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Preface

The years elapsed since the First Edition was issued have witnessed an impressive
evolution of some of the applications here considered, maybe not so of the mathe-
matical background which constitutes the first part, which evolves at a much more
steady pace. In writing this Second Edition the same guiding idea has been strictly
respected to include as many applications as possible, at the price of explaining
things in the most concise way still compatible with the comprehensibility of the
different subjects treated.

The new text includes some additions to Chap. 1, specifically two sections on the
general definition of the zeta function of a pseudo-differential operator and on opera-
tor regularization. In Chap. 4 a new Section has been included on extended Chowla–
Selberg series formulas, associated with arbitrary forms of the type of a quadratic
plus a linear plus a constant term. The second Section in Chap. 5, on the experimen-
tal verification of the Casimir effect, has been suppressed, for the account there had
been rendered clearly obsolete by the many and very important advances in this field
during the last fifteen years. A very brief, one-paragraph description of the last has
been included at the end of the first Section. It is basically a guide to a number of rel-
evant references where the reader will find the new developments in this presently
very hot and rapidly growing field. In Chap. 6 a new application has been added,
Sect. 6.5, on the treatment of scalar and vector fields on a spacetime with a noncom-
mutative toroidal part. The title of the Chapter has been changed accordingly.

In Chap. 7 there is now a new Section on the combination of zeta and Hadamard
regularizations, in relation with computations of the Casimir effect under realistic
physical conditions. In Chap. 9 only the title has changed, to be consistent with the
fact that an additional application was added to Chap. 6. Finally, Chap. 10 is new,
and contains an application of the zeta function techniques to the regularization of
the expected imprint of quantum vacuum fluctuations in cosmology, in particular, in
relation with the cosmological constant problem. In all, the number of applications
in this Second Edition has now raised to twelve, what could justify a change of the
title of the book itself. However, being it just a second edition this would not be
advisable, and has not been done.

E. ElizaldeBarcelona, Spain
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Preface to the First Edition

This monography is, in the first place, a commented guide that invites the reader to
plunge into the thrilling world of zeta functions and their applications in physics.
Different aspects of this field of knowledge are considered, as one can see specifi-
cally in the table of contents.

The level of the book is elementary. It is intended for people with no or lit-
tle knowledge of the subject. Everything is explained in full detail, in particular,
the mathematical difficulties and tricky points, which too often constitute an insur-
mountable barrier for those who would have liked to become acquainted with that
matter but never dared to ask (or did not manage to understand more complete,
higher-level treatises). In this sense the present work is to be considered as a basic
introduction to other books that have appeared recently.

Concerning the physical applications of the method of zeta-function regulariza-
tion here described, quite a big choice is presented. The reader must be warned,
however, that I have not tried to explain the underlying physical theories in com-
plete detail (since this is undoubtedly out of scope), but rather to illustrate—simply
and clearly—the precise way how the method must be applied. Sometimes zeta reg-
ularization is explicitly compared in the text with other procedures the reader is
supposed to be more familiar with (as cut-off or dimensional regularization). Again,
a very detailed comparison would have taken us too far away from the general pur-
pose and, knowing the other procedures, the reader is already entitled to confront
them directly. In the examples only physical systems with a known spectrum have
been considered. This is the most simple case—although the procedure itself can be
(and has been) extended to much more general situations.

I would like to thank my colleagues and friends Alfred Actor, Michael Bordag,
Iver Brevik, Andrei Bytsenko, Guido Cognola, Klaus Kirsten, Yuri Kubyshin, Sergi
Leseduarte, Sergei Odintsov, Sergi Rafels-Hildebrandt, August Romeo, Luciano
Vanzo, and Sergio Zerbini. My gratitude goes to all of them for really enjoyable
discussions and, in some cases, for specific contributions to the original papers on
which part of this report is based.

E. ElizaldeBarcelona, Spain
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Chapter 1
Introduction and Outlook

In this introductory chapter, an overview of the method of zeta function regulariza-
tion is presented. We start with some brief historical considerations and by intro-
ducing the specific zeta functions that will be used in the following chapters in a
number of physical situations, as the Riemann, Hurwitz (or Riemann generalized),
and Epstein zeta functions. We summarize the basic properties of the different zeta
functions. We define the concept of zeta function associated with an elliptic partial
differential operator, and point towards its uses to define ‘the determinant’ of the op-
erator, and we discuss the multiplicative anomaly or defect of the zeta determinant.
We show explicitly how to regularize the Casimir energy in some simple cases in a
correct way, thereby introducing the zeta-function regularization procedure. Finally,
these fundamental concepts are both extended and made much more precise in the
last section, where examples of the most recent developments on powerful applica-
tions of the theory are discussed. Further perspectives of this regularization method,
as the so-called operator regularization, are provided at the very end.

1.1 Zeta Functions

1.1.1 The Riemann Zeta Function

The following identity (where s is real and p prime)

∏

p

(
1− p−s

)−1 =
∞∑

n=1

1

ns
, s > 1, (1.1)

was first found by Leonhard Euler (1707–1783) while he was searching a proof of
Euclid’s theorem, that had led him to consider the divergence of the series of the
reciprocals of all prime numbers. The last sum on the r.h.s. is a function of the real
variable s (defined on the half-line s > 1) and the equality relates the behavior of
the function with the properties of the prime numbers. In his famous work published
in 1859, Über die Anzahl der Primzahlen unter einer gegebenen Grösse, Bernhard

E. Elizalde, Ten Physical Applications of Spectral Zeta Functions,
Lecture Notes in Physics 855,
DOI 10.1007/978-3-642-29405-1_1, © Springer-Verlag Berlin Heidelberg 2012
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2 1 Introduction and Outlook

Riemann started from this identity, discovered by Euler more than one hundred years
before, and realized that in order to be able to study the distribution of the primes
he had to allow s to be a complex variable. He denoted this function of a complex
variable by ζ(s), and it became known as ‘the Riemann zeta function’1

ζ(s)=
∞∑

n=1

n−s , s ∈C, Re s > 1. (1.2)

Nowadays the Riemann zeta function is just one (albeit the most distinguished)
member of a whole family of ‘zeta functions’ (Hurwitz, Epstein, Selberg, . . . ). Fur-
ther, there exists the much more general concept of ‘zeta function associated with a
differential operator’, as we shall see below (Sect. 1.4).

The series (1.2) is absolutely convergent in the open domain Re s > 1 of the
complex plane. Moreover, the integral representation

ζ(s)= 1

�(s)

∫ ∞

0
dt

ts−1

et − 1
(1.3)

shows that ζ(s) can be analytically continued everywhere in the complex s-plane
except to the point s = 1, where it develops a pole of residue 1. In particular, one
obtains that

ζ(0)=−1

2
, ζ(−2n)= 0, ζ(1− 2n)=−B2n

2n
, n= 1,2,3, . . . . (1.4)

The Laurent series of ζ(s) around s = 1 is

ζ(s) = 1

s − 1
+ γ + γ1(s − 1)+ γ2(s − 1)2 + · · · ,

γk = lim
n→∞

[ ∞∑

ν=1

(logν)k

ν
− 1

k+ 1
(logn)k+1

]
,

(1.5)

γ being Euler’s constant.
An important property (common to all zeta functions) is the existence of a func-

tional equation called also by physicists the reflection formula. For the Riemann zeta
function it reads (as follows immediately from (1.3))

ζ(s)= 2sπs−1 sin
πs

2
�(1− s)ζ(1− s), (1.6)

or, alternatively,

�

(
s

2

)
ζ(s)= πs−1/2�

(
1− s

2

)
ζ(1− s). (1.7)

1A hint for Spanish speaking colleagues. In Spanish (and some other languages) the Greek letter ζ
is phonetically transcribed as dseta (to mimic its original Greek pronunciation). In Greek the letter
which is actually pronounced as the Spanish zeta is θ .
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As a result

ζ(2n)= (−1)n+1 (2π)
2n

2(2n)! B2n, n= 1,2,3, . . . , (1.8)

where Bn are the Bernoulli numbers.
The only real zeros of the Riemann ζ are located at s = −2,−4,−6, . . . . It is

known that ζ(s) has no other zeros out of the strip 0 < Re s < 1 and that there
are infinitely many complex zeros inside of it. The Riemann conjecture states that
all the complex zeros of ζ(s) have real part equal to 1

2 . To obtain a proof of this
conjecture was considered by Hilbert to be the most important open problem in
mathematics [1]. Undoubtedly, this is a very important question related with the
Riemann zeta function, for its consequences in number theory and other fields of
knowledge, as information theory, chaotic systems, etc., and the number of new
results originated in trying to answer it increase steadily. However, the applications
to physical problems we are going to develop in this book have little to do with this
issue.

1.1.2 The Hurwitz Zeta Function

An important generalization of ζ is the Hurwitz zeta function ζH (also called simply
generalized Riemann zeta function)

ζH (s, a)=
∞∑

n=0

(n+ a)−s , Re s > 1, a �= 0,−1,−2, . . . . (1.9)

An integral representation is

ζH (s, a)= 1

�(s)

∫ ∞

0
dt ts−1 e−ta

1− e−t
, Re s > 1, Rea > 0. (1.10)

It can be shown that ζH (s, a) has only one singularity—namely a simple pole at
s = 1 with residue 1—and that it can be analytically continued to the rest of the
complex s-plane. Its Laurent expansion around the pole is

ζH (1+ ε, a)= 1

ε
−ψ(a)+O(ε), (1.11)

with ψ the digamma function, and some special values are

ζH (0, a) = 1

2
− a,

ζH (−m,a) = −Bm+1(a)

m+ 1
, m ∈N,

(1.12)

Br(a) being the Bernoulli polynomials.



4 1 Introduction and Outlook

The analogue of the Riemann zeta function for an unspecified algebraic number
field, in number theory, is Dedekind’s zeta function. The Riemann zeta function is
actually the Dedekind’s zeta function for the field of the rational numbers.

1.1.3 The Epstein Zeta Function

Another different extension of the Riemann zeta function is the whole family of
Epstein zeta functions [2, 3]. Given a positive integer p, consider the vectors

�g ≡ (g1, . . . , gp), gi ∈R,

�h ≡ (h1, . . . , hp), hi ∈R,

�m ≡ (m1, . . . ,mp), mi ∈R.

(1.13)

Let c = (cμν) be a non-singular symmetric p × p matrix, and ϕ its associated
quadratic form

ϕ(x)=
p∑

μ,ν=1

cμνxμxν. (1.14)

If the real part of ϕ(x) is positive definite (for a complex variable s), the Epstein zeta

function Z of order p, with characteristic
∣∣ �g�h
∣∣ and module (cμν) is defined as [2, 4]

Z

∣∣∣∣
�g
�h
∣∣∣∣(s)ϕ = Z

∣∣∣∣
g1 · · ·gp
h1 · · ·hp

∣∣∣∣(s)ϕ =
∞∑

m1,...,mp=−∞

′ [
ϕ( �m+ �g)]− s

2 e2πi( �m,�h), (1.15)

where the prime means that when the g1, . . . , gp are integers, the values of
m1, . . . ,mp such that �m + �g = �0 have to be excluded from the summation. This
series is absolutely convergent for Re s > p, and defines an analytic function of s.
The functional equation

π−
s
2 �

(
s

2

)
Z

∣∣∣∣
�g
�h
∣∣∣∣(s)ϕ =�−

1
2 e−2πi(�g,�h)π−

p−s
2 �

(
p− s

2

)
Z

∣∣∣∣
�h
−�g
∣∣∣∣(p− s)ϕ∗ (1.16)

constitutes the keystone on which the theory of zeta functions rests, and yields all
the special reflection formulas above as particular cases.

The function of s given in (1.15) is entire except when all components of �h are
integers. In that case the zeta function has a single pole at s = p, whose residue can
be read from

Z

∣∣∣∣
�g
�h
∣∣∣∣(s)ϕ =

2π
p
2

�
1
2 �(

p
2 )

1

s − p
+ c0 + c1(s − p)+O

(
(s − p)2). (1.17)
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The Epstein zeta function vanishes at even negative integers

Z

∣∣∣∣
�g
�h
∣∣∣∣(−2k)ϕ = 0, k = 1,2,3, . . . (1.18)

and also at s = 0, unless all the components of �g are integers, in which case

Z

∣∣∣∣
�g
�h
∣∣∣∣(0)ϕ =−e−2πi(�g,�h). (1.19)

Explicit values for p = 1,2 (with �g = �h= �0) have been obtained in Epstein’s papers.
When p = 1 one recovers all the properties of the Riemann zeta function.

1.1.4 A Word on Related Bibliography

In Ref. [5] there is a nice summary of the properties that all the zeta functions
have in common, together with a more extensive description of all kinds of zeta
functions than the one given here. To mention just a few additional references on
the subject let us recall the classical book by Titchmarsh [6], the ones by Edwards
[7] and Ivić [8], by Jorgenson and Lang [9] and Elizalde et al. [10, 11], and the more
recent ones by Karatsuba and Voronin [12], Kirsten [13], Bytsenko et al. [14], and
Apostol [15].

1.2 Zeta Function Regularization

1.2.1 Historical Background

Possibly the first systematic contributions to the use of the zeta function to give
sense to infinite series (what is called by physicists regularization and renormaliza-
tion) are due to Godfrey H. Hardy and John E. Littlewood [16–18], starting from
the second decade of last century. They actually established the convergence and
equivalence of series regularized with the heat kernel and zeta function methods. As
Hardy realized to his surprise, Srinivasa I. Ramanujan had also found for himself
the functional equation of the zeta function. In the thirties, Torsten Carleman [19]
went one step further, by constructing the zeta function encoding the eigenvalues of
the Laplacian of a compact Riemannian manifold, for the case of a compact region
of the plane.

A significant improvement, well recognized in the specialized literature, was
achieved in 1949 by Subbaramiah Minakshisundaram and Åke Pleijel [20] who ex-
tended Carleman’s results, showing that for the Laplacian of a compact Riemannian
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manifold, the corresponding zeta function converges and has an analytic continua-
tion as a meromorphic function to the whole complex plane. In the middle sixties,
Robert T. Seeley [21] extended these important results to elliptic pseudo-differential
operators on compact Riemannian manifolds, showing that for such operators one
can define the determinant using zeta function regularization. A few years later,
Daniel B. Ray and Isadore M. Singer [22] used Seeley’s results to define the deter-
minant of a positive self-adjoint operator A (the Laplacian of a Riemannian man-
ifold in their application), with eigenvalues a1, a2, . . . , being in this case the zeta
function formally the trace ζA(s) = Tr(A)−s , the same method defining the possi-
bly divergent infinite product

∏∞
n=1 an = exp[−ζA

′(0)].
After recognizing that all the above were very important steps in the quest to-

wards the final formulation of a fully fledged zeta regularization method, it is now
widely recognized by specialists that the honor to be the first to have clearly for-
mulated such attempt where J. Stuart Dowker and Raymond Critchley in 1976 and
Stephen Hawking in 1977. In their seminal work Effective Lagrangian and energy-
momentum tensor in de Sitter space [23], Dowker and Critchley went definitely fur-
ther in the application of the above procedures to physics: they actually proposed,
for the first time, a zeta function regularization method for quantum physical sys-
tems. This paper has got high recognition, having gathered over 600 citations to
present date. One thing specialists also point out is that, in spite of the fact that,
elaborating from the methods developed in this paper, it is true that a well defined
and clear regularization prescription for a general case can be easily obtained, these
authors actually described the method very briefly in this work, the uses and wide
possibilities of the procedure not having been fully exploited there. This is maybe
the main reason why Hawking’s extremely influential paper (it has got over 1100
citations up to date) entitled Zeta function regularization of path integrals in curved
spacetime [24] is considered by many to be the actual seminal reference where the
zeta function regularization method was defined, with all its computational power
and possible physical applications, which were very clearly identified there. Need-
less to say, the title of the paper is absolutely explicit. After investigating the case
in some detail, it is fair to conclude that the priority of Dowker and Critchley in this
matter is now sufficiently well established in the literature.2

1.2.2 The Zeta Function of a Differential Operator

The method of zeta function regularization is schematically defined as follows. Take
the Hamiltonian, H , corresponding to our quantum system, plus boundary condi-
tions, plus possible background field and including a possibly non-trivial metric
(because we may live in a curved spacetime). In mathematical terms, all this boils
down to a (generically second order, elliptic, pseudo-) differential operator, A, plus

2With some incredible exceptions, however, as the current Wikipedia article on “Zeta function
regularization”, where no mention to Dowker and Critchley is done!
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corresponding boundary conditions. The spectrum of this operator A may or may
not be calculable explicitly and, in the first case, may or may not exhibit a beautiful
regularity in terms of powers of natural numbers. Under quite general conditions,3 a
zeta function, ζA, corresponding to the operator A, can be (almost uniquely) defined
in a rigorous way. The formal expression of this definition is:

ζA(s)= Tr e−s lnA, (1.20)

which will make sense just in some domain of the complex plane s and only if A

fulfills typical spectral conditions. Let us stress that this definition is quite general in
the sense that includes many interesting physical situations (see, however, below).

The zeta function ζA(s) is generically a meromorphic function (develops only
poles) on the complex plane, s ∈ C [5, 25]. Its calculation usually requires com-
plex integration around some circuit in the complex plane, the use of Mellin trans-
forms, etc. and has very much to do (Sect. 1.4) with the calculation of invariants of
the spacetime metric (the Hadamard–Minakshisundaram–Pleijel–Seeley–De Witt–
Gilkey–. . . coefficients) [26–33].

In the particular case when the eigenvalues of the (pseudo-)differential operator
A—or, what is equivalent, the eigenvalues of the Hamiltonian (with the boundary
conditions taken into account)—can be calculated explicitly (let us call them λn and
assume they form a discrete set, with n in general a multi-index, possibly with a
continuous part), the expression of the zeta function is given by:

ζA(s)=
∑

n

λ−sn , (1.21)

an expression valid to the rhs of the abscissa of convergence of the series (which
value equals the dimension of the manifold divided by the order of the operator).
This is then continued analytically to the rest of the complex plane, resulting in a
meromorphic function. A very important point is that, in many cases, this analytical
continuation is immediately provided by (a clever, suitable form of) the correspond-
ing reflection formula (or functional equation, as is usually called by mathemati-
cians) of the zeta function.4 Notice that the generalization to the case of a contin-
uous spectrum is quite simple (the multi-series being just substituted by a multiple
integral). Now, as a particular case of this (already particular) case, when the eigen-
values are of one of the forms: (i) an, (ii) a(n+ b) or (iii) a(n2

1 + n2
2), we obtain,

respectively, the (i) (ordinary) Riemann zeta function ζR (or simply ζ ), (ii) the Hur-
witz (or generalized Riemann) zeta function ζH , and (iii) the Epstein zeta function
Z (notice that in this last case the index n is double, or p-multiple in general, as we
have seen before).

3We will give more precise specifications at the end of this chapter.
4An important portion of this book will be devoted to obtain such convenient forms of this reflec-
tion formula in different situations of physical interest.
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1.2.3 Regularization of the Vacuum Energy

Depending on the physical magnitude to be calculated, the zeta function must be
evaluated at a certain particular value of s. For instance, if we are interested in the
vacuum or Casimir energy, which is simply obtained as the sum over the spectrum
(for details see Chap. 5, Sect. 5.3)

EC = �

2

∑

n

λn, (1.22)

this will be given by the corresponding zeta function evaluated at s =−1:

EC = �

2
ζA(−1). (1.23)

Normally, the series (1.22) will be divergent, and this formula involves an ana-
lytic continuation through the zeta function. That is why such regularization can
be termed as a particular case of analytic continuation procedures. To understand
this point better, let us just talk about the Riemann zeta function, ζ(s). As we have
seen, it is given by the series expression ζ(s)=∑∞

n=1 n
−s in the region of the com-

plex s-plane where Re s > 1. In the rest of the complex plane ζ(s) is not given by
the series (1.22) (which is divergent). But there exists one and only one meromor-
phic function that coincides with our initial series in the domain of convergence, and
thus extends its definition to the rest of the plane—except for the point s = 1 on the
real axis. This form of the domain of convergence, a half plane Re s > a, for some
a ∈ R, is typical of the so-called Dirichlet series and will appear also in the more
complicated zeta functions we are going to consider in the next chapters. The value
a is called the abscissa of convergence of the Dirichlet series. In general, when one
talks about the zeta function of the operator A (usually the Hamiltonian, in physics)
one certainly refers from the beginning to its analytical continuation to the whole
complex plane, in the way just described.

1.2.4 Regularization of One-Loop Graphs

In perturbation theory, the determinant of an operator corresponds to a one-loop
graph. One of the most widely used methods for extracting a finite value from that
graph—in flat spacetimes—is dimensional regularization, in which the dimension
d is treated like a complex variable, and whose analytic continuation up to d = 4
gives rise to a pole that will eventually be renormalized out. It was noted in [24] that
it is not clear how to apply this procedure in curved spacetimes. As an example, if
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one were handling S
4—Euclidean version of the de Sitter space—the natural gener-

alization would be S
d [34], but if one were to deal with the Schwarzschild solution,

with topology R
2×S

2, one might either extend it to R
2×S

d−2, or could add on ex-
tra dimensions to R

2 as well. Then the value for a closed loop graph would depend
on the actual type of extension to d dimensions. It is in this sense that dimensional
regularization in curved spacetimes has been termed as ambiguous. In general, the
value given by zeta-function regularization coincides, up to a multiple of the nor-
malization parameter, with the one given by dimensional regularization when the
extra dimensions are flat.

In the study of black holes or, in general, in problems involving curved bound-
aries, the use of the asymptotic expansion for the operator heat kernel allows for
relating the behavior of the partition function—or, say, the generating functional—
under scale changes of the background spacetime to integrals of quadratic expres-
sions in the curvature tensor. The energy-momentum tensor can be obtained by
functional differentiation of the partition function with respect to the background
metric, and can therefore be expressed in terms of derivatives of the heat ker-
nel. As has long been known, the trace of the energy momentum tensor is re-
lated to the behavior of the suitable generating functional under scale transforma-
tions.

These observations were made by Hawking, but generalized zeta functions had
already been used in [23] in a manner that we would nowadays call regularization
of one-loop graphs, and which essentially consists in attaching zeta functions not to
path integrals, but to the Feynman diagrams themselves. A modern formulation of
this method has been developed in [35]. When evaluating path integrals in curved
spacetimes, one has to deal with expressions like

Z[g,φ] =
∫

DgDφeiI [g,φ], (1.24)

where Dg is a measure on the space of metrics, Dφ a measure on the space of
matter fields, and I [g,φ] the classical action. The integral is taken over all fields
g and φ satisfying certain boundary or periodicity conditions. For a canonical en-
semble at temperature T = 1/β the boson fields are periodic in imaginary time on
some boundary at large distance, with period β . Z becomes the partition function
of statistical mechanics. The quadratic contribution in the field fluctuations reduces
to the evaluation of a determinant. However, as the convergence of the infinite prod-
uct is by no means guaranteed, making sense of such expression is usually a non-
trivial matter. The free energy is proportional to the logarithm of Z, and has the
form

logZ[φ̃] = 1

2
ζ ′A2

(0)+ 1

2
log

(
1

2πμ2

)
ζA2(0), (1.25)

in terms of the zeta function of the quadratic part of the action and of its derivative
(for more details, see [10, 11, 14]).
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1.3 Examples and a Comparison with Other Procedures

1.3.1 Some Explicit Examples

In Ref. [36], when calculating the Casimir energy of a piecewise uniform, closed
string, the following expression arose [36, Eq. (52)]

∞∑

n=0

(n+ β), (1.26)

which is clearly infinite. Here, the zeta-function regularization procedure consists
in the following. This expression comes about as the sum over the eigenvalues n+
β of the Hamiltonian of a certain quantum system (transverse oscillations of the
mentioned string), i.e. λn = n+ β . There is little doubt about what to do: as stated
above, the corresponding zeta function is

ζA(s)=
∞∑

n=0

(n+ β)−s . (1.27)

Now, for Re s > 1 this is the expression of the Hurwitz zeta function ζH (s,β),
which can be analytically continued as a meromorphic function to the whole com-
plex plane. Thus, the zeta function regularization method unambiguously prescribes
that the sum under consideration must be assigned the following value [37]

∞∑

n=0

(n+ β)= ζH (−1, β). (1.28)

The wrong alternative (for obvious reasons after what has been said before), would
be to argue that we might as well have written

∞∑

n=0

(n+ β)= ζ(−1)+ βζ(0), (1.29)

that gives a different result (a wrong one, in fact).
Of course, the method can be viewed as just one of the many possibilities of

analytic continuation in some specific parameter in order to give sense to (i.e., to
regularize) infinite expressions. From this point of view, it is related to the standard
dimensional regularization method. Sometimes it has been argued that, being so
close relatives, these two procedures even share the same type of diseases [38]. But
precisely to cure an ambiguity problem, namely that of the dependence of the regu-
larized result on the kind of the extra dimensions (artificially introduced in dimen-
sional regularization) was one of the main motivations of Hawking for the introduc-
tion of a new procedure, i.e. zeta function regularization, in physics [23, 24, 39–41].
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As is well known, a function f (s) defined on a certain domain of the complex s-
plane cannot have two different analytic continuations. However, one has to choose
carefully the definition of this starting function f (s) in the domain, namely the
precise dependence of f on s. In fact, as exemplified in [38], if one starts from two
different functions of s—which just coincide (formally) at the only point to which
they are to be continued—the result one gets from the two functions is generally
different. In particular,

f1(s)=
∞∑

n=0

n−s (1.30)

and

f2(s)=
∞∑

n=0

n

(
n

a
+ 1

)−(s+1)

(1.31)

continued to s =−1, in the first example, which corresponds to a Hermitian mass-
less conformal scalar field in 2d Minkowski spacetime with a compactified dimen-
sion, and

g1(s)=
∞∑

n=0

n−3s (1.32)

continued to s =−1, vs.

g2(s)=
∞∑

n=0

n3
(
n

a
+ 1

)−s
, (1.33)

continued to s = 0, in the second example, in which the vacuum energy correspond-
ing to a conformally coupled scalar field in an Einstein universe is studied. Needless
to say, the number of different possibilities to proceed in this way is literally infinite.
This shows the importance of adhering to the correct definition of zeta function as-
sociated with the differential operator corresponding to the physical observable one
has to deal with—the Hamiltonian, in the case of the Casimir energy.

1.3.2 Comparison with Other Regularization Methods

Dimensional regularization is also an analytical continuation procedure. And, at first
sight, to analytically continue in the number of dimensions of spacetime could seem
an even more abstract and arbitrary method than continuation in a much less ‘harm-
ful’ parameter as is a convenient exponent affecting the eigenvalues. Since, let us
think for a moment, what physical meaning can be attributed to a number of di-
mensions d = 3.5 or d = 4.1? No doubt that one of the reasons for the success of
dimensional regularization lies in the fact that in physics we are used to work in
different number of dimensions: there are important theories in two, three and four
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dimensions, and having got an ‘intuition’ of what happens when one wanders from
two to three and from three to four dimensions, it almost seems as if we could con-
sider us capable of ‘interpolating’ the properties and ascertain with precision what
is going to happen at d = 3.5 or d = 4.1. This may be a bit exaggerated, but the
actual result is that we manage to feel quite ‘at ease’ with a non-integer (and even
non-rational) number of dimensions. At the other extreme we can put cut-off reg-
ularization, undoubtedly the most ‘physical’ and, at the same time, mathematically
the most arbitrary and less elegant of all regularization methods. It is quite easy
to explain with simple arguments the physical meaning of a cut-off, in elementary
terms understandable by any undergraduate student. For instance, the fact that, in
the case of the standard Casimir effect, the plates are just transparent to the infi-
nite number of high frequency modes, ω ≥ ωcut (with ωcut reflecting the scale of
the plate separation), so that they do not contribute physically to the energy differ-
ence between the two situations of presence and absence of the plates, respectively.
Often, it is not difficult to give a precise meaning to the invariance of our physical
problem under the choice of a cut-off. In comparison, zeta-function regularization is
mathematically much less simple than the choice of a cut-off and physically much
less intuitive than cut-off or even dimensional regularization. However, once the
technique of analytical continuation of the zeta series is mastered and confidence in
the significance of the results of the method is secured (what is obtained by using
the procedure and checking the results in a number of different situations), then the
method of zeta-function regularization turns often to be invaluable.

Some points worth taking into account.

1. There could exist, in principle, infinitely many different analytic regularization
procedures, being dimensional regularization and zeta function regularization
just two of them.

2. Zeta function regularization is, to some extent, a uniquely defined procedure
(one-loop, effective potentials, . . . ), through the concept of zeta function asso-
ciated with the Hamiltonian. Sometimes, it even leads to a finite result, in which
case it has been named zeta function renormalization. However, in general, a sup-
plementary regularization followed by the corresponding renormalization proce-
dure cannot be avoided (see Chap. 9).

3. Zeta function regularization does not suffer from some of the conceptual prob-
lems that afflict dimensional regularization (as the γ5 problem or the question of
the curvature of the ‘additional’ dimensions in a curved spacetime).

4. This does not mean, however, that zeta function regularization has no problems
at all, but that they are, in fact, of a quite different kind. The first one appears
already when it turns out that the point (let say s = −1 or s = 0) at which the
zeta function must be evaluated turns out to be precisely a singularity (a pole) of
the analytic continuation. This and similar difficulties can be solved, as discussed
in detail in Ref. [42] (see also Chaps. 6 and 9 here). Eventually, as a final step one
has to resort to renormalization group techniques (see [43] and Chap. 9 here).

5. Zeta function regularization has been extended to higher-loop order by McKeon
and Sherry under the name of operator regularization [44, 45] (see also Shiekh
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[46]). There, some serious difficulties, concerning the breakdown of gauge in-
variance appear [44, 45, 47] which, in practice, are possible to solve case by case
and loop by loop (at least to two loops in a number of particular situations).

6. In the end, the fundamental question could be: which of the regularizations that
are being used in physics is the one chosen by nature? (if this can be consid-
ered a valid question at all). In practice, one always tries to avoid answering
it. The alternative response consists in just checking the finite results obtained
with other more physically intuitive regularizations, or to compare them with
some classical limits which provide well-known, physically meaningful values.
We are obviously led to believe that in view of its simplicity and mathemati-
cal elegance, zeta function regularization could well be the regularization of the
future. Those properties are certainly to be counted among their main virtues,
but (oddly enough) in some sense also as its main intellectual drawbacks: we do
not manage to see in detail which infinites are thrown away and when and how
this happens, something that is handy in other more pedestrian regularizations—
which are actually equivalent in most cases to the zeta one (as pointed out, e.g.,
in [38]).

1.3.3 A Word of Warning

Aside from some very simple cases (among those, the ones reviewed here), the use
of the procedure of analytic continuation through the zeta function requires a good
deal of heavy mathematical work [10, 11, 13, 14]. It is then no surprise that it has
been so often associated with mistakes and sound errors (see [48] for some specific
details), coming mainly from dubious manipulations. Some possible mistakes have
been described before and some others will arise in the next chapters. Let us here
just give an example of dubious manipulation. One which often appears starts from
the well-known expression (see, for instance, [49])

a2

π2

∞∑

n=1

(
π2n2 + a2m2

π2

)−1

= 1

2m2

(
−1+ am

π
coth

am

π

)
, (1.34)

in other words (for a = π and m= c),

∞∑

n=1

(
π2n2 + c2)−1 = 1

2c2
(−1+ c coth c). (1.35)

The integrated version of this equality, namely,

∞∑

n=−∞
ln

(
n2 + c2

π2

)
= 2c+ 2 ln

(
1− e−2c), (1.36)
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under the specific form

T

∞∑

n=−∞
ln
[
(ωn)

2 + (ql)
2]= ql + 2T ln

(
1− e−ql/T

)
, (1.37)

with ωn = 2πnT and ql = πl/R, has been used in Ref. [50, Eq. (2.20)] when study-
ing the Nambu–Goto string model at finite length and non-zero temperature. Now
this equality is again formal. It involves an analytic continuation, since it has no
sense to integrate the left hand side term by term: we get a divergent series.

A possible way to proceed is as follows. The expression on the left hand side hap-
pens to be the most simple form of the inhomogeneous Epstein zeta function [51].
This function is quite involved and different expressions for it (including asymp-
totical expansions very useful for accurate numerical calculations) will be given in
Chap. 4 (see [51] and also [52]). In particular

ζEH

(
s; c2) =

∞∑

n=1

(
n2 + c2)−s

= −c−2s

2
+
√
π �(s − 1/2)

2�(s)
c−2s+1

+ 2πsc−s+1/2

�(s)

∞∑

n=1

ns−1/2Ks−1/2(2πnc), (1.38)

which is reminiscent of the famous Chowla–Selberg formula [25]. Derivatives
can be taken here and the analytical continuation in s presents again no problem
(Chap. 4).

The usefulness of zeta function regularization is without question [5, 10, 11, 13,
14, 53, 54]. It can give immediate sense to expressions such as 1+ 1+ 1+ · · · =
−1/2 (also obtainable by other means, of course), which turn out to be invaluable
for the construction of new physical theories, as different as Pauli–Villars regular-
ization with infinite constants (advocated by Slavnov [55], see Chap. 7) and matter
generation in cosmology (see Chap. 8).

1.4 Present Developments and a Point on Rigor

We shall here describe, for completeness, some recent developments that have ex-
tended the scope of applications of the zeta function method. They are of great
potential importance but, in spite of this, in the applications to be described in the
following chapters we are not going to make use of them since, as the title of the
book clearly indicates, we shall restrict ourselves to the case when the spectrum
of the differential operator is explicitly known and gives rise to some of the stan-
dard zeta functions described before. Precise conditions for the definition of the zeta
function of a differential operator will be given at the end of the section.
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1.4.1 Calculation of Heat-Kernel Coefficients

An important issue for many years was to obtain explicitly the coefficients which
appear in the short-time expansion of the heat-kernel K(t) corresponding to a
Laplacian-like operator of a d-dimensional manifold M. In mathematics this in-
terest originates, in particular, in the well-known connections that exist between the
heat-equation and the Atiyah–Singer index theorem. In physics, the importance of
that expansion is notorious in different domains of quantum field theory, where it
is commonly known as the (integrated) Schwinger–De Witt proper-time expansion.
In this context, the heat-equation for an elliptic (in general pseudo-elliptic) differen-
tial operator A and the corresponding zeta function ζA(s) have been realized to be
particularly useful tools for the determination of effective actions [24] and for the
calculation of vacuum or Casimir energies [42] (a basic issue for understanding the
vacuum structure of a quantum field theory). Here usually the derivative ζ ′A(0) of
the zeta function [24] and its value at s =−1/2 are needed.

A very quick and powerful method for the calculation of heat-kernel coefficients
makes use of quite common ideas, as integral representations of the spectral sum,
Mellin transforms, non-trivial commutation of series and integrals and skilful an-
alytic continuation of zeta functions on the complex plane [56]. The method can
be applied to the case of the heat-kernel expansion of the Laplace operator on a
d-dimensional ball with either Dirichlet, Neumann or, in general, Robin bound-
ary conditions. The final formulas obtained with this method are quite simple. The
scheme has been illustrated in all detail in Ref. [56]. It serves for the calculation of
an (in principle) arbitrary number of heat-kernel coefficients in any situation when
the basis functions are known. In that paper, a complete list of new results has been
given for the coefficients B3, . . . ,B10, corresponding to the d-dimensional ball with
all the mentioned boundary conditions and d = 3,4,5.

In order to obtain these results, a specific property of the zeta function ζA(s)

corresponding to an elliptic operator A is exploited, namely its well-known close
connection with the heat-kernel expansion. In spite of the fact that almost every-
body is aware of such connection, its actual use in the literature has remained very
restricted till now. If the manifold M has a boundary ∂M, the coefficients Bn in the
short-time expansion have both a volume and a boundary part. It is usual to write
this expansion in the form

K(t)∼ (4πt)−
D
2

∞∑

k=0,1/2,1,...

Bkt
k, (1.39)

with

Bk =
∫

M
dV bn +

∫

∂M
dS cn. (1.40)

For the volume part very effective systematic schemes have been developed (see for
example [57–59]). The calculation of cn, however, is in general more difficult and
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this is precisely the strongest point of the new method based on the zeta-function
calculations.

The connection between the heat-kernel expansion, (1.39) and the associated zeta
function is established through the formulas [60]

Res ζ(s)= Bm
2 −s

(4π)
m
2 �(s)

, (1.41)

for s = m
2 ,

m−1
2 , . . . , 1

2 ,− 2l+1
2 , for l ∈N0, and

ζ(−p)= (−1)pp! B
m
2 +p

(4π)
m
2
, (1.42)

for p ∈N0. It has been shown in [56] that these equations, (1.41) and (1.42), can ac-
tually serve as a very convenient starting point for the calculation of the coefficients
Bk , even in the cases when the eigenvalues of the operator P under consideration
are not known. The extensive knowledge in explicit zeta-function evaluations that
has been accumulated in the past few years—which has its fundament in the for-
mulas that will be presented and applied in the following chapters—has allowed to
elaborate this competitive method of calculation of the heat-kernel coefficients.

Earlier investigations used Laplace transformations of the heat-kernel K(t) itself,
but there an intermediate cut off had to be introduced at some point—because one
needed to consider the Laplace transform of a function which is singular at t = 0.
In contrast, in the new approach it is the complex argument s of the zeta function of
the Laplace operator which very neatly serves for the regularization of all sums (in
just the usual way, see Sect. 1.2 above).

1.4.2 Determinant of the Laplacian

Another interesting development is the following. Motivated by the need to give an-
swers to some basic questions in quantum field theory, during the last years there
has been (and continues to be) a lot of interest in the problem of calculating the de-
terminant of a differential operator, A (see for example [61, 62]). Often one has to
deal in these situations with positive elliptic differential operators acting on sections
of a vector bundle over a compact manifold. In such cases A has a discrete spectrum
λ1 ≤ λ2 ≤ · · · → ∞. The determinant, detA =∏i λi , is generally divergent and
one needs to make sense out of it by means of some kind of analytic continuation.
A most appropriate way of doing that is by using the zeta function regularization
prescription introduced by Ray and Singer [22] (see also [23, 24]). In this procedure
ln detA is defined by analytically continuing the function

∑
i λ
−s
i lnλi in the expo-

nent s, from the domain of the complex plane where the real part of s is large to
the point s = 0. Introducing the zeta function associated with the spectrum λi of A,
ζA(s)=∑i λ

−s
i , this is equivalent to defining

ln detA=−ζA
′(0).
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Only a few general methods for the evaluation of ln detA are available. Thus, for
example, given that the manifold has a boundary, in [63] the determinants of differ-
ential and difference operators have been related to the boundary values of solutions
of the operators. When A is a conformally covariant differential operator, exact re-
sults may sometimes be obtained by transforming to a ‘more simple’ operator Ã for
which ln det Ã is known. Then, the knowledge of the associated heat-kernel coef-
ficients nowadays available gives sometimes the exact value of ln detA [64]. This
approach has been used by Dowker to find the functional determinants for a variety
of sectors of Euclidean space, spheres and flat balls for dimensions D ≤ 4 [65–67].
Similar techniques have proven to be very powerful in order to obtain estimates of
different types.

As a rule, however, explicit knowledge of the eigenvalues λi is necessary in order
to obtain ln detA. This explicit knowledge of the eigenvalues is in general only guar-
anteed for highly symmetric regions of space, such as the torus, sphere or regions
bounded by parallel planes. For these manifolds, detailed calculations have been
performed in the context of Casimir energies and effective potential considerations.
Those will be the cases to be investigated in the rest of this book.

In Ref. [64], the same method described before has been extended to the calcu-
lation of functional determinants of the Laplace operator on balls. Again, Dirichlet
and Robin boundary conditions have been considered and, using this approach, for-
mulas for any value of the dimension d of the ball have been obtained explicitly, for
dimensions d = 2,3,4,5 and 6. They can be easily extended to any value of d . That
paper focuses on a class of situations for which the eigenvalues of the operator are
not known explicitly but for which, nevertheless, the calculation of ln detA is possi-
ble. The method developed is applicable whenever an implicit equation satisfied by
the eigenvalues is known and some properties (later specified) of this equation are
known too. The approach is exemplified by taking A=−� on the D-dimensional
ball Bd = {x ∈ R

d; |x| ≤ r}, together with Dirichlet—or general Robin—boundary
conditions.

1.5 General Definition of the Zeta Function
of a Pseudo-differential Operator

1.5.1 The Zeta Function of a Ψ DO

The zeta function ζA of A, a positive-definite elliptic pseudo-differential operator
(�DO) of positive order m ∈ R (acting on the space of smooth sections of E, an
n-dimensional vector bundle over a closed n-dimensional manifold, M) is defined
as

ζA(s)= trA−s =
∑

j

λ−sj , Re s >
n

m
≡ s0. (1.43)
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being s0 = dimM/ordA the abscissa of convergence of ζA(s). It can be proven that
ζA(s) has a meromorphic continuation to the whole complex plane C (regular at s =
0), provided the principal symbol of A (am(x, ξ)) admits a spectral cut: Lθ = {λ ∈
C;Argλ = θ, θ1 < θ < θ2}, SpecA ∩ Lθ = ∅ (Agmon–Nirenberg condition [68]).
This definition of ζA(s) depends on the position of the cut Lθ . The only possible
singularities of ζA(s) are simple poles at sk = (n− k)/m, k = 0,1,2, . . . , n−1, n+
1, . . . . M. Kontsevich and S. Vishik have managed to extend this definition to the
case when m ∈C (no spectral cut exists) [68].

1.5.2 The Zeta Regularized Determinant

Let A be a �DO operator with a spectral decomposition: {ϕi, λi}i∈I , with I some set
of indices. The definition of determinant starts by trying to make sense of the product∏

i∈I λi , which can be easily transformed into a “sum”: ln
∏

i∈I λi =
∑

i∈I lnλi .
From the definition of the zeta function of A: ζA(s) =∑i∈I λ

−s
i , by taking the

derivative at s = 0: ζ ′A(0) = −
∑

i∈I lnλi , we arrive to the following definition of
determinant of A [22, 69, 70]:

detζA= exp
[−ζ ′A(0)

]
. (1.44)

An older definition (due to Weierstrass) is obtained by subtracting in the series
above (when it is such) the leading behavior of λi as a function of i, as i →∞,
until the series

∑
i∈I lnλi is made to converge [71]. The shortcoming—for physical

applications—is here that these additional terms turn out to be non-local and, thus,
are non-admissible in a renormalization procedure.

In algebraic QFT, to write down an action in operator language one needs a func-
tional that replaces integration. For the Yang–Mills theory this is the Dixmier trace,
which is the unique extension of the usual trace to the ideal L(1,∞) of the compact
operators T such that the partial sums of its spectrum diverge logarithmically as
the number of terms in the sum: σN(T ) ≡∑N−1

j=0 μj = O(logN), μ0 ≥ μ1 ≥ · · · .
The definition of the Dixmier trace of T is: DtrT = limN→∞ 1

logN σN(T ), pro-
vided that the Cesaro means M(σ)(N) of the sequence in N are convergent as
N→∞ (remember that: M(f )(λ)= 1

lnλ

∫ λ

1 f (u)du
u

). Then, the Hardy–Littlewood
theorem can be stated in a way that connects the Dixmier trace with the residue
of the zeta function of the operator T −1 at s = 1 (see Connes [72]): DtrT =
lims→1+(s − 1)ζT −1(s).

The Wodzicki (or noncommutative) residue [73] is the only extension of the
Dixmier trace to the �DOs which are not in L(1,∞). It is the only trace one can
define in the algebra of �DOs (up to a multiplicative constant), its definition being:
resA = 2 Ress=0 tr(A�−s), with � the Laplacian. It satisfies the trace condition:
res(AB) = res(BA). A very important property is that it can be expressed as an
integral (local form) resA= ∫

S∗M tra−n(x, ξ) dξ with S∗M ⊂ T ∗M the co-sphere
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bundle on M (some authors put a coefficient in front of the integral: Adler–Manin
residue).

If dim M = n = −ordA (M compact Riemann, A elliptic, n ∈ N) it coin-
cides with the Dixmier trace, and one has Ress=1 ζA(s)= 1

n
resA−1. The Wodzicki

residue continues to make sense for �DOs of arbitrary order and, even if the sym-
bols aj (x, ξ), j < m, are not invariant under coordinate choice, their integral is, and
defines a trace. All residua at poles of the zeta function of a �DO can be easily
obtained from the Wodzicki residue [74].

1.5.3 Multiplicative Anomaly

Given A, B and AB �DOs, even if ζA, ζB and ζAB exist, it turns out that, in general,
detζ (AB) �= detζAdetζB . The multiplicative (or noncommutative, or determinant)
anomaly is defined as:

δ(A,B)= ln

[
detζ (AB)

detζ Adetζ B

]
=−ζ ′AB(0)+ ζ ′A(0)+ ζ ′B(0). (1.45)

Wodzicki’s formula for the multiplicative anomaly [73, 75]:

δ(A,B)= res{[lnσ(A,B)]2}
2 ordAordB(ordA+ ordB)

, σ (A,B) :=AordBB−ordA. (1.46)

At the level of Quantum Mechanics (QM), where it was originally introduced by
Feynman, the path-integral approach is just an alternative formulation of the theory.
In QFT it is much more than this, being in many occasions the actual formulation
of QFT [76]. In short, consider the Gaussian functional integration

∫
[d�] exp

{
−
∫

dDx
[
�†(x)( )�(x)+ · · · ]

}
−→ det( )±1, (1.47)

(the sign ± depends on the spin-class of the integration fields) and assume that the
operator matrix has the following simple structure (being each Ai an operator on its
own):

(
A1 A2
A3 A4

)
−→

(
A

B
r

)
, (1.48)

where the last expression is the result of diagonalizing the operator matrix. A
question now arises. What is the determinant of the operator matrix: det(AB) or
detA ·detB? This has been very much on discussion during the last months [77–80].
There is agreement in that: (i) In a situation where a superselection rule exists, AB

has no sense (much less its determinant), and then the answer must be detA · detB .
(ii) If the diagonal form is obtained after a change of basis (diagonalization process),
then the quantity that is preserved by such transformations is the value of det(AB)

and not the product of the individual determinants (there are counterexamples sup-
porting this viewpoint [81–83]).
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1.5.4 On the Explicit Calculation of ζA and detζ A

A fundamental property of many zeta functions is the existence of a reflection for-
mula (or functional equation, in the mathematical language). For the Riemann zeta
function: �(s/2)ζ(s) = πs−1/2�(1 − s/2)ζ(1 − s). For a generic zeta function,
Z(s), it is Z(ω − s) = F(ω, s)Z(s), and allows for its analytic continuation in an
easy way—what is, as advanced above, the whole story of the zeta function reg-
ularization procedure (at least the main part of it). But the analytically continued
expression thus obtained is just another series, again with a slow convergence be-
havior, of power series type [84] (actually the same that the original series had, in its
own domain of validity). S. Chowla and A. Selberg found a formula, for the Epstein
zeta function in the two-dimensional case [85], that yields exponentially quick con-
vergence, and not only in the reflected domain. They were extremely proud of that
formula—as one can appreciate just reading the original paper (where actually no
hint about its derivation was given, see [85]). In Ref. [86], I generalized this expres-
sion to inhomogeneous zeta functions (most important for physical applications),
but staying always in two dimensions, for this was commonly believed to be an un-
surmountable restriction of the original formula (see, e.g., Ref. [5]). I have obtained
an extension to an arbitrary number of dimensions [87], both in the homogeneous
(quadratic form) and non-homogeneous (quadratic plus affine form) cases.

In short, for the following zeta functions (corresponding to the general quad-
ratic—plus affine—case and to the general affine case, in any number of dimen-
sions, d) explicit formulas of the CS type were obtained in [87], namely,

ζ1(s)=
∑

�n∈Zd

[
Q(�n)+A(�n)]−s (1.49)

and

ζ2(s)=
∑

�n∈Nd

A(�n)−s , (1.50)

where Q is a non-negative quadratic form and A a general affine one, in d dimen-
sions (giving rise to Epstein and Barnes zeta functions, respectively). Moreover, ex-
pressions for the more difficult cases when the summation ranges are interchanged,
that is:

ζ3(s)=
∑

�n∈Nd

[
Q(�n)+A(�n)]−s (1.51)

and

ζ4(s)=
∑

�n∈Zd

A(�n)−s (1.52)

have been given in [87].
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1.6 Future Perspectives: Operator Regularization

The Operator Regularization (OR) approach, due originally to D.G.C. McKeon and
T.N. Sherry [88, 89] is considered as a genuine generalization of the zeta regulariza-
tion approach. Its main aim is to extend zeta regularization, so effective at one-loop
order [90], to higher loops. It has a distinct advantage over other competing proce-
dures, in that it can be used with formally non-renormalizable theories, as shown in
[91, 92]. A further feature of this approach is that divergences are not reabsorbed,
each one is removed and replaced by an arbitrary factor. Indeed, operator regular-
ization (OR) does not cure the non-predictability problem of non-renormalizability,
but an advantage of the method is that the initial Lagrangian does not need to be ex-
tended with the addition of extra terms. The OR scheme is governed by the identity:

H−m = lim
ε→0

dn

dεn

[
1+ (1+ α1ε + α2ε

2 + · · · + αnε
n
)εn

n! H
−ε−m

]
, (1.53)

where the αi ’s are arbitrary, and it is enough that the degree of regularization is
equal to the loop order, n.

Two separate aspects of the procedure are, first the regularization itself and, sec-
ond, the analytical continuation, where divergences are replaced by arbitrary factors.
Thus, the effect of OR is in the end replace the divergent poles by arbitrary constants,
as

1

εn
−→ αn, (1.54)

to yield the finite expression

H−m = αnc−n + · · · + α1c−1 + c0. (1.55)

1.6.1 Generalization and Further Extensions

The OR method can be generalized to multiple operators, as in multi-loop cases

H−m1 · · ·H−mr = lim
ε→0

dn

dεn

[
1+ (1+ α1ε + α2ε

2 + · · · + αnε
n
)

· ε
n

n!H
−ε−m1 · · ·H−ε−mr

]
. (1.56)

Further extensions of the procedure have been proposed. Let us recall that OR was
first introduced in the context of the Schwinger approach,

lnH =− lim
ε→0

dn

dεn

(
εn−1

n! H−ε
)
, (1.57)
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which is known to be equivalent to the Feynman one

H−m = lim
ε→0

dn

dεn

(
εn

n! H
−ε−m

)
. (1.58)

The Schwinger form can be transformed into the Feynman one, as

H−m = (−1)m−1

(m− 1)!
dm

dHm
lnH. (1.59)

Equivalence with dimensional regularization can be established in many cases, but
not always. Problems, the main one being unitarity, may appear (see [93]). To start
with, its naive application to obtain finite amplitudes breaks unitarity.

A definite advantage of the procedure is that, actually, no symmetry-breaking
regulating parameter is ever inserted into the initial Lagrangian [94]. One can use
Bogoliubov’s recursion formula in order to show how to construct a consistent OR
operator, and unitarity is upheld by employing a generalized evaluator consistently
including lower-order quantum corrections to the quantities of interest. Unitarity
requirements lead to unique expressions for quantum field theoretic quantities, order
by order in �. This fact has been proven in many cases (as for the �4 theory at two-
loop order, etc.). But I should say that, to my knowledge, a universal proof of this
issue is actually still missing.

A final comment is in order. Using a BPHZ-like scheme, as the above one turns
out to be, in the end, essentially reintroduces counterterms into the procedure, since
they are actually hidden in the subtractions taking place at each step. In this way,
the simplicity of the original zeta function regularization procedure, as described in
the previous sections, and which is one of its main characteristics, is absent in the
extended, operator regularization method.



Chapter 2
Mathematical Formulas Involving the Different
Zeta Functions

In this chapter, a compendium of original formulas resulting from the zeta-
regularization techniques, developed by the author and collaborators is given. Al-
though some of the original derivations are reproduced, what follows is mainly
intended as a table for practical use by the reader—the full derivations and argu-
ments involved can be found in the accompanying bibliographical references. In
particular, useful expressions are provided for the analytic continuation of Rie-
mann, Hurwitz and Epstein zeta functions and generalizations of them, for their
asymptotic expansions (including those for derivatives of Hurwitz’s ζ ), the zeta-
function regularization theorem—and its use for multiple zeta-functions with ar-
bitrary exponents—and, in another section, the first immediate applications of the
theorem. All this is followed by a very careful study of the analytic continuation
of multiple series which terms are combinations involving arbitrary coefficients and
exponents, a case that is very involved and has not been treated properly in the math-
ematical literature. Of course this case always involves the elusive term that shows
up in the correct application of the zeta-function regularization theorem. Some mis-
takes which regretfully appeared in a few formulas of the original papers have been
corrected.

2.1 A Simple Recurrence for the Higher Derivatives
of the Hurwitz Zeta Function

A recurrent formula which allows for the calculation of the asymptotic series ex-
pansion of any derivative, ζ (m)(z, a)= ∂mζ(z, a)/∂zm, of the Hurwitz zeta function
ζ(z, a) is here given. In particular, the first terms of the series corresponding to
ζ ′′(−n,a) in inverse powers of a are written explicitly, for n = 0,1,2,3. Knowl-
edge of these expressions is basic in the zeta-function regularization procedure.

Some time ago, an asymptotic expansion for the first derivative

ζ ′(−n,a)≡ ∂

∂z
ζ(z, a)

∣∣∣∣
z=−n

, n= 0,1,2, . . . , (2.1)

E. Elizalde, Ten Physical Applications of Spectral Zeta Functions,
Lecture Notes in Physics 855,
DOI 10.1007/978-3-642-29405-1_2, © Springer-Verlag Berlin Heidelberg 2012
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of the Hurwitz zeta function

ζ(z, a)=
∞∑

n=0

(n+ a)−z, Re z > 1, a �= 0,−1,−2, . . . (2.2)

in inverse powers of a was derived [95] (see (2.8)), that has been found to be very
useful by a number of authors—as a convenient tool, e.g., for the computation of
effective actions in non-trivial backgrounds and also for the derivation of other in-
teresting zeta function relations (see, for example, Steiner [96], Rudaz [97], and
Ref. [51]). The simplicity and very quick convergence of the expressions we will
give below have been recognized to be their most remarkable characteristics. They
render them very useful for numerical applications [96], and for the subsequent
derivation of related expressions for other zeta [97] and theta [51] functions.

In this chapter we describe the use the procedure of Refs. [95, 98] in order to
obtain the asymptotic expansion corresponding to any derivative of the Hurwitz
zeta function (2.2)

ζ (m)(z, a)≡ ∂m

∂zm
ζ(z, a). (2.3)

The interest of such formulas has been manifest since some years ago, and actually
a couple of attempts had been made by some authors to solve the problem, but
they did not turn out to be completely successful. It is rather clear from the very
beginning that, for the general case (2.3), it is not possible to obtain an expression
so simple as the one derived in Ref. [95] for (2.1) (see (2.8) below).

