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Preface

This book is based upon lectures held on 9–13 May 2011 at the INFN-Laboratori
Nazionali di Frascati Black Objects in Supergravity School BOSS2011, directed
by Stefano Bellucci, with the participation of prestigious lecturers, including
G. Lopes Cardoso, W. Chemissany, T. Ortin, J. Perz, O. Vaughan, D. Turton,
L. Lusanna, S. Ferrara. All lectures were given at a pedagogical, introductory
level, a feature which reflects itself in the specific ‘‘flavor’’ of this volume, which
also benefited much from extensive discussions and related reworking of the
various contributions.

This is the sixth volume in a series of books on the general topics of super-
symmetry, supergravity, black holes and the attractor mechanism. Indeed, based
on previous meetings, five volumes were already published:

BELLUCCI S. (2006). Supersymmetric Mechanics - Vol. 1: Supersymmetry,
Noncommutativity and Matrix Models. (vol. 698, pp. 1–229). ISBN: 3-540-33313-4.
BERLIN HEIDELBERG: Springer Verlag (GERMANY). Springer Lecture Notes in
Physics Vol. 698.

BELLUCCI S., S. FERRARA, A. MARRANI. (2006). Supersymmetric
Mechanics - Vol. 2: The Attractor Mechanism and Space Time Singularities. (vol.
701, pp. 1–242). ISBN13: 9783540341567. BERLIN HEIDELBERG: Springer
Verlag (GERMANY). Springer Lecture Notes in Physics Vol. 701.

BELLUCCI S. (2008). Supersymmetric Mechanics - Vol. 3: Attractors and
Black Holes in Supersymmetric Gravity. (vol. 755, pp. 1–373). ISBN-13:
9783540795223. BERLIN HEIDELBERG: Springer Verlag (GERMANY).
Springer Lecture Notes in Physics Vol. 755.

BELLUCCI S. (2010). The Attractor Mechanism. Proceedings of the INFN-
Laboratori Nazionali di Frascati School 2007. ISSN 0930-8989, ISBN 978-3-
642-10735-1, e-ISBN 978-3-642-10736-8. DOI 10.1007/978-3-642-10736-8.
Springer Heidelberg Dordrecht London New York. Springer Proceedings in
Physics Vol. 134.

BELLUCCI S. (2013). Supersymmetric Gravity and Black Holes. Proceedings
of the INFN-Laboratori Nazionali di Frascati School on the Attractor Mechanism
2009. ISSN 0930-8989, ISBN 978-3-642-31379-0, ISBN 978-3-642-31380-6
(eBook), DOI 10.1007/978-3-642-31380-6, Springer Heidelberg New York
Dordrecht London. Springer Proceedings in Physics Vol. 142.
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I wish to thank all lecturers and participants to the School for contributing to the
success of the School, which prompted the realization of this volume. I wish to
thank my wife Gloria and our beloved daughters Costanza, Eleonora, Annalisa,
Erica and Maristella for love and inspiration, in want of which I would have never
had the strength to complete this effort.

Frascati, Italy, December 2012 Stefano Bellucci
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Chapter 1
Non-holomorphic Deformations of Special
Geometry and Their Applications

Gabriel Lopes Cardoso, Bernard de Wit and Swapna Mahapatra

Abstract The aim of these lecture notes is to give a pedagogical introduction to
the subject of non-holomorphic deformations of special geometry. This subject was
first introduced in the context of N = 2 BPS black holes, but has a wider range of
applicability. A theorem is presented according to which an arbitrary point-particle
Lagrangian can be formulated in terms of a complex function F , whose features are
analogous to those of the holomorphic function of special geometry. A crucial role
is played by a symplectic vector that represents a complexification of the canonical
variables, i.e. the coordinates and canonical momenta. We illustrate the characteristic
features of the theorem in the context of field theory models with duality invariances.
The function F may depend on a number of external parameters that are not subject
to duality transformations. We introduce duality covariant complex variables whose
transformation rules under duality are independent of these parameters. We express
the real Hesse potential of N = 2 supergravity in terms of the new variables and
expand it in powers of the external parameters. Then we relate this expansion to the
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one encountered in topological string theory. These lecture notes include exercises
which are meant as a guidance to the reader.

1.1 Introduction

As is well known, an abelian N = 2 supersymmetric vector multiplet in four
dimensions is described by a reduced chiral multiplet, whose gauge covariant degrees
of freedom include an (anti-selfdual) field strength F−μν and a complex scalar field
X . The Wilsonian effective Lagrangian for these vector multiplets is encoded in a
holomorphic function F(X) which, when coupled to supergravity, is required to be
homogeneous of degree two [1]. The abelian vector multiplets may be further cou-
pled to (scalar) chiral multiplets that describe either additional dynamical fields or
background fields. The function F will then also depend on holomorphic fields that
reside in these chiral multiplets. An example thereof is provided by the coupling
of vector multiplets to a conformal supergravity background. The multiplet that
describes conformal supergravity is the Weyl multiplet, and the chiral background
is given by the square of it [2]. In this case the function F , which now depends on
the lowest component field of the chiral background superfield, encodes the cou-
plings of the vector multiplets to the square of the Riemann tensor. These couplings
constitute a special class of higher-derivative couplings, namely, they depend on the
Riemann tensor but not on derivatives thereof. In this paper we will only consider
higher-derivative couplings of this type, i.e. couplings that depend on field strengths
but not on their derivatives.1 We refer to [3] for a discussion on other classes of
higher-derivative couplings. When higher-order derivative couplings are absent, we
will denote the function F by F (0)(X), which then refers to a Wilsonian action that
is at most quadratic in space-time derivatives.

The abelian vector fields in these actions are subject to electric/magnetic duality
transformations under which the electric field strengths and their magnetic duals
are subjected to symplectic rotations. It is then possible to convert to a different
duality frame, by regarding half of the rotated field strengths as the new electric
field strengths and the remaining ones as their magnetic duals. The latter are then
derivable from a new action. To ensure that the characterization of the new action
in terms of a holomorphic function remains preserved, the scalars of the vector
multiplets are transformed accordingly. This amounts to rotating the complex fields
X I and the holomorphic derivatives FI = ∂F/∂X I of the underlying function
F by the same symplectic rotation as the field strengths and their dual partners
[1, 4]. Here the index I labels the vector multiplets (in supergravity it takes the
values I = 0, 1, . . . , n). Thus, electric/magnetic duality (which acts on the vector
(X I , FI )), constitutes an equivalence transformation that relates two Lagrangians
(based on two different functions) and gives rise to equivalent sets of equations of

1 In the language of the theorem that will be presented in Sect. 1.2, this may be rephrased by saying
that the Lagrangians we will consider depend on coordinates and velocities, but not on accelerations.
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motion and Bianchi identities. A subgroup of these equivalence transformations may
constitute a symmetry (an invariance) of the system. For a duality transformation to
constitute a symmetry, the substitution X I → X̃ I into FI must correctly induce the
transformation (X I , FI )→ (X̃ I , F̃I ) [5].

At the Wilsonian level, when coupling the N = 2 vector multiplets to supergravity,
the scalar fields of the vector multiplets parametrize a non-linear sigma-model whose
geometry is called special geometry [6], a name that first arose in the study of the
geometry of the effective action of type-II string compactifications on Calabi-Yau
threefolds [4]. The sigma-model space is a so-called special-Kähler space, whose
Kähler potential is [1],

K (z, z̄) = − ln

[
i
(
X I F̄ (0)

I − X̄ I F (0)
I

)
|X0|2

]
, (1.1)

where F (0)(X) is the holomorphic function that determines the supergravity action,
which is quadratic in space-time derivatives. Because F (0)(X) is homogeneous of
second degree, this Kähler potential depends only on the ‘special’ holomorphic
coordinates zi = Xi/X0 and their complex conjugates, where i = 1, . . . , n, so
that we are dealing with a special-Kähler space of complex dimension n. In view of
the homogeneity, the symplectic rotations acting on the vector (X I , F (0)

I ), induce
corresponding (non-linear) transformations on the special coordinates zi . Up to a
Kähler transformation, the Kähler potential transforms as a function under duality.

There actually exist various ways of defining special Kähler geometry. Apart
from its definition in terms of special holomorphic coordinates [1], it can also be
defined in a coordinate independent way [7]. More recently, the formulation of special
geometry in terms of special real instead of special holomorphic coordinates has been
emphasized [8–13]. This formulation is based on the real Hesse potential [14–16],
which will play an important role below.

In order to pass from the Wilsonian effective action to the 1PI low-energy effective
action, one needs to integrate over the massless modes of the model. In the context
of N = 2 theories this induces non-holomorphic modifications in the gauge and
gravitational couplings of the theory that, at the Wilsonian level, are encoded in the
holomorphic function F . An early example thereof is provided by the computation
of the moduli dependence of string loop corrections to gauge coupling constants in
heterotic string compactifications [17]. These non-holomorphic modifications of the
coupling functions are crucial to ensure that the low-energy effective action possesses
the expected duality symmetries. This is therefore a generic feature of the low-energy
effective action of N = 2 models with duality symmetries.

Another context where these moduli dependent corrections play an important role
is the one of BPS black hole solutions in N = 2 models. Their entropy should exhibit
the duality symmetries of the underlying model, and this is achieved by taking into
account the non-holomorphic modifications of the low-energy effective action. The
need for non-holomorphic modifications of the entropy was established in models
with exact S-duality [18], and their presence has been confirmed at the semiclassical
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level from microstate counting [19, 20]. The fact that non-holomorphic modifications
can be incorporated into the entropy of BPS black holes gave a first indication that
the framework of special geometry can be consistently modified by a class of non-
holomorphic deformations, to be described below. This can be understood as follows.
The free energy of these BPS black holes turns out to be given by a generalized version
of the aforementioned Hesse potential [8, 10, 21]. The Hesse potential is related by a
Legendre transformation to the function F that defines the effective action, and thus
it can be regarded as the associated ‘Hamiltonian’. The Hamiltonian transforms as a
function under electric/magnetic duality transformations. If the N = 2 model under
consideration has a duality symmetry, the Hamiltonian will be invariant under sym-
metry transformations due to the presence of the aforementioned non-holomorphic
modifications. Since the Hamiltonian is related to the function F by an Legendre
transformation, these non-holomorphic modifications will also be encoded in F .

This ‘Hamiltonian’ picture of BPS black holes suggests that special geometry can
be consistently modified by a class of non-holomorphic deformations, whereby the
holomorphic function F(X) that characterizes the Wilsonian action is replaced by a
non-holomorphic function

F(X, X̄) = F (0)(X)+ 2i Ω(X, X̄), (1.2)

where Ω denotes a real (in general non-harmonic) function. The Wilsonian limit is
recovered by taking Ω to be harmonic. In Sect. 1.2 we show that the non-holomorphic
deformations of special geometry described by (1.2) occur in a generic setting. There
we consider general point-particle Lagrangians (that depend on coordinates and
velocities) and their associated Hamiltonians. We present a theorem that shows that
the dynamics of these models can be reformulated in terms of a symplectic vector
(X, ∂F/∂X) constructed out of a complex function F of the form (1.2), and whose
real part comprises the canonical variables of the associated Hamiltonian. We show
that under duality transformations the transformed symplectic vector is again encoded
in a non-holomorphic function of the form (1.2). We illustrate the theorem with
various field theory examples with higher-derivative interactions. We give a detailed
discussion of these examples in order to illustrate the characteristic features of the
theorem. One example consists of the Born-Infeld Lagrangian for an abelian gauge
field, which we reformulate in the language of the theorem based on (1.2). We
subsequently promote the gauge coupling constant to a dynamical field S and discuss
the duality symmetries of the resulting model. We then turn to more general models
with exact S- and T-duality and discuss the restrictions imposed on Ω by these
symmetries.

The function F in (1.2) may depend on a number of external parameters which we
denote by η. Under duality transformations, the symplectic vector (X, ∂F/∂X) trans-
forms into (X̃ , ∂ F̃/∂ X̃), while the parameters η are inert. When expressing the trans-
formed variables X̃ in terms of the X , the relation will depend on η, i.e. X̃ = X̃(X, η).
In Sect. 1.3 we introduce covariant complex variables that constitute a complexifica-
tion of the canonical variables of the Hamiltonian, and whose duality transformation
law is independent of η. These variables ensure that when expanding the Hamiltonian
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in powers of the external parameters, the resulting expansion coefficients transform
covariantly under duality transformations. This expansion can also be studied by
employing a modified derivative Dη , which we construct. The covariant variables
introduced in this section have the same duality transformation properties as the
ones used in topological string theory and can therefore be identified with the latter.
A further indication of the relation with topological string theory is provided by the
generating function that relates the canonical variables of the Hamiltonian to the
covariant complex variables. This generating function turns out to be the one that is
used in the wave function approach to perturbative topological string theory [22–26].

In Sect. 1.4 we turn to supergravity models in the presence of higher-curvature
interactions encoded in the square of the Weyl superfield [2, 5]. We consider these
models in an Ad S2 × S2 background and compute the effective action in this back-
ground. This is first done at the level of the Wilsonian effective action [27, 28]. Then
we assume that the extension to the low-energy effective action can be implemented
by replacing the Wilsonian holomorphic function F by the non-holomorphic func-
tion (1.2). Next, we perform a Legendre transformation of the low-energy effective
action in this background and obtain the associated ‘Hamiltonian’, which takes the
form of the aforementioned generalized Hesse potential. Using the covariant com-
plex variables introduced in Sect. 1.3, we expand the associated Hesse potential (the
Hamiltonian) and work out the first few iterations. This reveals a systematic struc-
ture. Namely, the Hesse potential decomposes into two classes of terms. One class
consists of combinations of terms, constructed out of derivatives of Ω , that transform
as functions under electric/magnetic duality. The other class is constructed out of Ω

and derivatives thereof. Demanding this second class to also exhibit a proper behav-
ior under duality transformations (as a consequence of the transformation behavior
of the Hesse potential) imposes restrictions on Ω . These restrictions are captured
by a differential equation that constitutes half of the holomorphic anomaly equation
encountered in the context of perturbative topological string theory. The differential
equation is a consequence of the tension between maintaining harmonicity of Ω

and insisting on a proper behavior under duality transformations [5]. We conclude
Sect. 1.4 with a brief discussion of open issues which will be addressed in an up-
coming paper. There we will give a detailed discussion of the relation of perturbative
topological string theory with the Hesse potential.

In the appendices we have collected various results, as follows. Appendix A
discusses the transformation behavior under symplectic transformations of various
holomorphic and anti-holomorphic derivatives of F . We use these expressions to give
an alternative proof of the integrability of the resulting structures. In addition, we
show that when F depends on an external parameter η, its derivative ∂ηF transforms
as a function under symplectic transformations. In appendix B we show that the
modified derivative Dη of Sect. 1.3 acts as a covariant derivative for symplectic
transformations. This is done by showing that when given a quantity G(x, x̄; η) that
transforms as a function under symplectic transformations, also DηG transforms as a
function. In appendix C we review the holomorphic anomaly equation of topological
string theory in the big moduli space. Appendix D lists certain combinations that arise
in the expansion of the Hesse potential in powers of η and that transform as functions
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under electric/magnetic duality. In appendix E we list the transformation properties of
various derivatives of Ω under duality transformations using the covariant variables
of Sect. 1.3.

These lecture notes include exercises which we hope will constitute a guidance
to the reader.

1.2 Lecture I: Point-Particle Models and F-Functions

We begin by considering a general point-particle Lagrangian that depends on coor-
dinates φ and velocities φ̇. The associated Hamiltonian will depend on the canonical
variables φ and π, where π denotes the canonical momentum. After briefly review-
ing some of the salient features of the Hamiltonian description, such as canonical
transformations in phase space, we present a theorem that shows that the dynamics
of these models can be reformulated in terms of a symplectic vector that is com-
plex, and whose real part comprises the canonical variables (φ,π). This is achieved
by introducing a complex function F that depends on complex variables x , with
the symplectic vector given by (x, ∂F/∂x). This reformulation exhibits many of
the special geometry features that are typical for N = 2 supersymmetric systems.
However, it also goes beyond the standard formulation of these systems in that the
function F is of the form (1.2), and hence non-holomorphic in general.

We illustrate the theorem with various field theory examples with higher-derivative
interactions. We give a detailed discussion of these examples in order to illustrate
the characteristic features of the theorem. One example consists of the Born-Infeld
Lagrangian for a Maxwell field, which we reformulate in the language of the theorem.
We subsequently promote the gauge coupling constant to a dynamical field S and
discuss the duality symmetries of the resulting model. We turn to more general
models with exact S- and T-duality and discuss the restrictions imposed on Ω by
these symmetries.

The reader not interested in the details of these examples may want to proceed to
Sect. 1.2.3, where we discuss the form of the Hamiltonian when the function F is such
that it transforms homogeneously under a real rescaling of the variables involved.

1.2.1 Theorem

Let us consider a point-particle model described by a Lagrangian L with n coor-
dinates φi and n velocities φ̇i . The associated canonical momenta ∂L/∂φ̇i will be
denoted by πi . The Hamiltonian H of the system, which follows from L by Legendre
transformation,

H(φ,π) = φ̇i πi − L(φ, φ̇), (1.3)
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depends on (φi ,πi ), which are called canonical variables, since they satisfy the
canonical Poisson bracket relations. The variables (φi ,πi ) denote coordinates on
a symplectic manifold called the classical phase space of the system. In these
coordinates, the symplectic 2-form is dπi ∧ dφi . This 2-form is preserved under
canonical transformations of (φi ,πi ) given by

(
φi

πi

)
−→

(
φ̃i

π̃i

)
=
(

Ui
j Zi j

Wi j Vi
j

)(
φ j

π j

)
, (1.4)

where U, V, Z and W denote n × n matrices that satisfy the relations

U T V −W T Z = V T U − Z T W = I,

U T W = W T U , Z T V = V T Z . (1.5)

These relations are precisely such that the transformation (1.4) constitutes an element
of Sp(2n, R). This transformation leaves the Poisson brackets invariant. The Hamil-
tonian transforms as a function under symplectic transformations, i.e. H̃(φ̃, π̃) =
H(φ,π). When the Hamiltonian is invariant under a subset of Sp(2n, R) transfor-
mations, this subset describes a symmetry of the system. This invariance is often
called duality invariance. Observe that the Legendre transformation (1.3) also gives
rise to the relation ∂L/∂φi = −∂H/∂φi by virtue of πi = ∂L/∂φ̇i .

Now we present a theorem that states that the Lagrangian can be reformulated in
terms of a complex function F(x, x̄) based on complex variables xi , such that the
canonical coordinates (φi ,πi ) coincide with (twice) the real part of (xi , Fi ), where
Fi = ∂F(x, x̄)/∂xi .

Theorem Given a Lagrangian L(φ, φ̇) depending on n coordinates φi and n veloc-
ities φ̇i , with corresponding Hamiltonian H(φ,π) = φ̇i πi − L(φ, φ̇), there exists a
description in terms of complex coordinates xi = 1

2 (φi+iφ̇i ) and a complex function
F(x, x̄), such that,

2 Re xi =φi ,

2 Re Fi (x, x̄) =πi , where Fi = ∂F(x, x̄)

∂xi
. (1.6)

The function F(x, x̄) is defined up to an anti-holomorphic function and can be
decomposed into a holomorphic and a purely imaginary (in general non-harmonic)
function,

F(x, x̄) = F (0)(x)+ 2iΩ(x, x̄). (1.7)

The relevant equivalence transformations take the form,

F (0)→ F (0) + g(x) , Ω → Ω − Im g(x), (1.8)
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which results in F(x, x̄)→ F(x, x̄) + ḡ(x̄). The Lagrangian and Hamiltonian can
then be expressed in terms of F (0) and Ω ,

L = 4[Im F −Ω],
H = − i(xi F̄ı̄ − x̄ ı̄ Fi )− 4 Im[F − 1

2 xi Fi ] + 4 Ω

= − i(xi F̄ı̄ − x̄ ı̄ Fi )− 4 Im[F (0) − 1
2 xi F (0)

i ] − 2(2 Ω − xiΩi − x̄ ı̄Ωı̄ ),

(1.9)

with Fi = ∂F/∂xi , F (0)
i = ∂F (0)/∂xi ,Ωi = ∂Ω/∂xi , and similarly for F̄ı̄ , F̄ (0)

ı̄
and Ωı̄ .

Furthermore, a crucial observation is that the 2n-vector (xi , Fi ) denotes a com-
plexification of the phase space coordinates (φi ,πi ) that transforms precisely as
(φi ,πi ) under symplectic transformations, i.e.

(
xi

Fi (x, x̄)

)
−→

(
x̃ i

F̃i (x̃, ¯̃x)

)
=
(

Ui
j Zi j

Wi j Vi
j

)(
x j

Fj (x, x̄)

)
. (1.10)

Hence, a Sp(2n, R) transformation of (xi , Fi ) is a canonical transformation of
H(φ,π). The Eq. (1.10) are, moreover, integrable: the symplectic transformation
yields a new function F̃(x̃, ¯̃x) = F̃ (0)(x̃)+ 2iΩ̃(x̃, ¯̃x), with Ω̃ real.

Proof The proof of this theorem proceeds as follows. First we introduce the
2n-vector (xi , yi ),

xi = 1
2

(
φi + i

∂H

∂πi

)
,

yi = 1
2

(
πi − i

∂H

∂φi

)
, (1.11)

which is constructed out of two canonical pairs, one comprising the variables (φi ,πi )

and the other one comprising derivatives of H(φ,π), namely (∂H/∂πi ,−∂H/∂φi ).
Both pairs transform in the same way under canonical transformations (1.4). Now
we relate the vector (xi , yi ) to the one given in (1.6), and we show that Lagrangian
and the Hamiltonian can be expressed in terms of a complex function F(x, x̄) as in
(1.9).

The Legendre transformation (1.3) gives φ̇i = ∂H/∂πi , where we used πi =
∂L/∂φ̇i . This equation establishes that the complex xi introduced in (1.11) coincide
with the xi defined above (1.6). Then, expressing the Lagrangian in terms of xi and
x̄ ı̄ , gives

∂L(x, x̄)

∂xi
= −2iyi , (1.12)
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where we used the relation ∂L/∂φi = −∂H/∂φi mentioned below (1.5). Next we
write L as the sum of a harmonic and a non-harmonic function (which is always
possible),

L = −2i
[
F (0)(x)− F̄ (0)(x̄)

]+ 4 Ω(x, x̄). (1.13)

By introducing the combination F(x, x̄) = F (0)(x)+2iΩ(x, x̄), we observe that the
relation (1.12) can be concisely written as yi = ∂F(x, x̄)/∂xi , while the Lagrangian
(1.13) becomes L = 4[Im F −Ω]. Using this as well as (1.11), we obtain that the
Hamiltonian H(φ,π) = φ̇i πi − L(φ, φ̇) can be expressed as in (1.9).

Exercise 1 Verify that H can be written as in (1.9).

Thus, we have shown that the vector (xi , yi ) equals (xi , Fi ), and we have established
the validity of (1.9).

Now let us discuss the integrability of (xi , yi ) under canonical transforma-
tions. The vector (xi , yi ), given in (1.11), consists of two canonical pairs, and
hence it transforms as in (1.10) under canonical transformations. We denote the
transformed variables by (x̃ i , ỹi ). The Hamiltonian transforms as a function, i.e.
H̃(Re x̃, Re ỹ) = H(Re x, Re y), as already mentioned. Since we are dealing with
a canonical transformation, the dual quantities (x̃ i , ỹi ) and H̃ will satisfy the same
relations as the original quantities (xi , yi ) and H , so that we can apply the steps
(1.11–1.13) to the dual quantities. The dual variables (x̃ i , ỹi ) have the decomposition
given in (1.11), but now in terms of the dual quantities. The Lagrangian L̃ associated to

H̃ is obtained by a Legendre transformation of H̃ , i.e. L̃ = ˙̃φi π̃i− H̃ . Then, applying
the steps given below (1.11) to the dual Lagrangian shows that L̃ = 4[Im F̃ − Ω̃],
where F̃ is the sum of a holomorphic function F̃ (0) and a real function Ω̃ , i.e.
F̃(x̃, ¯̃x) = F̃ (0)(x̃)+ 2iΩ̃(x̃, ¯̃x). This establishes that (x̃ i , ỹi ) can be obtained from
a new function F̃ , and hence ensures the integrability of (x̃ i , ỹi ) under symplectic
transformations.

To complete the proof of the theorem, we need to discuss one more issue, namely
the decompositions of F(x, x̄) and F̃(x̃, ¯̃x) and their relation. The decomposition of
F into F (0) and Ω suffers from the ambiguity (1.8), and so does the decomposition
of F̃ . Therefore, to be able to relate both decompositions, we need to fix the ambiguity
in the decomposition of F̃ , once a decomposition of F has been given. To do so, we
proceed as follows.

We consider a symplectic transformation (1.10) which, as we just discussed,
yields a new function F̃ . Given a decomposition of F , we apply the same trans-
formation to the vector (xi , F (0)

i ) alone, where F (0)
i = ∂F (0)/∂xi . This yields

the vector (x̂ i , F̃ (0)
i (x̂)), as explained in appendix A. The transformed vector

(x̂ i , F̃ (0)
i (x̂)) can be integrated, i.e. F̃ (0)

i can be expressed as ∂ F̃ (0)(x̂)/∂ x̂ i , where
F̃ (0)(x̂) is uniquely determined up to a constant and up to terms linear in x̂ i

(see (1.165)) [5]. The expression for F̃ (0)(x̂) can be readily obtained by using
that the combination F (0) − 1

2 xi F (0)
i transforms as a function under symplectic

transformations, i.e. δ
(

F (0) − 1
2 xi F (0)

i

)
= 1

2

(
δxi F (0)

i − xi δF (0)
i

)
. One obtains
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F̃ (0)(x̂) = 1
2 x̂ i F̃ (0)

i (x̂)+ F (0)− 1
2 xi F (0)

i , up to a constant and up to terms linear in
x̂ i . Thus, to relate the decomposition of F̃ to the decomposition of F , we demand that
F̃ (0) refers to the combination that follows by applying a symplectic transformation
to (xi , F (0)

i ), as just described. This in turn determines Ω̃ = 1
4 [L̃ − 4Im F̃ (0)]. This

completes the proof of the theorem.
We finish this subsection with a few comments. First, we note that since both H

and F (0) − 1
2 xi F (0)

i transform as functions under symplectic transformations, so
does the following combination that appears in (1.9),

2 Ω − xiΩi − x̄ ı̄Ωı̄ . (1.14)

Second, the transformation law of 2iΩi = Fi − F (0)
i under symplectic transfor-

mations is determined by the transformation behavior of Fi and F (0)
i , as described

above. In appendix A we give an equivalent expression for Ω̃i in terms of a power
series in derivatives of Ω , see (1.161). The transformation law of 2iΩı̄ = Fı̄ , on the
other hand, follows from the reality of Ω̃ ,

Ω̃ı̄ = (Ω̃i ). (1.15)

Third, as mentioned in the introduction, the function F(x, x̄) may, in general, depend
on a number of external parameters η that are inert under symplectic transformations.
Without loss of generality, we may take η to be solely encoded in Ω and, upon
transformation, in Ω̃ (we can use the equivalence relation (1.8) to achieve this). In
appendix A we show that ∂ηF = ∂F/∂η transforms as a function under symplectic
transformations [21]. We will return to this feature in Sect. 1.2.3.

Appendix A also discusses the transformation behavior under symplectic trans-
formations of various holomorphic and anti-holomorphic derivatives of F . We use
these expressions to give an alternative proof of the integrability of (1.10).

1.2.2 Examples

We now proceed to illustrate the features of the theorem discussed above in various
models that have duality symmetries. To keep the discussion as transparent as possible
in all cases, we consider the reduced Lagrangian that is obtained by restricting to
spherically symmetric static configurations in flat spacetime. The first model we
consider is the Born-Infeld model for an abelian gauge field, which has been known
to have an SO(2) duality symmetry for a long time [29]. This symmetry may be
enlarged to an SL(2, R) duality symmetry by coupling the system to a complex
scalar field, called the dilaton-axion field [30]. This is the second model we consider.
Then we turn to more general models with exact S- and T-duality and discuss the
restrictions imposed on Ω by these symmetries. We exhibit how the Born-Infeld-
dilaton-axion system fits into this class of models. Finally, we focus on the case when



1 Non-holomorphic Deformations of Special Geometry and Their Applications 11

the function F(x, x̄) is taken to be homogeneous, and we discuss the form of the
associated Hamiltonian.

The Born-Infeld Model

The Born-Infeld Lagrangian2 for an abelian gauge field in a spacetime with metric
gμν is given by [31]

L = −g−2
[√| det[gμν + g Fμν]| −

√| det gμν |
]
. (1.16)

It depends on an external parameter η = g2. In the following we consider spherically
symmetric static configurations in flat spacetime given by

ds2 = − dt2 + dr2 + r2
(

dθ2 + sin2 θ dϕ2
)

,

Frt = e(r), Fθϕ = p sin θ. (1.17)

Here, the θ-dependence of Fθϕ is fixed by rotational invariance, and p is constant by
virtue of the Bianchi identity. Evaluating (1.16) for this configuration gives

L = −g−2r2 sin2 θ

[√
|1− g2e2(r)|

√
1+ g2 p2 r−4 − 1

]
. (1.18)

Below we will rewrite (1.18) and bring it into the form (1.9). Since this rewriting
does not depend on the angular variables and since it applies to any r -slice, we
integrate over the angular variables and pick the r -slice 4πr2 = 1, for convenience.
The resulting reduced Lagrangian reads,

L(e, p) = −g−2
[√

1− g2e2
√

1+ g2 p2 − 1

]
, (1.19)

where we take g2e2 < 1.

Exercise 2 Instead of flat spacetime, consider the Ad S2 × S2 line element ds2 =
v1(−r2dt2 + r−2dr2) + v2(dθ2 + sin2 θ dϕ2), where v1 and v2 denote constants.
Show that the resulting reduced Lagrangian takes the form (1.19) after performing a
suitable rescaling of g, e and p.

In the example (1.19), the role of the coordinate φ and of the velocity φ̇ introduced
above (1.6) is played by p and e, respectively. The associated Hamiltonian H is
obtained by Legendre transforming with respect to φ̇ = e. The conjugate momentum
π is given by the electric charge q, so that

2 We will use the notation L and H when dealing with Lagrangian and Hamiltonian densities,
respectively.
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H(p, q) = q e − L(e, p). (1.20)

Computing

q = ∂L
∂e
= e

√
1+ g2 p2

1− g2e2 , f ≡ ∂L
∂ p
= −p

√
1− g2e2

1+ g2 p2 , (1.21)

where we introduced f for later convenience, and substituting in (1.20), we obtain
for the Hamiltonian,

H(p, q) = g−2
[√

1+ g2(p2 + q2)− 1

]
. (1.22)

This Hamiltonian is manifestly invariant under SO(2) rotations of p and q and, in
particular, under the discrete symmetry that interchanges the electric and magnetic
charges. The external parameter η = g2 is inert under these transformations. These
rotations constitute the only continuous symmetry of the system [29]. Their infinites-
imal form can be represented by an Sp(2, R)-transformation (1.5) with U = V = 1
and Z = −W = −c, where c ∈ R.

Now, following the construction described in the Sect. 1.2.1, we introduce a
complex coordinate x in terms of the coordinate φ = p and the velocity φ̇ = e, and
a complex function F(x, x̄; g2),

x = 1
2 (p + ie) , F(x, x̄; g2) = F (0)(x)+ 2iΩ(x, x̄; g2), (1.23)

where

F (0)(x) = − 1
2 i x2,

Ω(x, x̄; g2) = 1
8 g
−2
(√

1+ g2(x + x̄)2 −
√

1+ g2(x − x̄)2
)2

. (1.24)

The split into F (0) and Ω is done in such a way that F (0) will encode the contribution
at the two-derivative level (which corresponds to the term L ≈ − 1

4 F2
μν +O(g2) in

(1.16)), while Ω will encode the higher-derivative contributions. Indeed, with these
definitions the Lagrangian (1.19) can be written as

L = 4[ImF −Ω], (1.25)

in agreement with the first equation of (1.9). Next, using the first equation of (1.21),
we establish

p = 2 Re x, q = 2 Re Fx , (1.26)

in accordance with (1.6), where we recall that the conjugate momentum π equals q.
Then, inserting (1.26) into (1.22) yields
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H = i(x̄ Fx − x F̄x̄ )+ 4 g2 ∂Ω

∂g2 , (1.27)

where Fx = ∂F(x, x̄; g2)/∂x . This is in agreement with the second equation of (1.9),
since F (0) satisfies F (0) = 1

2 x F (0)
x , and Ω obeys the homogeneity relation

2 Ω = x Ωx + x̄ Ωx̄ − 2 g2 ∂Ω

∂g2 , (1.28)

which is a consequence of the behavior of Ω under the real scaling x → λ x and
g2 → λ−2 g2.

Exercise 3 Establish (1.28) by differentiating the relation Ω(λ x,λ x̄;λ−2 g2) =
λ2 Ω(x, x̄; g2).

Exercise 4 Verify (1.25), (1.26) and (1.27).

Rather than performing a Legendre transformation of L(e, p) with respect to e,
we may instead consider performing a Legendre transformation with respect to p.
The resulting quantity S(e, f ) will then depend on the canonical pair (e, f ), rather
than on (p, q). Using the expression for f given in (1.21), we obtain

S(e, f ) = f p − L(e, p) = g−2
[√

1− g2(e2 + f 2)− 1

]
, (1.29)

which is invariant under SO(2) rotations of e and f . Next, we express S(e, f ) in
terms of x and Fx introduced in (1.23). First we establish

f = 2 Im Fx , (1.30)

so that
x = 1

2 (p + ie), Fx = 1
2 (q + i f ). (1.31)

Then, using (1.27) and (1.31), we obtain3

S = f p − q e +H = −i
(
x̄ Fx − x F̄x̄

)+ 4 g2 ∂Ω

∂g2 . (1.32)

Let us now return to the discussion about symplectic transformations alluded to
below (1.22). A symplectic transformation (1.10) may either constitute a symmetry
(an invariance) of the system or correspond to a symplectic reparametrization of the
system giving rise to an equivalent set of equations of motion and Bianchi iden-
tities [33]. When a symplectic transformation describes a symmetry, a convenient

3 In the context of BPS black holes, H is the Hesse potential, and the double Legendre transform
of H yields the entropy function [8, 32].



14 G. L. Cardoso et al.

method for verifying this consists in performing the substitution xi → x̃ i in the deriv-
atives Fi , and checking that this correctly induces the symplectic transformation on
(xi , Fi ) [5].

To elucidate this, let us consider a particular example, namely the discrete sym-
metry that interchanges the electric and magnetic charges. It can be implemented
by the transformation (x, Fx ) → (Fx ,−x), which operates on the canonical pairs
(p, q) and (e, f ) through (1.31). This constitutes a symplectic transformation (1.5)
with U = V = 0 , Z = 1 , W = −1. To verify that the transformation x → x̃ = Fx

correctly induces the transformation of Fx , we compute

Fx = −ix
1+ g2(x2 − x̄2)√

1+ g2(x + x̄)2
√

1+ g2(x − x̄)2
. (1.33)

Also, expressing e in terms of p and q (by using the first relation of (1.21)), we may
express x in terms of p = 2Re x and q = 2Re Fx ,

x = 1
2

(
p + iq√

1+ g2(p2 + q2)

)
. (1.34)

We leave the following exercise to the reader.

Exercise 5 Using (1.33), show that the transformation x → Fx induces the trans-
formation Fx →−x by inserting the former on the right hand side of Fx . Similarly,
using (1.34), show that the transformation (Re x, Re Fx )→ (Re Fx ,−Re x) induces
the transformation x → Fx .

Next, let us discuss an example of a symplectic transformation that does not
constitute a symmetry of the system, but instead describes a reparametrization of it.
Namely, consider the following transformation of the canonical pair (p, q),

(
p
q

)
=
(

2Re x
2Re Fx

)
−→

(
p̃
q̃

)
=
(

2Re x̃
2Re F̃x̃

)
=
(

p + α q
q

)
, α ∈ R.

(1.35)
This constitutes a symplectic transformation (1.5) given by U = V = 1 , Z = α ,

W = 0. Since, however, it does not represent an SO(2) rotation of p and q, it does not
leave the Hamiltonian (1.22) invariant. To determine the new function F̃(x̃, ¯̃x; g2)

associated with this reparametrization, we start on the Hamiltonian side and use the
fact that H transforms as a function under symplectic transformations. Using (1.35)
this gives

H̃( p̃, q̃) = H(p, q) = g−2
[√

1+ g2[( p̃ − αq̃)2 + q̃2] − 1

]
. (1.36)

Now we determine the corresponding Lagrangian by Legendre transformation,



1 Non-holomorphic Deformations of Special Geometry and Their Applications 15

L̃(ẽ, p̃) = ẽ q̃ − H̃( p̃, q̃), (1.37)

where

ẽ = ∂H̃
∂q̃
= (1+ α2)q̃ − α p̃√

1+ g2(1+ α2)−1[((1+ α2)q̃ − α p̃)2 + p̃2] . (1.38)

This yields,

q̃ = α p̃

1+ α2 +
ẽ

1+ α2

√
1+ α2 + g2 p̃2

1+ α2 − g2 ẽ2 , (1.39)

which, when inserted in (1.37), gives

L̃(ẽ, p̃) = α ẽ p̃

1+ α2 − g−2
[

1

1+ α2

√
1+ α2 − g2 ẽ2

√
1+ α2 + g2 p̃2 − 1

]
.

(1.40)

In order to bring the Lagrangian L̃ into the form L̃ = 4
[
Im F̃ − Ω̃

]
, as in (1.9), we

express L̃ in terms of the complex coordinate

x̃ = 1
2 ( p̃ + iẽ) , (1.41)

which is the transformed version of the coordinate x introduced in (1.23). Then, we
consider all the terms in L̃ that are independent of g2, and we express them in terms
of a function F̃ (0)(x̃), as follows,

1

1+ α2

[
α ẽ p̃ + 1

2

(
ẽ2 − p̃2

)]
= 4 Im F̃ (0)(x̃). (1.42)

This yields

F̃ (0)(x̃) = α− i

2 (1+ α2)
x̃2, (1.43)

up to a real constant. It represents the function that is obtained by applying the
symplectic transformation (1.35) to F (0)(x), as explained at the end of Sect. 1.2.1.
Next, we introduce the function

F̃(x̃, ¯̃x; g2) = F̃ (0)(x̃)+ 2iΩ̃(x̃, ¯̃x; g2), (1.44)

with Ω̃ real, and we require it to satisfy L̃ = 4
[
Im F̃ − Ω̃

]
. This implies that all the

g2-dependent terms will be encoded in Ω̃(x̃, ¯̃x; g2). We obtain
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Ω̃(x̃, ¯̃x; g2) = 1

8(1+ α2) g2

(√
1+ α2 + g2(x̃ + ¯̃x)2 −

√
1+ α2 + g2(x̃ − ¯̃x)2

)2

.

(1.45)
This result gives the function F̃ associated with the reparametrization (1.35). We now
check that it correctly reproduces the relation q̃ = 2 Re F̃x̃ , as required by (1.35).
We compute F̃x̃ and obtain,

F̃x̃ = α x̃

1+ α2 (1.46)

− i

2 (1+ α2)

⎧⎨
⎩(x̃ − ¯̃x)

√
1+ α2 + g2(x̃ + ¯̃x)2

1+ α2 + g2(x̃ − ¯̃x)2
+ (x̃ + ¯̃x)

√
1+ α2 + g2(x̃ − ¯̃x)2

1+ α2 + g2(x̃ + ¯̃x)2

⎫⎬
⎭ .

We leave the following exercise to the reader.

Exercise 6 Using (1.46), verify explicitly that 2Re F̃x̃ equals (1.39).

Now we want to see how F̃x̃ is related to Fx . According to the discussion
around (1.10), the symplectic transformation (1.35) of the canonical pair (Re x, Re Fx )

induces a corresponding transformation of the vector (x, Fx ),(
x̃
F̃x̃

)
=
(

x + α Fx

Fx

)
. (1.47)

This is indeed the case, as can be verified explicitly by expressing the transformed
variables ( p̃, ẽ) in terms of the original variables (p, e) using (1.21), (1.38) and
(1.35),

p̃ = p + α e

√
1+ g2 p2

1− g2e2 , ẽ = e − α p

√
1− g2e2

1+ g2 p2 , (1.48)

and employing the relation

1+ α2 − g2ẽ2

1+ α2 + g2 p̃2 =
1− g2e2

1+ g2 p2 . (1.49)

Exercise 7 Verify (1.47) explicitly using (1.46).

Including a Dilaton-Axion Complex Scalar Field

The Born-Infeld system discussed in the previous section possesses a continuous
SO(2) duality symmetry group. It is possible to enlarge this duality symmetry group
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to Sp(2, R) by coupling the abelian gauge field to a complex scalar field S = Φ +
i B [30]. This is achieved by replacing g Fμν in (1.16) with gΦ1/2 Fμν and adding a
term B Fμν F̃μν to the Lagrangian, as follows [30]

L = −g−2
[√
| det[gμν + gΦ1/2 Fμν]| −

√| det gμν |
]
+ 1

4 B Fμν F̃μν . (1.50)

Then, the combined system of equations of motion and Bianchi identity for Fμν is
invariant under Sp(2, R) transformations, provided that S transforms in a suitable
fashion. The associated Hamiltonian will then be invariant under these transforma-
tions. This will be discussed momentarily. The coupling gΦ1/2 replaces the gauge
coupling constant with a dynamical field, customarily called the dilaton field, while
the term B Fμν F̃μν introduces a scalar field degree of freedom called the axion. For
this reason, S is also called the dilaton-axion field.

As before, let us consider spherically symmetric static configurations of the
form (1.17). Picking again the r -slice 4πr2 = 1, for convenience, the reduced La-
grangian is now given by

L(e, p, Φ, B) = −g−2
[√

1− g2 Φ e2
√

1+ g2 Φ p2 − 1

]
+ B e p, (1.51)

where we take g2 Φ e2 < 1. This reduces to the previous one in (1.19) when setting
S = 1. To obtain the associated Hamiltonian H,

H(p, q, Φ, B) = q e − L(e, p, Φ, B), (1.52)

we first compute q = ∂L/∂e,

q = e Φ

√
1+ g2 Φ p2

1− g2 Φ e2 + B p. (1.53)

Inverting this relation yields

e = q − B p√
Φ2 + g2 Φ

[
Φ2 p2 + (q − B p)2

] , (1.54)

and substituting in (1.52) gives

H(p, q, Φ, B) = g−2
[√

1+ g2[Φ p2 +Φ−1 (q − B p)2] − 1

]
. (1.55)

Then, expressing Φ and B in terms of S and S̄ results in
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H(p, q, S, S̄) = g−2
[√

1+ 2 g2 �(p, q, S, S̄)− 1

]
, (1.56)

where

�(p, q, S, S̄) = q2 + ip q(S − S̄)+ p2 |S|2
S + S̄

. (1.57)

Exercise 8 Verify (1.56).

Now we are in position to discuss the invariance of the Hamiltonian under Sp(2, R)

transformations. Consider a general Sp(2, R) transformation of the canonical pair
(p, q) given by (

p
q

)
−→

(
p̃
q̃

)
=
(

d −c
−b a

)(
p
q

)
, (1.58)

where a, b, c, d ∈ R and ad − bc = 1. The latter ensures that the transformation
belongs to SL(2, R) ∼= Sp(2, R). Then, � given in (1.57) is invariant under (1.58)
provided that S transforms according to [8]

S→ aS − ib

icS + d
. (1.59)

This explains the role of S in achieving duality invariance. It should be noted that
S does not constitute an additional canonical variable, but instead describes a back-
ground field. The external parameter g2 is inert under these transformations.

Exercise 9 Show that � is invariant under the combined transformation (1.58) and
(1.59).

We observe that H homogeneously as H → λ2H under the real scaling (p, q) →
λ(p, q) , g2 → λ−2 g2 , S→ S, with λ ∈ R.

Let us now return to the reduced Lagrangian (1.51) and recast it in the form
L = 4 [ImF −Ω], where again we introduce the complex variable x = 1

2 (p + ie).
The function F will now depend on the two complex scalar fields x an S,

F(x, x̄, S, S̄; g2) = F (0)(x, S)+ 2iΩ(x, x̄, S, S̄; g2), (1.60)

and is determined as follows. The holomorphic function F (0) encodes all the contri-
butions that are independent of g2, while Ω , which is real, accounts for all the terms
in the reduced Lagrangian that depend on g2. This yields,

F (0)(x, S) = − 1
2 i S x2, (1.61)

Ω(x, x̄, S, S̄; g2) = 1
8 g
−2
(√

1+ 1
2g

2 (S + S̄) (x + x̄)2

−
√

1+ 1
2g

2 (S + S̄) (x − x̄)2

)2

.
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Observe that under the scaling of (p, q) and g2 discussed below (1.59), e scales
as e → λe, and hence x scales as x → λx . This in turn implies that F scales as
F → λ2 F .

From (1.6) we infer that the canonical pair (p, q) is given by (2Re x, 2Re Fx ).
According to the discussion around (1.10), the symplectic transformation (1.58)
of the canonical pair (Re x, Re Fx ) induces a transformation of the vector (x, Fx )

given by (x, Fx ) → (d x − c Fx , a Fx − b x). Since (1.58) together with (1.59)
constitutes a symmetry of the model, the transformation of Fx must be induced by
the transformation of x and S upon substitution. We leave it to the reader to verify
this.

Exercise 10 Show that the transformation of x and S (given in (1.58) and (1.59),
respectively) induces the transformation Fx → a Fx − b x by substituting x and S
with x̃ and S̃ in Fx .

The reduced Lagrangian (1.51) describes the system on an r -slice 4πr2 = 1.
Another background leading to a similar reduced Lagrangian, and hence to a similar
description in terms of a function F , is provided by an Ad S2 × S2 spacetime.

Exercise 11 Consider the Born-Infeld-dilaton-axion system in an Ad S2× S2 back-
ground and show that, after performing a suitable rescaling of g, e and p, the resulting
reduced Lagrangian is again encoded in (1.61).

Towards N = 2 Supergravity Models

In the Born-Infeld example discussed above, the duality symmetry of the model was
enlarged by coupling it to an additional complex scalar field S. This feature is not
an accident. In the context of N = 2 supersymmetric models, it is well known that
the presence of complex scalar fields is crucial in order for the model to have duality
symmetries. To explore this in more detail, let us broaden the discussion and consider
functions F that depend on three complex scalar fields Y I (with I = 0, 1, 2), as well
as on an external parameter η. They will have the form

F(Y, Ȳ ; η) = − 1
2

Y 1(Y 2)2

Y 0 + 2iΩ(Y, Ȳ ; η). (1.62)

The function F describing the Born-Infeld-dilaton-axion system, given in (1.60), is a
special case of (1.62). It is obtained by performing the identification S = −i Y 1/Y 0,
x = Y 2 and η = g2. This identification is consistent with the scaling properties
of x, S and g2 discussed below (1.59). Namely, by assigning the uniform scaling
behavior Y I → λ Y I to the Y I , we reproduce the scalings of x, S and g2. The
function (1.62) may, however, also describe other models, such as genuine N = 2
supergravity models and should thus be viewed in a broader context. Depending
on the chosen context, the external parameter η will have a different interpretation.
Observe that in the description (1.62) based on the Y I , duality transformations are
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represented by Sp(6, R) matrices (which are 6× 6 matrices of the form (1.5)) acting
on (Y I , FI ), where FI = ∂F(Y, Ȳ ; η)/∂Y I . The external parameter η is inert under
these transformations.

Let us now assume that a model based on (1.62) has a symmetry associated with
a subgroup of Sp(6, R). This will impose restrictions on the form of Ω [18, 21]. For
concreteness, we take the symmetry to be an SL(2, R) × SL(2, R) subgroup. The
first SL(2, R) subgroup acts as follows on (Y I , FI ),

Y 0 → d Y 0 + c Y 1,

Y 1 → a Y 1 + b Y 0,

Y 2 → d Y 2 − c F2,

F0 → a F0 − b F1,

F1 → d F1 − c F0,

F2 → a F2 − b Y 2,

(1.63)

where a, b, c, d are real parameters that satisfy ad − bc = 1. This symmetry is
referred to as S-duality. Let us describe its action on two complex scalar fields S and T
that are given by the scale invariant combinations S = −iY 1/Y 0 and T = −iY 2/Y 0.
The field S is the one we encountered above. The S-duality transformation (1.63)
acts as

S→ aS − ib

icS + d
, T → T + 2i c

ΔS (Y 0)2

∂Ω

∂T
, Y 0 → ΔS Y 0, (1.64)

where we view Ω as function of S, T, Y 0 and their complex conjugates, and where

ΔS = d + ic S. (1.65)

The second SL(2, R) subgroup is referred to as T-duality group. Here we focus on
the T-duality transformation that, in the absence of Ω , induces the transformation
T → 2/T . It is given by the following Sp(6, R) transformation,

Y 0 → F1 ,

Y 1 → −F0 ,

Y 2 → Y 2 ,

F0 → −Y 1 ,

F1 → Y 0 ,

F2 → F2 ,

(1.66)

and yields

S→ S + 2

ΔT(Y 0)2

[
−Y 0 ∂Ω

∂Y 0 + T
∂Ω

∂T

]
, T → T

ΔT
, Y 0 → ΔT Y 0, (1.67)

where

ΔT = 1
2 T 2 + 2

(Y 0)2

∂Ω

∂S
. (1.68)

As already mentioned below (1.32), when a symplectic transformation describes
a symmetry of the system, a convenient method for verifying this consists in per-
forming the substitution Y I → Ỹ I in the derivatives FI , and checking that this



1 Non-holomorphic Deformations of Special Geometry and Their Applications 21

substitution correctly induces the symplectic transformation of FI . This will impose
restrictions on the form of F , and hence also on Ω . Imposing that S-duality (1.63)
constitutes a symmetry of the model (1.62) results in the following conditions on the
transformation behavior of the derivatives of Ω [21],

(
∂Ω

∂T

)′
S
= ∂Ω

∂T
,

(
∂Ω

∂S

)′
S
=ΔS

2
(
∂Ω

∂S

)
+ ∂

(
ΔS

2
)

∂S

[
− 1

2 Y 0 ∂Ω

∂Y 0 −
ic

2ΔS (Y 0)2

(
∂Ω

∂T

)2
]

,

(
Y 0 ∂Ω

∂Y 0

)′
S
= Y 0 ∂Ω

∂Y 0 +
2ic

ΔS (Y 0)2

(
∂Ω

∂T

)2

, (1.69)

while requiring (1.66) to constitute a symmetry imposes the transformation behav-
ior [21]

(
∂Ω

∂S

)′
T
= ∂Ω

∂S
,

(
∂Ω

∂T

)′
T
=
(
ΔT − T 2

) ∂Ω

∂T
+ T Y 0 ∂Ω

∂Y 0 ,

(
Y 0 ∂Ω

∂Y 0

)′
T
= Y 0 ∂Ω

∂Y 0 +
4

ΔT (Y 0)2

∂Ω

∂S

[
−Y 0 ∂Ω

∂Y 0 + T
∂Ω

∂T

]
. (1.70)

These equations allow for various classes of solutions. For instance, if we only impose
S-duality invariance, then an exact solution to the S-duality conditions (1.69) is

Ω(S, S̄, Y 0, Ȳ 0; η) = η
[
ln Y 0 + ln Ȳ 0 + ln(S + S̄)

]
, (1.71)

which is invariant under (1.64). If, on the other hand, we impose both S-duality
and T-duality invariance, solutions to both (1.69) and (1.70) may be constructed
iteratively by assuming that Ω is analytic in η and power expanding in it, so that

Ω(Y, Ȳ ; η) =
∞∑

n=1

ηn Ω(n)(Y, Ȳ ). (1.72)

Then, at order η, the differential equations (1.69) reduce to

(
∂Ω(1)

∂T

)′
S

= ∂Ω(1)

∂T
,

(
∂Ω(1)

∂S

)′
S

=ΔS
2

(
∂Ω(1)

∂S

)
+ ∂

(
ΔS

2
)

∂S

[
− 1

2 Y 0 ∂Ω(1)

∂Y 0

]
,
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(
Y 0 ∂Ω(1)

∂Y 0

)′
S

= Y 0 ∂Ω(1)

∂Y 0 , (1.73)

while the differential equations (1.70) reduce to

(
∂Ω(1)

∂S

)′
T

= ∂Ω(1)

∂S
,

(
∂Ω(1)

∂T

)′
T

= − 1
2 T 2 ∂Ω(1)

∂T
+ T Y 0 ∂Ω(1)

∂Y 0 ,

(
Y 0 ∂Ω(1)

∂Y 0

)′
T

= Y 0 ∂Ω(1)

∂Y 0 . (1.74)

Once a solution Ω(1) to these equations has been found, the full expression (1.72)
can be constructed by solving (1.69) and (1.70) iteratively starting from Ω(1).

As an application, let us return to the Born-Infeld-dilaton-axion model (1.61)
which, as we already mentioned, is a model of the form (1.62) that scales as F →
λ2 F under Y I → λY I with λ ∈ R (see below (1.61)). Let us first check that
both S- and T-duality constitute invariances of the model. We recall that x = Y 2.
The S-duality transformation (1.63) precisely induces the transformations (1.58)
and (1.59), since (p, q) = (2Re x, 2Re Fx ). The T-duality transformation (1.66)
leaves (x, Fx ) invariant. By expressing Ω given in (1.61) in terms of S, T and Y 0

(and their complex conjugates), we see from (1.67) that also S is invariant under
this T-duality transformation, since Y 0∂Ω/∂Y 0 = T∂Ω/∂T . Consequently, the
Hamiltonian (1.56) is also invariant under (1.66).

Now consider expanding (1.61) in powers of g2. To first order we obtain

Ω(1) = 1
8 |Y 0|4 (S + S̄)2 |T |4. (1.75)

It is invariant under both (1.63) and (1.66) to lowest order in g2, and it is straightfor-
ward to check that (1.75) indeed satisfies the differential Eqs. (1.73) and (1.74).
We note that under the aforementioned scaling Y I → λ Y I , Ω(1) scales as
Ω(1) → λ4 Ω(1). This scaling behavior is thus very different from the one en-
countered in supergravity models, such as those considered in [18, 21], where the
function F scaled homogeneously as F → λ2 F , but the associated Ω(1) did not
scale at all. This difference is due to the fact that in these models, the external para-
meter η scaled as η → λ2 η, while in the Born-Infeld-dilaton-axion model it scales
as η→ λ−2 η.

Thus, we see that the actual solutions to (1.69) and (1.70) depend sensitively
on the scaling behavior of the Y I and η. For instance, the solution (1.71) does not
exhibit a homogeneous scaling behavior under Y I → λY I . In the next subsection,
we further analyze some of the consequences of this scaling behavior.
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1.2.3 Homogeneous F(x, x̄;η)

The theorem in Sect. 1.2.1 did not assume any homogeneity properties for F . Here
we will look at the case when F is homogeneous of degree two and discuss some of
its consequences. As shown in the previous subsections, an example of a model with
this feature is the Born-Infeld-dilaton-axion system.

Let us consider a function F(x, x̄; η) = F (0)(x) + 2iΩ(x, x̄; η) that depends
on a real external parameter η, and let us discuss its behavior under the scaling
x → λ x , η → λm η with λ ∈ R. We take F (0)(x) to be quadratic in x , so that
F (0) scales as F (0)(λ x) = λ2 F (0)(x). This scaling behavior can be extended to
the full function F if we demand that the canonical pair (φ,π) given in (1.6) scales
uniformly as (φ,π)→ λ (φ,π). Then we have

F(λ x,λ x̄;λm η) = λ2 F(x, x̄; η), (1.76)

which results in the homogeneity relation

2 F = xi Fi + x̄ ı̄ Fı̄ + m η Fη, (1.77)

where Fη = ∂F/∂η. Inspection of (1.11) shows that the associated Hamiltonian H
scales with weight two as

H(λφ,λπ;λm η) = λ2 H(φ,π; η), (1.78)

so that H satisfies the homogeneity relation,

2 H = φ ∂H

∂φ
+ π ∂H

∂π
+ m η

∂H

∂η
. (1.79)

Using (1.11) as well as yi = Fi , this can be written as

H = i
(

x̄ ı̄ Fi − xi F̄ı̄

)
+ m

2
η
∂H

∂η
. (1.80)

Next, using that the dependence on η is solely contained in Ω , we obtain

∂H

∂η
|φ,π = −∂L

∂η
|φ,φ̇ = −4Ωη, (1.81)

where Ωη = ∂Ω/∂η. Thus, we can express (1.80) as

H = i
(

x̄ ı̄ Fi − xi F̄ı̄

)
− 2 m ηΩη. (1.82)
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This relation is in accordance with (1.9) upon substitution of the homogeneity
relations 2F (0)(x) = xi F (0)

i and 2 Ω = xiΩi + x̄ ı̄Ωı̄ + m ηΩη that follow from
(1.77).

The Hamiltonian transforms as a function under symplectic transformations. Since
the first term in (1.82) transforms as a function, it follows that Ωη also transforms as a
function. This is in accordance with the general result quoted at the end of Sect. 1.2.1
which states that ∂ηF transforms as a function.

An application of the above is provided by the Born-Infeld-dilaton-axion system
based on (1.61), whose function F scales according to (1.76) with m = −2 (in this
example, η = g2).

In certain situations, such as in the study of BPS black holes [34], the discussion
needs to be extended to an external parameter η that is complex, so that now we
consider a function F(x, x̄; η, η̄) = F (0)(x)+ 2iΩ(x, x̄; η, η̄) that scales as follows
(with λ ∈ R),

F(λ x,λ x̄;λm η,λm η̄) = λ2 F(x, x̄; η, η̄). (1.83)

For instance, in the case of BPS black holes, η is identified with Υ , which is complex
and denotes the (rescaled) lowest component of the square of the Weyl superfield.
The extension to a complex η results in the presence of an additional term on the
right hand side of (1.77) and (1.79),

2 F = xi Fi + x̄ ı̄ Fı̄ + m
(
η Fη + η̄Fη̄

)
,

2 H =φ ∂H

∂φ
+ π ∂H

∂π
+ m

(
η
∂H

∂η
+ η̄ ∂H

∂η̄

)
, (1.84)

and hence

H = i
(

x̄ ı̄ Fi − xi F̄ı̄

)
+ m

2

(
η
∂H

∂η
+ η̄ ∂H

∂η̄

)
. (1.85)

Then, since the dependence on η and η̄ is solely contained in Ω , we obtain

H = i
(

x̄ ı̄ Fi − xi F̄ı̄

)
− 2 m

(
ηΩη + η̄Ωη̄

)
. (1.86)

This is in accordance with (1.9) upon substitution of the homogeneity relations
2F (0)(x) = xi F (0)

i and 2 Ω = xiΩi + x̄ ı̄Ωı̄ + m (ηΩη + η̄Ωη̄) that follow
from (1.84). The case of BPS black holes mentioned above corresponds to m = 2
[8, 21].

The above extends straightforwardly to the case of multiple real external
parameters.
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1.3 Lecture II: Duality Covariant Complex Variables

As already discussed, the function F(x, x̄) may depend on a number of external
parameters η. Under duality transformations (1.10), the symplectic vector (xi , Fi

(x, x̄)) transforms into (x̃ i , F̃i (x̃, ¯̃x)), while the parameters η are inert. When
expressing the transformed variables x̃ i in terms of the original xi , the relation
will depend on η, i.e. x̃ i = x̃ i (x, x̄, η). In this section we introduce duality co-
variant complex variables t i whose duality transformation law is independent of η.
These variables constitute a complexification of the canonical variables of the Hamil-
tonian and ensure that when expanding the Hamiltonian in powers of the external
parameters, the resulting expansion coefficients transform covariantly under duality
transformations. This expansion can also be organized by employing a suitable co-
variant derivative, which we construct. The covariant variables introduced here have
the same duality transformation properties as the ones used in topological string
theory and can therefore be identified with the latter.

We begin by writing the Hamiltonian H given in (1.9) in the form

H = − i(xi F̄ (0)
ı̄ − x̄ ı̄ F (0)

i )− 4 Im[F (0) − 1
2 xi F (0)

i ]
− 2

[
2 Ω − (xi − x̄ ı̄ )(Ωi −Ωı̄ )

]
, (1.87)

where we made use of (1.7). We take Ω(x, x̄; η) to depend on a single real parameter
η that is inert under symplectic transformations. The discussion given below can
be extended to the case of multiple real external parameters in a straightforward
manner. For later convenience, we introduce the notation Ωη = ∂Ω/∂η, Fη j =
∂2 F/∂η∂x j , etc.

The Hamiltonian (1.87) is given in terms of complex fields xi and x̄ ı̄ whose
transformation law under duality depends on the external parameter η. Now we
define complex variables t i whose transformation law does not depend on η, as
follows. We introduce the complex vector (t i , F (0)

i (t)) and equate its real part with
the vector comprising the canonical variables (φi ,πi ) [10],

2Re t i = φi ,

2Re F (0)
i (t) =πi . (1.88)

This definition ensures that the vector (t i , F (0)
i (t)) describes a complexification of

(φi ,πi ) that transforms in the same way as (φi ,πi ) under duality transformations,
namely as in (1.4). This yields the transformation law

t̃ i = Ui
j t j + Zi j F (0)

j (t), (1.89)

which, differently from the one for the x̃ i , is independent of η.
Using (1.6), the new variables t i are related to the xi by
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2Re t i = 2Re xi ,

2Re F (0)
i (t) = 2Re Fi (x, x̄; η). (1.90)

Now we consider the series expansion of H in powers of η. If the expansion
is performed keeping xi and x ı̄ fixed, the resulting coefficients functions in the
expansion do not have a nice behavior under sympletic transformations because of
the aforementioned dependence of x̃ i on η. This implies that the coefficient functions
at a given order in η will transform into coefficient functions at higher order. This
can be avoided by performing an expansion in powers of η keeping t i and t ı̄ fixed
instead. We obtain

H =
∞∑

n=0

ηn

n! f (n)(t, t̄), (1.91)

where the coefficient functions

f (n) = ∂n

ηH(t, t̄; η)
∣∣∣
η=0

(1.92)

transform as functions under symplectic transformations, i.e. f̃ (n)(t̃, ¯̃t) = f (n)(t, t̄).
Viewing them as as functions of Re t i and of Re F (0)

i (t), we can re-express them in
terms of xi and x̄ ı̄ using (1.90), as follows. First we introduce a modified derivative
Dη [5, 33] that has the feature that it annihilates the canonical variables (φi ,πi ), so
that

Dη

(
Re xi

)
= 0, Dη (Re Fi ) = 0. (1.93)

We then use Dη to expand H in powers of η while keeping Re xi and Re Fi fixed,

H =
∞∑

n=0

ηn

n! H (n), (1.94)

where the coefficient functions are given by

H (n) = Dn

ηH(x, x̄; η)
∣∣∣
η=0

. (1.95)

By comparing (1.91) with (1.94), we conclude that f (n) = H (n), so that the sym-
plectic coefficient functions f (n) can be expressed as

f (n) = ∂n

ηH(t, t̄; η)
∣∣∣
η=0
= Dn

ηH(x, x̄; η)
∣∣∣
η=0

. (1.96)

The modified derivative Dη used in the expansion is given by

Dη = ∂η + i N̂ i j (Fη j + F̄ηj̄
)
(∂i − ∂ı̄ ) , (1.97)
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where N̂ i j denotes the inverse of

N̂i j = −i
[
Fi j − F̄ı̄ j̄ − Fi j̄ + F̄ı̄ j

]
. (1.98)

Using (1.7), the above can also be written as

Dη = ∂η − 2 N̂ i j (Ωη j −Ωηj̄

)
(∂i − ∂ı̄ ) , (1.99)

with

N̂i j = Ni j + 4Re
(
Ωi j −Ωi j̄

)
,

Ni j = − i
[

F (0)
i j − F̄ (0)

ı̄ j̄

]
. (1.100)

Observe that N̂i j is a real symmetric matrix.

Exercise 12 Verify (1.93).

We now give the first few terms in the expansion of H . We choose to evaluate
them using (1.95). Expanding Ω in a power series4 in η,

Ω(x, x̄; η) =
∞∑

n=1

ηn

n! Ω
(n)(x, x̄), (1.101)

we obtain

f (0) = − i(xi F̄ (0)
ı̄ − x̄ ı̄ F (0)

i )− 4 Im[F (0) − 1
2 xi F (0)

i ],
f (1) = − 4 Ω(1),

f (2) = − 4
[
Ω(2) − 2N i j

(
Ω

(1)
i −Ω

(1)
ı̄

) (
Ω

(1)
j −Ω

(1)
j̄

)]
,

f (3) = − 4
[
Ω(3) − 6N i j

(
Ω

(2)
i −Ω

(2)
ı̄

) (
Ω

(1)
j −Ω

(1)
j̄

)
(1.102)

+ 12N ik N jl
(
Ω

(1)
i j −Ω

(1)
i j̄ + c.c.

) (
Ω

(1)
k −Ω

(1)

k̄

) (
Ω

(1)
l −Ω

(1)

l̄

)
+ 4i N ip N jl N km

(
Ω

(1)
i −Ω

(1)
ı̄

) (
Ω

(1)
j −Ω

(1)
j̄

) (
Ω

(1)
k −Ω

(1)

k̄

)
×
(

F (0)
plm + F̄ (0)

p̄l̄m̄

)]
.

Observe that at any given order in η, there is no distinction between xi and t i , so that
in (1.102) we may replace xi everywhere by t i .

The expansion (1.94) yields expansion functions that are symplectic functions.
This implies that Dη acts as a covariant derivative for symplectic transformations.

4 Note that here we have chosen a different normalization for the Ω(n) compared to the one in
(1.72).
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This can be verified explicitely and is done in appendix B, where we show that if a
quantity G(x, x̄; η) transforms as a function under symplectic transformations, then
so does DηG. In particular, applying Dη to H yields the relation

∂ηH(t, t̄; η) = DηH(x, x̄; η), (1.103)

where the right-hand side defines a symplectic function. More generally, applying
multiple derivatives Dn

η on any symplectic function depending on xi and x̄ ı̄ , will

again yield a symplectic function. As an example, consider applying Dη and D2

η
on (1.87),

DηH(x, x̄; η) = − 4 ∂ηΩ(x, x̄; η),
D2

ηH(x, x̄; η) = − 4
[
∂

2

ηΩ − 2 N̂ i j∂ηωi ∂ηω j

]
, (1.104)

where ωi = Ωi −Ωı̄ . According to the above, both these expressions transform as
functions under symplectic transformations. For the first expression this is confirmed
by the result (1.177) which shows that ∂ηΩ transforms as a function. The second

expression shows that, while ∂
2

ηΩ does not transform as a function, there exists
a modification that can be included such that the result does again transform as a
function. Expressions like these were derived earlier in a holomorphic setup [5, 33].
Furthermore, we note that the differential operators Di , defined by

Di = N̂ i j
(

∂

∂x j
− ∂

∂ x̄ j̄

)
, (1.105)

are mutually commuting, and they also commute with Dη ,

[Di ,D j ] = [Di ,Dη] = 0. (1.106)

Exercise 13 Verify (1.106).

As already mentioned, it is possible to extend the above to the case of several
independent real parameters η, η′, η′′, . . .. In that case the additional operators, Dη′ ,
etc., will also commute with the operators considered in (1.106).

Obviously, when imposing the restriction η = 0 on the functions Dn

ηH , they

reduce to the expressions for the f (n) obtained in (1.102). This can be explicitly
verified for the functions given in (1.104) by comparing them to the expressions
in (1.102).

Let us return to the relation (1.88) and discuss it in the light of phase space

variables. As mentioned in Sect. 1.2.1, we view (φi ,πi ) as coordinates on a clas-
sical phase space equipped with the symplectic form dπi ∧ dφi . Let us express the
symplectic form in terms of the t i using (1.88),
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dπi ∧ dφi = i Ni j dt i ∧ dt̄ j̄ , (1.107)

with Ni j given in (1.100). This relation may be interpreted as a canonical transforma-
tion from variables (φi ,πi ) to (t i , t̄ ı̄ ) which is generated by a function S that depends
on half of all the coordinates. We take S to depend on φi and t i . We determine it
in the linearized approximation by expanding Ni j around a background value t i

B .
Performing the shift

t i → t i
B + t i , t̄ ı̄ → t̄ ı̄

B + t̄ ı̄ , (1.108)

and keeping only terms linear in the fluctuations t i and t̄ ı̄ , we obtain from (1.88),

φi = t i + t̄ ı̄ ,

πi = F (0)
i j (tB) t j + F̄ (0)

ı̄ j̄ (t̄B) t̄ j̄ , (1.109)

where we absorbed the fluctuation independent pieces into the definition of (φi ,πi ).
Then, expressing πi in terms of t i and φi ,

πi = iNi j (tB, t̄B) t j + F̄ (0)
ı̄ j̄ (t̄B)φ j , (1.110)

and introducing the combination

Pi = −i Ni j (tB, t̄B)
(
φ j − t j

)
, (1.111)

yields
dπi ∧ dφi = i Ni j (tB, t̄B) dti ∧ dt̄ j̄ = d Pi ∧ dti . (1.112)

Hence, the 1-form πi dφi − Pi dti is closed, so that locally,

πi dφi − Pi dti = d S, (1.113)

where S(φ, t) is called the generating function of the canonical transformation. Then,
integrating this relation yields the following expression for the generating function
S(φ, t; tB, t̄B) [23–25],

S(φ, t; tB, t̄B) = 1
2 F̄ (0)

ı̄ j̄ (t̄B)φiφ j + i Ni j (tB, t̄B)φi t j − 1
2 i Ni j (tB, t̄B) t i t j

+ c(tB, t̄B), (1.114)

where c denotes a background dependent integration constant. Observe that S(φ, t;
tB, t̄B) is holomorphic in the fluctuation t and non-holomorphic in the background tB .
The generating function S(φ, t; tB, t̄B) plays a crucial role in the wave function
approach to perturbative topological string theory. This approach represents a concise
framework [22–26] for deriving the holomorphic anomaly equation of topological
string theory [35, 36], and will be reviewed in appendix C.
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1.4 Lecture III: The Hesse Potential and the Topological
String

In the previous sections we showed that the dynamics of a general class of Lagrangians
is encoded in a non-holomorphic function F of the form given in (1.2). This function
F may depend on a number of external parameters η. We expressed the associated
Hamiltonian in terms of duality covariant complex variables and showed that in these
variables, the expansion of the Hamiltonian in a power series in η yields expansion
coefficients that transform as functions under duality. In this section we apply these
techniques to supergravity models in the presence of higher-curvature interactions
encoded in the square of the Weyl superfield [2, 5]. We consider these models in
an Ad S2 × S2 background. The Hamiltonian (1.9) associated to the reduced La-
grangian is a (generalized) Hesse potential. The Hesse potential plays a central role
in the formulation of special geometry in terms of real variables [7, 14–16]. The
external parameter η, which is now complex, is identified with the lowest component
field of the square of the Weyl superfield.

We begin by reviewing the computation of the Wilsonian effective Lagrangian
in an Ad S2 × S2 background [27, 28] and relate it to the presentation of Sect. 1.2.
We then generalize the discussion to the case of a function F of type (1.7) with a
non-harmonic Ω . We express the Hesse potential in terms of the aforementioned
duality covariant complex variables, and expand it in powers of η and η̄. This reveals
a systematic structure. Namely, the Hesse potential decomposes into two classes of
terms. One class consists of combinations of terms, constructed out of derivatives
of Ω , that transform as functions under electric/magnetic duality. The other class
is constructed out of Ω and derivatives thereof. Demanding this second class to
also exhibit a proper behavior under duality transformations (as a consequence of
the transformation behavior of the Hesse potential) imposes restrictions on Ω . These
restrictions are captured by a differential equation that equals half of the holomorphic
anomaly equation encountered in perturbative topological string theory.

1.4.1 The Reduced Wilsonian Lagrangian in an Ad S2 × S2

Background

We consider the coupling of N = 2 vector multiplets to N = 2 supergravity in
the presence of higher-curvature interactions encoded in the square of the Weyl
superfield [2, 5]. We use the conventions of N = 2 supergravity, whereby the vector
multiplets are labelled by a capital index I = 0, . . . , n (instead of the index i used
in the previous sections). The degrees of freedom of a vector multiplet include an
abelian gauge field and a complex scalar field, and these will thus carry an index I .
We denote the complex scalar fields by X I . The square of the Weyl superfield has
various component fields. The highest component field contains the square of the
anti-selfdual components of the Riemann tensor, while the lowest one, denoted by
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Â, equals the square of an anti-selfdual tensor field. Below we will find it convenient
to work with rescaled complex fields Y I and Υ , which are related to the X I and Â
by a complex rescaling [34].

First we evaluate the Wilsonian effective Lagrangian of these models on a field
configuration consistent with the SO(2, 1)×SO(3) isometry of an Ad S2× S2 back-
ground. The spacetime metric gμν and the field strengths Fμν I of the abelian gauge
fields are given by

ds2 = v1

(
− r2 dt2 + dr2

r2

)
+ v2

(
dθ2 + sin2 θ dϕ2

)
,

Frt
I = eI , Fθϕ

I = pI sin θ. (1.115)

The θ-dependence of Fθϕ I is fixed by rotational invariance and the pI denote the
magnetic charges. The quantities v1, v2, eI and pI are all constant by virtue of the
SO(2, 1)× SO(3) symmetry.

It is well-known [2] that the Wilsonian Lagrangian L is encoded in a holomorphic
function F(X, Â), which is homogeneous of degree two under the scaling discussed
in (1.76), i.e. F(λX,λ2 Â) = λ2 F(X, Â). Evaluating the Wilsonian Lagrangian in
the background (1.115) and integrating over S2 [32],

F =
∫

dθ dϕ
√|g|L, (1.116)

yields the reduced Wilsonian Lagrangian which depends on eI and pI , on the rescaled
fields Y I and Υ , and on v1 and v2 through the ratio U = v1/v2.

In the following, we will restrict to supersymmetric backgrounds, for simplicity,
in which case U = 1 and Υ = −64 [34]. Then, the reduced Wilsonian Lagrangian
reads [27, 28],

F(e, p, Y, Ȳ ;Υ, Ῡ ) = − 1
8 i
(
FI J − F̄Ī J̄

) (
eI eJ − pI pJ

)
− 1

4

(
FI J + F̄Ī J̄

)
eI pJ

+ 1
2 ieI

(
FI + FI J Ȳ J̄ − h.c.

)
− 1

2 pI
(

FI − FI J Ȳ J̄ + h.c.
)

+ i
(

F − Y I FI + 1
2 F̄Ī J̄ Y I Y J − h.c.

)
, (1.117)

where Υ = Ῡ = −64 and FI = ∂F/∂Y I , FI J = ∂2 F/∂Y I∂Y J , etc. Introducing
the complex scalar fields x I = 1

2 (pI + ieI ) of Sect. 1.2.2 (see (1.31)), the reduced
Lagrangian becomes a function of two types of complex scalar fields, namely the x I

that incorporate the electromagnetic information, and the moduli fields Y I .
Now we recall that in an Ad S2 × S2 background the electro/magnetic quantities

appearing in (1.115) are related to the moduli fields Y I . When the background is
supersymmetric, the relation takes the form [37]

x I = iȲ I . (1.118)
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In the context of BPS black holes, the real part of this equation yields the magnetic
attractor equation. Then, using (1.118), the reduced Wilsonian Lagrangian becomes
equal to

F(Y, Ȳ ;Υ, Ῡ ) = −2 ImF(Y, Υ ), (1.119)

with Υ = Ῡ = −64.

Exercise 14 Verify (1.119).

Let us reformulate the reduced Lagrangian (1.119), which is based on a holo-
morphic functions F(Y, Υ ), in terms of the function F(Y, Ȳ ;Υ, Ῡ ) = F (0)(Y ) +
2iΩ(Y, Ȳ ;Υ, Ῡ ) introduced in Sect. 1.2. This is achieved by using the equivalence
transformation (1.8). Writing the holomorphic function F(Y, Υ ) as F(Y, Υ ) =
F (0)(Y ) − g(Y, Υ ) and applying (1.8), we obtain Ω = −Im g(Y, Υ ). Thus, at
the Wilsonian level, Ω is a harmonic function, and the reduced Lagrangian can
be expressed as

F(Y, Ȳ ;Υ, Ῡ ) = − 2
[
ImF (0)(Y )+Ω(Y, Ȳ ;Υ, Ῡ )

]
= − 2

[
ImF(Y, Ȳ ;Υ, Ῡ )−Ω(Y, Ȳ ;Υ, Ῡ )

]
, (1.120)

with Υ = Ῡ = −64. Both F (0) and Ω are homogeneous functions of degree two,
so that F(λY,λȲ ;λ2Υ,λ2Ῡ ) = λ2 F(Y, Ȳ ;Υ, Ῡ ).

The reduced Lagrangian (1.120) agrees with the one in (1.9), up to an overall
normalization factor of −2. In the following, we rescale (1.120) by this factor, so
that from now on

F(Y, Ȳ ;Υ, Ῡ ) = 4
[
ImF(Y, Ȳ ;Υ, Ῡ )−Ω(Y, Ȳ ;Υ, Ῡ )

]
. (1.121)

Using (1.118), we infer that pI = −i
(
Y I − Ȳ I

)
and eI = Y I + Ȳ I . According

to (1.6), on the other hand, the real part of Y I plays the role of the canonical vari-
ableφI , so that we haveφI = eI . We may thus view F as a function of pI andφI , and
consider its Legendre transformation either with respect to pI or with respect to φI .
Performing the Legendre transformations with respect to the pI , i.e. H = F− pI πI ,
results in

πI = ∂F
∂ pI
= FI + F̄Ī , (1.122)

and hence

H = i
[
Y I F̄Ī − Ȳ Ī FI

]
+ 2

[
2 Ω − Y I ΩI − Ȳ Ī Ω Ī

]
= i
[
Y I F̄ (0)

Ī
− Ȳ Ī F (0)

I

]
+ 2

[
2 Ω − (Y I − Ȳ Ī )(ΩI −Ω Ī )

]
, (1.123)

which is the analogue of the Hamiltonian (1.9) (up to an overall sign difference in
the definition of both quantities). In the context of BPS black holes, H denotes the
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BPS free energy of the black hole. When viewed as a function of φI and πI , H(φ,π)

is called the Hesse potential.

Exercise 15 Verify (1.123).

On the other hand, performing the Legendre transformations with respect to theφI ,
i.e. S = F − φI qI , results in

qI = ∂F
∂φI
= −i

(
FI − F̄Ī

)
, (1.124)

and hence

S = −i
[
Y I F̄Ī − Ȳ Ī FI

]
+ 2

[
2 Ω − Y I ΩI − Ȳ Ī Ω Ī

]
= −i(Y I F̄ (0)

Ī
− Ȳ Ī F (0)

I )+ 2
[
2 Ω − (Y I + Ȳ Ī )(ΩI +Ω Ī )

]
. (1.125)

In the context of BPS black holes, (1.124) is the electric attractor equation, and S
denotes the black hole entropy when viewed as function of pI and qI [34].

Exercise 16 Verify (1.125).

The entropy S can be obtained from the Hesse potential by a double Legendre
transformation with respect to (φI ,πI ) [8], i.e.

S(p, q) = H(φ,π)+ πI pI − φI qI (1.126)

with pI = −∂H/∂πI and qI = ∂H/∂φI .

1.4.2 The Reduced Low-Energy Effective Action in an
Ad S2 × S2 Background

When passing from the Wilsonian to the low-energy effective action, non-
holomorphic terms emerge that are crucial for maintaining duality invariances [17],
and that therefore need to be incorporated into the framework of the previous sub-
section. In the following, we assume that these terms can be incorporated into Ω

by giving up the requirement that Ω is harmonic. We take the reduced low-energy
effective Lagrangian and the associated Hesse potential to be given by (1.121) and
(1.123), respectively, but now based on a non-harmonic Ω .

The Hesse potential (1.123) is given in terms of complex scalar fields Y I

and Ȳ I . Under duality transformations, the scalar fields Y I transform into Ỹ I =
Ỹ I (Y, Ȳ , Υ, Ῡ ) (and similarly for the ¯̃Y I ), as discussed in Sect. 1.3. In order to obtain
expansion coefficients that have a proper behavior under duality when expanding H
in powers of Υ and Υ , we first express H in terms of the duality covariant complex
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coordinates introduced in Sect. 1.3. This can be achieved by iteration, and the result
for the Hesse potential in the new coordinates then takes the form of an infinite
power series in terms of Ω and its derivatives. We explicitly evaluate the first terms
in this expansion up to order Ω5. This suffices for appreciating the general structure
of the full result. The actual calculations are rather cumbersome, and we have rele-
gated some relevant material to appendices D and E. The expression for the Hesse
potential, given in (1.143), consists of a sum of contributions H(a)

i , each of which
transforms as a function under symplectic transformations. The function H(1) is the
only one that contains Ω , while all the other H(a)

i contain derivatives of Ω . Using
that H(1) transforms as a function under symplectic transformations, we determine
the transformation law of Ω , which is given in (1.146). In the following, we present
a detailed derivation of these results. We suppress the superscript in F (0) for the most
part, for simplicity.

The Hesse potential H is defined in terms of the real variables (φI ,πI ), whose
definition depends on the full effective action. These may be expressed in terms of
the duality covariant variables introduced in (1.88), and which will be denoted by
Y I in the following. Inspection of (1.90) shows that these new variables are such
that they coincide precisely with the fields Y I that one would obtain from (φI ,πI )

by using only the lowest-order holomorphic function F (0),

2 Re Y I =φI = 2 Re Y I ,

2 Re F (0)
I (Y) =πI = 2 Re FI (Y, Ȳ ;Υ, Ῡ ). (1.127)

Since the relation between the new variables and the real variables (φI ,πI ) depends
only on F (0), their duality transformations will not depend on the the details of the
full effective action. Under symplectic transformations they transform according to,

Ỹ I = U I
J Y J + Z I J F (0)

J (Y) = S0
I

J (Y)Y J , (1.128)

where
S0

I
J (Y) = U I

J + Z I K F (0)
K J (Y). (1.129)

At the two-derivative level, where Ω = 0, we have Y I = Y I , but in higher orders
the relation between these moduli is complicated and will depend on Ω . Hence we
write Y I = Y I +ΔY I , where ΔY I is purely imaginary. Writing F = F (0) + 2iΩ ,
we will express (1.128) in terms of F (0) and Ω , so that we can henceforth sup-
press the superscript in F (0). Hence, in the following, F will denote a holomorphic
homogeneous function of degree two. Therefore it is not necessary to make a dis-
tinction between holomorphic and anti-holomorphic derivatives of this function. The
Eq. (1.127) can then be written as,

FI (Y −ΔY )+ F̄I (Ȳ +ΔY )− FI (Y)− F̄I (Ȳ)

= −2i
[
ΩI (Y −ΔY, Ȳ +ΔY ) −Ω Ī (Y −ΔY, Ȳ +ΔY )

]
. (1.130)
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Upon Taylor expanding, this equation will lead to an infinite power series in ΔY I .
Retaining only the term of first order in ΔY I shows that it is proportional to the first
derivative of Ω . Proceeding by iteration will then lead to an expression for ΔY I

involving increasing powers of Ω and its derivatives taken at Y I = Y I . Here it
suffices to give the result of this iteration up to fourth order in Ω ,

ΔY I = 2 (Ω I −Ω Ī )

− 2i(F + F̄)I J K (ΩJ −Ω J̄ )(ΩK −ΩK̄ )− 8 Re(Ω I J −Ω I J̄ ) (ΩJ −Ω J̄ )

+ 4
3 i
[
(F − F̄)I J K L + 3i(F + F̄)I J M (F + F̄)M

K L
]

× (ΩJ −Ω J̄ )(ΩK −ΩK̄ )(ΩL −ΩL̄)

+ 8i
[
2 (F + F̄)I J

K Re(ΩK L −ΩK L̄)+ Re(Ω I K −Ω I K̄ )(F + F̄)K
J L
]

× (ΩJ −Ω J̄ )(ΩL −ΩL̄)

+ 32 Re(Ω I J −Ω I J̄ ) Re(ΩJ K −ΩJ K̄ ) (ΩK −Ω K̄ )

+ 8i Im(Ω I J K − 2 Ω I J K̄ +Ω I J̄ K̄ )(ΩJ −Ω J̄ ) (ΩK −ΩK̄ )+O(Ω4).

(1.131)

Here indices have been raised by making use of N I J , which denotes the inverse of

NI J = 2 ImFI J , (1.132)

where we stress that all the derivatives of F and Ω are taken at Y I = Y I and
Ȳ I = Ȳ I .

Furthermore, we obtain the following expression for the Hesse potential (1.123),

H(Y, Ȳ) = − i[Ȳ I FI (Y)− Y I F̄I (Ȳ)] + 4 Ω(Y, Ȳ)

− i
[
Y I (FI (Y )− FI (Y))+ΔY I FI (Y )− h.c.

]
+ 4
[
Ω(Y, Ȳ )−Ω(Y, Ȳ)+ΔY I (ΩI (Y, Ȳ )−Ω Ī (Y, Ȳ )

) ]
. (1.133)

Here we made use of (1.130) at an intermediate stage of the calculation. Again this
result must be Taylor expanded upon writing Y I = Y I −ΔY I and Ȳ I = Ȳ I +ΔY I .
The last two lines of (1.133) then lead to a power series in ΔY , starting at second
order in the ΔY ,

H(Y, Ȳ) = − i[Ȳ I FI (Y)− Y I F̄I (Ȳ)] + 4 Ω(Y, Ȳ)

− NI J ΔY I ΔY J − 2
3 i(F + F̄)I J K ΔY I ΔY J ΔY K

− 4 Re(ΩI J −ΩI J̄ )ΔY I ΔY J + 1
4 i(F − F̄)I J K LΔY I ΔY J ΔY K ΔY L

+ 8
3 i Im(ΩI J K − 3ΩI J K̄ )ΔY I ΔY J ΔY K + · · · . (1.134)
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Inserting the result of the iteration (1.131) into the expression above leads to the
following expression for the Hesse potential, up to terms of order Ω5,

H(Y, Ȳ) = − i[Ȳ I FI (Y)− Y I F̄I (Ȳ)] + 4 Ω(Y, Ȳ)

− 4 N̂ I JωI ωJ + 8
3 i(F + F̄)I J K N̂ I L N̂ J M N̂ K NωL ωM ωN

− 4
3 i[(F − F̄)I J K L + 3i(F + F̄)I J R N̂ RS(F + F̄)SK L ]

× N̂ I M N̂ J N N̂ K P N̂ L QωM ωN ωP ωQ

− 32
3 i Im(ΩI J K − 3ΩI J K̄ )N̂ I L N̂ J M N̂ K NωL ωM ωN +O(Ω5),

(1.135)

where ωI = ΩI −Ω Ī , and where we also made use of N̂ I J , which is the inverse of
the real, symmetric matrix N̂I J given in (1.100), namely

N̂I J = NI J + 4 Re(ΩI J −ΩI J̄ ). (1.136)

Upon expanding N̂ I J we straightforwardly determine the contributions to the Hesse
potential up to fifth order in Ω ,

H =H|Ω=0 + 4 Ω − 4 N I J (ΩI ΩJ +Ω Ī Ω J̄ )+ 8 N I J ΩI Ω J̄

+ 16 Re(ΩI J −ΩI J̄ )N I K N J L(ΩK ΩL +ΩK̄ ΩL̄ − 2 ΩK ΩL̄

)
− 16

3 (F + F̄)I J K N I L N J M N K N Im(ΩLΩMΩN − 3 ΩLΩMΩN̄ )

− 64N I P Re
(
ΩP Q −ΩP Q̄

)
N Q RRe

(
ΩRK −ΩRK̄

)
N K J

× (ΩI ΩJ +Ω Ī Ω J̄ − 2ΩI Ω J̄

)
+ 64(F + F̄)I J K N I L N J M N K P Re

(
ΩP Q −ΩP Q̄

)
N QN

× Im(ΩLΩMΩN − 3 ΩLΩMΩN̄ )

− 8
3 i[(F − F̄)I J K L + 3i(F + F̄)R(I J N RS(F + F̄)K L)S]N I M N J N N K P N L Q

× Re
(
ΩMΩN ΩPΩQ − 4ΩMΩN ΩPΩQ̄ + 3ΩMΩN ΩP̄ΩQ̄

)
+ 64

3 Im(ΩI J K − 3ΩI J K̄ )N I L N J M N K N Im(ΩLΩMΩN − 3 ΩLΩMΩN̄ )

+O(Ω5). (1.137)

We stress once more that this expression is taken at Y I = Y I .
The expression (1.137) gives the Hesse potential in terms of the duality covariant

variables Y I and Ȳ I , up to order Ω5. It takes a rather complicated form, even at this
order of approximation. Nevertheless, it will turn out that there is some systematics
here. First of all, the Hesse potential (1.137) transforms as a function under duality
transformations acting on the fields Y I . This in turn enables one to determine how Ω

should transform. Clearly, when Ω = 0 the Hesse potential transforms manifestly as
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a function. In general the transformation behaviour of Ω must be rather complicated
in view of the non-linear dependence of the Hesse potential on Ω . To evaluate this
transformation, we have to perform yet another iteration procedure.

