently coherent X-ray
sources, free-electron lasers in the hard X-ray regime, will become available, just as
lasers are in the optical regime. This will open up a vast range of possibilities for
coherent X-ray physics, enabling the study of processes inaccessible up to now.

What XPCS detects is the stochastic evolution of the disorder in the sample.
Applied to the case of atomic dynamics, it therefore detects chemical diffusion, that
means the process that governs how a given occupation of the lattice sites by atoms
of different kinds (or by atoms and holes) evolves to another occupation. This is a
difference to incoherent methods such as Mößbauer spectroscopy, which measure
tracer diffusion, i.e. they label the atoms (by radioactivity or by imprinting a phase
onto the nuclei) and measure how a given labelled atom diffuses.

In the frame of this thesis the first successful applications of XPCS to the problem
of studying atomic diffusion were performed. Apart from documenting the results
and physical insights obtained from these experiments another important point for
me was to devote some space both to the fundamental theoretical aspects of atomic
diffusion and to considerations concerning the experimental side, such that it would
ideally be possible for any solid state physicist to start with this subject using this
thesis alone, without having to reinvent all the small details a second time.

This is the structure of the thesis: first the concepts for describing stochastic
motion on a lattice are introduced and results relevant to this thesis are derived,
and these theoretical concepts are linked to the case of atomic diffusion and to the
results obtained by an XPCS experiment. Then a number of systems exemplary for
distinct aspects of atomic diffusion are presented. In the next chapter the evaluation
of the raw data obtained with an XPCS experiment is described in some detail,
followed by a chapter about optimizing the experimental set-up. Then comes a chapter
about the experimental results obtained on the aforementioned systems so far, and
finally an outlook is given. Everything presented in this thesis is original, apart from

3 Note that for the appearance of speckles only a fixed phase relation in space and time is necessary,
but in order to be able to use the Fourier transform I require plane waves, which will be fulfilled in
a good approximation within the small illuminated sample volume.
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Chap. 3 (which for the most part can be found in textbooks) and the section on the
self-correlation function in Chap. 2. The derivation of the temporal evolution of the
pair-correlation function under the constraint of short-range order given in Sect. 2.3
is also original, it re-derives the result already given by Sinha and Ross [8] for the
case of quasi-elastic neutron scattering in a fashion that is more easily understandable
to physicists used to diffusion on a lattice.
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Chapter 2
Theory

In this chapter I will give the fundamental concepts to describe diffusion on the atomic
level, with special consideration to the case of diffusion on a lattice. For reasons of
conceptual simplicity this chapter will stay abstract, I will work out the connection
to the actual problem at hand—atomic diffusion in condensed matter—in Chap. 3.

2.1 Setting the Scene

The system to be described consists of particles diffusing in infinite space. The
particles behave equally but are distinguishable. The theoretical tools for the problem
at hand, i.e. to describe the stochastic motion of the particles, were given by van Hove
[12]. These are:

• The self-correlation function Gs(��x,�t) gives the probability to find a given
particle at time t +�t at the position �x +��x given that it (the same particle) was
at time t at position �x .

• The pair-correlation function G(��x,�t) gives the probability to find any particle
at time t + �t at the position �x + �x given that any particle was at time t at
position �x .

The definition given above is the classical case of van Hove’s quantum-mechanical
theory. This is justified by the fact that first for the systems of interest in this thesis the
spatial uncertainty of the particles is given by thermal excitations and not quantum
effects (e.g. tunneling) and second that the scattering of X-rays on diffusing atoms
can be considered truly elastic due to the X-rays’ high energy. The formulation with
time differences instead of the correlations between two absolute times implies that
the system is in equilibrium. Obviously the functions given above do not contain all
the information of the dynamic process. One could continue and consider correlation
functions of higher order, e.g. the probability of a particle being at a given time and
place if it was at time t1 at place �x1 and at time t2 at place �x2, but for diffusion
modelled as a Markov process the description by two-point correlations suffices.

M. Leitner, Studying Atomic Dynamics with Coherent X-rays, 5
Springer Theses, DOI: 10.1007/978-3-642-24121-5_2,
© Springer-Verlag Berlin Heidelberg 2012

http://dx.doi.org/10.1007/978-3-642-24121-5_3


6 2 Theory

From now on I will restrict my attention to particles diffusing on a lattice.
I assume the lattice to be three-dimensional, as this covers all cases treated later
in this thesis, but this is just for convenience, the reader is invited to picture a lattice
of arbitrary finite dimensionality,1 everything given here generalizes. Let the lattice
be composed of � sublattices. The translation vectors of the fundamental lattice be
�a1, �a2, and �a3, being linearly independent, but not necessarily orthogonal. I use this
basis set for spanning R

3. The distinct sites in the sublattice have the coordinate
vectors rλ for 1 ≤ λ ≤ �. Finally I define the vectors spanning reciprocal space
�b1, �b2, and �b3 such that �ai · �b j = 2πδi, j .This set of vectors can easily be constructed:

�b1 = 2π
�a2 × �a3

�a1 · (�a2 × �a3)
, (2.1.1)

�b2 and �b3 follow by cyclic permutation. Given a vector �x relative to the Cartesian
unity vectors �ei I will write x for its coordinate vector relative to the translation
vectors of the lattice �ai , analogously with a reciprocal vector �q and its coordinate
vector q relative to the reciprocal lattice vectors �bi . This has the property that the
valid positions of the particles are given by x + rλ for x ∈ Z

3 and 1 ≤ λ ≤ �. Also
note that q · x = �q · �x due to the definition of the reciprocal lattice vectors.

Having this definitions out of the way, I now move on to the description of the
dynamics, the correlation functions.

2.2 The Self-Correlation Function

As stated above, van Hove’s self-correlation function Gs(�x,�t) gives the condi-
tional probability for a given particle to be at time t +�t at position x +�x under
the condition that this particle was at time t at position x. The reason for treating
the self-correlation function is first that it is a rather intuitive way of describing
dynamics and second that there are methods which (more or less) directly measure
it (see Sect. 3.4). These methods realize the measurement of the probability via the
actual displacements of a vast number of atoms. I will now deduce the temporal
evolution of this probability density. For past approaches to this problem see [2, 6,
7, 9, 10].

I consider particles diffusing on a lattice. As its name already tells, for the self-
correlation function the movement of a particle with respect to itself alone is of rele-
vance. Therefore it suffices to consider (the probability distribution of) the positions
of one particle over time. In reality particles can interact, so actually the temporal
evolution of the tagged particle’s position is influenced by the configuration of its
surrounding. As I describe the state of the system only by the position of the one

1 Diffusion on a surface would be a physically relevant case of diffusion on a lower-dimensional
lattice.

http://dx.doi.org/10.1007/978-3-642-24121-5_3
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tagged particle, this fact can lead to a non-Markovian behaviour of the system (earlier
states of the system can influence the hidden variables, i.e. the configuration of the
neighbourhood, influencing in turn the further evolution). The simplification which
makes the problem tractable is to postulate Markovian behaviour, i.e. that the prob-
ability distribution of the states of the system at some later time are only a function
of the state of the system now.

The temporal evolution of the probability density is therefore defined by speci-
fying the transition rates between the sites on the lattice. I write

(
K(�x)

)
μ,λ

for the
transition rate of the particle from sublattice λ in the cell x to sublattice μ in the
cell x + �x. Put another way, the entry in row μ, column λ of the matrix K(�x)
multiplied by an infinitesimal amount of time is the probability for a particle on the
sublattice λ to jump onto the siteμ of the cell displaced by�x within this amount of
time. For mass conservation I put the overall leaving rate from the sublattice λ into(
K(o)

)
λ,λ

but counted negatively:

∑

(�x,μ) �=(0,λ)

(
K(�x)

)
μ,λ

= −(
K(o)

)
λ,λ
. (2.2.1)

I require detailed balance, this means that in equilibrium there should be no net flux
between two states of the system:

(
K(�x)

)
μ,λ

pλ = (
K(−�x)

)
λ,μ

pμ (2.2.2)

where pλ is the equilibrium probability for a particle to reside on sublattice λ.
My goal is to compute the temporal evolution of probabilities, so I introduce an

ensemble of systems (i.e. an ensemble of particles). This ensemble is completely
specified by

(
c(x, t)

)
λ
, the concentration (i.e. the ratio) at time t of the particles in

the ensemble which reside in the cell x on the sublattice λ.With above definition of
K the temporal derivative of the concentration c can now be written as

(
ċ(., t)

)
λ

=
∑

μ

(
K(.)

)
λ,μ

∗ (
c(., t)

)
μ
, (2.2.3)

where the symbol ∗ denotes convolution in space. This now explains where K got
its symbol: it is the matrix-valued diffusion kernel.

Just as such equations are customarily solved I apply the element-wise spatial
Fourier transformation, that means F((

c(., t)
)
λ

) = (
ĉ(., t)

)
λ
, analogously for K:

( ˙̂c(q, t)
)

λ
=

∑

μ

(
K̂(q)

)
λ,μ

· (
ĉ(q, t)

)
μ
, (2.2.4)

or put more elegantly

˙̂c(q, t) = K̂(q) · ĉ(q, t), (2.2.5)
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understood as matrix multiplication. An equation like that is one of the first problems
encountered in the analysis of ordinary differential equations. Defining exponentia-
tion for matrices via the series expansion of the scalar-valued exponential function,
the solution to this ordinary differential can be immediately given:

ĉ(q, t) = eK̂(q)t · ĉ(q, 0). (2.2.6)

Remembering that the vector notation of the concentration is just a shorthand for a
scalar-valued concentration of the form

∑
λ

(
c(., t)

)
λ
∗δ(.−rλ), its Fourier transform

is therefore
∑
λ

(
ĉ(., t)

)
λ

exp(−iqrλ).
Let now f λμ(�x,�t) be the probability distribution for finding a particle at time

�t on the site μ of cell �x if it was at time 0 at site λ of cell o. The spatial Fourier

transform of this function is
(
eK̂(q)�t

)
μ,λ

(use Eq. 2.2.6 with an initial condition c
equal to 1 at site o and sublattice λ and take entryμ of the result). Just considering the
particles from sublattice λ would give for the self-correlation function

∑
μ f λμ(x −

rμ+ rλ,�t). Taking into account the particles starting from all sublattices with their
respective weights pλ gives

Gs(�x,�t) =
∑

μ

∑

λ

f λμ(�x − rμ + rλ,�t)pλ, (2.2.7)

and in the Fourier domain

Is(q,�t) := F(
Gs(.,�t)

)
(q) =

∑

μ

e−iqrμ
∑

λ

(
eK̂(q)�t

)

μ,λ
pλeiqrλ . (2.2.8)

For reasons that will become clear in Sect. 3.4, Is goes under the name incoherent
intermediate scattering function.

To put Eq. 2.2.8 more elegantly, I first define the 1 × �-matrix E = (e−iqr1 . . .

e−iqr�), the � × �-diagonal matrix P with the entries p1 . . . p� in the diagonal,
and the Hermitized diffusion kernel in reciprocal space

K′(q) :=
√

P−1K̂(q)
√

P. (2.2.9)

Because each component of K(�x) is real, taking the component-wise complex
conjugation of its Fourier transform is equivalent to inverting the independent
variable:

K̂(−q) = K̂(q). (2.2.10)

To show that K′(q) is actually Hermitian I first restate Eq. 2.2.2:

K(�x)P = (
K(−�x)P

)T = PKT(−�x), (2.2.11)

http://dx.doi.org/10.1007/978-3-642-24121-5_3
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which naturally also holds for its Fourier transform

K̂(q)P = PK̂
T
(−q). (2.2.12)

Multiplying this equality from both sides by
√

P−1 and using Eq. 2.2.10 leads to

√
P−1K̂(q)

√
P = √

PK̂
T
(−q)

√
P−1 = √

PK̂
∗
(q)

√
P−1, (2.2.13)

where (. . .)∗ denotes the adjoint matrix, thereby proving the claim.
With these definitions Eq. 2.2.8 reads

Is(q,�t) = E(q) exp
(
K̂(q)�t

)
PE∗(q) = E(q) exp

(√
PK′(q)

√
P−1�t

)
PE∗(q)

= E(q)
√

P exp
(
K′(q)�t

)√
PE∗(q). (2.2.14)

From

Is(q,�t) = Is(q,�t)∗ =
(
E(q)

√
P exp

(
K′(q)�t

)√
PE∗(q)

)∗

= E∗∗(q)
√

P∗ exp
(
K′∗(q)�t

)√
P∗E∗(q)

= E(q)
√

P exp
(
K′(q)�t

)√
PE∗(q)

= Is(q,�t), (2.2.15)

where the first equality followed trivially from considering Is an 1 × 1-matrix and
the following equalities from the Hermitianness of K′ and the rules for matrix trans-
position, it follows that Is is real. Using this fact, Eq. 2.2.10 and the definition
of E(q)

Is(q,�t) = Is(q,�t) = E(−q)
√

P exp
(
K′(−q)�t

)√
PE∗(−q) = Is(−q,�t),

(2.2.16)
so Is is in fact even and real-valued. Therefore also Gs, being the back-transform of
an real-valued even function, is even (and real-valued).

This is at first glance surprising, as the lattice’s being composed of sublattices will
in the general case destroy the inversion symmetry of the underlying Bravais lattice.
The key point in above derivation, however, was the invocation of detailed balance.
This principle just says that the same number of atoms hop from site A to site B as
from site B to site A, so even if the fluxes exiting site A have no inversion symmetry,
the other sites make up for that imbalance, leading to an even correlation function.

It is instructive to write Is in yet another way. Diagonalizing K′, i.e. writing

K′(q) = V(q)D(q)V∗(q), (2.2.17)

with V(q) a unitary matrix and D(q) a diagonal matrix with real (because K′ is
Hermitian) non-positive (see Sect. A.1) diagonal entries, Eq. 2.2.14 reads
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Is(q,�t) = E(q)
√

P exp
(
V(q)D(q)V∗(q)�t

)√
PE∗(q)

= E(q)
√

PV(q) exp
(
D(q)�t

)
V∗(q)

√
PE∗(q)

=
∑

λ

e(D(q))λ,λ�t
∣∣
∑

μ

e−iqrμ√pμ
(
V(q)

)
μ,λ

∣∣2
. (2.2.18)

Is(q,�t) for a fixed q is therefore a sum of � (possibly degenerate) exponential
decays, where the respective decay times are given by the inverse of the diagonal
entries in D(q) and the respective weights are a function of the occupation probabil-
ities of the sublattices pλ, the geometry within the unit cell rλ in relation to q, and
the jump frequencies between the various sites.

I want to point out an analogy of the present problem to another one most solid
state physicists are probably more familiar with: phonon dispersion. In a crystal
composed of � sublattices there are � phonon states for a given wave-vector q,
one acoustic and � − 1 optical phonons. The eigenvalues of K′(q) (which are the
diagonal entries of D(q)) behave similarly: for small q they can be divided into one
value describing the decay of long-range correlations and�−1 values describing the
fluxes between the sublattices. Considerations along the lines of the proof in Sect. A.1
show that the appearance of an additional eigenvalue equal to zero at a q equal to a
reciprocal lattice vector (apart from the “acoustic” eigenvalue) is equivalent to the
lattice’s decomposing into two (or more) systems of sublattices, so that there is no
flux from sites in one system to sites in the other (in the phonon analogy this would
correspond to the artificial example of two interleaved lattices which do not interact,
leading to an optical phonon branch behaving like an additional acoustic branch).
A non-trivial case is the interstitialcy mechanism of diffusion in the diamond lattice,
see Sect. 4.1. In this case there is no flux between the two sublattices, so for a q equal
to a reciprocal lattice vector the intermediate incoherent scattering function does not
decay in time.

I want to treat now Eq. 2.2.18 in the limit of small q for the non-degenerate case,
i.e. where the lattice does not decompose. Using Eq. 2.2.1 it follows that the diagonal
vector of

√
P, in the following denoted

√
p, is the “acoustic” eigenvector of K′(o)

corresponding to the eigenvalue 0. As
√

PE∗(q) converges to
√

p for q → o, the
weight of the “optical” decays in Eq. 2.2.18 vanishes, leaving only the “acoustic”
decay, the eigenvalue of which goes to 0. For computing the behaviour at small q of
this eigenvalue, in the following denoted d(q) and defined by the equation

d(q)v(q) = K′(q)v(q), (2.2.19)

I write the relevant quantities as power series in q:

d(q) = d0 + d1(q)+ d2(q)+ O(q3),

v(q) = v0 + v1(q)+ v2(q)+ O(q3),

K′(q) =
√

P−1
(
K0 + K1(q)+ K2(q)

)√
P + O(q3).

(2.2.20)

Here quantities with 1 in the exponent are linear functions of q and quantities
with 2 are bilinear functions. Expanding in a power series is valid because in the

http://dx.doi.org/10.1007/978-3-642-24121-5_4
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non-degenerate case d(q) has a multiplicity of 1 everywhere around q = o and is
therefore an analytical function of the coefficients of the characteristic polynomial
of K′(q).By construction d0 is 0 and v0 is

√
p, but also d1 is 0 because K′(q) and

therefore also its eigenvalues are even functions in q. This leads to the necessity for
the linear terms in q on the right-hand side of Eq. 2.2.19 to cancel for all q, therefore

K1(q)p + K0
√

Pv1 = 0. (2.2.21)

K0 is not invertible, so
√

Pv1 is given by

√
Pv1 = −(

K0)−1K1(q)p + sp. (2.2.22)

Here (K0)−1 denotes the Moore-Penrose pseudoinverse of K0 and sp spans the
kernel of K0 due to Eqs. 2.2.1 and 2.2.2 and the fact that the rank of the kernel is 1.

The quantity of interest d(q) follows then as

d(q) = v(q)Tda(q)v(q) = v(q)TK′(q)K(q)

= v(q)T
√

P−1
(
K2

√
Pv0 + K1

√
Pv1 + K0

√
Pv2

)
+ O(q3)

= e
(
K2

√
Pv0 + K1

√
Pv1

)
+ O(q3)

= e
(
K2(q)− K1(q)(K0)−1K1(q)

)
p + O(q3) (2.2.23)

with e = (1, . . . , 1) and observing the cancellation of various terms. The relevant
matrices are explicitely given by

K0 =
∑

�x

K(�x),

K1(q) = −i
∑

�x

(q�x)K(�x),

K2(q) = −
∑

�x

(q�x)2

2
K(�x), (2.2.24)

so Eq. 2.2.23 is a non-negative (see Sect. A.1) quadratic form for small q

d(q) = qTDq + O(q3), (2.2.25)

and the intermediate incoherent scattering function Eq. 2.2.18 reads for small q

Is(q,�t) = e−qTDq�t . (2.2.26)

The description of diffusion in macroscopic terms is given by Fick’s laws. In
Fick’s first law the diffusion tensor D is defined via the phenomenological linear
relation between concentration gradient and mass flux
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j = −D∇c. (2.2.27)

Invoking mass conservation leads to Fick’s second law

ċ = ∇D∇c, (2.2.28)

or in reciprocal space

˙̂c(q, t) = −qDqĉ(q, t). (2.2.29)

Solving this equation with a delta distribution as initial condition gives

ĉ(q, t) = e−qTDqt . (2.2.30)

Therefore the quadratic form D describing the behaviour of the intermediate inco-
herent scattering function in Eq. 2.2.26 at small q is nothing else than the macroscopic
diffusion tensor. It is given by the macroscopic limit of the self-correlation function
which is experimentally mainly determined from the spreading of a small amount of
radioactive tracer atoms, so it is customarily called the tracer diffusion tensor.

In the degenerate case, where the lattice decomposes into mutually disconnected
sets of sublattices, the problem can be solved on each set alone. Note that this can
give different quadratic forms D for the distinct sets of sublattice. Therefore the non-
degeneracy assumption in the derivation of Eq. 2.2.26 is not just for convenience,
in fact in the general case the macroscopic description by Fick’s laws is not valid.
For the above-mentioned case of interstitialcy diffusion in the diamond lattice both
sublattices behave equally at small q, so the partial intermediate incoherent scat-
tering functions can be merged and the phenomenological macroscopic behaviour is
recovered.

