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Preface: Fast NMR Methods Are Here to Stay

A distinct feature of NMR spectroscopy, the possibility to simultaneously observe

hundreds of atoms in complex macromolecules, finds its foundation in the invention

of multidimensional experiments almost 40 years ago [1, 2]. The approach, however,

has an important caveat: the ultimate resolution obtained in multidimensional

experiments comes at a very high price, the long data collection times needed to

systematically sample the large multidimensional spectral space. The number of

measured data points increases polynomially with the spectrometer field and the

desired spectral resolution, and exponentially with the number of dimensions. The

problem of lengthy sampling compromises or even prohibits many applications of

multidimensional spectroscopy in chemistry and molecular biology. Fortunately,

the advent of “fast” NMR spectroscopy offers a number of solutions.

NMR experiments can be dramatically accelerated by reducing the time needed

for individual measurements and/or the number of collected data points. Examples

of the former include reducing the magnetization recovery time after each scan

[3, 4], or spatial encoding of spectral dimensions in single-scan spectroscopy [5, 6].

The contributions to this volume are focused on the latter approach, namely the

retrieving of spectral information from a limited number of data points.

The time-consuming systematic sampling of the signal on the entire multidi-

mensional Nyquist grid describing the indirect dimensions is replaced by acquiring

FIDs for only a relatively small number of grid points, while preserving all essential

information that would be present in the full data set. Two distinct approaches can

be traced back to the early years of multidimensional NMR spectroscopy. The

former is based on the spectral projection theorem and Fourier Transform [7], and

applied for example in the ACCORDION experiment 30 years ago [8]. In the

second approach, the positions of the measured points are not constrained and

often selected randomly [9]. Both approaches require novel analysis tools and

non-standard processing methods, often resulting in significantly increased calcula-

tions times, and making them only recently a practical approach.

Deducing three-dimensional information from two-dimensional projections is

not a new idea, as pointed out in the first chapter of this volume: the most obvious

examples are the three-dimensional descriptions that our brain forms from the two-

dimensional images collected by our eyes. The history of projections in high-

resolution NMR, from the ACCORDION experiment presented in the early years

of multidimensional NMR [8] via reduced dimensionality [10] to GFT [11] and
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Projection-Reconstruction [12], has been presented many times, for example [13].

The projection concept for NMR spectroscopy has been implemented in various

flavours. In GFT, the following chemical shift combinations for a N-dimensional

signal (O1, O2, . . . ON) spectra are recorded: (O1), (O1 � O2), (O1 � O2 � O3), etc.

Successive inspection of these spectra yields the chemical shifts in their numbered

order. Generalizations of this scheme include the recording of any combination of

shifts, e.g. also (O1 � O3), (O2 � O3), or the variation of the proportionality factor

between the different shifts; the latter is usually referred to as allowing any

projection angle (“45�” would correspond to the same number of time increments

in all projected dimensions). The restriction to projection angles of “45�” often

simplifies the direct interpretation of the projections, where peak picking or recon-

structions are deferred to a later stage; an example is multi-way decomposition with

PRODECOMP [14]. Reconstruction of the full-dimensional spectrum, for example

with the various back-projection schemes implemented in Projection-Reconstruc-

tion (Chap. 1), accepts the most general types of projections. The same holds also

when each projection is immediately subjected to peak-picking as in the APSY

approach [15] (Chap. 2).

Acquiring spectral projections pertains to measuring linear cross sections in the

time domain. This can be considered as a special case of a more general sampling

scheme, where data points are sampled at any position of the time domain. The

method is known as non-uniform or non-linear sampling (NUS or NLS). A histori-

cal perspective of this approach is well presented in Chap. 3. It was introduced

almost a quarter of a century ago in a seminal publication by Laue and co-workers

[9]. In a typical NUS implementation, a small fraction of the data points that would

be collected in the conventional uniform sampling is randomly selected and

measured. This provides dramatic savings of measurement time. The spectrum is

reconstructed using specialized signal processing algorithms such as Maximum

Entropy (ME) [9] (see Chaps. 3 and 5), Multi-Dimensional Decomposition (MDD)

[16, 17], Fourier transform (FT) [18, 19] (see Chap. 4), Compressed Sensing (CS)

[20, 21], etc. The approach provides maximum flexibility in designing the sampling

schedule; thus significant efforts in the field are devoted to sampling optimization,

which is based on ideas of matched acquisition [9] or improving the random

distribution that are used for selecting points for measuring [22].

Despite the fact that fast sampling techniques were known over a long period of

time, their broad use by the NMR community started only recently. The turning

point was defined by several factors: (1) As a consequence of higher sensitivity

provided by a new generation of high-field spectrometers equipped with cryo-

probes, the ever-increasing signal frequency range and spectral dimensionality

made sampling the limiting condition for more and more practical applications

when traditional uniform sampling is used. (2) The increasing demand for high-

throughput and automated analysis of an ever-increasing volume of spectral data

can only be met by increased resolution and spectra dimensionality. (3) The dram-

atically increased performance of modern computers makes even the most compu-

tationally demanding signal processing algorithms practical. (4) This resulted in the

x Preface: Fast NMR Methods Are Here to Stay



development of novel, powerful algorithms for spectra reconstruction and analysis

from sparsely collected measurements.

Within only a few years, fast sampling techniques have been established as an

indispensible tool in biomolecular NMR. Sparse sampling is routinely used for

resonance assignment and structure determination of globular proteins [23, 24],

(Chap. 2), including high-throughput applications by the North-East Structural

Genomic Consortium (NESGC) [25, 26] and the Joint Center for Structural Geno-

mics (JCSG) [27].

Spectra of denatured proteins and intrinsically disordered proteins show

high peak overlap due to very low dispersions of signal frequencies, making sparse

sampling methods a prerequisite for successful analysis. Examples are a 60-residue

fragment of nucleoprotein N from the paramyxovirus Sendai [28]; the 148-residue

outer membrane protein X (OmpX) from Escherichia coli [29]; a 115-residue CD3
Z domain [24]; a 81-residue delta-subunit of RNA polymerase from Bacillus
subtilis [30]; the 441-residue, intrinsically disordered protein Tau [31]; the 70-residue
N-terminal domain of SKIP [32].

The fast sampling has been used in studies of large protein systems: the 86 kDa

Maltose-binding protein G [33], a 37 kDa fragment of the E. coli enterobactin
synthetase module EntF [34], the integral membrane protein Volt-dependent Anion

Channel [35] in micelles, the 23 kDa catalytically inactive phosphatase Ssu72 [36],

and the 22.4 kD protein kRas [37].

Sparse sampling has been demonstrated also in solid-state NMR [38–41] and

metabolomics [42–46].

At this turning moment when novel sampling methods have become routine for

resonance assignment and structure determination, we also witness the application

of these fast methods to new challenges such as short living molecular systems for

example with in-cell NMR [47, 48], unstable proteins, and other cases when

measurement time is limited by the sample life time. Integration into automated,

comprehensive packages for studies of protein structure and interactions will be one

of the next steps of many-fold improving efficiency of biomolecular NMR spec-

troscopy [49].

This volume presents a discussion of some of the most popular sampling

schemes used in “fast” approaches to high-dimensional NMR. Novel ideas, regard-

ing both experimental (sampling) schemes and processing algorithms, keep coming

up. In particular, the novel sampling approaches are being integrating with auto-

mated assignment, structure determination, and beyond. As the above and many

other applications show, “fast” NMR is here to stay.

Göteborg Martin Billeter and Vladislav Orekhov
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Concepts in Projection-Reconstruction

Ray Freeman and Ēriks Kupče

Abstract The Achilles heel of conventional multidimensional NMR spectroscopy

is the long duration of the measurements, set by the Nyquist sampling condition and

the resolution requirements in the evolution dimensions. Projection-reconstruction

solves this problem by radial sampling of the evolution-domain signals, relying on

Bracewell’s Fourier transform slice/projection theorem to generate a set of projec-

tions at different inclinations. Reconstruction is implemented by one of three possible

deterministic back-projection schemes (additive, lowest-value, or algebraic), or by a

statistical model-fitting program. For simplicity the treatment focuses principally on

the three-dimensional case, and then extends the analysis to four dimensions. The

concept of hyperdimensional spectroscopy is described for dealing with even higher

dimensions.
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Ē. Kupče
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1 Introduction

We live in a three-dimensional world. Survival has ensured that our brains have

evolved a remarkable capacity to reconstruct a three-dimensional image based on

a pair of slightly different two-dimensional views of our environment. While we

take this apparent instance of projection-reconstruction entirely for granted, the

complexity of the general problem soon becomes apparent in the science of

robotics, when we attempt to teach a machine to construct a reliable visual model

of its surroundings. What for humans is an entirely automatic process needs to

be derived again from first principles for a perambulating robot. Concepts like

parallax and occultation have to be re-examined.

Art presents similar challenges. It was quite some time before artists discovered

perspective – the key to depicting a plausible representation of three dimensions

on a plane canvas. Nowhere is this challenge more critical than in sculpture, the

creation of three-dimensional artefacts that reconcile the visual and tactile senses.

It is reported that the famous French sculptor Auguste Rodin employed an unusual

stratagem – he placed his model on a turntable with strong back-lighting, concen-

trating his attention on the changing silhouettes as he rotated the table in small

steps. This scheme was certainly effective; his sculptures of the human form are

so life-like that his critics accused him of cheating by taking plaster casts of his

subjects. A good case can be made that Rodin was the true father of projection-

reconstruction.

Present-day computers greatly facilitate this transformation of two-dimensional

raw data into a three-dimensional image. Artefacts in a museum collection are often

irreplaceable, so that worldwide dissemination is quite impractical. However, if

a sequence of digital photographs is taken from several different points of view,

a program can be written to reconstruct an image that can be rotated about an axis to

give a lifelike representation of three spatial dimensions [1]. The resulting digital

archive is readily transferable to any desired location and can be scaled if necessary.

A more mundane application is to offer some article for sale on a popular website in

a form that conveys a three-dimensional impression. Google Earth offers street

views of many cities that give the perception of three-dimensional reality, while

more recent research [1] creates a true three-dimensional reconstruction of the local

street environment. Lost in a strange city, a person could in principle use a mobile

phone to photograph an adjacent building, pass on the information to a distant

computer, and receive confirmation of his present location (within a metre) and also

his orientation, followed by detailed directions for proceeding to his intended

destination. Face-recognition software employs related procedures to track a person

in a crowd.

X-Ray tomography [2] makes use of the same principles. A set of pictures of

X-ray absorption is taken at different angles of incidence around a circle. The

software uses this information to reconstruct an image of the internal organs of the

patient. Whereas traditional X-ray studies gave only a two-dimensional image on a

sheet of photographic film, tomography allows the surgeon to examine the internal
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structure as if in three spatial dimensions. At about the same time, and completely

independently, Paul Lauterbur [3] hit on the idea of medical imaging by recording

nuclear magnetic resonance absorption in an applied magnetic field gradient. By

combining the results of measurements at different inclinations of the magnetic

field gradient, he was able to reconstruct a map of the distribution of protons within

the sample. Soon the ‘sample’ became a human patient and the exciting science of

MRI was born.

Projection-reconstruction is not therefore a new phenomenon. Recently it has

become of particular interest to high-resolution NMR spectroscopists with the

realization [4] that a three-dimensional spectrum can be treated as a candidate

for reconstruction in just the same manner as a physiological sample, but with the

advantage that the ‘object’ is now a sparse distribution of discrete resonances, like

the stars in the night sky, not a continuous absorption medium. (Interestingly,

projection-reconstruction borrows at least two data processing schemes from earlier

work in radio astronomy.) Sparse sampling assumes particular importance as

spectra are recorded in higher and higher dimensions in order to study larger

and larger biomolecules, often with isotopic enrichment in both carbon-13 and

nitrogen-15. The prime concern is speed. This review focuses on data-sampling

methodology rather than the actual spectroscopic applications.

2 Three-Dimensional NMR

The basic principles of projection-reconstruction are most easily understood by

reference to the simplest case – three dimensional spectroscopy. Early experiments

in NMR were preoccupied with the inherently poor sensitivity. The duration of

a measurement was often dictated by the need for appreciable multiscan averaging.

On the other hand, multidimensional spectra must normally satisfy the Nyquist

sampling condition and the resolution requirements in each and every evolution

dimension, so the number of scans is inevitably large. In modern spectrometers,

particularly those equipped with a cryogenically cooled probe (receiver coil and

preamplifier), this usually ensures a satisfactory signal-to-noise ratio long before

all the evolution dimensions have been explored on a full Cartesian matrix. The

measurement duration is said to be ‘sampling-limited’ rather than ‘sensitivity-limited’.

The obvious remedy is to resort to some form of sparse sampling of evolution space.

Sacrifices must therefore be made. All sparse sampling regimes come at the

expense of spectral artefacts. Some introduce an element of randomness in the

selection of sampling co-ordinates, but although this can reduce the mean intensity

of artefacts, it does so at the expense of widespread proliferation. Better the devil

you know. Of the many possible schemes, radial sampling appears to offer the most

acceptable solution. Because the resulting artefacts are well defined, effective

suppression schemes can be devised. More important is the fact that radial sampling

in the time domain gives rise to a particularly simple observable result – projections

of the target spectrum in the frequency domain.