To demonstrate how this iteration proceeds, let us have a look at the first few steps.
Consider the expression (1.137) at first order in Ω . At this order, Ω must transform
as a function, since both H and H|Ω=0 transform as functions. This implies that

Ω̃(Ỹ, ˜̄Y) =Ω(Y, Ȳ) ,

Ω̃I (Ỹ, ˜̄Y) =[S−1
0 ]J I (Y)ΩJ (Y, Ȳ). (1.138)

Now consider the terms of order Ω2 in (1.137). Applying the transformation given in
the second line of (1.138) to these terms and demanding H to transform as a function,
shows that the result given in the first line of (1.138) must be modified to

Ω̃ = Ω − i
(Z I J

0 ΩI ΩJ − Z̄ Ī J̄
0 Ω Ī Ω J̄

)+O(Ω3), (1.139)

which in turn gives rise to the following result for derivatives of Ω ,

Ω̃I =[S−1
0 ]J I

[
ΩJ + iFJ K L ZK M

0 ΩM ZL N
0 ΩN − 2iΩJ K ZK L

0 ΩL

+ 2iΩJ K̄ Z̄ K̄ L̄
0 ΩL̄

]
+O(Ω3),

Ω̃I J =[S−1
0 ]K I [S−1

0 ]L J

[
ΩK L − FK L M ZM N

0 ΩN

]
+O(Ω2),

Ω̃I J̄ =[S−1
0 ]K I [S̄−1

0 ]L̄ J̄ ΩK L̄ +O(Ω2), (1.140)

where the symmetric matrix Z I J
0 is defined by5

Z I J
0 = [S−1

0 ]I K Z K J . (1.141)

Here we made use of the relations,

[S−1
0 ]I K [S̄0]K̄ J̄ = δ I

J − iZ I K
0 NK J ,

ÑI J =[S−1
0 ]K I [S̄−1

0 ]L̄ J̄ NK L ,

δZ I J
0 = − Z I K

0 δFK L ZL J
0 , (1.142)

which are independent of Ω .
This iteration can be continued by including the terms of order Ω3, making use

of (1.140) for derivatives of Ω , to obtain the expression for Ω̃ up terms of order Ω4.
In the next iterative step one then derives the effect of a duality transformation on Ω

5 This quantity was first defined in [5]. It appeared later in [25], where it was denoted by Δ.



38 G. L. Cardoso et al.

up to terms of order Ω5. Before presenting this result, we wish to observe that terms
transforming as a proper function under duality, will not contribute to this result.
This is precisely what already happened to the Ω-independent contribution to the
Hesse potential, which decouples from the above equations. As it turns out there
actually exists an infinite set of contributions to the Hesse potential that transform
as functions under duality. By separating those from (1.137), we do not change the
transformation behaviour of Ω , but we can extract certain functions from the Hesse
potential in order to simplify its structure. We obtain

H =H(0) +H(1) +H(2) + (H(3)
1 +H(3)

2 + h.c.
)+H(3)

3 +H(4)
1 +H(4)

2 +H(4)
3

+ (H(4)
4 +H(4)

5 +H(4)
6 +H(4)

7 +H(4)
8 +H(4)

9 + h.c.
)
. . . , (1.143)

where the H(a)
i are certain expressions to be defined below, whose leading term

is of order Ωa . For higher values of a it turns out that there exists more than one
functions with the same value of a, and those will be labeled by i = 1, 2, . . .. Of all
the combinations H(a)

i appearing in (1.143), H(1) is the only that contains Ω , while
all the other combinations contain derivatives of Ω . Obviously, H(0) equals,

H(0) = −i[Ȳ I FI (Y)− Y I F̄I (Ȳ)], (1.144)

whereas H(1) at this level of iteration is given by,

H(1) = 4 Ω − 4 N I J (ΩI ΩJ +Ω Ī Ω J̄ )

+ 16 Re
[
(ΩI J )(NΩ)I (NΩ)J ]+ 16ΩI J̄ (NΩ)I (NΩ̄)J

− 16
3 Im

[
FI J K (NΩ)I (NΩ)J (NΩ)K

]
− 4

3 i
[ (

FI J K L + 3iFR(I J N RS FK L)S

)
(NΩ)I (NΩ)J (NΩ)K (NΩ)L − h.c.

]
− 16

3

[
ΩI J K (NΩ)I (NΩ)J (NΩ)K + h.c.

]
− 16

[
ΩI J K̄ (NΩ)I (NΩ)J (NΩ̄)K + h.c.

]
− 16i

[
FI J K N K P ΩP Q(NΩ)I (NΩ)J (NΩ)Q − h.c.

]
− 16

[
(NΩ)P ΩP Q N Q RΩRK (NΩ)K + h.c.

]
− 32

[
(NΩ)P ΩP Q N Q RΩRK̄ (NΩ̄)K + h.c.

]
− 16

[
(NΩ)P ΩP Q̄ N Q RΩR̄K (NΩ)K + h.c.

]
− 16i

[
FI J K N K P ΩP Q̄(NΩ)I (NΩ)J (NΩ̄)Q − h.c.

]
+O(Ω5). (1.145)

Here we have used the notation (NΩ)I = N I J ΩJ , (NΩ̄)I = N I J Ω J̄ . The sym-
metrization FR(I J N RS FK L)S is defined with a symmetrization factor 1/(4!).
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The expressions for the higher-order functions H(a)
i with a = 2, 3, 4 are given

in appendix D. Each of these higher-order functions transforms as a function under
symplectic transformations. Demanding H(1) to also transform as a function under
these transformations determines the transformation behavior of Ω . Proceeding as
already explained below (1.138) we obtain for the transformation law of Ω (up to
order Ω5),

Ω̃ =Ω − i
(Z I J

0 ΩI ΩJ − Z̄ Ī J̄
0 Ω Ī Ω J̄

)
+ 2

3

(
FI J K Z I L

0 ΩL Z J M
0 ΩM ZK N

0 ΩN + h.c.
)

− 2
(
ΩI J Z I K

0 ΩK Z J L
0 ΩL + h.c.

)+ 4 ΩI J̄ Z I K
0 ΩK Z̄ J̄ L̄

0 ΩL̄

+
[
− i

3 FI J K L(Z0Ω)I (Z0Ω)J (Z0Ω)K (Z0Ω)L

+ 4i
3 ΩI J K (Z0Ω)I (Z0Ω)J (Z0Ω)K

+ i FI J R Z RS
0 FSK L (Z0Ω)I (Z0Ω)J (Z0Ω)K (Z0Ω)L

− 4iΩI J K̄ (Z0Ω)I (Z0Ω)J (Z̄0Ω̄)K

− 4i FI J K ZK P
0 ΩP Q (Z0Ω)I (Z0Ω)J (Z0Ω)Q

+ 4i FI J K ZK P
0 ΩP Q̄(Z0Ω)I (Z0Ω)J (Z̄0Ω̄)Q

+ 4i (Z0Ω)P ΩP Q Z Q R
0

(
ΩRK (Z0Ω)K − 2ΩRK̄ (Z̄0Ω̄)K

)
− 4i (Z0Ω)P ΩP Q̄ Z̄ Q̄ R̄

0 ΩR̄K (Z0Ω)K + h.c.
]
+O(Ω5). (1.146)

The transformation laws of the derivatives of Ω , such as those in (1.140), are sum-
marized in appendix E.

The transformation law (1.146), which is entirely encoded in Z0 and in Z̄0, suggest
a systematic pattern, which we now explore. First we observe that (1.146) simplifies
when taking Ω to be harmonic both in Y I and Υ ,

Ω(Y, Ȳ;Υ, Ῡ ) = f (Y, Υ )+ h.c.. (1.147)

We obtain

Ω̃ =Ω +
[
− iZ I J

0 ΩI ΩJ

+ 2
3 FI J K Z I L

0 ΩL Z J M
0 ΩM ZK N

0 ΩN

− 2 ΩI J Z I K
0 ΩK Z J L

0 ΩL

− i
3 FI J K L(Z0Ω)I (Z0Ω)J (Z0Ω)K (Z0Ω)L

+ 4i
3 ΩI J K (Z0Ω)I (Z0Ω)J (Z0Ω)K

+ i FI J R Z RS
0 FSK L (Z0Ω)I (Z0Ω)J (Z0Ω)K (Z0Ω)L
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− 4i FI J K ZK P
0 ΩP Q (Z0Ω)I (Z0Ω)J (Z0Ω)Q

+ 4i Z I P
0 ΩP Q Z Q R

0 ΩRK (Z0Ω)K ΩI + h.c.
]
+O(Ω5), (1.148)

which shows that Ω̃ also is harmonic. Hence, the harmonicity of Ω is preserved
under symplectic transformations. The transformation law (1.148) has a certain re-
semblance with the one encountered in the context of perturbative topological string
theory, where Z I J

0 plays the role of a propagator [25]. The relation with topological
string theory will be discussed below. Next, inserting (1.147) into (1.145), we find that
H(1) is also almost harmonic, i.e. it equals the real part of a function that contains only
purely holomorphic derivatives of F and Ω , contracted with the non-holomorphic
tensor N I J ,

H(1) =
[
4 f (Y, Υ )− 4 N I J ΩI ΩJ

+ 8(ΩI J )(NΩ)I (NΩ)J + 8
3 i FI J K (NΩ)I (NΩ)J (NΩ)K

− 4
3 i
(

FI J K L + 3iFR(I J N RS FK L)S

)
(NΩ)I (NΩ)J (NΩ)K (NΩ)L

− 16
3 ΩI J K (NΩ)I (NΩ)J (NΩ)K

− 16i FI J K N K P ΩP Q(NΩ)I (NΩ)J (NΩ)Q

− 16(NΩ)P ΩP Q N Q RΩRK (NΩ)K + h.c.
]
+O(Ω5). (1.149)

Thus, when Ω is of the form (1.147), H(1) is given in terms of the real part of a
function that is holomorphic in Υ . Moreover, since N I J is homogeneous of degree
zero, this function is homogeneous of degree two in Y I and homogeneous of degree
zero in Ȳ I .

Let us now elucidate the relation of H(1) given in (1.149) with topological string
theory. We write H(1) as

H(1) = h(Y, Ȳ, Υ )+ h.c., (1.150)

and we consider two expansions of h(Y, Ȳ, Υ ), namely one in powers of Ω and the
other one in powers of Υ . First we consider the expansion in powers of Ω . Expanding
h as

h =
∞∑
g=1

h(g) (1.151)

and comparing with (1.149), we obtain

h(1) = 4 f, h(2) = −4N I J ΩI ΩJ ,

h(3) = 8ΩI J (NΩ)I (NΩ)J + 8
3 iFI J K (NΩ)I (NΩ)J (NΩ)K ,

h(4) = − 4
3 i
(

FI J K L + 3iFR(I J N RS FK L)S

)
(NΩ)I (NΩ)J (NΩ)K (NΩ)L
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− 16
3 ΩI J K (NΩ)I (NΩ)J (NΩ)K

− 16i FI J K N K P ΩP Q(NΩ)I (NΩ)J (NΩ)Q

− 16(NΩ)P ΩP Q N Q RΩRK (NΩ)K , (1.152)

where (NΩ)I = N I J f J . This shows that all the h(g) are non-holomorphic in Y I

with the exception of h(1). Using these expressions, one finds by direct calculation
that the following relation holds,

∂ Ī h(g) = 1
4 i F̄Ī

J K
g−1∑
r=1

∂J h(r) ∂K h(g−r), g � 2, (1.153)

where F̄Ī
J K = F̄Ī L̄ M̄ N L J N M K .

Exercise 17 Verify (1.153) for g = 2, 3.

Equation (1.153) captures the Ȳ I -dependence of h(g) (for g � 2). This depen-
dence is a consequence of requiring H(1) to have a proper behavior under symplectic
transformations [5]. The differential Eq. (1.153) resembles the holomorphic anom-
aly equation of perturbative topological string theory. The latter arises in a specific
setting, namely in the study of the non-holomorphicity of the genus-g topological
free energies F (g) [36]. To exhibit the relation with the holomorphic anomaly equa-
tion, we turn to the second expansion and expand both f (Y, Υ ) and h(Y, Ȳ, Υ ) in
powers of Υ ,

f (Y, Υ ) = − 1
2 i
∞∑
g=1

Υ g f (g)(Y),

h(Y, Ȳ, Υ ) = − 2i
∞∑
g=1

Υ g F (g)(Y, Ȳ). (1.154)

Then we obtain

F (1)(Y) = f (1)(Y), F (2)(Y, Ȳ) = f (2)(Y)+ 1
2 i N I J F (1)

I F (1)
J ,

F (3)(Y, Ȳ) = f (3)(Y)+ i N I J f (2)
I F (1)

J − 1
2 F (1)

I J (N F (1))I (N F (1))J

− 1
6 iFI J K (N F (1))I (N F (1))J (N F (1))K ,

F (4)(Y, Ȳ) = f (4)(Y)+ i N I J f (3)
I F (1)

J + 1
2 i N I J f (2)

I f (2)
J

− 1
2 f (2)

I J (N F (1))I (N F (1))J − F (1)
I J (N f (2))I (N F (1))J

− 1
2 iFI J K (N f (2))I (N F (1))J (N F (1))K

+ 1
24

(
FI J K L + 3iFR(I J N RS FK L)S

)
(N F (1))I (N F (1))J

× (N F (1))K (N F (1))L
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− 1
6 i F (1)

I J K (N F (1))I (N F (1))J (N F (1))K

+ 1
2 FI J K N K P F (1)

P Q(N F (1))I (N F (1))J (N F (1))Q

− 1
2 i (N F (1))P F (1)

P Q N Q R F (1)
RK (N F (1))K , (1.155)

where (N F (1))I = N I J F (1)
J and (N f (2))I = N I J f (2)

J . Observe that all the F (g)

are non-holomorphic except F (1). Using these expressions, one again finds by direct
calculation,

∂ Ī F (g) = 1
2 F̄Ī

J K
g−1∑
r=1

∂J F (r) ∂K F (g−r), g � 2. (1.156)

This is similar to (1.153), except that now the relation holds order by order in Υ ,
whereas (1.153) holds order by order in Ω . Both expansions are, nevertheless, related.
Namely, taking f in (1.154) to consist of only f (1), the expansion (1.155) coincides
with the expansion (1.152).

Summarizing, we have found the following. When expressing the Hesse potential,
which is a symplectic function, in terms of the duality covariant complex variables
(1.127), we obtain an infinite set of contributions H(a)

i , all of which transform as
functions under symplectic transformations. One of them, namely H(1), has a struc-
ture that arises in topological string theory. H(1) is the only contribution that contains
Ω , while all the other combinations contain derivatives of Ω . When Ω is taken to
be harmonic in all the variables (i.e. in both Y I and Υ ), the resulting H(1) is given
in terms of the real part of a function that is holomorphic in Υ , homogeneous of
degree two in Y I and homogeneous of degree zero in Ȳ I . Then, expanding H(1)

in powers of Υ yields expansion functions F (g), given in (1.155), that transform as
functions under symplectic transformations. The F (g) are all non-holomorphic, with
the exception of F (1), and the non-holomorphicity is governed by (1.156). This dif-
ferential equation equals half of the holomorphic anomaly equation of perturbative
topological string theory, which reads [38]

∂ Ī F (g) = 1
2 F̄Ī

J K

⎛
⎝DJ∂K F (g−1) +

g−1∑
r=1

∂J F (r) ∂K F (g−r)

⎞
⎠, g � 2, (1.157)

where DL VM = ∂L VM + iN P I FI L M VP . This is the holomorphic anomaly equation
in the so-called big moduli space [38], and its derivation is reviewed in appendix
C following [25]. In the context of topological string theory, the F (g) denote free
energies that arise in the perturbative expansion of the topological free energy Ftop in

powers of the topological string coupling gtop, i.e. Ftop =∑∞g=0 g
2g−2
top F (g). Whereas

F (0) is holomorphic (it only depends on Y), all the higher F (g) (with g � 1) are
non-holomophic. For g � 2 this non-holomorphicity is captured by (1.157).

The fact that the first term on the right hand side of (1.157) is missing in (1.156) is
due to the holomorphic nature of the expansion function F (1) appearing in (1.155).
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Were it to be non-holomorphic, it would induce a modification of the relation (1.156).
The required modification arises by replacing the holomorphic quantity F (1)

I = f (1)
I

with the non-holomorphic combination F (1)
I = f (1)

I + 1
2 i FI J K N J K (see (1.206)).

This will be addressed in an upcoming paper.
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A Symplectic Reparametrizations

In Sect. 1.2.1 we introduced the 2n-vector (xi , Fi ) and discussed its behavior under
symplectic transformations. Here we consider derivatives of Fi and show how they
transform under symplectic transformations. We use the resulting expressions to give
an alternative proof of integrability of the Eq. (1.10). In addition, we show that ∂ηF
transforms as a function under symplectic transformations.

We begin by recalling some of the elements of Sect. 1.2.1. The 2n-vector (xi , Fi )

is constructed using F(x, x̄) = F (0)(x)+ 2iΩ(x, x̄). Under symplectic transforma-
tions, it transforms as,

x̃ i =Ui
j x j + Zi j [F (0)

j (x)+ 2iΩ j (x, x̄)],
F̃i (x̃, ¯̃x) = Vi

j [F (0)
j (x)+ 2iΩ j (x, x̄)] +Wi j x j , (1.158)

where U, V, Z and W are the n × n submatrices (1.5) that define a symplectic
transformation belonging to Sp(2n, R). Without loss of generality, we decompose
F̃i as

F̃i (x̃, ¯̃x) = F̃ (0)
i (x̃)+ 2iΩ̃i (x̃, ¯̃x). (1.159)

This decomposition, which a priori is arbitrary, can be related to the decomposition
of Fi = F (0)

i + 2iΩi in the following way. The symplectic transformation (1.158) is
specified by the matrices U, V, W and Z . Consider applying the same transformation
(specified by these matrices) to the vector (xi , F (0)

i ) alone. This yields the vector

(x̂ i , F̃ (0)
i (x̂)), which is expressed in terms of x̂ i = x̃ i −2iZi jΩ j (x, x̄) instead of x̃ i ,
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x̂ i =Ui
j x j + Zi j F (0)

j (x),

F̃ (0)
i (x̂) = Vi

j F (0)
j (x)+Wi j x j . (1.160)

Thus, by demanding that F̃ (0)
i follows from the same symplectic transformation

applied on F (0)
i alone, we relate the decomposition of F̃i to the decomposition of Fi .

Then, the second equation of (1.158) can be written as

Ω̃i (x̃, ¯̃x) = Vi
j Ω j (x, x̄)− 1

2 i[F̃ (0)
i (x̂)− F̃ (0)

i (x̃)] (1.161)

= Vi
j Ω j (x, x̄)

+ 1
2 i
∞∑

m=1

(2i)m

m! Z j1k1Ωk1(x, x̄) · · · Z jm km Ωkm (x, x̄) F̃ (0)
i j1··· jm (x̂),

where the F̃ (0)
i j1··· jm (x̂) denote multiple derivatives of F̃ (0)

i (x̃) evaluated at x̂ . The
right-hand side of (1.161) can be written entirely in terms of functions of x and x̄ ,
upon expressing F̃ (0)

i j1··· jm (x̂) in terms of derivatives of F (0)
i (x) using (1.160). We give

the first few derivatives,

F̃ (0)
i j (x̂) = (Vi

l F (0)
lk +Wik) [S−1

0 ]k j , (1.162)

F̃ (0)
i jk (x̂) =[S−1

0 ]l i [S−1
0 ]m j [S−1

0 ]nk F (0)
lmn,

F̃ (0)
i jkl(x̂) =[S−1

0 ]mi [S−1
0 ]n j [S−1

0 ]pk [S−1
0 ]q l

[
F (0)

mnpq − 3 F (0)
r(mnZrs

0 F (0)
pq)s

]
,

where we used the definitions

S i
0 j =Ui

j + Zik F (0)
k j ,

Z i j
0 =[S−1

0 ]i k Zk j . (1.163)

Let us consider the first expression of (1.162). While F (0)
i j is manifestly symmetric

in i, j , this appears not to be the case for F̃ (0)
i j . However, using the properties (1.5)

of the matrices U, V, W and Z , it follows that F̃ (0)
i j is symmetric in i, j . Using this,

we obtain
F̃ (0)

i j (x̂) Z jk = Vi
k − [S−1,T

0 ]i k . (1.164)

Exercise 18 Verify (1.164) by computing V T S0.

The symmetry of F̃ (0)
i j implies that F̃ (0)

i (x̂) can be integrated, i.e. F̃ (0)
i (x̂) =

∂ F̃ (0)(x̂)/∂ x̂ i , with F̃ (0)(x̂) given by the well-known expression [5],
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F̃ (0)(x̂) = F (0)(x)− 1
2 xi F (0)

i + 1
2 (U T W )i j x i x j + 1

2 (U T V +W T Z)i
j x i F (0)

j

+ 1
2 (Z T V )i j F (0)

i F (0)
j , (1.165)

up to a constant and up to terms linear in x̂ i .
In addition to (1.163), we will also need the combinations S and Ŝ given in (1.167)

and (1.169) below, which are related to S0 by

S i
j =S i

0 j + 2iZikΩk j ,

Ŝ i
j =S i

0 j + Zik[2iΩk j − 4 Ωkl̄Z̄ l̄m̄Ωm̄ j
]
,

Z i j =[S−1]i k Zk j . (1.166)

Observe that the matrices Z0, Z and Ẑ = Ŝ−1 Z are symmetric matrices by virtue
of the fact that ZU T is a symmetric matrix [5].

Next we consider the transformation behavior of the derivatives Fi j = ∂Fi/∂x j

and Fi j̄ = ∂Fi/∂ x̄ j̄ . First we observe that

∂ x̃ i

∂x j
≡ S i

j = Ui
j + Zik Fk j ,

∂ x̃ i

∂ x̄ j̄
≡ Zik Fkj̄ . (1.167)

Applying the chain rule to (1.158) yields the relation

Fi j → F̃i j =
(

Vi
l F̂lk +Wik

)
[Ŝ−1]k j , (1.168)

where F̃i j = ∂ F̃i/∂ x̃ j and

F̂i j = Fi j − Fik̄ Z k̄l̄ F̄l̄ j = F (0)
i j + 2iΩi j − 4 Ωi k̄ Z̄ k̄l̄ Ωl̄ j ,

Ŝ i
j =Ui

j + Zik F̂k j . (1.169)

Exercise 19 Derive (1.168) by differentiating the second equation of (1.158) with
respect to either x or x̄ . Then combine the two resulting equations to arrive at (1.168).

Then, using the first equation of (1.162) as well as (1.164) in (1.168) yields,

Ω̃i j (x̃, ¯̃x) = 1
2 i
[
F̃ (0)

i j (x̃)− F̃ (0)
i j (x̃ k − 2iZklΩl(x, x̄))

]
(1.170)

+ [Ŝ−1]k i [Ŝ−1]l j

[
Ωkl + 2iΩkm̄Z̄m̄n̄Ωn̄l

+ 2i(Ωkm + 2iΩk p̄Z̄ p̄r̄Ωr̄m)Zmn
0 (Ωnl + 2iΩnq̄Z̄ q̄ s̄Ωs̄l)

]
,

which is symmetric by virtue of the symmetry of F̃ (0)
i j , Ωi j , Zmn and Zmn

0 .
Subsequently we derive the following result from (1.161) [21],
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Ω̃i j̄ = [Ŝ−1]k i [S̄−1]l̄ j̄ Ωkl̄ = [S−1]k i [ ¯̂S−1]l̄ j̄ Ωkl̄ . (1.171)

Exercise 20 Deduce (1.171) by taking the first line of (1.161) and differentiating it
with respect to x̄ . Use the relation (1.164) in the form

Vi
j = [S−1,T

0 ]i k + (Vi
l F (0)

lk +Wik)Zk j
0 , (1.172)

together with (1.166).

The relation (1.171) establishes that Ω̃i j̄ = (Ω̃ j ı̄ ). Using this as well as (1.15),

and recalling that Ω̃i j̄ = ∂Ω̃i/∂ ¯̃x j̄
, we obtain Ω̃i j̄ = (Ω̃ j ı̄ ) = (∂Ω̃ j/∂ ¯̃x ı̄

) =
∂(Ω̃ j )/∂ x̃ i = ∂Ω̃j̄ /∂ x̃ i ≡ Ω̃j̄ i . This, together with the symmetry of Ω̃i j , ensures
the integrability of (1.158), as follows.

We consider the 1-form Ã = Ω̃i d x̃ i + Ω̃ı̄ d ¯̃x ı̄ , which is real by virtue of Ω̃ı̄ =
(Ω̃i ). Its field strength reads F̃ = d Ã = Ω̃i j d x̃ j ∧ dx̃i +

(
Ω̃i j̄ − Ω̃j̄ i

)
d ¯̃x j̄ ∧dx̃i +

Ω̃ı̄ j̄ d ¯̃x j̄ ∧ d ¯̃x ı̄ . Then, using Ω̃i j = Ω̃ j i as well as Ω̃i j̄ = Ω̃j̄ i , we conclude that
F̃ = 0, which establishes that locally Ã = dΩ̃ , with a real Ω̃ .

Hence we conclude that the Eq. (1.158) are integrable and the decomposition
(1.7) is preserved, i.e. the transformed 2n-vector (x̃ i , F̃i ) is constructed from a new
function F̃(x̃, ¯̃x) = F̃ (0)(x̃)+ 2iΩ̃(x̃, ¯̃x) with a real Ω̃(x̃, ¯̃x). This was established
in Sect. 1.2.1 by relying on the Hamiltonian.

Next, let us assume that the function F depends on a auxiliary real parameter
η that is inert under symplectic transformation, i.e. F(x, x̄; η), and let us consider
partial derivatives with respect to it. A little calculation shows that ∂ηFi transforms
in the following way,

∂η F̃i = [Ŝ−1] j i

[
∂ηFj − Fjk̄ Z̄ k̄l̄ ∂η F̄l̄

]
, (1.173)

where x̃ and ¯̃x are kept fixed under the η-derivative in ∂η F̃i (x̃, ˜̄x; η), while in
∂ηFi (x, x̄; η) the arguments x and x̄ are kept fixed.

Exercise 21 Verify (1.173) by differentiating the second equation of (1.158) with
respect to η, keeping x and x̄ fixed. Subsequently, use (1.159), (1.168) and (1.171)
to arrive at (1.173).

Let us first consider (1.173) in the case of a holomorphic function F , so thatΩ = 0.
In that case (1.173) implies that the derivative with respect to xi of ∂η F̃ − ∂ηF must
vanish. Therefore it follows that ∂ηF transforms as a function under symplectic
transformations (possibly up to an x-independent expression, which is irrelevant in
view of the same argument that led to the equivalence (1.8)).

When Ω 
= 0 one derives the following result using (1.173),
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∂ x̃ j

∂xi
∂η F̃j − ∂ ¯̃x j̄

∂xi
∂η(F̃j ) = ∂ηFi . (1.174)

Exercise 22 Deduce (1.174) by suitably combining (1.173) with its complex con-
jugate, and using the relation

Z̄ ı̄ j̄ F̄j̄k [Ŝ−1S]kl = [ ¯̂S−1S̄]ı̄ j̄ Z̄ j̄ k̄ F̄k̄l . (1.175)

Next, we assume without loss of generality that the dependence of F̃ on η is
entirely contained in Ω̃ . Then, using (1.15), it follows that

∂η(F̃j ) = −∂η F̃j̄ , (1.176)

and the relation (1.174) simplifies. Namely, the left hand side of (1.174) becomes
equal to ∂(∂η F̃)/∂xi , where we used the existence of the new function F̃ . Thus, we
obtain from (1.174),

∂

∂xi

(
∂η F̃ − ∂ηF

)
= 0. (1.177)

This equation, together with its complex conjugate equation, implies that ∂η F̃−∂ηF
vanishes upon differentiation with respect to x and x̄ , so that ∂ηF transforms as a
function under symplectic transformations (possibly up to an irrelevant term that is
independent of x and x̄).

B The Covariant Derivative Dη

The modified derivative (1.97) acts as a covariant derivative for symplectic transfor-
mations. Here we verify this explicitly by showing that, given a quantity G(x, x̄; η)
that transforms as a function under symplectic transformations, also DηG transforms
as a function.

To establish this, we need the transformation law of N̂ i j that enters in (1.97).
Under symplectic transformations, N̂i j given in (1.98) transforms as

˜̂Ni j = [Ŝ−1]k i [ ¯̂S
−1]l̄ j̄

[
N̂kl + i Fkm̄ Z̄m̄n̄ F̄n̄ p

(
δ

p
l − Z pq Fql̄

)
− i F̄k̄m Zmn Fn p̄

(
δ

p̄
l̄
− Z̄ p̄q̄ F̄q̄l

)]
+ i [Ŝ−1]k i [ ¯̂S

−1]l̄ j̄ F̄k̄m [S−1 Ŝ]ml − i[ ¯̂S−1]k̄ ı̄ F̄k̄l [S−1]l j , (1.178)

where S, Ŝ and Z are defined in (1.166).

Exercise 23 Verify (1.178) using (1.168) and (1.171).
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Then, it follows that the inverse matrix N̂ i j transforms as

˜̂N i j =
(
S i

l − Zin Fnl̄

)
N̂ lk

(
S j

k − Z jm Fmk̄

)
− i S i

k Zkl S j
l . (1.179)

Since the matrix Z = S−1 Z is symmetric [5], so is ˜̂N i j . Observe that it can also be
written as

˜̂N i j =
(
S̄ ı̄

l̄ − Zin F̄n̄l

)
N̂ lk

(
S j

k − Z jm Fmk̄

)
− i Zil Z jm Flm̄ . (1.180)

Establishing the transformation behavior (1.179) turns out to be a tedious exercise,
which we relegate to end of this appendix.

Now consider a quantity G(x, x̄; η) that transforms as a function under symplectic
transformations, i.e. G(x, x̄; η) = G̃(x̃, ¯̃x; η). We then calculate the behavior of DηG
under symplectic transformations. First we establish

Gη = G̃η + G̃i Z i j Fη j + G̃ı̄ Z i j F̄ηj̄ , (1.181)

where, on the right hand side, the tilde quantities are differentiated with respect to
the tilde variables, while those without a tilde are differentiated with respect to the
original variables. Similarly,

Gi − Gı̄ =
(

G̃ j − G̃ j̄

) (
S j

i − Z jk Fkı̄

)
+ i G̃ j̄ Z jk N̂ki , (1.182)

as well as
Fη j = F̃ηi S i

j + F̃ηı̄ Z ik F̄k̄ j , (1.183)

where we used that Fη transforms as a symplectic function, as established in (1.177).

Exercise 24 Verify (1.181) and (1.182) using G(x, x̄; η) = G̃(x̃, ¯̃x; η).
Then, inserting (1.181) and (1.182) into (1.97) yields,

DηG = G̃η+
(

G̃i − G̃ı̄

)
Zi j Fη j+i N̂ i j (Fη j + F̄ηj̄

) (
G̃k − G̃k̄

) (
Sk

i − Zkl Flı̄

)
.

(1.184)
Next, using (1.183), we compute

(
Fη j + F̄ηj̄

) = (F̃ηk + ¯̃Fηk̄

) (
Sk

j − Zkl Fl j̄

)
− i ¯̃Fηl̄ Z lk N̂k j

+
(

F̃ηl + ¯̃Fηl

)
Zlk Fk j̄ +

(
F̃ηl̄ + ¯̃Fηl̄

)
Zlk F̄k̄ j . (1.185)

Using that F̃ has the decomposition

F̃(x̃, ¯̃x; η) = F̃ (0)(x̃)+ 2i Ω̃(x̃, ¯̃x; η) (1.186)
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with Ω̃ real, it follows that the second line of (1.185) vanishes. Inserting the first line
of (1.185) into (1.184) and using Fi j̄ = −F̄j̄ i as well as S Z T = Z ST , we obtain

DηG = G̃η + i Ñ i j
(

F̃η j + ¯̃Fηj̄
) (

G̃i − G̃ı̄

)
= (̃DηG

)
, (1.187)

which shows that DηG transforms as a function under symplectic transformations.
Now we return to the transformation behavior of N̂ i j given in (1.179) and ver-

ify that it is the inverse of (1.178), i.e. ˜̂N−1 ˜̂N = I. We use the decomposition
F(x, x̄; η) = F (0)(x) + 2iΩ(x, x̄; η). We find it useful to introduce the following
matrix notation,

S̄−1 S = I+ Z̄ (F·· − F̄−−
)
,

S−1 Ŝ = I− X , X = Z F· − Z̄ F̄−· = 4 Z Ω· − Z̄ Ω−·,

Ŝ−1S = (I− X)−1 =
∞∑

n=0

Xn,

¯̂S =S
[
I− X − Z

(
F̂·· − ¯̂F−−

)]
= [I− Z (F·· − F̄−−

)− 4 Z Ω−·Z Ω·−
]
,

Z − Z̄ = − Z̄ (F·· − F̄−−
)Z = −Z (F·· − F̄−−

) Z̄, (1.188)

where we assume that the power series expansion of S−1 Ŝ is convergent. Here
F·· , F−− , F·− denote entries of the type Fi j , Fı̄ j̄ , Fi j̄ , respectively. Then, using
(1.178), we compute

ST ˜̂N ¯̂S =
∞∑

n=0

(
Xn)T (N̂ + 4i Ω·− Z̄ Ω−· − 4iΩ−·Z Ω·− + 2Ω·− X̄ + 2Ω−·

)
(1.189)

− 2
(S̄−1 S)T ∞∑

n=0

(
X̄n)T Ω−·

[
I− Z (F·· − F̄−−

)− 4 Z Ω−·Z Ω·−
]
.

Multiplying this with ˜̂N−1 S−1,T from the left and requiring the resulting expression

to equal ¯̂S yields the relation

[
N̂−1 − 2i N̂−1 Ω−· Z − 2i Z Ω·− N̂−1 − 4Z Ω·− N̂−1 Ω−· Z − iZ

]
[ ∞∑

n=0

(
Xn)T (N̂ + 4i Ω·− Z̄ Ω−· − 4iΩ−·Z Ω·− + 2Ω·− X̄ + 2Ω−·

)
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− 2
(
S̄−1 S

)T ∞∑
n=0

(
X̄n)T Ω−·

[
I− Z (F·· − F̄−−

)− 4 Z Ω−·Z Ω·−
]]

= [I− Z (F·· − F̄−−
)− 4 Z Ω−·Z Ω·−

]
. (1.190)

Thus, checking ˜̂N−1 ˜̂N = I amounts to verifying the relation (1.190). To do so, we
write (1.190) as a power series in Z by converting Z̄ into Z using the last relation
in (1.188). Introducing the expressions

σ = 4 Ω−·Z Ω·−Z,

Δ =
∞∑

n=1

[(
F·· − F̄−−

)Z]n , (1.191)

we obtain

X̄ = 4 Z (I+Δ) Ω−· Z Ω·−,

X̄ T Ω−· =Ω−· X,

∞∑
n=0

(
X̄n)T Ω−· =Ω−·

∞∑
n=0

Xn,

Xn = 4 Z Ω·−Z [(I+Δ)σ]n−1 (I+Δ)Ω−·, n � 1,(
Xn)T = 4 Ω·−(I+ΔT )

[
σT (I+ΔT )

]n−1 Z Ω−· Z, n � 1,(
S̄−1 S

)T = I+ (F·· − F̄−−
)Z (I+Δ) . (1.192)

Then, (1.190) becomes

[
I− 2i Ω−· Z − 2i N̂ Z Ω·− N̂−1 − 4 N̂ Z Ω·− N̂−1 Ω−·Z − i N̂ Z

]
[ ∞∑

n=0

(
Xn)T [N̂ + 4i Ω·− Z (I+Δ)Ω−· − 4iΩ−·Z Ω·−

+ 8Ω·− Z (I+Δ)Ω−· Z Ω·− + 2Ω−·
]

−2
[
I+ (F·· − F̄−−

)Z (I+Δ)
]
Ω−·

∞∑
n=0

Xn [
I− Z (F·· − F̄−−

)
− 4 Z Ω−·Z Ω·−

] ] = N̂
[
I− Z (F·· − F̄−−

)− 4 Z Ω−· Z Ω·−
]
, (1.193)

where Xn (with n � 1) is expressed in terms of Z according to (1.192). Now we
proceed to check that (1.193) is indeed satisfied, order by order in Z . Observe that
the right hand side of (1.193) is quadratic in Z , so first we check the cancellation of
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the terms up to order Z2. Then we proceed to check the terms at order n with n � 3.
Here we use the relations

F·· − F̄−− = iN̂ + 2iΩ·− + 2iΩ−·,
ΔT Z =Z Δ,[

σT
(
I+ΔT

)]n Z =Z [σ (I+Δ)]n , (1.194)

and we organize the terms at order n into those that end on either N (introduced in
(1.100)), Ω·− or Ω−·. It is then straightforward, but tedious, to check that at order
n in Z all these terms cancel out. This establishes the validity of the transformation
law (1.179).

C The Holomorphic Anomaly Equation in Big Moduli Space

The holomorphic anomaly Eq. (1.157) of perturbative topological string theory
[35, 36] can be suscintly derived in the wave function approach [22] to the latter
[23–26]. In this approach, the topological string partition function Z is represented
by a wavefunction,

Z(t; tB, t̄B) =
∫

dφ e−S(φ,t;tB ,t̄B )/� Z(φ), (1.195)

where S(φ, t; tB, t̄B) denotes the generating function (1.114) of canonical transfor-
mations6. We take the background dependent constant c(tB, t̄B) appearing in S to be
given by [23–26]

c(tB, t̄B) = −�

2
ln det NI J (tB, t̄B), (1.196)

with NI J as in (1.132).
Differentiating (1.195) with respect to the background field t̄B on the one hand,

and with respect to the fluctuations t on the other hand, yields the relation [24],

∂Z(t; tB, t̄B)

∂ t̄ L
B

= �

2
F̄L̄

I J ∂

∂t I

∂

∂t J
Z(t; tB, t̄B). (1.197)

Here F̄L̄
I J is evaluated on the background, and is given by F̄L̄

I J = F̄L̄ M̄ Ō N M I N O J .
Assigning scaling dimension 1 to both tB and t (and to their complex conjugates)
and scaling dimension 2 to �, we see that (1.197) has scaling dimension−1. Setting

Z(t; tB, t̄B) = eW (t;tB ,t̄B )/�, (1.198)

6 We use the conventions of Sect. 1.4 and suppress the superscript of F (0).
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we obtain from (1.197)

∂W (t; tB, t̄B)

∂ t̄ L
B

= 1
2 F̄L̄

I J
(

�
∂2W

∂t I ∂t J
+ ∂W

∂t I

∂W

∂t J

)
, (1.199)

which has scaling dimension 1. The BCOV-solution [36] is obtained by making the
ansatz [38]

W =
∞∑

g=0,n=0

�
g

n! C (g)
I1...In

(tB, t̄B) t I1 . . . t In , (1.200)

with
C (g)

I1...In
= 0, 2g − 2+ n � 0. (1.201)

The C (g)
I1...In

are symmetric in I1, . . . , In and have scaling dimension 2 − 2g − n.
Inserting the ansatz (1.200) into (1.199), equating the terms of order �

g for g � 2
and setting t = 0 gives,

∂L̄C (g)(tB, t̄B) = 1
2 F̄L̄

I J

⎛
⎝C (g−1)

I J +
g−1∑
r=1

C (r)
I C (g−r)

J

⎞
⎠ , g � 2. (1.202)

Exercise 25 Verify (1.202).

Now we set [38]
C (g)

I1...In
= DI1 . . . DIn F (g), g � 1, (1.203)

where DL is given by

DL VM = ∂L VM + i N P I FI L M VP . (1.204)

DL acts as a covariant derivative for symplectic reparametrizations VM →
(
S−1

0

)P
M

VP , since N I J transforms as N I J → [S0 N−1 S0]I J − i[S0 Z0 S0]I J (see (1.179)).
The F (g) have scaling dimension 2− 2g and transform as functions under symplec-
tic transformations. Inserting (1.203) into (1.202) yields the holomorphic anomaly
equation in big moduli space [38],

∂L̄ F (g)(tB, t̄B) = 1
2 F̄L̄

I J

⎛
⎝DI∂J F (g−1) +

g−1∑
r=1

∂I F (r) ∂J F (g−r)

⎞
⎠ , g � 2.

(1.205)
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As an example, consider solving (1.205) for g = 2. We need F (1)
I = ∂I F (1)

(tB, t̄B), which is non-holomorphic and given by7

∂I F (1)(tB, t̄B) = ∂I f (1)(tB)+ 1
2 i FI J K N J K . (1.206)

Then, solving (1.205) for F (2) yields [25, 38]

F (2)(tB, t̄B) = f (2)(tB)+ 1
2 i N I J

(
DI F (1)

J + F (1)
I F (1)

J

)
+ 1

2 N I J N K L
(

1
4 FI J K L + 1

3 i N M N FI K M FJ L N + FI J K F (1)
L

)
.

(1.207)

In this expression, all the terms are evaluated on the background (tB, t̄B).

Exercise 26 Verify that (1.207) solves (1.205).

Observe that (1.206) transforms covariantly under symplectic transformations, pro-
vided that f (1) transforms as f (1) −→ f (1)− 1

2 ln det S0 in order to compensate for

the transformation behavior NI J −→ NK L [S̄0
−1]K I [S−1

0 ]L J [5], so that

f (1)
I −→

(
f (1)

J − 1
2Z P Q

0 FP Q J

) (
S−1

0

)J
I ,

f (1)
I J −→

(
S−1

0

)Q
J ∂Q

[(
f (1)
L − 1

2Z P Q
0 FP QL

) (
S−1

0

)L
I

]
. (1.208)

Exercise 27 Determine the transformation behavior of f (2)(tB) under symplectic
transformations (1.128) that ensures that F (2)(tB, t̄B) transforms as a function. A
useful transformation law is,

FI J K L −→
(
S−1

0

)M
I ∂M

[
FN O P

(
S−1

0

)N
J

(
S−1

0

)O
K

(
S−1

0

)P
L

]

=
(
S−1

0

)M
I

(
S−1

0

)N
J

(
S−1

0

)O
K

(
S−1

0

)P
L

[
FM N O P

− FM P SZ S R
0 FRN O − FO P SZ S R

0 FRM N − FN P SZ S R
0 FRO M

]
.

(1.209)

7 F (1) contains an additional term proportional to the Kähler potential (1.1), but this term drops out
of (1.205) due to the special geometry relation F̄Ī J̄ K̄ t̄ K̄ = 0.
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D The Functions H(a)
i for a � 2

Here we collect the explicit results for the various functions H(a)
i (with a � 2) that

appear in (1.143). These functions can be determined by iteration. We present the
functions up to order O(Ω4). We use the notation (NΩ)I = N I J ΩJ , (NΩ̄)I =
N I J Ω J̄ . The symmetrization FR(I J N RS FK L)S is defined with a symmetrization
factor 1/(4!).

H(2) = 8 N I J ΩI Ω J̄ − 16
[
ΩI J (NΩ̄)I (NΩ)J + ΩI J̄ (NΩ̄)I (NΩ̄)J + h.c.

]
− 8i

[
FI J K (NΩ̄)I (NΩ)J (NΩ)K − h.c.

]
+ 16

3 i
[(

FI J K L + 3iFI J R N RS FSK L

)
(NΩ)I (NΩ)J (NΩ)K (NΩ̄)L

− h.c. ]+ 16
[
ΩI J K (NΩ)I (NΩ)J (NΩ̄)K + h.c.

]
+ 16

[ (
ΩI J K̄ + iFI J P N P QΩQK̄

) (
(NΩ)I (NΩ)J (NΩ)K

+ 2 (NΩ)I (NΩ̄)J (NΩ̄)K
)
+ h.c.

]
+ 32

[
ΩI Q N Q R ΩR J (NΩ)I (NΩ̄)J + h.c.

]
+ 32 ΩI Q N Q R ΩR̄ J̄ (NΩ)I (NΩ̄)J

+ 16i
[

FI J K N K P ΩP Q

(
(NΩ)I (NΩ)J (NΩ̄)Q

+ 2 (NΩ)Q(NΩ)I (NΩ̄)J
)
− h.c.

]
+ 16i

[
FI J K N K P ΩP̄ Q̄ (NΩ)I (NΩ)J (NΩ̄)Q − h.c.

]
+ 8 (NΩ)I (NΩ)J FI J Q N Q R F̄R̄K̄ L̄ (NΩ̄)K (NΩ̄)L

+ 32
[
(NΩ)I ΩI J N J K ΩK L̄ (NΩ)L + h.c.

]
+ 32

[
(NΩ̄)I ΩI J N J K ΩK L̄ (NΩ̄)L + h.c.

]
+ 32

[
(NΩ)I ΩI J N J K ΩK̄ L (NΩ)L + h.c.

]
+ 16i

[
(NΩ)I (NΩ)J FI J K N K LΩL̄ P (NΩ)P − h.c.

]
+ 32

[
(NΩ)I ΩI J̄ N J K ΩK̄ L (NΩ̄)L + h.c.

]
+ 32

[
(NΩ)I ΩI J̄ N J K ΩK L̄ (NΩ̄)L

]
, (1.210)

H(3)
1 = − 8

3 iFI J K (NΩ̄)I (NΩ̄)J (NΩ̄)K

+ 8i FI J K (NΩ̄)J (NΩ̄)K N I P
[
2ΩP̄ Q̄(NΩ̄)Q + 2ΩP̄ Q(NΩ)Q

− i F̄P̄ Q̄ R̄(NΩ̄)Q(NΩ̄)R
]
, (1.211)
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H(3)
2 = 8

(
ΩI J + iFI J K (NΩ)K

)
(NΩ̄)I (NΩ̄)J

− 4
3 i
(

FI J K L + 3iFR(I J N RS FK L)S

) (
6(NΩ)I (NΩ)J (NΩ̄)K (NΩ̄)L

− 4 (NΩ̄)I (NΩ̄)J (NΩ̄)K (NΩ)L
) ]

− 16
3 ΩI J K

(
3 (NΩ̄)I (NΩ̄)J (NΩ)K − (NΩ̄)I (NΩ̄)J (NΩ̄)K

)
− 16 ΩI J K̄ (NΩ̄)I (NΩ̄)J (NΩ̄)K

− 16i FI J K N K P ΩP Q
[− (NΩ̄)I (NΩ̄)J (NΩ̄)Q

+ (NΩ̄)I (NΩ̄)J (NΩ)Q + 2(NΩ̄)I (NΩ)J (NΩ̄)Q]
− 16 (NΩ̄)P ΩP Q N Q RΩRK (NΩ̄)K

− 32 (NΩ)I
(
ΩI J + iFI J P (NΩ)P

)
N J K

(
ΩK̄ L̄ − iF̄K̄ L̄ M̄ (NΩ̄)M

)
(NΩ)L

+ 16i(NΩ)I (NΩ)J FI J P N P K
(
ΩK̄ L̄ − iF̄K̄ L̄ Q̄(NΩ̄)Q̄

)
(NΩ)L

− 16 (NΩ)PΩP̄ Q N Q RΩRK̄ (NΩ)K

− 32 (NΩ̄)I
(
ΩI J + iFI J K (NΩ)K

)
N J LΩL̄ M (NΩ)M

− 16i (NΩ̄)I (NΩ̄)J FI J K N K PΩP Q̄(NΩ̄)Q , (1.212)

H(3)
3 = 16 ΩI J̄ (NΩ̄)I (NΩ)J

− 16
[
2(NΩ̄)K (NΩ)L

(
ΩK M N M N ΩN L̄ +ΩK L̄ Q(NΩ)Q

)
+ (NΩ̄)K ΩK L̄ N L P

(
iFP M N (NΩ)M (NΩ)N + 2ΩP J (NΩ)J

+ 2 ΩP J̄ (NΩ̄)J
)
+ 2i(NΩ̄)I (NΩ)J FI J K N K PΩP Q̄(NΩ)Q + h.c.

]
,

(1.213)

H(4)
1 = 32 (NΩ̄)I

(
ΩI J + iFI J K (NΩ)K

)
N J P

(
ΩP̄ Q̄ − iF̄P̄ Q̄ R̄(NΩ̄)R

)
(NΩ)Q ,

(1.214)

H(4)
2 = 32 (NΩ)P ΩP̄ Q N Q R ΩR̄K (NΩ̄)K (1.215)

H(4)
3 = 8 FI J R N RS F̄S̄ K̄ L̄ (NΩ̄)I (NΩ̄)J (NΩ)K (NΩ)L , (1.216)

H(4)
4 = − 4

3 i
(

FI J K L + 3i FI J R N RS FSK L

)
(NΩ̄)I (NΩ̄)J (NΩ̄)K (NΩ̄)L , (1.217)

H(4)
5 = − 16i FI J K N K LΩL̄ Q (NΩ̄)Q(NΩ̄)I (NΩ̄)J , (1.218)

H(4)
6 = − 16i FI J K N K P

(
ΩP̄ Q̄ − iF̄P̄ Q̄ R̄(NΩ̄)R

)
(NΩ̄)I (NΩ̄)J (NΩ)Q , (1.219)

H(4)
7 = 16

(
ΩI J K̄ + iFI J P N P Q ΩQK̄

)
(NΩ̄)I (NΩ̄)J (NΩ)K , (1.220)

H(4)
8 = 32 (NΩ̄)I

(
ΩI J + iFI J K (NΩ)K

)
N J PΩP̄ Q (NΩ̄)Q , (1.221)

H(4)
9 = − 16i (NΩ̄)I (NΩ̄)J FI J K N K LΩL̄ P (NΩ̄)P . (1.222)
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E Transformation Laws by Iteration

The Hesse potential in Sect. 1.4 depends on Ω , whose behavior under symplectic
transformations can be determined by iteration. Here we summarize the result for
the transformation behavior of derivatives of Ω (expressed in terms of the covariant
variables of Sect. 1.3), up to a certain order. We use the conventions of Sect. 1.4 and
suppress the superscript of F (0).

Ω̃I = [S−1
0 ]J I

[
ΩJ + iFJ K L (Z0Ω)K (Z0Ω)L − 2iΩJ K (Z0Ω)K

+ 2iΩJ K̄ (Z̄0Ω̄)K̄ + 2
3 FJ K L P (Z0Ω)K (Z0Ω)L(Z0Ω)P

+ 2FK L P (Z0Ω)K
J (Z0Ω)L(Z0Ω)P

+ 4FJ K L(Z0Ω)K (Z0Ω)L
P (Z0Ω)P

− 4FJ K L(Z0Ω)K (Z0Ω)L
P̄ (Z̄0Ω̄)P̄

− 2FJ K LZL P
0 FP QS(Z0Ω)K (Z0Ω)Q(Z0Ω)S

+ 2F̄K̄ L̄ P̄ (Z̄0Ω̄)K̄
J (Z̄0Ω̄)L̄(Z̄0Ω̄)P̄

− 2ΩJ K L(Z0Ω)K (Z0Ω)L − 4ΩK L(Z0Ω)K
J (Z0Ω)L

− 2ΩJ K̄ L̄(Z̄0Ω̄)K̄ (Z̄0Ω̄)L̄ − 4ΩK̄ L̄(Z̄0Ω̄)K̄
J (Z̄0Ω̄)L̄

+ 4ΩJ K L̄(Z0Ω)K (Z̄0Ω̄)L̄ + 4ΩK L̄(Z0Ω)K
J (Z̄0Ω̄)L̄

+ 4ΩK L̄(Z0Ω)K (Z̄0Ω̄)L̄
J

]
+O(Ω4) ,

Ω̃I J = [S−1
0 ]K I [S−1

0 ]L J

[
ΩK L − FK L M ZM N

0 ΩN

− iFK L PZ P M
0 FM Q R(Z0Ω)Q(Z0Ω)R + 2iFK L P (Z0Ω)P

Q(Z0Ω)Q

− 2iFK L P (Z0Ω)P
Q̄(Z̄0Ω̄)Q̄ + iFK L M N (Z0Ω)M (Z0Ω)N

+ iFK M N (Z0Ω)M
L(Z0Ω)N + iFK M N (Z0Ω)N

L(Z0Ω)M

− 2iFK M N ZM P
0 FP QL(Z0Ω)Q(Z0Ω)N

− 2iΩK L P (Z0Ω)P − 2iΩK P (Z0Ω)P
L + 2iΩK PZ P Q

0 FQL S(Z0Ω)S

+ 2iΩK L P̄ (Z̄0Ω̄)P̄ + 2iΩK P̄ (Z̄0Ω̄)P̄
L

]
+O(Ω3) ,

Ω̃I J̄ = [S−1
0 ]K I [S̄−1

0 ]L̄ J̄

[
ΩK L̄ + 2iFK M N (Z0Ω)M

L̄(Z0Ω)N

− 2iF̄L̄ P̄ N̄ (Z̄0Ω̄)N̄
K (Z̄0Ω̄)P̄

− 2iΩK M L̄(Z0Ω)M − 2iΩK M (Z0Ω)M
L̄ + 2iΩK L̄ M̄ (Z̄0Ω̄)M̄

+ 2iΩK M̄ (Z̄0Ω̄)M̄
L̄

]
+O(Ω3) ,
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Ω̃I J L = [S−1
0 ]M I [S−1

0 ]N J [S−1
0 ]K L

[
ΩM N K − FM N K P (Z0Ω)P

− FM N P (Z0Ω)P
K − FK M P (Z0Ω)P

N − FN K P (Z0Ω)P
M

+ FM N PZ P Q
0 FK Q R(Z0Ω)R + FK M PZ P Q

0 FQN R(Z0Ω)R

+ FN K PZ P Q
0 FQM R(Z0Ω)R

]
+O(Ω2) ,

Ω̃I J K̄ = [S−1
0 ]M I [S−1

0 ]N J [S̄−1
0 ]L̄ K̄

[
ΩM N L̄ − FM N Q(Z0Ω)Q

L̄

]
+O(Ω2), (1.223)

where (Z0Ω)M = ZM N
0 ΩN , (Z̄0Ω̄)M̄ = Z̄ M̄ N̄

0 ΩN̄ , (Z0Ω)M
L̄ = ZM N

0 ΩN L̄ ,

(Z̄0Ω̄)P̄
L = Z̄ P̄ N̄

0 ΩN̄ L , (Z0Ω)L
P̄ = ZL K

0 ΩK P̄ , (Z̄0Ω̄)P̄
L̄ = Z̄ P̄ N̄

0 ΩN̄ L̄ .
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Chapter 2
Black Holes in String Theory

Iosif Bena, Sheer El-Showk and Bert Vercnocke

Abstract These lectures notes provide a fast-track introduction to modern develop-
ments in black hole physics within string theory, including microscopic computations
of the black hole entropy as well as construction and quantization of microstates using
supergravity. These notes are largely self-contained and should be accessible to stu-
dents at an early PhD or Masters level. Topics covered include the black holes in
supergravity, D-branes, Strominger-Vafa’s computation of the black hole entropy via
D-branes, AdS-CFT and its applications to black hole phyisics, multicenter solutions,
and the geometric quantization of the latter.

2.1 Why Black Holes?

This is a lecture series about black holes, but that does not mean that every little
detail about what a black hole is will be explained. Our purpose is not to give a
comprehensive review of the subject, but rather to fast-track interested students and
researchers to the “juicy” aspects of the field using as little sophistication as possible.
Students who wish to devote the rest of their life to the study of black holes in string
theory, while they may find this overview useful, are urged to follow the “classical”
route of learning first all the gory details of string theory, then all the gory details of
black holes in general relativity, then read ten or fifteen foundational articles from
the glorious nineties, as well as a few more recent ones in their preferred sub-area of
research.
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We start these notes in this section by reviewing the main questions of black hole
physics. For more details on the (GR) aspects of black holes, see for instance the
Course de Physique at IPhT by Nathalie Deruelle in 2009 [1] and references therein.

Note: In these lecture notes, we choose for a pedagogical referencing style. We
refer to useful books, lectures and reviews as much as possible, and we will give only
the most relevant original papers when appropriate. More references can be found
in the reviews and pedagogical papers we refer to.

2.1.1 Classical Black Holes

Black holes are classical solutions that appear naturally in GR. The first black hole
metric was written down for the first time almost a century ago by Karl Schwarzschild
(although at that point it was only used to model the geometry outside of a spherically
symmetric object as the Sun or the Earth). It is a solution to the Einstein equations
determined by one parameter, the mass.

Very crudely, we can picture such a black hole as a region of spacetime in which
things can fall, or be thrown in, but nothing comes out, see Fig. 2.1 for a cartoon.
The boundary from which no round-trip tickets are available any more, is called the
event horizon. The name “black hole” fits very well: classically, a black hole does
not emit anything, not even light.

We can say more than just drawing cartoons. In GR, there is a very well-defined
picture one can make of a spacetime that showcases its causal properties, while
it still fits on a page: the Penrose diagram. It can be obtained by performing a
conformal transformation (scaling) on the metric. The Penrose diagram is then a
two-dimensional picture of the conformal metric. The key feature is that time-like
surfaces (light-rays) are still at 45° angles and we can therefore easily infer the causal
structure of the spacetime. The Penrose diagram for the Schwarzschild black hole is
shown in Fig. 2.2.

Any object travels on a causal curve: it has to stay within its future lightcone.
We see that once something falls into the horizon, it can never get out again. From

Fig. 2.1 A classical black
hole is the ultimate solution
for those smelly diapers of
your one-year-old daughter,
nagging mother-in-laws or
ageing national monuments:
you can throw things in, but
nothing comes out
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Fig. 2.2 The Penrose diagram for the Schwardschild metric. Some lightcones and particle trajec-
tories are drawn outside and inside the black hole horizon. Note that the singularity (sawtooth line)
is in the causal future of any object that falls behind the horizon

the Penrose diagram, we also see that anything that falls in will further collapse and
eventually hit the singularity.

Two important observations where made by Carter, Hawking, Penrose…from the
1960s onwards:

• No memory in horizon region of what the black hole is made of, this region is
smooth and has no special features:
“Black holes have no hair”

• Black hole uniqueness theorems (1960s–1970s):
A static black hole is fully characterized by its mass.1

A black hole of a certain mass could thus be made up out of anything: ipods,
elephants, grad students…from the outside it will look the same.

2.1.2 A Little Bit of Quantum Mechanics

What happens if we add quantum mechanics to the game? The region of spacetime
around the horizon of a black hole has a curvature and hence a certain energy density.
We know that in QFT, energy can decay into a particle-antiparticle pair. This idea has
led Hawking to perform a semiclassical analysis of QFT in a black hole background.
Through the Hawking process, pairs will be created and once in a while one of the
two falls into the black hole horizon, while the other escapes off to spatial infinity.

1 The more general time-independent solution, a stationary black hole, is fully determined by its
mass ánd angular momentum. When GR is coupled to an electromagnetic field, a black hole can
have an electric and a magnetic charge as well. However, there is no additional memory of what
formed the black hole: there are no higher multipole moments etc.
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Fig. 2.3 A cartoon of the Hawking process. The black hole geometry is pictured as a point, the
singularity, surrounded by a horizon. A QFT calculation in the black hole spacetime leads to pairwise
particle creation such that close to the horizon, one of these particles can fall into the horizon, the
other escaping to infinity

The net result is that the black hole mass is lowered and energy, under the form of
thermal radiation, escapes to infinity, see Fig. 2.3.

The black hole behaves as a black body, with a temperature proportional to the
strength of the gravitational field at the horizon. One finds this temperature is inversely
proportional to the black hole mass:

T = �c3

kB

1

8πG4 M
� 6× 10−8

(
M

M⊙
)

Kelvin (2.1)

where M⊙ � 2 × 1030 kg is the mass of the sun. The bigger the black hole is
(more mass), the lower its gravitational field a the horizon and hence how lower its
temperature. For a typical astrophysical black hole, ranging from several to several
million solar masses, this is a very small temperature.

By the laws of black hole thermodynamics, a black hole also has an entropy. It
was first conjectured by Bekenstein [2] and later proven by Hawking [3] that this
entropy is proportional to the area of the black hole horizon:

SB H = AH

4G N
, (2.2)

where G N is Newton’s constant, related to the Planck length as G N ∼ l2
P . In Planck

units, we thus have SB H = AH /4l2
P with lP � 1.6 × 10−35 m. The entropy of a

typical black hole will thus be very large. For a Schwarzschild black hole, we find
that the Bekenstein-Hawking entropy is proportional to the square of the black hole
mass:

SSchw � 1076 ×
(

M

M⊙
)2

. (2.3)

This is a huge entropy! For a solar mass black hole (which would have a radius of
about 3 km) we find 1076, for the black hole in the center of our galaxy of several
million solar masses, we find about SGal � 1090.
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How should we understand this entropy? Boltzmann has taught us that the entropy
is related to a number N of microstates, microscopic configurations with the same
macroscopic properties:

S = log(N ). (2.4)

We would hence conclude that the quantum mechanics of black holes leads to an
incredibly large amounts of microstates: NQM ∼ e1076

. However, in the classical GR
picture we do not understand this number, as there is only one stationary solution with
the black hole mass (the macroscopic parameter of the configuration): NG R = 1.
This numerical discrepancy is the largest unexplained number in theoretical physics.2

2.1.3 Problems

• Where are the microstates? Maybe the N = exp(SB H ) states live in the region
of the singularity, and GR just does not see them? Recent arguments by Mathur
and others point out that this would not solve the information paradox (second
point), and black hole microstates should differ from the black hole significantly
also at horizon scales. Such ‘microstate geometries’ do not exist within general
relativity.
• Information paradox. The Hawking radiation process has positive feedback: as

a black hole radiates, it loses mass, increasing its temperature, which increases
the rate of radiation. If we wait long enough, by the Hawking process a black
hole will continue radiating until all of its mass is radiated away and we are left
with only thermal radiation. This leads to a problem: where has the information
of the initial state gone? Once a black hole forms, the spacetime is completely
determined by the mass. All other information of the initial state that went into the
black hole seems gone: whether we make a black hole out of 2 seven-ton elephants,
or 200 seventy-kilogram graduate students, the classical black hole geometry is
indistinguishible. As the black hole evaporates, only the thermal radiation comes
out, there is no information about the initial state in the Hawking radiation neither.

Note that a black hole we start from that goes to a universe without black hole,
but filled with thermal radiation cannot be obtained by unitary evolution. People
have come up with many ideas to solve this problem: maybe physics is not unitary,
or the black hole does not evaporate completely and there is a remnant with high
entropy, and other explanations. Not one has proven satisfactory. Currently, the most
popular viewpoint among string theorists is that the physics is nuitary, the information
paradox is just an artefact of semiclassical gravitational physics.

We would like to solve these problems. The solution is in the study of black holes
in a quantum gravity theory, that can unify classical GR with quantum mechanics.

2 For comparison, the famous cosmological constant problem is the large ratio ΛQFT /Λobs ∼ 10120

between the “expected” value ΛQFT and the observed value Λobs . This number is peanuts compared
to the required number of black hole microstates!
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String theory is a powerful mathematical framework that does exactly this. We do
not have to believe that this theory describes the real world. As a quantum gravity
theory, string theory can be tested by its answers to the issues related to black holes
(information problem, entropy problem). If it does not pass this test, and cannot
solve these problems, we throw it to the garbage as a quantum theory of gravity. If
it does, we can start thinking about other tests and problems to attack—and maybe
start believing it describes the real world after all.

2.2 Building Blocks

In this section, we provide the tools to construct black hole solutions of string theory.
It is not our intention to give a lecture series on string theory: We will not tell you how
to build the computer, but how to programme it. For further information on string
theory basics, see the textbooks [4–9], and for supergravity, the low-energy limit of
string theory, see [10].

2.2.1 Caught in the Web

String theory is a framework that has grown dynamically over the past thirty or so
years. Various limits of this theory have been studied, see Fig. 2.4. Historically all the
corners of this diagram were constructed as different theories and only about 15 years
ago it was realized that they were all related through various dualities, and can be
seen as limits of one theory. We reserve the term “string theory” for the encompassing
framework.3

In these lectures, we will only consider M-theory, type IIA and type IIB string
theory. The natural geometric interpretation of M-theory is 11-dimensional, while
the type II strings live in ten dimensions. We will mainly study the low-energy limits
of string theory. “Low energy” is relative. We mean that we stick to the zero mass

Fig. 2.4 We should view
string theory as a web, of
which we understand several
corners, where perturbative
and other techniques can be
used. In these lectures, we will
only consider M-theory, type
IIA and type IIB string theory

3 Often people refer to the entire framework as “M-theory”. We like to view this eleven-dimensional
theory as one of the corners of the string web instead.
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Table 2.1 The theories we
work in

Theory Low-energy limit

M 11d supergravity
IIA 10d IIA supergravity
IIB 10d IIB supergravity

fields of the string spectrum. The low-energy limits of string theories are supergravity
theories: gravity theories that are extensions of general relativity with other fields,
whose couplings are fixed by the requirement of supersymmetry. See Table 2.1.

2.2.2 An Analogy for M Theory

To get a grip on the field content of these higher-dimensional beasts, we first make
an analogy with Maxwell theory in four dimensions.

Maxwell Theory

The action for Maxwell theory coupled to gravity is:

S =
∫

d4x
√−g (R + 1

4 FμνFμν), (2.5)

where Fμν is the electromagnetic field strength Fμν = ∂μAν − ∂ν Aμ ≡ 2∂[μAν].
What are the fundamental objects in this theory?

• Electrons. An electrically charged particle with electric charge e couples to the
electric field as

Sel = e
∫ [

Aμ
dxμ

dτ

]
dτ , (2.6)

where τ parameterizes the world-line of the particle and xμ(τ ) describes the
embedding of the particle’s world-line in space-time (Fig. 2.5). A particle that
is not moving in a certain reference frame, couples to the time component of the
electric field as e

∫
A0dx0 with x0 = τ . The electric field profile sourced by such

a field is
A0 = e

r
, E = ∇A0 = − e

r2 ur , (2.7)

where ur is a unit vector in the radial direction. Note that a moving electron couples
to magnetic components Ai of the gauge field as well.
The electric field of a charged particle solves Maxwell’s equation’s (the equations
of motion for the field Aμ) with a delta-function source:

∇2 A0 = eδ(r). (2.8)
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Fig. 2.5 Magnetic field lines
from a magnetic monopole.
The total charge is measured
by integrating the flux over
a surface (for instance a
two-sphere) surrounding the
source

• Magnetic monopoles. In theory, there can also be magnetically charged particles
in four dimensions. These are monopole sources of the magnetic field. The charge
of these particles can be measured by integrating the magnetic field lines over a
two-sphere surrounding the charge (see Fig. 2.6a):

gM = 1

4π

∫
S2

Fμνdxμdxν . (2.9)

The magnetic monopole sources a profile for the magnetic field. For a flat metric
gμν = ημν , we have:

Fi j = −εi jk Bk . (2.10)

The coupling to the electromagnetic field is found in an indirect way. Just as the
electron couples to the gauge field, the magnetic monopole couples to the (Hodge)
dual electric field:

F̃μν = 1

2

√−gεμνρσFρσ, (2.11)

as

(a) (b)

Fig. 2.6 A charged particle traces out a one-dimensional world line, its higher dimensional analogue
(a p-brane) traces out a (p+ 1)-dimensional world volume, sourcing a (p+ 1)-form potential. For
a p-brane, we parametrize the world volume in terms of σi (i = 0 . . . p). a A charged particle.
b A p-brane
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Smag = gM

∫ [
Ãμ

dxμ

dτ

]
dτ . (2.12)

The dual field sourced by a static magnetic monopole is then

Ã0 = gM

r
. (2.13)

In flat space with metric ds2 = dr2+r2(dθ2+sin2 θdφ2), this gives the magnetic
field in polar coordinates (using 2.11)

Fθφ = gM sin θ , or B = −gM

r2 ur . (2.14)

where ur is a unit vector in the radial direction.

Exercise 2.2.1 Show that the magnetic monopole field solves the Bianchi identity
up to a delta-function source:

∂r Fθφ + ∂θFφr + ∂φFrθ = gMδ(r). (2.15)

Hint: integrate the equation on a ball of arbitrary radius R centered at r = 0 (ball
means a ‘filled’ two-sphere here). You can use the integral

∫ r=R
r=0
√
gdrθdφ with the

metric
ds2 = dr2 + r2(dθ2 + sin2 θdφ2). (2.16)

Eleven-Dimensional Supergravity

The features of eleven-dimensional supergravity (the low-energy limit of M-theory)
are very similar to those of four-dimensional Einstein-Maxwell theory. The bosonic
fields are again the metric and a gauge field, which is now a three-form potential
Aμνρ, instead of the one-form of Maxwell theory. These fields and their couplings
are dictated by supersymmetry: supergravity theories are theories of gravity that are
(locally) supersymmetric, and due to this extra symmetry, the possible fields and
their couplings are constrained.

The three-form has a four-form field strength. We will often use form notation
instead of writing everything out in components. The four-form field strength of
M-theory is written as

F4 = 1

4! Fμνρσdxμ ∧ dxν ∧ dxρ ∧ dxσ. (2.17)

where Fμνρσ are the components of a four-form gauge field

Fμνρσ = 4!∂[μAνρσ]. (2.18)
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The Lagrangian for eleven-dimensional supergravity is [11]

S =
∫

d11x
√−g (

R + 1
2

1
4! FμνρσFμνρσ

)+ 1

3

∫
A3 ∧ F4 ∧ F4, (2.19)

The last term does not contain the metric, it is topological. For single electric or
magnetic sources this so-called Chern-Simons term does not contribute. We focus
only on the other terms in the action, which are the straightforward generalization of
Einstein-Maxwell theory.

What are the fundamental charged objects of this theory?

• Electric object: M2-brane. The counterpart of the electron (which couples to
the gauge field component A0) is an object that couples to the electric compo-
nent of the three-form potential C0i j . Because of the additional directions, this
potential couples naturally to a two-dimensional extended object or membrane,
with a three-dimensional world volume Σ (generalizing the particle with a one-
dimensional world volume). This membrane of M-theory is also called M2-brane.
For a membrane extended along the directions x1, x2 we have:

SM2 = QM2

∫
Σ

C012dx0dx1dx2. (2.20)

where QM2 is proportional to the charge of the M2-branes.
• Magnetic object: M5-brane. In analogy with the magnetic particle, we can also

consider a magnetic monopole charge for the field strength Fμνρσ . To measure its
charge, we have to integrate the field strength over a four-sphere, see Fig. 2.7:

QM5 = 1

vol(S4)

∫
S4

Fμνρσdxμdxνdxρdxσ, (2.21)

From Fig. 2.7 we can also find the dimensionality of the magnetic monopole of
M-theory. The field lines run in a five-dimensional transverse plane (directions

Fig. 2.7 Magnetic field lines from the M-theory magnetic are integrated over an S4 in the transverse
R

5(x1 . . . x5). Hence, this magnetic monopole is a membrane extending in five space dimensions
(x6 . . . x10)
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1,2,3,4,5) and the magnetic monopole takes up the remaining five dimensions
(6,7,8,9,11).4 This object is called the M5-brane.

2.2.3 Type II String Theory

We relate ten-dimensional string theories and M-theory. See Chap. 8 of [8] for a more
detailed account.

Type IIA Supergravity from Dimensional Reduction

Consider eleven-dimensional M-theory. We imagine making the direction x11 small
and ‘compactifying’ it on a circle. See Fig. 2.8. What happens to the objects of
M-theory? There are two distinct possibilities for each fundamental object: either
the world-volume of the object is wrapped on x11, meaning that one of its directions
shrinks away, or the world-volume is completely inside the ten large dimensions of
space-time. We summarize the possibilities for M-theory objects in Table 2.2.

An important new object is the momentum wave. Because we compactify on a
circle, momentum along x11 is quantized and momentum waves excitations have a
discrete mass spectrum:

m = 1

�11
,

2

�11
,

3

�11
. . . (2.22)

Fig. 2.8 Curling up one out of D dimensions makes a space-time look essentially (D − 1)-
dimensional. An object that is wrapped on the compact dimension has a world-volume of one
dimension lower (a membrane becomes a string, a string becomes a point etc.), an unwrapped
object remains of the same dimension

Table 2.2 Objects in IIA after compactifying M-theory on a circle

M-theory IIA supergravity
Object Directions Object Directions

M2 0, 1, 11 String 0, 1
0, 1, 2 Membrane 0, 1, 2

M5 0, 1, 2, 3, 4, 11 4d membrane 0, 1, 2, 3, 4
0, 1, 2, 3, 4, 5 5d membrane 0, 1, 2, 3, 4, 5

Mom. wave 0, 11 Particle 0

4 We choose to write the time directions as x0 and space time directions x1, x2, . . .. However, we
choose the ‘eleventh’ dimensions to be x11 and skip x10.
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where �11 is the radius of the circle. Upon compactification, momentum waves have
quantized excitations and become point particles.

We can now interpret all these new objects after compactification. The resulting
ten-dimensional theory is called IIA string theory.5 Its low-energy limit is IIA super-
gravity. It was found independently in the 1980s and only in the mid-1990s people
realized its connection to eleven-dimensional supergravity and M-theory through
compactification. The objects of IIA string theory, which were found earlier through
quantization of the IIA string, correspond exactly to what we found above from
compactifying M-theory (see [7] and references therein to guide you to the original
works on the quantization of the IIA string). These are organized in two sectors6:

The NS–NS Sector

It contains the following objects:

• F1: the fundamental quantized string of IIA string theory. It comes from an
M2-brane wrapped on x11.
• NS5-brane: this is not a D-brane, but is in fact the ‘magnetic monopole’ associated

to the ‘electric’ F1. It descends from the non-wrapped M5-brane.

The R–R Sector

These are Dirichlet branes, or D-branes for short. They arise from possible Dirichlet
boundary conditions one can put on an open fundamental string. One finds that,
depending on the type of string theory, only certain dimensionalities of submanifolds
of space-time can provide such Dirichlet-boundary conditions while remaining stable
objects. These are the allowed D-branes. In IIA one only finds stable D-branes of
even dimensions (D0, D2, D4…). Surprisingly, one finds that these D-branes not
only describe boundary conditions for strings, but they can also have a dynamics of
their own. We will expand on this as we go on.

The relation of the D-branes to M-theory is:

• D0-brane: or D-particle, coming from a momentum wave along the compact
eleventh dimension (eleven-dimensional metric degree of freedom).
• D2-brane: the D2-brane is an M2-brane that is not wrapped on the compact direc-

tion.

5 Type IIA supergravity is one of the two possible ten-dimensional supergravity theories invariant
under N = 2 supersymmetry, namely the one for which the two supersymmetry generators (spinors)
have opposite chirality. The other N = 2 supergravity in ten dimensions is type IIB supergravity,
the low-energy limit of IIB superstring theory, which has two supersymmetry generators with the
same chirality.
6 Different boundary conditions for the fermionic fields living on the world-volume of the type II
string give different possible fields in the string spectrum. In the massless spectrum we observe that
Neveu-Schwarz-boundary conditions (anti-periodic) give the NS-fields: metric gμν , B-field Bμν ,
and dilaton φ. Ramond boundary conditions (periodic) give RR fields C (0), C (2), C (4).
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• D4-brane: an M5-brane wrapped on x11. It is the magnetic monopole associated
to the D2-brane.
• D6-brane: yet another D-brane in the string spectrum. It descends from a certain

smooth type of geometry in M-theory known as the Kaluza-Klein monopole, and
is the magnetic equivalent of the D0-brane.

IIA Supergravity Action

We have seen what are the objects that appear in IIA string theory. Let us summarize
the fields they couple to, and give the low-energy effective action of type IIA string
theory. (‘Low energy’ is relative and means energies E well below the scale set by
the string length E � 1/ ls . The energies reached in present-day accelerators are
‘low’ in this terminology.) In this limit, the only vibration modes of the string that are
of relevance are the massless modes. They are described by type IIA supergravity.
We are only concerned with the bosonic content of the theory, given by the following
fields.

• The ten-dimensional metric, with components gμν . Its excitations are gravitons.
• The dilaton φ. This is a scalar field. Its vacuum expectation value sets the value

of the string coupling as gs = 〈eφ〉. In eleven-dimensional M-theory, it is a metric
component that sets the size of the eleventh direction. It plays an important role in
string theory – it sets the value of the string coupling and determines the validity of
perturbative string theory. When the eleventh dimension is small, we get weakly
coupled IIA string theory and conversely, the strongly coupled limit of IIA theory
opens up an extra space-time dimension giving M-theory. We will not consider
the dilaton further.
• An antisymmetric two-form field with components BM N . This is the gauge field

three-form potential C of M-theory with one compactified direction:

Bμν ≡ Cμν11. (2.23)

This field couples electrically to the F1 string and magnetically to the NS5-brane.
• Higher-form gauge fields. These are generalizations of the Maxwell field Aμ of

four dimensions. We have a one-form potential with components Cμ and a three-
form with components Cμνρ.7 The gauge field Cμ for the D0-brane is related to

the eleven-dimensional metric g(11)
μν as Cμ = g(11)

μ11 (up to a factor involving the
dilaton). Its magnetic monopole source is the D6-brane. In a similar fashion, the
components of the three-form gauge field Cμνρ ≡ Aμνρ in ten dimensions define
the Ramond-Ramond three-form gauge field and they couple electrically to the
D2 branes and magnetically to the D4-branes.

From now on, we use differential form notation and write B2, C1, C3 (for instance
C1 = CM dx M and B2 = 1

2 BM N dx M ∧ dx N ) with associated field strengths

7 We adopt common notation C for the Ramon-Ramond gauge field in ten dimensions that couple
to D-branes, and A for the gauge field in elven dimensions that couples to M-branes.
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H3 = d B2, F2 = dC1, F4 = dC3. All the fields above form the bosonic con-
tent of the type IIA supergravity action, which is, up to two derivatives, completely
determined by supersymmetry to have the form [7]

S = 1

16πG10

∫
d10x e−2φ√−g

(
R − 1

2
|H(3)|2 − 1

2
∂μφ∂

μφ− 1

2
|F(2))|2 − 1

2
|F̃(4)|2

)

− 1

16πG10

∫
1

2
B(2) ∧ F(4) ∧ F(4). (2.24)

where G10 is Newton’s constant in ten dimensions, we introduced F̃(4) ≡ F(4) −
C(1) ∧ H(3) and we have the notation |F(n)|2 = 1

n! Fμ1...μn Fμ1...μn and likewise for
|H(3)|2.

Historically, all these higher-form gauge fields were first found in the spectrum
of string theory, but people had at that point (the 1980s) no idea what objects they
coupled to. It took until the mid-1990s ago before it was realized that the objects the
R–R fields couple to are in fact the Dirichlet-branes.

In a similar way, IIB string theory has a plethora of higher-dimensional objects.
The NS-sector (including the F1 string and the NS5 brane) also appears, but IIB
has only stable branes of uneven dimensionality, versus the even branes of IIA. See
Table 2.3.

Dualities

One may wonder how to relate IIB to IIA and M-theory, since at this point we wrote
down the fields in a rather ad hoc way. The clue lies in several dualities of the string
spectrum.

S-duality

We first focus on a symmetry of the spectrum of the IIB string. We observe that the
spectrum can be organised in pairs of the same dimensions: F1–D1, NS5–D5 (we

Table 2.3 Coupling of branes to n-form potentials. In ten dimensions, an n = (p + 1)-form
potential couples to a p-brane through an electric coupling and to a (6 − p) through a magnetic
coupling

Potential IIA IIB
B2 C1 C3 B2 C0 C2 C4

Electric F1 D0 D2 F1 D(−1) D1 D3
Magnetic NS5 D6 D4 NS5 D7 D5 D3

We give the brane couplings of the NS–NS sector (F1 stands for fundamental string, NS5 for the
magnetically dual five-brane) and R–R sector of type IIA and type IIB string theory. (We do not
consider the IIA (magnetic) D8-brane and its electric counterpart. The D(−1) brane should be seen
as an instanton.)
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also have NS7–D7, but that example is a little special so we ignore it further and
refer the interested reader to the literature [12, 13] and [14–16]). This corresponds
to the pairing of the B-field Bμν with the RR two-form Cμν and the same for their
magnetic dual fields B̃ and C̃ (which are in fact 6-forms as Exercise 2.2.2 asks you
to show).

Exercise 2.2.2 Generalize the dualization rule (2.11) for two-forms in four space-
time dimensions to arbitrary dimensions D and arbitrary p-forms (you need the
inverse metric to raise indices). This operation is called Hodge duality (see for
instance []). Use this to write down which form couples to which brane in both IIA
and IIB theory.

What about the D3 brane? What does it pair up with? The D3-brane couples
electrically to a four-form potential, with a five-form field strength F5. In fact, in IIB
supergravity, F5 obeys the property

Fμ1...μ5 = F̃μ1...μ5 ≡
1

5!
√−gεμ1...μ5 μ6...μ10 Fμ6...μ10 (2.25)

and therefore, using Exercise 2.2.2, the five-form field strength that couples to the D3
brane is self-dual F5 = F̃5. Hence the D3 brane ‘pairs up with itself’: the D3-brane
is a dyon, it is both an electrically charged brane and a magnetic monopole! We will
see below that this dyonic nature separates the D3-brane from the other branes.

There exists a clean symmetry interchanging the fields B2 with C2, while leav-
ing F5 unaltered. This transformations is called S-duality and it interchanges F1’s
with D1’s, D5’s with NS5’s and leaves the D3 brane as it is. It is a very useful
transformation in navigating through the zoo of brane solutions.8

T-duality

There is another symmetry that maps the string spectra of different string theories
onto each other. Imagine wrapping the IIA string on a circle of radius R. A string
wrapped on the compact dimension has a mass proportional to its tension TF1 times
the radius R of the string. The string length �s is related to the string tension as
TF1 = 1/2π(�s)

2, so this mass comes in fundamental units of R/�2
s . The number of

units is a topological number and describes how many times the string winds along
the compactified dimensions. We call them (string) winding modes.

We can also put momentum modes on the string. These momentum modes should
be viewed as oscillations travelling on the string. Again, these fundamental string
excitations come in quanta, proportional to 1/R; for larger radius R, the energy cost
of a momentum mode goes down. We can play the same game for IIB string theory
compactified on a circle of radius R̃. See Table 2.4 and Fig. 2.9.

8 In the near-horizon geometry of a D3 brane, which is Ad S5 × S5 as we will see below, S-duality
becomes the strong-weak coupling duality of N = 4 super Yang-mills, the theory dual to the
Ad S5 × S5 background through the AdS/CFT duality.
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Table 2.4 The mass m of winding and momentum modes of IIA string theory compactified on a
circle of radius R and IIB theory compactified on a circle of radius R̃
IIA Winding Momentum IIB Winding Momentum

m = R
(�s )2

1
R m = R̃

(�s )2
1
R̃

2R
(�s )2

2
R

2R̃
(�s )2

2
R̃

3R
(�s )2

3
R

3R̃
(�s )2

3
R̃

… … … …

Fig. 2.9 Left (in red): a string winding one or several times around the compact dimensions, right
(blue): a vibrational or momentum mode of the string

It turns out that the spectra of IIA and IIB compactified on circles of radius R
and R̃ = (�s)

2/R are exactly mapped into each other under T-duality: momentum
modes map to winding modes and vice versa. See also Table 2.4. We reserve p for the
units of momentum charge and F1 for the amount of string winding. Schematically,
T-duality thus acts as:

IIA IIB
F1 ←→ p
p ←→ F1

The symmetry of the string spectra in these two different string theories opens up a
huge portion of parameter space where we can actually have a geometric interpreta-
tion of string theory. Say we consider type IIA string theory. As long as R is large
compared to the string scale, we have a pretty good control because string excitations
behave as particles and we can use the supergravity approximation (action contains
no more than two space-time derivatives). However, when the size of the circle is
small compared to the string length scale, corrections due to the stringy nature are
huge and we lose this control. Then T-duality makes it possible to go to type IIB
theory with R̃ 
 �s . (Note that for circle radius R � �s , we still cannot say too
much.)

Dualities for D-branes

Consider the setup of Fig. 2.10. We compactify string theory on a circle. A brane that
is wrapped on this circle, will no longer extend along this direction after T-duality.
Conversely, a D-brane that does not wrap the T-duality circle, will become a D-brane
of one dimension higher wrapping the circle after T-duality.

To get the gist of it, we apply T-duality on the (supersymmetric) intersection of
two species of D-branes. Let us start from a D3-D3 brane intersection in type IIB
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Fig. 2.10 Under T-duality, a D-brane wrapping the circle is mapped to a D-brane of one dimension
lower and vice versa

IIB : D3 0 1 2 3
D3 0 3 4 5

Say we compactify the 3-direction. Under a T-duality to IIA, we get the branes:

IIA D2 0 1 2
D2 0 4 5

We can continue on this, see Exercise 2.2.3.

Exercise 2.2.3 Show that three additional T-dualities on the two orthogonal
D2-branes, along directions 1, 2 and 3 give the D1-D5 brane intersection:

IIB : D1 0 3
D5 0 1 2 3 4 5

We will use this brane setup (‘D1-D5 system’) a lot in the study of black holes
and their entropy.

Similarly, we can consider S-dualities. For instance, the D1-D5 setup of Exercise
2.2.3 becomes after S-duality:

IIB : F1 0 3
NS5 0 1 2 3 4 5

We see that the dualities give some insight in an entire zoo of complicated D-brane
configurations. On the level of supergravity, they form a solution generating tool (see
the next section). We can interpret all these two-brane intersections as really one
solution, which takes on different forms in different ‘duality frames’. We can get the
supergravity solution in any frame in no time from the T-duality rules. This applies
equally well to any other brane solution.

We will make extensive use of T- and S-dualities on black hole solutions. This
will map to black holes which may look a bit different, but all have the same physical
properties (entropy, temperature…). We will always work in the duality frame most
adapted to the questions we are asking at that moment. In particular, we will often
work in the D1-D5 duality frame of Exercise 2.2.3.
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2.2.4 p-brane Supergravity Solutions

Let us consider some actual supergravity limits of Dp-brane solutions. For further
references, see the complete, but extremely short account of [17], some more infor-
mation for instance in [18, 19] or [20] for a more black hole oriented Dp-brane review
(p runs over the allowed integers).

2-Brane Solution

For concreteness, we discuss the D2-brane solution of IIA supergravity, extending
along directions 0,1,2 (time and two space directions). As in the analogy with electro-
magnetism, this brane sources a three-form potential C012. It has a non-zero tension
or mass density and hence it also couples to the metric. There is a third field it sources,
the dilaton.

The exact way the D2 brane source affects those fields, is through one function
of the space-time coordinates. We call that function Z . One finds the metric

ds2 ≡ gμνdxμdxν = Z−1/2(−dx2
0 + dx2

1 + dx2
2 )+ Z1/2(dx2

3 + . . .+ dx2
9 ) (2.26)

and the other non-zero fields are the three-form that couples to the 2-brane and the
dilaton:

C012 = Z−1 , eφ = Z1/4. (2.27)

We will not consider the dilaton φ any further. Concentrating on the other fields, we
see that the solution has Lorentz invariance along the D2 brane directions 0, 1, 2 and
Euclidean symmetry in the transverse directions.

The D2 brane behaves as a point particle in the transverse R
7. The function Z

plays the role of the Maxwell potential in the transverse R
7. From the supergravity

equations of motion, one finds that it obeys the Laplace equation on R
7:

Δ7 Z = 0. (2.28)

In the presence of sources, this is modified to

Δ7 Z = ρD2. (2.29)

For a stack of ND2 D2-branes sitting at the origin of our coordinate system, the
source is a delta function ρD2 = ND2δ(r7) and we find the solution

Z = 1+ ND2

r5
, (2.30)
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where r is the radius of the transverse space r2 ≡ x2
3 + . . . x2

9 . The integration
constant can always be set to one by a constant rescaling of the coordinates.

As r → 0, we approach the D2-brane source and Z →∞. From the expression
for the metric, we see that the R

1,2 factor shrinks, while the R
7 blows up. This is not

just a coordinate singularity, but r = 0 is a singular locus in space-time. This can be
seen from the three-form potential C012. It goes to zero at r = 0 but the energy of
the C-field

E = 1

4! FμνρσFμ′ν ′ρ′σ′g
μμ′gνν

′
gρρ
′
gσσ

′
(2.31)

blows up as r → 0 and we conclude that the D2 brane solution contains a singularity,
which is not shielded by a horizon (‘naked singularity’).9

Note that the equations of motion are linear in the sense that we can add multiple
(singular) D2-brane sources:

Δ7 Z = Naδ(r− ra)+ Nbδ(r− rb)+ . . . . (2.32)

We consider all D2-branes of the same ‘species’, with the world volume along the
0, 1, 2 directions.

Then the only thing that changes is that the function Z becomes a sum of harmonic
functions, sourced at different locations:

Z = 1+ Nb

|r− rb|5 +
Na

|r− rb|5 + . . . . (2.33)

We see that this solution can describe any density of D2-branes, even a continuous
one.

D3-Brane from T-duality

Start from a continuous distribution of D2 branes along a line in the transverse space
(this is also called ‘smearing’ the D-brane charge). Say that we put this smeared
D2-branes along the x7 direction, see Fig. 2.11.

Because the solution is now homogeneous in x7, we can compactify this direction.
Then the solution for such a continuous distribution of D2-brane charge on a finite
line segment goes as:

Z = 1+ ND2/L7

r4 , (2.34)

9 Although there is a naked singularity in the supergravity solution, as a solution to string theory,
a D-brane is well-defined. As r → 0, the dilaton φ blows up. Since it sets the length of the
eleven-dimensional compactification circle of M-theory, the eleventh dimension decompactifies
near r → 0. We hence get the near-M2-brane solution of eleven-dimensional M-theory, which is
well-defined in all of space-time.



78 I. Bena et al.

Fig. 2.11 A D2 brane
smeared along x7

with L7 the length of the compactified direction. Next we perform a T-duality along
x7 to a D3-brane solution of type IIB string theory. What does this solution look
like? Remember that the size of the compact circle is inverted after this duality
transformation

√
g77 → (�s)

2/
√
g77, and hence the metric of the resulting solution

is (we set �s = 1 for simplicity):

ds2 = Z−1/2(−dx2
0 + dx2

1 + dx2
2 + dx2

3 + dx2
7 )+ Z1/2ds2

6d. (2.35)

The three-form gets an additional leg to become the IIB four-form:

C0127 = Z−1. (2.36)

and the solution for the function Z is

Z = 1+ ND3

r4 . (2.37)

Near-Solution and Brane Throat

What does the geometry look like close to the D3-brane? We approach the D3-brane
as we take r → 0. This means that in the function Z , we can effectively drop the
constant and write Z = ND3/r4 as r → 0.