In the special case where the particles sit on a Bravais lattice and therefore all sites
are equivalent, the diffusion kernel K (�x) is scalar-valued, has inversion symmetry
and

∑
�x K (�x) = 0. Defining

�inc(q) = −K̂ (q) = −F(K )(q) = −
∑

�x

K (�x) cos(q�x)

=
∑

�x

K (�x)
(
1 − cos(q�x)

)
, (2.2.31)

Eq. 2.2.18 has the concise form

Is(q,�t) = e−�inc(q)�t. (2.2.32)

�inc is called the incoherent linewidth, as quasi-elastic methods measure it as a line
broadening (see Sect. 3.1). In the Bravais case Eq. 2.2.23 and equivalently Eq. 2.2.31
simplify to

d(q) = �inc(q) =
∑

�x

K (�x)
(q�x)2

2
(2.2.33)

http://dx.doi.org/10.1007/978-3-642-24121-5_3
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for small q. Additionally invoking cubic symmetry leads to the ellipsoid described
by the quadratic form D becoming a sphere, therefore diffusion becomes isotropic,
completely specified by the scalar-valued tracer diffusion constant D with

D =
∑

�x

K (�x)
|�x|2

6
. (2.2.34)

This equation is called the Einstein relation, where the additional factor 3 in the
denominator compared to Eq. 2.2.33 is due to the value of (q�x)2 averaged over all
directions being

〈
(q�x)2

〉
= |q|2|�x|2

3
. (2.2.35)

It is worth reflecting on the approximations inherent in this section’s consider-
ations. First, in actual metallic systems in most cases diffusion does not happen
by spontaneous, unprovoked hopping, rather it is the result of the migration of a
vacancy. This fact leads to correlations between hopping events. These correlations
can, however, be satisfactorily incorporated into the model in the framework of the
so-called encounter model (see Sect. 3.5). The second issue, the influence of the
particle’s surroundings, was already addressed at the beginning of this section. With
interacting particles the jump probabilities are not a strict function of the initial and
target sublattices, but they vary with the surroundings. This leads to the fact that there
is not one single well-defined decay time per sublattice, so the decay gets “stretched”
due to averaging over the distinct surroundings, corresponding to different exponen-
tial decays. Still, in most experimental studies this effect is not drastic, and the data
can be fitted by one exponential per sublattice.

2.3 The Pair-Correlation Function

This section gives an analytic theory of the pair-correlation function in the case
of short-range order on the lattice. The simplification introduced in Sect. 2.2, i.e.
describing the systems in the ensemble only by the position of the tagged particle
and accounting for the different surroundings only through an average “effective”
surrounding, does not work here, as the very essence of the pair correlation function
lies in the correlation with other particles. Therefore the temporal evolution of the
positions of all the particles in the system has to be described in a unified approach,
explicitly treating the correlations. Nevertheless, in order to obtain analytic results,
some approximations have to be made, namely the high-temperature limit, i.e. to
treat correlations due to the energetics as first-order perturbations. A further assump-
tion is that the Hamiltonian is given via pairwise interactions. Considering several
sublattices would only obfuscate the ideas presented here, so I assume the particles
to sit on sites of a Bravais lattice. The derivation presented here, which uses classical

http://dx.doi.org/10.1007/978-3-642-24121-5_3
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transition state theory [13], leads to the same results as the one given by Sinha and
Ross [11] set in a general framework of lattice dynamics. In the meantime is has
been published as Leitner and Vogl [8]. For a still quicker, although less fundamental
treatment of this problem see the last paragraphs of this section.

A state of the system is described by the occupation function σ, that is, σ(x) = 1 if
the site x is occupied by a particle and σ(x) = 0 if not. The most general Hamiltonian
for pair potentials is given by

H(σ ) = V0 + V1

∑

x

σ(x)+
∑

x, y

V (x − y)σ (x)σ ( y). (2.3.1)

In the following only the differences between energies of states in the canonical
ensemble will be required, so the expression

H ′(σ ) =
∑

x, y

V (x − y)σ (x)σ ( y) (2.3.2)

can be used without loss of generality. I write

�E(x;�x, σ ) = H ′(σ2)− H ′(σ1) (2.3.3)

for the difference in energy between a state σ1 with

σ1( y) =
⎧
⎨

⎩

1 y = x
0 y = x +�x
σ( y) else

(2.3.4)

and a state σ2 with

σ2( y) =
⎧
⎨

⎩

0 y = x
1 y = x +�x
σ( y) else.

(2.3.5)

Described in words, �E(x;�x, σ ) is the energy gained (or lost) when moving a
particle from x to x+�x in the environment specified by σ. I write Es(x, x+�x; σ)
for the energy of the saddle point in the energy landscape on the path from x to�x,
relative to the average of the initial and final energy H ′(σ1) and H ′(σ2).Equivalently
stated, the energy necessary to invest for raising a particle on its way from x to �x
onto the saddle point is given by Es(x, x +�x; σ)+�E(x;�x, σ )/2, for moving
it back it is Es(x, x +�x; σ)−�E(x;�x, σ )/2. These concepts will become more
clear by means of an example in Sect. 4.3.

There are two equivalent possible choices for the fundamental dynamic process:
either the particles hop into empty sites (and do not hop if the prospective target site
is occupied) or the occupancy of two sites is exchanged, i.e. if exactly one of the
two is occupied, after the exchange the other is occupied, if either both are occupied
or both are unoccupied, nothing changes. I use the latter concept, as it is symmetric

http://dx.doi.org/10.1007/978-3-642-24121-5_4
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under the operation σ → 1 − σ. The rate of exchanges of the occupances of x and
x +�x can then be written

ω = ν�xe
−�E(x;�x,σ )

2kB T e
− Es (x,x+�x;σ)

kB T

= ν�xe
− Es (�x)

kB T e
−�E(x;�x,σ )

2kB T e
−�Es (x,x+�x;σ)

kB T , (2.3.6)

where Es(�x) is the mean saddle point energy for a jump along�x with �Es(x, x+
�x; σ) being the variations around this mean value and ν�x the attempt frequency
for such a jump [13].

I will now treat the temporal evolution of the system, where the system is initially
in the state σ.Obviously a given site x can either be occupied or unoccupied, so σ(x)
is either 0 or 1. It will turn out that the equation describing the evolution is in first
order linear in σ, therefore the same relationship holds also for the expected value,
that is the average value over an ensemble of systems. The reader is invited to choose
the most convenient setting, either a concrete state and transition probabilities or
expected values and their temporal evolution.

σ̇ (x) =
∑

�x

(
σ(x +�x)

(
1 − σ(x)

)
e
�E(x;�x,σ )

2kB T

−σ(x)(1 − σ(x +�x)
)
e
−�E(x;�x,σ )

2kB T

)
ν�xe

− Es (x,x+�x;σ)
kB T

=
∑

�x

ν�xe
− Es (�x)

kB T e
−�Es (x,x+�x;σ)

kB T

×
(
σ(x +�x) (1 − σ(x)) e

�E(x;�x,σ )
2kB T

−σ(x)(1 − σ(x +�x)
)
e
−�E(x;�x,σ )

2kB T

)

=
∑

�x

ν̃�x

((
σ(x +�x)− σ(x)

) (
1 − �Es(x, x +�x; σ)

kB T

)

+�E(x;�x, σ )
2kB T

(
σ(x)+ σ(x +�x)

−2σ(x)σ (x +�x)
) + O

((
E/kB T

)2
) )

(2.3.7)

Here E is a measure for the typical energy variations, in both the saddle point and
the stable positions, i.e.�E(x;�x, σ ) = O(E) and �Es(x, x +�x; σ) = O(E).
ν̃�x = ν�x exp(−Es(�x)/kB T ) is the raw jump frequency neglecting the influence
of energy and correlations.

The system is assumed to be only short-range ordered, this means that

〈
σ(x)σ ( y)

〉 − 〈
σ(x)

〉〈
σ( y)

〉 = O(E/kB T ) (2.3.8)
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for x �= y. As both �E(x;�x, σ ) and �Es(x, x + �x; σ) are linear functionals
with respect to σ which depend neither on σ(x) nor on σ(x +�x), it follows that

〈
�E(x;�x, σ )σ (x)

〉 − 〈
�E(x;�x, σ )

〉〈
σ(x)

〉 = O
(
(E/kB T )2

)
, (2.3.9)

analogously for similar quantities. Applying this to Eq. 2.3.7 and cancelling (noting
that

〈
σ(x)

〉
is equal to the concentration of particles c) shows that

σ̇ (x) =
∑

�x

ν̃�x

(
σ(x +�x)− σ(x)+ �E(x;�x, σ )

kB T
c(1 − c)

)
(2.3.10)

in first order approximation, in particular the influence of the configuration on the
energetics of the saddle point vanishes, only the energies of the initial and the final
state matter.

Going back to Eq. 2.3.2, �E(x;�x, σ ) is explicitly given by

�E(x;�x, σ ) =
∑

y

V (x +�x − y)σ ( y)−
∑

y

V (x − y)σ ( y)

=
∑

z

V (z)
(
σ(x +�x − z)− σ(x − z)

)
. (2.3.11)

Defining the amplitude A = F(σ ) and using basic results about the Fourier transform
of convolutions, the transform in x of above equation reads

F(
�E(.;�x, σ )

)
(q) = V̂ (q)A(q)(eiq�x − 1), (2.3.12)

where V̂ is the transform of the pair potential V. Using this result the Fourier transform
of Eq. 2.3.10 can be given as

Ȧ(q) =
∑

�x

ν̃�x

(

A(q)eiq�x − A(q)+ V̂ (q)A(q)(eiq�x − 1)

kB T
c(1 − c)

)

= A(q)
∑

�x

ν̃�x
(

cos(q�x)− 1
)
(

1 + V̂ (q)c(1 − c)

kB T

)

. (2.3.13)

In this section’s nomenclatura �inc now reads (cp. Eq. 2.2.31)

�inc(q) =
∑

�x

ν̃�x
(
1 − cos(q�x)

)
, (2.3.14)

but this time the relevant quantity is the coherent linewidth

�coh(q) = �inc(q)

(

1 + V̂ (q)c(1 − c)

kB T

)

, (2.3.15)

giving
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〈
A(q, t)

〉 = A(q, 0)e−�coh(q)t . (2.3.16)

Writing the time dependence of σ explicitly, the pair-correlation function
G(�x,�t) is defined by

G(�x,�t) = 〈
σ(., .)σ (.+�x, .+�t)

〉
. (2.3.17)

Note that

G(�x,�t) = 〈
σ(., .)σ (.+�x, .+�t)

〉 = 〈
σ(.−�x, .−�t)σ (., .)

〉

= 〈
σ(., .)σ (.−�x, .−�t)

〉 = G(−�x,−�t). (2.3.18)

Due to time-inversion symmetry G is even in time, using this fact and above result it
is also even in space.

Again using the interplay of Fourier transforming and convoluting the coherent
intermediate scattering function is given by

I (q,�t) := F(
G(.,�t)

)
(q) = 〈

A(q, .) Â(q, .+�t)
〉 = 〈

A(q+, .) Â(q, .)e−�coh(q)�t 〉

= ISRO(q)e
−�coh(q)�t .

(2.3.19)
ISRO(q) is the expected value of the intensity, the squared modulus of the amplitude,
due to short-range order, for a given q.

In the framework of the approximations invoked here the intensity can be directly
related to the potential via the Clapp-Moss-relations [3], see Sect. A.2:

ISRO(q) = 1
(

1 + V̂ (q)c(1−c)
kT

) , (2.3.20)

therefore

�coh(q) = �inc(q)
ISRO(q)

. (2.3.21)

The intensity ISRO(q) is measured in Laue units, where one Laue unit is Nc(1 − c)
with N the number of lattice sites (this is just the value of the configurational diffuse
scattering of a random alloy). In particular it follows that the coherent linewidth is
equal to the incoherent linewidth for vanishing interactions, and Is = I.

Just as with the intermediate incoherent scattering function in Sect. 2.2 also here
the behaviour of �coh(q) for small q is given by a quadratic form corresponding
to a diffusion tensor D. In this case, however, it describes the decay of chemical
fluctuations in the macroscopic limit, I will therefore call it the chemical diffusion
tensor (or chemical diffusion constant in the cubic case). An analogon of the Einstein
relation also holds here, by Eq. 2.3.21 the diffusion constant is just the value of the
tracer diffusion constant in Eq. 2.2.34 divided by ISRO(o).

The fact that the relaxation of fluctuations (i.e. the decay of the coherent interme-
diate scattering function) becomes slower than the value given by Chudley and Elloitt
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[2] for positions in reciprocal space with high intensity has been known qualitatively
under the name de Gennes-narrowing [5] from studies of liquids and colloidal glasses
[1, 4]. It is not difficult to understand: a high ISRO(q)means that the particles prefer
to build local arrangements corresponding to a high Fourier component at q. The
reason can only be that such arrangements are energetically favoured compared to
other arrangements, therefore it takes more energy to break such arrangements up,
making them longer-lived. However, the fact that the decay is in the first approx-
imation still a single exponential given by the very simple relation (2.3.21), being
only a function of the static energetics, is not so obvious. The simulations in Sect. 4.3
elucidate what happens when the approximations invoked here break down.

I want also to sketch another, less fundamental way of deriving Eq. 2.3.21.
I write the pair-correlation function as the sum of the self-correlation function and
the distinct-correlation function

G(�x,�t) = Gs(�x,�t)+ Gd(�x,�t), (2.3.22)

equivalently in reciprocal space

I (q,�t) = Is(q,�t)+ Id(q,�t). (2.3.23)

The behaviour of Is(q,�t) was derived in Sect. 2.2, it decays with the rate �inc(q).
The assumption of equilibrium leads to time-inversion symmetry, therefore Eq. 2.2.32
can be generalized to negative time differences

Is(q,�t) = e−�inc(q)|�t |. (2.3.24)

Gd(�x,�t) and therefore Id(q,�t) can be seen as the reaction of the surrounding
particles to the occupation of site o.This reaction happens via diffusion and will there-
fore vary smoothly in time, just as the heat conduction equation smoothes out singu-
larities in the initial or boundary data. Id(q,�t) obviously also has time-inversion
symmetry, so with it being smooth everywhere it has a vanishing temporal derivative
at �t = 0. Therefore

−�coh(q)ISRO(q) = d

d�t
I (q,�t)

∣∣
�t=0+ = d

d�t
Is(q,�t)

∣∣
�t=0+ = −�inc(q),

(2.3.25)
and Eq. 2.3.21 follows.
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Chapter 3
Linking Theory to Experiments

In Chap. 2 the theory of the self- and the pair-correlation function for particles
diffusing on a lattice was given. This chapter will give the connection to the scientific
problem at hand, studying atomic diffusion in crystalline matter.

3.1 Methods for Measuring Atomic Diffusion

The most capable experimental techniques for this kind of research are scattering
techniques. The major ones of these are (listed chronologically):

• Quasi-elastic neutron scattering (QENS). This method analyzes the energy trans-
ferred from the sample to the neutron as a function of q. Due to the relation
E = �ω, this constitutes an experimental determination of the temporal Fourier
transform of the intermediate scattering function, the so-called dynamic structure
factor S(q, ω). As the neutrons are scattered by the nuclei, they are sensitive to
the distinct isotopes. Using this fact and fine-tuning the isotope composition of the
sample often either the coherent or the incoherent scattering can be made to domi-
nate (see Sect. 3.4), which corresponds to measuring the self- or the pair-correlation
function. QENS is in principle a very versatile method, but first, not all elements
are suited to this method, and second, the available flux is rather low, implying
long measuring times. Furthermore, the technical improvement of neutron sources
has happened only at a slow pace during the last decades, so this situation cannot
be expected to improve much in the near future.

• Mößbauer spectroscopy. This method exploits the fact that certain nuclei have very
narrow energetical states and that in a solid there is a non-vanishing probability
for nuclear transitions to happen without interference of thermal vibrations. If an
atom diffuses while undergoing a nuclear transition this leads to a broadening of
the linewidth due to the emitted wave train apparently decomposing into several
sub-trains with distorted phase relation at the observer. Probing the line shape as
a function of q by employing the Doppler shift when moving the source relative
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to the sample again leads to S(q, ω), just as with QENS, but here the scattering is
purely incoherent, also the accessible q lie on a sphere due to the fixed energy of
the nuclear transition. By far the most suited isotope for Mößbauer spectroscopy
is 57Fe, but this essentially limits its application to systems containing iron.
An advantage Mößbauer spectroscopy has over the other methods mentioned here
is that it is a tabletop technique, feasible in a small laboratory.

• Nuclear resonant scattering (NRS). This is in fact simply Mößbauer spectroscopy
in the time domain, it therefore in principle directly measures the incoherent inter-
mediate scattering function Is(q, t). Instead of a radioactive source it uses pulsed
synchrotron radiation, thanks to which measurements are much faster and can even
be done on a single atomic layer, but obviously it needs access to a synchrotron.

• X-ray photon correlation spectroscopy (XPCS). This is the method this thesis deals
with. In short, it correlates the temporal variation of the intensity scattered from
coherent synchrotron radiation at the sample. Contrary to Mößbauer spectroscopy,
nuclear resonant scattering and most implementations of QENS this yields the
coherent intermediate scattering function I (q, t). It is in principle not limited to
certain isotopes or elements, and it has a great potential for the future due to the
recent or imminent launch of new X-ray sources.

XPCS works directly in the time domain: it measures how fast the scattered intensity
fluctuates. Accessible times are in principle not limited, in practice the stability of the
beam allows measurements on the scale of tens of minutes or even an hour. QENS
and Mößbauer spectroscopy work in the energy domain, however. Slow processes
lead to narrow lines, so the limited experimental resolution dictates processes on
the order of nanoseconds or faster. Also NRS is limited to this range by the natural
lifetime of the excited state.1

Doing a scattering experiment essentially amounts to performing the spatial
Fourier transform of the scatterer density (electrons or nuclei, depending on the
method). The intermediate scattering function is therefore a natural way for describing
the results of experiments, as it describes the processes in reciprocal space.

3.2 Theory of Scattering

This section gives the fundamentals of scattering at a classical static system in
the kinematical approximation for electro-magnetic radiation and particles, see e.g.
Als-Nielsen and McMorrow [1] for a thorough treatment. An illustration of the
process is given in Fig. 3.1.

The electric field of a monochromatic plane electro-magnetic wave with angular
frequency ω and wave-vector �k is given in complex notation by

�Ei (�x, t) = �E0ei(�k �x−ωt). (3.2.1)

1 Quasi-elastic methods are therefore ideally suited for the measurement of phonons.



3.2 Theory of Scattering 23

Fig. 3.1 Illustration of
the quantities used for
describing the scattering
process. dV is the differential
scattering volume positioned
at �x0, �k and �k′ are the
wave-vectors of the incident
and outgoing radiation,
respectively, �q = �k′ − �k is
the wave-vector transfer

0

k
q

k

x0

dV

This oscillating field exerts a force on a charged particle with mass m and charge q,
located at position �x0,

�F(t) = �Ei (�x0, t)q = �E0qei(�k �x0−ωt). (3.2.2)

If the particle can be considered as free, i.e. if its eigenfrequency ω0 is much smaller
than the frequency of the incident radiation ω, this leads to a displacement of the
particle from its equilibrium position

�d(t) = − �E0q

mω2 ei(�k �x0−ωt) (3.2.3)

and therefore to a dipole moment

�p(t) = q �d(t). (3.2.4)

In Hertz’ theory the electric field at the position �x far away from such an oscillating
dipole at �x0 is given by an outgoing spherical wave

�Es(�x, t) = ω2

ε0c2

(
(�x − �x0)× �p(t)× (�x − �x0)

)

|�x − �x0|2 G(�x − �x0), (3.2.5)

where

G(�x) = eik|�x |

4π |�x | (3.2.6)

and k = |�k|. Computing the elastic far-field scattering into the direction �k′, that is
for large |�x | and �x ‖ �k′ with |�k′| = |�k|, this approximates to

�Es(�x, t) = q2

4πε0mc2

�k′ × �E0 × �k′

k2

ei(�k �x−ωt)

|�x | e−i(�k′−�k)�x0 . (3.2.7)
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This can immediately be generalized to an arbitrary number of scatterers, described
by their number density n(�x0). Defining �q = �k′ − �k and r0 = q2/4πε0mc2, the
magnitude of the field is essentially the Fourier transform with respect to �q of the
scatterer density

Es(�x) = r0 E0 sin(φ)
1

|�x |
(F(n))(�q) (3.2.8)

with φ the angle between �k′ and �E0; the direction of the field is the polarization of
the incident radiation projected onto the normal plane of the exiting radiation. When
scattering at electrons r0 = 2.82 × 10−15m is called the Thomson scattering length.

The equivalent problem for scattering of an incident flux of particles of mass m,
described by a wave function

ψi (�x) = ψ0ei�k �x , (3.2.9)

at a particle which interacts with the incoming particles via a potential
2π�2

m bδ(�x − �x0), with b the scattering length, is solving the time-independent
Schrödinger equation

(
− �

2m
�+ 2π�

2

m
bδ(�x − �x0)

)
ψ(�x) = Eψ(�x) = �

2�k2

2m
ψ(�x) (3.2.10)

or

(
�+ �k2)ψ(�x) = 4πbδ(�x − �x0)ψ(�x). (3.2.11)

Using the result that the fundamental solution for the Helmholtz operator

(−�− �k2)G(�x) = δ(�x) (3.2.12)

is an outgoing spherical wave

G(�x) = eik|�x |

4π |�x | , (3.2.13)

the solution to Eq. 3.2.11 is given by a perturbation to the incoming wave

ψ(�x) = ψi (�x)− ψi (�x0)4πbG(�x − �x0). (3.2.14)

In analogy to Eq. 3.2.7 the scattered part of the wave-function for scattering at one
particle can be written

ψs(�x) = −bψ0
ei�k �x

|�x | e−i(�k′−�k)�x0 , (3.2.15)
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and for scattering at a system of particles with number density n(�x0) it is given by
the Fourier transformation of n

ψs(�x) = −bψ0
ei�k �x

|�x |
(F(n))(�q). (3.2.16)

As for both photons and particles the probability density is given by the absolute
square of the electric field or wave-function, respectively, both Eqs. 3.2.8 and 3.2.16
lead to the number of photons/particles scattered into a given direction �k′ being given
by the Fourier transform of the scatterer density

(
dσ

d


)
(�k′) = σ

∣∣∣
(F(n))(�k′ − �k)

∣∣∣
2
, (3.2.17)

where the factor σ takes in the physics of scattering. From now on this factor (and
the influence of polarization) will be disregarded2 and the intensity as a function of
the wave-vector transfer be defined as squared modulus of the Fourier transform of
the scatterer density

I (�q) =
∣
∣∣
(F(n))(�q)

∣
∣∣
2
. (3.2.18)

Note that the number density of scatterers n(�x0) is equivalent to the description via
the spin operator σ in Sect. 2.3.