Concepts in Projection-Reconstruction 3



The key ‘slice/projection’ theorem was first formulated in a radio astronomy

context by Bracewell [5] and later exploited in NMR by Nagayama et al. [6] and

Bodenhausen and Ernst [7, 8]. Consider the case of a typical plane S(F1,F2) from

a three-dimensional NMR spectrum S(F1,F2,F3). In order to obtain a projection at

some angle a, the theorem postulates that the time domain response should be

sampled along a slice through the origin at this same angle a. This requires that the
evolution parameters t1 and t2 be varied jointly [7–13]:

t1 ¼ t cosa; (1)

t2 ¼ t sina: (2)

Fourier transformation of this skew slice through two-dimensional evolution space

provides the required projection (Fig. 1).

Suppose that the NMR signal from a typical chemical site evolves at a frequency

OA in t1, and one from a second correlated site evolves at OB during t2. The
signal component that is observed after the second evolution stage is modulated

as cos(OA t1) cos(OB t2). As in the standard practice, quadrature detection is

employed in both evolution intervals, generating four signal components:

S1 ¼ cosðOA t1Þ cosðOB t2Þ; (3)

S2 ¼ sinðOA t1Þ cosðOB t2Þ; (4)

S3 ¼ cosðOA t1Þ sinðOB t2Þ; (5)

S4 ¼ sinðOA t1Þ sinðOB t2Þ: (6)

Fig. 1 The Bracewell slice/projection theorem. The Fourier transform of a slice through the

evolution dimension at an inclination a (left) is the projection of the corresponding frequency-

domain spectrum at the same angle a (right)
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After substitution of (1) and (2) the appropriate combinations of these terms creates

the four signals:

S1 � S4 ¼ cosðOAtcosaþ OBtsinaÞ; (7)

S2 þ S3 ¼ sinðOAtcosaþ OBtsinaÞ; (8)

S1 þ S4 ¼ cosðOAtcosa� OBtsinaÞ; (9)

S2 � S3 ¼ sinðOAtcosa� OBtsinaÞ: (10)

Hypercomplex Fourier transformation gives the sum and difference frequencies

(scaled accordingly) given by (OAcosa + OBsina) and (OAcosa � OBsina). Con-
sequently each measurement produces a pair of projections inclined at�a. Figure 2
shows five projections of a simulated two-dimensional spectrum containing seven

peaks. They were calculated as integrals of the intensities along rays perpendicular

to the projected trace. In the time domain the angle a must be positive whereas

in the frequency domain a can take on all angles 0� to 360�, although the projections
at a and a � 180� are of course identical.

Because the number of time-domain slices (and hence the number of recorded

projections) is relatively small, the density of sampling points is far lower than the

density used in the conventional experiment, which must examine every point on

the complete Cartesian grid while satisfying the Nyquist condition and the require-

ment for adequate resolution. This is where the critical time saving occurs. With

this limited radial sampling [13], the speed advantage increases by an order of

magnitude for each new evolution dimension beyond the first. This opens up the

Fig. 2 A set of five integral

projections of a simulated

two-dimensional spectrum

containing seven responses.

Note the situation (upper
right) where two responses

are eclipsed, giving a

projected response with an

increased integral in that

particular direction
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possibility of studying unstable molecules, or chemically exchanging systems, or

even some protein folding applications. Naturally the sensitivity falls off as the

measurement duration is reduced, but it is assumed here that sensitivity is not a

limiting factor.

3 Reconstruction

Projections are therefore relatively easily obtained, but the following reconstruction

stage is more challenging. Formally this involves the inverse Radon transform

[14, 15] – computing the three-dimensional spectrum S(F1,F2,F3) starting from

all the recorded projections. Inverse problems of this kind are notoriously tricky to

solve but an NMR spectrum is a favourable case because the target spectrum

comprises discrete resonances sparsely distributed in three dimensions rather than

a continuum of absorption. There are two general approaches to this problem –

deterministic and statistical [16].

3.1 Deterministic Reconstruction

The full three-dimensional spectrum S(F1,F2,F3) is built up by assembling individual

reconstructed planes S(F1,F2) as a function of the directly detected dimension F3. The

basic procedure for reconstructing S(F1,F2) is best described as ‘back-projection’.

Suppose that there are n one-dimensional projection traces available for the recon-

struction. Consider a typical trace P1, recorded at some arbitrary angle a. Every
peak in P1 is extended at right angles to the trace to form a set of parallel ridges

running across the plane S(F1,F2). These ridges have cross-sections defined by the

resonance lineshapes in P1. Another set of ridges from a differently oriented

projection trace P2 intersect with those from P1, and the point of intersection defines

the location of a potential correlation peak of the target spectrum. If the signals

are added there is a peak at the point of intersection (Fig. 3). A set of Pn back-

projections is measured. Usually these include a ¼ 0� and a ¼ 90� projections,

obtained by Fourier transformation of time-domain signals recorded with t2 ¼ 0 or

t1 ¼ 0, because they have a relatively high sensitivity [17]. When all the projections

are combined, the genuine correlation peaks become better defined in comparison

with the artefacts.

The ambiguity between genuine and false correlations can normally be resolved

in terms of the number of back-projected ridges that intersect at the same location.

A genuine correlation peak involves the intersection of n ridges – one from
each and every trace Pn. Intersections involving less than n ridges can normally

be taken to indicate false correlations, although in practice this criterion may not

be entirely clear cut, notably in situations where some projections contain very
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weak or missing resonances. Exactly how the intersecting ridges are combined is

determined by the back-projection algorithm used [18]. There are three principal

methods for reconstructing the two-dimensional spectrum S(F1,F2) by combining

back-projections. Each approach has strengths and disadvantages, and the choice is

mainly determined by the nature of the available experimental projection data.

3.1.1 The Additive Algorithm

Consider a typical pixel in the S(F1,F2) plane. If it corresponds to a genuine

correlation response there are n signal-bearing rays intersecting at that point, one

from each of the n projections. The simplest procedure is to add these n contribu-

tions to signal intensity of this pixel (or alternatively, calculate the arithmetic

mean). This has the advantage that all n traces contribute to the final signal-to-noise
ratio, just as in multiscan averaging. Figure 4 illustrates the improvement in spectral

quality as the number of measured projections n is increased from 6 through 18. Not

only does the signal-to-noise ratio increase, but artefacts also become less apparent,

indicating that increasing n is to be preferred over time-averaging identical traces.

One advantage is that the additive algorithm allows for the possibility that some

projection traces may be missing a particular resonance through poor sensitivity;

genuine correlation peaks then occur at lower-order (<n) intersections. Even in the
case where there is a very noisy projection trace with no detectable signals, the

additive reconstruction remains valid.

The additive algorithm has the advantage of being linear. The correct relative

intensities are normally preserved, and there is no spurious ‘improvement’ in the

signal-to-noise ratio in the reconstructed spectrum; the noise floor increases as

the square root of n. This algorithm proves to be most useful when n is relatively

large, for then the intensities of residual ridges and false cross-peaks are weak in

comparison with the genuine correlation peaks, and may fall below the general

level of the noise. However, the presence of many vestigial ridges in the skirts of

a reconstructed resonance distorts and broadens the derived line-shape. This can be

Fig. 3 The intersection of two back-projected ridges in the additive mode creates a correlation

peak but leaves undesirable ridges
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corrected by the application of a resolution enhancement function to the projection

traces [19] – a procedure known as filtered back-projection.

If necessary, a reprocessing program can be written to filter out artefacts on the

grounds that each true correlation peak carries with it a known, well-defined pattern

F1 (C-13, ppm)
166168170172174176178180182

100
110

120
130

140 F2 (N-15, ppm)

F1 (C-z, ppm )
166168170172174176178180182

100
110

120
130

140 F2 (N-15, ppm)

F1 (C-13, ppm)
166168170172174176178180182

100
110

120
130

140 F2 (N-15, ppm)

ñ ñ
ñ

ñ

ñ

ñ

a

b

c

Fig. 4 Reconstructed spectra using the additive back-projection algorithm, showing the effect of

increasing the number of projections, (a) n ¼ 6, (b) n ¼ 12, (c) n ¼ 18. Six responses are detected

as the signal-to-noise ratio increases and the artefacts become less obtrusive. Residual ridges are

apparent in (a) but not in (c)
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of back-projection ridges. One such program, ‘CLEAN’, has been adapted from

a procedure first introduced in radio astronomy [20, 21] and later applied in NMR

spectroscopy [22, 23]. It presupposes that the line shapes in the reconstructed

spectrum are known, or can be measured. Then an iterative search selects the tallest

response in the reconstructed S(F1,F2) plane and subtracts it, along with its asso-

ciated back-projection ridges, storing the appropriate intensity and frequency

co-ordinates in a table. The next iteration stage is slightly less burdened with

artefactual ridges, and the next-tallest response is located and removed, along

with its associated ridges. The procedure continues until the detection threshold is

just above the base-plane noise, where further iteration becomes unproductive. The

only remaining danger is that extremely weak NMR responses, comparable with

the baseline noise, could be overlooked. The spectroscopist may then make direct

use of the correlation information stored in the table, or alternatively, reconstruct

a processed version of the spectrum.

3.1.2 The Lowest-Value Algorithm

In situations where artefacts are of more serious concern than any sensitivity

considerations, a more appropriate approach is to superimpose all n back-projection
rays, but retain only the lowest amplitude at each pixel [24, 25]. (More specifically,

the program selects the lowest absolute magnitude response and then reinstates

the original sign.) Then the only intersections that give rise to correlation peaks are

those involving one ridge from each trace. Intersections of less than n ridges

necessarily overlap with noise from a back-projection that carries no NMR signal,

causing any potential false correlation peak to be replaced by the base-plane noise.

A similar suppression occurs for all the extraneous ridges. For this reason the

lowest-value algorithm generates a very clean reconstruction, because each addi-

tional back-projection operation constrains the artefacts more effectively. Sensitivity

does not improve with n; indeed it is determined by the signal-to-noise ratio of the

weakest resonance in one of the projections. Consequently the reconstruction process

breaks down if one of the n traces has a missing resonance, unless this eventuality

is recognized and that particular projection is deliberately eliminated from the

reconstruction. The lowest-value algorithm is most useful when n is small. Its

inherent non-linearity has two consequences. First, the skirts of the reconstructed

peaks are clipped; instead of circular (or elliptical) intensity contours, some

polyhedral character is imposed, with 2n edges. Second, the character of the base-

plane noise is changed, because the algorithm selects the lowest noise amplitude at

each pixel.

However, the principal restriction of the lowest-value algorithm is to experi-

ments where all projections have an acceptable signal-to-noise ratio. Otherwise

problems arise because the algorithm discriminates against very weak signals

comparable with the noise. One bad apple spoils the whole barrel. At any given

pixel, the intensity is set by the one particular back-projected ray that just happens

to contribute a near-zero noise fluctuation. In this situation the degree of signal

Concepts in Projection-Reconstruction 9



suppression may vary from pixel to pixel across the region where a weak correla-

tion peak is expected, leading to break up of the peak profile.

3.1.3 Hybrid Schemes

One solution is to devise a methodology that combines the advantages of the

additive and lowest value procedures while avoiding the pitfalls of each. These

hybrid schemes seek to balance the advantages of accumulation and purging. An
initial accumulation stage combines the reconstructed spectra in the additive mode

to improve sensitivity, and then any artefacts are purged by the lowest-value

algorithm. The n experimental projections are divided into p independent batches,

usually of equal size k. These subsets are used to reconstruct p different versions

of the desired S(F1,F2) spectrum, enhanced in signal-to-noise ratio by applying the

additive algorithm to each batch in turn. Then the resulting p reconstructions are

combined pixel-by-pixel according to the lowest-value algorithm in order to mini-

mize the artefacts. The ratio k:p determines the balance between the conflicting

demands of sensitivity and artefact suppression. In the limit that k ¼ n this regime

reduces to pure accumulation; at the opposite extreme where p ¼ n this scheme

reduces to pure purging. This simple hybrid algorithm is effective, but is not

necessarily the optimum scheme.

In an attempt to improve on this hybrid scheme, a combinatorial approach has

been suggested [26]. Instead of accumulating p independent batches, this procedure
examines a much larger number of batches nCk ¼ n!=ðn� kÞ!k!, representing the

sums of all possible combinations of k amplitudes chosen from the available total n.
The perceived rationale for this combinatorial method is that processing an

extremely high number of batches should deliver a substantial sensitivity advantage

as the lowest-value operation is applied to all nCk sums. Since these calculations

must be repeated for every pixel in the S(F1,F2) plane, and for every plane as a

function of F3, the method is very computationally intensive.

Mandelshtam [27] has suggested a fast and very effective simplification. When all
possible combinations of n signals in batches of k have been examined to search for

the batch with the lowest sum, all these low-intensity itemsmust necessarily be found
in one particular batch, so the result is simply the sum of the k lowest-amplitude

signals. The slow combinatorial calculation can therefore be replaced by a single, fast

summation. All n back-projected rays that intersect at a given pixel are examined, and

the subset with the k lowest amplitudes is retained. As before, the adjustable

parameter k serves to define the desired balance between sensitivity and artefact

suppression. Clearly this is the most effective hybrid scheme discovered so far.

3.1.4 The Algebraic Algorithm

When the aim is to study the very crowded spectra characteristic of large biomo-

lecules such as proteins, the overriding concern is to reduce the amount of data to

10 R. Freeman and Ē. Kupče



be processed. Then it makes sense to simplify the information in the raw projection

traces by eliminating all except the frequency information, ignoring intensities and

line shapes. Each projection trace is processed with a peak-picking routine and

all further processing is based solely on frequency information. The n projection

traces are replaced by n lists of frequencies, each list from a different projection at

a specific projection angle a. Here lies the real danger – peak-picking can miss

a resonance because it is lying on the shoulder of a stronger response, or simply

because a weak resonance lies below the arbitrary intensity threshold assumed by

the peak-picking program. Then the criterion for recognizing a genuine correlation

peak (n intersections) is compromised.