We will not repeat here the detailed derivation of the asymptotic expansion corre-
sponding to (2.1), given in Ref. [95]. Starting from Hermite’s integral representation
of the Hurwitz zeta function ζ(z, a) (in the future we will omit the subindex H , as
is normal practice)

ζ(z, a)= a−z

2
+ a1−z

z− 1
+ 2
∫ ∞

0

(
t2 + a2)−z/2 sin

(
z tan−1(t/a)

) dt

e2πt − 1
, (2.4)

one easily gets

ζ ′(z, a) = −a−z

2
lna − a1−z

z− 1
lna − a1−z

(z− 1)2

+ 2
∫ ∞

0

(
t2 + a2)−z/2 cos

(
z tan−1(t/a)

)
tan−1(t/a)

dt

e2πt − 1

−
∫ ∞

0

(
t2 + a2)−z/2 sin

(
z tan−1(t/a)

)
ln
(
t2 + a2) dt

e2πt − 1
. (2.5)

We invite the reader to read Ref. [95] for more details of the mathematical proce-
dure employed, which is similar to the ordinary one derived from Watson’s lemma
and Laplace’s method [84, 99] and is therefore quite a conventional one for the
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obtaintion of asymptotic expansions. In particular, the functions appearing in the
integrands are replaced by their power series expansions near t = 0, e.g.

tan−1
(
t

a

)
=

∞∑

j=0

(−1)j

2j + 1

(
t

a

)2j+1

,

ln
(
t2 + a2

) = 2 lna +
∞∑

j=0

(−1)j−1

j

(
t

a

)2j

,

(2.6)

and one then checks with the residuum terms that the series that are formed by
integrating term by term verify the condition of asymptoticity. Alternatively, another
procedure can be employed that leads to the same result, namely repeated integration
by parts.

In any way, the final result turns out to be the same [97] that one would obtain by
naive derivation term by term of the asymptotic series corresponding to the Hurwitz
zeta function (2.2)

ζ(z+ 1, a) = 1

z
a−z + 1

2
a−z−1 + 1

z
�0(z, a),

�0(z, a) ≡
∞∑

k=2

Bk

k! (z)k a−z−k, (2.7)

(z)k ≡ z(z+ 1) · · · (z+ k − 1)= �(z+ k)

�(z)
.

Here (z)k is Pochhammer’s symbol (the rising factorial function) and the Bk are
Bernoulli’s numbers. The asymptotic series corresponding to ζ ′(z + 1, a) can be
expressed as

ζ ′(z+ 1, a) = −
(

1

z
+ lna

)
ζ(z+ 1, a)+ 1

2z
a−z−1 + 1

z
�1(z, a),

�1(z, a) ≡
∞∑

k=2

Bk

k−1∑

j=0

(z)j

j !(k − j)
a−z−k.

(2.8)

Notice that this is not a trivial result since—as is well known—term by term deriva-
tion of an asymptotic series is controlled by a Tauberian theorem (and not by an
abelian one). These expansions are valid for large |a| and |Arga|< π . In particular,
when z=−n, n ∈N, the above expressions reduce to [100]

ζ(1− n,a)=−1

n
Bn(a), (2.9)

where Bn(a) is the Bernoulli polynomial of degree n, and to
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ζ ′(1− n,a) = 1

n

(
lna − 1

n

)
Bn(a)− 1

2n
an−1

− 1

n

n∑

k=2

Bk

k−1∑

j=0

(
n

j

)
(−1)j

k − j
an−k

+ (−1)n−1(n− 1)!
∞∑

k=n+1

Bk

k(k − 1) · · · (k − n)
an−k, (2.10)

respectively.
Now, starting again from Hermite’s integral representation (2.4) and repeating,

for ζ ′′, the same procedure used for ζ ′, in particular, the replacements (2.6) or in-
tegration by parts (quite involved), we arrive to the following expression for the
second derivative

ζ ′′(z+ 1, a) = −2

(
1

z
+ lna

)
ζ ′(z+ 1, a)

−
(

2
lna

z
+ ln2 a

)
ζ(z+ 1, a)+ 1

z
�2(z, a), (2.11)

�2(z, a) ≡
∞∑

k=2

Bk

k−1∑

j=0

1

k− j

j−1∑

h=0

(z)h

h!(j − h)
a−z−k.

This is, term by term, the same result that one would have obtained by naive deriva-
tion of the preceding asymptotic series. Actually, the alternative procedure (namely
that of partial integration)—which was already discussed in [95]—proves to be here
the most convenient one in order to exhibit the asymptotic character of the series
(2.11).

With some additional effort, the following operational recurrence can be found,
in general [98]

∂m

∂zm
ζ(z+ 1, a)

=−
[(

∂

∂z
+ lna

)m

−
(

∂

∂z

)m

+ m

z

(
∂

∂z
+ lna

)m−1]
ζ(z+ 1, a)

+ 1

z
�m(z, a), (2.12)

being

�m(z, a)≡
∞∑

k=2

Bk

k−1∑

j1=0

1

k− j1

j1−1∑

j2=0

1

j1 − j2
· · ·

jm−1−1∑

jm=0

(z)jm

jm!(jm−1 − jm)
a−z−k,

(2.13)
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for large |a| and |Arga| < π . Using the operational iteration (2.12), the follow-
ing general recurrence is obtained, which yields the asymptotic expansion for any
derivative of the Hurwitz zeta function in terms of the asymptotic expansion corre-
sponding to the derivatives of lower order:

ζ (m)(z+ 1, a)=−
m∑

j=1

(
m

j

)(
j

z
+ lna

)
lnj−1 aζ (m−j)(z+ 1, a)+ 1

z
�m(z, a),

(2.14)
�m(z, a) being given by (2.13).

If we restrict ourselves to the particular values z = −n, n ∈ N, we obtain the
more simple expression

ζ (m)(1− n,a)=
m∑

j=1

(
m

j

)(
j

n
− lna

)
lnj−1 aζ (m−j)(1− n,a)− 1

n
�m(−n,a),

(2.15)
where now

�m(−n,a)=
∞∑

k=2

Bk

k−1∑

j1=0

1

k − j1

j1−1∑

j2=0

1

j1 − j2
· · ·

μm∑

jm=0

(n
jm

) (−1)j

jm−1 − jm
an−k, (2.16)

being μm =min(n, jm−1 − 1).
(2.12) to (2.16) constitute the main results of this section. Even if they do not

provide a general explicit asymptotic expression for any derivative of the Hurwtiz
zeta function but any of such asymptotic series can immediately be found by solv-
ing the very simple recurrences (2.14) or (2.15), starting from (2.7) and (2.9), and
(2.8) and (2.10), respectively. These expressions are very appropriate for numerical
and analytical explicit calculations, in connection with the computational software
packets commonly available.

To prove this statement, let us obtain the asymptotic series for the second deriva-
tive, at non-positive integer values of z. It is given by

ζ ′′(1− n,a) =
(
− 2

n2
+ 2 lna

n
− ln2 a

)
Bn(a)

n
−
(

1

n
− lna

)
an−1

n

− 1

n
�2(−n,a)− 2

n

(
1

n
− lna

)
�1(−n,a), (2.17)

where Bn(a) is the Bernoulli polynomial of degree n, and

�2(−n,a) =
n∑

k=2

Bk

k−1∑

j=0

1

k − j

j−1∑

h=0

(
n

h

)
(−1)h

j − h
an−k

+
∞∑

k=n+1

Bk

n∑

j=0

1

k − j

j−1∑

h=0

(
n

h

)
(−1)h

j − h
an−k
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+ (−1)nn!
∞∑

k=n+1

Bk

k−1∑

j=n+1

1

(k − j)j (j − 1) · · · (j − n)
an−k (2.18)

and

�1(−n,a) =
n∑

k=2

Bk

k−1∑

j=0

(
n

j

)
(−1)j

k − j
an−k

+ (−1)nn!
∞∑

k=n+1

Bk

k(k − 1) · · · (k − n)
an−k. (2.19)

It is also clear enough that these expressions for the asymptotic series are well suited
for practical purposes. We have used Mathematica in a conventional workstation in
order to obtain a number of leading terms of the above series, for different values of
n. This can be done in less than a minute. Below there is a list of the first few results
obtained (we will not bother the reader with the full sample):

ζ ′′(0, a) = −a
(
ln2 a − 2 lna + 1

)+ 1

2
ln2 a − a−1

6
lna

+ a−3

60

(
lna

3
− 1

2

)
− a−5

(
lna

630
− 4

1209

)
+ · · · , (2.20)

ζ ′′(−1, a) = −a2

4

(
2 ln2 a − 2 lna + 1

)+ a

2
ln2 a + 1

12

(
ln2 a − 2 lna

)

− a−2

360
lna + a−4

15120
(6 lna − 5)+ · · · , (2.21)

ζ ′′(−2, a) = −a3

27

(
9 ln2 a − 6 lna + 2

)+ a2

2
ln2 a − a

6

(
ln2 a − lna

)

+ a−1

60

(
lna

3
+ 1

2

)
− a−3

3780
lna

+ a−5

1800

(
lna

7
− 1

12

)
+ · · · , (2.22)

and

ζ ′′(−3, a) = −a4

32

(
8 ln2 a − 4 lna + 1

)+ a3

2
ln2 a + a2

12

(
3 ln2 a + 2 lna

)

+ 1

60

(
ln2 a

2
+ 11 lna

6
+ 1

)

+ a−2

504

(
lna

5
+ 1

6

)
− a−4 lna

16800
+ · · · . (2.23)
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Actually, one reaches values of n as high as n= 20 very quickly, what proves that
the above recurrent expressions, (2.13) to (2.16), are in fact very efficient for practi-
cal applications.

2.2 The Zeta-Function Regularization Theorem

As advanced before, the zeta-function regularization procedure is a quite useful reg-
ularization tool in quantum field theory. A keystone of the method is the zeta func-
tion regularization theorem. In this section, the theorem will be illustrated while
addressing the practical question of the regularization of multi-series of the general
type

∑

n1,...,nN

[
a1(n1 + c1)

α1 + · · · + aN(nN + cN)αN + c
]−s

, (2.24)

with a1, . . . , aN ,α1, . . . , αN > 0, c1, . . . , cN arbitrary reals and c ≥ 0. When c1 =
· · · = cN = 0 the term with n1 = · · · = nN = 0 must be suppressed from the sum
(which is then usually denoted by �′). Only the most simple cases have been prop-
erly studied in the literature (e.g., a1 = · · · = aN , c1 = · · · = cN = 0 or ±1/2,
α1 = · · · = αN = 1,2, c = 0, etc.). The zeta function regularization theorem in its
most general form leads to an asymptotic expansion valid for arbitrary a’s and α’s,
which is very convenient for numerical computations. In particular, useful expres-
sions can be derived from it for the analytical continuation of Riemann, Hurwitz and
Epstein zeta functions and their generalizations (see Chap. 4), and for their asymp-
totic expansions—including those of derivatives and integrals. Physical applications
of the zeta-regularization procedure include the proper definition of the vacuum en-
ergy, the Casimir effect, spontaneous compactification in quantum gravity, stability
analysis of strings and membranes, etc., and embrace also very recent experiments
of solid state and condensed matter physics employing liquid helium (those will be
described in the following chapters).

The method of zeta-function regularization has a rather long history. There are
precedents in the use of Riemann and Epstein zeta functions as summation (i.e., reg-
ularization) procedures in the late sixties [44, 45, 47]. However, the zeta-function
regularization method as such was introduced in the middle seventies [23, 24, 39–
41]. The paper by Hawking [24] (of 1977) is generally considered as the first sys-
tematic description of the zeta function procedure as a useful technique in physics
for providing the finite values corresponding to path integrals over fields in curved
backgrounds and for the evaluation of determinants of quadratic differential opera-
tors (see, however, the other references mentioned, in which the method had already
been applied before). The calculation of determinants of differential operators is a
basic, multipurpose need in theoretical physics and in several branches of mathe-
matics (such as analysis and number theory).

In the last 15 years the zeta-regularization procedure has been used more and
more by the leading physicists and mathematicians and we can nowadays say that it
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is a basic procedure of quantum field theory. At the beginning the method was rather
simple minded, but nowadays it comprises a whole set of different techniques, of
increasing difficulty, to treat the several degrees of complexity of the physical (and
corresponding mathematical) problems to be solved.

The list of people who have been dealing with zeta functions at one instance or
other would be just non-ending. Maybe Al Actor is one of the persons that have de-
voted more years to this subject (at least among those of the mathematical-physicists
squad). According to Actor himself [53], a milestone in the field of regularization
of discrete sums of the general form (2.24) has been the proof of the so-called zeta-
function regularization theorem. In its final formulation, it is the result of hard work
of A.A. Actor, H.A. Weldon, A. Romeo, and the author [48, 101, 102]. The uses and
applications of the theorem in its most general form [48]—for discrete series of the
type (2.24)—are very far reaching. In particular it leads to asymptotic expansions,
valid for arbitrary a’s and α’s, of the multi-series of this general kind, which are
well suited for numerical computations. These expansions are unchallenged in its
usefulness for such purposes. They will be presented later in this chapter.

The zeta function regularization theorem provides a method for the computa-
tion of expressions like (2.24)—and even more involved ones—valid for Re(s) big
enough, in terms of their analytic (usually meromorphic) continuation to other val-
ues of s. In the zeta-function procedure they are given as combinations of the ordi-
nary Riemann and Hurwitz zeta-functions.

A very simple case corresponds to the Hamiltonian zeta-function ζ(s) ≡∑
i E

−s
i , with Ei eigenvalues of H [103, 104]. For a system of N non-interacting

harmonic oscillators, one has αj = 1, j = 1,2, . . . ,N , and the aj are the corre-
sponding eigenfrequencies ωj . Another interesting case is partial toroidal compact-
ification (spacetime T

p × R
q+1). Then αj = 2 and, usually, cj = 0,±1/2. One is

thus led to the Epstein zeta-functions [105–107]

ZN(s) =
∞∑

n1,...,nN=−∞

′(
n2

1 + · · · + n2
N

)−s
,

YN(s) =
∞∑

n1,...,nN=−∞

′[(
n1 + 1

2

)2

+ · · · +
(
nN + 1

2

)2]−s
(2.25)

(remember that the prime means omission of the term n1 = · · · = nN = 0). Other
powers αj appear when one deals with the spherical compactification (spacetime
S
p × R

q+1) and with more involved ones arising, e.g., in superstring theory and
their membrane and p-brane generalizations [10, 11, 13, 14]. Hence, the general
expression (2.24). The only precedents in the literature (to our knowledge) of this
kind of evaluations have been restricted to few special cases other than a1 = · · · =
aN and c1 = · · · = cN = 0. Very famous is the expression due to Hardy [17], a
particular case of our final formula.
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2.2.1 The Theorem (Special Form)

An interesting result concerning the interchange of the order of summation of the
infinite series appearing in zeta-function regularization is due to Weldon [102]. His
investigation originated in some difficulties which appeared in a paper by Actor
[101] when he tried to obtain the value of the thermodynamical potential corre-
sponding to a relativistic Bose gas by using the zeta-function regularization proce-
dure. Unfortunately, Weldon’s proof had its own limitations, and the statements in
[102] concerning the extent of its validity were actually not right. This is quite easy
to check in some particular cases, and was stressed in [108].

Let us briefly summarize the nice proof due to Weldon of the validity of the zeta-
function regularization procedure [102] and point out its shortcomings. Using the
same notation as in [102], let us consider the four series

SF =
∞∑

m=1

(−1)m+1

ms+1

∞∑

a=0

maf (a), (2.26)

SB =
∞∑

m=1

1

ms+1

∞∑

a=0

maf (a), (2.27)

SAF =
∞∑

m=1

(−1)m+1

ms+1

∞∑

a=0

(−1)amaf (a), (2.28)

SAB =
∞∑

m=1

1

ms+1

∞∑

a=0

(−1)amaf (a), (2.29)

where f (a) ≥ 0 for positive integer a. They are assumed to be convergent, as they
stand. The idea of the zeta-function regularization procedure begins with the inter-
change of the order of the summation of the two infinite series involved in each
case.

Theorem 1 Let f (a) be defined in the complex a-plane, satisfying:

1. The function f (a) is regular for Rea ≥ 0.
2. Either

(a) in the case of (2.26) and (2.27), amaf (a)→ 0, as |a| →∞, for Rea ≥ 0
and fixed m;

(b) in the case of (2.28) and (2.29), amaf (a)e−π | Ima| → 0, as |a| →∞, for
Rea ≥ 0 and fixed m.

Then it turns out that, in the fermionic cases, (2.26) and (2.28), one can naively
interchange the order of the summations, to get

SF =
∞∑

a=0

η(s + 1− a)f (a), SAF =
∞∑

a=0

(−1)aη(s + 1− a)f (a), (2.30)
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while in the bosonic cases, (2.27) and (2.29), one obtains the additional contribu-
tions

SB =
∞∑

a=0

ζ(s + 1− a)f (a)− π ctg(πs)f (s), s �∈N,

SB =
∞∑

a=0
a �=s

ζ(s + 1− a)f (a)+ γf (s)− f ′(s), s ∈N,

(2.31)

and

SAB =
∞∑

a=0

(−1)aζ(s + 1− a)f (a)− π csc(πs)f (s), s �∈N,

SAB =
∞∑

a=0
a �=s

(−1)aζ(s + 1− a)f (a)+ (−1)s
[
γf (s)− f ′(s)

]
, s ∈N,

(2.32)

respectively. Here ζ(s) and η(s) are the Riemann ordinary and alternating zeta
functions:

ζ(s) =
∞∑

m=1

m−s , Re s > 1,

η(s) =
∞∑

m=1

(−1)m+1m−s , Re s > 0, (2.33)

η(s) = (1− 21−s)ζ(s),

γ is Euler–Mascheroni’s constant, and f ′(s) means derivative of f with respect to s.

The proof of the preceding theorem proceeds by integration in the complex a-
plane. One writes (2.26) to (2.29) under the form of contour integrals

SF =
∞∑

m=1

(−1)m+1

ms+1

∮

C

da

2i
maf (a) cot(πa), (2.34)

SB =
∞∑

m=1

1

ms+1

∮

C

da

2i
maf (a) cot(πa), (2.35)

SAF =
∞∑

m=1

(−1)m+1

ms+1

∮

C

da

2i
maf (a) csc(πa), (2.36)

SAB =
∞∑

m=1

1

ms+1

∮

C

da

2i
maf (a) csc(πa), (2.37)
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Fig. 1 The closed contour C

(that one should always
follow counterclockwise, i.e.,
with the positive orientation)
consists of the straight line
Rea = a0, 0 < a0 < 1, and of
the semicircumference ‘at
infinity’ on its right, K

where C is the closed contour defined by the straight line Rea = −a0—for fixed
a0 such that 0 < a0 < 1—and by the semicircumference at infinity on the right (see
Fig. 1). The contribution from the semicircumference is zero in every case, due to
the asymptotic behavior of f (a) and, as long as Re s > −1, integration extended
to the line Rea =−a0 can be interchanged with the remaining summation over m.
The final step is to close the contour C again with the semicircumference at infinity.
In the cases (2.35) and (2.37) there appears an additional contribution from the pole
of the zeta function ζ(s + 1− a) at a = s. On the contrary, in the cases (2.34) and
(2.36) the alternating zeta function η(s + 1− a) has no pole in the region enclosed
by C. All the steps in this procedure are quite simple and one obtains (2.30) to
(2.32).

However it was further explicitly stated by Weldon in [102] that the results for
the alternating fermionic and for the alternating bosonic cases, SAF and SAB , re-
spectively, could be naively extended to the following types of series

S
(N)
AF =

∞∑

m=1

(−1)m+1

ms+1

∞∑

a=0

(−1)amNaf (a),

S
(N)
AB =

∞∑

m=1

1

ms+1

∞∑

a=0

(−1)amNaf (a),

(2.38)

with N any positive integer. By going through the same proof once more, he just
obtained a trivial modification of the above results. That this generalization of (2.30)
and (2.32) and for any positive integer N is in error is easy to check. In particular,
it was noticed by Actor in [108]. As a clear example, let us study the simplest case
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after the (only correct) one N = 1 (explicitly considered in [102]), i.e. N = 2. Let

S ≡
∞∑

m=1

e−m2 =
∞∑

m=1

1

ms+1

∞∑

a=0

(−1)a
m2a

a!
∣∣∣∣
s=−1

, (2.39)

where the last operation consists in doing the analytic continuation of the resulting
series to s = −1. The function f (a) is here f (a) = 1

�(a+1) and all the hypotheses
of the theorem are fulfilled. Use of Weldon’s formula gives

S =
∞∑

a=0

(−1)a

a! ζ(−2a)−
π
2 csc(−π

2 )

�(1− 1
2 )

=−1

2
+
√
π

2
, (2.40)

which is false, though numerically almost undetectable, because

S = 0.3863186,

√
π − 1

2
= 0.3862269, �≡

√
π − 1

2
− S =−9.17× 10−5.

(2.41)
Going on to N = 2,3,4, . . . , it is not difficult to see that, if N is constrained to be a
positive integer, Weldon’s formula is true only for N = 1 ((2.30) and (2.32)).

As the author managed to demonstrate in [48], the step which fails to be correct in
Weldon’s proof for general N is the last one, namely, even if the asymptotic behavior
(2b) of the function f (a) allows us to suppress the contribution from the curved
contour in the second step, this will be no longer true when we try to close again
the circuit C in the last step. There is in fact a contribution coming from the integral
of ζ(s + 1−Na)f (a) over the semicircumference at infinity (due to the asymptotic
behavior of the zeta-function). And this is so whatever it be the value we choose for
s. The study of the asymptotic behavior of ζ(s+1−Na) immediately distinguishes
the case N ≤ 1 from N > 1. It is, however, misleading in some sense, because the
fact that the zeta-function diverges for N > 1 does not necessarily mean that the
contour actually provides a non-zero contribution invalidating Weldon’s proof (that
had been conjectured by Actor, at a first instance). Things must be done with great
care due to the presence of highly oscillating factors.

Let us restrict the argument to the case f (a)= 1
�(a+1) . This is enough for many

applications and the generalization to other situations proceeds by analogy. In this
case, the fact that the poles of � are the non-positive integers and a suitable ap-
plication of the zeta function reflection formula allow us to write the additional
contribution as a contour integral over a curved path in the complex left half-plane.
Besides, by using the relation

�

(
z

2

)
ζ(z)=

∫ ∞

0
dt tz/2−1S2(t), Re z > 0, (2.42)

where

Sα(t)≡
∞∑

m=1

e−mαt , (2.43)
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and owing to the behavior of the complex function �(z) which has simple poles at
z=−n for n= 0,1,2, . . . , with residues

Resz=−n �(z)= (−1)n

n! , (2.44)

and with the aid of

�(z)�(1− z)= π csc(πz), (2.45)

we can write

S
(α)
AB ≡

∞∑

m=1

1

ms+1

∞∑

a=0

(−1)a
mαa

�(a + 1)
, α ∈R, (2.46)

as

S
(α)
AB ≡

∞∑

m=1

1

ms+1

∮

C̄

da

2πi
m−αa�(a), (2.47)

where now the contour C̄ consists of the line Rea = a0, with a0 fixed, 0 < a0 < 1,
and of the semicircumference at infinity on the left. For s =−1,

S
(α)
AB(s =−1)=

∞∑

m=1

∞∑

a=0

(−1)a
mαa

a! =
∞∑

m=1

e−mα = Sα(1). (2.48)

Finally, after correctly making the last step in the above proof, we end up with

S
(α)
AB =

∞∑

a=0

(−1)a

a! ζ(s + 1− αa)+ 1

α
�

(
− s

α

)
−�

(α)
AB,

s

α
�∈N, (2.49)

S
(α)
AB =

∞∑

a=0
a �=s/α

(−1)a

a! ζ(s + 1− αa)+ (−1)
s
α

[
γ

�( s
α
+ 1)

+ �′( s
α
+ 1)

α�2( s
α
+ 1)

]

−�
(α)
AB,

s

α
∈N, (2.50)

where �
(α)
AB is the contribution of the curved part K of the contour C̄—which con-

sists now of the line Rea = a0, for fixed a0 such that 0 < a0 < 1 and by the semi-
circumference at infinity on the left (see Fig. 2)

�
(α)
AB ≡

∫

K

da

2πi
ζ(s + 1+ αa)�(a). (2.51)

This contribution is non-zero for any value of s. We can check that it actually
provides the term missing from (2.40). Before proceeding with the actual calculation
of (2.51), one can, as an illustrating exercise, close back the contour on the right
instead of on the left, and see that the same series is obtained (a desired identity!).
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Fig. 2 The closed contour C

(also counterclockwise)
consists of the straight line
Rea = a0, 0 < a0 < 1, and of
the semicircumference ‘at
infinity’ on its left

Coming back to (2.51) and doing the same for s =−1 and α = 2, we must use
first the reflection formula for the zeta function

�

(
z

2

)
ζ(z)= πz−1/2�

(
1− z

2

)
ζ(1− z), (2.52)

what yields

�
(2)
AB(s =−1)=

∫

K

da

2i
√
π

∫ ∞

0
dt t−a−1/2S2

(
π2t
)=−√πS2

(
π2), (2.53)

that is

S2(1)=−1

2
+
√
π

2
+√πS2

(
π2). (2.54)

This result happens to be just a particular case of Jacobi’s theta function identity

θ3(z, τ )= τ−1/2eπz
2/τ θ3

(
z

iτ
,

1

τ

)
, (2.55)

θ3 being the elliptic function

θ3(z, τ )=
∞∑

n=−∞
e−πn2τ+2πnz, z ∈C, τ ∈R

+. (2.56)

Notice that S2(πt) = 1
2 [θ(0, t)− 1]. (2.53) is an exact expression. Once more, we

observe that the contribution of the contour provides, in fact, the missing term.
Let us now again consider (2.44) for general α and, s = −1. (2.42) and (2.43)

read, in this case,

�(z)ζ(αz)=
∫ ∞

0
dt tz−1Sα(t), (2.57)
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Sα(t) being the function given in (2.48). No simple reflection formula like (2.52)
exists for α �= 2 . We have, instead,

ζ(αz)= 2�(1− αz)

(2π)1−αz sin

(
παz

2

)
ζ(1− αz), (2.58)

and we get

Sα ≡ Sα(1)=
∞∑

m=1

e−mα =
∞∑

a=0

(−1)a

a! ζ(−αa)+ 1

α
�

(
1

α

)
−�α, (2.59)

being the contribution of the contour

�α =
∫

K

da

2πi
ζ(αa)�(a). (2.60)

Putting everything together, we have proven the following

Theorem 2 (Zeta function regularization theorem, particular case) Under the hy-
pothesis (1), (2a) and (2b) above, we have that:

1. For −∞ < α < 2, the contribution of the semicircumference at infinity is zero,
i.e.

�α = 0, α < 2. (2.61)

2. For α = 2, the contribution of the semicircumference at infinity is given by

�2 =−√πS2
(
π2). (2.62)

The result for α ≤ 1 was known already and constitutes Weldon’s proof of zeta-
function regularization. The result for α = 2 is due to the author. It shows very
clearly that, on the contrary, the statements in [102] about the validity of the proof
for any positive integer α were false, the reason being that the semicircumference at
infinity does not yield a zero contribution. It was precisely the last step of the proof
in [102] that was wrong. The fact that the numerical value of �α is so small (it can
be thought of as an infinitesimal correction, see (2.62)) as compared with the rest of
the terms in (2.49) and (2.50) gives sense to the whole procedure of zeta-function
regularization.

However, this is strictly true only for small α. For large α, �α ceases to be an
infinitesimal contribution. Actually, in the case considered,

�α = 0, α < 2;
�2 = 9.17× 10−5; �4 = 0.04; �6 = 0.07; (2.63)

�α → 0.13, α→∞,

which represent, respectively, contributions of the 0%, 0.02%, 11%, 19%, and 36%
to the final value of Sα(1). A more precise statement on this point—together with a
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substantial extension of the theorem to general situations—will be given in the next
chapter.

2.3 Immediate Application of the Theorem

The most interesting and simple of the new cases is when 0 < c < 1, e.g.

Sc ≡ S(2)
c (−1)=

∞∑

m=0

e−(m+c)2
. (2.64)

It can be expressed in terms of Hurwitz zeta-functions, as

Sc =
∞∑

m=0

(−1)m

m! ζ(−2m,c)+
√
π

2
+√π cos(2πc)S

(
π2), (2.65)

where S(t)≡∑∞
m=0 e

−tm2
. For c �= 0,1/2, this series is asymptotic.

1. Particular case c = 1: we recover the known equality (a special case of Jacobi’s
one)

S(1)=
√
π − 1

2
+√πS

(
π2). (2.66)

2. For c= 1/2 we have ζ(−2m,1/2)= 0, m= 0,1,2, . . . , and the result

∞∑

m=0

exp

[
−
(
m+ 1

2

)2]
=
√
π

2
−√π

∞∑

m=1

exp
(−m2π2) (2.67)

permits us to obtain the value of the series with 10−10 accuracy, with just two
terms

∞∑

m=0

exp

[
−
(
m+ 1

2

)2]
=
√
π

2
−√πe−π2 +O

(
10−10). (2.68)

3. For c= 0 we obtain the previous result (2.54)

∞∑

m=0

e−m2 = 1

2
+
√
π

2
+√πS

(
π2). (2.69)

4. For c= 1/4, we have

∞∑

m=0

exp

[
−
(
m+ 1

4

)2]
∼
√
π

2
+

∞∑

m=0

(−1)m

m! ζ

(
−2m,

1

4

)
. (2.70)
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The series is now asymptotic. It stabilizes between the 8th and the 12th summand
and provides its best value (with� 10−7 accuracy) when we add the 10 first terms
(optimal truncation of the asymptotic series).

5. For c= 1/3 and c= 1/6,

∞∑

m=0

exp

[
−
(
m+ 1

3j

)2]
∼
√
π

2
+

∞∑

m=0

(−1)m

m! ζ

(
−2m,

1

3j

)

+ (−1)j
√
π

2

∞∑

m=1

exp
(−m2π2), j = 1,2. (2.71)

6. Some more relations are

∞∑

m=−∞
exp
[−(m+ c)2]∼√π + 2

√
π cos(2πc)S

(
π2),

∞∑

m=0

m exp
[−(m+ c)2]

∼ 1

2
+

∞∑

m=0

(−1)m

m!
[
ζ(−2m− 1, c)− cζ(−2m,c)

]

−
√
π

2
c+√π

[
π sin(2πc)− c cos(2πc)

]
S
(
π2),

∞∑

m=0

exp
[−a(m+ c)2]

∼
∞∑

m=0

(−1)m

m! amζ(−2m,c)+ 1

2

√
π

a
+
√

π

a
cos(2πc)S

(
π2

a2

)
.

(2.72)

We get the general expression (of Epstein–Hurwitz type with N = 2)

E2(s;a1, a2; c1, c2) ∼
∞∑

n1,n2=0

[
a1(n1 + c1)

2 + a2(n2 + c2)
2]−s

= a−s2

�(s)

∞∑

m=0

(−1)m�(s +m)

m!
(
a1

a2

)m

· ζ(−2m,c1)ζ(2s + 2m,c2)

+ a−s2

2

(
πa2

a1

)1/2 �(s − 1
2 )

�(s)
ζ(2s − 1, c2)

· 2πs

�(s)
cos(2πc1)a

− s
2− 1

4
1 a

− s
2+ 1

4
2
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·
∞∑

n1=1

∞∑

n2=0

n
s− 1

2
1 (n2 + c2)

−s+ 1
2 K

s− 1
2

[
2π

√
a2

a1
n1(n2 + c2)

]
,

(2.73)

Kν being the modified Bessel function of the second kind. It constitutes the general
analytic continuation formula for two-dimensional series. In particular, for s = 0,

E2(0;a1, a2; c1, c2)=
(
c1 − 1

2

)(
c2 − 1

2

)
, (2.74)

for s =−1,

E2(−1;a1, a2; c1, c2)

= a2

(
1

2
− c1

)
ζ(−2, c2)+ a1

(
1

2
− c2

)
ζ(−2, c1)

· 1

3

(
c1 − 1

2

)(
c2 − 1

2

)[
a1c1(1− c1)+ a2c2(1− c2)

]
, (2.75)

and for s = 2,

E2(2;a1, a2; c1, c2)

∼ 1

a2
2

∞∑

m=0

(−1)m(m+ 1)

(
a1

a2

)m

· ζ(−2m,c1)ζ(2m+ 4, c2)+ π

4a2

1√
a1a2

ζ(3, c2)

+ π2 cos(2πc1)

a1a2

∞∑

n=0

{
(n+ c2)

−2
[

exp

(
2π

√
a2

a1
(n+ c2)

)
− 1

]−2

+
[
(n+ c2)

−2 +
√

a1

a2

(n+ c2)
−3

2π

][
exp

(
2π

√
a2

a1
(n+ c2)

)
− 1

]−1}
.

(2.76)

The general expression for arbitrary N turns out to be

EN(s;a1, . . . , aN ; c1, . . . , cN)

∼ 1

�(s)

∞∑

m=0

(−1)m

m! am1 ζ(−2m,c1)

· �(s +m)EN−1(s +m;a2, . . . , aN ; c2, . . . , cN)

+ 1

2

√
π

a1

�(s − 1
2 )

�(s)
EN−1

(
s − 1

2
;a2, . . . , aN ; c2, . . . , cN

)
+
√

π

a1

cos(2πc1)

�(s)
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·
∞∑

n1=1

∞∑

n2,...,nN=0

∫ ∞

0
dt ts−3/2 exp

[
−π2n2

1

a1t
− t

N∑

j=2

aj (nj + cj )
2

]
. (2.77)

A word about the notation. In this section we have tried to be consistent with the
sign ∼ to denote ‘asymptotic expansion’. Usually, however, the equality sign is
also employed (as for ordinary Taylor series). Normally this does not turn out to be
a problem since—at least in the situations to be considered here—the asymptotic
(resp. convergent) character of the series on the r.h.s. is not difficult to recognize.

2.4 Expressions for Multi-series on Combinations Involving
Arbitrary Constants and Exponents

We shall now make use of the zeta function regularization theorem in order to obtain
expressions for the most general multi-series of the type presented in the introduc-
tion, which would be impossible to derive by other means (at least with comparable
easiness and universality). The same notation which has commonly been used in
other references of the author will be employed here, e.g.,

Mc
N(s; �a; �α; �c) ≡Mc

N(s;a1, . . . , aN ;α1, . . . , αN ; c1, . . . , cN)

≡
∞∑

n1,...,nN=0

[
a1(n1 + c1)

α1 + · · · + aN(nN + cN)αN + c
]−s

,

(2.78)

and for the generalized Epstein-like case:

Ec
N(s; �a; �c) ≡Mc

N(s;a1, . . . , aN ;2, . . . ,2; c1, . . . , cN)

=
∞∑

n1,...,nN=0

[
a1(n1 + c1)

2 + · · · + aN(nN + cN)2 + c
]−s

. (2.79)

Consider the case of Mc
2 . We need the result of the regularization theorem as applied

to the double series

Sα(t, s)=
∞∑

n=1

1

ns+1

∞∑

k=0

(−t)k

k! nαk, α ∈R, (2.80)

which converges for Re(s) > 0 large enough. We can write

Sα(t, s)=
∞∑

n=1

1

ns+1

∮

C

dk

2πi
tkn−αk�(k), (2.81)
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where the contour C consists of the straight line Re(k)= k0, with k0 fixed, 0 < k0 <

1, and of the semicircumference at infinity on the left of this line (see Fig. 2). The
regularization theorem tells us in this case that [109, 110]

Sα(t, s)=
∞∑

k=0

(−t)k

k! ζ(s + 1− αk)+ 1

α
�

(
− s

α

)
t−1/α −�α(t, s),

s

α
/∈N,

(2.82)
where �α(t, s) is the contribution of the curved part K of the contour C:

�α(t, s)≡
∫

K

dk

2πi
ζ(s + 1+ αk)�(k)tk. (2.83)

With this, we obtain

Mc
2(s; �a; �α; �c) =

a−s2

�(s)

∞∑

m=0

(−1)m�(s +m)

m!
(
a1

a2

)m

· ζ(−α1m,c1)M
c/a2
1 (s +m;1;α2; c2)

+ a−s2

α1
�

(
1

α1

)(
a2

a1

)1/α1 �(s − 1
α1
)

�(s)
M

c/a2
1 (s − 1/α1;1;α2; c2)

+ a−s2

�(s)

(
a2

a1

)1/α1 ∫

K

da

2πi
ζ(s + 1+ α1a, c1)

·Mc/a2
1 (s + a;1;α2; c2)�(a)�(s + a), (2.84)

and also

Mc
1(s;a1;α1; c1) = c−s

�(s)

∞∑

m=0

(−1)m�(s +m)

m!
(
a1

c

)m

ζ(−α1m,c1)

+ c−s

α1
�

(
1

α1

)(
c

a1

)1/α1 �(s − 1
α1
)

�(s)

+ c−s

�(s)

(
c

a1

)1/α1 ∫

K

da

2πi
ζ(s + 1+ α1a, c1)�(a)�(s + a).

(2.85)

It is not difficult to build, from these two expressions, a recurrence leading to the
calculation of Mc

N from the knowledge of Mc
N−1, and starting with the formula

for Mc
1 . At each step, this involves a complex integration over a curved contour at

infinity, a term which is in general very small compared with the rest.
As the full calculation is rather involved and lengthy, let us here—for the benefit

of the reader—just show in detail the first two steps leading to the formula which
corresponds to the case when the c’s are zero. We shall accumulate the contributions
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coming from the series commutation into a single (small) term that we will call
simply �. So this part will not be really taken care of in the course of the calculation,
owing to its smallness (see the relevant numerics in the next chapter). The starting
point is again the use of the Mellin transform on the power terms of the series
considered

M3(s; �a; �α; �c= �0)=
∞∑

n1,n2,n3=1

(
a1n

α1
1 + a2n

α2
2 + a3n

α3
3

)−s
, (2.86)

followed by an expansion on the n1-terms in the integrand exponent. We thus get

∞∑

n1,n2,n3=1

(
a1n

α1
1 + a2n

α2
2 + a3n

α3
3

)−s

= 1

as3�(s)

{ ∞∑

n2,n3=1

∞∑

k1=0

(−1)k1
b
k1
1

k1! ζ(−α1k1)

·
∫ ∞

0
dt ts+k1−1 exp

[−t
(
b2n

α2
2 + b3n

α3
3

)]

+ �(1/α1)

α1b
1/α1
1

∞∑

n2,n3=1

∫ ∞

0
dt ts−(1/α1)−1 exp

[−t
(
b2n

α2
2 + b3n

α3
3

)]
}
, (2.87)

where bj ≡ aj /a3, j = 1,2. By proceeding again in the same way with the n2-terms
of the exponents, we obtain

∞∑

n1,n2,n3=1

(
a1n

α1
1 + a2n

α2
2 + a3n

α3
3

)−s

= 1

as3�(s)

{ ∞∑

n3=1

∞∑

k1,k2=0

(−1)k1+k2
b
k1
1

k1!
b
k2
2

k2! ζ(−α1k1)ζ(−α2k2)

·
∫ ∞

0
dt ts+k1+k2−1 exp

(−tn
α3
3

)

+ �(1/α1)

α1b
1/α1
1

∞∑

n3=1

∞∑

k2=0

(−1)k2
b
k2
2

k2! ζ(−α2k2)

∫ ∞

0
dt ts+k2−(1/α1)−1 exp

(−tn
α3
3

)

+ �(1/α2)

α2b
1/α2
2

∞∑

n3=1

∞∑

k1=0

(−1)k1
b
k1
1

k1! ζ(−α1k1)

∫ ∞

0
dt ts+k1−(1/α2)−1 exp

(−tn
α3
3

)

+ �(1/α1)

α1b
1/α1
1

�(1/α2)

α2b
1/α2
2

∞∑

n3=1

∫ ∞

0
dt ts−(1/α1)−(1/α2)−1 exp

(−tn
α3
3

)
}
. (2.88)



44 2 Mathematical Formulas Involving the Different Zeta Functions

Performing now the series commutation and resumming the corresponding zeta
functions, we finally get the asymptotic series:

M3(s; �a; �α; �c= �0)

=
∞∑

n1,n2,n3=1

(
a1n

α1
1 + a2n

α2
2 + a3n

α3
3

)−s

∼ 1

as3�(s)

{ ∞∑

k1,k2=0

(−1)k1+k2
b
k1
1

k1!
b
k2
2

k2!�(s + k1 + k2)

· ζ(−α1k1)ζ(−α2k2)ζ
(
α3(s + k1 + k2)

)

+ �(1/α1)

α1b
1/α1
1

∞∑

k2=0

(−1)k2
b
k2
2

k2!�(s + k2 − 1/α1)ζ(−α2k2)ζ
(
α3(s + k2 − 1/α1)

)

+ �(1/α2)

α2b
1/α2
2

∞∑

k1=0

(−1)k1
b
k1
1

k1!�(s + k1 − 1/α2)ζ(−α1k1)ζ
(
α3(s + k1 − 1/α2)

)

+ �(1/α1)

α1b
1/α1
1

�(1/α2)

α2b
1/α2
2

�(s − 1/α1 − 1/α2)ζ
(
α3(s − 1/α1 − 1/α2)

)
}
+�.

(2.89)

By repeating this analysis, after N steps we easily obtain the general formula (for
the �c= �0, c= 0 case, with bj ≡ aj/aN , j = 1, . . . ,N − 1):

MN(s; �a; �α; �c= �0)

=
∞∑

n1,...,nN=1

(
a1n

α1
1 + · · · + aNn

αN
N

)−s

∼ 1

asN�(s)

N−1∑

p=0

∑

CN−1,p

p∏

r=1

b
−1/αir
ir

αir

�

(
1

αir

)

·
∞∑

kj1 ,...,kjN−p−1=0

�

(
s +

N−p−1∑

l=1

kjl −
p∑

r=1

1

αir

)
N−p−1∏

l=1

(−bjl )
kjl

kjl !

· ζ(−αjl kjl )ζ

(
αN

[
s +

N−p−1∑

l=1

kjl −
p∑

r=1

1

αir

])
+�ER, (2.90)

where 1≤ i1 < · · ·< ip ≤N −1, 1≤ j1 < · · ·< jN−p−1 ≤N −1, being i1, . . . , ip ,
j1, . . . , jN−p−1 a permutation of 1,2, . . . ,N − 1. The sum on CN−1,p means sum
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over the
(
N−1
p

)
choices of the indices i1, . . . , ip among the 1,2, . . . ,N − 1, and the

term �ER includes all the � corrections which appear at each step of the recurrence.
Proceeding in the same way when we are confronted with the general case �c �=

�0 and c �= 0, the recurrence can be solved explicitly also, the result being ([109],
corrected)

Mc
N(s; �a; �α; �c) =

∞∑

n1,...,nN=1

(
a1n

α1
1 + · · · + aNn

αN
N + c

)−s

· a
−s
N

�(s)

N−1∑

p=0

∑

CN−1,p

p∏

r=1

b
−1/αir
ir

αir

�

(
1

αir

)

·
∞∑

kj1 ,...,kjN−p−1=0

�

(
s +

N−p−1∑

l=1

kjl −
p∑

r=1

1

αir

)

·
N−p−1∏

l=1

(−bjl )
kjl

kjl !
ζ(−αjl kjl , cjl )

·Mc/aN
1

(
αN

(
s +

N−p−1∑

l=1

kjl −
p∑

r=1

1

αir

)
;1;αN

)
+�ER, (2.91)

(notice that a small mistake in (3.22) and (3.23) of Ref. [109] has been corrected).
Going down to the particular case when the αi = 2 (2.79) things become much

more concrete. As mentioned before, then the expression giving our additional cor-
rections to the series commutation reduces to a theta function identity [109], with
the result

∞∑

m=0

exp
[−a(m+ c)2] ∼

∞∑

m=0

(−1)m

m! amζ(−2m,c)+ 1

2

√
π

a

+
√

π

a
cos(2πc)S

(
π2

a2

)
, (2.92)

and this yields the recurrence

Ec
N(s; �a; �c) = 1

�(s)

∞∑

m=0

(−1)m

m! am1 ζ(−2m,c1)�(s +m)

·Ec
N−1(s +m;a2, . . . , aN ; c2, . . . , cN)

+ 1

2

√
π

a1

�(s − 1/2)

�(s)
Ec

N−1(s − 1/2;a2, . . . , aN ; c2, . . . , cN)

+ 2πs

�(s)
cos(2πc1)a

−s/2−1/4
1
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·
∞∑

n1=1

∞∑

n2,...,nN=0

n
s−1/2
1

[
c+

N∑

j=2

aj (nj + cj )
2

]−s/2+1/4

·Ks−1/2

(
2πn1√

a1

√√√√√+
N∑

j=2

aj (nj + cj )2

)
, (2.93)

where Kν is the modified Bessel function of the second kind. The recurrence starts
with

Ec
1(s;a1; c1) ∼ c−s

�(s)

∞∑

m=0

(−1)m�(s +m)

m!
(
a1

c

)m

ζ(−2m,c1)

+ c1/2−s

2

√
π

a1

�(s − 1
2 )

�(s)
+ 2πs

�(s)
cos(2πc1)a

−s/2−1/4
1 c−s/2+1/4

·
∞∑

n1=1

n
s−1/2
1 Ks−1/2

(
2πn1

√
c

a1

)
. (2.94)

Then

Ec
2(s;a1, a2; c1, c2)

∼ a−s2

�(s)

∞∑

m=0

(−1)m�(s +m)

m!
(
a1

a2

)m

ζ(−2m,c1)

·Ec/a2
1 (s +m;1; c2)+ a

1/2−s
2

2

√
π

a1

�(s − 1
2 )

�(s)
E

c/a2
1 (s − 1/2;1; c2)

+ 2πs

�(s)
cos(2πc1)a

−s/2−1/4
1 a

−s/2+1/4
2

·
∞∑

n1=1

∞∑

n2=0

n
s−1/2
1

[
a2(n2 + c2)

2 + c
]−s/2+1/4

·Ks−1/2

(
2πn1√

a1

√
a2(n2 + c2)2 + c

)
, (2.95)

and so on. Expressions for the special case c = 0 are given in Ref. [109] (see also
the preceding section and equations below).

The very particular case, a1 = · · · = aN = 1, c1 = · · · = cN = 1 and α1 = · · · =
αN = 2, simplifies considerably. For c= 0, we get

EN(s)= (−1)N−1

2N−1

1

�(s)

N−1∑

j=0

(−1)j
(
N − 1

j

)
�(2s − j)ζ

(
s − j

2

)
+�ER, (2.96)
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and, for c �= 0,

Ec
N(s)= (−1)N−1

2N−1

1

�(s)

N−1∑

j=0

(−1)j
(
N − 1

j

)
�

(
s − j

2

)
Ec

1

(
s − j

2

)
+�ER.

(2.97)
The poles of this last function arise from those of Ec

1(s − j/2), which are obtained
for the values of s such that s − j/2 = 1/2,−1/2,−3/2, . . . . They are poles of
order one at s =N/2, (N − 1)/2,N/2− 1, . . . , except for s = 0,−1,−2, . . . , since
then the function is finite (owing to the �(s) in the denominator). These poles are
directly removed by zeta-function regularization.

In the particular case c1 = · · · = cN = 0, we have

Ec
N(s;a1, . . . , aN)

≡
∞∑

n1,...,nN=1

(
a1n

2
1 + · · · + aNn2

N + c2)−s

=−1

2
Ec

N−1(s;a2, . . . , aN)+ 1

2

√
π

a1

�(s − 1/2)

�(s)
Ec

N−1(s − 1/2;a2, . . . , aN)

+ πs

�(s)
a
−s/2
1

∞∑

k=0

a
k/2
1

k!(16π)k

k∏

j=1

[
(2s − 1)2 − (2j − 1)2]

∞∑

n1,...,nN=1

ns−k−1
1

· (a2n
2
2 + · · · + aNn2

N + c2)−(s+k)/2

· exp

[
− 2π√

a1
n1
(
a2n

2
2 + · · · + aNn2

N + c2)1/2
]
. (2.98)

The recurrence starts from expression

Ec
1(s;1) = −

c−2s

2
+
√
π

2

�(s − 1/2)

�(s)
c−2s+1

+ 2πsc−s+1/2

�(s)

∞∑

n=1

ns−1/2Ks−1/2(2πnc). (2.99)

We get, for c �= 0,

Ec
2(s) = −

1

2
Ec

1(s)+
√
π

2

�(s − 1
2 )

�(s)
Ec

1

(
s − 1

2

)
+�ER,

Ec
3(s) =

1

4
Ec

1(s)−
√
π

2

�(s − 1
2 )

�(s)
Ec

1

(
s − 1

2

)
+ π

4(s − 1)
Ec

1(s − 1)+�ER,

(2.100)
and similar expressions for c = 0. This case can be obtained from the former by
analytically continuing in the parameter c. �ER is again the well-known term com-
ing from (additional) series commutation. Actually, for numerical evaluations we do
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not need to consider exponentially small terms in the asymptotic expansions above,
which give a very good and quick approximation.

To finish, another couple of particularly useful expressions are

∞∑

n1,n2=1

√(
n1

a1

)2

+
(
n2

a2

)2

= 1

24

(
1

a1
+ 1

a2

)
− ζ(3)

8π2

(
a1

a2
2

+ a2

a2
1

)

− π3/2

2
√
a1a2

[
exp

(
−2π

a1

a2

)(
1+O

(
10−3))

]
, (2.101)

and (this one obtained after additional regularization)

∞∑

n1,n2=1

√(
n1

a1

)2

+
(
n2

a2

)2

+ c2

= c

4
− π

6
a1a2c

3 +
(

1

4π

√
c

a1
− ca2

4πa1

)[
exp(−2πca1)

(
1+O

(
10−3))].

(2.102)

In both cases we have assumed (this is, of course, no restriction) that a2 ≤ a1.



Chapter 3
A Treatment of the Non-polynomial
Contributions: Application to Calculate
Partition Functions of Strings and Membranes

In this chapter we will consider a very interesting way of dealing with the additional
term of non-polynomial type that shows up in the series commutation relevant to
the zeta-function regularization theorem, as described in the preceding chapters.
The asymptoticity of the series is proven for the important cases which are useful
in Physics (e.g., sums over non-complete lattices, mainly coming from Neumann
and Robin BC) and cannot be dealt with using the otherwise very powerful for-
mulas (as Jacobi’s theta function identity) obtained from Poisson’s summation in
many dimensions. Later, a first physical application to calculate the partition func-
tion corresponding to string, membrane and, in general, p-brane theories will be
investigated. Such theories are usually termed as fundamental in any attempt at a
rigorous description of QED from first principles.

3.1 Dealing with the Non-polynomial Term �ER

As we have seen already, zeta-function resummation formulas are at the very heart
of the zeta-function regularization procedure. They constitute the key ingredient
in the proof of the zeta function regularization theorem. The importance of the final
outcome of the theorem—and also, of its extension to multiple, generalized Epstein–
Hurwitz series with arbitrary exponents—has been properly stressed before. In par-
ticular, it is necessary for practical applications of the theorem to estimate or put
a bound to the error one introduces by neglecting the non-polynomial terms which
arise in the series commutation process. These terms have proven to be difficult to
handle and, due to the fact that they are rather small in many cases, usually they have
just been dropped off from the final formulas. To put an end to such an unpleasant
situation will be one of the main purposes of the present section.

Another motivation is to introduce a completely different method for the deriva-
tion of such additional contributions, which comes about from an elegant approach
that has its roots in an elaborate admixture of the Mellin transform technique and the
heat kernel method. Our new procedure yields a convenient, closed expression for
the zeta function corresponding to elliptic operators in terms of complex integrals

E. Elizalde, Ten Physical Applications of Spectral Zeta Functions,
Lecture Notes in Physics 855,
DOI 10.1007/978-3-642-29405-1_3, © Springer-Verlag Berlin Heidelberg 2012
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over movable vertical lines in the complex plane. The final result is the same as the
one painstakingly obtained via the original method of the series commutation—with
the great advantage that the proof of asymptoticity of the resulting series turns out
to be here easier and also, that the calculation of bounds to the remainder term is
somewhat simplified. Moreover, cast in this form the theorem admits a natural gen-
eralization to the case where the spectrum of the operator is not known. This method
had only been used for the particular (albeit important) case tr e−tA, in Ref. [111].
Specific numerical evaluations and an analytical bound on the elusive additional
term which has appeared as a byproduct of the series commutation procedure in
previous sections will be obtained here too, together with some convenient integral
expressions for this term. As a particular example of the usefulness of the whole
procedure, we will also derive expressions for the analytical continuation of the in-
volved zeta-type series which appear in the calculation of the partition functions
of strings and membranes. This issue happens to be of some interest in deciding
if QCD can (or cannot) in fact be described as a superstring (or supermembrane)
theory.

A technically important point concerns the range of the sums in the expressions
that provide the analytic continuation of the zeta-function series and which result
from the application of the zeta-function regularization theorem, previously consid-
ered. In the preceding chapter this range has been formally taken to be infinite: the
sums are series and the integration contour is at ‘infinite distance’ from the origin.
Then these expressions can have in general just a formal character: on the one hand
the series converges only in specific cases (being in general divergent and quickly
oscillating) and, on the other, the contribution of the contour at infinity is usually
infinite. This will not be any more our philosophy from now on. Below we shall
argue that, under quite general conditions, since the series appearing are asymptotic
we should always consider them truncated after the most favorable term (the op-
timal truncation), and will yield always, in the end, finite sums. The contour C in
the zeta regularization theorem will be now a vertical line at a constant finite ab-
scissa c (i.e., Re z = c), together with the two corresponding horizontal segments
at infinity. This is the central point of the new ideas here, and must be kept always
in mind, from now on, when considering expressions like the ones that appear in
the formulation of the zeta-function regularization theorem. In particular, we must
distinguish the concept of remainder that we will here employ in the most general
(and difficult) cases (and corresponds to what is left of the analytical continuation
of the function under consideration after writing a finite number of terms for the
series, in other words, it is associated with the truncation of the series) from the
concept of additional term used in the previous chapter (which is a further contri-
bution, to the whole series, and which can be defined and is finite only in some
special cases, when the series is a convergent one). Thus the additional term is the
limit of the remainder, when it exists. But, in general, only the remainder can be de-
fined and the series whose truncations are the few first terms that we shall consider
are asymptotic. Rigorous specifications of this point will be given in the following
sections.
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3.1.1 Proof of Asymptoticity of the Series

Of the three terms which appear in the series commutation (a basic ingredient for the
proof of the zeta regularization theorem)—i.e., the one arising from normal commu-
tation, the ordinary contributions of polynomial type and the additional one which
is not polynomial and we have described as a contribution of the contour at infinity
(see Chap. 2)—this last one, that we have called �ER , was historically the most
difficult to tackle. In fact, as described in Chap. 2, it was completely overlooked in
the first formulations of the zeta function regularization theorem, what led to several
erroneous results. It can be interpreted as the remainder of the series that precedes
it (and which will be easily proven here to be asymptotic). In its initial form—as we
have seen before—it requires an evaluation of the integrand—which involves the
zeta function of the elliptic operator—all the way along a contour of infinite radius.
This has certainly sense (as we have seen with concrete examples in detail), but only
in some specific cases. We shall here show explicitly how to deal in general with the
asymptotic expansion of expressions in which the residual term consists precisely
of the third term (the elusive one), by performing a complex integral over a vertical
line of constant, finite abscissa.