Here the scattered field was treated as a perturbation of the incident field. This is
called the first Born approximation or kinematical scattering. The physical situation
corresponds to the thin-sample limit, i.e. the path of the radiation through the material
is so short that the probability for a particle to be scattered multiple times (in the
particle view) is negligible. For the scattering of X-rays, this is normally fulfilled,
as the absorption cross section is orders of magnitude larger than the scattering cross
section, necessitating thin samples (from the point of view of scattering) in order
to have any photons exiting the sample. For other probes, e.g. neutrons, electrons,
or resonant γ -quanta, this is not the case and multiple-scattering effects can be
appreciable.

3.3 From Particles on a Lattice to Solid Matter

Two points need clarification in order to link experiments on real physical systems
to the results of Chap. 2, pertaining to the very simple, abstract system of particles
on a lattice: First, in real crystals there is not one kind of particle on a partly empty
lattice, but elements (with possibly different isotopes) and vacancies or interstitials,

2 Note, however, that at the ESRF both the incoming radiation is polarized in the horizontal
plane and scattering is mostly done in horizontal geometry. For small-angle scattering the effect is
negligible, but with a scattering angle of 45◦ the scattered radiation is reduced by a factor of two.

http://dx.doi.org/10.1007/978-3-642-24121-5_2
http://dx.doi.org/10.1007/978-3-642-24121-5_2
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and second, possibly the atoms do not sit exactly on the positions described by the
lattice (due to disorder and elastic interactions), and even the lattice itself can have
defects like dislocations.

For the first point a number of cases have to be considered: In a sample consisting
of only one atomic species an incoherent method sensitive to this element will
obviously measure the incoherent intermediate scattering function of this species.
Self-interstitials will not be visible at all (as their number is always very low), and
vacancies are also not directly visible, only through their effects: the atoms’ diffu-
sivity scales with the vacancies’ number, and they lead to correlated jumps (see
Sect. 3.5). A coherent method, however, will only see the vacancies or interstitials
(whichever is the dominant defect), that means, the situation corresponds to the one
in Sect. 2.3 with the particles being the vacancies (or interstitials). This is because
a coherent method computes the Fourier transform of the scatterer density, and the
constant background of the filled lattice only affects the (unmeasurable) Fourier
component for q = 0. The number of these defects is unfortunately always very low,
ruling out this kind of experiment with today’s sources.

If the sample is a solid solution of two or more elements, with incoherent methods
it is in principle possible to measure the incoherent intermediate scattering functions
of each constituent separately, either by using different incident radiation in the case
of Mößbauer spectroscopy or nuclear resonant scattering, or by preparing isotopically
different, but chemically identical samples for QENS. For a coherent method and
a sample consisting of two elements, it is of no consequence to which element the
status ‘occupied’ and to which the status ‘unoccupied’ in the setting of Sect. 2.3 is
assigned, as the difference again is only in the Fourier component for q = 0. The
case of the sample consisting of more elements is not within the scope of Sect. 2.3,
in this case it would be necessary to treat the interactions and correlations between
each two constituents separately.

If finally the sample is an ordered alloy, say an A-rich intermetallic with
AB-order, where the surplus A-atoms form structural antisites, incoherent and
coherent methods measure very different things: for an incoherent method sensitive
to the A-atoms the generic case of Sect. 2.2 applies, i.e. diffusion on distinct sublat-
tices with high weight of the A-sublattice and low weight of the A-atoms on the
B-sublattice. For a coherent method, however, the A-sublattice would be completely
invisible, as it is fully ordered (neglecting thermal defects) and therefore does not
contribute to the diffuse intensity. This case would therefore correspond to Sect. 2.3,
where the lattice is the B-sublattice and the particles are the structural A-antisites on
the B-sublattice.

The second point in the list requiring clarification was the influence of lattice
distortions and defects. In contrast to macroscopic methods such as radioactive tracer
experiments, the enhanced diffusivity in the vicinity of defects (dislocations, twins,
anti-phase boundaries in ordered alloys, or grain boundaries in the case of polycrys-
talline samples) normally does not influence the results. Tracer experiments measure
the average squared displacement, which can be dominated by the effect of defects.
Atomistic methods measure how fast correlations on atomic length scales decay on
average, and it therefore does not matter if a very small part of the atoms (the ones in
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the vicinity of the defects) have displacements on the order of thousands of the atomic
length scale. Such a situation would give in the intermediate scattering function two
decays with very different timescales, where the fast component has a weight on the
order of the volume fraction of the defect, rendering it invisible. Therefore atomistic
methods intrinsically measure the equilibrium bulk diffusivity, making the question
of sample preparation much less critical.

Concerning the effect of lattice distortions: these generally happen in the case
of disorder, i.e. if there are sublattices which are not exclusively occupied by one
element only. This breaks the symmetry of the underlying lattice, and due to elastic
interactions and relaxation the atoms will be displaced in relation to their ideal
geometric positions. For incoherent methods this results in the positions of the sublat-
tices rλ in Eq. 2.2.8 becoming a distribution, thereby smoothing the fluctuations of Is

at high q. Coherent scattering, however, is affected qualitatively by atomic displace-
ments: Take an A–B solid solution where the two elements have different sizes. The
neighbours of, say, a B-atom are displaced outwards from their average positions, the
neighbours of an A-atom are displaced inwards. Working out the scattering in a first
approximation, this means that a B-atom not only brings with it its distinct electron
density distribution at its position, but it also induces dipoles of electron density
at the positions of its neighbours, as their electron densities are moved outwards
relative to their mean position. This can be taken into consideration via the atomic
form factors, leading to a contribution to the diffuse intensity called displacement
scattering. Therefore ISRO(q) in Eq. 2.3.19, which is defined as the scattering due
to disorder, i.e. from point-like particles on an ideal lattice, is not directly accessible
in scattering experiments. For a review of the treatments of the connection between
the configuration of an alloy and its scattered radiation see Schönfeld [3].

3.4 Coherent and Incoherent Scattering

In Sect. 3.2 it was stated that the scattered intensity is the squared modulus of the
Fourier transform of the scattering length density of the sample. Picture now a system
of particles at the fixed positions Rn with the scattering lengths bn (for simplicity
assumed as real). The scattered intensity for a given q is

I (q) =
∑

n1,n2

bn1 bn2 ei(Rn1−Rn2 )q . (3.4.1)

Assuming the scattering lengths bn to be independent and identically distributed
random variables the expected value of the intensity is

〈
I (q)

〉 =
∑

n1,n2

〈bn1 bn2〉ei(Rn1−Rn2 )q =
∑

n1

〈b2
n1

〉 +
∑

n1 �=n2

〈bn1〉〈bn2〉ei(Rn1−Rn2 )q

=
∑

n1

b2
inc +

∑

n1,n2

b2
cohei(Rn1−Rn2 )q,

(3.4.2)
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where binc is termed the incoherent scattering length

binc =
√

〈b2
n〉 − 〈bn〉2 (3.4.3)

and bcoh the coherent scattering length

bcoh = 〈bn〉. (3.4.4)

Especially for neutron scattering, taking the expected value in Eq. 3.4.2 is exper-
imentally inadvertently realized by the averaging of the detector over a range of q,
therefore the detected intensity looks as if it was made up of a part scattered coher-
ently at the particles (showing the correlations in the positions) with a scattering
length per particle bcoh and of a part scattered incoherently (no angular variations)
with a scattering length per particle binc.The derivation presented here shows that the
scattering itself is obviously coherent, but that the deviations of the actual scattering
lengths from the mean value average out of the cross terms, leading to dispropor-
tionally higher self terms and apparent incoherent scattering. This is very relevant
for neutron scattering, as elements can consist of different isotopes or have different
spin states, both effects lead to different scattering lengths for atoms which are chem-
ically identical and therefore randomly distributed. Consequently the correlation
function probed by QENS is a sum of a coherent and incoherent part (corresponding
to pair- and self-correlation function, respectively), with the weights depending on
the isotopic composition.

X-rays, however, are not scattered at the nuclei, but at the electrons. In this case
there is a one-to-one correspondence between the scattering length density and the
chemical configuration, and XPCS is therefore an entirely coherent method.

3.5 Correlated Jumps

In Chap. 2 the temporal evolution of the sample was assumed to be described by
a Markov process. Specifically the successive jumps of a particle were assumed
to be independent. In the case of solutes hopping from one interstitial site to the
next, as it is the case with small atoms like hydrogen, this is a valid assumption.
In the overwhelming number of metallic systems where diffusion is mediated by
vacancies, however, this does not hold any more. The reason is that the equilibrium
concentration of vacancies is always very small, therefore after one atom has moved
into a vacancy, there is now a vacancy behind it, leading to a jump probability higher
than on average (and with a tendency to reverse the jump) and thereby breaking the
Markovian assumption.

In the limit of a vanishing vacancy concentration there is a solution to this problem,
the so-called encounter model [2]. As the timescale of the successive jumps of a
particle effected by one vacancy becomes separated from the timescale between the
encounters of a particle with different vacancies, it becomes possible to treat these

http://dx.doi.org/10.1007/978-3-642-24121-5_2
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two stages separately. First the probabilities for the effective displacements after
one encounter are calculated, this can be done by numerical solution of analytical
expressions with arbitrary precision [4]. Apart from the encounters where the effec-
tive displacement is zero, the fraction of which is approximately given by the inverse
of the coordination number, a few percent of the encounters lead to displacement
outside of the nearest-neighbour shell. These effective displacement probabilities are
then used with the theory of Chap. 2.

A high degree of order can be another reason for correlated jumps. In an ordered
alloy the vacancy has to choose its way in compliance with the requirement of keeping
the degree of order. This will be treated in greater detail by means of an example
in Sect. 4.2.

3.6 Theory of XPCS

In this section I will work out how one measures the coherent intermediate scattering
function (and thereby the pair-correlation function) in an XPCS experiment. For a
more extensive treatment see Sutton [5] and the references therein.

The intensity-intensity auto-correlation function is defined by

G(2)(q,�t) = 〈I (q, .)I (q, .+�t)〉, (3.6.1)

its normalized version reads

g(2)(q,�t) = 〈I (q, .)I (q, .+�t)〉
〈I (q, .)〉2 . (3.6.2)

As in Sect. 2.3 the scatterer density is denoted by σ(x, t) and its Fourier transform
(the amplitude) by A(q, t). With the definition of I (q, t) in Eq. 3.2.18 G(2)(q,�t)
reads

G(2)(q,�t) = 〈
Ā(q, .)A(q, .) Ā(q, .+�t)A(q, .+�t)

〉

=
〈∫

dx1 . . . dx4σ(x1, .)σ (x2, .)σ (x3, .+�t)

σ (x4, .+�t)eiq(x1−x2+x3−x4)
〉

=
∫

dx1 . . . dx4
〈
σ(x1, .)σ (x2, .)σ (x3, .+�t)

σ (x4, .+�t)
〉
eiq(x1−x2+x3−x4). (3.6.3)

This four-point correlation can be simplified under the assumption that the corre-
lations decay sufficiently fast, i.e. there exists a length ξ such that for distances
|�x| 	 ξ the correlations have decayed to zero for practical purposes. In particular
this assumption implies that the correlation functions factorize:
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〈
σ(x1, t1)σ (x2, t2)

〉 = 〈
σ(x1, t1)

〉〈
σ(x2, t2)

〉
for |x1 − x2| 	 ξ (3.6.4)

Now I split the domain of integration into four sets:

V12;34 := {
(x1, x2, x3, x4) ∈ (

R3)4∣∣|x1 − x2| < ξ ∧ |x3 − x4| < ξ
}
,

V14;32 := {
(x1, x2, x3, x4) ∈ (

R3)4∣∣|x1 − x4| < ξ ∧ |x3 − x2| < ξ
}
,

V13;24 := {
(x1, x2, x3, x4) ∈ (

R3)4∣∣|x1 − x3| < ξ ∧ |x2 − x4| < ξ
}
, (3.6.5)

and V ′ the complement of the union of those.
For points in V ′ there is obviously an i such that xi is distant from the other

three x j , so by the four-point analogon of Eq. 3.6.4 the expected value of the four-
point product in Eq. 3.6.3 can be split into the product of the expected value of a
product of three and the expected value of σ(xi , .), which is a constant, namely the
concentration. Performing the Fourier transform with respect to xi equates to 0 for
q �= 0, so V ′ need not be considered in Eq. 3.6.3.

For the contribution of V13;24 in Eq. 3.6.3. I make the substitution x3 = x1 +�x1
and x4 = x2 +�x2, again using factorization and the definition of G in Eq. 2.3.17
leads to

∫
dx1d�x1dx2d�x2G(�x1,�t)G(�x2,�t)eiq(2x1+�x1−2x2−�x2), (3.6.6)

which obviously again gives 0 for q �= 0 after integrating over dx1 or dx2.Therefore
only V12;34 and V14;32 need to be considered, by doing the appropriate substitutions
Eq. 3.6.3 reads

G(2)(q,�t) =
∫

V12;34

dx1d�x1dx3d�x3G(�x1, 0)G(�x3, 0)e−iq(�x1+�x3)

+
∫

V14;32

dx1d�x1dx3d�x3G(�x1,�t)G(�x3,−�t)e−iq(�x1+�x3).

(3.6.7)
As G(�x,�t) is constant for |�x| 	 ξ and for all�t, the integrations can be again
extended over the whole domain. With the definition of the coherent intermediate
scattering function this finally leads to

g(2)(q,�t) = I (q, 0)2 + I (q,�t)2

I (q, 0)2
= 1 +

(
I (q,�t)

I (q, 0)

)2

. (3.6.8)

In the literature this is often called the Siegert relation, which is normally written
via the normalized amplitude correlation function (or auto-correlation function of
first order)

g(2)(q,�t) = 1 + (
g(1)(q,�t)

)2
. (3.6.9)

http://dx.doi.org/10.1007/978-3-642-24121-5_2
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There are three points to be noted: First, the dividing of the domain of integration
into subdomains and the subsequent factorizations did not take into account that
there is a subdomain V1234 where all four xi are close. It is clear, however, that also
on V1234 the integrand in Eq. 3.6.3 is bounded and that the relative contribution of
V1234 to the integral in Eq. 3.6.3 becomes negligible when the size of the sample gets
much bigger than the correlation length ξ.

Second, in the above derivation the instantaneous intensity as the squared modulus
of the amplitude, which itself is given by the Fourier transformation of the scat-
terer density, is the quantity of interest. However, in the experiment this instanta-
neous intensity is detected in quanta, and in X-ray physics (contrary to most optical
measurements) this effect is not negligible, see Chap. 5. Given an instantaneous
intensity I (q, t), the number of photons detected in the time interval dt is a Poisson-
distributed random variable with expected value I (q, t)dt. Let now p(I1, I2) be the
joint probability distribution for the instantaneous intensities at a fixed q and at times
t1 and t2, and let p(n1, n2|I1, I2) be the joint probability distribution for the detected
number of photons at this times with given intensities I1 and I2. The crucial point
now is that for t1 �= t2 the quantization is uncorrelated, i.e. the probability distribution
factorizes:

p(n1, n2|I1, I2) = p(n1|I1)p(n2|I2) (3.6.10)

Therefore correlating the actual numbers of detected photons

〈n1n2〉 =
∫

dI1dI2 p(I1, I2)

∫
dn1dn2 p(n1, n2|I1, I2)n1n2

=
∫

dI1dI2 p(I1, I2)

∫
dn1 p(n1|I1)n1

∫
dn2 p(n2|I2)n2

=
∫

dI1dI2 p(I1, I2)I1 I2(dt)2

= 〈I1 I2〉(dt)2 (3.6.11)

is equivalent to correlating the instantaneous intensity, justifying Eq. 3.6.1.
Third, in actual experiments the incoming wave is not an ideal flat, monochromatic

wave and the detector has a finite aperture, which can be pictured as if the sample is
illuminated by a number of plane waves with no phase relation and therefore with
no interference effects on accessible timescales between them. This leads to a partial
washing-out of the interference pattern, which is treated in detail in Sect. 6.2. The net
effect is just that the magnitude of the term in the measured auto-correlation function
due to interference is diminished:

g(2)(q,�t) = 1 + β

(
I (q,�t)

I (q, 0)

)2

, (3.6.12)

where β < 1 is the so-called coherence factor.
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Chapter 4
Characteristics of Diffusion
in Selected Systems

This chapter presents the systems which we have either measured in the course of
this thesis (see Chap. 7) or are planning to measure. Each system also serves as a
prototype to discuss general aspects of solid-state diffusion.

4.1 An Open System: SixGe1−x with the Diamond Lattice

The semiconductors Si and Ge (and also C under special conditions) crystallize in the
diamond lattice. This lattice is not a Bravais lattice; it can be constructed from two
face-centred cubic lattices translated with respect to each other by [1/4, 1/4, 1/4],
therefore there are two crystallographically inequivalent sites in the primitive cell,
see Fig. 4.1. Another way to obtain this lattice is to imagine a 2×2×2 cubic supercell
of the body-centred cubic lattice and to take out every other bcc cell. This does not
change the nearest neighbour-distance, so the volume fill factor drops by a factor of
two compared to the bcc lattice. This large free volume is already an indication why
metals do not crystallize in the diamond lattice as a metal tends to pack its atoms
as close as possible without significant overlap of the inner shells. Such a reasoning
does not hold, however, for the semiconductors with their covalent bonds, rather the
diamond lattice leading to to the sp3-hybridization is the natural choice here.

The large free volume also affects the diffusive behaviour of the atoms: contrary
to metals, where it is commonly accepted that vacancies are indispensable for self-
diffusion, here also diffusion mechanisms based on self-interstitials are conceivable.
The relevant mechanisms are therefore

• the vacancy mechanism: This is just the mechanism which is generally thought to
be responsible for self-diffusion in metals—a vacancy hops through the crystal,
which leads to nearest-neighbour jumps of the atoms.

• the interstitial mechanism: This means that diffusion happens via jumps of self-
interstitials from one interstitial site to the next. Contrary to metals this mechanism
is plausible in the diamond lattice as here first there is free volume, therefore a
self-interstitial is not prohibitively costly in energy, and second the interstitial sites
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Fig. 4.1 The cubic cell of the
diamond lattice. The distinct
shades of the atoms denote
the two crystallographically
inequivalent but chemically
equivalent sites

are interconnected with a distance between them equal to the nearest-neighbour-
distance of the regular sites.

• the interstitialcy mechanism: This mechanism also relies on self-interstitials, but
contrary to the former mechanism here an atom does not jump from interstitial site
to interstitial site until it is eventually incorporated again into the crystal, rather an
interstitial atom pushes one of its neighbours away and occupies its site, with the
pushed-out atom now residing on another interstitial site.

Si and Ge are chemically very similar, therefore the ordering energies in a
Si–Ge compound are very small (below 1 meV due to de Gironcoli et al. [7]). If
one also assumes the dynamical behaviour of the constituents in a Si–Ge solid solu-
tion to be equal—which is not necessarily the case due to the affinity of the vacancies
to Ge [22]—the pair-correlation function becomes equivalent to the self-correlation
function as the interaction potential in Eq. 2.3.15 vanishes. Therefore a coherent scat-
tering method on a Si–Ge sample measures the same thing as an incoherent method
on an elemental sample. Consequently I will confine myself to the elemental case
from now on.

An illustration of the vacancy mechanism is given in Fig. 4.2. As the vacancy
migrates through the crystal the atoms perform nearest-neighbour jumps from one
sublattice to the other (apart from correlation effects as described in Sect. 3.5). There-
fore the decay of the intermediate scattering function will be given by two exponen-
tials in the non-degenerate case.

The interstitial mechanism is illustrated in Fig. 4.3. An atom goes to an interstitial
site, performs a large number of jumps, and is eventually incorporated into the crystal
again. This leads to large effective displacements with an approximately isotropic
distribution.

http://dx.doi.org/10.1007/978-3-642-24121-5_2
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Fig. 4.2 The vacancy
diffusion mechanism.
The cube denotes
the vacancy

Fig. 4.3 The interstitial
diffusion mechanism. The
light grey spheres are the
interstitial sites temporarily
occupied by the diffusing
atom

For the interstitialcy mechanism note first that just as the crystal is made up of two
sublattices α1 and α2, also the interstitial sites can be classified into two sublattices
β1 and β2. This can be most easily seen by constructing the diamond lattice from
the bcc lattice and leaving out every other bcc cell, because then it is obvious that
the interstitial sites can be obtained by translating the regular sites by half of a cubic
translation vector. Inspecting Fig. 4.4 shows that the nearest-neighbour interstitial
sites to an atom sitting on α2 belong exclusively to β1 and vice versa. This holds
also for α1 and β2. Therefore in the interstitialcy mechanism an atom starting out



36 4 Characteristics of Diffusion in Selected Systems

Fig. 4.4 The interstitialcy
diffusion mechanism. The
light grey spheres are the
interstitial stepping stones
occupied by the diffusing
atoms

from one sublattice will always end up on this sublattice again, more specifically the
effective exchange vectors are the 12 nearest-neighbour vectors of the face-centred
cubic lattice. So even though the diamond lattice is no Bravais lattice, the intermediate
scattering function decays with a single exponential, because there is no flux between
the two sublattices.