To reinstate the correct dimensions, we write Z = R4/r4, with R some reference
radius. First write the transverse six-dimensional space in terms of polar coordinates
as

ds2
6d = dr2 + r2dΩ2

5 , (2.38)

Then the near-geometry of the D3-brane is

ds2
near =

r2

R2 (−dt2 + dx2
1 + dx2

2 + dx2
7 )+ R2 dr2

r2 + R2dΩ2
5 . (2.39)

What has the D3-brane done? It has opened up a “throat”: as we approach r → 0
from infinity, the S5 will get smaller and smaller. But near the D3 brane it attains
a finite size, set by the radius R. Note that the metric distance to r = 0 from any
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Fig. 2.12 A cartoon of the
D3-brane geometry. As we
approach the D3 brane, an
infinity throat opens with
constant transverse S5 size

other point in space-time with r > 0 is actually infinite and the D3-brane throat is
infinitely deep.

Physically, the D3-brane solution forces the Ad S5 × S5 geometry to appear.10

This is a special feature of the D3-brane that the other D-branes do not possess (in
fact, all the D0, D1…D6-branes have a naked singularity if we consider them in ten-
dimensional supergravity). The origin lies in the dyonic nature of the D3 brane: it is
both an electric and a magnetic charge for the four-form potential C0127 (Fig. 2.12).

The Ad S5×S5 geometry is the riding horse of holography. Classical gravitational
physics on this background is dual, through the AdS/CFT correspondence, to strongly
coupled conformal field theory in N = 4 Super-Yang-Mills. We will come back to
this later.

BPS Property: Mass = Charge

The charge of a D3 brane is given by integrating the gauge field that couples mag-
netically to it over a surface surrounding the brane (as for the magnetic monopole of
electromagnetism)

Q D3 = 1

5!
∫

S5
Fi jklm dxi dx j dxkdxldxm, (2.40)

where the field strength is Fi jklm = 5!∂[i C jklm]. So far, we have only given the
electric component of the gauge field C0123. Exercise 2.2.4 asks you to derive the
magnetic component of the field strength: since the five-form F5 of IIB string theory
is self-dual, it must have magnetic components as well.

Exercise 2.2.4 Derive, using the duality

Fν1...ν5 = F̃ν1...ν5 ≡
1

5!
√−gεν1...ν5 μ1μ2μ3μ4g

μ1μ
′
1gμ2μ

′
2gμ3μ

′
3gμ4μ

′
4gμ5μ

′
5 Fμ′1μ′2μ′3μ′4μ′5 .

(2.41)
and the expression for the electric components of the field strength

10 For the aficionados: this is the same mechanism that forces the extremal Reissner-Nordstrom
black hole to have a near-horizon region of the form Ad S2 × S2.



80 I. Bena et al.

F0123r = ∂r Z−1. (2.42)

the form of the magnetic components F45678.

With this result, we find that from integrating over an S5 at r → ∞ to cover the
entire flux emanating from the D3 brane, that the charge of the D-brane is

Q D3 = ND3, (2.43)

up to some numerical coefficient that we set to one for simplicity’s sake.
The mass of the D3-brane can be derived from the component gt t of the metric,

following the prescription of Arnowit, Deser and Misner (ADM) (see [21] for more
details on the ADM formalism in GR, and [20] for a discussion in p-brane space-
times). In particular, when expanding this component for large r , in asymptotically
flat D-dimensional space-time the leading terms for a point-like source are:

gt t = −1+ 16πG N

(D − 2)ΩD−2

M

rD−3
(2.44)

where G N is Newton’s constant and Ωn is the area of the n-sphere of unit radius Sn .
A D3-brane is effectively like a point in D = 7 and we see from (2.35) and (2.37)
that M is proportional to the number ND3 of D-branes. We have not been too careful
about prefactors in the expression for the metric, so we only state the dependence on
gs of the end result:

MD3 = ND3

gs
, (2.45)

where gs (“g-string”) is the string coupling constant. This is an interesting feature:
the masses of all D-branes are inversely proportional to the string coupling constant.
This should be contrasted with electromagnetism. The mass of the electron, the
fundamental object, is independent of the coupling (let’s call it g). On the other
hand, the mass of a soliton in field theory goes as 1/g2. The magnetic monopole’s
mass has this behaviour. So we see that the D-brane is neither a fundamental object
nor a soliton of string theory.

The mass of the fundamental string, the fundamental object of string theory, is
independent of gs (we have seen that the string tension, or mass density, is TF1 =
1/2π�2

s ). One finds that the mass of the NS5 brane goes as

MN S5 ∼ 1

g2
s
, (2.46)

and the NS5 brane is really a soliton of string theory. The different dependence on gs

of the masses of all these objects shows up in the ‘warp factor’ Z of the supergravity
solutions. We track the dependence on gs and drop other proportionality factors, such
as the string length �s . Newton’s constant G N goes as G N ∼ g2

s (this follows from
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the low-energy supergravity action of ten-dimensional string theories). In general we
have

Z = 1+ G N M

r# . (2.47)

where # is the appropriate power. For a D-brane, this gives

ZD−brane = 1+ NDgs

r# , (2.48)

for an NS5 and a string we have

ZNS5 = 1+ NNS5

r# ,

ZF1 = 1+ NF1g
2
s

r# . (2.49)

Going back to the D3 brane, we find in ‘dimensionless’ units that

Q D3 = MD3. (2.50)

We interpret this as: “the mass (density) of a D3-brane is equal to its charge (density)”.
What does this mean physically? The gravitational attraction and the electric

repulsion are exactly balanced, even though both forces are huge. This is why we
can have D-brane solutions with sources at many points and still remain stable. This
is different in electromagnetism, where two electrons would fly apart; the electric
repulsion always takes the upper hand and we cannot build multi-center electron-
solutions.

Note that there is an underlying physical bound M ≥ Q for any charged object.
When the mass is smaller than the charge, then the solution is unphysical (more on
this in the next section). This bound is called BPS bound after Bogomol’nyi, Prasad
and Sommerfield. Note that this bound typically appears in supersymmetric theories.
In the real world, supersymmetry is not manifest and elementary particles such as
electrons do not satisfy the BPS bound: e > me in the units we are using here.

We call the equal mass and charge of the D3 brane a BPS property. The BPS-ness
of the D3-brane and all the other D-branes is a consequence of supersymmetry. All
D-brane solutions (and the F1 and NS5) are invariant under a set of supersymmetry
transformations, and the mass of any supersymmetric object is equal to its charge in
natural units.

General Dp-Brane Solution

For completeness, we give the solution for a Dp-brane to the IIA action given in
(2.24) with general p. It has the non-zero fields:
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ds2 = H−1/2(−dt2 + dxmdxm)+ H1/2( dr2 + r2dΩ2
(q−1))

e2φ = H−
1
2 (p−3)

Ct μ1...μpr = Z−1 (2.51)

where H is a harmonic function

Z(r) = 1+ Q p

r7−p
. (2.52)

Also the Dp-branes of type IIB supergravity have this form for uneven p.

2.3 Black Hole Solutions

We discuss how to obtain black hole solutions from D-branes that are wrapped on
compact spaces. For completeness, we first show how to make a black D-brane. We
will later focus on supersymmetric black holes, because these are easier to construct
and understand microscopically.

2.3.1 Non-extremal Black Holes

Let us forget about supersymmetry for a moment, and see if we can make a black
hole with M > Q. We do not try to make a multi-D-brane solution or anything like
that, but just want to make a black hole, or a black object, with more mass than
charge. An easy such solution is a black D3-brane. Its metric is given by

ds2 = −Z−1/2
(
− f (r)dt2 + dx2

1 + dx2
2 + dx2

3

)
+ Z1/2

(
dr2

f (r)
+ r2dΩ2

5

)
.

(2.53)
and the gauge field takes the same form as for the ordinary D3-brane

C0123 = Z−1. (2.54)

When the function f (r) = 1, this is just the supersymmetric D3 brane we have
encountered before. By adding the function f (r), the D3-brane is turned into a “black
brane”. The function f obeys the same Laplace equation in transverse space as Z :

Δ f = 0. (2.55)

Typically, one considers the solution

f (r) = 1− ΔM

r4 . (2.56)
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Table 2.5 Near-horizon geometry of black D3-brane and thermal physics in field theory

String theory on Ad S5 × S5 N = 4 Super-Yang-Mills (4d)

Weak coupling Strong coupling

Black hole in Ad S5 × S5 N = 4 SYM
at temperature T at temperature T

The warp factor Z = c + N/r4, where c is a constant. When c = 1 the metric
describes a black membrane in ten dimensions, with flat asymptotics. When c = 0,
the metric describes a black hole in the Ad S5 factor of the Ad S5 × S5 near-horizon
geometry of D3-branes (2.39). We consider the former. The charge for this solution
is still given as for the normal D3 brane

Q =
∫

F5 = N . (2.57)

The mass (obtained from gt t as before) is now

M = Q +ΔM (2.58)

We make two remarks. First note that when ΔM < 0, this describes a singular
solution with a naked singularity. Hence we consider ΔM > 0 for physical reasons.
Also, we see that unlike the supersymmetric D3 brane, two (or more) of these objects
are not in equilibrium any more. Two black branes will attract and eventually col-
lapse to a single black object, because the gravitational attraction is larger than the
electrostatic repulsion.

A black hole, or black brane, that saturates the BPS bound M = Q is also called
extremal. Such a black object has zero Hawking temperature and does not emit
radiation. When M > Q, the black object has a non-zero temperature and is called
non-extremal. For small ΔM , the temperature is proportional to the mass excess:

T ∼ ΔM. (2.59)

We see that by the f (r) “black deformation”, we can create a solution with non-trivial
mass, charge and temperature.

This solution is very useful for holography. In the near-brane region r → 0, we
have Z ∼ 1/r4 and the black brane metric describes a black hole in Ad S5 × S5.
Following the AdS/CFT correspondence, this maps to turning on a temperature in
N = 4 Super-Yang Mills theory in four dimensions, see Table 2.5. So a black hole
corresponds to warming up the field theory. Conversely, a temperature in field theory
gives a black hole in Ad S5.

In conclusion, we see that by warming up the D3 brane with f (r), we can study
the dual field theory and its properties (conductivity, transport coefficients …) from
weakly coupled strings in the Ad S5 × S5 black hole background. We could call this
field “applied string theory”. A lot of people nowadays use string theory no longer
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as a theory that describes the real world, but as a sort of calculator that we can use
to teach us valuable information in other, strongly coupled, systems.

• What about quantum effects? Quantum effects are controlled by gs , the string
coupling. In the limit we consider (horizon area AH and charge Q very large
in Planck units, for instance AH 
 �2

P with �P the Planck length) such that
supergravity is a good description, we expect quantum effects to not destroy the
geometry. Of course, when we only consider one D-brane, this limit does not hold
and the question of quantum corrections becomes really important. More on this
in Sect. 2.4.1.

Note that other D-branes also have such a non-extremal version. We can get
for instance a black D2-brane very easily by T-duality. See Exercise 2.3.5. Black
p-branes all have

M > Q T > 0, (2.60)

and they are found from a deformation of the metric by one function f (r) determined
by

Δd f = 0, (2.61)

where d is the number of transverse dimensions.

Exercise 2.3.5 T-dualize the metric (2.53) and four-form potential (2.54) of the black
D3 brane along direction x3. Show that this becomes a smeared black 2-brane. In
particular, repeat the mass calculation from the gt t metric component and show that
M = Q +ΔM.

2.3.2 Supersymmetric Black Holes in Four Dimensions

For the largest part of these lectures, we concentrate on supersymmetric black holes.
The reason is that when a black hole solution preserves supersymmetry, it can be
constructed more easily and even be understood microscopically.

Consider again the orthogonal D2-brane system

IIA : D2 0 1 2
D2 0 3 4

Normally any two objects that we put together would either attract or repel. However,
this combination of D2-branes is supersymmetric and feels a flat potential: super-
symmetry exactly amounts to canceling forces and we can put the branes together in
a stable fashion.

We can even do more. It turns out to be possible to add an extra D2-brane and even
a D6 brane, while still preserving supersymmetry, in the following configuration:
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Fig. 2.13 Four-dimensional black hole from compactification on a six-torus. The T 6 has a different
size and shape at each point of four-dimensional spacetime M4. At the position of the black hole,
there are branes present that are wrapped on T 6

IIA : D21 0 1 2 − − − −
D22 0 − − 3 4 − −
D23 0 − − − − 5 6
D64 0 1 2 3 4 5 6

This combination of branes experiences a flat potential and is stable. This follows
from the supersymmetry it preserves. To show this, we would need to check the
supersymmetry algebra; we will not do this in these lectures. For the black hole
discussion, we smear the D2 branes on their transverse directions inside x1 . . . x6,
which we denote by “–” and we number the branes from 1 to 4 for practical reasons.

The solution for the D2-D6 system can actually be written down! The metric takes
a very intuitive form:

ds2 = −(Z1 Z2 Z3 Z4)
−1/2dt2 + (Z1 Z2 Z3 Z4)

1/2(dx2
7 + dx2

8 + dx2
9 )

+ (Z2 Z3)
1/2

(Z1 Z4)1/2 (dx2
1 + dx2

2 )+ (Z1 Z3)
1/2

(Z2 Z4)1/2 (dx2
3 + dx2

4 )+ (Z1 Z2)
1/2

(Z3 Z4)1/2 (dx2
5 + dx2

6 ).

(2.62)

This solution reduces to any single brane solution when only one of the four branes is
present (for say Z1 non-trivial, and the other ones constant, Z2 = Z3 = Z4 = 1, we
retrieve the metric of the D2-brane). Amazingly, this D2-D2-D2-D6 solution, which
is constructed from the same “harmonic function rule” we had for single Dp-branes
(Z−1/2 metric component when the brane worldvolume is along that direction, Z1/2

when it is orthogonal) applies to all of the Zi individually, regardless of the presence
of the other branes. This is a very non-trivial feature and would not happen for a
generic solution; it is only for such a special class of supersymmetric solutions, that
we get such a nice structure at the end of the day. For more information, see the
original references [22].

Exercise 2.3.6 Consider the directions x1 . . . x6 to be compact and to describe a
six-torus, or T 6. T-dualize the D2-D2-D2-D6 metric 6 times along x1, . . . , x6. Write
down the resulting D4-D4-D4-D0 metric.
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In order to write down the explicit solution, we need to smear the D2 branes uni-
formly along the transverse directions in T 6 (the compact directions x1 . . . x6).11

This means we have to smear D21 along directions 3456, D22 along 1256 and
D23 along 1234. Then all branes are points in three-dimensional space spanned
by x7, x8, x9. Therefore the warp factors Zi obey (Fig. 2.13):

Δ3 Zi = 0 → Zi = 1+ Qi

r
. (2.63)

We will show in the next section how the dimensionful charges Qi are related to the
integers Ni counting the number of D-branes.

Exercise 2.3.7 Convince yourself that smearing a D-brane along a spacelike direc-
tion changes the radial dependence of Z in the correct way. For example, take a D2
brane along directions x1, x2 and smear it along the circular dimension x3 with a
homogeneous density ρsmear ∼ 1/R3, where R3 is the radius of the 3-circle. Show
that in this process, the solution to the Laplace equation becomes Z = 1+ Q̃ D2/r4

rather than Z = 1+ Q D2/r5, with Q̃ D2 = Q D2/R3.

What is our solution? We study the asymptotic limits.

• At r → ∞: The metric becomes that of four-dimensional Minkowski spacetime
times a flat torus with fixed radii:

ds2
r→∞ = −dt2 + ds2(R3)+ ds2(T 6) (2.64)

This means we have compactified string theory on a six-torus to a four-dimensional
theory. The leading terms in the 1/r expansion of the gt t metric component are

gt t = 1− 1

2

Q1 + Q2 + Q3 + Q4

r
, (2.65)

and we see that the mass of this solution is (up to factors we do not care about at
this point)

M = Q1 + Q2 + Q3 + Q4. (2.66)

Again, this solution saturates the BPS bound and is extremal (the minimal amount
of gravitational mass for given charges and angular momenta): its mass is the
sum of the charges of the individual branes; there is no binding energy. This is a
consequence of supersymmetry.
• At r → 0: all the 1’s drop out of the warp factors Zi and the metric becomes

11 If we did not smear the individual D-branes making up the black hole solution, then the metric
would depend on some of the internal coordinates as well. We only want dependence on four-
dimensionsional space-time. In addition, if we T-dualize one D-brane, then the result becomes
smeared along the dualization direction. To get a four-dimensional black hole that looks the same in
all duality frames, we need to work in a duality frame where the branes are smeared on orthogonal
compact directions.
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ds2
r→0 =−

r2

R2 dt2 + R2

r2 (dx2
7 + dx2

8 + dx2
9 )+

(
Q2 Q3

Q1 Q4

)1/2

(dx2
1 + dx2

2 )

+
(

Q1 Q3

Q2 Q4

)1/2

(dx2
3 + dx2

4 )+
(

Q1 Q2

Q3 Q4

)1/2

(dx2
5 + dx2

6 ). (2.67)

The six-torus spanned by the directions x1 . . . x6 has constant radii. If we go to
polar coordinates in R

3 spanned by x7, x8, x9, then the metric is

ds2 = − r2

R2 dt2 + R2 dr2

r2 + R2dΩ2
2 + ds2(T 6). (2.68)

The first two terms describe Ad S2. The other terms describe an S2 and a T 6 of con-
stant radii. Therefore, the r → 0 limit of the D2-D2-D2-D6 spacetime describes
a compactification of string theory on T 6 to the four-dimensional Ad S2 × S2

geometry.
We also observe that gt t vanishes as r → 0 and hence r → 0 describes an event
horizon.

From these facts we conclude that the metric of this D2-D2-D2-D6 brane system
describes a real black hole in four dimensions. We will refer to this four-dimensional
black hole as the “four-charge black hole”.

Note that all the Qi appearing in the metric are positive. Only the gauge fields
(which we have not given) are sensitive to the sign of the charges. The gravitational
field sourced by a positive or a negative charge is exactly the same. An anti-D2 brane
would have the same metric and mass as a D2-brane, but opposite electric field.

To understand the full spacetime, we make our lives a bit easier and restrict to all
charges equal:

Qi ≡ Q , Zi ≡ Z = 1+ Q

r
. (2.69)

The black hole metric (2.62) becomes

ds2 = −
(

1+ Q

r

)−2

dt2 +
(

1+ Q

r

)2

(dr2 + r2dΩ2
2 )+ ds2(T 6). (2.70)

The T 6 has a constant metric and does not play a role in the physics. We further
concentrate only on the four-dimensional part of the geometry.

Our claim is that this metric represents a black hole. A very special one even, with
M = Q. Let us go over the textbook black hole teachings to see if our claim is valid.

1. The first black hole you learn about in classical GR, is the Schwarzschild black
hole. It is a solution to vacuum gravity, described by the metric

ds2
S = −

(
1− 2M

ρ

)
dt2 +

(
1− 2M

ρ

)−1

dρ2 + ρ2dΩ2
2 . (2.71)
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This is clearly not the same as our solution. We need to include a charge for the
black hole.

2. Luckily there is also the second black hole you encounter in your favourite clas-
sical GR course. It is the Reissner-Nordström black hole. This black hole is a
solution to Einstein-Maxwell theory (the Lagrangian (2.5)). It is given by

ds2
RN = −

(
1− 2M

ρ
+ Q

ρ2

)
dt2+

(
1− 2M

ρ
+ Q

ρ2

)−1

dρ2+ρ2dΩ2
2 . (2.72)

It has a very interesting limit
M = Q. (2.73)

Then the metric becomes

ds2
RN = −

(
1− Q

ρ

)2

dt2 +
(

1− Q

ρ

)−2

dρ2 + ρ2dΩ2
2 . (2.74)

What does this have to do with our black hole metric, which has gt t = Z−2 =
1/(1+ Q/r)2? If we redefine

r = ρ− Q, (2.75)

then we find the D-brane black hole solution on the nose!

These “M = Q” black holes are the ones we can construct most easily in string
theory. They are extremal and are frozen at zero temperature:

TB H = 0, (2.76)

but have a non-zero mass M and entropy SB H . The Bekenstein-Hawking entropy is
given by the horizon area (we ignore numerical factors)

SB H = AH

4G N
= πR4 = 2π

√
Q1 Q2 Q3 Q4, (2.77)

or
SB H = 2πQ2 (2.78)

when all Qi = Q. This entropy comes from some microscopic states. Who makes
this entropy? We will answer this in the sections to come.

In ρ-coordinates, this is clearly a black hole. The horizon is at ρ = Q, where
gt t = 0. The coordinate r we used for the string theory metric is only well-defined
outside the horizon (r > 0).12 Note that in the single D2-brane solution, the coordi-
nate r is a measure for the distance from the brane at r = 0 (the same goes for D0,

12 At the position of the horizon, we have a degenerate coordinate system, but there is no physical
singularity at r = 0.
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D1, D4, D5 and D6 brane solutions). For the supersymmetric black hole, space is
“created” behind the r = 0 point and a large Ad S2 × S2 throat develops. The way
to see this is by passing through a set of coordinates for which the metric extends
beyond the horizon to the black hole singularity.

We come back to the regime of validity of supergravity. One can perform a calcu-
lation to show that the curvature of a D-brane goes as 1/Q. In terms of the number
N of D-branes, this gives a curvature proportional to 1/gs N . Therefore the solutions
we have considered are only valid when gs N 
 1 (small curvature, we can trust
classical physics). When the number of branes is too small and gs N � 1, supergrav-
ity can no longer be used to describe the solution. The large curvature of spacetime
takes us out of the low-energy description and higher energy modes should be taken
into account. Note that this does not mean there is no D-brane any more. Think
of classical electromagnetism. The electron is also a singular solution, but this gets
resolved in the quantum theory. Similarly, string theory takes over for the quantum
description of D-branes when gs N ∼ 1: string loops are suppressed by gs N , rather
than gs . We discuss this in Sect. 2.4.

2.3.3 Supersymmetric Black Holes in Five Dimensions

For phenomenological and other existential reasons, we like four dimensions.
Nonetheless, we make the switch to five dimensions, because five-dimensional black
holes are easier to construct and analyze. Using dualities and dimensional reduction,
a lot of what we do can be connected to four-dimensional physics.

Consider eleven-dimensional supergravity, with three orthogonal M2 branes as:

M21 0 1 2 − − − −
M22 0 − − 3 4 − −
M23 0 − − − − 5 6

We consider the directions x1 . . . x6 to be compactified such that they again form
a T 6. As for the four-dimensional black hole, the branes are smeared on their trans-
verse directions on T 6, denoted by “–” in the table. Therefore the M2-branes are all
pointlike in the transverse R

4 spanned by x7, x8, x9, x10. The solution is determined
by three functions:

Z1 = 1+ Q1

ρ2 , Z2 = 1+ Q2

ρ2 , Z3 = 1+ Q3

ρ2 . (2.79)

We will use ρ for the radius for black holes in five-dimensional space-time, to dis-
tinguish from r for four-dimensional black holes. Note the power 1/ρ2 for harmonic
functions on in five dimensional space-time.

It turns out that for an eleven-dimensional supergravity solution, we can play the
same game with the harmonic functions. The only difference is that different powers
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appear in the metric. When an M2 brane is wrapped along a direction, we multiply
the corresponding metric component with an extra factor Z−2/3, when the brane is
transverse, we multiply it with Z1/3. In particular, the supergravity solution for the
(supersymmetric) M2-M2-M2 brane system is

ds2 = −(Z1 Z2 Z3)
−2/3dt2 + (Z1 Z2 Z3)

1/3(dρ2 + ρ2dΩ2
3 )

+
(

Z2 Z3

Z2
1

)1/3

(dx2
1 + dx2

2 )+
(

Z1 Z3

Z2
2

)1/3

(dx2
3 + dx2

4 )

+
(

Z1 Z2

Z2
3

)1/3

(dx2
5 + dx2

6 ). (2.80)

This solution describes a black hole in five spacetime dimensions. This can be
seen from the limits

• r →∞: The metric describes a direct product of five-dimensional flat Minkowski
spacetime with a six-torus with constant radii. This is a compactification of flat
eleven-dimension spacetime to five dimensions.
• r → 0: This is the horizon of the black hole. Write the transverse R

4 metric in
polar coordinates dx2

78910 = dr2 + r2dΩ2
3 . Then for r → 0, the metric looks like

ds2 = − r4

R4 dt2 + R2 dr2

r2 + R2dΩ2
3 + ds2(T 6), (2.81)

where R2 = (Q1 Q2 Q3)
1/3 and the last term describes a torus of constant radii.

By the coordinate redefinition ρ = r2, we see that the first two terms form the
metric of Ad S2 (gt t → 0 and grr → ∞ in such a way to give Ad S2) and the S3

has constant radius. Hence the near-horizon geometry is Ad S2 × S3 × T 6.

We have encountered many examples of Ad Sp × Sq geometries from D-branes:
Ad S5×S5 from the D3 brane, Ad S2×S2×T 6 from D2-D2-D2-D6, Ad S2×S3×T 6

from M2-M2-M2. We will later also encounter Ad S3 × S3 × T 4.

Entropy in Gory Detail

We want to give the exact expression for the Bekenstein-Hawking entropy of the
black hole. This entropy is proportional to the horizon area in Planck units, or more
precisely

SB H = AH

4G N
. (2.82)

Note that this looks independent of the dimension. However, if we use the horizon
area in D dimensions, we should also use Newton’s constant in D dimensions.

Let us get our hands dirty and derive this beast. The horizon area of the eleven-
dimensional metric is really the area of S3 × T 6 at r = 0:
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AH =
∫

S3×T 6

√
g =

∫
S3

√
gS3

∫
T 6

√
gT 6

∣∣∣∣
r→0

. (2.83)

The area of the S3 in the metric (2.81) is:∫
S3

√
gS3 =

√
R6 Ω3 = 2π2

√
Q1 Q2 Q3, (2.84)

where Ω3 = 2π2 is the area of a three-sphere with unit radius. The area of the T 6

for the metric (2.81) is

∫
T 6

√
gT 6 =

∫
dx1 . . . dx6

√√√√(
Z2 Z3

Z2
1

)1/3 (
Z1 Z3

Z2
2

)1/3 (
Z1 Z2

Z2
3

)1/3

=
6∏

i=1

(2πLi ), (2.85)

where Li are the radii of the xi circles.13

We want to express the entropy in terms of a dimensionless number that can be
related to a number of microstates. Before we can continue, we have to find the
exact relation of the supergravity charges Qi to the actual integer numbers that count
the number of M2 branes of type i that source the supergravity solution. So far, we
have been sloppy with the distinction between the supergravity charges Qi (with
dimensions of length squared and appearing in the functions Zi ) and the actual brane
numbers Ni . All numerical factors in the exact relation Qi = (. . .)Ni are extremely
important: these will become prefactors in the entropy, which is exponentiated to get
the number of black hole microstates. A mistake of a factor of 2 in a number as eN

or e2N has huge consequences!
To find the relation between Qi and Ni , we first consider the gauge fields of the

solution. These are given by

C012 = Z−1
1 , C034 = Z−1

2 , C056 = Z−1
3 . (2.86)

Remember that Qi represent densities of M2-branes, smeared on some directions.
For instance, Q1 describes the density of N1 M2-branes smeared on the directions
x3, x4, x5, x6. Hence on general grounds, we expect that such a density should scale
as

Q1 = N1

L3L4L5L6
(. . .). (2.87)

The exact coefficient (. . .) is left to as a homework problem in Exercise 2.3.8.

13 The T 6 radii Li are defined by identifying the xi periodically as xi = xi + 2πLi .
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Exercise 2.3.8 The number of M2-branes can be read off by integrating the magnetic
gauge field strength over a surface that surrounds the M2-branes as14:

(2π�P )6 NM2 =
∫

Σ7

F7, (2.88)

where �P is Planck’s constant (in eleven dimensions) and Σ7 is the surface sur-
rounding the M2-branes. For the two-torus T 2

12 spanned by x1, x2, this is:

Σ7 = T 2
34 × T 2

56 × S3, (2.89)

The magnetic seven-form gauge field is found from the Hodge dualization relation
F7 = �11 F4, which is written out as

Fi1...i7 =
1

4!
√−gεi1...i7; j8 j9 j10 j11g

j8 j ′8g j9 j ′9g j10 j ′10g j11 j ′11 Fj8 j9 j10 j11 . (2.90)

Take the metric (2.81) and the four-form field strength F4 = dC with components

F012r = ∂r C012 = ∂r (Z−1
1 ), (2.91)

and analogously for F034r and F056r . Calculate the dual seven-form and use (2.88)
to express the charges Qi in terms of the integers Ni that count the number of branes.
Show that the exact relation is

Q1 = N1(�P )6

L3L4L5L6
, Q2 = N2(�P )6

L1L2L5L6
, Q3 = N3(�P )6

L1L2L3L4
, (2.92)

where Li are the radii of the circles at infinity.

We continue with the horizon area (2.83). It is given in terms of the charges as

AH = 2π2
√

Q1 Q2 Q3

6∏
i=1

(2πLi ). (2.93)

By substituting the result from Exercise 2.3.8, Eq. (2.92), we get

AH = 2π2(2π)6(�P )9
√

N1 N2 N3. (2.94)

We want to we evaluate the entropy SB H = AH /4G N . The definition of the Planck
length in terms of Newton’s constant for any dimension D is:

14 Remember the analogy with electromagnetism, for a magnetic monopole we find the quantized
monopole charge N is N ∝ ∫

S2 F2.
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16πG N = (2π)D−3(�P )D−2. (2.95)

Plugging this into SB H = AH /4G N for D = 11, we conclude that the Bekenstein-
Hawking entropy of the black hole is

SB H = 2π
√

N1 N2 N3 . (2.96)

A few remarks are in order. Note that we began with D-branes on a torus. As the
torus gets smaller or larger (by changing Li ), the solution changes drastically. We get
different black holes because the Qi ’s change. But: the entropy does not care whether
the torus is of diameter 1 mm or 1 Mpc. This is a very interesting fact: SB H does not
change as you change the torus radii. For a non-supersymmetric solution, you would
expect that the entropy depends on the parameters of the torus; the invariance of SB H

under variations of the torus radii is a feature due to supersymmetry.
We can use this feature to do dualities on the internal torus. The five-dimensional

black hole will have the same entropy, but the black hole can be made up out of
different branes in some other string theory. Take for instance the duality chain:
(1) reduce along x6 to IIA, (2) two T-dualities along x1, x2, (3) a T-duality along x5:

IIA: IIA: IIB:
D2 0 1 2 – – – T D0 0 – – – – – T D1 0 – – – – 5
D2 0 – – 3 4 – → D4 0 1 2 3 4 – → D5 0 1 2 3 4 5
F1 0 – – – – 5 x1,2 F1 0 – – – – 5 x5 p 0 – – – – 5

For this T-dualization, you need to know that for F1’s that do not wrap the T-duality
circle, nothing happens at all: they remain F1’s.) The end result of this little exercise
is an intersection of D5 branes with D1 branes and momentum along the common
direction. This is the celebrated D1-D5-P system. We will mainly study the three-
charge black hole in five-dimensions in this duality frame.

Exercise 2.3.9 Use dimensional reduction and the T-duality chain from the
M2-M2-M2 system to the D1-D5-P frame to show that the metric becomes

ds2 = −(Z1 Z5)
−1/2(dt2 + dz2)+ (Z1 Z5)

−1/2(Z−1
p − 1)(dz − dt)2

+ (Z1 Z5)
1/2dx2

78910 + (Z1 Z5)
−1/2dx2

1234. (2.97)

You will need to perform a minor change of coordinates and use that the reduction
ansatz from M-theory to IIA supergravity is

ds2
11 = e2φ/3ds2

10 + e−4φ/3dx2
10, (2.98)

with φ the dilaton and ds2
10 the ten-dimensional metric.
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When p = 0, there is no momentum charge. The metric only depends on the
functions

Z1,5 = 1+ gs N1,5

r2 , Z p = 1+ (gs)
2 Np

r2 . (2.99)

In the limit r → 0, we can drop the 1’s in the harmonic functions and the metric
becomes Ad S3× S3× T 4, see Exercise 2.3.10. Also this geometry is very useful for
holography. String theory on this background is dual to a (1+ 1)-dimensional CFT.

Exercise 2.3.10 Show that for r → 0, the metric (2.97) with p = 0 (Z p = 1), the
metric becomes

ds2 = r2(−dt2 + dx2
5 )+ dr2

r2 + dΩ2
3 + ds2(T 4), (2.100)

where the last term describes the metric on a T 4 with constant radii.

But …there is a “but”: for Z p = 1 (no momentum charge) the horizon area is zero.
This can be seen from the metric. At r = 0 it is singular and one can show that
the Ricci scalar in five-dimensional spacetime blows up at r = 0 and the horizon
coincides with a curvature singularity.

When p �= 0, the entropy is

SB H = 2π
√

N1 N5 Np. (2.101)

String theory on the near-horizon region is dual to the same (1 + 1)-dimensional
CFT as for the p = 0 solution. Now there is a non-trivial momentum in the game,
which translates into an extra charge of that the CFT states that are dual to the black
hole can have.

The D1-D5-P black hole entropy comes from the many ways in the which the
CFT can carry this momentum p. This result is proven in the next section. It is
most amazing: the entropy of a black hole is recovered from counting states in a
(1+ 1)-dimensional CFT!

2.4 Black Hole Microscopics

To properly account for the entropy of the black hole we first have to learn some very
basic string theory. In the spirit of the rest of the lectures we’ll eschew any details
we don’t need and ask the reader to trust us since we’re supposed to be experts.

We explain how to derive the black hole entropy from a microscopic counting of
states for a:

1. D1-D5-P black hole (also “three-charge black hole”) with entropy:

SB H = 2π
√

N1 N5 Np. (2.102)
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(a) (b)

Fig. 2.14 Strings can be of two types, depending on the boundary conditions we put on the string:
closed or open strings. The end-point of open strings are confined to D-branes. a Open strings end
on D-branes. b Closed strings propagating in spacetime

2. D6-D2-D2-D2 black hole (also: “four-charge black hole”) with entropy:

SB H ∼
√

ND2 ND2 ND2 ND6. (2.103)

When all the charges above are equal this black hole has a very nice interpretation
as the extremal Reissner-Nordtström black hole in four dimensions.

We will discuss the three-charge black hole first. Historically, this was the first
black hole for which a microscopic counting was done that could explain the entropy
(by Strominger and Vafa [23]). We will treat the four-charge black hole in four
dimensions afterwards. It is the latter one which may have more appeal, as it describes
the extremal black hole of Einstein-Maxwell theory in four dimensions (‘extremal
Reissner-Nordström black hole’).15

2.4.1 A Brief Review of Open and Closed String Theory

String theory is a theory of (surprise, surprise:) strings. Strings come in two types:
closed strings form closed loops in spacetime with no end-points (imagine rubber
bands floating around in spacetime), while open strings have two ends (imagine a
strand of rope stretched between…between what?), see Fig. 2.14.

In general the ends of open strings are not free to move in all directions of space-
time but are constrained to lie along higher dimensional “membranes”. It turns out
that these membranes are nothing other than the D-branes we found before as solu-

15 This does not mean that it is a realistic astrophysical black hole. In nature, black holes will shed
(almost) all their charge and be charge neutral. Supersymmetric black holes are extremal; they have
the maximum amount of charge allowed for their mass and are hence not the black holes we observe
in the sky.
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tions to supergravity! Although it is hard to see why this is so, we will try to argue
it briefly later.

Scales and Limits

One of the nice features of string theory is that it very naturally introduces a new
length scale, �s , the string length. This is because fundamental strings (like all strings)
have a tension, τF1, and this can be defined in terms of the string length, �s , a new
fundemental length scale defined by this tension,

τF1 = 1

�2
s
. (2.104)

Note that the length dimension of τF1 is defined so that integrating the tension over
a one-dimensional volume yields a unit of mass, namely the mass of a string.

Oscillations on a world-volume of a string have an energy cost dependent on the
string tension just like a regular guitar string. The mass of the harmonic modes is
quantized in units of the string mass

Ms ∝ 1

�s
. (2.105)

When this value is large then stringy modes are very massive and we can, to a
good approximation, restrict ourselves to only the lowest lying sector corresponding
to massless strings, see Fig. 2.15. In this limit when the string mass is very large and
only a few modes remain strings essentially look like point particles and (owing to
the various possible massless oscillations possible) generate a spectrum of fields in
spacetime, see Table 2.6.

Even though we will not generally need the details of this spectrum, it is important
to realize that the closed string spectrum generates supergravity with the associated
fields. Open strings, on the other hand, are described at low energy by a gauge theory
since Aμ has the degrees of freedom to be a gauge field (coupled to matter and

Fig. 2.15 When we probe strings at energy scales far below the string scale, E � Ms , then we
can’t excite oscillators on the strings so they look and act like point particles
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Table 2.6 The massless
spectrum of closed and open
strings

String type Spacetime fields generated

Closed gμν , Bμν , C (3)
μ1μ2μ3 ,ψ

α
μ , . . .

Open Aμ,φ,ψα, . . .

fermions). This theory however does not live on all of spacetime but only on the
D-branes on which the open strings are restricted to end.

In any gravity theory, including string theory, there is a fundamental length scale
related to Newton’s constant and the strength of gravitational interactions: the Planck
scale. This is set by the Planck length �P , through the relation with Newton’s constant
(in D dimensions of spacetime):

G N = (2π)D−3(�P )D−2. (2.106)

The introduction of a second fundamental length scale in string theory, �s , means
that string theory has an associated dimensionless constant, the string coupling or
g-string

gs = f

(
�s

�P

)
. (2.107)

The exact dependence can be derived using the fact that the low-energy limit of closed
string scattering (which depends on gs and �s , as explained below) can be related to
graviton scattering (which depends on G N ). A graviton propagator is controlled by
Newton’s constant. If we interpret this as a string exchange, we get two factors of
gs , one for emitting and one for absorbing a closed string. This gives

G N ∝ �D−2
P ∝ g2

s �D−2
s , (2.108)

and we find

gs ∝ �s

�P
. (2.109)

From this we see that gs controls the hiarachy of scales in string theory. When gs � 1
we have �s � �P so stringy excitations are much less massive than the Planck scale
and we can do “classical string theory”. On the other hand when gs 
 1 then any
stringy excitations is more massive than the Planck scale and thus highly quantum.
Therefore gs acts as a dimensionless coupling in string theory telling us when the
theory can be treated classically versus when it is necessarily strongly coupled.

While tuning gs puts us in a theory with a certain string and Planck scale we have
a further freedom to choose the energy scale at which we probe this theory. In any
given physical process there is an associated dimensionalful energy scale such as
e.g. the mass of the heaviest particle we consider, the energy of a scattering process,
etc…. Thus even if we choose gs � 1 we have the further freedom to consider only
processes with E restricted to
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E � Ms � MP , (2.110)

which means that the scale of our physics is smaller than the string scale (which in
turn is lower than the Planck scale). The limit Ms � MP (or gs � 1) means that
string perturbation theory is valid and that we can look at classical string theory.
The limit E � Ms means that strings effectively look like point particles (we only
look at those excitations that have very low energy compared to the scale set by the
string length and we cannot distinguish the stringy nature of the string). This limit,
in which semi-classical particle physics is a good approximation, is one in which we
will often find ourselves.

String Perturbation Theory

Above we motivated gs as a dimensionless coupling emerging from comparing the
dimensionful �s and �P but within string theory this can actually be derived. String
perturbation theory is described in terms of the mathematical “genus” of the string
world-sheet (the two dimensional submanifold describing the strings path in space-
time). Let’s take a look at the loop expansion of a string process. As a Feynman
diagram represents the worldlines of in- and outgoing particles and intermediate
processes (propagators, loops), a string diagram represents the worldvolume of a
string.

We represent perturbation theory for an ingoing closed string to an outgoing closed
string in Fig. 2.16, which explaines visually the genus expansion. For every number
of loops, there is exactly one type (topology) of string worldvolume.

Every loop in a closed string diagram introduces an extra factor of (gs)
2. The

limit where gs → 0 suppressed the loops and hence also quantum effects: this is the
classical limit. If we further impose the extra “low-energy limit” E � Ms , such that
the strings look like particles then the string diagrams reduce to standard Feynman
diagrams because in this limit we send �s → 0 so the worldsheet compresses down
to a world-line (see also Fig. 2.16).

Fig. 2.16 String perturbation theory is a genus (# holes) expansion of string world-sheets. For
closed strings, every hole introduces a factor of (gs)

2 in the expansion. For excitations well below
the string scale, strings behave like particles and we recover ordinary Feynman diagrams
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We will generally work in this regime and keep only the zero-mass excitations
of the string.16 Then the closed string gives exactly the fields of supergravity, see
Table 2.6: the metric, dilaton and B-field and the gauge potentials that we have seen
when discussing D-branes (Ramond-Ramond fields). Thus one can think of super-
gravity as the low energy limit of weakly coupled string theory (and indeed this is
where we will mostly be working).

If we consider Fig. 2.16 with in- and out-going graviton states (in the
E�Ms�MP limit) then the prefactor for the first loop diagram (in the bottom
row) is G N . Computing this same diagram in string theory one finds a pre-factor
g2

s �D−2
s where the gs factors come from the genus-counting and the �s dependence

must follow from dimensional analysis (�s is the only length scale in string pertur-
bation theory). This is the origin of Eq. (2.108).

What about open string perturbation theory? Open strings strech between
D-branes and their end-points are labelled by the branes they end on. Thus open string
perturbation theory gains an additional factor, N , the number of D-branes, from the
degeneracy of open string considered in any scattering process (see Fig. 2.17). Thus
the perturbative series is a power series in gs N . This is similar to the expansion in
a gauge theory with Nc colors, where we get an expansion in powers of gNc, and
indeed as we will see below this resemblance is no accident.

The low lying (massless) sector of the open strings are a vector field Aμ, a number
of spinors ψα (fermions) and scalar fields φi , see Table 2.6. These fields are bound to
the brane, because the open string endpoints are. The gauge fields can be interpreted
as describing the D-brane dynamics: the scalars describe the transverse motion of the
brane (there is one scalar for every direction transverse to the brane worldvolume),
the vector (which has only directions on the worldvolume) describes a gauge theory
living on the brane and the fermions are needed for supersymmetry. Note that if we
only consider open strings, we cannot get a metric: a metric (gravitons) sits only in
the closed string spectrum.

Questions from the audience:

Fig. 2.17 Open string perturbation theory is an expansion in gs N where N is the number of branes.
This is because each loop increases the genus by one (another factor of gs ) and also generates an
additional trace over the N gauge factors (another factor of N ). Note there is an additional overall
factor of gs above; we show only the relative gs factors

16 These are not the lowest-energy modes of the string. Those are tachyonic (negative energy)
modes, that can be consistently projected out of the spectrum of string theory.
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• Have we not introduced a cut-off E by restricting our energies to E � Ms . No
because what we mean by E � Ms is that we consider only massless excitations
so the cuttoff is actually E ∼ 0. Or said better we are sending Ms/E →∞ so we
decouple stringy excitations. We assume that any dynamics or additional scales
we introduce will be small with respect to Ms unless we explicitly state otherwise.
Note that the number of massless excitations can be very large: for open strings
on N D-branes, we get a U (N ) gauge theory, which has many (massless) fields.
• Why and how do open strings leave a D-brane? We have not yet said what closed

strings do with a D-brane. Figure 2.19 shows the process by which a closed string
leaves a D-brane.

The gauge/gravity duality we mentioned before, is really an open/closed string
duality. The theory living on the worldvolume of a string (the so-called worldsheet
theory) which describes the propagation of a string in spacetime has a symmetry
allowing us to interchange proper time (τ ) and proper length (σ) on the worldsheet
(it is a symmetry of the string itself). Then a loop diagram in open string theory,
looks like a tree level diagram describing the exchange of closed strings between
two D-branes, see Fig. 2.18. We will return to this later.

From Fig. 2.19, we see that a process of a closed string interacting with a D-brane
has a factor of (gs)

2: we can see this as a graviton exchange. This is another way to
see why G N ∼ (gs)

2.
For the discussion of the black hole entropy, we will take the limit gs → 0. In this

limit, open and closed strings naively decouple, since their interaction (Fig. 2.19) is
suppressed. Note however that the open-closed diagram receives an enhancement
from the degeneracy of open strings so the final effective coupling controlling the
interaction of closed and open strings will be gs N , the same coupling that governs
interactions between open strings. Thus by taking gs → 0 but with gs N fixed we can
supress quantum gravity effects but still allow open-strings, or D-branes, to source
closed strings (yielding the supergravity solutions described in previous sections).
We will return to this later.

Fig. 2.18 By exchanging the role of string time (τ ) and length σ, we can interpret this diagram
as an exchange of closed string between D-branes (left), or a loop diagram in open string theory
(right)
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Fig. 2.19 Interpretation of
a closed string leaving from
a D-brane from open string
interaction. Note that each
interaction (each pair of end
points joining) introduces a
factor of gs in the amplitude
of this process

The Stringy D1-D5-P Black Hole

We consider the D1-D5-P system along the following directions. The D5 branes are
on compact directions in spacetime, the D1 and the momentum are along one of the
directions of the D5:

We can picture this as in Fig. 2.20.
Question from the audience:

• What is “P”, the momentum, exactly? This can be thought of as a gravitational
wave propagating along the S1 direction. We can see this by a manipulation of the
metric (2.97). By changing coordinates, x− → x5 − t , the metric looks like

ds2 = −(Z1 Z5)
−1/2dt2 + (Z1 Z5)

1/2dx2− + Z−1
p dtdx−

+ (Z1 Z5)
1/2(dr2 + r2dΩ2

3 )+ ds2(T 4), Zi = 1+ Qi

r2 . (2.111)

Fig. 2.20 The D1-D5-P system. The D5’s are wrapped on T 4 × S1, along the S1 we also wrap
D1’s and we put gravitational waves (momentum), denoted P
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The angular momentum of this solution is related to the mixed time-space com-
ponents of the metric: in this case p ∼ ∂/∂x5 is given by the 1/r2 term
Z−1

p = 1− Q p/r2 + . . ., so Q p is indeed the momentum charge.

Remember that the supergravity charges are actually charge densities (we omit
numerical factors):

Q1 ∼ gs(�s)
2 N1 Q5 ∼ gs(�s)

2 N5 , Q p ∼ g2
s Np. (2.112)

The horizon area depends on the string length and the string coupling:

AH ∼
√

Q1 Q5 Q p ∼ g2
s (�s)

3
√

N1 N5 Np, (2.113)

but the Bekenstein-Hawking entropy is independent of the coupling and length scales:

SB H = AH

4G N
= 2π

√
N1 N5 Np. (2.114)

From D-branes to Black Holes

Let us now use the observation that SB H is independent of gs to our advantage.
Namely we will argue that by tuning gs we can interpolate between a regime where
the system is described by open strings ending on D-branes to a regime where the
system is a black hole with a horizon area which is large in string units AH /�3

s 
 1
(i.e. a regular looking supergravity black hole). To do this let us recall:

• gs is the perturbative parameter in both string theory and gravity. gs � 1 is the
(semi)classical regime while gs ∼ 1 is the quantum regime.
• The coupling between closed and open strings, on the other hand, is controlled

by gs N so if we fix gs N to be large then D-branes back-react on closed strings
(giving geometry) even if we send gs → 0. This is analogous to saying we can send
G N → 0 (the exactly classical limit of GR) while keeping G N M fixed for some
source so we have a reasonable non-trivial limit giving classical GR solutions.
• Thus our approach will be to fix the entropy by fixing the N ’s (number of branes)

to some very large value but then tune gs such that we vary from gs N ∼ 0 to
gs N 
 1. At gs N ∼ 0 we can describe the system in terms of weakly coupled
open strings on stacks of N D-branes. Closed and open strings decouple in this
regime and we can neglect gravity. At gs N 
 1, on the other hand, the D-branes
back react and form a large black hole

Let us see this all in more detail.

Black Holes at gs N 
 1

The scale of the supergravity solution is set by the charges Qi in the warp factors.
Remember that the supergravity charges appear as Z = 1+Qi/r2 and they determine
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Fig. 2.21 Tuning the cou-
pling in closed string per-
turbation theory. Kepping
only the low energy (zero
mass) modes, we have a
theory of particles, supergrav-
ity. We restrict to small gs ,
and only consider classical
supergravity

the size of the solution. In general, we have Qi = G N Mi , see Eqs. (2.47–2.49). For
a D-brane, we have MD = N/gs and hence Z ∼ gs ND , while for the momentum
excitations, we have Mp = Np (just an excitation) and hence Z ∼ g2

s Np. If gs N is
small (order 1), the area of the black hole is small in string units. Hence we cannot use
supergravity to describe it: massive string modes become important, and supergravity
only describes the massless modes. This violates our earlier physical requirement
E � Ms (put another way such black holes would involve curvature of the order
of the inverse of the string length and thus probing them would involve energies at
this scale). We see that we need the horizon to be large in string units to describe
(super)gravity black holes and thus we consider instead the regime:

gs N 
 1. (2.115)

We further impose gs → 0. Closed string theory is non-interacting in this regime
as this limit suppresses quantum gravity corrections. This is true whether you are
in string theory or in gravity since at low energy a closed string loop looks like a
graviton loop, see Fig. 2.21. Thus in the limit gs N 
 1 with gs → 0 the D1-D5-P
system resembles a large supergravity black hole.

Open Strings at gs N � 1

For a large (semi-classical) black hole, we need AH to be large both in string units,
AH 
 (�s)

3, and in Plank units so, via (2.113–2.114), we must take N1 N5 Np to be
very large; thus we take the “N →∞” where this is understood to apply to all the
N ’s.

But as we may still vary gs we can dial the coupling gs N allowing us to interpolate
between the large black hole like description above (at large gs N ) and a weakly-
coupled open string description where the open strings end on the branes and don’t
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Fig. 2.22 By dialling the
coupling gs N (while keeping
gs small), we can interpret
the D1-D5-P system as a
black hole or as open strings
stretching between D-branes.
Since the torus volume goes as
VT 4 ∼ Q1/Q5 in string units,
it disappears from the picture
and we only retain the five-
dimensional geometry. Note
that the lower left region is
non-existent (since we always
have that gs N > gs )

interact with closed strings and gravity (and open string perturbation theory is valid
since gs N � 1). This tuning is depicted in Fig. 2.22.

Because the entropy is independent of the coupling, gs , we expect to be able
to reproduce the entropy from a counting of supersymmetric states in the weakly
coupled open string picture. Note that we take gs → 0 throughout this diagram so
closed strings and gravity are always semi-classical but the open string coupling
is gs N so if we also take gs N → 0 open strings become weakly coupled and
furthermore there is no interaction between the closed and open string sector (even
though closed string perturbation theory goes with powers of gs the couplings to N
D-branes goes as gs N so only in this limit do D-branes not source gravitons). Thus
the limit gs → 0 with gs N → 0 gives weakly coupled open strings on D-branes in
flat spacetime.

We summarize:

• If gs → 0, you always suppress closed string loop effects (quantum gravity effects)
• gs N tells you how much closed strings (and gravitons) feel the source. From an

open string perspective tuning gs N is turning open string loop effects on/off.
• If gS N � 1, you can count the number of states of these strings stretching between

the D-branes, because essentially we get a free (open string) theory (loop effects
suppressed). This is reminiscent of holography, where we have gs N � 1 giving
Yang-Mills weakly coupled, no gravity, and gs N 
 1 giving Yang-Mills strongly
coupled, or Ad S5 gravity.

Note that if the entropy did depend on gs , then none of this would make sense.
A toy model will follow with a rigourous proof that it is gs is independent.17

A question from the audience:

• Can we get the gravity solution from open string calculations? Yes you can, but it’s
a pain. Say we want to find the metric. You can expand the gravitational solution

17 Extrapolating from toy models is many a string theoriest’s idea of a mathematical proof of
complicated string theory effects.
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in the open string coupling gs N

gt t = (Z1 Z5)
−1/2 ∼ 1+ gs N + (gs N )2 + g3

s + . . . (2.116)

One can then try to match this to an open string loop expansion. The one-loop
computation is doable and has been done (Stefano Giusto, a former postdoc at IPhT
is doing this). Higher loops are extremely tough; solving supergravity equations
of motion is much simpler.

2.4.2 Supersymmetric Indices

We have just argued that the D1-D5-P system looks like a black hole for gs N 
 1,
and like a system of very weakly coupled strings for gs N � 1. We want to count the
states that make up the entropy in the weakly coupled theory. Why can we trust such
a computation? The answer is that in supersymmetric theories certain quantities are
protected and cannot depend on continuous parameters such as gs . Although we will
not give a proof of this for the D1-D5-P system we illustrate the idea with a simpler
toy model.

Consider supersymmetric quantum mechanics. It is defined by the Hamiltonian

H = {Q, Q†} ≡ Q† Q + Q Q†. (2.117)

The operator Q is fermionic, and anticommutes with itself:

{Q, Q} = 2Q2 = 0 (2.118)

We define BPS states (or “supersymmetric states”) as states that are annihilated
by Q, but are not given by acting with Q on another state (Q-closed but not Q-exact):

|ψ〉BPS : Q|ψ〉BPS = 0 , |ψ〉BPS �= Q|ψ′〉. (2.119)

Exercise 2.4.11 Prove the following properties:

1. The Hamiltonian H has only positive eigenvalues. Show that BPS states are states
of minimal (zero) energy:

H |ψ〉BPS = 0. (2.120)

2. Let |φ〉 be a non-BPS state. Prove that φ is degenerate to

|φ′〉 = Q|φ〉, Eφ = Eφ′ . (2.121)

Introduce the operator (−1)F , defined through its action on bosonic and fermionic
states as:
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(−1)F |boson〉 = |boson〉, (−1)F |fermion〉 = −|fermion〉. (2.122)

This operator Z2-grades the Hilbert space. Note that it anticommutes with the oper-
ator Q:

{(−1)F , Q} = 0. (2.123)

Define the Witten index
Z = Tr [(−1)F e−βH ], (2.124)

where β is a number.

3. Show that

Z = (# bosonic BPS states)− (# fermionic BPS states) (2.125)

4. Show that
∂Z

∂β
= 0. (2.126)

5. Redo the calculation with the Hamilatonian

H = H0 + gH1, (2.127)

where both the original Hamiltonian H0 and the perturbed Hamiltonian H obey
the supersymmetry property

H0 = {Q0, Q†
0}, H = {Q, Q†} (2.128)

for two different fermionic operators Q0, Q. Show that the function Z is inde-
pendent of g.

In this exercise, you have proven that the Witten index, which counts the differ-
ence in the number of bosonic and fermionic ground states, is independent of the
coupling g. The key thing to note is that at strong coupling, the total number of
ground states is equal to the Witten index. By its independence on the coupling g,
we can calculate the Witten index at weak coupling to count the number of ground
states at strong coupling.

We rephrase that in a more mathematical language. Define the trace over the BPS
Hilbert space:

ZBPS = TrBPS (e−βH ) = Tr)BPS1 = #bosons+ #fermions. (2.129)

This counts the total number of ground states (in the exercise you have proven that
the BPS states are exactly the ground states of the Hamiltonian). Note that this is
always larger than the Witten index:
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ZBPS > ZWitten. (2.130)

At weak coupling, we expect that this is much larger. But at large values of
the coupling, you expect that the number of BPS states will match the index
because “Anything that can lift, will lift”; i.e. perturbing the system enough will lift
degenerate boson/fermions pairs until we have only one species or the other left (i.e.
the minimum necessary to preserve the Witten index which cannot vary as we mess
around with the couplings). Thus at strong coupling we expect the number of states
to match the Witten index. Since the latter is independent of the value of the coupling,
we can calculate it at weak coupling and use it to know the number of BPS states at
strong coupling.

Question:

• Are there any restrictions on the validity of the extrapolation to strong coupling?
One way it could break down, is because of a phase transition or discontinuity.
There are no walls of marginal stability for this index, so that does not pose a
problem. However for extended-supersymmetry theories, where you have several
operators Qi :

H =
n∑

i, j=1

εi j {Qi , Q†
j }, (2.131)

the counting of 1/n BPS states (that are only annihilated by 1 of the n operators
Qi ), is a lot more subtle. And the black hole states are exactly of this form—but
we will not go into the details.

2.4.3 Counting States for the Three-Charge Black Hole

We study the D1-D5-P system of Fig. 2.20 in the limit R4 
 VT 4 , which means in
terms of the charges

Q p

Q1 Q5

 1. (2.132)

In this regime the S1 is much larger than the other compact directions on which the
branes are wrapped so the theories on the D1 and D5 reduce to a theory living on the
S1 with radius R as depicted in Fig. 2.23. The rotation (momentum along x5) of the
D1 and D5 will translate into rotation of the open strings, so we put momentum on
the strings to account for Q p.

We motivate everything from the open string picture. It is not easy to show that
D1/D5 momentum follows from F1 with momentum, so you will have to take our
word for it. In principle, we can divide momentum over all possibilities: open F1,
closed F1, D1’s, D5’s one or several branes, combinations, single wrapping, multiple
wrapping etc: everything can carry momentum. We are interested in the typical,
dominant contributions. We will find that we get the most entropy by putting all of
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Fig. 2.23 In the limit R4 
 VT 4 we can largely ignore excitation on the torus and the physics is
effectively described by an open string stretched between the D1- and D-5 branes which wrap the
circle. The open string also carries momentum along the S1

the momentum in the open string sector because of fractional momentum quantization
described on the next page.

To arrive at this picture of the black whole we have to go to weak coupling by
tuning gs → 0 such that gs N � 1; in this regime the D-branes are heavy static
objects (their mass goes as N/gs) but they decouple from gravity and are entirely
described weakly interacting open strings ending on them. Moreover because we are
interested in supersymmetric configurations (as our black hole is supersymmetric)
it suffices to restrict to the ground states of the open strings as excited modes break
more supersymmetry (recall from the exercises above that supersymmetry tends to
require minimal energy). Thus the open strings essentially become point particles
connecting two coincident branes. Moreover, at very small gs N the open strings are
essentially free so their wavefunctions are momentum eigenstates on the S1

ψ(x5) =
∑

n

e−
2πn

R x5 . (2.133)

The wave function of a particle normally has to be single valued as we go around
a circle but, because these particles carry additional labels, corresponding to the
D-brane they’re ending on, this is no longer the case. For instance a string ending
on a D1 that wraps twice around the circle carries a coordinate, x (1), its location on
the D1 and this coordinate itself is not single-valued on the S1 (i.e. the coordinate
length is 4π). This lack of single-valuedness may be familiar from fermions which
need not be periodic on a circle because they carry internal (spinorial) indices. Here
the additional internal data is just the coordinate on the brane the string endpoint is
attached to.

Let us now consider a string with two endpoints going around the circle several
times. Take for example a string stretched between a D1 brane that wraps the circle
twice, and a D5 brane that wrap the circle three times.18 If we unwrap the circle, this
configuration looks like Fig. 2.23.

The open string wave function depends on the string coordinate x5 and has two
labels, coordinates on the D1-branes and D5-branes (Fig. 2.24):

18 Note that for “2 D-branes” on a compact circle, we have either 2 distinct D-branes or a D-brane
wrapping the circle 2 times.
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Fig. 2.24 A D1 brane wrapping the circle twice and a D5 brane wrapping the circle three times.
We need to go six times around the circle before we reach the same point again

ψ(x (1), x (5)). (2.134)

Depending on the label, we have the periodicities:

x (1) ∼ x (1) + 2R , x (5) ∼ x (5) + 3R. (2.135)

The wave function of the string then, depending on both x (1) and x (5) is not periodic
in R, but rather has a periodicity of 6R:

ψ(x (1), x (5)) = ψ(x (1) + 6R, x (5) + 6R). (2.136)

For a general number of branes, we conclude that the string wave function is
periodic in N1 N5 R (at least if N1 and N5 are coprime). Thus we can expand any
such wavefunction in a set of modes with this periodicity:

ψ(x5) ∼ e
−2π n

N1 N5 R x5 (2.137)

The number n denotes the number of momentum units; momentum on such D1-D5-
string is quantized in units of 1/N1 N5 R rather than 1/R. This phenomena is referred
to as momentum fractionalization because momenta can now come in fractional
units.

Note that the total spacetime momentum, Np, as measured e.g. at infinity in black
hole solution, is still quantized in units of 1/R because metric modes (which carry
the momentum) are single valued around the S1. But the individual open strings
carrying the momentum can carry fractional momentum – it is only the sum of all
the momenta that must be integrally quantized (in units of 1/R).

What about non-coprime N1, N5? We can always consider the nearest-coprime
number by subtracting a small number m � N1,5 such that N1 − m and N5 are
coprime. Then the leading contribution to the entropy is still N1 N5 Np as any differ-
ence will be suppressed by powers of m/N1. As we will explain below it is always
entropically favourable to be in the configuration with maximal fractionalization so
this configuration will dominate.

We want to put Np units of momentum on the D1-D5-string system but there are
many ways of doing this by putting different amounts of momenta on different open
strings. Thus the entropy of the system is given by considering:
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In how many ways can we get the momentum p = Np/R from partitioning the
momentum over the D1-D5 open strings (with wave function (2.137)?

We can translate this to counting the number of partitions

∞∑
m=1

nmm

N1 N5 R
= Np

R
. (2.138)

The number m counts the momentum in units of 1/N1 N5 R added by nm strings of this
type. For instance, the easiest (but not most entropic) way to get such a partitioning
is to take one string with m = Np N1 N5 units of momenta.

We count the number of different ways to form free strings (free excitations)

M ≡ N1 N5 Np =
∞∑

m=1

nmm. (2.139)

This is a counting of partitions of integers. We claim that this is counted by the
partition function

Z = (1+ q + q2 + . . .)(1+ q2 + q4 + . . .)(1+ q3 + q6 + . . .)(. . .). (2.140)

The first contributions are

Z = 1+ q + 2q2 + 3q3 + . . . (2.141)

and the coefficients of qn indeed count the partitions of the numbers n: one parti-
tioning of 1, two of the number 2 (1+ 1 and 2), three for 3 (1+ 2, 2+ 1 and 3) and
so on. If we write the partition function as

Z =
∞∑

n=0

dnqn, (2.142)

then dn counts the number of partitions of the integer n.
Using our knowledge of a geometric series for q < 1:

∞∑
n=0

qn = 1

1− q
. (2.143)

we see that the partition function can be written as the product

Z =
∞∏

n=1

1

1− qn
. (2.144)
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How can we evaluate this partition function? We perform a calculation in the
canonical ensemble: rather than fixing M we fix a dual “effective inverse temperature”
β and we will go to a “high temperature”-limit. First we write q as

q = e−β . (2.145)

We calculate the average occupation number

〈n〉 = 1

Z

∑
n

n dne−βn = ∂

∂β
log Z . (2.146)

This number will give us the leading contribution to the entropy.
First we evaluate the logarithm of the partition function:

log Z = −
∞∑

n=1

log(1− qn)

=
∞∑

n=1

∞∑
m=1

(qn)m

m

=
∞∑

m=1

1

m

∞∑
n=1

(qm)n

=
∞∑

m=1

1

m

∞∑
n=1

(
1

1− qm
− 1

)

=
∞∑

m=1

1

m

qm

1− qm
. (2.147)

In the second to last line we used (2.143), and compensated for the over counting for
n = 0.

Now we take a “high temperature”-limit, by taking β � 1:

q � 1. (2.148)

Then 〈n〉 will be large because we get the large n contributions of the sum Z =∑
n dnqn . The leading terms in this limit are

q = 1− β +O(β2) , qm = 1− mβ +O(β2). (2.149)

The logarithm of the partition function becomes

log Z = 1

β

∑
m

m−2 +O(β0). (2.150)
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We can rewrite this in terms of ζ(n), Riemann’s ζ function, which gives for n an
integer:

ζ(n) ≡
∞∑

m=1

1

mn
. (2.151)

Then the average particle number is

〈n〉 = ζ(2)

β2 . (2.152)

Standard thermodynamics gives us that the entropy in the canonical ensemble is

S = log Z + β〈n〉, (2.153)

and this gives

S = 2

β
ζ(2). (2.154)

To express the entropy in terms of the number M ≡ 〈n〉, we invert the relation
(2.152), β = √ζ(2)/M , and we use that ζ(z) = π2/6. This gives the entropy:

S = 2π

√
M

6
= 2π

√
N1 N5 Np

6
. (2.155)

There is a factor of 6 off in the square root compared to the supergravity result! Did
we make a counting mistake?

Some remarks:

• Why do we count in canonical ensemble in terms of 〈n〉 instead of counting the
dn directly for d = M (i.e. working in the microcanonical ensemble)? Recall
that for large occupation numbers the canonical and microconincal ensemble are
equivalent and we are interested in the large M asymptotics. This is exactly what
we do in standard statistical mechanics: E in the canonical ensemble is replaced
by 〈H〉, the expectation value of the Hamiltonian.
• We assumed β → 0. We need to check this was a valid assumption. By

β =
√
ζ(2)

M
, (2.156)

this gives M →∞: this is exactly the regime we are interested in from the validity
of the supergravity solution.

Let us get back to this factor of 6. With the results of Exercise 2.4.12 , we find that
the entropy for a “supersymmetric system” (equal number of fermionic and bosonic
excitations) is
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S = 2π

√
cM

4
, (2.157)

with c the number of bosons. We count the number of massless modes on S1,
but the entropically dominant strings are those stretching between the D1 and the
D5-branes. Those 1–5 strings have four bosonic degrees of freedom from their free-
dom of moving around in T 4 (and these modes have 4 fermionic superpartners
justifying the use of the supersymmetric counting formula).19

Therefore, the D1-D5-P system has c = 4 and we reproduce the black hole entropy
on the nose:

S = 2π
√

N1 N5 Np. (2.158)

Hooray to string theory!

Exercise 2.4.12 Prove the following statements:

• For the partition function

Zc =
( ∞∏

n=1

1

1− qn

)c

, c ∈ N, (2.159)

the entropy in the large temperature limit is

S = 2π

√
cN

6
. (2.160)

In a free theory, this formula is easy to show. This partition function is nothing but
the partition function of c free bosonic oscillators.
• Zc was the partition function for c bosons. For fermions, which have either occu-

pation number 0 or 1, we need to put in something extra. Using similar reasoning
as for c = 1 boson partition function, show that the partition function for fermions
is

Zfermions =
∏
n=1

(1+ qn). (2.161)

Show that for the partition function for c bosonic and fermionic string excitations
is

Z =
[ ∞∏

n=1

(
1+ qn

1− qn

)]
(2.162)

and that in the high temperature limit, this gives the entropy

19 There are also contributions from 1-1 and 5-5 strings, but these have momentum quantized in
units of p ∼ 1/N1 and − ∼ 1/N5 and are hence subleading.
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S = 2π

√
cN

4
. (2.163)

2.5 AdS/CFT

In this section we will “formalize” the counting arguments of the previous section by
putting it in the much larger context of AdS/CFT, a very deep duality between gauge
theory and gravity (or between open and closed strings), discussed first in [24–26].

We have seen that gs , the string coupling, and the number of D-branes N allow
us to interpolate between different regimes, see Figs. 2.21 and 2.22. The coupling
gs sets the “quantum” nature of closed string interactions. When gs � 1: we have
Ms � MP and string theory is classical. Low-lying string excitations are not so
massive as to require quantum gravity to understand them. When gs 
 1 on the
other hand, any massive stringy excitation (except the point-like ground states) are
in the quantum gravity regime and there is no such thing as classical string theory.

Recall that in the previous section we very heuristically suggested that there is
a general duality between open and closed strings: in the presence of a D-brane
tree-level closed string diagrams can alternately be interpreted as an open string loop
diagrams (see e.g. Fig. 2.18). While we believe this duality holds in general it is quite
hard to study because its rather difficult to study excited stringy states. What has been
studied and demonstrated in great detail however is a very particular low-energy limit
of this duality: AdS/CFT.

In this section, we wish to motivate and study this particular limit and the asso-
ciated duality. We consider string theory with N D-branes and take a low-energy
limit by fixing the energy at asymptotic infinity such that E � Ms (in a sense we
will describe in more detail below). In this low-energy limit we want to consider the
regimes:

• gs N � 1: Open string theory reduces to a weakly coupled gauge theory describing
the system. As we will explain below the description in terms of closed strings is
not very tractable in this regime because the near-brane geometry has string-scale
curvature and would require the full complex machinery of closed string theory to
describe it (i.e. a reduction to massless supergravity modes is not sufficient).
• gs N 
 1: The same gauge theory above is now strongly coupled and while we can

still think of it in terms of open strings this description is not very traceable. Rather
a more tractable description is the dual closed string or supergravity picture with
D-branes back-reacting and giving a near-brane geometry with a low curvature
scale.

The main point is that open-closed duality implies either picture is valid but one may
be more computationally tractable in a certain regime than the other. Here we will
motivate this duality primarily in its low-energy limit where it becomes the AdS/CFT
correspondence.
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2.5.1 ‘Deriving’ AdS/CFT

For simplicity in the exposition below we will take N1 = N5 = N . We further define

λ = gs N . (2.164)

We represent the small λ and large λ system in Fig. 2.22.

An Open String Perspective (λ � 1)

Let us start by considering the weak coupling picture, gs N � 1, where we have a
description in terms of perturbative closed and open strings with the latter ending on
infinitely heavy, static D-branes. We will restrict ourselves to low energy excitations
in this regime as we explain in more detail below.

The spacetime geometry at λ = gs N � 1 is:

M1,10 = R
1,4 × S1 × T 4. (2.165)

In flat space there is a globally defined notion of energy which is the same for an
observer near the brane as for an asymptotic observer:

E0 = E∞. (2.166)

Here E0 is the energy of an observer in the bulk, or near the brane (this distinction
will become important at strong coupling where warp factors shift energies measured
at infinity with respect to those near the brane).

How does a process where open strings interact with closed strings depend on
the this characteristic energy scale? Such a process was depicted in Fig. 2.19. At low
energy, we have gravitons leaving the brane. The amplitude for such a process is
proportional to:

g2
s �D−2

s N 2 = G N N 2. (2.167)

From a closed string perspective this is just a gravitational interaction that must be
proportional to the masses and G N . From an open perspective there is one factor
of gs N for each open string endpoint on N D-branes. For instance, for the D1-D5
system, we have to sum over all the ways we can get this process, and there are N1 N5
possible ways of making 1–5 strings, see Fig. 2.25. The gs factors follow because as
evident from Fig. 2.18 closed emission from a brane looks like an open loop diagram.

Let us take a six-dimensional emission perspective, focusing on R
1,4× S1 (drop-

ping the T 4 part of the geometry). The dimensionless rate is fixed, on dimensional
grounds to depend on the energy E of the process as

E4G N = (gs N )2�D−2
s E4 = λ2(E�s)

4. (2.168)
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Fig. 2.25 Strings stretching
between N1 D1 branes and N5
D5 branes. There are N1 N5
ways of making D1-D5 strings

We would like to work at low enough energies so this process is highly suppressed
and the physics of the brane effectively decouples from that of the rest of spacetime.
Thus we need to consider energies such that

E�s � 1/
√
λ

In the limit above the open string physics on the brane decouples from interactions
with bulk closed strings but open string theory is still rather complicated so let us
consider a further limit E�s � 1. In this limit stringy excitations are very massive
and can be integrated out and open string theory on the brane reduces to gauge theory.
Thus the limit we really want to consider is

E�s = E∞�s � min (1, 1/
√
λ). (2.169)

In this limit the physics of the D-brane “decouples” from that of the bulk and gives,
at λ = gs N � 1, a weakly coupled gauge theory living on the brane. The gauge
theory is weakly coupled because λ is nothing other than the ’t Hooft parameter—
the natural coupling constant of a large N gauge theory (see [27] for a pedagogical
exposition of large N gauge theories). But notice that we could also have taken the
same limit at largeλ and this should in principle describe the strongly coupled version
of this gauge theory. Because we restrict to energies satisfying both E�s � 1 and
E�s � 1/

√
λ for any value of λ the decoupling of the brane from the rest of the

geometry should remain valid as should the “gauge theory limit” of the open strings.
The only thing that changes is that the gauge theory becomes strongly coupled. Can
we understand this from the closed string perspective?

A Closed String Perspective (λ � 1)

Let’s now move to the closed string perspective at λ 
 1. Take the metric of the
D1-D5-P system

ds2 = 1√
Z1 Z5

(−dt2 + dx2
5 + Z pdx2−)+√

Z1 Z5dx2
4, (2.170)
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with the light-cone coordinate
x− = t − x5. (2.171)

This metric describes a momentum excitation along one direction, because the light-
cone coordinate x+ is absent.

Remember that this metric has the following regions:

• Asymptotically flat R
1,4 × S1 × T 4.

• Near horizon region. There is an Ad S3×S3×T 4 throat and the black hole horizon
sits at the bottom of this throat. The quick way to get this decoupled region is to
drop the constants in the Z1 and Z5 harmonic function but keeping the constant
in the Z p harmonic function. See e.g. [28] for a more detailed exposition of this
limit.

so the metric and spacetime at infinity look the same as in the weak coupling limit;
only the region near the branes changes.

From the metric, we know that the charges Q in the harmonic functions Z =
1+ Q/r2 go as Q ∼ gs N (�s)

2 =: λ(�s)
2. Therefore the scale of the throat is set by

L ∼ √λ�s . (2.172)

Low Energy Excitations

As above we want to work with “low energy excitations”. But: what is energy in this
setup? Let us start with the energy E∞ measured by an observer at infinity in the
black hole spacetime and let us restrict, once more, to20

E∞�s � 1. (2.173)

This means that no strings are excited and we only see gravity modes. Asymptotically,
string theory reduces to just (super)gravity.

On the other hand, the throat also has a characteristic energy scale set by Ethroat =
1/L ∼ 1/

√
λ�s . Any asymptotic excitation with an energy lower than

E∞�s <
1√
λ

(2.174)

decouples from the throat: its wave length is larger than the scale of the throat and
any such mode shot in from infinity will fly by and not be absorbed by the throat.

Thus at this scale asymptotic excitations decouple from excitations in the throat
just as they did in the open string analysis at gs N � 1. The low energy limit (2.169)
thus has the effect of isolating the “near-horizon” physics down the throat from what
happens further away. This “decoupling” is an essential feature of AdS/CFT so we
will always work, for all values of λ, in the limit

20 In natural units �= c = 1, energy is measured in dimensions of inverse length [E] = L−1 .
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E∞�s � min (1, 1/
√
λ). (2.175)

Another way to phrase this is that we consider the theory defined by excitations
whose (asymptotic) energy remains finite as we send �s →∞.

So far we have phrased this limit in terms of the energy measured at infinity and
shown that asymptotically stringy excitations become infinitely massive and can be
ignored in this limit. What about the near-horizon throat region?

In a gravitational theory energy can only be defined locally. The redshift relates the
energy between two observers at r1 and r2 as

∫ r2
r1

√
gt t . Approximating this integral

by its value down the throat, the energy E0 of a local observer at say r = 1 in the
throat is related to the asymptotically measured energy as

E∞ ∼ (Z1 Z5)
1/4 E0 =

√
λE0. (2.176)

What does this imply about the energy of excitations down the throat in our limit
(2.175)? Consider the two cases:

1. λ > 1: Then by (2.175) we have
√
λE0�s � 1/

√
λ, which can be written as:

E0�s � 1/λ < 1. (2.177)

There are no stringy excitations down the throat.
2. λ� 1; Then by (2.175) we have

√
λE0�s � 1, or:

E0�s � 1/
√
λ, (2.178)

but we also have 1/
√
λ 
 1 and thus we can have stringy modes down the

throat. This happens because the energy of these modes is so red-shifted that, at
infinity, we still have E∞ = √λE0 � 1 even if we consider excitations with e.g.
E0�s ∼ n 
 1 so long as n

√
λ� 1.

We conclude that there can be stringy excitations down the throat only when λ� 1.
These are decoupled from the asymptotic region due to the redshift.

Thus the closed string picture we arrive at is one where the spacetime has a
throat region and an asymptotically flat region and, at low energies, these regions
are decoupled from each other. As in the open picture we are interested in the throat
region near the brane itself let us examine what that region looks like in more detail
(Fig. 2.26).

Throat Geometry

Let us consider the geometry of the throat. First we put Z p = 1 effectively setting
Q p = 0. We can later add the momentum as excitations on the throat geometry.
Deep in the throat we have r � √λ �s and hence
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Fig. 2.26 We consider low-energy excitations E∞�s < min (1, 1/
√
λ). Left in the regime λ
 1,

we have a field theory describing open string theory, right for λ � 1, we can have a “stringy”
black hole, with (open) string excitations and gravitons down the throat, which decouple from the
asymptotic geometry

Z1,5 ∼ λ(�s)
2

r2 . (2.179)

The geometry becomes

ds2 = r2

λ�2
s
(−dt2 + dx2

5 + . . .)+ (λ�2
s )

dr2

r2 + λ�2
s dΩ2

3 + ds2(T 4). (2.180)

This is the geometry of Ad S3 × S3 (times a constant volume T 4). The radius of
anti-de Sitter space and the three-sphere are equal and set by λ in string units:

RAd S = RS =
√
λ�s . (2.181)

Note that the geometry Ad S3 × S3 × T 4 is a solution to the equations of motion
itself, essentially because the equations for the warp factors

ΔZi = 0, (2.182)

are insensitive to the presence or absence of the integration constant, h, in the
harmonic functions Z = h + Q/r2 and it is this feature which distinguishes the
Ad S3 × S3 solution from the flat-space one.

2.5.2 Putting it All Together: AdS/CFT

Let us now put together the various pieces we have assembled. Recall that we claim
that there is an open-closed duality meaning that we are free to use open or closed
strings to describe a given system. The system we are interested in is the D1-D5-P
system. We study this system in the particular low-energy limit (2.169). Note that
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this limit is phrased in terms of dimensionless parameters E�s so it is a consistent
“decoupling” limit; we can formally take a limit sending E∞�s → 0 and this defines
a completely independent subsector of the original string theory.

When taking this limit what we find is that:

• In the open description the open strings on the brane decouple from the physics
off the brane and furthermore only the massless open strings survive. Thus open
string theory reduces to supersymmetric Yang-Mills on the D-brane. At λ � 1
this theory is weakly coupled and can be studied. When λ 
 1 this becomes a
strongly coupled gauge theory and it is hard to compute anything.
• In the closed description the closed strings near the horizon (down the throat)

decouple from those asymptotically far away so there is a self-contained closed
string theory living on Ad S3 × S3 × T 4. When λ 
 1 only light excitations
survive the low-energy limit so we are left with supergravity on the aforementioned
spacetime but when λ� 1 stringy modes can be excited so the theory really is a
full string theory.

The statement of AdS/CFT, which we see is just a low-energy limit of open-closed
duality, is that the two descriptions listed above are in fact equivelent! Put another
way supersymmetric Yang-Mills on a D-brane is equivelant to a string theory on
an AdS spacetime. When the gauge theory is weakly coupled (λ � 1) the AdS is
very stringy and thus its hard to study it (many massive string modes are excited).
On the other hand, when the gauge theory is strongly coupled (λ 
 1) the closed
string theory on AdS reduces to supergravity leading to the remarkable observation
that we can understand strongly coupled gauge theories by studying semi-classical
supergravity! This is the primary reason why AdS/CFT has been so fruitful in the
last years.

It should be emphasized that all the statements made above were made in the
limit of sending N → ∞ and gs → 0 while keeping the combination λ = gs N
as a free parameter. Thus the gauge theories above always have very large gauge
groups SU (N ) with N → ∞. The duality between gauge theory and closed string
theory is believed to hold even for finite N and there are numerous computations
checking 1/N corrections to the above. This regime is much harder to study however
as making N and λ finite means that gs can no longer be zero and we need to consider
higher loop diagrams in string theory or supergravity and this is quite hard.

2.5.3 AdS/CFT Dictionary

In Table 2.7 we collect the various equivalences implied by AdS/CFT. When the field
theory is weakly coupled, the AdS space has a very small radius L and string theory
corrections are important (strongly coupled string theory on AdS). When the field
theory is strongly coupled, the AdS space is large and well described by classical
supergravity. In terms of couplings this means that for small λ, we have good control
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Table 2.7 Equivalence between open string and closed string theory for various values of λ

Yang-Mills on a D-brane Closed string theory on AdS

Decoupled sector: Closed strings
gauge theory on a brane down the throat
No strings/no gravity Full, closed string theory
λ: gauge (’t Hooft) coupling constant λ = L/�s : size of AdS in string units
N : rank of gauge group N = L/�p: size of AdS in Planck units
λ small: weakly coupled AdS small→ stringy
Control No control
λ large: strongly coupled AdS large→ Supergravity
No control Control

of the gauge theory, whereas for large λ, we have good control of the gravitational
anti-de Sitter physics.

Note that unlike string theory in flat space where the only parameter is gs ∼
f (�s/�p) in AdS there is an additional dimensionful scale, L , the AdS radius, allow-
ing us to define two independent parameters: N and λ. Following the discussion
above we see that in gauge theory, N is the rank of the gauge group while in gravity,
N is the size of the AdS space in Planck units (while λ is the size of AdS in string
units). The inverse AdS radius measured in Plank units, 1/N , provides the natural
perturbative parameter for quantum gravity in the bulk; i.e. this parameter enters in
loop corrections for both gravity and string theory. Thus the limit of an infinite num-
ber of colors, N → ∞ is nothing other than the classical limit in the AdS theory!
While this may seem like a somewhat strange statement it in fact parallels a well
known statement in gauge theory that at large N the dynamics of the gauge theory
become much simpler (see [27] for an explanation).

Exercise 2.5.13 Show that the AdS length (size of the D1-D5 black hole throat) in
string units is set by λ, and in Planck length by N:

λ = L/�s, N = (L/�P )n (2.183)

for some number n. Find n.

Because supergravity is only valid at large N , we only understand large N gauge
groups from supergravity. On the other hand, we could invert this to maybe learn
quantum gravity from small N gauge groups. For instance, for N = 2, 3 the size of
AdS space is a few Planck units and gravity is strongly coupled.

Note that the AdS/CFT correspondence is a conjecture. We haven’t proven any-
thing, we have just given motivation! It is very hard to prove: a proof would require
a detailed knowledge of strongly coupled field theories. However, it is very well
established as many very non-trivial computations (not necessarily protected by
symmetry) have been found to match on both sides and thus most string theorists
hold it to be true. In some sense it is nothing more than the low energy limit of the
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much more powerful open/closed string duality hinted at by Fig. 2.18. The closed
string exchange between D-branes, which can be interpreted as a tree level open
string diagram, has all the massive modes implicit. For AdS/CFT, we only consider
the massless, non-oscillatory modes.

Formal AdS/CFT Duality

The correspondence can be formalized by equating the path integrals of the two
theories:

ZCFT(λ, N ) = Z string
IIB (λ, N )|on asympt. AdS space . (2.184)

This equality summarizes the AdS/CFT conjecture.
We often restrict to λ very large, and then we get an equivalence between large ’t

Hooft coupling CFT and IIB supergravity on an asymptotically Ad S space:

ZCFT(λ→∞, N ) = Z sugra
IIB (N )|AdS, (2.185)

where sugra stands for supergravity. Schematically, we can write the supergravity
path integral as

Z sugra
IIB (N ) =

∫
Dg exp

(
−

∫ √−g(gravitons+ . . .)

)
, (2.186)

there are other fields besides the metric g, but let’s just forget about them for the
sake of the argument. When N is large, we are doing classical supergravity: at fixed
λ = gs N , loops are suppressed because gs is small. Then we can perform a saddle
point approximation around the minima of the action (the classical solutions to the
equations of motion), and the large N approximation is

Z sugra
IIB (N →∞) =

∑
i

e−Si , (2.187)

The sum runs over solutions to the equations of motion (saddle points) and it is
actually possible to calculate its main contributions. In the limit λ → ∞ (large ’t
Hooft coupling) and N → ∞ (planar limit), states in the CFT are hence related to
classical solutions in AdS.

The left-hand side of (2.185) is always well-defined because CFTs are formally
well-defined objects. Thus, as a consequence of the AdS/CFT correspondence, the
right-hand side is also well defined: quantum gravity on AdS spaces is hence better
defined than a generic QFT!
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2.5.4 Entropy Counting

A black hole solution has an entropy and a temperature. Thus the natural candidate
dual in the CFT is an ensemble of states corresponding to a thermal density matrix
with the same quantum numbers as the black hole (in particular the mass). Such a
density matrix has the following form

ρB H =
∑
ψ

e−βH |ψ〉〈ψ|. (2.188)

At high temperature there is no difference between the microcanonical and the canon-
ical ensemble. Therefore we can work with the temperature, the thermodynamic dual
of the mass, rather than with the mass itself.

Remember the set-up of the D1-D5-P system wrapped on T 4×S1 of Fig. 2.20. The
CFT that describes this system lives on the two-dimensional spacetime formed by
the common circle on which the branes are wrapped and the time direction: S1×Rt .
(This is the CFT dual to the Ad S3 near-horizon geometry of the D1-D5 black hole.)

Cardy gave us a formula for the entropy in a CFT at high temperature, irrespective
of the coupling:

S ∼
√

cL0

6
, (2.189)

where L0 is the momentum along one direction, and c is the central charge. Although
we will not justify this formula (it is a standard result in the study of 2d CFTs) let
us note that it gives the number of states at a given level, L0, in a CFT with central
charge c. Because we are assuming the black hole to correspond to a thermal ensemble
which is essentially a sum over all states we can use this formula and simply substitute
in the black hole quantum numbers that give c and L0 via AdS/CFT.

Note that Cardy’s formula has the same form as the entropy computed using our
a simple free oscillator counting. There c was the “entropy density”. For a boson
in a free theory, c = 1, for a free fermion one has c = 1/2. But the CFT we are
considering here is strongly coupled since we want a large classical black hole so
λ 
 1 (as is N ). Thus we cannot simply model the system using free fields but the
great virtue of Cardy’s formula is that it holds for any CFT, even a strongly coupled
one. Moreover, it does not rely on any assumption of supersymmetry so this is a
qualitatively different way of computing the degeneracy (recall that we were able
to use a “free” open string picture in our previous counting because we argued, via
supersymmetry, that we could work in the small λ = gs N regime and then simply
tune λ to large values without changing the number of supersymmetric states).

For gravity on an AdS space, the central charge of the dual CFT is the AdS length
in Planck units (we will motivate this partially below):

c = L

�P
, (2.190)



124 I. Bena et al.

Note, as expected (for the entropy to be invariant), this quantity is independent of
the coupling but depends only on the D1-D5 charges:

c = N1 N5. (2.191)

On the other hand this would not be the case if the central charge was the AdS length
in string units, because then c would be equal to

√
gs
√

N1 N5 and hence coupling-
dependent. The fact that c is independent of the string coupling gs is very important,
because it assures that the entropy (through the Cardy formula) is independent of the
coupling as well.

If we put the momentum excitations on the D1-D5 Ad S3 throat to match the full
D1-D5-P black hole solution then in the dual CFT this corresponds adding light-like
momentum along the string that the dual CFT lives on. Although we will not review
this in detail it simply follows because the quantum numbers in the CFT can be
matched to those in AdS and under this identification momentum waves in the bulk
simply correspond to momenta along the CFT worldsheet. Thus, like the spacetime
momentum21 the momentum in the CFT is chiral and thus corresponds to a state
with non-vanishing L0 ∼ Np. Thus Cardy’s formula gives the entropy

S ∼
√

N1 N5 Np

6
. (2.193)

This does not rely on weak coupling but rather is valid for any value of gs .
We have now argued, via AdS/CFT correspondence, that a thermal ensemble in

a strongly coupled CFT is dual to a black hole geometry, and that we can use the
Cardy formula to compute the entropy. Let us briefly motivate the identification of
the central charge which we recall is

c = N1 N5. (2.194)

From the original brane theory this is not hard to believe as the dominant degrees of
freedom are the 1-5 strings and there are N1 N5 of them (recall that the central charge
of a CFT is some measure of the degrees of freedom). This can be seen another way:
in a 2d CFT, the partition function at high temperature goes as

ZCFT ∼ ecT , (2.195)

and hence the entropy goes as

S ∼ log ZCFT ∼ cT . (2.196)

21 Remember that the metric of the D1-D5-P system looks like

ds2 = −dt2 + dx2
5 + Z pdx2−, (2.192)

with dx− = dt − dx5. This fixes a particular chirality of the plane wave.
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Table 2.8 For
supersymmetric black holes,
we can match the
Bekenstein-Hawking entropy
from a weak coupling
computation

Smicro
BH = Smacro

BH

↓ ↓
log(N ) AH /4G N

Weak coupling Strong coupling

This also shows why we can interpret c as the entropy density.
Questions from the audience:

• The black hole is extremal. How can there be a (CFT) temperature? In CFT, there
is a left and a right temperature, related to the total amount of left- and right moving
excitations. Using the null circle x− (or x+ if we would have that coordinate in
the metric), gives a length of this thermal circle that gives a temperature TL (TR

for x+). The total temperature of a thermal ensemble of states is related to those
temperatures as

1

T
= 1

TR
+ 1

TL
. (2.197)

TL and TR are in fact chemical potentials for the quantum numbers L0 and L̄0 in the
CFT; these measure the number of left and right moving light-light momentum
waves. In the extremal D1-D5 setup, we only have left-moving excitations and
hence TL �= 0, but still TR = 0. Therefore the BH temperature T is zero, even
though there is a “left-moving temperature” TL .
• We have treated AdS/CFT. Here we had Ad S3 of the near-horizon plus the dual

CFT. What happens if you insert a black hole inside an asymptotically AdS space?
Consider AdS with a black hole inside it. This corresponds to a CFT at a non-zero
temperature T (so both TL and TR are non-zero), see Table 2.5.

2.5.5 Non-supersymmetric Black Holes

For supersymmetric black holes, we have seen that the microscopic entropy matches
the macroscopic one as in Table 2.8.

We have seen two arguments why the weak-coupling, microscopic calculation
gives the correct result for the entropy of the black hole at strong coupling:

• An index which is protected by supersymmetry: it can be calculated at weak
coupling and continued to strong coupling.
• AdS/CFT correspondence. The result for the entropy uses the Cardy formula and

can be calculated regardless of the coupling, as long as we high temperature states
in the CFT (here temperature includes left or right moving temperature).

Both these arguments rely on supersymmetry but in different ways. The first
argument requires supersymmetry by construction whereas Cardy’s formula holds
in any 2d CFT, even one without supersymmetry. Unfortunately only supersymmetric
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black holes have near-horizon AdS3 factor which allow us to use AdS3/CFT2 and
invoke Cardy’s formula. What about non-supersymmetric solutions in asymptotically
flat spacetime? The index will no longer be protected, and we cannot rely on the
AdS/CFT correspondence anymore, because the near-horizon solution of a non-
extremal black hole does not have an AdS factor.