Apart from these caveats, the algorithm is an exercise in simple algebra [15, 28].

It selects one frequency from each of the n lists, thus defining n intersecting straight
lines running across the reconstruction plane S(F1,F2) at various inclinations a. By
solving the resulting n simultaneous equations, the algorithm determines whether or

not all these straight lines intersect at a point. In practice a certain degree of leeway
is allowed, based on the expected accuracy of the frequency measurements. The

process is continued until a positive outcome is detected – all n straight lines meet

within a small, predefined ‘area of uncertainty’. The ‘centre of gravity’ is taken as

the location of a genuine correlation peak. The frequency co-ordinates used in these

n-fold solutions are then saved, and the corresponding frequencies removed from

the frequency lists.

Problems arise because there may still be further genuine correlations that

involve less than n intersecting lines, owing to the shortcomings of the peak-picking

routine. An iterative scheme is contrived [29] which relaxes the requirement that

there be n intersections. The next stage examines combinations of frequencies

from the depleted projection lists, accepting all (n�1)-fold intersections as genuine

correlations, and transferring the corresponding frequency co-ordinates to the

‘accepted’ list. There is no absolute guarantee that these new solutions do not

contain an occasional false correlation, but the probability is minimized because

a large number of resonance frequencies associated with n-fold solutions has

already been removed from the list. A third level of iteration may then be initiated,

searching for possible genuine solutions of the order (n�2) and so on, until the

operator terminates the search.

The power of this algebraic algorithm stems from the very high degree of data

reduction achieved in the peak-picking stage, something that is indispensable when

dealing with spectra of very high complexity. A possible disadvantage is the lack of

a cast-iron criterion for identifying false correlations, but the saving grace is that for

large biomolecules an absolutely complete solution may not be necessary. Note

that although this mode of operation is correctly categorized as back-projection, it

does not involve ‘reconstruction’ in the spectroscopic sense. Correlations appear

as frequency co-ordinates in the ‘accepted’ list, with no opportunity for viewing

a reconstructed spectrum to make a judgement about reliability. This apparently

clean end-result is illusory because information about signal intensities compared

with levels of artefacts and noise has been intentionally disregarded. The method

has been applied successfully to multidimensional spectra of proteins [29].

Concepts in Projection-Reconstruction 11



3.1.5 Eclipsed Resonances

Complications arise whenever two responses are eclipsed – where the projection

has been recorded at an inclination a that happens to catch two peaks in the S(F1,F2)

plane in exact alignment. Consider first of all the common case where all responses

are positive. One example is illustrated in Fig. 2 (upper right). In the additive

algorithm, back-projection then makes a twofold contribution to the intensities

at both locations, distorting the relative intensities in the final reconstruction.

Fortunately the severity of this intensity error decreases with n. One remedy is to

discard the highest and lowest back-projected contributions to the intensity of

a given pixel on the grounds that they could be unreliable, then sum the rest. By

its very nature the lowest-value algorithm is more forgiving when there are eclipsed

peaks; an abnormally intense response in one projection is unlikely to affect the

corresponding pixel. Because the algebraic algorithm retains no intensity informa-

tion but relies solely on frequencies, it is essentially unaffected by eclipsed

back-projection.

There is a far more serious problem when the S(F1,F2) spectrum is composed of

both positive and negative resonances, since the eclipsed condition can lead to

cancellation (or severe attenuation) of the corresponding projected signal. This

interference between signals of opposite phase affects the three back-projection

algorithms in quite different ways. The additive scheme (with n large) should

tolerate occasional cancellation effects reasonably well, since if one direction

of back-projection proves ineffective this does little to falsify the overall recon-

struction. The lowest-value algorithm is far more sensitive to accidental cancella-

tion because destructive interference can seriously degrade the reconstruction.

A comprehensive solution to interference between eclipsed resonances is

provided by a subroutine that sets up the radial sampling in such a way as to

avoid all those projection directions a that would lead to eclipsed peaks [18]. It is

based on initial sampling with t2 ¼ 0 or t1 ¼ 0, generating the 0� and 90� projec-
tions after Fourier transformation. Two-dimensional convolution of the responses

along these axes produces a preliminary test map containing both genuine and false

correlation peaks. Projections that record not the integral, but the tallest signal on

the projection ray are known as ‘skyline projections’. These are computed at all

possible angles a, and the integral over each projection trace is plotted as a function
of a. This graph displays a constant integral except at inclinations where two or

more responses are eclipsed, when there is a sudden dip. The graph overestimates

the danger that genuine peaks are eclipsed because false correlation peaks make

contributions to the projections, but it can nevertheless be used to predict those

projection angles that avoid all possible cases of overlap.

There are alternative strategies for treating spectra with positive and negative

responses. They work best if the projection angles are chosen to avoid eclipsed

peaks. One method divides the projection information into two independent

sets – one with positive signals and the other with negative signals. These plus
and minus sets are used separately to reconstruct plus and minus S(F1,F2) planes,

12 R. Freeman and Ē. Kupče



which are then recombined. Another scheme converts all the resonances in the

projections into positive peaks, thereby limiting the reconstruction to the absolute

magnitude mode.

Mandelshtam [27] has proposed a histogram-based algorithm for reconstructing

spectra with both positive and negative peaks, and it does not rely on avoiding the

eclipsed case. It retains only the most-likely contribution to the intensity at a given

pixel. An artificially broadened amplitude distribution function is derived from the

histogram representing all the intensity contributions. Although loosely related to

the sum of the individual amplitudes, the maximum of this function is quite

insensitive to cancellation effects. This scheme works better at higher values of n.
It has been successfully tested on simulated two-dimensional spectra.

3.1.6 Projected Linewidths

In a three-dimensional experiment it is quite likely that the nuclei evolving in t1 and
t2 have different spin–spin relaxation times T2

A and T2
B. This means that a response

in the S(F1,F2) plane may have very different natural linewidths in the two

frequency dimensions. With a skew slice through evolution space at an angle a,
Fourier transformation generates a projected response with a Lorentzian width

given by

Dn ¼ cosa ðpT2AÞ
� þ sina ðpT2BÞ

�
: (11)

This response is broader than at least one of the parent lines in F1 or F2. This may

suggest a choice of projection angle a that favours a narrower projected line if good
resolution is an important consideration.

3.2 Statistical Methods

An entirely different approach to reconstruction [16] is to find a model of the two-

dimensional spectrum S(F1,F2) that is compatible with all the measured projection

traces. In principle the iteration could start with an arbitrary or completely feature-

less model (zero intensity at every pixel), but usually it is better to employ some

‘prior knowledge’. In the vicinity of a correlation peak it is clear that there must

be some correlation between the intensities of adjacent pixels. Prior knowledge

may take the form of assumptions about lineshapes or the expected number of

resonances in the two-dimensional spectrum, or it might exploit hard evidence from

an earlier deterministic scheme. At the most primitive level, where each pixel in the

S(F1,F2) plane is fitted independently, these statistical programs converge very

slowly, but there is much to be gained by restricting the variable parameters to

Concepts in Projection-Reconstruction 13



a number of discrete resonances with appropriate line-shapes, for example two-

dimensional Gaussians. There is an inherent danger in these assumptions because a

spurious spike in the noise could be ‘promoted’ to the status of a genuine correlation

peak – this particular wolf has been provided with sheep’s clothing. A standard

least-squares procedure may be used, but convergence to a global solution is faster

if the more sophisticated simulated annealing routine [30] is employed. The ‘maxi-

mum likelihood’ estimate [31], loosely related to least-squares fitting, seeks

to maximize the probability of observing the set of experimental projections Pn

given the current proposed S(F1,F2) map.

Maximum entropy reconstruction [32] is claimed to return a ‘maximally non-

committal’ solution. It calculates a small set of proposed S(F1,F2) maps that are

compatible with the measured projections within the experimental errors, and

selects the one with the least information content. For this reason it suppresses all

noise and artefacts in the reconstruction and is therefore prone to be misleading.

In another terminology, it rejects ‘false positives’ but is likely to return ‘false

negatives’. This particular feature suggests that the maximum entropy solution

could prove to be a useful starting point for more sophisticated statistical programs.

3.2.1 Bayesian Inference [33]

This is a learning system that tests the degree to which the suggested model ‘M’ is

consistent with the experimental data ‘D’, and any prior knowledge about the

problem ‘C’. It proposes an initial model two-dimensional spectrum S(F1,F2) in

the light of any prior assumptions, for example the expected lineshapes. This

defines a conditional prior probability P(M|C) that the model is correct based

only on the initial assumptions. The next stage updates P(M|C) in the light of the

experimental projection data D to give the posterior probability P(M|DC) reflecting
how well the proposed model is justified based on bothD and C. The next parameter

is the likelihood P(D|MC) that the experimental data D is consistent with the model

M and the prior assumptions C. Bayes’ theorem can be expressed as

P MjDCð Þ / P MjCð ÞP DjMCð Þ: (12)

It is now possible to maximize the posterior probability P(M|DC) to give the most

probable model for the two-dimensional spectrum S(F1,F2). There are

many methods available for such a computation, including the Markov chain

Monte-Carlo algorithm.

3.2.2 The Markov Chain Monte-Carlo Method

Monte Carlo methods originated in an ingenious approach to the complex problem

of evaluating the probability that a hand of Solitaire would come out successfully.

14 R. Freeman and Ē. Kupče



The solution was to set out several Solitaire hands at random and count the

proportion of successful hands. A Markov chain defines a sequence of states

where the ‘transition probability’ from the current state of a system to its next

state is dependent only on the value of the current state. The starting point can be

arbitrary but the chain must eventually reach a stationary distribution. It should not

get trapped in a loop, and must also retain some probability of jumping to the next

state. To avoid bias in the choice of starting conditions the initial set of results is

usually discarded, a procedure known as ‘burn in’. Confirmation of convergence of

the Markov chain is achieved by inspection of the trajectories to check that there is

no obvious remaining trend, or by running several independent simulations to

verify that the various solutions lie within a reasonable range.

One example of the NMR reconstruction problem employs the reversible-jump
Markov chain Monte-Carlo method [16]. It assumes that the model spectrum

S(F1,F2) is made up of a limited number m of two-dimensional Gaussian resonance

lines. Then m, the linewidths, intensities, and frequency co-ordinates are varied

until the Markov chain reaches convergence. The allowed transitions between the

current map M and the new map M’ comprise movement, merging or splitting of

resonance lines, and ‘birth’ or ‘death’ of component responses. Compatibility with

the experimental traces is checked by projecting M’ at the appropriate angles. The
procedure has been found to be stable and reproducible [16].

Some measure of the reliability of all these statistical methods can be obtained

by rerunning the programs with different initial conditions. It emerges that in

general the location of peaks in the reconstruction is well reproduced, but relative

intensities can sometimes vary appreciably. The possibility of false or missing

correlations suggests that, in principle, the aforementioned deterministic schemes

may be preferable.

4 Four-Dimensional Spectroscopy

When there is ambiguity in the three-dimensional spectrum, or where global

isotopic enrichment in 13C and 15N has been employed, a further evolution dimen-

sion may be introduced [18]. The problem can still be visualized as a cube in three-

dimensional evolution space, neglecting any representation of the real-time direct

acquisition dimension t4. The three evolution parameters are defined by

t1 ¼ t cosa cosb; (13)

t2 ¼ t sina cosb; (14)

t3 ¼ t sinb: (15)
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(These reduce to the expressions for three-dimensional spectra if b ¼ 0�.) After
Fourier transformation a cube that represents the evolution subspace S(F1F2F3) is

created, with the fourth frequency dimension F4 left to the imagination. In this

representation the simplest projections are the three ‘first planes’ F1F4 (where

t2 ¼ t3 ¼ 0), F2F4 (where t1 ¼ t3 ¼ 0), and F3F4 (where t1 ¼ t2 ¼ 0). Resonance

locations in one such plane are independent of peak positions in one of the other

planes. Normally these first planes do not provide enough information to solve the

reconstruction problem unambiguously. However they do generate accurate values

of the chemical shifts, they tend to have relatively good sensitivity, and they can be

‘borrowed’ from related NMR experiments if necessary. A second category of

projections is generated by varying two evolution parameters (say t1 and t2) in
step, while holding the third (t3) at zero. There are three such kinds of tilted

projections, at angles �a with b ¼ 0�, at �b with a ¼ 0�, and at �b with a ¼ 90�.
The third category comprises doubly-tilted projections (involving simultaneous

tilting through a and b) recorded when t1, t2, and t3 are incremented jointly. The

observed NMR signals are modulated as functions of the evolving chemical shifts

(OA, OB, and OC). There are now eight relevant time-domain expressions:

S1 ¼ cosðOAt cosacosbÞ cosðOBt sinacosbÞ cosðOCt sinbÞ; (16)

S2 ¼ cosðOAt cosacosbÞ cosðOBt sinacosbÞ sinðOCt sinbÞ; (17)

S3 ¼ cosðOAt cosacosbÞ sinðOBt sinacosbÞ cosðOCt sinbÞ; (18)

S4 ¼ cosðOAt cosacosbÞ sinðOBt sinacosbÞ sinðOCt sinbÞ; (19)

S5 ¼ sinðOAt cosacosbÞ cosðOBt sinacosbÞ cosðOCt sinbÞ; (20)

S6 ¼ sin OAt cosacosbð Þ cos OBt sinacosbð Þ sin OCt sinbð Þ; (21)

S7 ¼ sin OAt cosacosbð Þ sin OBt sinacosbð Þ cos OCt sinbð Þ; (22)

S8 ¼ sin OAt cosacosbð Þ sin OBt sinacosbð Þ sin OCt sinbð Þ: (23)

The treatment is a straightforward extension of the three-dimensional case outlined

in Sect. 2. There are four independent projections of the four-dimensional spectrum

S(F1F2F3F4), giving the frequencies of a typical peak symmetrically related in

two pairs:

OAcosacosbþ OBt sinacosbþ OCt sinb; (24)

OAcosacosb� OBt sinacosbþ OCt sinb; (25)

OAcosacosbþ OBt sinacosb� OCt sinb; (26)

OAcosacosb� OBt sinacosb� OCt sinb: (27)
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5 Hyperdimensional Spectroscopy

The treatment in Sect. 4 is readily extended to five dimensions [18, 34], but

the time factor begins to be critical for actual measurements. Drastic economies

in digitization must be made in all four evolution intervals before the experiment

becomes practically feasible. A five-dimensional experiment that employs only
16 complex time-domain samples in each of the four evolution periods, with

1 s allowed for (complex) signal acquisition and relaxation, would require

12 days to complete. Furthermore, there would be cumulative losses of magneti-

zation due to relaxation and pulse imperfections, and a fourfold overall signal

loss attributable to the √2 attenuation between successive stages. Even the

processing and storage of high-dimensional data begins to make excessive

demands on present-day computers. Although such an experiment is feasible in

practice, it is far better to consider an alternative mode for higher dimensional

spectra.