Concluding one can expect to be able to comfortably discern between the various
mechanisms by means of the incoherent (or equivalently coherent) intermediate scat-
tering functions measured for different positions in reciprocal space: the interstitial
mechanism would show no variations in the decay time as a function of the posi-
tion in reciprocal space apart from a parabolic form at very small scattering angles
(which would allow to determine the average length of the effective translations),
the interstitialcy mechanism would have constant intermediate scattering functions
(i.e. infinite decay times) at the Bragg reflections of the face-centred cubic lattice
which are forbidden in the diamond lattice, and the vacancy mechanism would show
a two-component decay corresponding to nearest-neighbour jumps.

4.2 A Triple Defect System: Ni-Rich B2 NiAl

B2 NiAl is a very well-ordered system. This is because for a stoichiometric compo-
sition certain defects are very costly in configuration energy: both a vacancy on
the Al-sublattice and an Al-atom on the Ni-sublattice have an effective formation
energy equal to or more than 2 eV [20]. This excludes thermal Schottky defects or
antisite pairs. The dominant thermal defect therefore consists of three point defects:
a Ni- and an Al-atom leave their position and go to the surface, enlarging the crystal
by one unit cell, and another Ni-atom fills the resulting vacancy on the Al-sublattice,
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so effectively two Ni-vacancies and one Ni-antisite are created. This is called a triple
defect, costing a bit more than 2 eV [15, 20]. This scenario also holds for the Ni-rich
side, where the surplus Ni-atoms are accommodated as antisites on the Al-sublattice.
On the Al-rich side the situation looks different, however. As an Al-antisite is very
costly, the ground state has structural vacancies on the Ni-sublattice instead. Here
the dominating thermal defect is the creation of an Al-antisite with the concomitant
annihilation of two vacancies on the Ni-sublattice, an inverse triple defect of some
sort, leading to the counterintuitive feature of decreasing vacancy concentration with
increasing temperature [20].

This high degree of order with a thermal defect concentration less than 10−3 at
temperatures as high as 1300 K [15] imposes severe restrictions on the dynamics
in the system. The vacancy (or more general, the diffusion vehicle) has to choose
its path through the crystal so that the necessary disturbances of the order are only
temporary, it has to restore the order again upon leaving. In the following I will give
examples of such mechanisms for the Ni-rich case and show how these mechanisms
manifest themselves in the coherent and incoherent intermediate scattering functions
obtained by Monte Carlo simulations.

The fact that the vacancies are preferably located on the Ni-sublattice allows
for some preliminary observations to be made: as soon as enough Ni-antisites are
available the tracer diffusivity of Ni and Al will decouple as this enables the vacancies
to move by nearest-neighbour jumps via the Ni-antisites without disturbing the order.
Even without a significant number of Ni-antisites diffusion of Ni could happen via
next-to-nearest-neighbour jumps, i.e. jumps along an edge of the primitive cubic
cell. The activation energy for such a jump is with a value of about 2.5 eV quite high,
but as it induces no disorder and only needs one vacancy it cannot be excluded a
priori [21].

Both of the above processes only lead to Ni diffusion, however. Concerning Al
diffusion two mechanisms have been proposed:

• six-jump cycles [10]: a vacancy on the Ni-sublattice performs one of a number of
sequences of six nearest-neighbour jumps, where the latter three undo the disor-
dering caused by the former three, leading to a displacement of the vacancy, one
Ni-atom, and two Al-atoms.

• the triple-defect mechanism [26]: this mechanism involves a localized triple defect,
that is two Ni-vacancies and one Ni-antisite next to each other. Concerted nearest-
neighbour jumps of the two vacancies lead to the displacement of two Ni-atoms,
one Al-atom, and the defect, incurring only a low amount of additional disorder
during the transition.

In a six-jump cycle the vacancy moves along a path A → B → C → D → A →
B → C connecting nearest neighbours, where A and C are on the Ni-sublattice and
B and D on the Al-sublattice. After the six jumps have been executed the vacancy has
moved to the position C, the Ni-atom initially on C is now on A, and the Al-atoms
on B and D have exchanged place. After accounting for cubic symmetry there are
three possible choices of the path: in the so-called 〈110〉 cycle C is at a position
〈110〉 relative to A and B to D is therefore a vector 〈001〉 (this variant is illustrated
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A

B

C

D

Fig. 4.5 The 〈110〉 variant of the six-jump cycle. The small atoms are Ni, the large Al, and the
vacancy is the cube. On the left is the initial state, in the middle the intermediate configuration
corresponding to the maximum in energy along the transition path, on the right the final state

Fig. 4.6 A triple-defect jump as it is commonly pictured with the initial state on the left, final state
on the right. Note that the actual initial and final position of the moving vacancy is inconsequential

in Fig. 4.5), the straight 〈100〉 cycle has A and C displaced by 〈100〉 and B and D by
〈011〉, and the bent 〈100〉 cycle again has A and C displaced by 〈100〉, but B and
D by 〈010〉. Straight and bent refers to whether the path lies in a plane or not. It is
commonly accepted that the 〈110〉 cycle is the energetically most favoured variant
with a saddle point energy slightly smaller than 3 eV [17, 21].

It has been stated above that the triple defect is commonly thought to be the
dominant thermal defect in stoichiometric and Ni-rich NiAl. The triple defect mech-
anism as illustrated in Fig. 4.6, however, needs the three point defects to be located
on neighbouring sites. At low defect concentrations (as it is the case in NiAl) this
obviously lowers the entropy by a large amount compared to the free case, or equiv-
alently the instances where the three defects are in a position so as to initiate a move
are very rare. Xu and Van der Ven [28] give quantitative results where they show that
there are favoured arrangements of the triple defect leading to a higher concentration
compared to the mean-field result (i.e. neglecting interactions), although they still
stay rare. Once there is a localized triple defect, however, its migration energy is only
slightly larger than 1 eV.

The question of chemical diffusion necessitates further considerations: In any
real sample the dominant defects will be of structural nature due to the inevitable
off-stoichiometry as opposed to thermal defects. In the Ni-rich case this means that
the number of structural Ni-antisites will be much higher than the number of thermal
vacancies, let alone localized triple defects. The elementary event of chemical diffu-
sion is therefore the exchange of the occupation of two Al-sites: one Ni-antisite
becomes Al, and one Al becomes a Ni-antisite. Note that it is advisable to think in
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Fig. 4.7 The elementary event of chemical diffusion in the case of diffusion by the triple-defect
mechanism. A triple defect enters the neighbourhood of a Ni-antisite, the vacancies rearrange, the
triple defect formed with the encountered Ni-antisite leaves, resulting in the apparent translation of
the antisite to a neighbouring Al-site (highlighted)

a sufficiently coarse temporal resolution: picture a localized triple defect diffusing
through the crystal with a very small off-stoichiometry. After each step the triple
defect’s Ni-antisite occupies a different Al-site, but these are not events of chemical
diffusion, because even if one triple defect makes an arbitrary number of steps, the
overwhelmingly larger number of structural Ni-antisites is not affected. For chemical
diffusion to happen, that is for the arrangement of structural Ni-antisites to change,
it is necessary that the triple defect enters a neighbouring cell of a Ni-antisite, the
vacancies change over to the encountered Ni-antisite forming again a localized triple
defect, and that this new triple defect diffuses away, leaving the Ni-atom the former
triple defect brought with it stranded on an Al-site (see Fig. 4.7). Such a change-
over of the vacancies corresponds to the elementary event of chemical diffusion.
An analysis of the possible apparent translation vectors will be given below.

The existence of structural Ni-antisites in a concentration greater than the concen-
tration of thermal defects also has an effect on diffusion via the six-jump cycle which
apparently has not yet been treated in the literature: it can lead to what I will call the
4 + 2-jump mechanism (pictured in Fig. 4.8). Start with a vacancy which has exactly
one Ni-antisite among its eight nearest neighbours. Let this vacancy initiate a six-
jump cycle where the Ni-antisite is on the position D of the path in the above notation.
After the second jump of the vacancy, however, with an Al- and a Ni-antisite created,
the next two jumps of the vacancy again restore the order. The vacancy can now reach
any of the seven other Ni-neighbours of the Ni-antisite via two nearest-neighbour
jumps without producing disorder. Again it has a Ni-antisite as a nearest neighbour
and can therefore start the next four-jump cycle. Just as in the case of the triple-
defect mechanism a more complicated defect (involving more point defects) enables
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Fig. 4.8 The 4 + 2-jump mechanism. The jumps leading to the movement of the defect are in the
upper row, the lower left shows the setting-up for the next jump

a diffusion path with a smaller migration energy, but here the second point defect
is not thermal but structural and therefore available in much greater concentrations:
already in Ni51Al49 15% of the vacancies have at least one Ni-antisite among their
nearest neighbours in the mean-field approximation. Calculations of the migration
energies of the 4 + 2-jumps would be desirable. Chemical diffusion effected by the
4 + 2-jump mechanism works analogously as in the case of the triple-defect mecha-
nism: a vacancy and a Ni-antisite arrive in the neighbourhood of another Ni-antisite,
the vacancy changes over and leaves with the second Ni-antisite.

For the cases of both the triple-defect mechanism and the 4 + 2-jump mechanism
the elementary event of chemical diffusion is given by a defect’s vacancies deserting
the Ni-antisite they came with and forming a new defect with another Ni-antisite.
When this new defect leaves the vicinity, the Al-site formerly occupied by Ni becomes
occupied by Al. The Al-antisite therefore apparently jumps in the reverse direction the
vacancies took. The flow of the vacancies can already happen when the Ni-antisites’
coordination cubes share only a corner. It is therefore plausible that the apparent
Ni-antisite jumps are along 〈100〉, 〈110〉, and 〈111〉. Correlation effects as in the
encounter model (see Sect. 3.5) will yield contributions from farther jumps. This
makes an analytic calculation of the probabilities of the respective jumps infeasible,
I will instead present results from simulations below.

The case presented above was for a small off-stoichiometry: defects diffuse far
before they encounter a Ni-antisite, the vacancies exchange, and the new defect
diffuses away. Once the off-stoichiometry gets larger, however, the Ni-antisites
become interconnected. The relevant percolation threshold is at around 10% of
Al-sites occupied by Ni [9] (R. Ziff private communication), that is a Ni-concentration
of 55% neglecting thermal defects. If the diffusing defect now encounters a cluster
of Ni-antisites, it can exit far from where it entered. In the extreme case where
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Fig. 4.9 Weights of the apparent exchange vectors of chemical diffusion for the triple-defect mech-
anism (left) and the 4 + 2-jump mechanism (right) as a function of Ni-concentration x: 〈100〉 is red,
〈110〉 green, 〈111〉 blue, and farther jumps pink

practically each Ni-antisite belongs to an infinite cluster the analysis of the apparent
displacements becomes easy: the vacancy diffuses through the cluster (or the vacan-
cies diffuse independently through the cluster and meet somewhere in the case of
the triple-defect mechanism), it makes one 4-jump cycle (or a triple-defect jump)
and it diffuses away via the Ni-antisites. As a consequence in this case the apparent
displacements are equal to the actual displacements of the Ni-atoms, i.e. 〈100〉-jumps
as is commonly accepted.

Monte Carlo simulations show that above considerations are qualitatively correct:
the relative weights of exchanges into the first seven shells of Al-sites are given in
Fig. 4.9 as a function of Ni-concentration x for both processes, where the shells four to
seven are combined for simplicity. Further jumps can be neglected. The simulations
used a box of 32 × 32 × 32 B2-cells. They were run in the limit of low temperature
(as is appropriate for NiAl): there were no thermal defects apart from either one or
two vacancies (depending on the mechanism). Energetical interactions between the
defects were not considered, i.e. no short-range order was present. The vacancies
could either make nearest-neighbour jumps onto sites occupied by Ni or perform the
correlated jump sequence (if allowed by the configuration of the vacancies in the
case of the triple-defect mechanism). For the triple-defect mechanism the attempt
frequency for a valid nearest-neighbour jump sequence via a Ni-antisite was more
probable than for a valid correlated jump by a factor of 100, for the 4 + 2-jump
mechanism by a factor of 1,000. This does not mean that there were 100 antisite jumps
per triple-defect jump, rather there were much more, as for higher x the vacancies
were only very rarely in a configuration allowing a correlated jump, being dispersed
over a cluster. This was the reason why the triple-defect mechanism was simulated
only up to a Ni-concentration of x = 55%, higher x would need much more CPU
time. For the 4 + 2-jump mechanism, however, the ratio of performed jumps is in first
order equal to the ratio of attempt frequencies.

The results in Fig. 4.9 show that the weights of the apparent exchanges into the
first three shells are of the same order of magnitude for small off-stoichiometry, but
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Fig. 4.10 Tracer diffusivities
of Ni (red) and Al (blue) for
both the 4 + 2-jump
mechanism (solid lines) and
the triple-defect mechanism
(dashed lines) normalized by
the chemical diffusion
constant
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exchanges into further shells also contribute. For Ni-concentrations x larger than 55%,
where more and more Ni-antisites belong to an infinite cluster, the exchange along
〈100〉 dominates. They also show that the two mechanisms do not significantly differ
in the weights of the apparent displacements. This becomes easily understandable if
one considers the defect as an abstract entity irrespective of its actual configuration.
Both the triple defect and the bound vacancy-antisite pair of the 4 + 2-jump mech-
anism contain one Ni-antisite. Let the position of the abstract defect on the lattice
be given by the B2-cell in which the Ni-antisite is located. The defect can move
along 〈100〉-directions by a correlated jump sequence, displacing one Al-atom in the
opposite direction. If one of the 26 Al-sites next to the defect is occupied by a struc-
tural Ni-antisite, the defect can migrate to this position by nearest-neighbour jumps
of Ni. If the probability for this migration over Ni-antisites is much higher than for
the jump sequences (as will be the case due to both energy and entropy) each posi-
tion in the cluster of Ni-antisites will be equally probable as a starting point for the
next correlated jump sequence. In this abstract description the actual configuration
of the defect was not mentioned, so they are equivalent from the point of chemical
diffusion. Needless to say, energetical interactions between the point defects would
disturb the equivalence.

Even though the two mechanisms do not differ in the chemical diffusion they
promote (i.e. the pair-correlation of the system), the self-correlation is distinct.
Figure 4.10 shows the tracer diffusivities normalized by the chemical diffusion
constant for both constituents and both mechanisms. The diffusivity of Al is very
similar for both processes, which can be understood by an argumentation as in the
last paragraph. Ni, on the other hand, diffuses much faster under the triple-defect
mechanism than under the 4 + 2-jump mechanism. This is mostly due to the fact
that the two vacancies will shuffle the seven Ni-atoms touching the cube of the triple
defect very effectively by a succession of two nearest-neighbour jumps as pictured in
the right top panel of Fig. 4.7. Once the percolation threshold at x = 0.55 is reached
the diffusivity of Ni is bounded only by the size of the simulation box due to the
calculation of the self-correlation function as implemented here.
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Concluding it seems that it is impossible to decide between diffusion mechanisms
by a coherent scattering experiment alone. Combining such measurements with a
determination of the tracer diffusivities or comparing the vacancy concentration as
a function of composition with the measured chemical diffusivities should allow to
decide, however.

4.3 A Short-Range Ordered System: Cu90Au10

Cu–Au is a classical system in metal physics. For one it exhibits the prototypical
examples of the L10- and the L12-phases with CuAu and Cu3Au, respectively, it has
provided the inspiration for the Bragg–Williams model of long-range order [2] and
its refinement by Shockley [25] to include nearest-neighbour interactions, thereby
laying the groundwork for the treatment of disorder in alloys as it is nowadays done
by cluster expansion, and also the quantitative description of short-range order by
Cowley [6] was introduced for measurements on this system, to name just a few
fundamental contributions to physics.

The aspect I want to treat here is the influence of the short-range order on the
atomistic dynamics. Due to Massalski [18] the solubility of Au in Cu exceeds 10 at.%
for all temperatures where equilibration is experimentally feasible, but the proximity
of the L12-phase of Cu3Au at low temperatures suggests the emergence of short-
range order. This is proven by the experimental investigations of Schönfeld et al. [24]:
in Cu90Au10 at 573 K short-range order, but no long-range order is found. Specifically
the probability for a given nearest-neighbour site of a Au atom to be occupied by Au
is only 2% compared to the mean-field value of 10%, the probability for a 〈100〉-Au
neighbour is 17% on the other hand. Correlations over longer ranges are already
very weak. As expected, these deviations from the mean-field value correspond
qualitatively to the occupations in the L12-phase.

As the Cu–Au alloy is a close-packed metal, the diffusion mechanism will be
ordinary nearest-neighbour jumps into vacancies. The influence of short-range order
on the coherent intermediate scattering function was treated in Sect. 2.3 in the high-
temperature limit. In order to explore the range over which the high-temperature
limit is applicable and to qualitatively investigate what happens outside this range I
conducted simulations.

The stochastic simulation of the trajectory of a system through configuration space
is commonly known as Monte Carlo simulation. The necessary ingredients for such
a simulation are an initial configuration and a rule specifying the transition rates
for the system to change from one configuration to the next. For simulations on a
discrete timescale these rates can equivalently be given as the transition probabilities
per unit time. When simulating static equilibrium properties the only requirement
on the transition rates is that they fulfil detailed balance, in fact this is also a suffi-
cient requirement for the system to converge to thermodynamic equilibrium provided
the configuration space does not decompose into unconnected domains. Among the
abundance of rules the Metropolis rule [19] is the most popular. For the simulation of
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Fig. 4.11 Sketch of the
energy landscape
corresponding to the
Metropolis rule (red) and
the midpoint rule (blue)
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dynamics, however, the set of possible transitions and their respective probabilities
should mirror the physical model. When simulating vacancy diffusion, for example,
one would only allow nearest-neighbour jumps of the vacancies. The transition prob-
abilities are in most investigations given by the energetical difference of initial and
final state via the Metropolis or Glauber [12] rule. From classical transition state
theory it follows, however, that the energy difference between the initial state and
the saddle point of the transition path in the energy landscape governs the transition
probabilities via the Boltzmann factor (as in Sect. 2.3), with an additional entropy
contribution from the fact whether the saddle point in the energy landscape is wide
or narrow [27].

The Monte Carlo simulations to be reported in the following were done with two
choices for the transition probabilities: Denote the energies of the initial state and
the final state with Ei and E f , respectively. The probability for transition from
the initial to the final state within the unit time interval is then proportional to
e−�E/kB T , where �E is the difference of the energy of the saddle point config-
uration and the energy of the initial configuration Ei , given by

• the Metropolis rule: �E = E0 + max(E f − Ei , 0) or
• the midpoint rule: �E = E0 + (E f − Ei )/2.

An illustration of the energy landscapes along the path of the vacancy corre-
sponding to these rules for given energies of the stable positions is shown in Fig. 4.11.
Note that a rule yielding the Glauber probabilities from the Boltzmann factor of a
saddle point energy cannot be devised as this energy would have to be temperature-
dependent, in fact the Glauber probabilities converge to the Metropolis probabilities
for low temperatures and to the midpoint probabilities for high temperatures.

The simulations were done for an Ising model inspired by the short-range ordered
solid solution Cu90Au10 as investigated by Schönfeld et al. [24]: the system was a
face-centred cubic lattice occupied by 90% A-particles and 10% B-particles and one
vacancy. Interactions between the particles were considered for the first two shells,
with the respective effective interaction energies J and −0.256J (this corresponds
to the ratio between the experimental values of V110 and V200), the vacancy was not
considered to interact.

http://dx.doi.org/10.1007/978-3-642-24121-5_2
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Fig. 4.12 Correlation time τ as a function of q for the Metropolis rule (red), midpoint rule (blue),
and theoretical expression (green). Upper panel for medium temperature, lower panel for low
temperature. Path through reciprocal space on the Brillouin zone of the face-centred cubic lattice
on the right

The resulting fitted decay times of the coherent intermediate scattering function
are given in Fig. 4.12. For a temperature of kB T = 2J the decays could be well
described by exponential decays and the approximations of Sect. 2.3 seem to hold:
the simulations with the two transition rules agree very well with each other and with
the value predicted by Eq. 2.3.21. At a temperature of kB T = J (with the energies
of Cu90Au10 this corresponds to 530 K) short-range order is much stronger (visible
in the more pronounced features of τ(q)), the decay shows deviations from a single
exponential (not shown), and when fitting with a single exponential the fitted decay
times display systematic deviations both from the theoretical value and between the
two models. This demonstrates that the pair-correlation function (and equivalently the
coherent intermediate scattering function) of a short-range ordered system is sensitive
to the relationship between the local atomic configuration and the transition frequen-
cies. Here the saddle-point energies (and therefore the transition frequencies) were
modelled only as a function of the energy of the initial and the final configuration,
but there are endeavours to calculate these energies from first principles for arbi-
trary local neighbourhoods of the jumping atoms (e.g. Ramanarayanan et al. [22]).
As much as so-called ab-initio computations are accepted today, in the majority of
these investigations the energy of stable (or even ground-state) configurations is the
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quantity of interest. Such quantities can also be verified conveniently in the exper-
iment. Configurations along the jump path, however, cannot be examined by static
experimental methods, as a given atom is only a negligible amount of time involved
in a jump. Measurements of the coherent intermediate scattering function therefore
seem to be the only possibility for experimentally verifying such calculations. This
is not an irrelevant point as algorithms (or pseudopotentials) accepted to work for
stable configurations a priori need not work for configurations far from the energetical
minimum.