Formally, the best way to proceed is through the Mellin transform M[f ]. In order
to determine the behavior of M[f ](x + iy) for |y| → ∞ the following standard
theorems will be useful (they can be found in any standard book on asymptotic
series as, for instance, in [84, 99, 112])

Theorem 1 Let f ∈ C
n(0,∞) and suppose there exists x0 ∈ R such that, for x >

x0, limt→∞(td/dt)p(txf )= 0, for p = 0,1,2, . . . , n, and that t−1fp is absolutely
integrable, where fp(t, x) ≡ (td/dt)p(txf ). Then M[f ](z) = O(|y|−n) for y →
±∞.

Proof Follows immediately by wishful application of Riemann–Lebesgue’s lem-
ma. �

Theorem 2 Let f ∈ C
n(0,∞) with the asymptotic behavior for t → 0+: f (t) ∼∑∞

m=0 pmt
am , with Ream monotonically increasing towards infinity. Suppose also

that asymptotic expansions for t → 0+ for the successive derivatives of f are ob-
tained by taking the derivative, term by term, of the above expansion for f . Suppose
also that limt→∞ fp(t, x)= 0, for p = 0,1,2, . . . , n, and that t−1fp is absolutely
integrable for x >−Rea0. Then it follows that M[f ](z)=O(|y|−n) for y→±∞
and for any x, that is, in the whole domain of the function, after its continuation.

Proof Let ρ ∈ R be large enough and μ such that Reaμ−1 < ρ ≤ Reaμ, where for
a positive integer δ satisfying Rea0 + δ > Reaμ, we define σρ(t) ≡ exp(−tδ)×∑μ−1

m=0 pmt
am , and f̂ ≡ f − σρ . Applying Theorem 1 to f̂ and noticing that

M[σ ]ρ(z)=∑μ−1
m=0(pm/δ)�((z+am)/δ) has an exponential behavior for |y| →∞,

from M[f ] =Mf̂ +M[σ ]ρ (which gives the continuation to −Reaμ < Re z < β)
and the fact that ρ is arbitrarily large we prove the theorem. �
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For x0, θ0 ∈R, let us define that a function h belongs to K , h ∈K(x0, θ0) iff for
any x > x0 and ε > 0 one has M[h](x+ iy)=O[exp(−(θ0− ε)|y|)], for |y| →∞.
Also, denote the sector S(θ0)= {t �= 0; | arg t |< θ0}.

Theorem 3 Suppose that in the sector S(θ0): (i) h is analytic; (ii) h=O(tα), t→
0+; and (iii) h = exp(−atν)

∑∞
m=0

∑N(m)
n=0 cmn(ln t)nt−rm , t →∞, with Rea ≥ 0,

ν > 0 and Re rm monotonically increasing towards infinity. Then: (i) if a = 0,
h ∈ K(−Reα, θ0); (ii) if Rea > 0, h ∈ K(−Reα, θ), where θ = min(θ0, (π −
2| arga|)/(2ν)).

Proof We only do the first case since the second is analogous. Observe that M[h](z)
is analytical for Re z > −Reα. Define θ ′ = θ − ε, θ as given in the theorem and
ε > 0; deforming the circuit by an angle ±θ ′ and making the change of variable
t = re±iθ ′ (r , real, will be the new variable of integration) in the Mellin transform in-
tegral, one easily shows that M[h](z)=O[exp(−θ ′|y|)], for |y| →∞, x > Re−α.

With a similar strategy as that used in Theorem 2, with convenient choices of the
function σρ , one can prove results analogous to Theorem 3 (so-called theorems of
exponential decrease) valid for a range of x which moves towards the left. The only
proviso is that h have a convenient asymptotic expansion around 0.

Also to be noticed is the fact that in order to apply these theorems, with the aim
of displacing the contour of integration, one must make sure that the conclusions
of Theorems 1–3 are valid uniformly on any segment of the x variable along which
one wants to displace the integration contour. If we can perform the translation from
x = c to x = c′, c′ < c, and we check that ζA(s+c′ + iy)M[f ](c′ + iy) is absolutely
integrable, then

F(s, t) =
∑

c′<Re z<c

Res
[
ζA(s + z)t−zM[f ](z)]

+ t−c′

2πi

∫

�z=c′
dz ζA(s + z)t−iyM[f ](z). (3.1)

This expression contains the key to the asymptoticity of the series. It shows in fact
that the series is asymptotic, since it is immediate that the last term is of small order
with respect to the order of the terms of the finite series. �

To finish this subsection, let us consider a different example which cannot be
resolved by direct application of Theorem 3 above (since it corresponds to a �= 0
and Rea = 0).

Example 1 Let

F(s, t)=
∞∑

n=1

Jμ(nt)

ns
, (3.2)
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that is, λn = n, f = Jμ, α =−μ, β = 1/2. We have

M[J ]μ(z)= 2z−1�((z+μ)/2)

�((μ− z+ 2)/2)
, (3.3)

with s0 = 1, Re s > 1/2 (in this case the domain of s can be enlarged), and
c > 1 − Re s < 1/2. M[J ]μ has poles for z = −μ + 2n, n ∈ N, with residues
(−1)n2−μ−2n/[n!(μ + n)!], while ζ(s + z) has a pole at z = −s + 1. From (3.3)
and from the behavior of the gamma function we know that in any closed interval
of x = Re z we get the behavior

M[J ]μ(z)=O
(|y|x−1/2), |y| →∞, (3.4)

uniformly in x. We have Re s = 1/2+ ε1, ε1 > 0, and choose c = 1/2− ε2, with
0 < ε2 < ε1, and any δ, 0 < δ < min{1/2, ε1 − ε2}.

Consider now the following, segmentwise, displacement

G(z)=M[J ]μ(z)ζ(s + z). (3.5)

Then it turns out that:

1. For 1/2+ δ− ε1 ≤ x ≤ 1/2− ε2, |M[J ]μ(z)| =O(|y|−1/2−ε2) and |ζ(s + z)| =
O(1), therefore

∣∣G(z)
∣∣=O

(|y|−1/2−ε2
)
. (3.6)

2. For 1/2− ε1 ≤ x ≤ 1/2+ δ− ε1, |M[J ]μ(z)| =O(|y|−1/2−ε1) and |ζ(s + z)| =
O(ln |y|), therefore

∣∣G(z)
∣∣=O

(|y|−1/2−ε1 ln |y|). (3.7)

3. For −1/2+ δ − ε1 ≤ x ≤ 1/2− ε1, |M[J ]μ(z)| =O(|y|−3/2+δ−ε1) and |ζ(s +
z)| =O(|y|1−δ ln |y|), therefore

∣∣G(z)
∣∣=O

(|y|−1/2−ε1 ln |y|). (3.8)

4. For −1/2− ε1 ≤ x ≤−1/2+ δ− ε1, |M[J ]μ(z)| =O(|y|−3/2+δ−ε1) and |ζ(s+
z)| =O(|y|1/2), therefore

∣∣G(z)
∣∣=O

(|y|−1+δ−ε1
)
. (3.9)

5. Finally, for −K − 1/2 − ε1 ≤ x ≤ −1/2 − ε1, |M[J ]μ(z)| = O(|y|−x−1) and
|ζ(s + z)| =O(|y|−x−ε1), therefore

∣∣G(z)
∣∣=O

(|y|−1−ε1
)
, (3.10)

where K is arbitrarily large.
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Example 2 Take λn = n and add a degeneration g(n) (being g an analytical function
with good behavior in order to fulfill the conditions), i.e.

ζg(z)≡
∞∑

n=1

g(n)

nz
=− i

2π

∫

C
ln
[
sin(πt)

] d
dt

(
t−zg

)
dt, (3.11)

being C the contour of the sector of the complex plane defined by | arg z| ≤ θ0 and
|z| ≥ ε, 0 < ε < 1. Decomposing C into its upper and lower parts, C± (those are in
the present case the paths mentioned above), and assuming g to be analytical on the
sector, we obtain

ζg(z) = −
∫ ∞

ε

dρ ρ
d

dρ

(
ρ−zg

)− 1

2
ε−zg(ε)

− i

2π

∑

±

∫

C±
dt ln

(
1− e±2πit) d

dt

(
t−zg

)
. (3.12)

In general, the second and third terms on the r.h.s. are integer functions of z, and
only the first one needs to be continued to the left in Re z. This can be done without
difficulty in many cases by exploiting the knowledge of the asymptotic behavior of
g at +∞ [10, 11, 14].

Another interesting example is the following, which has its roots in the Hardy–
Ramanujan formula.

Example 3 Consider the spectral series

F(t)≡
∞∑

n=1

ln
(
1− e−tn

)
. (3.13)

In this case we have s = 0 and

f (t)= ln
(
1− e−t

)
. (3.14)

The Mellin transform is known

M[f ](z)=− 1

2πi

∫

Re z=c
dz�(z)ζ(1+ z)t−z, (3.15)

with c > 1 and, as a consequence,

F(t)=− 1

2πi

∫

Re z=c
dz�(z)ζ(1+ z)ζ(z)t−z, (3.16)

with c > 1. Here the corresponding asymptotic series F (1)(t) reduces to one con-
tribution, involving a logarithmic term and a non vanishing remainder. This follows
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easily from an identity which is well known in the theory (due to Hardy and Ra-
manujan) of the elliptic modular functions.

∞∑

n=1

ln
(
1− e−tn

)=−π2

6t
− 1

2
ln

(
t

2π

)
+ t

24
+

∞∑

n=1

ln
(
1− e−4π2n/t

)
. (3.17)

For the sake of completeness, a simple proof of this identity is presented below.

Proof of the Hardy–Ramanujan formula The proof of the Hardy–Ramanujan for-
mula is very instructive, because it makes use of the Mellin representation, namely

F(t)≡
∞∑

n=1

ln
(
1− e−tn

)=− 1

2πi

∫

Re z=c
dz�(z)ζ(1+ z)ζ(z)t−z, (3.18)

with c > 1. Shifting the line of integration from Re z = c > 1 to Re z = c′, −1 <

c′ < 0, noting that the integrand has a pole of first-order at z= 1 and one of second-
order at z= 0, one arrives at

F(t)=−π2

6t
− 1

2
ln

(
t

2π

)
− 1

2πi

∫

Re z=c′
dz�(z)ζ(1+ z)ζ(z)t−z. (3.19)

Performing the change of variable in the complex integral: z = −s, and using the
functional equations for the functions �(s) and ζ(s) (see Chap. 1), we get

F(t)=−π2

6t
− 1

2
ln

(
t

2π

)
− 1

2πi

∫

Re z=c′′
dz�(z)ζ(1+ z)ζ(z)

(
4π2

t

)−z
, (3.20)

where 0 < c′′ < 1. The identity (3.17) is obtained shifting the line of integration to
Re z= c′′′ > 1, and taking the first-order pole at z= 1 into account. �

3.1.2 The Remainder Term and the Poisson Resummation Formula

We would like first to examine a particular but important case, as an illustration
of the difficulties associated with the determination of the additional term. Such
case will be considered also in the next section but under a somewhat different
perspective.

Let us consider the selfadjoint operator A=Hβ , where H is the Dirichlet Lapla-
cian on [0,1] with eigenvalues λn = n2. Notice that A is not a differential operator,
unless β is a positive integer. Putting 2β = α, we can write

ζA(z)=
∞∑

n=1

n−αz = ζ(αz). (3.21)
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The related heat kernel trace reads (t > 0)

Tr e−tA =
∑

n

e−nαt ≡ Sα(t). (3.22)

Making use of the Mellin representation one obtains

Sα(t) = 1

2πi

∫

C

dz t−zζ(αz)�(z)= �( 1
α
)

αt
1
α

+
∞∑

k=0

(−t)k

k! ζ(−αk)+�α(t)

= �( 1
α
)

αt
1
α

− 1

2
+

∞∑

k=1

(−t)k

k! ζ(−αk)+�α(t), (3.23)

where the power series in t will converge for |t |< b (for some b, abscissa of conver-
gence). This last expression makes sense, in general, only when b > 0. Usually (i.e.,
unless α ≤ 1 or α ∈ 2N) one finds that the series in (3.23) is divergent for any t �= 0
(thus, the abscissa of convergence is b = 0). We shall here restrict ourselves to the
mentioned particular values of α. The quantity Sα(t) may be evaluated by making
use of the Poisson formula, which states that for f (x)= f (−x) and f (x) ∈ L1, the
following equation holds:

∞∑

n=1

f (n)=−1

2
f (0)+

∫ ∞

0
dx f (x)+ 2

∞∑

n=1

∫ ∞

0
dx f (x) cos(2πnx). (3.24)

Let us consider the function

f (x)= e−t |x|α . (3.25)

An elementary computation permits us to write

Sα(t)=−1

2
+ �( 1

α
)

αt
1
α

+ 2
∞∑

n=1

∫ ∞

0
dx e−|xα |t cos(2πnx) (3.26)

and by comparing (3.23) and (3.26), we get

�α(t)= 2
∞∑

n=1

∫ ∞

0
dx e−|xα |t cos(2πnx)−

∞∑

k=1

(−t)k

k! ζ(−αk). (3.27)

The above expression can be checked immediately. In fact, for α = 2, i.e. β = 1,
one has ζ(−2k)= 0 and the additional term is nonvanishing

�2(t)= 2
∞∑

n=1

∫ ∞

0
dx e−x2t cos(2πnx)=

√
π

t

∞∑

n=1

e−
π2n2

t . (3.28)

As a consequence, (3.23) becomes the well known Jacobi’s theta function identity
(see Chap. 2).
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Again, for α = 1, one can perform exactly the elementary integrations involved,
and the result is

∞∑

n=1

2t

t2 + 4π2n2
=−

∞∑

r=1

t2r−1

(2r − 1)!ζ(1− 2r). (3.29)

The sum on the left hand-side can be done with elementary methods and we end up
with

1

2
coth(t/2)− 1

t
=−

∞∑

r=1

t2r−1

(2r − 1)!ζ(1− 2r) (3.30)

which is a well known but certainly non trivial identity.
All this goes through for α = 2,4,6, . . . . A connection with the theory of Brown-

ian processes may be established at that point [113]. The instabilities that are known
to appear outside the range 0 < α < 1 and outside these particular values of α can
be traced back in our procedure to the fact that both the full series in ζ ’s and the ad-
ditional term on the contour at infinity diverge. Then, both are useless, in practice,
and we must come back to the new method as stated before. This will be illustrated
in the following sections with specific examples.

3.2 Numerical Estimates of the Remainder

In view of the above, we shall here restrict ourselves to α = 2,4,6, . . . , so that
the series in (3.23) vanishes and, provided that we have already picked up the first
two terms on the r.h.s. (coming from the poles of ζ(αz)�(z)) the remainder does
not change as we shift Re c′ in (3.1) to the left. In particular, we may say that the
additional term is precisely this value of the remainder.

Contrary to the additional term (which was the contribution of the semicircum-
ference ‘at infinity’ [10, 11, 14], difficult to handle in general), the remainder is
computed as the contribution at ‘finite distance’ (an integral along Re z = c). The
additional term can be approached by the contribution of a semicircumference of fi-
nite radius |z| =R, for R large enough. Let us consider it in this simpler form (here
t is set equal to 1)

�α ≡ 1

2πi

∫

K

dz�(z)ζ(αz), (3.31)

where K is the semicircumference of finite radius R, z = Reiθ , with θ going from
θ = π/2 to θ = 3π/2. To begin with, this expression is not defined at θ = π and one
must start the calculation by using the well known reflection formulas for � and ζ .
This yields

�α = i

∫

K

dz

z(2π)1−αz
sin(παz/2)

sin(πz)

�(1− αz)

�(−z)
ζ(1− αz). (3.32)
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Such quantity is, in principle, well defined but, on the other hand, rather bad be-
haved. In modulus, the integrand clearly diverges for |z| → ∞ but, due to the
quickly oscillating sinus factors the final result turns out to be finite. Actually, it
has been proven in Refs. [51, 109], that it has the very specific value

�2 =−√πS
(
π2), S(t)≡

∞∑

n=1

e−π2t , (3.33)

for α = 2, and that it can be made < 1 for any value of α ∈ 2N and reasonably high
values of R. A possible way to handle expression (3.32) is to employ the integral
equation

�(z)ζ(βz)=
∫ ∞

0
Sβ(t)t

z−1dt, Re z > 0, Sβ(t)≡
∞∑

n=1

e−nβ t , (3.34)

what yields

�α =−iα

∫

K

dz
sin(παz/2)

sin(πz)

�(−αz)

�(−z)�( 1
α
− z)

∫ ∞

0
Sα
(
(2π)αt

)
t

1
α
−z−1 dt. (3.35)

Using now Stirling’s formula and a simple approximation for the sinus fraction we
get

�α =− i√
2πα

∫

K

dzϕα(z)

∫ ∞

0
Sα
(
(2π/α)αt

)
t

1
α
−z−1 dt, (3.36)

being

ϕα(z) ≡ exp

{[
(2− α)z+

(
1

2
− 1

α

)]
ln z+ (α − 2)z+

(
α

2
− 1

)
π | Im z|

+ i sgn(Im z)

(
α

2
− 1

)
π |Re z|

}
. (3.37)

We see that, in fact, for α < 1, ϕα(z)→ 0, when |z| → ∞, while for α = 2 it is
ϕ2(z)≡ 1 and �2 =−√πS2(π

2), as anticipated before (this is nothing but Jacobi’s
theta function identity, see Chap. 2). On the other hand, if we substitute in (3.36) its
mean value μ for the function ϕα , we obtain

�α =−μ

√
2π

α
Sα

((
2π

α

)α)
. (3.38)

An analytical but approximate evaluation carried out by the author for the first par-
ticular cases α = 2,4,6,8, suggests that the behavior of the mean value μ in terms
of α can be bounded from above by an expression of the kind

|μ| ≤ e− 2

2e

√
2π

α
(3.39)



3.2 Numerical Estimates of the Remainder 59

for α ∈ 2N large. This gives for the additional term

|�α| ≤ e− 2

2e
Sα

((
2π

α

)α)
, (3.40)

a bound that is certainly convergent for α→∞.
We have checked this analytical bound with a numerical, direct evaluation of the

integral (3.32) written in the following equivalent form (obtained with straightfor-
ward manipulations)

�α =−
∫ π/2

−π/2

dθ

(2π)z+1

sin(πz/2)

sin(πz/α)

�(z+ 1)

�(z/α)
ζ(z+ 1), z=Reiθ , R� 1. (3.41)

In particular, the case α→∞ can be easily handled

�∞ =− 1

π

∫ π/2

−π/2

dθ

(2π)z+1
sin(πz/2)�(z+ 1)ζ(z+ 1), z=Reiθ , R� 1.

(3.42)
As discussed before, it is quite difficult to evaluate such integrals for R big. Any
numerical procedure breaks down for R large enough. But, by using this technique
we never need, in practice, to go to very large Rs in the evaluation of the additional
term—at the expense of just calculating a few first terms of an asymptotic expansion
on the zeta function of the differential operator one is dealing with (the asymptotic
series must be optimally truncated in the usual way). Putting it in the particular
situation which concerns us here, we need only obtain numerical values for the
expressions (3.41) and (3.42) when R is just of the order of 20 or 30, what is already
involved enough since the usual asymptotic series that appear in practice yield their
best result for a number of terms of this (and very often lesser) order.

There seems to be no definite regular behavior in the numerical values of the
expressions above, though all of them, in the wide range 8 ≤ R ≤ 30, lie in the
quite narrow interval 0.02 ≤ |�| ≤ 0.07. This is in very good agreement with the
results obtained from the analytical approximation (3.40), which are �4 � 0.04,
�6 � 0.07 and �∞ � 0.13. Only the tendency of this formula for large α deviates
from the numerical result by a factor of 10—namely the numerical results are about
ten times lower than the upper bound values given by the formula (3.40). But this
is not strange, since for big α’s expression (3.40) is rather bad (Sα is then a very
slowly convergent series), while, on the contrary, the limiting expression for �∞
(3.42) remains in very good shape.

Summing up, (3.41), (3.42) and (3.40) are the best we could obtain, using an
analytical approximation, for the treatment of the additional term which appears
either in the series commutation procedure or in the Mellin transformation method.
For the numerical treatment, the calculation must be performed not at R =∞ but
at finite, increasing values of R, and in this case (3.41) and (3.42) can be handled
through standard numerical integration procedures.
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3.3 Application: Summation of the String Partition Function
for Different Ranges of the Temperature

The problem of deciding if QCD is actually (some limit of) a theory of extended
objects (strings, membranes or p-branes in general) is almost forty years old and
goes back to ’t Hooft. J. Polchinski tried to answer this question both for the Nambu–
Goto and for the rigid strings by calculating their partition functions and seeing
if they actually match with the one corresponding to QCD for different ranges of
temperature [114, 115]. We shall not go into the particularities of the procedure
[114, 115]—which has been described in [116] in some detail. Rather, we shall here
concentrate in the specific aspects of the problem that have to do with the zeta-
function regularization procedure, only.

The first two terms in the loop expansion

Seff = S0 + S1 + · · · (3.43)

of the effective action corresponding to the rigid string

S = 1

2α0

∫
d2σ

[
ρ−1∂2Xμ∂2Xμ + λab

(
∂aX

μ∂bXμ − ρδab
)]+μ0

∫
d2σ ρ

(3.44)
being α0 the dimensionless, asymptotically free coupling, ρ the intrinsic metric,
μ0 the explicit string tension (important at low energy) and λab the Lagrange
multipliers—are given, in the world sheet 0≤ σ 1 ≤ L and 0≤ σ 2 ≤ βt (an annulus
of modulus t), by

S0 = Lβt

2α0

[
λ11 + λ22t−2 + ρ

(
2α0μ0 − λaa

)]
(3.45)

at the tree level, and by

S1 = d − 2

2
ln det

(
∂4 − ρλab∂a∂b

)

= d−2

2
L

∞∑

n=−∞

∫ +∞

−∞
dk

2π
ln

[(
k2+ 4π2n2

β2t2

)2

+ρ

(
λ11k2+ 4π2n2

β2t2λ22

)]
(3.46)

at one-loop order. This is quite a non-trivial calculation, which has been performed
in Ref. [114, 115] only in the strict limits T → 0 and T →∞ around some extrem-
izing configuration, the parameters being ρ, λ11, λ22 and t . As a first step of the zeta
function method we write

S1 = −(d − 2)
d

ds
ζA(s/2)

∣∣∣∣
s=0

,

ζA(s/2) = L

∞∑

n=−∞

∫ +∞

−∞
dk

2π

(
k2 + y2+

)−s/2(
k2 + y2−

)−s/2
,

(3.47)
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where

y± = a

t

[
n2 + ρt2λ11

2a2
±√ρ

t

a

((
λ11 − λ22)n2 + ρt2λ112

4a2

)1/2]1/2

, a ≡ 2π

β
.

(3.48)

For convenience, one may consider two different approximations of overlapping
validity, one for low temperature, β−2 � μ0, and the other for high temperature,
β−2 � α0μ0. Both these approximations (overlapping included) are obtainable
from the expression above. We choose to write it in the form

ζA(s/2)= L

2
√
π

�(s − 1/2)

�(s)

∞∑

n=−∞

y−
(y+y−)s

F (s/2,1/2; s;1− η), η≡ y2−
y2+

.

(3.49)
This is a strict equality. For high temperature, the ordinary expansion of the con-

fluent hypergeometric function F is in order

F(s/2,1/2; s;1− η)=
∞∑

k=0

(s/2)k(1/2)k
k!(s)k (1− η)k −→ 1

2

(
1+ η−1/2), s→ 0,

(3.50)
since y± can be written as

y± � a

t

[
(n± b)2 + c2]1/2

, b= βt

4π

√
ρ
(
λ11 − λ22

)
, c� α0

4π
. (3.51)

After the appropriate analytic continuation, the derivative of the zeta function yields

d

ds
ζA(s/2)|s=0

=−L

4

√
b2 + c2 + 2πL

βt

{
b2 + 1

6
−
[

1

2
ln
(−b2)+ψ(−1/2)+ γ

]
c2
}
. (3.52)

In order to obtain this result, which comes from elementary Hurwitz zeta functions,
ζ(±1, b), we have used in (3.51) the binomial expansion, what is completely con-
sistent with the approximation (notice the extra terms coming from the contribution
of the pole of (3.51) to the derivative of ζA(s/2)).

The low-temperature case is more involved and now the methods developed in
the preceding section will prove to be useful. The term n= 0 must be treated sepa-
rately. It gives [116]

ζ
(n=0)
A (s/2)= L

2π

�((1− s)/2)�(s − 1/2)

�(s/2)

(
λ11ρ

)1/2−s
,

1

2
< Re(s) < 1.

(3.53)
This is again a closed result, which yields

d

ds
ζ n=0
A (s/2)

∣∣∣∣
s=0
=−L

2

√
λρ (3.54)
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and

Sn=0
1 = (d − 2)

L

2

√
λρ. (3.55)

Such contribution must be added to the one coming from the remaining terms ((3.49)
above)

ζ ′A(s/2)= L√
π

�(s − 1/2)

�(s)

∞∑

n=1

y−
(y+y−)s

F (s/2,1/2; s;1− η), Re(s) > 1.

(3.56)
(The prime is no derivative, it just means that the term n= 0 is absent here.) Within
this approximation, and working around the classical, T = 0 solution: λ11 = λ22 =
α0μ0, ρ = t−2 = 1, we obtain

ζ ′A(s/2)= L√
π

�(s − 1/2)

�(s)

(
a

t

)1−2s[
F0(s)+ F1(s)+ F2(s)

]
, (3.57)

where

F0(s)≡
∞∑

n=1

n1−s

(n2 + σ 2
2 )

s/2

[
F
(
s/2,1/2; s;σ 2

1 /
(
n2 + σ 2

1

))− 1− σ 2
1

4n2

]
,

σ 2
i ≡

λiiρt2β2

4π2
, (3.58)

F1(s)≡
∞∑

n=1

n1−s

(n2 + σ 2
2 )

s/2
, F2(s)≡ σ 2

1

4

∞∑

n=1

n−1−s

(n2 + σ 2
2 )

s/2
.

Let us briefly study these functions. F1 and F2 can be analytically continued
without problems:

F1(s) = ζ(2s − 1)− sσ 2

2
ζ(2s + 1)

+
∞∑

n=1

n1−s
[(

n2 + σ 2
2

)−s/2 − n−s + sσ 2
2

2
n−s−2

]
, (3.59)

so that, in particular,

F1(0)=− 1

12
− σ 2

2

4
, (3.60)

and

F2(s)= σ 2
1

4
ζ(2s + 1)+ σ 2

1

4

∞∑

n=1

n−1−s[(n2 + σ 2
2

)−s/2 − n−s
]
, (3.61)
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which has a pole at s = 0,

F2(s)= σ 2
1

8s
+ γ σ 2

1

4
+O(s). (3.62)

Concerning F0, by using

lim
s→0

F
(
s/2,1/2; s;σ 2

1 /
(
n2 + σ 2

1

))= 1

2

[
1+

√

1+
(
σ1

n

)2 ]
, (3.63)

we can write

F0(0) = 1

2

∞∑

n=1

[(
n2 + σ 2

1

)1/2 − n− σ 2
1

2n

]

= 1

2
lim
τ→0

∞∑

n=1

[(
n2 + σ 2

1

)1/2 − n− σ 2
1

2n

]
e−τn. (3.64)

This yields

∞∑

n=1

ne−τn = 1

τ 2
− 1

12
+O(1), (3.65)

for the term in the middle. For the other two we shall make explicit use of the results
obtained in Sect. 3.1. For the last term, we get

∞∑

n=1

1

n
e−τn = Resz=0

[
τ−z�(z)ζ(z+ 1)

]+O(1)=− ln τ +O(1). (3.66)

In order to apply this procedure to the first term we need some more specific knowl-
edge of the function

ζ−1/2(z)≡
∞∑

n=1

n−z
(
n2 + σ 2)1/2

, (3.67)

which appears when considering (see again Sect. 3.1)

∞∑

n=1

(
n2 + σ 2)1/2

f (τn) =
∞∑

n=1

(
n2 + σ 2)1/2 1

2πi

∫
dz (nτ)−zM[f ](z)

= 1

2πi

∫
dz τ−zM[f ](z)ζ−1/2(z). (3.68)

The study of this function can be reduced to that of Example 2. For Re z > −2p
we get an analytical continuation which is a meromorphic function with poles at
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z= 2(1− k) of residues
(1/2

k

)
σ 2k , k = 0,1,2,3, . . .

ζ ε−1/2(z) =
∫ ∞

ε

dr r1−z
[√

1+ σ 2

r2
− θ(p− 1)

p∑

k=0

(
1/2

k

)(
σ

r

)2k
]

+
p∑

k=0

(
1/2

k

)
σ 2k

z+ 2(k − 1)
+ ε1−z(ε2 + σ 2)1/2 − 1

2
ε−z
(
ε2 + σ 2)1/2

− i

2π

∑

±

∫

C(±)
dt ln

(
1− e±2πit) d

dt

[
t−z
(
t2 + σ 2)1/2]

, (3.69)

where the three last terms are integer functions and the contours C
(±) are chosen

avoiding the points ±iσ .
In our case it is sufficient to take p = 1. Considering now −2 < Re z < 0, the

limit ε→ 0 can be taken naively, with the result

ζ−1/2(z) =
∫ ∞

0
dr r1−z

[√

1+ σ 2

r2
− θ(p− 1)

p∑

k=0

(
1/2

k

)(
σ

r

)2k
]

+
1∑

k=0

(
1/2

k

)
σ 2k

z+ 2(k − 1)

− i

2π

∑

±

∫

C(±)
dt ln

(
1− e±2πit) d

dt

[
t−z
(
t2 + σ 2)1/2]

. (3.70)

It is the last term the one which prevents continuing to the right of z= 0, due to its
divergence at t = 0. This needs a special treatment (Sect. 3.1), and the final result is

ζ−1/2(z) = σ 2

4
− σ 2

2
ln

(
σ

2

)
− σ

2
+ σ 2

2z

+ 1

π

∫ ∞

σ

dr ln
(
1− e−2πr) r√

r2 − σ 2
+O(z). (3.71)

The integral term is awkward but harmless: it is exponentially suppressed as com-
pared to the rest. Now we can go back to (3.68)

∞∑

n=1

(
n2 + σ 2)1/2

e−τn = 1

2πi

∫
dz τ−z�(z)ζ−1/2(z)

= 1

τ 2
− σ 2

2
ln τ − γ σ 2

2
+ σ 2

4
− σ 2

2
ln

(
σ

2

)
− σ

2

+ 1

π

∫ ∞

σ

dr ln
(
1− e−2πr) r√

r2 − σ 2
+Oτ (1). (3.72)
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And this yields for F0(0):

F0(0) = −γ σ 2
1

4
+ σ 2

1

8
− σ 2

1

4
ln

(
σ1

2

)
− σ1

4
+ 1

24

+ 1

2π

∫ ∞

σ1

dr ln
(
1− e−2πr) r√

r2 − σ 2
1

. (3.73)

Substituting the results back into (3.57), we obtain

ζ ′A(s/2) = L√
π

�(s − 1/2)

�(s)

(
a

t

)1−2s[σ 2
1

8s
− σ 2

1

8
− σ 2

1

4
ln

(
σ1

2

)
− σ1

4
− σ 2

2

4

− 1

24
+ 1

2π

∫ ∞

σ1

dr ln
(
1− e−2πr) r√

r2 − σ 2
1

+O(s)

]
, (3.74)

therefore

ζ ′A(0)=−
Laσ 2

1

4t
(3.75)

and

d

ds
ζ ′A(s/2)

∣∣∣∣
s=0

= −La

t

[
ψ(−1/2)

σ 2
1

4
− ln(a/t)

σ 2
1

2
− σ 2

2

2
− σ 2

1

2
ln(σ/2)− σ1

2

+ (1+ γ )
σ 2

1

4
− 1

12
+ 1

π

∫ ∞

σ1

dr ln
(
1− e−2πr) r√

r2 − σ 2
1

]
.

(3.76)

Finally

S
(n�=0)
1 = (d − 2)

La

4t

[
σ 2

1 − 2σ 2
1 ln

(
aσ1

t

)
− 2σ 2

2 −
1

3

+ 4

π

∫ ∞

σ1

dr ln
(
1− e−2πr) r√

r2 − σ 2
1

]
. (3.77)

Adding (3.55) and (3.77) we obtain the desired expansion of the one loop effec-
tive action, S1, near T = 0. The physical implications of these results have been
discussed in detail in [116].

As a summary for this chapter, let us just emphasize that the series commuta-
tion techniques, that are essential in the proof of the zeta function regularization
theorem—which, on its turn, is the basic tool in the general procedure of zeta func-
tion regularization when the spectrum of the operator is explicitly known (the issue
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in this book)—have been promoted in the above two sections to an elegant mathe-
matical method, by making use of the Mellin transforms of convenient heat kernel
operators, in combination with a rigorous treatment of the asymptotic series in-
volved. The laborious analysis of the series to be commuted, the artificial picking
up of a convenient function in order to mimic such series through pole residues on
the complex plane, and the process of commutation itself, with the appearance of ad-
ditional terms ‘at infinity’, have now disappeared, in favor of a quite natural Mellin
transform analysis of the heat kernels. Moreover, the identification of the three dif-
ferent contributions to the final result, namely, the naive commuted series (which
results in a sum of Riemann or Hurwitz zeta functions), the ordinary commutation
remnants (a polynomial function) and the elusive, additional term of negative power-
like behavior, appears now in a clear and natural way. The last contribution, which
was originally quite difficult to handle from a numerical point of view, has been
given here a completely new treatment, which allows to calculate explicit numbers
with reasonable ease.

The new method has the additional advantage that it is equally well fitted for
the treatment of general elliptic differential operators whose spectrum is not known
(what is beyond the purpose of this book, see Chap. 1). The sum over eigenval-
ues can then be naturally replaced—within the same procedure—by a sum over
heat-kernel or Seeley–De Witt coefficients. A huge mathematical industry has been
generated for the calculation of these coefficients, and one can now get full profit
from these result in the new context of the zeta function regularization theorem [33]
(see [56, 64] for new developments).

Physical applications of these techniques keep growing, as calculations in dif-
ferent contexts of the vacuum energy and the Casimir effect in QFT (see Chap. 5),
condensed matter and solid state physics. In the last section we have already hinted
at the use one can make of those expressions for obtaining the partition functions of
strings and membranes. Further results on this line will be obtained in Chap. 8.



Chapter 4
Analytical and Numerical Study
of Inhomogeneous Epstein and Epstein–Hurwitz
Zeta Functions

In this chapter we are going to present some of the most advanced results that we
have got in our study of the different zeta functions. From the mathematical point
of view they are, without any doubt, quite far reaching and involved. As will be
explained in more detail later, the reason why they are not to be found in the mathe-
matical literature dealing with zeta functions (in particular, with Epstein zeta func-
tions) is because inhomogeneous Epstein zeta functions seem not to be very inter-
esting in number theory—contrary to ordinary Epstein zeta functions, which are of
paramount importance. The situation in physics is just the opposite: ordinary Epstein
zeta functions appear as a very limited particular case—massless, zero temperature,
no chemical potential—of the usual theories.

The formula (4.32) that will be obtained in Sect. 4.1 is due to the author. It
constitutes an original and non-trivial extension of the celebrated Chowla–Selberg
formula [5, 25]. Surprisingly enough, the new formula—which solves the non-
homogeneous case, the most important in physics—turns out to be in the end
as beautiful (mathematically) as the one derived by those famous mathematicians
for the homogeneous situation. To see the importance that Chowla and Selberg
attributed to their discovery, the reader is advised to throw a look at Ref. [25].
It goes without saying that the author is equally happy with the new formula
(4.32).

For physical applications, the importance of the formula—and of the other ones
obtained in the present and in the preceding chapters—resides in the quick con-
vergence (of exponential type) of the series appearing in them (see again [25], for
the usefulness of this property). This fact will be illustrated in detail in Sect. 4.2
of the present chapter, with specific numerical calculations carried out for the most
useful of such formulas. Explicit physical applications will start from the next chap-
ter.
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4.1 Explicit Analytical Continuation of Inhomogeneous Epstein
Zeta Functions

In this section the two-dimensional inhomogeneous zeta-function series (with ho-
mogeneous part of the most general Epstein type):

∑

m,n∈Z

′(
am2 + bmn+ cn2 + q

)−s
, (4.1)

will be analytically continued in the variable s. The result shows the pole structure
explicitly, and is given in terms of a convergent series in one index only. This ex-
tends a previous formula by S. Chowla and A. Selberg, while preserving for any
q > 0 the good convergence properties of the final series, which led these authors
to obtain very important applications of the formula in number theory and in the
theory of elliptic functions. Further applications to several unsolved problems of
mathematical physics as well as some direct physical applications of the formula
will be described too.

In a paper by the mathematicians S. Chowla and A. Selberg published some years
ago [25], these authors considered several applications of an interesting formula they
had found for the analytical continuation of the general Epstein zeta function in two
indices [2, 4]

∑

m,n∈Z

′(
am2 + bmn+ cn2)−s (4.2)

(the prime means, as usually, that the term with m= n= 0 is to be excluded from the
sum). This formula was written in that article without any explicit derivation or hint
of any kind (the actual derivation was promised to appear in a subsequent paper),
and became to be named after their authors (see, for instance, Ref. [5]). As remarked
by Chowla and Selberg themselves, the good convergence properties of the series of
Bessel functions which appears in the formula, make it both simple to apply and very
useful. In particular, it was employed in [25] to construct an easy proof of the famous
conjecture by Gauss on the class-number of binary quadratic forms with a negative
fundamental discriminant (an alternative to the derivation of Heilbronn [117], which
was based on earlier work by Deuring [118]), to demonstrate the positiveness of
certain Dirichlet L-functions at s = 1/2, and also in a classical problem of the theory
of elliptic functions, where the range of computability in finite terms of the standard
K elliptic integral was extended considerably.

Guided by these results and by the necessity to obtain a similar formula for the
case of the ‘Epstein like’ zeta function corresponding to a quadratic form plus a
constant term, we will here consider the double, doubly infinite series

E(s;a, b, c;q)≡
∑

m,n∈Z

′(
am2 + bmn+ cn2 + q

)−s
. (4.3)
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With q �= 0, in general. The parenthesis in (4.3) is the inhomogeneous quadratic
form

Q(x,y)+ q, Q(x, y)≡ ax2 + bxy + cy2, (4.4)

restricted to the integers. In the general theory that deals with the homogeneous
case, one assumes that a, c > 0 and that the discriminant

�= 4ac− b2 > 0 (4.5)

(see Ref. [25]). Here we will impose the additional condition that q be such that
Q(m,n) + q �= 0, for all m,n ∈ Z. In the usual applications of the theory, those
conditions are indeed satisfied.

Before we attack this problem, and as a more simple application of the general
formalism, we will first consider the case (also interesting for its many applications)
of the analytical continuation of the more simple series

G(s;a, c;q)≡
+∞∑

n=−∞

[
a(n+ c)2 + q

]−s
. (4.6)

The result for this case can be considered as a byproduct of our general approach.
This calculation will be carried out in Sect. 4.1 of the chapter. For the benefit of the
reader, the derivation of the extended formula for the general case will be given in
detail.

4.1.1 The Particular Case of the Basic One-Dimensional
Epstein–Hurwitz Series

While deriving this case we shall already introduce the general procedure. Actually,
the analytical continuation can be performed in different ways, but maybe the most
direct method is by using Jacobi’s identity for the theta function θ3 (see also Chap. 2)

θ3(z|τ)= 1+ 2
∞∑

n=1

qn2
cos(2nz), q = eπiτ , |q|< 1, τ ∈C, (4.7)

that is

θ3(z|τ)= 1√−iτ
ez

2/(πiτ)θ3

(
z

τ

∣∣∣∣
−1

τ

)
, (4.8)

or, in other words

+∞∑

n=−∞
en

2πiτ+2niz = 1√−iτ

+∞∑

n=−∞
e(z−nπ)2/(πiτ) (4.9)
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(for a popular reference see, for instance, Wittaker and Watson [119, p. 476]). Here
z and τ are arbitrary complex, z, τ ∈ C, with the only restriction that Im τ > 0 (in
order that |q|< 1). For subsequent application, it turns out to be better to recast the
Jacobi identity as follows (with πiτ →−t and z→ πz):

+∞∑

n=−∞
e−n2t+2πinz =

√
π

t

+∞∑

n=−∞
e−π2(n−z)2/t , (4.10)

equivalently

+∞∑

n=−∞
e−(n+z)2t =

√
π

t

[
1+

∞∑

n=1

e−π2n2/t cos(2πnz)

]
, (4.11)

where z, t ∈ C, Re t > 0. This last expression will be the first ingredient in our
calculation. Instead, we could have chosen to proceed by expanding in power series
the exponent of the Mellin transform of the series above, and then by interchanging
the order of the summations of the two series, with the known prescription of adding
the contribution of the corresponding contour integration on the complex plane—
see Chap. 2 and Refs. [48, 51, 109], where this general method has been extensively
applied (even in the case of arbitrary, non-negative exponents), and was shown to
yield the Jacobi identity as a particular case (see also Refs. [10, 11, 14, 120] for more
extensive accounts). Actually, that both procedures should yield the same result in
the quadratic case is well known from the direct proof given by Landsberg [121] of
the Jacobi identity.

Another ingredient for our derivation is the gamma function identity. Applied to
the abbreviated expression

∑
(Q+ q)−s (which precise meaning corresponding to

(4.3) or (4.6) can be left here undefined, for the moment), it yields

∑
(Q+ q)−s = 1

�(s)

∑∫ ∞

0
duus−1e−(Q+q)u. (4.12)

When q > 0 and under the conditions that have been imposed to the quadratic form
Q, the integral and the sum commute. Before considering the general case, by set-
ting first Q = a(n+ c)2, a > 0, c ∈ C, c �= 0,−1,−2, . . . (of course, this is not a
quadratic form and the series is now one-dimensional, but the same considerations
about commutation of series and integral apply), we obtain the following expression
(a consequence of the Jacobi and gamma function identity)

+∞∑

n=−∞

[
a(n+ c)2 + q

]−s =
√

π

a

�(s − 1/2)

�(s)
q1/2−s + 4πs

�(s)
a−1/4−s/2q1/4−s/2

·
∞∑

n=1

ns−1/2 cos(2πnc)Ks−1/2(2πn
√
q/a ), (4.13)
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where Kν is the modified Bessel function of the second kind. This equation provides
the analytic continuation of what can be named the most basic inhomogeneous, gen-
eralized Epstein series in one index, in terms of a series that turns out to be quickly
convergent for extensive ranges of values of the parameters, in particular, when
Im c <

√
q/a, a case that frequently appears in the applications. An example of a

result that can only be obtained by explicit, non-trivial interchange of the summa-
tion indices and subsequent contour integration—and that it is not a consequence of
the Jacobi identity—is the following:

F(s;a, c;q)

≡
∞∑

n=0

[
a(n+ c)2 + q

]−s

∼ q−s

�(s)

∞∑

m=0

(−1)m�(m+ s)

m!
(
q

a

)−m
ζH (−2m,c)

+
√

π

a

�(s − 1/2)

2�(s)
q1/2−s

+ 2πs

�(s)
a−1/4−s/2q1/4−s/2

∞∑

n=1

ns−1/2 cos(2πnc)Ks−1/2(2πn
√
q/a ).

(4.14)

This function will be studied in detail in the next section (see also Ref. [122]) with
numerical tables, plots, and a couple of explicit applications. Notice, however, that
this is not a convergent series but an asymptotic one [48, 51, 109]. By observing that

ζH (−2m,c)+ ζH (−2m,1− c)= 0, (4.15)

for m ∈N, and that

G(s;a, c;q)= F(s;a, c;q)+ F(s;a,1− c;q), (4.16)

it is quite easy to obtain (4.13) as a particular case of (4.14).
Those formulas give explicit answers to some questions that had remained un-

solved in zeta-function regularization. Only the case c = 0 had been dealt with
satisfactorily (through the corresponding expression obtained just putting c = 0 in
(2.93)). As a particular case of (2.93), we obtain

∞∑

n=0

[
a(n+ 1/2)2 + q

]−s = 1

2

√
π

a

�(s − 1/2)

�(s)
q1/2−s + 2πs

�(s)
a−1/4−s/2q1/4−s/2

·
∞∑

n=1

(−1)nns−1/2Ks−1/2(2πn
√
q/a ). (4.17)
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More involved multiple series of this kind, such as the diagonal, inhomogeneous,
generalized Epstein (or Epstein–Hurwitz) multiple series

Ek(s;a1, . . . , ak; c1, . . . , ck; c)
≡

∑

n1,...,nk∈Z

[
a1(n1 + c1)

2 + · · · + ak(nk + ck)
2 + c

]−s
, (4.18)

can be treated in a recurrent way, starting from (4.13). The general recurrence is (see
also Chap. 2)

Ek(s;a1, . . . , ak; c1, . . . , ck; c)

=
√

π

ak

�(s − 1/2)

�(s)
Ek−1(s;a1, . . . , ak−1; c1, . . . , ck−1; c)

+ 4πs

�(s)
a
−s/2−1/4
k

∑

n1,...,nk−1∈Z

[
k−1∑

j=1

aj (nj + cj )
2 + c

]−s/2+1/4

·
∞∑

nk=1

n
s−1/2
k cos(2πnkck)Ks−1/2

(
2πnk√

ak

√√√√√
k−1∑

j=1

aj (nj + cj )2 + c

)
.

(4.19)

This recurrence is very appropriate for numerical computation, since from the sec-
ond term on the r.h.s., owing to the rapid exponential convergence of the Bessel
function, only a few first terms need to be taken into account to achieve a good
approximation. The recurrence is then implementable in any of the algebraic com-
putational packages commonly available.

4.1.2 The Homogeneous Case: Chowla–Selberg’s Formula

Here, the Chowla–Selberg formula [25] for the (general homogeneous) Epstein zeta
function [2, 4] corresponding to the quadratic form Q is to be used. (This is an ex-
pression well known in number theory [5] but not so much in mathematical physics.)
The result is

F(s;a, b, c;0) = 2ζ(2s)a−s + 22s√πas−1

�(s)�s−1/2
�(s − 1/2)ζ(2s − 1)

+ 2s+3/2πs

�(s)�s/2−1/4
√
a

∞∑

n=1

ns−1/2σ1−2s(n) cos(nπb/a)

·
∫ ∞

0
dt ts−3/2 exp

[
−πn

√
�

2a

(
t + t−1)

]
, (4.20)
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where

σs(n)≡
∑

d|n
ds, (4.21)

namely the sum over the s-powers of the divisors of n. Notice that there is an error
in the transcription of the formula in [5].

This formula is very useful and its practical application quite simple. In fact, the
two first terms are just nice, while the last one is quickly convergent and thus causes
no problem: only a few first terms of the series need to be calculated, even if one
needs exceptionally good accuracy. One should also notice that the pole of F at
s = 1 appears through ζ(2s− 1) in the second term, while for s = 1/2, the apparent
singularities of the first and second terms cancel each other and no pole is formed.

A closer, quantitative idea about the integral can be got from the following closed
expression for it:

∫ ∞

0
dt tν−1 exp

(
−α

t
− βt

)
= 2

(
α

β

)ν/2

Kν(2
√
αβ ), (4.22)

Kν being again the modified Bessel function of the second kind. In particular, by
calling the integral

I (n, s)≡
∫ ∞

0
dt ts−3/2 exp

[
−πn

√
�

2a

(
t + t−1)

]
, (4.23)

one has

I (n,0) =
√

2a

n
√
�

exp

(
−πn

√
�

a

)
= I (n,1),

I (n,1/2) = 2K0(πn
√
�/a),

I (n,2) = a + πn
√
�

πn
√
�

√
2a

n
√
�

exp

(
−πn

√
�

a

)
,

I (n,3) = 3a2 + 3πna
√
�+ π2n2�

π2n2�

√
2a

n
√
�

exp

(
−πn

√
�

a

)
.

(4.24)

As functions of n, all these expressions share the common feature of being expo-
nentially decreasing with n.

4.1.3 Derivation of the General Two-Dimensional Formula

To deal with the case when Q is a two-dimensional quadratic form and the sum∑
a double, doubly infinite series, we need a further ingredient, i.e., casting the

quadratic form Q(n1, n2) as the sum of two squares
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Q(n1, n2)= a

[(
n1 + bn2

2a

)2

+ �

4a2
n2

2

]
, (4.25)

and then to proceed by considering first the summation over n1 (this will be the sum
to which the Jacobi identity (4.10) will be applied), while treating n2 as a parameter.
Doing so, performing then the change of variables

u= 2πn1√
� n2

t, (4.26)

and taking advantage of the common idea of rewriting the double sum as a sum over
the product n= n1n2 and (a finite one) over the divisors of the product:

∑

n1,n2

(
n1

n2

)s−1/2

=
∑

n1,n2

(n1n2)
s−1/2n1−2s

2 =
∑

n

ns−1/2
∑

d|n
d1−2s , (4.27)

the following expression is obtained

E(s;a, b, c;q)
=
∑

m,n∈Z

′[
Q(m,n)+ q

]−s

=
∑

m,n∈Z

′(
am2 + bmn+ cn2 + q

)−s

= 2ζEH (s, q/a)a−s + 22s√π as−1

�(s)�s−1/2
�(s − 1/2)ζEH (s − 1/2,4aq/�)

+ 2s+3/2πs

�(s)�s/2−1/4
√
a

∞∑

n=1

ns−1/2 cos(nπb/a)
∑

d|n
d1−2s

∫ ∞

0
dt ts−3/2

· exp

{
−πn

√
�

2a

[(
1+ 4aq

d2�

)
t + t−1

]}
, (4.28)

where the function ζEH (s,p) (the one-dimensional Epstein–Hurwitz or inhomoge-
neous Epstein series) is given by

ζEH (s;p) =
∞∑

n=1

(
n2 + p

)−s = 1

2

∑

n∈Z

′(
n2 + p

)−s

= −p−s

2
+
√
π�(s − 1/2)

2�(s)
p−s+1/2

+ 2πsp−s/2+1/4

�(s)

∞∑

n=1

ns−1/2Ks−1/2(2πn
√
p ), (4.29)

as a particular case of (4.13) (or (4.14)).
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It is remarkable that the integral inside the series of the new expression can still
be written in a closed form using (4.22)—as in the case of (4.20). Calling now the
integral

J (n, s)≡
∫ ∞

0
dt ts−3/2 exp

{
−πn

√
�

2a

[(
1+ 4aq

�d2

)
t + t−1

]}
, (4.30)

we obtain, in particular,

J (n,0) =
√

2a

n
√
�

exp

[
−πn

a

(
�+ 4aq

d2

)1/2]
,

J (n,1/2) = 2K0

(
πn

a

√
�+ 4aq

d2

)
,

J (n,1) =
√

2a
√
�

n

(
�+ 4aq

d2

)−1/2

exp

[
−πn

a

(
�+ 4aq

d2

)1/2]
,

J (n,2) =
(

a

πn
+
√
�+ 4aq

d2

)√
2a�3/2

n

(
�+ 4aq

d2

)−3/2

(4.31)

· exp

[
−πn

a

(
�+ 4aq

d2

)1/2]
,

J (n,3) =
(

3a2

π2n2
+ 3a

πn

√
�+ 4aq

d2
+�+ 4aq

d2

)√
2a�5/2

n

·
(
�+ 4aq

d2

)−5/2

exp

[
−πn

a

(
�+ 4aq

d2

)1/2]
,

which are again exponentially decreasing with n.
Expression (4.28)—as (4.13)—can be then written in terms of modified Bessel

functions of the second kind, to yield finally

E(s;a, b, c;q)

= 2ζEH (s, q/a)a−s + 22s√πas−1

�(s)�s−1/2
�(s − 1/2)ζEH (s − 1/2,4aq/�)

+ 2s+5/2πs

�(s)
√
a

∞∑

n=1

ns−1/2 cos(nπb/a)

·
∑

d|n
d1−2s

(
�+ 4aq

d2

)1/4−s/2

Ks−1/2

(
πn

a

√
�+ 4aq

d2

)
. (4.32)
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(4.32) provides the analytical continuation of the inhomogeneous Epstein series, in
the variable s, as a meromorphic function in the complex plane. Its pole structure
is explicitly given in terms of the well-known pole structure of ζEH (s,p) (see, for
instance, [122]).

(4.32) constitutes a major result of this chapter. We propose to call it the extended
Chowla–Selberg formula, since it certainly contains the Chowla–Selberg formula as
the particular case q = 0, i.e.,

E(s;a, b, c;0)

= 2ζ(2s)a−s + 22s√π as−1

�(s)�s−1/2
�(s − 1/2)ζ(2s − 1)+ 2s+5/2πs

�(s)�s/2−1/4
√
a

·
∞∑

n=1

ns−1/2σ1−2s(n) cos(nπb/a)Ks−1/2

(
πn
√
�

a

)
. (4.33)

Formula (4.32) had never appeared in the mathematical literature. The good con-
vergence properties of expression (4.33), that were so much prised by Chowla and
Selberg, are shared by its non-trivial extension (4.32). This renders the use of the
formula quite simple. In fact, the two first terms are still rather nice—under the
form (4.29)—while the last one (impressive in appearance) is even more quickly
convergent than in the case of (4.33), and thus absolutely harmless in fact. Only
a few first terms of the three series of Bessel functions in (4.32), (4.29) need to
be calculated, even for obtaining very good accuracy. Also here, the pole of E(s),
(4.33), at s = 1 appears through the ζ(2s−1) in the second term, while for s = 1/2,
the apparent singularities of the first and second terms cancel each other yielding
a finite contribution. Analogously, the pole at s = 1/2 in (4.32) appears only from
the first term. It is remarkable that (4.32) possesses also these good properties for
any non-negative value of q . In fact, for large q the convergence properties of the
series of Bessel functions are clearly enhanced, while for q small we get back to the
case of Chowla and Selberg. Notice, however, that this limit is not obtained through
the high-q expansion, (4.14), but, on the contrary, using the low-q , binomial expan-
sion:

∞∑

n=0

[
a(n+ c)2 + q

]−s

= a−s
∞∑

m=0

(−1)m�(m+ s)

�(s)m!
(
q

a

)m

ζH (2s + 2m,c), (4.34)

which is convergent for q/a ≤ 1. For q → 0 it reduces to a−sζH (2s, c). Actu-
ally, formula (4.32) is still valid in a domain of negative q’s, namely for q >

−min(a, c, a − b+ c).
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4.2 Extended Chowla–Selberg Formulas, Associated
with Arbitrary Forms of Quadratic+Linear+Constant Type

Consider now the following zeta function (Re s > p/2):

ζA,�c,q(s)=
∑

�n∈Zp

′[1

2
(�n+ �c)T A(�n+ �c)+ q

]−s
≡
∑

�n∈Zp

′[
Q(�n+ �c)+ q

]−s
. (4.35)

The prime on a summation sign means that the point �n= �0 is to be excluded from
the sum. As we shall see, this is irrelevant when q or some component of �c is non-
zero but, on the contrary, it becomes an inescapable condition in the case when
c1 = · · · = cp = q = 0. Note that, alternatively, we can view the expression inside
the square brackets of the zeta function as a sum of a quadratic, a linear, and a
constant form, namely, Q(�n+ �c)+ q =Q(�n)+L(�n)+ q̄ .