The new concept is called hyperdimensional NMR [35, 36]. Consider the case of

a ten-dimensional experiment, as might be contemplated for a ten-spin system

representing two adjacent aminoacids in a large biomolecule. Imagine the

corresponding virtual matrix comprising all ten orthogonal frequency dimensions.

There is no point in attempting to construct this matrix by means of an actual
ten-dimensional experiment, but it can be used as a conceptual framework for

combining lower-dimensional results. The key point is that (say) a three-dimensional

spectrum and a four-dimensional spectrum can be combined into a six-dimensional

spectrum provided they share one common frequency axis. (A minor assignment

problem arises if there are degenerate chemical shifts in the common dimension,

but there are relatively simple solutions to this difficulty [37]). Tacking together the

appropriate low-dimensional spectra on this imaginary framework allows any one

of the ten chemical sites to be correlated with any other; there are 45 pairwise

correlations of this kind. Note the irony that the results for a ten-dimensional

problem are only easily visualized as plane projections of this monster matrix.

The conventional procedure has always been manual cross-referencing of peaks

in the two independent low-dimensional spectra. In contrast, hyperdimensional

NMR combines these spectra directly, and then relates them to a virtual high-

dimensional matrix.

As a practical illustration, Fig. 5 shows 4 typical two-dimensional projections of

the ten-dimensional spectrum of a small 39-residue protein agitoxin, globally

enriched in 13C and 15N. All these spectra were obtained by combining three- and

four-dimensional experiments that were completed in a reasonably short time,

whereas the duration of the full ten-dimensional experiment would have been

completely unacceptable. These four planes have been selected from the full comple-

ment of 45 possible projections. Each of these spectra contains many cross-peaks

because there are many different pairs of adjacent amino acids.

Concepts in Projection-Reconstruction 17



6 Conclusions

Projection-reconstruction is not a new idea. The brain performs hundreds of related

operations every second by constructing mental three-dimensional images based on

two slightly shifted two-dimensional views of the outside world. Applications in

other scientific fields – magnetic resonance imaging and X-ray tomography – are

well known. This review focuses on the data-sampling methods required to imple-

ment projection-reconstruction schemes designed to speed up multidimensional
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Fig. 5 Four typical planes chosen from 45 possible projections of a virtual ten-dimensional

matrix, representing the ten-dimensional spin systems in adjacent aminoacid residues of a small

protein, agitoxin. They show the correlations (a) N(i�1) to NH(i), (b) CH(i�1) to NH(i), (c) N(i)
to Ca(i), (d) Ca(i) to CO(i)
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NMR spectroscopy. Radial sampling of time-domain data is clearly an effective

sparse sampling route for this purpose. It relies on a well-proven theorem that the

Fourier transform of a skew slice through a two-dimensional time-domain function

is the projection of the corresponding frequency-domain function viewed at the

same angle. Although, as with all sparse sampling protocols, this scheme introduces

artefacts, these are well defined and can be suppressed very effectively. There are

basically four deterministic schemes to implement the reconstruction stage. It is

essential to match the mode of reconstruction to the appropriate experimental

situation – the additive scheme for sensitivity, the lowest-value program for artefact

suppression, the Mandelshtam hybrid algorithm for balancing the accumulation and

purging features, or the algebraic algorithm for complicated biochemical spectra.

On the whole the deterministic schemes are to be preferred over statistical model-

fitting procedures. Finally the review describes an effective way to deal with very

high dimensional cases – hyperdimensional spectroscopy. Note that the term is not

merely a codeword for experiments in higher dimensions, but a conceptual frame-

work for dealing with such systems and for extracting the appropriate information.
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17. Kupče E, Freeman R (2004) J Biomol NMR 28:391–395
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37. Kupče E, Freeman R (2008) J Magn Reson 191:164–168

20 R. Freeman and Ē. Kupče
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Automated Projection Spectroscopy

and Its Applications

Sebastian Hiller and Gerhard Wider

Abstract This chapter presents the NMR technique APSY (automated projection

spectroscopy) and its applications for sequence-specific resonance assignments of

proteins. The result of an APSY experiment is a list of chemical shift correlations

for an N-dimensional NMR spectrum (N � 3). This list is obtained in a fully

automated way by the dedicated algorithm GAPRO (geometric analysis of

projections) from a geometric analysis of experimentally recorded, low-dimensional

projections. Because the positions of corresponding peaks in multiple projections

are correlated, thermal noise and other uncorrelated artifacts are efficiently

suppressed. We describe the theoretical background of the APSY method and

discuss technical aspects that guide its optimal use. Further, applications of

APSY-NMR spectroscopy for fully automated sequence-specific backbone and

side chain assignments of proteins are described. We discuss the choice of suitable

experiments for this purpose and show several examples. APSY is of particular

interest for the assignment of soluble unfolded proteins, which is a time-consuming

task by conventional means. With this class of proteins, APSY-NMR experiments

with up to seven dimensions have been recorded. Sequence-specific assignments

of protein side chains in turn are obtained from a 5D TOCSY-APSY-NMR

experiment.
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Abbreviations

1D (2D, 3D, 4D, 5D, 6D, 7D) One- (two-, three-, four-, five-, six-, seven-)

dimensional

ALASCA Algorithm for local and linear assignment of side

chains from APSY data

APSY Automated projection spectroscopy

GAPRO Geometric analysis of projections

NMR Nuclear magnetic resonance

TOCSY Total correlation spectroscopy

1 Introduction

In NMR studies of biological macromolecules in solution [1–4], multidimensional

NMR data are commonly acquired by sampling the time domain in all dimensions

equidistantly [5]. With recent advances in sensitivity, such as high field strengths

and cryogenic detection devices, the time required to explore the time domain in the

conventional way often exceeds the minimal experiment time required by sensitiv-

ity considerations, so that the desired resolution determines the duration of the

experiment. This situation of the “sampling limit,” is common in three- and higher-

dimensional experiments with small and medium-sized proteins [6].

When working in the sampling limit, it is worthwhile to obtain the spectral

information by “unconventional” experimental schemes, such as non-uniform
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sampling of the time domain [7–9] or by combination of two or more indirect

dimensions [10–12]. The latter approach is also the basis for projection-reconstruc-

tion (PR-) NMR [13–16], where the projection–cross-section theorem [17, 18] is

combined with image reconstruction techniques [19, 20] to reconstruct the multidi-

mensional frequency domain spectrum from experimentally recorded projections.

Further practical acquisition and processing techniques for unconventional multi-

dimensional NMR experiments have been demonstrated [21–33]. Several of these

methods are discussed in the other chapters of this book.

The analysis of NMR spectra involves intensive human intervention, and automa-

tion of NMR spectroscopy with macromolecules is thus of general interest. Major

challenges are the distinction of real resonance peaks from thermal noise and spectral

artifacts, as well as peak overlap [34–36]. On grounds of principle, automated analysis

benefits from higher-dimensionality of the spectra [21, 37], since the peaks are then

more widely separated, and hence peak overlap is substantially reduced.

APSY (automated projection spectroscopy) combines the technique to record

projections of high-dimensional NMR experiments [15] with automated peak-

picking of the projections and a subsequent geometric analysis of the peak lists

with the algorithm GAPRO (geometric analysis of projections). Based on geometri-

cal considerations, GAPRO identifies peaks in the projections that arise from the

same resonance in the N-dimensional frequency space, and subsequently calculates

the positions of these peaks in the N-dimensional spectral space. The output of an

APSY-experiment is thus an N-dimensional chemical shift correlation list of high

quality which allows efficient and reliable subsequent use by computer algorithms.

Due to extensive redundancy in the input data for GAPRO, high precision of the

chemical shift measurements is achieved. Importantly, APSY is fully automated and

operates without the need to reconstruct the high-dimensional spectrum at any point.

In the following sections, the theoretical and practical foundations of APSY are

introduced. Several practical aspects are discussed including the sensitivity of APSY

experiments. Then, applications of APSY for the assignment of protein resonances

are described. For the backbone assignment, the high-quality APSY peak lists are used

as the input for a suitable automatic assignment algorithm. For example, the 6D APSY-

seq-HNCOCANH experiment connects two sequentially neighboring amide moieties

in polypeptide chains via the 13C’ and 13Ca atoms. Further applications are the backbone

assignment of unfolded proteins and the side chain assignment of folded proteins.

2 Theoretical Background

2.1 The Projection–Cross-Section Theorem

The projection–cross-section theorem states that an m-dimensional cross section,

cm (t), through N-dimensional time domain data (m < N) is related by an

m-dimensional Fourier transformation to an m-dimensional orthogonal projection
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of the N-dimensional NMR spectrum, Pm (o), in the frequency domain [17, 18].

Thereby, Pm (o) and cm (t) are oriented by the same angles with regard to their

corresponding coordinate systems (Fig. 1).

Kupče and Freeman showed that this theorem can be utilized to record

projections of multidimensional NMR experiments. The time domain is sampled

along a straight line (Fig. 1) and quadrature detection for this cross-section cm (t) is
obtained by combing data from corresponding positive and negative projection

angles using the trigonometric addition theorem [14, 15]. The subsequent

hypercomplex Fourier transformation results in the projections Pm (o) [11, 15,

22]. Projections with a dimensionality of m ¼ 2, with one directly recorded and

one indirect dimension, are the most practical case. For such 2D projections,

the indirect dimension is a 1D projection of the N � 1 indirect dimensions of the

N-dimensional experiment. The orientations of both c2 (t) and P2 (o) are described
by N � 2 projections angles.

For example, in a 5D APSY experiment (N ¼ 5), three projection angles a, b
and g, define the orientations of c2 (t) and P2 (o). The two unit vectors ~p1 and ~p2,
which span the indirect and the direct dimension, respectively, are given by

~p1 ¼

sin g
sin b � cos g
sin a � cos b � cos g
cos a � cos b � cos g
0

0

BBBB@

1

CCCCA
~p2 ¼

0

0

0

0

1

0

BBBB@

1

CCCCA
: (1)

Fig. 1 Illustration of the projection–cross-section theorem [17–19] for a 2D frequency space with

two indirect dimensions k and j. 1D data cjk1 ðtÞ on a straight line in the 2D time domain (tj, tk) (left)
is related to a 1D orthogonal projection Pxy

1 oð Þ of the spectrum in the 2D frequency domain

(oj, ok) (right) by a 1D Fourier transformation, Ft, and the inverse transformation, Fo. The

projection angle a describing the slope of cjk1 ðtÞ defines also the slope of Pxy
1 oð Þ. The cross peak

Qi (black dot) appears at the position Qi
f in the projection. Further indicated are the spectral widths

in the two dimensions of the frequency domain, SWj and SWk. and the evolution time increments

D, Dk and Dj (1)–(4). Adapted with permission from [38]

24 S. Hiller and G. Wider



An N-dimensional NMR spectrum is spanned by user-defined sweep widths SWi

for each of the N dimensions (i ¼ 1,. . .,N). For a projection spectrum defined by~p1,
an appropriate sweep width SW needs to be calculated (Fig. 1). Considering that the

distribution of chemical shifts in a given dimension is well described by a normal

distribution [39], the sweep width can be calculated as [40]

SW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN�1

i

SWi � pið Þ2
vuut ; (2)

where pi1 are the coordinates of the vector~p1 (1). The dwell time for the recording of

discrete data points, D, is then calculated as

D ¼ 1=SW; (3)

and the resulting increments for the N � 1 evolution times ti;Di, in the N � 1

indirect dimensions (Fig. 1), are given by

Di ¼ pi1 � D: (4)

For an optimal phasing of the projection spectra in the N-dimensional space it is

advisable to sample the time domain starting at the origin (Fig. 1). Thus, all APSY

pulse sequences should allow sampling access to this time domain point with zero

evolution time.