4.4 A Model of an Amorphous System

Up to here this thesis dealt with diffusion in crystalline systems. Now I want to
go beyond these limits and consider diffusion in amorphous media. This is a really
bustling field, especially in the XPCS-community, where the vast majority of publica-
tions report experiments on soft condensed matter (mostly gels or colloidal glasses).
This is probably due to the fact that these systems scatter strongly in the small-
angle regime, allowing such experiments to be performed without much effort. It has
been proposed (and it is now widely accepted) that the dynamics observed in all these
systems conform to a universal principle [5], which has been termed “jamming” [16].

The other main direction of approach to this problem is via computer simulations.
There is a number of works which simulate a glass-forming system with various
choices of the underlying dynamics [1, 13]. Mostly these are model systems with
Lennard-Jones-potentials or, even simpler, hard-sphere potentials. The results from
these simulations is by default presented in terms of the incoherent intermediate
scattering function. This is motivated by the claim that in a colloidal glass with
a polydispersity in the refractive indices of the particles it is in principle possible
to study the incoherent intermediate scattering function by (X)PCS. This can be
achieved by choosing the refractive index of the medium equal to the mean refractive
index of the particles, with an argumentation as in Sect. 3.4 the coherent scattering
cross section of the particles is then equal to zero. I think another reason for only
considering the self-correlations is that it is much harder to obtain good statistics for
the coherent intermediate scattering function than for the incoherent intermediate
scattering function. For a metallic glass, which I will treat in Sect. 7.4, there is no
medium allowing to tune its refractive index, which necessitates a description via
the coherent intermediate scattering function.

In order to obtain the coherent intermediate scattering function I conducted simu-
lations on a model system. I used the binary mixture of hard spheres proposed by
Brambilla et al. [3] with 1,024 particles and periodic boundary conditions. In order
to prevent crystallization the particles have different sizes, one half has a radius a
factor of 1.4 larger than the other half. The system evolves by Monte Carlo algorithm
invented by Metropolis et al. [19] and revived by Berthier and Kob [1], but contrary
to these works I use isotropic dynamics by drawing the particle displacements from
a sphere as opposed to a cube. The invariance of the position of the centre of mass
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Fig. 4.13 Coherent
intermediate scattering
function in the structure peak
(solid red). For reference
also compressed exponential
decays exp(−(�t/τ)γ ) are
given, with γ = 1 (dashed
blue) and γ = 2 (dotted
green)
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is enforced. The resulting coherent intermediate scattering function (assigning the
same scattering cross section to both kinds of particles) evaluated in the structure
peak with a volume fill factor of 0.59 is given in Fig. 4.13. The timescale is given
in Monte Carlo steps, where one MCstep means 1,024 attempted particle moves
(on average each particle has the possibility to move once).

From this figure it seems that the late stages of relaxation can be well fitted by an
exponential decay; if one wanted to fit the relaxations on a wider range of timescales
one would have to use the form of a stretched exponential. This is also plausible,
as the superposition of independent relaxations on different timescales (each given
by a proper exponential) leads naturally to a stretched exponential. The quantitative
evaluation of Kob and Andersen [14] gives stretching parameters γ on the order
of 0.8. No indication for compressed exponential decays can be inferred from the
simulations presented here or from most other works, only recently such decays seem
to have been observed when doing simulations with many-body potentials [8, 23].

Resuming the review of directions of research into amorphous media, it has to
be stated that besides the great amount of experimental work and computer simu-
lations the theoretical treatments seem to be lacking. I am not aware of a funda-
mental explanation of the fact that upon entering the jamming regime the correlation
functions start to display a form which is commonly fitted with compressed expo-
nentials [11]. The fact that such compressed exponentials are commonly encoun-
tered in experiments on diverse systems and never in simulations can give an
indication, however. There are two main differences between experiments and simu-
lations: The first is the question of accessible timescales. In a metallic glass a
particle explores its cage formed by the neighbouring particles within on the order
of 10−12 s (the inverse of the Debye frequency), whereas it leaves this cage after
about 103 s. In Fig. 4.13 it can be seen that the particles move on atomic distances
with a timescale of about 107 MCsteps, whereas the initial decay (not shown)
happens at about 10 MCsteps. The simulations presented here are in this aspect the
state of the art (the accessible timescales), see for example Berthier and Kob [1].
The other difference is the spatial scale: While simulations are restricted to a
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few thousand particles, in reality systems are much larger. It is standard proce-
dure in publications to claim that finite size effects are found to be negligible by
comparing the results from simulations using systems of differing sizes. It has been
proposed, however, that the universal dynamics in jamming systems are due to
relaxations on all lengthscales, leading to so-called heterogeneous dynamics [4].
This is plausible, since independent localized relaxations without memory lead
immediately to an exponential or even stretched exponential decay in time, but can
never cause compressed exponentials. It is obviously not possible to simulate such
processes in the foreseeable future with the present models, where each particle is
treated explicitly.
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Chapter 5
Data Evaluation

This chapter describes the steps taken in evaluating the data obtained in an XPCS
measurement. It aims to be both methodologically thorough and helpful to the reader
in reproducing the work presented here, it will therefore be very detailed.

The principal problem is the following: the scattered X-rays are detected with
a charge-coupled device (CCD), where one detected photon generates a droplet of
charge in a small number of adjacent pixels, for this process see for instance Miyata
et al. [2]. Additional charge is generated over time due to leakage current. This
chapter describes how to first detect as exactly as possible where each photon hit the
chip, and second how to compute the auto-correlation functions from these data.

Data evaluation is done via a suite of command-line programs written in C.
The parameters are specified via a common parameter file. The programs are:
evaluatedark for computing the dark current, hist for computing histograms
of the ADUs in a droplet, evaluatedroplets for converting droplets of gener-
ated charge to single photon events, and computeacf and computettacf for
computing the ordinary auto-correlation function and the two-time auto-correlation
function, respectively. The workings of these programs are described below. They
are available on request.

5.1 Raw Data Files

In an XPCS experiment one measures the number of X-ray photons scattered into a
given direction as a function of time. The time resolution needed is dictated by the
dynamics in the sample. For optimal statistical accuracy one would in principle want
the data of as many equivalent directions as possible, corresponding to many detec-
tors. This leads to a trade-off between many equivalent directions and good temporal
resolution: A fast read-out implies a low number of pixels both because of data
transfer limitations and because of the fact that fast detectors (such as avalanche
photodiodes) are much more complicated and therefore bigger than pixels on a
CCD, which are rather slow. For this thesis scattering in the diffuse regime was

M. Leitner, Studying Atomic Dynamics with Coherent X-rays, 51
Springer Theses, DOI: 10.1007/978-3-642-24121-5_5,
© Springer-Verlag Berlin Heidelberg 2012



52 5 Data Evaluation

investigated, entailing the need for a large number of pixels, which can only be
obtained with a CCD.

The raw data for a given measurement run consist of a sequence of frames, which
means that the electric charge built up in the distinct pixels on the camera’s chip
is read out every few seconds and stored in a sequence of files. With an exposure
time on the order of 10 s and a read-out time of about 1 s a run corresponds to about
500–1,000 frames. Contemporary CCD-cameras have on the order of 1,000×1,000
pixels. Multiplying these numbers shows that a measurement run can easily lead to
several GBs of data.

The CCD-cameras used within the scope of this thesis were

• a Princeton Instruments PI-LCX: 1,300 courtesy of Gerhard Grübel’s group at
HASYLAB, Hamburg. This camera has 1,340 × 1,300 pixels with a pixel size of
20 × 20 µm2.

• an Andor iKon-M camera provided by the beamline ID10A at the ESRF itself.
It has 1,024 × 1,024 pixels with a pixel size of 13 × 13 µm2.

These cameras were either controlled via Roper Scientific’s WinView program or
directly via spec, the software operating the beamline. Depending on the program
used for controlling the camera the data files use different formats:

• If controlled by spec, the data files use the .edf-format. This stands for ESRF
Data Format. It has an ASCII-header of 1,024 bytes giving details about the data,
after which the data are stored by the number of ADU (analog-to-digital units) for
each pixel, formatted in the machine’s native unsigned two-byte integer format.

• If controlled by WinView, the data files use the .spe-format. Here the header
length is 4,100 bytes and it is not human-readable, after that the data are saved as
with .edf-files.

Principally the two formats are equivalent if one does not read out the header:
after accounting for the different header lengths the same procedures can be used
for reading the data. The version of WinView used for the experiments, however,
normally would not write the frames immediately after reading out the camera,
it would rather read all the data into the memory and only write it to the hard disk
after the measurement run is finished. This is unacceptable due to memory restric-
tions and the possibility of crashes, fortunately Lorenz-Mathias Stadler succeeded
after consulting the manufacturers in installing a patch and writing a macro to allow
the immediate write-out.

The principle of a CCD-camera is that the incident photons excite electrons via
the inner photoelectric effect, these electrons are then read out and counted. For
XPCS direct-illumination CCDs are used, this means that the X-ray photons fall
directly onto the chip as opposed to being converted to optical photons via a phosphor
screen. Charge leakage, however, leads to the so-called dark current, i.e. a charge
is accumulated in the pixels and read out even in the absence of impinged X-ray
photons.

Figure 5.1 shows a 100 × 100 detail of a frame taken with the Andor CCD in
a pseudo-color display. The droplets of charge corresponding to single detected
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Fig. 5.1 Detail of a weakly
illuminated frame

photons are clearly discernible, only in the upper right corner there are two very
bright pixels where several photons have impinged. This is a frame fulfilling the
criterion of weak illumination, i.e. most of the pixels have no photon impinged
onto them.

5.2 Subtracting the Dark Current

For detecting photons in the generated charge in the CCD-chip first the background
has to be subtracted. Conventionally a number of dark frames (i.e. frames taken with
closed shutter) is taken, the average of which is saved as the dark file and subtracted
from each illuminated frame.

This thesis deals with diffuse scattered intensity, however, which leads to the data
frames being only weakly illuminated, therefore most of the pixels in a frame measure
only dark current also during the measurement. This fact was used for obviating
the need for dark frames by obtaining the background from the illuminated files:
A number of frames are read into memory, the number is chosen with respect to the
amount of memory available. Then for each pixel the median of the ADUs in this
pixel over all loaded frames is determined and the histogram of the ADUs in this
pixel, centred on the median, is computed, with one bin for each discrete value of
ADUs. The number of bins in this histogram needs to be only on the order of the
standard deviation of the dark current in this pixel, which is estimated first and can
be ascertained and, if necessary, adjusted afterwards. Two additional bins hold the
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Fig. 5.2 Dark files for both the Andor CCD (above) and the PI CCD (below), in each case mean
values (left) and standard deviations (right). The pseudo-colors are autoscaled, for values see text

values too high or too low to be added to the histogram. Then the frames left (if
there are any) are read and added to the histograms. Finally for each pixel the highest
and lowest N values are discarded and the mean value and the standard deviation
of the rest is computed, where N is a value chosen beforehand. A sensible choice
for N would be about 15% of the overall number of frames. If this recipe is not
possible because the number in either the “too low”- or the “too high”-bin is greater
than N, N is increased only for this pixel, but for sensible choices of N this can only
happen if the pixel is malfunctioning. The mean values and standard deviations are
written to darkmean.bin and darkstd.bin, respectively, in single precision
4-byte floating-point format, such that they can be viewed conveniently via fit2d,
ESRF’s standard 2d-file viewer.

The rationale for neglecting the highest N values is that the value for the dark
current should not be influenced by the charges due to X-rays, the lowest N values
are neglected for symmetry. As only a small number of pixels actually has additional
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Fig. 5.3 Distribution of the
deviations of the actual ADU
values from the mean for the
Andor CCD, fitted by a
Gaussian distribution. The
histogram is computed with
bins from −40 to 40 ADUs,
values outside of this interval
are assigned to the
extreme bins
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charge, the bias towards too high mean values should be small with this course
of action.

Dark files for both cameras are given in Fig. 5.2. Both CCDs were very new and
therefore in very good condition with no destroyed pixels, but in previous small-angle
scattering experiments they obviously had already been over-exposed, resulting in
local damages to the silicon chip and therefore increased dark current. This is per
se not a problem, as the dark current is subtracted anyway, but in the case of the
PI CCD also the variance of the dark current is locally increased.

The homogeneous dark-red area of the panel pertaining to the Andor’s mean dark
values corresponds to 3,436 ADUs, with a pixel-to-pixel standard deviation of these
mean values of only 0.7 ADUs. The discernible arc at the very top (probably due
to the fabrication of the chip) is three ADUs less. The standard deviations of the
dark current in a pixel from frame to frame after removing the highest and lowest
values (Fig. 5.2 right top) is 5.5 ADUs with no significant pixel-to-pixel variations,
apart from the barely discernible arc, there it is 5.4 ADUs. These values for the PI
chip are a mean value of 319 ADUs with a pixel-to-pixel variation of five ADUs, the
values in the central ring are on the average 367 ADUs. The standard deviations are
3.6 ADUs, in the ring 4.4 ADUs.

Figure 5.3 shows the distribution of the actual read-out ADU values relative to the
mean computed as stated above. Apart from the about 3% of pixels which have more
than 40 ADUs additional charge due to detected X-rays, the distribution is Gaussian,
with a fitted width of 8.9 ADUs and a centre of −0.5 ADUs. The width is higher
than the above-quoted 5.5 ADUs because the tails are not cut here (apart from the
3% due to X-rays), and the discrepancy in the mean is due to asymmetry induced by
the detected X-rays. These −0.5 ADUs per pixel are a systematic error introduced
with this method of computing the dark current, but with a photon corresponding to
about 2,000 ADUs as shown in the next section, it is made up for by the advantages
of this method (a very good statistical accuracy without having to spend time taking
dark frames).

The leakage current is not absolutely constant over the duration of a measurement,
for example for the measurement evaluated above it rose by about two ADUs over the
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measurement duration of 2 h. This is most probably due to drifts in the temperature
of the CCD chip. The programs can take such drifts into account by modifying the
dark values dynamically, but a drift of two ADUs is not relevant given the amount
of charge generated by an X-ray photon, so this feature was turned off.

5.3 Histogram of the Droplet Charges

At certain times it is desirable to generate a histogram of the droplet charge distri-
bution. This includes the start of the experiment (for learning the characteristics
of the camera) and after changing the sample or the set-up (in order to check for
fluorescence coming from the sample or from the primary beam hitting parts of the
equipment).

From Fig. 5.1 it is obvious that the droplets have a variety of shapes: This is due
to the fact that the photoelectric absorption of a photon generates a cloud of charges
on the chip, which can be assumed Gaussian and whose width is on the order of
the CCD’s pixel size (see Miyata et al. [2]). Depending on the centre of the charge
cloud relative to the pixel boundaries, this can lead to a droplet comprising only one
pixel (when the centre of the charge cloud is near the centre of a pixel), two pixels
(when the charge cloud intersects the boundary between pixels along one dimension),
or four pixels (when the centre of the charge cloud is near a pixel corner). In the last
case the fourth pixel’s charge can be lost in the fluctuations of the dark current if it is
very weak, leading to three-pixel droplets. Apart from these single-photon droplets
a small fraction of droplets comes from overlapping charge clouds, leading to larger
droplets of arbitrary shape.

In the scope of this thesis droplets were treated in a model-free approach: a droplet
is defined as a connected set of pixels (where the neighbours of a given pixel are
the four nearest neighbours in the square lattice), each with a charge significantly
above the mean dark current of the respective pixels. This is implemented in hist
and evaluatedroplets in the following way: The programs use a data frame,
a logical array of the same size as the data frame initialized to false, and a stack
which is initially empty. First the dark file is subtracted from the data frame. Then
the pixels are gone through and tested one after the other if both their logical state
is false and if the value in the pixel is significantly higher than zero. If this is the
case, a counter is initialized to zero, the pixel’s logical state is set to true, and its index
is pushed into the previously empty stack. Then the operation turns to the stack: the
uppermost index is taken and the corresponding pixel’s value is added to the counter.
Then the four neighbours of the pixel are tested sequentially on their logical state
and their value as before, and for a positive result their state is set to true and their
index pushed into the stack. Then the next index is popped from the stack, until the
stack is empty. The value in the counter is then the sum of the values of the pixels in
the droplet and the function returns to the loop over the frame’s pixels.

Figure 5.4 shows histograms of droplet charges calculated for the Andor and the
PI chips. The peaks corresponding to an integral number of elastically scattered
photons are clearly discernible. The plots with the linear scale show that the majority
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Fig. 5.4 Histograms of droplets for both the Andor CCD (above) and the PI CCD (below), in
each case on a logarithmic (left) and a linear scale (right). Bin width is 10 ADUs, incident photon
energy 8 keV

of droplets correspond to one photon. The number of ADUs per photon (the position
of the one-photon peak) for the Andor CCD is 1,955, for the PI CCD it is 1,018.
Even though the ratio of the variations of the dark current to the charge per photon
is approximately the same for both chips, the spectrum detected by the Andor CCD
shows far more details than the spectrum of the PI chip. This difference is most likely
due to the architecture of the chip, probably the PI CCD is not so efficient in collecting
all the generated charges if the photon was absorbed deep in the chip. The features
visible in the Andor’s spectrum can principally come from two distinct processes:
on the one hand they can be fluorescence lines from elements in the sample or in
the furnace, on the other hand they can be so-called escape peaks, when the energy
of a photon is not completely transferred to electronic excitations in the chip, but
instead a silicon atom is excited and a fluorescence photon is emitted. The following
table gives the positions and the estimated weights relative to the main elastic line
at 8.0 keV with the processes possibly responsible for them. The X-ray energies are
taken from the X-ray data booklet [4].

Now also the limits for considering a droplet as pertaining to a single elastically
scattered photon can be set. The linear plots in Fig. 5.4 show that for the Andor CCD
the limits can safely be set to 1,800 and 2,100 ADUs. For the PI CCD this decision
is not so clear, here the limits were set to 920 and 1,110 ADUs.
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Position (keV) Weight (relative) Possible source

8.0 1 One-photon elastic line
6.42 0.083 FeKα (6.40 keV), MnKβ (6.49 keV),

SiKα-escape (8.0–1.74 keV)
5.91 0.057 MnKα (5.90 keV)
7.10 0.012 FeKβ (7.06 keV)
2.91 0.0071 ?
1.73 0.0035 SiKα (1.74 keV)

Fig. 5.5 Path of a cosmic ray

5.4 Detecting Photon Events

The next step in evaluating the data is extracting the positions of the absorbed photons
from the frames with evaluatedroplets. The droplets are detected and evalu-
ated with the same algorithm as in the previous section, but now not only the sum
of the pixels’ ADUs is computed, but also the moments in both x- and y-direction.
Only the droplets with a number of ADUs within the limits set for a single elastically
scattered photon are further considered, the reason is that contrary to the claims of
Livet et al. [1] it is not so trivial to determine the exact positions of the incidence
of single photons within a multi-photon droplet. Not considering these photons is
conservative as it can only decrease the contrast, also only a very small number of
photons is lost in this way, see Fig. 5.4. This also does away with the occasional
cosmic ray, see Fig. 5.5.
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The x- and y-moments of the one-photon droplets are sequentially written to
memory, simultaneously an array of the summed counts for each pixel over the whole
measurement (i.e. the moments of the droplets are rounded to integers and assigned
to a pixel) and a vector of the number of photons for each frame is generated. Using
the array of the summed photons per pixel the data are rearranged so that they are
described by the frame numbers when photons were detected in a given pixel. These
numbers are written to data.bin, sequentially for all pixels, the fractional parts
of the moments are written to datafrac.bin. Finally the array of the summed
photons is written to summedframes.bin as binary short integers (can be viewed
infit2d) and the vector of the photons per frame is written to timeseries.bin
as binary integers and to timeseries.txt in ASCII-form (for plotting).

When evaluating a measurement run generally the first thing is to compute the
dark file, then evaluatedroplets is run. For doing that it is advisable to read
in the frames starting from the last one in order to exploit caching, which is done
both by the hard-disk and by the operating system. This considerably speeds up the
process, particularly if the data are on an external hard-disk with the concomitant low
transfer rates.