Our aim is to obtain a formula that gives (the analytic continuation of) this
multidimensional zeta function in terms of an exponentially convergent series, and
which is valid in the whole complex plane, exhibiting the singularities (poles) of
the meromorphic continuation—with the corresponding residua—explicitly. The
only condition on the matrix A is that it correspond to a (non-negative) quadratic
form, which we call Q. The vector �c is arbitrary, while q will be (for the mo-
ment) a positive constant. As we shall see, the solution to this problem will depend
very much (its explicit form) on the fact that q and/or �c are zero or not. Accord-
ing to this, we will have to distinguish different cases, leading to unrelated final
formulas, all to be viewed as different non-trivial extensions of the CS formula
(they will be named ECS formulas, and will carry additional tags, for the differ-
ent cases).

Use of the Poisson resummation formula in (4.35) yields [123–125]

ζA,�c,q(s) = (2π)p/2qp/2−s
√

detA

�(s − p/2)

�(s)
+ 2s/2+p/4+2πsq−s/2+p/4

√
detA�(s)

·
∑

�m∈Zp
1/2

′
cos(2π �m · �c)( �mTA−1 �m)s/2−p/4

Kp/2−s
(
2π
√

2q �mTA−1 �m ),

(4.36)

where Kν is the modified Bessel function of the second kind and the subindex 1/2 in
Z
p

1/2 means that in this sum, only half of the vectors �m ∈ Z
p enter. That is, if we take

an �m ∈ Z
p we must then exclude − �m (as a simple criterion one can, for instance,

select those vectors in Z
p\{�0} whose first non-zero component is positive). (4.36)

fulfills all the requirements of a CS formula. But it is very different from the original
one, constituting a non-trivial extension to the case of a quadratic+linear+constant
form, in any number of dimensions, with the constant term being non-zero. We shall
denote this formula, (4.36), by the acronym ECS1.
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It is notorious how the only pole of this inhomogeneous Epstein zeta function
appears, explicitly, at s = p/2, where it belongs. Its residue is given by:

Ress=p/2 ζA,�c,q(s)= (2π)p/2

�(p/2)
(detA)−1/2. (4.37)

4.2.1 Limit q → 0

After some work, one can obtain the limit of expression (4.36) as q→ 0 (for sim-
plicity we also set �c= �0)

ζ
A,�0,0(s) = 21+sa−sζ(2s)+

√
π

a

�(s − 1/2)

�(s)
ζ
�p−1,�0,0(s − 1/2)+ 4πs

as/2+1/4�(s)

·
∑

�n2∈Zp−1

′ ∞∑

n1=1

cos

(
πn1

a
�bT �n2

)
n
s−1/2
1

(�nT2 �p−1�n2
)1/4−s/2

·Ks−1/2

(
2πn1√

a

√
�nT2 �p−1�n2

)
. (4.38)

In (4.36) and (4.38), A is a p × p symmetric matrix A = (aij )i,j=1,2,...,p = AT ,
Ap−1 the (p − 1)× (p − 1) reduced submatrix Ap−1 = (aij )i,j=2,...,p , a the first
component, a = a11, �b the p− 1 vector �b= (a21, . . . , ap1)

T = (a12, . . . , a1p)
T , and

�p−1 is the following (p − 1)× (p − 1) matrix: �p−1 = Ap−1 − 1
4a
�b ⊗ �b. More

precisely, what one actually obtains by taking the limit is the reflected formula,
as one would get after using the Epstein zeta function reflection �(s)Z(s;A) =
π2s−p/2(detA)−1/2�(p/2 − s)Z(p/2 − s;A−1), being Z(s;A) the Epstein zeta
function [2, 4]. Finally. it can be written as (4.38). (It is a rather non-trivial exercise
to perform this calculation.) Note that (4.38) has all the properties demanded from
a CS formula, but it is actually not explicit. It is in fact a recurrence, rather lengthy
to solve as it stands. In fact, it can be viewed as the straightforward extension of the
original CS formula to higher dimensions. It was the top result of previous work on
this subject, for the case q = c1 = · · · = cp = 0 [123–125].

Using a different strategy, this recurrence will be now solved explicitly, in a much
more simple way. Indeed, let us proceed in a complementary way, namely, by doing
the inversion provided by the Poisson resummation formula (or the Jacobi identity),
with respect to p− 1 of the indices (say, j = 2,3, . . . , p). This leaves us with three
sums, corresponding to positive, zero, and negative values of the remaining index
(n1, in this case). The zero value of n1 (in correspondence with the rest of the ni ’s
not being all zero) classifies the number of different situations (according to the
values of the ci ’s an q being all zero or not) into just two cases. (As is immediate,
from start all ci ’s can be taken to be between 0 and 1: 0≤ ci < 1, i = 1,2, . . . , p.)
(i) The first case is, thus, when at least one of the ci ’s or q ≥ 0 is not zero. Since the
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case q �= 0 has been solved already, we will mean by this case now that, say c1 �= 0.
(ii) The second case is when all q = c1 = · · · = cp = 0.

4.2.2 Case with q = 0 but c1 �= 0

General (Non-diagonal) Subcase By doing the inversion provided by the Pois-
son resummation formula (or the Jacobi identity), with respect to p−1 of the indices
(here, j = 2,3, . . . , p), we readily obtain:

ζAp,�c,0(s)

= 2s

�(s)
(detAp−1)

−1/2
{
π(p−1)/2(a11 − �aTp−1A

−1
p−1�ap−1

)(p−1)/2−s

· �(s − (p− 1)/2
)[
ζH (2s − p+ 1, c1)+ ζH (2s − p+ 1,1− c1)

]

+ 4πs
(
a11 − �aTp−1A

−1
p−1�ap−1

)(p−1)/4−s/2

·
∑

n1∈Z

∑

�m∈Zp−1
1/2

′
cos
[
2π �mT

(�cp−1 +A−1
p−1�ap−1(n1 + c1)

)]

· |n1 + c1|(p−1)/2−s( �mTA−1
p−1 �m

)s/2−(p−1)/4

·K(p−1)/2−s
(

2π |n1 + c1|
√(

a11 − �aTp−1A
−1
p−1�ap−1

) �mTA−1
p−1 �m

)}

−
(

1

2
�cT A�c

)−s
. (4.39)

Here, and in what follows, Ap−1 is (as before) the submatrix of Ap composed of
the last p − 1 rows and columns. Moreover, a11 is the first diagonal component of
Ap , while �ap−1 = (a12, . . . , a1p)

T = (a21, . . . , ap1)
T , and �m= (n2, . . . , np)

T . Note
that this is an explicit formula, that the only pole at s = p/2 appears also explicitly,
and that the second term of the rhs is a series of exponentially fast convergence. It
has, therefore (as (4.36)), all the properties required to qualify as a CS formula. We
shall name this expression ECS2.

Diagonal Subcase In this very common, particular case the preceding expression
reduces to the more simple form:

ζAp,�c,0(s) =
2s

�(s)
(detAp−1)

−1/2
{
π(p−1)/2a

(p−1)/2−s
1 �

(
s − (p− 1)/2

)

· [ζH (2s − p+ 1, c1)+ ζH (2s − p+ 1,1− c1)
]
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+ 4πsa
(p−1)/4−s/2
1

∑

n1∈Z

∑

�m∈Zp−1
1/2

′
cos
(
2π �mT �cp−1

)

· |n1 + c1|(p−1)/2−s( �mTA−1
p−1 �m

)s/2−(p−1)/4

·K(p−1)/2−s
(

2π |n1 + c1|
√
a1 �mTA−1

p−1 �m
)}
−
(

1

2
�cT A�c

)−s
. (4.40)

We shall call this formula ECS2d.

4.2.3 Case with c1 = ···= cp = q = 0

General (Non-diagonal) Subcase As remarked in [123–125], we had not been
able to obtain here yet a closed formula, but just a (rather non-trivial) recurrence,
(4.38), relating the p-dimensional case with the (p − 1)-dimensional one. After a
second look, we have now realized that we can actually still proceed as if we had
in fact c1 = 1 �= 0, both for positive and for negative values of n1. A sum, though,
remains with n1 = 0—and the rest of the ni ’s not all being zero—what yields, once
more, the same zeta function of the beginning, but corresponding to p − 1 indices.
All in all:

ζ
Ap,�0,0(s) = ζ

Ap−1,�0,0(s)+
21+s

�(s)
(detAp−1)

−1/2

·
{
π(p−1)/2(a11 − �aTp−1A

−1
p−1�ap−1

)(p−1)/2−s

· �(s − (p− 1)/2
)
ζR(2s − p+ 1)

+ 4πs
(
a11 − �aTp−1A

−1
p−1�ap−1

)(p−1)/4−s/2

·
∞∑

n=1

∑

�m∈Zp−1
1/2

′
cos
(
2π �mTA−1

p−1�ap−1n
)
n(p−1)/2−s

· ( �mTA−1
p−1 �m

)s/2−(p−1)/4

·K(p−1)/2−s
[
2πn

√(
a11 − �aTp−1A

−1
p−1�ap−1

) �mTA−1
p−1 �m

]}
. (4.41)

This is also a recurrent expression, an alternative to (4.38), obtained with the help
of a different strategy.

Remarkably enough, it is easy to resolve this recurrence explicitly, and indeed to
obtain a closed formula for this case (we shall write the dimensions of the subma-
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trices of A as subindices). The result being

ζAp(s) ≡ ζ
Ap,�0,0(s)

= 21+s

�(s)

p∑

j=1

(detAp−j )−1/2

{
π(p−j)/2(ajj − �aTp−jA−1

p−j �ap−j
)(p−j)/2−s

· �(s − (p− j)/2
)
ζR(2s − p+ j)

+ 4πs
(
ajj − �aTp−jA−1

p−j �ap−j
)(p−j)/4−s/2

·
∞∑

n=1

∑

�mp−j∈Zp−j
1/2

′
cos
(
2π �mT

p−jA
−1
p−j �ap−j n

)
n(p−j)/2−s

· ( �mT
p−jA

−1
p−j �mp−j

)s/2−(p−j)/4

·K(p−j)/2−s
[
2πn

√(
ajj − �aTp−jA−1

p−j �ap−j
) �mT

p−jA
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p−j �mp−j

]}
. (4.42)

With a similar notation as above, here Ap−j is the submatrix of Ap composed
of the last p − j rows and columns. Moreover, ajj is the j th diagonal compo-
nent of Ap , while �ap−j = (ajj+1, . . . , ajp)

T = (aj+1j , . . . , apj )
T , and �mp−j =

(nj+1, . . . , np)
T . Again, this is an extension of the Chowla–Selberg formula to the

case in question. It exhibits all the same good properties. Physically, it corresponds
to the homogeneous, massless case. It is to be viewed, in fact, as the genuine multi-
dimensional extension of the Chowla–Selberg formula. We shall call it ECS3.

Diagonal Subcase Let us particularize once more to the diagonal case, with �c =
�0, which is quite important in practice and gives rise to more simple expressions.
For the recurrence, we have

ζAp(s) = ζAp−1(s)+
21+s

�(s)
(detAp−1)

−1/2

[
π(p−1)/2a

(p−1)/2−s
1 �

(
s − (p− 1)/2

)

· ζR(2s − p+ 1)

+ 4πsa
(p−1)/4−s/2
1

∞∑

n=1

∑

�m∈Zp−1

′
n(p−1)/2−s( �mTA−1

p−1 �m
)s/2−(p−1)/4

·K(p−1)/2−s
(

2πn
√
a1 �mTA−1

p−1 �m
)]

. (4.43)
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As above, we can solve this finite recurrence and obtain the following simple and
explicit formula for this case:

ζAp(s) =
21+s

�(s)

p−1∑

j=0

(detAj)
−1/2

[
πj/2a

j/2−s
p−j �(s − j/2)ζR(2s − j)

+ 4πsa
j/4−s/2
p−j

∞∑

n=1

∑

�mj∈Zj

′
nj/2−s( �mt

jA
−1
j �mj

)s/2−j/4

·Kj/2−s
(

2πn
√
ap−j �mt

jA
−1
j �mj

)]
, (4.44)

with Ap = diag(a1, . . . , ap), Aj = diag(ap−j+1, . . . , ap), �mj = (np−j+1, . . . , np)
T ,

and ζR the Riemann zeta function. Note again the fact that this and (4.42) are explicit
expression for the multidimensional, generalized Chowla–Selberg formula and, in
this way, they go beyond any result obtained previously. We name this formula
ECS3d.

It is immediate to see that the term for j = 0 in the sum yields the last term,
ζA1(s), of the recurrence, that is:

ζA1(s)=
+∞∑

np=−∞

′(
ap

2
n2
p

)−s
= 21+sa−sp ζR(2s). (4.45)

It exhibits a pole, at s = 1/2 which is spurious—it is actually not a pole of the whole
function (since it cancels, in fact, with another one coming from the next term, with
further cancellations of this kind going on, each term with the next). Concerning the
pole structure of the resulting zeta function, as given by (4.44), it is not difficult to
see that only the pole at s = p/2 is actually there (as it should). It is in the last term,
j = p− 1, of the sum, and it has the correct residue, namely

Res ζAp(s)
∣∣
s=p/2=

(2π)p/2

�(p/2)
(detAp)

−1/2. (4.46)

The rest of the seem-to-be poles at s = (p − j)/2 are not such: they compensate
among themselves, one term of the sum with the next, adding pairwise to zero.

Summing up, this formula, (4.44), provides a convenient analytic continuation of
the zeta function to the whole complex plane, with its only simple pole showing up
explicitly. Aside from this, the finite part of the first sum in the expression is quite
easy to obtain, and the remainder—an awfully looking multiple series—is in fact
an extremely-fast convergent sum, yielding a small contribution, as happens in the
CS formula. In fact, since it corresponds to the case q = 0, this expression should
be viewed as the extension of the original Chowla–Selberg formula—for the zeta
function associated with an homogeneous quadratic form in two dimensions—to
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an arbitrary number, p, of dimensions. The rest of the formulas above provide also
extensions of the original CS expression.

The general case of a quadratic+linear+constant form has been here thus com-
pleted. As we clearly see, the main formulas corresponding to the three different
subcases, namely ECS1 (4.36), ECS2 (4.39), and ECS3 (4.42), are in fact quite dis-
tinct and one cannot directly go from one to another by adjusting some parameters.

For the sake of completeness, we must mention the following. Notice that all
cases considered here correspond to having a non-identically-zero quadratic form
Q. For Q identically zero, that is, the linear+constant (or affine) case, the formu-
las for the analytic continuation are again quite different from the ones above. The
corresponding zeta function is called Barnes’ zeta function. This case has been thor-
oughly studied in Ref. [125].

4.3 Numerical Analysis of the Inhomogeneous Generalized
Epstein–Hurwitz Zeta Function

The inhomogeneous generalized (Epstein–Hurwitz like) multi-dimensional series

Em

(
s;a1, . . . , am; c1, . . . , cm; c2)

≡
∞∑

n1,...,nm=0

[
a1(n1 + c1)

2 + · · · + am(nm + cm)
2 + c2]−s (4.47)

can be reduced (as we have already seen above), by means of a non-trivial asymp-
totic recurrence, to the one-dimensional case

E1
(
s;a, b2)=

∞∑

n=0

[
(n+ a)2 + b2]−s , (4.48)

which we will study here in full detail. In particular, asymptotic expansions for F
and its derivatives ∂F/∂s and ∂F/∂a—together with analytical continuations of the
same in the variable s—will be explicitly obtained using zeta-function techniques.
Several plots and tables of the numerical results will be given. In Chap. 6, some
explicit applications of these expressions to the regularization, by means of Hurwitz
zeta-functions, of different problems which have appeared recently in the physical
literature, will be investigated.

As we have seen above, when complicated theories over spacetimes with topolo-
gies of increasing non-triviality are considered (relevant, e.g., for the description of
the early stages of our universe), the results of the regularization are expressed in
terms of rather non-elementary zeta functions, such as Epstein’s one (for the case of
the torus compactification), Epstein–Hurwitz’s, and generalizations thereof. In other
words, one has to deal with complicated Dirichlet series, sometimes well known to
mathematicians (who make good use of those in number theory) but sometimes un-
known to them, and therefore deserving careful analysis.
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Here we shall investigate the case of multiple series of the generalized Epstein–
Hurwitz type (that we will call here F )

F
(
s;a, b2)≡E1

(
s;a;b2)=

∞∑

n=0

[
(n+ a)2 + b2]−s , (4.49)

and their extension in the form of multidimensional series (4.47). This kind of zeta
functions appear often in different applications of quantum physics where regular-
ization techniques are needed, in particular, when one deals with a massive quantum
field theory in a (totally or partially) compactified spacetime—spherical or toroidal
compactification, for instance. Aside from the interest that a detailed mathemati-
cal study of these functions may have on its own (e.g. in number theory), what is
actually needed for most physical applications—as we shall explicitly see later—
is always the numerical value of the analytical continuation of such expressions,
and of their derivatives with respect to the variable s and to the parameter a, for
negative (half)integer values of s and for a few simple fractional values of a (like
a = 1/2,1/4,3/4, . . .). Concerning the parameter b2, usually we need the large- or
small-b2 behavior of these series only.

The final results involve analytical continuation of the functions and also a prin-
cipal part prescription in order to deal with (possible) poles. This procedure has
already been checked in several situations, see [42, 126]. The results will be always
given in terms of sums of Hurwitz zeta functions and generally under the form of
asymptotic expansions.

4.3.1 Asymptotic Expansions of the Function and Its Derivatives
with Respect to the Variable and Parameters

Coming back to our function of generalized Epstein–Hurwitz type F(s;a, b2),
(4.49), and as a particular case of the above analysis, two complementary asymp-
totic expansions, for large and for small b2, respectively, are not difficult to obtain.
The first is

F
(
s;a, b2) ∼ b−2s

�(s)

∞∑

m=0

(−1)m�(m+ s)

m! b−2mζ(−2m,a)

+
√
π�(s − 1/2)

2�(s)
b−2s+1

+ 2πsb−s+1/2

�(s)

∞∑

n=1

ns−1/2 cos(2πna)Ks−1/2(2πnb), (4.50)

which is an asymptotic expansion valid in principle for large b2. However, a nu-
merical investigation has shown that its range of validity is rather wide, so that for
b2 � 0.5 or so it still gives quite acceptable results.
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Table 1 Numerical values of
the quotient of the last term
ReF(s;a, b2) of the
asymptotic expansion of
F(s;a, b2) by the whole
function, for a = 1/4 and
several values of b2. The
resulting intervals correspond
to the extreme values of the
quotient in the range
s ∈ [−5,2], which covers by
far all cases which appear in
practice

b2 ReF(s;1/4, b2)/F (s;1/4, b2)

10 10−21–10−22

1.5 10−8–10−9

1 10−7–10−8

0.5 10−6–10−7

0.1 10−7–10−10

0.01 10−11–10−18

The last term of this asymptotic expansion (4.50) can actually be suppressed, as is
clear from the definition of asymptoticity itself. In fact, to be sure of that, in Table 1
we present the results of a numerical evaluation of the quotient of the last term,
ReF(s;a, b2) by the whole function F(s;a, b2), for a = 1/4 and several values of
b2, and for a wide range for s, which covers all cases that appear in practice (namely,
−5≤ s ≤ 2).

We see from Table 1 that, with great precision, the last term can be suppressed
from (4.50), in other words that asymptoticity is fulfilled, to all purposes, for any
practical use of the formula as will be described below. We are thus left with the
much simpler form of the expansion (4.50)

F
(
s;a, b2) ∼ b−2s

�(s)

∞∑

m=0

(−1)m�(m+ s)

m! b−2mζ(−2m,a)

+
√
π�(s − 1/2)

2�(s)
b−2s+1. (4.51)

This series usually has its optimal truncation around the 10th term. A detailed nu-
merical study has shown that, in fact, for the range of values considered here the
optimal truncation is obtained with exactly ten terms (the eleventh term provides
the absolute minimum), being the order of the error bound of 10−4. Actually in this
analysis we have also taken into account the first term of the exponentially con-
vergent series, that we here just dismiss in order to simplify the expressions. The
contribution of this term is certainly less than the error bound in the whole range
considered. Similar analysis carried out with the functions M2 and Sα lead to the
same conclusions in the most general case, just with a possible increase of the er-
ror bound, that may reach 10−2 at worst (always for the region of parameters here
considered).5

5I am indebted with S. Rafels-Hildebrandt for this additional analysis.
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Table 2 A comparison of the
numerical values which come
from the two expressions
corresponding to the function
F(s;a, b2) for a = 1/4 and a
choice of values of the
parameter b2 and of the
variable s. We see that the
coincidence for values of b2

bigger than one and s

negative is quite remarkable.
For small b2, say b2 < 2, the
second expression is the one
to be used, while for bigger
b2’s the first is more
convenient

s b2 F1(s;1/4, b2) F2(s;1/4, b2)

−1 1 0.4675 0.5547

−1.7 1 −0.5353 −0.5507

−2.1 1 0.3889 0.3929

−3.1 1 0.3621 0.3598

−4.1 1 0.3351 0.2541

−1.7 1.5 −1.4302 −1.4311

−1.7 2 −2.7999 −2.8000

−1.7 4 −13.8399 −13.8399

−1.7 10 −110.798 −110.798

−1.7 20 −525.568 −525.566

−3.7 20 −152203 −152202.9

1.7 20 0.02614 0.025644

An alternative expansion for the function (4.49) is the following

F
(
s;a, b2) =

[b2]∑

n=0

[
(n+ a)2 + b2]−s

·
∞∑

m=0

(−1)m�(m+ s)b2m

m!�(s)

[
ζ(2m+ 2s, a)−

[b2]∑

n=0

(n+ a)−2m−2s

]
,

(4.52)

which is valid for finite b2. It is obtained using binomial expansion and, in particu-
lar, absolute convergence of the binomial series for values of the argument < 1 (for
a detailed explanation, see [126]). Both these expansions are plotted in Figs. 3 and
4, for some convenient values of a and b2 (such as a = 1/2,1/4, b = 0.1,1.5,10,
the ones most employed in physical applications) and for a range of s which also
covers all practical cases. In those figures, we denote by F1 the asymptotic expres-
sion for F given by (4.50), and by F2 the expression given by (4.52). A careful
numerical comparison of the two methods—leading namely to (4.50) and (4.52)—
shows that both give very similar results for values of b2 which are finite and bigger
than one. In this case the best thing to do in practice is to use (4.51) and its deriva-
tives, which is simple enough and provides a good approximation. On the other
hand, when b2 < 1 then that formula ceases to be accurate and the binomial expan-
sion (4.52)—which is then reduced precisely to its most simple possible form—is
the one to be employed. A choice of numerical results, for comparison, is given in
Table 2.

However, in more involved applications (see [126, 127]) different partial deriva-
tives of the function F(s;a, b2) (basically, the first derivatives with respect to s and
a) need to be calculated.
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Fig. 3 (a) Plot of the function F1(s;a, b2) for a = 1/2 and b2 = 10, in the interval s ∈ [−3.5,1.5].
(b) Plot of the function F1(s;a, b2) for a = 1/2 and b2 = 1, in the interval s ∈ [−3.5,1.5]. (c) Plot
of the function F2(s;a, b2) for a = 1/2 and b2 = 0.1, in the interval s ∈ [−3.5,1.5]
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Fig. 4 (a) Plot of the function F1(s;a, b2) for a = 1/4 and b2 = 10, in the interval s ∈ [−3.2,1.2].
(b) Plot of the function F1(s;a, b2) for a = 1/4 and b2 = 1, in the interval s ∈ [−3.2,1.2]. (c) Plot
of the function F2(s;a, b2) for a = 1/4 and b2 = 0.1, in the interval s ∈ [−3.5,1.5]
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The a-derivative is not difficult to obtain

∂

∂a
F
(
s;a, b2) �

∞∑

n=0

(−1)n�(s + n)

n!�(s) b−2s−2nζ̃ (−2n,a)

− 4πs+1b−s+1/2

�(s)

∞∑

n=1

ns+1/2 sin(2πna)Ks−1/2(2πnb),

(4.53)

where

ζ̃ (z, a)≡ ∂

∂a
ζ(z, a), (4.54)

and is the asymptotic expansion for the a-derivative of F in the case b ≥ 1. For the
derivative of the Hurwitz zeta function, the following simple relation holds

ζ̃ (z, a)=−zζ(z+ 1, a). (4.55)

In particular, we have that ζ̃ (0,1/2)=−1, more generally:

ζ̃ (0, a)= ∂

∂a
ζ(0, a)= ∂

∂a

(
1

2
− a

)
=−1. (4.56)

The same result is obtained from (4.55) in the limit s→ 0. On the other hand, using
that

�(n− k)

�(−k)
= (−1)n

k!
(k −m)! , (4.57)

for n≤ k, and that this is zero for n≥ k+1, the formula for the derivative at negative
integer values of the variable s can be simplified. Putting everything together, we
get

∂

∂a
F
(−k;a, b2)∼ 2

k∑

n=1

k!b2k−2n

(n− 1)!(k − n)!ζ(1− 2n,a), (4.58)

for k �= 0, and it is equal to −1 for k = 0.
For the case of small b2, the corresponding asymptotic expansion is easier to

obtain from the alternative expression (4.52) (for explicit uses of this formula, see
[126]). Its partial derivative with respect to a is given by

∂

∂a
F
(
s;a, b2) ∼ −2s

[b2]∑

n=0

[
(n+ a)2 + b2]−s−1

(n+ a)

+ 2
∞∑

m=0

(−1)m+1�(m+ s + 1) b2m

m!�(s)
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Table 3 Numerical values for the derivative of F(s;a, b2) with respect to a at a sample of points.
The first three columns are the results of the calculation with the first of the two series expansions
for F , while the last column has been obtained by using the second expansion

k F ′a(−k;1/4,10) F ′a(−k;1/4,3/2) F ′a(−k;1/4,1) F ′a(−k;1/4,0.1)

0 −1 −1 −1 −1

1 0.02083 0.02083 0.02083 −0.079167

2 0.4148 0.0607 0.0398 −0.007656

3 6.1957 0.1328 0.0574 −0.000561

4 82.254 0.2587 0.0737 −0.000111

5 1023.79 0.4730 0.0890 0.000027

·
[
ζ(2m+ 2s + 1, a)−

[b2]∑

n=0

(n+ a)−2m−2s−1

]
. (4.59)

In the particular case s =−k, k = 0,1,2, . . . , using

ζ(1+ 2ε, a)

�(−k + ε)
= 1

2
(−1)kk! +

(
1

2a
− lna

)
ε +O

(
ε2), (4.60)

we obtain

∂

∂a
F
(−k;a, b2)

∼−b2k + 2k
[b2]∑

n=0

[
(n+ a)2 + b2]k−1

(n+ a)

+ 2
k−1∑

m=0

k!b2m

m!(k −m− 1)!

[
ζ(2m− 2k+ 1, a)

−
[b2]∑

n=0

(n+ a)−2m+2k−1

]
. (4.61)

Table 3 shows the value of the derivative of F(s;a, b2) with respect to a, for sev-
eral values of the parameters, which cover the cases that usually appear in practical
applications.

Concerning the s-derivative, a direct calculation, which makes use of the reflec-
tion formulas (and can be justified with the same arguments of [98]) yields:

∂

∂s
F
(
s;a, b2)

∣∣∣∣
s=−k
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∼ b2k
k∑

m=0

k!b−2m

m!(k −m)!ζ(−2m,a)

·
(

1

k
+ 1

k − 1
+ · · · + 1

k−m+ 1
− lnb2

)

+ b2k
∞∑

m=k+1

(−1)m+kk!(m− k− 1)!
m! b−2mζ(−2m,a)

+
√
π

2
(−1)kk!�(−k − 1/2)b2k+1

+ 2(−π)−kk!bk+1/2
∞∑

n=1

n−k−1/2 cos(2πna)K−k−1/2(2πnb).

(4.62)

Alternatively, we can use the second procedure as described above, (4.52), which
results in

∂

∂s
F
(
s;a, b2)|s=−k

∼−
[b2]∑

n=0

[
(n+ a)2 + b2]k ln

[
(n+ a)2 + b2]

+ 2
[b2]∑

n=0

(n+ a)2k ln(n+ a)

+ 2ζ ′(−2k, a)+
k∑

m=1

k!b2m

m!(k −m)!
(

1

k
+ 1

k − 1
+ · · · + 1

k−m+ 1

)

·
[
ζ(2m− 2k, a)−

[b2]∑

n=0

(n+ a)−2m+2k

]

+
k∑

m=1

k!b2m

m!(k −m)!

[
2ζ ′(2m− 2k, a)+ 2

[b2]∑

n=0

(n+ a)−2m+2k ln(n+ a)

]

+
∞∑

m=k+1

(−1)m+kk!(m− k − 1)!
m! b2m

·
[
ζ(2m− 2k, a)−

[b2]∑

n=0

(n+ a)−2m+2k

]
, (4.63)
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Fig. 5 (a) Plot of the s-derivative of the function F1(s;a, b2) for a = 1/4 and b2 = 10, in the
interval s ∈ [−3.5,1.5]. (b) Plot of the s-derivative of the function F1(s;a, b2) for a = 1/4 and
b2 = 1, in the interval s ∈ [−3.5,1.5]

where, again, we have restricted ourselves to non-positive integer values of the ar-
gument, s =−k, k = 0,1,2,3, . . . . Plots of the s and a derivatives of F for a = 1/4
and several values of b2 are represented in Figs. 5 and 6.

On the other hand, numerical values for the derivative of F(s;a, b2) with respect
to s at several selected points are given in Table 4. The numbers are quite reliable,
in fact, we have checked that use of the explicit expression (4.62) for the partial
derivative differs from direct numerical computation of the derivative by less than
one per mil.
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Fig. 6 (a) Plot of the s-derivative of the function F2(s;a, b2) for a = 1/4 and b2 = 0.1, in the
interval s ∈ [−3.1,1.1]. (b) Plot of the a-derivative of the function F2(s;a, b2) for a = 1/4 and
b2 = 0.1, in the interval s ∈ [−3.1,0.2]

Table 4 Numerical values of the derivative of F(s;a, b2) with respect to s at several selected
points. The first three columns have been calculated by means of the first expression for F , and the
last one by using the second

k Fs
′(−k;1/4,10) Fs

′(−k;1/4,3/2) Fs
′(−k;1/4,1) Fs

′(−k;1/4,0.1)

0 −10.509 −3.904 −1.972 1.05664

1 −71.936 −3.986 −2.2303 −0.03363

2 −586.55 −4.808 −1.621 −0.02111

3 −5105.3 −6.223 −1.451 −0.00035

4 −45974 −8.330 −1.249 −0.00776

5 −422725 −11.411 −1.179 0.02029



Chapter 5
Physical Application: The Casimir Effect

Although some examples and applications of the formulas for analytical continua-
tion have already been given in the preceding chapters, in the present one we shall
properly start with the discussion in length of the applications of the explicit zeta
function regularization method. In this sense, the Casimir effect is introduced, along
with the Casimir–Polder version, and its relation with the van der Waals forces, the
London theory, and the generalization of the Casimir setup in terms of the very far
reaching Lifshitz theory are discussed. Also the “mistery” of the Casimir effect,
its local formulation and the definition of the Casimir energy in terms of the fluc-
tuations of the quantum vacuum. All the cases we are going to consider here will
correspond precisely to the situation to which we have restricted ourselves in this
work, namely the case when the spectrum of the Hamiltonian of our physical sys-
tem is known explicitly. Already this startpoint, that might be considered as rather
particular, gives rise to quite interesting situations from the physical point of view
(and from the mathematical one, too), that are addressed in this chapter.

5.1 Essentials of the Casimir Effect

5.1.1 The Original Casimir Effect

The Casimir effect takes its name after the Dutch prominent physicist H.B.G. Casi-
mir, who in 1948 published a paper in the Proceedings of the Academy of Sciences
of the Netherlands where a rather remarkable property, namely the attraction of two
neutral metallic plates, was predicted theoretically [128, 129]. In all the research
papers and reviews about the Casimir effect that have been published in the last
years [49, 130, 131], this paper by Casimir is taken as the indubious beginning of
a whole branch of research, which aims nowadays at answering profound questions
about the vacuum structure of quantum field theory. However, it is difficult to get
a clear idea from these—on the other hand excellent review papers—of what the
contribution of Casimir was precisely, or of what was the specific physical context
in which his paper appeared. Some authors go even further and attribute to Casimir
deep ideas about quantum field theory that by no means could he have had at this
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time. The interest of the subject, which is reflected by the increasing number of
papers which are dealing with it, deserves a proper clarification of several points.

To start with, it is fair to say that the 1948 paper by Casimir attracted com-
paratively small attention during the following two or three decades. For instance,
another paper by Casimir and Polder [132], which was published in Physical Re-
view also in 1948, got by far much more citations from experimental and theoretical
colleagues. This second paper is nowadays considered a mere addition or an initial
stimulus to the first one, viewed now as the fundamental paper about the Casimir
effect. Maybe part of this puzzle can be explained by the importance and availabil-
ity of the Physical Review (in comparison with the aforementioned Dutch journal).
However, even in contributions where the two papers are mentioned, the one by
Casimir alone deserves no special comment, i.e. in no way was it singularized with
respect to the other one coauthored by Polder.

5.1.2 Connection with the van der Waals Forces and the London
Theory

A second point to be remarked is the following [133]. Nowadays, when dealing with
the Casimir effect itself, a particular emphasis is usually put in the spectacularity of
the same, that is, in the fact that two non-charged plates do attract themselves in
the vacuum. One needs to understand that this is actually much more mysterious
today that it was in 1948. At that time, 67 years after the publication of the work of
D. van der Waals [134]—where his famous weak attractive forces between neutral
molecules were introduced—and already 18 years after de formulation by F. London
of his celebrated theory [135]—which gave a precise (for that time) explanation of
the nature and strength of the van der Waals forces as due to the interaction of the
fluctuating electric dipole moments of the neutral molecules—there was nothing
specially mysterious about two neutral bodies attracting each other. Van der Waals
forces play a very important role in biology and in the medical sciences. They are
particularly significant in surface phenomena, such as adhesion, colloidal stability
and foam formation. One could dare to say that they are the most important physical
forces controlling living beings and life processes. Three different classes of van der
Waals forces can in principle be distinguished: orientation, induction, and dispersion
forces [130]. The ones involved in the attraction of the plates correspond in this
classification to the third group.

5.1.3 The Specific Contribution of Casimir and Polder: Retarded
van der Waals Forces

The works of Casimir and Casimir and Polder, addressed rather an (of course im-
portant but) more technical point: the fact that the polarization of the neighboring
molecules (or atoms) induced by a given molecule (atom) is delayed as a conse-
quence of the finiteness of the velocity of light. So these forces could be termed as
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long-range retarded dispersion van der Waals forces. This was clearly noticed in the
experiments by the fact that when the molecules were separated far enough (always
in the range of the microns, so that the effect could make any sense), the power law
corresponding to the attractive force between two given molecules changed to the
inverse eighth power,

F = C2

r8
(5.1)

(C2 being a constant and r the distance between the two molecules), compared with
the inverse seventh power obtained in London’s theory:

F = C1

r7 , (5.2)

typical of the van der Waals forces for very close molecules (which did not feel so
much the retardation effect due to the finite velocity of interaction). In particular, it
has become famous the expression obtained by Casimir and Polder for the potential
energy U corresponding to two atoms separated by a distance r and whose static
polarizabilities are α1 and α2, respectively:

U =−23�c

4π

α1α2

r7 . (5.3)

It is now (and was then) a matter of an elementary exercise on surface integration
to obtain the force per unit surface (that is, the pressure) which attracts two neutral,
parallel, metallic, perfectly conducting plates of infinite extension in the vacuum,
under the hypothesis that they are formed by a rarefied distribution of neutral, polar-
izable atoms. However, Casimir used a novel technique: that of calculating the effect
due to the zero-point energy of the electromagnetic field. Simple dimensional rea-
sons show immediately that the just mentioned power laws give rise, respectively,
to an inverse third power, if the plates are very close (distance say less or equal than
0.01 micron, i.e. 100 Å, which is the penetration depth of electromagnetic waves in
the metal),

P = A

6πd3
, (5.4)

and to an inverse fourth power, if they are more separated (say somewhat above 0.02
microns)

P = B

d4
. (5.5)

This last case was the one explicitly calculated by Casimir in his seminal paper
[128, 129] with the result:

P = 0.013

d4

dynes

cm2
, (5.6)

where the distance in this expression has to be given in microns, the basic unit length
for this kind of calculations, as mentioned already. The calculations can be easily
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extended to different geometrical configurations. For instance, for a hemisphere of
radius R held at distance d from an infinite plane, the attractive force when they are
very close was given by London’s theory as

F = AR

6d2
. (5.7)

On the other hand, when they are a bit more separated, the retarded interaction
changed this result to

F = 2πBR

3d3
. (5.8)

The value obtained by Casimir and Polder for the potential energy corresponding
to a particle of electric polarizability α, inside a cavity of a perfectly conducting
material and separated a distance r from the flat wall was

U =−3�c

8π

α

r4
. (5.9)

5.1.4 The Lifshitz Theory

E.M. Lifshitz, in a no less important paper [136] than those previously referred to
(submitted to the Russian JETP in 1954 and whose English translation was pub-
lished in 1956), developed a different theory in order to deal with the two major dif-
ficulties of London’s theory, namely the already mentioned one, that it did not take
into account the finite velocity of propagation of the electromagnetic interaction
(this had been already taken care of by Casimir and Polder, see also the generaliza-
tion of Ref. [137]), and a second one, namely the fact that the van der Waals force is
not additive. This prevents to treat the problem of extensive bodies in a proper way
as composed of elementary constituents (atoms or molecules), and to derive the
force between macroscopic bodies by integration of the forces which exist between
the elementary constituents—unless one makes the hypothesis (advanced before) of
considering a very dilute distribution of constituents in the extensive bodies, but this
is an unrealistic assumption.

Lifshitz’s theory started from the opposite direction, treating matter as a con-
tinuum with a well-defined, frequency-dependent dielectric susceptibility. It was a
completely closed theory: it could deal with any kind of material bodies, it explained
in a precise and continuous way the transition from one power-law to the other (due
to the retardation effect) when the distance is increased, and it contained the formu-
las of London for the elementary constituents of matter, and of Casimir and Polder
for the perfectly conducting, neutral metallic plates, as limiting and particular cases,
respectively, what was proven by Dzyaloshinskii, Lifshitz and Pitaevskii in 1961
[138]. There the picture of the interacting bodies in Lifshitz’s theory was that of
two media filling half-spaces with plane parallel boundaries separated from one an-
other by a certain distance d . Just as for the case of the random force introduced in
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the theory of Brownian motion, a ‘random’ field was introduced into the Maxwell
equations of motion. In the case of large (that is, not so small) separations, Lifshitz’s
formula for the force per unit area between two parallel plates separated a distance
d one from the other reduced to the following. For plates of an infinitely conducting
metal:

P = �cπ2

240d4
; (5.10)

for two identical dielectrics of dielectric constant ε0:

P = �cπ2

240d4

(
ε0 − 1

ε0 + 1

)2

ϕ(ε0), (5.11)

where ϕ(ε0) is a function defined by the theory and which has the following behav-
ior for ε0 →∞:

ϕ(ε0)� 1− 1.11√
ε0

ln
ε0

7.6
; (5.12)

for a metal (infinitely conducting, ε =∞) and a dielectric of constant ε0:

P = �cπ2

240d4

ε0 − 1

ε0 + 1
ϕ(ε0); (5.13)

also, for two individual atoms belonging to materials of dielectric constants ε10 and
ε20, respectively, Lifshitz obtained the attractive force between them as a limiting
case of the formula for continuous media, assuming that both media were suffi-
ciently rarefied:

F = 23�c

640π2d4
(ε10 − 1)(ε20 − 1), (5.14)

from which the preceding formula of Casimir and Polder por the potential energy
follows immediately.

A most important point of this theory was the fact that the general equations de-
rived by Lifshitz to calculate the dispersion force requires only information about
the dielectric properties of the bodies (in particular, the dielectric susceptibility of
the bodies as a function of the frequency), and this information can, in principle,
be obtained from independent spectroscopic measurements. Thus Lifshitz’s theory
could be applied by Parsegian and Ninham (in 1970) to a detailed study of the dis-
persion forces between biological membranes [139–141]. A very original contri-
bution of the theory was also to consider the effect of temperature on the force of
interaction. However, this part of Lifshitz’s theory disagreed with subsequent (inde-
pendent) calculations by Sauer [142], Mehra [143], and Brown and MacLay [41],
who agreed among themselves and said that Lifshitz’s results concerning this point
were in error.

To make the story short, starting with Lamoreaux’s experiment [144] this field
has undergone a complete revolution and this is today considered to be the first
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actual verification of the Casimir effect. The much higher accuracy of the new ex-
periments with respect to the older ones (described in the first edition) seem to make
these last irrelevant now. Updated sources of information are the website of the ESF
CASIMIR project and James F. Babb’s webpage [145].

5.2 The Casimir Effect in Quantum Field Theory

5.2.1 The Local Formulation of the Casimir Effect

The paper by L.S. Brown and G.J. MacLay, published 21 years after the work of
Casimir, was specially significant from the theoretical point of view, a kind of mile-
stone in the road leading to the modern, quantum field theory interpretation of the
Casimir effect. For the first time, it contains the local formulation of this effect in
terms of the vacuum energy density and of the vacuum pressure. These authors de-
rived the following explicit expression for the regularized energy-momentum (or
stress-energy) tensor

�μν =− π2

180d4

(
1

4
gμν + zμzν

)
, (5.15)

which was computed with the aid of an image-source construction of the corre-
sponding Green’s function. Here zμ denotes a space-like four-vector orthogonal to
the parallel plates, and d (as before) its separation.

Also for the first time, and although not explicitly stated, the calculations in
[17] involved the zeta function procedure, in particular, Riemann and Epstein zeta
functions. This method has evolved, starting from the subsequent seminal works
of J.S. Dowker and R. Critchley (of 1976, Ref. [23] and of S. Hawking (of 1977,
Ref. [24])—and incorporating a rather long list of contributions from different au-
thors [10, 11, 14]—into a simple and mathematically elegant way of defining reg-
ularized vacuum energy densities in situations that nowadays very much generalize
the original case considered by Casimir. Nowadays the zeta function regularization
procedure pervades different aspects of quantum field theory (see in Chap. 1).

5.2.2 The Mystery of the Casimir Effect

Before introducing the concrete expressions which leads to the calculation of the
Casimir effect from the point of view of the modern quantum field theory let us say
a few words about an intriguing question that was posed before, namely, why is the
Casimir effect less understood now than it was half a century ago? Why did it be-
come a subject of more and more interest with the passage of the decades? Though
the (tentative) answer to these questions will become more clear after the discussion
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below and once the actual calculations are performed, we can already point out in
advance to the basic problem: unlike the van der Waals forces, which are always at-
tractive, the ones appearing in the Casimir effect can be either attractive or repulsive.
In the most simple case, the modern calculations about the Casimir effect indicate
without doubt that if instead of two plates we considered the configuration formed
by the two halves of a hollow sphere of a neutral perfectly conducting metallic ma-
terial, if we would bring the two halves together in order to form a closed sphere,
they would suffer a repulsive pressure. The sign of the Casimir force (and that of
the vacuum energy density) is positive or negative depending crucially on the nature
of the field (electromagnetic, i.e., the only one considered till now, scalar, etc.) and,
for a given field, on the dimension of spacetime (usually four, but can be arbitrar-
ily generalized), and, once the dimension fixed, on the particular geometry of the
boundary and on the boundary conditions imposed on the field. Here, we are always
talking about a flat spacetime but, of course, curved manifolds with different BC’s
come often into play.

One speaks nowadays of different (generalized) Casimir effects, as due to:

1. The nature of the background field in the vacuum.
2. The geometry of the boundary.
3. The boundary conditions.
4. The possible curvature of spacetime.

Summing up, already by closing in a trivial way the configuration considered by
Casimir we obtain a repulsive pressure, which can in no way be explained as a
kind of van der Waals-like force [146, 147]. On the other hand, for the multiple
generalizations of the Casimir effect (to different fields, boundaries, dimensions,
and spacetimes), the dependence of the sign of the force on them is anything but
trivial. So is the mystery of the Casimir force born.

5.2.3 The Concept of the Vacuum Energy

It has been this generalization of the concept of the Casimir effect to incorporate
all kind of contributions to the vacuum energy density in the situations described
above what has rendered this concept so popular in quantum field theory . For an
excellent review, much more detailed than the present résumé the lector is addressed
to the report by Plunien, Müller and Greiner [130], which contains a detailed expo-
sition of the developments in this field and, on its turn, 156 basic references. In
particular, the Casimir effect can give rise to contributions to the surface tension
of a curved conductor, can have cosmological consequences due to deviations from
the Minkowskian geometry of spacetime, can lead to calculations of the self-energy
for a scalar field confined to a cavity, or even to calculations in the bag model as a
confining mechanism for quarks and gluons in QCD. It also gives the response of
the vacuum to the presence of external fields. In this context Ambjørn and Wolfram
[148] have discussed the vacuum energy of a charged scalar field in the presence of
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an external electric field. Finally, deviations form ideal conditions have also been
the object of investigation, namely, non-zero temperature, non-infinitely conducting
metals, plates of non-zero depth, etc. (for a sample of books, see [149–154].

Let us now describe the conceptual revolution brought about by the appearance
of the Casimir force. As already remarked, at the beginning there was no difficulty
in explaining the Casimir effect—and classical generalizations of it—by means of
the Lifshitz’s theory of the van der Waals forces. However, modern quantum field
theory offers an alternative, general, more basic explanation from first principles
of the Casimir force: it is due to a change of the vacuum energy, i.e., to a devi-
ation of the zero-point energy caused by the presence of external constraints. In
other words, Casimir’s work stimulated investigations about the zero-point energy
problem in quantum field theory which resulted in what is now commonly called
the ‘Casimir concept of the vacuum energy’: the physical vacuum energy of a quan-
tized field must be calculated with respect to its interaction with external constraints,
and is thus defined as the difference between the zero-point energy corresponding
to the vacuum configuration with constraints and to the free vacuum configuration,
respectively. This formal definition must be supplemented, in general, with a regu-
larization prescription in order to obtain a finite final expression. In this way a pre-
cise field quantization scheme starting from first principles is constructed (at least
theoretically, in practice things are not so easy).

A first application of this concept of vacuum energy is an alternative calcula-
tion of the Casimir effect, which gives exactly the same result as the one obtained
through its interpretation as due to retarded van der Waals forces. Actually, it was
Casimir itself who showed for the first time that the zero-point energy of the elec-
tromagnetic field could successfully explain the van der Waals attraction. But the
concept of vacuum (or Casimir) energy goes much further than his simple exam-
ple and leads to results which in no way can be explained as due to van der Waals
forces, such as the cases of repulsive pressure already mentioned. In the modern
Casimir theory these forces arise and cannot be understood in the framework of
conventional field theory, in which the zero-point energy is simply neglected. Two
general methods for evaluation of the Casimir energy can be distinguished:

1. Summation of the series of energy eigenvalues corresponding to the zero-point
field modes.

2. Determination of the vacuum stress-energy tensor in terms of local Green func-
tions, obtained by constrained propagation of virtual field quanta.

Both methods should lead to the same result, but this is problematic because of the
infinities involved and of the different regularization schemes used. Aside from this,
specific (technical) difficulties appear in both cases (see the recent reference [155]).
In the first, one is led (in principle) to calculate the whole energy spectrum for the
free and for the constrained field modes, and this can only be achieved easily for
simple geometries. In the second case, one has to determine the exact Green func-
tions describing propagation in the presence of external boundaries. This is done by
the usual image source construction, which is again easy only for simple geometries,
or perturbatively by multiscattering expansions in the case of general constraints.
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5.2.4 The Explicit, Regularized Definition of the Casimir Energy

For what has been said, it is now clear that a fundamental question connected with
the Casimir energy is the determination of the ‘true’ field Hamiltonian. In a model
without boundary conditions the Hamiltonian eigenvalue associated with the ground
state or vacuum (the zero-point energy) is always discarded because, in spite of be-
ing infinite, it can be reabsorbed in a suitable redefinition of the origin of energies.
The most popular way of putting such an adjustment into practice is normal order-
ing. Now, a most important implication of the concept of vacuum energy steaming
from the work of Casimir is the fact that the vacuum energy in quantum field theory
cannot be defined by means of normal ordering, since this procedure cannot possi-
bly take into account the presence of arbitrary boundaries. The canonical formalism
of quantum field theory tells us that, for a scalar field of mass m, the Hamiltonian
operator takes the form

Ĥ = 1

2

∑

k

ωk

(
a

†
kak + aka

†
k

)

=
∑

k

ωk

(
nk − 1

2

)

=
∑

k

ωk

(
a

†
kak +

1

2

)
, (5.16)

where ω2
k = k2 +m2 are the eigenvalues of the Klein–Gordon operator, a†

k and ak
satisfy the canonical commutation relations for bosonic fields

[
ak, a

†
k′
]= δkk′ , [ak, ak′ ] =

[
a

†
k , a

†
k′
]= 0, (5.17)

and nk = aka
†
k is the number operator, whose eigenvalues are non-negative integers.

As the vacuum state |0〉 is defined by

ak|0〉 = 0, (5.18)

when computing the vacuum expectation value

E0 ≡ 〈0|Ĥ |0〉 (5.19)

one gets a half of the sum over all the eigenfrequencies:

E0 = 1

2

∑

k

ωk, (5.20)
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which is in general a divergent quantity. When instead of a bosonic field one con-
siders a fermionic one the situation is similar. Only some signs are reversed, due to
the presence of anticommutators in the place of the commutators above.6

5.2.5 Definition of the Casimir Energy Density and Its Relation
with the Vacuum Energy

As we have just seen the Casimir energy is given by the expression (for the con-
venience of the reader, in this subsection we shall write everywhere the �’s and c’s
explicitly)

ECas = �

2

∑

n

ωn. (5.21)

In four-dimensional ultrastatic spacetime, the four-metric can be written as g4 =
−(dx0)

2+ g3. Correspondingly, we have D4 =−d2
0 +D3 and ωn = c

√
λn(D3), λn

being the eigenvalues of D3. Then

Ereg(ε)= 1

2
�cμ

∑

n

(
λn

μ2

) 1
2−ε = 1

2
�cμζD3

(
−1

2
+ ε

)
, (5.22)

where

ζD3(s)=
(4π)−d/2

�(s)

[ ∞∑

n=0

cn

s + n− d/2
+ f (s)

]
, (5.23)

being f (s) analytic and cn =
∫
�
an +

∫
∂�

bn (a volume and a surface integrals).
Ereg(ε) is not analytic but meromorphic, with a pole (for d = 3) at ε = 0, of residue:
−�cμc2(d = 3)/(32π2). The regulator can be suppressed only if c2 = 0, i.e. for flat
space with thin boundaries and for massless particles. If boundaries are plates (of
surface S and separation L), then

ECas(L,S)=−�cS

L3

π2

12
ζR(−3), (5.24)

where ζR = ζ is the ordinary Riemann zeta function.
The pole can be absorbed into the bare action (term proportional to c2), but there

is no unique way to do this. The most economical one is through the principal part

6One should note that in the standard situations of QFT when no coupling of the vacuum diagrams
is present, one can get rid of this term by a simple determination of the origin of energies using,
e.g., the normal ordering prescription. An absolutely different case is when general relativity is
considered in a quantum context, provided quantum vacuum fluctuations are taken to be a ‘legal’
form of energy (see later).
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prescription (PP ). This minimal subtraction yields

ECas ≡ lim
ε→0

1

2

[
Ereg(+ε)+Ereg(−ε)

]= 1

2
�cμPPζD3(−1/2), (5.25)

and is valid for simple poles [42]. To be mentioned is that: (i) μ can introduce
a second (finite) ambiguity; (ii) it can be proven that the difference between the
Casimir energy and the effective action to one loop is finite, independent of μ and
proportional to the term c2, of geometrical nature.

The one-loop effective action is given by

Seff = 1

2
ln detD4, (5.26)

where D4 = ∂2
0 +D3 (Euclidean space). Then

ζD4(s)=
μcT

2
√
π

�(s − 1/2)

�(s)
ζD3

(
s − 1

2

)
, (5.27)

with T = ∫ dx/c, the age of the universe. One obtains the following relation be-
tween Eeff and ECas

Eeff =ECas + 1

2
�cμ

[
ψ(1)−ψ

(
−1

2

)]
c2

(4π)2
. (5.28)

Here μc2 is independent of μ and ψ(s)= �′(s)/�(s) is the digamma function.
Again, if c2 = 0 then Eeff = ECas. On its turn, the vacuum energy is usually

defined as

Evac =
∫
〈0|T00|0〉, (5.29)

where Tμν is the energy-momentum tensor, and is different (in general) both from

Eeff and from ECas. If T00 = T
free
00 , then Evac =ECas. Yet another definition of Evac

is the following. Considering the total action (not just the action to one-loop), it is
natural to define

Et
vac =

�eff

T
, (5.30)

what yields yet a different notion of vacuum energy. Summing up, we see that there
are at least up to four different definitions of the energy corresponding to the vac-
uum, although all of them are closely related.

5.3 A Very Simple Computation of the Casimir Effect

As has been explained before, there are several (in the end equivalent) methods for
obtaining the vacuum energy density corresponding to the Casimir effect. In this
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section, a detailed, pedagogical account will be given of the one which is based
on the zeta-function regularization procedure. It will be shown how it yields (in
many instances) exact results, without ever having to resort to the usual issue of
infinity cancellations. This simple way of dealing—by analytic continuation—with
the series of eigenmodes, can be made into a closed procedure owing to the theorem
of zeta function regularization which deals with the commutation of the order of
the summations of infinite series (see Chap. 2). The cases of a scalar field with
Dirichlet, Neumann and periodic boundary conditions, and of an electromagnetic
field between perfectly conducting plates—intimately related from a mathematical
point of view—will be here investigated.