On the other hand we can consider non-supersymmetric asymptotically AdS black
holes (black holes embedded in an AdS spacetime rather than flat space). We can put
a non-extremal black hole (black hole with a non-zero temperature) in Ad S5 × S5.
Without the black hole, the geometry is dual to a conformal field theory, namely
N = 4 Super-Yang Mills theory. It is a supersymmetric and conformal (there is no
dimensionful scale) field theory that is very similar to QCD.

When we put a black hole in spacetime, this is dual by the AdS/CFT correspon-
dence to heating up the CFT, and hence introducing a scale. This is the setup of
Table 2.5.

A high temperature excites the many states of this field theory (gluons, fermi-
ons…), and therefore you get an entropy, a number of states that are excited at a
given temperature. The temperature breaks both conformal invariance and super-
symmetry in the field theory and we get a non-supersymmetric state corresponding
to the black hole.

We can repeat the counting of the previous section and find the entropy, both in
the field theory (a non-trivial calculation involving fermions, SU (N ) gauge groups
and so on) and in gravity (an easy calculation using the horizon entropy). One finds:

with

a(N ) = 2π2

3
N 2. (2.198)

A pedagogical derivation of this result can be found in [29].
The supergravity entropy only sees three quarters of the entropy of the microscopic

counting. We can interpret this as the degrees of freedom that are changing. The field
theory computation above is done at weak coupling (λ � 1) where we can easily
compute whereas the black hole, which must be large in string units, corresponds
to large values of λ. Thus there is some less of states as the spectrum shifts about
from weak to strong coupling in Fig. 2.27. Note that this does not happen in the
supersymmetric case because of the supersymmetric index is a protected quantity.

The fact that the entropy at a fixed energy changes as we vary the coupling should
not be too surprising. Asλ is increased various states will receive quantum corrections
to their energy and the spectrum will shift about in a complicated way.
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Fig. 2.27 A sketch of the
entropy as a function of the
coupling for the black hole in
Ad S5 × S5 (see Fig. 2 in [30]
for a detailed graph)

It turns out that there are other quantities which are also relatively robust so we
may hope to compute them using AdS/CFT. That is to say there are quantities which
are shared by a large class of theories—a universality class—which we may hope
contains both N = 4 SYM (the CFT which is dual to string theory on AdS5) and
other more physically relevant theories like QCD (or perhaps all Yang-Mills like
theories). Since such quantities don’t depend strongly on the detailed structure of the
theory we can try to apply AdS/CFT to compute them even if we do not yet know
the dual of QCD. Another way of thinking of this is that the gravity dual of N = 4
SYM captures the strong coupling dynamics of a gauge theory and it may be that at
strong coupling gauge theories display certain universal behavior.

As an example, take two fundamental properties of fluids in such theories: the
entropy density s and the viscosity η. The entropy to viscosity ratio η/s for the
quark gluon plasma of QCD can be observed experimentally. In the large N limit the
value of η/s can be found exactly in N = 4 SYM, from a weakly coupled gravity
computation, and this value is of the same order as the observed value in the RHIC
collider, see Table 2.9. Moreover, any calculation in the string theory ballpark always
gives the same value of η/s = 1/4π. This is all the more intriguing because existing
QCD theories (in which it is difficult to compute strongly coupled quantities) find a
number which is off by an order of magnitude.

For this reason, people use AdS/CFT to describe strongly coupled QCD, and
also strongly coupled condensed matter theories (so-called AdS/CMT, for instance
for superconductors at strong coupling). In fact, this has been the main use of the
AdS/CFT correspondence so far and this entire field can be put under the name
“holography”. There are many articles which can lead you in this direction, see for
instance the previous courses on holography at IPhT [31, 32] (see also [33]).

Table 2.9 Entropy to
viscosity ratio

η/s Theory/Experiment

1/4π ∼= 0.0796 N = 4 SYM
0.12± . . . QCD (Experiment)
O(1) QCD (Theory)
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2.6 The Fuzzball Proposal and Black Hole Hair

In this section, we elucidate the idea that black hole entropy is explained by the
existence of a large number of ‘black hole microstate’ solutions. These are geome-
tries that are solutions to the equations of motion of string theory, have no horizon
themselves, but should come in large enough numbers to account for the black hole
entropy.

Let us get back to the main problem. We have a microscopic and a microscopic
entropy, which agree numerically, but both are valid in different regimes. As an
example, think about the air in a room. It is made up out of many molecules. Still, we
can extract the entropy without reference to the microscopic state of the molecules
through equations of state:

pV = n RT,

d E = T d S + pdV . (2.199)

We can determine the entropy S without knowing what air is made of—thermody
namically, the entropy is a measure of the energy change in a system on which we
have no control or understanding (in contrast to the work term pdV , which we control
very well).

So much for thermodynamics, on to statistical mechanics. Boltzmann has taught
us that for a given energy E and temperature T , all N different states of the molecules
in the room make up the entropy as:

Smicro = log(N ). (2.200)

This connection between statistical mechanics and thermodynamics is already 150
years old. Does it work for a black hole too? Can we find a number of microstates
N for a black hole with a given set of mass and charges, such that SB H = log(N )?

At this point, the programme we followed so far is incomplete. The microscopic
calculation (“statistical mechanics”) takes place in one regime, but this statistical
description is not valid when gs N � 1. We have the following question:

• Say you take a state that makes up the entropy in the microscopic calculation.
What happens if you follow such states one by one and bring them over to strong
coupling?

People believed for a long time that as gravity grows stronger, a horizon forms
around the D-branes and the objects end up “being” the black hole [34–38], see
Fig. 2.28. Because gravity is always attractive, you expect that as you make New-
ton’s constant larger, increasing the gravitational attraction, “normal” objects only
becomes smaller. Only a black hole grows with increasing G N , as the horizon radius
for a (Schwarzschild) black hole scales with Newton’s constant as

rH = 2G N M, (2.201)
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Fig. 2.28 At low G N
(gs � 1), the would-be black
hole horizon is of smaller or
equal size as the brane system.
For large G N , the black hole
horizon is much bigger than
the size of the D-brane system
at weak coupling

with M the mass of the black hole. Thus the horizon actually grows when you make
gravity stronger. Take for instance a neutron star. This is a charge neutral object.
Imagine a thought experiment in which we scale up Newton’s constant G N . The
horizon radius of a black hole that has the same mass as the neutron star will become
larger until for a certain large value of G N , the neutron star collapses into a black hole.
This intuition caused people to think for a long time that whatever state you take out
of the exp(2π

√
N1 N2 N3) black hole microstates in the weak coupling description,

all of them become a black hole with a singularity in the middle.
We can represent this pictorially. Say we have three microstates made up out

of open strings on D1-D5 branes in the decoupled regime, as in Fig. 2.29. As we
make gravity stronger, all of these would seem to fall behind the horizon and the
information of the state making up the black hole is in the region near the singularity.

We discussed earlier the information paradox: We can throw anything into the
black hole, but within GR, this information gets lost and never comes out, as the black
hole evaporates into thermal radiation. Since the Hawking radiation process deals
with the region around the black hole horizon, the intuitive picture of what happens
to a brane microstate does not solve the problem. The horizon region is in the causal
past of the singularity and physics in this region has no idea of what happens at the

Fig. 2.29 In the naive picture, cranking up G N puts the information of the microstate 1,2 or 3 into
the garbage near the singularity
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Fig. 2.30 The ‘fuzzball pro-
posal’: cranking up gs gives
a complicated state of strings
and branes of horizon size

singularity. All information still sits near the singularity and the information paradox
is still there.22 In fact, if we want to evade the information problem, arguments by
Mathur show that one needs large corrections to the black hole geometry near the
horizon [39].

Through the D1-D5-P black hole and the AdS/CFT duality, we should be able to
find the CFT process dual to Hawking radiation. In CFT, we can actually address
this problem.

In recent years, it has become clear that certain black hole microstates actually
grow with G N just as the black hole does! Look at a microstate. As gs grows large,
they actually become bigger and will be of the same size as the would-be black hole
horizon, see Fig. 2.30. It is an ongoing task to find the actual geometries describing
the strong coupling equivalent of the D-brane microstates. For such microstates that
are of a size comparable to the black hole’s, Hawking evaporation will know about
what information made the black hole.

The main problem with this proposal is that you need to explicitly construct
‘microstates’ of the same size as the black hole horizon. The black hole horizon
grows as G N , but most things get smaller for increasing G N . We need some very
special objects. We will show how to build such growing states that correspond to
the CFT we counted at gs small. These will not have a horizon at large gs .

The largest success of this proposal has been in the constructing of supersym-
metric microstate geometries, see [40–45] for reviews. However, supersymmetric
black holes do not radiate, and there is no comparison of the Hawking process. For
non-supersymmetric radiating black holes, some large G N microstates (‘microstate
geometries’) have been constructed [46, 47]. They radiate and the Hawking radiation
rate of the black hole agrees nicely with the decay of these states [45, 48–51].

We will review how to count the number of microstate geometries for supersym-
metric black holes, using an appropriate quantization technique. So far, the number of
microstate geometries found is subleading when compared to the black hole entropy.
Ongoing research tries to construct more microstate geometries, see [52–54]. For
work on non-supersymmetric multi-center solutions and microstate geometries, see
[55–58].

22 The information paradox leads to a breakdown of unitarity in quantum theory and hence a
breakdown of quantum mechanics itself. If we want to save quantum mechanics, we need to make
sure there is no information loss.
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Note that we have come at the frontier of research: we have some hints about
it, but people do not know yet if the proposal is generally true or not. In the next
section we will show how to build (certain) fuzzball solutions for the supersymmetric
3-charge black hole.

2.7 Multi-Center Solutions

In this section, we show how to construct five-dimensional multi-center solutions
that generalize the string theory black holes we have seen earlier. The microstate
geometries for the black hole, or classical fuzzballs, will be in this class.

2.7.1 Preliminaries

In this section, we discuss some necessary basics on differential forms and their
application in electromagnetism, and we explain the notation we use in the remainder
of the text. We also give some exercises that illustrate an important new term (as
opposed to Maxwell theory) in the supergravity action, the Chern-Simons term. This
new terms allows for solutions with ‘charge dissolved in fluxes’, a crucial ingredient
for the construction of microstate geometries. The reader familiar with these concepts
can skip to the next section on the construction of multi-center solutions.

Differential Forms, Einstein-Maxwell, Sources

We review the following notions, by means of exercises:

• Differential forms, form notation and the definition of the Hodge star operator �.
• ‘True’ magnetic sources (monopoles) versus ‘moving electrons’.
• Sourced electromagnetism in flat space and in curved space (Einstein-Maxwell).

Consider electromagnetism. The anti-symmetric two-form is related to the electric
field E and magnetic field B as

Fμν =

⎛
⎜⎜⎝

0 Ex Ey Ez

−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0

⎞
⎟⎟⎠. (2.202)

In terms of this matrix, the Maxwell equations in vacuum are:
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∂μFμν = 0,

∂[μFμν] = 0. (2.203)

In form notation they are equivalent to

d � F = 0,

d F = 0. (2.204)

The first expression is the equation of motion that follows from the Lagrangian of
electromagnetism:

S = 1

2

∫
�F ∧ F = 1

4

∫
FμνFμν . (2.205)

The second equation is the Bianchi identity, which just says that locally F is the
exterior derivative of a potential F = d A, or Fμν = ∂μAν − ∂ν Aμ in form notation.

Exercise 2.7.14 If you are not familiar with the expressions (2.204) (exterior deriv-
ative, Hodge star operator �), read up on it in a book on differential geometry and
show that the Eqs. (2.203) and (2.204) are equivalent.

In particulate, we normalize m-forms as

A = 1

m! Aμ1...μm dxμ1 ∧ . . . dxμm . (2.206)

The exterior derivative acts on an m-form to produce an (m + 1)-form as

d Am = ∂Aμ1...μm

∂xν
dxν ∧ dxμ1 ∧ . . . dxμm , (2.207)

and in d dimensions the Hodge star � takes an m-form to an n = d − m form as
follows

(�λ)μ1...μn :=
1

m!
√
g εμ1...μnν1...νm g

ν1ρ1 . . . gνmρmλρ1...ρm . (2.208)

Here ε is the totally antisymmetric tensor.

Recall that in electromagnetism we can generate a magnetic field by accelerating
an electron. However, while a speeding electron generates a magnetic field it does
not generate a magnetic charge. This is because electric charge only appears in the
equation

d � F = q δ(x), (2.209)

whereas the magnetic charge sources the Bianchi identity

d F = m δ(x). (2.210)
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The difference between these two is the following. If m = 0 then d F = 0 everywhere.
In flat space this implies there exists a globally defined one-form, A = Aμdxμ, the
vector potential, such that F = d A. If on the other hand m �= 0 then at the origin
F is not closed. Hence there is no globally defined object A such that F = d A.
However, we can still define an object A everywhere away from the origin (or define
it patch-wise). As a side note one might object that solving the electric equation
requires something like A0 = q/r , which is singular at the origin. However, we can
always smoothen this singular source by allowing a charge distribution (for instance
by replacing qδ(x) with a Gaussian qe−qr2

). The same trick will not work for m
because the Eq. (2.210) has d F = dd A which is identically zero if A is globally
defined.

To write a general field strength that includes both electric and magnetic charge
we can do the following. We write

F = d A +Θ, (2.211)

with A a global one form encoding the electric charge (and perhaps some part of the
magnetic field) via d�d A = qδ(x). The two-form Θ on the other hand is not globally
of the form d(something) but rather satisfies dΘ = mδ(x) and hence encodes the
part of the field strength coming from the magnetic charge. To see this recall that the
definition of the magnetic charge is the integral of the flux through an S2 around the
origin:

m = 1

4π

∫
S2

F = 1

4π

∫
S2

(d A +Θ) = 1

4π

∫
S2

Θ, (2.212)

where the last equality follows because S2 is a compact manifold without boundary
and d A is a total derivative of a globally defined object. Hence the integral

∫
d A

vanishes by Stokes’ theorem.
The ‘electric part’ of the gauge field, A, solves d � d A = qδ(x). It can be found

by thinking of A as harmonic ∇2 A = δ(x). This equation has solutions of the form
A = q

r dt (actually there is a larger class of solutions constructed of polynomials of
the coordinates but the latter are not normalizable). For the solution of Θ , we refer
to Exercise 2.7.15.

Exercise 2.7.15 Write Θ = d B where B is only locally defined such that the integral
(2.212) gives the magnetic charge m. (Find the form of B first). Hint: Explicitly
construct

B = f (θ)dθ ∧ dφ, (2.213)

using polar coordinates for the flat metric ds2
3,flat = dr2+r2(dθ2+sin2 θdφ2), such

that
∫

d B = 4πm, with m a constant.

Note that when we couple electromagnetism to gravity (Einstein-Maxwell theory),
the equation d � F = δ(x) involves the metric via the Hodge star. Hence the solution
becomes more complicated. It turns out that the metrics of the D-brane type have
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solutions that look like
A = H−1dt, (2.214)

where H is some harmonic function that determines the solutions and appears in
the metric. Typically, in four dimensions harmonic functions are H = 1+ q/r , and
asymptotically (r →∞), we recover the flat space solution A = −q/r dt .

Important Exercises: Chern-Simons Action

We show how the appearance of new terms in the supergravity Lagrangians (com-
pared to electromagnetism) can allow for ‘fuzzball’ solutions.

The Lagrangian of electromagnetism coupled to gravity in four dimensions is

L4 = 1
4

√−gFμνFρσg
μρgνσ (2.215)

= 1
2 � F ∧ F. (2.216)

This is the gauge and Lorentz invariant action for the Maxwell field Aμ. In five
dimensions, an extra term is possible:

L5 = 1
4

√−gFμνFμν + 1
12 ε

μνρστ AμFνρFστ

= 1
2 � F ∧ F + 1

3 A ∧ F ∧ F. (2.217)

This new term seems to be breaking gauge invariance. Consider the gauge transfor-
mation:

Aμ→ Aμ + ∂μλ, (2.218)

with λ a function. The field strength Fμν = ∂μAν −∂ν Aμ is clearly gauge invariant.
The second term in the five-dimensional Lagrangian has a “naked” Aμ and you might
expect it is gauge non-invariant. The exercise asks you to prove this intuition wrong.

Exercise 2.7.16 Show that in five dimensions, the Chern-Simons action

SC S =
∫
εμνρστ AμFνρFστ . (2.219)

is invariant under gauge transformations (2.218). It suffices to show that the integrand
is invariant up to a total derivative.

Most extensions of general relativity based on string theory (in particular super-
gravity) have such a term. So it is important to study its physical consequences.23

23 It is also important for confinement in supersymmetric holographically dual gauge theories
through the AdS/CFT correspondence, but that is another matter. See [59, 60].
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Choose coordinates x0, x1, x2, x3, x4 in five dimensions. Remember that a static
electron couples to the gauge field as

∫
A0dt. (2.220)

Because of the term (2.219), a non-trivial A0 is sourced by magnetic terms F12 F34
through the equations of motion, which schematically have the form ∂i F0i = F12 F34
(see Exercise 2.7.17). Even if you don’t have electrons, but just magnetic fields of
two different kinds, you can have electric fields!

Exercise 2.7.17 Derive the equations of motion for Aμ following from the action
(2.217):

d � F = F ∧ F. (2.221)

Show that you can source electric fields with magnetic fields along different direc-
tions, by working this out in components (including the metric components involved
in the Hodge star operation).

In the literature, one refers to solutions with this mechanism (magnetic fluxes
giving a net electric charge) as solutions with charges dissolved in fluxes.

We will use this kind of solutions with charge dissolved in flux to build microstate
geometries. In fact, this mechanism is crucial for the existence of microstate geome-
tries. The absence of such a term in regular electromagnetism is also the reason
people had not found black hole microstate geometries before the advent of string
theory. This mechanism is widely used in other solutions as well, such as flux com-
pactifications used for the construction of string vacua, see [61] for a review.

2.7.2 Building General Solutions

We discuss how to obtain new solutions with ‘charge dissolved in fluxes’. We do this
in a stepwise fashion: first we discuss the five-dimensional black hole (without and
with rotation), and then we show how to put in magnetic charges.

M2-M2-M2 Black Hole

Let us write down a five dimensional electrically charged black hole by starting
in M-theory (11-dimensions) and writing a solution down that involves a compact
six-torus. Recall in particular, the supergravity solution for the (supersymmetric)
M2-M2-M2 brane system
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ds2 = −(Z1 Z2 Z3)
−2/3dt2 + (Z1 Z2 Z3)

1/3ds2(R4)

+ (Z2 Z3)
1/3

Z1/3
1

(dx2
1 + dx2

2 )+ (Z1 Z3)
1/3

Z1/3
2

(dx2
3 + dx2

4 )+ (Z1 Z2)
1/3

Z1/3
3

(dx2
5 + dx2

6 ).

(2.222)

This solution describes five space-time dimensions because we actually take the
coordinates x1, . . . , x6 to be compact (xi ∼ xi + 2πLi for i = 1, . . . , 6. They
describe a six-torus T 6. We write the T 6 as the product of three two-tori T 2.

The M2-branes are all point-like in the transverse R
4 spanned by x7, x8, x9, x10

which we can write in radial coordinates

ds2
4 = dρ2 + ρ2dΩ2

3 (2.223)

and the five-dimensional black hole is determined by the functions:

Z1 = 1+ Q1

ρ2 , Z2 = 1+ Q2

ρ2 , Z3 = 1+ Q3

ρ2 . (2.224)

The unusual power 2 rather than 1 in the denominator is because we are solving this
equation in four rather than three space dimensions. Note that we refer to the radius
in R

4 as ρ, to avoid confusion with r for the radius of R
3.

These functions are defined simply by requiring them to solve the equation:

�4 Z I (x) = QI δ(ρ) (2.225)

where �4 · = √g4
−1∂i (

√
g4g

i j
4 ∂ j ·) is defined with respect to the four-dimensional

flat metric in the solution above (on R
4). This equation says that we have M2 sources

sitting at the origin of R
4 with charges QI . The 1 in the equation above is simply

a homogeneous solution we are free to add to any given solution to the Eq. (2.225).
Since this equation is linear we are free to superimpose solutions (adding delta
function sources). Hence the most general solution corresponds to an arbitrary num-
ber of M2 sources at various positions ρp ∈ R

4 and p labels the “centers”:

Z I = constant+
∑

p

Q p

|ρ− ρp|2 (2.226)

See Fig. 2.31.
Recall that in M-theory we have a 3-form gauge potential and for the solution

above it has the following form

C012 = Z−1
1 , C034 = Z−1

2 , C056 = Z−1
3 . (2.227)

By “compactifying” on the x1, . . . , x6 directions we can think of this as a five-
dimensional solution times T 6 and one can show that this six-torus is actually small
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Fig. 2.31 Multiple M2-brane sources in R
4. Each source can correspond to three types of M2-branes

wrapped on a T 2 inside T 6, and smeared in the other torus directions

(the length of each cycle is order 1 in string units) so at low energies this space-time
looks five-dimensional. In this case the different components of the three-form C3
reduce to three independent gauge fields AI

μ in five dimensions:

A(1)
μ = Cμ12, A(2)

μ = Cμ34, A(3)
μ = Cμ56 (2.228)

And likewise there are three field-strengths, F (I ) = d A(I ) with I = 1, 2, 3. In form
notation, the four-form F4 = dC3 of M-theory is then given by

F4 = F (I ) ∧ ωI = d(Z−1
I dt) ∧ ωI = (∂ρZ−1

I )dρ ∧ dt ∧ ωI , (2.229)

where we defined the volume forms on eqch two-torus:

ω1 = dx1 ∧ dx2 , ω2 = dx3 ∧ dx4 , ω3 = dx5 ∧ dx6. (2.230)

In five dimensions the solution given by the functions Z I of (2.224) is a spherically
symmetric, electrically charged black hole in R

1,4. We can generalize this solution
in three ways, and we will do so in the remainder of this section, by:

• Adding angular momentum
• Adding magnetic charge
• Adding a more complicated base space (instead of R

4)
• (Adding a more general internal space that preserves supersymmetry in five dimen-

sions: a Calabi-Yau manifold instead of a T 6. We will not do this explicitly in these
lectures.)

Multi-center solutions with these ingredients can describe black hole microstate
geometries.

Adding Angular Momentum

The first generalization is to add angular momentum to this solution. We do this by
replacing dt in the metric with dt + k where k = ki (x)dxi (i = 7, 8, 9, 10) is a
one-form in the four-dimensional base space:
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ds2
5 = −(Z1 Z2 Z3)

−2/3(dt + k)2 + (Z1 Z2 Z3)
1/3ds2(R4) (2.231)

We will only consider the five non-compact directions from now on. Since the gauge
field and metric are coupled via the equations of motion, adding angular momentum
to the metric modifies the gauge field as well:

F (I ) = d(Z−1
I (dt + k)) = d(Z−1

I ) ∧ (dt + k)+ Z−1
I dk. (2.232)

Note this field strength has magnetic F (I )
i j components (from ∂i k j ), because we have

a moving charge. Remember from Sect. 2.7.1 that this does not represent a genuine
magnetic monopole charge. This setup allows to describe a rotating supersymmetric
black hole [62].

By adding a k = ki (x)dxi term to the metric we get non-vanishing gti cross-
terms in the metric. Such terms imply that the space-time itself carries angular
momentum. This is not to be confused with being time-dependent. None of the
fields above, including the metric, contains any explicit dependence on the time
coordinate. A rather good analogy is to consider a featureless spinning ring in for
instance R

3, see Fig. 2.32. Since the ring is featureless nothing changes in time: the
ring is always just sitting there spinning and from one instance to the next every-
thing looks identical. Nonetheless, this solution carries angular momentum. In GR,
such solutions with mixed gti components but no time-dependence are referred to as
stationary. Solutions with no time dependence and gti = 0 are static.24

In R
4 there are two independent angular momenta, because we can think of R

4 as
R

2 × R
2: we have one independent angular momentum in each plane. For a single

centered black hole, supersymmetry, is only preserved if we force these two angular
momenta to be equal. This condition can be generalized as

(1+ �4)dk = 0 (2.233)

which implies k is self-dual. Here �4 is the Hodge dual defined on the flat R
4 given

by x7, . . . , x10. Note that acting on this with d we find d � dk = 0, meaning k is

Fig. 2.32 A uniformly
spinning ring with angular
momentum J around its sym-
metry axis

24 Stated without reference to a set of coordinates, ‘static’ means that the metric admits a global,
nowhere zero, time-like hypersurface orthogonal Killing vector field. A generalization are the ‘sta-
tionary’ space-times, which admit a global, nowhere zero time-like Killing vector field.
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a harmonic one-form. We will see later that by turning on additional fields, we can
relax the condition of equal angular momenta for supersymmetric solutions.

Exercise 2.7.18 Show that Eq. (2.233) is solved by (2.235). The constant J is pro-
portional to the angular momentum of space-time. See for instance Sect.2.2 in [20]
for more information on asymptotic charges.

Recall that without k we had the entropy SB H = √Q1 Q2 Q3 (up to numerical
factors). When we turn on k we get an asymptotic angular momentum J . It can be
read off from the asymptotic expansion of k in terms of the angles φ1 and φ2 in the
two orthogonal R

2-planes.
If we write the metric on R

4 = R
2 × R

2 as

ds2 = dρ2 + ρ2(dθ2 + sin2 θdφ2
1 + cos2 θdφ2

2), (2.234)

the asymptotically leading terms of the momentum one-form k are

k = J

ρ2 sin2 θdφ1 + J

ρ2 cos2 θdφ2, (2.235)

with J a constant.
One can compute the horizon area to be (up to a numerical prefactor)

S =
√

Q1 Q2 Q3 − J 2, (2.236)

We see that angular momentum reduces the entropy. From a macroscopic point of
view this is not hard to understand as the horizon is spinning very fast and this
causes it to Lorentz contract and shrink. If we try to spin it up too fast, to the point
that J 2 = Q1 Q2 Q3, the horizon shrinks to zero size and we cannot go further (at
least not with this ansatz). Although we will not say much about it, it is possible
to reproduce this entropy using techniques quite similar to those of Sect. 2.4 (and
indeed this was done shortly after the J = 0 entropy was first reproduced in [62]).
The supersymmetric black hole with rotation is often called BMPV black hole after
the authors of [62]. The interested reader can read more on microstate counting for
these rotating black holes in [20].

Magnetic Charges

Above we added angular momentum to the metric. Even though this sourced magnetic
components of the field strength, this was only so in much the same way as a moving
electron generates a magnetic field. While a speeding electron generates a magnetic
field it does not generate a magnetic charge as discussed in the preliminaries of
Sect. 2.7.1.

If we want magnetic charges we need to add a closed but not exact term to each
of the electromagnetic fields F (I ) which we denote by Θ(I ). The field strengths
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becomes
F (I ) = d

(
Z−1

I (dt + k)
)
+Θ(I ). (2.237)

Of course this would not be consistent without modifying the form of the metric as
well. It turns out this modification is rather straightforward. Recall that in the original
metric, the Z I were potentials sourced by delta-function sources at the locations of
the M2’s:

�4 Z I (x) =
∑

p

QI δ(x p) (2.238)

This source naturally corresponds to an electric field which must satisfy

d � F (I ) =
∑

p

QI δ(x p), d F (I ) = 0. (2.239)

Recall that in string theory we have peculiar terms in the action such as

S = 1

2

∫
F ∧ �F + 1

3

∫
A ∧ F ∧ F, (2.240)

which implies that magnetic flux in this theory can source electric charge via the
equation of motion

d � F = F ∧ F. (2.241)

This equation translates, in this setting, into a constraint on the functions Z I which
now are no longer simply sourced by a delta-function but look like

�4 Z I (x) = QI δ(x)+
∣∣∣�4[Θ(J ) ∧Θ(K )]

∣∣∣ , (2.242)

with I, J, K all different.
It is important to realize that what is happening here is that if we have two pairs

of magnetic charges in this theory they can induce electric charge. Thus even if
our solution has no explicit electric source (no delta function on the right-hand
side of (2.242)) there can be non-trivial electric charge carried by the fields F (I )

themselves. Note that this phenomenon, and even the equation above, should look
very familiar from non-abelian gauge theories where the gauge field sources itself
and carries electric charge (think of glueballs in QCD). The difference is that here
we are dealing with an abelian theory, and the non-linear interactions arise because
of the strange second term in the action (2.240).

While it is obvious that Θ(I ) must be closed away from sources this is not the only
constraint they must satisfy. It is harder to show but it turns out that supersymmetry
also imposes that the Θ’s appearing above are self-dual so that

Θ(I ) = �4Θ
(I ). (2.243)
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Angular Momentum from Crossed Fields

Recall from electromagnetism that when the electromagnetic field has both an electric
and magnetic component it carries angular momentum in the form of a Poynting
vector

J = E × B. (2.244)

While the original solution given above had angular momentum coming from the
metric (2.231) encoded in the mixed metric components gti ∼ ki , the addition of a
magnetic field changes the angular momentum. This comes from the supergravity
equation

(1+ �4)dk = Z1Θ
(1) + Z2Θ

(2) + Z3Θ
(3), (2.245)

which modifies (2.233) in a way that is essentially analogous to (2.244) with Z I

encoding the electric field and Θ(I ) the magnetic.

Exercise 2.7.19 For a flavour of why a constraint like (2.243) might follow from
supersymmetry consider the action for electromagnetism in four space-time dimen-
sions

S =
∫

F ∧ �F (2.246)

and decompose F = F+ + F− into self-dual and anti-self-dual parts F± =
1
2 (1± �)F. Rewriting the action in terms of F± show that it takes the form

S =
∫ (

F+ ∧ F+ − F− ∧ F−
)
. (2.247)

If we put F = F+ (or put otherwise F− = 0) then the action is a positive definite
perfect square. This is related, morally, to supersymmetry because the latter has a
Hamiltonian H = {Q†, Q}which is also a sum of squares implying that the energy is
always greater an zero. In both cases solving the quadratic equations can be reduced
to solving linear ones:

F+ = 0, vs. Q|φ〉 = 0, (2.248)

and the solutions are minimal action and minimal energy configurations.

Overview Before Continuing

We have derived the following system of equations that describes a solution with 3
electric charges, 3 magnetic charges and angular momentum:
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Θ(I ) = �4Θ
(I ),

�4 Z I (x) = 1

2
CI J K

∣∣∣�4[Θ(J ) ∧Θ(K )]
∣∣∣ ,

(1+ �)dk = Z I Θ
(I ), (2.249)

where CI J K = 1 when all I, J, K are different and zero otherwise and the sum
over repeated indices is implied. On the right-hand side of the last two equations, we
silently assume the possibility of delta-function sources as well.

We wrote the equations in a suggestive order. To solve these equations, we first
have to find a set of self-dual two-forms Θ(I ) on R

4. Then we can solve the functions
Z I in terms of those two-forms. Finally, we need to construct the momentum k from
Z I and Θ(I ). Amazingly, this is a solution of supergravity, the low-energy limit of
string theory, and a solution to these equations is a supersymmetric supergravity
solution.

Before we solve this system in the specified order, we extend the four-dimensional
space R

4 to a non-trivial base space.

Non-trivial Base Space

So far we have taken the four-dimensional metric ds2
4 to be flat. However, it turns out

that supersymmetry does not require this space to be trivial but to be a more general
metric of hyperkähler type [63].

An interesting and pretty general class of four-dimensional metrics that are hyper-
kähler are the Gibbons-Hawking and Taub-NUT metrics which take the form of a
circle fibre (coordinate ψ) over flat three-dimensional R

3:

ds2
4 = V−1(dψ + A)2 + V (dr2 + r2(dθ2 + sin2 θdφ2)), (2.250)

where V depends only on the three-dimensional coordinates r, θ,φ and the one-form
A satisfies

∇ × A = ∇V . (2.251)

The fibre coordinate is periodically identified as ψ ∼ ψ + 4π.
The harmonic V on this space has the general form

V = ε0 +
∑

i

q0
i

ri
(2.252)

where now ri = |r− ri | and ri ∈ R
3. When working on R

3 space instead of R
4 we

will use the Hodge dual �3 and radial coordinate r instead of �4 and ρ.
Near a pole of V , the Gibbons-Hawking metric looks like R

4, as Exercise (2.7.20)
asks you to show. Asymptotically, at large r , the four-dimensional space is R

3× S1.
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Fig. 2.33 Taub-NUT space with the harmonic function V = 1 + n/r looks like a cigar. Near
r → 0, the ψ circle shrinks to zero size smoothly and space is locally R

4/Zn . Asymptotically, the
ψ circle is of constant radius and space-time asymptotes to R

3 × S1

Fig. 2.34 Multi-center taub-NUT space is a “bubbled geometry”. At each center, the size of the
ψ circle goes to zero and the geometry looks like smooth R

4/Zn . Asymptotically, the geometry is
R

3 × S1

We can read the radius of S1 from the asymptotic expansion of the metric as the
constant 1/

√
ε0. By varying ε0, we can thus interpolate between a compactification

to three dimensional flat space, and R
4 asymptotics by taking ε0 to be zero. See

Figs. 2.33 and 2.34 for depictions of single and multi-centered Taub-NUT spaces.

Exercise 2.7.20 Show that if we choose V = 1/r (with r the radial distance in
the R

3) we recover the trivial metric on R
4 globally. Hint: Change coordinates to

ρ = 2
√

r and show that the metric for small ρ becomes

ds2
4 = dρ2 + ρ2dΩ2

3 , (2.253)

with dΩ2
3 the metric on an S3 of unit radius. In doing so you show that the ψ circle

shrinks to zero size smoothly at the location of any pole in V since, whatever the
form of V , near a pole it looks like V = 1/r . Hence the space-time is smooth at
the location of the poles. (In fact, near a pole the function V looks like n/r for
some charge n. This leads to an orbifold singularity S3/Zn. Since string theory is
well-defined on orbifold backgrounds, we still consider this as a regular space-time.)

Exercise 2.7.21 invites you to explore the full eleven- and ten-dimensional solu-
tion with a Taub-NUT center and no M2-branes. They give respectively the eleven-
dimensional Kaluza-Klein monopole and the 6-brane of IIA supergravity.

Exercise 2.7.21 If we set Z I = 1 and V = 1 + n
r and we take the product of the

space-time (2.6) with R
1,6 then we get an 11-dimensional metric that is a solution
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of M-theory. As shown in the previous exercise this metric is smooth since the poles
in V actually do not give any singularities in space-time. Now check that we can
reduce on ψ and get a 10-dimensional solution corresponding to a D6-brane in IIA
supergravity (Hint: see Sect.2.4 of Amanda Peet’s lecture notes [20] or Polchinski [6]
Chap. 8 to see how to do the dimensional reduction). As a consequence, D6-branes in
M-theory lift to smooth geometries in M-theory since the D6-brane poles correspond
to poles in the V function which are smooth in 11-dimensional space-time.

2.7.3 Solutions to the Equations of Motion and Supersymmetry

We specify how to find the complete solution to the equations of motion and the
supersymmetry equations. These five-dimensional solutions were first described in
[64, 65]. First we repeat the ansatz for a torus compactification of M-theory to a
five-dimensional supersymmetric solution:

ds2 = −(Z1 Z2 Z3)
−2/3dt2 + (Z1 Z2 Z3)

1/3ds2
4 +

3∑
I=1

(Z1 Z2 Z3)
1/3

Z2/3
I

ds2
I , (2.254)

where dsI , I = 1, 2, 3 are the metrics on three T 2’s (for example ds2
1 = dx2

1+dx2
2 ).

The four-form field strength decomposes into three two-form field strengths as:

F4 = F (I ) ∧ ωI , F (I ) = d
(

Z−1
I (dt + k)

)
+Θ(I ). (2.255)

For the four-dimensional base space, we take the general class of Gibbons-Hawking
or multi-centered Taub-NUT metrics25

ds2
4 = V−1(dψ + A)2 + V (dr2 + r2(dθ2 + sin2 θdφ2))︸ ︷︷ ︸

R3

. (2.256)

For the rest of this chapter we work directly in five dimensions and will no longer
consider the compact part of the geometry (though that is easy to add in).

The solutions above involve unknowns k = ki dxi , Z I and Θ(I ) = 1
2Θ

(I )
i j

dxi ∧ dx j . They only depend on the coordinates of the three-dimensional flat base
space (the Taub-NUT angle ψ is an isometry of the solution). We take the base
space to be fixed but of course this means we should specify a V and then fix A
via ∇ × A = ∇V . When the base space is Taub-NUT (asymptotically R

3 × S1),
the five-dimensional solutions can be compactified to the four-dimensional solutions
found in [66, 67].

25 In fact, the requirement of supersymmetry only requires the base space to be hyperkähler. The
additional constraint of a Taub-NUT of Gibbons-Hawking metric makes it possible to solve for the
metric explicitly. For more information, see [41] and reference therein.
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Supersymmetry and the equations of motion can be simply repackaged into the
following conditions

Θ I = �4Θ
(I ), (2.257)

∇2 Z I = 1
2 CI J K

∣∣∣�4[Θ(J ) ∧Θ(K )]
∣∣∣ , (2.258)

(1+ �4)dk = Z I Θ
(I ), (2.259)

where CI J K is a completely symmetric tensor. For a more general supersymmetry-
preserving compactification of M-theory on a six-dimensional Calabi-Yau manifold,
CI J K is given by the triple intersection products of a basis of two-cycles on the
Calabi-Yau. We restrict to T 6 compactifications, for which CI J K = |εI J K |. Note
that in the second equation we write no longer �4 Z I but ∇2 Z I , since the solution
does not depend on the Gibbons-Hawking coordinateψ. We will also omit the explicit
possible delta function sources from now on.

As we noted before, now that we have specified the base space, we can solve this
system in three steps: first we need to give the self-dual closed two-forms Θ(I ), then
we solve functions Z I , and then we can solve k. Note that in every step, the procedure
is linear in the “new” unknown; hence this is a very tractable problem. We follow
the three steps now.

1. Self-Dual Two-Forms

First we construct the Θ(I ). On Taub-NUT space, like R
4, it is not hard to solve

Θ = �4Θ . First define the vielbeins

e0 = V−1/2(dψ + A), ei = V 1/2dyi , (2.260)

such that the four-dimensional Taub-NUT metric (2.6) is written as a sum of squares:

ds2 = (e0)2 + (e1)2 + (e2)2 + (e3)2. (2.261)

Then one can check that the two-form

Ω = (e0 ∧ e1 + e2 ∧ e3) (2.262)

is self-dual (Ω = �4Ω). There are actually three such self-dual Ω’s we can construct
by permuting the indices on the first term (the sign of the permuted second term is
fixed by self-duality).

Exercise 2.7.22 Check the above statement. First prove that

�4 (eA ∧ eB) = 1

2
εABC D(eC ∧ eD) (2.263)
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for A, B, C, D from 0 to 3. Then prove that the three Ωa defined as

Ω1 = e0 ∧ e1 + e2 ∧ e3, Ω2 = e0 ∧ e2 + e3 ∧ e1, Ω3 = e0 ∧ e3 + e1 ∧ e2,

(2.264)

are self-dual two-forms under �4.

The two-forms Θ(I ) must not only be self-dual but also locally closed (and hence
co-closed because they are harmonic). Thus we start with Ωa , a = 1, 2, 3 and
construct a closed self-dual two-form Θ as

Θ = ∂a

(
K

V

)
Ωa (2.265)

Exercise 2.7.23 asks you to prove that Θ is closed only if K is harmonic on the flat
three-dimensional space.

Exercise 2.7.23 Show that Θ defined in (2.265) is closed if K is harmonic on R
3

(∇2 K = 0).

Recall that a harmonic function K on R
3 satisfies∇2 K = 0 which has the general

solution
K = h +

∑
q

pq

|r− rq | . (2.266)

where rp are arbitrary vectors in R
3 at which H can be singular and the charges pp

and asymptotic value h are constants. In fact ∇2 H = 0 only holds away from rp and
this equation should be understood as∇2 K = pp δ(r−rp). We see that our solution
can have an arbitrary number of centers (‘sources’) on R

3.
Hence the magnetic fluxes of the solution are the self-dual and closed two-forms

Θ(I ) = ∂a

(
K I

V

)
Ωa, (2.267)

with K I three harmonic functions. We will write the harmonic function K I in terms
of charges and asymptotic constants as:

K I = hI +
N∑

q=1

pI
q

|r− rq | . (2.268)

2. Warp Factors

The system of Eq. (2.257) is essentially linear if solved in the right order (there are no
quadratic interactions or fields sourcing themselves quadratically). So once we have
Θ we can plug it into (2.258) and solve for the ‘warp factors’ Z I . The solution must
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be sourced by the right-hand side of (2.258) but can also include a homogeneous
contribution that solves the equation ∇2 Z I = 0. Combining these we get

Z I = CI J K K J K K

V
+ L I , (2.269)

where L I are three more independent harmonic functions (on R
3) satisfying

∇2L I = 0:

L I = hI +
N∑

p=1

qI,p

|r− rp| (2.270)

Exercise 2.7.24 Check that Z I given in Eq. (2.269) satisfies (2.258).

3. Rotation One-Form

The final Eq. (2.259) simply reproduces the (anti-)self-duality condition we men-
tioned above (dk = − � dk) in the absence of explicit magnetic source (Θ = 0).
When such sources are turned on we solve this equation by decomposing k through
the following ansatz:

k = μ(dψ + A)+ ω, (2.271)

with ω = ωi dxi a form on R
3 and μ a function of the three-dimensional coordinates.

Exercise 2.7.25 Show that plugging the ansatz (2.271) into (2.259) yields an equa-
tion for ω and μ:

∇ × ω = (V ∇μ− μ∇V )− V Z I ∇
(

K I

V

)
(2.272)

where as always we sum over I = 1, . . . , 3.

To solve the Eq. (2.272) forωwe take a further divergence and use ∇ ·(∇×ω) = 0
to obtain

V∇2μ = ∇ ·
(

V Z I ∇
(

K I

V

))
. (2.273)

Exercise 2.7.26 Show that this can be solved as

μ = 1

6
CI J K

K I K J K K

V 2 + 1

2

K I L I

V
+ M, (2.274)

with M a harmonic function. The corresponding solution for ω satisfies

∇ × ω = V ∇M − M∇V + 1
2 (K I ∇L I − L I ∇K I ) (2.275)
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There is a nice and clean way of writing the solution for ω in terms of the harmonic
functions. Write the harmonic functions as a vector

H ≡ (V, L1, L2, L3;M, K1, K2, K3). (2.276)

Then the right-hand side of (2.275) defines a symplectic product of such matrices:

∇ × ω = 〈H,∇H〉. (2.277)

While it is possible to get an explicit form for ω in simple examples, one generally
has to resort to patches to specify the solution for ω given the harmonics V, K I , L I

and M .

Exercise 2.7.27 Show that on a flat base in absence of magnetic charges (Θ(I ) = 0),
you reproduce the earlier expression for k of Eq. (2.235). Use Exercise 2.7.20 for the
coordinate transformation to flat space

ds2
4 = dρ2 + ρ2(dθ2 + sin2 θ dφ2

1 + cos2 θ dφ2
2), (2.278)

and take a single center with M = m/r . Determine the relation between J and m.

2.7.4 Physical Solution and Fuzzballs

Above we have shown that the solution can be specified in terms of eight harmonic
functions V, K I , L I and M . We started with a black hole with harmonic functions
Z I = L I , encoding three electric charges, and angular momentum encoded by the
harmonic function M . In terms of eleven-dimensional M-theory, we have the brane
interpretation:

M2’s: L1, L2, L3 Angular Momentum: M

Now we have also 3 magnetic fields, given by the harmonic functions K I , and a
magnetic geometric charge (of the Gibbons-Hawking space), encoded by V . The
black hole charge can be dissolved in the magnetic fields. In M-theory language,
these correspond to

M5’s: K 1, K 2, K 3 Kaluza-Klein monopole: V

For concreteness, we fix a notation for the charges and constants of the harmonic
functions. We organize the harmonic functions in a symplectic vector H :

H = (H0, H I , HI , H0) ≡ (V, K I , L I , M). (2.279)

The symplectic vector of harmonic functions is written in terms of a symplectic array
of constants h and charges Γ at each center:
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H = h +
N∑

q=1

Γq

|r− rq | , (2.280)

with
h = (h0, hI ; hI , h0), Γ ≡ (p0, pI , qI , q0). (2.281)

For later use, we define the symplectic product of any two symplectic vectors A, B
as:

〈A, B〉 = A0 B0 − A0 B0 + 1
2 (AI BI − AI B I ). (2.282)

In the remainder of this section, we give the physical requirements one has to
impose on the solutions, and we show how we can construct microstate geometries.

Physical Requirements

At this point, getting the solution from harmonic functions is like blindly using a
computer. We still have many questions: Are these solution physical? What are their
properties? Are there singularities? We will answer these questions now.

We start with the vector ω that describes the angular momentum of the metric in
R

3. To have it well-defined in space-time, the divergence of (2.277) should be zero:

∇ · (∇ × ω) = 0. (2.283)

This gives a condition on the harmonic functions. First we write them as the sym-
plectic product of the vector of harmonic functions H :

H = h +
∑

i

Γi

|r− ri | . (2.284)

Then (2.283) gives the condition:

〈H,∇2 H〉 = V∇2 M − M∇2V + 1
2 (K I∇2L I − L I∇2 K I ) = 0. (2.285)

The leading terms are those at the positions of the centers. Writing the charges for a
harmonic functions at each center as Γi = (p0

i , pI
i , qI,i , q0,i ), we have

∑
j

〈H, Γ j 〉δ(r j ) = 0. (2.286)

Demanding that each delta function contribution is zero gives one condition for each
center ri :
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0 = 〈Γi , h〉 +
∑

j

〈Γi , Γ j 〉
ri j

, (2.287)

with the relative distances
ri j = |ri − r j |. (2.288)

The physical interpretation of these equations is to assure there are no Dirac-Misner
strings in the geometry (such that there is no source on the right-hand side of (2.283)).

Once the charges are fixed, the Eq. (2.286) then give constraints on the center posi-
tions ri : these equations tell you where the points are. We call these ‘bubble equations’
(giving rp’s in terms of Q’s), because the resulting geometries have ‘bubbles’ (non-
trivial two-cycles). Other names for these equations are ‘integrability equations’
(term coined by the original discoverer, Denef [66, 67]) and ‘Denef equations’, in
the context of the related four-dimensional solutions.

Two-Center Solution Space

What is the space of solutions of the bubble equations? For simplicity, we restrict to
two centers first. Then there is only one equation:

〈Γ1, Γ2〉
r12

+ 〈Γ1, h〉 = 0. (2.289)

We should have 〈Γ1, h〉〈Γ1, Γ2〉 < 0 to find a solution. This equation then fixes the
distance r12. The space of solutions is given by 2 points fixed by a rigid rod. The
system has two degrees of freedom: two points in space-time have three degrees of
freedom in R

3 (three for each point, minus three for the center of mass), and the
bubble equation fixes one. The solution space is the S2 of possible positions of the
second point at a distance r12 of the first one.

The vector of constants, h, determines the asymptotics of the harmonic functions
through Hr→∞ = h and it determines what the space looks like asymptotically (for
instance it contains a constant h0 for the harmonic function V = h0 + p0/r in the
metric). For fixed charges Γ1, Γ2, the constants h also describe an interesting moduli
space. Fix the charges such that 〈Γ1, Γ2〉 > 0. The value of h then determines if we can
find a solution to the bubble Eq. (2.289). Take for instance a geometry with constants
h such that 〈Γ1, h〉 < 0 and the bubble Eq. (2.289) have a solution. By tuning the
asymptotic parameters h, we could go from 〈Γ1, h〉 < 0 to 〈Γ1, h〉 = 0 and even
〈Γ1, h〉 > 0: the solution disappears. It is no longer a valid physical solution. If we
look at the solution space in function of the asymptotic parameters, the boundary
〈Γ1, h〉 = 0 determines a “wall of marginal stability”. When crossing a wall of
marginal stability (“wall-crossing”), these states just disappear. When 〈Γ1, h〉 < 0,
the solution is part of the solution space, and we have an entropy associated to them
(the ‘number’ of such states). When we cross the wall of marginal stability in the
moduli space of allowed constant parameters h, the solution is gone and the entropy
that counts all allowed solutions jumps.
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Three-Center Solution Space

We turn to the more interesting solution space for three centers. The vector of har-
monic functions is.

H = Γ1

|r− r1| +
Γ2

|r− r2| +
Γ3

|r− r3| + h. (2.290)

From (2.286), we get three equations, one at each center (from the δ(ri )-contributions)

〈Γ1, Γ2〉
r12

+ 〈Γ1, Γ3〉
r13

+ 〈Γ1, h〉 = 0,

〈Γ2, Γ1〉
r12

+ 〈Γ2, Γ3〉
r23

+ 〈Γ2, h〉 = 0,

〈Γ1, Γ3〉
r13

+ 〈Γ2, Γ3〉
r23

+ 〈Γ3, h〉 = 0. (2.291)

These equations can be thought of as describing a balance of forces. The symplectic
products pairs electric with magnetic charges (M, L I are electric, K I , V magnetic).
We get a huge angular momentum forcing the points away from each other. But
because of supersymmetry, all forces cancel and any solution is perfectly stable.

Define
Ai j ≡ 〈Γi , Γ j 〉. (2.292)

Note that the symplectic product is antisymmetric and hence so is the matrix A. By
a cyclic permutation of charges at the different centers, we can always take

A12 > 0, A23 > 0, A31 > 0. (2.293)

Then the bubble equations are

A12

r12
− A31

r13
+ h1 = 0,

− A12

r12
+ A23

r23
+ h2 = 0,

A12

r12
− A23

r23
+ h3 = 0, (2.294)

where the constants hi are defined as hi = 〈Γi , h〉. Only two of these equations are
independent (for instance the sum of the first two gives the third one), and they leave
only one of the distances ri j unfixed. In total, three centers in R

3 have 6 degrees of
freedom (or “dof’s”), three for each center minus three for the center of mass (only
relative positions are important). The bubble equations fix two more. We thus have
4 degrees of freedom left. We can take these to be
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• The radius r13 (1 dof)
• The orientation of r13 (2 dof’s)
• The U (1) angle around r13 (1 dof)

When we would consider n points instead of 3, the bubble equations allow for a
2(n − 1)-dimensional space of solutions (Fig. 2.35).

Scaling Solutions

One solution looks very interesting. If the triangle inequalities are satisfied:

|A12| + |A23| ≥ |A31|, (2.295)

(and cyclic), there is a limit where the radii go to zero:

r12 = |A12|ε+O(ε2),

r13 = |A13|ε+O(ε2),

r23 = |A23|ε+O(ε2). (2.296)

As ε→ 0, the bubble equations are satisfied up to first order, because the constants
hi can be suitable ‘eaten up’ by order O(ε) terms in

Ai j
ri j
= 1

ε +O(ε). The ri j ’s are the
lengths of the sides of a triangle and always satisfy triangle inequalities. The limit
ε→ 0 can only be done when also the |Ai j | satisfy the triangle inequalities. We then
have a limit where all radii go to zero. The points sit on a fixed triangle which gets
smaller and smaller. If the triangle inequalities are not satisfied, we cannot have such
a scaling limit.

Scaling Solutions

What is so special about these solutions? We have stated before the idea to replace
the black hole geometry with some other object. In this section, we have made this
more concrete. We can find an object with the same (electric/M2) charges as the
black hole, but which also has magnetic dipole charges. The black hole is replaced

(a) (b) (c)

Fig. 2.35 A three-center configuration has 4 free parameters by the bubble equations. a S2 of
orientations of r13. b Scale of r13. c U (1) angle around r13
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by a solution with many centers and magnetic charges, by finding the solution from
the harmonic functions H = (V, K I , L I , M).26

The solutions can ‘go scaling’, such that the several centers can come closer and
closer, by sending some control parameter ε→ 0, as in Eq. (2.296). When ε = 0 and
the centers are on top of each other, we recover the black hole (Fig. 2.36).

Remember that we were considering extremal black holes. These have an infinitely
deep throat.27 A scaling solution with scaling size ε, has a throat of length L ∝ − ln ε.
As ε → 0, you get a throat with a cap that gets longer and longer. These solutions
form an infinite family, see Fig. 2.37 for an illustration.

A paradox

The scaling solutions form an infinite family: we can make ε smaller and smaller,
we always find good solutions. But from AdS/CFT, we know that there is a finite
entropy

S = √
Q1 Q2 Q3, (2.297)

which tells us there is a finite number of states. This is a puzzle [68]:

• Nmicro = eSB H is large but finite.
• Nclass. grav. (number of smooth solutions) is infinite.28

How to reconcile these pictures? That’s for the next section!

Fig. 2.36 Replacing the
black hole with a multi-center
configuration

26 In fact, there are certain conditions the harmonic functions H have to obey such that the multi-
center geometry is also smooth and horizonless at each center. We will not dwell on that, see [41]
for more information.
27 By ‘infinite throat’, people mean that the spatial metric distance

∫
ds to the horizon from any

point outside the horizon blows up.
28 Note: only a subset of this multi-center solutions are actual fuzzballs. We need some more
information to discuss them, we will leave it at this for the moment.
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Fig. 2.37 For every value of
ε we find a scaling solution
with a deep throat. As ε→ 0,
we recover the infinitely deep
black hole throat

2.8 Quantizing Geometries

So far we have studied a large class of supersymmetric multi-centered solutions
and have suggested that they are related to the microstates of large supersymmetric
black holes. But to make this connection between classical geometries and quantum
states we have to “quantize”. Since these are gravitational solutions quantizing them
seems rather daunting and certainly we do not know how to do this in full generality.
Rather here we will introduce a powerful covariant formalism for quantizing systems
without resorting to a Hamiltonian formulation (which would be tedious in this case).
In particular we will show how the solution space of a system is formally equivalent
to the phase space and how we can thus construct states directly on this space. This
construction usually goes under the name of “geometric quantization” but we will
eschew many of the mathematical technicalities that usually are associated with this.
Rather we will focus on explaining why this makes sense.

Note that we will make heavy use of supersymmetry as we do not have access to
the full solution space of the theory but rather only some supersymmetric truncation
of the latter. Quantizing a sub-space of a system is not necessarily a consistent thing
to do but in this case we can rely on supersymmetry-based arguments (and explicit
matching with expectations) to see that the Hilbert spaces we generate are a good
approximation to the actual Hilbert space of the system.

2.8.1 Constraint Equations and Solution Space

To keep this chapter well-contained, we choose to recall the necessary background
material discussed in previous sections.

We start in eleven-dimensions from the metric and gauge field

ds2 = (Z1 Z2 Z3)
−2/3dt2 + (Z1 Z2 Z3)

1/3ds2
4 + ds2(T 6),

F4 = [d(Z−1
1 (dt + k))+Θ I ] ∧ dx1 ∧ dx2 + · · · (2.298)
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Fig. 2.38 The multi-center
solutions are sourced on
multiple positions in the R

3

base of Taub-NUT space

with the four-dimensional multi-center Taub-NUT metric

ds2
4 = V−1(dψ + A)+ V ds2(R3). (2.299)

The functions Z I , one-form k and two-forms Θ I that determine the solution are
found from the harmonic functions

H ≡ (V, K I , L I , M), (2.300)

as explained in the previous section (Fig. 2.38).
The harmonic functions satisfy a sourced harmonic equation:

∇2 H =
∑

i

Γpδ(r− rp). (2.301)

The solution is

H =
N∑

p=1

Γp

|r− rp| + h0, (2.302)

where rp are the position vectors of the different centers in R
3 and h0 is a vector of

constants for the different harmonic functions. The charges at each center give poles
in the harmonic functions, corresponding to multiple sources, and each may or may
not have a horizon (depending on the charge Γp at the center).

Given a set of asymptotic charges Γ =∑N
p=1 Γp the space of all possible solu-

tions with N centers is given by all the possible ways of arranging these centers
in R

3.
At first glance, we would think this space is R

3N−3, the space of locations of N
centers on R

3.29

However, the positions of the centers are constrained in terms of the charges, by
the bubble or Denef equations introduced in the last section:

29 Only the relative positions are of importance, hence the degrees of freedom of one of the centers
do not count and we get 3N − 3 coordinates that specify a physical solution with N centers.
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∀p :
N∑

q = 1
q �= p

〈Γp, Γq〉
|rp − rq | + 〈Γp, h〉 = 0. (2.303)

We write the harmonic functions and charges as symplectic vectors:

H = ( V, K I︸ ︷︷ ︸
elec.

, L I , M︸ ︷︷ ︸
magn.

), Γ = (p0, pI , qI , q0). (2.304)

with I = 1, 2, 3 giving us either possible charges at each center.
Given two symplectic vectors of harmonic functions H and H ′ recall that there

exists a symplectic inner product that couples electric and magnetic components

〈H, H ′〉 = V M ′ − MV ′ + K I L ′I − L I K ′ I . (2.305)

Note that this pairing is antisymmetric. You should think of it as giving momentum
from crossed electric and magnetic fields, similar to the Poynting vector in electro-
magnetism:

J = E × B. (2.306)

The constraints (2.303) have a clear physical meaning. The first way to understand
them is through supersymmetry. Each individual center breaks N = 2 supersym-
metry of the supergravity theory to a particular N = 1 subgroup. Generically all
the centers break N = 2 to a different residual N = 1 (encoded in a U (1) valued
phase) but when the distances between the centers satisfy the Eq. (2.303) the N = 1
supersymmetry preserved by all the centers are compatible and thus the combined
system preserves an overall N = 1 supersymmetry.

There is a second interpretation of the constraints (2.303). Consider for concrete-
ness a solution with two centers. The Poynting vector gives an angular momentum
“binding”. For electromagnetism in flat space, we get for a magnetic charge m and
an electric charge q that

J = qm

2
, (2.307)

no matter what the distance is between the two centers. With gravity, the angular
momentum depends on the distance between the centers:

J = qm

r
, (2.308)

and there is a non-zero force. The constraint equations can be interpreted as the
condition for all those forces to balance.

Exercise 2.8.28 Show that the sum over p (from 1 tot N) of (2.303) is zero.
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From Exercise 2.8.28, we see that there are in fact only N − 1 independent
constraints. Therefore, the solution space is a (2N − 2) dimensional submanifold of
R

3N−3:
M2N−2 ⊂ R

3N−3. (2.309)

For instance, for two centers we get

M2 ⊂ R
3. (2.310)

The constraint fixes the distance r12 = |r1 − r2| so M2 corresponds to the possible
rotations of the position r2 around r1 with fixed inter-center separation r12. This is
of course nothing but a two-sphere

M2 = S2. (2.311)

The constraint equations should be understood as follows. When we fix the asymp-
totic charges, there is still a continuous family of positions we can vary. Hence the
solution space itself is a function of the charges M2N−2(Γp).

Our goal here will be to calculate the “number of states” in a fixed solution space.
The reason to undertake such a computation is the following. For a given charge vector
Γ , if we consider all possible decompositions in to multiple centers Γ = ∑

p Γp

and compute the states from each such solution space, we may hope that this can
reproduce the entropy of a single center black hole with total charge Γ . If so then
we have a found a good supergravity realization of the black hole microstates. But
to convert the solutions above into “microstates” we have to quantize the solution
space. Therefore we first give some basic quantum mechanics to see how to get a
quantum space out of a classical solution space.

2.8.2 Basic Quantum Mechanics

We recall classical mechanics in the Hamiltonian symplectic formalism, its quanti-
zation and the concepts of phase space and its relation to the space of solutions.

Hamiltonian Formulation

Let us recall the basic simple formulation of quantum mechanics (which is not
covariant) and then try to modify it to make it more covariant. If we start with a
Lagrangian of a system with positions q:

L(qi , q̇i ). (2.312)

with i = 1, · · · , n then the generalized momenta are



158 I. Bena et al.

pi = ∂L

∂q̇i
. (2.313)

From this Lagrangian we can derive an associated Hamiltonian which is a function
of the positions and generalized momenta only (for ease of notation we will mostly
suppress indices on position and momentum vectors)

H(q, p) = pq̇ − L . (2.314)

In terms of which the equations of motion are

ṗ = −∂H

∂q
,

q̇ = ∂H

∂ p
, (2.315)

Of course we could have foregone a Lagrangian and simply postulated a Hamiltonian
system directly but the connection with a Lagrangian formulation will be important
in what follows. The Hamiltonian formulation is based on the phase space which is
the space of positions q and momenta p on a fixed time slice. It is this dependence
of a choice of time slice (and direction) that makes the formulation non-covariant.

An essential ingredient in the Hamiltonian formulation of classical mechanics is
the Poisson bracket, defined on any functions on the phase space, via

{ f, g} = ∂ f

∂ p

∂g

∂q
− ∂ f

∂q

∂g

∂q
. (2.316)

In the simple systems first encountered in physics we often have {q, p} = 1 but this
need not always be the case and this is one of the reasons a more general formulation
is necessary. More generally we expect some bivector ω such that

{qi , p j } = ωi j . (2.317)

While locally we can find coordinates such that ω is diagonal this need not hold
globally. It is very important, however, that ωi j be invertible as this allows us to find
a symplectic two-form:

ω ≡ ωi j dqi ∧ dp j . (2.318)

which defines a symplectic structure on the phase space. Thus in general the Hamil-
tonian formulation requires the set of data (p, q, H,ωi j ).

We have tacitly assumed above that there is some natural choice of p’s and q’s
on the entire phase space but if the latter is some non-trivial manifold then we need
to cover it with patches. How then does one define, on each patch, which local
coordinates should be thought of as positions and which momenta?
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Fig. 2.39 A n-dimensional
subspace Mn

A more covariant way to do this is to consider n-dimensional subspace Mn of the
2n-dimensional phase space, as in Fig. 2.39, on which the pullback of the symplectic
form vanishes:

ω|Mn = 0, (2.319)

Such subspaces are referred to as Lagrangian submanifolds and they are interesting
because if we consider any local coordinates, xi , on them then by virtue of (2.319)
we have

{xi , x j } = 0, (2.320)

This is non-trivial because the x may be some non-trivial combination of p and q.
The fact that they nonetheless have vanishing Poisson brackets mean they can be
thought of as a new set of canonical positions. Thus Lagrangians in phase space are
a covariant generalization of the splitting of phase space coordinates into canonical
position and momenta.

So far we have used classical notions such as Poisson brackets but this discussion
generalizes to quantum mechanics. To quantize a classical system we replace the
Poisson bracket by a commutator (or anti-commutator for fermions)

[q, p] = i�. (2.321)

Thus the p’s and q’s can no longer correspond to 2n numbers but rather half of them
are now operators. Normally, we take the q’s to be commuting numbers, and p are
their derivatives

p = �

i

∂

∂q
. (2.322)

Thus we see a Lagrangian subspace is nothing other than a space of mutually com-
muting variables

[xi , x j ] = 0, (2.323)

Once more such manifolds define (in a covariant way) natural slices of phase space
that we can think of as position spaces.

This notion is quite important because in quantum mechanics states must be
functions of only one set of canonical variables – the position or the momenta but
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not both. Thus Lagrangian submanifolds allow us to define the Hilbert space of states
in a nice covariant way as the space of (wave) functions on a Lagrangian submanifolds

H = {ψ(x) ∈ L2(Mn, C)}. (2.324)

The advantage here over the usual formulation is that we have covariantized our
approach as the Eq. (2.319) is a coordinate-invariant statement. Moreover this
approach generalizes to more complex systems where the phase space (the space
of (qi , pi )) is not merely R

2d but some more complex manifold. Of course we are
implicitly assuming there is some nice foliation of the phase space into time slice
Mn(t) where t is some parameterization of time.

A consequence of this more formal description of the quantum phase space is that
it yields another way to compute the number of states. This is simply the symplectic
volume of the phase space: (up to some subtleties that we can neglect)

# states =
∫

phase space
ωn . (2.325)

where we note that ωn is a 2n-form that we can integrate over the entire space.
Classically this does not count states because it is not integer quantized. In quantum
mechanics, however, we think of ω as partitioning the phase space into Plank-sized
cells. As a consequence its volume must be normalized such that the volume is
integrally quantized (Fig. 2.40).

Mathematically, this can be justified because the wave functions are actually
sections of a bundle defined on Mn and associated with ω (which is essentially its
curvature). Thus the integral above computes (again, up to some subtleties) the index
of an operator D associated with this bundle:

ind D =
∫

(. . .). (2.326)

Recall that an index counts the number of (chiral) zero modes of a particular operator
and this is an integral quantity. In our setup, things are simple enough that the (. . .)
are just ωn .

The current treatment raises an important question:

• Classically, we expect an infinite number of states (everything is continuous).
Hence we should be able to go anywhere in phase space and have an infinite
number of allowed states. But

∫
ωn should be finite? Is there a clash?

We will answer this question explicitly in an example below. Yes, classically the
number of states is infinite, but the volume of phase space is finite. Only in quantum
mechanics, the volume is the number of states.

Exercise 2.8.29 Consider a particle in a box of length L.

1. Compute the number of quantum states: calculate the integral
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(a) (b)

Fig. 2.40 Classical versus quantum phase space. The volume of classical phase space can be a
real number, in quantum mechanics it is an integer. a Classically, we can continuously integrate
histories. b In quantum mechanics, phase space is a discrete grid of points

∫ L

0

∫ pmax

0
ω, (2.327)

with
[x, p] = ω−1 (2.328)

and pmax should be allowed quantum values (see a textbook on quantum mechan-
ics). Convince yourself this integral counts the number of states.

2. Repeat the calculation for a two-dimensional box.

Let us consider a simple example to get a better feel for this formalism. Take the
Hamiltonian of a free particle

H = 1
2 p2. (2.329)

Given q and p, we can always define the complex coordinates on phase space:

z = q + i p , z̄ = q − i p. (2.330)

Then we have the commutation relation

[z, z̄] = 1. (2.331)

In terms of z, z̄ it is no longer obvious which coordinate is a “position” and which
a “momentum” and we must make an arbitrary choice. We can, for instance, take
wave functions to depend only on z:

ψ(z). (2.332)

Now the number of states is counted by an index
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ind (∂̄) = # states, (2.333)

with ∂̄ the Dolbeault operator because clearly ∂̄ψ(z) = 0 so wave functions are
simply functions annihilated by ∂̄. Note that this method needs a complex structure
on phase space, which can not always be defined. For a simple manifold like R

2n it
can be done. If there is a complex structure, then it turns out that the above gives a
good way to quantize.

Consider now a slight extension of the free particle model. Couple it to an elec-
tromagnetic field. The Lagrangian is

L = 1
2 (q̇ + Aq)2. (2.334)

The canonical momentum is
p = q̇ + Aq. (2.335)

This is very different from previous examples! Even if there is no velocity, q̇ = 0,
there is still a non-vanishing momentum. When there are space components of the
gauge field

Ai �= 0, (2.336)

the position themselves no longer commute:

ωi j = [qi , p j ] = A j [qi , q j ] �= 0. (2.337)

The non-commutativity of phase space becomes a non-commutativity of the physical
space due to the magnetic field Ai .

From Phase Space to Solution Space

So far we have reformulated quantum mechanics in a slightly more covariant and
general language but let us see what this is useful for. Here we will try to prove the
following claims:

1. The number of states is the symplectic volume of phase space.
2. Phase space is isomorphic to solution space (up to some caveats).

and hence:

• The number of states is the symplectic volume of solution space.

The first claim we have already argued in the previous section. The last one follows
trivially from the other two. Thus we are left with demonstrating the validity of our
second claim above.

Given any initial point in phase space {q0, p0} there is a prescription to generate
an entire “history”: namely we integrate using the equations of motion with initial
conditions {q0, p0}. The p’s act morally as velocities, and they allow us to integrate
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q(t0) for any t0 to a further time step (see Fig. 2.41). Thus any point in phase space
corresponds to a full solution to the equations of motion (a “history” of the particle
or system).

Conversely, given a solution q(t) to the equations of motion and a choice of time
slice at for instance t0, we can unique extract a point in the phase space by simply
reading off {q(t0), p(t0)} evaluated on the solution q(t) at time t0. Thus, once a time-
slice is fixed, each solution uniquely maps to a point in the phase space (Fig. 2.41).
Combining these observations we have now proved our second claim above.

What’s more there is a natural way to compute the symplectic form directly in
the Lagrangian formulation. This allows us to use the solution space to compute
both the number of states and their explicit form without ever needing to use a
Hamiltonian formulation (going to the phase space and formulating everything in
terms of conjugate variables).

An important subtlety, however, is that the arguments made above apply to the
full solution space and phase space—it is these full spaces that are isomorphic. It is
not clear, if we restrict to a subspace of the solution space, whether this maps to a
proper phase space. This is important in this situation because the supersymmetric
solution space is exactly such a truncation.

2.8.3 Intermezzo: From QM to QFT and GR

We want to go from quantum mechanics (QM) to Quantum Field Theory (QFT). In
QM, the points at time t are unconstrained, and the wave function ψ(x) is a function
of the unconstrained positions. In QFT, the points on each time slice are now fields
φ that are constrained by the equations of motion, and the wave functional Ψ (φ) is a
function of those constrained fields. Note that we use the formulation of time slices
and evolution of the fields from one to the other defining wave functions on each
slice. This is equivalent to the path integral formulation

〈ψ′|ei Ht |ψ〉 =
∫

De−S . (2.338)

Fig. 2.41 Left given an initial
configuration at t = t0, we
can integrate the equations
of motion to obtain the full
solution q(t), p(t). Right
given a solution q(t), we have
a phase space at every t

(a) (b)
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In field theory, the coordinates and momenta are replaced by fields:

q → φ(x)

p→ Π(x) = ∂L

∂φ̇
. (2.339)

As before for quantum mechanics, in field theory we consider the fields on a spatial
slice such as the one in Fig. 2.42.

In GR, things are a little more tricky than in field theory because the background
is not fixed. We will not address these subtleties here but will simply assume we find
a nice foliation of all the space-times we consider. We define spatial slices Σ such
as the one in Fig. 2.43 and we use a metric adapted to the slices

ds2 = (N 2 + βkβ
k)dt2 + 2βkdxkdt + hi j dxi dx j , (2.340)

in terms of the data
(hi j ,βk, N ). (2.341)

where now hi j is a metric on the spatial slice.
One finds that βk and N are non-dynamical variables as their momenta are zero:

Πβ = 0, Π N = 0. (2.342)

These equations can be interpreted as constraints on the other fields. The only dynam-
ical variables are then the three-dimensional metric hi j and its momenta Πh :

Π
i j
h ≡

δL

δ∂t hi j
. (2.343)

What terms contribute to the momentum Πh? These are terms in the Lagrangian
of the form:

Fig. 2.42 Fields on a spatial
slice of constant t
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Fig. 2.43 GR on a spatial
slices Σ

L = · · · + ∂t hi jΩ
t,i j + · · · (2.344)

Assume first that βk = 0. Then the metric has no mixed spatial-temporal compo-
nents:

gμν = gi j + gt t , (2.345)

and ∂t hi j can only talk to something else (Ω t,i j ) with another time derivative and
hence

Π i j ∼ ḣi j . (2.346)

For time-independent solutions we would thus have Π i j = 0. Thus if we consider
families of static solutions (time-independent and no mixed terms in the metric) they
cannot map to a full phase space as they contain no momentum-like variables. Instead
such solutions map to a Lagrangian submanifold of the full phase space (they form
a “configuration space” rather than a phase space).

If, on the other hand, βk �= 0 then ∂t hi j can couple to terms like ∂igt j etc., with
spatial derivatives. Therefore,

Π i j ∼ time independent terms, (2.347)

which means Π i j �= 0 even for time-independent solutions. Remember that the
multi-center metrics we were looking are of this sort since they are stationary (time-
independent with mixed terms gti ∼ ki terms coming from a (dt + ki dxi )2).

Therefore, the commutation relations go as

[hi j ,Π
kl ] ∼ [hi j , hkl ], (2.348)

analogous to the previous example of a particle in a magnetic field with

[qi , p j ] ∼ [qi , q j ]. (2.349)

The spatial metrics no longer commute on the phase space. This will be very important
for getting the number of states.
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Crnkovic-Witten-Zuckerman Formalism

Since we are working with solution spaces we want a covariant formalism rather
than the non-covariant GR Hamiltonian formalism we discussed above. Let us see
how to arrive at this. Consider a class of solutions with a spatial foliation with each
time slice being a Cauchy surface

Σ = Cauchy surface. (2.350)

Define

ω :=
∫

Σ

dΣ� J �, (2.351)

Here J � is the “symplectic current” associated with the action (see below). We have
introduced the (D − 1)-form

dΣ� = Σμ1...μD−1�dx1 ∧ . . . ∧ dx D−1. (2.352)

which is just the volume form on the Cauchy surface. Then ω is a two-form on the
space of fields. The symplectic current is

J� = δ
[

δL

δ∂�φk

]
∧ δφk, (2.353)

where φk runs over the fields. If � = 0, we get J0 = dΠ ∧ dφ, reminiscent of the
symplectic form in mechanics dp ∧ dq. But unlike the standard formulation this
is covariant as we have not fixed a coordinatized notion of time. Rather by using
spacelike foliation we get a covariant notion of time as the direction normal to the
slices (but with no reference to a coordinate system).

Exercise 2.8.30 Play around with ω:

1. Show that ω is closed under a field variation

δφω = 0. (2.354)

2. Show that the symplectic current is conserved

∂� J � = 0. (2.355)

You need to impose the equations of motion for one of these.

From the exercise we see that ω does not vary from slice to slice (because it is
conserved).
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Fig. 2.44 At large gs N , we have the supergravity multi-center solution. Each center can be either
a black hole (with a horizon), or some horizonless singularity, or a smooth center etc. For small
gs N , we just have non-back-reacting branes at several positions in flat space-time

2.8.4 Back to Solution Space

Now we have the pieces in place to quantize our space of solutions. We begin by
evaluating the symplectic form for the Lagrangian of M-theory. The fields are the
metric and the four-form and are evaluated at the positions on solution space:

φ� = {gμν[rp], Fμνρσ[rp]}. (2.356)

The symplectic form looks like

J � = δ
[

δL

δ∂�g[rp]
]
∧ δg[rp] + four-form term. (2.357)

The two-form ω will be something like

(. . .) ∧ drp, (2.358)

where each {rp} parametrizes a metric; these are the “coordinates” of our solution.
How to do this? Remember that the constraint equations come from the integra-

bility condition of the defining equation for ω (which is part of the metric gμν):

∇ × ω = V ∇M + · · · . (2.359)

We need to find ω(rp), construct g(ω) and then we can find J �. This is very difficult
because inverting Eq. (2.359) cannot be easily done.

We will follow the lazy string theorist approach and use supersymmetry to our
advantage. The back-reacted supergravity system is valid for gs N 
 1. As we
discussed in previous sections, when gs N � 1, we just have a quantum mechanical
theory on branes at the positions of the centers on eleven-dimensional flat space-time
R

3 × T 6 × Rt , see Fig. 2.44.
It can be shown that on each gs N side the solution space and the symplectic form

are protected because of supersymmetry (the proof uses the fact that both are deter-
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mined by the certain terms in the Lagrangian whose form is fixed by supersymmetry
and thus cannot change even as we vary gs N ). Moreover one can check by explicit
computation that the solution spaces at strong and weak coupling are exactly the
same. For instance, for 2 centers, we still find S2 as the solution space. Thus we are
free to compute the symplectic form directly in the brane quantum mechanics which
is a much easier computation.

The result we get from the gs N � 1 quantum-mechanics-on-branes calculation
is

ω = 1
4

∑
p,q

〈Γp, Γq〉
r i

pq

|rpq |2 εi jkδr
j
pq ∧ δrk

pq , (2.360)

and we defined
rpq = rp − rq . (2.361)

The real coordinates in this calculation are the rpq , vectors between the centers. While
we do not show the detailed derivation of this formula here (the interested reader
can find it in [69]) its origin is very easy to understand. Recall from the discussion
in the previous section that an electrically charge particle in the background of a
magnetic field has a coupling (q̇ + eAq), with e the electric charge, and this leads
to a canonical momentum of the form

p = eA(q) q. (2.362)

The symplectic form (2.360) is exactly of this form: each center feels, via 〈Γp, Γq〉
an electric-magnetic coupling to the gauge field generated by any other center which
is “magnetically” charged with respect to it. So (2.360) is really just of the form
ω = A(q)δq ∧ δq where we have plugged in the appropriate value for A(q).

Morally, the δr j
pq ∧δrk

pq are like the dxi ∧dx j contributions in quantum mechan-
ics. As before, this means that coordinates do not commute:

[r i
pq , r j

pq ] = ωi j �= 0. (2.363)

Note that the r i
pq only talk with the r j

p′q ′ when p = p′, q = q ′: the several compo-

nents of a the vector between the pth and q th centers are non-commutative, but they
commute with all the other components of all the other inter-center vectors. There is
only pairwise non-commutativity.

The angular momentum is:

J = 1

2

∑
p,q

〈Γp, Γq〉 rpq

|rpq | . (2.364)
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It is a sum of contributions from each pair of points. Each individual contribution is a
vector along the line connecting two points (unit vectors rpq

|rpq | ) with size the angular
momentum from the crossed electric and magnetic fields 〈Γp, Γq〉.

Two-Center Solutions

Let us make things more clear using an explicit example with two centers. Write
J = 〈Γ1, Γ2〉, then the volume form on phase space is

ω = J sin θ dθ ∧ dφ, (2.365)

the standard symplectic form on a two-sphere. (Remember that the solution space
for two center is the S2 of orientations of the fixed rod r12.) The normalization of the
two-form is the angular momentum between the two centers.

The number of states is then ∫
S2
ω = 2|J | + 1. (2.366)

We get 2|J | + 1 rather than 2|J | because of subtleties with fermions. This is exactly
the number of states for an angular momentum multiplet (Fig. 2.45).

Exercise 2.8.31 “Meaningless algebra” for the two-center solution space:

• Check that
dω = 0 (2.367)

• Check that ωS2 defined as (2.360) evaluates to (2.365).

Three-Center Solutions

Solution space is 2N−2 dimensional. For N = 3, we get a four-dimensional solution
space M4. The bubble equations fix two distances in terms of the third, say r23(r12)

and r13(r12). The four remaining parameters are

• The distance r12.
• The U (1) of orientations around segment r12.
• The orientation of r12 in space (an S2 as for the two-center solution space).

Therefore the solution space is:

Fig. 2.45 Two-center solu-
tion
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M4 = I ×U (1)× S2, (2.368)

where I is the line segment of r12. The second product is a non-trivial fibration.
Note that the size of the angular momentum is a function of the distance r12 as

well:
J (r12). (2.369)

By the bubble equations the interval I of allowed r12 values is constrained

I = [rmin
12 , rmax

12 ]. (2.370)

Hence also the angular momentum is bounded between Jmin and Jmax, see Fig. 2.46.
We can see the system as a whole range of angular momentum multiplets, see

Fig. 2.47. Let us note an important caveat here when discussing entropy. We are
referring here only to the configuration entropy coming from the different ways of
arranging the centers. Each individual center, if it has a horizon, may have additional
entropy associated with that horizon. In our discussion of entropy above we neglect
this because we are mostly interested in looking for black hole microstates. That is
to say we want to find a realization of the black hole entropy via horizonless smooth
solutions. If the centers are themselves black holes with horizons, we are not counting
the horizon entropy of a single black hole with the total charge of all the centers.

More Centers?

Let us fix the total charge, Γ , and consider an N -center decomposition

Γ =
∞∑

N=1

⎛
⎝ N∑

q=1

Γq

⎞
⎠. (2.371)

For large charge Γ the number of centers N can be quite large and we can also
arrange the centers all to be horizonless. What are all possible states corresponding
to these charges? We fix Γ first, then we fix the sectors we want to divide over, and
we divide the charges. All these states are in one Hilbert space, of total charge Γ .
Are all these possible states reproducing the black hole entropy of a single black

Fig. 2.46 The angular
momentum is a function
of the size of r12
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Fig. 2.47 The angular
momentum is a function
of the size of r12. The states
are divided into one angular
momentum multiplet for each
allowed value of J

hole with charge Γ ? Should we use smooth centers? How many can we put? Can we
reproduce the entropy?

The result in the literature so far is:

• For fully interacting centers (〈Γp, Γq〉 �= 0), this counting has only been done
in full generality for 2 and 3 centers. It has been extended to N + 1 centers,
where the first N have all charges equal Γ1 = . . . = ΓN and the other center has
non-vanishing 〈Γp, ΓN+1〉 with all the others.

Note that classically, there can be a problem due to configurations with runaway
behaviour. One of the centers can go off to infinity in the bubble equations, and this
screws up the asymptotics, see Fig. 2.48.

After quantization, there is a density on M4 = R×U (1)× S2. This gives a finite
volume. There is no more runaway, because the wave function for the positions of
the centers has no support at infinity, ‘the tail is vanishing’. This renders 〈rp〉 finite.
See Fig. 2.49.

2.8.5 Scaling Solutions

Let us go to solutions where the centers can come arbitrarily close. We stay in the
three-center example. Remember that the bubble equations look like

Fig. 2.48 Classically, one
of the centers can run of to
infinity



172 I. Bena et al.

Fig. 2.49 In quantum
mechanics, the wave func-
tion has no support at infinity

0

Fig. 2.50 The angular momentum multiplet triangle is completed for scaling solutions, since the
solution space contains the limit λ→ 0, such that Jmin = 0

〈Γ1, Γ2〉
r12

+ 〈Γ1, Γ3〉
r13

= c1,

〈Γ2, Γ1〉
r12

+ 〈Γ2, Γ3〉
r13

= c2,

〈Γ3, Γ1〉
r13

+ 〈Γ3, Γ2〉
r23

= c3, (2.372)

with cp = −〈Γp, h〉. We look for solutions with

rpq = λ〈Γp, Γq〉 +O(λ2), (2.373)

such that we can send λ→ 0. Then we find that 〈Γp, Γq〉 = α rpq for some constant
α. Hence we can only take this limit when the Γpq ≡ 〈Γp, Γq〉 satisfy the triangle
inequalities.

As a consequence, the angular momentum is zero when λ = 0:

J =
∑

Γpq
rpq

rpq
= α

∑
rpq = 0, (2.374)

where the last equality follows because the rpq form a closed triangle. Therefore, near
λ→ 0, we have J → 0. This means that we ‘complete’ the triangle of states in the
angular momentum multiplets of Fig. 2.47 to that of Fig. 2.50. We can parametrize
the region near Jmin = 0 by the scaling parameter λ.

When the inter-center distance rpq ∼ λ → 0, the geometry develops a very
deep throat of size proportional to 1/λ, see Fig. 2.51. As the centers come closer and
closer, the throat becomes deeper and deeper.
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Fig. 2.51 By scaling down the distances between the centers as λ→ 0, the geometry develops a
very deep throat whose size is inversely proportional to λ. When λ is of order 1 on the other hand,
we only have a very mild throat

Fig. 2.52 The correspondence of scaling solutions of a certain size to angular momentum multiplets
in the quantized solutions space

Putting these things together, gives a situation of the states in solution space as in
Fig. 2.52. This reveals a paradox. Asλ→ 0, we get deeper and deeper microstates and
we can continue like this forever. On the other hand, the number of states associated to
the region of small λ of Fig. 2.52, gives a finite number of states. Stated in a different
way, in quantum mechanics, it is meaningless to put states in a cell smaller than
�-size. Remember that on solution space, we had non-commuting coordinates r i

pq

and r j
pq . This translates to the impossibility of localizing r i

pq and r j
pq with a resolution



174 I. Bena et al.

Fig. 2.53 The energy E0 of
an excitation down the throat
is redshifted to E∞ ∼ E0/L ,
with L the throat length

smaller than �. Therefore there is some cut-off, and all deeper and deeper microstates
must correspond to one quantum state.

Hence even though we can make the throats as deep as we want classically, all
these deep throats do not exists after quantization. This is related to the earlier puzzle,
that due to redshift, the energy E∞ would have a continuous spectrum for deeper
and deeper throats, see Fig. 2.53: a string stretching between two centers remains
massless at spatial infinity.

On the other hand, the CFT should have a discrete spectrum, otherwise the count-
ing of microstates would not give a finite number. So the question is whether there
is a cut-off in the throat, and what it is.

While the exact answer to this question depends on the state we consider and
is somewhat complicated, a simple order of magnitude estimate can be gleaned as
follows. We consider the geometry of the throat up to the scale where λ takes its
expectation value in the lowest angular momentum state (the state at J = Jmin ; see
Fig. 2.53 above). That is, we compute 〈λ〉 in the state | j = 0〉 and then plug this
into the harmonics to yield a solution. This gives a cutoff on the throat and we can
determine the mass gap by putting a scalar field on this background and computing
the gap in its spectrum (this is analogous to a standard computation to determine the
mass gap in global AdS and essentially measures the “size of the box” provided by
the gravitational potential).

This computation yields a mass gap that, when measured in AdS units 1/L Ad S ,
scales as 1/c. Here c is a dimensionless number given by comparing the AdS length
to the plank length c = L Ad S/�P . Thus the mass gap is

1

c L Ad S
. (2.375)

whereas the mass gap in global AdS is just

1

L Ad S
. (2.376)
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The suggestive terminology c alludes to the fact that this number is the central charge
of the dual CFT. For example in the case where the AdS3 is the near horizon of the
D1-D5 black hole c is proportional to Q1 Q5 and is the central charge of the dual
D1-D5 CFT.

This is a very significant result. Recall that in our derivation of the black hole
entropy in earlier sections a very important role was played by the so called “long
string picture” where the entropically dominant sector of the CFT came from a
string with a winding numer that is proportional to Q1 Q5 as well. Consequently
the momentum of this string was quantized in units 1

Q1 Q5 R with R the dimensionful
length of the CFT circle R = 2πL Ad S .

This computation thus suggests that the quantum corrections to the deep throat
microstates not only discretize the spectrum, hence resolving the issue of a continuous
spectrum, but also do this by giving them a mass gap corresponding to the most
entropic sector of the CFT. This suggests these states at least occupy the “typical”
sector of the CFT and hence are potentially the kind of states that account for the
black hole entropy.
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Chapter 3
From Black Strings to Lifshitz Black Branes

Wissam Chemissany, Jelle Hartong and Bert Vercnocke

We review the status of the construction of the asymptotically Lifshitz black brane
solutions in Supergravity and String theory. We propose a general method to construct
analytic z = 2 Lifshitz black brane solutions. The method is based on deforming
5-dimensional AdS black strings by an axion wave and reducing to 4-dimensions.
We illustrate this method with examples.

3.1 Introduction

The standard application of gauge/gravity duality is the AdS/CFT correspondence,
which gives rise to a relativistically scale invariant boundary theory. However, more
recently, attention has centered on systems having more general scaling properties,
such as non-relativistic field theories, in particular, a non-relativistic Lifshitz scaling

t → λz t, xi → λxi , r → λr. (3.1)

In order to produce such a dynamical scaling, the spacetime metric must be taken of
the form
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ds2 = L2
(
− 1

r2z
dt2 + 1

r2 dr2 + 1

r2 (dx2 + dy2)
)

(3.2)

which explicitly respects the scaling (3.1).The subject of Lifshitz holography was
initiated by [1]. For more details about the basic holographic properties of Lifshitz
space-times see [2]. By now we have at our disposal embeddings into string theory
of Lifshitz geometries. They were recently found in [3, 4].

Black holes possessing Lifshitz asymptotics have been extensively studied in
various models [5–8]. Despite all this considerable effort, a proper embedding of
Lifshitz black holes into string theory was still missing. All the solutions that have
been constructed in string theory so far are only known numerically (see [9, 10] for
recent work). This note can be viewed as a step towards analytic black brane solutions.
More details and explanations will be provided in a forthcoming publication [11].

In accordance with the results of [3, 12, 13], a 4-dimensional Lifshitz space with
z = 2 can be attained starting from a model in five dimensions containing an axion
field and admitting an AdS5 vacuum. More explicitly, one can obtain Lagrangians
supporting z = 2 Lifshitz space-times by Scherk-Schwarz reduction of Lagrangians
supporting z = 0 Schrödinger space-times.1 In other words, take some 5-dimensional
supergravity theory that possesses AdS solutions and that contains an axion and then
look for asymptotically AdS5 black string solutions with a null Killing vector on its
world-volume and deform them by an axion wave.