5.5 Computing the Auto-Correlation Function

After having detected the photons the auto-correlation function can be computed.
This is done by the program computeacf. The real situation at a synchrotron
is more complicated than as was considered in Sect. 3.6, however: in general the
intensity of the incoming beam is not constant, because first the ring current decays
between the refills1 and second the position of the beam moves over the slits on the
timescale of hours. Neglecting to consider these effects would result in the auto-
correlation function’s being dominated by the fluctuations of the incident radiation
as opposed to measuring the fluctuations coming from the sample. Fortunately the
number of pixels on the detector is large, so the intensity in a pixel at a given time
can be normalized by the instantaneous expected value of the intensity, given by the
average intensity of all pixels at this time. Such an approach is valid because the
expected value of the auto-correlation function at non-zero time delay is not affected
by quantization as was shown in Sect. 3.6.

Thanks to the rearranging described above the computation can be done very
efficiently. If the times when a photon was detected in a given pixel are denoted by
t1 . . . tM and the number of photons in frame i by Ni for all i, then the auto-correlation
function is obtained by iterating over all 1 ≤ i < j ≤ M and adding 1/(Nti Nt j )

to the entry corresponding to the value of the auto-correlation function for the time
delay t j − ti . This is iterated for all pixels. The entry corresponding to the time delay

1 Modern synchrotrons starting with the APS operate in the so-called top-up mode, meaning that
the refilling of the electrons happens practically continuously. This is also planned to be implemented
with the ESRF upgrade.

http://dx.doi.org/10.1007/978-3-642-24121-5_3
http://dx.doi.org/10.1007/978-3-642-24121-5_3
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Fig. 5.6 Two-time
auto-correlation function of
262 frames in pseudo-color
display, smoothed by a
Gaussian kernel with a width
of three frames. The left top
corresponds to
(t1 = 0, t2 = 0), the colour
of the off-diagonal areas to a
value of 1 (i.e. no
correlation), the average
yellow of the diagonal to
1.13 (i.e. a contrast of 0.13)

�t is then multiplied by (T − �t)/K where T is the number of frames and K the
number of pixels, and the resulting values are written to a text file.

The two-time auto-correlation function, which is defined in analogy to Eq. 3.6.2
but without averaging over absolute time

g(2)(q, t1, t2) = 〈I (q, t1)I (q, t2)〉
〈I (q, .)〉2 , (5.5.1)

can be computed equivalently by adding up the entries of a matrix describing absolute
times as opposed to a vector describing time delays. The results are written to a file
as 4-byte floats suitable for viewing by fit2d. This thesis deals with equilibrium
dynamics, so the two-time auto-correlation function was only evaluated qualitatively
in order to ensure that the sample was truly in equilibrium. Also sudden correlation
losses can happen, probably due to instabilities of the set-up, an example of which
is given in Fig. 5.6: homogeneous dynamics should give a band of constant width
along the diagonal.

Contrary to what one would naïvely think, the fact that the charges generated by
a photon are in most cases distributed over a number of pixels (described by the
so-called point-spread function) is not undesirable because it potentially gives sub-
pixel resolution as demonstrated by Miyata et al. [3]. Unfortunately, the relation
between the centre of the cloud of charges generated by the photon and the moments
in x- and y-direction of the ADUs in the droplet is a nonlinear function, which
depends on the width of the charge cloud and the pixel size. The width of the charge
cloud is given by the distances the charges had to diffuse to the electrode [2], and it
therefore depends on how deep within the chip the photon was absorbed. This depth

http://dx.doi.org/10.1007/978-3-642-24121-5_3
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Fig. 5.7 Illustration of the
splitting into subpixel. The
physical pixel is dashed,
the four distinct translations
(displaced by a small amount
for visual clarity) defining
the logical pixels are solid

Δx−1Δx+1

Δ y−1
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is a random variable for each photon, so it is principally not possible to assign the
exact position of detection to each droplet. A rough estimate on the position within
the pixel, that means an assignment to logical sub-pixels, can be made, however.
Back-illuminated CCDs with their longer diffusion length, therefore larger charge
cloud and in turn less severe effects of discretization would be highly desirable for
these kind of experiments.

In the course of this thesis the fractional parts of the moments indatafrac.bin
were considered in three ways:

• The straight-forward way: The logical pixels used in the algorithm above are
identical to the physical pixels of the CCD. The fractional parts of the moments
are consequently not considered at all.

• More involved but still conservative: The grid of the logical pixels is translated
relative to the physical pixels by a small amount and the results are averaged over
a number of such translations.

• The optimistic way: The photons in a physical pixel are reclassified into several
logical sub-pixels.

The first approach was taken for the experiments with the PI CCD, first because the
more intricate algorithms had not been implemented then, second due to the poorer
performance as visible in the histograms trying to achieve sub-pixel resolution did
not seem so promising for this CCD.

The second approach was implemented in the following way: a histogram of the
fractional parts of the moments in the x-dimension p(�x) was prepared, the centre
of this distribution �x0 was computed via the complex angle of its first Fourier
component, and �x−1 and �x+1 were chosen such that both the integrals over
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[�x−1,�x0] and [�x0,�x+1] were equal to 0.25. The same was done for the
y-dimension, and the translations used for averaging were the four possible choices
of (�x±1,�y±1), see Fig. 5.7. As the classification with respect to these values
�xi and �yi should not be much worse than the straight-forward classification
(i.e. with a splitting fractional value of 0.5), the obtained auto-correlation function
should have the same statistical accuracy and essentially the same contrast. However,
averaging over the four distinct translations improves the statistical accuracy of the
result: disregarding the denominator the value of the auto-correlation function is given
by the number of incidences N when in the same logical pixel photons were detected
with a given time delay. Inspecting Fig. 5.7 it can be seen that if both photons were
detected in the same quarter-subpixel then they are counted in all four translations;
if they were in neighbouring subpixel, then in two translations; and if their subpixels
only share a corner, then they are counted only in one translation. The entry in the
auto-correlation function after averaging N is therefore given by

N = 1

16

(
4N00 + 2N01 + 2N01̄ + 2N10 + 2N1̄0 + N11 + N11̄ + N1̄1 + N1̄1̄

)

(5.5.2)
where N00 is the number of incidences in the same subpixel, N10 the number of
incidences with the second photon in the right neighbouring subpixel of the first
and so on. For exclusively Poisson noise (i.e. for low contrast) these numbers are
uncorrelated and they have the same variance v, so the variance of N is given by

V (N ) = v

162

(
16 + 4 · 4 + 4 · 1

) = 9v

64
. (5.5.3)

Calculating the auto-correlation function with only one choice of logical pixels would
correspond to

N ′ = 1

4

(
N00 + N01 + N10 + N11

)
(5.5.4)

with a variance

V (N ′) = v

4
. (5.5.5)

The ratio of V (N )/V (N ′) is therefore 9/16 which shows that using this approach
lowers the standard deviations of the auto-correlation function in the ideal case by a
factor of 0.75 with respect to the straight-forward approach.

For the third approach the quarter-subpixels are directly used as logical pixels.
Conducting an experiment with half the detector distance would then give the same
situation as using the physical pixels with the original distance (provided the count
rate is low enough, i.e. the single droplets can still be resolved), but with the fourfold
number of logical pixels, thereby lowering the standard deviations of the points of
the auto-correlation function by a factor of 0.5.

In principle one could also use a finer logical resolution given the necessary low
count rates. The problem is, however, that there is a considerable fraction of droplets
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which consist of only one pixel. The size of the subpixels is obviously limited from
below by the fact that these droplets all have to go into one subpixel. This is also
the reason for choosing the limits between the subpixels �xi and �yi the way it
was done: The classification can be done best if the charge is spread approximately
equally between two pixels. The fact that the photons are absorbed in different depths
in the chip and that therefore the charge clouds have different sizes also leads to the
two-dimensional distribution of fractional moments p(�x,�y) not factorizing into
p(�x)p(�y). Therefore the numbers of counts in the quarter-subpixels defined as
above is not equal, rather the numbers of the subpixels corresponding to the centres
of the physical pixels and the subpixels corresponding to the corners of the physical
pixels are higher than the numbers of the subpixels corresponding to the edges.
This does not invalidate the second approach, only the factor in Eq. 5.5.3 will get
a bit higher. The third approach, however, needs a classification such that all the
logical pixels have the same expected value of counts, otherwise an artificial apparent
contrast is introduced. Therefore a more complicated definition of subpixels would
be needed. This has not been implemented yet, the data obtained by the Andor CCD
were therefore evaluated by the second approach.

5.6 Fitting the Auto-Correlation Functions

For quantitative analyses the auto-correlation function as written by computeacf
into acf.txt has to be fitted by a function of a form as predicted by the theory. In the
most simple case this is just 1 plus an exponential with fitted decay time and fitted
coherence factor

g(2)(�t) = 1 + βe−�t/(2τ), (5.6.1)

obtained by plugging Eq. 2.3.19 into Eq. 3.6.12.
Fitting was done with the program gnuplot, as this is a small, fast, flexible, and

free tool, running on all relevant platforms. If the number of data points in the auto-
correlation function is T then the variance of the data point corresponding to �t is
inversely proportional to T −�t , because this is the number of pairs of frames which
can be correlated. Therefore the weight given to each data point in fitting should be
proportional to T −�t. For gnuplot the weight has to be specified via a quantity
proportional to the expected standard deviation, that is

√
T −�t . gnuplot does

not seem to give the user the ability to access the length of the data set explicitly, but
the following algorithm, where acf is a string holding the path and the filename of
the auto-correlation function, does the trick:

http://dx.doi.org/10.1007/978-3-642-24121-5_2
http://dx.doi.org/10.1007/978-3-642-24121-5_3
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The fit range has to be restricted to positive time delays as the value of the auto-
correlation function for time delay �t = 0 is dominated by the influence of
Poisson noise.
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Chapter 6
Considerations Concerning the Experiment

In this chapter I will present some useful calculations for setting up the experiment.
First the signal-to-noise ratio (the inverse of the relative standard error of the fitted
correlation time) is computed as a function of the number of counts per pixel, the
coherence factor, and the correlation time, leading to the identification of the product
of intensity and coherence factor as the figure-of-merit. In the second section the
optimization of the beamline set-up with regard to this figure-of-merit is discussed.

6.1 Counting Noise

The statistical errors in an XPCS measurement have two sources: the stochastic nature
of the fluctuations in the sample (and therefore of the scattered radiation) and the
stochastic process of photon quantization. In wide-angle scattering it is justifiable
to treat all the approximately 106 pixels on the detector as equivalent within the
experimental accuracy, i.e. belonging to the same q. The measured auto-correlation
function then samples over 106 distinct evolutions of the intensity, and the mean
evolution has therefore a relative accuracy on the order of 10−3. The number of
scattered photons in the diffuse regime, however, is low with today’s X-ray sources,
even with samples selected for their scattering efficiency. Therefore the attainable
accuracy is governed by the Poisson noise of photon quantization. In this section I will
calculate the statistical accuracy of the correlation time fitted onto the measured auto-
correlation function as a function of the actual correlation time and the experimental
parameters.

It comes in handy here to measure time by frames. Let G(2)(k) be the experimental
auto-correlation function before normalization, i.e. it is the product of the number
of photons detected a time interval of k frames apart, averaged over all pixels and
absolute time. Let N be the number of pixels and K the number of frames. Let
p(I1, I2) be the joint probability density of the squared modulus of the electrical
field (i.e. the intensity before quantization) at two times which are k frames apart. As
already postulated in Sect. 3.6 the expected value of G(2)(k) with k > 0 is given by
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The variance of G(2)(k) is given by
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For low count rates, that is for E(I j ) � 1, only the term of lowest order in I j

contributes, leading to

V
(

G(2)(k)
)

= 1

N (K − k)
E

(
G(2)(k)

)
. (6.1.3)

The reason for the statistical inaccuracy to rise with the length of the time interval k
is that the number of pairs of frames which are k frames apart falls, in the extreme
case where k = K − 1 there is only the pair consisting of the first and last frame left.

Due to Eq. 3.6.2 the normalization for the auto-correlation function is to divide
by the square of the mean intensity

g(2)(k) = G(2)(k)

Ī 2
, (6.1.4)

therefore the variance of the normalized auto-correlation function is given by

V
(

g(2)(k)
)

= E
(
g(2)(k)

)

Ī 2 N (K − k)
. (6.1.5)

Here I neglected the uncertainty of the measured mean intensity Ī , which is smaller
than the uncertainty of the numerator by orders of magnitude for small intensities.
Plugging in an exponential decay leads to the intermediate result

V
(

g(2)(k)
)

= 1 + βe−2�k

Ī 2 N (K − k)
. (6.1.6)

In this section I write � for the inverse of the correlation time τ for notational
convenience.

What is more interesting than the statistical accuracy of one point in the exper-
imental auto-correlation function is the fitted decay time (or its inverse �). This is
a non-linear problem, as the fitted auto-correlation function is a non-linear function
of �. It can be linearized, however, and fortunately the linearized problem is equiv-
alent to the non-linear problem for small uncertainties.
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Suppose that the non-linear least-squares problem is solved by ĝ(k; β̂, �̂),
yielding the fitted parameters β̂ and �̂. The idea is now to pretend to fit the residuals
by a linear combination of the partial derivatives of ĝ with respect to the parameters.
It is clear that the best fit to the residuals is with the coefficients of both partial deriva-
tives equal to zero, because otherwise β̂ and �̂ would not solve the original problem.
The new problem, however, is linear, allowing standard techniques for estimation of
the parameter uncertainty to be employed:

Let X be the matrix of the basis functions of the linear problem to be fitted, i.e. in
this case

X =

⎛

⎜⎜
⎝

...
...

∂
∂β

ĝ(k;β, �)|
β̂,�̂

∂
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...
...

⎞
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(6.1.7)
where k runs from 0 to K − 1 and �t is the temporal spacing of the frames. Let M
be the covariance matrix of the entries of the experimental auto-correlation function,
that is

Mk, j = δk, j
1 + βe−2�k

Ī 2 N (K − k)
(6.1.8)

due to Eq. 6.1.6 and the fact that entries corresponding to distinct times are uncorre-
lated in the limit of small Ī .

The covariance matrix of the fitted parameters is then given by

M̂ = (
X∗M−1X

)−1
, (6.1.9)

with the variance of the inverse of the fitted correlation time in its lower right entry.
The signal-to-noise ratio of the fitted correlation time is then given by

E(τ̂ )
√

V (τ̂ )
= E(�̂)

√
V (�̂)

= √
N I0β f (τ/T, β, K ) (6.1.10)

where T is the duration of the experiment, I0 = K Ī are the mean counts per pixel
over the whole experiment, and f (τ/T, β, K ) has a finite limit for both β → 0 or
K → ∞.

I want to elaborate on this result a bit. For a fixed correlation time with respect
to the duration of the experiment the signal-to-noise ratio goes with the square root
of the number of pixels averaged over, which is immediately obvious. The linearity
of the dependence on the coherence factor β in first order is plausible as the relative
uncertainty of the points of the auto-correlation function decreases linearly with β.
The linearity in I0 is probably not so obvious at first glance, but as for low I0 most of
the frames have no photon in a given pixel, only a small number has one photon, and
higher counts can be neglected, the auto-correlation function essentially just counts
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Fig. 6.1 Influence of the
ratio between the correlation
time τ and the duration of
the experiment T on the
signal-to-noise ratio. The
upper blue curve is for the
limit of small β as given in
Eq. 6.1.11, the middle red
curve and the lower green
curve are for
β = 0.1 and β = 1,
respectively, obtained by
numerically solving Eq. 6.1.9
with large K
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the pairs where there was one photon in both frames. This number is quadratic in
I0, its standard deviation is therefore linear, and its relative standard deviation goes
with I −1

0 .

The behaviour of the signal-to-noise ratio in its general form is best evaluated
numerically. Doing the summations the experimentally relevant limiting case of
small β and large K can be obtained analytically with reasonable effort, however:

f (τ/T, β → 0, K → ∞) = 1

2x

√
e−x x3 + (e−x + 1)x2 + 4(e−x − 1)x + 2(e−x − 1)2

x + e−x − 1
(6.1.11)

where x is shorthand for 4T/τ.
For the behaviour of f (x) consult Fig. 6.1. The increase with

√
τ/T for small

correlation times is due to the increasing number of significant (i.e. larger than 1)
points in the auto-correlation function, the decrease with T/τ for long correlation
times is due to the decrease in the observable magnitude of the decay (i.e. the amount
by which the auto-correlation function has decayed before the experiment is over).

The optimal choice of the correlation time is therefore a value τ/T of about 0.7,
such that the auto-correlation function 1+βe−2�t/τ shows a decay to about 6% of its
initial deviation from 1. This only holds, however, if one has absolute confidence in
the stability of the set-up and the beam. In realistic situations it is very reassuring to
choose somewhat smaller correlation times so as to be able to compute the two-time
auto-correlation function and confirm visually that what one measures are indeed
equilibrium dynamics and not artefacts, in the worst case excluding such artefacts
from the evaluation.

6.2 Optics and Contrast

In Sect. 3.6 the influence of the dynamics in the sample on the intensity-intensity
auto-correlation function was treated. This was done under the assumption of
ideal circumstances, i.e. the incoming radiation was considered to be an ideal

http://dx.doi.org/10.1007/978-3-642-24121-5_3
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monochromatic plane wave, and the scattered radiation to be detected in a point.
Here I will address the non-ideal case, that is to compute the coherence factor β of
Eq. 3.6.12 for a given experimental set-up. As a concrete example relevant to this
thesis I will use the values pertaining to the beamline ID10A at the ESRF.

In a synchrotron the incident radiation is generated by the relativistic motion of the
electrons through the undulator. The electrons in the storage ring are independent,
therefore the radiation generated by one electron has no phase relation with the
radiation generated by another electron.1 The intensity in a given pixel can therefore
be thought of as the sum of the intensities due to distinct electrons, detected at distinct
points within the detector’s pixel. For a given point in time let I1 = A1 A∗

1 be such a
contribution with

A1 =
∫

d�x A1(�x)ρ(�x), (6.2.1)

that is A1(�x) is the amplitude with which an electron located at �x contributes to
this specific scattering event. Apart from the normalization factor and neglecting
quantization the expected value of the measured auto-correlation function at zero
time delay is then given by

g(2)(0) ∝ 〈〈
A1 A∗

1 A2 A∗
2
〉〉

=
〈∫

d�x1d�x2d�x3d�x4 A1(�x1)A
∗
1(�x2)A2(�x3)A

∗
2(�x4)

〈
ρ(�x1)ρ(�x2)ρ(�x3)ρ(�x4)

〉
〉
,

(6.2.2)
where the inner angular brackets denote the expected value regarding the scatterer
density of the sample ρ(�x) and the outer brackets the expected value regarding the
amplitudes A1(�x) and A2(�x), respectively. This is nothing else than Eq. 3.6.3 at time
delay 0 generalized for non-ideal circumstances. As it was done there, the way to
proceed now is to use the fact that the correlations in the sample are short-range. For
“nearly” ideal circumstances the sample correlation length ξ is much shorter than the
correlation lengths of the radiation, that is the length over which differences between
the amplitudes A1(�x) and A2(�x) emerge (apart from a trivial constant phase offset),
so it suffices to consider the sample correlation function as

〈
ρ(�x1)ρ(�x2)

〉 ∝ δ(�x1 − �x2)+ c. (6.2.3)

By factorizing the four-point correlation in Eq. 6.2.2 as in Sect. 3.6 and observing
that the constant vanishes from the integration2 due to the fast fluctuation of Ai (�x),
we arrive at

1 This is the difference from X-ray sources of the fourth generation (X-ray free electron lasers),
where the electric field generated by the electrons feeds back and bunches the electrons, enforcing
the phase relation.
2 In the scatterer’s language the argument is that we are not in the forward direction.

http://dx.doi.org/10.1007/978-3-642-24121-5_3
http://dx.doi.org/10.1007/978-3-642-24121-5_3
http://dx.doi.org/10.1007/978-3-642-24121-5_3
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(6.2.4)

For incoherent radiation A1(�x) and A2(�x) are independent from each other,
therefore the second term vanishes. In this case the normalized intensity-intensity
auto-correlation function g(2)(�t) has to be constant equal to one, so the correct
normalization factor has to be the inverse of the first term, leading to

g(2)(0) = 1 +
〈

| ∫ d�x A1(�x)A∗
2(�x)|2∫

d�x A1(�x)A∗
1(�x)

∫
d�x A2(�x)A∗

2(�x)

〉

, (6.2.5)

where the second term can be equated with the coherence factor β of Eq. 3.6.12. The
statistical weight of the amplitudes Ai (�x) obviously has to be the weight with which
they contribute to the intensity on the detector.

Under simplifying assumptions Eq. 6.2.5 can in principle be evaluated analyti-
cally: Treating the incident radiation as composed of plane waves and neglecting
diffraction at the beam-defining slits, the amplitude Ai (�x) is just the character-
istic function of the illuminated volume modulated by a plane wave with wave-
vector �qi , corresponding to the difference between the wave-vectors of the incident
and the outgoing waves. The integral in the numerator of Eq. 6.2.5 is then just the
Fourier transform of the characteristic function of the illuminated volume evaluated
at ��q = �q1 − �q2, where the probability density of these ��q is given by the angular
size of the source and the pixel (direction) and the energy spread of the radiation
(length). This simple approach works surprisingly well where it is applicable [3], but
it cannot deal with focussing. This will be treated in the following.