Next year we will celebrate the 65th anniversary of the publication by H.B.G. Ca-
simir of the striking effect that now bears his name. As admitted by many physicists,
it is (one of) the most beautiful and simple manifestation(s) of the striking vacuum
structure of quantum field theory. It was shown first by Casimir—and checked ex-
perimentally later—that the vacuum energy density between two neutral, parallel,
perfectly conducting plates of infinite extension is different from zero, when the
vacuum energy in the absence of the plates is put equal to zero. In other words,
the effect is simply due to the influence of the boundary conditions imposed on the
vacuum configuration. With a different numerical value in each case, the effect also
takes place when one imposes periodic, Dirichlet or Neumann boundary conditions
on a Klein–Gordon field [148]. We will later specify the relations between these
different situations.

In the case we have referred to (a single pair of parallel plates), the Casimir
effect reveals itself in the form of an attractive force per unit area that tends to bring
the plates together. However, it has been realized [130, 146–148] that by changing
the boundary conditions, the Casimir force can also be made repulsive, the most
simple cases being those of a sphere and of a closed box. However, these last are
only theoretical results. They could not be checked experimentally till now, due in
essence to the considerable difficulties involved in a material realization of this kind
of boundary conditions.

Certainly, there are several (in the end equivalent) ways of obtaining the vac-
uum energy density corresponding to the Casimir effect [130]. The expression to be
regularized is, as we know already, the (multiple) series of eigenvalues

E0 = 1

2

∑

n

ωn. (5.31)

In principle, our procedure will be appropriate only in the case when all the n are
known explicitly. But it is to be remarked that, as explained in the preceding chap-
ters, even then the zeta-function regularization has been of limited use till recently,
owing to the impossibility (in general) of performing a naive commutation of the
order of the summations of the infinite series involved—and which do not happen
to be absolutely convergent [102, 103]. It has been the correct calculation of the ad-
ditional terms which appear when commuting these series—which was carried out
in [48] for the first time—that began to transform the zeta-function regularization
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procedure into a powerful method which can deal directly with the infinite sums
(5.31), as we shall here see.

In the first subsection the case of a massless scalar field in S
1 ×R

d and T
2×R

2

spacetimes will be considered. The first is the most simple case while the second
provides an example of a more complicated situation which also yields an exact
result. Then the more general case of a massless scalar field with Dirichlet boundary
conditions imposed on an arbitrary set of perpendicular pairs of parallel walls will be
studied. Use is made of the results obtained before on the theorem of zeta-function
regularization. Finally, in a last subsection we show how the results are immediately
extensible to different physical situations, in particular to a massless scalar field with
periodic or Neumann boundary conditions and to the original case of Casimir of an
electromagnetic field in the interior of a set of perfectly conducting plates.

5.3.1 The Casimir Effect for a Free Massless Scalar Field
in S

1 ×R
d and in T

2 ×R
2 Spacetimes

1. Spacetime S
1 ×R

d , d = 1,2,3, . . .

To start with, let us consider the case of a massless scalar field in R
d+1 spacetime,

d = 1,2,3, . . . , satisfying periodic boundary conditions in only one of the space
variables, i.e.

ϕ(x1 +L,x2, . . . , xd, t)= ϕ(x1, x2, . . . , xd, t). (5.32)

The field satisfies the free Klein–Gordon equation

�ϕ(�x, t)= 0. (5.33)

Let us call simply x the direction x1, and �xT the rest (if any) of the spatial directions,
�xT = (x2, . . . , xd) [148]. The eigenmodes of the field are

ϕ(x, �xT , t) = exp

(
2πin

x

L

)
exp(i�kT �xT ) exp(−iωnt),

ωn =
√
�k2
T +

(
2πn

L

)2

, n ∈ Z.

(5.34)

By directly adding together the contributions of all the eigenmodes, the total energy
density (5.31) becomes

E0 = 1

(2π)d−12L

∫

Rd−1
d�kT

∞∑

n=−∞
ωn. (5.35)
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The zeta-function regularization procedure begins with the replacement of the
exponent 1/2 in ωn with −s/2:

E0(s)= 1

(2π)d−12L

2π(d−1)/2

�((d − 1)/2)

∫ ∞

0
dk kd−2

∞∑

n=−∞

[
k2 +

(
2πn

L

)2]−s/2

,

(5.36)
where s is such that Re(s) > 0 is big enough in order that the k-integration provides
a finite result

E0(s)= 2−sπ(d−1)/2−s

Ld−s−2

�((s − d + 1)/2)

�(s/2)

∞∑

n=1

nd−s+1. (5.37)

The analytic continuation from these values of s to the one, s = −1, we are inter-
ested in, is provided by the Riemann zeta function (Chap. 1). Using then the reflec-
tion formula (analytical continuation), we obtain the following closed expression
for the zeta-function-regularized vacuum energy density

E =−�((d + 1)/2)ζ(d + 1)

(
√
πL)d+1

. (5.38)

In particular, for d = 1,2,3 we obtain, respectively,

E(d = 1)=− π

6L2
, E(d = 2)=− ζ(3)

2πL3
, E(d = 3)=− π2

90L4
. (5.39)

2. Spacetime T
2 ×R

2

In this case the field satisfies periodic boundary conditions in two of the spatial
variables

ϕ(x1 +L,x2 +L2, x3, t)= ϕ(x1, x2, x3, t). (5.40)

The formal vacuum energy density is now

E0 = 1

4πL1L2

∫ ∞

−∞
dk

∞∑

n1,n2=−∞

[
k2 +

(
2πn1

L1

)2

+
(

2πn2

L2

)2]1/2

, (5.41)

where L1 and L2 are the lengths of the circumferences of the torus T2. As before,
let us consider

E0(s)= 1

2πL1L2

∫ ∞

0
dk

∞∑

n1,n2=−∞

[
k2 +

(
2πn1

L1

)2

+
(

2πn2

L2

)2]−s/2

, (5.42)

for s such that Re(s) > 0 is big enough so that the k-integration be convergent:

E0(s)= 2−s−1π1/2−s

L1L2

�((s − 1)/2)

�(s/2)

∞∑

n1,n2=−∞

[(
n1

L1

)2

+
(
n2

L2

)2](1−s)/2

. (5.43)
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The analytic continuation of this double series to s =−1 is readily done (see point 2
of the following section). Using Jacobi’s identity twice (see Chap. 2), one obtains
[48, 51] one obtains

E2(s;a1, a2) = −1

2

(
a−s1 + a−s2

)
ζ(2s)

+
√
π

2

a1−s
1 + a1−s

2√
a1a2

�(s − 1/2)

�(s)
ζ(2s − 1)

+ π2s−1

√
a1a2

�(1− s)

�(s)
E2

(
1− s; 1

a1
,

1

a2

)
, a1, a2 > 0, (5.44)

or, explicitly, in terms of the modified Bessel function Kν

E2(s;a1, a2) = −1

2
a−s2 ζ(2s)+ 1

2
a

1/2−s
2

(
π

a1

)1/2
�(s − 1/2)

�(s)
ζ(2s − 1)

+ 2π2

�(s)
a
−s/2−1/4
1 a

−s/2+1/4
2

·
∞∑

n1,n2=1

n
s−1/2
1 n

−s+1/2
2 Ks−1/2(2π

√
a2/a1n1n2). (5.45)

In order to simplify things, let us restrict ourselves to the particular case L1 = L2 ≡
L. We get [17, 105–107]

∞∑

n1,n2=−∞

(
n2

1 + n2
2

)(1−s)/2 = 4ζ

(
s − 1

2

)
β

(
s − 1

2

)
, (5.46)

where the beta function β(s) is defined by [100]

β(s)=
∞∑

n=0

(−1)n(2n+ 1)−s . (5.47)

Now, making use of the reflection formula for this beta function

β(s)=
(
π

2

)s−1

cos

(
πs

2

)
�(1− s)β(1− s), (5.48)

for the regularized Casimir energy density, we obtain in the present case

E =−β(2)

3L4
=−0.30532186L−4. (5.49)

Notice that this is, again, a closed result, in terms of a particular value of the beta
function.
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Before proceeding with the generalization to T
2 × R

d−1, d = 2,3,4, . . . , we
shall consider first the case of Dirichlet boundary conditions. The reason is that,
being then the spectrum of eigenvalues n limited to n = 1,2,3, . . . , this is a more
immediate situation from the point of view of zeta-function regularization. The for-
mulas corresponding to the periodic case will then be obtained through simple com-
binatorics.

5.3.2 The Case of a Massless Scalar Field Between p
Perpendicular Pairs of Parallel Walls with Dirichlet
Boundary Conditions

The walls are, in mathematical terms, (d−1)-dimensional hyperplanes, of equations

x1 = 0, x1 = L1; x2 = 0, x2 = L2; . . . ; xp = 0, xp = Lp. (5.50)

The Dirichlet boundary conditions consist in the annihilation of the field at each of
these boundaries Wj , j = 1, . . . , p

ϕ(�x, t)= 0, �x ∈Wj, j = 1, . . . , p. (5.51)

The field modes are now

ϕ(x1, . . . , xp, �xT , t) =
p∏

j=1

sin

(
πnjxj

Lj

)
exp(i�kT �xT ) exp(−iωnt),

ωn =
√√√√�k2

T +
p∑

j=1

(
πnj

Lj

)2

, nj = 1,2,3, . . . ; j = 1, . . . , p,

(5.52)
and the (formal) unregularized vacuum energy density is given by

ED
0 =

(2π)p−d

2
∏p

j=1 Lj

∫

Rd−p
d�kT

∞∑

n1,...,np=1

[
�k2
T +

p∑

j=1

(
πnj

Lj

)2
]1/2

. (5.53)

Define as before ((5.36) and (5.42))

ED
0 (s) = (2π)p−d

2
∏p

j=1 Lj

2π(d−p)/2

�((d − p)/2)

∫ ∞

0
dk kd−p−1

·
∞∑

n1,...,np=1

[
k2 +

p∑

j=1

(
πnj

Lj

)2
]−s/2

, (5.54)
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for s with Re(s) > 0 big enough in order to obtain a convergent integral in k. After
calculating it, we get

ED
0 (s)= 2p−d−1π(d−p)/2−s

∏p

j=1 Lj

�((s − d + p)/2)

�(s/2)

∞∑

n1,...,np=1

[
p∑

j=1

(
nj

Lj

)2
](d−s−p)/2

.

(5.55)

1. Particular Case p = d − 1

Let us first consider the particular case p = d− 1 (of which case 2 of the preced-
ing subsection is an example). We obtain

ED
0 (s)= π1/2−s

4
∏p

j=1 Lj

�((s − 1)/2)

�(s/2)

∞∑

n1,...,np=1

[
p∑

j=1

(
nj

Lj

)2
](1−s)/2

. (5.56)

Corresponding to that in Sect. 5.2, let us first consider the case d = 3,p = 2. We
shall relate the double sum here with the one in (5.43) and (5.46), namely (for L1 =
L2 ≡ L)

�1

(
1− s

2

)
≡

∞∑

n1,n2=−∞

(
n2

1 + n2
2

)(1−s)/2 = 4ζ(s − 1)+ 4
∞∑

n1,n2=1

(
n2

1 + n2
2

)(1−s)/2
.

(5.57)
Calling the last series �2(s), for its analytic continuation to s =−1 we obtain

�2(−1)=
∞∑

n1,n2=1

(
n2

1 + n2
2

)= 1

2
�1(−1)− ζ(−2)= ζ(−1)β(−1). (5.58)

Finally, use of the reflection formulas yields for this case:

ED(d = 3,p = 2)= 1

16L4

[
ζ(3)

π
− β(2)

3

]
= 0.00483155L−4. (5.59)

At this point, in order to express (as in (5.57), (5.58)) the multiple sum (5.56) in
terms of the zeta function, for arbitrary dimension d , we shall make use of the re-
sults on the commutation of the order of the summations of infinite, non-absolutely
convergent series (the zeta-function regularization theorem of Chap. 2). They are
equally valid in the general case: d ≥ p arbitrary, so let us turn to the next point
where we consider the general situation.

2. Zeta-Function Regularization of Multiple Series

Those we are interested in here are always of the form

Ep(s;a1, . . . , ap)≡
∞∑

n1,...,np=1

(
a1n

2
1 + · · · + apn

2
p

)−s
. (5.60)
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We now recall the zeta-function regularization theorem, which, in the quadratic case,
just renders the Jacobi identity for the theta function θ3 (for many more details on
this point see Chap. 2). As a consequence of the theorem, in the general case, we
get the following recurrence (that extends the previous on valid for p = 2):

Ep(s;a1, . . . , ap) = −1

2
Ep−1(s;a2, . . . , ap)

+ 1

2

√
π

a1

�(s − 1/2)

�(s)
Ep−1(s − 1/2;a2, . . . , ap)

+ πs

�(s)
a
−s/2
1

∞∑

k=0

a
k/2
1

k!(16π)k

k∏

j=1

[
(2s − 1)2 − (2j − 1)2]

·
∞∑

n1,...,np=1

ns−k−1
1

(
a2n

2
2 + · · · + apn

2
p

)−(s+k)/2

· exp

[
− 2π√

a1
n1
(
a2n

2
2 + · · · + apn

2
p

)1/2
]
, a1, . . . , ap > 0.

(5.61)

These expressions, (5.45) and (5.61), provide the analytic continuation of (5.60)
to all values of s. We must not be confused by the imposing aspect of the last term
in (5.45) and (5.61). This term converges very quickly and amounts only to a small
correction to be added to the first two terms, in each case. In a numerical calculation
up to, say, 6 or 8 decimal places, only the first couple of summands of the last series
need to be taken into account (see Chap. 4 for precise details). Thus, in practice,
(5.61) can be viewed as a recurrent equation with a correction piece � (the last term)
which is very small and can be estimated numerically with good approximation.

3. General Case with Dirichlet Boundary Conditions

Bringing together the results obtained here, it is now not difficult to write the
general formulas for the Casimir energy density of a scalar field in R

d+1 spacetime,
with Dirichlet boundary conditions imposed on p perpendicular pairs of parallel
walls. We need only to introduce (5.61) or (5.45) into (5.55) and set s =−1, that is

ED(d,p)=−π(d−p+1)/2

2d−p+2

�((p− d − 1)/2)
∏p

j=1 Lj

Ep

(
(p− d − 1)/2;L−2

1 , . . . ,L−2
p

)
.

(5.62)
with Ep given in (5.61), (5.45).

In the particular case of point 1, p = d−1, the k-series in (5.61) actually reduces
to the first two terms only, i.e. k = 0 and k = 1. The recurrence (5.61) simplifies to

Ep

(−1;L−2
1 , . . . ,L−2

p

)
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=−1

2
Ep−1

(−1;L−2
2 , . . . ,L−2

p

)

+ 2

3

πL1

�(−1)
Ep−1

(−3/2;L−2
2 , . . . ,L−2

p

)

+ 1

πL1�(−1)

∞∑

n1,...,np=1

n−2
1

{
1

2πL1n1
+
[(

n2

L2

)2

+ · · · +
(
np

Lp

)2]1/2}

· exp

{
−2πL1n1

[(
n2

L2

)2

+ · · · +
(
np

Lp

)2]1/2}
,

L1 ≥ L2 ≥ · · · ≥ Lp. (5.63)

Notice that Ep(−1;a1, . . . , ap)= 0, a1, . . . , ap > 0. This is clear from (5.63), due
to the presence of the �(−1) factor in the denominators. However, in (5.62), for
p = d − 1 this factor just compensates the �((p− d − 1)/2) one in the numerator,
thus providing a finite (regularized) result. The same is true in general for the cases
when p = d − (2h+ 1), h= 0,1,2, . . . . One has

Ep(−h− 1;a1, . . . , ap)= 0, a1, . . . , ap > 0; h= 0,1,2, . . . , (5.64)

owing to a factor 1/�(−h− 1) which compensates in (5.62), being the final result
finite and non-zero.

On the other hand, for p = d−2h, h= 0,1,2, . . . , this situation only takes place
at the second term of the r.h.s. of (5.62), where the factor �(−h− 1) compensates a
similar factor at the denominator of Ep−1(−h− 1).

As for an explicit calculation, let us consider the example d = 4,p = 3, next to
the one studied at point 1 and which cannot be dealt with directly with the help
of Epstein zeta functions [17, 105–107] (because no formula for Z3(s) in terms
of simple Dirichlet series exists). In order to make the derivation easier, let us put
L1 = L2 = L3 ≡ L. Then (5.63) reduces to

E3(−1) = −1

2
E2(−1)+ 2

3

π

�(−1)
E2(−3/2)

+ 1

π�(−1)

∞∑

n1,n2,n3=1

n−2
1

(
1

2πn1
+
√
n2

2 + n2
3

)

· exp
(
−2πn1

√
n2

2 + n2
3

)
, (5.65)

where a common factor L−2 has been taken off. This E2(s) just coincides now with
the �2(s) introduced between (5.57) and (5.58)

E2(s)=�2(s)= ζ(s)β(s)− ζ(2s). (5.66)
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Substituting into (5.62), we obtain

ED(4,3)=− 1

32L5

[
ζ(3)

π
− β(2)

3
+ 3

2π2
ζ(5/2)β(5/2)− π2

45
+ 4S

]
, (5.67)

where S is the series in (5.65). It is immediate to check that the contribution of the
S-term in (5.67) is of order 10−5, the full numerical result being

ED(4,3)=−0.0023L−5. (5.68)

5.3.3 Massless Scalar Field with Periodic and Neumann Boundary
Conditions, and Electromagnetic Field

As we shall see, all these cases are obtained from the Dirichlet one considered in
Sect. 5.2.

1. Scalar Field with Neumann Boundary Conditions

The spacetime will be R
d+1 and the Neumann boundary conditions are imposed

on a set of p perpendicular pairs of parallel walls Wj , j = 1, . . . , p (the same as in
Sect. 5.2, (5.50))

∂�xϕ(�x, t)= 0, �x ∈W, j = 1, . . . , p. (5.69)

The eigenmodes are

ϕ(x1, . . . , xp, �xT , t) =
p∏

j=1

sin

(
πnjxj

Lj

)
exp(i�kT �xT ) exp(−iωnt),

ωn =
√√√√�k2

T +
p∑

j=1

(
πnj

Lj

)2

, nj = 1,2,3, . . . , j = 1, . . . , p,

(5.70)
and the vacuum energy density

EN
0 =

(2π)p−d

2
∏p

j=1 Lj

∫

Rd−p
d�kT

∞∑

n1,...,np=0

[
�k2
T +

p∑

j=1

(
πnj

Lj

)2
]1/2

, (5.71)

which leads to (cf. (5.55))

EN
0 (s)= 2p−d−1π(d−p)/2−s

∏p

j=1 Lj

�((s − d + p)/2)

�(s/2)

∞∑

n1,...,np=0

′[ p∑

j=1

(
nj

Lj

)2
](d−s−p)/2

,

(5.72)
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where the prime means that the term n1 = · · · = np = 0 is to be excluded from the
summation. As we see, EN

0 differs from ED
0 , (5.53), only in the range of the series

on the nj ’s, that now extend from 0,1,2, . . . to infinity (instead of from 1,2, . . .
to infinity as in the Dirichlet case), and the same with (5.72) and (5.55). The an-
alytic continuation of EN

0 (s) to s = −1, which provides the regularized vacuum
energy density EN(d,p) in the Neumann case, is correspondingly obtained from
the Dirichlet result ED(d,p) by simple combinatorics involving also the values of
ED(d ′,p′) for d ′ < d,p′ <p.

In fact, let us consider the identity

∞∑

n1,...,np=0

′(
a1n

2
1 + · · · + apn

2
p

)r

=
p−1∑

k=0

∑

C(p,k)

∞∑

n1,...,nj1−1,nj1+1,...,njk−1,njk+1,...,np=1

(
a1n

2
1 + · · · + aj1−1n

2
j1−1

+ aj1+1n
2
j1+1 + · · · + ajk−1n

2
jk−1 + ajk+1n

2
jk+1 + · · · + apn

2
p

)r
, (5.73)

where the sum over C(p, k) means sum over the (
p
k ) selections of k indices 1≤ j1 <

· · ·< jk ≤ p among the indices 1, . . . , p. It is now immediate, using (5.73), that

EN
L1,...,Lp

(d,p)

=
p−1∑

k=0

∑

C(p,k)

1
∏k

l=1 Ljl

ED
L1...Lj1−1Lj1+1...Ljk−1Ljk+1...Lp

(d − k,p− k).

(5.74)

If all the Lj , j = 1, . . . , p, are equal, this formula simplifies to

EN(d,p)=
p−1∑

k=0

(
p

k

)
L−kED(d − k,p− k). (5.75)

2. Scalar Field with Periodic Boundary Conditions

As before we consider, for simplicity, the massless case. With a little more effort
the corresponding massive case can be treated by exactly the same procedure. Let
now L1, . . . ,Lp denote the lengths of the circumferences of the hypertorus Tp . The
spacetime is Tp×R

d−p+1, i.e. the field satisfies periodic boundary conditions on p

coordinates

ϕ(x1 +L, . . . , xp +Lp,xp+1, . . . , xd, t)= ϕ(x1, . . . , xd, t). (5.76)
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The eigenmodes of the field are given by

ϕ(x1, . . . , xp, �xT , t) =
p∏

j=1

exp

(
2πi

njxj

Lj

)
exp(i�kT �xT ) exp(−iωnt),

ωn =
√√√√�k2

T +
p∑

j=1

(
2πnj
Lj

)2

, nj ∈ Z; j = 1, . . . , p,

(5.77)

and the vacuum energy density is

EP
0 =

(2π)p−d

2
∏p

j=1 Lj

∫

Rd−p
d�kT

∞∑

n1,...,np=−∞

[
�k2
T +

p∑

j=1

(
2πnj
Lj

)2
]1/2

, (5.78)

the difference with (5.53) being now—apart from the range of the summation in-
dices nj of the series—the fact that the Lj ’s accompanying these indices are here
Lj/2 (as compared with those of (5.53)). We get

EP
0 (s)= 2−s−1π(d−p)/2−s

∏p

j=1 Lj

�((s − d + p)/2)

�(s/2)

∞∑

n1,...,np=1

[
p∑

j=1

(
nj

Lj

)2
](d−s−p)/2

.

(5.79)
Notice an additional factor 2d−s−p with respect to the result (5.55). Moreover, from

∞∑

n1,...,np=−∞

′(
a1n

2
1 + · · · + apn

2
p

)r

=
p−1∑

k=0

∑

C(p,k)

2p−k
∞∑

n1,...,nj1−1,nj1+1,...,njk−1,njk+1,...,np=1

(
a1n

2
1 + · · · + aj1−1n

2
j1−1

+ aj1+1n
2
j1+1 + · · · + ajk−1n

2
jk−1 + ajk+1n

2
jk+1 + · · · + apn

2
p

)r
, (5.80)

with the same meaning as in (5.73), we obtain

EP
L1,...,Lp

(d,p)=
p−1∑

k=0

∑

C(p,k)

2d−k+1

∏k
l=1 Ljl

ED
L1...Lj1−1Lj1+1...Ljk−1Ljk+1...Lp

(d − k,p− k).

(5.81)
In the particular case L1 = · · · = Lp ≡ L, this reduces to

EP (d,p)=
p−1∑

k=0

(
p

k

)
2d−k+1L−kED(d − k,p− k). (5.82)
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3. Electromagnetic Field Between p Perpendicular Pairs of Neutral, Perfectly
Conducting Plates

This case can also be related with the above ones, in particular with the Dirichlet
case for a massless scalar field. Actually, the relations that we have obtained before,
(5.74) and (5.81), and the one we shall derive in this point, are reversible (see [148]
for the inverse relations) and allow us to connect in both directions any two of the
cases that we have studied.

For a massless vector field in R
d+1 spacetime in the presence of p perpendicular

pairs of parallel plates—neutral, infinite and perfectly conducting—given mathe-
matically by the same equations as before, (5.50), the boundary conditions are

nμF ∗μν1...νd−2
= 0, (5.83)

where F ∗ is the dual of the field-strength tensor: F ∗μ1...μd−1
= εμ1...μd−1νλF

νλ. By
introducing the potential Aμ such that Fμν = ∂μAν − ∂νAμ, and working in the
radiation gauge

A0 = 0, ∂1A1 + · · · + ∂dAd = 0, (5.84)

the eigenvalues of the field are found to be given by [148]

Aj = Lj cos(kj xj )
p∏

l=1,l �=j
sin(klxl) exp

[
i(�kT �xT −ωt)

]
, j = 1, . . . , p,

Ah = ibh

p∏

l=1

sin(klxl) exp
[
i(�kT �xT −ωt)

]
, h= p+ 1, . . . , d, (5.85)

kj = πnj

Lj

, �k2
T = ω2 −

p∑

j=1

�k2
j , nj = 0,1,2, . . . .

The gauge condition (5.84) implies

Ljkj + �b · �kT = 0 (5.86)

and forbids modes for which two or more of the nj vanish (because this would imply
Aj = 0, j = 1, . . . , p). The vacuum energy density is the same as in the Dirichlet
case, (5.53), but for the range of the multiple series, which now extend from zero to
infinity with the restriction (5.86).

For the corresponding function Eem(s), we get

Eem(s)= 2p−d−1π(d−p)/2−s
∏p

j=1 Lj

�((s − d + p)/2)

�(s/2)

∞∑

n1,...,np=0

′′[ p∑

j=1

(
nj

Lj

)2
](d−s−p)/2

.

(5.87)
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The double prime means “restricted by (5.86)”, that is, there are d − 1 independent
components Aj �= 0 if all the nj �= 0, and there remains only one component Aj �= 0
if one of the nj = 0.

This can now be related with the result for a massless scalar field with Dirichlet
boundary conditions, (5.55). Making use of an identity between multiseries for the
present case similar to (5.73) and analytically continuing the expression to s =−1,
we obtain the formula

Eem
L1...Lp

(d,p)= (d − 1)ED
L1...Lp

(d,p)+
p∑

j=1

1

Lj

ED
L1...Lj−1Lj+1...Lp

(d − 1,p− 1).

(5.88)
This is the relation we were looking for between the scalar Dirichlet and the elec-
tromagnetic vacuum energy densities.

As for a particular example of the complete set of connections that one can derive
among all the different boundary conditions for fields of different spin, we shall now
obtain the relation existing between the electromagnetic case and the periodic one
for a scalar field. To be concrete, for d = 3 and p = 2, using (5.81) and (5.88), we
have

EP
L1L2

(3,2) = 16ED
L1L2

(3,2)+ 8

[
1

L1
ED
L2
(2,1)+ 1

L2
ED
L1
(2,1)

]
,

Eem
L1L2

(3,2) = 2ED
L1L2

(3,2)+ 1

L1
ED
L2
(2,1)+ 1

L2
ED
L1
(2,1) (5.89)

= 1

8
EP
L1L2

(3,2).

Numerically, from (5.59) we get, for L1 = L2 ≡ L,

ED(2,1) = − ζ(3)

16πL3
=−0.02391416L−3,

EP (3,2) = 16

[
ED(3,2)+ 1

L
ED(2,1)

]
=−0.30532176L−4, (5.90)

Eem(3,2) = −0.03816522L−4.

The last one is the value of the Casimir energy density corresponding to the electro-
magnetic field between two perpendicular pairs of neutral, infinite, perfectly con-
ducting, parallel plates in 3+ 1 spacetime dimensions. Again it is remarkable that
all these results are exactly given in terms of values of well-known special functions
at some integer points (5.89). In this way, the 8-decimal precision adopted in (5.90)
can actually be made arbitrarily large.



Chapter 6
Five Physical Applications of the Inhomogeneous
Generalized Epstein–Hurwitz Zeta Functions

In this chapter some explicit applications to the regularization, by means of Hur-
witz zeta-functions considered in previous chapters, of different problems which
have appeared recently in the physical literature, are considered. This kind of zeta
functions show up profusely in different applications of quantum physics where
regularization techniques are needed, in particular, when one deals with a massive
quantum field theory in a (totally or partially) compactified spacetime (spherical
or toroidal compactification, for instance). Aside from the interest that a detailed
mathematical study of these functions may have on its own (e.g. in number theory),
what is actually needed for most physical applications—as we shall explicitly see
later—is always the numerical value of these functions, and of their derivatives with
respect to the variable s and to the parameter a, for negative (half)integer values of
s and for a few simple fractional values of a (like a = 1/2,1/4,3/4, . . .). Concern-
ing the parameter b2, usually we need the large- or small-b2 behavior of the series
only.

The final results involve analytical continuation of the functions and also a prin-
cipal part prescription in order to deal with (possible) poles. This procedure has
already been checked in several situations, see [42, 126]. The results will be always
given in terms of sums of Hurwitz zeta functions and generally under the form of
asymptotic expansions.

Actually, this situation has been described in detail in Chap. 4 already. In the
present one several, quite different applications will be presented (five of them, in
all). A first direct application is described in the first section to the calculation of
the Casimir energy corresponding to compact universes without boundary. In the
following one a second application is considered, namely the calculation of the sum
over one-loop integrals which yields the cross section of a scattering process in
a Kaluza–Klein model with spherical compactification. Another application is the
study of the critical behavior of a field theory at non-zero temperature. As the fourth
example of this chapter the quantization of two-dimensional gravity by means of the
Wheeler–De Witt equation is discussed. Finally, the last case considered is the use
of the spectral zeta function for both scalar and vector fields on a spacetime with a
noncommutative toroidal part.

E. Elizalde, Ten Physical Applications of Spectral Zeta Functions,
Lecture Notes in Physics 855,
DOI 10.1007/978-3-642-29405-1_6, © Springer-Verlag Berlin Heidelberg 2012
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6.1 Application: The Casimir Energy over Riemann Surfaces

As a first application of the formulas of Chap. 4, we recall the calculation of the
vacuum energy density (the Casimir energy) corresponding to a massless scalar
quantum field living in a compact universe, e.g. a Riemann sphere [126]. The zeta
function regularization procedure supplemented with binomial expansion is a rigor-
ous and well suited method for performing such analysis, as compared with other
more involved techniques. The principal-part prescription (as described in Chap. 5)
will be used to deal with the poles that eventually appear.

The investigation of the Casimir energy is one of the most basic issues of quan-
tum field theory. But it turns out that the calculation for general configurations
with curved boundaries is quite tricky, plagued with infinities and needing appro-
priate regularization. Sometimes cut-offs remain and it is difficult to extract un-
controverted, physically meaningful results [42]. This is why to have good numeri-
cal control on the functions that appear (along the line of the preceding sections)
is such a basic issue. From a more practical point of view, the presence of the
Casimir force in very different phenomena of condensed matter, solid state and
laser physics has been established without any doubt, both theoretically and ex-
perimentally [156–162], so that the physical values to be matched are quite well
known.

On the other hand, some of the most popular models of spacetime nowadays are
given by manifolds without boundaries. Riemann spheres are to be counted among
the simplest and most important of these manifolds. When one tries to calculate the
determinants of the Laplacian operators on Riemann spheres by using zeta func-
tions, one has to analytically continue expressions of the general form

f (s;a, b, c)≡
∞∑

l=1

l−s+b(l + a)−s+c, a > 0. (6.1)

In [163, 164], for

ζ (n)(s)≡
∞∑

l=1

[
l−s(l + 2n+ 1)1−s + l1−s(l + 2n+ 1)−s

]
, (6.2)

the following result was obtained

d

ds
ζ (n)(s)

∣∣∣∣
s=0
= 4ζ ′(−1)− 1

2
(2n+ 1)2 +

2n+1∑

k=1

(2k − 2n− 1) ln k. (6.3)

From here, in particular, for the zeta function of the Laplacian on the hemisphere
with Dirichlet and Neumann boundary conditions, respectively, for which
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ζD(s) =
∞∑

l=1

l
[
l(l + 1)

]−s
,

ζN(s) =
∞∑

l=1

(l + 1)
[
l(l + 1)

]−s
,

(6.4)

one gets

ζ ′D(0) = 2ζ ′(−1)+ 1

2
ln(2π)− 1

4
,

ζ ′N(0) = 2ζ ′(−1)− 1

2
ln(2π)− 1

4
.

(6.5)

Binomial expansion yields the following result:

f (s;a, b, c) ≡
∞∑

l=1

l−s+b(l + a)−s+c =
∞∑

l=1

l−2s+b+c(1+ al−1)−s+c

=
[a]∑

l=1

{ } +
∞∑

l=[a]+1

{ }

= g(s;a, b, c)+
∞∑

l=[a]+1

∞∑

k=0

�(1− s + c)

k!�(1− s − k+ c)
akl−2s−k+b+c, (6.6)

being [a] the integer part of a, so that g(s;a, b, c) is an analytic function of s, while
the second, truncated series is absolutely convergent (since al−1 < 1 there). The
final result is

f (s;a, b, c) =
[a]∑

l=1

l−2s+b+c(1+ al−1)−s+c +
∞∑

k=0

�(1− s + c)

k!�(1− s − k + c)
ak

·
[
ζ(2s + k− b− c)−

[a]∑

l=1

l−2s−k+b+c
]
. (6.7)

In particular,

f (0;a, b, c) =
[a]∑

l=1

lb+c
(
1+ al−1)c +

∞∑

k=0

�(1+ c)

k!�(1− k+ c)
ak

·
[
ζ(k − b− c)−

[a]∑

l=1

l−k+b+c
]

(6.8)
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and

f ′(0;a, b, c) = −
[a]∑

l=1

[
2 ln l + ln

(
1+ al−1)]lb+c

(
1+ al−1)c

+
∞∑

k=0

{
ψ(1− k + c)−ψ(c)

�(1− k + c)

[
ζ(k − b− c)−

[a]∑

l=1

l−k+b+c
]

+ 2�(1+ c)

�(1− k + c)

[
ζ ′(k − b− c)+

[a]∑

l=1

l−k+b+c ln l

]}
ak

k! . (6.9)

In fact this last formula is a bit tricky, and has to be modified (in general) when b

and c are integers. Then, the derivative for the particular value k = b + 1 must be
taken with special care, by performing first expansions around the poles and zeros
of these functions at s = 0.

For the zeta function ζD(s), (6.4), we obtain

ζD(s) =
∞∑

l=1

l1−2s(1+ l−1)−s

= 2−s +
∞∑

k=0

�(1− s)

k!�(1− s − k)

[
ζ(2s + k − 1)− 1

]
(6.10)

and

ζ ′D(0)= 2ζ ′(−1)+ 5

4
+ γ

2
− ln 2−

∞∑

k=2

(−1)k
ζ(k)− 1

k+ 1
. (6.11)

A second particular example is the following. For the case of a rectangle (of
sides a and b) with Dirichlet boundary conditions, the spectrum of the Laplacian is
λmn = π2(m2/a2 + n2/b2), and the zeta function

ζrec(s) = π−2s
∞∑

m,n=1

(
m2

a2
+ n2

b2

)−s

= −1

2

(
b

π

)2s

ζ(2s)+ a

2
√
π

(
b

π

)2s−1
�(s − 1/2)

�(s)
ζ(2s − 1)

+ 2

�(s)

(
ab

π

)s√
a

b

∞∑

m,n=1

(
m

n

)s−1/2

Ks−1/2(2πmna/b), (6.12)
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where, once more, the corresponding asymptotic expansion for the Epstein zeta
function in (4.49) has been used. Taking now the derivative, we get

ζ ′rec(0)=
1

2
ln(2b)+ πa

12b
+ 2

√
a

b

∞∑

m,n=1

√
n

m
K−1/2(2πmna/b), (6.13)

which is best for numerical computations when a ≥ b. (This is no restriction, indeed;
however, one could also think of using (4.52) directly.) In the particular case a = b

(a square domain), it reduces to

ζ ′sq(0)=
1

2
ln(2a)+ π

12
+ 2

∞∑

m,n=1

√
n

m
K−1/2(2πmn), (6.14)

which is just another expression for the same result obtained in [165]

ζ ′sq(0)=
1

2
ln(2a)+ 1

4
ln(8π)+ 1

2
ln

�(3/4)

�(1/4)
. (6.15)

The numerical value is, in both cases,

ζ ′sq(0)=
1

2
ln(2a)+ 0.263672. (6.16)

Notice, however, that for the general rectangle, expression (6.13) is of much more
practical use than the well-known one in terms of Dedekind’s modular form η [165,
166]

ζ ′rec(0) =
1

4
ln(ab)− ln

[
1√
2

(
b

a

)1/4

η(q)

]
,

η(q) = q1/24
∞∏

m=1

(
1− qm

)
, q = exp

(
−2π

√
b

a

)
. (6.17)

In fact, a few first terms of the series in (6.13) suffice to obtain accurate numerical
results (just as for the case of the square domain).

The three-dimensional Riemann sphere is a manifold without boundary that
could perfectly well correspond to the spatial part of our universe, as a whole.
The eigenvalues of the Laplacian operator are λ2

i = l(l + 2)/r4, with degeneracies
mi = (l + 1)2. Thus, the vacuum energy density for a massless scalar field is given
by

E3 =− �

2r4
ζ3(s =−1/2), ζ3(s)=

∞∑

l=1

(l + 1)2[l(l + 2)
]−s

. (6.18)
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We can write,

ζ3(s) =
∞∑

l=2

l2(1−s)
(
1− l−2)−s

=
∞∑

k=0

(−1)k�(1− s)

k!�(1− s − k)

[
ζ(2s + 2k − 2)− 1

]
, (6.19)

and

ζ3(−1/2) =
∞∑

k=0

(−1)k�(3/2)

k!�(3/2− k)

[
ζ(2k − 3)− 1

]

= − 1

16(s + 1/2)
− 0.411502, (6.20)

which has a pole, for k = 2. Using the principal part prescription, we obtain

E3 =−0.205751 · �
r4

. (6.21)

For the four-dimensional Riemann sphere, the corresponding eigenvalues and
multiplicities are λ2

i = l(l + 3)/r6 and mi = (l + 1)(l + 2)(2l + 3)/6. The vacuum
energy density is now

E4 =− �

2r5
ζ4(s =−1/2), ζ4(s)= 1

6

∞∑

l=1

(l + 1)(l + 2)(2l + 3)
[
l(l + 3)

]−s
,

(6.22)
and we can write

ζ4(s) = 1

3

∞∑

l=1

u
(
u2 − 1/4

)(
u2 − 9/4

)−s

= 1

3

∞∑

k=0

(−1)k�(1− s)

k!�(1− s − k)

(
9

4

)k

· [ζ(2s + 2k − 3,5/2)− ζ(2s + 2k− 1,5/2)/4
]
, (6.23)

being u= l + 3/2 and ζ(s, a) Hurwitz’s zeta function

ζ(s, a)=
∞∑

n=0

(n+ a)−s . (6.24)
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Again, nothing else has been done here but to apply the procedure as described
above. We thus obtain

ζ4(−1/2) = 1

3

∞∑

k=0

(−1)k�(3/2)

k!�(3/2− k)

(
9

4

)k[
ζ(2k − 4,5/2)− ζ(2k − 2,5/2)/4

]

= −0.424550. (6.25)

It is immediate to check that the term (9/4)k does not spoil convergence: we get a
quickly convergent series, and finally

E4 =−0.212275 · �
r5

. (6.26)

An alternative treatment of the zeta functions above consists simply in splitting
the polynomial in powers of the summation indices and then using the method of
[163, 164]. It is just a matter of trying it to realize that that procedure is more lengthy
than the one developed here. On the other hand, the cancellation of poles in this
method must be done explicitly (resorting to expansions around all poles and ze-
ros), while it is immediate in our procedure (actually, no pole is ever formed). We
conclude that the most direct way turns out to be here both more rigorous and better
suited for numerical evaluation. In connection with the general theory, as described
in Chap. 4, we should observe that this is an example of the systematic use one
can do of binomial expansion, i.e. the second of the two alternative expressions
presented there. In the next section we shall describe an application of the first pro-
cedure, which stems also from the asymptotic expansion (4.50) in Chap. 4.

6.2 Application: Kaluza–Klein Model with Spherical
Compactification

In [127], possible experimental manifestations of the contribution of heavy Kaluza–
Klein particles, within a simple scalar model in six dimensions with spherical com-
pactification, have been studied. The approach is based on the assumption that the
inverse radius L−1 of the space of extra dimensions is of the order of the scale of the
supersymmetry breaking MSUSY ∼ 1÷ 10 TeV. The total cross section of the scat-
tering of two light particles has been calculated to one loop order and the effect of
the Kaluza–Klein tower has been shown to be noticeable for energies

√
s ≥ 1.4L−1.

The aim was to find an effect which could be measured experimentally and, with
L−1 of the order of a few TeV, could actually be observed in future experiments.

By doing mode expansion, a multidimensional model on the spacetime M4 ×K

(K is a compact manifold) can be represented as an effective theory on M4 with
an infinite set of particles, which is often referred to as the Kaluza–Klein tower of
particles or modes (usually called pyrgons). The spectrum of the four-dimensional
theory depends on the topology and geometry of K . The sector of the lowest state
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(of the zero mode) describes light particles (in the sense that their masses do not
depend on L−1) and coincides with the dimensionally reduced theory. Higher modes
correspond to heavy particles with masses∼ L−1. It is the contribution of pyrgons to
physical quantities that might give evidence about the existence of extra dimensions.
For simplicity, the scalar φ4-model has been considered [127] and the space of extra
dimensions is the two-dimensional sphere S

2 of radius L, with an SO(3)-invariant
metric on it. Study of quantum effects on spheres (mainly calculations of the Casimir
effect and of the effective potential) can be found, for example, in [167–171]. The
physical quantity to be calculated is the total cross section for the 2 light particles
−→ 2 light particles scattering process.

The main part of the calculation turns out to be a direct application of the re-
sults of Chap. 4. In fact, zeta function regularization techniques—based on the use
of the first of the expansions considered there for the function F(s;a, b2) and its
derivatives—provide the best way of treating sums over Kaluza–Klein modes which
appear in the theory. Though there is some literature on the technique of performing
calculations on spheres (see, for example, [35, 167–171] and references therein),
the method used here is new and provides a simple and controllable way (from the
numerical point of view) to deal with spherical compactification. Starting point of
the analysis is the expression for the sum of the standard one-loop integrals over all
Kaluza–Klein modes:

�I

(
p2

M2
,
m0

M
,ε

)
= iπ2−ε�(ε)

∫ 1

0
dx
∑

l,m

′(M2

M2
l

)ε[
1− p2x(1− x)

M2
l

]−ε
, (6.27)

where the prime means that the term for l = 0 is absent. Two limits, the low and
high momentum expansion, respectively, can be considered:

(a) (1− y)−ε =
∞∑

k=0

�(k + ε)

k!�(ε) yk, y ≡ p2x(1− x)

M2
l,m

, (6.28)

(b) (1− y)−ε = (−y)−ε
(
1− y−1)−ε

= (−1)−ε
∞∑

k=0

�(k + ε)

k!�(ε) y−k−ε . (6.29)

There is no problem in doing the small-momentum expansion (a), which is valid
for |y| < 1. In fact, since the maximum of x(1− x) when 0 ≤ x ≤ 1 is attained at
1/4 (for x = 1/2), this formula is valid whenever p2 < 4M2

l,m. Nevertheless, the
‘high-momentum expansion’ (b) is much more difficult to perform. Actually, it is
not possible to express its range of validity, |y|< 1, in terms of a simple inequality
involving p2 and M2

l,m. As it stands, (6.29) is useless: we must first integrate (6.27)
over x, in order to get rid of this unwanted dependence and then the formula yielding
the desired expansion for p2 ≥ 4M2

l,m is different, according to different ranges of

variation of p2 in terms of M2
l,m. The infinite sum over l gives rise to a derivative of
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the zeta-function F(s;a, b2) considered in Chap. 4. The x-integral yields just beta
function factors.

The sums and integrals involved in the low-momentum expansion of (6.27) can
be performed in the following order:

�I

(
p2

M2
,
m0

M
,ε

)
= iπ2−ε

∞∑

k=0

�(k + ε)

k! B(k + 1, k + 1)

(
p2

M2

)k

Sk−1+ε, (6.30)

where we have defined

Sk+ε ≡
∑

l,m

′(M2
l,m

M2

)−k−ε
(6.31)

and used
∫ 1

0
dx
[
x(1− x)

]s = B(s + 1, s + 1), (6.32)

B(s, t) = �(s)�(t)/�(s + t) being Euler’s beta function. In our particular case
(spherical compactification) this sum reads

Sk+ε =
∞∑

l=1

(2l + 1)

[
l(l + 1)+ m2

0

M2

]−k−ε

= 2
∞∑

l=1

(l + 1/2)

[
(l + 1/2)2 +

(
m2

0

M2
− 1

4

)]−k−ε
, (6.33)

and can be written exactly as

Sk+ε = 1

1− k − ε

∂

∂a
F (s − 1;a, b)

∣∣∣∣
s=k+ε,a= 1

2 ,b= m2

M2− 1
4

. (6.34)

We will obtain explicitly the optimal truncation of this series, which has been nu-
merically studied in Chap. 4. Taking these results into account, (6.34) yields

Sk+ε =
∞∑

n=0

(−1)n−1

n!
�(n+ k + ε − 1)

�(k + ε)
b1−n−k−ε ζ̃ (−2n,1/2), (6.35)

where ζ̃ has been defined in (4.54). For the first four terms of Sk+ε (providing the
optimal truncation of the asymptotic series), we obtain

Sk+ε = b1−k−ε
[

1

k + ε − 1
+ 2b−1ζ(−1,1/2)− 2(k + ε)b−2ζ(−3,1/2)

+ (k + ε)(k + 1+ ε)b−3ζ(−5,1/2)− · · ·
]
, (6.36)
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and, putting everything together, we arrive at

�I

(
p2

M2
,
m0

M
,ε

)

= iπ2−ε�(ε)
{[

b1−ε

ε − 1
+ 2b−εζ(−1,1/2)− 2εb−1−εζ(−3,1/2)

+ ε(1+ ε)b−2−εζ(−5,1/2)− ε(1+ ε)(2+ ε)

3
b−3−εζ(−7,1/2)+ · · ·

]

+ p2

M2
B(2,2)

[
b−ε + 2εb−1−εζ(−1,1/2)− 2ε(1+ ε)b−2−εζ(−3,1/2)

+ ε(1+ ε)(2+ ε)b−3−εζ(−5,1/2)+ · · · ]

+
(

p2

M2

)2

B(3,3)

[
εb−1−ε

2
+ ε(1+ ε)b−2−εζ(−1,1/2)

− ε(1+ ε)(2+ ε)b−3−εζ(−3,1/2)

+ ε(1+ ε)(2+ ε)(3+ ε)

2
b−4−εζ(−5,1/2)+ · · ·

]
+ · · ·

}
. (6.37)

The numerical values of the coefficients are

B(1,1)= 1, B(2,2)= 1

6
, B(3,3)= 1

30
, . . . ,

B(n+ 1, n+ 1)

B(n,n)
∼ 1

4
,

(6.38)
and

ζ(−1,1/2)= 1

24
, ζ(−3,1/2)=− 7

960
, ζ(−5,1/2)= 31

8064
,

ζ(−7,1/2)=− 127

30720
, ζ(−9,1/2)=− 511

67584
, . . . . (6.39)

We check that, in fact, the optimal truncation for the asymptotic series is obtained
after the term ζ(−5,1/2)= 0.00384. As is apparent also, the resulting regularized
series will not be valid for very small values of b. In that case, the second of the
expressions of Chap. 4 has to be used, namely binomial expansion [127]. On the
contrary, for large values of m0/M the above series (6.37) is the one to be employed.

In a physical setting however, usually m2
0 � M2, so that b � −1/4. One can

also obtain convergent series for m0/M small (even m0 = 0 will be allowed) and
valid for any finite p2. To this end we must first perform the ε-expansion and then
integrate over the x-variable:

I

(
p2

M2
, ε

)
= iπ2−ε�(ε)− iπ2J

(
p2

4M2

)
+O(ε), (6.40)
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where J (z) is the finite part of the one-loop integral [172, 173]

J (z)=
∫ 1

0
dx ln

[
1− 4zx(1− x)

]
, (6.41)

which is equal to

J (z)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

J1(z)= 2
√

z−1
z

ln(
√

1− z+√−z )− 2, for z≤ 0,

J2(z)= 2
√

1−z
z

arctan
√

z
1−z − 2, for 0 < z≤ 1,

J3(z)=−iπ

√
z−1
z
+ 2
√

z−1
z

ln(
√
z+√z− 1 )− 2, for z > 1.

(6.42)
Now we can proceed with the summation over l, m. Taking the degeneracy in (6.27)
into account and using ζ -regularization for the sums, we get

�I

(
p2

M2
,
m0

M
,ε

)
= iπ2−ε�(ε)

[
2ζ(−1,1/2)− 1

]

− 2iπ2
∞∑

l=1

(l + 1/2) ln
[
(l + 1/2)2 + b

]

− 2iπ2�J

(
p2

4M2
; m0

M

)
+O(ε). (6.43)

In particular, for p2 < 0:

�J

(
p2

4M2
; m0

M

)
=

∞∑

l=1

(l + 1/2)J1

(
p2

4M2
l

)
, (6.44)

while for p2 > 0:

�J

(
p2

4M2
; m0

M

)
=

l∗(p)∑

l=1

(l + 1/2)J3

(
p2

4M2
l

)
+

∞∑

l=l∗(p)+1

(l + 1/2)J2

(
p2

4M2
l

)
,

(6.45)
which contains, in general, an imaginary part. Here l∗(p) is the maximum value of
l which satisfies the inequality 4M2(l + 1/2)2 < p2 − 4m2

0. If such l does not exist
or is smaller than 1, we put l∗(p)= 0 and the first sum in (6.45) will be absent.

As we have already mentioned, the divergent sums over l are understood as being
regularized by using the zeta-function regularization procedure. The calculation is
then carried out in connection with this method. After expanding the functions under
the summation signs in powers of ul = p2/(4M2

l ) we are faced up with summations
over the l-index, which give rise to Hurwitz zeta functions. As we clearly see from
expression (6.43) above, the number of terms contributing to each sum changes with
p. Thus, different explicit series are obtained for the different ranges of M2/p2. The
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first range, |p2/4M2
1 | < 1, is somewhat special and deserves a careful treatment.

According to the preceding analysis, only contributions in terms of a power series
of p2/(4M2) arise in this case, and we arrive to a series expansion which is the
alternative to the low-momentum series that was obtained before, (6.37), now for
small values of m2

0/M
2, including the case m2

0 = 0, i.e.

�I

(
p2

M2
,
m0

M
,ε

)
= iπ2−ε�(ε)

[
2ζ(−1,1/2)− 1

]

− 2iπ2
∞∑

l=1

(l + 1/2) ln
[
(l + 1/2)2 + b

]

+ 4iπ2
∞∑

l=1

(l + 1/2)

(
ul

3
+ 2u2

l

15
+ 8u3

l

105

+ 16u4
l

315
+ 128u5

l

3465
+ 256u6

l

9009
+ · · ·

)
+O(ε),

ul ≡ p2

4M2
l

≡
p2

4M2

(l + 1/2)2 + b
, b≡ m2

0

M2
− 1

4
,

∣∣p2
∣∣ < 4m2

0 + 8M2. (6.46)

The l-sums yield again Epstein–Hurwitz zeta functions. In particular,

2
∞∑

l=1

(l + 1/2)ukl =
1

2(1− k)

∂

∂a
F (1)(k;a, b)

∣∣∣∣
a=1/2

(
p2

4M2

)k

, (6.47)

where a superindex (j) means ‘j -truncated’—in the sense that the j first terms in
the definitions of these zeta functions (for n= 0,1, . . . , j − 1) are absent—namely

F (j)(k;a, b)=
∞∑

n=j

[
(n+ a)2 + b

]−k
, j = 1,2, . . . (6.48)

in terms of the function F introduced before. To finish, we shall now proceed with
the evaluation of these derivatives that must be then substituted in (6.46), which
provides the one-loop result for the sum over the Kaluza–Klein modes. Actually, it
is not easy to obtain accurate numerical values in a simple way, but we will find
some upper and lower bounds that will suffice for our purposes here.

Let us call

h(1)(k;1/2, b)≡ 1

1− k

∂

∂a
F

(1)
1 (k;a, b)

∣∣∣∣
a=1/2

. (6.49)

The following bounds for these coefficients of the power series expansion will be
useful for the general proof of convergence of the series (6.46). First, let us introduce
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the constants

αk ≡
∞∑

l=1

(2l + 1)
[
l(l + 1)

]−k
< 2ζ(2k − 1). (6.50)

They have the value

α1 = 1.1544, α2 = 0.9996, α3 = 0.4041,

α4 = 0.1918, α5 = 0.0944, α6 = 0.0470, (6.51)

α7 = 0.0235, α8 = 0.0117, α9 = 0.0059, . . .

and from

m0 = 0, M �= 0 arbitrary : h(1)(k;1/2, b)= αk,

m0 �= 0

{
m2

0 ≤M2/4 : 2ζ (1)(2k − 1,1/2)≤ h(1)(k;1/2, b)≤ αk,

m2
0 ≥M2/4 : h(1)(k;1/2, b)≤ 2ζ (1)(2k,1/2),

(6.52)

we obtain

h(1)(1;1/2, b)
∣∣
b≥0 ≤ 0.93≤ h(1)(1;1/2, b)

∣∣−1/4≤b≤0≤ 1.15,

h(1)(2;1/2, b)
∣∣
b≥0 ≤ 0.83≤ h(1)(2;1/2, b)

∣∣−1/4≤b≤0≤ 0.99,

h(1)(3;1/2, b)
∣∣
b≥0 ≤ 0.29≤ h(1)(3;1/2, b)

∣∣−1/4≤b≤0≤ 0.40,

h(1)(4;1/2, b)
∣∣
b≥0 ≤ 0.12≤ h(1)(4;1/2, b)

∣∣−1/4≤b≤0≤ 0.19.

(6.53)

In few words, we see that with increasing m0 the value of the coefficients decreases,
starting from reasonable values (the αk) for m0 = 0. This makes of (6.46) a conve-
nient approach to obtain the cross section of the problem and be able to compare
with experimental results (see [127] for more details).

6.3 Critical Behavior of a Field Theory at Non-zero Temperature

Consider the effective potential of a four-fermion theory, that has been studied
among others, by Inagaki, Kouno and Muta [174]. The phase-transition structure of
the theory is to be investigated, in terms of the dimension D of the space where we
are working. D is one of the variables and the final aim would be to study in detail
the full structure of four-fermion theories with varying temperature and chemical
potential, for arbitrary D between 2≤D < 4, by using the 1/N expansion method.
One wants to see, in particular, if chiral symmetry is or not restored for sufficiently
high values of the temperature or the chemical potential.
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To leading order in 1/N , the effective potential V0(σ )

V0(σ )= 1

2λ0
σ 2 + i ln det

(
iγμ∂

μ − σ
)+O(1/N) (6.54)

is essentially the one that provides the form of the effective potential of the theory.
After the usual manipulations involving renormalization and integration over the
angular variables, one finds that this effective potential is given by the expression
[174]

V βμ(σ ) = σ 2

2λ
−

√
π

β(2π)D/2
�

(
1−D

2

) +∞∑

n=−∞

{[(
2n+ 1

β
π − iμ

)2](D−1)/2

+
[(

2n+ 1

β
π − iμ

)2

+ σ 2
](D−1)/2}

. (6.55)

By direct application of one of the basic equations derived in Chap. 4, (2.93), we
obtain

+∞∑

n=−∞

[(
2n+ 1

β
π − iμ

)2

+ σ 2
](D−1)/2

= β

2
√
π

�(−D/2)

�((1−D)/2)
σD

+ β1−D/2(2σ)D/2

√
π�((1−D)/2)

∞∑

n=1

(−1)nn−D/2(eβμn + e−βμn
)
K−D/2(βσn), (6.56)

and

+∞∑

n=−∞

[(
2n+ 1

β
π − iμ

)2](D−1)/2

=
(

2π

β

)D−1[
ζ

(
1−D,

1

2
− i
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+ ζ

(
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2
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2π
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−
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2
− i
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2π
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. (6.57)

The effective potential becomes

V βμ(σ ) = σ 2

2λ
−

√
π

β(2π)D/2

{
�

(
1−D

2

)(
2π

β

)D−1[
ζ
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βμ

2π
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−
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2
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2
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σD
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+ β1−D/2(2σ)D/2

√
π

∞∑

n=1

(−1)nn−D/2(eβμn + e−βμn
)
KD/2(βσn)

}
.