2.2 Projections of Cross Peaks

In a set of j projections with different projection vectors ~p1;f , an N-dimensional

cross peak Qi is projected orthogonally to the locations Qi
f . Here, f is an arbitrary

numeration of the set of j projections f ¼ 1, . . . , j. In the 2D coordinate system of

projection f, the projected cross peak has the position vector ~Qi
f ¼ [nif ;1, n

i
f ;2], with

nif ;1 and n
i
f ;2 being the chemical shifts along the projected indirect dimension and the

direct dimension, respectively. It is convenient to define the origins of both the

N-dimensional coordinate system and the 2D coordinate system in all dimensions in

the center of the spectral ranges. Then the position vector ~Qi
f in the N-dimensional

frequency space is given by

~Qi
f ¼ n if ;1 �~p1; f þ nif ;2 �~p2: (5)

The N-dimensional cross peak Qi is located in an (N � 2)-dimensional sub-

space, which is orthogonal to the projection plane at the pointQi
f (Fig. 1). The “peak

subgroup” of an N-dimensional chemical shift correlation Qi is the set of projected
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peaks, fQi
1; :::;Q

i
jg, that arise from it. It is the key function of the GAPRO

algorithm to identify the peak subgroups in the j peak lists of the projections and

to calculate the coordinates of Qi from them.

2.3 The APSY Procedure

The APSY procedure follows the flow-chart shown in Fig. 2. It is illustrated in

Fig. 3 and the APSY input parameters are defined in Table 1. At the start, the

operator selects the desired N-dimensional NMR experiment, the dimensionality of

the projection spectra, and j sets of projection angles. The projection spectra are

recorded and automatically peak picked using the GAPRO peak picker, resulting in

j peak lists. The GAPRO peak picker identifies all local maxima of the spectrum

with a sensitivity (signal-to-noise) larger than a user-defined value Rmin.

The position of the maximum is interpolated for each peak by a symmetrization

procedure that involves the intensities of the two neighboring data points in each

dimension [40]. The GAPRO peak picker does not attempt to distinguish real peaks

from spectral artifacts or random noise; every local maximum is identified as a

peak. The j peak lists contain peaks Qgf, where g is an arbitrary numeration of the

peaks and f of the projections (f ¼ 1,. . ., j). GAPRO then arbitrarily selects N � 1

of these peak lists, and generates for each peak Qgf a subspace Lgf, which contains

the point Qgf and which is orthogonal to the projection f (Fig. 3b). The intersections
of the subspaces Lgf in the N-dimensional space are candidates for the positions of

N-dimensional cross peaks (open circles in Fig. 3b). To account for the imprecision

in the picked peak positions due to thermal noise, the calculation of intersections of

Fig. 2 Flowchart of the APSY procedure. Square boxes indicate processes, and boxes with
rounded corners denote intermediate or final results. The steps surrounded with gray are repeated
k times, and thus generate k lists of peak subgroups. Adapted with permission from [38]
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Fig. 3 Illustration of the algorithm GAPRO for N ¼ 3, j ¼ 5, k ¼ 1 and Smin ¼ 3. (a) Three

dimensional view of the situation with the unknown 3D spectrum shown as a cube in the center

and two 2D projections with a ¼ 0� and a ¼ 45�. (b–e) These panels are oriented like the gray
o1/o2-plane in (a). (b) A 2D cross section through the unknown 3D spectrum is surrounded by 1D

cross sections through the five experimental 2D projections with projection angles a ¼ 0�, 90�,
�30�, 45�, and �65�. The cyan dots mark the result of the automatic peak picking of the 2D

projections. The algorithm then arbitrarily selected N � 1 ¼ 2 of the j projections for the first

round of spectral analysis, with a ¼ 0� and a ¼ �60�. The intersections of the subspaces

corresponding to the peaks in these two projections (green lines) identify eight candidate points

in the 3D spectrum (open circles). (c) Using the subspaces from all five projections, the support S
(number of intersecting subspaces, see text) is calculated for each candidate point. Yellow and red
dots indicate S ¼ 2 and S ¼ 5, respectively. (d) One of the three candidate points with the highest

support (S ¼ 5) is arbitrarily selected. All peaks in the projections that contribute to the selected

candidate point are identified as a peak subgroup (gray dots in the projections labeled with number 1).

The subspaces from this subgroup are removed from the further analysis (gray dashed lines).

Automated Projection Spectroscopy and Its Applications 27



subspaces allows a user-defined tolerance value in the direct dimension, Dnmin. For

each of the candidate points, the support, S, is then calculated. S is the number of

subspaces from all j projections that contain the candidate point. Thereby at most

one subspace from each projection is considered (Fig. 3c) so that N � 1 � S � j.
For the calculation of the support, in addition to the user-defined tolerance values

for the direct dimension, Dnmin, a tolerance for the indirect dimension, rmin, is also

required to account for the imprecision of picked peak positions. The geometric

analysis algorithm can also include aliased peaks in the experimental 2D

projections at this point of the calculation. The peaks that contribute to the support

of a given candidate point form a “peak subgroup.” The subgroups are ranked for

high S-values, and the top-ranked subgroup is selected. In case of degeneracy, one

of the top-ranked subgroups is arbitrarily selected. The subspaces contributing to

this subgroup are removed from further analysis, and new S-values for the residual
candidate points are calculated from the remaining subspaces (Fig. 3c). This

procedure is repeated until the value of S for all remaining subgroups falls below

a user-defined threshold, Smin. At this point in the algorithm a list of the identified

peak subgroups is generated. The subgroup identification is repeated with k differ-
ent, randomly chosen starting combinations of N � 1 projections, and k peak

subgroup lists are thus obtained (gray box in Fig. 2). These k lists are merged into

a single list, which is again subjected to ranking and elimination of all subgroups

with S < Smin. From the resulting final list of subgroups, the peak positions in

the N-dimensional space are calculated (Fig. 3d). Since the peak positions are

redundantly determined by the experimental data, particularly high precision can

Fig. 3 (continued) The support S of remaining candidate points is recalculated (there remains one

point with S ¼ 5, and another one with S ¼ 4 is shown in orange). (e) After two more rounds of

the procedure indicated in (d), two additional subgroups are identified and labeled with numbers

2 and 3, respectively. From the three subgroups, the positions of three peaks in the 3D spectrum are

calculated (black dots). Adapted with permission from [38]

Table 1 Parameters used as part of the input for the software GAPRO

Subroutines Parameters Description

Peak picking Rmin Signal-to-noise threshold for peak picking

DoH2O Frequency range along the acquisition dimension on

both sides of the water resonance within which no

peaks are picked

GAPRO core functions Smin Minimal support value required for the identification of

an N-dimensional peak

Dnmin Intersection tolerance in the directly detected dimension

rmin Intersection tolerance in the indirect dimensions

k Number of independent GAPRO calculations from

which the final result is derived

Secondary peak filter Rsingle Signal-to-noise threshold at the back-projected peak

positions (see text)

n Allowed number of violations of Rsingle
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be obtained for the final result. The computational techniques used for individual

steps in Fig. 2 are described in [38, 40].

2.4 The Secondary Peak Filter

In APSY, the discrimination between artifacts and noise corresponds to

distinguishing between peaks in the projections that stem from an N-dimensional

resonance and are thus correlated and those that are uncorrelated. With a suffi-

ciently large number of independently recorded experimental projection spectra

only true N-dimensional chemical shift correlations are contained in the final peak

list. This separation can be further enhanced by applying an additional, secondary

peak filter to the final result of the GAPRO calculation. Thereby the N-dimensional

APSY peak list is “back-projected” onto the experimental projections, and the

spectral sensitivities at the resulting positions are read out. Based on user-defined

criteria, the N-dimensional GAPRO peak list can then be filtered to remove weakly

supported peaks or remaining artifacts. All peaks with more than n violations of the
threshold Rsingle (Table 1) are deleted. The secondary filter thus provides an

efficient additional validation of the GAPRO result and permits the use of less

stringent parameters in the GAPRO run.

3 Practical Aspects

3.1 Sensitivity for Signal Detection in APSY-NMR Experiments

The intensity of a given multi-dimensional NMR signal varies in the individual

projections of an APSY experiment. In the following the expressions for the signal-

to-noise ratio of a given resonance are presented. This formalism can then be used

to optimize the performance of APSY-NMR experiments.

By adapting general equations for 2D spectra [5] to APSY-NMR [40], the

sensitivity of a signal in a projection of an experiment m with projection angles

~’ ¼ (a, b,. . .) is given by

S=s½ �m ~’ð Þ ¼ KA � smð0Þ � fm ~’ð Þ; (6)

where the three terms KA, smð0Þ and fmð~’Þ represent, respectively, the impact of the

detected spin type A, the signal intensity at time zero, and the dependence on the

projection angles ~’.
KA accounts for the properties of the detected nuclear species A (often protons),

including the probe sensitivity, the main polarizing magnetic field strength, and the

window function applied before Fourier transformation. Thus, the value of KA can
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be maximized for a detected given nucleus type A and a given NMR instrument for

all experiments that are detected on this nucleus.

smð0Þ is the signal intensity of the experiment m at the time domain origin. This

factor enables a comparison of the relative intrinsic sensitivities of different APSY-

NMR experiments that are detected on the same nucleus, and can thus help to

identify high-sensitivity experiments. Values for smð0Þ can be estimated either

experimentally, e.g., from 1D NMR spectra of the time domain origins, or from

model calculations [41]. Table 2 lists calculated values for different amide proton-

detected experiments.

Finally, fmð~’Þ describes the dependence of the sensitivity of an experiment m on

the projection angles ~’ and on the acquisition and processing parameters [40]:

fm ~’ð Þ ¼ 1
ffiffiffi
2

p� �q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n ~’ð Þ �M ~’ð Þp

ffiffiffiffiffiffiffiffiffiffiffiffi
h2 ~’ð Þ

q � 1

tmax ~’ð Þ
Z tmax ~’ð Þ

0

dt sem ~’; tð Þ � hð~’; tÞ: (7)

Here, semð~’; tÞ is the signal envelope in the indirect dimension, q is the number of

angles that differ from 0� or 90� (the number of subspectra to be combined for

quadrature detection is 2q [11, 15]), and nð~’Þ is the operator-chosen number of scans

recorded for each of the subspectra. hmð~’; tÞ is the applied window function, tmaxð~’Þ
the maximal evolution time, and Mð~’Þ the number of indirect points sampled.

fmð~’Þ is largely governed by the envelope function semð~’; tÞ. It can be shown that
monoexponential relaxation in all indirect dimensions results in semð~’; tÞ being a

monoexponential decay with a decay rate constant R�
2;mð~’Þ given by

R�
2;m ~’ð Þ ¼ ~p1 ~’ð Þ � ~R2;m: (8)

Table 2 Theoretical sensitivities, sm (0), of APSY-NMR experiments for polypeptide backbone

assignments

Correlated atomsa Experiment sm (0)b

HN–N 2D [15N,1H]-HSQC 100c

HN–N–Ca–Cb seq 5D APSY-HNCOCACB 11

5D APSY-CBCACONH 10–4d

HN–N–Ca–Cb intra 4D APSY-HNCACB 7

4D APSY-CBCANH 5–2d

HN–N–Ca–Ha seq 5D APSY-HNCOCAHA 17

5D APSY-HACACONH 15

HN–N–Ca–Ha intra 4D APSY-HNCAHA 11

4D APSY-HACANH 8

HN–N–Ca–C’ seq 4D APSY-HNCOCA 32

HN–N–Ca–C’ intra 4D APSY-HNCACO 7
aseq and intra stand for sequential connectivity and intraresidual connectivity, respectively. bThe

data were calculated for a protein with a rotational correlation time of 10 ns [40]. cThe sensitivity

of the 2D [15N,1H]-HSQC spectrum was normalized to 100. dFor these experiments, the intensity

depends on the amino acid type. The ranges give the minimal and maximal value among the 20

common amino acid residues
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Here, ~R2;m is an N-dimensional vector containing the transverse relaxation rates

along all indirect dimensions, with Ri
2;m ¼ 0 for constant-time evolution elements in

the dimension i. Since the standard GAPRO analysis attaches equal weight to each

projection spectrum, it is desirable to have similar sensitivities for all individual

projection experiments. If the projection angle-dependence of semð~’; tÞ is known, (7)
provides a basis for producing similar sensitivities for all the projections used in a

given APSY experiment, since the user-defined parameters nð~’Þ, Mð~’Þ, hmð~’; tÞ;
and tmaxð~’Þ can be individually adjusted for each projection experiment [5, 42].

3.2 Sensitivity and Speed of APSY-NMR Experiments

With a practical example we want to illustrate the performance of APSY in terms of

sensitivity and speed. The example is a 4D APSY-HNCOCA experiment with the

12-kDa protein TM1290, of which the sequence-specific resonance assignments are

known [43]. A total of 13 2D projections were measured in 13 min (1 min per

projection). The 4D APSY-HNCOCA experiment was recorded with [U-13C,15N]-
labeled TM1290 at 25 �C on a 600 MHz Bruker Avance III spectrometer with a

room temperature probe. The concentration was adjusted to 1.0 	 0.05 mM, as

determined by PULCON [44]. The 13 pairs of projection angles (a, b) comprised:

(90�, 0�), (0�, 0�), (0�, 90�), (	60�, 0�), (0�, 	60�), (90�, 	60�), and (	20�, 	70�).
In the 4D peak list generated by the algorithm GAPRO from these 13

projections, all 110 expected 4D (o1(
15N), o2(

13C’), o3(
13Ca), o4(

1HN)) chemical

shift correlations were contained. With the selected short measuring time, the

intensity of the weakest NMR signals in the projections is comparable to the

intensity of the thermal noise (Fig. 4). Nonetheless, even the weakest of the 110

correlation peaks (indicated by arrows in Fig. 4) was recognized by GAPRO as a

true correlation, whereas no false 4D correlations appeared. This shows that APSY

makes use of the combined sensitivity of all the projections in the input, and that it

does not require unambiguous identification of the individual peaks in each

projection.