This short note is concerned with the study of asymptotically AdS5 black string
solutions to the following 5D Lagrangian

Strunc. = 1

2κ2
5

∫
d5x
√−g

[
R + 12− 1

4
FμνFμν − 1

2
(∂φ)2 − 1

2
e2φ(∂χ)2

− 1

12
√

3
εμνρσλFμνFρσAλ

]
(3.4)

and the z = 2 four-dimensional asymptotically Lifshitz black branes solutions to
the 4D Lagrangian can be found after Scherk-Schwarz reduction (for more details
see [13]). The action (3.4) is a very simple model that comes from a consistent
truncation of type IIB supergravity and it is suitable for the embedding of Lifshitz-
like solutions into string theory.2 Our results can be seen as a step forward in extending
our analysis of [13] to charged black strings, and hence charged Lifshitz black branes.
The field equations derived from (3.4) are

1 Five-dimensional Schrödinger space-time has the following metric

ds2 = −dt2

r2z
+ 1

r2 (−2dtdζ + dr2 + dx2 + dy2). (3.3)

2 This 5-dimensional gauged N = 2 supergravity can also be seen as a consistent truncation of the
minimal supergravity coupled to the universal hypermultiplet.
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Rμν = −4gμν + 1

2
FρμFρ

ν − 1

12
gμνF2 + 1

2
∂μφ∂νφ

+ 1

2
e2φ∂μχ∂νχ,

∂μ(
√−gFμν) = 1

4
√

3
εμρσλνFμρFσλ, (3.5)

1√−g ∂μ(
√−g∂μφ) = e2φ(∂χ)2, ∂μ(

√−ge2φ∂μχ) = 0. (3.6)

3.2 Lifshitz Black Branes from Black Strings

The five-dimensional black string Ansatz is [13]

ds2
5 = r2(2A1dtdu + dx2 + dy2)+ 1

r2 F
dr2 (3.7)

Fxy = P(r) �= const. (other components are zero) (3.8)

φ = φ(r), χ = χ(r). (3.9)

The scalar field equation gives

d

dr
(r3 A1 F−1/2r2 Fφ′) = 0⇒ r5 A1 F1/2φ′ = Const. (3.10)

From Einstein equations we find

− r F F ′ − r2 F F ′′ + r2 F ′2 − 32F − 12r F ′ + 32+ 10

3
P2r−4 F + P2r−4r F ′

− 16

3
P2r−4 + 2

9
P4r−8 − 4

3

P P ′

r3 F = 0. (3.11)

For a magnetic Ansatz P must be a constant. Imposing asymptotically AdS boundary
conditions enforces P = 0. When P = 0, we have F = 1− M

r4 . The full black string
solution deformed by an axion wave reads [13]

F = 1− Mr−4, A1 = F1/2, eφ = gs F±1/2, χ = �u, (3.12)

A2(−) =−g
2
s �2

4r2 +
g2

s �2

2M1/2 A1 arcsin
M1/2

r2 , (3.13)

A2(+) = g2
s �2

4M1/2 A1

[
(1− log 2) arcsin

M1/2

r2 −
(

arcsin
M1/2

r2

)
log A1

+ 1

2
Cl2 (2 arcsin A1)

]
. (3.14)
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The subscript (±) in A2 stands for the sign in (3.12). The function Cl2(x) is
the Clausen function defined in [13]. The metric has a curvature singularity at
r = M1/4. We now compactify the u direction and reduce to four dimensions,
writing the metric (3.7) in the form of a Kaluza-Klein reduction Ansatz

ds2
5 = e−Φds2 + e2Φ(du +A)2 (3.15)

where

ds2 = 1

r
A1/2

2

[
− 1

r2 A2
Fdt2 + 1

r2

(
dx2 + dy2

)
+ dr2

r2 F

]
, (3.16)

A = F1/2

A2
dt, e2Φ = 1

r2 A2, (3.17)

where r = 1/r. The asymptotic form is given by the Lifshitz invariant solution.
The 4-dimensional result is particularly sensitive to the zeros of A2. In fact these
points form curvature singularities (see [13] for more details).

Next, we want to look for more general Lifshitz black branes solutions than those
of [13], that are preferably non-singular. A first thing one can do is to consider the
following Ansatz

ds2
5 = 2R2 A1dtdu + 1

R2 F
dR2 + R2dΩk (3.18)

where dΩ2
k denotes the metric of 2-manifold M2 of constant curvature k, with

k = 0, ±1;M2 is a quotient space of the universal coverings S2 (k = 1), hyperbolic
space H

2 (k = −1) or flat E2 (k = 0). Explicitly we write

dΩ2
k = dθ2 +Σ(θ)2dϕ2, Σ(θ) =

⎧⎨
⎩

sin θ, k = 1,

0, k = 0,

sinh θ, k = −1.

(3.19)

The black string has a magnetic field

Fθϕ = k PΣ(θ), Aϕ = k P
∫

Σ(θ)dθ. (3.20)

The gauge field Eq. (3.5) are trivially satisfied for this choice of U (1) gauge field.
We plug the Ansatz into the Einstein equations. We obtain (setting χ = 0)

Rtu = −4r2 A1 − 1

6
r−2 A1k2 P2 (3.21)

Rrr = −4r−2 F−1 − 1

6
r−6 F−1k2 P2 + 1

2
(φ′)2 (3.22)
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Rθθ = −4r2 + 1

3
r−2k2 P2 (3.23)

Rϕϕ = Σ2 Rθθ (3.24)

From the first and third equations we obtain

F F ′′ − F ′2 + F F ′

r
+ F

(
−10k2 P2

3r6 + 8k

r4 +
32

r2

)
+ F ′

(
−k2 P2

r5
+ 3k

r3 +
12

r

)

− 2k4 P4

9r10 +
4k3 P2

3r8 +
16k2 P2

3r6 − 2k2

r6 −
16k

r4 −
32

r2 = 0. (3.25)

This equation can be rewritten as

F ′′F − 3F ′ f + 1

r
F ′F − F ′2 + 2

(
f ′ + k

r4 +
12

r2

)
F = 2 f 2 (3.26)

where

f = k2 P2

3r5
− k

r3 −
4

r
. (3.27)

The same type of equation can be found in [8]. Finding the most general solution
of this equation is a formidable task. However, it is possible to obtain a particular
solution for which k is arbitrary and P2 = 1

3

F =
(

1+ k

3r2

)2

, A1 = F3/2, φ = φ0. (3.28)

Now, we deform the black string solution (3.28) by the axion wave. We take (for
k = −1)

eφ = gs = constant, χ = �u. (3.29)

From the Rrr equation, and after some algebraic manipulation, we obtain

− 4(r− 1)r2g′′ − 4(2− 3r)rg′ − 27(r− 1)g + 3g2
s �2 = 0. (3.30)

where we have defined A2 = g(r) with r = F
1
2 . For � = 0, once can find an analytic

solution for g(r) being expressed as a combination of hypergeometric functions. This
clearly indicates that uplifting the rather-difficult 4D differential equations to D = 5
allows one to decouple these differential equations.

We next compactify along the u-direction and we obtain the following asymptot-
ically Lifshitz black brane solution (for � �= 0)
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ds2 =
√
g

R

(
− F3

R2g
dt2 + 1

R2 dΩk + d R2

R2 F

)
, (3.31)

A = F3/2

g
dt, e2Φ = g

R2 , (3.32)

where R = 1/r. Whether the obtained black brane solution is singular or not can be
determined once the zeroes of g are found. This turns out to be a bit cumbersome and
we hope to report on it in the near future. It has been shown in some cases that the
addition of hypermultiplets might affect the (non)-singular behavior of black brane
solutions. This definitely deserves further investigation.

Acknowledgments W.C. wishes to thank the organizers for a stimulating and inspiring atmosphere.
The work of J.H. was supported by the Danish National Research Foundation project Black holes
and their role in quantum gravity. BV is supported by the ERC Starting Independent Researcher
Grant 240210—String-QCD-BH.

References

1. S. Kachru, X. Liu, M. Mulligan, Phys. Rev. D 78, 106005 (2008). [arXiv:0808.1725 [hep-th]]
2. M. Taylor, Non-relativistic holography. arXiv:0812.0530 [hep-th]
3. D. Cassani, A.F. Faedo, Constructing Lifshitz solutions from AdS. JHEP 1105, 013 (2011).

[arXiv:1102.5344 [hep-th]]
4. A. Donos, J.P. Gauntlett, Lifshitz solutions of D=10 and D=11 supergravity. JHEP 1012, 002

(2010). [arXiv:1008.2062 [hep-th]]
5. J. Tarrio, S. Vandoren, Black holes and black branes in Lifshitz spacetimes. JHEP 1109, 017

(2011). [arXiv:1105.6335 [hep-th]]
6. R.B. Mann, Lifshitz topological black holes. JHEP 0906, 075 (2009). [arXiv:0905.1136 [hep-

th]]
7. G. Bertoldi, B.A. Burrington, A. Peet, Black holes in asymptotically Lifshitz spacetimes with

arbitrary critical exponent. Phys. Rev. D 80, 126003 (2009). [arXiv:0905.3183 [hep-th]]
8. A. Bernamonti, M.M. Caldarelli, D. Klemm, R. Olea, C. Sieg, E. Zorzan,JHEP 0801, 061

(2008). [arXiv:0708.2402 [hep-th]]
9. L. Barclay, R. Gregory, S. Parameswaran, G. Tasinato, I. Zavala, Lifshitz black holes in IIA

supergravity. arXiv:1203.0576 [hep-th]
10. I. Amado, A.F. Faedo, Lifshitz black holes in string theory. JHEP 1107, 004 (2011).

[arXiv:1105.4862 [hep-th]]
11. W. Chemissany, J. Hartong, B. Vercnocke [to appear]
12. N. Halmagyi, M. Petrini, A. Zaffaroni, Non-relativistic solutions of N=2 gauged supergravity.

JHEP 1108, 041 (2011). [arXiv:1102.5740 [hep-th]]
13. W. Chemissany, J. Hartong, From D3-branes to Lifshitz space-times.Class. Quant. Grav. 28,

195011 (2011). [arXiv:1105.0612 [hep-th]]



Chapter 4
Non-extremal Black-Hole Solutions
of N = 2, d = 4, 5 Supergravity

Tomás Ortín

4.1 Introduction

Black holes have been intensely studied in the framework of string theory for the last
20 years. They are described by classical solutions of the supergravity theories that
describe effectively the low-energy dynamics of different string compactifications.
Being solutions of theories with local supersymmetry one can distinguish among
them the particular class of those that preserve some unbroken supersymmetries
(called supersymmetric or, less precisely, BPS).

The special properties enjoyed by these black-hole solutions makes them very in-
teresting (they are the ones for which the entropy was first computed by counting their
microstates [1] and they are among those for which there is an attractor mechanism
at work [2–5]) and easier to construct. For instance, it is known how to construct,
systematically, all the black-hole solutions of any theory of ungauged N = 2, d = 4
[6–9]1 and d = 5 [11, 12] supergravity coupled to any number vector supermultiplets
and some general results are also known for higher-N , d = 4 supergravities [13].
Some supersymmetric black-hole solutions of non-Abelian gauged N = 2, d = 4
supergravity are also known in fully analytic form [14–16].

In spite of their interest, non-extremal black-hole solutions of these theories are
much less known. Here we are going to review recent progress in the construction of
non-extremal black holes and branes, particularly in ungauged theories of N = 2,

d = 4 and d = 5 supergravity coupled to vector supermultiplets [17–25].
This progress is based, first of all, in the use of the FGK formalism [26], conve-

niently generalized in [23] to arbitrary spacetime dimension d ≥ 4 and worldvolume
dimension p ≥ 0. Usually, only the results of [26] concerning extremal black holes

1 See also [10] for a review.

T. Ortín (B)
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S. Bellucci (ed.), Black Objects in Supergravity, Springer Proceedings in Physics 144, 185
DOI: 10.1007/978-3-319-00215-6_4, © Springer International Publishing Switzerland 2013
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and attractors are used, but the formalism provides a setting which simplifies the task
of finding explicit solutions. We review this formalism in Sect. 4.2.

A second ingredient is the general ansatz for single, static, non-extremal black
holes of N = 2, d = 4, 5 supergravity presented in [19, 20]. This ansatz, which we
review in Sect. 4.3, can be understood as a deformation of the general supersymmetric
solution of [6–9] in which the harmonic functions (traditionally denoted by Hi ) are
replaced by linear combinations of hyperbolic sines and cosines, but the physical
fields have the same form in terms of those functions as they had in terms of the Hi .

Several arguments in support of the generality of this ansatz were given in [19],
but the main assumption that the functional form of the physical fields in terms of the
functions Hi can be given stronger foundations. In [17, 18] for the N = 2, d = 5
case and in [21, 22] for the N = 2, d = 4 case, it was shown that the Hi can
be used as dynamical variables in the reduced action of the FGK formalism. The
change of variables from the physical fields to the Hi assumes the same functional
dependence of the former on the later both for extremal (supersymmetric and non
supersymmetric) and non-extremal black holes, proving the assumption. This allows
the use of these variables in more complex settings, such as rotating black holes or
black-holes in gauged supergravities, as had been observed before.

The use of these variables in combination with the FGK formalism (a combination
that we call H-FGK formalism) simplifies considerably the task of finding general,
explicit extremal and non-extremal solutions and also general results about families
of solutions (see [24] and [25] for the 5- and 4-dimensional cases, respectively), as
we will review in Sect. 4.4.

4.2 FGK Formalism

In this Section we will review the generalization presented in [23] to arbitrary space-
time dimension d ≥ 4 and worldvolume dimension p ≥ 0 of the formalism intro-
duced in [26] for 4-dimensional black holes. The generalization to d ≥ 4 is necessary
to study the black holes of N = 2, d = 5 theories and the generalization to black
p-branes will allow us to study the black string solutions of those theories. The black
holes of N = 2, d = 4 can be obtained by direct dimensional reduction of the
5-dimensional black holes and double dimensional reduction of the black strings,
hence the interest in these objects.

4.2.1 Derivation of the Effective Action

The main ingredients of the FGK formalism are a generic action which can describe
the relevant bosonic sectors of most (or all) the ungauged supergravities and a generic
metric and coordinate choice which can describe the exterior of all the single, static,
black p-brane solutions of those theories. The generic action is then reduced using as
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reduction ansatz the generic metric, which has only one undetermined function that
will remain a variable of the dimensionally reduced equations of motion. The staticity
of the ansatz leaves us with only one parameter on which the physical fields (metric
function plus scalar fields) can depend in the dimensionally reduced equations of
motion. it is, then, possible to find an effective 1-dimensional (mechanical) action
for the remaining variables (which has to be supplemented by a constraint) from
which one can derive the equations of motion and general results concerning the
black p-brane solutions of those theories.

The generic action that we propose is

I[g, AΛ
(p+1),φ

i ] =
∫

dd x
√|g| {R + Gi j (φ)∂μφ

i∂μφ j

+ 4 (−1)p

(p+2)! IΛΣ(φ)FΛ
(p+2) · FΣ

(p+2)

}
, (4.1)

where the scalar fields φi parametrize a non-linear σ-model with metric Gi j (φ),
IΛΣ(φ) is a scalar-dependent, negative-definite (kinetic) matrix that describes the
coupling of the scalars to the (p + 1)-forms AΛ

(p+1) to which the p-branes couple
electrically,

FΛ
(p+2)μ1···μp+2

= (p + 2)∂[μ1|AΛ
(p+1) |μ2···μp+2], (4.2)

are their field strengths and we have used the notation

FΛ
(p+2) · FΣ

(p+2) ≡ FΛ
(p+2)μ1···μp+2

FΣ
(p+2)

μ1···μp+2 . (4.3)

We define, as usual, the worldvolume dimension of the dual brane p̃ ≡ d− p−4.
In general p �= p̃ and neither the dual p̃-brane can couple to the (p + 1)-forms
AΛ

(p+1) nor the electric p-branes can couple to the dual ( p̃ + 1)-forms AΛ ( p̃+1).
Thus, the above model is generically sufficient.

However, there are particular cases in which the above model is too simple: when
p = p̃ = (d − 4)/2 one should consider additional terms in the action of the form

+ 4ξ2 (−1)p

(p+2)! RΛΣ(φ)FΛ
(p+2) · �FΣ

(p+2). (4.4)

Here RΛΣ(φ) is a scalar-dependent matrix such that

RΛΣ = −ξ2 RΣΛ, (4.5)

where
ξ2 ≡ �2 = −(−1)d/2 = (−1)p+1, (4.6)

and � is the operator that relates (p + 2)-form field strengths to their ( p̃ + 2)-form
Hodge duals. In these cases our ansatz must take into account that the same brane
can also be magnetically charged i.e. they can be dyonic.
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There is yet another particular case: when d = 4n+ 2 the dyonic branes can also
be self- or anti-self-dual because the (p+ 2)-form field strengths can also be self- or
anti-self-duals. When this is the case, the electric and magnetic charges must be equal
up to a sign that depends on the self- or anti-self-duality and on the conventions used.

The second ingredient mentioned at the beginning of this section is a generic
ansatz for the metric of charged, static, flat2, black p-brane in d = p + p̃ + 4
dimensions, with a transverse radial coordinate ρ chosen in such a way that the event
horizon is at ρ→∞.

We have arrived at this ansatz3 by studying (see the Appendix in Ref. [23]) the
metrics of well-known families of p-brane solutions, such as those originally found
in Ref. [28] and reproduced in Ref. [29] whose conventions and notations we follow
here.

The ansatz depends on two independent functions of the radial (in the ( p̃ + 3)-
dimensional transverse space) coordinate ρ Ũ (ρ) and W (ρ) to be found by solving the
equations of motion and a “background” metric in the ( p̃+3)-dimensional transverse
space γ( p̃+3) mn which has the fixed form

γ( p̃+3) mndxmdxn =
(

ω/2

sinh
(
ω
2 ρ

)
) 2

p̃+1

⎡
⎣

(
ω/2

sinh
(
ω
2 ρ

)
)2

dρ2

( p̃ + 1)2 + dΩ2
( p̃+2)

⎤
⎦,

(4.7)

where, dΩ2
( p̃+2)

is the metric of the round ( p̃ + 2)-sphere of unit radius and ω is
the non-extremality parameter, denoted by r0 in the 4-dimensional case considered
in Refs. [19, 26].4 Furthermore, the worldvolume of the p-brane is parametrized by
the time coordinate t and the p spacelike coordinates (y1, · · · , y p) that we denote
collectively by y(p).

With all these elements, the generic metric takes the form

ds2
(d) = e

2
p+1 Ũ

[
W

p
p+1 dt2 −W−

1
p+1 dy 2

(p)

]
− e−

2
p̃+1 Ũ

γ( p̃+3) mndxmdxn . (4.8)

Some comments are in order. First, observe that this metric reduces in the p =
0 case to the metrics used in d = 4 and arbitrary d-dimensional black holes in
Refs. [20, 26] respectively (W disappears and Ũ is just U in the notation used in those
references). Secondly, observe that, for general values of p, we have two independent
functions Ũ and W instead of just one, as in the black-hole case which should be
recovered after dimensional reduction. the presence of W cannot be “gauged away”:
while it is possible to redefine Ũ and the transverse metric γ( p̃+3) mn so as to totally
absorb W in some components of the metric, it is not possible to do it simultaneously
in all of them.

2 By this we mean that the metric of the spatial part of its worldvolume is Euclidean. As we are
going to see, the metric of the full worldvolume is not flat.
3 This metric has also been derived from the equations of motion in Refs. [27].
4 In higher dimensions ω is not a length, hence the change in notation.
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Although the presence of one additional independent function is somewhat un-
expected, is should be clear that there is nothing wrong with using it as long as we
perform the reduction substituting the ansatz for the metric directly in the equations
of motion. The reduced equations of motion will then tell us whether we have two
independent functions or just one and what is the relation between them in the second
case. We will also use normalization and regularity conditions to further constrain
these functions.

The ansatz for (p+1)-form potentials AΛ
(p+1) for electrically-charged p-branes is

AΛ
(p+1) t y1···yp

= ψΛ(ρ), (4.9)

(all the other components vanish).
In the particular case p = p̃ = (d − 4)/2, in which the branes can also be mag-

netically charged with respect to the dual (magnetic) (p + 1)-form potentials that
we are going to denote by A(p+1) Λ, we have to start by giving a proper definition of
these dual potentials. The starting point are the equations of motion of the electric
(p + 1)-form potentials which are the only ones that appear in the original action
Eq. (4.1). As mentioned before, in this particular case the action has to be supple-
mented by the term in Eq. (4.4). Taking all this into account the equations of motion
can be written as

dG(p+2) Λ = 0, (4.10)

where the (p + 2)-form G(p+2) Λ (magnetic field strengths) is defined by

G(p+2) Λ ≡ RΛΣ FΣ
(p+2) + IΛΣ � FΣ

(p+2). (4.11)

As it is well known, these differential equations imply the local existence of the
magnetic (p + 1)-form potentials A(p+1) Λ satisfying

G(p+2) Λ = d A(p+1) Λ. (4.12)

Then, in this particular cases, we also make the following ansatz for the magnetic
potentials

A(p+1) Λ t y1···yp = χΛ(ρ). (4.13)

This ansatz implies that some of the spatial components of the electric potentials
AΛ

(p+1) do not vanish and, actually, have complicated dependencies on the angular
coordinates of the transverse (p + 2) sphere. The magnetic potentials codify very
efficiently these complicated dependencies and their use (the relevant spatial com-
ponents of the electric potentials can be expressed quite easily in terms of the time
component of the magnetic ones in the static case that we are considering) simplifies
the reduction of the equations of motion.

It is convenient to arrange all the electric and magnetic (p+2)-form field strengths
and electrostatic and magnetostatic potentials into single vectors whose components
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are labeled by M, N , . . .

(
F M

)
≡

(
FΛ

GΛ

)
,

(
Ψ M

)
≡

(
ψΛ

χΛ

)
. (4.14)

In terms of the vector of field strengths so the Bianchi identities and Maxwell
equations can be written as

dF M = 0, (4.15)

which is covariant under linear transformations(
F ′
G ′

)
=

(
A B
C D

) (
F
G

)
, (4.16)

where A, B, C, D are constant matrices, but not all of them are consistent with
the definition of the magnetic field strengths in terms of the electric ones Eq. (4.12).
This definition must be preserved by the linear transformations if they are going to
be symmetries of the equations of motion of the theory and this requires that the
scalar-dependent matrices R, I transform according to

N ′ = (C + DN ) (A + B N )−1 , (4.17)

where we have defined the matrix N by

N ≡ R + ξ I. (4.18)

In d = 4 ξ = i and NΛΣ ≡ NΛΣ is the complex period matrix.
On the other hand, using the above-defined vectors, the contribution of the (p+ 1)-

form potentials to the energy-momentum tensor can be written in the compact form

ΩM N � F M
μα1···αp+1F N

ν
α1···αp+1 , (4.19)

where
(ΩM N ) ≡

(
0 I

ξ2
I 0

)
, (4.20)

plays the rôle of a metric that we will use to raise and lower M, N indices. This
implies that, in order to preserve the Einstein equations, the linear transformations of
the n electric and n magnetic field strengths must be restricted to the group O(n, n)

when ξ2 = +1 and to the group Sp(2n + 2, R) when ξ2 = −1 (in particular, for
d = 4 dimensions).

There is an alternative expression for this contribution to the energy-momentum
tensor which turns out to be very useful when we perform the reduction of the Einstein
equations with the above ansatz:

MM N (N )F M
μα1···αp+1F N

ν
α1···αp+1 , (4.21)
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where the symmetric matrix MM N (N ) is given by

(MM N (N )) ≡
⎛
⎝ I − ξ2 RI−1 R ξ2 RI−1

−I−1 R I−1

⎞
⎠,

(MM N (N )
) =

⎛
⎝ I−1 −ξ2 I−1 R

RI−1 I − ξ2 RI−1 R

⎞
⎠ = (MN P (N ))−1.

(4.22)

These formulae are only relevant in the particular case p = p̃ = (d − 4)/2.
However, we can use them in any dimension including the additional terms (matrix
RΛΣ , magnetic charges pΛ etc.) in the understanding that they vanish whenever the
condition is not satisfied (and RΛΣ = pΛ = 0).

The last piece of our ansatz is the assumption that the scalar fields φi only depend
on the radial coordinate ρ.

Plugging this ansatz into the equations of motion derived from the action Eq. (4.1)
supplemented by the term in Eq. (4.4) we get five sets of equations for Ũ , W , the
potentials Ψ M and the scalars φi . We consider first the following two equations:

d2 ln W

dρ2 = 0, (4.23)

d

dρ

[
e−2Ũ MM N Ψ̇ N

]
= 0. (4.24)

(overdots denoting derivatives w.r.t. ρ) that can be integrated immediately. The result
is, normalizing W (0) = 1 at spatial infinity, introducing the integration constants γ
and QM , and the normalization constant α

W = eγρ, (4.25)

Ψ̇ M = αe2Ũ MM N QN . (4.26)

The constants QM are, up to the global normalization represented by the constant
α, just the electric and magnetic charges of the dyonic p-brane with respect to the
(p + 1)-form potentials

QM ∼
∫

S p̃+2
�MM N F N , (QM ) ≡

(
pΛ

qΛ

)
, QM ≡ ΩM N QN . (4.27)

With W = eγρ the metric ansatz takes the form

ds2
(d) = e

2
p+1 Ũ

[
e

p
p+1 γρdt2 − e−

1
p+1 γρdy 2

(p)

]
− e−

2
p̃+1 Ũ

γ( p̃+3) mndxmdxn, (4.28)
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and only depends on one undetermined function, Ũ , as expected. It, however, depends
on two constants, ω and γ which are, a priori, independent. We only expect one
constant in the metric (since we should be able to reduce it to a black-hole’s) and,
actually, we can eliminate one of them by requiring the regularity of the black brane’s
horizon.

Let us study the near-horizon limit of the above metric. In this limit, the angular
part of the transverse metric behaves as

∼e
1

p̃+1ωρ(−ω)
2

p̃+1 dΩ2
( p̃+2), (4.29)

which means in that black p-branes with regular horizons Ũ must behave as

Ũ ∼ C + ω

2
ρ, (4.30)

for the angular part of the complete metric to be regular in that limit. Defining the
entropy density by unit (world-) volume S̃ by

S̃ ≡ Ah ( p̃+2)

ω( p̃+2)

, (4.31)

where Ah ( p̃+2) is the volume of the ( p̃ + 2)-dimensional constant worldvolume
sections of the horizon and ω( p̃+2) is the volume of the round ( p̃+ 2)-sphere of unit
radius5 we find that the above behavior of Ũ leads to the entropy density

S̃ =
(
−e−Cω

) p̃+2
p̃+1

, ⇒ eC = −ω S̃−
p̃+1
p̃+2 . (4.32)

Then, in order for the worldvolume metric to be regular in this limit, Ũ and W
must behave as6

eŨ ∼ (−ω)S̃−
p̃+1
p̃+2 e

ω
2 ρ, W ∼ eωρ, (4.33)

where have chosen arbitrarily a normalization constant. Since we have just seen that
W = eγρ, we conclude that in black branes with regular horizons ω = γ and the
general metric for regular p-branes is, therefore, given by

ds2
(d) = e

2
p+1 Ũ

[
e

p
p+1ωρdt2 − e−

1
p+1ωρdy 2

(p)

]
− e−

2
p̃+1 Ũ

γ( p̃+3) mndxmdxn . (4.34)

We can now consider the near-horizon limit of the time-radial part of general
metric and find that it can always (for ω �= 0) can be brought into the Rindler-like
form

5 Not to be mistaken for the non-extremality parameter ω.
6 This is true for ω �= 0. The near-horizon behavior for ω = 0 is given by Eq. (4.46).
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∼e
2

p+1 C exp

(
− ( p̃ + 1)eCc

(−ω)
1

p̃+1




) [
dt2 − d
2

]
= e−

4π
β ρ

[
dt2 − d
2

]
, (4.35)

where

c ≡ d − 2

(p + 1)( p̃ + 1)
, (4.36)

and the inverse temperature is

β = 4π(−ω)
1

p̃+1

( p̃ + 1)eCc
. (4.37)

This result for the temperature and the above result for the entropy density lead
to the following relation between them and the non-extremality parameter

(−ω)
1

p+1 = 4π
p̃+1 T S̃

(d−2)
(p+1)( p̃+2) , (4.38)

which generalizes the relation obtained in Ref. [30] for 4-dimensional black holes
and justifies in part the definition of the extremality parameter since it shows that ω
will vanish whenever the brane’s temperature vanishes if the entropy density does
not diverge in this limit.

We can use the first integrals of the two equations of motion above to eliminate
W and Ψ M (which only occurs through Ψ̇ M ) from the remaining three equations of
motion, which only involve the variables Ũ and φi and take the form:

¨̃U + e2Ũ VBB = 0, (4.39)

φ̈i + Γ jk
i φ̇ j φ̇k + d−2

2( p̃+1)(p+1)
e2Ũ∂i VBB = 0, (4.40)

(
˙̃U )2 + (p+1)( p̃+1)

d−2 Gi j φ̇
i φ̇ j + e2Ũ VBB = (ω/2)2, (4.41)

where Γ jk
i (φ) are the components of the Levi-Civita connection of the scalar metric

Gi j (φ), we have defined the negative semidefinite black-brane potential (a general-
ization of the black-hole potential of Ref. [26])

VBB(φ,Q) ≡ 2α2 (p+1)( p̃+1)
(d−2)

MM N QMQN . (4.42)

The first two equations of motion can be derived from the effective action

I[Ũ ,φi ] =
∫

dρ
{
(
˙̃U )2 + (p+1)( p̃+1)

d−2 Gi j φ̇
i φ̇ j − e2Ũ VBB + B̂2

}
. (4.43)
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The third equation is the Hamiltonian constraint (which follows from theρ-independence
of the Lagrangian) with a particular value for the integration constant related to the
non-extremality parameter and the integration constant γ.

Let us summarize the results of this section. We have shown that we can use
consistently the ansatz

ds2
(d) = e

2
p+1 Ũ

[
e

p
p+1ωρdt2 − e−

1
p+1ωρdy 2

(p)

]
− e−

2
p̃+1 Ũ

γ( p̃+3) mndxmdxn .

AM
(p+1) = Ψ M (ρ) dt ∧ dy1 ∧ · · · ∧ dy p, Ψ̇ M = αe2Ũ MM N QN ,

φi = φi (ρ), (4.44)

where Ũ is a function of ρ; γ,QM are constants and γ( p̃+3) mn is the transverse space
metric given in Eq. (4.8) to describe flat, static, regular black-brane solutions of the
theories defined by generic family of actions Eq. (4.1). We have also shown that the
above ansatz gives these theories if Eqs. (4.39–4.41) are satisfied.7

4.2.2 FGK Theorems for Static Flat Branes

The formalism presented in the previous section can be used t derive generalizations
of the results obtained in Refs. [20, 26] for black holes.

Let us first consider extremal black branes ω = 0. The general form of their
metrics can be obtained by taking the ω −→ 0 limit of the general metric Eq. (4.34):

ds2
(d) = e

2Ũ
p+1

[
dt2 − dy2

(p)

]
− e−

2Ũ
p̃+1

ρ
2

p̃+1

[
1

ρ2

dρ2

( p̃ + 1)2 + dΩ2
( p̃+2)

]
. (4.45)

For the near-horizon (ρ→∞) limit of this metric to be regular, Ũ must behave as

eŨ ∼ S̃−
p̃+1
p̃+2 ρ−1, (4.46)

where S̃ is the entropy density per unit worldvolume defined in Eq. (4.31). Therefore,
the near-horizon limit of Eq. (4.45) is the metric of the direct product Ad Sp+2×S p̃+2,

both with radii equal to S̃
1

p̃+2 :

7 The same result can be obtained by reducing first the action Eq. (4.1) to (d − p) = ( p̃ + 4)

dimensions in such a way that the action only contains the Einstein-Hilbert term, scalars and
1-forms and then by using the FGK formalism of Ref. [20] for d-dimensional black holes (p = 0).
See the Appendix in Ref. [19].
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ds2
(d) = ρ

−2
p+1 S̃−

2( p̃+1)
(p+1)( p̃+2)

[
dt2 − dy2

(p)

]
− S̃

2
p̃+2

[
1

ρ2

dρ2

( p̃ + 1)2 + dΩ2
( p̃+2)

]
.

(4.47)

To make further progress we need to impose a regularity condition on the scalars
which generalizes the one used in Ref. [26] for 4-dimensional black holes. We require
that

lim
ρ→∞

(p + 1)( p̃ + 1)

d − 2
Gi j φ̇

i φ̇ j e2Ũρ4 ≡ X <∞. (4.48)

from which it follows that the near-horizon limit ρ→∞ of Eq. (4.41) (the Hamil-
tonian constraint) is

1+ X S̃
2( p̃+1)

p̃+2 + S̃−
p̃+1
p̃+2 VBB(φH ,Q) = 0. (4.49)

Assuming that the near-horizon limit is regular, which implies that the entropy density
S̃ does not vanish and that the values of the scalars on the horizon φi

h do not diverge
φi

h <∞ so

lim
ρ→∞ ρ

dφi

dρ
= 0, ∀i, (4.50)

then it can be shown that
X = 0, (4.51)

and from Eqs. (4.49) and (4.51) we obtain

S̃ = [−VBB(φh,Q)]
p̃+2

2( p̃+1) , (4.52)

so the entropy of an extremal brane is given by (a power of) the value of the black-
brane potential at the horizon.

Furthermore, under the same assumptions, we deduce, from the near-horizon limit
of the equations of the scalars, that the values of the scalars on the horizon φi

h are
such that

Gi j (φh)∂i VBB(φh,Q) = 0, (4.53)

and, if the metric of the scalar manifold Gi j is regular and the values of the scalars
on the horizon are admissible so Gi j (φh) is also regular, then

∂i VBB(φh,Q) = 0, (4.54)

which generalizes the usual attractor mechanism for static extremal black holes to
the case of static extremal flat branes.
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We would like to stress the fact that the black-brane potential on the horizon does
not depend on the moduli (the asymptotic values of the scalars at spatial infinity)
even if the values of the scalars on the horizon do (which is what happens in general.8

Finally, if we consider the Hamiltonian constraint Eq. (4.41) at spatial infinity
(ρ→ 0+) we obtain the generalization of the so-called extremality (or antigravity)
bound for black holes

ũ2 + (p + 1)( p̃ + 1)

d − 2
Gi j (φ∞)Σ iΣ j + VB B(φ∞,Q) = (ω/2)2, (4.55)

where Σ i are the scalar charges and we have defined the constant

ũ = −Ũ ′(0). (4.56)

This constant is a combination of the black p-brane’s tension Tp and the non-
extremality parameter ω. The relation comes from the definition of the brane’s
tension:

Tp = − 1

(p + 1)( p̃ + 2)

[
(d − 2)ũ + p( p̃ + 1)ω/2

]
, (4.57)

Then, the brane’s antigravity bound differs from the black hole’s by terms pro-
portional to pω which vanish in the black-hole case p = 0.

4.2.3 Inner Horizons

The general metric Eq. (4.34) is designed to cover the exterior of the black brane’s
event horizon. In general, though, we expect charged black branes to have two hori-
zons that will coincide in the extremal limit, as it happens for charged black holes.
The inner horizon, which appears as another place at which the gt t component van-
ishes, is not an event horizon. In the 4-dimensional Reissner-Nordström black hole,
which is the best studied example, the inner horizon is actually a Cauchy horizon.

In Ref. [19] it was shown that, in the 4-dimensional black-hole case (p = 0) the
same general metric covers the interior of the inner horizon (the region between the
curvature singularity and the inner horizon) for the range of the radial coordinate9

8 Only the supersymmetric attractors, that is, r the values of the scalars of supersymmetric black-
brane solutions, are guaranteed to depend only on the charges. The general situation for extremal
non-supersymmetric black branes is that the scalars on the horizon keep some dependence on their
values at spatial infinity. This situation is sometimes referred to as the existence of a moduli space of
attractors parametrized by some numbers whose physical meaning (i.e. their expressions in terms
of the physical constants) is seldom given in the literature. These parameters are functions of the
moduli, as shown explicitly in the CP

n
model studied in [19].

Of course, there are some moduli-independent non-supersymmetric attractors but it is important
to realize that this is what happens in general.
9 In that reference the coordinate used was τ = −ρ.



4 Non-extremal Black-Hole Solutions 197

ρ ∈ (−∞, ρsing), where ρsing denotes the location of the curvature singularity and
the inner horizon is placed at ρ = −∞.

In the 5-dimensional black-hole case studied in Ref. [20] it was observed that the
general metric Eq. (4.34) is not well defined for negative values of ρ, from which it
was concluded that the same metric could not cover the interior of the inner horizon.
However, as it has been realized in Ref. [24], one can obtain from a metric of the form
Eq. (4.34), regular for ρ ∈ (0,+∞) and covering the exterior of the black brane’s
event horizon, another metric by the simple transformation10

ρ −→ −
, e−Ũ (ρ) −→ −e−U (−
). (4.58)

The new metric has the same general form, but describes the interior of the inner
horizon for 
 ∈ (
sing,+∞). Observe that, if the original function e−Ũ is always
finite11 for positive values of ρ, the transformed metric will generically hit a singular-
ity before 
 reaches 0 because, after the transformation, eŨ one will have a zero for
some finite positive value of 
, as the explicit examples worked out in the references
show.

The reasons to believe that the transformed metric is the metric that covers the
interior of the horizon of the same black-brane spacetime are the same that make us
believe that the region covered by standard Reissner-Nordström metric for r < r−
corresponds to the interior of the black hole whose exterior is described by that metric
for r > r+. Since the Reissner-Nordström metric is singular at r = r+ and r = r−,
the standard solution is actually giving us three different metrics which we interpret
as covering three different regions of the same black-hole spacetime.

The upshot of this discussion is that the above transformation will allow us to
compute the “temperature” and “entropy” of the inner horizon and check the geo-
metric mean property. This property has been observed to hold for many different
solutions and it has been proven for the charged, rotating, asymptotically flat or
anti-De Sitter black-hole solutions of a wide class of theories in [31], following ear-
lier work [32–36].12 The property consists in the mass-independence (and moduli-
independence, when there are scalars present in the theory) of the product of the
“entropies” of all the horizons of a black-hole solution. In the asymptotically-flat
cases that we are considering, in which the solutions usually have only two horizons,
if we denote by S̃+ the entropy density of the outer (event) horizon by S̃− the entropy
density of the inner (Cauchy) horizon, the geometry mean property says that S̃+ S̃− is
mass and moduli-independent, which means that it only depends on the electric and
magnetic charges, which are quantized. This implies that the product only depends
on integer numbers, which is a very suggestive property of entropy-related quantities.

10 It would be stressed that this a transformation that relates solutions, and not a coordinate trans-
formation.
11 In the construction of the solution this is achieved by requiring the positivity of certain constants
that appear in it, such as the mass or the entropy.
12 A related result valid for horizons of arbitrary topology has been recently found in [37].
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4.2.4 FGK Formalism for the Black Holes of N = 2, d = 5
Theories

Let us see how the general formalism developed in the previous sections works in the
particular case of the black-hole solutions of theories of N = 2, d = 5 supergravity
coupled to vector supermultiplets Refs. [38, 39]. We will use the conventions of
Refs. [40, 41].

For black-hole solutions (which will only be electrically charged with respect to
the vector fields) we can safely ignore the Chern-Simons term in the bosonic action
and work with

I[gμν, AI
μ,φ

x ] =
∫

d5x
{

R + 1
2gxy∂μφ

x∂μφy − 1
8 aI J F I

μνF J μν
}
, (4.59)

where I, J = 0, 1, · · · , n and x, y = 1, · · · , n. The scalar target spaces are deter-
mined by the existence of n+ 1 functions hI (φ) of the n physical scalars φx subject
to the constraint

CI J K hI h J hK = 1, (4.60)

where CI J K is a completely symmetric constant tensor that defines the model. These
functions, like the vector fields themselves, transform linearly under the duality
group, which must be embedded in SO(n + 1), while the physical scalars transform
non-linearly, in general. This helps to make the symmetry manifest and it is the main
reason why these objects (like the symplectic section of the theories of N = 2, d = 4
supergravity coupled to vector supermultiplets) are introduced.

We also define

hI ≡ CI J K h J hK (so hI h I = 1), (4.61)

aI J ≡ −2CI J K hK + 3hI h J . (4.62)

aI J can be used to raise and lower the index of the functions hI , hI and its derivatives

hI
x ≡ −

√
3∂x h I , hI x ≡ aI J h J = +√3∂x h I . (4.63)

These are orthogonal which are orthogonal to the hI with respect to the metric aI J :

hI h I x = hI h I
x = 0. (4.64)

Finally, the target-space metric is related to the matrix aI J by

gxy ≡ aI J h I
x h J

y, (4.65)

which leads to
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aI J = hI h J + gxyh I
x h J

y . (4.66)

The general FGK formalism constructed in the previous section leads, for this
particular case and conventions to the general metric (Ũ → U )

ds2 = e2U dt2 − e−U

(
ω/2

sinh
(
ω
2 ρ

)
) ⎡

⎣
(

ω/2

sinh
(
ω
2 ρ

)
)2

dρ2

4
+ dΩ2

(3)

⎤
⎦, (4.67)

the effective action

I[U,φx ] =
∫

dρ
{
(U̇ )2 + 1

3gxyφ̇
x φ̇y − e2U Vbh

}
, (4.68)

and the Hamiltonian constraint becomes

(U̇ )2 + 1
3gxyφ̇

x φ̇y + e2U Vbh = (ω/2)2, (4.69)

where the black-brane potential (renamed here black-hole potential) is given by13

−Vbh(φ, q) = aI J qI qJ = Z2
e + 3gxy∂xZe∂yZe, (4.70)

where
Ze(φ, q) ≡ hI (φ)qI , (4.71)

is the (electric) black-hole central charge and we have used Eq. (4.65).
A special feature of the FGK formalism for this and other supergravity theories

is that the black-brane potential can be written in terms of central charges and that
one can prove that the black-brane potential is extremized when the central charge
is also extremized:

∂xZ|φh = 0, ⇒ ∂x Vbh|φh = 0. (4.72)

The converse is not true. The extrema of the central charge are the supersymmetric
attractors, the values towards which the scalar fields are attracted when we approach
the horizon of supersymmetric extremal black holes.

In some cases the black-hole potential can be written in a similar fashion for
other functions of the scalars and charges called superpotentials in the literature.
the extremization of these superpotentials also leads to the extremization of the
black-hole potential, but the extrema are not the supersymmetric attractors and it is
not guaranteed that they will only be functions of the charges, as discussed before.
Extremal non-supersymmetric black holes are related to these superpotentials, as we
will discuss later.

13 We have chosen, for convenience, the normalization α2 = 3/32.
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4.2.5 FGK Formalism for the Black Strings of N = 2, d = 5
Theories

The theories of N = 2, d = 5 supergravity coupled to vector supermultiplets
also admit black string solutions charged with respect to the 2-forms BI μν dual to
the vector fields AI

μ. Due to the Chern-Simons term, it is not possible to dualize
completely the action, replacing everywhere the vectors by the 2-forms. However,
for purely magnetic (string) solutions, electrically charged only with respect to the
2-forms, the Chern-Simons term is, again, irrelevant, and one can work with the
bosonic action

I =
∫ √

g
{

R + 1
2gxy∂μφ

x∂μφy + 1
2·3!a

I J G IμνκGμνκ
J

}
, (4.73)

where G I = d BI . Observe that the kinetic matrix is in this case the inverse of the
kinetic matrix of the black-hole case.

The general formalism can be applied straightforwardly and we arrive to the
general for of the metric for non-extremal black strings (d = 5, p = 1)

ds2 = eŨ
[
e
ω
2 ρdt2 − e− ω

2 ρdy2
]
− e−2Ũ

(
ω/2

sinh
(ω

2 ρ
)
)2

⎡
⎣(

ω/2

sinh
(ω

2 ρ
)
)2

dρ2 + dΩ2
(2)

⎤
⎦,

(4.74)
to the effective action

I[Ũ ,φx ] =
∫

dρ
{
(
˙̃U )2 + 1

3gxyφ̇
x φ̇y − e2U Vst

}
, (4.75)

plus the Hamiltonian constraint

˙̃U 2 + 1
3gxyφ̇

x φ̇y + e2U Vst = (ω/2)2, (4.76)

where we have defined the black-string potential as

−Vst(φ, p) ≡ aI J pI pJ = Z2
m + 3∂xZm∂

xZm. (4.77)

Here we have introduced the (magnetic) string central charge

Zm(φ, p) = hI (φ)pI , (4.78)

which for supersymmetric extremal strings plays the same rôle as the electric one
plays for supersymmetric extremal black holes.
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4.2.6 FGK Formalism for N = 2, d = 4 Theories

The black-hole solutions of the theories of ungauged N = 2, d = 4 supergravity
coupled to n vector supermultiplets14 have been the ,most studied of all. As mentioned
above, they can be electric and magnetically charged with respect to the n̄ = n + 1
vector fields AΛ

μ, Λ = 0, 1, . . . , n, and the n complex scalars of these theories,
denoted by Zi , i = 1, . . . , n, which parametrize a special Kähler manifold with
Kähler metric Gi j∗ = ∂i∂ j∗K, where K(Z , Z∗) is the Kähler potential, can have
non-trivial profiles.

The bosonic action of these theories is always of the form

I =
∫

d4x
√|g|

{
R + 2Gi j∗∂μZi∂μZ∗ j∗

+ 2�mNΛΣ FΛ
μνFΣ μν − 2�eNΛΣ FΛ

μν � FΣ μν
}
,

(4.79)

where NΛΣ(Z , Z∗) is the period matrix mentioned before and which is related to
the Kähler metric by the structure of special Kähler geometry.

The general form of the black-hole metrics of these theories is (Ũ → U )

ds2 = e2U − e−2U

(
ω/2

sinh
(
ω
2 ρ

)
)2

⎡
⎣(

ω/2

sinh
(
ω
2 ρ

)
)2

dρ2 + dΩ2
(2)

⎤
⎦, (4.80)

the effective action takes the form

I[U, Zi ] =
∫

dρ
{
(U ′)2 + Gi j∗ Ż i Ż∗ j∗ − e2U Vbh

}
, (4.81)

and the Hamiltonian constraint is given by

(U̇ )2 + Gi j∗ Ż i Ż∗ j∗ + e2U Vbh = (ω/2)2. (4.82)

In these theories the black-hole potential takes the simple form

−Vbh(Z , Z∗,Q) = |Z|2 + Gi j∗DiZD j∗Z∗, (4.83)

where

Z = Z(Z , Z∗,Q) ≡ 〈V | Q〉 = −V MQN ΩM N = pΛMΛ − qΛLΛ, (4.84)

14 For more information on these theories see, for instance, Ref. [42], the review [43], and the
original works [44, 45].
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is the central charge of the theory, (V M ) =
(LΛ

MΛ

)
is the covariantly holomorphic

symplectic section, (ΩM N ) =
(

0
− 0

)
is the symplectic metric, and

DiZ = e−K/2∂i

(
eK/2Z

)
, (4.85)

is the Kähler-covariant derivative.
The supersymmetric attractors of these theories extremize the absolute value of

the central charge
∂i |Z||Zh

= 0. (4.86)

4.3 General Solutions and General Ansatzs

The general ansatzs that we are going to use to construct non-extremal black-hole
solutions are based on the structure of the supersymmetric extremal ones which are
been found in full generality for theories of N = 2, d = 4, 5 supergravity coupled
to vector supermultiplets using the method pioneered by Tod [46, 47]. Therefore, we
are going to start by reviewing them.

4.3.1 General Supersymmetric Solutions

Black Holes of N = 2, d = 5

All the supersymmetric solutions of the theories of ungauged N = 2, d = 5
supergravity coupled to vector supermultiplets only15 were found in Refs. [11, 12]
We use here the conventions and prescription of Ref. [40], specializing it for the
static case.

The supersymmetric, extremal, static black-hole solutions of these theories with
n vector supermultiplets are constructed as follows:

1. With the metric function eU and the scalar functions hI we define the n̄ = n + 1
combinations

HI (ρ) ≡ e−U hI . (4.87)

2. These combinations are single-pole harmonic functions in the 4-dimensional
transverse space of the general extremal metric Eq. (4.45) which we rewrite here

15 These results have been extended to theories with hypermultiplets and tensor multiplets in
Refs. [40, 48, 49] but these only include regular black-hole solutions when the additional fields
vanish and, therefore, we will not consider them here.
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for convenience16 for d = 5, p = 0 (Ũ → U ):

ds2 = e2U dt2 − e−U 1

ρ

[
1

4ρ2 dρ2 + dΩ2
(3)

]
. (4.88)

In other words: they are linear functions of the radial coordinate ρ:

HI = AI + BIρ, (4.89)

for some constants AI , BI .
3. The solutions are completely determined by these harmonic functions. All the

physical fields can be constructed in terms of them:

(a) The vector field strengths are given by

F I = −√3d(eU hI ) ∧ dt (4.90)

from which one can identify (in the same normalization we have chosen
before) the coefficients BI with the electric charges qI :

BI = qI . (4.91)

This identification is an important part of the structure of the supersymmetric
extremal solutions of these theories.

(b) The scalar fields can be written, for instance, in the form

φx = hx/h0 = Hx/H0. (4.92)

(c) In order to write the metric in terms of the harmonic functions we first need
to solve the (5-dimensional equivalent of the) stabilization equations, i.e.
we need to find how to write the hI in terms of the hI and, therefore, in terms
of the HI and eU . Then, the constraint CI J K hI h J hK = 1 gives a relation
between eU and the harmonic functions,

eU (H)

which we will describe in detail when we review the H-FGK formalism.

4. The expressions of the physical fields can be use to determine completely the
constants AI in terms of their asymptotic values (basically only the moduli since
the metric function is normalized to 1 at spatial infinity), as explained in Ref. [24].

16 The change ρ = r−2 brings the metric to the standard form.



204 T. Ortín

Black Strings of N = 2, d = 5

The supersymmetric, extremal, static black-string solutions of these theories with n
vector supermultiplets are constructed following a very similar recipe [12, 48, 50]:

1. With the metric function eU and the scalar functions hI we define the n̄ = n + 1
combinations

K I (ρ) ≡ e−U hI . (4.93)

2. These combinations are single-pole harmonic functions in the 3-dimensional
transverse space of the general extremal metric Eq. (4.45) which we rewrite here
for convenience17 for d = 5, p = 1 (Ũ → U ):

ds2 = eU [dt2 − dy2] − e−2U 1

ρ2

[
1

ρ2 dρ2 + dΩ2
(2)

]
. (4.94)

In other words: again, they are linear functions of the radial coordinate ρ:

K I = AI + B Iρ, (4.95)

for some constants AI , B I .
3. The solutions are completely determined by these harmonic functions. All the

physical fields can be constructed in terms of them:

(a) The field strengths are given by

F I = √3 �(3) d H I . (4.96)

from which one can identify the coefficients B I with the magnetic charges
(the electric charges of the dual field strengths) pI :

B I = pI . (4.97)

Again, this identification is a feature of the supersymmetric extremal solu-
tions.

(b) The scalar fields can be written as in the black-hole case, which requires that
we solve the stabilization equations, or we can use a different parametrization
f the scalar manifold and write

φx = hx/h0 = K x/K 0. (4.98)

(c) The metric function eU is found by substituting the definition of the variables
K I in the constraint CI J K hI h J hK = 1, which yields

17 The change ρ = r−1 brings the metric to the standard form.
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e−3U (K ) = CI J K K I K J K K . (4.99)

4. The expressions of the physical fields can be use to determine completely the
constants AI in terms of their asymptotic values (basically only the moduli since
the metric function is normalized to 1 at spatial infinity (ρ = 0)):

φx∞ = Ax/A0, e−3U (A) = 1, (A0)−3 = e−3U (A/A0) = e−3U (φ∞),

(4.100)
where we defined, for convenience φ0 ≡ 1. Then

A0 = eU (φ∞), Ax = φx∞eU (φ∞). (4.101)

Black Holes of N = 2, d = 4

All the timelike18 supersymmetric solutions of the most general, gauged matter-
coupled theories have been classified in Refs. [9, 14–16, 46, 51–54]. The supersym-
metric extremal black holes of the ungauged theories19 were constructed in [6–9]
and we are going to give the recipe of Ref. [9] to construct the static ones: all the
supersymmetric solutions of a theory of N = 2, d = 4 supergravity coupled to
vector supermultiplets and defined by the covariantly-holomorphic section V M can
be constructed as follows:

1. We introduce an auxiliary function of Kähler weight 1 (like V) which, as we will
see later (and we can safely ignore here) is related to the metric function eU by
e2U = 2|X |2.

2. We define the Kähler-neutral real symplectic vectors RM and IM

RM + iIM ≡ V M/X. (4.102)

No Kähler gauge-fixing are necessary with this construction.
3. The components of IM are real functions H M which are single-pole harmonic

functions in the 3-dimensional transverse space of the general extremal metric
Eq. (4.45) which we rewrite here for convenience20 for d = 4, p = 0 (Ũ → U ):

ds2 = e2U dt2 − e−2U 1

ρ2

[
1

ρ2 dρ2 + dΩ2
(2)

]
. (4.103)

18 These are the supersymmetric solutions such that the vector constructed as a bilinear from its
Killing spinor is timelike. In particular, it is a timelike Killing vector. The other possible class is
the null class. The supersymmetric extremal black-hole solutions belong to the timelike class.
19 In the gauged theories there are asymptotically-Ad S black holes [55] and also asymptotically-
flat, regular black holes with non-Abelian hair [14–16], but here we are not going to consider these
cases.
20 The change ρ = r−1 brings the metric to the standard form.
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Yet again, they are linear functions of the radial coordinate ρ:

H M = AM + B Mρ, (4.104)

for some constants AM , B M .
4. In this case, the constants must satisfy the constraint

AM BM = 〈 A | B〉 = 0. (4.105)

This constraint is equivalent to the requirement that there is no NUT charge [56].
A solution with NUT charge is, first of all, not static, and second of all, it would
generically have either singularities or closed timelike curves.

5. The solutions are completely determined by these harmonic functions. All the
physical fields can be constructed in terms of them. The construction requires
finding the RM s in terms of the IM s, and, hence, of the harmonic functions H M .
This is always possible due to the redundancy of the description provided by V
which implies the existence of relations between Rs and Is known as stabilization
equations. These h may be very difficult to solve in practice.

(a) The vector field strengths are given by

F M = −√2d(RM |X |2) ∧ dt −√2|X |2 � (dt ∧ dIM ), (4.106)

which allows us to identify the constants B M with the electric and magnetic
charges collected in the symplectic vector QM :

(B M ) = (QM ) =
(

pΛ

qΛ

)
. (4.107)

This is a characteristic feature of the supersymmetric extremal solutions.
(b) The physical scalars Zi are given by the quotients

Zi = V i/X

V0/X
= Ri + iI i

R0 + iI0 . (4.108)

(c) The metric function is given by

e−2U = 1

2|X |2 = 〈R | I 〉. (4.109)

6. The expressions of the physical fields can be use to determine completely the
constants AM in terms of their asymptotic values (basically only the moduli since
the metric function is normalized to 1 at spatial infinity ρ = 0). The asymptotic
conditions take the form
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e2U (A) = 1, (4.110)

Zi∞ =
Ri (A)+ i Ai

R0(A)+ i A0 . (4.111)

Now, let us write X as
X = 1√

2
eU+iα, (4.112)

where α is some function. Then, the definition of IM implies that

H M = √2e−U �m(e−iαV M ), (4.113)

and, at spatial infinity ρ = 0, using the asymptotic flatness conditions Eq. (4.110),
we find

AM = √2�m(e−iα∞V M∞). (4.114)

α∞ can be found using Eq. (4.105) and the definition of the central charge
Eq. (4.84). Observe that

AM B M = 〈 H | B 〉 = �m〈V/X | B 〉 = �m(Z̃/X) = e−U�m(e−iαZ̃) = 0.

(4.115)
Then

eiα = ±Z̃/|Z̃|, (4.116)

and the general expression of the constants AM as functions of the charges QM

and the asymptotic values of the scalar fields Zi∞ is

AM = ±√2�m

( Z∗
|Z|V

M∞
)

. (4.117)

It can be seen that only the upper sign gives a positive value of the mass and a
regular black-hole metric.

4.3.2 General Ansatzs for Non-extremal Solutions

In the previous section we have seen how, the supersymmetric extremal black-hole
and black-string solutions of N = 2, d = 4, 5 theories can be constructed by
following a simple recipe. The main ingredient in the recipe is the expression of the
physical fields (the metric function eU and the scalar fields Zi in d = 4 and φx in
d = 5, which are the only fields that need to be determined in the FGK formalism)
in terms of some functions H M , HI and K I in the different theories and cases. In
the supersymmetric solutions these functions are linear in the radial coordinate ρ.
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Based on these recipes we can make the following ansatz for the non-extremal
solutions: the physical fields are given by the same expressions in terms of the
functions H M , HI and K I as in the supersymmetric case but, now, these function
are no longer linear in ρ. It seems that in all cases [19, 20, 24] these functions are
linear combinations of hyperbolic sines and cosines of ω

2 ρ:

H M = AM cosh
(ω

2
ρ
)
+ 2B M

ω
sinh

(ω
2
ρ
)
, (4.118)

etc.
We are assuming that there is a universal way to express the physical fields of

this kind of solutions in terms of the variables H M , HI and K I , and this probably
needs some justification, beyond the examples for which this seems to be the case.21

It can be argued that the duality-invariance of eU and the duality-covariance of the
scalars can only be achieved by very specific combinations of functions and that we
roughly expect as many independent functions as electric and magnetic charges can
be carried by the black objects. There is, however, a better argument: for the cases
considered, the functions H M , HI and K I can be used as independent variables in
the FGK formalism. In other words: the general expressions for eU and the scalars
as functions of the H M , HI or K I can always be used to change the variables
in the FGK effective action and Hamiltonian constraints. In this way, one gets an
equivalent formulation of the FGK system in which the fundamental variables are
the functions H M , HI or K I that we have called H-FGK formalism [22].22 Solving
the new equations of motion and Hamiltonian constraint for the new variables one
can reconstruct the physical fields using always the same expressions.

This proves the first assumption. As for the second assumption in our ansatz (the
hyperbolicity of the functions H M , HI and K I in the non-extremal cases), there
is no complete proof, although in the H-FGK formalism it arises as a most natural
possibility.

In the next section we review the H-FGK formalism.

4.4 A Better Framework: The H-FGK Formalism

4.4.1 For the Black-Hole Solutions of N = 2, d = 5

Here we are going to show how the metric function eU and the n real scalars φx can
be replaced in the FGK action by the n̄ = n + 1 variables denoted by HI . We will
also need to define n̄ dual variables H̃ I for intermediate calculations.

21 Apart from the examples studied in Refs. [19, 20], the assumption is true in all the supersymmetric
solutions of N = 2, d = 4, 5 theories, for all matter couplings and gaugings.
22 A similar, more general, formalism that reduces to the H-FGK one for single, static, spherically-
symmetric black holes of N = 2, d = 4, 5 has been given in Refs. [17, 18, 21]. The N = 2, d = 5
string case has not been treated with this method.
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A very important ingredient of the ensuing calculations will be the homogeneity
of the functions that occur in the supergravity theories and in the formalism. To start
with, we define V(h·), homogeneous of third degree in the hI s

V(h·) ≡ CI J K hI (φ)h J (φ)hK (φ). (4.119)

This function defines the scalar manifold as the hypersurface V = 1. The dual scalar
functions hI , defined in Eq. (4.61) can also be defined by

hI (h
·) ≡ 1

3
∂V
∂hI

. (4.120)

They are, obviously, homogenous of second degree in the hI . This relation can be
inverted to express the hI as functions of the hI , hI (h·) (finding this relations is the
same as solving the stabilization equations). It is evident that hI (h·) is homogeneous
of degree 1/2 which implies that, in its turn, V(h·) is homogeneous of degree 3/2.

It is useful to define the Legendre transform of V(h·) W(h·) by

W(h·) ≡ 3hI h I (h·)− V(h·) = 2V[h·(h·)], (4.121)

which is homogenous of degree 3/2. From the standard properties of the Legendre
transform we get

hI ≡ 1
3
∂W
∂hI

. (4.122)

The next step in this construction is the introduction of two sets of variables HI

and H̃ I which are related to the physical fields (U,φx ) by

HI ≡ e−U hI (φ), (4.123)

H̃ I ≡ e−U/2hI (φ), (4.124)

and two new functions V and W, which have the same form in the new variables as
V and W had in the old ones, that is

V(H̃) ≡ CI J K H̃ I H̃ J H̃ K , (4.125)

W(H) ≡ 3H̃ I HI − V(H̃) = 2V. (4.126)

These functions are not constrained as V and W are.
The properties that we proved for V and W (in particular, the homogeneity prop-

erties) implies the following properties for V and W:

HI ≡ 1
3
∂V

∂ H̃ I
, (4.127)
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H̃ I ≡ 1
3
∂W
∂HI

≡ 1
3 ∂

I W, (4.128)

e−
3
2 U = 1

2 W(H), (4.129)

hI = (W/2)−2/3 HI , (4.130)

hI = (W/2)−1/3 H̃ I . (4.131)

Having defined the n̄ variables HI in terms of the metric function eU and the
n scalar fields φx (through hI ), we can view the above formulae Eqs. (4.129) and
(4.130) as the inverse relations and we can use these relations and the rest of the
auxiliary formulae to rewrite the FGK action Eq. (4.68) in terms of the new variables
H I .

First, we rewrite that action in the equivalent form

IFGK[U,φx ] =
∫

dρ
{
(U̇ )2 + aI J ḣ I ḣ J + e2U aI J qI qJ

}
, (4.132)

so that we only need to express U, hI and aI J in terms of the new variables. For U
and hI this is, trivial, using the above formulae. For the inverse metric aI J one can
show that the relation between aI J and the new variables is

aI J = − 2
3 (W/2)4/3 ∂ I∂ J log W, (4.133)

and, therefore, after the change of variables, the effective FGK action becomes

− 3
2IH−FGK[H ] =

∫
dρ

{
∂ I∂ J log W

(
ḢI ḢJ + qI qJ

)}
, (4.134)

while the Hamiltonian constraint becomes

H ≡ ∂ I∂ J log W
(
ḢI ḢJ − qI qJ

) = − 3
2 (ω/2)2. (4.135)

Observe that ∂ I∂ J log W plays the role of a metric in a σ-model with coordinates
HI . Manifolds whose metrics can be written as the Hessian of a function are called
Hessian manifolds and the function (log W in this case) is known as Hessian potential.
The problem of finding black-hole solutions becomes, thus, a mechanical problem
on a Hessian manifold.

The equations of motion derived from the effective action (4.134) are

∂K∂ I∂ J log W
(
ḢI ḢJ − qI qJ

)+ 2∂K∂ I log W ḦI = 0. (4.136)
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Multiplying by HK and using the homogeneity properties of W and the Hamiltonian
constraint we get

∂ I log W ḦI = 3
2 (ω/2)2. (4.137)

This is just the equation of motion of U after the change of variables.
Observe that in the extremal case B = 0, the equations of motion can be always

satisfied by harmonic functions ḢI = qI . This proves that the supersymmetric con-
figurations constructed according to the recipe give in previous sections are always
solutions of the equations of motion.

On the other hand, observe that, since W is homogenous of degree 3/2 on the HI

HI∂
I log W = 3

2
, (4.138)

we can rewrite the Eq. (4.137) in the form

∂ I log W
[

ḦI − (ω/2)2 HI

]
, (4.139)

which is generically solved by functions HI satisfying

ḦI − (ω/2)2 HI = 0, (4.140)

that is: by linear combinations of hyperbolic sines and cosines of ω
2 ρ. Thus justifies

our ansatz for non-extremal black holes.
The application of this formalism to extremal non-supersymmetric and non-

extremal black-hole solutions has been studied in detail in Ref. ([22]) showing the
power of this formalism to obtain general results concerning the entropy, first-order
flow equations for extremal and non-extremal black holes etc.

4.4.2 For the Black-String Solutions of N = 2, d = 5

An analogous formalism can be developed for string-like solutions, taking into
account that, even though we are in the same theory, we are interested in different
solutions which are naturally given in terms of different variables: the functions K I

[12, 48, 50], related to the hI (φ). We will also introduce auxiliary dual functions K̃ I .
The new variables are defined by

K I ≡ e−U hI (φ), (4.141)

and we also define the function

V(K ) ≡ CI J K K I K J K K , (4.142)
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which is homogenous of third degree on the K I . The equation that defines the scalar
manifold implies that the metric function is related to the new variables by

e−3U = V(K ). (4.143)

The dual variables K̃ I can be defined either by

K̃ I ≡ e−2U hI (φ) (4.144)

or by
K̃ I ≡ 1

3∂I V(K ). (4.145)

Following essentially the same steps as in the black-hole case, we arrive to the
H-FGK action

−3 IH−FGK[K ] =
∫

dρ
{
∂I∂J V

(
K̇ I K̇ J + pI pJ

)}
, (4.146)

and the Hamiltonian constraint

H ≡ ∂I∂J V
(

K̇ I K̇ J − pI pJ
)
= −3(ω/2)2. (4.147)

The equations of motion that follow from the H-FGK action are

∂I∂K∂LV
(

K̇ K K̇ L − K K K̈ L − pK pL
)
= 0. (4.148)

Contracting these equations with K I one gets

K̈ I∂I log V = 3(ω/2)2, (4.149)

which can be rewritten in the form

∂I V
[

K̈ I − (ω/2)2 K I
]
= 0, (4.150)

which is, again, solved generically by linear combinations of hyperbolic sines and
cosines of ω

2 ρ.

4.4.3 N = 2, d = 4

The 4-dimensional case is more complicated. To start with, there is a mismatch
between the number of original variables in the FGK formalism: eU and the Zi

represent 2n+ 1 real degrees of freedom and the variables of the H-FGK formalism
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H M are 2n + 2. This should not be a problem, because we can always perform a
change of variables that increases the number of variables, since the change will
introduce constraints in the system. However, defining the change of variables will
be more complicated. It is convenient to start with the complex variable of Kähler
weight one (as the covariantly holomorphic symplectic section)

X = 1√
2

eU+iα, (4.151)

where the phase α is a variable that does not occur in the original FGK formalism.
As in the 5-dimensional case, the homogeneity properties of the functions that

appear in the supergravity theory are essential in this construction. They are simpler
to find if we assume that the theory is specified by the prepotential F which is a
homogeneous function of second degree in the complex coordinates X Λ. Defining

FΛ ≡ ∂F
∂X Λ

, FΛΣ ≡ ∂2F
∂X Λ∂X Σ

, (4.152)

we find that
FΛ = FΛΣX Σ. (4.153)

The coordinates X Λ and the dual coordinates FΛ are related to the components
of t he covariantly holomorphic section by

(
V M

)
=

( LΛ

MΛ

)
= eK/2

(X Λ

FΛ

)
, (4.154)

where K is the Kähler potential. Then, the above relation implies this relation between
the components of V M (dividing by X ):

MΛ

X
= FΛΣ

LΣ

X
. (4.155)

Splitting this relation into its real and imaginary parts and using the definitions
Eq. (4.102) we get

RM = −MM N (F)IN , (4.156)

where the 2n̄×2n̄ symmetric symplectic matrix MM N (A) is defined for any complex
symmetric n̄ × n̄ matrix AΛΣ with non-degenerate imaginary part by

M(A) ≡
(�mAΛΣ +�eAΛΩ �mA−1|ΩΓ �eAΓ Σ −�eAΛΩ �mA−1|ΩΣ

−�mA−1|ΛΩ �eAΩΣ �mA−1|ΛΣ

)
.

(4.157)
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In the above expression AΛΣ = FΛΣ . Later on we will use the matrix MM N (N )

where NΛΣ is the period matrix. Both matrices are related by23

−MM N (N ) =MM N (F)+ 4V(MV∗N ). (4.158)

The inverse of MM N , denoted by MM N , can be obtained by raising the indices
with the inverse symplectic metric.

It is also immediate to prove the relation

dRM = −MM N (F) dIN , (4.159)

from which one can derive the following relation between partial derivatives [56]:

∂IM

∂RN
= ∂IN

∂RM
= −∂RM

∂IN
= −∂RN

∂IM
= −MM N (F). (4.160)

We are now ready to introduce two dual sets of variables H M and H̃M and replace
the original n̄ complex fields X, Zi by the 2n̄ real variables H M :

H M ≡ IM (X, Z , X∗, Z∗), (4.161)

H̃M ≡ RM (H). (4.162)

Observe that the definition of the dual variables H̃M (H) implies that the stabiliza-
tion equations have been solved. Knowing both sets of variables, we can reconstruct
the physical fields :

e−2U = 1

2|X |2 = RMIM , (4.163)

Zi = H̃ i (H)+ i Hi

H̃0(H)+ i H0
. (4.164)

The phase of X (α) can be found24 by solving the differential equation (cf. Eqs. (3.8),
(3.28) in Ref. [58])

α̇ = 2|X |2 Ḣ M HM −Q�, (4.165)

where
Q� = 1

2i Ż i∂iK + c.c., (4.166)

is the pullback of the Kähler connection 1-form.

23 This relation can be derived from the identities in Ref. [57].
24 Observe that we do not really need it, since it does not appear in the original FGK action anyway.
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We are now almost ready to perform the change of variables in the FGK action.
First, we need to introduce the function W(H)

W(H) ≡ H̃M (H)H M = e−2U = 1

2|X |2 , (4.167)

which is homogenous of second degree in the H M . Using the properties (4.160) one
can show that

∂MW ≡ ∂W
∂H M

= 2H̃M , (4.168)

∂MW ≡ ∂W

∂ H̃M
= 2H M , (4.169)

∂M∂N W = −2MM N (F), (4.170)

W∂M∂N log W = 2MM N (N )+ 4W−1 HM HN , (4.171)

where the last property is based on Eq. (4.158).
We also need the special geometry identity

Gi j∗ = −iDiVMD j∗V∗M (4.172)

to deal with the scalars’ kinetic term.
Using all these results, after some work, we can rewrite the FGK effective action

in the form

−IH−FGK[H ] =
∫

dτ
{

1
2∂M∂N log W

(
Ḣ M Ḣ N + 1

2QMQN
)
−Λ

}
, (4.173)

where we have defined

Λ ≡
(

Ḣ M HM

W

)2

+
(QM HM

W

)2

, (4.174)

and the Hamiltonian constraint in the form

H ≡ − 1
2∂M∂N log W

[
Ḣ M Ḣ N − 1

2QMQN
]
+

(
Ḣ M HM

W

)2

−
(QM HM

W

)2

= r2
0 ,

(4.175)
where we are using the more conventional form of the non-extremality parameter
r0 = ω/2 in d = 4.

The equations of motion for the H P can be written in the form
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1
2∂P∂M∂N log W

[
Ḣ M Ḣ N − 1

2QMQN
]+ ∂P∂M log W Ḧ M

− d

dτ

(
∂Λ

∂ Ḣ P

)
+ ∂Λ

∂H P
= 0.

(4.176)

Contracting these equations with H P and using the homogeneity properties of
the different terms as well as the Hamiltonian constraint above, we find the equation
(cf. Eq. (3.31) of Ref. [58] for the stationary extremal case)

1
2∂M log W

(
Ḧ M − r2

0 H M
)
+

(
Ḣ M HM

W

)2

= 0, (4.177)

which corresponds to the equation of motion of the variable U in the standard FGK
formulation.

If we impose the constraint
Ḣ M HM = 0, (4.178)

which implies the absence of NUT charge in the supersymmetric extremal case,
we find that the above equation is solved, quite naturally, by H M s which are linear
combinations of hyperbolic sines and cosines of r0ρ. Furthermore, in the extremal
case (r0 = 0) the equations of motion are solved by linear functions of ρ such that
Ḣ M = QM [56]. We recover, in this way, the supersymmetric extremal functions
reviewed before. A more general study of the extremal non-supersymmetric and
non-extremal solutions will be presented elsewhere [25].

4.5 Conclusions

As promised in the introduction, we have constructed a formalism that justifies the
general ansatzs proposed in Refs. [19, 20] to find non-extremal black-hole and black-
string solutions in theories of ungauged N = 2, d = 4, 5 supergravity coupled to
vector supermultiplets. The formalism turns out to be most useful in the study of
general classes of solutions [24, 25] and, to a certain extent, closes the problem of
finding the most general static, spherically symmetric black-hole and black-string
solutions of those theories. At this point, the use of this formalism to find solutions
of complicated theories that have resisted other methods remains a challenge, since
more of the examples studied so far correspond to simple theories.

The extension of this formalism to handle Abelian gaugings via Fayet-Iliopoulos
terms is straightforward and will be studied in [25].25

How about other 4- and 5-dimensional supergravities? It might seem that, since
they are quite different (in particular the relations between the numbers of scalar
fields and the possible electric and magnetic charges) an H-FGK formulation is

25 It has also been studied via the analogous method mentioned before in Ref. [59].
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simply not possible. However, the general form of the black-hole solutions of all
the 4-dimensional supergravities is known [13] and structures similar to those of
the N = 2 case arise quite naturally there and these similarities have been recently
used to construct the metrics and the vector field strengths of the supersymmetric,
extremal, (single- or multi-center) black holes of N = 8, d = 4 supergravity have
been constructed in terms of a set of harmonic functions H M [60]. It is not known
how to construct explicitly the scalar fields, though. However, as we have seen,
the explicit expressions of the fields are not always needed to perform a change of
variables, since they tend to appear in combinations that we do know how to express
in the new variables. Therefore, it is not ruled out that such formulations are possible.
If found, they would give us a handle on the non-supersymmetric extremal solutions
and on the non-extremal ones that we are now missing. Work in this direction is
under way.
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Chapter 5
Non-supersymmetric Extremal Black Holes:
First-Order Flows and Stabilisation Equations

Pietro Galli, Kevin Goldstein, Stefanos Katmadas and Jan Perz

We review the results of [1, 2] on reducing the second-order equations of motion for
stationary extremal black holes in four-dimensional N = 2 supergravity to first-order
flow equations and further to non-differential stabilisation equations.

5.1 Introduction

Supergravity theories, being extensions of general relativity, admit black hole solu-
tions. Finding them, as indeed any type of solutions in any theory, can be greatly
simplified by a judicious exploitation of symmetries. One example, which would
be valid also in Einstein’s relativity, concerns space-time symmetries: for solutions
translationally invariant in time, we can take the metric to be stationary, i.e. to have
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a timelike Killing vector. In the simplest case, without rotation or NUT charge, the
ansatz for the line element can be chosen to be static (invariant under time reversal)
and spherically symmetric.

In supergravity, we can in addition take advantage of supersymmetry, as long as
the solution is also, at least partly, supersymmetric (or ‘BPS’), i.e. when it is invariant
under some of the supersymmetry transformations (a supersymmetric variation of
the fields vanishes). If we look for classical, purely bosonic solutions (the expecta-
tion value of anticommuting fields must be zero, in other words fermions have no
classical limit), the only non-trivial conditions (Killing spinor equations) come from
the supersymmetry transformations of the fermionic fields, as the result of the super-
symmetry transformations acting on bosons is fermionic and this by our assumption
is automatically zero. Since the Killing spinor equations are of first order in deriv-
atives of the fields, they are usually easier to solve than the second-order equations
of motion.

Finally, we can make use of other internal symmetries of the theory, especially
its invariance under duality transformations. We shall return to this point later, but
already now let us mention that it may be helpful if the existence of these symmetries
can be reflected in the description of the theory itself.

5.2 Special Geometry

In this review we restrict our attention to the bosonic sector of N = 2 ungauged
supergravity in four spacetime dimensions [3, 4], which is one of the most widely
encountered settings in the study of supergravity black holes, for it is sufficiently com-
plicated to have physically interesting solutions, yet simple enough to be tractable.
We consider only vector multiplets, because hypermultiplets do not couple to them
and can be taken as constants in a self-consistent solution.

The remaining part of the action contains the familiar Einstein–Hilbert term for
gravity, kinetic terms for nv neutral complex scalars and nv + 1 abelian gauge fields
(where nv is the number of vector multiplets; the extra gauge field is the graviphoton
of the gravity multiplet):

I4D = 1

16π

∫ (
R � 1− 2 gab̄(z, z̄) dza ∧ � dz̄b̄

− Im NI J (z, z̄) F I ∧ � F J − Re NI J (z, z̄) F I ∧ F J
)
. (5.1)

Importantly for our subsequent discussion, both the scalar manifold metric gab̄ and
the gauge kinetic matrix N depend on the scalars. This dependence, however, is not
totally arbitrary. The scalar manifold is special Kähler, which means that its metric
follows from the (real) Kähler potential K

gab̄ = ∂a∂b̄ K (z, z̄), (5.2)
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and that the Kähler potential itself can be determined by specifying a prepotential
F (not to be confused with the field strengths F I = dAI ).1 The prepotential is
usually displayed in homogeneous (projective) coordinates X I (z), rather than the
affine coordinates za = Xa(z)/X0(z) corresponding to physical scalars, and we
shall take it to be cubic (so-called ‘very special geometry’):

F = −1

6
Dabc

Xa(z)Xb(z)Xc(z)

X0(z)
. (5.3)

The Kähler potential can be calculated as the symplectic invariant

K = − ln

[
i
(

X I (z) FI (z)
) (

0 −I

I 0

) (
X I (z)
FI (z)

)]
(5.4)

=: − ln
(

i〈Ωhol(z),Ωhol(z)〉
)
, (5.5)

where FI = ∂I F = ∂F/∂X I (z) and Ωhol(z) is the holomorphic section of special
geometry. (In practice it will be more convenient to use the covariantly holomorphic
section Ω = eK/2Ωhol.) The detailed form of the matrix N will not be needed in
our considerations, but it too can be obtained from the prepotential.

5.3 Static Supersymmetric Black Holes

The static, spherically symmetric case is the simplest to analyse, because all
spacetime-dependent quantities become functions of the radial coordinate τ only.
For the line element one can then take [6]

ds2 = −e2U (τ )dt2 + e−2U (τ )

(
c4

sinh4(cτ )
dτ2 + c2

sinh2(cτ )
dΩ2

(2)

)
, (5.6)

where c is a non-extremality parameter and dΩ2
(2) is the metric of a unit two-sphere.

(The horizon is located at τ → ±∞, depending on conventions, and τ → 0 corre-
sponds to spatial infinity, where we shall also require U = 0 for asymptotic flatness.)
The vector fields can be expressed in terms of the magnetic and electric charges

Γ :=
(

pI

qI

)
= 1

4π

∫
S2

(
F I

G I

)
, (5.7)

1 Strictly speaking, the existence of a prepotential is not guaranteed in every symplectic frame, but
a frame where a prepotential exists can always be found by a symplectic transformation [5].
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where G I = Im NI J � F J +Re NI J F J is the dual field strength. Upon substitution
one obtains [7] the action2

Ieff = − 1

4π

∫
dt

∫
dτ

(
U̇ 2 + gab̄ ża ˙̄zb̄ + e2U Vbh

)
(5.8)

with an effective ‘black hole potential’

Vbh = − 1
2Γ TM(N )Γ, (5.9)

which is a function of the charges and (through the gauge couplings) of the scalars
(again, the detailed form of the matrix M is immaterial for our purposes). This
action reproduces the original equations of motion, except for one component of the
Einstein equations, which is referred to as the Hamiltonian constraint:

U̇ 2 + gab̄ ża ˙̄zb̄ − e2U Vbh = c2. (5.10)

The black hole potential can be expressed in terms of the central charge3 Z =
〈Γ,Ω〉 as

Vbh = |Z |2 + 4gab̄∂a |Z |∂b̄|Z |. (5.11)

This, together with the Hamiltonian constraint and the identification of the mass with
the asymptotic value of the t t component of the metric differentiated with respect to
τ (which, by asymptotic flatness, equals U̇ here) implies that solutions that saturate
the supersymmetric BPS bound

M = |Z(z∞, Γ )| (5.12)

must be extremal: c = 0. In that case the line element simplifies to

ds2 = −e2U (τ )dt2 + e−2U (τ )

(
1

τ4 dτ2 + 1

τ2 dΩ2
(2)

)
(5.13)

with τ = ±1/|x|, so the terms in parentheses represent the flat metric on R
3.

Formula (5.11) also makes it possible to rewrite the effective Lagrangian (up to a
total derivative term, which can be neglected) as a sum of squares:

Leff ∝
(

U̇ + eU |Z |
)2 +

∥∥∥ża + 2eUgab̄∂b̄|Z |
∥∥∥2

. (5.14)

2 We adopt the plus sign for the potential term, as is customary in the black hole potential literature.
3 More precisely, Z is a function of the radial coordinate. It coincides with the central charge of the
supersymmetry algebra at spatial infinity.
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Since δ(. . .)2 = 2(. . .)δ(. . .), the action attains a stationary value when the two brack-
ets vanish separately, which immediately leads to first-order gradient flow equations
that by construction satisfy the (second-order) equations of motion:

U̇ = −eU |Z |, (5.15)

ża = −2eUgab̄∂b̄|Z |. (5.16)

The flow generated by these equations terminates at ża = 0 in the scalar manifold
and on the horizon in spacetime. This means that the critical points of |Z(z, z̄, Γ )|
determine the horizon values of the scalars in terms of the charges (attractor mecha-
nism).

The conditions for critical points can be brought to the form known as the attractor
equations [8]

2Im(Z̄Ω) = Γ. (5.17)

When the scalars are constant in spacetime (so-called ‘doubly extremal black holes’),
the attractor values are taken everywhere. The non-constant solutions are given in
terms of harmonic functions by the similar stabilisation equations4 [9]

2Im(Ωhol) = H, H = Γ τ + h, (5.18)

where h is the vector of constants related to the asymptotic values of the scalars.

5.4 Beyond the Static, Supersymmetric Case

For supersymmetric black holes, as we indicated in the introduction, the fact that
the equations of motion can be reduced to first-order equations is not surprising.
More unexpectedly, it turns out [10] that non-supersymmetric and even non-extremal
black holes can enjoy a like description. In the non-supersymmetric extremal case
this becomes evident [11] when the black hole potential remains invariant under
rotations of the charge vector by a matrix S, Γ �→ Γ̃ = SΓ :

STMS =M =⇒ Vbh = W 2 + 4gab̄∂a W∂b̄W, W = |〈Γ̃ ,Ω〉|. (5.19)

Flow equations based on the superpotential5 W (or ‘fake central charge’, as it is built
from the ‘fake charges’ Γ̃ ) are entirely analogous to (5.15), (5.16), except that the
respective attractor equations may be underdetermined and may not fix the horizon

4 Some authors interchange the meaning of ‘stabilisation equations’ and ‘attractor equations’ rel-
ative to our nomenclature or use the term ‘generalised stabilisation equations’ for those involving
harmonic functions. Occasionally the name ‘stabilisation equations’ is given to the relation, implied
by Eq. (5.18), between the real and imaginary parts of the symplectic section.
5 In some papers called the prepotential.
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values of scalars completely in terms of the charges (this is due to flat directions of the
effective potential; the entropy, being related to the stationary value of the potential,
is therefore still independent of the asymptotic values of the scalars [12]). In the non-
extremal case [13] one seeks an expansion of the whole potential term (including the
warp factor) into squares of partial derivatives of a (generalised) superpotential Y :

e2U Vbh = (∂U Y )2 + 4gab̄∂aY∂b̄Y − c2. (5.20)

This again leads to gradient flow equations, but not to the attractor mechanism,
because unlike Z or W , Y depends also on the metric function U .

What about extremal, but not necessarily static and spherically symmetric black
holes (for instance, rotating stationary solutions or multicentre configurations)?
Could one still reduce the equations of motion to first-order equations and inte-
grate them to non-differential stabilisation equations? To answer these questions
we proceed in a similar manner to the static case, but using a different formalism,
originally devised by Denef [14] for supersymmetric solutions.

Let us first reinterpret or redefine the quantities that we have already encoun-
tered from the geometrical perspective, when the supergravity considered is viewed
as a low-energy approximation of type IIB string theory compactified on a Calabi–
Yau three-fold MCY. Specifically, the number of vector multiplets is equal to one
of the Hodge numbers, nv = h2,1, the holomorphic symplectic section Ωhol can be
identified with the unique up to rescaling (3, 0)-form that characterises the compact-
ification manifold and the symplectic product becomes the intersection product, for
instance

e−K = i
∫

MCY

Ωhol ∧ Ω̄hol. (5.21)

In the canonical basis {αI ,β
I } of the third integral cohomology H3(MCY, Z):

Ωhol = X I (z)αI − FI (z)β
I , Γ = pIαI − qIβ

I (5.22)

and the electromagnetic fields can be seen as the components of the IIB five-form

F = F I ⊗ αI − G I ⊗ β I , (5.23)

which should be self-dual in 10 dimensions. Decomposing this condition into 4+ 6
dimensions as �10 F = (�⊗�)F = F we can relate the Hodge operator on the
internal manifold to matrix M appearing in the black hole potential:

�
(
β I

αI

)
=

(
0 I

−I 0

)
M

(
β I

αI

)
. (5.24)

For the spacetime line element we take [15]
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ds2 = −e2U (x)
(
dt + ω(x)

)2 + e−2U (x)δi j dxi dx j , ω(x) = ωi (x)dxi (5.25)

and this time we trade the manifest Lorentz invariance of the action for the duality
invariance by writing the Lagrangian in terms of the spatial components of field
strengths F (boldface signals here and below the spatial part) and in terms of the
product

(B,C) = e2U

1− w2

∫
MCY

B ∧ [
�0(�C)− �0(w ∧ �C) w + �0(w ∧ �0C)

]
, (5.26)

defined for any B,C ∈ Ω2(R3) ⊗ H3(MCY), where �0 is the Hodge dual with
respect to the flat metric δi j in space and Ω2(R3) is the set of two-forms on space.
The result is

I4D eff = − 1

16π

∫
dt

∫
R3

[
2dU ∧ �0dU − 1

2 e4U dω∧ �0dω

+ 2gab̄ dza ∧ �0dz̄b̄ + (F ,F)
]
. (5.27)

Analogously to the derivation in the previous section, we need to rewrite the
effective Lagrangian in a form that yields first-order equations. The suitable pairing
between the scalars and the gauge fields is afforded by the combination

G = F − 2Im �0D(e−U e−iαΩ)+ 2Re D(eU e−iαΩ ω), (5.28)

where
D = d+ i(Q+ dα+ 1

2 e2U �0dω), Q = Im(∂a K dza) (5.29)

and α(x) is at this stage an arbitrary function. The Lagrangian becomes

Leff = (G,G)− 4 (Q+ dα+ 1
2 e2U �0dω) ∧ Im〈G, eU e−iαΩ〉

+ d
[
2w ∧ (Q+ dα)+ 4Re〈F , eU e−iαΩ〉

]
. (5.30)

Neglecting the total derivative term and requiring that the variations of the remaining
two terms vanish separately, directly leads to the first-order equations

F − 2Im �0D(e−U e−iαΩ)+ 2Re D(eU e−iαΩ ω) = 0, (5.31)

Q+ dα+ 1
2 e2U �0dω = 0. (5.32)

The second relation implies D = d, so taking the differential of the first yields the
Laplace equation

2 d�0d(e−U e−iαΩ) = 0 (5.33)
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on account of the closure of the field strength (dF = 0). The resulting supersym-
metric stabilisation equations have the same form [16] as those for static, spherically
black holes (in the gauge K = 2U , α = 0), but now the harmonic functions can be
multicentred, with the constituents located at xn :

2Im(e−U e−iαΩ) = H, H =
N∑

n=1

Γnτn + hn, (5.34)

where τn = ±1/|x − xn|. The poles of harmonic functions must be the physical
charges, as mandated by Eq. (5.31), and the constants hn dictate the asymptotic values
of the scalars. Once the stabilisation equations have been solved, all unknowns, in
particular the metric warp factor and the one-form ω, can be calculated.

A non-supersymmetric generalisation [1, 2] inspired by the superpotential
approach can be achieved through the replacement of F by a fake field strength F̃
that reproduces the same gauge term: (F̃ , F̃) = (F ,F). If these field strengths are
related by a constant matrix, the above derivation can be repeated without any other
adjustments, but the relevant multicentre configurations, with centres at arbitrary
distances from each other, have vanishing angular momentum and purely imaginary
scalars za .

Allowing the relation between the fake and actual field strengths to be arbitrary
causes a number of complications, due to the fact that F̃ may not be closed. The
condition of reproducing the original gauge term in the Lagrangian has to be relaxed
by adding a possible three-form deviation Ξ

(F̃ , F̃) = (F ,F)+ Ξ , (5.35)

and a new term η appears in the rewriting:

L = (G̃, G̃)− 4 (Q+ dα+ η + 1
2 e2U �0dω) ∧ Im〈G̃, eU e−iαΩ〉

+ d [ 2w ∧ (Q+ dα)+ 4Re〈F̃ , eU e−iαΩ〉 ], (5.36)

where
G̃ = F̃ − 2Im �0D(e−U e−iαΩ)+ 2Re D(eU e−iαΩω). (5.37)

The two new quantities Ξ and η are constrained by consistency requirements to
satisfy:

Ξ = −2dη ∧ w, (5.38)

η ∧ Im〈G̃, eU e−iαΩ〉 = 〈dF̃ , Re(eU e−iαΩ)〉 + 1
4Ξ . (5.39)

Evidently, the general stationary extremal case can be reduced to first-order equa-
tions G̃ = 0 and D = d− iη, but the description is much more involved than before:
even after elimination of Ξ we are left with an additional unknown object η, which
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has to obey a complicated equation. Crucially, the combination e−U e−iαΩ is gener-
ically no longer determined by Laplace’s equation, thus the solutions will no longer
be given in terms of pure harmonic functions.

5.5 An Ansatz for Stabilisation Equations

Although in the non-supersymmetric case we are unable to integrate the equations
of motion directly to non-differential stabilisation equations, we can still try to find
a suitable ansatz [2]. To that end it is useful to look at the known ‘almost-BPS’
[17] seed solution [18] for single-centred under-rotating extremal black holes in
four-dimensional theories with cubic prepotentials6:

2Im Ω̂ = H̃+ R̃, F = �0dH− 2 d(e2URe Ω̂ ω), (5.40)

where Ω̂ = e−U e−iαΩ and

H = (H0, 0 ; 0, Ha), H̃ = (−H0, 0 ; 0, Ha), R̃ =
(

0, 0 ; M

H0 , 0
)
. (5.41)

The harmonic functions are:

H0 = h0 + p0τ , Ha = ha + qaτ , M = b + Jτ2cos θ, (5.42)

where J denotes the angular momentum.
Besides the familiar harmonic part, in this case H̃, the stabilisation equations

involve ratios of harmonic functions, R̃. As one can verify, the new object that we
had to introduce to compensate for the possible non-closure of F̃ does not vanish if
M 
= 0:

η = e2U 〈dR̃, H̃〉 = −e2U H0 d
(

M

H0

)
. (5.43)

Interestingly, the anharmonic part of the stabilisation equations persists even without
the angular momentum, as long as the constant b responsible for the non-trivial flow
of the axions Re za is non-zero.

Under duality transformations H̃ and R̃ will change: in particular the relation
between H̃ and H will be more complicated than merely a switch of sign. The
structure of the ansatz for the stabilisation equations stays nonetheless the same. Since
the starting configuration is a seed solution, we postulate that in general the right-
hand side of the stabilisation equations for extremal black holes is given by a sum of
harmonic functions and ratios of harmonic functions. Whereas the anharmonic part
may vanish, as it did in the supersymmetric case, the harmonic part must be always
present, to ensure the correct near-horizon behaviour.

6 The notation has been slightly changed in comparison with [2].
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5.6 Conclusions

As we have seen, it is possible to derive first-order equations not only for super-
symmetric black holes. In the stationary extremal case this can be accomplished by
a merger of the superpotential approach with Denef’s duality-covariant formalism.
The essential step in the rewriting is a suitable pairing between the scalar degrees of
freedom and the gauge fields.