(6.58)

The equation for the extrema of the potential leads us to the critical points (phase
transitions), i.e.

∂V βμ(σ )

∂σ
= 0. (6.59)

This yields

σ

λ
− (2π)−D/2

[
1

2
�

(−D

2

)
DσD−1 + β−D/2D(2σ)D/2−1

·
∞∑

n=1

(−1)nn−D/2(eβμn + e−βμn
)
KD/2(βσn)

+ β1−D/2(2σ)D/2
∞∑

n=1

(−1)nn1−D/2(eβμn + e−βμn
)
K ′

D/2(βσn)

]
= 0. (6.60)

The series are convergent when |μ| ≤ σ , for any D. In the first approximation, we
have just

σ

λ
− �(−D2 )D

2(2π)D/2
σD−1 = 0, (6.61)

that is

σ0 =
[
−2(2π)D/2�(D/2+ 1) sin(Dπ/2)

πDλ

]1/(D−2)

. (6.62)

In the particular case when the number of dimensions is 5/2 (an intermediate situa-
tion), we obtain

σ0|D=5/2 = �(1/4)2√π

25/2λ2
= 4.1187

λ2
. (6.63)

The self-consistency condition is σ0 ≥ |μ|, namely,

|μ| ≤
[
−2(2π)D/2�(D/2+ 1) sin(Dπ/2)

πDλ

]1/(D−2)

. (6.64)

(Notice that, for D = 5/2, this means |μ|< 4.12 for λ= 1.)
The second approximation yields, with σ = σ0 + σ1

σ1

λ
− D(D − 1)�(−D/2)

2(2π)D/2
σD−2

0 σ1 + σ
(D−3)/2
0√

2(πβ)(D−1)/2

(
D

2β
− σ0

)
e−β(σ0−|μ|) � 0.

(6.65)
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The consistency check to second order is σ1 � σ0. We have

σ1

σ0
� λ

(2−D)
√

2

(
1− D

2βσ0

)(
σ0

πβ

)(D−1)/2 1

σ0
e−β(σ0−|μ|)� 1. (6.66)

This is satisfied at high temperature T , if λ∼ β = (kT )−1. In particular, the expo-
nential is then ∼ exp(−2kT ), which is good for the quick convergence of the series
of Bessel functions. For the particular case D = 5/2, substituting σ0 into the last
expression, we get

σ1

σ0

∣∣∣∣
D=5/2

� −
(

1− 5
√

2/πλ2

�(1/4)2β

)
λ3/2

(2π)7/8
√
�(1/4)β3/4

e−β(σ0−|μ|)

= −0.1052

(
1− 0.3035

λ2

β

)
λ3/2

β3/4
e−β(4.1187/λ2−|μ|). (6.67)

This looks as a very reasonable dependence and it certainly allows us to proceed
with the analytical treatment of the general situation, in a sort of perturbative way
(order by order).

6.4 Application to Quantizing Through the Wheeler–De Witt
Equation

In a work by S. Carlip [175], dealing with the approach to (2+1)-dimensional quan-
tum gravity which consists in making direct use of the Wheeler–De Witt equation,
this author came across a rather involved mathematical problem. (By the way, none
of the approaches that have been employed for the quantization of gravity is simple,
for different reasons.) As in the examples above, here we will concentrate only in
the specific points of the whole question that have to do with the methods devel-
oped in the book. They concern the calculation of the determinant that appears in
his method and has to be evaluated on the fundamental domain in two dimensions.
It is the determinant of a differential operator, D0, which has the following set of
eigenfunctions and eigenvalues

|mn〉 = e2πi(mx+ny), lmn = 4π2

τ2
|n−mτ |2 + V0, (6.68)

where m and n are integers, and τ and τ2 are the usual labels corresponding to the
standard two-dimensional metric on the domain

ds̄2 = τ−1
2 |dx + τ dy|2, (6.69)

with x and y angular coordinates of period 1 and τ = τ1 + iτ2 the modulus (a
complex parameter). V0 is the spatial integral of the relevant potential function.
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6.4.1 Explicit Zeta-Function Calculation of the Essential
Determinant and Extrema of the Potential

At that point, the difficulty has boiled down to a well formulated mathematical prob-
lem which has a straightforward solution by means of the expressions derived in the
preceding chapters, through the calculation of the corresponding zeta function, ζD0 .
In fact, after simplifying the notation a little, we easily recognize that we have to
deal here with a series of the form (7.18). For s = 1 (the value of interest) the ana-
lytic continuation hits a pole and, therefore, it must be conveniently defined [126].

The quantization of gravity in a (2+ 1)-dimensional spacetime—with the metric
of the spatial part being given by (6.69)—proceeds through the calculation of the
zeta function corresponding to the basic differential operator D0, which has the
spectral decomposition given above (6.68). In terms of the function E(s;a, b, c;q),
the zeta function of D0 is

ζD0(s)=E
(
s;4π2/τ2,−8π2τ1/τ2,4π2(τ 2

1 + τ 2
2

)
/τ2;V0

)
. (6.70)

In Fig. 7 we can see a plot of E(s) for specified values of the parameters a, b, c and
q in function of τ1 and τ2. One has, in particular, �= 64π4 and, using (4.32),

ζD0(s) =
2−2s+1π−2s

τ−s2

ζEH

(
s,V0τ2/

(
4π2))

+ 2−2s+1π−2s+1/2�(s − 1/2)

τ s−1
2 �(s)

ζEH

(
s − 1/2,V0/

(
4π2τ2

))

+ 2−2s+2π−s√τ2

�(s)

∞∑

n=0

ns−1/2 cos(2nπτ1)
∑

d|n
d1−2s

∫ ∞

0
dt ts−3/2

· exp

{
−nπτ2

[(
1+ V0

4π2d2τ2

)
t + t−1

]}
. (6.71)

The quantity of interest is the determinant of the operator D0. This is most con-
veniently computed by means of its zeta function. In particular:

det1/2D0 = exp

[
−1

2
ζ ′D0

(0)

]
. (6.72)

Thus, we must now calculate the derivative of (4.32) at s = 0. We have, for the
general function E(s;a, b, c;q)

E′(0;a, b, c;q)
= lna + 2ζ ′EH (0, q/a)+ σ ′(0, q)

+ 4
∞∑

n=1

n−1 cos(nπb/a)
∑

d|n
d exp

[
−πn

a

(
�+ 4aq

d2

)1/2]
, (6.73)
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Fig. 7 Plot of the function of s corresponding to the analytical continuation of the inhomogeneous
Epstein zeta function E(s;a, b, c;q), as given by the extension of the Chowla–Selberg formula
derived in Chap. 4. The values of the parameters have been fixed as indicated (in terms of τ1 and
τ2)

where

ζ ′EH (0;p)=−π
√
p+ 1

2
lnp− ln

(
1− e−2π

√
p
)
, (6.74)

and

σ ′(0, q)= 2π

√
q

a
+ 2πq√

�
(−1+ lnq)+ 4

√
q

a

∞∑

n=1

n−1K1

(
4nπ

√
aq

�

)
. (6.75)

We get

E′(0;a, b, c;q)

=−2πq√
�
+
(

1+ 2πq√
�

)
lnq

− 2 ln
(
1− e−2π

√
q/a
)+ 4

√
q

a

∞∑

n=1

n−1K1

(
4nπ

√
aq

�

)

+ 4
∞∑

n=1

n−1 cos(nπb/a)
∑

d|n
d exp

[
−πn

a

(
�+ 4aq

d2

)1/2]
. (6.76)

Finally, for the determinant of D0, we obtain

det1/2D0 = 1√
V0

(
1− e−

√
V0τ2

)
exp

{
V0

8π
(1− lnV0)
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− 1

π

√
τ2V0

∞∑

n=1

n−1K1

(
n

√
V0

τ2

)
− 2

∞∑

n=1

n−1 cos(2nπτ1)

·
∑

d|n
d exp

[
−2nπτ2

(
1+ V0

4π2τ2d2

)1/2]}
. (6.77)

We observe again that the final formula is really simple for practical purposes,
since it provides a good approximations with just a few terms, which are, on its turn,
elementary functions of the relevant variables and parameters. This is so, because
the infinite series that appear converge quickly (terms are exponentially decreasing
with n). In an asymptotical approach to the determinant, only the first terms in (6.77)
are relevant.

From the detailed analysis in [175], it follows that the quantity to be calculated
is the derivative with respect to V0 of the above determinant, since this quantity
vanishes precisely at the solutions of the Hamiltonian constraint (always in the lan-
guage of quantization through the corresponding Wheeler–De Witt equation). In
other words, the solutions of the equation

∂

∂V0
det1/2D0 = 0, (6.78)

will yield the conditions that the quantized magnitudes and parameters are bound
to satisfy as a consequence of the Wheeler–De Witt equations. After some work,
(6.78) can be written as

det1/2D0 ·
[
− 1

8π
lnV0 − 1

2V0
+ 1

2

√
τ2

V0

(
e
√
V0τ2 − 1

)−1

− 1

2π

√
τ2

V0

∞∑

n=1

n−1K1

(
n

√
V0

τ2

)
− 1

2π

∞∑

n=1

K1
′
(
n

√
V0

τ2

)

+ 1

2π

∞∑

n=1

cos(2nπτ1)
∑

d|n

(
d2 + V0

4π2τ2

)−1/2

exp

(
−2nπτ2

√

1+ V0

4π2τ2d2

)]

= 0, (6.79)

where the primes mean derivatives of the Bessel functions. The discussion can be
continued analytically in the limit τ2 � 1 without further problem (for consistency
it must be V0τ2 � 1 at the critical points V0). Numerical plots of the functions above
are given in the accompanying figures. A short summary of the numerical analysis
for a sample of representative values of the parameters τ1 and τ2 can be read off from
Figs. 8, 9, 10. Very interesting behaviors appear, which are completely different for
the different ranges of values of the parameters. In principle—the consistency of
the approximation is to be checked a posteriori—(6.79) can be reduced to the a
simple expression which includes, at most, the first of the terms involving Bessel
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Fig. 8 Plot of the square root of the determinant det1/2D0 and of its derivative as a function of V0,
for τ1 = τ2 = 1. No minimum of the determinant appears for these specific values of τ1 and τ2

functions (we can here employ the same treatment as described in detail for the
previous application).

6.4.2 An Alternative Treatment by Means of Eisenstein Series

An alternative way of treating the general case is the following (see [175]). The in-
homogeneity (the q term here) is taken care of by the simplest (but hardly economic)
method of performing a binomial expansion of the sort [126]

∞∑

k=0

�(s + k)

k!�(s) qkE(z, s + k), (6.80)

where E(z, s) is an Eisenstein series (see, for instance, Lang [176] or Kubota [177]),
which is obtained from F(s;a, b, c;0) by doing the substitution

2z= a + iu, c= C
u

2
, (6.81)

so that

E(z, s)=
∞∑

m,n=0

′
(u/2)s |m+ nz|−2s , (6.82)

and has the series expansion

E(z, s) = 2ζ(2s)+ 2
√
π(u/2)1−s �(1− s/2)ζ(2s − 1)

�(s)
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Fig. 9 Top: Plot of the square root of the determinant det1/2D0 and of its derivative as a function of
V0, for τ1 = 1, τ2 = 10. Two extrema of the determinant appear for these values of τ1 and τ2. The
roots of the derivatives are obtained for V0 = 0.48 and V0 = 5.36. Bottom: The same for τ1 = 1,
τ2 = 30. The two extrema of the determinant have now moved to V0 = 0.31 and V0 = 17.52

+ 2
∞∑

m=1

∑

n�=0

eiπmna

(
2|n|
mu

)s−1/2

Ks−1/2(πmnu/2). (6.83)

It is important to notice, however, that when doing things in this last way the
final result is expressed in terms of three infinite sums, while in the first general
procedure only one infinite sum appears (together with a finite sum, for every index
n, over the divisors of n), and it is quickly convergent. Notice, moreover, how the
d-term in the exponent in (4.32), when expanded in power series, gives rise to the
binomial sum corresponding to the last treatment. The advantage of the use of the
method developed here stemming from (4.32), seems clear (expanding a negative
exponential is in general computationally disastrous).
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Fig. 10 Top: Plot of the square root of the determinant and of its derivative as a function of V0, for
τ1 = 0.1, τ2 = 1. Here only one extremum of the determinant appears, at V0 = 5.33. Bottom: The
same for τ1 = 0.01, τ2 = 1. The extremum persists and has now moved to V0 = 19.68

To summarize this section, two problems were singularized out in [175] as the
main difficulties that appear in the quantization of (2 + 1)-dimensional gravity
through the Wheeler–De Witt equation:

1. To give grounds for the choice of the specific operator ordering of the Hamil-
tonian constraint which leads to the Wheeler–De Witt equation of the quantized
system.

2. To understand the functional dependence of the determinant det1/2 D0 in terms
of the relevant variables and to obtain its extrema as a function of the potential
V0.

With the use of zeta-function techniques, we are here able to solve the second one,
by means of a completely consistent approximation. We should also mention that
the advantages of the present method with respect to the use of binomial expansions
and the Eisenstein series are quite conclusive.
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Apart from the applications that we have here considered—directly dealing with
the generalization of the Chowla–Selberg formula derived above—in general our
new expression will be certainly useful in many situations involving massive theo-
ries, finite temperatures or a chemical potential in a compactified spacetime. This
is the meaning to be attributed to the constant q in the more usual mathematical-
physics problems. As for the possible mathematical applications, the introduction
of the constant q into the Epstein function extends the scope of the applications al-
ready envisaged by Chowla and Selberg, in the sense that now one is perfectly able
to develop a sort of classification of the problems according to the different values
of q .

6.5 Spectral Zeta Function for Both Scalar and Vector Fields
on a Spacetime with a Noncommutative Toroidal Part

We shall now consider the physical example of a quantum system consisting of
scalars and vector fields on a D-dimensional noncommutative manifold, M , of the
form R

1,d⊗
T
p
θ (thus D = d + p + 1). Tp

θ is a p-dimensional noncommutative
torus, its coordinates satisfying the usual relation: [xj , xk] = iθσjk . Here σjk is a
real nonsingular, antisymmetric matrix of ±1 entries, and θ is the noncommutative
parameter.

This physical system has attracted much interest recently, in connection with M-
theory and with string theory [178–184], and also because of the fact that those are
perfectly consistent theories by themselves, which could lead to brand new physical
situations. It has been shown, in particular, that noncommutative gauge theories
describe the low energy excitations of open strings on D-branes in a background
Neveu–Schwarz two-form field [178–180].

This interesting system provides us with a quite non-trivial case where the for-
mulas derived above are indeed useful. For one, the zeta functions corresponding to
bosonic and fermionic operators in this system are of a different kind, never consid-
ered before. And, moreover, they can be most conveniently written in terms of the
zeta functions in Sect. 4.2. What is also nice is the fact that a unified treatment (with
just one zeta function) can be given for both cases, the nature of the field appear-
ing there as a simple parameter, together with those corresponding to the numbers
of compactified, noncompactified, and noncommutative dimensions of the space-
time.

6.5.1 Poles of the Zeta Function

The spectral zeta function for the corresponding (pseudo-)differential operator can
be written in the form [185]
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ζα(s) = V

(4π)(d+1)/2

�(s − (d + 1)/2)

�(s)

∑

�n∈Zp

′
Q(�n)(d+1)/2−s

· [1+�θ2−2αQ(�n)−α](d+1)/2−s
, (6.84)

where V =Vol(Rd+1), the volume of the non-compact part, and Q(�n)=∑p

j=1ajn
2
j ,

a diagonal quadratic form, being the compactification radii Rj = a
−1/2
j . Moreover,

the value of the parameter α = 2 for scalar fields and α = 3 for vectors, distin-
guishes between the two different fields. In the particular case when we set all the
compactification radii equal to R, we obtain:

ζα(s) = V

(4π)(d+1)/2

�(s − (d + 1)/2)

�(s)Rd+1−2s

∑

�n∈Zp

′
I (�n)(d+1)/2−s

· [1+�θ2−2αR2αI (�n)−α](d+1)/2−s
, (6.85)

being now the quadratic form: I (�n)=∑p

j=1 n
2
j .

After some calculations, this zeta function can be written in terms of the Epstein
zeta function of Sect. 4.2, with the result:

ζα(s) = V

(4π)(d+1)/2

∞∑

l=0

�(s + l − (d + 1)/2)

l!�(s)
(−�θ2−2α)l

· ζ
Q,�0,0

(
s + αl − (d + 1)/2

)
, (6.86)

which reduces, in the particular case of equal radii, to

ζα(s) = V

(4π)(d+1)/2Rd+1−2s

∞∑

l=0

�(s + l − (d + 1)/2)

l!�(s)
(−�θ2−2α)l

· ζE
(
s + αl − (d + 1)/2

)
, (6.87)

where we use here the notation ζE(s)≡ ζ
I,�0,0(s), e.g., the Epstein zeta function for

the standard quadratic form.
The pole structure of the resulting zeta function deserves a careful analysis. It

differs, in fact, very much from all cases that were known in the literature till now.
This is not difficult to understand, from the fact that the pole of the Epstein zeta
function at s = p/2− αk + (d + 1)/2=D/2− αk, when combined with the poles
of the gamma functions, yields a very rich pattern of singularities for ζα(s), on
taking into account the different possible values of the parameters involved. The
pole structure is straightforwardly found from the explicit expressions for the zeta
functions in Sect. 4.2.

Having already given the formula (6.86) above—that contains everything needed
to perform such calculation of pole position, residua and finite part—for its impor-
tance for the calculation of the determinant and the one-loop effective action from
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Table 5 Pole structure of the zeta function ζα(s), at s = 0, according to the different possible

values of d and D (2̇α means multiple of 2α)

For d = 2k

{
if D �= 2̇α =⇒ ζα(0)= 0,

if D = 2̇α =⇒ ζα(0)= finite.

For d = 2k− 1

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

if D �= 2̇α

{
finite, for l ≤ k

0, for l > k

}
=⇒ ζα(0)= finite,

if D = 2αl

{
pole, for l ≤ k

finite, for l > k

}
=⇒ ζα(0)= pole.

the zeta function, we will here start by specifying what happens at s = 0. Remark-
ably enough, a pole appears in many cases (depending on the values of the different
parameters). This will also serve as an illustration of what one has to expect for
other values of s. The general case will be left for the following subsection.

It is convenient to classify the different possible subcases according to the values
of d and D = d + p+ 1. We obtain, at s = 0, the pole structure given in Table 5.

Here l is the summation index in (6.86). The appearance of a pole of the zeta
function ζα(s), for both values of α, at s = 0 is, let us repeat, an absolute novelty,
bound to have important physical consequences for the regularization process. It is
necessary to observe, that this fact is not in contradiction with the well known the-
orems on the pole structure of a (elliptic) differential operator [186]. The situation
that appears in the noncommutative case is completely different. (i) To begin with,
we do not have any longer a standard differential operator, but a strictly pseudo-
differential one, from the beginning. (ii) Moreover, the new spectrum is not per-
turbatively connected (for θ → 0) with the corresponding one for the commutative
case.

6.5.2 Explicit Analytic Continuation of ζα(s), α = 2,3,
in the Complex s-Plane

Substituting the corresponding formula, from the preceding section, for the Epstein
zeta functions in (6.86), we obtain the following explicit analytic continuation of
ζα(s) (α = 2,3), for bosonic and fermionic fields, to the whole complex s-plane:

ζα(s) = 2s−dV
(2π)(d+1)/2�(s)

∞∑

l=0

�(s + l − (d + 1)/2)

l!�(s + αl − (d + 1)/2)

(−2α�θ2−2α)l

·
p−1∑

j=0

(detAj)
−1/2

[
πj/2a

−s−αl+(d+j+1)/2
p−j �

(
s + αl − (d + j + 1)/2

)
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· ζR(2s + 2αl − d − j − 1)+ 4πs+αl−(d+1)/2a
−(s+αl)/2−(d+j+1)/4
p−j

·
∞∑

n=1

∑

�mj∈Zj

′
n(d+j+1)/2−s−αl( �mt

jA
−1
j �mj

)(s+αl)/2−(d+j+1)/4

·K(d+j+1)/2−s−αl
(

2πn
√
ap−j �mt

jA
−1
j �mj

)]
. (6.88)

As discussed in the previous subsection in detail, the non-spurious poles of this
zeta function are to be found in the terms corresponding to j = p − 1. With the
knowledge we have gained from the analytical continuation of the Epstein zeta
functions in Sect. 6.2, the final analysis can be here completed at once. Note that
the situation here corresponds to the diagonal case with c1 = · · · = cp = q = 0.

To be remarked again is that, what we have in the end, by using our method, is an
exponentially fast convergent series of Bessel functions together with a first, finite
part, where a pole (simple or double, as we shall see) may show up, for specific
values of the dimensions of the different parts of the manifold, depending also on
the nature (scalar vs. vectorial) of the fields (the value of α, see Table 5 and (6.88)).

To summarize the discussion at the end of the preceding section, the pole struc-
ture of (6.88) is in fact best seen from (6.86) (for s = 0 it has been analyzed in
Table 5 already). For a fixed value of the summation index l, the contribution to the
only pole of the zeta function ζE(s+αl− (d+ 1)/2), at s =D/2−αl, comes from
the last term of the j -sum only, namely from j = p − 1. It is easy to check that it
yields the corresponding residuum (4.46). This corresponds to the second sum in
(6.88). Combined now with the poles of the gamma functions, and taking into ac-
count the first series in l, this yields the following expression for the residua of the
zeta function ζα(s) at the poles s =D/2− αl, l = 0,1,2, . . .

Res ζα(s)
∣∣
s=D/2−αl =

2p/2−dπ(p−d−1)/2V

�(p/2)
(detAp)

−1/2 (−�θ2−2α)l

l! ,

· �(p/2+ (1− α)l)

�(D/2− αl)
, l = 0,1,2, . . . . (6.89)

Actually, depending on D and p being even or odd, completely different situations
arise, for different values of l: from the disappearance of the pole, giving rise to a
finite contribution, to the appearance of a simple or a double pole. We shall distin-
guish four different situations and, to simplify the notation, we will denote by U

the whole factor in the expression (6.89) for the residuum, that multiplies the last
fraction of two gamma functions (in short, Res ζα =U�1/�2).

1. For D − 2αl =−2h, h= 0,−1,−2, . . .
a. for p/2+ (1− α)l, l �= 0,−1,−2, . . . =⇒ finite, Res ζα =−h!U�(p/2+

(1− α)l);
b. for p = 2(α − 1)l − 2k, k = 0,−1,−2, . . . =⇒ pole, Res ζα = (h!/k!)U .

2. For D − 2αl �= −2h, h= 0,−1,−2, . . .
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Table 6 General pole structure of the zeta function ζα(s), according to the different possible
values of D and p being odd or even. In italics, the type of behavior corresponding to lower values
of l is quoted, while the behavior shown in roman characters corresponds to larger values of l

p\D Even Odd

odd (1a) pole / finite (l ≥ l1) (2a) pole / pole

even (1b) double pole / pole (l ≥ l1, l2) (2b) pole / double pole (l ≥ l2)

a. for p/2+ (1− α)l, l �= 0,−1,−2, . . . =⇒ pole, Res ζα = U�(p/2+ (1−
α)l)/�(D/2+ αl);

b. for p = 2(α − 1)l − 2k, k = 0,−1,−2, . . . =⇒ double pole, Res ζα =
(−1/k!)U/�(D/2+ αl).

Note that we here just quote the generic situation that occurs for l large enough in
each case. For instance, if p = 2 a double pole appears for l = 1,2, . . . . For p = 4,
a double pole appears for l = 1,2, . . . , if α = 3, but only for l = 2,3, . . . , if α = 2.
For p = 6, a double pole appears for l = 2,3, . . . , if α = 3, but only for l = 3,4, . . .,
if α = 2, and so on. The case with both D and p even (what implies d odd) is the
most involved one. For p = 2 and D = 4, for instance, there is a transition from
a pole for l = 0 corresponding to the zeta function factor, to a pole for l = 1 and
higher, corresponding to the gamma function in the numerator (the compensation of
the pole of the zeta function factor with the one coming from the gamma function in
the denominator prevents the formation of a double pole). In any case, the explicit
analytic continuation of ζα(s) given by (6.88) contains all the information one needs
for calculating the poles and corresponding residua in a straightforward way.

The pole structure can be summarized as in Table 6.
An application of these formulas to the calculation of the one-loop partition func-

tion corresponding to quantum fields at finite temperature, on a noncommutative flat
spacetime, can be found in [187].



Chapter 7
Miscellaneous Applications Combining Zeta
with Other Regularization Procedures

In this chapter the following applications of the method of zeta-function regulariza-
tion will be described: (i) First, some aspects of the comparison that has been es-
tablished recently by Fujikawa between the generalized Pauli–Villars regularization
and the covariant regularization of composite current operators will be investigated.
(ii) Second, a calculation of the Casimir energy for the transverse oscillations of a
piecewise uniform closed string will be performed. The string consists of two parts,
each having in general different tension and mass density but adjusted in such a
way that the velocity of sound always equals the velocity of light. This model was
introduced by I. Brevik and H.B. Nielsen. For the calculation, a nice modification
of the method of the zeta function as described till now will be necessary, in the
sense that it will be combined with some basic theorems of complex analysis. Also,
a comparison with the results obtained by means of the introduction of a cutoff will
be established which provides additional physical insight to the zeta function pro-
cedure. Hadamard regularization is also discussed, as a very useful auxiliary tool
to the zeta method, in dealing with additional infinities and physical cut-offs. This
aspect of comparing zeta-function analytic continuation with other regularization
procedures is the common point of the examples studied here.

7.1 Relation Between the Generalized Pauli–Villars
and the Covariant Regularizations

In this section, some aspects of the comparison that has been established recently
by Fujikawa between the generalized Pauli–Villars regularization and the covariant
regularization of composite current operators will be investigated, in particular, the
question of the choice of regulator, satisfying appropriate conditions [188]. The no-
tion of zeta function of the operators (see Chap. 1) is basic in the discussion. While
developing the method, some basic formulas that are useful in physical applications
of the theory will be given.

The aim of this section is to show how deeply the zeta function regularization
method pervades all the different, alternative regularization procedures that are be-
ing used in gauge theory. We see this in the example provided by the interesting
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scheme proposed by Frolov and Slavnov of a generalized Pauli–Villars regulariza-
tion of chiral gauge theory [55] (see also [189, 190]). As clearly pointed out by
K. Fujikawa, a formal introduction of an infinite number of regulator fields in the
Lagrangian does not specify the method completely and a most fundamental issue
in this new regularization is to define how to sum over the contributions coming
from the infinite number of regulator fields [191]. By reformulating the generalized
Pauli–Villars regularization as a regularization of composite current operators, Fu-
jikawa has proven that an explicit choice for the sum of contributions of the infinite
fields results, essentially, in a corresponding specific selection of a regulator, in the
language of covariant regularization [192, 193]. (Let us recall that the calculational
scheme of covariant anomalies was introduced as an original, conveniently simple
method in the path integral formulation of anomalous identities but has not been
implemented at the Lagrangian level.)

The chiral gauge theory to regularize is characterized by the Lagrangian

L= i

2
ψ̄/D(1+ γ5)ψ, (7.1)

with

/D = γ μ
(
∂μ − igAμ(x)

)= γ μ
(
∂μ − igAa

μ(x)T
a
)
, (7.2)

T
a being the Hermitian generators of a compact semi-simple group: [Ta,Tb] =

f abc
T
c , tr(Ta

T
b)= 1

2δ
ab . The gauge field Aμ(x) is treated mainly as a background

field. The starting point of the generalized Pauli–Villars regularization is to intro-
duce two sets of infinite dimensional mass matrices, M and M ′, in the following
way

L= iψ̄/Dψ − ψ̄LMψR − ψ̄RM
†ψL + iφ̄/Dφ − φ̄M ′φ, (7.3)

where ψR = 1
2 (1+ γ5)ψ , ψL = 1

2 (1− γ5)ψ , and

M =

⎛

⎜⎜⎜⎝

0 2 0 0 · · ·
0 0 4 0 · · ·
0 0 0 6 · · ·
...

...
...

...
. . .

⎞

⎟⎟⎟⎠�, M ′ =

⎛

⎜⎜⎜⎝

1 0 0 0 · · ·
0 3 0 0 · · ·
0 0 5 0 · · ·
...

...
...

...
. . .

⎞

⎟⎟⎟⎠�, (7.4)

� being a parameter with dimensions of mass. Correspondingly, the fields ψ and φ

have an infinite number of components, each of them being a conventional anticom-
muting (resp. commuting) four-component Dirac field. The details of the procedure
(with explicit calculations and examples) can be found in the references mentioned
above. Let us here only recall the essential steps that have lead to the connection of
this regularization with Fujikawa’s one. The main issue is to perform the operator
expansion

1

i/D
= 1

i/∂ + g/A
= 1

i/∂
+ 1

i/∂
(−g/A)

1

i/∂
+ 1

i/∂
(−g/A)

1

i/∂
(−g/A)

1

i/∂
+ · · · , (7.5)
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and, after rewriting (7.3) as

L= iψ̄Dψ + iφ̄D′φ, (7.6)

with

D ≡ /D + iM
1+ γ5

2
+ iM† 1− γ5

2
, D′ ≡ /D + iM ′, (7.7)

the additional expansions

1

D = 1

D†D
D† = 1

/D2 + 1

2
M†M(1+ γ5)+ 1

2MM†(1− γ5)

D†

=
(

1+ γ5

2

1

/D2 +M†M
+ 1− γ5

2

1

/D2 +MM†

)

·
(
/D− iM† 1+ γ5

2
− iM

1− γ5

2

)
,

1

D′ =
1

(D′)†D′
(
D′
)† = 1

/D2 + (M ′)2

(
/D − iM ′).

(7.8)

With this, one obtains [191]

tr

[
−iTaγ μ

(
1

D − 1

D′

)
δ(x − y)

]

= 1

2
tr

[
−iTaγ μ

∞∑

n=−∞

(−1)n/D2

/D2 + (n�)2

1

/D
δ(x − y)

]

+ 1

2
tr

[
−iTaγ μγ5

1

/D
δ(x − y)

]

= 1

2
tr

[
T
aγ μf

(
/D2/�2) 1

i/D
δ(x − y)

]

+ 1

2
tr

[
T
aγ μγ5

1

i/D
δ(x − y)

]
, (7.9)

where the function f (x2) is defined as the doubly infinite sum

f
(
x2)≡

+∞∑

n=−∞

(−1)nx2

x2 + (n�)2
= πx/�

sinh(πx/�)
. (7.10)
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Under the viewpoint of covariant regularization [192, 193], the function f (x2) is
simply to be considered as a regulator that satisfies the conditions

f (0) = 1,

x2f ′
(
x2
) = 0, for x→ 0,

f (+∞) = f ′(+∞)= f ′′(+∞)= · · · = 0,

x2f ′
(
x2
)→ 0, for x→∞.

(7.11)

Thus, following Fujikawa [191], the essence of the generalized Pauli–Villars reg-
ularization (7.3) is summarized in terms of the following relations for the regularized
currents:
〈
ψ̄(x)Taγ μ 1+ γ5

2
ψ(x)

〉

PV

= 1

2
lim
y→x

{
tr

[
T
aγ μf

(
/D2/�2) 1

i/D
δ(x − y)

]
+ tr

[
T
aγ μγ5

1

i/D
δ(x − y)

]}
,

〈
ψ̄(x)γ μ 1+ γ5

2
ψ(x)

〉

PV

= 1

2
lim
y→x

{
tr

[
γ μf

(
/D2/�2) 1

i/D
δ(x − y)

]
+ tr

[
γ μγ5

1

i/D
δ(x − y)

]}
, (7.12)

〈
ψ̄(x)γ μγ5

1+ γ5

2
ψ(x)

〉

PV

= 1

2
lim
y→x

{
tr

[
γ μγ5f

(
/D2/�2) 1

i/D
δ(x − y)

]
+ tr

[
γ μ 1

i/D
δ(x − y)

]}
,

〈
ψ̄(x)

i

2

↔
/D

1+ γ5

2
ψ(x)

〉

PV

= 1

2
lim
y→x

tr
[
f
(
/D2/�2)δ(x − y)

]
.

All the one-loop diagrams are generated from the (partially) regularized currents in
(7.12). In other words, (7.11) and (7.12) retain all the information encoded in the
generalized Pauli–Villars regularization (7.3). These equations summarize, there-
fore, the basic results of the new method.

Let us now discuss the basic point in this comparison of the generalized Pauli–
Villars and the covariant regularization [188]. If we look at the final expressions
(7.12) in the sense that to regularize just means having to choose a specific form
for the regulator function f (x2), with the only requirement that it has to satisfy the
conditions (7.11)—what is indeed a quite common point of view—the amount of
possibilities that one has in hand for choosing f (x2) is literarily infinite. As has
been clearly explained in the first chapter (see also [194])—and has been illustrated
through several examples—even if we restrict ourselves just to the class of what can
be called ‘analytic continuation procedures’, this number is still infinite. However
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(and this is what makes the zeta-function method emerge as unique among all oth-
ers), if we believe in the rationale, i.e. in the mathematical consistency step by step
of the above derivation—starting from the generalized Pauli–Villars setup—then
we do not have available any more the possibility to choose for the doubly infinite
sum (7.10) any arbitrary regulator f (x2) just satisfying the conditions (7.11). This
would be equivalent to throwing away all the previous, well constructed derivation
and to starting, as an Ansatz, from (7.12) with f (x2) any convenient regulator. (Of
course, one can think and proceed in such way, but this is not what the generalized
Pauli–Villars regularization is telling us to do.)

And thus we come to the crucial idea: by proceeding consistently one arrives at
(7.9), but the double sum here is a perfectly well-defined object and not ‘any con-
venient regulator f (x2)’. In fact, there is a precise, rigorous mathematical theory
underlying all the processes of calculation of determinants and traces of differential
operators of the type that appear in gauge theories, which starts by introducing the
concept of zeta function of the operator (see Chap. 1, last section). Of course, as
we have seen, this theory is not without exceptions and some technical problems
can appear. But this is not the case in our discussion here: the whole derivations in
[191] and [55] satisfy the general premises of the theory, and the expression (7.10)
as a sum of an infinite number of terms is the unique result prescribed by this the-
ory, in that particular case. In fact, (7.10) is just a particularly simple example of
the general expressions that are obtained by making use of the zeta-function regu-
larization theorem [48, 51, 109] (see Chap. 2). In the case of a series of the type∑∞

n=0[a(n+ c)α+q]−s , one proceeds by using the Mellin transform, by expanding
the exponent into a power series and, finally, by interchanging the order of summa-
tion of the two infinite series, as follows (the systematic procedure can be found in
Chap. 2):

∞∑

n=0

[
a(n+ c)α + q

]−s = 1

�(s)

∞∑

n=0

∫ ∞

0
dt ts−1 exp

{−[a(n+ c)α + q
]
t
}

= 1

�(s)

∞∑

n=0

∫ ∞

0
dt

∞∑

m=0

(−1)m

m!
[
a(n+ c)α

]m
tm+s−1e−qt

�
∞∑

m=0

(−1)m�(m+ s)

m!�(s)qs

(
a

q

)m

ζH (−αm,c)+�. (7.13)

In this way one obtains the analytical continuation of the original sum, which is de-
fined only for Re s > s0 (s0 is the abscissa of convergence), to the whole complex
s-plane, as a meromorphic function that is given, in general, under the form of a
series (convergent or asymptotic) of ordinary (Riemann or Hurwitz) zeta functions.
The non-trivial step in this process is the commutation of the order of the sum-
mations, that has originated multiple errors in the physical literature [10, 11, 14].
Such commutations involve non-simple contour integrations on the complex plane,
as shown before. This is how additional contributions appear, denoted in (7.13) by
� (the whole procedure is extensively described in Chaps. 2 and 3 of this book).
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To summarize, if one adheres to this theory then there is no possible second
interpretation of the doubly infinite sum (7.10). In fact, the expression for f (x2) is
just a particular case of the formulas above. To wit

f
(
x2) =

+∞∑

n=−∞

(−1)nx2

x2 +�2n2

= x2
[∑

n=2k

(
x2 +�2n2)−1 −

∑

n=2k+1

(
x2 +�2n2)−1

]

= x2
[

1

2
g

(
x

2

)
− g(x)

]
, (7.14)

with

g(x)≡
+∞∑

n=−∞

(
x2 +�2n2)−1 = π

�x
+ 4π

�
√
�x

∞∑

n=1

√
nK1/2(2πnx/�), (7.15)

which is the particular case c= s = 1, a =�2, q = x2, of (2.93), so that

f
(
x2)= π

(
2x

�

)3/2 ∞∑

n=1

√
n
[
K1/2(πnx/�)−√2K1/2(2πnx/�)

]
. (7.16)

And from K1/2(z)=
√

π
2z e

−z we get, finally,

f
(
x2)= 2πx

�

∞∑

n=1

(
e−πx/�

1− e−πx/�
− e−2πx/�

1− e−2πx/�

)
= πx/�

sinh(πx/�)
. (7.17)

This calculation is certainly simple. It can be extended to all similar expression
that appear in this regularization, where x stands for an operator, what means that
analytical continuation must be performed in a nested way (but this is just perfectly
correct within the method). According to the previous discussion the exercise above
has to be considered as just the visible top of a rather huge iceberg, e.g., as a very
particular case of the powerful procedure which consists in defining the traces and
determinants of the differential operators that appear in gauge theories in a rigorous
way, by means of the introduction of the corresponding zeta function (Chap. 1).

7.2 The Casimir Energy Corresponding to a Piecewise Uniform
String

In this section, the Casimir energy for the transverse oscillations of a piecewise
uniform closed string is calculated. The string consists of two parts (that we will call
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I and II), each having in general different tension and mass densities, but adjusted
in such a way that the velocity of sound always equals the velocity of light. This
model was introduced by I. Brevik and H.B. Nielsen, and here we will describe new
developments of the theory, in particular, a quite simple regularization of the energy
density. Using the technique introduced by N.G. van Kampen, B.R.A. Nijboer, and
K. Schram, the Casimir energy is written as a contour integral, from which the
energy can be readily calculated, for arbitrary length s = LII/LI and tension x =
TI /TII ratios. Also, the finite temperature version of the theory will be constructed
(see also [195, 196]).

Consider, in Minkowski space, a closed string of length L composed of two
parts, of lengths LI and LII , respectively [36]. The tensions, TI and TII , and mass
densities, ρI and ρII , corresponding to the two pieces are in general different, but
they will be required to satisfy the condition that the sound velocity be always equal
to the light velocity, i.e.

vs = (TI /ρI )
1/2 = (TII/ρII)

1/2 = c. (7.18)

The purpose here is to study the Casimir energy associated with the transverse oscil-
lations of this piecewise uniform string. It turns out that this model is, at least from a
formal point of view, quite an interesting one. Some calculations can be carried out
without encountering the annoying divergences in the regularized result, which so
often plague Casimir calculations when the geometry is nontrivial (curved boundary
surfaces, typically). A basic point in this context is condition (7.18), which renders
the string relativistically invariant, and is analogous to requiring the refractive in-
dex (εμ)1/2 to be equal to unity. In this sense, it is basically of the same kind as
the color medium proposed by T.D. Lee [197] for the region exterior to a hadron.
If, by contrast, condition (7.18) were abandoned, then divergence problems would
certainly show up in the formalism.

From a physical point of view, there is founded hope that this simple model can
help us to understand the issue of the energy of the vacuum state in two-dimensional
quantum field theories in general, a quite compelling goal. The model was intro-
duced by Brevik and Nielsen in an earlier paper [36] (see also the recent paper
[196]), to which the reader is referred for specific details [195]. There, the zero-
point energy was regularized by means of an exponential cutoff. It was also pointed
out, that the use of more formal regularization procedures—such as the ζ -function
method—might lead to delicate problems; in particular, that (a naively-minded,
straightforward) use of the Riemann ζ -function could lead to an incorrect result.
This problem was reconsidered and solved in an elegant way by Li, Shi, and Zhang
[37]. The final results obtained in [37] were in agreement with those of [36]. The
whole situation concerning the use of the zeta function regularization procedure in
this and similar cases is discussed in [194] in great detail.

The main results that will be described in this section are the following.

1. The Casimir energy at zero temperature, T = 0, will be found as a double func-
tion of the length ratio s ≡ LII/LI , for any value of s, and of the tension ratio
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x ≡ TI /TII , for arbitrary x. To compare, in Ref. [36] the solution was given ex-
plicitly for a few lowest integer values of s and a few selected values of x, only
(and this after considerable work). To achieve our goal, we shall employ here
a quite elegant technique, based on a well known theorem of complex analysis,
and which was first introduced—in a context related to the present one—by van
Kampen, Nijboer, and Schram some years ago [198]. It consists in rewriting the
Casimir energy under the form of a very simple contour integral. This technique,
when applied to the present problem must be used with some care, in order to
avoid a nonphysical divergence in the form of a surface term. However, as we
shall see below, the suppression of the surface term can be done consistently,
through a proper choice of the dispersion function for the system.

2. When using this technique, it becomes unnecessary to take the degeneracies of
the eigenfrequencies of the system into account explicitly. This comes as a useful
bonus. The reason is that the degeneracies precisely correspond to the multiplic-
ities of the zeros which appear in the argument principle (cf. (7.23) below). This
fact makes the final theory much more simple, as compared with the original
procedure of finding and counting the roots of the dispersion equation, that had
been used in Ref. [36] (see also [37]).

3. The Casimir energy for the string is calculated for finite temperature, T �= 0,
also, and the analytic approximation for high T is worked out. This high temper-
ature limit provides an immediate check of the procedure, since it is easy to find
analytically.

7.2.1 The Zero Temperature Theory

We shall use the same notation as in Ref. [36]. The total length of the string is
L= LI +LII . Denoting by x the ratio between the two tensions,

x = TI

TII
, (7.19)

the dispersion equation can be written as

4x

(1− x)2
sin2
(
ωL

2c

)
+ sin

(
ωLI

c

)
sin

(
ωLII

c

)
= 0. (7.20)

The physical requirements behind this equation are (i) continuity of the transverse
displacements across the two junctions, and (ii) continuity of the transverse elastic
forces across the junctions. Since (7.20) is invariant under the substitution x→ 1/x,
we can simply take 0 ≤ x ≤ 1 in what follows (the case x = 0 must be considered
with some care).

The Casimir energy of the system, E, is constructed such that it describes the
nonhomogeneity of the string only, and is thus required to vanish for a uniform
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Fig. 11 Integration contour
in the complex ω plane

string. Therefore, E is equal to the zero-point energy EI+II for the two parts, minus
the zero-point energy for the uniform string, i.e.

E =EI+II −Euniform. (7.21)

It should be noted that, when subtracting off Euniform, it is completely irrelevant
whether the uniform string is composed of type I or type II material. The physical
reason for this is that the frequency spectrum for the uniform string is independent
of the type of material, as long as the velocity of sound is the same, and thus it is in
the present case a consequence of (7.18).

The zero-point energy of the composite string is

EI+II = �

2

∑
ωn, (7.22)

where the sum goes over all eigenstates, with account to their degeneracy. Stationar-
ity of the oscillating system implies that all the eigenfrequencies ωn have to be real.
We can let all the ωn be positive, left-moving waves being associated with negative
wave numbers (not frequencies). And here comes the first important idea: the sum
(7.22) can be written in the form of a contour integral by means of a well known
mathematical theorem called the argument principle [131, 199]. It states that any
meromorphic function satisfies the equation

1

2πi

∮
ω

d

dω
lng(ω)dω=

∑
ω0 −

∑
ω∞, (7.23)

where ω0 denotes the zeros and ω∞ the poles of g(ω) lying inside the integration
contour as shown in Fig. 11. The argument principle, a form of Cauchy’s theorem.
In the end, the radius R of the contour in (7.23) is allowed to go to infinity (as is
usually the case for theorems of this kind on the complex plane). The multiplicity
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of the zeros, as well as that of the poles, are automatically taken care of by the two
sums in (7.23). The argument principle was first applied to the Casimir theory (in
the standard configuration with two parallel plates) by van Kampen, Nijboer, and
Schram [198].

When applying the argument principle to our present problem, we first notice
that the appropriate dispersion function g(ω) must essentially be the function on the
left hand side of (7.20)—but it can be modified by a factor not depending on ω, e.g.,
an arbitrary function of x. But this function g(ω) has no poles, therefore, the last
term in (7.23) vanishes and thus the crosses on the real axis in Fig. 11 refer to the
zeros of g(ω) only. As in Ref. [36] we introduce the function

F(x)= 4x

(1− x)2
, (7.24)

and the variable

s = LII

LI

, (7.25)

to denote the ratio of the lengths of the two pieces of the string. For definiteness we
shall take LI to be the smaller of the two pieces, so that s ≥ 1. For the dispersion
function of the composite system, we now make the Ansatz:

g(ω)= F(x) sin2[(s + 1)ωLI /(2c)] + sin(ωLI /c) sin(sωLI /c)

F (x)+ 1
(7.26)

(see the remarks following (7.29) and (7.32) below). For given values of x and of the
total length L, this expression is invariant under the substitution s→ 1/s. Thus, the
above restriction to values of s ≥ 1 represents no loss in generality. By making use
of the argument principle, for the composite system we have the zero point energy

EI+II = �

4πi

∮
ω

d

dω
ln
∣∣g(ω)

∣∣dω, (7.27)

with the function g(ω) given by (7.26). In writing this expression, we have taken
advantage of the following important correspondence between degeneracy of the
eigenfrequencies ωn and multiplicity of the zeros of g(ω). As noted in connection
with (7.22), it is in general necessary to take into account degeneracies when sum-
ming over all states. In Ref. [36] the degeneracies were actually counted explicitly,
for each branch of the dispersion equation, in the cases of low integer s for which
the solution was worked out. Within the present approach, the handling of the de-
generacy problem is, however, much more easy since the argument principle (7.23),
as we have seen, already takes into account the multiplicity of the zeros. There exists
a one to one correspondence between the degeneracy of the eigenfrequencies and
the multiplicity of the zeros. Therefore, the degeneracies are built in automatically,
in the integral (7.27).
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7.2.2 Regularized Casimir Energy and Numerical Results

In spite of these interesting properties, one should notice that, as it stands, (7.27) is
not a useful expression. In fact, it is not difficult to see that the contribution of the
curved part, the contour of radius R (Fig. 11), to the integral (7.27) grows without
bound as R→∞. Since, in general, in order to take into account all the modes in
the series (7.22), we must send R to infinity, it follows that a divergence is hidden
in the curved contour at infinity. What one has to do is to subtract off the energy of
the uniform string. This corresponds to x = 1 (the value of s need not be specified).
Since F(x)→∞ as x→ 1, we obtain using (7.26)

Euniform = �

4πi

∮
ω

d

dω
ln sin2

[
(s + 1)ωLI

2c

]
dω, (7.28)

and thus the Casimir energy follows from (7.21)

E = �

4πi

∮
ω

d

dω
ln

∣∣∣∣
F(x)+ sin(ωLI /c) sin(sωLI /c)

sin2[(s+1)ωLI /(2c)]
F(x)+ 1

∣∣∣∣dω. (7.29)

It is easy to see that when the two pieces have the same length, LI = LII (i.e., s = 1),
then E = 0, irrespective of the value of x. This is just as it should—according to the
detailed considerations in Ref. [36]—a fact that actually was the reason behind our
particular choice (7.26) for the dispersion function. Notice also, as a corollary, that
(7.29) yields E = 0 when x = 1.

The contribution from the semicircle of Fig. 11 to the integral in (7.29) is now
seen to vanish in the limit R→∞, and the remaining integral along the imaginary
axis (ω= iξ ) is integrated by parts, while keeping R finite and taking advantage of
the symmetry of the integrand about the origin. We get

E = − �

2π
R ln

∣∣∣∣
F(x)+ sinh(RLI /c) sinh(sRLI /c)

sinh2[(s+1)RLI /(2c)]
F(x)+ 1

∣∣∣∣

+ �

2π

∫ R

0
ln

∣∣∣∣
F(x)+ sinh(ξLI /c) sinh(sξLI /c)

sinh2[(s+1)ξLI /(2c)]
F(x)+ 1

∣∣∣∣dξ. (7.30)

Here, the boundary term is seen to vanish when R→∞, and thus we obtain, finally,

E = �

2π

∫ ∞

0
ln

∣∣∣∣
F(x)+ sinh(ξLI /c) sinh(sξLI /c)

sinh2[(s+1)ξLI /(2c)]
F(x)+ 1

∣∣∣∣dξ. (7.31)

We assume that the total length, L, and the tension ratio, x, are given quantities.
Therefore, F(x) is known, and (7.31) gives E as a function of the length ratio s.
However, this expression is easily calculable on a computer, and we can equally
well give E as a double function of x and s (Fig. 12). As a corollary, we have
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Fig. 12 Three-dimensional plot of the Casimir energy as obtained from any of the two above
expressions for the energy, since both figures are visually undistinguishable. The magnitude
u ≡ EL/(�c) is plotted versus the tension ratio x ∈ [0,1] (first axis) and length ratio s ∈ [0,2]
(second axis). The Casimir energy is generically seen to be negative. Only for equal lengths (s = 1)
is the maximum energy E = 0 attained

checked that, in the special case x→ 0, (7.31) gives results which are in agreement
with the analytic (well known) expression

E =−π�c

24L

(
s + 1

s
− 2

)
(7.32)

derived in Ref. [36].
A remark is in order, concerning our inclusion of the factor F(x)[F(x)+ 1]−1

in (7.26). Had we not introduced this factor in g(ω), namely had we taken

g(ω)= sin2
[
(s + 1)ωLI

2c

]
+ F(x)−1 sin

(
ωLI

c

)
sin

(
sωLI

c

)
, (7.33)

we would have obtained

E =− �

2π

∫ ∞

0
ξ
d

dξ
ln

∣∣∣∣1+
sinh(ξLI /c) sinh(sξLI /c)

F (x) sinh2[(s + 1)ξLI /(2c)]
∣∣∣∣dξ, (7.34)

which means that, for x = 0,

E(x = 0)=− �c

2πLI

∫ ∞

0
t
d

dt
ln

∣∣∣∣
sinh(t) sinh(st)

sinh2[(s + 1)t/2]
∣∣∣∣dt. (7.35)

Thus, (7.34) is valid for the whole range of possible values of x, 0≤ x ≤ 1.
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Fig. 13 Several x-sections of the previous plot are depicted, to show how the energy varies as a
function of the length ratio s, for several fixed values of x, namely x = 0, x = 0.1, x = 0.5, and
x = 0.9, respectively. All curves give the magnitude u≡ EL/(�c) as a function of s in the range
s ∈ [0,5]

As an additional numerical test, by introducing an upper cutoff, K ,

E(K)≡− �c

2πLI

∫ K

0
t
d

dt
ln

∣∣∣∣1+
sinh(t) sinh(st)

F (x) sinh2[(s + 1)t/2]
∣∣∣∣dt, (7.36)

it turns out that for values of K between say K � 30 and K � 104, the result for
E(K) does not change numerically (to 10 digits) and coincides with the value given
by (7.31). This has been checked for the whole range of values of x, 0≤ x ≤ 1, and
s, s ≥ 1. The problem arises if one performs a partial integration in (7.34): then the
resulting first term (i.e., the surface term) turns out to be divergent. In other words,
the cutoff K must be kept. This is the drawback associated with expression (7.34).

As regards the symmetric behavior with respect to the values of s, i.e., the co-
incidence of the results corresponding to s and 1/s, for any s, it is easily seen to
hold for (7.34) explicitly (as for (7.31)). Therefore, our choice above of letting s to
be restricted to values ≥ 1, does not represent any loss in generality. These conclu-
sions are very nice indeed, and give sense to the introduction of the x-dependent
factor in g(ω), and to the final formula (7.31) itself as a very simple, regularized
expression for the Casimir energy. The numerical results are collected in Figs. 12
and 13. Figure 12 is a three-dimensional plot of the Casimir energy as obtained from
(7.36) or (7.31) (both figures are visually undistinguishable). Specifically, it shows
how the magnitude EL/(�c) varies versus x ∈ [0,1] (first axis) and s ∈ [0,2] (sec-
ond axis). The Casimir energy is generically seen to be negative. Only for equal
lengths (s = 1) is the maximum energy E = 0 found, irrespective of the value of x.
In Fig. 13, several x-sections of the previous plot are depicted. It is shown here how
the energy varies as a function of s, for several fixed values of x, corresponding to
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x = 0, x = 0.1, x = 0.5, and x = 0.9, respectively. All of them give the magnitude
EL/(�c) as a function of s for the range s ∈ [0,5]. These figures must be compared
with the one of Ref. [36] where, as mentioned above, the solution (obtained after la-
borious numerical calculation) was given explicitly for a few lowest integer values
of s and a few selected values of x. For low integers s up to s = 7 and corresponding
values for x, we have checked that the results calculated from (7.31) are in agree-
ment with those of Ref. [36]. The advantages of the present procedure are however
unquestionable.

7.2.3 The Finite Temperature Theory

1. General Formalism

Once the T = 0 theory is established, we can readily generalize the situation to
the case of finite temperatures, by means of the substitution [200]

�

∫ ∞

0
dξ −→ 2πkBT

∞∑

n=0

′
, (7.37)

where the prime means that the contribution for n = 0 has to be taken with half
weight. The discrete Matsubara frequencies are ξn = 2πnkBT /�, n = 0,1,2, . . . .
From (7.31) we then get for the Casimir energy at an arbitrary temperature, T ,

E(T )= kBT

∞∑

n=0

′
ln

∣∣∣∣
F(x)+ sinh(ξnLI /c) sinh(sξnLI /c)

sinh2[(s+1)ξnLI /(2c)]
F(x)+ 1

∣∣∣∣. (7.38)

If the string is uniform, x = 1 or F(x)→∞, then (7.38) yields E(T )= 0. This is
just as we would expect, since the Casimir energy is intended to describe the effect
of the inhomogeneity of the string only. Moreover, also the case LI = LII is seen to
yield E(T )= 0, irrespective of the value of x. Both these properties, noted earlier
for the T = 0 theory, do therefore carry over to the case of arbitrary T .