3.3 Selection of Projection Angles

The APSY method does not impose restrictions on the choices of the projection

angles or the number of projections, except that, on fundamental grounds, the total

number of projections must be at least N � 1 and that each indirect dimension

needs to be evolved at least once in the set of projections. On this basis, the

selection of projection angles for a given APSY-NMR experiment should be guided

by two main considerations. First, the projection angles should be distributed about

evenly in the time domain. Second, projections with large q values (number of

projection angles that differ from 0� or 90�) are to be disfavored, since the
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sensitivity for the recording of the 2D projection spectra is proportional to 2�q/2 (7).

It is further recommended that the decrease in sensitivity due to higher q-values is
compensated by adjusting the number of scans n ~’ð Þ accordingly (7).

An additional improvement is achieved with the use of dispersion-optimized

projection angles, in particular if the sweep widths of the indirect dimensions are

significantly different. Dispersion-optimized projection angles adjust the

contributions of the indirect dimensions to the same size, and thus contribute

to eliminating chemical shift overlap. The dispersion-optimized, or “matching”

projection angle a* for two dimensions, i and j, with sweep widths SWi and SWj

is given by

tan a� ¼ SWi

SWj
: (9)

For example, if the sweep widths of two dimensions differ 11-fold (as they do for

C’ and Cb), then a* ¼ 84�. A set of three projection angles with values of 60�, 84�,
and 87� would thus be a good choice, whereas a seemingly more symmetric

selection with angles of 22.5�, 45�, and 67.5� would lead to two basically identical

projections [40]. Expressions similar to (9) can be derived for combinations of three

or more dimensions.

Fig. 4 One-dimensional

cross-sections through 13 2D

projections of a 4D APSY-

HNCOCA experiment of the

protein TM1290. The data set

was recorded in a total

measuring time of 13 min on

a Bruker Avance III 600 MHz

spectrometer equipped with a

room temperature probe head,

with a 1 mM protein

concentration at 25 �C. The
cross sections were taken

through the o4-position the

weakest of the 110 peaks of

TM1290. In each of the

13 cross-sections, the position

of this weakest peak is

indicated with an arrow.
Asterisks denote two other

resonances that are present

at this o4-position. All other

local maxima seen in the

cross-sections arise from

random spectral noise.

Reproduced with

permission from [40]
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3.4 Optimizing the GAPRO Parameters for a Given Experiment

Among the input variables of the geometric algorithm GAPRO, three parameters

have a dominant effect on the result of the spectral analysis: Smin, Dnmin, and rmin

(Table 1). The selection of the minimal support Smin is most important, since only

candidate signals with a support S � Smin will be included in the final peak list.

Figure 5a shows the variation of the peak list resulting from a 4D APSY-HNCOCA

experiment when different values of Smin are used. The data set consisted of the 13

projections recorded with the protein TM1290 mentioned above, for which 110

amino acids are expected. For Smin between 3 and 8, the final result contains all

the expected peaks. As a general guideline, it is advisable to set Smin to about

one third of the number of input projections, and to keep Smin > (N + 2) for an

N-dimensional experiment with 2D projections.

The two additional key parameters are the intersection tolerances for the direct

and indirect dimensions, Dnmin and rmin. A variation of these parameters shows that

Fig. 5 Impact of APSY parameters on the result. (a) Dependence of the total number P of 4D

APSY-HNCOCA peaks of the protein TM1290 on the GAPRO parameter Smin. Light gray bars
represent the number of correct correlation peaks, dark gray bars the number of artifacts, and the

dotted line indicates the expected 110 peaks. (b, c) Dependence of the total number P of 4D

APSY-HNCOCA peaks of the protein TM1290 on the GAPRO parameters rmin and Dnmin, respec-

tively. The dotted line indicates the expected 110 peaks. (d) Impact of the number j of 2D projections

on the percentage of the expected correlations, D, for three APSY experiments with the protein

TM1290. 4D APSY-HACANH (squares), 5D APSY-HACACONH (diamonds) and 5D APSY-

CBCACONH (triangles). The data correspond to Table 3. Reproduced with permission from [40]
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each of these tolerances has to be larger than a certain minimal value, which

depends on the digital resolution, the signal line widths and the sensitivity of a

given experiment (Fig. 5b,c). If the tolerances are chosen too small, corresponding

subspaces do not intersect and correct peaks are not found. However, if the

parameters are too large, no negative effects occur in the final result except that

the computation time increases substantially due to the increasing number of

intersection possibilities. As a general guideline, it is advisable to use one to two

times the respective digital resolutions in the direct and indirect dimensions of the

2D projection spectrum as values for Dnmin and rmin, respectively.

3.5 Selection of the Number of Projections

Choosing the minimal number of projections needed for a given experiment is

important to minimize the required instrument time. A good decision on the number

of projections considers the type of APSY-NMR experiment, the expected number

of correlation peaks per amino acid residue, the size and type of protein under study,

the choice of the projection angles, and the required quality of the result. Represen-

tative examples for the number of projections needed in particular experiments are

shown in Fig. 5d and Table 3. For polypeptides with smaller chemical shift

dispersion, such as denatured proteins, a higher number of projections is required

for obtaining comparable results as for globular proteins. It should be noted that

APSY can be run using a convergence scheme which interleaves the recording of

new projections with the analysis of the existing data by GAPRO. The convergence

scheme stops the data recording as soon as a preset number of peaks have been

resolved or when the protein has been assigned.

Table 3 APSY-based backbone assignment of the protein TM1290a

Parameters

4D APSY-

HACANH

5D APSY-

HACACONH

5D APSY-

CBCACONH

Number of 2D projections j 19 18 20

Recording time per projection 20 min 30 min 25 min

Smin 8 8 8

Sequential correlations

expectedb 109 109 110

Sequential correlations

observedb 88 109 110

Intraresidual correlations

expectedb 109 0 0

Intraresidual correlations

observedb 109 0 0
aThe measurements were performed with a 1 mM solution of TM1290 at 25 �C on a 750 MHz

NMR spectrometer with room temperature probe. bCorrelations relevant for the automated

assignment are indicated in bold
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Note further that in many APSY experiments, some of the projections can be

measured with individually optimized, shortened pulse sequences, which omit

magnetization transfers that are not required and hence have improved sensitivity

[15]. For example, a direct projection of the o(15N)-dimension in a multidimen-

sional APSY experiment can be replaced by a standard [15N,1H]-HSQC experiment.

4 APSY-Based Automated Resonance Assignments

4.1 Overview

APSY provides peak lists of chemical shift correlations for multidimensional NMR

experiments. Due to the averaging of a large number of observed signals in the set of

projections, the determination of the N-dimensional chemical shifts becomes very

precise. APSY is thus well suited for applications that require precise peak positions.

Here we want to concentrate on applications for resonance assignments in protein

spectra. APSY-NMR combined with a suitable assignment algorithm enables fully

automated sequence-specific assignments for globular and denatured proteins.

4.2 Combinations of 4D and 5D APSY-NMR Experiments

Strategies for sequence-specific backbone resonance assignment of polypeptides

usually contain two key elements. First, sequential NMR connectivities lead to the

identification of discrete peptide fragments of different lengths. Second, these

fragments are mapped onto the known polypeptide sequence, based on the chemical

shift statistics of the amino acid types. The vast majority of conventional backbone

assignment experiments are detected on the amide proton due to the high experi-

mental sensitivity and other practical aspects. For the same reasons, we also limit

the present discussion of APSY experiments to this nucleus. With this selection, the
1H and 15N chemical shifts of the amide moiety are readily contained in each

correlation. APSY can connect two sequential amide moieties in a single experi-

ment (see below); however, usually at least two APSY experiments are needed to

connect two sequential amide moieties. As illustrated in Fig. 6, the 13Ca atom is

always a nucleus available for the sequential connection, and a second matching

nucleus can be either 1Ha, 13Cb, or 13C’. For the mapping of fragments onto the

sequence, the 13Cb chemical shift increases the reliability of sequence-specific

assignments, since it allows the unambiguous distinction between different amino

acid types [45–48]. With the requirement that two chemical shifts should define the

sequential connectivities, five groups of four- and five-dimensional correlation

experiments can be devised (Fig. 6). The relative sensitivities of the APSY
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experiments required for these assignment strategies can be estimated by model

calculations (Table 2) [40].

As one practical example, we show the application of theHA–CA(CB) strategy to

obtain the backbone resonance assignments of the protein TM1290. TM1290 is the

same protein as was studied in the experiment of Fig. 5. The HA–CA(CB) strategy is

realized with the three experiments 4DAPSY-HACANH, 5DAPSY-HACACONH,

and 5D APSY-CBCACONH. These three experiments were carried out with the

same sample of TM1290 as described above and were performed at 25 �C on a

750MHz Bruker Avance III spectrometer with a room temperature probe. The input

for the assignment algorithm GARANT [49] consisted of the three final APSY peak

lists and the amino acid sequence [50]. Table 3 presents key parameters used for the

recording of these three experiments. The lower part of Table 3 lists the numbers of

expected and observed correlations for the three experiments used in the HA–CA

(CB) approach. All detected TM1290 backbone resonances were correctly assigned

[40]. This example thus shows that in a total instrument time of about 1 day and with

minimal human intervention, the complete and correct sequence-specific resonance

assignments of a 12-kDa protein were obtained with the APSY-based approach.

For the assignment of larger proteins, the CB–CA and the CO–CA strategies are

preferred over the HA–CA strategy, since they are compatible with deuteration,

which in turn increases the experimental sensitivity. The CB–CA strategy is

realized with the combination of the 4D APSY-HNCACB and the 5D APSY-

HNCOCACB experiment [51]. With this approach, the backbones of two human

proteins were assigned, the 22-kDa protein kRas at 0.4 mM concentration and a

15-kDa drug target protein (protein A) at 0.3 mM concentration (Fig. 11) [51]. For

each of the two proteins, 76 h of experiment time on a 600 MHz spectrometer with

Fig. 6 Combinations of intraresidual and sequential chemical shift correlations to be recorded with

HN-detected APSY-NMR experiments for polypeptide backbone assignments of 13C,15N-labeled

proteins. Each colored shape contains the nuclei correlated by a 4D or 5D experiment. The orange
areas contain the nuclei for which the individual correlations overlap. The notations used for the

different groups of experiments are indicated in each panel. Reproduced with permission from [40]
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a cryogenic probe were used for the 2 backbone experiments (16 projections of the

4D APSY-HNCACB in 48 h and 32 projections of the 5D APSY-HNCOCACB in

48 h) corresponding to a total of 3 days and assigned by the algorithmMATCH. The

overall completeness of the backbone resonance assignment was 95% for the 22-

kDa protein kRas and 98% for the 15-kDa protein A (Fig. 11), where the missing

assignments comprised segments with unfavorable protein dynamics.

4.3 Backbone Assignments with a Single 6D APSY-NMR

The combination of 4D and 5D APSY-NMR experiments thus provides backbone

assignments for perdeuterated, [U-13C,15N]-labeled proteins up to at least 25 kDa. For
smaller proteins up to 12 kDa an alternative and more elegant approach can be used

[50]. The pathway HN–N–C’–Ca–N–HN directly connects two sequentially adjacent

amide moieties in a single experiment and with APSY the full potential of this

magnetization transfer pathway is exploited [50]. The 6D APSY-seq-HNCOCANH

experimentwas recordedwith a 0.9mMsolution of the protein 434-repressor(1–63) at

30 �C on a Bruker 750 MHz spectrometer with room temperature probe. A total of

25 2D projections were recorded in 40 h. The same experiment was also recorded with

a 3.0 mM solution of TM1290 at 35 �C on a Bruker DRX 500MHz spectrometer with

a cryogenic probe. The total spectrometer time used for the recording of 25 2D

projections was 20 h.

For 434-repressor(1–63), the resulting APSY peak list contained 56 out of 57

peaks expected from the amino acid sequence and for TM1290 all but three of the

expected peaks were obtained [43]. Both lists did not contain any artifact and

provided very precise chemical shifts. The precision of chemical shift

measurements can be directly assessed in this data set, since the resonance of

each amide moiety is part of two different 6D peaks. The amide proton chemical

shift is measured in the direct dimension o6 and in the indirect dimension o1; the

amide 15N chemical shift in o5 and o2, respectively. From the 93 amide moieties of

TM1290 that contributed to two peaks, the precision (standard deviation) for the

proton and nitrogen chemical shift measurements was 0.0014 ppm (0.72 Hz),

and 0.0137 ppm (0.69 Hz), respectively. These precise and artifact-free 6D peak

lists were used as inputs for the assignment algorithm GARANT [49], yielding the

correct sequence-specific assignment for each protein.

4.4 7D APSY-NMR Spectroscopy for the Assignment
of Non-Globular Proteins

Studies of soluble non-globular polypeptides are of great relevance for protein

folding as well as for insight into the structural basis of functional non-globular
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polypeptides [52–59]. However, the available data on this class of proteins are

scarce because they are not amenable to meaningful single-crystal studies, and

solution NMR studies have been limited by small dispersion of the chemical shifts

[60–62]. Increased interest in detailed structural and dynamic characterization of

soluble non-globular polypeptides has, however, more recently been generated

by the discovery of a rapidly increasing number of proteins that are intrinsically

unfolded in their functional state in solution [54, 55, 58]. APSY provides a fully

automated approach to solving this problem with the use of very high-dimensional

NMR.