The essential features of the optical setup at beamline ID10A at the ESRF are
illustrated in Fig. 6.2. An electron passing through the undulator generates a cone
of radiation concentrated around the direction of propagation of the electron. After
being trimmed at the SS0-slits the wave is focussed by the CRL system (compound
refractive lenses). This is just a block of Be with parabolic cavities, acting as focussing
lenses, for in the X-ray regime vacuum is actually the optically denser medium. The
wave then propagates to the sample, which is approximately in the focal spot. On the
way it is deflected at the monochromator and immediately before the sample it is cut
again by the sample slits. The scattered radiation is then detected at the detector.

The only working monochromator at ID10A is a single crystal of Si, operating
in symmetric Bragg geometry at the (111)-reflection. Its theoretical reflectivity as
a function of the X-ray energy [2] is shown in Fig. 6.3. The relative width of the
reflectivity (FWHM) is 1.43 × 10−4. This is much smaller than the width of the
first fundamental mode of the undulator, which is on the order of a few percent, so
the distribution of energies after the monochromator is given by the reflectivity of
the Si crystal.

The source size is defined by the electron beam. Due to the fact that the electrons
are accelerated in the horizontal direction along their way around the synchrotron,

http://dx.doi.org/10.1007/978-3-642-24121-5_3
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d1 d2 d3

d 4

Fig. 6.2 Schematic illustration of the setup at a coherence beamline and the wave train corre-
sponding to a given photon. The monochromator between the lenses and the sample slit is not
shown

Fig. 6.3 Reflectivity of a
Si-(111) crystal in symmetric
Bragg geometry at 8 keV
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it is strongly asymmetric, being much wider in the horizontal direction. The ID10A-
homepage 3 gives the size of the electron beam at the ID10-undulator as 928 µm in
the horizontal direction and 23 µm in the vertical. The divergences are 24 and 9 µrad,
respectively. All these values are to be understood as FWHM. Due to Als-Nielsen and
McMorrow [1] the FWHM-angular divergence of the radiation cone generated by
one electron is given by

√
2λ/L,where λ is the fundamental wavelength and L = 1.6

m the length of the undulator. This gives a value of 14 µrad at 8 keV, which conforms
with the values given for the divergence of the photon beam of 28 × 17 µrad2.

The distance from the source to the lenses d1 is 33.5 m. The width of the SS0-slits
can be chosen by the experimenter, common values are 300 µm both in horizontal
and vertical direction. The lens system has a focus length of 11.7 m at 8 keV. The
distance from the lenses to the position of the sample d2 is 12.2 m. The widths of

3 http://www.esrf.eu/UsersAndScience/Experiments/SoftMatter/ID10A/BeamlineDescription

http://www.esrf.eu/UsersAndScience/Experiments/SoftMatter/ID10A/BeamlineDescription
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the sample slits can be chosen independently in the two dimensions, they are on
the order of 10 µm. The distance from the sample slits to the sample d3 should be
chosen as close as possible, as the footprint on the sample gets larger with higher
distances due to diffraction, leading to smaller speckles. A distance of 0.15 m seems
the minimum value when using a compact furnace and having dismounted the guard
slits. The distance from the sample to the detector d4 can be chosen arbitrarily within
reasonable limits.

Due to Eq. 6.1.10 the goal is to maximize the product of intensity and contrast.
A few preliminary observations are immediately clear: the speckles have a character-
istic angular size given by the wavelength divided by the sample slit width, whereas
the angular size of the detector’s pixels can be scaled arbitrarily via the sample-
detector distance. Once the distance is so far that the angular pixel size is clearly
smaller than the speckle size, going still farther away only decreases the count rate
without increasing the coherence factor β. On the other hand, for short distances the
decrease in β is compensated by the increase in the intensity. The sample slit size
shows an analogue behaviour: a small slit gives a lower intensity and large speckles,
but β does not profit any more once the speckles are larger than the pixels. A large slit
gives a high intensity but small speckles, leading to decreasing β once the speckle
size is smaller than the pixel size. Another effect of the sample slit size is the coher-
ence of the incoming radiation: once the slit is larger than the transversal coherence
length, β decreases also from this side. These two processes for the decrease of β
are multiplicative. The optimal set-up would therefore be the following: close the
slits (trading intensity for β) to the transversal coherence length, and then reduce the
sample-detector distance, gaining intensity without sacrificing in β as the speckle
size will be very big.

For a quantitative treatment Eq. 6.2.5 has to be solved. The average in Eq. 6.2.5
can be performed for a given set of parameters by Monte Carlo integration: a posi-
tion and a direction of the electron and a wavelength of the generated radiation is
randomly chosen, subject to the respective probability distribution functions (inde-
pendent Gaussian distributions for horizontal and vertical position, horizontal and
vertical divergence, and the Darwin reflectivity for the wavelength). The cone of radi-
ation is propagated to the SS0-slits. The phases of the amplitudes within the opening
of the slits are modified corresponding to their path length in Be. The amplitude
after the lenses is then propagated to the sample slits. Here everything outside the
opening is set to zero again, the rest is propagated to the sample. A position within
the pixel is randomly chosen, giving a direction of the outgoing radiation. This then
specifies A(�x), the amplitude with which each subvolume in the sample scatters,
also accounting for the different path lengths within the material leading to different
absolute values of the amplitudes. For a sample in transmission geometry normal
to the incident beam the amplitude can be factorized A(�x) = Ah(x)Al(y)Av(z),
allowing the problem to be efficiently solved.

In the following I take a standard set-up, then I vary single parameters and
report their effects. The standard values are a wavelength λ = 1.55 Å with vertical
focussing, SS0-slit widths of 300 µm in both dimensions, sample slits of 7 µm in
both dimensions, a distance from the sample slits to the sample of 17 cm, a sample
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thickness of 10 µm with an absorption length of 12 µm, and the Andor CCD (see
Sect. 5.1) at a distance of 50 cm, a scattering angle 2θ = 25◦, and an azimuthal angle
ϕ = 45◦. This gives a coherence factor β of 4.8%.

First to the primary slits: in principle it would be beneficial to open them wider,
because going to 400 µm in both directions gives a factor of about 1.32 in intensity,
whereas β drops only by a factor of 0.89. The problem is that this increases the heat
load on the monochromator windows, which degrade with time even with 300 µm.
The value of 300 µm seems to be the compromise between having enough intensity
and being considerate of the equipment. A minor overall increase could be achieved
by closing the vertical slit by about 10 µm and opening the horizontal slit accordingly,
but the increase in intensity is nearly made up for by the decrease of β.

The question whether focussing is a good idea can be answered in the affirmative:
compared to the situation without lenses, it gives about a factor of 30 in intensity while
decreasing β only by about 0.67. This is only due to vertical focussing, however,
the increase in intensity when enabling horizontal focussing is lost again with the
decrease in β.

What is left is the width of the sample slits and the sample-detector distance. The
coherence factor β as a function of those two values (assuming the same value for
the sample slit in horizontal and vertical direction) is shown in Fig. 6.4. The intensity
is not shown as it is in a very good approximation proportional to the area of the
sample slits and strictly proportional to the inverse of the square of d4. It can be
seen that for a given detector distance there is a certain finite slit width which gives
the maximum coherence factor, here it is around 6 µm. This is where diffraction at
the slit sets in, closing the slit further would lead to a wider footprint of the beam
on the sample and therefore smaller speckles. The slit width where this happens is
obviously a function of the distance from the sample slits to the sample, which was
here 17 cm. With the sample in a furnace and a beam monitor after the slits, smaller
distances are hardly possible.

Blindly maximizing the product of intensity and coherence factor would lead to
an extremely close detector and wide slits, giving a high intensity and a low contrast.
This is not what one really wants, however. Apart from the fact that with decreasing
detector distance the spread of the wave-vector transfer over the pixels of the detector
increases (rendering suspicious their treatment as equivalent pixels), the evaluation
as described in Sect. 5.4 relies on the fact that the charge clouds generated in the
CCD do not overlap. Another point is that with small β the decay of the correlations
can disappear behind spurious features of the auto-correlation function caused by,
e.g., different sensitivities of the pixels. Therefore it seems wise to optimize the
product of intensity and β under the constraint of an upper bound on the intensity (or
equivalently a lower bound on the coherence factor). The solution to this problem as
a function of the maximum intensity allowed is given by the line in Fig. 6.4.

At a detector distance of 50 cm slit sizes of 7 µm are obviously a good choice. If
the intensity is low and the coherence factor high enough, one could gain by reducing
the distance further. Here the optimal slit size is already influenced by diffraction
at the slits, this is corroborated by the observation that increasing the slit size in

http://dx.doi.org/10.1007/978-3-642-24121-5_5
http://dx.doi.org/10.1007/978-3-642-24121-5_5
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Fig. 6.4 Scan of the
coherence factor β as a
function of the detector
distance d4 and the width of
the sample slits (set equal in
horizontal and vertical
direction), for the remaining
values see text. The line
shows the settings giving
optimal intensity for a
given β
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one dimension and reducing it by the same factor in the other dimension always
lowers β, a square aperture is therefore the best choice.

One should be careful in taking the results presented here at face value. First, the
values of the coherence factor β obtained here are probably too high. This is because
all the optical elements were considered as ideal, whereas, for instance, the energy
after the monochromator will have a wider distribution in reality because of oxidation
of the crystal due to the heat load. Another source of uncertainty are the distances
used here: changing the distance between the lenses and the sample by 20 cm already
has a discernible effect, and this clearly holds also for the distance from the source
to the lenses, where the source is actually not a point but three undulators in a row,
each 1 m long. The qualitative conclusions drawn here, however, should be valid.
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Chapter 7
Experimental Results

The culmination of the thesis is presented in this chapter: the results from measure-
ments of atomic diffusion in several systems. These measurements were done during
four beamtimes at ID10A at the ESRF (European synchrotron radiation facility) in
Grenoble, France:
• HS-3419 from September 19th to 25th, 2007. This beamtime dealt with the coars-

ening of Ag precipitates in glass. We used the last two days for a feasibility test of
the measurement of atomic diffusion in the metallic glass and in Cu90Au10. Our
local contact was Federico Zontone.

• HD-228 from April 16th to 22nd, 2008. This beamtime was allocated for the
study of the metallic glass, which we did in the first half. We used the rest for
the measurements on Cu90Au10 reported in Sect. 7.1. Local contact was Andrei
Fluerasu.

• HE-2845 from February 28th to March 3rd, 2009. This beamtime was awarded for
studying Cu–Au. Having done that already we instead used it for remeasuring the
metallic glass and anticipating the next beamtime and measuring Si89Ge11. The
local contact was Anders Madsen.

• HS-3839 from April 22nd to 27th, 2009. The aim of this beamtime was to study
atomic diffusion in Si–Ge. Apart from that we also did an unsuccessful feasi-
bility test of studying diffusion in Fe65Al35. The local contact was again Federico
Zontone.

For all the experiments reported here the X-ray energy was set to 8 keV (unless
otherwise noted), corresponding to a wavelength of 1.55 Å, monochromatized by a
Si-(111) crystal as described in Sect. 6.2.

7.1 Cu90Au10

This alloy was already considered in my diploma thesis as the most auspicious system
for this kind of experiment: Cu has a relatively low absorption coefficient for X-rays
of 8 keV, the preferred energy at ID10A, Au has a very high solubility in Cu at the
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relevant temperatures, and the difference in the atomic number (and therefore electron
density) between Cu and Au is among the highest possible for miscible elements.
All these aspects taken together imply a high value for the diffuse scattered intensity,
which is the limiting factor in today’s atomic scale XPCS.

We did measurements on this system during two beamtimes: at HS-3419 in
September 2007 the last day was used for a feasibility test where the amount of
scattered photons with a coherent set-up was ascertained, also a measurement run at
a fixed position in reciprocal space at room temperature, at 287, and 307◦C, respec-
tively, was done. The measured data showed that the amount of scattered radiation
was sufficient and that at room temperature the scattered intensity showed static
correlations at non-zero contrast, whereas at the elevated temperatures the contrast
had vanished. This was already a result, showing that diffusion in Cu90Au10 at room
temperature happens at timescales that were too long to be accessible with XPCS,
whereas timescales were too short at 287◦C. The principal measurements were done
in April 2008 during the second half of beamtime HD-228; the results from these
measurements have been published in Leitner et al. [3] and will be presented in the
following.

The system was discussed in Sect. 4.3, in short: at the relevant temperatures it is a
solid solution of Au in the face-centred cubic Cu crystal showing short-range order.
The sample used was the same single crystal as was used by Schönfeld et al. [4],
who give the actual composition as determined by X-ray fluorescence analysis to be
within 0.2 at.% of the nominal value.

For the experimental set-up see Sect. A.3. We used the old furnace with the flight
tube attached to it, both filled with He. The temperatures reported in the following
are to be understood as the temperatures felt by the thermocouple, but due to the
He atmosphere the discrepancies should be very small. We used the PI CCD with
a sample-camera distance of 1.32 m. The exposure time per frame was 10 s, due to
the time required for data transfer the actual frame rate was 12.34 s. We used the
Be-CRL system for focussing in the vertical direction. The sample slits were set to
9 µm in the horizontal and 12 µm in the vertical direction. The count rate was about
10,000 photons per frame or 3 photons per pixel over a measurement run of typically
600 frames.

The sample was cut with a wire saw and ground to a nominal thickness of 12 µm.
As we used a spot on the sample with a transmission of 0.18 at 8 keV, the actual
thickness comes out as 18 µm assuming an absorption length of 10.5 µm as given
by Vegard’s rule.

Nominally, the sample was cut along the (11̄0)-plane as determined by Laue
backscattering and mounted with the surface normal to the incident beam such that
the [001]-direction was at an azimuthal angle of ϕ = 45◦ and the [110]-direction at
an azimuthal angle of ϕ = −45◦ with the azimuthal angles measured with respect to
the horizontal plane (for an illustration of the angles see Fig. A.2). After the exper-
iment the sample was left in the furnace and the actual orientation was determined,
according to which the orientation can be reproduced by positioning the sample in
the nominal orientation, turning it around the direction of the incident beam such that
the [001]-direction is at an angle of ϕ = 51◦, then to tilt it by 1.8◦ so that its top goes

http://dx.doi.org/10.1007/978-3-642-24121-5_4
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Fig. 7.1 Auto-correlation
function for a measurement
at 543 K withϕ = 45◦
and 2θ = 25◦together with
an exponential fit
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Fig. 7.2 Measured decay
times as a function of the
scattering angle 2θ at a
temperature of 543 K and an
azimuthal angle of ϕ = 0◦
together with the values
expected for nearest-
neighbour jumps taking into
account short-range order
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towards the beam, and finally to turn it around the vertical axis by 2.7◦ so that the side
corresponding to ϕ = 180◦ goes towards the beam. The actual orientation was used
for the following calculations of the theoretical coherent linewidth �coh(�q). Note
that moving the detector from ϕ = 45◦ to ϕ = −45◦ (in the nominal orientation) for
fixed 2θ corresponds to going in reciprocal space from a direction along X over L to
K as defined in Fig. 4.12 (there is an equivalent point K on each of a hexagon’s three
sides bordering another hexagon). For a scattering angle of 2θ = 25◦ the modulus
of �q is 1.75 Å−1, therefore the path in reciprocal space grazes the boundary of the
first Brillouin zone.

For an exemplary auto-correlation function see Fig. 7.1. Fitting was done with an
exponential decay with �q-dependent correlation times. The fitted correlation times
for several values of 2θ for fixedϕ = 0◦ at a temperature of 543 K is shown in Fig. 7.2.
A scan of ϕ for the same temperature and scattering angles of 2θ = 20◦ and 2θ =
25◦ are shown in Fig. 7.3. The theoretical values were calculated according to
Eqs. 2.3.21 and 2.3.14 for nearest-neighbour exchanges in the face-centred cubic
lattice, where the values for ISRO were computed from the occupations of the first 13

http://dx.doi.org/10.1007/978-3-642-24121-5_4#Fig12
http://dx.doi.org/10.1007/978-3-642-24121-5_2
http://dx.doi.org/10.1007/978-3-642-24121-5_2


78 7 Experimental Results

Fig. 7.3 Measured decay
times as a function of the
azimuthal angle ϕ at a
temperature of 543 K and a
scattering angle of 2θ = 20◦
(upper panel) and 2θ = 25◦
(lower panel) together with
the values expected for
nearest-neighbour jumps
taking into account
short-range order
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nearest-neighbour shells as given by Schönfeld et al. [4]. The only free parameter
left in this theory is the raw jump frequency ν̃ in the nomenclature of Sect. 2.3,
which is (2230 ± 60) s at 543 K. Given the fact that these 16 independent data points
were fitted by just one parameter the agreement is striking. By comparing the two
panels of Fig. 7.3 one can get the impression, however, that perhaps the linewidths
for 2θ = 20◦ are too narrow in relation to the ones for 2θ = 25◦. Also the data
in Fig. 7.2 seem to hint into the direction that the increase with 2θ should be shal-
lower around 20◦. Two possible reasons can be given for this effect: On the one
hand it could be due to the action of the vacancy as treated in Sect. 3.5, leading to
modified effective translation vectors. Contrary to self diffusion, where the effects
can be readily computed without any additional parameters [5], here the affinity of
the vacancy to the constituent atoms would have to be considered, which was not
attempted. The other possibility is that the temperature is already so low that devi-
ations from the theory as treated in Sect. 4.3 appear. Note that the lower panel of
Fig. 4.12. corresponds to a temperature of 530 K, which is only slightly lower than
the 543 K of the experiment.

After establishing the diffusion mechanism the chemical diffusion constant as
defined in Sect. 2.3 can be inferred from measuring the correlation time at any given
wave-vector. This was done at 2θ = 25◦ and ϕ = 0◦ for a number of temperatures,

http://dx.doi.org/10.1007/978-3-642-24121-5_2
http://dx.doi.org/10.1007/978-3-642-24121-5_3
http://dx.doi.org/10.1007/978-3-642-24121-5_4
http://dx.doi.org/10.1007/978-3-642-24121-5_4#Fig12
http://dx.doi.org/10.1007/978-3-642-24121-5_2
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Fig. 7.4 Chemical diffusion
constant as a function of
temperature with an
Arrhenius fit
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the results of which are given in Fig. 7.4. As shown in Sect. 6.1 the relative errors
due to counting noise get larger both for long and short correlation times. This does
not seem to be a problem here, but it is quite possible that the value corresponding
to the lowest temperature is already affected by instabilities of the beam.

The variation of the chemical diffusion coefficient with temperature is due to the
variation of the jump frequency ν̃. There are two contributions to this variations: on
the one hand it is ES , the mean energy necessary to raise the jumping atom to the
saddle point on the energy landscape, on the other hand also the vacancy concentration
is thermally activated. For the small range of temperatures treated here all the other
aspects can be considered as temperature-independent, therefore it is valid to fit
the diffusion coefficients by an Arrhenius dependence. This was done in Fig. 7.4,
giving an activation enthalpy of E A = (2.09 ± 0.15)eV. There are no measurements
of chemical diffusion in Cu–Au to compare this value with, but as the Au-atoms
repel each other as nearest neighbours, chemical diffusion has to be closely linked
to tracer diffusion of Au in Cu90Au10. The activation enthalpy obtained here is in
very good accordance with the values of 2.0–2.2 eV obtained for the tracer diffusion
of Au in Cu [1].

7.2 Fe65Al35

This system was measured only briefly at the beamtime HS-3839. Iron is a prob-
lematic constituent for such experiments as will become clear below, we considered
it only because a single crystalline sample was already available from preceding
Mößbauer experiments.

Just as NiAl, FeAl displays the B2-ordering. The surplus Fe-atoms are incorpo-
rated as structural antisites on the Al-sublattice. We would therefore expect diffuse

http://dx.doi.org/10.1007/978-3-642-24121-5_6
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Fig. 7.5 Histograms of detected photon energies for an incident photon energy of 7.1 keV (left) and
8.0 keV (right)

scattering from these Fe-antisites. Iron has its K-edge at 7.112 keV, hence we set the
undulator to an energy of 7.1 keV. The necessity for going below the edge is only in
part due to the increased absorption above the edge, the more important point is to
avoid fluorescence which would drown the elastic diffuse intensity.

The left panel of Fig. 7.5 shows a histogram of the photon energies detected with an
incident energy of 7.1 keV, using the reference value of 1955 ADUs corresponding to
an 8 keV-photon as established in Sect. 5.3. It seems that there are elastically scattered
photons (photons with an energy of 7.1 keV), but there is obviously also FeKα-
fluorescence at 6.4 keV. Evaluating only the apparently elastically scattered photons
showed no contrast, however, even when the sample was at room temperature. Also
the scattered intensity was extremely low at 350 counts per frame of 20 s.