Unfortunately, the procedure applied to stationary non-supersymmetric extremal
black holes does not offer nearly as much simplification as in the BPS case. This is
partly due to the fact that the superpotential approach itself requires a new quantity
(originally: the superpotential, here: the fake field strength or the vector of fake
charges), whose relation to the physical parameters needs to be determined separately,
and partly due to the anharmonicity of the stabilisation equations, reflecting the non-
closure of the fake field strength. Nevertheless, the combinations of the variables
entering the stabilisation equations are universal, in the sense that when one uses
them as the new degrees of freedom, the equations of motion expressed in terms of
them take the same form for all black hole solutions, irrespective of supersymmetry
or extremality [19, 20].
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Chapter 6
Non-extremal Black Holes from
the Generalised R-map

Thomas Mohaupt and Owen Vaughan

Abstract We review the timelike dimensional reduction of a class of five-
dimensional theories that generalises 5D, N = 2 supergravity coupled to vector
multiplets. As an application we construct instanton solutions to the four-dimensional
Euclidean theory, and investigate the criteria for solutions to lift to static non-extremal
black holes in five dimensions. We focus specifically on two classes of models: STU-
like models, and models with a block diagonal target space metric. For STU-like
models the second order equations of motion of the four-dimensional theory can be
solved explicitly, and we obtain the general solution. For block diagonal models we
find a restricted class of solutions, where the number of independent scalar fields
depends on the number of blocks. When lifting these solutions to five dimensions we
show, by explicit calculation, that one obtains static non-extremal black holes with
scalar fields that take finite values on the horizon only if the number of integration
constants reduces by exactly half.

6.1 Introduction

Black holes provide an important testing ground for string theory and other theories
of quantum gravity. Theories with extended supersymmetry allow for extremal BPS
black hole solutions, and for certain examples the microscopic and macroscopic
entropy has been calculated with agreement to leading order [1, 2], and even to
higher orders when including R2 corrections [3–5]. Interestingly, the entropy of cer-
tain near-extremal black holes can also be calculated [6–10], with at least leading
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order agreement. In order to improve on this analysis it is critical to have a sys-
tematic understanding of non-extremal black hole solutions of lower-dimensional
supergravity theories. This naturally leads one to consider maps between the various
special geometries of N = 2 supergravity through dimensional reduction, which are
also interesting mathematically. These go by the names of the r-map and c-map, and
although they have been known for some time [11–14], they have also seen much
recent interest, a small sample of which is given by [15–23]. Dimensional reduction
over time need not be restricted to supersymmetric theories [24–27], with the stan-
dard reference for non-linear sigma models coupled to vector fields and gravity being
the seminal paper [28]. Since static, single-centred black hole solutions correspond
to geodesics in the target manifold of the image of these maps, there exists a rich
interplay between physical objects and geometrical constructions.

We will review the procedure presented in [29] for producing non-extremal static
black hole solutions to a large class of five-dimensional theories, which includes
N = 2 supergravity coupled to vector multiplets as a subclass. The method is based
on [30], and uses dimensional reduction (the r-map) over a timelike direction followed
by a specific field redefinition, which can be understood as follows: The physical
scalar fields parametrise a hypersurface in a larger ambient space (a d-conical affine
special real manifold). The field redefinition combines the physical scalar fields with
the Kaluza-Klein scalar, which can be used to parametrise the direction orthogonal
to the hypersurface. The new scalar fields then parametrise the whole of the ambient
space. After this procedure the effective Lagrangian for static, spherically symmetric
and purely electric backgrounds takes the particularly simple form:

e−1
4 L4 = 1

2 R4 − 3
4 aI J (σ)

(
∂μσ

I∂μσ J − ∂μbI∂μbJ
)
.

Here σ I are the scalars fields which combine the original five-dimensional phys-
ical scalars with the Kaluza-Klein scalar. The axionic scalar fields bI descend from
the gauge sector, and represent the electric potentials.

Solving the equations of motion corresponds to constructing harmonic maps from
reduced spacetime into a target manifold, which becomes enlarged due to the dimen-
sional reduction procedure. We focus on STU-like models, for which the general
solution to the full second order equations of motion can be found. This is a class of
models that contains the STU model along with specific generalisations that share
the same feature of having a diagonal target space metric. We also consider models
with block diagonal target space metrics, where a restricted class of solutions can be
found that is based on the solutions to STU-like models. We will see that the number
of independent scalar fields in these solutions depends on the number of blocks in
the metric. For all models this provides one universal solution with constant scalar
fields, because all metrics can be thought of as having at least one block (the whole
metric).

We then investigate the criteria for solutions to correspond to static, non-extremal
black holes in the five-dimensional theory with scalar fields that take finite values on
the horizon. We find that the number of integration constants must reduce by half,
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which is suggestive of a first order rewriting. While first order equations governing
examples of non-extremal black holes have been known for some time [17, 26, 27,
31–35], it has previously been used (to our knowledge) only as an ansatz for obtaining
specific non-extremal solutions. The logic presented here is different. We consider
the most general type of solution and then restrict it to solutions that describe non-
extremal black holes. For STU-like models all calculations are performed explicitly,
and actually rather simply.

Since this method does not rely critically on supersymmetry, we are able to con-
sider a larger class of theories than 5D, N = 2 supergravity coupled to vector
multiplets. This is achieved by generalising the geometry of the target manifold
of the scalar fields in two ways: first, we do not require that the Hesse potential
(often called the prepotential) is a homogeneous polynomial, but just a homoge-
neous function. Second, we allow the degree of homogeneity not just to be three,
but to be arbitrary. Mathematically, this means that we replace the projective special
real target manifold, which is required for 5D, N = 2 supergravity [36], with a
generalised projective special real manifold. The generalisation is captured in the
degree of homogeneity of the Hesse potential of the corresponding d-conical affine
special real manifold [37]. The kinetic terms of the gauge fields also get modified
in an appropriate fashion. We refer to the dimensional reduction of such a theory
as the generalised r-map. Various geometrical aspects of this map have been dis-
cussed in [37], and the analogous generalisation of the rigid r-map has been also
been considered in [38].

6.1.1 The Reissner-Nordström Black Hole

Let us first briefly review the five-dimensional Reissner-Nordström black hole, which
will be our guiding example. This is a static, spherically symmetric and purely electric
solution to a five-dimensional theory of gravity coupled to a single U(1) gauge field.
The line element for this solution can be written as

ds2
5 = −

W

H2 dt2 +H
(

W−1dr2 + r2dΩ2
(3)

)
, (6.1)

where the functions H and W are given by

H = 1+ q

r2 , W = 1− 2c

r2 ,

and are harmonic functions with respect to the flat metric on R
4, i.e.

Δ4H = Δ4W = 0.
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The parameter q is the electric charge, and c is the non-extremality parameter. The
mass is given by m2 = q2 − c2. In these coordinates the solution has an outer event
horizon at r = 2c and an inner Cauchy horizon at r = 0. One can analytically
continue these coordinates to the singularity, which is located at r = −√q . The
extremal limit in given by c → 0, in which case W → 1. It will be useful later to
decompose the five-dimensional metric according to

ds2
5 = −e2σ̄φdt2 + e−σ̄ds2

4 ,

which for the Reissner-Nordström metric corresponds to

eσ̄ =
√

W

H , ds2
4 =

dr2

√
W
+√Wr2dΩ2

(3). (6.2)

The simple example of the Reissner-Nordström black hole gives us some impor-
tant clues about non-extremal solutions:

(i) The solution is built from harmonic functions on R
4.

(ii) The four-dimensional line element is flat in the extremal limit.
(iii) The non-extremal solution is obtained by dressing the extremal solution with

one additional harmonic function W .

We will see that these key features of the Reissner-Nordström black hole are also
true of more complicated non-extremal solutions.

6.2 Generalising 5D, N = 2 Supergravity

Before we write down the Lagrangian of the class of theories under consideration,
we will first give a mathematical description of generalised projective special real
geometry, which is a generalisation of the geometry of 5D vector multiplets. This
is based in part on [37], work in progress with Vicente Cortés and the first author,
and a summary given in [39]. The less mathematically inclined reader may skip this
section and move directly to Sect. 6.2.2.

6.2.1 Generalising Special Real Geometry

A d-conical affine special real manifold (M, g,∇, ξ) is a pseudo-Riemannian
manifold (M, g) of dimRM = (n + 1) equipped with a flat, torsion free ‘special’
connection ∇ and vector field ξ such that

(i) ∇g is completely symmetric.
(ii) Dξ = d

2 1l, where D is the Levi-Civita connection.
(iii) ∇ξ = 1l.



6 Non-extremal Black Holes from the Generalised R-map 237

Let us discuss each condition in turn. Firstly one can define a natural set of special
coordinates hI that are flat with respect to ∇, i.e.

∇dhI = 0 , ⇒ ∇I = ∂I .

With respect to these coordinates the condition (i) ensures that

∂

∂hI
gJ K (h) = ∂

∂h J
gI K (h),

and, hence, the metric g is given by the second derivatives of a function

g = ∂2 H.

Such a function is referred to a Hesse potential, and it is not unique. For condition
(ii) we follow a similar analysis to [40], which deals with the particular case d = 2.
This condition implies that ξ is a homothetic Killing vector field of weight d

Lξg = dg.

Moreover it ensures that the manifold has the property of being d-conical, which
means there always exists a coordinate system (r, xi ), with rd = g(ξ, ξ), such that
the metric decomposes as

g = rd−2dr2 + rd ḡ(xi ).

In these coordinates ξ = r ∂
∂r . One can then define the new coordinates y I = (r, r xi ),

for which the homothetic Killing vector ξ becomes an Euler vector field

ξ = y I ∂

∂y I
.

In such coordinates the metric components are homogeneous functions of degree
(d − 2)

ξgI J (y) = (d − 2)gI J (y),

which can be deduced from the fact that
[
ξ, ∂

∂y I

]
= − ∂

∂y I . The last condition (iii)

can be seen as a compatibility condition between the previous two conditions. It
ensures that ξ is the Euler field associated with the special coordinates

ξ = hI ∂

∂hI
,

and, hence, the metric components are homogeneous functions of degree (d − 2)

with respect to the special coordinates hI . It follows that one can always choose a
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unique Hesse potential that is homogeneous of degree d, which is given by

H = 1

d(d − 1)
gI J h I h J .

In order to obtain physically relevant signatures we will require this Hesse potential
to be strictly positive.

It is convenient to introduce a second metric on M , given by

a = ∂2 H̃ ,

where H̃ := − 1
d log H . We can write this metric in a basis of special coordinates as

a = aI J dhI ⊗ dh J = − 1

d

(
HI J

H
− HI HJ

H2

)
dhI ⊗ dh J , (6.3)

where HI , HI J are the first and second derivatives of the Hesse potential. If the
metric g has signature (+ − . . .−), which is the case for supergravity, then a is
strictly positive definite. The vector field ξ acts as an isometry of the metric a

Lξa = 0.

We define a generalised special real manifold (M̄, ḡ) as a hypersurface of constant
H in a d-conical affine special real manifold, with metric induced from a. If dimR

M = (n + 1) then dimRM̄ = n. It is particularly convenient to consider the hyper-
surface defined by H = 1

M̄ � {H = 1} ⊂ M,

and we denote the embedding of M̄ into M given by the hypersurface H = 1 by
i : M̄ → M . For this embedding both the pull-back of − 1

d g and a give the same
metric on M̄

ḡ = i∗
(
− 1

d
∂2 H

)
= i∗

(
∂2 H̃

)
.

Let φx denote local coordinates on M̄ , which therefore parametrise the hypersurface
H = 1. The metric can be written as

ḡ = ḡxydφx ⊗ dφy =
(

aI J
∂hI

∂φx

∂h J

∂φy

) ∣∣∣∣
H=1

dφx ⊗ dφy .

A particularly natural set of coordinates is given by

φx = hx

h0 , h0 = Ĥ(φ1, . . . ,φn)−
1
d := H

(
1,

h1

h0 , . . . ,
hn

h0

)− 1
d

. (6.4)
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These are analogous to the inhomogeneous special coordinates zi = Xi/X0 on a
projective special Kähler manifold. It is worth noting that one can also realise M̄ as
the quotient manifold M/R

>0 with quotient metric obtained from (M, a).
For the special case that d = 3 and the Hesse potential is a polynomial then

(M̄, ḡ) represents the target manifold of 5D, N = 2 supergravity coupled to vec-
tor multiplets [36]. The matrix aI J restricted to the hypersurface H = 1 provides
the kinetic term for the gauge fields. We will make the same identifications when
considering more general Lagrangians, only we no longer require that d = 3 or the
Hesse potential is a polynomial.

6.2.2 Generalising the Lagrangian

We are now ready to generalise the Lagrangian of five-dimensional N = 2 super-
gravity coupled to n abelian vector multiplets. Our starting point is the Lagrangian
of a five-dimensional theory of gravity coupled to n scalar fields and (n+ 1) abelian
gauge fields

e−1
5 L5 = 1

2 R5 − 3
4 ḡxy∂μ̂φ

x∂μ̂φy − 1
4 aI J F I

μ̂ν̂F J μ̂ν̂, (6.5)

We could also have included a Chern-Simons term, however this will not be relevant
for solutions which are static and purely electric. Likewise for fermionic terms.
Spacetime indices run from μ̂ = 0, . . . , 4, and target space indices from x = 1, . . . n,
I = 0, . . . , n. The coupling matrices ḡxy and aI J depend only on φx .

The scalar fields form a non-linear sigma model with values in an n-dimensional
target manifold that we require to be generalised projective special real (as defined in
the previous section). The matrix aI J are the components of the tensor field (6.3) on
the corresponding d-conical affine special real manifold. We will require that gI J has
signature (+− . . .−), and, hence, aI J is positive definite. One obtains a projective
special real manifold, and therefore 5D, N = 2 supergravity, for the special case
when d = 3 and the Hesse potential is a polynomial.

We prefer not to work with the n physical scalar fields φx but rather the (n + 1)

special coordinates hI , which are subject to the hyper-surface constraint

H(h) = 1. (6.6)

Here H is a smooth homogeneous function of degree d, and represents the Hesse
potential of the corresponding d-conical affine special real manifold. It is often
convenient to choose the parametrisation given by (6.4), where φx and hI can be
related explicitly. In the Lagrangian one must make the replacement

ḡxy(φ)∂μ̂φ
x∂μ̂φy → aI J (h)∂μ̂hI∂μ̂h J

∣∣∣
H=1

,
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and, hence, the Lagrangian can be written as

e−1
5 L5 = 1

2 R5 − 3
4 aI J∂μ̂hI∂μ̂h J − 1

4 aI J F I
μ̂ν̂F J μ̂ν̂, (6.7)

where it is understood that the scalar fields hI are now subject to the constraint (6.6).
Two advantages of using the special coordinates hI are immediately clear: we now
have the same number of scalar fields as gauge fields, and the coupling matrices are
the same. The coupling matrix aI J can be written in these coordinates as

aI J (h) = ∂2
I,J H̃(h),

where as in the previous section H̃ := − 1
d log H . The details of the model are

completely determined by the Hesse potential H .

6.3 Dimensional Reduction and Equations of Motion

We now impose that backgrounds are static, and make the following decomposition
of the five-dimensional metric:

ds2
5 = −e2σ̄dt2 + e−σ̄ds2

4 ,

We impose further that backgrounds are purely electric, so the gauge vector and field
strength decompose as

AI =
√

3

2
bI dt + C I

μdxμ, C I
μ = const.

Choosing C I
μ to be constant ensures that the magnetic components of the field

strengths F I
μ̂ν̂

vanish, and we can write

F I
μ̂ν̂F J μ̂ν̂ = −3e−2σ̃∂μbI∂μbJ .

The scalar fields bI represent the electric potentials. After integrating out the redun-
dant timelike dimension, the four-dimensional Lagrangian takes the form

e−1
4 L4 = 1

2 R4 − 3
4∂μσ̃∂

μσ̃ − 3
4 aI J (h)

(
∂μhI∂μh J − e−2σ̃∂μbI∂μbJ

)
.

We now combine the KK-scalar σ̃ and the constrained scalar fields hI into the new
scalar fields σ I

σ I := eσ̃hI . (6.8)
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The (n + 1) scalar fields σ I are unconstrained, as the KK-scalar absorbs the hyper-
surface constraint (6.6), which now becomes

H(σ) = edσ̃.

One can therefore interpret hI and the KK-scalar σ̃ as fields that depend on σ I ,
which are a set of independent fields. Since aI J (h) is homogeneous of degree −2
and aI J (h)hI∂μh J = 0 we have

aI J (h)∂μhI∂μh J = aI J (σ)∂μσ
I∂μσ J − ∂μσ̃∂μσ̃,

The four-dimensional Lagrangian can now be written as

e−1
4 L4 = 1

2 R4 − 3
4 aI J (σ)

(
∂μσ

I∂μσ J − ∂μbI∂μbJ
)
. (6.9)

This Lagrangian encodes all the information about the theory for static and purely
electric backgrounds. It will be useful later to note that the scalar fields σ I satisfy
the relation

aI J (σ)σ Iσ J = 1. (6.10)

We will now impose that backgrounds are spherically symmetric. This is in fact
enough to completely determine the four-dimensional metric1

ds2
4 =

c3

sinh3(2cτ )
dτ2 + c

sinh(2cτ )
dΩ2

(3). (6.11)

Here τ is an affine parameter in the radial direction, which is related to the standard
radial coordinate through

r2 = ce2cτ

sinh(2cτ )
. (6.12)

Subbing in r to the four-dimensional metric (6.11) one finds that it is nothing other
than the spatial part of the Reissner-Nordström metric with respect to the decompo-
sition (6.2)

ds2
4 =

dr2

√
W
+√Wr2dΩ2

(3),

where

W = 1− 2c

r2 = e−4cτ . (6.13)

The effective one-dimensional Lagrangian for spherically symmetric backgrounds
is given by

1 For a derivation see [29], and see [41] for a general formula for d ≥ 4 dimensions.
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L1 = 1
4 aI J (σ)

(
σ̇ I σ̇ J − ḃI ḃ J

)
, (6.14)

which must be supplemented by the Hamiltonian constraint

1
4 aI J (σ)

(
σ̇ I σ̇ J − ḃI ḃ J

)
= c2. (6.15)

The equations of motion for the one-dimensional Lagrangian (6.14) are

d

dτ

(
aI J (σ)σ̇ J

)
− 1

2∂I aJ K (σ)
(
σ̇ J σ̇K − ḃ J ḃK

)
= 0,

d

dτ

(
aI J (σ)ḃ J

)
= 0.

The equations of motion for bI can be solved immediately

aI J (σ)ḃ J = QI ,

where the QI are constant electric charges that correspond to the isometry bI →
bI + C I .

The remaining second order equation of motion for σ I becomes much simpler if
one introduces a natural set of dual coordinates σI , defined by

σI := ∂I H̃ = −aI J (σ)σ J .

It is clear that both coordinates σ I and dual coordinates σI are related algebraically.
The derivative of σI can by written using the chain rule as

σ̇I = d

dτ
σI = aI J (σ)σ̇ J .

Plugging the dual coordinates into the second order equations of motion and Hamil-
tonian constraint we find

σ̈I + 1
2∂I a J K (σ) (σ̇J σ̇K − Q J QK ) = 0, (6.16)

1
4 aI J (σ) (σ̇I σ̇J − QI Q J ) = c2. (6.17)

We are left to solve these equations of motion.
Extremal instanton solutions correspond to the choice c = 0. In this case the

equations of motion can be solved for arbitrary models by2

σ̇I = ±QI , ⇒ σI = AI ± QI τ .

2 These solutions necessarily lift to BPS black holes. If the metric of the target manifolds allows for
a field rotation matrix RI

K that satisfies aI J RI
K R J

L = aK L then one can generalise this ansatz to
produce solutions which lift to non-BPS black holes [30, 42, 43].
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Note that the number of possible independent integration constants from (n + 1)

second order differential equations should be (2n + 2), but in the extremal solution
above we only have (n+1) integration constants. This is because extremal solutions
must satisfy the first order attractor equations, of which much has already been
explained in the literature, see for example [30, 34].

We will now investigate non-extremal solutions where c �= 0. This turns out to be
considerably more difficult, as the non-extremality parameter entangles the second
order equations of motion in a highly non-trivial manner, and we can only find the
most general solution for specific models.

6.4 Instanton Solutions

6.4.1 General Solution of STU-like Models

Let us fix that we have n physical scalar fields φx and a generalised projective special
real target manifold. We will consider STU-like models, where the Hesse potential
on the corresponding d-conical affine special real manifold takes the form

H(h) =
(

h0h1 . . . hn
) d

(n+1)
,

or models that can be brought to this form by a linear transformation. We will only
consider patches where hI are pointwise non-zero, and note that by construction
the Hesse potential is strictly positive. This class of models actually generalises the
class of models for which solutions were found in [29], where only the special case
d = (n + 1) was considered. The supergravity STU model is given by the special
case n = 2 and d = 3. Using the formula (6.4) the hypersurface H = 1 can be
parametrised by the n physical scalar fields φx through

φx = hx

h0 , h0 = (φ1 . . .φn)
− 1

(n+1) . (6.18)

We now need to calculate the equations of motion (6.16) and (6.17) for this class
of models. The matrix aI J and its derivative can be calculated using (6.3), and are
given in terms of dual coordinates σI by

aI J = diag

(
1

(n + 1)σ2
0

, . . . ,
1

(n + 1)σ2
n

)
,

∂I a J K = diag

(
− 2

σ0
, . . . ,− 2

σn

)
.

The equations of motion then take the form
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σ̈I −
[
(σ̇I )

2 − (QI )
2
]

σI
= 0, (6.19)

∑
I

[
(σ̇I )

2 − (QI )
2
]

(n + 1)σ2
I

= 4c2. (6.20)

The second order Eqs. (6.19) for each coordinate σI completely decouple from one-
another, and can be explicitly integrated to find the general solution

σI = ±QI

BI
sinh

(
BI τ + BI

AI

QI

)
. (6.21)

The constraint (6.20) then relates the integration constants with the non-extremality
parameter

1

(n + 1)
(B0)

2 + . . .+ 1

(n + 1)
(Bn)

2 = 4c2. (6.22)

One can either interpret c as a dependent parameter, or see this as a restriction on the
integration constants. Either way, after solving all equations of motion we are left
with (2n + 2) free parameters. Since the solution is invariant under BI → −BI we
can assume without loss of generality that the BI are non-negative. The Kaluza-Klein
scalar can be written in terms of the dual coordinates as

e−σ̃ = (−1)(n+1)(n + 1)(σ0 . . .σn)
1

(n+1) .

Note that upon setting c → 0 we immediately have BI → 0 due to (6.22). The
general solution then reduces to the extremal solution.

6.4.2 Block Diagonal Models

For models in which the matrix aI J splits into distinct blocks, or can be made to
do so be a linear transformation, we find a restricted class of solutions in which the
number of independent scalar fields is the same as the number of blocks. Solutions
to each block are given again by the general solution (6.21). We will demonstrate
this with an example that has two blocks.

Consider a model with n physical scalar fields and a generalised projective special
real target manifold with a corresponding Hesse potential that is homogeneous of
degree d. For a general Hesse potential the physical scalar fields can be written using
(6.4) as

φx = hx

h0 , h0 = Ĥ(φ1, . . . ,φn)−
1
d := H

(
1,

h1

h0 , . . . ,
hn

h0

)− 1
d

.
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We will assume that the metric aI J decomposes into precisely two blocks

aI J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ . . . ∗ 0 0 0
...

. . .
... 0 0 0

∗ . . . ∗ 0 0 0
0 0 0 ∗ . . . ∗
0 0 0

...
. . .

...

0 0 0 ∗ . . . ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let us denote the size of the first block by k × k and the second block by l × l, so
that k + l = (n + 1). A Hesse potential that produces such a block diagonal metric
is given by

H(σ0, . . . ,σn) = H1(σ0, . . . ,σk−1)H2(σk, . . . ,σn).

We now set all scalar fields within each block to be proportional to one another

σ0 ∝ . . . ∝ σk−1, σk ∝ . . . ∝ σn,

which implies that the dual coordinates σI are proportional to one-another

σ(0) := σ0 ∝ . . . ∝ σk−1, σ(1) := σk ∝ . . . ∝ σn .

The solution is characterised by just two independent scalar fields σ(0) and σ(1) and
two electric charges Q(0) and Q(1), where

Q(0) := Q0 = σ1

σ0
Q1 = . . . = σk−1

σ0
Qk−1,

Q(1) := Qk = σk+1

σk
Qk = . . . = σn

σk
Qn .

There is only one independent physical scalar field

φ(1) := φk = σk

σk+1φ
k+1 = . . . = σk

σn
φn,

and the other physical scalars are constant

φ1 = σ1

σ2φ
2 = . . . = σ1

σk−1φ
k−1 = const.

The equations of motion reduce to
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σ̈(0) −
[
(σ̇(0))

2 − (Q(0))
2
]

σ(0)

= 0, (6.23)

σ̈(1) −
[
(σ̇(1))

2 − (Q(1))
2
]

σ(1)

= 0, (6.24)

ψ0

[
(σ̇(0))

2 − (Q(0))
2
]

σ2
(0)

+ ψ1

[
(σ̇(1))

2 − (Q(1))
2
]

σ2
(1)

= 4c2, (6.25)

where ψ0,ψ1 are fixed constants that depend on the ratios σx
σ0

, and from (6.10) they
must satisfy the identity

ψ0 + ψ1 = 1.

Just as for STU-like models, we can find the general solution to the second order
Eqs. (6.23), (6.24), which is given by

σ(0) = ±Q(0)

B(0)

sinh

(
B(0)τ + B(0)

A(0)

Q(0)

)
, (6.26)

σ(1) = ±Q(1)

B(1)

sinh

(
B(1)τ + B(1)

A(1)

Q(1)

)
, (6.27)

and the constraint (6.25) places one restriction on the integration constants

ψ0
(
B(0)

)2 + ψ1
(
B(1)

)2 = 4c2 . (6.28)

The solution naturally generalises to models with more than two blocks. For a metric
with two blocks we obtained solutions characterised by one non-constant scalar field.
With three blocks solutions will be characterised by two independent non-constant
scalar fields, etc. We can write the Kaluza-Klein scalar as

e−σ̃ = μ (σ(0)

) k
(n+1)

(
σ(1)

) l
(n+1) ,

where μ is a fixed constant that depends on the ratios σx
σ0

.
Since every matrix can be thought of as having one block (the whole matrix), this

method provides at least one universal instanton solution for any model. In this case
all the physical scalar fields are constant. We will see in the next section that when
we lift the universal solution to five dimensions we obtain the Reissner-Nordström
black hole.
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6.5 Non-extremal Black Hole Solutions

The four-dimensional instanton solutions in the previous section can be lifted to
static solutions of the five dimensional theory by retracing the steps of dimensional
reduction. However, for these solutions to correspond to black holes they need to
satisfy certain criteria:

1. An event horizon with finite area must exist.
2. The physical scalar fields φx must take finite values on the horizon.

We will show that these two requirement force us to make restrictions on the integra-
tion constants that reduce the number by exactly half—just like the extremal case—
which suggests a first order rewriting. The fact that certain non-example black holes
are governed by first order equations has been known in the literature for some time
[17, 26, 27, 31–35]. But here we present the argument differently. For STU-like
models we start with the most general solution to the equations of motion truncated
to static, spherically symmetric and purely electric backgrounds. We then impose
the above criteria on the general solution, and by doing so find the most general type
of non-extremal black hole solution using the parametrisation of the physical scalar
fields given by (6.4). The fact that the number of integration constants reduces by half
is interesting because there is no reason a priori that non-extremal solutions should
be governed by first order equations. Since we see no reason why the STU-like mod-
els should be a privileged with respect to the number of integration constants, it is
reasonable to suspect that this is a feature of non-extremal black hole solutions to all
models.

6.5.1 STU-like Models

We can lift the instanton solutions found in the previous section to a static solution
to the five-dimensional theory

ds2
5 = −

1

(n + 1)2 (σ0 . . .σn)
2

(n+1)

dt2

+ (−1)(n+1)(n + 1) (σ0 . . .σn)
1

(n+1)

(
c3

sinh3 2cτ
dτ2 + c

sinh 2cτ
dΩ2

(3)

)
,

where one should note that (−1)(n+1)(n + 1)(σ0 . . .σn)
1

(n+1) is positive between
radial infinity and the outer horizon τ ∈ (0,+∞). The area A of the outer event
horizon is given by

A = lim
τ→+∞(−1)(n+1)(n + 1) (σ0 . . .σn)

1
(n+1)

c

sinh 2cτ
.
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The highest order term in the numerator is proportional to e
1

(n+1)
(B0+...+Bn)τ (recall

that the BI are non-negative), which must exactly cancel with the highest order term
in the denominator e2cτ . We can conclude that in order to obtain a finite area we
must have

1

(n + 1)
(B0 + . . .+ Bn) = 2c. (6.29)

Next, we turn our attention to the physical scalar fields φx . These can be written in
terms of the dual scalars σI simple by

φx = σ0

σx
.

In the limit τ →+∞ the physical scalars φx will not take finite values3 for generic
choices of BI . The only way to ensure that they take finite values is to impose

B0 = B1 = . . . = Bn .

Combining this with (6.29) we conclude that in order to have a finite horizon and
finite scalar fields the integration constants must satisfy

B0 = . . . = Bn = 2c. (6.30)

The solution (6.21) therefore reduces to

σI = ±QI

2c
sinh

(
2cτ + 2c

AI

QI

)
. (6.31)

Lastly, in order for the solution to be Minkowski space at radial infinity it must satisfy
eσ̃ → 1, which places one further constraint on the integration constants

(−1)(n+1)(n + 1)

[
±Q0

2c
sinh

(
2c

A0

Q0

)
. . .± Qn

2c
sinh

(
2c

An

Qn

)] 1
(n+1) = 1.

(6.32)
Due to the constraints (6.30) and (6.32) the number of integration constants reduces
by precisely one half, from (2n + 2) to (n + 1). This is suggestive of a first order
rewriting, and indeed this can be achieved by first defining the generating function
W =W(σ I , QI , c) by

W : = ± 1

(n + 1)

∑
I

[√
4c2 + (n + 1)2 Q2

Iσ
I 2

+ c log

⎛
⎝
√

4c2 + (n + 1)2 Q2
Iσ

I 2 − 2c√
4c2 + (n + 1)2 Q2

Iσ
I 2 + 2c

⎞
⎠
⎤
⎦.

3 By finite values we mean φx −→/ 0,±∞.
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This is of a similar form to the generating function for the four-dimensional STU
model [44]. We can therefore write the solution as first order flow equations

σ̇I = ∂

∂σ I
W,

= ±
√

Q2
I + 4c2σ2

I ,

which is clearly solved by (6.31). These are first order differential equations (in τ ),
which relate σ̇I to the gradient of a function. They can alternatively be written as
σ̇ I = aI J∂J W .

Collecting everything together, we find that the most general static black hole
solution for STU-like models is given by

ds2
5 = −

W

(H0 . . . Hn)
2

(n+1)

dt2 + (H0 . . . Hn)
1

(n+1)

(
dr2

W
+ r2dΩ2

(3)

)
,

where

W = 1− 2c

r2 , HI = ∓(n + 1)

⎡
⎣QI

2c
sinh

(
2c

AI

QI

)
+ QI e

−2c
AI
Q I

2

1

r2

⎤
⎦,

= e−4cτ , = ∓(n + 1)

[
1

4c
QI e

2c
AI
Q I − 1

4c
QI e

−2c
AI
Q I e−4cτ

]
,

and the scalar fields are given by

φx = σ0

σx
, σI = −1

(n + 1)

HI√
W
= ±QI

2c
sinh

(
2cτ + 2c

AI

QI

)
.

For the case where n = 2 and d = 3 this reproduces the non-extremal black hole
solutions of 5D, N = 2 supergravity originally found in [9, 45].

6.5.2 Block Diagonal Models

Let us now lift the instanton solutions to models with block diagonal matrix aI J ,
described in the previous section, to static solutions in five dimensions. Again we
will focus on an example with two blocks of size k × k and l × l. The line element
is given by
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ds2
5 = −

1

μ
(
σ(0)

) 2k
(n+1)

(
σ(1)

) 2l
(n+1)

dt2

+ μ (σ(0)

) k
(n+1)

(
σ(1)

) l
(n+1)

(
c3

sinh3 2cτ
dτ2 + c

sinh 2cτ
dΩ2

(3)

)
.

The area A of the outer event horizon is given by

A = lim
τ→+∞μ

(
σ(0)

) k
(n+1)

(
σ(1)

) l
(n+1)

c

sinh 2cτ
.

The highest order term in the numerator is proportional to e

(
k

(n+1)
B(0)+ l

(n+1)
B(1)

)
τ
,

which must exactly cancel with the highest order term in the denominator e2cτ . We
can conclude that in order to obtain a finite area we must have

k

(n + 1)
B(0) + l

(n + 1)
B(1) = 2c.

The physical scalar field φ(1) can be written in terms of the dual scalars σ(0,1) as

φ(1) ∼ σ(0)

σ(1)

.

In the limit τ → +∞ the physical scalar φ(1) will not take finite values for generic
choices of B(0,1). The only way to ensure that they take finite values is to impose

B(0) = B(1).

Combining this with (6.5.2) we conclude that in order to have a finite horizon and
finite scalar fields the integration constants must satisfy

B(0) = B(1) = 2c.

Ensuring that the solution is Minkowski space at radial infinity eσ̃ → 1 places one
further constraint on the integration constants

μ

(
±Q(0)

2c
sinh

(
2c

A(0)

Q(0)

)) k
(n+1)

(
±Q(1)

2c
sinh

(
2c

A(1)

Q(1)

)) l
(n+1) = 1.

Collecting everything together, we find that our solution for the block diagonal
models can be written as

ds2
5 = −

W(H(0)

) 2k
(n+1)

(H(1)

) 2l
(n+1)

dt2 + (H(0)

) k
(n+1)

(H(1)

) l
(n+1)

(
dr2

W
+ r2dΩ2

(3)

)
,
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where

W = 1− 2c

r2 = e−4cτ,

H(0,1) = ±μ
⎡
⎢⎣Q(0,1)

2c
sinh

(
2c

A(0,1)

Q(0,1)

)
+ Q(0,1)e

−2c
A(0,1)
Q(0,1)

2

1

r2

⎤
⎥⎦,

= ±μ
[

1

4c
Q(1,2)e

2c
A(0,1)
Q(0,1) − 1

4c
Q(0,1)e

−2c
A(0,1)
Q(0,1) e−4cτ

]
.

and the scalar fields are given by

φ(1) ∼ σ(0)

σ(1)

,

σ(0,1) = 1

μ

H(0,1)√
W
= ±Q(0,1)

2c
sinh

(
2cτ + 2c

A(0,1)

Q(0,1)

)
.

6.6 Conclusion and Outlook

We have discussed the notion of a d-conical affine special real manifolds and corre-
spondingly generalised projective special real manifolds. The latter generalises the
geometry of projective special real manifolds, which appear as the target manifolds
of 5D, N = 2 supergravity coupled to vector multiplets. We used this to construct
a class of five-dimensional gravity-scalar-vector theories that generalises N = 2
supergravity coupled to vector multiplets.

Through dimensional reduction and the specific field redefinition (6.8) one can
obtain a particularly simple effective Lagrangian for static, spherically symmetric
and purely electric solutions (6.9). One key feature was that we worked always at the
level of the ‘larger’ moduli space: the d-conical affine special real manifold. We then
focused on STU-like models, where we found the general solution to the equations of
motion, and models that are block diagonal, where we found solution with as many
independent scalar fields as there are blocks. Since the metrics of all models contain
at least one block, this also provides a universal solution to all models.

We then investigated which solutions correspond to non-extremal black holes
solutions of the five-dimensional theory. In order to obtain a finite horizon area and
finite scalar fields the number of integration constants must halve, suggesting a first
order rewriting of the equations of motion. For STU-like models all calculations were
performed explicitly, and at every stage we can set c → 0 to obtain the extremal
solution. Since we see no reason STU-like models should be privileged in their
number of integration constants, we conjecture that all non-extremal black hole
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solutions should have half the number of integration constants one would expect
from the second order equations of motion.

One obvious extension to this work is to investigate solutions of more complicated
models. However, it was shown in [29] that the hyperbolic-sine form of the solution
to STU-like models (6.31) does not give the most general solution for generic mod-
els. One must therefore replace the hyperbolic-sine function with something more
complicated. It is an open question whether one can find a general formula for such a
function, e.g. [41], or whether one can only find explicit formulas for specific models.
At this point it is still not even clear in the literature that every extremal black hole
solution admits a non-extremal generalisation [16, 17].

One may also wonder whether this analysis can be repeated for four-dimensional
theories. In [21] it was shown that the effective action for static solutions to
4D, N = 2 supergravity coupled to vector multiplets can be brought to the same
simple form as (6.9) for general static spacetime metrics (see p. 51 of [21]). One can
then follow exactly the same logic for axion-free solutions to the four-dimensional
STU model as we have present here for the five-dimensional STU model: one can
find the general solution to the equations of motion, and show that these correspond
to black hole solutions with finite scalar fields only when the number of integration
constants reduces by half. This will be presented in future work [46].

Another natural extension is to consider various other types of solutions. These
include solutions with a cosmological constant or Taub-NUT charge, rotating solu-
tions, domain walls, black strings and cosmological solutions. Reduction over time
has previously been used to construct black ring solutions [24, 47, 48], and in [49]
black ring solutions were constructed based on [50]. Cosmological solutions may
also be particularly interesting as the non-extremal black hole solutions we have
discussed can be continued beyond the horizon where the Killing vector is spacelike.
This provides a natural starting point for the construction of S-brane cosmological
solutions [51, 52].

Theories of gauged supergravity are also applicable to the analysis presented in
this paper. In [53] it was shown that the same procedure can be used to find new
non-extremal solutions to four-dimensional Fayet-Iliopoulos gauged supergravity. It
would also be interesting to investigate non-extremal solutions of five-dimensional
gauged supergravity, though solutions to the STU model have previously been found
by other methods [54].

Lastly, one may wonder whether special Kähler geometry, which corresponds to
4D, N = 2 supergravity coupled to vector multiplets, can be generalised in a way
similar to the generalisation of special real geometry considered in this paper. At
present there does not exist a well defined generalisation of special Kähler geometry.
However, the dimensional reduction of d-conical affine special real geometry sug-
gests that generalising the degree of homogeneity of the holomorphic prepotential
may provide one consistent generalisation of conic affine special Kähler geometry.
This would be interesting to investigate in the future.
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Chapter 7
Black Hole Microstate Geometries
from String Amplitudes

David Turton

Abstract In this talk we review recent calculations of the asymptotic supergravity
fields sourced by bound states of D1 and D5-branes carrying travelling waves.
We compute disk one-point functions for the massless closed string fields. At large
distances from the branes, the effective open string coupling is small, even in the
regime of parameters where the classical D1-D5-P black hole may be considered.
The fields sourced by the branes differ from the black hole solution by various mul-
tipole moments, and have led to the construction of a new 1/8-BPS ansatz in type
IIB supergravity.

7.1 Introduction

Black holes provide (at least) two major challenges for any theory of quantum gravity:
to give a microscopic interpretation of the Bekenstein-Hawking entropy [1, 2], and
to resolve the information paradox [3]. String theory promises to pass both tests:
the microscopic interpretation of the Bekenstein-Hawking entropy is provided by
enumerating microstates of the black hole [4–6], and studying the properties of these
microstates promises to resolve the information paradox.

The information paradox states, roughly, that if a classical black hole metric with
a horizon is a valid description of a physical black hole in Nature, then Hawking
radiation leads to a breakdown of unitarity or exotic remnant objects (for a recent
rigorous treatment, see [7]). A conservative way of avoiding these pathologies is to
ask whether the physics of individual black hole microstates modifies the process of
Hawking radiation.

The study of the gravitational description of individual microstates has motivated
a ‘fuzzball’ picture of a black hole [8, 9]. The fuzzball conjecture is composed of two
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parts: firstly that quantum effects are important at the would-be horizon of a black
hole, making Hawking radiation a unitary process; secondly, that the mechanism
underlying this is that the quantum bound state of matter making up the black hole
has a macroscopic size, of order the horizon scale.

To investigate this conjecture, one must understand the characteristic size of (the
wavefunctions of) individual bound states. A fruitful line of inquiry has been to
construct and analyze classical supergravity solutions describing the gravitational
fields sourced by semiclassical/coherent states of the Hilbert space of the black
hole (for reviews, see [10–13]). Supergravity solutions which describe individual
microstates have been found not to have horizons themselves.

Given such a supergravity solution however, it may not always be clear whether
it corresponds to a black hole microstate (see e.g. [14, 15]). In this talk we describe
calculations which directly associate supergravity fields with the microscopic bound
states they describe. We consider particular bound states of D-branes, and derive
the asymptotic supergravity fields from worldsheet amplitudes. The amplitudes are
disk-level one-point functions for the emission of massless closed string fields.

We first derive the fields sourced by a D1-brane with a travelling wave and relate
them to the previously known two-charge supergravity fields [16, 17]. We then derive
the fields sourced by a D1-D5 bound state with a travelling wave and find a new set
of three-charge supergravity fields, more general than previously considered [18].
The results reviewed here appeared in the papers [19] and [20].

This talk is structured as follows. In Sect. 7.2 we introduce the calculation and
discuss its regime of validity. In Sect. 7.3 we review the D1-P calculation, and in
Sect. 7.4 we review the D1-D5-P calculation.

7.2 The Calculation and its Regime of Validity

The procedure we follow for calculating the asymptotic fields sourced by D-brane
bound states was developed in [21–24]. First, we calculate the momentum-space
amplitude A(k) for the emission of a massless closed string. We then extract the
field of interest (e.g. graviton), multiply by a free propagator, and Fourier transform
to obtain the spacetime one-point function.

For applications to black holes, given N D-branes we are interested in the regime
gs N � 1, where a classical black hole solution might be relevant. The naive open
string coupling is also gs N , so it seems we are out of the regime of open string
perturbation theory (see e.g. [5]).

However if one considers the above calculation for the fields at a distance r from
the bound state (Fig. 7.1), one finds that the effective open string coupling is in fact

ε = gs N

(
α′

r2

)7−p
2

. (7.1)
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r

Fig. 7.1 For the calculation of the fields at large distances r from a bound state of N Dp-branes,

the effective open string coupling is small if r7−p � gs N
√
α′7−p

This effective open string coupling may be understood as follows. The next order in
open string perturbation theory corresponds to adding an extra border to the string
worldsheet. The factor of N comes from the N choices of which Dp-brane the open
string endpoints can end on. The extra border on the worldsheet also introduces a loop
momentum integral, two extra propagators, and reduces the background superghost
charge by two units. This results in the above powers of α′

r2 , as discussed in detail
in [20].

The next order in closed string perturbation theory corresponds to adding handles
to the closed string propagator, which we suppress by working at gs � 1. Thus we
work in the following regime of parameters:

gs � 1, gs N

(
α′

r2

)7−p
2 � 1. (7.2)

Thus one can simultaneously consider gs N � 1, provided r is sufficiently large.
One can rephrase the second condition above as saying that disk amplitudes

give the leading contribution to the fields at lengthscales much greater than the

characteristic size of the D-brane bound state, r7−p � gs N
√
α′7−p

. A similar
perturbative expansion was made some time ago in the field theory analogue of our
calculation [25].

Since the fields in which we are interested are massless, the emitted closed string
state has non-zero momentum only in the four non-compact directions of the R

4, i.e.
a spacelike momentum. The momentum-space amplitude A(k) mentioned above is
defined by analytically continuing k to complex values such that we impose k2 = 0,
i.e. the emitted string state is treated as on-shell [23].

One can ask whether this procedure fails to capture any physics relevant to the
calculation. For example, one could add to the amplitude A(k) a contribution pro-
portional to any positive power of k2, which would vanish if k2 = 0. Suppose we add
a term proportional to k2; then multiplying by a free propagator 1/k2 and Fourier
transforming gives a Dirac delta-function in position space. Similarly, higher powers
of k2 correspond to derivatives of the delta-function in position space. This signifies
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that these terms are relevant for physics very close to the location of the D-brane,
and do not affect the large distance behaviour of the supergravity fields.

7.3 The Two-Charge D1-P Amplitude

We consider type IIB string theory on R
1,4 × S1 × T 4. We denote the 10D coor-

dinates (xμ,ψμ) by μ, ν = t, y, 1, . . . , 8. We use (i, j, . . .) and x1, . . . , x4 for the
R

4 directions, we use (a, b, . . .) and x5, . . . , x8 for the T 4 directions and we use
(I, J, . . .) to refer to the combined R

1,4 × S1 directions. We work in the light-cone
coordinates

v = (t + y), u = (t − y) (7.3)

constructed from the time and S1 directions. We consider a D1-brane wrapped around
y and carrying a v-dependent travelling wave:

v u R
4 T 4

D1 x x fi (v) fa(v) = 0
(7.4)

Here “x” denotes a Neumann direction and f indicates the (v-dependent) position
of the D-brane in the Dirichlet directions. From the start we set the profile along the
T 4 directions to be trivial, fa = 0. The D1-P amplitude is depicted in (Fig. 7.2). An
analogous calculation may be performed for the case of a D5-brane wrapped on the
T 4 × S1 directions, and both these amplitudes contribute to the D1-D5-P amplitude
that we discuss in the next section.

The boundary conditions on the worldsheet fields in the open string picture may
be expressed in terms of a reflection matrix R as

Fig. 7.2 The one-point func-
tion for emission of the closed
string state W from a disk
ending on a D1 brane with
profile f

W
D1f
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ψ̃μ = η Rμν (v)ψν (7.5)

∂Xμ
R = Rμν (v)δXν

L − δμu 4α′ f̈ j (v)ψ jψv (7.6)

where η can be set to 1 at σ = 0, while at σ = π we have η = 1 or η = −1
corresponding to the NS and R sectors respectively. In the above we use a bold letter
for the string field corresponding to the coordinates

xμ(z, z̄) = 1

2

[
X L(z)+ X R(z̄)

]
. (7.7)

The holomorphic and the anti-holomorphic world-sheet fields are then identified with
the reflection matrix R where (see [19] and references within)

Rμν =

⎛
⎜⎜⎝

1 0 0 0
4| ḟ (v)|2 1 −4 ḟi (v) 0
2 ḟi (v) 0 1 0

0 0 0 1

⎞
⎟⎟⎠ , (7.8)

where 1 denotes the four-dimensional unit matrix and the indices follow the ordering
(v, u, i, a).

The most direct way to derive the one-point functions in the current setup is to use
the boundary state formalism [23]. The calculation we now review was carried out
in [19] by using the boundary state for a D-brane with a null wave derived in [26–28].

The wrapped D1-brane may be viewed as a set of nw different D-brane strands,
with a non-trivial holonomy gluing these strands together. Each strand carries a
segment of the full profile f i

(s), with s = 1, . . . , nw. The boundary state describing
the wrapped D1-brane can be expanded in terms of the closed string perturbative
states. The first terms of this expansion are

|D1; f 〉 = − i
κ τ1

2

nw∑
s=1

∫
du

2πR∫
0

dv

∫
d4 pi

(2π)4 e−i pi f i
(s)(v) c0 + c̃0

2
(7.9)

× c1c̃1

[
−ψμ− 1

2
(t R)μνψ̃

ν
− 1

2
+ γ− 1

2
β̃− 1

2
− β− 1

2
γ̃− 1

2
+ . . .

]
× |u, v, pi , 0〉−1,−̃1

where τ1 = [2πα′gs]−1 is the physical tension of a D1-brane, and where tR is the
transpose of R. The ket in (7.9) represents a closed string state obtained by acting on
the SL(2, C) invariant vacuum with an eipi xi

in the R
4 directions. We wrote the delta

functions on the pu and pv momenta as integrals in configuration space du, dv. The
boundary state enforces the identification (7.5), which in the approximation (7.9)
holds just for the first oscillator ψ̃μ−1/2.
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The second line of (7.9) contains all the massless NS-NS states; we can separate
the irreducible contributions by taking the scalar product with each state. Having
done this, the contribution to the NS-NS couplings is

Adil(k) = − i
κ τ1

2
Vu
√

2φ̂

LT∫
0

d v̂ e−ik· f (v̂) , (7.10)

Agra(k) = − i
κ τ1

2
Vu

LT∫
0

d v̂ e−ik· f (v̂)

[
−3

2
(−ĥt t + ĥ yy) (7.11)

+1

2
(ĥi i + ĥaa)− 2ĥvv| ḟ |2 + 4ĥvi ḟ i

]

where Vu is the (divergent) volume along the u direction and the integrals over v in
each strand in (7.9) have become a single integral over the multi-wound worldvolume
coordinate v̂ which runs from 0 to LT = 2πnw R.

For the R-R coupling, we simply recall the results of [19]:

ARR(k) = −i
√

2κ τ1Vu

LT∫
0

d v̂ e−ik· f (v̂)
[
2Ĉ (2)

uv + Ĉ (2)
vi ḟ i

]
. (7.12)

The next step is to multiply by a free propagator and Fourier transform to find the
position-space massless fields. After doing this, one finds agreement with the known
D1-P solutions obtained by an S-duality of the solutions of [16, 17]. Further details
may be found in [19].

7.4 The Three-Charge D1-D5-P Amplitude

We next consider a D1-D5 bound state carrying a travelling wave; the black hole
solution with the same charges has a macroscopic horizon [5], and so this case is
more interesting and richer than that of the previous section.

We consider a D1-D5 bound state with a common travelling-wave profile fi (v)

along the branes. The D5-brane is wrapped on the T 4 × S1.

v u R
4 T 4

D1 x x fi (v) fa(v) = 0
D5 x x fi (v) x

(7.13)
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The disk amplitude of most interest in this setup is the one where the disk has half
its boundary on a D1 and the other half on the D5, and two twisted vertex operator
insertions, as studied in [29, 24].

The vertex operators take the form

Vμ = μAe−
ϕ
2 SA Δ, Vμ̄ = μ̄Ae−

ϕ
2 SA Δ (7.14)

where μA and μ̄A are Chan-Paton matrices with n1 × n5 and n5 × n1 components
respectively, SA are the SO(1, 5) spin fields, ϕ is the free boson appearing in the
bosonized language of the worldsheet superghost (β, γ), and Δ is the bosonic twist
operator with conformal dimension 1

4 which acts along the four mixed ND directions
and changes the boundary conditions from Neumann to Dirichlet and vice versa.

We focus on open string condensates involving the Ramond sector states only.
These states break the SO(4) symmetry of the DD directions R

4, and are invariant
under the SO(4) acting on the compact T 4 torus. The most general condensate of
Ramond open strings can be written as:

μ̄A μB = vI (CΓ I )[AB] + 1

3! vI J K (CΓ I J K )(AB), (7.15)

where the parentheses indicate that the first term is automatically antisymmetric,
while the second is symmetric. The open string bispinor condensate is thus specified
by a one-form vI and an self-dual three-form vI J K . The self-duality of vI J K follows
from μ̄A and μB having definite 6D chirality and can be written as

vI J K = 1

3!εI J K L M N vL M N . (7.16)

In this talk we consider only the components of vI J K which have one leg in the
t, y directions and two legs in the R

4; this choice of components was associated to
considering profiles only in the R

4 directions in [24]. Since the spinors μ̄A and μB

carry n5×n1 and n1×n5 Chan-Paton indices, the condensate μ̄AμB must be thought
of as the vev for the sum

n1∑
m=1

n5∑
n=1

μ̄A
mn μ

B
nm , (7.17)

which, for generic choices of the Chan-Paton factors, is of order n1n5.
The open string insertions (7.14) are related to the vevs of the strings stretched

between the D1 and D5 branes, which we are treating perturbatively. The microstates
for which we might expect a gravitational description have large open string vevs, so
in principle we should resum amplitudes with many twisted vertices. However each
pair of open string insertions (7.14) comes with a factor of 1/r in the large distance
expansion of the corresponding gravity solution [24, 20].

Thus in the following we focus only on the leading contributions at large distances
which are induced by the amplitudes with one border and one pair of open vertices
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Fig. 7.3 The simplest ampli-
tude involving all three
charges of the D1-D5-P
microstate: the worldsheet
topology is that of a mixed
disk diagram where part of the
border lies on the D1 brane
and part on the D5 brane

Vµ

Vµ̄

WD1 f D5 f

Vμ, Vμ̄ (see Fig. 7.3). This should be sufficient to derive the sourced supergravity
fields up to order 1/r4.

Thus the amplitude we now calculate is

AD1-D5
N S,R =

∫ ∏4
i=1 dzi

dVCKG

〈
Vμ(z1) W (−k)

N S,R(z2, z3) Vμ̄(z4)
〉

f
, (7.18)

where the subscript f is to remind that, in this disk correlator, the identification
between holomorphic and anti-holomorphic components depends on the profile of
the D-branes through (7.5–7.8).

In order to have a non-trivial correlator we must saturate the superghost charge
(−2) of the disk. The two open string vertices together contribute−1, thus in the NS
sector we use the closed string vertex operator in the (0,−1) picture,

W (k)
N S = Gμν

(
∂Xμ

L − i
k

2
·ψ ψμ

)
ei k

2 ·X L (z) ψ̃νe−ϕ̃ei k
2 ·X R (z̄)+ . . . , (7.19)

where the dots stand for other terms that ensure the BRST invariance of the vertex,
but that do not play any role in the correlator under analysis.

We will not review the intermediate steps of the calculation here; details are given
in [20]. We move on to discuss the spacetime fields which result from the calculation.
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7.4.1 New D1-D5-P Geometries

The fields obtained from the calculation of the previous section fit into the following
ansatz, which solves the supergravity equations perturbatively1 in 1/r up to 1/r4.
Using the short-hand notation

dt̂ = dt + k, d ŷ = dy + dt − dt + k

Z3
+ a3 , (7.20)

the ansatz (in the string frame) is

ds2 = 1√
Z1 Z2

[
− 1

Z3
dt̂2 + Z3 d ŷ2

]
+√

Z1 Z2 ds2
4 +

√
Z1

Z2
ds2

T 4 ,

B = −Z4 dt̂ ∧ d ŷ + a4 ∧ (dt̂ + d ŷ)+ δ2 ,

e2φ = Z1

Z2
C (0) = Z4,

C (2) = − 1

Z1
dt̂ ∧ d ŷ + a1 ∧ (dt̂ + d ŷ)+ γ2 , (7.21)

F (5) = d Z4 ∧ dz4 + Z2

Z1
∗4 d Z4 ∧ dt̂ ∧ d ŷ ,

where ds2
4 is a generic Euclidean metric on R

4; ds2
T 4 is the flat metric on T 4; Z I are

0-forms, k, aI are 1-forms, and γ2, δ2 are 2-forms on R
4. The above quantities are

subject to the conditions

dδ2 = ∗4da4 , dγ2 = ∗4d Z2 , (7.22)

and we take the asymptotic boundary conditions

Z1, Z2, Z3 = 1+ O(r−2), Z4 = O(r−4),

k, a1, a3, a4 = O(r−3), ds2
4 = dxi dxi + O(r−4). (7.23)

The above fields satisfy the approximate supergravity Killing spinor equations up
to order 1/r4. It turns out, however, that one can keep the full r dependence of the
string results and still satisfy the approximate supergravity Killing spinor equations,
to linear order in the condensate vI J K .

The full r dependence of the supergravity fields describes the small gs N and
small vI J K limit, i.e. the weak gravity regime and the region of the Higgs branch
infinitesimally close to its intersection with the Coulomb branch. If one is interested

1 This ansatz was later extended to a full non-linear supergravity ansatz in [30]. Solutions have been
studied in [31].
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in the black hole regime (large gs N and finite vI J K ), one should keep only the large
r limit (up to 1/r4 order) of the following results.

We next review the most interesting features of the string amplitude; for the full
set of fields see [20]. If we set Z4 and a4 to zero, the ansatz reduces to that in [18].
These ‘new’ fields are thus the most interesting. The disk amplitude gives

Z4 = −vu jk ∂ j

[
1

LT

∫ LT

0
d v̂

ḟk

|xi − f i |2
]
, (7.24)

a4 = vui j ∂ j

[
1

LT

∫ LT

0
d v̂

| ḟ |2
|xi − f i |2

]
dxi (7.25)

where we have absorbed some factors multiplying the open string condensate,

vI J K = − 2
√

2nwκ

πV4
vI J K . (7.26)

Note that the new fields above vanish in either of the two-charge limits in which
we set either vI J K or f to zero.

Another interesting outcome of our calculation is that it predicts that the 4D base
metric ds2

4 , which is simply the flat metric on R
4 in the 2-charge case, is a non-trivial

hyper-Kähler metric when all three charges are present. The base metric which arises
from the string amplitude is

ds2
4 =

(
δi j + vuli ∂lI j + vul j ∂lIi − δi j vulk ∂lIk

)
dxi dx j , (7.27)

where

I j = 1

LT

∫ LT

0
d v̂

ḟ j

|xi − f i |2 . (7.28)

The non-flatness of the base metric for 3-charge microstate geometries was previ-
ously observed in the particular solution of [32], but had remained until now largely
unexplained. It is nice to see that the disk amplitudes lead directly to this feature.

7.5 Summary

In this talk we have seen how disk amplitudes can be used to derive the asymptotic
supergravity fields sourced by bound states of D-branes. At large distances from
the bound state, the effective open string coupling is small, even in the regime of
parameters in which there is a classical black hole solution with the same charges.

The supergravity fields differ from the black hole solution by various multipole
moments, suggesting that the D1-D5-P black hole solution is not an exact description
of the gravitational fields sourced by individual microstates. Rather the black hole
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solution is likely to be an approximate thermodynamic description of the entire
system. Thus the results reviewed here support the fuzzball proposal.

It would be interesting to apply the techniques reviewed here to other D-brane
bound states, and we hope that this will lead to an improved understanding of the
physics of black holes in string theory.
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Chapter 8
From Clock Synchronization to Dark Matter
as a Relativistic Inertial Effect

Luca Lusanna

8.1 Introduction

One of the main open problems in astrophysics is the dominance of dark entities, the
dark matter and the dark energy, in the existing description of the universe given by
the standard ΛCDM cosmological model [1, 2] based on the cosmological principle
(homogeneity and isotropy of the space-time), which selects the class of Friedmann-
Robertson-Walker (FWR) space-times. After the transition from quantum cosmology
to classical astrophysics, with the Heisenberg cut roughly located at a suitable cosmic
time (≈105 years after the big bang) and at the recombination surface identified by the
cosmic microwave background (CMB), one has a description of the universe in which
the known forms of baryonic matter and radiation contribute only with a few percents
of the global budget. One has a great variety of models trying to explain the composi-
tion of the universe in accelerated expansion (based on data on high red-shift super-
novae, galaxy clusters and CMB): WIMPS (mainly super-symmetric particles), f (R)

modifications of Einstein gravity (with a modified Newton potential), MOND (with
a modification of Newton law),... for dark matter; cosmological constant, string the-
ory, back-reaction (spatial averages, non-linearity of Einstein equations), inhomoge-
neous space-times (Lemaitre-Tolman-Bondi, Szekeres), scalar fields (quintessence,
k-essence, phantom), fluids (Chaplygin fluid), .... for dark energy.

Most of these developments rest on a description based on a family of FRW space-
times with nearly flat 3-spaces (as required by CMB data) as the reference space-times
where to interpret the astronomical data (luminosity, light spectrum, angles) on the
2-dimensional sky vault. Therefore, the starting point is the extension of the standards
of relativistic metrology near the Earth and in the Solar System to astronomy: to
reconstruct a 4-dimensional space-time one needs new standards of time and length
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like the cosmic time and the luminosity distance (or any other astrometric definition,
see Ref. [3, 4]) allowing to define an International Celestial Reference System (ICRS)
[5–9], namely a 4-coordinate system describing a 3-universe evolving in time, where
the astronomical data have to be dynamically interpreted according to Einstein gravity
or some of its extensions.

The aim of this Lecture is to suggest a new viewpoint on the origin of dark matter,
and maybe also of dark energy, starting from a re-reading of the general covariance
of Einstein general relativity (GR), which could be also applied to every generally
covariant extension of this theory if needed. It is an extended version of the review
paper [10]. In this Introduction one will delineate the framework of our approach
and then in the subsequent Sections one will give more details of the various topics.

The gauge group of the Lagrangian formulation of Einstein GR, the diffeomor-
phism group, implies that the 4-coordinates of the space-time are gauge variables.
As a consequence, the search of GR observables is restricted to 4-scalars and at the
theoretical level one tries to describe gravitational dynamical properties in term of
them. However, inside the Solar System the experimental localization of macroscopic
classical objects is unavoidably done by choosing some convention for the local
4-coordinates of space-time. Atomic physicists, NASA engineers and astronomers
have chosen a series of reference frames and standards of time and length suit-
able for the existing technology [11–13]. These conventions determine certain
Post-Minkowskian (PM) 4-coordinate systems of an asymptotically Minkowskian
space-time, in which the instantaneous 3-spaces are not strictly Euclidean. Then these
reference frames are seen as a local approximation of a reference frame in ICRS,
where however the space-time has become a cosmological FWR one, which is only
conformally asymptotically Minkowskian at spatial infinity. A search of a consistent
patching of the 4-coordinates from inside the Solar System to the rest of the universe
will start when the data from the future GAIA mission [14] for the cartography of the
Milky Way will be available. This will allow a PM definition of a Galactic Reference
System containing at leat our galaxy. Let us remark that notwithstanding the FRW
instantaneous 3-spaces are not strictly Euclidean, all the books on galaxy dynamics
describe the galaxies by means of Kepler theory in Galilei space-time.

This state of affairs requires to revisit Einstein GR to see whether it is possible to
identify which components of the 4-metric tensor are connected with the gauge free-
dom in the choice of the 4-coordinates and which ones describe the dynamical degrees
of freedom of the gravitational field. Since this cannot be done at the Lagrangian
level, one must restrict himself to the class of globally hyperbolic, asymptotically
flat space-times allowing a Hamiltonian description starting from the description of
Einstein GR in terms of the ADM action [15] instead than in terms of the Einstein-
Hilbert one. In canonical ADM gravity one can use Dirac theory of constraints
[16, 17] to describe the Hamiltonian gauge group, whose generators are the first-
class constraints of the model. The basic tool of this approach is the possibility to
find so-called Shanmugadhasan canonical transformations [18–21], which identify
special canonical bases adapted to the first-class constraints (and also to the second-
class ones when present). In these special canonical bases the vanishing of certain
momenta (or of certain configurational coordinates) corresponds to the vanishing
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of well defined Abelianized combinations of the first-class constraints (Abelianized
because the new constraints have exactly zero Poisson brackets even if the original
constraints were not in strong involution). As a consequence, the variables conjugate
to these Abelianized constraints are inertial Hamiltonian gauge variables describing
the Hamiltonian gauge freedom. The remaining 2+2 conjugate variables describe the
dynamical tidal degrees of freedom of the gravitational field (the two polarizations
of gravitational waves in the linearized theory). If one would be able to include all
the constraints in the Shanmugadhasan canonical basis, these 2+ 2 variables would
be the Dirac observables of the gravitational field, invariant under the Hamiltonian
gauge transformations. However such Dirac observables are not known: one only has
statements about their existence [22–26]. Moreover, in general they are not 4-scalar
observables. The problem of the connection between the 4-diffeomorphism group
and the Hamiltonian gauge group was studied in Ref. [27–32] by means of the inverse
Legendre transformation and of the notion of dynamical symmetry. The conclusion
is that on the space of solutions of Einstein equations there is an overlap of the two
types of observables: there should exists special Shanmugadhasan canonical bases in
which the 2+ 2 Dirac observables become 4-scalars when restricted to the space of
solutions of the Einstein equations. In any case the identification of the inertial gauge
components of the 4-metric is what is needed to make a fixation of 4-coordinates as
required by relativistic metrology.

Another problem is that asymptotically flat space-times have the SPI group of
asymptotic symmetries (direction-dependent asymptotic Killing symmetries) [33]
and this is an obstruction to the existence of asymptotic Lorentz generators for the
gravitational field [34, 35]. However if one restricts the class of space-times to those
not containing super-translations [36], then the SPI group reduces to the asymptotic
ADM Poincaré group [37–39]: these space-times are asymptotically Minkowskian,
they contain an asymptotic Minkowski 4-metric (to be used as an asymptotic back-
ground at spatial infinity in the linearization of the theory) and they have asymptotic
inertial observers at spatial infinity whose spatial axes may be identified by means
of the fixed stars of star catalogues.1 Moreover, in the limit of vanishing Newton
constant (G = 0) the asymptotic ADM Poincaré generators become the generators
of the special relativistic Poincaré group describing the matter present in the space-
time. This is an important condition for the inclusion into GR of the classical version
of the standard model of particle physics, whose properties are all connected with
the representations of this group in the inertial frames of Minkowski space-time. In
absence of matter a sub-class of these space-times is the (singularity-free) family
of Chrstodoulou-Klainermann solutions of Einstein equations [40] (they are near to
Minkowski space-time in a norm sense and contain gravitational waves).

1 The fixed stars can be considered as an empirical definition of spatial infinity of the observable
universe.
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Moreover, in this restricted class of space-times the canonical Hamiltonian is the
ADM energy [41–44], so that there is no frozen picture like in the “spatially compact
space-times without boundaries” used in loop quantum gravity.2

To take into account the fermion fields present in the standard particle model one
must extend ADM gravity to ADM tetrad gravity. Since our class of space-times
admits orthonormal tetrads and a spinor structure [46], the extension can be done
by simply replacing the 4-metric in the ADM action with its expression in terms of
tetrad fields, considered as the basic 16 configurational variables substituting the 10
metric fields.

To study ADM tetrad gravity the preliminary problem is to choose a coordina-
tization of the space-time compatible with relativistic metrology. This requires a
definition of global non-inertial frames, because the equivalence principle forbids
the existence of global inertial frames in GR. Due to the Lorentz signature of the
space-time this is a non-trivial task already in special relativity (SR): there is no
notion of instantaneous 3-space, because the only intrinsic structure is the conformal
one, i.e. the light-cone as the locus of incoming and outgoing radiation. The exist-
ing coordinatizations, like either Fermi or Riemann-normal coordinates, hold only
locally. They are based on the 1+3 point of view, in which only the world-line of a
time-like observer is given. In each point of the world-line the observer 4-velocity
determines an orthogonal 3-dimensional space-like tangent hyper-plane, which is
identified with an instantaneous 3-space. However, these tangent planes intersect at
a certain distance from the world-line (the so-called acceleration length depending
upon the 4-acceleration of the observer [47, 48]), where 4-coordinates of the Fermi
type develop a coordinate singularity. Another type of coordinate singularity is devel-
oped in rigidly rotating coordinate systems at a distance r from the rotation axis where
ω r = c (ω is the angular velocity and c the two-way velocity of light). This is the
so-called “horizon problem of the rotating disk”: a time-like 4-velocity becomes a
null vector atω r = c, like it happens on the horizon of a black-hole. See Ref. [49–52]
for a classification of the possible pathologies of non-inertial frames and on how to
avoid them.

In this Lecture one will review the way out from these problems based on the
3 + 1 point of view in which, besides the world-line of a time-like observer, one
gives a global nice foliation of the space-time with instantaneous 3-spaces. Then a
metrology-oriented notion of 4-coordinates, the so-called radar 4-coordinates first
introduced by Bondi [53, 54], is introduced in these global non-inertial frames. One
will give the conditions for a foliation to be nice, i.e. for the absence of pathologies
like the ones of the rotating disk and of the Fermi coordinates.

2 In these space-times the canonical Hamiltonian vanishes and the Dirac Hamiltonian is a combi-
nation of first-class constraints, so that it only generates Hamiltonian gauge transformations. In the
reduced phase space, quotient with respect the Hamilonian gauge group, the reduced Hamiltonian
is zero and one has a frozen picture of dynamics. This class of space-times fits well with Machian
ideas (no boundary conditions) and with interpretations in which there is no physical time like the
one in Ref. [45]. However, it is not clear how to include in this framework the standard model of
particle physics.
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Let us remark that the theory of global non-inertial frames is also needed to speak
of predictability in a (either classical or quantum) theory in which the basic equations
of motion are partial differential equations (PDE). To be able to use the existence and
unicity theorem for the solutions of PDE’s, one needs a well-posed Cauchy problem,
whose prerequisite is a sound definition of an instantaneous 3-space (i.e. of a clock
synchronization convention) where the Cauchy data are given. To give the data on a
space-like surface is not factual, but with the data on the backward light-cone of an
observer it is not yet possible to demonstrate the theorem. However, also the 1 + 3
point of view is non factual, because it requires the knowledge of a world-line from
the whole past to all the future.

A Section of this Lecture will be devoted to the developments in relativistic
particle mechanics made possible by the 3 + 1 point of view in SR [49–52, 55–
57]. By means of parametrized Minkowski theories [49–52, 55], one can get the
description of arbitrary isolated systems (particles, strings, fluids, fields) admitting
a Lagrangian formulation in arbitrary non-inertial frames with the transition among
non-inertial frames described as a “gauge transformation” (general covariance under
the frame-preserving diffeomorphisms of Ref. [58]). Moreover this framework allows
us to define the inertial and non-inertial rest frames of the isolated systems, where
to develop the rest-frame instant form of the dynamics and to build the explicit
form of the Lorentz boosts for interacting systems. This makes possible to study
the problem of the relativistic center of mass [59–61], relativistic bound states
[62–67], relativistic kinetic theory and relativistic micro-canonical ensemble [68]
and various other systems [69–75]. Moreover a Wigner-covariant relativistic quan-
tum mechanics [76], with a solution of all the known problems introduced by SR,
has been developed after some preliminary work done in Ref. [77, 78]. This will
allow us to study relativistic entanglement.

After this digression in SR one defines global non-inertial frames with radar
4-coordinates in the asymptotically Minkowskian space-times of GR3 and one gives
the parametrization of the tetrads and of the 4-metric in them. The absence of super-
translations implies that these non-inertial frames are non-inertial rest frames of the
3-universe. Starting from the ADM action for tetrad gravity one defines the Hamil-
tonian formalism in a phase space containing 16 configurational field variables and 16
conjugate moments. One identifies the 14 first-class constraints of the system and one
finds that the canonical Hamiltonian is the weak ADM energy (it is given as a volume
integral over 3-space). The existence of these 14 first-class constraints implies that
14 components of the tetrads (or of the conjugate momenta) are Hamiltonian gauge
variables describing the inertial aspects of the gravitational field (6 of these inertial
variables describe the extra gauge freedom in the choice of the tetrads and in their
transport along world-lines). Therefore there are only 2+2 degrees of freedom for the
description of the tidal dynamical aspects of the gravitational field. The asymptotic
ADM Poincaré generators can be evaluated explicitly. Till now the type of matter

3 While in SR Minkowski space-time is an absolute notion, unifying the absolute notions of time
and 3-space of the non-relativistic Galilei space-time, in GR there is no absolute notion: space-time
becomes dynamical [79–81] with its metric structure satisfying Einstein equations.
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studied in this framework consists of the electro-magnetic field and of N charged
scalar particles, whose signs of the energy and electric charges are Grassmann-valued
to regularize both the gravitational and electro-magnetic self-energies (it is both a
ultraviolet and an infrared regularization),

Then it will be shown that there is a Shanmugadhasan canonical transforma-
tion [82] (implementing the so-called York map [83] and diagonalizing the York-
Lichnerowics approach [84]) to a so-called York canonical basis adapted to 10 of
the 14 first-class constraints. Only the super-Hamiltonian and super-momentum con-
straints, whose general solution is not known, are not included in the basis, but it is
clarified which variables are to be determined by their solution. Among the inertial
gauge variables there is the York time [85–87] 3K , i.e. the trace of the extrinsic cur-
vature of the 3-spaces as 3-manifolds embedded into the space-time. It is the only
gauge variable which is a momentum in the York canonical basis4: this is due to
the Lorentz signature of space-time, because the York time and three other inertial
gauge variables can be used as 4-coordinates of the space-time (see Ref. [79–81]
for this topic and for its relevance in the solution of the hole argument). Therefore
an identification of the inertial gauge variables to be fixed to get a 4-coordinate sys-
tem in relativistic metrology was found. In the first paper of Ref. [88–90] there is
the expression of the Hamilton equations for all the variables of the York canonical
basis.

An important remark is that in the framework of the York canonical basis the
natural family of gauges is not the harmonic one, but the family of 3-orthogonal
Schwinger time gauges in which the 3-metric in the 3-spaces is diagonal.

Both in SR and GR an admissible 3+1 splitting of space-time has two associated
congruences of time-like observers [49–52], geometrically defined and not to be con-
fused with the congruence of the world-lines of fluid elements, when relativistic fluids
are added as matter in GR [91–94]. One of the two congruences, with zero vorticity,
is the congruence of the Eulerian observers, whose 4-velocity field is the field of unit
normals to the 3-spaces. This congruence allows us to re-express the non-vanishing
momenta of the York canonical basis in terms of the expansion (θ = −3K) and of the
shear of the Eulerian observers. This allows us to compare the Hamilton equations of
ADM canonical gravity with the usual first-order non-Hamiltonian ADM equations
deducible from Einstein equations given a 3+ 1 splitting of space-time but without
using the Hamiltonian formalism. As a consequence, one can extend our Hamil-
tonian identification of the inertial and tidal variables of the gravitational field to the
Lagrangian framework and use it in the cosmological (conformally asymptotically
flat) space-times: in them it is not possible to formulate the Hamiltonian formalism
but the standard ADM equations are well defined. The time inertial gauge variable
needed for relativistic metrology is now the expansion of the Eulerian observers of
the given 3+ 1 splitting of the globally hyperbolic cosmological space-time.

The next step (see the second paper of Ref. [88–90]) is the definition of a PM
linearization of ADM tetrad gravity in the family of 3-orthogonal Schwinger time
gauges in which one chooses 3-coordinates diagonalizing the 3-metric in the 3-spaces

4 Instead in Yang-Mills theory all the gauge variables are configurational.
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and an arbitrarily given numerical function for the York time 3K . The cosmic time
τcosm has to be chosen so that the 3-spaces τcosm = const. have an extrinsic curvature
with the given value of 3K . This PM linearization uses the asymptotic Minkowski
4-metric as an asymptotic background, so that one never splits the 4-metric with
respect to a fixed Minkowski metric in the bulk like in the standard approach to
gravitational waves. A ultraviolet cutoff on the matter is needed.

This leads to a PM formulation of gravitational waves in non-harmonic
3-orthogonal gauges. All the constraints can be solved, an explicit expression of
the PM 4-metric can be given and the explicit form of the Hamilton equations for the
tidal degrees of freedom of the gravitational field and the matter can be obtained. It is
non-trivial to show that all the standard results about gravitational waves in harmonic
gauges [95] can be reproduced in the 3-orthogonal gauges with the help of the for-
malism of Ref. [96]. As shown in the third paper of Ref. [88–90] (where the matter is
restricted only to scalar particles), all the 4- and 3- curvature tensors of the space-time
can be explicitly evaluated and the time-like and null geodesics can be studied. It is
also possible to evaluate the red-shift of light rays and the luminosity distance finding
their dependence on the York time and verify the old Hubble red-shift-distance law
(see Ref. [97]), which becomes the usual Hubble law (a velocity-distance relation)
when one uses the standard cosmological model. In the Solar System the results in
the 3-orthogonal gauges are compatible with the ones in the harmonic gauges used
in relativistic metrology [11–13].

The main important result or this lecture are the PM Hamilton equations and
the implied PM second-order equations of motion for the particles. Their PN limit
identifies the Newton forces acting on the particles at the lowest order augmented
with 1PN forces compatible with the known results on binaries in harmonic gauges
[98, 99]. However, there are extra 0.5PN forces, depending linearly on the non-local
York time 3K = 1

�
3K (� is the asymptotic Laplacian of the 3-space), representing

either a friction or an anti-friction force according to the sign of 3K. These 0.5PN
forces are our main result, because their effect can be re-interpreted as an extra
effective (time-, position- and velocity-dependent) contribution to the inertial mass
of the particles in the equations used in the three main signatures for the existence
of dark matter: the rotation curves of spiral galaxies [100–102] and the masses of
clusters of galaxies from the virial theorem [103–105] and from weak gravitational
lensing [103–107].

While gravitational and inertial masses are equal in Einstein GR, the PM limit,
followed by the PN one, shows that the non-Euclidean nature of the 3-spaces implies
a breaking of the Newtonian equality of the two types of masses, which holds only
in the absolute Euclidean 3-space of Galilei space-time.

As a consequence the data on dark matter can be re-read as a partial fixation of
the non-local York time 3K. However to fix the York time 3K = � 3K one needs
a global information on 3K on the whole 3-space, in particular in the voids among
galaxy clusters.

Therefore one has an indication that (at least part of) dark matter could be
re-absorbed in a PM extension of the conventions in the existing ICRS, such that



274 L. Lusanna

the 3-spaces τICRS = const. determined by a suitable ICRS time have a York time
3K such that the derived non-local York time reproduces the data for the signatures
of dark matter.

In the Conclusions it will be suggested that also the open problem of dark energy
could be rephrased as the determination of a suitable York time in inhomogeneous
cosmological space-times. Therefore there is the possibility of an understanding of
the “dark” aspects of the universe in terms of relativistic metrology.

8.2 Relativistic Metrology

As shown in Ref. [108] modern relativistic metrology is not only deeply rooted in
Maxwell theory and its quantization but is also beginning to take into account GR.

The basic metrological conventions on the Earth surface are:

(a) An atomic clock as a standard of time. The fundamental conceptual time scale is
the SI atomic second: it is the duration of 9 192 631 770 periods of the radiation
corresponding to the transition between the two hyperfine levels of the ground
state of the cesium 133 atom. This definition refers to a cesium atom at rest
at a temperature of 0o. However the practical time standard is the International
Atomic Time (TAI), which is defined as a suitable weighted average of the SI
time kept by over 200 atomic clocks in about 70 national laboratories worldwide.
Time scales connected with TAI are the GPS Station Time and the Universal Time
(UC) based on Earth’s rotation.5 All the other existing time scales inside the Solar
System are connected to this standard by fixed conventions.

(b) The 2-way velocity of light (only one clock is involved in its definition), fixed to
the value c = 299 792 458 m s−1, in place of the standard of length.6 To measure
the 3-distance between two objects in an inertial frame one sends a ray of light
from the first object, to which is associated an atomic clock, to the second one,
where it is reflected and then reabsorbed by the first object. The measure of
the flight time and the 2-way velocity of light determine the 3-distance between
the objects. This convention is compatible with the Euclidean 3-space of inertial
frames in Minkowski space-time. When the technology will allow one to measure
the deviations from Euclidean 3-space implied by PN gravity one will need a
modified convention taking into account a general relativistic notion of length.

Given these standards one can think to the Global Positioning System (GPS) as
a local standard of space-time. To define GPS one needs a conventional reference
frame centered on a given time-like observer. Inside the Solar System one has well
defined conventions for the following reference frames:

5 It is based on Very Long Baseline Interferometry (VLBI) observations of distant quasars, on Lunar
Laser Ranging (LLR) and on determination of GPS satellite orbits.
6 The meter is the length of the path traveled by light in vacuum during a time interval of 1/c of a
second.
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(A) The description of satellites around the Earth is done by means of NASA coor-
dinates either in the International Terrestrial Reference System (ITRS; it is a
frame fixed on the Earth surface) or in the Geocentric Celestial Reference Sys-
tem (GCRS) centered on the world-line of the Earth center (see Ref. [11–13]).
Both of them use a geocentric coordinate time tG connected to TAI.

(B) The description of planets and other objects in the Solar System uses the
Barycentric Celestial Reference System (BCRS), centered in the barycenter
of the Solar System (see Ref. [11–13]). It uses a barycentric coordinate time tB
connected to tG and TAI.

While ITRS is essentially realized as a non-relativistic non-inertial frame in Galilei
space-time, BCRS is defined as a quasi-inertial frame, non-rotating with respect to
some selected fixed stars, in Minkowski space-time with nearly-Euclidean 3-spaces
(one ignores the perturbations induced from the Milky Way). It can also be considered
as a PM space-time with 3-spaces having a very small extrinsic curvature of order c−2.
GCRS is obtained from BCRS by taking into account Earth’s rotation around the
Sun with a suitable Lorentz boost with corrections from PN gravity.7 By taking into
account the extension of the geoid and Earth revolution around its axis one goes from
the quasi-Minkowskian GCRS to the quasi-Galilean ITRS.

New problems emerge by going outside the Solar System. In astronomy the posi-
tions of stars and galaxies are determined from the data (luminosity, light spectrum,
angles) on the sky, i.e. on a 2-dimensional spherical surface around the Earth with the
relations between it and the observatory on the Earth done with GPS. To get a descrip-
tion of stars and galaxies as living in a 4-dimensional space-time one introduces the
International Celestial Reference System ICRS (see Refs. [5–9]). Its time scale is a
“second” connected to GPS, TAI and SI and therefore to tG and tB. ICRS has the
origin in the solar system barycenter, which is considered as quasi-inertial observer
carrying a quasi-inertial (essentially non-relativistic) reference frame with rectangu-
lar 3-coordinates in a nearly Galilei space-time whose 3-spaces are nearly Euclidean.
The directions of the spatial axes are effectively defined by the adopted coordinates
of 212 extragalactic radio sources observed by VLBI . These radio sources (quasars
and AGN, active galactic nuclei) are assumed to have no observable intrinsic angular
momentum. Thus, the ICRS is a space-fixed system, more precisely a kinematically
non-rotating system, which provides the orientation of BCRS.

In astronomy the unit of length is the astronomical unit AU, approximately equal
to the mean Earth-Sun distance. Measurements of the relative positions of planets
in the Solar System are done by radar: one measures the time taken for light to
be reflected from an object using the conventional value of the velocity of light c.
Both for objects inside the Solar System and for the nearest stars one measure the
distance with the trigonometric parallax by using the propagation of light and its
velocity c in inertial frames. One measures the difference (the inclination angle) in
the apparent position of an object viewed along two different lines of sight at two
different times and then uses Euclidean geometry to evaluate the distance. The used
unit in astronomy is the parsec, which is 3.26 light-years or 3.26× 1016 m.

7 See Ref. [109] for possible gravitational anomalies inside the Solar System.
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This convention cannot be used for more distant either galactic or extra-galactic
objects. New notions like standard candles, dynamical parallax, spectroscopic par-
allax, luminosity distance,... are needed [3, 4]. These notions involve both aspects
of light propagation in curved space-times and cosmological assumptions like the
Hubble law (velocity-red-shift linear relation).

However if one takes into account the description of the universe given by cos-
mology, the actual cosmological space-time cannot be a nearly Galilei space-time but
it must be a cosmological space-time with some theoretical cosmic time. In the stan-
dard cosmological model [1, 2] it is a homogeneous and isotropic FRW space-time
whose instantaneous 3-spaces have nearly vanishing internal 3-curvature, so that they
may locally be replaced with Euclidean 3-spaces as it is done in galactic dynamics.
However they have a time-dependent conformal factor (it is one in Galilei space-
time) responsible for the Hubble constant regulating the expansion of the universe.
As a consequence the transition from the astronomical ICRS to an astrophysical
description taking into account cosmology is far from being understood.

What is still lacking is a PM extension of the celestial frame such that the PM
BCRS frame is its restriction to the solar system inside our galaxy. In particular
one needs the definition of a coordinate time tICRS connected to tB such that the
3-spaces tICRS = const. have a very small internal 3-curvature and a suitable extrinsic
curvature as sub-manifolds of the space-time connected with the Hubble constant. In
this way this astronomical PM ICRS would be consistent with the FRW cosmological
space-times used in astrophysics except for the conformal factor determining the
accelerated expansion of the universe and creating problems in the metrological use
of fixed stars.

Hopefully at least an PM extension of ICRS including our galaxy (with the defin-
ition of a galactic coordinate system) will be achieved with the ESA GAIA mission
devoted to the cartography of the Milky Way [14].

8.3 Clock Synchronization and Global Non-inertial
Frames in Minkowski Space-Time

Since in the Minkowski space-time of SR time is not absolute, there is no intrinsic
notion of 3-space and of synchronization of clocks: both of them have to be defined
with some convention. As a consequence the 1-way velocity of light from one observer
A to an observer B has a meaning only after a choice of a convention for synchronizing
the clock in A with the one in B. Therefore the crucial quantity in special relativity
is the 2-way (or round trip) velocity of light c involving only one clock. It is this
velocity (a kind of mean velocity) which is isotropic and constant in SR and replaces
the standard of length in relativistic metrology.

Einstein convention for the synchronization of clocks in Minkowski space-time
uses the 2-way velocity of light to identify the Euclidean 3-spaces of the inertial
frames centered on an inertial observer A by means of only its clock. The inertial
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observer A sends a ray of light at xo
i towards the (in general accelerated) observer

B; the ray is reflected towards A at a point P of B world-line and then reabsorbed
by A at xo

f ; by convention P is synchronous with the mid-point between emission

and absorption on A’s world-line, i.e. xo
P = xo

i + 1
2 (xo

f − xo
i ) = 1

2 (xo
i + xo

f ). This
convention selects the Euclidean instantaneous 3-spaces xo = ct = const. of the
inertial frames centered on A. Only in this case the one-way velocity of light between
A and B coincides with the two-way one, c. However, as said in the Introduction,
if the observer A is accelerated, the convention can breaks down due the possible
appearance of coordinate singularities.

As a consequence, a theory of global non-inertial frames in Minkowski space-
time has to be developed in a metrology-oriented way to overcame the pathologies
of the 1 + 3 point of view. This has been done in the papers of Ref. [49–52] based
on the 3+ 1 point of view and on the use of observer-dependent Lorentz scalar radar
4-coordinates. This theory and its implications for the description of isolated systems
in SR will be reviewed in this Section.

8.3.1 3 + 1 Splittings of Minkowski Spacetime and Radar
4-Coordinates

Assume that the world-line xμ(τ ) of an arbitrary time-like observer carrying a stan-
dard atomic clock is given: τ is an arbitrary monotonically increasing function of the
proper time of this clock. Then one gives an admissible 3+1 splitting of Minkowski
space-time, namely a nice foliation with space-like instantaneous 3-spaces Στ . It is
the mathematical idealization of a protocol for clock synchronization: all the clocks
in the points of Στ sign the same time of the atomic clock of the observer.8 On
each 3-space Στ one chooses curvilinear 3-coordinates σr having the observer as
origin. These are the Lorentz-scalar and observer-dependent radar 4-coordinates
σA = (τ ;σr).

If xμ �→ σA(x) is the coordinate transformation from the Cartesian 4-coordinates
xμ of a reference inertial observer to radar coordinates, its inverse σA �→ xμ =
zμ(τ ,σr) defines the embedding functions zμ(τ ,σr) describing the 3-spaces Στ as
embedded 3-manifold into Minkowski space-time. The induced 4-metric on Στ is
the following functional of the embedding 4gAB(τ ,σr) = [zμA ημν zνB](τ ,σr), where
zμA = ∂ zμ/∂ σA and 4ημν = ε (+ − −−) is the flat metric.9 While the 4-vectors
zμr (τ ,σu) are tangent to Στ , so that the unit normal lμ(τ ,σu) is proportional to
εμαβγ [zα1 zβ2 zγ3 ](τ ,σu), one has zμτ (τ ,σr) = [N lμ+Nr zμr ](τ ,σr) with N(τ ,σr) =
ε [zμτ lμ](τ ,σr) = 1 + n(τ ,σr) and Nr(τ ,σ

r) = −ε gτr(τ ,σ
r) being the lapse and

shift functions.

8 It is the non-factual idealization required by the Cauchy problem generalizing the existing protocols
for building coordinate system inside the future light-cone of a time-like observer.
9 ε = ±1 according to either the particle physics ε = 1 or the general relativity ε = −1 convention.
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As a consequence, the components of the 4-metric 4gAB(τ ,σr) have the following
expression

ε 4gττ = N2 − Nr Nr, −ε 4gτr = Nr = 3grs Ns,

3grs = −ε 4grs =
3∑

a=1

3e(a)r
3e(a)s

= φ̃2/3
3∑

a=1

e2
∑2

b̄=1
γb̄a Rb̄ Vra(θ

i) Vsa(θ
i), (8.1)

where 3e(a)r(τ ,σ
u) are cotriads on Στ , φ̃2(τ ,σr) = det 3grs(τ ,σ

r) is the 3-volume

element on Στ ,λa(τ ,σ
r) = [φ̃1/3 e

∑2
b̄=1

γb̄a Rb̄ ](τ ,σr) are the positive eigenvalues of
the 3-metric (γāa are suitable numerical constants) and V(θi(τ ,σr)) are diagonalizing
rotation matrices depending on three Euler angles.

Therefore starting from the four independent embedding functions zμ(τ ,σr) one
obtains the ten components 4gAB of the 4-metric (or the quantities N , Nr , φ̃, Rā, θi),
which play the role of the inertial potentials generating the relativistic apparent forces
in the non-inertial frame. It can be shown [49–52] that the usual non-relativistic
Newtonian inertial potentials are hidden in the functions N , Nr and θi. The extrinsic
curvature tensor 3Krs(τ ,σ

u) = [ 1
2 N (Nr|s + Ns|r − ∂τ 3grs)](τ ,σu), describing the

shape of the instantaneous 3-spaces of the non-inertial frame as embedded 3-sub-
manifolds of Minkowski space-time, is a secondary inertial potential, functional of
the ten inertial potentials 4gAB.

The foliation is nice and admissible if it satisfies the conditions:

(1) N(τ ,σr) > 0 in every point of Στ so that the 3-spaces never intersect, avoiding
the coordinate singularity of Fermi coordinates;

(2) ε 4gττ (τ ,σ
r) > 0, so to avoid the coordinate singularity of the rotating disk, and

with the positive-definite 3-metric 3grs(τ ,σ
u) = −ε 4grs(τ ,σ

u) having three
positive eigenvalues (these are the Møller conditions [110, 111]);

(3) all the 3-spaces Στ must tend to the same space-like hyper-plane at spatial infinity
with a unit normal εμτ , which is the time-like 4-vector of a set of asymptotic ortho-
normal tetrads εμA. These tetrads are carried by asymptotic inertial observers and
the spatial axes εμr are identified by the fixed stars of star catalogues. At spatial
infinity the lapse function tends to 1 and the shift functions vanish.