One approach is a combination of the above-mentioned 6D APSY-

seq-HNCOCANH with the 5D APSY-HNCOCACB experiment [63]. Thereby,

the 6D APSY scheme [50] connects neighboring amide groups sequentially, and

the 5D APSY scheme measures the Cb chemical shifts. These two experiments

can also be combined into a single magnetization transfer pathway, the 7D APSY-

seq-HNCO(CA)CBCANH (Figs. 7a, and 8) [63]. Magnetization of the amide

proton i is transferred with seven subsequent INEPT [64] steps to the amide proton

i � 1 (steps a–g in Fig. 7a). Along this pathway, six evolution periods are

introduced for the frequencies of the nuclei 1HN
i,

15Ni,
13C’i�1,

13Cb
i�1,

13Ca
i�1,

and 15Ni�1. Thus, each seven-atom fragment of residues i and i � 1 gives rise to a

single peak, except if a proline residue or a chain end is located at either of the

positions i or i � 1.

The 7D APSY-seq-HNCO(CA)CBCANH is illustrated here with the NMR

assignment of the 148-residue outer membrane protein X (OmpX) denatured with

8 M urea in aqueous solution [71]. The experiment was recorded with 100 2D

projections in a total measuring time of 2 days (50 h) at 15 �C on a Bruker

750 MHz spectrometer with room temperature probe (Fig. 8) [38]. Out of the 142

expected peaks, 139 were actually observed [63]. The three missing peaks connect

Fig. 7 Magnetization transfer pathways of (a) the 7D APSY-seq-HNCO(CA)CBCANH NMR

experiment and (b) the 5D APSY-HC(CC-TOCSY)CONH experiments. The dashed gray arrows
indicate INEPT magnetization transfer steps [64]. The thick gray line in (b) represents isotropic

mixing. Adapted with permission from [63] and [65]
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the residues 98–101, a backbone segment that features unfavorable backbone

dynamics.

As for the 6D experiment, high precision of the chemical shift measurements is

crucial for the sequential assignments, since these rely on matching of the amide
15N and 1H chemical shifts of sequentially neighboring amide moieties. A precision

of 0.46 Hz and 0.44 Hz, respectively for the 1H and 15N chemical shifts was

achieved (Fig. 9). Figure 9 also illustrates the significance of peak separation

compared to the precision of the chemical shift measurements for unfolded

proteins. This high precision enabled automated NMR assignment with the program

Fig. 8 Pulse sequence of the 7D APSY-HNCO(CA)CBCANH experiment. Radio-frequency

pulses are applied at 118.0 ppm for 15N, 173.0 ppm for 13C’, and at 42.0 ppm for 13Ca and 13Cb.

At the start of each transient, the 1H carrier frequency is set at 8.24 ppm, indicated by “HN,” and at

the time point “H2O” the carrier is changed to 4.7 ppm. Black and white symbols represent 90�- and
180�-pulses, respectively. Unlabeled bars stand for rectangular pulses applied at maximum power.

Pulses marked with capital letters have individually adjusted lengths and shapes, depending on

their purpose. All pulse lengths are given for a 1H frequency of 750 MHz. 13C’-pulses: A, 180�,
rectangular shape, 38.3 ms; B, 90�, rectangular shape, 42.8 ms; C, 180�, I-Burp [66], 220 ms. 13Cab-

pulses: D, 180�, I-Burp (applied at 51.0 ppm), 220 ms; E, 90�, Gaussian cascade Q5 [67], 280 ms; F,
180�, Gaussian cascade Q3 [67], 185 ms; H, 180�, rectangular shape, 38.3 ms. The 15N-pulses

labeled with an asterisk are centered with respect to ta3 þ tb3 and tc3, respectively. The
13C’-pulses

labeled with an asterisk are centered with respect to r + t5/2 and r � t5/2, respectively. The last
six pulses on the 1H line represent a 3–9–19 Watergate pulse train [68]. Decoupling using DIPSI

2 [69] on 1H and WALTZ-16 [70] on 15N is indicated by white rectangles. The triangle with t7
represents the acquisition period. On the line marked PFG, curved shapes indicate sine bell-

shaped, pulsed magnetic field gradients along the z-axis with the following durations and

strengths: G1, 600 ms, 13 G/cm; G2, 1,000 ms, 37 G/cm; G3, 800 ms, 16 G/cm; G4, 800 ms,
34 G/cm; G5, 600 ms, 19 G/cm; G6, 600 ms, 27 G/cm; G7, 800 ms, 13 G/cm; G8, 1,000 ms,
37 G/cm; G9, 800 ms, 16 G/cm. Pulse phases different from x are indicated above the pulses.

Phase cycling: f1 ¼ c2 ¼ fr ¼ {x, �x}, c4 ¼ {x, x, �x, �x}, c6 ¼ y. The initial delays were

ta1¼tc1¼2:7ms; ta2¼tc2¼14:0ms; ta3¼ tc3¼4:7ms; ta6¼tc6¼14:0ms, and tb1¼ tb2¼ tb3¼ t4¼ t5¼ tb6¼0ms.

Further delays were t ¼ 2.7 ms, z ¼ 14.0 ms, � ¼ 6.8 ms, l ¼ 4.7 ms, and r ¼ 20.75 ms.

Quadrature detection for the indirect dimensions was achieved using the trigonometric addition

theorem [11, 15] with the phases c1, c2, c3, c4–c6, c6, and c7 for t1, t2, t3, t4, t5, and t6,
respectively. Evolution periods were implemented as direct evolution for t4, and in constant-

time fashion for t1, t2, t3, t5, and t6. For t1, t2, t3, and t6, semi-constant time evolution was used for

those maximal evolution periods that are too long to be accommodated in constant-time periods.

Reproduced with permission from [63]
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GARANT [49] in spite of residual chemical shift degeneracy in some of the seven

dimensions [63].

Since the longitudinal and transverse relaxation time constants in soluble non-

globular proteins are in first order independent of the length of the polypeptide,

similar experimental sensitivities can be expected for much larger unfolded

proteins. Further, since the high precision of the APSY experiment of below 1 Hz

falls substantially below the occurring distances between pairs of neighboring

resonances in high-dimensional spaces [1, 72], similar assignment results to those

achieved with the 150 residue OmpX can be expected for other unfolded proteins

of much larger size. This has indeed been shown, where, by using the 7D APSY-

seq-HNCO(CA)CBCANH experiment, the Zweckstetter group could assign the

backbone resonances of the 441 residue Tau, a disordered polypeptide, within 5

days of measurement time, reducing the overall analysis time by more than order of

magnitude as compared to a conventional approach [73]. APSY-NMR thus has

tremendous potential for new insights into structure–function correlations of

natively unfolded proteins, as well as for key contributions to the protein folding

problem.

Fig. 9 Precision of chemical shift measurements by the 7D APSY-seq-HNCO(CA)CBCANH

experiment. The data shown was recorded with a 3 mM sample of urea-denatured OmpX in 8 M

urea aqueous solution at pH 6.5. (a) Spectral region from the (0�,0�,0�,0�,0�)-projection, which
corresponds to a 2D [15N,1H]-correlation spectrum. The black dots are projections of the 7D peak

positions determined by GAPRO, as represented by the [o6, o7]-correlations onto the experimen-

tal 2D projection spectrum. Orange squares indicate two clusters of overlapped signals which are

displayed on an expanded scale in (b) and (c). (b, c) The two different [15N,1H]-pairs contained in

each 7D signal are indicated in red ([o2, o1]-correlation) and blue ([o6, o7]-correlation).

Contours are drawn at a distance of 1.0 Hz around the peak positions projected from the 7D

data set. In (a)–(c), resonance assignments are given using one-letter amino acid symbols and the

sequence positions. (d) Histogram of the variance between the measurements of the same amide

proton chemical shift from the two 7D signals correlating two sequentially neighboring groups of 7

atoms. (e) Same as (d) for amide nitrogen-15 shifts. Reproduced with permission from [63]
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4.5 Automated NMR Assignment of Protein Side Chain
Resonances

The precise APSY peak lists can also be the basis for side chain resonance

assignments of proteins. A well suited magnetization transfer pathway for this

purpose is the HC(CC-TOCSY)CONH pathway, which correlates side chain with

backbone nuclei [74–78]. With APSY, the dimensionality of this experiment can be

extended to five [65] (Fig. 7b). The pathway starts simultaneously on all aliphatic

side chain protons including the Ha. An INEPT element transfers magnetization

to the covalently bound carbon. Subsequently, the magnetization is transferred

among the aliphatic carbon nuclei by isotropic mixing. At the end of the mixing

time the magnetization on the Ca nucleus is transferred via the carbonyl carbon to

the amide nitrogen of the successive amino acid residue and finally to the attached

amide proton, from which the signal is acquired. For a given amino acid, the

resulting 5D APSY correlation peak list thus contains a group of C–H correlations

which have identical chemical shifts in the three backbone dimensions o3(
13C’),

o4(
15N), and o5(

1HN).

The peak intensities of the correlation peaks in CC-TOCSY experiments depend

strongly on the amplitude of the magnetization transfer during the isotropic mixing

period and hence on the length of this period [79, 80]. There is no single mixing

time for which all C–H moieties of all 20 amino acids have sufficiently large

transfer amplitudes. This problem can be elegantly circumvented with APSY,

since the TOCSY mixing time can be varied along with the projection angles.

The analysis of the set of projection spectra with GAPRO does not require that a

given 5D peak is present in all projections. By using a set of mixing times that

enables sufficiently high transfer for all aliphatic side chain carbon moieties in

some of the projections, it is possible to cover the resonance frequencies of all C–H

moieties from all 20 amino acids in the resulting APSY correlation peak list.

Calculations of the transfer amplitudes in CC-TOCSY experiments show that the

set of three mixing times – 12 ms, 18 ms, and 28 ms – covers all protons in the 20

amino acids [65]. The mixing time of 18 ms, which is commonly used in classical

experiments, transfers magnetization from a majority of carbons in the side chains

to the a-carbon nuclei. The mixing time of 12 ms is favorable for signals which

have a small transfer at 18 ms. The long mixing time of 28 ms favors signals of long

side chains, but also signals of short side chains, which are very weak or not present

at the two other mixing times.

With these three mixing times, the 5D APSY-HC(CC-TOCSY)CONH experi-

ment was recorded with a 1 mM solution of the 12.4-kDa globular protein TM1290

in 24 h of spectrometer time using 36 projections (Fig. 10). Based on the reference

assignment of this protein, 424 cross peaks are expected in the resulting 5D APSY

correlation peak list [43]; 368 thereof were actually found in the present experi-

ment. These 368 correlations contained the chemical shifts of 97% of the aliphatic

carbons and 87% of the aliphatic protons in the protein.
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The resulting 5D APSY-HC(CC-TOCSY)CONH chemical shift correlation list

together with the known backbone assignment are the sole input for the side chain

assignment algorithm ALASCA (Algorithm for Local and linear Assignment of

Side Chains from APSY data) [65]. In the ALASCA algorithm, each 5D APSY-

HC(CC-TOCSY)CONH correlation is attributed to the residue, which has the

nearest backbone chemical shifts in the 3D space of the (o(13C’), o(15N),
o(1HN)) frequencies. Subsequently, for each amino acid in the protein, the

correlations of the TOCSY peak group are assigned to the side chain atoms by

matching the chemical shifts of the 5D correlations to statistical values from the

BMRB database [39].

As for the applications providing backbone assignments, the precision of the

chemical shifts obtained for o5(
1HN), o4(

15N), and o3(
13C’) from the 5D APSY-HC

(CC-TOCSY)CONH experiment is crucial for the assignment. It was found to be

0.5 Hz for o5(
1HN), 2.3 Hz for o4(

15N), and 3.6 Hz for o3(
13C’), which is

substantially below the digital resolution of the individual projection spectra.

With ALASCA all 368 peaks contained in the 5D peak list of TM1290 were

correctly assigned.

The 5D APSY-HC(CC-TOCSY)CONH experiment was also used to assign the

side chains of the two larger proteins, the 22-kDa protein kRas at 0.4 mM concen-

tration and the 15-kDa drug target protein A at 0.3 mM concentration [51]. A total

of 34 projections were recorded in 51 h on a 600 MHz spectrometer equipped with

Fig. 10 2D projection of the 5D ASPY-HC(CC-TOCSY)CONH experiment with TM1290

recorded on a 750 MHz spectrometer using a TOCSY mixing time of ¼ 17.75 ms. The projection

with angles a ¼ �46.6�, b ¼ 0�, g ¼ �17.2� is shown. The region in magenta in the left panel is
shown enlarged on the right hand side. The colored dots are the projections of the final 5D APSY

peak list. Red dots indicate peaks present at the mixing time tm ¼ 17.75 ms, blue dots indicate
peaks only present in spectra with other mixing times. Reproduced with permission from [65]
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a cryogenic probe at an experiment temperature of 23 �C. The assignment yielded

for each protein nearly 90% of the Ala, Ile, Leu, Thr, and Val side chain methyl

groups (Fig. 11).