There are two characteristic frequencies in our system:

1. The thermal frequency, ωT , which can be defined by �ωT = kBT . We may ob-
serve that ωT is related to the n = 1 Matsubara frequency ξ1 through ωT =
ξ1/(2π).

2. The geometric frequency ωgeom, associated with the geometry of the string. We
may choose to define ωgeom in terms of LI as fundamental length: ωgeom =
2πc/LI .

There would also be a third characteristic frequency in the problem, if the mi-
crostructure of the string were to be taken into account. It would correspond to
the absorption frequency(ies) in the dispersion equation for an ordinary dielectric
material. But we shall leave out of consideration microstructure effects here. The
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limiting cases of high and low temperatures are conveniently discussed in terms of
the ratio between ωT and ωgeom.

2. High Temperatures

Assume that
ωT

ωgeom
≥ 1. (7.39)

This is the natural condition for applying the high-temperature approximation. Gen-
erally, high temperatures are associated with contributions coming from low Mat-
subara frequencies only. In our case, we have

ξnLI

c
= 4π2n

ωT

ωgeom
� 1, (7.40)

even for the lowest non-vanishing frequency (n = 1), so that sinh(ξnLI /c) �
(1/2) exp(ξnLI /c), etc., in (7.38). The contribution to E(T ) from n ≥ 1, in this
approximation, is accordingly seen to vanish and we are left with just the n = 0
term. The result is

E(T )= kBT

2
ln

∣∣∣∣
F(x)+ 4s/(s + 1)2

F(x)+ 1

∣∣∣∣. (7.41)

The main corrections to this expression come of course from n= 1, and are of order
kBT exp(−2ξ1LI/c). (7.41) is seen to be a classical result, since it is independent
of �. Notice that E(T )≤ 0 always, the equality sign being valid when s = 1, as we
have pointed out above.

Similarly to the considerations done in Ref. [36], we can in pictorial terms asso-
ciate part I of the string with our universe, and part II of it with a mirror universe. If
our universe is small and the mirror universe large we get, since s→∞, the simple
expression

E(T )=−kBT

2
ln
∣∣1+ F(x)−1

∣∣. (7.42)

To get a feeling of the numerical magnitudes involved here, let us first choose LI =
1 µm, in which case ωgeom = 2πc/LI = 1.88 · 1015 s−1. The ratio between the
frequencies ωT and ωgeom becomes then

ωT

ωgeom
= 0.70 · 10−4T , (7.43)

showing that T ≥ 104 K (i.e., 0.86 eV), if the high temperature approximation is to
hold. As another example, let us take the extreme case of LI = 1.62 · 10−33 cm, the
Planck length. Then ωgeom = 1.16 · 1044 s−1, and

ωT

ωgeom
= 1.13 · 10−33T . (7.44)
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This case thus requires very high temperatures, T ≥ 1033 K (i.e., 0.86 · 1020 GeV),
for the high-temperature approximation to be valid.

3. Low Temperatures

This limiting case is characterized by

ωT

ωgeom
� 1, (7.45)

and a large number of Matsubara frequencies comes into play in (7.38). This equa-
tion, as it stands, is not written in a convenient form for performing analytical ap-
proximations when the temperatures are low. Rather often, when the mathematics is
manageable, it is quite useful to exploit the Poisson summation formula, whereby
the series over n can be handled approximately without much trouble. However, in
the present case the logarithmic summand in (7.38) is too complicated to permit an
efficient use of the Poisson formula. At least for practical purposes, the best way to
proceed is to deal directly with the series by means of a computer program, even
in the case of low frequencies. The necessary number of terms of the series can be
added up in a few seconds, to attain any desired precision. A convenient way of
writing the series for low T , for making use of these techniques, is the following:

E(T ) = kBT

{
1

2
ln

∣∣∣∣
F(x)+ 4s/(s + 1)2

F(x)+ 1

∣∣∣∣

+
nT∑

n=1

ln

∣∣∣∣
F(x)+ (1− e−2nb)(1− e−2snb)(1− e−(s+1)nb)−2

F(x)+ 1

∣∣∣∣

}
, (7.46)

where we have called

b= 2πkBT L

�(s + 1)c
, (7.47)

and where, for a given temperature T , the sum can be safely truncated at a value nT
such that e.g. nT b� 10.

Table 7 shows, as an example, how the Casimir energy changes with the temper-
ature in the case when LI = 1 µm, s = 2, and F = 1 (i.e., x = 0.1716, according to
(7.24)). To distinguish between the low and the high temperature regions, the corre-
sponding values of ωT /ωgeom are given. For low but finite temperatures, the values
of the upper limit, nT , occurring in (7.46), chosen as nT = 10/b, are also given.
From the present data, it is clearly seen that the Casimir energy becomes more and
more negative as the temperature increases.

We have studied in this section different issues related with a most convenient
definition of the Casimir energy for the transverse oscillations of a piecewise uni-
form string. We have proven that, in fact, the calculations can be carried out in a
remarkably easy way. Not only because annoying divergences can be completely
avoided in the regularized result, but also because the expressions leading to this
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Table 7 Values of the Casimir energy E for some different values of T , assuming LI = 1 µm,
s = 2, and F = 1

T (K)

0 10 300

ωT /ωgeom 0 6.95 · 10−4 2.09 · 10−2

nT – 365 13

E(erg) −3.3770 · 10−15 −3.3847 · 10−15 −3.3848 · 10−15

T (K)

3 · 103 3 · 104 106

ωT /ωgeom 0.209 2.09 69.5

nT 2 – –

E(erg) −1.18 · 10−14 −1.18 · 10−13 −3.94 · 10−12

finite result are quite simple (see (7.31)), and allow us to calculate the most gen-
eral case (see Fig. 12). Hence, simplicity is one of the main virtues of the model.
Generality of the procedure is another.

Notwithstanding the fact that it is so simple, we do sustain the hope that such
a model can actually help us to understand the issue of the energy of the vacuum
state in two-dimensional quantum field theories, what is quite a compelling goal in
itself. A specific result arising from the above calculations is the Casimir energy
at zero temperature, as an explicit double function of the length ratio s and of the
tension ratio x, for arbitrary s and x. To this end we have devised an elegant tech-
nique, based on the argument theorem of complex analysis. This has led us to a
formula which, when applied to the present problem, leads to a final result free of
any nonphysical divergences (in particular, of the surface divergence that was to be
expected). We have shown in detail, that the suppression of this divergence can be
done consistently, by a proper choice of the dispersion function.

Also, it has become unnecessary to take the degeneracies of the eigenfrequencies
of the system into account explicitly, because the degeneracies precisely correspond
to the multiplicities of the zeros which appear in the argument principle (see (7.23)).
This principle, which is a form of the fundamental Cauchy theorem, is also the key
point in the new applications of zeta regularization to the calculation of heat-kernel
coefficients and determinants of the Laplacian with different boundary conditions
that have been mentioned in Chap. 1 (last section, see [56, 64]). The property men-
tioned above renders the final theory much more simple, as compared with the orig-
inal procedure of finding and counting the roots of the dispersion equation, that had
been used in Ref. [36]. The Casimir energy for the string has been calculated here
at finite temperature T �= 0. The analytic approximation for high T has been ob-
tained, and a formula well suited for numerical calculations in the low T limit has
been given too. The specific meaning of these limits in terms of the characteristic
frequencies of the system has been discussed numerically.
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7.3 Zeta and Hadamard Regularizations

There has been a lot of discussion in recent years on the issue of imposing bound-
ary conditions on quantum fields and its relation with the appearance of infinities
and the subsequent (physical vs. mathematical) regularization plus renormalization
process. This made me quote a famous sentence by Einstein: “As far as the laws
of mathematics refer to reality, they are not certain; and as far as they are cer-
tain, they do not refer to reality”, in one of my papers on this issue [201]. Indeed,
an interesting example of the deep interrelation between Physics and Mathematics
is obtained when trying to impose mathematical boundary conditions on physical
quantum fields. This procedure was recently re-examined with care. Comments on
that and previous analysis are here provided, together with considerations on the
results of the purely mathematical zeta-function method, in an attempt at clarifying
this point. Hadamard regularization will be invoked in order to fill the gap between
the infinities appearing in the QFT renormalized results and the finite values ob-
tained in the literature with other procedures.

The question, phrased by Eugene Wigner as that of “the unreasonable effective-
ness of mathematics in the natural sciences” [202] is an old and intriguing one. It
goes back to Pythagoras and his school (“all things are numbers”), even probably
to the Sumerians, and maybe to more ancient cultures, which left no trace. I. Kant
and A. Einstein contributed also to this idea with profound reflections, and math-
ematical simplicity, and beauty, have remained for many years crucial ingredients
when having to choose among different plausible possibilities. An example of un-
reasonable effectiveness is provided by the regularization procedures in quantum
field theory (QFT) based upon analytic continuation in the complex plane (dimen-
sional, heat-kernel, zeta-function regularization, and the like). That one obtains a
physical, experimentally measurable, and extremely precise result after these weird
mathematical manipulations is, if not unreasonable, certainly very mysterious. For
more one highly honorable physicist those remained always illegal practices. Such
methods are now full justified and blessed with Nobel Prizes, but more because of
the many and very precise experimental checkouts (the effectiveness) than for their
intrinsic reasonableness.

A simple example may be clarifying. Consider the calculation of the zero point
energy (vacuum to vacuum transition, the Casimir energy discussed above [203])
corresponding to a quantum operator, H , with eigenvalues λn: E0 = 〈0|H |0〉 =
1
2

∑
n λn, where the sum over n may involve several continuum and discrete in-

dices. Only in special cases will this sum be convergent. Generically one has a
divergent series, to be regularized by different means. The zeta-function method
[10, 11, 13, 14]—which stands on solid and flourishing mathematical grounds [204–
212]—will interpret it as the value of the zeta function of H : ζH (s) =∑n λ

−s
n , at

s =−1 (we set �= c= 1). Generically ζH (s) is only defined as an absolutely con-
vergent series for Re s > a0 (a0 an abscissa of convergence), but it can be continued
to the whole complex plane, with the possible appearance of poles as only singu-
larities. If ζH (s) has no pole at s = −1 then we are done; if it hits a pole, further
elaboration is necessary. That the mathematical result one thus gets coincides with
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the experimental one, constitutes here our specific example of unreasonable effec-
tiveness of mathematics.

In fact things do not turn out to be so simple. In an isolated vacuum one can-
not assign physical meaning to the absolute value of the zero-point energy (we can
safely fix it to be zero, by using e.g. the normal ordering prescription). The most
simple physical effect must necessarily be an energy difference between two situa-
tions, such as a quantum field in curved space as compared with the same field in
flat space, or one satisfying BCs on some surface as compared with the same in its
absence, etc. This difference, the Casimir energy, is a genuine physical manifesta-
tion of the vacuum energy: EC =EBC

0 −E0 = 1
2 (trH

BC − trH). This seems at first
sight to be clean, unproblematic, at least at the level of the mathematical formulation
of the issue.

But at the physical level problems appear. Imposing mathematical boundary con-
ditions (BCs) on physical quantum fields turns out to be a highly non-trivial act. This
was discussed in much detail in a paper by Deutsch and Candelas over thirty years
ago [213]. These authors quantized electromagnetic and scalar fields in the region
near an arbitrary smooth boundary, and calculated the renormalized vacuum ex-
pectation value of the stress-energy tensor, to find that the energy density diverges
as the boundary is approached. Therefore, regularization and renormalization did
not seem to cure the problem with infinities in this case and an infinite physical
energy was obtained if the mathematical BCs were to be fulfilled. However, the au-
thors argued that surfaces have non-zero depth, and its value could be taken as a
handy (dimensional) cutoff in order to regularize the infinities. This approach will
be recovered later in this paper. Just two years after Deutsch and Candelas’ work,
Kurt Symanzik carried out a rigorous analysis of QFT in the presence of boundaries
[214]. Prescribing the value of the quantum field on a boundary means using the
Schrödinger representation, and Symanzik was able to show rigorously that such
representation exists to all orders in the perturbative expansion. He showed also
that the field operator being diagonalized in a smooth hypersurface differs from the
usual renormalized one by a factor that diverges logarithmically when the distance
to the hypersurface goes to zero. This requires a precise limiting procedure and point
splitting to be applied. In any case, the issue was proven to be perfectly meaningful
within the domains of renormalized QFT. In this case the BCs and the hypersur-
faces themselves were treated at a pure mathematical level (zero depth) by using
delta functions.

A new approach to the problem has been postulated by Jaffe and collaborators
[215–218]. BCs on a field, φ, are enforced on a surface, S, by introducing a scalar
potential, σ , of Gaussian shape living on and near the surface. When the Gaussian
becomes a delta function, the BCs (Dirichlet here) are enforced: the delta-shaped
potential kills all the modes of φ at the surface. For the rest, the quantum sys-
tem undergoes a full-fledged QFT renormalization, as in the case of Symanzik’s
approach. The results obtained confirm those of [213] in the several models stud-
ied, but the authors report that they do not seem to agree with those of [214, 219–
221].
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7.3.1 A Zeta-Function Approach

Too often has it been argued that sophisticated regularization methods, as the zeta-
function procedure, get rid of infinities in an obscure way (e.g. through analytic
continuation), so that, contrary to what happens with cut-offs, one cannot keep trace
of the infinities, which are cleared up without control, leading sometimes to erro-
neous results. One cannot refute a statement of this kind rigorously, but it should
be noted that more once (if not always) the discrepancies between the result ob-
tained by using the zeta procedure and other—say cut-off like—approaches have
been proven to emerge from a misuse of zeta regularization, and not to stem from
the method itself. When employed properly, the correct results have been recovered
(for a number of examples, see [10, 13, 14, 204–212, 222–226]).

Take the most simple case of a scalar field in one dimension, φ(x), with a BC
of Dirichlet type imposed at a point, e.g. φ(0) = 0. We would like to calculate
the Casimir energy for this configuration, that is, the difference between the zero
point energy corresponding to this field when the BC is enforced, and the zero point
energy in the absence of any BC. Taken at face value, both energies are infinite. The
regularized difference may still be infinite when the BC point is approached (this is
the result in [215–218]) or might turn out to be finite (even zero, which is the result
given in some standard books on the subject).

Let us try to understand this discrepancy. We have to add up all energy modes
(trace of H ). For the mode with energy ω, the field equation reduces to:

−φ′′(x)+m2φ(x)= ω2φ(x). (7.48)

In the absence of a BC, the solutions to the field equation can be labeled by k =
+√ω2 −m2 > 0, as φk(x) = Aeikx + Be−ikx , with A,B arbitrary complex (for
the general complex), or as φk(x) = a sin(kx)+ b cos(kx), with a, b arbitrary real
(for the general real solution). Now, when the mathematical BC of Dirichlet type,
φ(0)= 0, is imposed, this does not influence at all the eigenvalues, k, which remain
exactly the same (as stressed in the literature). However, the number of solutions
corresponding to each eigenvalue is reduced by one half to: φ(D)

k (x) = A(eikx −
e−ikx), with A arbitrary complex (complex solution), and φ

(D)
k (x)= a sin(kx), with

a arbitrary real (real solution). In other words, the energy spectrum (for omega) that
we obtain in both cases is the same, a continuous spectrum ω = √m2 + k2, but
the number of eigenstates corresponding to a given eigenvalue is twice as big in
the absence of the BC.7 Of course these considerations are elementary, but they
are crucial when trying to calculate (or just to give sense to) the Casimir energy
density and force. More to this, just in the same way as the traces of the two matrices
M1 = diag(α,β) and M2 = diag(α,α,β,β) are not equal in spite of having “the

7To understand this point even better, consider the fact that further, by imposing Cauchy BC:
φ(0)= 0, φ′(0)= 0, the eigenvalues still remain the same, but for any k the family of eigenfunc-
tions shrinks to just the trivial one: φk(x)= 0,∀k (the Cauchy problem is an initial value problem,
which completely determines the solution).



7.3 Zeta and Hadamard Regularizations 167

same spectrum α, β ,” in the problem under discussion the traces of the Hamiltonian
with and without the Dirichlet BC imposed yield different results, both of them
divergent, namely

trH = 2 trHBC = 2
∫ ∞

0
dk
√
m2 + k2. (7.49)

By using the zeta function, we define

ζBC(s) :=
∫ ∞

0
dκ
(
ν2 + κ2)−s , ν := m

μ
, (7.50)

with μ a regularization parameter with dimensions of mass.8 We get

ζBC(s)=
√
π�(s − 1/2)

2�(s)

(
ν2)1/2−s

, (7.51)

and consequently,

trHBC = 1

2
ζBC(s =−1/2)

= m2

4
√
π

[
1

s + 1/2
+ 1− γ − log

m2

μ2
−�(−1/2)+O(s + 1/2)

] ∣∣∣∣
s=−1/2

.

(7.52)

As is obvious, this divergence is not cured when taking the difference of the two
traces in order to obtain the Casimir energy:

EC/μ=EBC
0 /μ−E0/μ=−EBC

0 /μ= �(−1)m2

8μ2
. (7.53)

We just hit the pole of the zeta function, in this case. How may this infinity be in-
terpreted? It clearly originates from the fact that imposing the BC has drastically
reduced to one-half the family of eigenfunctions corresponding to any of the eigen-
values which constitute the spectrum of the operator. And we can also advance that,
since this dramatic reduction of the family of eigenfunctions takes place precisely
at the point where the BC is imposed, the physical divergence (infinite energy) will
originate right there.

While the analysis above cannot be taken as a substitute for the actual description
of Jaffe et al. [215–218]—where the BC is explicitly enforced through the introduc-
tion of an auxiliary, localized field, which probes what happens at the boundary in a
much more precise way—it certainly shows that pure mathematical considerations,

8Always necessary in zeta regularization, since the complex powers of the spectrum of a (pseudo-)
differential operator can only be defined, physically, if the operator is rendered dimensionless, what
is done by introducing this parameter. That is also an important issue (sometimes overlooked).
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which include the use of analytic continuation by means of the zeta function, are not
blind to the infinities of the physical model and do not necessarily produce mislead-
ing results, when the mathematics are used properly. It is remarkable to realize how
close the mathematical description of the appearance of an infinite contribution is to
the one provided by the physical model in [215–218].

7.3.2 Case of Two-Point Dirichlet Boundary Conditions

A similar analysis can be done for the case of a two-point Dirichlet BC: φ(a)= 0,
φ(−a)= 0. Now the eigenvalues k are quantized, as k = π̇/(2a), so that:

ω =
√

m2 +  2π2

4a2
,  = 0,1,2, . . . . (7.54)

The family of eigenfunctions corresponding to a given eigenvalue, ω , is of continu-
ous dimension 1, exactly as in the former case of a one-point Dirichlet BC, namely,
φ (x)= b sin(  π2a (x−a)), where b is an arbitrary, real parameter.9 To repeat, the act
of imposing Dirichlet BC on two points has the effect of discretizing the spectrum
but there is no further shrinking in the number of eigenfunctions corresponding to a
given (discrete) eigenvalue.

The calculation of the Casimir energy, by means of the zeta function, proceeds in
this case as follows [10, 14, 204–212, 222–226]. It may be interesting to recall that
the zeta-‘measure’ of the continuum equals twice the zeta-‘measure’ of the discrete.
In fact, just consider the following regularizations:

∑∞
n=1 μ = μ

∑∞
n=1 n

−s |s=0 =
μζR(0)=−μ

2 , and
∫∞
μ

dk = ∫∞0 dk (k +μ)−s |s=0 = μ1−s
s−1 |s=0 =−μ, which prove

the statement.
The trace of the Hamiltonian corresponding to the quantum system with the BC

imposed, in the massive case, is obtained by means of the zeta function

ζBC(s) :=
∞∑

 =1

(
m2

μ2
+ π2 2

4μ2a2

)−s

=
(
μ

m

)2s
[
−1

2
+ �(s − 1/2)

�(s)

am√
π

+ 2πs

�(s)

(
2am

π

)1/2+s ∞∑

n=1

ns−1/2Ks−1/2(4anm)

]
, (7.55)

9The contribution of the zero-mode ( = 0) is controverted, but we are not going to discuss this
issue here (see e.g. [227] and references therein).
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being Kν a modified Bessel function of the third kind (or MacDonald’s function).
Thus, for the zero point energy of the system with two-point Dirichlet BC, we get

trHBC/μ= 1

2
ζBC(s =−1/2)=−�(−1)m2

8μ2
− m

2πμ

∞∑

n=1

1

n
K1(2πnm/μ), (7.56)

where μ is, in this case, μ := π/(2a) (a fixes the mass scale in a natural way here).
As in the previous example, one finally obtains an infinite value for the Casimir
energy, namely

EC/μ=EBC
0 /μ−E0/μ= �(−1)m2

8μ2
− m

2πμ

∞∑

n=1

1

n
K1(2πnm/μ). (7.57)

It is, therefore, not true that regularization methods using analytical continuation
(in particular, the zeta approach) are unable to see the infinite energy that is gener-
ated on the boundary-conditions surface [213–218] (see (7.66) later). The reason is
again, as in the previous example, that imposing a two-point Dirichlet BC amounts
to halving the family of eigenfunctions which correspond to any given eigenvalue
(all are discrete, in the present case, but this makes no difference). In physical terms,
that means having to apply an infinite amount of energy on the BC sites, in order
to enforce the BC. Analogously, from the mathematical viewpoint, halving the fam-
ily of eigenfunctions results in the appearance of an infinite contribution, under the
form of a pole of the zeta function.

The reason why these infinities (the one here and that in the previous section)
do not usually show up in the literature on the Casimir effect is probably because
textbooks on the subject focus towards the calculation of the Casimir force, which
is obtained by taking minus the derivative of the energy with respect to the plate
(or point) separation (here w.r.t. 2a). Since the infinite terms do not depend on a,
they do not contribute to the force (see also [215–218]). However, some misleading
statements may have appeared in some classical references, stemming from the lack
of recognition of the catastrophical implications of the act of halving the number of
eigenfunctions, when imposing the BC.

7.3.3 How to Deal with the Infinities?

The infinite contributions have here shown up at the regularization level, but ac-
cording to [215–218] they can persist even after renormalizing in a proper way. The
important question is: are these infinities physical? Will they be observed as a man-
ifestation of a very large energy pressure when approaching the BC surface in a lab
experiment? Such questions will be only answered experimentally, and up to now
there is no trace of them. If, on the contrary, as those large pressures fail to become
manifest this is an indication of the need for an additional regularization prescrip-
tion. In principle, this seems to be forbidden by standard renormalization theory,
since the procedure has been already carried out to the very end (see [215–218]).
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There are circumstances—both in physics and in mathematics—where other
regularization methods have been employed with good success. In particular,
Hadamard regularization in higher-post-Newtonian general relativity [228], and in
recent variants of axiomatic and constructive QFT [229–234]. Among mathemati-
cians, Hadamard regularization is nowadays a rather standard technique to deal with
singular differential and integral equations with BCs, both analytically and numer-
ically (for a sample of references see [235–240]). Indeed, Hadamard regularization
is a well-established procedure in order to give sense to infinite integrals. It is not
to be found in the classical books on infinite calculus by Hardy or Knopp; it was
L. Schwartz [241] who popularized it, rescuing Hadamard’s original papers. Nowa-
days, Hadamard convergence is one of the cornerstones in the rigorous formulation
of QFT through micro-localization, which on its turn is considered by specialists
to be the most important step towards the understanding of linear PDEs since the
invention of distributions [242] (for a beautiful treatment of Hadamard’s regulariza-
tion see [243]).

Let us briefly recall this formulation. Consider a function, g(x), expandable as

g(x)=
k∑

j=1

aj

(x − a)λj
+ h(x), (7.58)

with λj complex in general and h(x) a regular function. Then, it is immediate that∫ b

a+ε dx g(x) = P(1/ε)+H(ε), being P a polynomial and H(0) finite. If the λj /∈
N, then one defines the Hadamard regularized integral as

=
∫ b

a

dx g(x) :=
∫ b

a

h(x) dx −
k∑

j=1

aj

λj − 1
(b− a)1−λj . (7.59)

Alternatively, one may define, for α /∈ N, p < α < p + 1, and f (p+1) ∈ C[−1,1],
Kαf := 1

�(−α) =
∫ 1
−1 dt

f (t)

(1−t)α+1 , to obtain, after some steps,

Kαf =
p∑

j=0

f (j)(−1)

�(j + 1− α)2α−j
+ 1

�(p+ 1− α)

−
∫ 1

−1
(1− t)p−αf (p+1)(t), (7.60)

where the last integral is at worst improper (Cauchy’s principal part). If λ1 = 1, the
result is a1 ln(b− a), instead. If λ1 = p ∈N, calling Hp(f ;x) :==

∫ 1
−1 dt

f (t)

(t−x)p+1 ,
|x|< 1, we get

Hp(f ;x) =
∫ 1

−1

[
f (t)−

p∑

j=0

f (j)(x)

j ! (t − x)j

]
dt

(t − x)p+1
+ f (j)(x)

j !
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=
∫ 1

−1

dt

(t − x)p+1−j , (7.61)

where the first term is regular and the second one can be easily reduced to

1

(p− j)!
dp−j

dxp−j
−
∫ 1

−1

dt

t − x
, (7.62)

being the last integral, as before, a Cauchy PP.
An alternative form of Hadamard’s regularization, which is more fashionable

for physical applications (as is apparent from the expression itself) is the following
[228]. For the case of two singularities, at �x1, �x2, after excising from space two little
balls around them, R3\(Br1(�x1)∪Br2(�x2)), with Br1(�x1)∩Br2(�x2)= ∅, one defines
the regularized integral as being the finite part of the limit

=
∫

d3x F(�x) := FPα,β→0

∫
d3x

(
r1

s1

)α(
r2

s2

)β

F (�x), (7.63)

where s1 and s2 are two (dimensionfull) regularization parameters [228]. This is the
version that will be employed in what follows.

7.3.4 Hadamard Regularization of the Casimir Effect

We now use Hadamard’s regularization as an additional tool in order to make sense
of the infinite expressions encountered in the boundary value problems considered
before. As it turns out from a detailed analysis of the results in [215–218], the ba-
sic integrals which produce infinities, in the one-dimensional and two-dimensional
cases there considered, are the following.

In one dimension, with Dirichlet BC imposed at one (x = 0) and two (x =±a)
points, respectively, by means of a delta-background of strength λ (see [215–218]),
one encounters the two divergent integrals:

E1(λ,m) = 1

2π

∫ ∞

m

dt√
t2 −m2

[
t log

(
1+ λ

2t

)
− λ

2

]
, (7.64)

E2(a,λ,m) = 1

2π

∫ ∞

m

dt√
t2 −m2

{
t log

[
1+ λ

t
+ λ2

4t2

(
1− e−4at)

]
− λ

}
. (7.65)

Using Hadamard’s regularization, as described before, we obtain for the first one,
(7.64),

E1(m)= λ

4π

(
1− ln

λ

m

) ∣∣∣∣
λ→∞

+=
∫

, (7.66)
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where the first term is the singular part when the limit λ→∞ is taken, and the
second—which is Hadamard’s finite part—yields in this case

=
∫
=−m

4
. (7.67)

Such result is coinciding with the classical one (0, for m = 0). Note in particular,
that the further lnm divergence as m→∞ is hidden in the λ−divergent part, and
that behavior does explain why the classical results which are obtained using hard
Dirichlet BC—what corresponds as we just prove here to the Hadamard’s regular-
ized part—cannot see it.

In the case of a two-point boundary at x = ±a (separation 2a), (7.65), we get
a similar equation (7.66) but now the regularized integral is as follows. For the
massless case, we obtain

=
∫
=− π

48a
, (7.68)

which is the regularized result to be found in the classical books. In the massive
case, m �= 0, after some additional work the following fast convergent series turns
up [cf. (7.57)]

=
∫
=− m

2π

∞∑

k=1

1

k
K1(4akm). (7.69)

Thus (7.66) yields strictly the same result (7.57) that was already obtained by im-
posing the Dirichlet BC ab initio. What has now been gained is a more clear iden-
tification of the singular part, in terms of the strength of the delta potential at the
boundary. This will be the general conclusion, common to all the other cases here
considered.

Correspondingly, for the Casimir force we obtain the finite values10

F2(a)=− π

96a2
, (7.70)

in the massless case, and in the massive one

F2(a,m)=−m2

π

∞∑

k=1

[
K0(4akm)+ 1

4akm
K1(4akm)

]
. (7.71)

Those expressions coincide with the ones derived in the above mentioned textbooks
on the Casimir effect, and reproduced before by using the zeta function method (just
take minus the derivative of (7.66) w.r.t. 2a).

The two-dimensional case turns out to be more singular [215–218]—in part just
for dimensional reasons—and requires additional wishful thinking in order to deal

10Note that the force F(a) is here given by minus the derivative of the total energy E(a) w.r.t. 2a,
since this is the distance between the two Dirichlet points (not a).
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with the circular delta function sitting on the circumference where the Dirichlet BC
are imposed. Here one encounters the basic singular integral, for the term contribut-
ing to the second Born approximation (we use the same notation as in [215–218]),

σ̃ (p)=
∫ ∞

0
dr rJ0(pr)σ (r), σ (r)= bλ exp

[
− (r − a)2

2ω2

]
, (7.72)

with J0 a Bessel function of the first kind, and
∫∞

0 dr σ (r)= λ, σ(r)
ω→0−→ λδ(r−a).

Hadamard’s regularization yields now (the τ ’s replacing the σ ’s in the regularized
version)

τ(r,p)= cλ(rp+ 1)−ω/2 exp

[
− (r − a)2

2ω2

]
ω→0−→ λδ(r − a), (7.73)

with p a (dimensionfull) regularization parameter, being the constant c given by

c−1 = ∫∞0 dr r−ω exp[− (r−a)2

2ω2 ], which exists and is perfectly finite; in particular,

c−1(ω= .1, a = 1)= .25. Then,

τ̃ (p)= 2π
∫ ∞

0
dr rJ0(pr)τ (r,p)= 2πλa(ap+ 1)−ω/2J0(ap) (7.74)

It turns out that, for the Casimir energy, we get in this case (notation as in [215–218])

E
(2)
λ2 [τ ] = λ2a2

8

∫ ∞

0
dp (ap+ 1)−ωJ0(ap)

2 arctan(p/2m)|ω→0

= λ2a2

8

{
1

2ω
+ γ + 3 ln 2

2a
+ 4m

[
γ − 2√

π

[
1− ln(am)

]
h
(
4a2m2)

]}
,

(7.75)

where h(z) := 2F3((1/2,1/2); (1,1,3/2); z) and γ is the Euler–Mascheroni con-
stant; in particular, for instance h(1)= 1.186711, what is quite a nice value. Recall
also that ω is the width of the Gaussian δ, which is the very physical parameter
considered in [213]. When this width tends to zero an infinite energy appears (the
width controls the formation of the pole). The rest of the result is the Hadamard
regularization of the integral, e.g.11

=
∫ ∞

0
dp J0(ap)

2 arctan(p/2m). (7.76)

Again, the finite part reverts to the results obtained in the literature with Dirichlet
BC ab initio.

11It should be pointed out that the computational program Mathematica [244] directly assigns the
Hadamard regularized value to particular cases of integrals of this kind; but it does so without any
hint on what is going on. This has often confused more one user, who fails to understand how it
comes that an infinite integral gets a finite value out of nothing.
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To summarize, we have here proven—in some particular but rather non-trivial
and representative examples—that the finite results derived through the use of
Hadamard’s regularization exactly coincide with the values obtained using the more
classical, less full-fledged methods to be found in the literature on the Casimir effect.
Moreover, Hadamard’s prescription is able to separate and identify the singularities
as physically meaningful cut-offs. Although the validity of this additional regular-
ization is at present questionable, the fact that it bridges the two approaches is al-
ready remarkable, maybe again a manifestation of the unreasonable effectiveness of
mathematics.



Chapter 8
Applications to Gravity, Strings and p-Branes

In this chapter we are going to present two more examples of applications of
the method of zeta function regularization in two different, although related, con-
texts. One of them is the spontaneous compactification—in the case of a R

1 × S
1

background—that occurs in two-dimensional quantum gravity. This theory is con-
sidered to be an adequate toy model for a more fundamental formulation of quan-
tum gravity. As an interesting physical result, with the help of the method of zeta-
function regularization advocated here we will see [245] that such compactification
is stable, in contradistinction to what happens in multidimensional quantum gravity
on a R

d × S
1 background (with d > 2), which is known to be one-loop unstable.

In Sect. 8.2 we obtain the effective potential for strings and p-branes, in general,
and specifically study the stability of the rigid membrane [246]. A careful analysis
of the ζ -functions relevant for the calculation of the effective potential for fixed-end
and toroidal rigid p-branes at one-loop order and in the 1/d approximation—which
are of inhomogeneous Epstein type—is performed. Asymptotic formulas which
give accurate results (allowing only for exponentially decreasing errors of order
O(10−3)) are presented for the general case of p-branes, which carry all the de-
pendencies on the basic parameters of the theory explicitly, and the behavior of the
effective potential—specified to the membrane case (p = 2)—will be investigated.
Finally, the extrema of this effective potential will be obtained.

8.1 Application to Spontaneous Compactification
in Two-Dimensional Quantum Gravity

Let us consider induced two-dimensional gravity, with the action

S =
∫

d2x
√
g

(
R

1

�
R +�

)
, (8.1)

on the background R
1 × S

1. On such a background—which is not the solution of
the classical equations of motion—the convenient effective action is always gauge
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DOI 10.1007/978-3-642-29405-1_8, © Springer-Verlag Berlin Heidelberg 2012
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dependent. However, the S-matrix (the effective action on shell, i.e., at the station-
ary points) is independent of the choice of gauge condition. Actually, working in
the loop expansion, one is led to an explicit gauge dependence even on shell (pertur-
batively). This is why it is preferable to work with the gauge-independent effective
action.

Using the standard background field method,

gμν −→ gμν + hμν, (8.2)

where gμν is the metric of flat space R
1 × S

1 and hμν is the quantum gravitational
field, choosing the gauge fixing action as

SGF = 1

α

∫
d2x

√
g
(∇μh

μ
ρ − β∇ρh

)2
, (8.3)

where α and β are the gauge parameters and h= h
μ
μ, and defining the configuration-

space metric in accordance with Vilkoviski [247, 248]

γij ≡ γgμαgνβ =
1

2
√
g
(
gμαgνβ + gμβgνα − agμνgαβ

)
, (8.4)

where a is a constant parameter, after some work, one obtains the following result
for the one-loop effective action [245]

�(1) = 2πRS�+ 1

2

[
tr ln

(
�+ �

4(2− a)

)
− 2 tr ln�

]
. (8.5)

Here 2πR is the length of the compactified dimension while S = ∫ dx is the ‘vol-
ume’ of the space R

1. As we see, the dependence on the gauge parameters α and β

has disappeared. However, an explicit dependence on the parameter a remains.
The trace calculations involved in expression (8.5) for the one-loop effective ac-

tion are not easy to perform. The usual non-trivial commutations of series have to
be carried out. Using the formulas of Chap. 4 (specified to R

1 × S
1), we obtain

ζ−�+m2

(
s

2

)
= −S

∫ ∞

0

dk

π

+∞∑

n=−∞

[
k2 +

(
2πn

β

)
+m2

]−s/2

= − S√
π
m1−s

{
−�(s−1

2 )

2�( s2 )
+ βm

2
√
π

1

s − 2
+ (

βm
2 )(s−1)/2

�( s2 )

∞∑

k=0

(16π)−k

k!

·
(

2π

βm

)k k∏

j=1

[
(s − 2)2 − (2j − 1)2]

∞∑

n=1

n
s−3

2 −k e−βmn

}
, (8.6)

wherefrom we get

V = �(1)

S
= 2πR�+ R�

32(2− a)

[
1− ln

(
�

4(2− a)

)]
− 1

8

√
�

2− a
+ 1

24R
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− 1

4π
√

2R

(
�

2− a

)1/4 ∞∑

k=0

(16π)−k

k!
(
R

2

√
�

2− a

)−k

·
k∏

j=1

[
4− (2j − 1)2]

∞∑

n=1

n−(k+3/2) exp

(
−πR

√
�

2− a
n

)
. (8.7)

This expression can be now simplified in terms of the basic variables of the prob-
lem:

x ≡ �

4(2− a)
, y ≡R

√
x = R

2

√
�

2− a
. (8.8)

Then, the effective action becomes

V =√x

[
8π(2− a)y + y

8
(1− lnx)− 1

4
+ 1

24y
− F(y)

]
, (8.9)

F(y) being given by

F(y)= 1

4π

∞∑

k=0

(16π)−k

k! y−(k+1/2)
k∏

j=1

[
4− (2j − 1)2]

∞∑

n=1

n−(k+3/2)e−2πny.

(8.10)
It is now clear that all the dependence of the action on R, � and a comes through
the specific combination given by the variable y, but for a global factor,

√
x, and for

the first term, which is just linear in a.
To proceed with the compactification program, one imposes (as is done in multi-

dimensional gravity)
⎧
⎨

⎩

V (R,�,a)= 0,

∂V (R,�,a)

∂R
= 0.

(8.11)

The explicit a dependence can be eliminated, and one gets

√
x

[
F(y)− yF ′(y)− 1

12y
+ 1

4

]
= 0. (8.12)

This transcendent equation involves an asymptotic series, and must be solved ap-
proximately. By fortune, the decreasing exponentials come to rescue and, after an
explicit calculation one obtains the (expected) result:

y1 = 0.33. (8.13)

This is the non-trivial stationary point of the effective action. The trivial one is
reached for

x0 = 0. (8.14)
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As for the second derivative,

∂2V

∂y2
=√x

[
1

12y3
− F ′′(y)

]
, (8.15)

where the explicit a-dependence has disappeared. Hence, this derivative has a defi-
nite sign (independent of a) at the stationary point

∂2V

∂y2

∣∣∣∣
y=y1

� 2 > 0. (8.16)

The point is a minimum, obtained for the following combination of parameters

�R
2

2− a
�
(

2

3

)2

. (8.17)

We see that the compactification is stable, in contradistinction to what happens in
multidimensional quantum gravity on a R

d × S
1 background, for d > 2, which is

known to be one-loop unstable.

8.2 Application to the Study of the Stability of the Rigid
Membrane

The theory of the rigid string is interesting because of the number of its applications
to quantum chromodynamics [249–256] and to statistical physics. Using the same
idea, it is not difficult to construct the action for the rigid membrane (and p-brane in
general). During the last few years, there has been some activity in the study of quan-
tum extended objects [257–259]. However, already the semiclassical quantization of
such a nonlinear system as a membrane is a difficult task [260–262]. Nevertheless,
some interesting issues, like the study of the Casimir energy, the large-d approxi-
mation and the tachyon problem can be addressed already at the semiclassical level
[263–266].

In the present section, we will study the Casimir energy and the static poten-
tial for the rigid p-brane (at the classical level, this theory has been considered in
Ref. [267]), specifying afterwards our results to the membrane case, p = 2. We shall
start from the following action, which is multiplicatively renormalized only in the
string case (p = 1),

S =
∫

dp+1ξ
√
g

(
k + 1

2ρ2

[
�(g)Xi

]2
)
, (8.18)

where gαβ = ∂αX
i∂βX

i , α = 0,1, . . . , p, i = 1,2, . . . , d , �(g) = g−1/2∂αg
1/2×

gαβ∂β , the constant k is the analog of the usual string tension, and 1/ρ2 is the
coupling constant corresponding to the rigid term.
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Let us note that the p-brane is an interacting system, without a free part in the
action. Hence, one must start from some classical solution for the ground state,
and then study the quantum fluctuations on such background. In this framework we
can understand how the tachyon appears (if that is the case), if the background is
stable, and also address some other issues. Owing to the fact that string theory can
be obtained as some compactification of the membrane [268], we can also expect to
find in this way some new features of string physics.

In Sect. 8.2.1 we calculate the potential corresponding to two cases: fixed-end
and periodic boundary conditions. In Sect. 8.2.2 we obtain the static potential, that
is, the effective potential in the limit of large spacetime dimensionality. Owing
to the difficulty of the exact expressions, a saddle point analysis is carried out in
Sect. 8.2.3. In Sect. 8.2.4 we apply the useful mathematical results on the inho-
mogeneous Epstein-type zeta functions obtained in Chap. 3 to the expressions that
appear in the process of regularization. Finally, in Sect. 8.2.5 we present a short
discussion of the general case.

8.2.1 Calculation of the Potential

We consider as the background the classical solutions of the field equations [263–
266] (which are the same for the rigid as for the usual p-brane)

X0
cl = ξ0, X⊥cl = 0, Xd−1

cl = ξ1, . . . , X
d−p
cl = ξp, (8.19)

with X⊥cl = (X1, . . . ,Xd−p−1) and (ξ1, . . . , ξp) ∈ R ≡ [0, a1] × · · · × [0, ap]. We
also use the axial gauge

X0 =X0
cl, Xd−1 =Xd−1

cl , . . . , Xd−p =X
d−p
cl , (8.20)

where the Faddeev–Popov ghosts are absent.
We shall consider the toroidal rigid p-brane which has the boundary conditions

X⊥(0, ξ1, . . . , ξp)=X⊥(T , ξ1, . . . , ξp)= 0 (8.21)

and

X⊥(ξ0,0, ξ2, . . . , ξp) = X⊥(ξ0, a1, ξ2, . . . , ξp),

... (8.22)

X⊥(ξ0, ξ1, . . . , ξp−1,0) = X⊥(ξ0, ξ1, . . . , ξp−1, ap).

For the fixed-end boundary conditions, (8.21) is exactly the same, while (8.22) are
replaced by the following (of Dirichlet type)

X⊥(ξ0,0, ξ2, . . . , ξp) = · · · =X⊥(ξ0, ξ1, . . . , ξp−1,0),

X⊥(ξ0, a1, ξ2, . . . , ξp) = · · · =X⊥(ξ0, ξ1, . . . , ξp−1, ap).
(8.23)
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The effective potential is given by

V =− lim
T→∞

1

T
ln
∫

DX⊥ exp(−S). (8.24)

Restricting ourselves to the one-loop approximation, we need only consider the
terms which are quadratic in the quantum fields (this applies to the usual membrane
and p-brane, see [263–266]).

Integrating out X⊥ and using boundary conditions to read off the resulting Tr ln�
(see [263–266, 269, 270]), we get

Vfixed end = k

p∏

i=1

ai + d − p− 1

2

[ ∞∑

n1,...,np=1

(
π2n2

1

a2
1

+ · · · + π2n2
p

a2
p

)1/2

+
∞∑

n1,...,np=1

(
π2n2

1

a2
1

+ · · · + π2n2
p

a2
p

+ kρ2
)1/2

]
, (8.25)

and

Vtoroidal = k

p∏

i=1

ai + d − p− 1

2

[ ∞∑

n1,...,np=−∞

(
4π2n2

1

a2
1

+ · · · + 4π2n2
p

a2
p

)1/2

+
∞∑

n1,...,np=−∞

(
4π2n2

1

a2
1

+ · · · + 4π2n2
p

a2
p

+ kρ2
)1/2

]
. (8.26)

Observe that the contribution from the higher-derivative mode appears in (8.25) and
(8.26) with a positive sign, as it follows from the path integral.

8.2.2 The Limit of Large Spacetime Dimensionality

We calculate first the static potential—that is, the effective potential in the limit
of large spacetime dimensionality. Such calculation for the usual Nambu–Goto or
Eguchi string [271–273] has been carried out in Ref. [274] and for the rigid string
in [252–255]. Let us introduce the composite fields σαβ for ∂αX⊥ · ∂βX⊥, and con-
strain σαβ = ∂αX

⊥ · ∂βX⊥ by introducing Lagrange multipliers λαβ :

Z =
∫

DX⊥DσDλ exp

{
−k

∫
dp+1ξ

[
det(δαβ + σαβ)

]1/2

+ 1

2ρ2

∫
dp+1ξ�0X

⊥ ·�0X
⊥ − k

2

∫
dp+1ξλαβ

(
∂αX

⊥ · ∂βX⊥ − σαβ
)}

,

(8.27)
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where �0 = ηαβ∂α∂β . Integrating over X⊥, we get

Z =
∫

Dσ Dλ exp(−Seff ), (8.28)

with

Seff = 1

2
(d − p− 1)Tr ln

(
1

ρ2
�2

0 + k∂αλ
αβ∂β

)

+ kTRp

[
(1+ σ0)

1/2(1+ σ1)
p/2 − 1

2
(σ0λ0 + pσ1λ1)

]
, (8.29)

where we have chosen a1 = · · · = ap = R, and σαβ = diag(σ0, σ1, . . . , σ1), λαβ =
diag(λ0, λ1, . . . , λ1) (compare with [263–266], where the case 1/ρ2 = 0 was con-
sidered).

In this case we obtain

Tr ln
[
�2

0 + kρ2(λ0∂
2
0 + λ1�∂2

x

)]

= Tr ln
[(
∂2

0 + �∂2
x

)2 + kρ2(λ0∂
2
0 + λ1�∂2

x

)]

· Tr ln

{[
∂2

0 +
(
�∂2
x +

kρ2λ0

2

)
−
√

kρ2(λ0 − λ1)�∂2
x +

k2ρ4λ2
0

4

]

·
[
∂2

0 +
(
�∂2
x +

kρ2λ0

2

)
+
√

kρ2(λ0 − λ1)�∂2
x +

k2ρ4λ2
0

4

]}
. (8.30)

The spectrum for the boundary conditions (8.19)–(8.23) is known. Using this spec-
trum and evaluating the Tr ln terms by means of analytic regularization for large T ,
we obtain (see [263–266] for details of this method)

Seff = kTRp

{
(1+ σ0)

1/2(1+ σ1)
p/2 − 1

2
(σ0λ0 + pσ1λ1)

+ d − p− 1

2kRp+1

[∑

�n

(
π2�n2 + kρ2λ0R

2

2

−
√

kρ2(λ0 − λ1)�n2R2 + k2ρ4λ2
0R

4

4

)1/2

+
∑

�n

(
π2�n2 + kρ2λ0R

2

2
+
√

kρ2(λ0 − λ1)�n2R2 + k2ρ4λ2
0R

4

4

)1/2]}
,

(8.31)
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where for the fixed-end p-brane �n2 = n2
1 + · · · + n2

p and
∑
�n means

∑∞
n1,...,np=1,

as in (8.25), while for the toroidal p-brane �n2 = 4(n2
1 + · · · + n2

p) and
∑
�n means∑∞

n1,...,np=−∞, as in (8.26).

8.2.3 A Saddle Point Analysis

The functions that appear on the right hand side of (8.31) are rather complicated
to analyze. To our knowledge, they have never been considered in the literature and
will be the object of a separate investigation. (Note that in the case of the usual Dirac
p-brane [263–266] these functions are simply constants.) So we shall have here little
to say about the corresponding effective potential, only, for example, that as R→
∞, V ∼ Vcl = kRp . Rewriting the expression for the static potential identically as

V = kRp

[
(1+ σ0)

1/2(1+ σ1)
p/2 − 1

2
(σ0λ0 + pσ1λ1)

+ d − p− 1

2kRp+1
K
(
kρ2

R
2, λ0, λ1

)]
, (8.32)

we are led to the four saddle-point equations:

λ0 = (1+ σ1)
p/2(1+ σ0)

−1/2,

λ1 = (1+ σ1)
p/2−1(1+ σ0)

1/2,

σ0 = d − p− 1

kRp+1

∂K(kρ2
R

2, λ0, λ1)

∂λ0
,

σ1 = d − p− 1

kpRp+1

∂K(kρ2
R

2, λ0, λ1)

∂λ1
,

(8.33)

By eliminating from these equations σ0 and σ1, we get

(λ1λ0)
p/(p−1)λ−2

0 − 1 = d − p− 1

kRp+1

∂K(kρ2
R

2, λ0, λ1)

∂λ0
,

(λ1λ0)
1/(p−1) − 1 = d − p− 1

kpRp+1

∂K(kρ2
R

2, λ0, λ1)

∂λ1
.

(8.34)

In principle, if not analytically, it is of course possible to eliminate (let us say) λ0
from these two equations by means of a numerical calculation, and to rewrite V in
terms of λ1 only. After doing this, one can study V as a function of R and in terms
of this parameter λ1, in order to see if the tachyon is in the spectrum. We will not go
through this here, since our purpose is just to show the possibility, in principle, of
calculating the static potential for a rigid string by using the zeta-function method, in
a quite simple way. However, we are still ready to look to some interesting limiting
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case of these equations. Let us assume that λ0 = λ1 ≡ λ (such a choice has been
taken for the rigid string in [252–255]). Then

V = kRp

{
(1+ σ0)

1/2(1+ σ1)
p/2 − 1

2
λ(σ0 + pσ1)

+ (d − p− 1)π

2kRp+1

[∑

�n

√
�n2 +

∑

�n

(�n2 + k(ρ/π)2λR2)1/2
]}

. (8.35)

It follows from the saddle point equations that σ0 = σ1, λ= (1+ σ)(p−1)/2, and

V = kRp

[
λ(p+1)/(p−1) − p+ 1

2
λ
(
λ2/(p−1) − 1

)+ (d − p− 1)π

2kRp+1
K
(
kρ2λR2)

]
.

(8.36)

Here we have defined

K
(
kρ2λR2)≡

∑

�n

√
�n2 +

∑

�n

(�n2 + k(ρ/π)2λR2)1/2
, (8.37)

and the last saddle point equation gives

−p+ 1

2
λ2/(p−1) + (d − p− 1)π

2kRp+1

∂K(kρ2λR2)

∂λ
= 0. (8.38)

8.2.4 Explicit Expressions for the Zeta-Function Regularization
of the Effective Potential

The expressions to be regularized are (in general) of the inhomogeneous Epstein
form [51, 109, 275] (see Chaps. 3 and 4)

Ec
p(s)≡

∞∑

n1,...,np=1

(
n2

1 + · · · + n2
p + c2)−s , (8.39)

allowing for c= 0. These functions are not easy to deal with for p > 1 (let us repeat
that the case p = 1 is the only one that has been investigated in the literature) and
our results in Chaps. 2 and 4 are pioneering in this respect. There, general formulas
have been derived (see (2.90)) for the functions

Mc
N(s;a1, . . . , aN ;α1, . . . , αN)≡

∞∑

n1,...,nN=1

(
a1n

α1
1 +· · ·+aNn

αN
N +c2)−s . (8.40)

In our case, a1 = · · · = ap = 1 and α1 = · · · = αp = 2, and (2.90) simplifies consid-
erably (see (2.96) and (2.97)). Alternatively, useful recurrent formula for our case
are (2.98) to (2.100) (see again Chap. 2)
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In order to deal with the derivative of the function K above, one can follow two
equivalent procedures: either do first the usual analytic continuation, and then take
s = −1/2 and the derivative afterwards, or else take first the derivative of (8.39),
perform the analytic continuation and put s =+1/2 at the end. The result is exactly
the same. In either way, other non-trivial series commutations have to be performed
(see Chap. 2, (2.100)).

As our final interest is numerical approximation (see above), we will not take
into account exponentially small terms (let us point out that these expansions are
asymptotic and quickly convergent, see Chap. 2). Notice, moreover, that for c = 0
there is no dependence on λ, so that the corresponding term does not contribute to
(8.39).

From the mentioned expressions, for any value of p there is no difficulty in ob-
taining the value of λ which solves (8.39). In particular, for p = 2 we have:

λ�
(

3− d

12π

)2/3

k1/3ρ2. (8.41)

This is an approximate root for k ·ρ big (specifically, for 1/R� k2/3ρ2) and d �= 3.
For p = 3 the result is:

λ� 1

210

[
3(4− d)

π

]2
kρ6

R2
, (8.42)

which is an approximate root for k · ρ big (specifically, for kρ4 � 1) and d �= 4. Let
us now substitute these values into the expression of V , and look for the derivative
∂V/∂R. We get, for p = 2, an expression of the form

∂V2

∂R
= c1R+ c−1

R
+ c−2

R2
, (8.43)

which has always one real root (at least), R2. It corresponds to a minimum of V for
d > 3 and reasonable values of the constants involved. Substituting back into V (R)

we see that the minimum is attained at

V2(R2) = kR2
2

[
3(1+ σ0)

1/2(1+ σ1)

− 3

2

(
3− d

12π

)2/3

(σ0 + 2σ1)k
1/3ρ2 + (d − 3)2

48π2
ρ6
]
, (8.44)

i.e., for k big it is obtained for a negative value of V , while for ρ big it is reached
for a positive value of V .

The case p = 3 is quite different. We get then

V3(R)= α1R
3 − α2R + β

R
, (8.45)
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so that its derivative has two real roots

R± =±
[
α2 + (α2

2 + 12αβ)1/2

6α1

]1/2

, (8.46)

one of which is seen to correspond to a maximum and the other to a minimum of
V . Moreover, two additional, complex roots appear. The minimum for V is now
attained at a negative value of V when either k or ρ are big enough and, conversely,
at a positive value of the potential for k or ρ small. Note that in order to find the
critical radius at which the potential becomes complex (so that the static approxi-
mation breaks down and tachyons appear) it is necessary to do the analysis with the
general expression (8.32) directly. One can conjecture from our results here that the
rigid membrane is tachyon-free (no critical radius exists), as it is also the case with
rigid strings (see Refs. [253] and [256]). At least for the limiting situation discussed
above, this is in fact the case.