8.3.2 Global Non-inertial Frames in Minkowski Spacetime

By using the asymptotic tetrads εμA one can give the following parametrization of the
embedding functions
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zμ(τ ,σr) = xμ(τ )+ εμA FA(τ ,σr), FA(τ , 0) = 0,

xμ(τ ) = xμo + εμA f A(τ ), (8.2)

where xμ(τ ) is the world-line of the observer. The functions f A(τ ) determine the
4-velocity uμ(τ ) = ẋμ(τ )/

√
ε ẋ2(τ ) (ẋμ(τ ) = dxμ(τ )

dτ ) and the 4-acceleration aμ(τ ) =
duμ(τ )

dτ of the observer.
The Møller conditions are non-linear differential conditions on the functions f A(τ )

and FA(τ ,σr), so that it is very difficult to construct explicit examples of admissible
3 + 1 splittings. When these conditions are satisfied Eqs. (8.2) describe a global
non-inertial frame in Minkowski space-time.

Till now the solution of Møller conditions is known in the following two cases in
which the instantaneous 3-spaces are parallel Euclidean space-like hyper-planes not
equally spaced due to a linear acceleration.

(A) Rigid non-inertial reference frames with translational acceleration. An example
are the following embeddings

zμ(τ ,σu) = xμo + εμτ f (τ )+ εμr σr,

gττ (τ ,σ
u) = ε

(df (τ )

dτ

)2
, gτr(τ ,σ

u) = 0, grs(τ ,σ
u) = −ε δrs.

(8.3)

This is a foliation with parallel hyper-planes with normal lμ = εμτ = const. and
with the time-like observer xμ(τ ) = xμo + εμτ f (τ ) as origin of the 3-coordinates.
The hyper-planes have translational acceleration ẍμ(τ ) = ε

μ
τ f̈ (τ ), so that they

are not uniformly distributed like in the inertial case f (τ ) = τ .
(B) Differentially rotating non-inertial frames without the coordinate singularity of

the rotating disk. The embedding defining this frames is

zμ(τ ,σu) = xμ(τ )+ εμr Rr
s(τ ,σ)σs →σ→∞ xμ(τ )+ εμr σr,

Rr
s(τ ,σ) = Rr

s(αi(τ ,σ)) = Rr
s(F(σ) α̃i(τ )),

0 < F(σ) <
1

Aσ
,

d F(σ)

dσ
�= 0 (Moller conditions),

zμτ (τ ,σ
u) = ẋμ(τ )− εμr Rr

s(τ ,σ) δsw εwuv σ
u Ωv(τ ,σ)

c
,

zμr (τ ,σu) = εμk Rk
v(τ ,σ)

(
δv

r +Ωv
(r)u(τ ,σ)σu

)
, (8.4)

where σ = |σ| and Rr
s(αi(τ ,σ)) is a rotation matrix satisfying the asymptotic

conditions Rr
s(τ ,σ)→σ→∞δr

s , ∂A Rr
s(τ ,σ)→σ→∞ 0, whose Euler angles
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have the expression αi(τ ,σ) = F(σ) α̃i(τ ), i = 1, 2, 3. The unit normal is

lμ = ε
μ
τ = const. and the lapse function is 1 + n(τ ,σu) = ε

(
zμτ lμ

)
(τ ,σu) =

ε ε
μ
τ ẋμ(τ ) > 0. In Eq. (8.4) one uses the notations Ω(r)(τ ,σ) = R−1(τ ,σ)

∂r R(τ ,σ) and
(

R−1(τ ,σ) ∂τ R(τ ,σ)
)u

v = δum εmvr
Ωr(τ ,σ)

c , with Ωr(τ ,σ) =
F(σ) Ω̃(τ ,σ) n̂r(τ ,σ)10 being the angular velocity. The angular velocity van-
ishes at spatial infinity and has an upper bound proportional to the minimum
of the linear velocity vl(τ ) = ẋμ lμ orthogonal to the space-like hyper-planes.
When the rotation axis is fixed and Ω̃(τ ,σ) = ω = const., a simple choice for
the function F(σ) is F(σ) = 1

1+ ω2 σ2

c2

.11

To evaluate the non-relativistic limit for c → ∞, where τ = c t with t the
absolute Newtonian time, one chooses the gauge function F(σ) = 1

1+ ω2 σ2

c2

→c→∞

1− ω2 σ2

c2 +O(c−4). This implies that the corrections to rigidly-rotating non-inertial

frames coming from Møller conditions are of order O(c−2) and become important
at the distance from the rotation axis where the horizon problem for rigid rotations
appears.

As shown in the first paper in Refs. [49–52], global rigid rotations are forbidden
in relativistic theories, because, if one uses the embedding zμ(τ ,σu) = xμ(τ ) +
ε
μ
r Rr

s(τ )σ
s describing a global rigid rotation with angular velocity Ωr = Ωr(τ ),

then the resulting gττ (τ ,σu) violates Møller conditions, because it vanishes at σ =
σR = 1

Ω(τ )

[√
ẋ2(τ )+ [ẋμ(τ ) εμr Rr

s(τ ) (σ̂ × Ω̂(τ ))r]2 −ẋμ(τ ) ε
μ
r Rr

s(τ ) (σ̂ × Ω̂

(τ ))r
]

(σu = σ σ̂u, Ωr = Ω Ω̂r , σ̂2 = Ω̂2 = 1). At this distance from the rotation

axis the tangential rotational velocity becomes equal to the velocity of light. This
is the horizon problem of the rotating disk (the horizon is often named the light
cylinder). Let us remark that even if in the existing theory of rotating relativistic
stars [112] one uses differential rotations, notwithstanding that in the study of the
magnetosphere of pulsars often the notion of light cylinder is still used.

The search of admissible 3 + 1 splittings with non-Euclidean 3-spaces is much
more difficult. The simplest case is the following parametrization of the embeddings
(8.1) in terms of Lorentz matrices ΛA

B(τ ,σ) →σ→∞ δA
B

12 with ΛA
B(τ , 0) finite.

The Lorentz matrix is written in the form Λ = B R as the product of a boost B(τ ,σ)

and a rotation R(τ ,σ) like the one in Eq. (8.4) (Rτ
τ = 1, Rτ

r = 0, Rr
s = Rr

s). The

components of the boost are Bτ τ (τ ,σ) = γ(τ ,σ) = 1/

√
1− β2(τ ,σ), Bτ r(τ ,σ) =

γ(τ ,σ)βr(τ ,σ), Rr
s(τ ,σ) = δr

s+ γ βr βs
1+γ (τ ,σ), withβr(τ ,σ) = G(σ)βr(τ ), where

10 n̂r(τ ,σ) defines the instantaneous rotation axis and 0 < Ω̃(τ ,σ) < 2 max
( ˙̃α(τ ), ˙̃β(τ ), ˙̃γ(τ )).

11 Nearly rigid rotating systems, like a rotating disk of radius σo, can be described by using a
function F(σ) approximating the step function θ(σ − σo).
12 It corresponds to the locality hypothesis of Ref. [47, 48], according to which at each instant
of time the detectors of an accelerated observer give the same indications as the detectors of the
instantaneously comoving inertial observer.
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βr(τ ) is defined by the 4-velocity of the observer uμ(τ ) = ε
μ
A β

A(τ )/

√
1− β2(τ ),

βA(τ ) = (1;βr(τ )). The Møller conditions are restrictions on G(σ) →σ→∞ 0 with
G(0) finite, whose explicit form is still under investigation.

See the second paper of Ref. [49–52] for the description of the electro-magnetic
field and of phenomena like the Sagnac effect and the Faraday rotation in this frame-
work for non-inertial frames. Moreover the embedding (8.4) has been used in the
first paper of Ref. [77, 78] on quantum mechanics in non-inertial frames.

8.3.3 Congruences of Timelike Observers Associated
with a 3 + 1 Splitting

Each admissible 3 + 1 splitting of space-time allows one to define two associated
congruences of time-like observers.

(i) The congruence of the Eulerian observers with the unit normal lμ(τ ,σr) =
zμA(τ ,σr) lA(τ ,σr) to the 3-spaces embedded in Minkowski space-time as unit
4-velocity. The world-lines of these observers are the integral curves of the
unit normal and in general are not geodesics. In adapted radar 4-coordinates
the contro-variant orthonormal tetrads carried by the Eulerian observers are

lA(τ ,σr), 4
◦
Ē

A

(a)(τ ,σ
r) = (0; 3eu

(a)(τ ,σ
r)), where 3eu

(a)(τ ,σ
r) (a = 1, 2, 3) are

triads on the 3-space.

If 4∇ is the covariant derivative associated with the 4-metric 4gAB(τ ,σr)

induced by a 3+ 1 splitting, the equation

4∇A ε lB = ε lA
3aB+σAB+ 1

3
θ 3hAB−ωAB,

(
3hAB = 4gAB − ε lA lB

)
, (8.5)

defines the acceleration 3aA (3aA lA = 0), the expansion θ, the shear σAB = σBA

(σAB lB = 0) and the vorticity or twist ωAB = −ωBA (ωAB lB = 0) of the Eulerian
observers with ωAB = 0 since they are surface-forming by construction. They
will be useful in GR as shown in Section 7.

(ii) The skew congruence with unit 4-velocity vμ(τ ,σr) = zμA(τ ,σr) vA(τ ,σr) (in
general it is not surface-forming, i.e. it has a non-vanishing vorticity, like the one
of a rotating disk). The observers of the skew congruence have the world-lines
(integral curves of the 4-velocity) defined by σr = const. for every τ , because
the unit 4-velocity tangent to the flux lines xμσo(τ ) = zμ(τ ,σr

o) is v
μ
σo(τ ) =

zμτ (τ ,σr
o)/

√
ε 4gττ (τ ,σr

o) (there is no horizon problem because it is everywhere
time-like in admissible 3+ 1 splittings). They carry contro-variant orthonormal
tetrads, given in Ref. [91], not adapted to the foliation, connected in each point
by a Lorentz transformation to the ones of the Eulerian observer present in this
point.
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8.3.4 Parametrized Minkowski Theories

In the global non-inertial frames of Minkowski space-time it is possible to describe
isolated systems (particles, strings, fields, fluids) admitting a Lagrangian formulation
by means of parametrized Minkowski theories [49–52, 55–57].

The existence of a Lagrangian, which can be coupled to an external gravitational
field, makes possible the determination of the matter energy-momentum tensor and
of the ten conserved Poincaré generators Pμ and Jμν (assumed finite) of every con-
figuration of the isolated system.

First of all one must replace the matter variables of the isolated system with new
ones knowing the clock synchronization convention defining the 3-spaces Στ . For
instance a Klein-Gordon field φ̃(x) will be replaced with φ(τ ,σr) = φ̃(z(τ ,σr)); the
same for every other field. Instead for a relativistic particle with world-line xμ(τ ) one
must make a choice of its energy sign: then the positive- (or negative-) energy particle
will be described by 3-coordinates ηr(τ ) defined by the intersection of its world-line
with Στ : xμ(τ ) = zμ(τ , ηr(τ )). Differently from all the previous approaches to
relativistic mechanics, the dynamical configuration variables are the 3-coordinates
ηr(τ ) and not the world-lines xμ(τ ) (to rebuild them in an arbitrary frame one needs
the embedding defining that frame). This fact eliminates the possibility to have time-
like excitations in the spectrum of relativistic bound states: inside each 3-space only
space-like correlations among the particles are possible.

Then one replaces the external gravitational 4-metric in the coupled Lagrangian
with the 4-metric 4gAB(τ ,σr), which is a functional of the embedding defining an
admissible 3 + 1 splitting of Minkowski space-time, and the matter fields with the
new ones knowing the instantaneous 3-spaces Στ .

Parametrized Minkowski theories are defined by the resulting Lagrangian depend-
ing on the given matter and on the embedding zμ(τ ,σr). The resulting action is
invariant under the frame-preserving diffeomorphisms τ �→ τ

′
(τ ,σu),σr �→ σ

′r(σu)

firstly introduced in Ref. [58]. As a consequence, there are four first-class constraints
with exactly vanishing Poisson brackets (an Abelianized analogue of the super-
Hamiltonian and super-momentum constraints of canonical gravity) determining the
momenta conjugated to the embeddings in terms of the matter energy-momentum
tensor. This implies that the embeddings zμ(τ ,σr) are gauge variables, so that all
the admissible non-inertial or inertial frames are gauge equivalent, namely physics
does not depend on the clock synchronization convention and on the choice of the
3-coordinates σr : only the appearances of phenomena change by changing the notion
of instantaneous 3-space.13

Even if the gauge group is formed by the frame-preserving diffeomorphisms,
the matter energy-momentum tensor allows the determination of the ten conserved
Poincaré generators Pμ and Jμν (assumed finite) of every configuration of the system

13 In the first paper of Ref. [77, 78] there is the definition of parametrized Galilei theories, non
relativistic limit of the parametrized Minkowski theories. Also the inertial and non-inertial frames
in Galilei space-time are gauge equivalent in this formulation.
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(in non-inertial frames they are asymptotic generators at spatial infinity like the ADM
ones in GR).

As an example one may consider N free scalar particles with masses mi and
sign of the energy ηi = ±, whose world-lines are identified by the configurational
variables ηr

i (τ ): xμi (τ ) = zμ(τ , ηr
i (τ )), i = 1, . . . , N . In parametrized Minkowski

theories they are described by the following action depending on the configurational
variables ηr

i (τ ) and zμ(τ ,σr)

S =
∫

dτ d3σL(τ ,σu) =
∫

dτ L(τ ),

L(τ ,σu) = −
N∑

i=1

δ3(σu − ηu
i (τ ))

mic ηi

√
ε [4gττ (τ ,σu)+ 2 4gτr(τ ,σu) η̇r

i (τ )+ 4grs(τ ,σu) η̇r
i (τ ) η̇

s
i (τ )].

(8.6)

The resulting canonical momenta κir(τ ) = ∂ L(τ )
∂ ηr

i
, ρμ(τ ,σu) = −ε ∂L(τ ,σu)

∂ zμτ (τ ,σu))

satisfy the Poisson brackets {ηr
i (τ ),κjs(τ )} = −δr

s δij, {zμ(τ ,σu), ρν(τ ,σ
′u)} =

−δμν δ3(σu−σ′u). The Poincaré generators and the energy-momentum tensor of this
system are (hrs = −ε γrs with γru 4gus = δr

s ; γ = −ε det 4grs)

Pμ =
∫

d3σρμ(τ ,σu), Jμν =
∫

d3σ(zμρν − zνρμ)(τ ,σu),

TAB(τ ,σu) = − 2√−det 4gCD(τ ,σu)

δ S

δ 4gAB(τ ,σu)
, Tμν = zμA zνB TAB,

T⊥⊥(τ ,σu) =
(

lμ lν Tμν
)
(τ ,σu)

=
N∑

i=1

δ3(σu − ηu
i (τ ))√

γ(τ ,σu)
ηi

√
m2

i c2 + hrs(τ ,σu)κir(τ )κis(τ ),

T⊥r(τ ,σ
u) =

(
lμ zrν Tμν

)
(τ ,σu) =

N∑
i=1

δ3(σu − ηu
i (τ ))√

γ(τ ,σu)
κir(τ ),

Trs(τ ,σ
u) =

(
zrμ zsν Tμν

)
(τ ,σu)

=
N∑

i=1

δ3(σu − ηu
i (τ ))√

γ(τ ,σu)
ηi

κir(τ )κis(τ )√
m2

i c2 + hvw(τ ,σu)κiv(τ )κiw(τ )
.

(8.7)
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The four first-class constraints implying the gauge nature of the embedding and
the gauge equivalence of the description in different non-inertial frames are

ρμ(τ ,σ
u)−√

γ(τ ,σu)
[
lμ T⊥⊥ − zrμ hrs T⊥s

]
(τ ,σu) ≈ 0. (8.8)

The same description can be given for the Klein-Gordon [113] and Dirac [114]
fields and for the electro-magnetic field [49–52].

To describe the physics in a given admissible non-inertial frame described by an
embedding zμF(τ ,σu) one must add the gauge-fixings zμ(τ ,σu)− zμF(τ ,σu) ≈ 0.

8.3.5 The Instant Form of Dynamics in the Inertial Rest Frames
and the Problem of the Relativistic Center of Mass

If one restricts himself to inertial frames, one can define the inertial rest-frame instant
form of dynamics for isolated systems by choosing the 3+1 splitting corresponding to
the intrinsic inertial rest frame of the isolated system centered on an inertial observer:
the instantaneous 3-spaces, named Wigner 3-spaces due to the fact that the 3-vectors
inside them are Wigner spin-1 3-vectors [55–57], are orthogonal to the conserved
4-momentum Pμ (assumed time-like, εP2 > 0) of the configuration.

In this framework one can give the final solution to the old problem of the rela-
tivistic extension of the Newtonian center of mass of an isolated system. In its rest
frame there are only three notions of collective variables, which can be built by using
only the Poincaré generators:

the canonical non-covariant Newton-Wigner center of mass (or center of spin)
x̃μ(τ ),
the non-canonical covariant Fokker-Pryce center of inertia Yμ(τ )
the non-canonical non-covariant Møller center of energy Rμ(τ ).

While Yμ(τ ) is a 4-vector, x̃μ(τ ) and Rμ(τ ) are not 4-vectors. All of them tend
to the Newtonian center of mass in the non-relativistic limit. Since the Poincaré
generators know the whole Στ , they and therefore also these three collective variables
are non-local quantities: as a consequence they are non measurable with local means
[49–52, 59–61, 65, 66, 76].

If one centers the inertial rest frame on the world-line of the Fokker-Planck center
of inertia thought as an inertial observer, then the corresponding embedding has the
expression [55–57, 65, 66]

zμW (τ ,σ) = Yμ(τ )+ εμr (h)σr, (8.9)

where Yμ(τ ) is the Fokker-Pryce center-of-inertia 4-vector, h=P/
√
εP2 and

εμA=ν(h) = LμA=ν(P,
◦
P) are the columns of the standard Wigner boost for time-like
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orbits sending Pμ = √εP2 (
√

1+ h2;h) to
◦
P
μ

= √εP2 (1; 0). Their expression

is εμτ (h) = hμ = (
√

1+ h2;h) and εμr (h) =
(

hr; δi
r + hi hr

1+
√

1+ h2

)
as shown in

Appendix B of Ref. [115].
As shown in Ref. [59–61, 65–67, 76], the three collective variables can be

expressed as known functions of the Lorentz-scalar rest time τ = c Ts = h · x̃ =
h · Y = h · R, of canonically conjugate Jacobi data (frozen Cauchy data) z =
Mc xNW (0) and h = P/Mc,14 of the invariant mass Mc = √εP2 of the system
and of its rest spin S̄.

While the world-line of the non-canonical covariant external Fokker-Pryce
4-center of inertia is

Yμ(τ ) = zμW (τ , 0) =
(

x̃o(τ );Y(τ )
)

=
⎛
⎝√1+ h2

(
τ + h · z

Mc

)
; z

Mc
+

(
τ + h · z

Mc

)
h+ S× h

Mc
(

1+
√

1+ h2
)
⎞
⎠,

(8.10)

the pseudo-world-line of the canonical non-covariant external 4-center of mass is
(σ̃ = −S×h

Mc (1+
√

1+h2)
from Ref. [59–61])

x̃μ(τ ) =
(

x̃o(τ ); x̃(τ )
)
= zμW (τ , σ̃) = Yμ(τ )+

(
0; −S× h

Mc (1+
√

1+ h2)

)

=
(√

1+ h2
(
τ + h · z

Mc

)
; z

Mc
+

(
τ + h · z

Mc

)
h
)

. (8.11)

The world-lines of the positive-energy particles are parametrized by the Wigner
3-vectors ηi(τ ), i = 1, 2, . . . , N , and are given by

xμi (τ ) = zμW (τ ,ηi(τ )) = Yμ(τ )+ εμr (τ ) ηr
i (τ ). (8.12)

The world-lines xμi (τ ) of the particles are derived (interaction-dependent) quanti-
ties. Also the standard particle 4-momenta are derived quantities, whose expression

is pμi (τ ) = ε
μ
A(h)κA

i (τ ) = hμ
√

m2
i c2 + κ2

i (τ ) − εμr (h)κir(τ ) with ε p2
i = m2

i c2 in
the free case.

14 Their Poisson brackets are {zi, hj} = δij . xNW (τ ) is the standard Newton-Wigner non-covariant
3-position, classical counterpart of the corresponding position operator; the use of z avoids to take
into account the mass spectrum of the isolated system in the description of the center of mass.
The non-covariance of z under Poincaré transformations (a,Λ) has the following form [76, 115]

zi �→ z
′ i =

(
Λi

j − Λi
μ hμ

Λo
ν hν λ

o
j

)
zj +

(
Λi

μ − Λi
ν hν

Λo
ρ hρ Λo

μ

)
(Λ−1 a)μ.
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In the case of interacting particles the reconstruction of the world-lines requires
a complex interaction-dependent procedure delineated in Ref. [67], where there is
also a comparison of the present approach with the other formulations of relativistic
mechanics developed for the study of the problem of relativistic bound states. See
Ref. [49–52] for the extension to non-inertial frames.

In general the world-lines xμi (τ ) do not satisfy vanishing Poisson brackets (they
are relativistic predictive coordinates, see Ref. [67]): already at the classical level a
non-commutative structure emerges due to the Lorentz signature of the space-time
[76].

In each Lorentz frame one has different pseudo-world-lines describing Rμ and
x̃μ: the canonical 4-center of mass x̃μ lies in between Yμ and Rμ in every (non rest)-
frame. As discussed in Subsection IIF of Ref. [65, 66], this leads to the existence
of the Møller non-covariance world-tube, around the world-line Yμ of the covariant
non-canonical Fokker-Pryce 4-center of inertia Yμ. The invariant radius of the tube
is ρ = √−εW2/p2 = |S|/√εP2 where (W2 = −P2 S2 is the Pauli-Lubanski invari-
ant when εP2 > 0). This classical intrinsic radius is a non-local effect of Lorentz
signature absent in Euclidean spaces and delimits the non-covariance effects (the
pseudo-world-lines) of the canonical 4-center of mass x̃μ.15 They are not detectable
because the Møller radius is of the order of the Compton wave-length: an attempt to
test its interior would mean to enter in the quantum regime of pair production. The
Møller radius ρ is also a remnant of the energy conditions of general relativity in flat
Minkowski space-time [55].

Finally Eqs.(8.7) can be used to extend the multipolar expansions of
Ref. [116–118] to this framework for relativistic isolated systems as it is shown
in the third paper of Refs. [59–61].

8.3.6 The Description of Isolated Systems in the Rest Frame
and Their Poincaré Generators

In the inertial rest frame of an isolated system Eq. (8.7) are the starting point to get the
explicit form of its Poincaré generators, in particular of the Lorentz boosts, which,
differently from the Galilei ones, are interaction dependent.

As shown in Ref. [65, 66], every isolated system (i.e. a closed universe) can be
visualized as a decoupled non-covariant collective (non-local) pseudo-particle (the
external center of mass), described by the frozen Jacobi data z, h, carrying a pole-
dipole structure, namely the invariant mass M c (the monopole) and the rest spin S̄

15 In the rest-frame the world-tube is a cylinder: in each instantaneous 3-space there is a disk of
possible positions of the canonical 3-center of mass orthogonal to the spin. In the non-relativistic
limit the radius ρ of the disk tends to zero and one recovers the non-relativistic center of mass.
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(the dipole) of the system, and with an associated external realization of the Poincaré
group16:

Pμ = M c hμ = M c
(√

1+ h2;h
)
,

Jij = zi hj − zj hi + εijk Sk, Ki = Joi = −
√

1+ h2 zi + (S× h)i

1+
√

1+ h2
.

(8.13)

The universal breaking of Lorentz covariance is connected to this decoupled non-
local collective variable and is irrelevant because all the dynamics of the isolated
system leaves inside the Wigner 3-spaces and is Wigner-covariant. The invariant
mass and the rest spin are built in terms of the Wigner-covariant variables of the
given isolated system (ηi(τ ) and κi(τ )) inside the Wigner 3-spaces [49–52, 59–61,
65, 66, 76].

In each Wigner 3-space Στ there is a unfaithful internal realization of the Poincaré
algebra, whose generators are built by using the energy-momentum tensor (8.7) of
the isolated system. While the internal energy and angular momentum are Mc and S̄
respectively, the internal 3-momentum vanishes: it is the rest frame condition. Also
the internal (interaction dependent) Lorentz boost vanishes: this condition identifies
the covariant non-canonical Fokker-Pryce center of inertia as the natural inertial
observer origin of the 3-coordinates σr in each Wigner 3-space.

For N free particles the internal Poincaré generators have the following expression

M c = 1

c
E(int) =

N∑
i=1

√
m2

i c2 + κ2
i ,

P(int) =
N∑

i=1

κi ≈ 0,

S = J (int) =
N∑

i=1

ηi × κi,

K(int) = −
N∑

i=1

ηi

√
m2

i c2 + κ2
i ≈ 0. (8.14)

Since one is in an instant form of the dynamics, in the interacting case only Mc
and K(int) become interaction dependent.

16 The last term in the Lorentz boosts induces the Wigner rotation of the 3-vectors inside the Wigner
3-spaces.
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The three pairs of second-class (interaction dependent) constraints P(int) ≈ 0,
K(int) ≈ 0, eliminate the internal 3-center of mass and its conjugate momentum
inside the Wigner 3-spaces17: this avoids a double counting of the collective vari-
ables (external and internal center of mass). As a consequence the dynamics inside
the Wigner 3-spaces is described in terms of internal Wigner-covariant relative vari-
ables. In the case of N relativistic particles one defines the following canonical
transformation [76] (see Ref. [59–61] for other variants) (m =∑N

i=1 mi)

η+ =
N∑

i=1

mi

m
ηi, κ+ = P(int) =

N∑
i=1

κi,

ρa =
√

N
N∑

i=1

γai ηi, πa = 1√
N

N∑
i=1

Γai κi, a = 1, . . . , N − 1,

ηi = η+ +
1√
N

N−1∑
a−1

Γai ρa, κi = mi

m
κ+ +

√
N

N−1∑
a=1

γai πa, (8.15)

with the following canonicity conditions18

N∑
i=1

γai = 0,

N∑
i=1

γai γbi = δab,

N−1∑
a=1

γai γaj = δij − 1

N
,

Γai = γai −
N∑

k=1

mk

m
γak, γai = Γai − 1

N

N∑
k=1

Γak,

N∑
i=1

mi

m
Γai = 0,

N∑
i=1

γai Γbi = δab,

N−1∑
a=1

γai Γaj = δij − mi

m
.

(8.16)

Since Eq. (8.14) imply κ+(τ ) = P(int) ≈ 0 and η+(τ ) ≈ f+(ρa(τ ),πa(τ )) due
to K(int) ≈ 0, the invariant mass Mc and the rest spin S̄ become functions only of
the N − 1 pairs of relative canonical variables.

As a consequence, Eqs. (8.10), (8.12) and (8.15) imply that the world-lines xμi (τ )
can be expressed in terms of the Jacobi data z, h, and of the relative variables ρa(τ ),
πa(τ ), a = 1, . . . , N − 1. See Ref. [113] for the collective and relative variables of
the Klein-Gordon field and the second paper in Ref. [65, 66] for such variables for

17 One can show [59–61, 65, 66] that one has K(int) = −M R+, where R+ is the internal Møller
3-center of energy inside the Wigner 3-spaces. The rest frame condition P(int) ≈ 0 implies R+ ≈
q+ ≈ y+, where q+ is the internal 3-center of mass and y+ the internal Fokker-Pryce 3-center of
inertia.
18 Equations (8.15) describe a family of canonical transformations, because the γai’s depend on
1
2 (N − 1)(N − 2) free independent parameters.
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the electro-magnetic field in the radiation gauge. For these systems one can give for
the first time the explicit closed form of the interaction-dependent Lorentz boosts.

One finds that disregarding the unobservable external center of mass all the dynam-
ics is described only by relative variables: this is a form of weak relationism without
the heavy foundational problem of approaches like the one in Ref. [119, 120].

The non-relativistic limit of this description [76] is Newton mechanics with the
Newton center of mass decoupled from the relative variables and moreover after a
canonical transformation to the frozen Hamilton-Jacobi description of the center of
mass.

An important remark is that the internal space of relative variables is independent
from the reference inertial frame used for the description of the isolated system.
As shown in Ref. [76], the formalism is built in such a way that the Wigner rota-
tion induced on the relative variables by a Lorentz transformation connecting two
reference inertial frames is the identity, i.e. the space of the relative variables in an
abstract internal space insensitive to Lorentz transformations carried by the exter-
nal center of mass (or in a more covariant description carried by the Fokker-Pryce
center-of-inertia 4-vector origin of the embedding (8.9)).

Finally in Ref. [49–52] there is the extension of the formalism to admissible
non-inertial rest frames, where Pμ is orthogonal to the asymptotic space-like hyper-
planes to which the instantaneous 3-spaces tend at spatial infinity. In these non-
inertial rest frames the internal Poincaré generators are asymptotic (constant of the
motion) symmetry generators like the asymptotic ADM ones in the asymptotically
Minkowskian space-times.

8.4 Implications for Relativistic Mechanics and Classical
Field Theory in Special Relativity and the Multi-Temporal
Quantization Approach

In the rest-frame instant form of the dynamics it has been possible to find the explicit
form of the internal Poincaré generators (in particular of the interaction-dependent
invariant mass and Lorentz boosts) not only for the Klein-Gordon [113] and Dirac
[69–71, 114] fields, but also for the electro-magnetic field in the radiation gauge
(the only one suitable for the Shanmugadhasan canonical transformations of con-
straint theory [121]) [49–52, 65, 66], for relativistic fluids [91–93], spinning particles
[62–64, 69–71] and for massless particles, the Nambu string and the two-level atom
[72–75].

In this Section some other developments in SR will be reviewed.
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8.4.1 Relativistic Atomic Physics

Standard atomic physics [122, 123] is a semi-relativistic treatment of quantum
electro-dynamics (QED) in which the matter fields are approximated by scalar (or
spinning) particles, the relevant energies are below the threshold of pair production
and the electro-magnetic field is described in the Coulomb gauge at the order 1/c.

In Refs. [62–66] a fully relativistic formulation of classical atomic physics in the
rest-frame instant form of dynamics was given with the electro-magnetic field in
the radiation gauge and with the electric charges Qi of the positive-energy particles
being Grassmann-valued (Q2

i = 0, Qi Qj = Qj Qi for i �= j) to regularize the electro-
magnetic self-energies on the world-lines of particles. In the language of QED this
is both a ultraviolet regularization (no loop contributions) and an infrared one (no
brehmstrahlung), so that only the one-photon exchange diagram contributes and
its static and non-static effects are replaced by potentials in a formulation based
on the Cauchy problem. Therefore the starting point is a parametrized Minkowski
theory with N charged positive-energy particles mutually interacting with a Coulomb
potential and coupled to a dynamical transverse electro-magnetic field described by
the canonical variables A⊥(τ ,σr) and π⊥(τ ,σr) = E⊥(τ ,σr).

In the first paper of Ref. [62–64] (the second paper is devoted to spinning par-
ticles) it is shown that the use of the Lienard-Wiechert solution (see the third
paper in Ref. [62–64]) with “no incoming radiation field” allows one to arrive at
a description of N charged particles dressed with a Coulomb cloud and mutually
interacting through the Coulomb potential augmented with the full relativistic Dar-
win potential. This happens independently from the choice of the Green function
(retarded, advanced, symmetric,..) due to the Grassmann regularization. The quanti-
zation allows one to recover the standard instantaneous approximation for relativistic
bound states, which till now had only been obtained starting from QED (either in
the instantaneous approximations of the Bethe-Salpeter equation or in the quasi-
potential approach). In the case of spinning particle the relativistic Salpeter potential
was identified.

Moreover in Ref. [65, 66] it is shown that by using the previous results one can
find a canonical transformation from the canonical basis ηi(τ ), κi(τ ), A⊥(τ ,σr),
π⊥(τ ,σr), in which the internal Poincaré generators have the expression in the case
N = 2 (B = ∂ × A⊥, c(σ) = −1/4π |σ|)

E(int) = M c2 = c
N∑

i=1

√
m2

i c2 +
(
κi(τ )− Qi

c
A ⊥(τ ,ηi(τ ))

)2

+
∑
i �=j

Qi Qj

4π | ηi(τ )− ηj(τ ) |
+ 1

2

∫
d3σ [π2⊥ + B2](τ ,σ),

P(int) =
N∑

i=1

κi(τ )+ 1

c

∫
d3σ [π⊥ × B](τ ,σ) ≈ 0,
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S̄r =
N∑

i=1

(
ηi(τ )× κi(τ )

)r + 1

c

∫
d3σ(σ ×

(
[π⊥ ×B]

)r
(τ ,σ),

Kr
(int) = −

N∑
i=1

ηr
i (τ )

√
m2

i c2 +
(

κi(τ )− Qi

c
A⊥(τ ,ηi(τ ))

)2

+ 1

c

N∑
i=1

[ 1...N∑
j �=i

Qi Qj [ 1

�ηj

∂

∂ηr
j

c(ηi(τ )− ηj(τ ))

− ηr
j (τ ) c( ηi(τ )− ηj(τ ))] + Qi

∫
d3σ πr⊥(τ ,σ) c(σ − ηi(τ ))

]
− 1

2c

∫
d3σ σr (π2⊥ + B2)(τ ,σ), (8.17)

to a new canonical basis η̂i(τ ), κ̂i(τ ), A⊥rad(τ ,σr), π⊥rad(τ ,σr) so that in the rest
frame there is a decoupled free radiation transverse field and a system of charged
particles mutually interacting with Coulomb plus Darwin potential. See the first
paper in Ref. [62–64] for the explicit form of the relativistic Darwin potential. The
new internal Poincaré generators in the N = 2 case are

E(int) = M c2 = c
2∑

i=1

√
m2

i c2 + κ̂2
i (τ )+

Q1 Q2

4π | η̂1(τ )− η̂2(τ )|
+ VDARWIN (κ̂1(τ ), κ̂2(τ ), η̂1(τ )− η̂2(τ ))

+ 1

2

∫
d3σ

(
π2
⊥rad + B2

rad

)
(τ ,σ) = Ematter + Erad,

P(int) =
2∑

i=1

κ̂i(τ )+ 1

c

∫
d3σ

(
π⊥rad × Brad

)
(τ ,σ) = Pmatter +Prad ≈ 0,

S̄ =
∑

i

η̂i × κ̂i + 1

c

∫
d3σσ ×

(
π⊥rad × Brad

)
(τ ,σ) = S̄matter + S̄rad,

K(int) = −
2∑

i=1

η̂i

√
m2

i c2 + κ̂2
i

− 1

2

Q1 Q2

c

⎡
⎢⎣η̂1

κ̂1 ·
(

1
2
∂ K̂12(κ̂1,κ̂2,ρ̂12)

∂ ρ̂12
− 2 A⊥S2(κ̂2, ρ̂12)

)
√

m2
1 c2 + κ̂2

1
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+ η̂2

κ̂2 ·
(

1
2
∂ K̂12(κ̂1,κ̂2,ρ̂12)

∂ ρ̂12
− 2 A⊥S1(κ̂1, ρ̂12)

)
√

m2
2 c2 + κ̂2

2

⎤
⎥⎦

− 1

2

Q1 Q2

c

(√
m2

1 c2 + κ̂2
1

∂

∂ κ̂1
+

√
m2

2 c2 + κ̂2
2

∂

∂ κ̂2

)
K̂12(κ̂1, κ̂2, ρ̂12)

− Q1 Q2

4π c

∫
d3σ

( π̂⊥S1(σ − η̂1, κ̂1)

|σ − η̂2|
+ π̂⊥S2(σ − η̂2, κ̂2)

|σ − η̂1|
)

− Q1 Q2

c

∫
d3σσ

(
π̂⊥S1(σ − η̂1, κ̂1) · π̂⊥S2(σ − η̂2, κ̂2)

+ B̂S1(σ − η̂1, κ̂1) · B̂S2(σ − η̂2, κ̂2)
)

− 1

2 c

∫
d3σσ

(
π2
⊥rad + B2

rad

)
(τ ,σ) = Kmatter +Krad ≈ 0. (8.18)

The only restriction on the two decoupled systems is the elimination of their overall
internal 3-center of mass inside the Wigner 3-spaces. Therefore, at the classical level
there is a way out from the Haag theorem forbidding the existence of the interaction
picture in QED, so that there is no unitary evolution based on interpolating fields
from the “in” states to the “out” ones in scattering processes. While the extension of
these results to the non-inertial rest frame is done in Ref. [49–52], the quantization
of this framework is under investigation.

In the first paper of Ref. [72–75] there is the formulation in the rest-frame instant
form of the relativistic quark model in the radiation gauge for the SU(3) Yang-Mills
fields with scalar quarks having Grassmann-valued color charges. While in Eq. (101)
of that paper there is the rest-frame condition, in Eq. (97) there is the invariant mass
Mc2 for a quark-antiquark system. In it the electro-magnetic Coulomb potential of Eq.
(17) is replaced with a potential, given in Eq. (95), depending on the color transverse
vector potential through the Green function of the SU(3) covariant divergence. The
non-linearity of the problem does not allow to evaluate a Lienard-Wiechert solution
and to find the analogue of Eq. (8.18).

8.4.2 Relativistic Kinetic Theory and Relativistic
Micro-Canonical Ensemble

In the rest-frame instant form of dynamics it is also possible to give a finally consistent
treatment of relativistic kinetic theory and relativistic statistical mechanics [68]. In
particular one can give a definition of the relativistic micro-canonical ensemble for
an isolated system of N interacting particles with fixed internal energy E and rest spin
S only in terms of the internal Poincaré generators in the Wigner 3-spaces by means
of the partition function (V is the volume defined by the function χ(V) vanishing
outside it)
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Z̃(E,S, V , N) = 1

N !
∫ 1...N∏

i

d3ηi χ(V)

∫ 1...N∏
j

d3κj δ(M c2 − E)

δ3(S̄− S̄) δ3(P(int)) δ
3
(K(int)

Mc

)
. (8.19)

Also it extension to non-inertial rest frames can be given by using the results of
Ref. [49–52] with the result that notwithstanding the presence of long-range inertial
forces one has still an equilibrium distribution.

8.4.3 Relativistic Quantum Mechanics and Relativistic
Entanglement

A new formulation of relativistic quantum mechanics in the Wigner 3-spaces of the
inertial rest frame is developed in Ref. [76] in absence of the electro-magnetic field.
It englobes all the known results about relativistic bound states (absence of relative
times) and avoids the causality problems of the Hegerfeldt theorem [124, 125] (the
instantaneous spreading of wave packets).

In it one quantizes the frozen Jacobi data z and h of the canonical non-covariant
decoupled external center of mass and the relative variables in the Wigner 3-spaces.
Since the center of mass is decoupled, its non-covariance is irrelevant: like for the
wave function of the universe, who will observe it?

The resulting Hilbert space has the following tensor product structure: H =
Hcom,HJ ⊗Hrel, where Hcom,HJ is the Hilbert space of the external center of mass (in
the Hamilton-Jacobi formulation due to the use of frozen Jacobi data) while Hrel is
the Hilbert space of the relative variables in the abstract internal space living in the
Wigner 3-spaces. While at the non-relativistic level this presentation of the Hilbert
space is unitarily equivalent to the tensor product of the Hilbert spaces Hi of the
individual particles H = H1 ⊗ H2 ⊗ · · · , this is not true at the relativistic level.

If one considers two scalar quantum particles with Klein-Gordon wave func-
tions belonging to Hilbert spaces Hxo

i
, in the tensor-product Hilbert space (H1)xo

1
⊗

(H2)xo
2
⊗ · · · there is no correlation among the times of the particles (their clocks

are not synchronized) so that in most of the states there are some particles in the
absolute future of the others. As a consequence the two types of Hilbert spaces lead
to unitarily inequivalent descriptions and have different scalar products (compare
Refs. [76] and [115]).

As a consequence, at the relativistic level the zeroth postulate of non-relativistic
quantum mechanics does not hold: the Hilbert space of composite systems is not
the tensor product of the Hilbert spaces of the sub-systems. Contrary to Ein-
stein’s notion of separability (separate objects have their independent real states)
[126, 127] one gets a kinematical spatial non-separability induced by the need of
clock synchronization for eliminating the relative times and to be able to formulate
a well-posed relativistic Cauchy problem.
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Moreover one has the non-locality of the non-covariant external center of mass
which implies its non-measurability with local instruments.19 While its conjugate
momentum operator must be well defined and self-adjoint, because its eigenvalues
describe the possible values for the total momentum of the isolated system (the
momentum basis is therefore a preferred basis in the Hilbert space), it is not clear
whether it is meaningful to define center-of-mass wave packets.

These non-locality and kinematical spatial non-separability are due to the Lorentz
signature of Minkowski space-time and this fact reduce the relevance of quan-
tum non-locality in the study of the foundational problems of quantum mechanics
[126, 127] which have to be rephrased in terms of relative variables.

The quantization defined in Ref. [76] leads to a first formulation of a theory for
relativistic entanglement, which is deeply different from the non-relativistic entan-
glement due to these kinematical non-locality and spatial non-separability. To have
control on the Poincaré group one needs an isolated systems containing all the rele-
vant entities (for instance both Alice and Bob) of the experiment under investigation
and also the environment when needed. One has to learn to reason in terms of relative
variables adapted to the experiment like molecular physicists do when they look to
the best system of Jacobi coordinates adapted to the main chemical bonds in the
given molecule. This theory has still to be developed together with its extension to
non-inertial rest frames.

8.4.4 Multitemporal Quantization in Non-Inertial Frames

This quantization of relativistic mechanics can be extended to the class of global
non-inertial frames with space-like hyper-planes as 3-spaces and differentially rotat-
ing 3-coordinates defined in Ref. [49–52] by using the multi-temporal quantization
approach developed in Ref. [129, 130].

As shown in Ref. [77, 78], in this type of quantization one quantizes only the
3-coordinates ηr

i (τ ) of the particles and not the inertial effects (like the Coriolis and
centrifugal ones): they remain c-numbers describing the appearances of phenomena.
The known results in atomic and nuclear physics are reproduced.

8.4.5 Open Problem

The main open problem in SR is the quantization of fields in non-inertial frames due
to the no-go theorem of Ref. [131, 132] showing the existence of obstructions to the
unitary evolution of a massive quantum Klein-Gordon field between two space-like
surfaces of Minkowski space-time. It turns out that the Bogoljubov transformation

19 In Ref. [128] it was shown that the quantum Newton-Wigner position should not be a self-adjoint
operator, but only a symmetric one, with an implication of bad localization.
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connecting the creation and destruction operators on the two surfaces is not of the
Hilbert-Schmidt type, i.e. that the Tomonaga-Schwinger approach in general is not
unitary. One must reformulate the problem using the nice foliations of the admissible
3+1 splittings of Minkowski space-time and to try to identify all the 3+1 splittings
allowing unitary evolution. This will be a prerequisite to any attempt to quantize
canonical gravity taking into account the equivalence principle (global inertial frames
do not exist) with the further problem that in general the Fourier transform does not
exist in Einstein space-times.

8.5 Non-Inertial Frames in Asymptotically Minkowskian
Einstein Space-Times and ADM Tetrad Gravity

After this description of SR induced by the metrology-oriented problem of clock syn-
chronization, one has to face the same problems in the globally hyperbolic, topolog-
ically trivial, asymptotically Minkowskian space-times without super-translations20

of GR. As shown in the first paper of Ref. [41–44], in the chosen class of space-times
the ten strong asymptotic ADM Poincaré generators PA

ADM , JAB
ADM (they are fluxes

through a 2-surface at spatial infinity) are well defined functionals of the 4-metric
fixed by the boundary conditions at spatial infinity.

While in SR Minkowski space-time is an absolute notion, in Einstein GR also the
space-time is a dynamical object [79–81] and the gravitational field is described by
the metric structure of the space-time, namely by the ten dynamical fields 4gμν(x)
(xμ are world 4-coordinates). The 4-metric 4gμν(x) tends in a suitable way to the
flat Minkowski 4-metric 4ημν at spatial infinity [41–44]: having an asymptotic
Minkowskian background the usual splitting of the 4-metric in the bulk in a back-
ground plus perturbations in the weak field limit can be avoided as shown in Sect. VII.

The ten dynamical fields 4gμν(x) are not only a (pre)potential for the gravitational
field (like the electro-magnetic and Yang-Mills fields are the potentials for electro-
magnetic and non-Abelian forces) but also determines the chrono-geometrical struc-
ture of space-time through the line element ds2 = 4gμν dxμ dxν . Therefore the
4-metric teaches relativistic causality to the other fields: it says to massless parti-
cles like photons and gluons which are the allowed world-lines in each point of
space-time. This basic property is lost in every quantum field theory approach to
gravity with a fixed background 4-metric.21

20 These space-times must also be without Killing symmetries, because, otherwise, at the Hamil-
tonian level one should introduce complicated sets of extra Dirac constraints for each existing
Killing vector.
21 The ACES mission of ESA [133–135] will give the first precision measurement of the gravitational
red-shift of the geoid, namely of the 1/c2 deformation of Minkowski light-cone caused by the geo-
potential. In every quantum field theory approach to gravity, where the definition of the Fock space
requires the use of the Fourier transform on a fixed background space-time with a fixed light-cone,
this is a non-perturbative effect requiring the re-summation of the perturbative expansion.
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In these space-times one can define global non-inertial frames by using the same
admissible 3 + 1 splittings, centered on a time-like observer, and the observer-
dependent radar 4-coordinates σA = (τ ;σr) employed in SR. This will allow to
separate the inertial (gauge) degrees of freedom of the gravitational field (playing
the role of inertial potentials) from the dynamical tidal ones at the Hamiltonian level.

In GR the dynamical fields are the components 4gμν(x) of the 4-metric and not the
embeddings xμ = zμ(τ ,σr) defining the admissible 3 + 1 splittings of space-time
like in the parametrized Minkowski theories of SR. Now the gradients zμA(τ ,σr) of
the embeddings give the transition coefficients from radar to world 4-coordinates,
so that the components 4gAB(τ ,σr) = zμA(τ ,σr) zνB(τ ,σr) 4gμν(z(τ ,σr)) of the
4-metric will be the dynamical fields in the ADM action. Like in SR the 4-
vectors zμA(τ ,σr), tangent to the 3-spaces Στ , are used to define the unit normal
lμ(τ ,σr) = zμA(τ ,σr) lA(τ ,σr) to Στ , while the 4-vector zμτ (τ ,σr) has the lapse
function as component along the unit normal and the shift functions as components
along the tangent vectors.

Since the world-line of the time-like observer can be chosen as the origin of a set
of the spatial world coordinates, i.e. xμ(τ ) = (xo(τ ); 0), it turns out that with this
choice the space-like surfaces of constant coordinate time xo(τ ) = const. coincide
with the dynamical instantaneous 3-spaces Στ with τ = const.. By using asymptotic
flat tetrads εμA = δ

μ
o δ

τ
A + δμi δi

A (with εA
μ denoting the inverse flat cotetrads) and by

choosing a coordinate world time xo(τ ) = xo
o+εo

τ τ = xo
o+τ , one gets the following

preferred embedding corresponding to these given world 4-coordinates

xμ = zμ(τ ,σr) = xμ(τ )+ εμr σr = δμo xo
o + εμA σA. (8.20)

This choice implies zμA(τ ,σr) = εμA and 4gμν(x = z(τ ,σr)) = εA
μ ε

B
ν

4gAB(τ ,σr).
As shown in Ref. [79–81], the dynamical nature of space-time implies that each

solution (i.e. an Einstein 4-geometry) of Einstein’s equations (or of the associated
ADM Hamilton equations) dynamically selects a preferred 3 + 1 splitting of the
space-time, namely in GR the instantaneous 3-spaces are dynamically determined
in the chosen world coordinate system. Equation (8.20) can be used to describe this
3+ 1 splitting and then by means of 4-diffeomorphisms the solution can be written
in an arbitrary world 4-coordinate system in general not adapted to the dynamical
3+1 splitting. This gives rise to the 4-geometry corresponding to the given solution.

To define the canonical formalism the Einstein-Hilbert action for metric gravity
(depending on the second derivative of the metric) must be replaced with the ADM
action (the two actions differ for a surface tern at spatial infinity). As shown in the
first paper of Refs. [41–44], the Legendre transform and the definition of a consistent
canonical Hamiltonian require the introduction of the DeWitt surface term at spatial
infinity: the final canonical Hamiltonian turns out to be the strong ADM energy
(a flux through a 2-surface at spatial infinity), which is equal to the weak ADM
energy (expressed as a volume integral over the 3-space) plus constraints. Therefore
there is not a frozen picture but an evolution generated by a Dirac Hamiltonian equal
to the weak ADM energy plus a linear combination of the first class constraints. Also
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the other strong ADM Poincaré generators are replaced by their weakly equivalent
weak form P̂A

ADM , ĴAB
ADM .

In the first paper of Ref. [41–44] it is also shown that the boundary conditions
on the 4-metric required by the absence of super-translations imply that the only
admissible 3+1 splittings of space-time (i.e. the allowed global non-inertial frames)
are the non-inertial rest frames: their 3-spaces are asymptotically orthogonal to the
weak ADM 4-momentum. Therefore one gets P̂r

ADM ≈ 0 as the rest-frame condition
of the 3-universe with a mass and a rest spin fixed by the boundary conditions. Like in
SR the 3-universe can be visualized as a decoupled non-covariant (non-measurable)
external relativistic center of mass plus an internal non-inertial rest-frame 3-space
containing only relative variables (see the first paper in Ref. [88–90]).

8.5.1 The Parametrization of Tetrads for ADM Tetrad Gravity

To take into account the coupling of fermions to the gravitational field metric gravity
has to be replaced with tetrad gravity. This can be achieved by decomposing the
4-metric on cotetrad fields (by convention a sum on repeated indices is assumed)

4gAB(τ ,σr) = E(α)
A (τ ,σr) 4η(α)(β) E(β)

B (τ ,σr), (8.21)

by putting this expression into the ADM action and by considering the resulting
action, a functional of the 16 fields E(α)

A (τ ,σr), as the action for ADM tetrad

gravity. In Eq. (8.21) (α) are flat indices and the cotetrad fields E(α)
A are the

inverse of the tetrad fields EA
(α), which are connected to the world tetrad fields by

Eμ(α)(x) = zμA(τ ,σr) EA
(α)(z(τ ,σ

r)) by the embedding of Eq. (8.20).
This leads to an interpretation of gravity based on a congruence of time-like

observers endowed with orthonormal tetrads: in each point of space-time the time-
like axis is the unit 4-velocity of the observer, while the spatial axes are a (gauge)
convention for observer’s gyroscopes. This framework was developed in the second
and third paper of Refs. [41–44].

Even if the action of ADM tetrad gravity depends upon 16 fields, the counting of
the physical degrees of freedom of the gravitational field does not change, because
this action is invariant not only under the group of 4-difeomorphisms but also under
the O(3,1) gauge group of the Newman-Penrose approach [136] (the extra gauge
freedom acting on the tetrads in the tangent space of each point of space-time).

The cotetrads E(α)
A (τ ,σr) are the new configuration variables. They are con-

nected to cotetrads 4
◦
E

(α)

A (τ ,σr) adapted to the 3+ 1 splitting of space-time, namely

such that the inverse adapted time-like tetrad 4
◦
E

A

(o)(τ ,σ
r) is the unit normal to the

3-space Στ , by a standard Wigner boosts for time-like Poincaré orbits with parame-
ters ϕ(a)(τ ,σ

r), a = 1, 2, 3
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E(α)
A = L(α)

(β)(ϕ(a))
o
E

(β)

A , 4gAB = 4
◦
E

(α)

A
4η(α)(β)

4
◦
E

(β)

B ,

L(α)
(β)(ϕ(a))

def=L(α)
(β)(V(z(σ)); ◦V) = δ(α)

(β)
+ 2εV (α)(z(σ))

◦
V (β)−

− ε (V (α)(z(σ))+ ◦V
(α)

) (V(β)(z(σ))+ ◦V (β))

1+ V (o)(z(σ))
. (8.22)

In each tangent plane to a point of Στ this point-dependent standard Wigner boost

sends the unit future-pointing time-like vector
o
V

(α)

= (1; 0) into the unit time-like

vector V (α) = 4E(α)
A lA =

(√
1+∑

a ϕ
2
(a);ϕ(a) = −ε ϕ(a)

)
. As a consequence, the

flat indices (a) of the adapted tetrads and cotetrads and of the triads and cotriads on Στ

transform as Wigner spin-1 indices under point-dependent SO(3) Wigner rotations
R(a)(b)(V(z(σ)); Λ(z(σ)) ) associated with Lorentz transformations Λ(α)

(β)(z) in
the tangent plane to the space-time in the given point of Στ . Instead the index (o) of
the adapted tetrads and cotetrads is a local Lorentz scalar index.

The adapted tetrads and cotetrads have the expression

4
◦
E

A

(o) =
1

1+ n

(
1;−

∑
a

n(a)
3er

(a)

)
= lA, 4

◦
E

A

(a) =
(

0; 3er
(a)

)
,

4
◦
E

(o)

A = (1+ n) (1; 0) = ε lA, 4
◦
E

(a)

A =
(

n(a); 3e(a)r

)
, (8.23)

where 3er
(a) and 3e(a)r are triads and cotriads on Στ and n(a) = nr

3er
(a) = nr 3e(a)r

22

are adapted shift functions. In Eq. (8.23) N(τ ,σ) = 1+ n(τ ,σ) > 0, with n(τ ,σ)

vanishing at spatial infinity (absence of super-translations), so that N(τ ,σ) dτ is
positive from Στ to Στ+dτ , is the lapse function; Nr(τ ,σ) = nr(τ ,σ), vanishing at
spatial infinity (absence of super-translations), are the shift functions.

The adapted tetrads 4
◦
E

A

(a) are defined modulo SO(3) rotations 4
◦
E

A

(a) =
∑

b R(a)(b)

(α(e))
4
◦
Ē

A

(b),
3er

(a) =
∑

b R(a)(b)(α(e))
3ēr

(b)
, where α(a)(τ ,σ) are three point-

dependent Euler angles. After having chosen an arbitrary point-dependent ori-
gin α(a)(τ ,σ) = 0, one arrives at the following adapted tetrads and cotetrads
[n̄(a) =∑

b n(b) R(b)(a)(α(e)) ,
∑

a n(a)
3er

(a) =
∑

a n̄(a)
3ēr

(a)]

4
◦
Ē

A

(o) = 4
◦
E

A

(o) =
1

1+ n

(
1;−

∑
a

n̄(a)
3ēr

(a)

)
= lA, 4

◦
Ē

A

(a) = (0; 3ēr
(a)),

4
◦
Ē

(o)

A = 4
◦
E

(o)

A = (1+ n) (1; 0) = ε lA, 4
◦
Ē

(a)

A =
(

n̄(a); 3ē(a)r

)
, (8.24)

22 Since one uses the positive-definite 3-metric δ(a)(b), one will use only lower flat spatial indices.

Therefore for the cotriads one uses the notation 3e(a)
r

def= 3e(a)r with δ(a)(b) = 3er
(a)

3e(b)r .
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which one will use as a reference standard.
The expression for the general tetrad

4EA
(α) = 4

◦
E

A

(β) L(β)
(α)(ϕ(a))

= 4
◦
Ē

A

(o) L(o)
(α)(ϕ(c))+

∑
ab

4
◦
Ē

A

(b) RT
(b)(a)(α(c)) L(a)

(α)(ϕ(c)), (8.25)

shows that every point-dependent Lorentz transformation Λ in the tangent planes
may be parametrized with the (Wigner) boost parameters ϕ(a) and the Euler angles
α(a), being the product Λ = R L of a rotation and a boost.

The future-oriented unit normal to Στ and the projector on Στ are lA =
ε (1 + n)

(
1; 0

)
, 4gAB lA lB = ε, lA = ε (1 + n) 4gAτ = 1

1+n

(
1; −nr

)
=

1
1+n

(
1; −∑

a n̄(a)
3ēr

(a)

)
, 3hB

A = δB
A − ε lA lB.

The 4-metric has the following expression

4gττ = ε
[
(1+ n)2 − 3grs nr ns

]
= ε

[
(1+ n)2 −

∑
a

n̄2
(a)

]
,

4gτr = −ε nr = −ε
∑

a

n̄(a)
3ē(a)r,

4grs = −ε 3grs = −ε
∑

a

3e(a)r
3e(a)s = −ε

∑
a

3ē(a)r
3ē(a)s,

4gττ = ε

(1+ n)2 , 4gτr = −ε nr

(1+ n)2 = −ε
∑

a
3ēr

(a) n̄(a)

(1+ n)2 ,

4grs = −ε
(

3grs − nr ns

(1+ n)2

)
= −ε

∑
ab

3ēr
(a)

3ēs
(b)

(
δ(a)(b) − n̄(a) n̄(b)

(1+ n)2

)
,

√−g =
√
|4g| =

√
3g√

ε 4gττ
= √γ (1+ n) = 3e (1+ n),

3g = γ = (3e)2, 3e = det 3e(a)r . (8.26)

The 3-metric 3grs has signature (+++), so that one may put all the flat 3-indices
down. One has 3gru 3gus = δr

s .

8.5.2 The ADM Phase Space and the ADM Hamilton Equations

The given parametrization of the cotetrad fields leads to rewrite the action of ADM
tetrad gravity in terms of the following 16 fields as configuration variables: three
boost parametersϕ(a)(τ ,σ

u); the lapse N(τ ,σu) = 1+n(τ ,σu) and shift n(a)(τ ,σ
u)

functions; the nine components of cotriad fields 3e(a)r(τ ,σ
u) on the 3-spaces Στ .
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As shown in the second and third paper of Ref. [41–44], in Ref. [82] and in the first
paper of Ref. [88–90], the ADM action for the gravitational field has the expression

Sgrav = c3

16πG

∫
dτd3σ

[
(1+ n) 3e ε(a)(b)(c)

3er
(a)

3es
(b)

3Ωrs(c)

+
3e

2(1+ n)
(3G−1

o )(a)(b)(c)(d)
3er

(b)

(
n(a)|r − ∂τ 3e(a)r

)
3es

(d)(n(c)|s − ∂τ 3e(c) s)
]
(τ ,σu). (8.27)

In it 3Ωrs(a) = ∂r
3ωs(a)−∂s

3ωr(a)− ε(a)(b)(c)
3ωr(b)

3ωs(c) is the field strength asso-
ciated with the 3-spin connection 3ωr(a) = 1

2 ε(a)(b)(c) [3eu
(b)

(∂r
3e(c)u − ∂u

3e(c)r)+
1
2

3eu
(b)

3ev
(c)

3e(d)r (∂v
3e(d)u − ∂u

3e(d)v)] and (3G−1
o )(a)(b)(c)(d) = δ(a)(c)δ(b)(d) +

δ(a)(d)δ(b)(c)−2δ(a)(b)δ(c)(d) is the flat (with lower indices) inverse of the flat Wheeler-
DeWitt super-metric 3Go(a)(b)(c)(d) = δ(a)(c) δ(b)(d) + δ(a)(d) δ(b)(c) − δ(a)(b) δ(c)(d),
3Go(a)(b)(e)(f )

3G−1
o(e)(f )(c)(d)

= 2 (δ(a)(c) δ(b)(d) + δ(a)(d) δ(b)(c)).

The canonical momenta πϕ(a)
(τ ,σu), πn(τ ,σ

u), πn(a)
(τ ,σu), 3πr

(a)(τ ,σ
u), con-

jugate to the configuration variables satisfy 14 first-class constraints: the ten primary
constraints (the last three constraints generate rotations on quantities with flat indices
(a) like the cotriads)

πϕ(a)
(τ ,σu) ≈ 0, πn(τ ,σ

u) ≈ 0, πn(a)
(τ ,σu) ≈ 0,

3M(a)(τ ,σ
u) = ε(a)(b)(c)

3e(b)r(τ ,σ
u) 3πr

(c)(τ ,σ
u) ≈ 0, (8.28)

and the secondary super-Hamiltonian and super-momentum constraints

H(τ ,σu) =
[ c3

16πG
3e ε(a)(b)(c)

3er
(a)

3es
(b)

3Ωrs(c)

− 2πG

c3 3e
3Go(a)(b)(c)(d)

3e(a)r
3πr

(b)
3e(c)s

3πs
(d)

]
(τ ,σu)

+M(τ ,σu) ≈ 0,

H(a)(τ ,σ
u) =

[
∂r

3πr
(a) − ε(a)(b)(c)

3ωr(b)
3πr

(c) + 3er
(a)Mr

]
(τ ,σu) ≈ 0.

(8.29)

The functions M(τ ,σu) and Mr(τ ,σ
u) describe the matter present in the space-

time: M(τ ,σu) is the (matter- and metric-dependent) internal mass density, while
Mr(τ ,σ

u) is the universal (metric-independent) internal momentum density. If the
action of matter is added to Eq. (8.27), one can evaluate the energy-momentum tensor

TAB(τ ,σu) = −
[

2√
−4g

δSmatter
δ 4gAB

]
(τ ,σ) of the matter23 and determine these functions

23 The Hamilton equations imply 4∇A TAB ≡ 0 in accord with Einstein’s equations and the Bianchi
identity.
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from the following parametrization

T ττ (τ ,σu) = M(τ ,σu)

[3e (1+ n)2](τ ,σu)
,

T τr(τ ,σu) =
3er

(a)

[
(1+ n) 3es

(a) Ms − n(a) M
]

3e (1+ n)2 (τ ,σu). (8.30)

The extrinsic curvature tensor of the 3-spaces Στ as 3-manifolds embedded
into the space-time has the following expression in terms of the barred cotriads
of Eq. (8.24) and their conjugate barred momenta

3Krs = − 4πG

c3 3ē

∑
abu

[(
3ē(a)r

3ē(b)s + 3ē(a)s
3ē(b)r

)
3ē(a)u π̄

u
(b)

−3ē(a)r
3ē(a)s

3ē(b)u π̄
u
(b)

]
. (8.31)

Therefore the basis of canonical variables for this formulation of tetrad gravity,
naturally adapted to 7 of the 14 first-class constraints, is

ϕ(a) n n(a)
3e(a)r

πϕ(a)
≈ 0 πn ≈ 0 πn(a)

≈ 0 3πr
(a)

(8.32)

The behavior of these fields at spatial infinity (compatible with the absence of
super-translations) is given in Eq. (5.5) of the third paper in Refs. [41–44]; in par-

ticular for the cotriads one has 3e(a)r(τ ,σ
r) →r→∞

(
1 + const.

2r

)
δar + O(r−3/2)

(r = √∑
r (σr)2).

From the action (8.29), after having added the matter action, one can obtain the
standard non-Hamiltonian ADM equations (|r denotes the 3-covariant derivative in
the 3-space Στ with 3-metric 3grs; 3Rrs is the 3-Ricci tensor of Στ )

∂τ
3grs

◦= nr|s + ns|r − 2 (1+ n) 3Krs,

∂τ
3Krs

◦= (1+ n)
(

3Rrs + 3K 3Krs − 2 3Kru
3Ku

s

)
− n|s|r + nu|s 3Kur + nu|r 3Kus + nu 3Krs|u, (8.33)

with the quantities appearing in these equations re-expressed in terms of the config-
urational variables of Eq. (8.32).

Instead at the Hamiltonian level one can get the Hamilton equations for all the
variables of the canonical basis (8.32), as shown in the first paper of Ref. [88–90],
by using the Dirac Hamiltonian. As shown in Refs. [41–44], the Dirac Hamiltonian
has the form (if the matter contains the electro-magnetic field there are extra terms
with the electro-magnetic first-class constraints)
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HD = 1

c
ÊADM +

∫
d3σ

[
n H− n(a) H(a)

]
(τ ,σu)

+
∫

d3σ
[
λn πn + λn(a)

πn(a)
+ λϕ(a)

πϕ(a)
+ μ(a)

3M(a)

]
(τ ,σu),

(8.34)

where ÊADM is the weak ADM energy and the λ’s are arbitrary Dirac multipliers.
See Eqs. (2.22), (3.43) and (3.47) of the first paper of Ref. [88–90] for the expres-

sion of the ten weak asymptotic ADM Poincaré generators ÊADM , P̂r
ADM , Ĵr

adm, K̂r
ADM .

Since one is in a non-inertial rest frame (due to the absence of super-translations),
one has the rest-frame conditions P̂r

ADM ≈ 0 like in SR. Then one has to add the

conditions K̂r
ADM ≈ 0 to eliminate the internal 3-center of mass of the 3-universe

like in SR [49–52]. Therefore the 3-universe can be seen as a decoupled external
canonical non-covariant center of mass carrying a pole-dipole structure: the invari-
ant mass Mc = 1

c ÊADM and the rest spin Ĵrs
ADM . This view is in accord with an old

suggestions of Dirac [16, 17].
In Ref. [88–90] the study of ADM canonical tetrad gravity was done with the

following type of matter: N charged scalar particles (described by the canonical
variables ηr

i (τ ), κir(τ )) and the electro-magnetic field in the non-covariant radia-
tion gauge (described by the canonical variables Ar⊥(τ ,σu), πr⊥(τ ,σu) as shown in
Ref. [49–52]). The particles (described by an action like the one in Eq. (8.6)) have
not only Grassmann-valued electric charges Qi (Q2

i = 0, Qi Qj = Qj Qi for i �= j) to
regularize the electro-magnetic self-energies, but also Grassmann-valued signs of the
energy (η2

i = 0, ηi ηj = ηj ηi for i �= j) to regularize the gravitational self-energies.24

Instead in Ref. [91] the matter is a perfect fluid described by the action of Ref. [94]
re-expressed in the 3+ 1 point of view in Refs. [92, 93].

In the case of N particles the functions M and Mr have the expression (see
Ref. [88–90] for their form in presence of the electro-magnetic field)

M(τ ,σu) =
N∑

i=1

δ3(σu, ηu
i (τ )) ηi

√
m2

i c2 + 3er
(a)(τ ,σ

u)κir(τ )3es
(a)(τ ,σ

u)κis(τ ),

Mr(τ ,σ
u) =

N∑
i=1

ηi κir(τ ), (8.35)

while in the case of dust [91], described by canonical coordinates αi(τ ,σu),
Πi(τ ,σ

u), i = 1, 2, 3, they have the expression

24 Both quantities are two-valued. The elementary electric charges are Q = ±e, with e the electron
charge. Analogously the sign of the energy of a particle is a topological two-valued number (the two
branches of the mass-shell hyperboloid). The formal quantization of these Grassmann variables gives
two-level fermionic oscillators. At the classical level the self-energies make the classical equations
of motion ill-defined on the world-lines of the particles. The ultraviolet and infrared Grassmann
regularization allows to cure this problem and to get consistent solution of regularized equations of
motion. See Refs. [65, 66] for the electro-magnetic case.
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M(τ ,σu) =
√
μ2 [det (∂s αj)]2 + φ̃−2/3

∑
arsij

Q−2
a Vra Vsa ∂r αi ∂s αj Πi Πj

× (τ ,σu), (8.36)

Mr(τ ,σ
u) =

∑
i

∂r α
i(τ ,σu)Πi(τ ,σ

u).

8.6 The York Canonical Basis and the Inertial and Tidal
Degrees of Freedom of the Gravitational Field

The presence of 14 first-class constraints in the phase space having the 32 fields of
Eq. (8.32) as a canonical basis implies that there are 14 gauge variables describing
inertial effects and 2 canonical pairs of physical degrees of freedom describing the
tidal effects of the gravitational field (namely gravitational waves in the weak field
limit). To disentangle the inertial effects from the tidal ones one needs a canonical
transformation to a new canonical basis adapted to all the ten primary constraints
(8.28) and containing the barred variables defined in Eq. (8.24). This is the topic of
this Section.

8.6.1 The York Canonical Basis

A canonical transformation adapted to the ten primary constraints (8.28) was found
in Ref. [82]. It implements the York map of Ref. [83] in the cases in which the 3-
metric 3grs has three distinct eigenvalues and diagonalizes the York-Lichnerowicz
approach (see Ref. [84] for a review).

As said before Eq. (8.24), one can decompose the cotriads on Στ in the product
of a rotation matrix, belonging to the subgroup SO(3) of the tetrad gauge group
and depending on three Euler angles α(a)(τ ,σ

r), and of barred cotriads depending
only on six independent fields. The canonical transformation Abelianizes the con-
straints 3M(a)(τ ,σ

u) ≈ 0 of Eqs. (8.28), satisfying {3M(a)(τ ,σ
u), 3M(b)(τ ,σ

′u)} =
ε(a)(b)(c)

3M(c)(τ ,σ
u)δ3(σu,σ

′u), and replaces them with the vanishing of the three

momenta π(α)
(a) (τ ,σ

r) ≈ 0 conjugate to the Euler angles.
The new canonical basis, named York canonical basis, is (a = 1, 2, 3; ā = 1, 2)

ϕ(a) α(a) n n̄(a) θr φ̃ Rā

πϕ(a)
≈ 0 π(α)

(a) ≈ 0 πn ≈ 0 πn̄(a)
≈ 0 π(θ)

r πφ̃ = c3

12πG
3K Πā

(8.37)

In it the cotriads and the components of the 4-metric have the following expression
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3e(a)r =
∑

b

R(a)(b)(α(c))
3ē(b)r =

∑
b

R(a)(b)(α(c)) Vrb(θ
i) φ̃1/3 e

∑1,2
ā γāa Rā ,

4gττ = ε
[
(1+ n)2 −

∑
a

n̄2
(a)

]
,

4gτr = −ε
∑

a

n(a)
3e(a)r = −ε

∑
a

n̄(a)
3ē(a)r, φ̃ = φ6 =

√
det 3grs,

4grs = −ε 3grs = −ε φ̃2/3
∑

a

Vra(θ
i) Vsa(θ

i) Q2
a, Qa = e

∑1,2
ā γāa Rā , (8.38)

The set of numerical parameters γāa appearing in Qa satisfies [41–44]
∑

u γāu =
0,

∑
u γāu γb̄u = δāb̄,

∑
ā γāu γāv = δuv − 1

3 . Each solution of these equations
defines a different York canonical basis.

This canonical basis has been found due to the fact that the 3-metric 3grs is a
real symmetric 3× 3 matrix, which may be diagonalized with an orthogonal matrix
V(θr), V−1 = VT (

∑
u Vua Vub = δab,

∑
a Vua Vva = δuv ,

∑
uv εwuv Vua Vvb =∑

c εabc Vcw), det V = 1, depending on three parameters θi (i = 1, 2, 3),25 whose

conjugate momenta Π
(θ)
i are to be determined as solutions of the super-momentum

constraints. If one chooses these three gauge parameters to be Euler angles θ̂i(τ ,σ),
one gets a description of the 3-coordinate systems on Στ from a local point of
view, because they give the orientation of the tangents to the three 3-coordinate
lines through each point. However, for the calculations (see Refs. [88–90]) it is more
convenient to choose the three gauge parameters as first kind coordinates θi(τ ,σ)

(−∞ < θi < +∞) on the O(3) group manifold, so that by definition one has

Vru(θ
i) =

(
e−

∑
i T̂i θ

i
)

ru
, where (T̂i)ru = εrui are the generators of the o(3) Lie

algebra in the adjoint representation, and the Euler angles may be expressed as

θ̂i = f i(θn). The Cartan matrix has the form A(θn) = 1−e−
∑

i T̂i θ
i∑

i T̂i θi and satisfies

Ari(θ
n) θi = δri θ

i; B(θi) = A−1(θi).
From now on for the sake of notational simplicity the symbol V will mean V(θi).
The extrinsic curvature tensor of the 3-space Στ has the expression

3Krs(τ ,σ
u) = −4πG

c3

[
φ̃−1/3

(∑
a

Q2
a Vra Vsa

⎡
⎣2

∑
b̄

γb̄a Πb̄ − φ̃ πφ̃

⎤
⎦

+
∑
ab

Qa Qb (Vra Vsb + Vrb Vsa)
∑
twi

εabt Vwt Biw π
(θ)
i

Qb Q−1
a − Qa Q−1

b

)]
(τ ,σu).

(8.39)

25 Due to the positive signature of the 3-metric, one defines the matrix V with the following indices:
Vru. Since the choice of Shanmugadhasan canonical bases breaks manifest covariance, one will use
the notation Vua =∑

v Vuv δv(a) instead of Vu(a).
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This canonical transformation realizes a York map because the gauge variable
πφ̃ (describing the freedom in the choice of the trace of the extrinsic curvature of

the instantaneous 3-spaces Στ ) is proportional to York internal extrinsic time 3K .
It is the only gauge variable among the momenta: this is a reflex of the Lorentz
signature of space-time, because πφ̃ and θn can be used as a set of 4-coordinates for
the space-time [79–81]. The York time describes the effect of gauge transformations
producing a deformation of the shape of the 3-space along the 4-normal to the 3-space
as a 3-sub-manifold of space-time.

Its conjugate variable, to be determined by the super-Hamiltonian constraint (inter-
preted as the Lichnerowicz equation), is φ̃ = φ6 = 3ē = √

det 3grs, which is pro-
portional to Misner’s internal intrinsic time; moreover φ̃ is the 3-volume density on
Στ : VR =

∫
R d3σ φ̃, R ⊂ Στ . Since one has 3grs = φ̃2/3 3ĝrs with det 3ĝrs = 1, φ̃ is

also called the conformal factor of the 3-metric.
The two pairs of canonical variables Rā, Πā, ā = 1, 2, describe the generalized

tidal effects, namely the independent physical degrees of freedom of the gravitational
field. They are 3-scalars onΣτ and the configuration tidal variables Rā parametrize the
two eigenvalues of the 3-metric 3ĝrs with unit determinant. They are Dirac observables
only with respect to the gauge transformations generated by 10 of the 14 first class
constraints. Let us remark that, if one fixes completely the gauge and one goes to
Dirac brackets, then the only surviving dynamical variables Rā and Πā become two
pairs of non canonical Dirac observables for that gauge: the two pairs of canonical
Dirac observables have to be found as a Darboux basis of the copy of the reduced
phase space identified by the gauge and they will be (in general non-local) functionals
of the Rā, Πā variables.

Therefore, the 14 arbitrary gauge variables are ϕ(a)(τ ,σ
u), α(a)(τ ,σ

u), n(τ ,σu),
n̄(a)(τ ,σ

u), θi(τ ,σu), πφ̃(τ ,σ
u): they describe the following generalized inertial

effects [82]:

(a) α(a)(τ ,σ
u) and ϕ(a)(τ ,σ

u) are the 6 configuration variables parametrizing the
O(3,1) gauge freedom in the choice of the tetrads in the tangent plane to each
point of Στ and describe the arbitrariness in the choice of a tetrad to be associated
to a time-like observer, whose world-line goes through the point (τ ,σ). They
fix the unit 4-velocity of the observer and the conventions for the orientation
of three gyroscopes and their transport along the world-line of the observer.
The Schwinger time gauges are defined by the gauge fixings α(a)(τ ,σ

u) ≈ 0,
ϕ(a)(τ ,σ

u) ≈ 0.
(b) θi(τ ,σu) (depending only on the 3-metric) describe the arbitrariness in the choice

of the 3-coordinates in the instantaneous 3-spaces Στ of the chosen non-inertial
frame centered on an arbitrary time-like observer. Their choice will induce a
pattern of relativistic inertial forces for the gravitational field, whose potentials
are the functions Vra(θ

i) present in the weak ADM energy ÊADM .
(c) n̄(a)(τ ,σ

u), the shift functions, describe which points on different instantaneous
3-spaces have the same numerical value of the 3-coordinates. They are the inertial
potentials describing the effects of the non-vanishing off-diagonal components
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4gτr(τ ,σ
u) of the 4-metric, namely they are the gravito-magnetic potentials26

responsible of effects like the dragging of inertial frames (Lens-Thirring effect)
in the post-Newtonian approximation. The shift functions are determined by the
τ -preservation of the gauge fixings determining the gauge variables θi(τ ,σu).

(d) πφ̃(τ ,σ
u), i.e. the York time 3K(τ ,σu), describes the non-dynamical arbitrari-

ness in the choice of the convention for the synchronization of distant clocks
which remains in the transition from SR to GR. Since the York time is present
in the Dirac Hamiltonian, it is a new inertial potential connected to the problem
of the relativistic freedom in the choice of the shape of the instantaneous 3-
space, which has no Newtonian analogue (in Galilei space-time time is absolute
and there is an absolute notion of Euclidean 3-space). Its effects are completely
unexplored. Instead the other components of the extrinsic curvature of Στ are
dynamically determined once a 3-coordinate system has been chosen in the 3-
space.

(e) 1 + n(τ ,σu), the lapse function appearing in the Dirac Hamiltonian, describes
the arbitrariness in the choice of the unit of proper time in each point of the
simultaneity surfaces Στ , namely how these surfaces are packed in the 3 + 1
splitting. The lapse function is determined by the τ -preservation of the gauge
fixing for the gauge variable 3K(τ ,σu).

As shown in Ref. [79–81], the dynamical nature of space-time implies that each
solution (i.e. an Einstein 4-geometry) of Einstein’s equations (or of the associated
ADM Hamilton equations) dynamically selects a preferred 3 + 1 splitting of the
space-time, namely in GR the instantaneous 3-spaces are dynamically determined
modulo only one inertial gauge function (the gauge freedom in clock synchronization
in GR). In the York canonical basis this function is the York time, namely the trace
of the extrinsic curvature of the 3-space. Instead in SR the gauge freedom in clock
synchronization depends on four basic gauge functions, the embeddings zμ(τ ,σr),
and both the 4-metric and the whole extrinsic curvature tensor were derived inertial
potentials. Instead in GR the extrinsic curvature tensor of the 3-spaces is a mixture
of dynamical (tidal) pieces and inertial gauge variables playing the role of inertial
potentials.

26 In the post-Newtonian approximation in harmonic gauges they are the counterpart of the electro-

magnetic vector potentials describing magnetic fields [84]: (A) N = 1 + n, n
def= − 4 ε

c2 ΦG with

ΦG the gravito-electric potential; (B) nr
def= 2 ε

c2 AG r with AG r the gravito-magnetic potential; (C)

EG r = ∂r ΦG − ∂τ ( 1
2 AG r) (the gravito-electric field) and BG r = εruv ∂u AG v = c ΩG r (the

gravito-magnetic field). Let us remark that in arbitrary gauges the analogy with electro-magnetism
breaks down.
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8.6.2 3-Orthogonal Schwinger Time Gauges and Hamilton
Equations

As shown in the first paper in Refs. [88–90], in the York canonical basis the Dirac
Hamiltonian (8.34) becomes (the λ’s are arbitrary Dirac multipliers; the Dirac mul-
tiplier λr(τ ) implements the rest frame condition P̂r

ADM ≈ 0)

HD = 1

c
ÊADM +

∫
d3σ

[
n H− n(a) H(a)

]
(τ ,σu)+ λr(τ ) P̂r

ADM

+
∫

d3σ
[
λn πn + λn̄(a)

πn̄(a)
+ λϕ(a)

πϕ(a)
+ λα(a) π

(α)
(a)

]
(τ ,σu),

(8.40)

with the following expression for the weak ADM energy

ÊADM = c
∫

d3σ

⎡
⎣M̌− c3

16πG
S + 2πG

c3 φ̃−1

⎛
⎝−3 (φ̃ πφ̃)

2 + 2
∑

b̄

Π2
b̄

+ 2
∑

abtwiuvj

εabt εabu Vwt Biw Vvu Bjv π
(θ)
i π

(θ)
j[

Qa Q−1
b − Qb Q−1

a

]2

⎞
⎟⎠

⎤
⎥⎦ (τ ,σu).

(8.41)

In it S(τ ,σu) is a function of φ̃, θi and Rā (given in Eq. (B8) of the first paper in
Ref. [88–90]), which play the role of an inertial potential depending on the choice
of the 3-coordinates in the 3-space (it is the Γ − Γ term in the scalar 3-curvature of
the 3-space).

Equation (8.41) shows that the kinetic term, quadratic in the momenta, is not pos-
itive definite. While the kinetic energy of the tidal variables and the last term27 are
positive definite, there is the negative kinetic terms (vanishing only in the gauges
3K(τ ,σu) = 0) − c4

24πG

∫
D3σ φ̃(τ ,σu) 3K2(τ ,σu). It is an inertial potential asso-

ciated with the inertial gauge variable York time, which is a momentum due to the
Lorentz signature of space-time. It was known that this quadratic form is not definite
positive, but only in the York canonical basis this can be made explicit.

In the York canonical basis it is possible to follow the procedure for the fixation of
a gauge natural from the point of view of constraint theory when there are chains of
first-class constraints [18–21]. This procedure implies that one has to add six gauge
fixings to the primary constraints without without secondaries (πϕ(a)

(τ ,σu) ≈ 0,
πα(a)

(τ ,σu) ≈ 0) and four gauge fixings to the secondary super-Hamiltonian and
super-momentum constraints. These ten gauge fixings must be preserved in time,
namely their Poisson brackets with the Dirac Hamiltonian must vanish. The τ -

27 It describes gravito-magnetic effects.
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preservation of the six gauge fixings determining the gauge variables α(a)(τ ,σ
u) and

ϕ(a)(τ ,σ
u) produces the equations determining the six Dirac multipliersλϕ(a)

(τ ,σu),
λα(a)

(τ ,σu). The τ -preservation of the other four gauge fixings, determining the
gauge variables θi(τ ,σu) and the York time 3K(τ ,σu), produces four secondary
gauge fixing constraints for the determination of the lapse and shift functions. Then
the τ -preservation of these secondary gauge fixings determines the four Dirac mul-
tipliers λn(τ ,σ

u), λn̄(a)
(τ ,σu). Instead in numerical gravity one gives independent

gauge fixings for both the primary and secondary gauge variables in such a way to
minimize the computer time.

In Section V of the first paper in Refs. [88–90] there is a review of the gauges
usually used in canonical gravity. It is shown that the commonly used family of
the harmonic gauges is not natural according to the above procedure. The harmonic
gauge fixings imply hyperbolic PDE for the lapse and shift functions, to be added
to the hyperbolic PDE for the tidal variables. Therefore in harmonic gauges both
the tidal variables and the lapse and shift functions depend (in a retarded way) from
the no-incoming radiation condition on the Cauchy surface in the past (so that the
knowledge of 3K from the initial time till today is needed).

Instead the natural gauge fixings in the York canonical basis of ADM tetrad grav-
ity are the family of Schwinger time gauges, where the O(3,1) gauge freedom of the
tetrads is eliminated with the gauge fixings (implyingλϕ(a)

(τ ,σu) = λα(a)
(τ ,σu) = 0)

α(a)(τ ,σ
u) ≈ 0, ϕ(a)(τ ,σ

u) ≈ 0, (8.42)

and the subfamily of the 3-orthogonal gauges

θi(τ ,σu) ≈ 0, 3K(τ ,σu) ≈ F(τ ,σu) = numerical function, (8.43)

in which the 3-coordinates are chosen in such a way that the 3-metric in the 3-spaces
Στ is diagonal. The τ -preservation of Eq. (8.43) gives four coupled elliptic PDE
for the lapse and shift functions. Therefore in these gauges only the tidal variables
(the gravitational waves after linearization), and therefore only the eigenvalues of
the 3-metric with unit determinant inside Στ , depend (in a retarded way) on the
no-incoming radiation condition. The solutions φ̃ and π(θ)

i of the constraints and the
lapse 1+n and shift n̄(a) functions depend only on the 3-space Στ with fixed τ . If the
matter consists of positive energy particles (with a Grassmann regularization of the
gravitational self-energies) [88–90] these solutions will contain action-at-a-distance
gravitational potentials (replacing the Newton ones) and gravito-magnetic potentials.

In the family of 3-orthogonal gauges the weak ADM energy and the super-
Hamiltonian and super-momentum constraints (they are coupled elliptic PDE for
their unknowns) have the expression (see Eq. (3.47) of the first paper in Ref. [88–90]
for the other weak ADM Poincaré generators)
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ÊADM |θi=0 = c
∫

d3σ

[
M|θi=0 −

c3

16πG
S|θi=0

+ 2πG

c3 φ̃−1

⎛
⎝−3 (φ̃ πφ̃)

2 + 2
∑

b̄

Π2
b̄

+ 2
∑
abij

εabi εabj π
(θ)
i π

(θ)
j[

Qa Q−1
b − Qb Q−1

a

]2

⎞
⎟⎠
⎤
⎥⎦ (τ ,σu),

H(τ ,σu)|θi=0

= c3

16πG
φ̃1/6(τ ,σu)

[
8 �̂ φ̃1/6 − 3R̂|θi=0 φ̃

1/6
]
(τ ,σu)

+M|θi=0(τ ,σ
u)+ 2πG

c3 φ̃−1

⎡
⎣−3 (φ̃ πφ̃)

2 + 2
∑

b̄

Π2
b̄

+2
∑
abij

εabi εabj π
(θ)
i π

(θ)
j[

Qa Q−1
b −Qb Q−1

a

]2

⎤
⎥⎦

× (τ ,σu),

˜̄H(a)|θi=0(τ ,σ
u) = φ−2(τ ,σ)

[∑
b �=a

∑
i

εabi Q−1
b

Qb Q−1
a − Qa Q−1

b

∂b π
(θ)
i

+ 2
∑
b �=a

∑
i

εabi Q−1
a(

Qb Q−1
a −QaQ−1

b

)2

∑
c̄

(γc̄a−γc̄b) ∂b Rc̄ π
(θ)
i

+ Q−1
a

(
φ6 ∂aπφ̃+

∑
b̄

(γb̄a ∂a Πb̄ − ∂a Rb̄ Πb̄)+Ma

)]
(τ ,σu),

�̂ =
∑

r

Q−2
r

[
∂2

r + 2
∑

ā

γār ∂r Rā(τ ,σ
u) ∂r

]
,

Sθi=0(τ ,σ
u) =

(
φ̃1/3

∑
a

Q−2
a

[2

9
(φ̃−1 ∂a φ̃)2

+
∑

b̄

(∑
c̄

(2 γb̄a γc̄a − δb̄c̄) ∂a Rc̄

− 2

3
γb̄a φ̃

−1 ∂a φ̃
)
∂a Rb̄

])
(τ ,σu). (8.44)

In the first paper in Refs. [88–90] there is the explicit form of the Hamilton
equations for all the canonical variables of the gravitational field and of the mat-
ter replacing the standard 12 ADM equations and the matter equations 4∇A TAB = 0
in the Schwinger time gauges and their restriction to the 3-orthogonal gauges. They
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could also be obtained from the effective Dirac Hamiltonian of the 3-orthogonal
gauges, which is evaluated by means of a τ -dependent canonical transformation
sending the gauge momentum πφ̃(τ ,σ

u) in the gauge-fixing conditions π
′
φ̃
(τ ,σu) =

c3

12πG

(
3K(τ ,σu) − F(τ ,σu)

)
≈ 0 and which is given in Eq. (4.39) of the second

paper of Ref. [88–90].
These equations are divided in five groups:

(A) The contracted Bianchi identities, namely the evolution equations for the solu-
tions φ̃(τ ,σu) and π(θ)

i (τ ,σu) of the super-Hamiltonian and super-momentum
constraints: they are identities saying that, given a solution of the constraints on
a Cauchy surface, it remains a solution also at later times.

(B) The evolution equation for the four basic gauge variables θi(τ ,σu) and 3K(τ ,σu)

(the equation for the York time is the Raychaudhuri equation28): these equations
determine the lapse and the shift functions once four gauge-fixings for the basic
gauge variables are given.

(C) The equations ∂τ n(τ ,σu) = λn(τ ,σ
u) and ∂τ n̄(a)(τ ,σ

u) = λn̄(a)
(τ ,σu). Once

the lapse and shift functions of the chosen gauge have been found, they determine
the associated Dirac multipliers.

(D) The hyperbolic evolution PDE for the tidal variables Rā(τ ,σ
u), Πā(τ ,σ

u).
When the equations for ∂τ Rā(τ ,σ

u) is inverted to get Πā(τ ,σ
u) in terms of

Rā(τ ,σ
u) and its derivatives, then the Hamilton equations for Πā(τ ,σ

u) become
hyperbolic PDE for the evolution of the physical tidal variable Rā(τ ,σ

u).
(E) The Hamilton equations for matter, when present.

Given a solution of the super-momentum and super-Hamiltonian constraints and
the Cauchy data for the tidal variables on an initial 3-space, one can find a solution
of Einstein’s equations in radar 4-coordinates adapted to a time-like observer in the
chosen gauge.

8.6.3 The Congruence of Eulerian Observers
and the Non-Hamiltonian First-Order ADM
Equations of Cosmological Spacetimes

Like in SR one can consider the congruence of the Eulerian observers with zero
vorticity associated with the 3 + 1 splitting of space-time, whose properties are

28 This equation is relevant for studying the developments of caustics in a congruence of time-like
geodesics for converging values of the expansion θ and of singularities in Einstein space-times
[137–139]. However the boundary conditions of asymptotically Minkowskian space-times without
super-translations should avoid the singularity theorems as it happens with their subfamily without
matter of Ref. [40].
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described by Eq. (8.5). In the first paper of Ref. [88–90] it is shown that in ADM
tetrad gravity the congruence has the following properties in each point (τ ;σr)29:

(a) The acceleration 3aA = lB 4∇B lA = 4gAB 3aB has the components 3aτ = 0,
3ar = ε φ̃−2/3 Q−2

a Vra Vsa ∂s ln(1+n), 3aτ = −φ̃−1/3 Q−1
a Vra n̄(a) ∂r ln(1+n),

3ar = −∂r ln (1+ n).
(b) The expansion30 coincides with the York time:

θ = 4∇A lA = −ε 3K = −ε 12πG

c3 πφ̃. (8.45)

In cosmology the expansion is proportional to the Hubble constant and the
dimensionless cosmological deceleration parameter is q = 3 lA 4∇A

1
θ − 1 =

−3 θ−2 lA ∂A θ − 1.