We also tried to measure with an incident energy of 8.0 keV. The histogram from
this experiment is shown in the right panel of Fig. 7.5. While the histogram from
the measurement with 7.1 keV corresponded to an accumulated exposure of nearly
7 h, here it is an accumulated exposure of only 10 s. The overall scattered intensity is
therefore higher by a factor of about 2,500, while the incident intensity is only higher
by a factor of 5. Therefore the scattered photons at 8.0 keV were nearly exclusively
due to fluorescence, also their energy distribution fits with FeKα and FeKβ. Note
that the apparent similarity of the two panels of Fig. 7.5 suggests that also with
the nominal incident energy of 7.1 keV most of the “elastic” photons were actually
FeKβ-fluorescence.

What can be learned from this experiment is that the energy distribution after the
monochromator as given by Fig. 6.3 is only the ideal case. In reality the inevitable
degradation due to the high heat load will lead to more pronounced tails of the
reflectivity curve, it is therefore highly recommendable to have a wider safety margin
between the incident energy and the absorption edge. The reduction by a factor of 5
in the incident intensity when going from 8.0 to 7.1 keV is mostly due to the change
in the focal length of the Be-CRL system. This factor could therefore be gained by
using the ID10C-branch (which can focus at 7 keV), but still the intensity would
probably be too low for measurements at the ESRF.

http://dx.doi.org/10.1007/978-3-642-24121-5_5
http://dx.doi.org/10.1007/978-3-642-24121-5_6#Fig3
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7.3 Si89Ge11

Extensive experiments on this system were done during the beamtimes HE-2845
and HS-3839 in March and April of 2009 using both furnaces (see Sect. A.3). It was
selected for its differences from metallic systems and because a successful experiment
would provide a definitive answer as to which mechanism of diffusion (from among
the number of possible candidates as given in Sect. 4.1) is at work in this system, a
question which is still open.

One main distinction from the other systems treated here is the high activation
enthalpy of diffusion. This is a significant difference as became clear in the course of
the experiments. What we observed in the two-time auto-correlation functions were
apparent dynamics that got slower with time, prompting us to raise the tempera-
ture again and again. Such a behaviour could in principle result from kinetics-driven
dynamics, this means that the system is out of equilibrium after changing the tempera-
ture, causing the atoms to rearrange for the new equilibrium. This explanation seemed
highly suspicious as there should be no short-range order in SiGe at such elevated
temperatures. After chasing these “dynamics” from 500 to 870◦C, with the decay
of the correlations being fast each time after raising the temperature and then slowly
dying away, we were sure that something was wrong, because if the equilibrium
dynamics were too slow to be measurable at 870◦C, any atomic motion at 500◦C
would be unthinkable. Moreover, sometimes the two-time auto-correlation function
showed artefacts as in Fig. 7.6. Computing the ordinary auto-correlation function for
seemingly undisturbed stretches such as the first 290 frames in Fig. 7.6 yielded a form
as given in Fig. 7.7, which could satisfactorily be fitted with auto-correlation func-
tions of the form 1 + β exp(−2(�t/τ)2) with apparently �q-dependent correlation
times.

At first I thought that this behaviour was due to the sample moving slowly with
respect to the beam, leading to the gradual loss of the correlations on the timescale of
a given point in the sample transversing the illuminated area. It seemed unrealistic,
however, that this velocity of 10 µm per half hour and sometimes even faster could
have been maintained for days. Also this would lead to a linear decay with time of
the correlations for small times. The true reason for this puzzling behaviour became
clear to me only recently: a quick calculation shows that rotating the sample by just
0.002◦ moves the speckle pattern in reciprocal space by a speckle width. Assuming
a speckle form of (sin(x)/x)2 and folding with the auto-correlation of the charac-
teristic function of the pixel gives a shape very similar to a Gaussian distribution,
which explains the observed form of the intensity auto-correlation function. This
also explains the fact that with higher scattering angles the correlations decay faster.
Figure 7.6 can now be understood: the sample is subject to a steady rotation, at frame
290 it jumps back to the position corresponding to frame 180, and it proceeds with
the original movement, leading to off-diagonal correlations. It moves now a bit faster
so that already at frame 370 it passes through the position it had immediately before
the jump.

http://dx.doi.org/10.1007/978-3-642-24121-5_4
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Fig. 7.6 Two-time
auto-correlation function of
434 frames of a measurement
of Si89Ge11 at 840◦C in
pseudo-color display,
smoothed by a Gaussian
kernel with a width of three
frames. The singular event is
at frame 290

Fig. 7.7 Auto-correlation
function for a measurement
at 800◦C together with a fit
of the form
1 + β exp(−2(�t/τ)2)
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This rotating of the sample is obviously due to temperature as changing the temper-
ature leads to an initially faster loss of correlation. It cannot be caused by solely elastic
expansion and contraction, however, because the motion is still there even hours after
changing the temperature. It is also not due to fluctuations in the temperature; these
were on the order of a few tenths of a degree, whereas one has to change the temper-
ature by five degrees during the measurement to cause a correlation loss. Probably
it comes from the plastic release of stresses in some parts of the furnace, or the
ill-defined situation produced by clamping the brittle sample into the sample holder
and necessarily crumbling it partially.
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A concluding remark should be that the temperatures of up to 870◦C used here
seem very high compared to literature data [2], all the more given the fact that
these temperatures were seemingly too low for diffusion to happen. As explained in
more detail in Sect. A.3, the temperatures quoted here are the temperatures of the
sample holder (felt by the thermocouple), which glowed much brighter than the
sample at such elevated temperatures. We have yet to ascertain the relation between
the temperature of the sample holder and the sample, but definitely a diffusion exper-
iment in SiGe needs furnaces allowing still higher temperatures, which is quite a
problem due to the need for a large solid angle for the exiting radiation.

7.4 The Metallic Glass Zr65Cu17.5Ni10Al7.5

This system is a so-called bulk metallic glass, that means during cooling from the
liquid to the solid state moderate cooling rates suffice to prevent crystallization,
allowing bulk samples to be prepared in a glassy state. This system therefore consti-
tutes an opportunity to extend our studies to diffusion in non-crystalline media, a field
where many questions are still left to be answered (see Sect. 4.4). A more practical
reason for studying this system is that XPCS deals with diffuse scattering, of which
there is much available here.

Apart from the feasibility test during the beamtime HS-3419 we did the main
measurements on this system during the beamtimes HD-228 and HE-2845. For
the experimental set-up see Sect. A.3. During the second beamtime we had the
same problems as described in Sect. 7.3, we thought that we measured dynamics
while in reality it was most probably the sample moving. These measurements were
done between 300 and 327◦C and for different scattering angles 2θ. In beamtime
HD-228, however, we paid more attention to covering a wide range of tempera-
tures. We performed measurements for temperatures from 260 to 370◦C using the
old furnace. This wide range of temperatures led to partial crystallization as can
be seen from the small Bragg peak at about 31.5◦ in Fig. 7.8. These measurements
were therefore done under ill-defined conditions. Also we witnessed ageing, i.e.
revisiting a temperature yielded slower dynamics than in the first measurement, but
this contributes to my confidence that what I report in the following are really the
dynamics of the sample and not of the sample mount.

We did our experiment in the short-range order peak of the glass at 2θ = 37◦. The
two-time auto-correlation functions of the measurements at 300◦C showed correla-
tion losses with a frequency of about two per hour, this means that there were singular
events where obviously something moved, destroying the correlations between the
frames before and after this event. The correlation times due to the dynamics in the
sample were seemingly on longer timescales. For higher temperatures such correla-
tion losses are not visible in the two-time auto-correlation functions. This is prob-
ably due to the fact that the sample correlation times are shorter, so there are hardly
correlations over longer timescales that could be destroyed by these singular events.
Assuming that they happen about as frequently as at lower temperatures implies that

http://dx.doi.org/10.1007/978-3-642-24121-5_4
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Fig. 7.8 2θ -scan of the
scattered radiation after
the experiment
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Fig. 7.9 Auto-correlation
function for a measurement
at 330◦C together with a fit
of the form
1 + β exp(−2(�t/τ)γ )
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the auto-correlation function is only weakly affected by them. This is corroborated
by the fact that the fitted correlation times show a strong temperature dependence.

In non-crystalline media it is usually found that the correlation functions cannot
be fitted with a simple exponential decay. By convention one then introduces an
additional parameter γ and fits the expression 1 + β exp(−2(�t/τ)γ ) to the data,
which gives always a good fit from the phenomenological viewpoint. Here γ was
always around 2, giving compressed exponential decays as illustrated in Fig. 7.9.
For the fitted correlation times as a function of the temperature see Fig. 7.10. The
estimated errors of the fitted τ are here a few percent, which is about the point
size. Especially at lower temperatures the measured correlation times will likely be
too short because of the possibility of hidden correlation losses. I want to restate
that these are non-equilibrium values, they depend on the sample history. Here the
sample was kept for about two hours at 370◦C prior to these measurements, then the
measurements were done in the order of ascending temperatures, with the sample
being kept at each temperature for about two hours. We intended these measurements
only for qualitative information, therefore the correlation times given in Fig. 7.10 are
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Fig. 7.10 Correlation times
for different temperatures
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probably not well reproducible. This is the reason why I refrain from fitting an
activation enthalpy.

For a further experiment on this system one can use the information that the inter-
esting temperature range is around 350◦C. Keeping the sample at this temperature
for a long time before the experiment should lead to a so-called quasi-equilibrium,
which means that although the sample is not in equilibrium (which can never be the
case for a glass), the kinetic relaxations happen on much longer timescales than the
experiment. In this manner one could record the variation of the correlation time
τ and the compressing parameter γ with the scattering angle 2θ , allowing to gain
insight into the dynamics at work on the atomic scale.
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Chapter 8
Outlook

Here I want to give some concluding remarks and present an outlook about what I
think would be rewarding directions of future research.

The main point of this thesis was the first successful demonstration of applying
XPCS to study dynamics on the fundamental spatial scale of condensed matter
physics, the atomic scale. X-rays with their wavelengths on the order of atomic
distances are naturally suited for this task, therefore soon after the first demonstra-
tions of XPCS the idea arose to apply it to measure atomic diffusion. The necessary
intensity has become available only recently, though. The other possible direction to
go in using coherent X-rays for studying dynamics is to smaller timescales. These
two ambitions, smaller length scales or smaller timescales, exclude each other with
today’s sources, because both need more intensity; the experiments shown here are
limited to correlation times of minutes or longer. For atomic diffusion this is not a
big issue, because by choosing the temperature appropriately the dynamics in the
sample can generally be made to happen on accessible timescales, and the dynamics
at a hundred degrees more are very likely qualitatively the same. With the avail-
ability of the X-ray free electron lasers, however, the fundamental scale (pico- to
femtoseconds) should become accessible also in the time domain. Contrary to the
experiments presented here, where the atomic positions before and after the jump
are compared, this would enable us to follow the atoms during their jumping. For
me this seems to be the ultimate goal in our branch of solid state physics.

In contrast to the qualitatively new kinds of experiments that the X-ray free elec-
tron lasers will bring, the new synchrotrons of the third generation like PETRA III
will enable us to do experiments such as those presented here, but without being
restricted to strongly scattering systems as is now the case. Such experiments will
probably never become a standard technique of sample characterization, but I think
that they will become the method of choice for studying the mechanisms of atomic
motion in a few representative systems, allowing us to develop a comprehensive
picture of what happens at the atomic scale in solids.

Now to the concrete points: I think that it would be very rewarding to make
a thorough investigation of the correlation times as a function of the wave-vector
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in Cu–Au. This could be achieved by having a more stable set-up, so that one can
be certain that the measured correlation times are only due to the sample, or by
having more intensity, allowing to measure shorter correlation times (which are more
robust against instabilities). In particular a measurement of a sample with a slightly
higher Au content, say Cu85Au15, would be interesting. There one could probably
unambiguously detect deviations from the first-order theory; as I have demonstrated
in Sect. 4.3 this would give information on the influence of the jumping atom’s
neighbourhood on the barrier height it has to overcome. Such data have never been
obtained yet. One could compare them to the results from ab-initio calculations,
which would be to my knowledge the first possibility to test predictions for states far
from the relaxed ground state.

The second point I want to emphasize is diffusion in Si–Ge. Even though diffu-
sion in semiconductors is such an important topic (both for production and thermal
stability), the question of how this happens is still not settled. We need to solve the
problem of the stability of the sample in the furnace at high temperatures first, but
then it would be very easy to decide on the diffusion mechanism.

http://dx.doi.org/10.1007/978-3-642-24121-5_4


Appendix

A.1 Eigenvalues of K0

Here I prove that the matrix K0ðqÞ as defined in Sect. 2.2 has non-positive
eigenvalues, a fact which is related to Gerschgorin’s circle theorem [1]. Actually I

prove it for the matrix K̂ðqÞ; which has the same eigenvalues as K0ðqÞ because the
two matrices are similar due to Eq. 2.2.9.

Let k be an eigenvalue of K̂ðqÞ with eigenvector e, that is
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Taking the real part shows that
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where the last equality is due to Eq. 2.2.1.
Therefore also the real parts of the eigenvalues of K0ðqÞ are less or equal to

zero, and as K0ðqÞ is Hermitian, the eigenvalues are real.

A.2 The Interplay of Fluctuation and Relaxation

Here I give the proof of Eq. 2.3.20. For the nomenclature I refer the reader to
Sect. 2.3. Let the system consist of N lattice sites, of which cN are occupied. Take
a wave-vector q and a state of the system r: The quantity of interest is the
amplitude A, the Fourier transform of r: I assume that the amplitude is on the order
of

ffiffiffiffi
N
p

; this assumption will be justified later.
The assumption that the amplitude is on the order of

ffiffiffiffi
N
p

implies that the
contributions of the distinct particles to the overall amplitude are in first order
uniformly distributed on the complex unit circle, the relative deviations from the
uniform distribution are only on the order of 1=

ffiffiffiffi
N
p

: Therefore the variance of the
real part of the overall amplitude after exactly one particle has made a jump is
given by

vr ¼
�

cosðqðxþ D xÞÞ � cosðqxÞð Þ2
�
þ Oð1=

ffiffiffiffi
N
p
Þ

¼
�

cos2ðqðxþ D xÞÞ � 2 cosðqðxþ D xÞÞ cosðqxÞ þ cos2ðqxÞ
�

¼
 

1
2
�
�

cosð2qxþ qD xÞ þ cosðqD xÞi þ 1
2

!
¼
�
1� cosðqD xÞ

�
ðA:2:1Þ

in the leading order of N, analogously for the imaginary part vi: The exchange rate
m for a given site is

m ¼
X

D x

~mD x; ðA:2:2Þ

90 Appendix

http://dx.doi.org/10.1007/978-3-642-24121-5_2
http://dx.doi.org/10.1007/978-3-642-24121-5_2
http://dx.doi.org/10.1007/978-3-642-24121-5_2
http://dx.doi.org/10.1007/978-3-642-24121-5_2


leading to an increase rate of the variance of the overall amplitude’s real part

d
dt

V
�
AðqÞ

	
¼ Ncð1� cÞmvr ¼ Ncð1� cÞ

X

D x

~mD x

�
1� cosðqD xÞ

	

¼ Ncð1� cÞCincðqÞ: ðA:2:3Þ

The same holds for the imaginary part. The factor cð1� cÞ is the first-order
approximation for the exchanges leading to a change in the amplitude. The
behaviour of the expected value of the amplitude was already given in Eq. 2.3.13:

d
dt

�
AðqÞ

�
¼
�
AðqÞ

�
CcohðqÞ ðA:2:4Þ

Picture now an ensemble of systems, i.e. a distribution of amplitudes in the
complex plane. Equation A.2.3 acts as a convolution with a normal distribution
with infinitesimal width, whereas Eq. A.2.4 acts as an infinitesimal contraction.
Due to the interplay between these two processes the distribution of amplitudes
will evolve to a normal distribution, whose variance (squared width) of the real
component Vr can be computed by requiring stationarity:

0 ¼ d
dt

Vr ¼ Ncð1� cÞCincðqÞ � 2VrCcohðqÞ; ðA:2:5Þ

the same holds for the variance of the imaginary component Vi: The expected
value of the intensity is the expected value of the modulus of the squared
amplitude, that is

ISROðqÞ ¼ Vr þ Vi ¼
Ncð1� cÞCincðqÞ

CcohðqÞ
¼ 1�

1þ V̂ðqÞcð1�cÞ
kT

� ; ðA:2:6Þ

proving Eq. 2.3.20.

A.3 The Sample Environment

Here I give a brief description of the rest of the experimental apparatus, i.e. what is
between the beamline optics (see Sect. 6.2) and the CCD-camera (Chap. 5).

A fundamental distinction in scattering experiments concerns the position of the
sample with respect to the optical path. This can either be the so-called
transmission geometry, where the sample is thin (on the order of the X-ray
absorption length), the primary beam passes through the sample, and the scattered
radiation is detected at the downstream side of the sample. The other possibility is
scattering geometry, where the scattered radiation is detected on the side of the
sample that faces the primary beam. Both possibilities have their assets and
drawbacks: for transmission geometry the preparation and the handling of
the thin sample can be a problem, especially under the aspect that it should be a
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single crystal. With scattering geometry one can use a comfortably thick sample,
and it is principally conceivable to use a powder sample.1 Also there is no exiting
beam in scattering geometry, whereas in transmission geometry one has to
intercept the transmitted beam before it hits something and contributes to the
background via elastic scattering or fluorescence. The advantages of the
transmission geometry are first the accessibility of the whole azimuthal angle
without having to rotate the sample and second the robustness to thermal
fluctuations: in a furnace with rotational symmetry with respect to the incident
beam thermal fluctuations have in first order no influence on the position of the
sample. In scattering geometry, however, thermal expansion will move the sample
normal to the beam, destroying the correlations in the scattered radiation. For these
reasons up to now all our experiments were done in transmission geometry.

Apart from the first feasibility test during the beamtime HS-3419, where a
furnace for small-angle scattering was used, the experiments presented in this
thesis used two furnaces specially designed for wide-angle scattering in
transmission geometry. At the heart of both is a drum (see Fig. A.1) around
which a wire is coiled, used for resistive heating. They differ in the fact that the old
one uses an electrically insulated wire, whereas the new one uses a non-insulated
wire from a high-resistivity alloy, insulated by the high-temperature adhesive into
which it is embedded. This should allow higher temperatures. Inside this drum the
sample holder is mounted, which is compatible to both furnaces. The drums are
designed in order to cover as much as possible of the solid angle while still
allowing scattering angles of 2h ¼ 40�: The drums have a bore where a
thermocouple is inserted. The relation between the thermocouple’s temperature
and the temperature of the sample is still an open question for us, although

Fig. A.1 The heart of the old
furnace. The sample holder is
mounted inside, the heating
wire is coiled outside

1 This can be an option if a single crystal cannot be grown. A powder of the sample material with
grains on the order of 100 nm interspersed with an X-ray-transparent substance such as boron
nitride would give a well-defined sample as opposed to a polycrystal which will recrystallize
under elevated temperatures and where the beam hits a small number of crystallites of unknown
orientation.
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experience gained on similar furnaces tells us that at temperatures around 300�C
the discrepancy should not be more than 5�C: At temperatures around 800�C;
however, where the drum and the sample holder can be seen, they are much
brighter than the sample. This is because the sample is heated via heat conduction
(which scales with the temperature difference), but it loses its heat via radiation
(which scales with the fourth power of the temperature difference). Covering part
of the opening angle with Ta heat shields and wrapping the drum in Al foil helps in
reaching high temperatures, although the Kapton windows then slowly become
fogged by the evaporating Al.

The temperature was regulated by a controller via the voltage applied to the
heating wire. This is done via a set of three parameters; depending on how good
these parameters were set the temperature showed fluctuations around the nominal
value of 0:1�1�C: This was no problem, however, as we had experimentally
ascertained that the correlations in the scattered radiation were lost only with
temperature differences of 5� or more.

For the set-up see Fig. A.2. The furnaces can be connected directly to the flight
tube via flexible bellows, in fact there exists an adapter so that it can be connected
to two flight tubes. This possibility was used only for the measurements of the
metallic glass during beamtime HD-228, because it proved to be quite demanding
to evaluate two data sets in parallel and to keep two cameras busy in a purposeful
way. Anyway, the availability of two working CCDs is only rarely given. Also the

Fig. A.2 The set-up with the old furnace connected to the flight tube. Also visible is the PI CCD
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possibility for connecting one flight tube directly to the furnace was used only in
the other half of beamtime HD-228 for the measurements on Cu90Au10 reported in
Sect. 7.1. For being able to move the flight tube it turned out to be necessary to fill
the furnace and the attached flight tube with He at ambient pressure because of the
forces the atmospheric pressure would exert onto evacuated bellows. At the other
experiments the furnace and the flight tube were evacuated. Kapton foil was used
for the furnace and flight tube windows.

Our single crystal samples were mounted with the surface normal to the
incident beam and they were not moved during the experiments. With the samples
made of metallic glass orientation was no issue, therefore the orientation of the
furnace (including the sample) was adapted in order to more easily reach high
scattering angles.

The furnace is mounted on a stage which can be rotated (and also translated by
small distances), the flight tube and the camera are mounted on an arm which can
be rotated in the horizontal plane independently from the furnace. We realized
detector positions out of the horizontal plane by an improvisational construction
from X95 rails, the in-plane dimension was set by moving the goniometer arm.
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