8.2.5 Discussion of the General Case

As a summary, having done the calculation for this special case, corresponding to
the limit of large spacetime dimensionality, and armed with the full equation (2.90),
we can now be more ambitious and consider the one-loop effective potential, (8.25)-
(8.26), without further limit or approximation. For the sake of conciseness, we shall
restrict ourselves to p = 2—but it is obvious that we could consider as well any
other value of p. We rely on equations (2.98), (2.99), and (2.101), (2.102), which
we reproduce here because they are basic to our case:

∞∑

n1,n2=1

√(
n1

a1

)2

+
(
n2

a2

)2

= 1

24

(
1

a1
+ 1

a2

)
− ζ(3)

8π2

(
a1

a2
2

+ a2

a2
1

)

− π3/2

2
√
a1a2

[
exp

(
−2π

a1

a2

)(
1+O

(
10−3))

]
, (8.47)

and (this one after additional regularization, see above)

∞∑

n1,n2=1

√(
n1

a1

)2

+
(
n2

a2

)2

+ c2

= c

4
− π

6
a1a2c

3 +
(

1

4π

√
c

a2
− ca1

4πa2

)[
exp(−2πca2)

(
1+O

(
10−3))]. (8.48)

In both cases we have assumed (this is, of course, no restriction) that a2 ≤ a1. These
expressions are really valuable, the last term (already of exponential kind) being of
order 10−3 with respect to the two first ones, and the not explicitly written contri-
butions being of order 10−6 [246].
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For fixed-end boundary conditions and not taking into account exponentially-
small terms, we obtain

Vf.e. � ka1a2 + (d − 3)π

24

[
1

2

(
1

a1
+ 1

a2

)

− 3ζ(3)

2π2

(
a1

a2
2

+ a2

a2
1

)
+ 3

π

√
kρ − 2

π2
k3/2ρ3a1a2

]
. (8.49)

It is now straightforward to perform the analysis of extrema of V . For brevity, we
shall only discuss here some particular cases. First, the one which is obtained from
the two Lagrange equations for the extrema of V as a function of a1 and a2 only,
for a1 = a2 ≡ a, which is reached for

a =
( 3−d

8 [3ζ(3)− π2]
12πk+ (3− d)k3/2ρ3

)1/3

. (8.50)

It can be seen that for 12πk + (3− d)k3/2ρ3 < 0 this point is a minimum. On the
contrary, it is a maximum for 12πk+ (3−d)k3/2ρ3 > 0. Consistency with the range
of validity of the series expansion above is obtained for

2π
√
kρ >

6

ρ2
� 1. (8.51)

typical values for which this is valid are: ρ � 2/3, k � 4, 2πc� 8.
Keeping now a1 and a2 fixed (but arbitrary), we see that (for d > 3) in terms of

ρ, V is unbounded from below, being always negative for ρ big enough. Consider-
ing V as a function of k, the situation is similar. Finally, in a sense the analysis of
Refs. [263, 264] is still valid here, when we fix the values of k, ρ and of the area
A = a1a2: the minima of the potential are obtained for elongated (stringy) mem-
branes (a1/a2 small). Notice, however, that even for the particular case considered
in [263, 264], our asymptotic expansion provides a more universal expression, be-
cause it is valid for any value of a2 ≤ a1 (this is again not restrictive, in the end).
It also goes without saying that, from our general formula (8.49) for the potential
V = V (a1, a2, k, ρ, d), one can perform a simultaneous analysis on all the different
parameters at the same time—e.g. in order to look for local minima of the potential
hypersurface—the explicit dependencies on k and ρ being also basic contributions
of the present work.

In the case of toroidal boundary conditions, again neglecting exponentially-small
contributions, we get (for a detailed discussion of the relations between the different
boundary conditions, see Ref. [275])

Vtor � ka1a2 + (d − 3)π

2

[
−ζ(3)

π2

(
a1

a2
2

+ a2

a2
1

)
1

π

√
kρ − 1

6π2
k3/2ρ3a1a2

]
. (8.52)

The particular extremum for a1 = a2 ≡ a is a minimum of V provided that
√
kρ3 >

12π (it is a maximum for
√
kρ3 < 12π ). Consistency with the series expansion
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implies now

√
kρ >

12π

ρ2
� 1. (8.53)

This can be obtained typically for values of ρ � 3, k � 9, 2πc � 9—but, as in the
former case, the range of allowed values is much wider.



Chapter 9
Eleventh Application: Topological Symmetry
Breaking in Self-Interacting Theories

We consider in this chapter a self-interacting φ4-theory of a massive or massless
scalar field on the spacetime T

N ×R
n, n,N ∈ N0, where the torus TN is assumed

to have arbitrary compactification lengths. The nonrenormalized effective potential
will be calculated and its precise dependence on the compactification lengths and
on the mass of the field will be shown [43]. In order to determine the renormalized
topologically generated mass we will restrict our considerations to n+ N = 4 di-
mensions. For nonvanishing real mass of the field no symmetry breaking will occur.
In contrast, for the massless scalar field one obtains that for n= 1 and n= 0 in some
range of the compactification lengths symmetry breaking is possible. A numerical
analysis of the topologically generated mass will be carried out.

9.1 General Considerations

Quantum field theory in partially compactified spacetime plays a fundamental role
in various contexts. Let us just mention the following:

1. Finite temperature quantum field theory in the Euclidean formulation, where the
imaginary time is compactified to a circle of size β , where β is the inverse tem-
perature (see e.g. [276–280]).

2. Casimir-energy calculations, where the sign of the energy strongly depends on
the number of compactified dimensions (see e.g. [10, 11, 13, 14, 42, 128–130,
148] and [281–284]).

3. Topological symmetry breaking or restoration and topological mass generation
(see e.g. [285–287], and references therein).

In this chapter we will concentrate on the third point, and namely in the context
of a self-interacting scalar field theory on the spacetime TN ×R

n, n,N ∈N0. Apart
from the well known influence of topology (imposed for example by finite temper-
ature or compactified spatial sections) on the effective mass of the field [277, 286]
and [288–298]—and consequently also on particle creation [299, 300]—let us men-
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Lecture Notes in Physics 855,
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tion as a motivation for such considerations the fact that possibly the universe as a
whole exhibits nontrivial topology (see [301–303] and references therein).

Most of the works mentioned above have been concerned with only one compact
dimension, representing imaginary time or a compact spatial dimension. However,
for example in the context of a cosmological set up, it is necessary to compactify
more than one spatial dimension, as has been emphasized by Goncharov [295], who
has treated the λφ4-theory of a massless scalar field in static flat Clifford–Klein–
Robertson–Walker spacetimes of the type T

n × R
4−n, n = 2,3, restricted to the

case of an equilateral torus Tn. Although in a cosmological set up the inclusion of
curvature is of course necessary, in addition, this spacetime allows for high explic-
itness in the analysis of the effective potential and it still reveals quite interesting
features. As already pointed out by Actor [286], the generalization to spacetimes
of the form T

N × R
n with arbitrary dimensions N and n is of interest in order to

analyze the dependence of the occurrence of a symmetry breaking mechanism on
the dimension of spacetime.

These considerations on self-interacting λφ4-theories on spacetimes T
N × R

n

can be extended in different respects. The main emphasis here will be symmetry
breaking, therefore we will concentrate on non-negative values of the square of the
mass of the field. In Sect. 9.1 we will calculate the one-loop effective potential of
the theory for a torus with arbitrary compactification lengths using the zeta-function
regularization scheme. Technical similarities exist between [286] and the consider-
ations here, however the details differ. In Sect. 9.2 we present a simple method to
extract the topologically generated mass of the field, even without an explicit eval-
uation of the effective potential. A slightly different treatment for the massive and
for the massless theory is necessary. After that we will perform the renormaliza-
tion of the theory (Sect. 9.3). To ensure renormalizability we will restrict ourselves
to n+ N = 4 dimensions. Due to the different behavior of the massive and of the
massless theory, every case is treated in its own subsection. Finally, in Sect. 9.4
we present a numerical analysis of the dependencies of the topologically generated
mass on the number of compactified dimension and on the corresponding compact-
ification lengths. For some cases, it is seen that when the compactification lengths
exceed some critical value, the theory exhibits a symmetry breaking mechanism.
Thanks to our explicit formulas, obtained using zeta-function regularization, the nu-
merical values of the generated mass can be obtained with great precision and little
(or no) role will be played by the specific numerical approximation method. A di-
rect evaluation using any computation package (e.g. Mathematica or MAPLE) is
straightforward.

9.2 The One-Loop Effective Potential for the Self-Interacting
Theory

In this section we shall concentrate on the evaluation of the one loop effective po-
tential in terms of Epstein-like zeta functions. The starting point of the theory is the
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Lagrangian

L= 1

2
(∂μϕ)

(
∂μϕ

)− 1

2
m2ϕ2 − λ

4!ϕ
4, (9.1)

with the classical potential

V0[ϕ] = 1

2
m2ϕ2 + λ

4!ϕ
4. (9.2)

We will consider the spacetime T
N × T

n with compactification lengths L1, . . . ,

LN,L, and will take the limit L→∞ afterwards. In this spacetime one may assume
as given a constant classical background field ϕ̂, and the quantum fluctuations φ =
ϕ − ϕ̂ around this background field satisfy an equation of the form

(−�+M2)φ(x)= 0, (9.3)

with an effective mass M defined by

M2 =m2 + 1

2
λϕ̂2. (9.4)

The effective potential including one-loop quantum effects is then given by the func-
tion

Veff (ϕ̂;Li)= 1

2
m2ϕ̂2 + λ

4! ϕ̂
4 + V

(
M2), (9.5)

where the quantum potential

VnVNV
(
M2)= 1

2
ln det

(−�+M2

μ2

)
(9.6)

is the functional determinant arising from the integration over the quantum fluctua-
tions, being Vn, VN the volumes of the corresponding tori.

The functional determinant will be calculated using the zeta-function prescrip-
tion (see Chap. 1). In this regularization scheme, it is defined by (here the limit
L→∞ has been performed already)

VNV
(
M2)= 1

2

[
ζ(0;Li) lnμ2 − ζ ′(0;Li)

]
, (9.7)

where μ is a scaling length and the prime denotes differentiation with respect to the
first argument (namely, with respect to s, see (9.8)). ζ(s;Li) is the zeta function
associated with the operator (9.3), with periodic boundary conditions for the field,
i.e. φ(xi)= φ(xi +Li). This means, for Re s > n+N

2 ,

ζ(s;Li) = (2π)−n
∞∑

l1,...,lN=−∞

∫
dnk ·

[(
2πl1
L1

)2

+ · · ·
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+
(

2πlN
LN

)2

+ �k2 +M2
]−s

(9.8)

or, performing the �k-integration,

ζ(s;wi)=
(√

π

L1

)n �(s − n
2 )

�(s)

(
L1

2π

)2s

Zv2

N (s − n

2
;w1, . . . ,wN), (9.9)

where we have introduced the dimensionless parameters v2 = c2 + ψ2, with c2 =
(L1m

2π )2, ψ2 = λ
2 (

L1ϕ̂
2π )2, furthermore wi = (L1

Li
)2 and the generalized Epstein zeta

function

Zv2

N (ν;w1, . . . ,wN)=
∞∑

l1,...,lN=−∞

[
w1l

2
1 + · · · +wNl2N + v2]−ν, (9.10)

valid for Reν > N
2 .

To find the effective potential (9.5) we need the derivative of (9.9) at s = 0.
Instead of using now analytical continuations of the Epstein-like zeta-function, we
will as a sort of organization of the calculation, determine first the quantum potential
in terms of the properties of the function Zv2

N .
Using regularization techniques for the Mellin transforms (see Chap. 3 and [10,

11, 13, 14, 60, 304]), it is easy to show, that for N even the poles of order one of
Zv2

N (s;w1, . . . ,wN) are located at s = N
2 ; N2 − 1; . . . ;1, whereas for N odd one

finds s = N
2 ; N2 − 1; . . . ; 1

2 ;− 2l+1
2 , l ∈N0. The residuum is determined to be

ResZv2

N (j ;w1, . . . ,wN)= (−1)
N
2 +jπ N

2√
w1 · · ·wN

vN−2j

�(j)(N2 − j)! . (9.11)

In addition, for p ∈N0 one has

Zv2

N (−p;w1, . . . ,wN)=
⎧
⎨

⎩

0, for N odd,
(−1)

N
2 p!π N

2√
w1···wN

vN+2p

( N2 +p)!
, for N even.

(9.12)

Due to the different pole structure for N even and N odd, furthermore because
of the different behavior of �(s− n

2 )/�(s) at s = 0 for n even and n odd, one has to

consider four different situations. Introducing PPZv2

N for the finite part of Zv2

N , the
different results for the effective potential read:

1. For n= 2k, k ∈N0, N even,

VNV
(
M2) = −1

2

(√
π

L1

)n
(−1)k

k!
{
Z′N

v2
(−k;w1, . . . ,wN)

+Zv2

N (−k;w1, . . . ,wN)

[
2 ln

(
L1

2πμ

)
+ γ +ψ(k + 1)

]}
. (9.13)
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2. For n= 2k, k ∈N0, N odd,

VNV
(
M2)=−1

2

(√
π

L1

)n
(−1)k

k! Z′N
v2
(−k;w1, . . . ,wN). (9.14)

3. For n= 2k+ 1, k ∈N0, N even,

VNV
(
M2)=−1

2

(√
π

L1

)n

�

(
−k − 1

2

)
Zv2

N

(
−k− 1

2
;w1, . . . ,wN

)
. (9.15)

4. And, for n= 2k+ 1, k ∈N0, N odd,

VNV
(
M2)

=−1

2

(√
π

L1

)n

�

(
−k− 1

2

)

·
{

PPZv2

N

(
−k− 1

2
;w1, . . . ,wN

)

+ResZv2

N

(
−k− 1

2
;w1, . . . ,wN

)[
2 ln

(
L1

2πμ

)
+ γ +ψ

(
k + 3

2

)]}
,

(9.16)

where ψ(z)= �′(z)/�(z) and γ =−ψ(1).

In order to obtain the effective potential, the remaining task is to construct analyti-
cal continuations of Zv2

N (ν;w1, . . . ,wN), (9.10), to Reν < N
2 and to determine the

properties of Zv2

N (ν;w1, . . . ,wN) needed in (9.13)–(9.16).
We now give the explicit analytical continuations of the Epstein-like zeta-

functions Zc2

N (s;w1, . . . ,wN). The first representation is useful for large values, the
second one for small values of the inhomogeneity term. An analytic continuation in
terms of Bessel functions is obtained in this case (the quadratic one) by making use
of the Jacobi’s relation between theta functions (see Chap. 2). One finds

Zc2

N (s;w1, . . . ,wN)

= π
N
2√

w1 · · ·wN

�(s − N
2 )

�(s)
cN−2s

+ πs

√
w1 · · ·wN

2

�(s)

∞∑

l1,...,lN=−∞

′
c

N
2 −s
[
l21

w1
+ · · · + l2N

wN

] 1
2 (s−N

2 )

·KN
2 −s
(

2πc

[
l21

w1
+ · · · + l2N

wN

] 1
2
)
, (9.17)

where the prime means omission of the summation index l1 = · · · = lN = 0. Spe-
cialized to the present situation, those are just the formulas obtained in Chap. 2



194 9 Eleventh Application: Topological Symmetry Breaking

already. Because of the exponential decay of the modified Bessel functions (also
called Kelvin functions), this representation is obviously very valuable for a numer-
ical analysis for large values of c. The information relevant for the topologically
generated mass, (9.22)–(9.25) to follow, is relatively easy to obtain, but the expres-
sions are rather long and will not be reproduced here.

For small values of c it is more suitable to proceed with the binomial expansion
[109, 126]. One then finds the analytical continuation

Zc2

N (s;w1, . . . ,wN)= c−2s +
∞∑

j=0

(−1)j
�(s + j)

j !�(s) ZN(s + j ;w1, . . . ,wN)c2j

(9.18)
where we have defined

ZN(ν;w1, . . . ,wN)=
∞∑

l1,...,lN=−∞

′(
w1l

2
1 + · · · +wNl2N

)−ν
.

Once more, also using this representation the properties needed in (9.21)–(9.25) can
be determined and the topologically generated mass can be calculated. However,
to keep the exposition clear, we will not go into the details of the calculation of
the effective potential. Instead, we shall concentrate on the most physically interest-
ing quantity, namely the mass of the classical background field ϕ̂ generated by the
quantum fluctuations.

9.3 The One-Loop Topological Mass

The one-loop quantum corrections m2
T to the topological mass of the background

field ϕ̂ are defined by

V
(
M2)=�+ 1

2
m2

T ϕ̂
2 +O

(
ϕ̂4). (9.19)

To obtain the expansion (9.19) let us consider the corresponding expansion of the
zeta-function ζ(s;Li). For m= 0, that is also c= 0, the summation index l1 = · · · =
lN = 0 in (9.10) plays a crucial role. Therefore the cases m> 0 and m= 0 will be
treated separately.

Let us start with m > 0. Using the representation of (9.9) as a Mellin-
transformation, the expansion in powers of the field is easily found to be

ζ(s;Li) =
(√

π

L1

)n(
L1

2π

)2s 1

�(s)

·
∞∑

l1,...,lN=−∞

∫ ∞

0
dt ts−

n
2−1 exp

[−(w1l
2
1 + · · · +wNl2N + c2)t

]
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· [1−ψ2t +O
(
ϕ̂4)]

=
(√

π

L1

)n(
L1

2π

)2s 1

�(s)

[
�

(
s − n

2

)
Zc2

N

(
s − n

2
;w1, . . . ,wN

)

− λ

2

(
L1

2π

)2

�

(
s− n

2
+1

)
Zc2

N

(
s− n

2
+1;w1, . . . ,wN

)
ϕ̂2+O

(
ϕ̂4)
]
.

(9.20)

Using (9.20) it is easy to obtain the unrenormalized effective potential up to O(ϕ̂4).
Here we will give only the topological mass m2

T , which in terms of properties of the
Epstein-like zeta-functions for the different cases reads:

1. Case n= 0

VNm2
T =

λ

2

(
L1

2π

)2[
PPZc2

N (1;w1, . . . ,wN)

+ResZc2

N (1;w1, . . . ,wN) ln

(
L1

2πμ

)2]
. (9.21)

2. Case n= 2k, k ∈N, N even,

VNm2
T = −

λ

2
k

(
L1

2π

)2(√
π

L1

)n
(−1)k

k!
{
Z′N

c2
(−k + 1;w1, . . . ,wN)

+Zc2

N (−k + 1;w1, . . . ,wN)

[
2 ln

(
L1

2πμ

)
+ γ +ψ(k)

]}
. (9.22)

3. Case n= 2k, k ∈N, N odd,

VNm2
T =−

λ

2
k

(
L1

2π

)2(√
π

L1

)n
(−1)k

k! Z′N
c2
(−k + 1;w1, . . . ,wN). (9.23)

4. Case n= 2k + 1, k ∈N0, N even,

VNm2
T =

λ

2

(
L1

2π

)2(√
π

L1

)n

�

(
−k+ 1

2

)
Zc2

N

(
−k+ 1

2
;w1, . . . ,wN

)
. (9.24)

5. Case n= 2k + 1, k ∈N0, N odd,

VNm2
T =

λ

2

(
L1

2π

)2(√
π

L1

)n

�

(
−k+ 1

2

){
PPZc2

N

(
−k + 1

2
;w1, . . . ,wN

)

+ResZv2

N

(
− k+ 1

2
;w1, . . . ,wN

)[
2 ln

(
L1

2πμ

)
+γ +ψ

(
k+ 1

2

)]}
.

(9.25)
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Using the results above, analytical expressions for the generated mass m2
T are

now easy to find. But the results are rather long and not especially illuminating, so
we will not write them down here. However, after going through the renormalization
procedure in n+N = 4 dimensions the analytical representation of the Epstein-like
zeta-functions will be used explicitly, because so it will be possible to prove that m2

T

in (9.21)–(9.25) is always positive.
Let us now consider the massless case m= 0. For that we introduce

ZN(s;w1, . . . ,wN)=
∞∑

l1,...,lN=−∞

′(
w1l

2
1 + · · · +wNl2N

)−s (9.26)

where the prime means omission of the zero mode. Then expansion (9.20) has to be
replaced with

ζ(s;Li) =
(√

π

L1

)n(
L1

2π

)2s �(s − n
2 )

�(s)
vn−2s +

(√
π

L1

)n(
L1

2π

)2s 1

�(s)

·
[
�

(
s − n

2

)
ZN

(
s − n

2
;w1, . . . ,wN

)

− λ

2

(
L1

2π

)2

�

(
s− n

2
+1

)
ZN

(
s− n

2
+1;w1, . . . ,wN

)
ϕ̂2+O

(
ϕ̂4)
]
.

(9.27)

where the first term reveals the special role played by the summation index l1 =
· · · = lN = 0 in (9.10). For n �= 2 this term does not contribute to the topologically
generated mass and with the replacement Zc2

N → ZN (9.21)–(9.25) remain true.
However, for the case n = 2 the mass m2

T cannot be calculated, as a result of the
well-known infrared problems in two dimensions.

9.4 Renormalization of the Theory

Up to now the analysis has been performed for general dimensions n and N . Now, in
order to implement the renormalization procedure we will restrict ourselves to n+
N = 4 dimensions. As is seen in (9.13) and (9.16) (resp. (9.21), (9.22) and (9.25))
the effective potential (resp. the topologically generated mass m2

T ) depends on the
arbitrary scaling length μ. However, with the help of (9.11) and (9.12), one can
show, that the prefactors of the terms depending on the scale μ do not depend on the
compactification lengths of the torus. So it is enough to perform the renormalization
of the Euclidean spacetime (for similar topologies this has already been observed
for example by Toms [290, 305]). Let us first consider the case m> 0. Then more
specifically, this means that we can define the renormalized effective potential as

V
(ren)
eff (ϕ̂,Li)= δC + 1

2

(
m2 + δm2)ϕ̂2 + 1

4! (λ+ δλ)ϕ̂4 + V
(
M2), (9.28)
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where the counterterms are fixed by the renormalization conditions

0 = V
(ren)
eff (ϕ̂ = 0,Li →∞), (9.29)

m2 = ∂2V
(ren)
eff (ϕ̂,Li)

∂ϕ̂2

∣∣∣∣
ϕ̂=0,Li→∞

, (9.30)

λ = ∂4V
(ren)
eff (ϕ̂,Li)

∂ϕ̂4

∣∣∣∣
ϕ̂=ϕ̂1,Li→∞

. (9.31)

We find

δC = m4

64π2

[
3

2
− ln

(
m2μ2)

]
, (9.32)

δm2 = λm2

32π2

[
1− ln

(
m2μ2)], (9.33)

δλ = λ2

32π2

[
λ2ϕ̂4

1

M4
1

− 6λϕ̂2
1

M2
1

− 3 ln
(
M2

1μ
2)
]
, (9.34)

with M2
1 =m2 + 1

2λϕ̂
2
1 .

Thus, the renormalized effective potential reads

V
(ren)
eff (ϕ̂;Li) = 1

2
m2ϕ̂2 + 1

4!λϕ̂
4 − 1

64π2
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1
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n
2

( n2 )! Z′N
v2
(−n

2 ;w1, . . . ,wN), n even,

�(−n
2 )PPZv2

N (−n
2 ;w1, . . . ,wN), n odd.

(9.35)

For the renormalized topologically generated mass, we obtain

m2
T ,ren = m2 − λm2

32π2

[
ln

(
L1m

2π

)2

− 1+ (δn,0 − 1)

{
γ +ψ

(
n
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)}]

+ λ

2VN

(
L1

2π

)2(√
π

L1

)n
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·

⎧
⎪⎪⎨

⎪⎪⎩

PPZc2

4 (1;w1, . . . ,w4), n= 0,

Z′2
c2
(0;w1,w2), n=N = 2,

�(1− n
2 )PPZc2

N (1− n
2 ;w1, . . . ,wN), n odd.

(9.36)

At this point, let us use the analytical continuation of Zc2

N , (9.17). Introducing the
dimensionless quantities

x ≡
(
L1m

4π

)
, y ≡ λ

16π2
, z≡

(
L1mT,ren

4π

)2

, (9.37)

the topologically generated mass for all cases reads

z = x + y
√
x

2π

∞∑

n1,...,nN=−∞

′[
n2

1/w1 + · · · + n2
N/wN

]− 1
2

·K1
(
4π
√
x
[
n2

1/w1 + · · · + n2
N/wN

] 1
2
)
. (9.38)

It is seen, that for x > 0 one concludes z > 0. This means, that for positive square
of the mass of the classical field the quantum fluctuations do not lead to a symmetry
breaking mechanism. This changes if we consider a massless scalar field as will be
shown in the following section.

9.5 Symmetry Breaking Mechanism for a Massless Scalar Field

Without going once more into the details of the calculation, we will just state the
final results for the topologically generated mass in the case m= 0. We find

1. Case n= 3, N = 1:

m2
T =−

λ

4L2
1

Z1

(
−1

2
;1
)
= λ

24L2
1

. (9.39)

2. Case n= 1, N = 3:

m2
T =

λ

8πL2L3
Z3

(
1

2
;w1,w2,w3

)
. (9.40)

3. Case n= 0, N = 4:

m2
T =

λL1

8π2L2L3L4
Z4(1;w1,w2,w3,w4). (9.41)

The first of these equations (9.39) is just the well known finite temperature result
given for example in [277, 293, 294], which is certainly positive and therefore of
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lesser interest for our present considerations. However, from (9.40) and (9.41) we
see that the sign depends on the compactification lengths. This is an interesting
result [43]. For example the equilateral torus leads in both cases to a negative m2

T
(the case N = 3 has also been treated in [295] and the results here are in numerical
agreement with that reference). Varying the compactification lengths also symmetry
restoration is possible [43].

Summarizing the results of the calculation, in the space of compactification
lengths a critical region can be characterized which encloses the value L1 = · · · =
LN and a clear transition is observed from negative (region around L1 = · · · = LN )
to positive values of m2

T . This can be easily checked, e.g. for n = 1,N = 3 and
n= 0,N = 4. In all cases, the region with (m2

T ≤ 0) is finite and symmetric around
the point with equal Lis [43].

The numerical analysis above is based on the expressions for Z3 and Z4 that we
now write explicitly, where an analytical continuation for ZN has been used in order
to derive analytical expressions for m2

T . The analytical continuation of the Epstein-
like zeta-function ZN(s;w1, . . . ,wN) and its properties needed in (9.40) and (9.41)
to give the numerical analysis of the topologically generated mass m2

T .
The analytical continuation of (9.26) is (see Chap. 2)
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. (9.42)

Using (9.42) the relevant results for the topologically generated mass read
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(9.43)

and
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+ 8π√
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, (9.44)

which are very convenient expressions that can be evaluated numerically (see [43]
for details of this calculation).

To summarize, in this chapter we have addressed the issue of topological mass
generation for the case of a self-interacting scalar field theory on spacetimes of the
type T

N ×R
n, n,N ∈N0. We have been concerned with symmetry breaking ques-

tions, therefore real masses for the fields have been taken into account only. After
showing in some detail the calculation of the effective potential, we have analyzed
the behavior of the basic, physically interesting quantity, namely the mass of the
classical background field generated by the quantum fluctuations. A detailed deriva-
tion of the renormalized mass has been carried out. It only involves zeta-function
techniques and the final results are expressed as convergent series which can be
added up numerically to any desired approximation. For the case m2 > 0 (9.38)
represents the central result. It shows that for m2 > 0 symmetry breaking is not pos-
sible, irrespective of the values of the compactification lengths Li and of the param-
eter m2. One is able to establish this remarkable fact [43] in a rigorous way thanks
again to the quick convergence of the non-trivial expansions for the zeta-functions.

The corresponding results for m2 = 0 are given by (9.39)–(9.41). They are even
more interesting than those for the massive case. Here the occurrence of symmetry
breaking for n = 1 and n = 0 is clearly established and, moreover, it is explicitly
shown to depend on the values of the compactification lengths Li [43]. Further-
more, after symmetry breaking has occurred, continuing along the same path in the
parameter space of compactification lengths one is then led to symmetry restoration
in a natural way. There is a clear reason for this fact, as soon as one realizes the sym-
metric role played by the different compactification lengths of the multidimensional
torus.



Chapter 10
Twelfth Application: Cosmology
and the Quantum Vacuum

Zeta regularization has proven to be a powerful and reliable tool for the regular-
ization of the vacuum energy density in ideal situations. With the Hadamard com-
plement, it has been shown to provide finite (and meaningful) answers too in more
involved cases, as when imposing physical boundary conditions (BCs) in two- and
higher-dimensional surfaces (being able to mimic in a very convenient way other ad
hoc cut-offs, as non-zero depths), as we have seen before (Chap. 7).

Also these techniques have been used in calculations of the contribution of the
vacuum energy of the quantum fields pervading the universe to the cosmological
constant (cc). Naive calculations of the absolute contributions of the known fields
lead to a value which is off by roughly 120 orders of magnitude, as compared with
observational tests, what is known as the new cosmological constant problem. This
is difficult to solve and many authors still stick to the old problem to try to prove
that basically its value is zero with some perturbations thereof leading to the (small)
observed result (Burgess et al., Padmanabhan, etc.) We address this issue, in this
last chapter, in a somewhat similar way, by considering the additional contributions
to the cc that may come from the possibly non-trivial topology of space and from
specific boundary conditions imposed on braneworld and other seemingly reason-
able models that are being considered in the literature (mainly with other purposes
too)—kind of a Casimir effect at cosmological scale. If the ground value of the cc
would be indeed zero, we would then be left with this perturbative quantity coming
from the topology or BCs.

We show here that this value acquires the correct order of magnitude (and has
the right sign, what is also non-trivial)—corresponding to the one coming from
the observed acceleration in the expansion of our universe—in a number of quite
reasonable models involving small and large compactified scales and/or brane BCs,
and supergravitons.

E. Elizalde, Ten Physical Applications of Spectral Zeta Functions,
Lecture Notes in Physics 855,
DOI 10.1007/978-3-642-29405-1_10, © Springer-Verlag Berlin Heidelberg 2012
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10.1 On the Reality of the Vacuum Fluctuations

In ordinary QFT, one cannot give a meaning to the absolute value of the zero-point
energy. Any physically measurable effect comes as an energy difference between
two situations, such as a quantum field in curved space as compared with the same
field in flat space, or one satisfying BCs on some surface as compared with the
same in its absence, etc. This difference is the Casimir energy: EC = EBC

0 −E0 =
1
2 (trH

BC − trH). But here a problem appears. Imposing mathematical boundary
conditions (BCs) on physical quantum fields turns out to be a highly non-trivial
act. This was discussed in detail in a paper by Deutsch and Candelas [213]. These
authors quantized em and scalar fields in the region near an arbitrary smooth bound-
ary, and calculated the renormalized vacuum expectation value of the stress-energy
tensor, to find out that the energy density diverges as the boundary is approached.
Therefore, regularization and renormalization did not seem to cure the problem with
infinities in this case and an infinite physical energy was obtained if the mathe-
matical BCs were to be fulfilled. However, the authors argued that surfaces have
non-zero depth, and its value could be taken as a handy dimensional cutoff in order
to regularize the infinities (see Sect. 7.3). Just two years after Deutsch and Cande-
las’ work, Kurt Symanzik carried out a rigorous analysis of QFT in the presence of
boundaries [214]. Prescribing the value of the quantum field on a boundary means
using the Schrödinger representation, and Symanzik was able to show rigorously
that such representation exists to all orders in the perturbative expansion. He showed
also that the field operator being diagonalized in a smooth hypersurface differs from
the usual renormalized one by a factor that diverges logarithmically when the dis-
tance to the hypersurface goes to zero. This requires a precise limiting procedure
and point splitting to be applied. In any case, the issue was proven by him to be
perfectly meaningful within the domains of renormalized QFT. In this case the BCs
and the hypersurfaces themselves were treated at a pure mathematical level (zero
depth) by using Dirac delta functions.

Recently, a new approach to the problem has been postulated [215–218]. As
crudely stated by Jaffe [306], experimental confirmation of the Casimir effect does
not establish by itself the reality of zero point fluctuations. He explains this via the
example of the electromagnetic field, where the energy of a smooth charge distribu-
tion, ρ(x), can be precisely calculated from the energy stored in the electric field, a
formula which arguably cannot be taken as evidence for the electric field itself be-
ing real. Fortunately, propagating electromagnetic waves are detected all the time.
The moral: in the case of the Casimir forces one should look for direct evidence of
vacuum fluctuations. Have they been found yet? As of today, the answer is very con-
troversial. Since GR has much wider consensus, a search at the cosmological level
is proposed. In fact, almost everybody admits that any sort of energy will always
gravitate [307]. Thus, the energy density of the vacuum, more precisely, the vacuum
expectation value of the stress-energy tensor,

〈Tμν〉 ≡ −Egμν, (10.1)
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will appear on the rhs of Einstein’s equations

Rμν − 1

2
gμνR =−8πG(T̃μν − Egμν). (10.2)

It therefore affects cosmology: there is a contribution T̃μν of excitations above
the vacuum, equivalent to a cosmological constant λ= 8πGE . Reliable data yield
[308–310]

λ= (2.14± 0.13× 10−3 eV
)4 ∼ 4.32× 10−9 erg/cm3. (10.3)

At issue is then the belief that zero point fluctuations will contribute in an essen-
tial way to the cosmological constant (cc), e.g., they will be of the same order of
magnitude.

Different rigorous techniques have been used in order to perform this calcula-
tion, the result being that the absolute contributions of the known quantum fields
(all of which couple to gravity) lead to a value which is off by roughly 120 orders of
magnitude—kind of a modern (and indeed very thick!) ether. Extremely severe can-
cellations should occur. Observational tests, as advanced, see nothing (or very little)
of it, what leads to the so-called cosmological constant problem [311–313]. This
problem is at present very difficult to solve and we will here not address such hard
question directly. Some almost successful attempts at solving the problem deserve
to be mentioned, as the clever approaches by Baum and Hawking, and Polchinski’s
phase ambiguity found in Coleman’s solution [314–317].

What we do consider (see also [318])—with relative success in quite different
approaches—is the additional contribution to the cc coming from the non-trivial
topology of space or from specific boundary conditions imposed on braneworld and
other models. This can be viewed as kind of a Casimir effect at cosmological scale:
a cosmo-topological Casimir effect [319]. Assuming someone will be able to prove
(some day) that the ground value of the cc is zero (as many had suspected until very
recently),12 we will be left with this incremental value coming from the topology or
BCs. We will show that this value has the correct order of magnitude, e.g., the one
coming from the observed acceleration in the expansion of our universe, in three
different types of models, involving: (a) small and large compactified scales, (b)
dS and AdS worldbranes, and (c) supergravitons. The case of moving boundaries
seems to present quite severe difficulties, though a promising approach in order to
deal with them has been issued [320].

10.2 On the Curvature and Topology of Space

The Friedmann–Robertson–Walker (FRW) model, which can be derived as the only
family of solutions to the Einstein’s equations compatible with the assumptions of

12What would, by the way, correspond to the convention of normal ordering in QFT in ordinary,
Euclidean backgrounds.
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homogeneity and isotropy of space, is the generally accepted model of the cosmos.
But the FRW is a family with a free parameter, k, the curvature, that can be either
positive, negative or zero (the flat or Euclidean case). This curvature, or equivalently
the curvature radius, R, is not fixed by the theory and should be matched with cos-
mological observations. Moreover, the FRW model, and Einstein’s equations them-
selves, can only provide local properties, not global ones, so they cannot tell about
the overall topology of our world: is it closed or open? finite or infinite? Even being
quite clear that it is, in any case, extremely large—and possibly the human species
will never reach more than an infinitesimally tiny part of it—the question is very
appealing to any (note that this discussion concerns only three-dimensional space
curvature and topology, time will not be involved).

10.2.1 On the Curvature

Serious attempts to measure the possible curvature of the space we live in go back
to Gauss, who measured the sum of the three angles of a big triangle with vertices
on the picks of three far away mountains (Brocken, Inselberg, and Hohenhagen). He
was looking for evidence that the geometry of space is non-Euclidean. The idea was
brilliant, but condemned to failure: one needs a much bigger triangle to try to find
the possible non-zero curvature of space. Now cosmologist have recently measured
the curvature radius R by using the largest triangle available, namely one with us at
one vertex and with the other two on the hot opaque surface of the ionized hydrogen
that delimits our visible universe and emits the CMB radiation (some 3 to 4 ×105

years after the Big Bang) [321]. The CMB maps exhibit hot and cold spots. It can
be shown that the characteristic spot angular size corresponds to the first peak of the
temperature power spectrum, which is reached for an angular size of .5° (approx-
imately the one subtended by the Moon) if space is flat. If it has a positive curva-
ture, spots should be larger (with a corresponding displacement of the position of
the peak), and correspondingly smaller for negative curvature. The joint analysis of
the considerable amount of data obtained by balloon experiments (BOOMERanG,
MAXIMA, DASI) [322–324], combined with galaxy clustering data, has produced a
lower bound for |R|> 20h−1 Gpc, i.e. twice as large as the radius of the observable
universe, of about RU � 9h−1 Gpc.

10.2.2 On the Topology

Let us repeat that GR does not prescribe the topology of the universe, or its be-
ing finite or not, and the universe could perfectly be flat and finite. The simplest
non-trivial model from the theoretical viewpoint is the toroidal topology. Traces
for this and more elaborated ones, as negatively curved but compact spaces, have
been profusely investigated, and some circles in the sky with near identical tem-
perature patterns were identified [325]. And yet more papers appear from time to
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time proposing a new topology [326]. However, to summarize all these efforts and
the observational situation, and once the numerical data are interpreted without bias
(what sometimes was not the case, and led to erroneous conclusions), it seems at
present that available data point towards a very large (we may call it infinite) flat
space.

10.3 Vacuum Energy Fluctuations and the Cosmological
Constant

The issue of the cc has got renewed thrust from the observational evidence of an
acceleration in the expansion of our Universe, initially reported by two different
groups [327, 328] whose team leaders have been awarded this year’s Nobel Prize
in Physics. There was some controversy on the reliability of the results obtained
from those observations and on its precise interpretation, by a number of different
reasons. Anyway, after new data has been gathered and studied using alternative, un-
correlated methods, there is now consensus among the community of cosmologists
that actually the acceleration is there, and that it does have the order of magnitude
obtained in the above mentioned observations [329–331]. As a consequence, many
theoreticians have urged to try to explain this fact, and also to try to reproduce the
precise value of the cc coming from these observations [332–334].

Now, as crudely stated by Weinberg [335], it is even more difficult to explain why
the cc is so small but non-zero, than to build theoretical models where it exactly
vanishes [336–343]. Rigorous calculations performed in quantum field theory on
the vacuum energy density, ρV , corresponding to quantum fluctuations of the fields
we observe in nature, lead to values that are over 120 orders of magnitude in excess
of those allowed by observations of the spacetime around us. In fact, if the cc gets
contributions from zero point fluctuations [344]

E0 = � c

2

∑

n

ωn, ω= k2 +m2/�2, k = 2π/λ. (10.4)

Evaluating in a box and putting a cut-off at maximum kmax corresponding to reliable
QFT physics (e.g., the Planck energy)

ρ ∼ � k4
Planck

16π2
∼ 10123ρobs. (10.5)

Assuming one will be able to prove (in the future) that the ground value of the
cc is zero (as many suspected until recently), we will be left with this incremental
value coming from the topology or BCs. This sort of two-step approach to the cc is
becoming more and more popular recently as a way to try to solve this very difficult
issue [345–349]. We have seen, using different examples, that this value acquires in
fact the correct order of magnitude—corresponding to the one coming from the ob-
served acceleration in the expansion of our universe—under some reasonable con-
ditions. We put forward a quite simple and primitive idea (but, for the same reason,
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of possibly far reaching consequences), related with the global topology of the uni-
verse [350] and in connection with the possibility that a faint scalar field pervading
the universe could exist. Fields of this kind are ubiquitous in inflationary models,
quintessence theories, and the like. In other words, we do not pretend to solve the
old problem of the cc, not even to contribute significantly to its understanding, but
just to present simple and usual models which show that the right order of magni-
tude of (some contributions to) ρV which lie in the precise range deduced from the
astrophysical observations are not difficult to get. To say it in different words, we
only address here the ‘second stage’ of what has been termed by Weinberg [335] the
new cc problem.

10.4 Simple Model with Large and Small Compactified
Dimensions

Consider a universe with a spacetime such as: Rd+1×T
p×T

q , Rd+1×T
p×S

q , . . . ,
which are very simple models for the spacetime topology [351]. A free scalar field
pervading the universe will satisfy (−�+M2)φ = 0, restricted by the appropriate
boundary conditions (e.g., periodic, in the first case). Here, d ≥ 0 stands for a pos-
sible number of non-compactified dimensions. Recall that the physical contribution
to the vacuum or zero-point energy 〈0|H |0〉 (H is the Hamiltonian and |0〉 the vac-
uum state) is obtained after subtracting EC = 〈0|H |0〉|R − 〈0|H |0〉|R→∞ (R being
a compactification length), what gives rise to the finite value of the Casimir energy
EC , which will depend on R, after a regularization/renormalization procedure is
carried out. We discuss the Casimir energy density ρC = EC/V , for either a finite
or an infinite volume of the spatial section of the universe.13 In terms of the spec-
trum: 〈0|H |0〉 = 1

2

∑
n λn, the sum over n involving, in general, several continuum

and several discrete indices.
The physical vacuum energy density corresponding to the contribution of a scalar

field, φ in a (partly) compactified spatial section of the universe is14

ρφ = 1

2

∑

k

1

μ

(
k2 +M2)1/2

, (10.6)

where μ is the usual mass-dimensional parameter to render the eigenvalues dimen-
sionless (we take �= c = 1 but will insert the dimensionfull units at the end). The
mass M of the field will be kept different from zero (a tiny mass can never be ex-
cluded) and its allowed value will be constrained later. A lack of this simplified
model: the coupling of the scalar field to gravity should be considered (see, e.g.,

13From now on we assume that all diagonalizations already correspond to energy densities, and
the volume factors will be replaced at the end.
14Note that this is just the contribution to ρV coming from this field; there might be other, in
general.
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[352, 353] and the references therein). However, taking it into account does not
change the order of magnitude of the results. The renormalization of the model is
rendered much more involved, and one must enter a discussion on the orders of
magnitude of the different contributions, which yields, in the end, an ordinary per-
turbative expansion, the coupling constant being finally re-absorbed into the mass
of the scalar field. Owing, essentially, to the smallness of the resulting mass for
the scalar field, one can prove that, quantitatively, the difference in the final result
is of some percent only. Another consideration: our model is stationary, while the
universe is in accelerated expansion. Again, in a first approach this effect will be
dismissed, at the level of our order-of-magnitude calculation, since this contribution
is clearly less than the one we will finally get—taken the present value of the ex-
pansion rate �R/R ∼ 10−10 per year, or from direct consideration of the Hubble
coefficient. In any case, these refinements are left for future work. Here, to focus just
on the essential idea, we perform a static calculation and the value of the Casimir
energy density and cc contribution to be obtained will correspond to the present
epoch. They are certainly bound to change with time.

10.4.1 Regularization of the Vacuum Energy Density

For a (p,q)-toroidal universe, with p the number of large and q of small dimen-
sions:

ρφ = 1

apbq

∞∑

np,mq=−∞

(
1

a2

p∑

j=1

n2
j +

1

b2

q∑

h=1

m2
h +M2

)(d+1)/2+1

, (10.7)

which corresponds to all large (resp. all small) compactification scales being the
same. The squared mass of the field should be divided by 4π2μ2, but we have
renamed it again M2 to simplify. We also dismiss the mass-dimensional factor μ,
easy to recover later.

For a (p-toroidal, q-spherical)-universe,

ρφ = 1

apbq

∞∑

np=−∞

∞∑

l=1

Pq−1(l)

(
4π2

a2

p∑

j=1

n2
j +

l(l + q)

b2
+M2

)(d+1)/2+1

,(10.8)

Pq−1(l) being a polynomial in l of degree q − 1. We assume that d = 3− p is the
number of non-compactified, large spatial dimensions, and ρφ needs to be regular-
ized. We use the zeta function [10, 11, 13, 14], taking advantage of our expressions
in [123, 124, 354]. No further subtraction or renormalization is needed (the sub-
traction at infinity is zero, and not even a finite renormalization shows up). Using
the mentioned formulas, that generalize the Chowla–Selberg expression to encom-
pass (10.7) and (10.8), we can provide arbitrarily accurate results (even for different
values of the compactification radii [355, 356]).
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For the first case, (10.7), we obtain

ρφ = − 1

apbq+1

p∑

h=0

(
p

h

)
2h

∞∑

nh=1

∞∑

mq=−∞

√√√√
∑q

k=1 m
2
k +M2

∑h
j=1 n

2
j

·K1

[
2πa

b

√√√√√
h∑

j=1

n2
j

(
q∑

k=1

m2
k +M2

)]
. (10.9)

Now, from the behavior of the function Kν(z) for small values of its argument,
Kν(z)∼ 1

2�(ν)(z/2)−ν , z→ 0, we get, in the case when M is small,

ρφ = − 1

apbq+1

{
MK1

(
2πa

b
M

)
+

p∑

h=0

(
p

h

)
2h

∞∑

nh=1

M√∑h
j=1 n

2
j

·K1

(
2πa

b
M

√√√√√
h∑

j=1

n2
j

)
+O

[
q
√

1+M2K1

(
2πa

b

√
1+M2

)]}
. (10.10)

The only presence of the mass-dimensional parameter μ is as M/μ everywhere,
and this does not affect the small-M limit, M/μ� b/a. Inserting back the � and c

factors, we get

ρφ =− �c

2πap+1bq

[
1+

p∑

h=0

(
p

h

)
2hα

]
+O

[
qK1

(
2πa

b

)]
, (10.11)

where α is a computable finite constant, obtained as an explicit geometrical sum in
the limit M→ 0. It is remarkable that we do get a well defined limit, independent
of M2, provided M2 is small enough.15

10.4.2 Numerical Results

For the most common cases, the constant α in (10.11) has been calculated to be
of order 102, and the whole factor, in brackets, of order 107. This clearly shows
the value of a precise calculation, as the one undertaken here, together with the
fact that just a naive consideration of the dependencies of ρφ on the powers of the
compactification radii, a and b, is actually not enough in order to get the correct
result. Note, moreover, the non-trivial change in the power dependencies on going
from (10.10) to (10.11).

15Indeed, a physically nice situation turns out to correspond to the mathematically rigorous case.
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Table 8 The vacuum energy
density contribution, in units
of erg/cm3 [see (10.3)]. In
brackets, the values that more
exactly match the one for the
cosmological constant
coming from observations,
and in parenthesis the
otherwise closest
approximations

ρφ p = 0 p = 1 p = 2 p = 3

b= lP 10−13 10−6 1 105

b= 10lP 10−14 [10−8] 10−3 10

b= 102lP 10−15 (10−10) 10−6 10−3

b= 103lP 10−16 10−12 [10−9] (10−7)

b= 104lP 10−17 10−14 10−12 10−11

b= 105lP 10−18 10−16 10−15 10−15

Naturally enough, for the compactification radii at small scales, b, we take the
Planck length, b∼ lPlanck, and for the large scales, a, the present size of the universe,
a ∼ RU . With these choices, the order of a/b in the argument of K1 is as big as:
a/b∼ 1060.16 The final expression for the vacuum energy density is independent of
the mass M of the field, provided this is small enough (eventually zero). In fact, the
last term in (10.11) is exponentially vanishing (zero, for app). In ordinary units the
bound on the mass of the scalar field is M ≤ 1.2× 10−32 eV (e.g., physically zero,
since it is less by several orders of magnitude than any bound coming from SUSY
theories).17

By replacing such values we obtain Table 8. The total number of large space
dimensions is three (our universe). Good coincidence with the observational value
is obtained for p large and q = p+ 1 small compactified dimensions, p = 0, . . . ,3,
and this for the small compactification length, b, of the order of 10 to 103 times
the Planck length lP (a most reasonable range, according to string theory models).
The p large and q small dimensions are not all that are supposed to exist: p and
q refer to the compactified ones only. There may be non-compactified dimensions,
what translates into a modification of the formulas above, but does not change the
order of magnitude of the final numbers (see e.g. [10, 11, 14] for an elaboration on
this technical point). Finally, simple power counting is unable to provide the correct
order of magnitude of the results here obtained. One should however observe that
the sign of the cc is a problem with this oversimplified models (which commonly
get it wrong!). This is no longer so with the more elaborate theories to be considered
below (see also [319, 357–365]).

10.5 Braneworld Models

Braneworld theories may help to solve both the hierarchy problem and the cc prob-
lem. And the bulk Casimir effect can play an important role in the construction

16Note that the square of this value yields the 120 orders of magnitude of the QFT cc.
17Where in fact scalar fields with low masses of the order of that of the lightest neutrino do show
up [333], which may have observable implications.
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(radion stabilization) of braneworlds. We have calculated the bulk Casimir effect
(effective potential) for conformal and for massive scalar fields [366, 367]. The bulk
is a 5-dim AdS or dS space, with 2 (or 1) 4-dim dS branes (our universe). The results
obtained are consistent with observational data. We can only present a summary of
those results here.

For the case of two dS4 branes (at L separation) in a dS5 background (it be-
comes a one-brane configuration as L → ∞) the Casimir energy density and
effective potential, for a conformally invariant scalar-gravitational theory S =
1
2

∫
d5x

√
g [−gμν∂μφ∂νφ + ξ5R

(5)φ2], ξ5 = −3/16, with R(5) the curvature and

ds2 = gμν dx
μ dxν = α2

sinh2 z
(dz2 + d�2

4) the Euclidean metric of the 5-dim AdS

bulk, d�2
4 = dξ2+ sin2 ξ d�2

3—with α the AdS radius, related to the cc of the AdS
bulk, and d�3 the metric on the 3-sphere being R the radius—are obtained as fol-
lows. For the one-brane Casimir energy density (pressure), we get [366]

ECas = �c

2LR4
ζ

(
−1

2

∣∣∣∣ L5

)
=−�cπ3

36L6

[
π2

315
− 1

240

(
L

R

)2

+O
(
L

R

)4]
, (10.12)

which is about ten times larger than the ordinary Casimir effect: ECE = − �cπ2

240L4

(about 100 dynes/cm2 at 100 nm). For the one-loop effective potential, we obtain

V = 1

2LVol(M4)
log det

(
L5/μ

2), (10.13)

where L5 = −∂2
z − �(4) − ξ5R

(4) = L1 + L4, and log detL5 =∑n,α log(λ2
n +

λ2
α) =−ζ ′(0|L5). In the one-brane limit L→∞, Kt(L1) ∼ L

2
√
πt

and ζ ′(0|L5)=
1

3R [ζH (−4, 3
2 )− 1

4ζH (−2, 3
2 )] = 0. And the small distance expansion for the effec-

tive potential yields (up to an overall factor)

ζ ′(0|L5) = ζ ′(−4)

6

π4R4

L4
+ ζ ′(−2)

12

π2R2

L2

+ 1

24

[
ζ ′H (−4,3/2)− 1

2
ζ ′H (−2,3/2)

]
ln

π2R2

L2

+ ζ ′(0)
6

[
ζ ′H (−4,3/2)− 1

2
ζ ′H (−2,3/2)

]
+ 1

24
ζ ′H (−4,3/2)

+ 1
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1

8
ζ ′H (−4,3/2)− 1

3
ζ ′H (−6,3/2)

]
L2

R2
+O

(
L4

π4R4

)

� 0.129652
R4

L4
− 0.025039

R2

L2
− 0.002951 ln

R2

L2
− 0.017956

− 0.000315
L2

R2
+ · · · . (10.14)
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On the other hand, the effective potential for the massive scalar field model is
obtained to be [366]

V = 1

2LVol(M4)
log det

(
L5/μ

2),

L5 ≡ −∂2
z +m2l2 sinh−2 z−�(4) − ξ5R

(4) = L1 +L4 (AdS), (10.15)

L5 ≡ −∂2
z +m2 cosh−2 z−�(4) − ξ5R

(4) = L1 +L4 (dS).

For the small mass limit (with L not large), it yields

ζ ′(0|L5) � aρ + a2ρ2

48
− π2

144

{
aρ2

2
+ [2ζ ′(−4,3/2)− ζ ′(−2,3/2)

]
ρ

}

− π4

4370

[
2ζ ′(−4,3/2)− ζ ′(−2,3/2)

]
ρ2 +O

(
m6), (10.16)

a ≡ π2R2

L2
, ρ ≡ m2l2

π2

tanh(L/2l)

L/2l
,

while for the large mass limit (with L not small), it is

ζ ′(0|L5)=−4m2l3

3R
arctan(sinhL/2l)

sinh(L/2l)
+ · · · , (10.17)

which is now non-zero (unlike in previous calculations, which turned a vanishing
value) and can fit the observed order of magnitude under appropriate conditions.

10.6 Supergraviton Theories

We have also computed the effective potential for some multi-graviton models with
supersymmetry [368–371]. In one case, the bulk is a flat manifold with the torus
topology R× T

3, and it can be shown that the induced cosmological constant can
be rendered positive due to topological contributions [372, 373]. Previously, the case
of R4 had been considered. In the multi-graviton model the induced cosmological
constant can indeed be positive, but only if the number of massive gravitons is suf-
ficiently large, what is not easy to fit in a natural way. In the supersymmetric case,
however, the cosmological constant turns out to be positive just by imposing anti-
periodic BC in the fermionic sector. An essential issue in our model is to allow for
non-nearest-neighbor couplings.

The multi-graviton model is defined by taking N -copies of the fields with gravi-
ton hnμν and Stückelberg fields Anμ and ϕn. Our theory is defined by a Lagrangian
which is a generalization of the one in [374]. It reads

L =
N−1∑

n=0

[
−1

2
∂λhnμν∂

λhμνn + ∂λh
λ
nμ∂νh

μν
n − ∂μh

μν
n ∂νhn + 1

2
∂λhn∂

λhn
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− 1

2

(
m2�hnμν�hμνn − (�hn)

2)− 2
(
m�†Aμ

n + ∂μϕn

)(
∂νhnμν − ∂μhn

)

− 1

2
(∂μAnν − ∂νAnμ)

(
∂μAν

n − ∂νAμ
n

)]
. (10.18)

The � and �† are difference operators, which operate on the indices n as �φn ≡∑N−1
k=0 akφn+k , �†φn ≡∑N−1

k=0 akφn−k ,
∑N−1

k=0 ak = 0, where the ak are N con-
stants and the N variables φn can be identified with periodic fields on a lattice with
N sites if the periodic boundary conditions, φn+N = φn, are imposed. The latter
condition assures that � becomes the usual differentiation operator in a properly
defined continuum limit.

In the case when anti-periodic boundary conditions are imposed in the fermionic
sector, the situation changes completely with respect to the bosonic one, since the
fermionic mass spectrum becomes quite different. The one-loop effective potential
in the anti-periodic case is calculated to be

Veff = M4
1
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= − m4

36π2
log

216

39
+ VT , (10.19)

where VT is the sum of all the topological contributions. Note that the first term on
the rhs is always negative, but the whole effective potential can be positive, due to
the presence of the topological term. Thus, in the regime mr� 1 one has

VT ∼ 1

8π2r4
=⇒ Veff > 0 for mr <

(
2

9
log

216

39

)−1/4

∼ 1.4, (10.20)

while in the opposite regime, mr � 1, we can see that the topological contribution
(although still positive) is negligible, and the effective potential remains negative. In
Fig. 14, the corresponding plot of the full effective potential, (10.19), is depicted as
a function of y ≡mr . The change of sign in the correct region is clearly observed.

To summarize, in the case of the torus topology we have obtained that the topo-
logical contributions to the effective potential have always a fixed sign, which de-
pends on the BC one imposes. They are negative for periodic fields, and positive
for anti-periodic fields. But topology provides then a mechanism which, in a most
natural way, permits to have a positive cc in the multi-supergravity model with anti-
periodic fermions. Moreover, the value of the cc is regulated by the corresponding
size of the torus. We can most naturally use the minimum number, N = 3, of copies
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Fig. 14 Plot of
Ṽeff (y)≡ r4Veff (r), (10.19),
as a function of y ≡mr

of bosons and fermions, and show that—as in the first, much more simple exam-
ple, but now with the right sign!—within our model the observational values for the
cosmological constant, (10.3), can be matched, by making very reasonable adjust-
ments of the parameters involved. As a byproduct, the results that we have obtained
[372, 373] may also be relevant in the study of electroweak symmetry breaking in
models with similar type of couplings, for the deconstruction issue.
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