(c) By using Eq. (8.24) it can be shown that the shear31 σAB = σBA = − ε
2 (3aA lB+

3aB lA) + ε
2 (4∇A lB + 4∇B lA) − 1

3 θ
3hAB = σ(α)(β)

4
◦
Ē

(α)

A
4
◦
Ē

(β)

B has the fol-
lowing components σ(o)(o) = σ(o)(r) = 0, σ(a)(b) = σ(b)(a) = (3Krs −
1
3

3grs
3K) 3ēr

(a)
3ēs

(b)
,
∑

a σ(a)(a) = 0. σ(a)(b) depends upon the canonical vari-

ables θr , φ̃, Rā, π(θ)
i and Πā.

By using Eq. (8.39) for the extrinsic curvature tensor one finds that the diagonal
elements σ(a)(a) of the shear are also connected with the tidal momenta Πā, while

the non-diagonal elements σ(a)(b)|a �=b are connected with the momenta π(θ)
i (the

unknowns in the super-momentum constraints)

Πā = − c3

8πG
φ̃
∑

a

γāa σ(a)(a),

π
(θ)
i =

c3

8πG
φ̃

∑
wtab

Awi Vwt Qa Q−1
b εtab σ(a)(b)|a �=b,

3Krs = φ̃2/3
∑
ab

(
− ε

3
θ δab + σ(a)(b)

)
Qa Qb Vra Vsb

→θi→0 φ̃
2/3 Qr Qs

(
− ε

3
θ + σ(a)(b)

)
. (8.46)

29 See the “1+3 point of view” of Ref. [140] for a discussion of gravity in terms of the second non-
surface-forming congruence of time-like observers associated with a 3+ 1 splitting of space-time.
30 It measures the average expansion of the infinitesimally nearby world-lines surrounding a given
world-line in the congruence.
31 It measures how an initial sphere in the tangent space to the given world-line, which is Lie-
transported along the world-line tangent lμ (i.e. it has zero Lie derivative with respect to lμ ∂μ), is
distorted towards an ellipsoid with principal axes given by the eigenvectors of σμν , with rate given
by the eigenvalues of σμν .
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Therefore the Eulerian observers associated to the 3 + 1 splitting of space-time
induce a geometrical interpretation of some of the momenta of the York canonical
basis:

(1) their expansion θ is the gauge variable York time 3K = 12πG
c3 πφ̃ determining

the non-dynamical gauge part of the shape of the instantaneous 3-spaces Στ as
a sub-manifold of space-time;

(2) the diagonal elements of their shear describe the tidal momenta Πā, while the
non-diagonal elements are connected to the variables π(θ)

i , determined by the
super-momentum constraints.

In Eq. (8.44), valid in the 3-orthogonal gauges, the term quadratic in the momenta
π

(θ)
i in the weak ADM energy and in the super-Hamiltonian constraint can be written

as c3

16πG φ̃
∑

ab,a �=b σ
2
(a)(b)

, while the super-momentum constraints can be written in
the form of PDE for the non-diagonal elements of the shear

H̄(a)|θi=0(τ ,σ
u) = − c3

8πG
φ̃2/3(τ ,σu)

(∑
b �=a

Q−1
b

[
∂b σ(a)(b)

+
(
φ̃−1 ∂b φ̃+

∑
b̄

(γb̄a − γb̄b) ∂b Rb̄

)
σ(a)(b)

]

− 8πG

c3 φ̃−1 Q−1
a

[
φ̃ ∂a πφ̃ +

∑
b̄

(γb̄a ∂a Πb̄ − ∂a Rb̄ Πb̄)

+Ma

])
(τ ,σu) ≈ 0. (8.47)

As a consequence, by using 3grs of Eq. (8.38) and 3Krs of Eq. (8.46), the first-
order non-Hamiltonian ADM equations (8.33) can be re-expressed in terms of the
configurational variables n, n̄(a), φ̃, θi, Rā, and of the expansion θ and shear σ(a)(b)

of the Eulerian observers. Then the 12 equations can be put in the form of equations
determining ∂τ φ̃, ∂τ Rā, ∂τ θi, ∂τ θ and ∂τ σ(a)(b). In Eq. (2.17) of the first paper in
Ref. [88–90] this manipulation is explicitly done for the first six equations (8.33).

These results are important for extending the identification of the inertial and tidal
variables of the gravitational field, achieved with the York canonical basis, to cosmo-
logical space-times. Since these space-times are only conformally asymptotically flat,
the Hamiltonian formalism is not defined. However, they are globally hyperbolic and
admit 3+1 splittings with the associated congruence of Eulerian observers. As a con-
sequence, in them Einstein’s equations are usually replaced with the non-Hamiltonian
first-order ADM equations plus the super-Hamiltonian and super-momentum con-
straints. Our analysis implies that, since the 4-metric can always be put in the form
of Eq. (8.38), the inertial gauge variables of the cosmological space-times are n,
n̄(a), θi and the expansion θ = −ε 3K , while the physical tidal variables are Rā and
the diagonal components of the shear σ(a)(a) (

∑
a σ(a)(a) = 0). The unknown in the

super-Hamiltonian constraint is the conformal factor φ̃ of the 3-metric in Στ , while
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the unknowns in the super-Hamiltonian constraints are the non-diagonal components
of the shear σ(a)(b)|a �=b.

8.7 Post-Minkowskian Linearization in Non-harmonic
3-Orthogonal Gauges and Post-Minkowskian
Gravitational Waves

In the second paper of Ref. [88–90] it was shown that in the family of non-harmonic
3-orthogonal Schwinger gauges it is possible to define a consistent linearization of
ADM canonical tetrad gravity plus matter (N charged scalar particles of masses mi,
Grassmann-valued signs of energy ηi, Grassmann-valued electric charges Qi, plus
the electro-magnetic field in the radiation gauge) in the weak field approximation, to
obtain a formulation of Hamiltonian Post-Minkowskian (HPM) gravity with non-flat
Riemannian 3-spaces and asymptotic Minkowski background.

In the standard linearization one introduces a fixed Minkowski background space-
time, introduces the decomposition 4gμν(x) = 4ημν + 4hμν(x) in an inertial frame
and studies the linearized equations of motion for the small Minkowskian fields
4hμν(x). The approximation is assumed valid over a big enough characteristic length
L interpretable as the reduced wavelength λ/2π of the resulting gravitational waves
(GW) (only for distances higher of L the linearization breaks down and curved space-
time effects become relevant). For the Solar System there is a PN approximation
in harmonic gauges, which is adopted in the BCRS [11–13] and whose 3-spaces
tB = const. have deviations of order c−2 from Euclidean 3-spaces.

See Refs. [95, 141] and Appendix A of the second paper in Refs. [88–90] for a
review of all the results of the standard approach and of the existing points of view
on the subject [142–157].

In the class of asymptotically Minkowskian space-times without super-translations
the 4-metric tends to an asymptotic Minkowski metric at spatial infinity, 4gAB →
4ηAB, which can be used as an asymptotic background. The decomposition 4gAB =
4ηAB + 4h(1)AB, with a first order perturbation 4h(1)AB vanishing at spatial infinity, is
defined in a global non-inertial rest frame of an asymptotically Minkowskian space-
time deviating for first order effects from a global inertial rest frame of an abstract
Minkowski space-time M(∞). The non-Euclidean 3-spaces Στ will deviate by first
order effects from the Euclidean 3-spaces Στ (∞) of the inertial rest frame of M(∞)

coinciding with the limit of Στ at spatial infinity. When needed differential operators
like the Laplacian in Στ will be approximated with the flat Laplacian in Στ (∞).

If ζ << 1 is a small a-dimensional parameter, a consistent Hamiltonian lineariza-
tion implies the following restrictions on the variables of the York canonical basis in
the family of 3-orthogonal gauges with 3K(τ ,σ) = F(τ ,σ) = numerical function
(in this Section one uses the notation σ for the curvilinear 3-coordinates σr)
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Rā(τ ,σ) = R(1)ā(τ ,σ) = O(ζ) << 1,

Πā(τ ,σ) = Π(1)ā(τ ,σ) = 1

L G
O(ζ),

φ̃(τ ,σ) =
√

det 3grs(τ ,σ) = 1+ 6φ(1)(τ ,σ)+ O(ζ2),

N(τ ,σ) = 1+ n(τ ,σ) = 1+ n(1)(τ ,σ)+ O(ζ2),

ε 4gττ (τ ,σ) = 1+ ε 4h(1)ττ (τ ,σ) = 1+ 2 n(1)(τ ,σ)+ O(ζ2),

n̄(a)(τ ,σ) = −ε 4gτa(τ ,σ) = −ε 4h(1)τr(τ ,σ) = n̄(1)(a)(τ ,σ)+ O(ζ2),

3K(τ ,σ) = 12πG

c3 πφ̃(τ ,σ) = 3K(1)(τ ,σ) = 12πG

c3 π
(1)φ̃(τ ,σ)

= 1

L
O(ζ),σ(a)(b)|a �=b(τ ,σ) = σ(1)(a)(b)|a �=b(τ ,σ)

= 1

L
O(ζ), 3grs(τ ,σ) = −ε 4grs(τ ,σ) = δrs − ε 4h(1)rs(τ ,σ)

= [1+ 2 (Γ (1)
r (τ ,σ)+ 2φ(1)(τ ,σ))] δrs + O(ζ2), Γ (1)

a (τ ,σ)

=
2∑

ār=1

γāa Rā(τ ,σ), Rā(τ ,σ) =
3∑

a=1

γāa Γ (1)
a (τ ,σ). (8.48)

The tidal variables Rā(τ ,σ) are slowly varying over the length L and times L/c;
one has ( L

4R )2 = O(ζ), where 4R is the mean radius of curvature of space-time.
The consistency of the Hamiltonian linearization requires the introduction of a

ultra-violet cutoff M for matter. For the particles, described by the canonical variables
ηi(τ ) and κi(τ ), this implies the conditions mi

M , κi
M = O(ζ). With similar restrictions

on the electro-magnetic field one gets that the energy-momentum tensor of matter is
TAB(τ ,σ) = TAB

(1) (τ ,σ)+O(ζ2). Therefore also the mass and momentum densities

have the behavior M(τ ,σ) =M(1)(τ ,σ) + O(ζ2), Mr(τ ,σ) =M(1)r(τ ,σ) +
O(ζ2). This approximation is not reliable at distances from the point particles less
than the gravitational radius RM = M G

c2 ≈ 10−29 M determined by the cutoff mass.
The weak ADM Poincaré generators become equal to the Poincaré generators of this
matter in the inertial rest frame of the Minkowski space-time M(∞) plus terms of order
O(ζ2) containing GW and matter. Finally the GW described by this linearization must
have wavelengths satisfying λ/2π ≈ L >> RM . If all the particles are contained in
a compact set of radius lc (the source), one must have lc >> RM for particles with
relativistic velocities and lc ≥ RM for slow particles (like in binaries). See Ref. [95]
for more details.

With this Hamiltonian linearization one can avoid to make PN expansions: one
gets fully relativistic expressions, i.e. a HPM formulation of gravity.

The effective Hamiltonian adapted to the 3-orthogonal gauges and replacing

the weak ADM energy is 1
c

(
ÊADM(1) + ÊADM(2)

)
+ c3

12πG

∫
d3ε

(
∂τ

3K(1)

[
1 +

6
�
(

1
4

∑
a ∂

2
a Γ

(1)
a − 2πG

c3 M(1)

)])
(τ ,σu)+ O(ζ3) in the PM linearized theory.
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In the second paper of Refs. [88–90] one has found the solutions of the super-
momentum and super-Hamiltonian constraints and of the equations for the lapse and
shift functions with the Bianchi identities satisfied. Therefore one knows the first
order quantities π(θ)

(1)i(τ ,σ), φ̃(τ ,σ) = 1+6φ(1)(τ ,σ), 1+n(1)(τ ,σ), n̄(1)(a)(τ ,σ)

(the quantities containing the action-at-a-distance part of the gravitational interac-
tion in the 3-orthogonal gauges) with an explicit expression for the PM Newton and
gravito-magnetic potentials. In absence of the electro-magnetic field they are (the
terms in Γ

(1)
a (τ ,σ) describe the contribution of GW)32

φ̃(τ ,σ) = 1+ 6φ(1)(τ ,σ)

= 1+ 3 G

c3

∑
i

ηi

√
m2

i c2 + κ2
i (τ )

|σ − ηi(τ )|

− 3

8π

∫
d3σ1

∑
a ∂

2
1a Γ

(1)
a (τ ,σ1)

|σ − σ1| ,

ε 4gττ (τ ,σ) = 1+ 2 n(1)(τ ,σ) = 1− 2 ∂τ
3K(1)(τ ,σ)

− 2 G

c3

∑
i

ηi

√
m2

i c2 + κ2
i (τ )

|σ − ηi(τ )|

(
1+ κ2

i

m2
i c2 + κ2

i

)
,

− ε 4gτa(τ ,σ) = n̄(1)(a)(τ ,σ) = ∂a
3K(1)(τ ,σ)

− G

c3

∑
i

ηi

|σ − ηi(τ )|
(7

2
κia(τ )

− 1

2

(σa − ηa
i (τ ))κi(τ ) · (σ − ηi(τ ))

|σ − ηi(τ )|2
)

−
∫

d3σ1

4π |σ − σ1| ∂1a ∂τ

[
2 Γ (1)

a (τ ,σ1)

−
∫

d3σ2

∑
c ∂

2
2c Γ

(1)
c (τ ,σ2)

8π |σ1 − σ2|
]
,

σ(1)(a)(b)|a �=b(τ ,σ) = 1

2

(
∂a n̄(1)(b) + ∂b n̄(1)(a)

)
|a �=b(τ ,σ). (8.49)

Instead the linearization of the Hamilton equations for the tidal variables Rā(τ ,σ)

implies that they satisfy the following wave equation33 (� and � are the flat Laplacian
and the flat D’Alambertian on Στ (∞))

32 Quantities like |ηi(τ ) − ηj(τ )| are the Euclidean 3-distance between the two particles in the
asymptotic 3-space Στ (∞), which differs by quantities of order O(ζ) from the real non-Euclidean
3-distance in Στ as shown in Eq. (3.3) of the third paper in Ref. [88–90].
33 For the tidal momenta one gets 8πG

c3 Πā(τ ,σ) = [∂τ Rā −∑
a γāa ∂a n̄(1)(a)](τ ,σ) + O(ζ2),

so that the diagonal elements of the shear are σ(1)(a)(a)(τ ,σ) = [−∑
ā γāa ∂τ Rā + n̄(1)(a) −

1
3

∑
b n̄(1)(b)](τ ,σ)+ O(ζ2).
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∂2
τ Rā(τ ,σ) = �Rā(τ ,σ)+

∑
a

γāa

[
∂τ ∂a n̄(1)(a)

+ ∂2
a n(1) + 2 ∂2

a φ(1) − 2 ∂2
a Γ (1)

a +
8πG

c3 Taa
(1)

]
(τ ,σ). (8.50)

By using Eq. (8.49) this wave equation becomes

�
∑

b̄

Māb̄ Rb̄(τ ,σ) = Eā(τ ,σ),

Māb̄ = δāb̄ −
∑

a

γāa
∂2

a

�
(

2 γb̄a −
1

2

∑
b

γb̄b

∂2
b

�
)
,

Eā(τ ,σ) = 4πG

c3

∑
a

γāa

[∂τ ∂a

�
(

4 M(1)a − ∂a

�
∑

c

∂c M(1)c

)

+ 2 Taa
(1) +

∂2
a

�
∑

b

Tbb
(1)

]
(τ ,σ),

⇓
�

∑
b

M̃ab Γ
(1)

b (τ ,σ) =
∑

ā

γāa Eā(τ ,σ),

M̃ab =
∑
āb̄

γāa γb̄b Māb̄ = δab

(
1− 2

∂2
a

�
)
+ 1

2

(
1+ ∂2

a

�
) ∂2

b

� ,

∑
a

M̃ab = 0, Māb̄ =
∑
ab

γāa γb̄b M̃ab. (8.51)

To understand the meaning of the spatial operators Māb̄ and M̃ab, one must consider

the perturbation 4h(1)rs(τ ,σ) = −2 ε δrs (Γ
(1)

r +2φ(1))(τ ,σ) of Eq. (8.48) and apply
to it the following decomposition, given in Ref. [96],

4h(1)rs(τ ,σ) =
(

4hTT
(1)rs +

1

3
δrs H(1) + 1

2
(∂r ε(1)s + ∂s ε(1)r)

+ (∂r ∂s − 1

3
δrs�)λ(1)

)
(τ ,σ), (8.52)

with
∑

r ∂r ε(1)r = 0 and 4hTT
(1)rs traceless and transverse (TT), i.e.

∑
r

4hTT
(1)rr = 0,∑

r ∂r
4hTT

(1)rs = 0. Since one finds H(1)(τ ,σ) = −12 ε φ(1)(τ ,σ), λ(1)(τ ,σ) =
−3 ε

∑
u
∂2

u
�2 Γ

(1)
u (τ ,σ) and ε(1)r(τ ,σ) = −4 ε ∂r�

(
Γ

(1)
r −∑

u
∂2

u� Γ
(1)

u

)
(τ ,σ), it

turns out that the TT part of the spatial metric is independent from φ(1) and has the
expression
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4hTT
(1)rs(τ ,σ) = − ε

[(
2 Γ (1)

r +
∑

u

∂2
u

� Γ (1)
u

)
δrs−

− 2
∂r ∂s

� (Γ (1)
r + Γ (1)

s )+ ∂r ∂s

�
∑

u

∂2
u

� Γ (1)
u

]
(τ ,σ),

⇒ 4hTT
(1)aa(τ ,σ) = −2 ε

∑
b

M̃ab Γ
(1)

b (τ ,σ). (8.53)

Therefore the spatial operator M̃ab connects the tidal variables Rā(τ ,σ)of the York
canonical basis to the TT components of the 3-metric. By applying the decomposition
(8.52) to the spatial part Trs

(1)(τ ,σ) of the energy-momentum one verifies that like
in the harmonic gauges [95] the TT part of the 3-metric satisfies the wave equation
� 4hTT

rs (τ ,σ) = −ε 16πG
c3 T (TT)

(1)rs (τ ,σ).
The retarded solution of the wave equation with a no-incoming radiation condition

gives the following expression for the tidal variables (the HPM-GW)

Rā(τ ,σ) = −
∑

a

γāa Γ (1)
a (τ ,σ)

◦=
∑
ab

γāa M̃−1
ab (τ ,σ)

2 G

c3

∫
d3σ1

T (TT)bb
(1) (τ − |σ − σ1|;σ1)

|σ − σ1| ,

8πG

c3 Πā(τ ,σ) =
(∑

b̄

Māb̄ ∂τ Rb̄ −
∑

a

γāa

[4πG

c3

1

� (4 ∂a M(1)a

− ∂2
a

�
∑

c

∂c M(1)c)+ ∂2
a

3K(1)

])
(τ ,σ). (8.54)

The explicit form of the inverse operator is given in the second paper of
Ref. [88–90]. By using the multipolar expansion of the energy-momentum TAB

(1) of
Ref. [116–118] in the HPM version adapted to the rest-frame instant form of dynam-
ics of Ref. [59–61], one gets

Rā(τ ,σ) = −G

c3

∑
ab

γāa M̃−1
ab

∂2
τ q(TT)aa|ττ (τ − |σ|)

|σ| + (higher multipoles),

(8.55)
where q(TT)aa|ττ (τ ) is the TT mass quadrupole with respect to the center of energy
(put in the origin of the radar 4-coordinates). An analogous result holds for 4hTT

rs (τ ,σ)

and this implies a HPM relativistic version of the standard mass quadrupole emission
formula.

Moreover, notwithstanding there is no gravitational self-energy due to the Grass-
mann regularization, the energy, 3-momentum and angular momentum balance equa-
tions in HPM-GW emission are verified by using the conservation of the asymptotic
ADM Poincaré generators (the same happens with the asymptotic Larmor formula
of the electro-magnetic case with Grassmann regularization as shown in the last
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paper of Ref. [62–64]). See Refs. [95, 155–163] for the use of the self-energy in the
standard derivation of this result by means of PN expansions.

Equations (8.49) and (8.54) show that the HPM linearization with no-incoming
radiation condition and Grassmann regularization is a theory with only dynamical
matter interacting through suitable action-at-a-distance and retarded effective poten-
tials. Instead in relativistic atomic physics in SR the no-incoming radiation condition
and the Grassmann regularization kill also the retardation leaving only the action-
at-a-distance inter-particle Coulomb plus Darwin potentials. See Eq. (7.22) of the
second paper of Ref. [88–90] for the expression of the weak ADM energy till order
O(ζ3).

Moreover it can be shown that the coordinate transformation τ̄ = τ , σ̄r = σr +
1
2
∂r�

(
4 Γ

(1)
r −∑c

∂2
c� Γ

(1)
c

)
(τ ,σ), introducing new τ -dependent radar 3-coordinates

on the 3-space Στ , allows one to make a transition from the 3-orthogonal gauge with
the 4-metric given by Eqs. (8.48) and (8.49) to a generalized non-3-orthogonal TT
gauge containing the TT 3-metric (8.53)

4g(1)AB = 4ηAB

+ ε
⎛
⎜⎝

−2 ∂τ
Δ

3K(1) + α(matter) −∂r
Δ

3K(1) + Ar(Γ
(1)

a )+ βr(matter)

−∂s
Δ

3K(1) + As(Γ
(1)

a )+ βs(matter)
[
Br(Γ

(1)
a )+ γ(matter)

]
δrs

⎞
⎟⎠

+ O(ζ2),

⇓

4ḡAB = 4ηAB + ε
⎛
⎝−2 ∂τ

Δ
3K(1) + α(matter) − ∂r

Δ
3K(1) + βr(matter)

−∂s
Δ

3K(1) + βs(matter) ε 4hTT
(1)rs + δrs γ(matter)

⎞
⎠

+ O(ζ2). (8.56)

The functions appearing in Eq. (8.56) are: Ar(Γ
(1)

a ) = − 1
2 ∂τ

∂r�
(

4 Γ
(1)

r −∑
c
∂2

c� Γ
(1)

c

)
, Br(Γ

(1)
a ) = −2

(
Γ

(1)
r + 1

2

∑
c
∂2

c� Γ
(1)

c

)
, α(matter) = 8πG

c3
1
�(

M(1) + ∑
c Tcc

(1)

)
, βr(matter) = − 4πG

c3
1
�
(

4 M(1)r − ∂r�
∑

c ∂c M(1)c

)
,

γ(matter) = 8πG
c3

1
�M(1).

Also in absence of matter this TT gauge differs from the usual harmonic ones for
the non-spatial terms depending upon the inertial gauge variable non-local York time

3K(1)(τ ,σ) = 1

�
3K(1)(τ ,σ), (8.57)

describing the HPM form of the gauge freedom in clock synchronization.
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If one uses the coordinate system of the generalized TT gauge, one can introduce
the standard polarization pattern of GW for 4hTT

rs (see Refs. [95, 96, 164]) and then
the inverse transformation gives the polarization pattern of HPM-GW in the family
of 3-orthogonal gauges.

If the matter sources have a compact support and if the matter terms 1
�M(1)(τ ,σ)

and 1
�M(1)r(τ ,σ) are negligible in the radiation zone far away from the sources, then

Eq. (8.56) gives a spatial TT-gauge with still the explicit dependence on the inertial
gauge variable 3K(1)(τ ,σ) (non existing in Newtonian gravity), which determines
the non-Euclidean nature of the instantaneous 3-spaces. Then one can study the far
field of compact matter sources: the restriction to the Solar System of the resulting
HPM 4-metric34 is compatible with the harmonic PN 4-metric of BCRS [11–13]
if the non-local York time is of order c−2. The resulting shift function should be
used for the HPM description of gravito-magnetism (see Refs. [84, 165–171] for the
Lense-Thirring and other associated effects).

The TT gauge allows one to reproduce the various descriptions of the GW detec-
tors and of the reference frames used in GW detection in terms of HPM-GW: this is
done in Subsection VIID of the second paper of Ref. [88–90], where the effect of a
HPM-GW on a test mass is given in terms of the proper distance between two nearby
geodesics.

The HPM-GW propagate in non-Euclidean instantaneous 3-spaces Στ differ-
ing from the inertial asymptotic Euclidean 3-spaces Στ (∞) at the first order. In
the family of 3-orthogonal gauges with York time 3K(1)(τ ,σ) ≈ F(1)(τ ,σ) =
numerical function, the dynamically determined 3-spaces Στ have an intrinsic
3-curvature 3R̂|θi=0 = 2

∑
a ∂

2
a Γ

(1)
a determined only by the HPM-GW (and there-

fore by the matter energy-momentum tensor in the past as shown by Eq. (8.54)).
Their extrinsic curvature tensor as sub-manifolds of space-time is

3K(1)rs ≈ σ(1)(r)(s)|r �=s+δrs

(1

3
F(1)−∂τ Γ (1)

r +∂r n̄(1)(r)−
∑

a

∂a n̄(1)(a)

)
, (8.58)

with n̄(1)(r), σ(1)(r)(s)|r �=s and Γ
(1)

r given in Eqs. (8.49) and (8.54). The York time
appears only in Eq. (8.58): all the other PM quantities depend on the non-local York
time 3K(1)(τ ,σ) ≈ 1

� F(1)(τ ,σ)

In the third paper of Refs. [88–90], where the matter is restricted only to the
particles,35 one evaluates all the properties of these HPM space-times:

(a) the 3-volume element, the 3-distance and the intrinsic and extrinsic 3-curvature
tensors of the 3-spaces Στ ;

(b) the proper time of a time-like observer;

34 See Eq. (7.20) of the second paper in Ref. [88–90], where 4gττ (τ ,σ) and 4gτr(τ ,σ) are explicitly
depending on the non-local York time.
35 The properties of HPM transverse electro-magnetic fields have still to be explored.
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(c) the time-like and null 4-geodesics (they are relevant for the definition of the
radial velocity of stars as shown in the IAU conventions of Ref. [172] and in
study of time delays [167–171, 173–175]);

(d) the red-shift and luminosity distance. In particular one finds that the recessional
velocity of a star is proportional to its luminosity distance from the Earth at
least for small distances. This is in accord with the Hubble old red-shift-distance
relation which is formalized in the Hubble law (velocity-distance relation) when
the standard cosmological model is used (see for instance Ref. [97] on these
topics). These results have a dependence on the non-local York time, which
could play a role in giving a different interpretation of the data from super-novae,
which are used as a support for dark energy [1, 2].

Finally, in Subsection IIIB of the second paper in Refs. [88–90] it is shown that
this HPM linearization can be interpreted as the first term of a HPM expansion
in powers of the Newton constant G in the family of 3-orthogonal gauges. This
expansion has still to be studied. In particular it will be useful to check whether in the
HPM formulation there are phenomena (appearing at high orders in the standard PN
expansions) like the hereditary tails starting from 1.5PN [O(( v

c )3)] and the non-linear
(Christodoulou) memory starting from 3PN (see Ref. [176] for a review).36 This
would allow one to make a comparison with all the results of the PN expansions, in
which today there is control on the GW solution and on the matter equations of motion
till order 3.5PN [O(( v

c )7)] (for binaries see the review in chapter 4 of Ref. [95]) and
well established connections with numerical relativity (see the review in Ref. [177])
especially for the binary black hole problem (see the review in Ref. [178]).

8.8 Post-Minkowskian Hamilton Equations for Particles,
their Post-Newtonian Limit and Dark Matter
as a Relativistic Inertial Effect

The PM Hamilton equations and their PN limit in 3-orthogonal gauges for a system
of N scalar particles of mass mi and Grassmann-valued signs of energy ηi is discussed
in this Section by using the results of the third paper in Ref. [88–90]. See Refs. [141,
164, 179, 180] for classical texts on the motion of particles in gravitational fields
and Refs. [146–149, 181–184] for more recent developments.37

36 They imply that GW propagate not only on the flat light-cone but also inside it (i.e. with all possible
speeds 0 ≤ v ≤ c): there is an instantaneous wavefront followed by a tail traveling at lower speed
(it arrives later and then fades away) and a persistent zero-frequency non-linear memory.
37 In this approach point particles are considered as independent matter degrees of freedom with
a Grassmann regularization of the self-energies to get well defined world-lines (see also Ref. [183,
184]): they are not considered as point-like singularities of solutions of Einstein’s equations (the
point of view of Ref. [179]). Solutions of this type have to be described with distributions and, as
shown in Ref. [185], the most general class of such solutions under mathematical control includes
singularities simulating matter shells, but not either strings or particles. See also Ref. [186].



8 From Clock Synchronization to Dark Matter as a Relativistic Inertial Effect 321

The treatment in the 3-orthogonal gauges of the PM Hamilton equations for
the electro-magnetic field in the radiation gauge is given in the second paper of
Ref. [88–90], while the PM Hamilton equations for perfect fluids are given in
Ref. [91].

With only particles the PM approximation with the ultraviolet cutoff M implies
κi(τ ) = mic η̇i(τ )√

1−η̇2
i (τ )
+Mc O(ζ), M(1)(τ ,σ) =∑

i δ
3(σ,ηi(τ )) ηi

mic√
1−η̇2

i (τ )
+O(ζ2),

M(1)r(τ ,σ) = ∑
i δ

3(σ,ηi(τ )) ηi
mic η̇ir(τ )√

1−η̇2
i (τ )
+ O(ζ2). Moreover one has η̈i(τ ) =

O(ζ). The notation ȧ(τ ) = da(τ )
dτ is used.

One can make a equal time development of the retarded kernel in Eq. (8.54)
like in Ref. [62–64] for the extraction of the Darwin potential from the Lienard-
Wiechert solution (see Eqs. (5.1)–(5.21) of Ref. [62–64] with

∑
s Prs⊥(σ) η̇s

i (τ ) �→∑
uv Pbbuv(σ)

η̇u
i (τ ) η̇v

i (τ )√
1−η̇2

i (τ )
). In this way one gets the following expression of the HPM

GW from point masses

Γ (1)
a (τ ,σ)

◦= − 2 G

c2

∑
b

M̃−1
ab (σ)

∑
i

ηi mi

∑
uv

Pbbuv(σ)
η̇u

i (τ ) η̇v
i (τ )√

1− η̇2
i (τ )

[
|σ − ηi(τ )|−1 +

∞∑
m=1

1

(2m)!
(
η̇i(τ ) ·

∂

∂ σ

)2m |σ − ηi(τ )|2m−1
]

+ O(ζ2),

Prsuv = 1

2
(δru δsv + δrv δsu)

− 1

2

(
δrs − ∂r ∂s

�
)
δuv + 1

2

(
δrs + ∂r ∂s

�
) ∂u ∂v

�
− 1

2

[∂u

� (δrv ∂s + δsv ∂r)+ ∂v

� (δru ∂s + δsu ∂r)
]
, (8.59)

with the retardation effects pushed to order O(ζ2).
If the lapse and shift functions are rewritten in the form n(1) = ň(1) − ∂τ 3K(1),

n̄(1)(r) = ˇ̄n(1)(r)+∂r
3K(1), to display their dependence on the inertial gauge variable

non-local York time, it can be shown that the PM Hamilton equations for the particles
imply the following form of the PM Grassmann regularized second-order equations
of motion showing explicitly the equality of the inertial and gravitational masses of
the particles

mi ηi η̈
r
i (τ )

◦=ηi

√
1− η̇2

i (τ )
(
F r

i − η̇r
i (τ ) η̇i(τ ) · Fi

)
(τ |ηi(τ )|ηk �=i(τ ))

def= ηi Fr
i (τ |ηi(τ )|ηk �=i(τ )),
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ηi F r
i (τ |ηi(τ )|ηk �=i(τ ))

= mi ηi√
1− η̇2

i (τ )

(
− ∂ ň(1)(τ ,ηi(τ ))

∂ ηr
i

+ η̇r
i (τ )

1− η̇2
i (τ )

∑
u

[
η̇u

i (τ )
∂ ň(1)

∂ ηu
i
+

∑
j �=i

η̇u
j (τ )

∂ ň(1)

∂ ηu
j

]
(τ ,ηi(τ ))

+
(∑

u

η̇u
i (τ )

[∂ ˇ̄n(1)(u)

∂ ηr
i
− ∂ ˇ̄n(1)(r)

∂ ηu
i

]
−

∑
j �=i

∑
u

η̇u
j (τ )

∂ ˇ̄n(1)(r)

∂ ηu
j

− η̇r
i (τ )

1− η̇2
i (τ )

∑
u

η̇u
i (τ )

∑
s

[
η̇s

i (τ )
∂ ˇ̄n(1)(u)

∂ ηs
i

+
∑
j �=i

η̇s
j (τ )

∂ ˇ̄n(1)(u)

∂ ηs
j

])
(τ ,ηi(τ ))+

(∑
u

(η̇u
i (τ ))2 ∂ (Γ

(1)
u + 2φ(1))

∂ ηr
i

− η̇r
i (τ )

∑
u

[
η̇u

i (τ )
(

2
∂ (Γ

(1)
r + 2φ(1))

∂ ηu
i

+
∑

c

(η̇c
i (τ ))

2

1− η̇2
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∂ (Γ
(1)

c + 2φ(1))

∂ ηu
i

)

+
∑
j �=i

η̇u
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(
2
∂ (Γ

(1)
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∂ ηu
j

+
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(η̇c
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2

1− η̇2
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∂ (Γ
(1)

c + 2φ(1))

∂ ηu
j
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(τ ,ηi(τ ))

− η̇r
i (τ )

1− η̇2
i (τ )

[
∂2
τ |ηi

3K(1) + 2
∑

s

η̇s
i (τ )

∂ ∂τ |ηi
3K(1)

∂ ηs
i

+
∑
su

η̇s
i (τ ) η̇

u
i (τ )

∂2 3K(1)

∂ ηu
i ∂ η

s
i

]
(τ ,ηi(τ ))

)
+ O(ζ2). (8.60)

The effective action-at-a-distance force Fi(τ ) contains

(a) the contribution of the lapse function ň(1), which generalizes the Newton force;
(b) the contribution of the shift functions ˇ̄n(1)(r), which gives the gravito-magnetic

effects;
(c) the retarded contribution of HPM GW, described by the functions Γ

(1)
r of

Eq. (8.59);
(d) the contribution of the volume element φ(1) (φ̃ = 1 + 6φ(1) + O(ζ2)), always

summed to the HPM GW, giving forces of Newton type;
(e) the contribution of the inertial gauge variable (the non-local York time) 3K(1) =

1
�

3K(1).

In the electro-magnetic case in SR [65, 66] the regularized coupled second-order
equations of motion of the particles obtained by using the Lienard-Wiechert solutions
for the electro-magnetic field are independent by the type of Green function (retarded
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or advanced or symmetric) used. The electro-magnetic retardation effects, killed by
the Grassmann regularization, are connected with QED radiative corrections to the
one-photon exchange diagram. This is not strictly true in the gravitational case. The
effect of retardation is not killed by the Grasmann regularization but only pushed to
O(ζ2): at this order it should give extra contributions to the second-order equations
of motion. This shows that our semi-classical approximation, obtained with our
Grassmann regularization, of a unspecified “quantum gravity” theory does not take
into account only a “one-graviton exchange diagram”: in the spin 2 case there is an
extra retardation effect showing up only at higher HPM orders.38

8.8.1 The Center-of-Mass Problem in General Relativity
and in the HPM Linearization

As said in Sect. 5, the 3-universe is described in a non inertial rest frame with non-
Euclidean 3-spaces Στ tending to Euclidean inertial ones Στ (∞) at spatial infinity.
Both matter and gravitational degrees of freedom live inside Στ and their internal
3-center of mass is eliminated by the rest-frame condition P̂r

ADM ≈ 0 (implied by
the absence of super-translations) if also the condition K̂r

ADM = Ĵτr
ADM ≈ 0 is added

like in SR. The 3-universe may be described as an external decoupled center of
mass carrying a pole-dipole structure: ÊADM is the invariant mass and Ĵrs

ADM the rest
spin. As in SR the condition K̂r

ADM ≈ 0 selects the Fokker - Pryce center of inertia
as the natural time-like observer origin of the radar coordinates: it follows a non-
geodetic straight world-line like the asymptotic inertial observers existing in these
space-times.

This is a way out from the the problem of the center of mass in general relativity
and of its world-line, a still open problem in generic space-times as can be seen
from Refs. [116–118, 187–193] (and Refs. [146–149] for the PN approach). Usually,
by means of some supplementary condition, the center of mass is associated to the
monopole of a multipolar expansion of the energy-momentum of a small body (see
Refs. [59–61] for the special relativistic case).

In SR the elimination of the internal 3-center of mass leads to describe the dynam-
ics inside Στ only in terms of relative variables (see Eq. (8.15) in the case of parti-
cles). However relative variables do not exist in the non-Euclidean 3-spaces of curved
space-times, where flat objects like rij(τ ) = ηi(τ )− ηj(τ ) have to be replaced with
a quantity proportional to the tangent vector to the space-like 3-geodesics joining
the two particles in the non-Euclidean 3-space Στ (see Ref. [194] for an implemen-
tation of this idea). Quantities like r2

ij(τ ) have to be replaced with the Synge world

38 In the electro-magnetic case the Grassmann regularization implies Qi η̇
r
i (τ−|σ|) = Qi η̇i(τ ) and

equations of motion of the type η̈r
i (τ ) = Qi . . . with Q2

i = 0. In the gravitational case the equations
of motion are of the type ηi η̈

r
i (τ ) = ηi . . . with η2

i = 0, but the Grassmann regularized retardation
in Eq. (8.54) gives Eq. (8.59) only at the lowest order in ζ and has contributions of every order
O(ζk).
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function [173–175, 180, 183, 184].39 This problem is another reason why extended
objects tend to be replaced with point-like multipoles, which, however, do not span
a canonical basis of phase space (see Refs. [59–61] for SR).

However, at the level of the HPM approximation one can introduce relative vari-
ables for the particles, like the SR ones of Eq. (8.15), defined as 3-vectors in the
asymptotic inertial rest frame Στ (∞) by putting ηi(τ ) = η(o)i(τ ) + η(1)i(τ ) and
κi(τ ) = κ(o)i(τ ) + κ(1)i(τ ) with η(o)i(τ ), κ(o)i(τ ) = O(ζ). This allows one to
define HPM collective and relative canonical variables for the particles, with the
collective variables eliminated by the conditions P̂r

ADM ≈ 0 and K̂r
ADM ≈ 0 (at the

lowest order they become the SR conditions).
In the case of two particles (with total and reduced masses M = m1+m2 and μ =

m1 m2
M ) one puts η1(τ ) = η12(τ )+ m2

M ρ12(τ ), η2(τ ) = η12(τ )− m1
M ρ12(τ ), κ1(τ ) =

m1
M κ12(τ ) + π12(τ ), κ2(τ ) = m2

M κ12(τ ) − π12(τ ) and goes to the new canonical

basis η12(τ ) = m1 η1(τ )+m2 η2
M , ρ12(τ ) = η1(τ )− η2(τ ), κ12(τ ) = κ1(τ )+ κ2(τ ),

π12(τ ) = m2 κ1(τ )−m1 κ2(τ )
M .

It can be shown that the conditions P̂r
ADM ≈ 0 and K̂r

ADM ≈ 0 imply

η1(τ ) ≈
(m2

M
− A(o)(τ )

)
ρ(o)12(τ )+

m2

M
ρ(1)12(τ )+ f (1)(τ )[rel.var., GW ],

η2(τ ) ≈ −
(m1

M
+ A(o)(τ )

)
ρ(o)12(τ )−

m1

M
ρ(1)12(τ )+ f (1)(τ )[rel.var., GW ],

A(o)(τ ) =
m2
M

√
m2

1 c2 + π2
(1)12(τ )− m1

M

√
m2

2 c2 + π2
(1)12(τ )√

m2
1 c2 + π2

(1)12(τ )+
√

m2
2 c2 + π2

(1)12(τ )
, (8.61)

for some function f (1)[rel.var., GW ](τ ) ≈ η(1)12(τ ) depending on the relative vari-
ables and the HPM GW of Eq. (8.59) in absence of incoming radiation. Then the
equations of motion (8.60) imply

μ ρ̈r
(o)12(τ )

◦= m2

M
Fr

1

(
τ |η(o)1(τ )|η(o)2(τ )

)− m1

M
Fr

2

(
τ |η(o)2(τ )|η(o)1(τ )

)
, (8.62)

for the relative configurational variable. The collective configurational variable has
η(o)12(τ ) ≈ −A(o)(τ )ρ(o)12(τ ) at the lowest order, while at the first order there is

an equation of motion equivalent to η̈r
(1)12(τ ) ≈ d2

dτ2 f (1)[rel.var., GW ] (τ ).

39 It is a bi-tensor, i.e. a scalar in both the points ηi(τ ) and ηj(τ ), defined in terms of the space-like
geodesic connecting them in Στ . See Eq. (3.13) of the third paper in Ref. [88–90].
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8.8.2 The Post-Newtonian Expansion at all Orders in the Slow
Motion Limit

If all the particles are contained in a compact set of radius lc, one can add a slow

motion condition in the form
√
ε = v

c ≈
√

Rmi
lc

, i = 1, . . . , N (Rmi = 2 G mi
c2 is the

gravitational radius of particle i) with lc ≥ RM and λ >> lc (see the Introduction).
In this case one can do the PN expansion of Eqs. (8.60).

After having put τ = c t, one makes the following change of notation

ηi(τ ) = η̃i(t), vi(t) = dη̃i(t)

dt
, ai(t) = d2η̃i(t)

dt2 ,

η̇i(τ ) =
vi(t)

c
, η̈i(τ ) =

ai(t)

c2 . (8.63)

For the non-local York time one uses the notation 3K̃(1)(t,σ) = 3K(1)(τ ,σ).
Then one studies the PN expansion of the equations of motion (8.60) with the

result (kPN means of order O(c−2k))

mi
d2 η̃r

i (t)
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[
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∂ ∂t |η̃ i
3K̃(1)

∂ η̃u
i

+
∑
uv

vu
i (t) vv

i (t)
∂2 3K̃(1)

∂ η̃u
i ∂ η̃

v
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)
(t, η̃i(t))

]
+ Fr

i(1PN)(t)+ (higher PN orders). (8.64)

At the lowest order one finds the standard Newton gravitational force Fi(Newton)(t) =
−mi G ∂

∂ η̃r
i

∑
j �=i

mj
|η̃i(t)−η̃j(t)| .

The unexpected result is a 0.5 PN force term containing all the dependence upon
the non-local York time. The (arbitrary in these gauges) double rate of change in time
of the trace of the extrinsic curvature creates a 0.5 PN damping (or anti-damping since
the sign of the inertial gauge variable 3K(1) of Eq. (8.57) is not fixed) effect on the
motion of particles. This is a inertial effect (hidden in the lapse function) not existing
in Newton theory where the Euclidean 3-space is absolute.

Then there are all the other kPN terms with k = 1, 1.5, 2, . . . Since these results
have been obtained without introducing ad hoc Lagrangians for the particles, are not
in the harmonic gauge and do not contain terms of order O(ζ2) and higher, it is not
possible to make a comparison with the standard PN expansion (whose terms are
known till the order 3.5PN [95]). Therefore only the 1PN and 0.5PN terms will be
considered in the next two Subsections.
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8.8.3 The HPM Binaries at the 1PN Order

Since in the next Subsection the 0.5PN term depending on the non-local York time
will be connected with dark matter at the level of galaxies and clusters of galaxies
and since there is no convincing evidence of dark matter in the Solar System and near
the galactic plane of the Milky Way [195], it is reasonable to assume 3K(1)(τ ,σ) =
1
� F(1)(τ ,σ) ≈ 0 near a star with planets and near a binary.

In the description of Subsection 8.1 of the 1PN two-body problem, which is
relevant for the treatment of binary systems40 as shown in Chapter VI of Refs. [95]
based on Ref. [98, 99, 157, 196–199], it can be shown that the relative momentum

in the rest frame has the 1PN expression π12(τ ) = π(1)12(τ ) ≈ μ v(rel)(o)12(t)
[
1+

m3
1+m3

2
2 M3 (

v(rel)(o)12(t)
c )2

]
, where v(rel)(o)12(t) = d ρ(o)12(t)

dt is the velocity of the lowest

order ρ(o)12(τ ) of the relative variable.
If one ignores the York time and considers only positive energy particles

(η1, η2 �→ +1), the 1PN equations of motion for the relative variable of the binary
implied by Eqs. (8.62) and 1PN expression of the weak ADM energy ÊADM and of
the rest spin Ĵrs

ADM (being determined by the boundary conditions they are constants
of the motion implying planar motion in the plane orthogonal to the rest spin ) can
be shown to be

d v(rel)(o)12(t)
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. (8.65)

40 For binaries one assumes v
c ≈

√
Rm
lc

<< 1, where lc ≈ |r̃| with r̃(t) being the relative separation
after the decoupling of the center of mass. Often one considers the case m1 ≈ m2. See chapter 4
of Ref. [95] for a review of the emission of GW’s from circular and elliptic Keplerian orbits and of
the induced inspiral phase.
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Our 1PN equations (8.65) in the 3-orthogonal gauges coincide with Eqs. (2.5),
(2.13) and (2.14) of the first paper in Ref. [98, 99] (without G2 terms since they are
O(ζ2)), which are obtained in the family of harmonic gauges starting from an ad hoc
1PN Lagrangian for the relative motion of two test particles (first derived by Infeld
and Plebanski [179]).41 These equations are the starting point for studying the post-
Keplerian parameters of the binaries, which, together with the Roemer, Einstein and
Shapiro time delays (both near Earth and near the binary) in light propagation, allow
one to fit the experimental data from the binaries (see the second paper in Ref. [98,
99] and Chapter VI of Ref. [95]). Therefore these results are reproduced also in our
3-orthogonal gauge with 3K(1)(τ ,σ) = 0.

8.8.4 From the Three Signatures for Dark Matter Reinterpreted
as Relativistic Inertial Effects Induced by the York Time to
the Need of a PM ICRS

To study the effects induced by the 0.5PN velocity-dependent (friction or anti-
friction) force term in Eq. (8.64), depending on the inertial gauge variable non-local
York time 3K̃(1)(t,σ) = 1

�
3K̃(1)(τ ,σ) ≈ 1

� F(1)(τ ,σ) with F(1)(τ ,σ) arbitrary
numerical function, it is convenient to rewrite such equations in the form

d

dt

[
mi

(
1+ 1

c

d

dt
3K̃(1)(t, η̃i(t))

) d η̃r
i (t)

dt

]
◦= − G

∂

∂ η̃r
i

∑
j �=i

ηj
mi mj

|η̃i(t)− η̃j(t)|
+O(ζ2), (8.66)

because the damping or anti-damping factors in Eq. (8.64) areγi(t, η̃i(t)) = d2

dt2
3K̃(1)

(t, η̃i(t)) and ¨̃ηi(t) = O(ζ).
As a consequence the velocity-dependent force can be reinterpreted as the intro-

duction of an effective (time-, velocity- and position-dependent) inertial mass term
for the kinetic energy of each particle:

mi �→ mi

(
1+ 1

c

d

dt
3K̃(1)(t, η̃i(t))

)
= mi + (Δ m)i(t, η̃i(t)), (8.67)

in each instantaneous 3-space. Instead in the Newton potential there are the gravita-
tional masses of the particles, equal to the inertial ones in the 4-dimensional space-
time due to the equivalence principle. Therefore the effect is due to a modification
of the effective inertial mass in each non-Euclidean 3-space depending on its shape
as a 3-sub-manifold of space-time: it is the equality of the inertial and gravitational

41 This is also the starting point of the effective one body description of the two-body problem of
Refs. [181, 182].
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masses of Newtonian gravity to be violated! In Galilei space-time the Euclidean
3-space is an absolute time-independent notion like Newtonian time: the non-
relativistic non-inertial frames live in this absolute 3-space differently from what
happens in SR and GR, where they are (in general non-Euclidean) 3-sub-manifolds
of the space-time.

Equations (8.64), (8.66) and (8.67) can be applied to the three main signatures
of the existence of dark matter in the observed masses of galaxies and clusters of
galaxies, where the 1PN forces are not important, namely the virial theorem [103–
105], the weak gravitational lensing [103–107] and the rotation curves of spiral
galaxies (see Ref. [100–102] for a review), to give a reinterpretation of dark matter
as a relativistic inertial effect.

A) Masses of Clusters of Galaxies from the Virial Theorem. For a bound system
of N particles of mass m (N equal mass galaxies) at equilibrium, the virial theorem
relates the average kinetic energy < Ekin > in the system to the average potential
energy < Upot > in the system: < Ekin >= − 1

2 < Upot > assuming Newton
gravity. For the average kinetic energy of a galaxy in the cluster one takes < Ekin >

≈ 1
2 m < v2 >, where < v2 > is the average of the square of the radial velocity of

single galaxies with respect to the center of the cluster (measured with Doppler shift
methods; the velocity distribution is assumed isotropic). The average potential energy
of the galaxy is assumed of the form < Upot >≈ −G m M

R , where M = Nm is the total
mass of the cluster and R = αR is a “effective radius” depending on the cluster size
R (the angular diameter of the cluster and its distance from Earth are needed to find R)
and on the mass distribution on the cluster (usuallyα ≈ 1/2). Then the virial theorem
implies M ≈ R

G < v2 >. It turns out that this mass M of the cluster is usually at least
an order of magnitude bigger that the baryonic matter of the cluster Mbar = N m
(spectroscopically determined). By applying Eq. (8.64) to the equilibrium condition
for a self-gravitating system, i.e. d2

dt2

∑
i mi | η̃i(t) |2= 0 with mi = m, one gets∑

i mi v
2
i (t) − G

∑
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mi mj
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1
c
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)
γi(t, η̃i(t)) = 0 with

mi = mj = m. Therefore one can write 〈Upot〉 = − 1
N
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G m2

|η̃i(t)−η̃j(t)| ≈ G m MbarR
(with R = R/2) and 1

2 m 〈v2〉 = − 1
2 〈Upot〉 + m
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(
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)
γ(t, η̃)〉 with the notation

〈
(
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γ(t, η̃)〉 = 1

N

∑
i

(
η̃i(t) · vi(t)

)
γi(t, η̃i(t)) (it contains the non-local York

time). Therefore for the measured mass M (the effective inertial mass in 3-space)
one has

M = R
G

< v2 >= Mbar + R
G c

〈(
η̃ · v

)
γ(t, η̃)

〉
def=Mbar +MDM , (8.68)

and one sees that the non-local York time can give rise to a dark matter contribution
MDM = M −Mbar .

B) Masses of galaxies or clusters of galaxies from weak gravitational lensing.
Usually one considers a galaxy (or a cluster of galaxies) of big mass M behind which
a distant, bright object (often a galaxy) is located. The light from the distant object is
bent by the massive one (the lens) and arrives on the Earth deflected from the origi-
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nal propagation direction. As shown in Refs. [106, 107] one has to evaluate Einstein
deflection of light, emitted by a source S at distance dS from the observer O on the
Earth, generated by the big mass at a distance dD from the observer O. The mass M,
at distance dDS from the source S, is considered as a point-like mass generating a
4-metric of the Schwarzschild type (Schwarzschild lens). The ray of light is assumed
to propagate in Minkowski space-time till near M, to be deflected by an angle α by
the local gravitational field of M and then to propagate in Minkowski space-time
till the observer O. The distances dS , dD, dDS , are evaluated by the observer O at
some reference time in some nearly-inertial Minkowski frame with nearly Euclidean
3-spaces (in the Euclidean case dDS = dS − dD). If ξ = θ dD is the impact para-
meter of the ray of light at M and if ξ >> Rs = 2 G M

c2 (the gravitational radius),

Einstein’s deflection angle is α = 2 Rs
ξ = 4 G M

c2 ξ
and the so-called Einstein radius

(or characteristic angle) is αo =
√

2 Rs
dDS

dD dS
=

√
4 G M

c2
dDS

dD dS
. A measurement of

the deflection angle and of the three distances allows to get a value for the mass
M of the lens, which usually turns out to be much larger of its mass inferred from
the luminosity of the lens. For the calculation of the deflection angle one considers
the propagation of ray of light in a stationary 4-metric of the BCRS type and uses
a version of the Fermat principle containing an effective index of refraction n. One
has n = 4gττ = ε [1 − 2w

c2 − 2 ∂τ 3K] in the PM approximation. Since one has

2 w
c2 = −G Mbar

c2 |σ| , the definition 2 ∂τ 3K(1)
def= − G MDM

c2 |σ| leads to an Einstein deflection
angle

α = 4 G M

c2 ξ
with M

def= Mbar +MDM . (8.69)

Therefore also in this case the measured mass M is the sum of a baryonic mass
Mbar and of a dark matter mass MDM induced by the non-local York time at the
location of the lens.

C) Masses of Spiral Galaxy Masses from Their Rotation Curves. In this case one
considers a two-body problem (a point-like galaxy and a body circulating around it)
described in terms of an internal center of mass η̃12(t) ≈ η̃(1)12(t) (η̃(o)12(t) = 0
is the origin of the 3-coordinates) and a relative variable ρ̃12(t). Then the sum and
difference of Eqs. (8.64) imply the equations of motion for η̃(1)12(t) and ρ̃12(t).
While the first equation implies a small motion of the overall system, the second one
has the form

d2 ρ̃r
(1)12(t)

dt2
◦=−G M
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12(t)
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− 1

c
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×
(
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M
ρ̃1212(t), v(t)

)
,

(8.70)
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where γi are the damping or anti-damping factors defined after Eq. (8.66). Equation
(8.70) gives the two-body Kepler problem with an extra perturbative force. Without
it a Keplerian solution with circular trajectory such that | ρ̃12(t) | =R = const.
implies that the Keplerian velocity vo(t) = vo n̂(t) has the modulus vanishing

at large distances, vo =
√

G M
R →R→∞ 0. Instead the rotation curves of spi-

ral galaxies imply that the relative 3-velocity goes to constant for large R, i.e.

v =
√

G (Mbar+Δ M(r))
r →R→∞ const. (Mbar is the spectroscopically determined

baryon mass), so that the extra required term Δ M(r) is interpreted as the mass MDM

of a dark matter halo.
The presence of the extra force term implies that the velocity must be written

as v(t) = vo(t) + v1(t) with v1(t) a first order perturbative correction satisfying
dvr

1(t)
dt = − vr

o
c n̂(t) γ+(t, ρ̃12(t), v

r
o(t)). Therefore at the first order in the perturbation

one gets v2(t) = v2
o

(
1 − 2

c n̂(t) · ∫ t
o dt1 n̂(t1) γ+(t1, ρ̃12(t1), vo(t1))

)
. Therefore,

after having taken a mean value over a period T (the time dependence of the mass
of a galaxy is not known) the effective mass of the two-body system is

Meff = 〈v
2〉R
G
= M

(
1−

〈
2

c
n̂(t) ·

∫ t

dt1 n̂(t1) γ+(t1, ρ̃12(t1), vo(t1))

〉)
= Mbar +MDM . (8.71)

with a Δ M(r) = MDM function only of the mean value of the total time derivative
of the non-local 3K(1) to be fitted to the experimental data.

Therefore, the existence of the inertial gauge variable York time, a property of the
non-Euclidean 3-spaces as 3-sub-manifolds of Einstein space-times (connected only
to the general relativistic remnant of the gauge freedom in clock synchronization,
independently from cosmological assumptions) implies the possibility of describing
part (or maybe all) dark matter as a relativistic inertial effect in Einstein gravity
without alternative explanations using:

(1) the non-relativistic MOND approach [200] (where one modifies Newton equa-
tions);

(2) modified gravity theories like the f (R) ones (see for instance Refs. [201]; here
one gets a modification of the Newton potential);

(3) the assumption of the existence of WIMP particles [202].

Let us also remark that the 0.5PN effect has origin in the lapse function and not
in the shift one, as in the gravito-magnetic elimination of dark matter proposed in
Ref. [203].

The open problem with this explanation of dark matter is the determination of the
non-local York time from the data on dark matter. From what is known about dark
matter in the Solar System and inside the Milky Way near the galactic plane, it seems
that 3K(1)(τ ,σ) is negligible near the stars inside a galaxy. Instead the non-local York
time (or better a mean value in time of its total time derivative) should be relevant
around the galaxies and the clusters of galaxies, where there are big concentrations
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of mass and well defined signatures of dark matter. Instead there is no indication on
its value in the voids existing among the clusters of galaxies.

Therefore the known data on dark matter do not allow one to get an experimental
determination of the York time 3K(1)(τ ,σ) = � 3K(1)(τ ,σ), because to do it one
needs to know the non-local York time on all the 3-universe at a given τ .

Since, as said in the Introduction, at the experimental level the description of mat-
ter is intrinsically coordinate-dependent, namely is connected with the conventions
used by physicists, engineers and astronomers for the modeling of space-time, one
has to choose a gauge (i.e. a 4-coordinate system) in non-modified Einstein grav-
ity which is in agreement with the observational conventions in astronomy. This
way out from the gauge problem in GR requires a choice of 3-coordinates on the
instantaneous 3-spaces identified by a choice of time and by a clock synchronization
convention, i.e. a fixation of the York time 3K(1)(τ ,σ). The convention resulting by
one set of such choices would give a PM extension of ICRS, with BCRS being its
quasi-Minkowskian approximation for the Solar System. Since the existing ICRS
[5–9, 11–13] has diagonal 3-metric, 3-orthogonal gauges are a convenient choice.

The real problem is the extraction of an indication of which kind of function of
time and 3-coordinates to use for the York time 3K(1)(τ ,σ) from astrophysical data
different from the ones giving information about dark matter. Once one would have
a phenomenological parametrization of the York time, then the data on dark matter
would put restrictions on the induced phenomenological parametrization of the non-
local York time 3K(1)(τ ,σ) = 1

�
3K(1)(τ ,σ). As it will be delineated in the final

Section, to implement this program one has to look at the astrophysical data on dark
energy after having succeeded to interpret also it as a relativistic inertial effect in
suitable cosmological space-times in which one can induce the distinction between
inertial and tidal degrees of freedom of the gravitational field from the previously
discussed Hamiltonian framework.

8.9 Dark Energy and Other Open Problems

This Lecture contains a full review of an approach to SR and to asymptotically
Minkowskian classical canonical Einstein GR based on a description of global non-
inertial frames centered on a time-like observer which is suggested by relativistic
metrology. The gauge freedom in clock synchronization, which does not exist in
Galilei space-time (Newton time and Euclidean 3-spaces are absolute) and is not
restricted in Minkowski space-time (it spans the class of the admissible 3+1 splittings
of this absolute space-time), is restricted in GR to the gauge freedom connected with
the inertial gauge variable 3K , the York time, which determines the shape of the
instantaneous non-Euclidean 3-spaces as 3-sub-manifolds of the space-time.

The study of canonical ADM tetrad gravity in asymptotically Minkowskian space-
times without super-translations (so that they admit an asymptotic ADM Poincaré
algebra at spatial infinity) in the York canonical basis allowed one to disentangle the
tidal degrees of freedom of the gravitational field from the inertial gauge ones (they
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include the York time), to find the family of non-harmonic 3-orthogonal Schwinger
time gauges and to define a HPM linearization in them. The main properties of
these non-harmonic gauges are that only the HPM-GW (but not the lapse and shift
functions) are retarded quantities with a no-incoming radiation condition and that
one can naturally find which quantities depend upon the York time.

Relativistic particle mechanics, coupled to the electro-magnetic field in the radi-
ation gauge, has been studied both in SR and GR with a suitable Grassmann regu-
larization of the self-energies so to get well defined equations of motion.

In SR, after a clarification of the problem of the relativistic center of mass and
the definition of inertial and non-inertial rest frames of isolated systems, it was pos-
sible to develop a formulation, the parametrized Minkowski theories, in which the
transitions among global non-inertial frames are gauge transformations. Then iso-
lated systems were described in the rest-frame instant form of dynamics and the
structure of their Poincaré generators and of their relative variables in the instanta-
neous Wigner 3-spaces was clarified. With this approach it was possible to give a
new formulation of the micro-canonical ensemble in relativistic kinetic theory and
to develop a formulation of relativistic quantum mechanics and relativistic entan-
glement taking into account the known results about relativistic bound states and
the spatial non-separability and non-locality induced by the Lorentz signature of
Minkowski space-time.

In GR it was possible to derive regularized equations of motion of the particles
in the non-inertial rest frame and to study their PM limit in the HPM linearization
in the 3-orthogonal gauges and the emission of HPM GW (with the energy balance
under control even in absence of self-forces). Then the PN limit of these PM equations
allows one to recover the known 1PN results of harmonic gauges. The more surprising
result is that in the PN expansion of the PM equations of motion there is a 0.5PN term
in the forces depending upon the York time. This opens the possibility to describe
dark matter as a relativistic inertial effect implying that the effective inertial mass of
particles in the 3-spaces is bigger of the gravitational mass because it depends on the
York time (i.e. on the shape of the 3-space as a 3-sub-manifold of the space-time:
this is impossible in Newton gravity in Galilei space-time and leads to a violation of
the Newtonian equivalence principle).

The proposed solution to the gauge problem in GR based on the conventions
of relativistic metrology for ICRS and the results of the last Section on the re-
interpretation of dark matter as a relativistic inertial effect arising as a consequence
of a convention on the York time in an extended PM ICRS push toward the necessity
of similar re-interpretation also of dark energy in cosmology [1, 2, 204–212]. As
it has been shown, the identification of the tidal and inertial degrees of freedom of
the gravitational field can be reformulated in the framework of the non-Hamiltonian
first-order ADM equations by means of the replacement of the Hamiltonian momenta
with the expansion and the shear of the Eulerian observers associated with the 3+ 1
splitting of the space-time. Therefore this identification can also be applied to the
cosmological space-times which do not admit a Hamiltonian formulation: also in
them the identification of the instantaneous 3-spaces Στ , now labeled by a cosmic
time, requires a conventional choice of clock synchronization, i.e. a convention on the
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York time 3K defining the shape of the 3-spaces as 3-sub-manifolds of the space-time,
and of 3-coordinates (the 3-orthogonal ones are acceptable also in cosmology).

In the standard ΛCDM cosmological model the class of cosmological solutions of
Einstein equations is restricted to Friedmann-Robertson-Walker (FRW) space-times
with nearly Euclidean 3-spaces (i.e. with a small internal 3-curvature). In them the
Killing symmetries connected with homogeneity and isotropy imply (τ is the cosmic
time, a(τ ) the scale factor) that the York time is no more a gauge variable but coincides
with the Hubble constant: 3K(τ ) = − ȧ(τ )

a(τ ) = −H(τ ). However at the first order in

cosmological perturbations (see Ref. [213] for a review) one has 3K = −H + 3K(1)

with 3K(1) being again an inertial gauge variable to be fixed with a metrological
convention. Therefore the York time has a central role also in cosmology and one
needs to know the dependence on it of the main quantities, like the red-shift and the
luminosity distance from supernovae, which require the introduction of the notion of
dark energy to explain the 3-universe and its accelerated expansion in the framework
of the standard ΛCDM cosmological model.

Instead in inhomogeneous space-times without Killing symmetries like the Szek-
eres ones [214–218] the York time remains an arbitrary inertial gauge variable. There-
fore the main open problem of the present approach is to see whether it is possible
to find a 3-orthogonal gauge in a inhomogeneous Einstein space-time (at least in a
PM approximation) in which the convention on the inertial gauge variable York time
allows one to accomplish the following two tasks simultaneously: (a) to eliminate
both dark matter and dark energy through the choice of a 4-coordinate system (sug-
gested by astrophysical data) to be used in a consistent PM reformulation of ICRS
and (b) to save the main good properties of the standard ΛCDM cosmological model
due to the inertial and dynamical properties of the space-time. As matter one will
take the dust, whose description in the York canonical basis is given in Ref. [91].

Also in the back-reaction approach [219–224] to cosmology, according to which
dark energy is a byproduct of the non-linearities of GR when one considers spatial
averages of 3-scalar quantities in the 3-spaces on large scales to get a cosmological
description of the universe taking into account its observed inhomogeneity, one gets
that the spatial average of the product of the lapse function and of the York time
(a 3-scalar gauge variable) gives the effective Hubble constant. Since this approach
starts from the Hamiltonian description of an asymptotically flat space-time and
since all the canonical variables in the York canonical basis, except the angles θi, are
3-scalars, the formalism presented in this Lecture will allow to study the spatial
average of nearly all the Hamilton equations and not only of the super-Hamiltonian
constraint and of the Hamilton equation for the York time as in the existing formu-
lation of the approach. This will be done by using the perfect fluids of Ref. [91] as
matter.

Also the recent point of view of Ref. [225], taking into account the relevance of
the voids among the clusters of galaxies, has to be reformulated in terms of the York
time.

Finally one should find the dependence upon he York time of the Landau-
Lifschitz energy-momentum pseudo-tensor and re-express it as the effective energy-
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momentum tensor of a viscous pseudo-fluid. One will have to check whether for
certain choices of the York time the resulting effective equation of state of the fluid
has negative pressure, realizing also in this way a simulation of dark energy.

Other open problems in GR under investigation are:

(A) Find the second order of the HPM expansion to see whether in PM space-times
there is the emergence of hereditary terms [95, 176] like the ones present in
harmonic gauges.

(B) Study the PM equations of motion of the transverse electro-magnetic field trying
to find Lienard-Wiechert-type solutions in GR. Study astrophysical problems
where the electro-magnetic field is relevant.

(C) Find the expression in the York canonical basis of the Weyl scalars of the
Newman-Penrose approach [136] and then of the four Weyl eigenvalues, which
are tetrad-independent 4-scalar invariants of the gravitational field. Is it possible
to find a canonical transformation replacing the 3-scalar tidal variables with
four 4-scalar functions of the Weyl eigenvalues? Are Weyl eigenvalues Dirac
observables?

(D) Try to make a multi-temporal quantization (see Refs. [77, 78, 129, 130]) of the
linearized HPM theory over the asymptotic Minkowski space-time, in which,
after a Shanmugadhasan canonical transformation to a new York canonical
basis adapted to all the constraints, only the tidal variables are quantized but
not the inertial gauge ones. After this type of quantization, in which the lapse
and shift functions remain c-numbers, the space-time would still be a classical
4-manifold: only the two eigenvalues of the 3-metric describing GW are quan-
tized and therefore only 3-metric properties like 3-distances, 3-areas, 3-volumes
become quantum properties. After having re-expressed the Ashtekar variables
[226–229] for asymptotically Minkowskian space-times (see Appendix B of
Ref. [10]) in this final York canonical basis it will be possible to compare the
outcomes of this new type of quantization with loop quantum gravity.
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Chapter 9
On Symmetries of Extremal Black Holes
with One and Two Centers

Sergio Ferrara and Alessio Marrani

Abstract After a brief introduction to the Attractor Mechanism, we review the
appearance of groups of type E7 as generalized electric-magnetic duality symme-
tries in locally supersymmetric theories of gravity, with particular emphasis on the
symplectic structure of fluxes in the background of extremal black hole solutions,
with one or two centers. In the latter case, the role of an “horizontal” symmetry
SLh (2, R) is elucidated by presenting a set of two-centered relations governing the
structure of two-centered invariant polynomials.

9.1 Introduction

The Attractor Mechanism (AM) [1–5] governs the dynamics in the scalar manifold of
Maxwell-Einstein (super)gravity theories. It keeps standing as a crucial fascinating
key topic. Along the last years, a number of papers have been devoted to the inves-
tigation of attractor configurations of extremal black p-branes in diverse space-time
dimensions; for some lists of Refs., see e.g. [6–16].
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The AM is related to dynamical systems with fixed points, describing the equi-
librium state and the stability features of the system under consideration.1 When
the AM holds, the particular property of the long-range behavior of the dynamical
flows in the considered (dissipative) system is the following: in approaching the
fixed points, properly named attractors, the orbits of the dynamical evolution lose
all memory of their initial conditions, but however the overall dynamics remains
completely deterministic.

The first example of AM in supersymmetric systems was discovered in the theory
of static, spherically symmetric, asymptotically flat extremal dyonic black holes in
N = 2 Maxwell-Einstein supergravity in d = 4 and 5 space-time dimensions (see
the first two Refs. of [1–5]). In the following, we will briefly present some basic facts
about the d = 4 case.

The multiplet content of a completely general N = 2, d = 4 supergravity theory
is the following (see e.g. [17], and Refs. therein):

1. the gravitational multiplet (
V a
μ ,ψA,ψA, A0

)
, (9.1.1)

described by the Vielbein one-form V a (a = 0, 1, 2, 3) (together with the spin-
connection one-form ωab), the SU (2) doublet of gravitino one-forms ψA,ψA

(A = 1, 2, with the upper and lower indices respectively denoting right and left
chirality, i.e. γ5ψA = −γ5ψ

A), and the graviphoton one-form A0;
2. nV vector supermultiplets (

AI ,λi A,λ
i
A, zi

)
, (9.1.2)

each containing a gauge boson one-form AI (I = 1, . . . , nV ), a doublet of

gauginos (zero-form spinors) λi A,λ
i
A, and a complex scalar field (zero-form)

zi (i = 1, . . . , nV ). The scalar fields zi can be regarded as coordinates on a
complex manifold MnV (dimCMnV = nV ), which is actually a special Kähler
manifold;

3. nH hypermultiplets (
ζα, ζ

α, qu)
, (9.1.3)

1 We recall that a point x f i x where the phase velocity v
(
x f i x

)
vanishes is called a fixed point, and

it gives a representation of the considered dynamical system in its equilibrium state,

v
(
x f i x

) = 0.

The fixed point is said to be an attractor of some motion x (t) if

limt→∞x(t) = x f i x .
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each formed by a doublet of zero-form spinors, that is the hyperinos ζα, ζα (α =
1, . . . , 2nH ), and four real scalar fields qu (u = 1, . . . , 4nH ), which can be
considered as coordinates of a quaternionic manifold HnH (dimHHnH = nH ).

At least in absence of gauging and without quantum corrections, the nH hypermul-
tiplets are spectators in the AM. This can be understood by looking at the transforma-
tion properties of the Fermi fields: the hyperinos ζα, ζα’s transform independently
on the vector fields, whereas the gauginos’ supersymmetry transformations depend
on the Maxwell vector fields. Consequently, the contribution of the hypermultiplets
can be dynamically decoupled from the rest of the physical system; in particular, it
is also completely independent from the evolution dynamics of the complex scalars
zi ’s coming from the vector multiplets (i.e. from the evolution flow in MnV ). Indeed,
disregarding for simplicity’s sake the fermionic and gauging terms, the supersym-
metry transformations of gauginos and hyperinos respectively read (see e.g. [17],
and Refs. therein)

δλi A = i∂μziγμεA + G−i
μνγ

μνεBε
AB; (9.1.4)

δζα = iU Bβ
u ∂μquγμεAεABCαβ . (9.1.5)

(9.1.5) implies that the asymptotical configurations of the quaternionic hypermul-
tiplets’ scalars are unconstrained, and therefore they can vary continuously in the
manifold HnH of the related quaternionic non-linear sigma model.

Thus, as far as ungauged theories are concerned, for the treatment of AM one can
restrict to consider N = 2, d = 4 Maxwell-Einstein supergravity, in which nV vector
multiplets (9.1.2) are coupled to the gravity multiplet (9.1.1). The relevant dynamical
system to be considered is the one related to the radial evolution of the configurations
of complex scalar fields of such nV vector multiplets. When approaching the event
horizon of the black hole, the scalars dynamically run into fixed points, taking values
which are only function (of the ratios) of the electric and magnetic charges associated
to Abelian Maxwell vector potentials under consideration.

The inverse distance to the event horizon is the fundamental evolution parameter
in the dynamics towards the fixed points represented by the attractor configurations
of the scalar fields. Such near-horizon configurations, which “attracts” the dynamical
evolutive flows in MnV , are completely independent on the initial data of such an
evolution, i.e. on the spatial asymptotical configurations of the scalars. Consequently,
for what concerns the scalar dynamics, the system completely loses memory of its ini-
tial data, because the dynamical evolution is “attracted” by some fixed configuration
points, purely depending on the electric and magnetic charges.

In the framework of supergravity theories, extremal black holes can be interpreted
as BPS (Bogomol’ny-Prasad-Sommerfeld)-saturated [18] interpolating metric sin-
gularities in the low-energy effective limit of higher-dimensional superstrings or
M-theory [19]. Their asymptotically relevant parameters include the ADM mass [20],
the electrical and magnetic charges (defined by integrating the fluxes of related field
strengths over the 2-sphere at infinity), and the asymptotical values of the (dynam-
ically relevant set of) scalar fields. The AM implies that the class of black holes
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under consideration loses all its “scalar hair” within the near-horizon geometry. This
means that the extremal black hole solutions, in the near-horizon limit in which they
approach the Bertotti-Robinson Ad S2×S2 conformally flat metric [21, 22], are char-
acterized only by electric and magnetic charges, but not by the continuously-varying
asymptotical values of the scalar fields.

An important progress in the geometric interpretation of the AM was achieved
in the last Refs. of [1–5], in which the attractor near-horizon scalar configurations
were related to the critical points of a suitably defined black hole effective potential
function VB H . In general, VB H is a positive definite function of scalar fields and
electric and magnetic charges, and its non-degenerate critical points in MnV

∀i = 1, . . . , nV ,
∂VB H

∂zi
= 0 : VB H | ∂VB H

∂z =0
> 0, (9.1.6)

fix the scalar fields to depend only on electric and magnetic fluxes (charges). In
the Einstein two-derivative approximation, the (semi)classical Bekenstein-Hawking
entropy (SB H )—area (AH ) formula [23–27] yields the (purely charge-dependent)
black hole entropy SB H to be

SB H = π AH

4
= π VB H | ∂VB H

∂z =0
= π√|I4|, (9.1.7)

where I4 is the unique independent invariant homogeneous polynomial (quartic in
charges) in the relevant representation R of G in which the charges sit (see Eq. (9.1.9)
and discussion below). The last step of (9.1.7) does not apply to d = 4 supergravity
theories with quadratic charge polynomial invariant, namely to the N = 2 minimally
coupled sequence [28] and to the N = 3 [29] theory; in these cases, in (9.1.7)

√|I4|
gets replaced by |I2|.

In presence of n = nV + 1 Abelian vector fields, the charge vector (� =
0, 1, . . . , nV )

Q ≡ (
p�, q�

)
(9.1.8)

of magnetic (p�) and electric (q�) fluxes sits in a 2n-dimensional representation R
of the U -duality2 group G, defining the Gaillard-Zumino embedding [33] of G itself
into Sp (2n, R), which is the largest group acting linearly on the fluxes themselves:

G
R
� Sp (2n, R). (9.1.9)

We consider here the (semi-)classical limit of large charges, also indicated by the
fact that we consider Sp (2n, R), and not Sp (2n, Z) (no Dirac-Schwinger-Zwanziger
quantization condition is implemented on the fluxes themselves).

2 Here U -duality is referred to as the “continuous” symmetries of [30, 31]. Their discrete versions
are the U -duality non-perturbative string theory symmetries introduced by Hull and Townsend [32].
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After [34–36], the R-representation space of the U -duality group is known to
exhibit a stratification into disjoint classes of orbits, which can be defined through
invariant sets of constraints on the (lowest order, actually unique) G-invariant I built
out of the symplectic representation R; this will be reported in Sect. 9.3 It is here
worth remarking the crucial distinction between the “large” orbits and “small” orbits.
While the former have I �= 0 and support an attractor behavior of the scalar flow in
the near-horizon geometry of the extremal black hole background [1–5], for the latter
the Attractor Mechanism does not hold, they have I = 0 and thus they correspond
to solutions with vanishing Bekenstein-Hawking [23–27] entropy (at least at the
Einsteinian two-derivative level).

9.2 U-Duality and Groups of Type E7

From the treatment above, the black hole entropy SB H is invariant under the electric-
magnetic duality, in which the non-compact U -duality group has a symplectic action
both on the charge vector Q (9.1.8) and on the scalar fields (through the definition of a
flat symplectic bundle [37] over the scalar manifold itself); see e.g. [38] for a review.
The latter property makes relevant the mathematical notion of groups of type E7.

The first axiomatic characterization of groups of type E7 through a module (irrep.)
was given in 1967 by Brown [39]. A group G of type E7 is a Lie group endowed
with a representation R such that:

1. R is symplectic, i.e.:
∃!C[M N ] ≡ 1 ∈ R×aR; (9.2.1)

(the subscripts “s” and “a” stand for symmetric and skew-symmetric throughout)
in turn, C[M N ] defines a non-degenerate skew-symmetric bilinear form (symplec-
tic product); given two different charge vectors Q1 and Q2 in R, such a bilinear
form is defined as

〈Q1, Q2〉 ≡ QM
1 QN

2 CM N = −〈Q2, Q1〉 ; (9.2.2)

2. R admits a unique rank-4 completely symmetric primitive G-invariant structure,
usually named K -tensor

∃!K(M N P Q) ≡ 1 ∈ [R × R × R × R]s ; (9.2.3)

thus, by contracting the K -tensor with the same charge vector Q in R, one can
construct a rank-4 homogeneous G-invariant polynomial, named I4:

I4 (Q) ≡ 1

2
KM N P Q QM QN Q P QQ, (9.2.4)
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which corresponds to the evaluation of the rank-4 symmetric form q induced by
the K -tensor on four identical modules R:

I4 (Q) = 1

2
q (Q1, Q2, Q3, Q4)|Q1=Q2=Q3=Q4≡Q

≡ 1

2

[
KM N P Q QM

1 QN
2 Q P

3 QQ
4

]
Q1=Q2=Q3=Q4≡Q

. (9.2.5)

A famous example of quartic invariant in G = E7 is the Cartan-Cremmer-Julia
invariant [40], constructed out of the fundamental irrep. R = 56.

3. if a trilinear map T : R × R × R→ R is defined such that

〈T (Q1, Q2, Q3) , Q4〉 = q (Q1, Q2, Q3, Q4), (9.2.6)

then it holds that

〈T (Q1, Q1, Q2) , T (Q2, Q2, Q2)〉 = 〈Q1, Q2〉 q (Q1, Q2, Q2, Q2).

(9.2.7)
This last property makes the group of type E7 amenable to a treatment in terms
of (rank-3) Jordan algebras and related Freudenthal triple systems.

Remarkably, groups of type E7, appearing in D = 4 supergravity as U -duality
groups, admit a D = 5 uplift to groups of type E6, as well as a D = 3 downlift to
groups of type E8; see [41]. It should also be recalled that split form of exceptional
Lie groups appear in the exceptional Cremmer-Julia [42, 43] sequence ED(D) of U -
duality groups of M-theory compactified on a D-dimensional torus, in D = 3, 4, 5.

It is intriguing to notice that the first paper on groups of type E7 was written
about a decade before the discovery of extended (N = 2) supergravity [44], in which
electromagnetic duality symmetry was observed [45, 46]. The connection of groups
of type E7 to supergravity can be summarized by stating that all 2 ≤ N ≤ 8-
extended supergravities in D = 4 with symmetric scalar manifolds G

H have G of
type E7 [47, 48], with the exception of N = 2 group G = U (1, n) and N = 3
group G = U (3, n). These latter in fact have a quadratic invariant Hermitian form(
Q1, Q2

)
, whose imaginary part is the symplectic (skew-symmetric) product and

whose real part is the symmetric quadratic invariant I2 (Q) defined as follows

I2 (Q) ≡ [
Re

(
Q1, Q2

)]
Q1=Q2

; (9.2.8)〈
Q1, Q2

〉 = −Im
(
Q1, Q2

)
. (9.2.9)

Thus, the fundamental representations of pseudo-unitary groups U (p, n), which have
a Hermitian quadratic invariant form, do not strictly qualify for groups of type E7.

In theories with groups of type E7, the Bekenstein-Hawking black hole entropy
is given by

S = π√|I4 (Q)|, (9.2.10)
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Table 9.1 N ≥ 3
supergravity sequence of
groups G of the
corresponding G

H symmetric
spaces, and their symplectic
representations R

N G R

3 U (3, n) (3+ n)

4 SL(2, R)× SO(6, n) (2, 6+ n)

5 SU(1, 5) 20
6 SO∗(12) 32
8 E7(7) 56

Table 9.2 N = 2 choices of
groups G of the G

H symmetric
spaces and their symplectic
representations R. The last
four lines refer to “magic”
N = 2 supergravities

G R

U (1, n) (1+ n)

SL(2, R)× SO(2, n) (2, 2+ n)

SL(2, R) 4
Sp(6, R) 14′
SU(3, 3) 20
SO∗(12) 32
E7(−25) 56

as it was proved for the case of G = E7(7) (corresponding to N = 8 supergravity)
in [49]. For N = 2 group G = U (1, n) and N = 3 group G = U (3, n) the analogue
of (9.2.10) reads

S = π |I2 (Q)| . (9.2.11)

For 3 < N ≤ 8 the following groups of type E7 are relevant: E7(7), SO∗(12),
SU(1, 5), SL(2, R)× SOs(6, n); see Table 9.1. In N = 2 cases of symmetric vector
multiplets’ scalar manifolds, there are 6 groups of type E7 [50] : E7(−25), SO∗(12),
SU(3, 3), Sp(6, R), SL(2, R), and SL(2, R)× SO(2, n); see Table 9.2. Here n is the
integer describing the number of matter (vector) multiplets for N = 4, 3, 2.

9.3 Duality Orbits

We here report some results on the stratification of the R irrep. space of simple groups
G E7. For a recent account, with a detailed list of Refs., see e.g. [51].

In supergravity, this corresponds to U -duality invariant constraints defining the
charge orbits of a single-centered extremal black hole, namely of the G-invariant
conditions defining the rank of the dyonic charge vector Q (9.1.8) in R as an element
of the corresponding Freudenthal triple system (FTS) (see [52, 53], and Refs. therein).
The symplectic indices M = 1, . . . , f (f ≡ dimRR (G)) are raised and lowered with
the symplectic metric CM N defined by (9.2.1). By recalling the definition (9.2.4) of
the unique primitive rank-4 G-invariant polynomial constructed with Q in R, the
rank of a non-null Q as an element of FTS(G) ranges from four to one, and it is
manifestly G-invariantly characterized as follows:
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1. rank(Q) = 4. This corresponds to “large” extremal black holes, with non-
vanishing area of the event horizon (exhibiting Attractor Mechanism [1–5]):

I4 (Q) < 0, or I4 (Q) > 0 (9.3.1)

2. rank(Q) = 3. This corresponds to “small” lightlike extremal black holes, with
vanishing area of the event horizon:

I4 (Q) = 0; (9.3.2)

T (Q, Q, Q) �= 0.

3. rank(Q) = 2. This corresponds to “small” critical extremal black holes:

T (Q, Q, Q) = 0; (9.3.3)

3T (Q, Q, P)+ 〈Q, P〉 Q �= 0.

4. rank(Q) = 1. This corresponds to “small” doubly-critical extremal BHs [34, 36]:

3T (Q, Q, P)+ 〈Q, P〉 Q = 0, ∀P ∈ R. (9.3.4)

Let us consider the doubly-criticality condition (9.3.4) more in detail. At least for
simple groups of type E7, the following holds:

R ×s R = Adj+ S; (9.3.5)

R ×a R = 1+ A, (9.3.6)

where S and A are suitable irreps.. For example, for G = E7 (R = 56, Adj = 133)
one gets

(56× 56)s = 133+ 1463; (9.3.7)

(56× 56)a = 1+ 1539. (9.3.8)

For such groups, one can construct the projection operator on Adj (G):

P C D
AB = P (C D)

(AB) ; (9.3.9)

P C D
AB

∂2I4

∂QC∂Q D
= ∂2I4

∂Q A∂Q B

∣∣∣∣
Adj(G)

; (9.3.10)

P C D
AB P E F

C D
∂2I4

∂QE∂QF
= P E F

AB
∂2I4

∂QE∂QF
, (9.3.11)
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where (recall (9.3.5))

∂2I4

∂Q A∂Q B
= ∂2I4

∂Q A∂Q B

∣∣∣∣
Adj(G)

+ ∂2I4

∂Q A∂Q B

∣∣∣∣
S(G)

; (9.3.12)

∂2I4

∂Q A∂Q B

∣∣∣∣
Adj(G)

= 2 (1− τ ) (3KABC D + CACCB D) QC Q D; (9.3.13)

∂2I4

∂Q A∂Q B

∣∣∣∣
S(G)

= 2 [3τKABC D + (τ − 1) CACCB D] QC Q D, (9.3.14)

where τ ≡ 2d/ [f (f + 1)], d ≡ dimR (Adj (G)). The explicit expression of P C D
AB

reads3 (α = 1, . . . , d):

P C D
AB = τ

(
3C

C E
C

DF
KE F AB + δC

(Aδ
D
B)

)
= −tα|C Dtα|AB, (9.3.15)

where the relation [56] (see also [57])

KM N P Q = − 1

3τ
tα(M N tα|P Q) = − 1

3τ

[
tαM N tα|P Q − τCM(PCQ)N

]
, (9.3.16)

where
tαM N = tα(M N ); tαM N C

M N = 0 (9.3.17)

is the symplectic representation of the generators of the Lie algebra g of G. Notice
that τ < 1 is nothing but the ratio of the dimensions of the adjoint Adj and rank-2
symmetric R ×s R (9.3.5) reps. of G, or equivalently the ratio of upper and lower
indices of tαM N ’s themselves.

9.4 From One to Two Centers

In multi-centered black hole solutions [58–66], a charge vector Qa can be associ-
ated to each center, with the index a = 1, . . . , p, with p denoting the number of
centers. This index transforms in the fundamental representation p of the so-called
“horizontal” symmetry SLh (p, R) introduced in [67] (see also [68]).

We will here focus on the simplest case p = 2, presenting a number of fundamental
relations defining the structure of electric-magnetic fluxes of two-centered black hole
solutions [69].

From [67, 70], we define the symmetric Iabcd tensor, sitting in the spin s = 2
irrep. 5 of SLh(2, R), as

3 For related results in terms of a map formulated in the “4D/5D special coordinates” symplectic
frame (and thus manifestly covariant under the d = 5 U -duality group G5), see e.g. [54, 55].
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Iabcd ≡ 1

2
KM N P Q QM

a QN
b Q P

c QQ
d . (9.4.1)

Thus, its first derivative reads

Q̃M|abc ≡ 1

4

∂Iabcd

∂QM
d

= 1

2
KM N P Q QN

a Q P
b QQ

c = Q̃M|(abc), (9.4.2)

sitting in the spin s = 3/2 irrep. 4 of SLh (2, R) (the horizontal indices a = 1, 2 are
raised and lowered with εab, with ε12 ≡ 1). For clarity’s sake, we report the explicit
expressions of the various components of Iabcd (9.4.1), as well as their relations
with the components of Q̃abc (9.4.2) (the subscripts “+2,+1, 0,−1,−2” denote
the horizontal helicity of the various components [67, 70]):

I+2 ≡ I4 (Q1) ≡ I1111 =
〈
Q̃111, Q1

〉 ; (9.4.3)

I+1 ≡ I1112 =
〈
Q̃111, Q2

〉 = 〈
Q̃112, Q1

〉 ; (9.4.4)

I0 ≡ I1122 =
〈
Q̃112, Q2

〉 = 〈
Q̃122, Q1

〉 ; (9.4.5)

I−1 ≡ I1222 =
〈
Q̃122, Q2

〉 = 〈
Q̃222, Q1

〉 ; (9.4.6)

I−2 ≡ I4 (Q2) ≡ I2222 =
〈
Q̃222, Q2

〉
. (9.4.7)

Thus, one can consider the following symplectic product of spin 3/2 horizontal
charge tensors: 〈

Q̃abc, Q̃de f
〉 ≡ Q̃M|abc Q̃N |de f C

M N . (9.4.8)

A priori,
〈
Q̃abc, Q̃de f

〉
should project onto spin s = 3, 2, 1, 0 irreps. of SLh (2, R)

itself; however, due to the complete symmetry of the K -tensor (and to the results of
[39, 56]), the projections on spin s = 3 and 1 do vanish:

s = 3 : 〈Q̃(abc, Q̃de f )

〉 = 0; (9.4.9)

s = 2 : 〈Q̃(ab|c, Q̃d|e f )

〉
εcd = 2

3
WIabe f ; (9.4.10)

s = 1 : 〈Q̃(a|bc, Q̃de| f )

〉
εbdεce = 0; (9.4.11)

s = 0 : 〈Q̃abc, Q̃de f
〉
εadεbeεc f = 8I6, (9.4.12)

where the symplectic product W and the sextic horizontal polynomial I6 [70] are
respectively defined as (also cfr. (9.2.2))



9 On Symmetries of Extremal Black Holes with One and Two Centers 355

W ≡ 〈Q1, Q2〉 = 1

2
CM N ε

ab QM
a QN

b ; (9.4.13)

I6 ≡ 1

8

〈
Q̃abc, Q̃de f

〉
εadεbeεc f = 1

4

〈
Q̃111, Q̃222

〉+ 3

4

〈
Q̃122, Q̃112

〉
. (9.4.14)

The complementary relation to (9.4.14), namely 1
4

〈
Q̃111, Q̃222

〉 − 3
4

〈
Q̃122, Q̃112

〉
consistently turns out to be proportional (through W) to the zero helicity component
of Iabcd ; indeed, by setting (a, b, e, f ) = (1, 1, 2, 2) in (9.4.10), one obtains:

1

2
I0W = 1

4

〈
Q̃111, Q̃222

〉− 3

4

〈
Q̃122, Q̃112

〉
. (9.4.15)

We conclude by pointing out some consequences of the rank of a charge vector,
say Q1, on the set of two-centered invariant polynomials defined above [69]:

rank (Q1) = 3⇒ I+2 = 0; (9.4.16)

rank (Q1) = 2⇒ Q̃111 = 0⇒
{

I+2 = I+1 = 0;
I6 = − 1

2 I0W; (9.4.17)

rank (Q1) = 1⇒
⎧⎨
⎩

I+2 = I+1 = 0;
I0 = − 1

6W2;
I6 = − 1

2 I0W = 1
12W3.

(9.4.18)
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