Overall, the high quality of the GAPRO peak list of the 5D APSY-HC(CC-

TOCSY)CONH experiment in terms of dimensionality, completeness, precision

and very low number of artifacts provides an excellent basis for a reliable

automated assignment of aliphatic side-chain atoms. Although the TOCSY mixing

does not provide information on the direct covalent connectivities among the

carbon nuclei, the 5D peaks can be used for reliable sequence-specific resonance

assignment of aliphatic resonances, due to the availability of all five dimensions.

5 Conclusion and Outlook

This chapter presented the foundations of automated projection spectroscopy

(APSY) that uses the algorithm GAPRO for automated spectral analysis. We

showed applications of APSY for high-dimensional heteronuclear correlation

NMR experiments with proteins. Without human intervention after the initial set-

up of the experiments, complete peak lists for 4D to 7D NMR spectra, with a

chemical shift precision of below 1 Hz, are typically obtained.

The positions of the peaks in the projection spectra that arise from a real

N-dimensional peak are correlated among the projection spectra, whereas the

positions of random noise are uncorrelated. This different behavior efficiently

discriminates projected peaks against artifacts, and artifacts are therefore unlikely

Fig. 11 Sequence-specific resonance assignments of two proteins obtained with the APSY CA-

CB-CM strategy [51]. Data is shown for two proteins, the 15-kDa “protein A” (panels a–c) and the

22-kDa protein kRas (panels d–f). Selected sample parameters are indicated. The amide resonance

assignments are shown in blue on 2D [15N,1H]-HSQC spectra (panels a and d), with their central

regions shown enlarged (panels b and e). The methyl group assignments are indicated in orange on
2D [13C,1H]-HMQC spectra (panels c and f). Adapted with permission from [51]

Automated Projection Spectroscopy and Its Applications 43



to appear in the final peak list. APSY is also well prepared to deal with inaccurate

peak positions. Since the final N-dimensional APSY peak list is computed as the

average of a large number of independent measurements, inaccurate peak positions

in some of the projections have only a small influence on the overall precision.

APSY has the advantage of relying exclusively on the analysis of experimental

low-dimensional projection spectra, with no need ever to reconstruct the parent

high-dimensional spectrum. APSY does not impose restrictions on the selection of

the number of projections or the combinations of projection angles. The experience

from our work indicates that sensitivity for signal detection rather than

overcrowding of the 2D projection spectra is the limiting factor in practical

applications of APSY-NMR with proteins.

In addition to providing automated peak picking and computation of the

corresponding chemical shift lists, APSY supports automated sequential resonance

assignment. Thus, APSY is a valid alternative to related NMR techniques. APSY

can be the first step, after sample preparation, in a fully automated process of

protein structure determination by NMR with successive automated algorithms

for the NOESY spectrum analysis and structure calculation.

APSY software and tools can be downloaded from www.apsy.ch.
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Abstract Beginning with the introduction of Fourier Transform NMR by Ernst

and Anderson in 1966, time domain measurement of the impulse response (free

induction decay) consisted of sampling the signal at a series of discrete intervals.

For compatibility with the discrete Fourier transform, the intervals are kept

uniform, and the Nyquist theorem dictates the largest value of the interval

sufficient to avoid aliasing. With the proposal by Jeener of parametric sampling

along an indirect time dimension, extension to multidimensional experiments

employed the same sampling techniques used in one dimension, similarly subject

to the Nyquist condition and suitable for processing via the discrete Fourier

transform. The challenges of obtaining high-resolution spectral estimates from

short data records were already well understood, and despite techniques such as

linear prediction extrapolation, the achievable resolution in the indirect dimen-

sions is limited by practical constraints on measuring time. The advent of methods

of spectrum analysis capable of processing nonuniformly sampled data has led

to an explosion in the development of novel sampling strategies that avoid

the limits on resolution and measurement time imposed by uniform sampling.

In this chapter we review the fundamentals of uniform and nonuniform sampling

methods in one- and multidimensional NMR.
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1 Introduction

Since the introduction of Fourier Transform NMR by Richard Ernst and Weston

Anderson in 1966, the measurement of NMR spectra has principally involved

the measurement of the free induction decay (FID) following the application of

a broad-band RF pulse to the sample [1]. The FID is measured at regular intervals,

and the spectrum obtained by computing the discrete Fourier transform (DFT). The

accuracy of the spectrum obtained by this approach depends critically on how

the data are sampled. In the application of this approach to multidimensional

NMR experiments, the constraint of uniform sampling interval imposed by the

DFT incurs substantial sampling burdens. The advent of non-Fourier methods of

spectrum analysis that do not require data sampled at uniform intervals has enabled

the development of a host of nonuniform sampling (NUS) strategies. In this

chapter we review the fundamentals of sampling, both uniform and nonuniform,
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in one and multiple dimensions. We then survey recently developed NUS

methods that have been applied to multidimensional NMR, and consider pro-

spects for new developments. While non-Fourier methods of spectrum analysis

are indispensible for nonuniformly sampled data, they have been reviewed

elsewhere.

2 Fundamentals: Sampling in One Dimension

Implicit in the definition of the complex DFT,

fn ¼ 1
ffiffiffiffi
N

p
XN�1

k¼0

dke
�2pikn=N (1)

is the periodicity of the spectrum, which is apparent by setting k to N in (1). Thus the

component at frequency nDt/N is equivalent to (and indistinguishable from) the

components at (n/NDt) þ/� (m/Dt), m ¼ 1, 2, . . .. This periodicity makes it possi-

ble to consider the DFT spectrum as containing all positive frequencies with zero

frequency at one edge, or containing both positive and negative frequencies with

zero frequency at (actually near) the middle. The equivalence of frequencies in the

DFT spectrum that differ by a multiple of 1/Dt is a manifestation of the Nyquist

sampling theorem, which states that, in order to determine unambiguously the

frequency of an oscillating signal from a set of uniformly spaced samples, the

sampling interval must be at least 1/Dt. (For additional details of the DFT and

its application in NMR, see [2].)

In the description of the DFT given by (1) it is assumed that the data samples

and DFT spectrum are both complex. Implicit in this description is that two

orthogonal components of the signal are sampled at the same time, referred

to as simultaneous quadrature detection. Most modern NMR spectrometers

are capable of simultaneous quadrature detection, but early instruments had a

single detector, so only a single component of the signal could be sampled at

any one time. With so-called single-phase detection, the sign of the frequency is

indeterminate. Consequently the carrier frequency must be placed at one edge

of the spectral region and the data must be sampled at 1/2Dt to determine

unambiguously the frequencies of signals spanning a bandwidth (or spectral

width, SW) 1/Dt.
The detection of two orthogonal components permits the sign ambiguity to be

resolved while sampling at a rate of 1/Dt. This approach, called phase sensitive or

quadrature detection, enables the carrier to be placed at the center of the spectrum.

Simultaneous quadrature detection is commonly achieved by mixing a detected

signal with a fixed-frequency reference signal and the same reference signal phase

shifted by 90�, or a cosinusoidal reference. The output of the phase-sensitive

detector is two signals, differing in phase by 90�, containing frequency components
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of the original signal oscillating at the sum and difference of the reference fre-

quency with the original frequencies. The sum frequencies are typically filtered

out using a low-pass filter. While quadrature detection enables the sign of frequen-

cies to be determined unambiguously, while sampling at 1/Dt, it requires just

as many data samples as single-phase detection since it samples the signal twice

at each 1/Dt interval, while single-phase detection samples once at each

1/2Dt interval.

2.1 Oversampling

The Nyquist theorem places a lower bound on the sampling rate, but what about

sampling faster? It turns out that sampling faster than the reciprocal of the

spectral width, called oversampling, can provide some benefits. One is that the

oversampling increases the dynamic range, the ratio between the largest and

smallest (non-zero) signals that can be detected [3, 4]. Analog-to-digital (A/D)

converters employed in most NMR spectrometers represent the converted

signal with fixed binary precision, e.g., 14 or 16 bits. A 16-bit A/D converter

can represent signed integers between �32,768 and þ32,767. Oversampling by

a factor of n effectively increases the dynamic range by sqrt(n). Another benefit
of oversampling is that it prevents certain sources of noise that are NOT band-

limited to the same extent as the systematic (NMR) signals from being aliased

into the spectral window.

2.2 How Long Should One Sample?

For signals that are stationary, that is their behavior doesn’t change with time, the

longer you sample the better the sensitivity and accuracy. For normally distributed

random noise, the signal-to-noise (S/N) ratio improves with the square root of the

number of samples. NMR signals are rarely stationary, however, and the signal enve-

lope typically decays exponentially in time. For decaying signals, there invariably

comes a time when collecting additional samples is counter-productive, because the

amplitude of the signal has diminished below the amplitude of the noise, and

additional sampling only serves to reduce S/N. The time 1.3 � R2, where R2 is

the decay rate of the signal, is the point of diminishing returns, beyond which

additional data collection results in reduced sensitivity [5]. It makes sense to sample

at least this long in order to optimize the sensitivity per unit time of an experiment.

However, limiting sampling to 1.3 � R2 results in a compromise. That’s because

the ability to distinguish signals that have similar frequencies increases the

longer one samples. Intuitively this makes sense because the longer two signals

with different frequencies evolve, the greater the difference in their values at a
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specific time. Thus resolution, the ability to distinguish closely-spaced frequency

components, is largely related to the longest time sample.

3 Sampling in Multiple Dimensions

While the FTNMR experiment of Ernst and Anderson was the seminal development

behind all of modern NMR spectroscopy, it wasn’t until 1971 that Jean Jeener

proposed a strategy for parametric sampling of a virtual or indirect time dimension

that formed the basis for modern multidimensional NMR [6], including applications

to magnetic resonance imaging (MRI). In the simplest realization, an indirect time

dimension can be defined as the time between two RF pulses applied in an NMR

experiment. The FID is recorded subsequent to the second pulse, and because it

evolves in real time its evolution is said to occur in the acquisition dimension.

A given experiment can only be conducted using a single value of the time interval

between pulses, but the indirect time dimension can be explored by repeating the

experiment using different values of the time delay. When the values of the time

delay are systematically varied using a fixed sampling interval, the resulting

spectrum as a function of the time interval can be computed using the DFT along

the columns of the two-dimensional data matrix, with rows corresponding to

samples in the acquisition dimension and columns the indirect dimension. General-

ization of the Jeener principle to an arbitrary number of dimensions is straightfor-

ward, limited only by the imagination of the spectroscopist and the ability of the

spin system to maintain coherence over an increasingly lengthy sequence of RF

pulses and indirect evolution times.

3.1 Quadrature Detection in Multiple Dimensions

Left ambiguous in the discussion above of multidimensional NMR experiments is

the problem of frequency sign discrimination in the indirect dimensions. Because

the indirect dimensions are sampled parametrically, i.e., each indirect evolution

time is sampled via a separate experiment, the possibility of simultaneous quadra-

ture detection is not available. Quadrature detection in the indirect dimension of a

two-dimensional experiment nonetheless can be accomplished by using two experi-

ments for each indirect evolution time to determine two orthogonal responses. This

approach was first described by States, Haberkorn, and Ruben, and is frequently

referred to as the States method [7]. Alternatively, oversampling could be used by

sampling at twice the Nyquist frequency while rotating the detector phase through

0�, 90�, 180�, and 270�, an approach called time-proportional phase incrementation

(TPPI). A hybrid approach is referred to as States-TPPI. Processing of States-TPPI

sampling is performed using a complex DFT, just as for States sampling, while

TPPI employs a real-only DFT.
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3.2 Sampling Limited Regime

An implication of the Jeener strategy for multidimensional experiments is that

the length of time required to conduct a multidimensional experiment is

directly proportional to the total number of indirect time samples (times two for

each indirect dimension if States or States-TPPI sampling is used). In experiments

that permit the spin system to return close to equilibrium by waiting on the order

of T1 before performing another experiment, sampling along the acquisition

dimension effectively incurs no time cost. Sampling to the Rovnyak limit

(1.3 � R2) in the indirect dimensions places a substantial burden on data collec-

tion, even for experiments on proteins with relatively short relaxation times.

Thus a three dimensional experiment for a 20-kDa protein at 14 T (600 MHz

for 1H) exploring 13C and 15N frequencies in the indirect dimensions would

require 2.6 days in order to sample to 1.3 � R2 in both indirect dimensions.

A comparable four-dimensional experiment with two 13C (aliphatic and carbonyl)

and one 15N indirect dimensions would require 137 days. As a practical matter,

multidimensional NMR experiments rarely exceed a week, as superconducting

magnets typically require cryogen refill on a weekly basis. Thus multidimensional

experiments rarely achieve the full potential of the resolution afforded by super-

conducting magnets. The problem becomes more acute with very high magnetic

fields. The time required for data collection in a multidimensional experiment to

fixed maximum evolution times in the indirect dimensions increases with

the increase in magnetic field raised to the power of the number of indirect

dimensions. The same four-dimensional protein NMR experiment performed at

21.2 T (900 MHz for 1H), sampled to 1.3 � R2, would require about 320 days.

NUS approaches have made it possible to conduct high resolution 4D experiments

that would otherwise be impractical [45].

While methods of spectrum analysis capable of super-resolution exist, that is,

methods that can achieve resolution greater than 1/tmax, the most common of these,

linear prediction (LP) extrapolation, has substantial drawbacks. LP extrapolation is

used to extrapolate signals beyond the measured interval. While this can dramati-

cally suppress truncation artifacts associated with zero-filling as well as improve

resolution, because LP extrapolation implicitly assumes exponential decay it can

lead to subtle frequency bias when the signal decay is not perfectly exponential [8].

This bias can have detrimental consequences for applications that require the

determination of small frequency differences, such as measurement of residual

dipolar couplings (RDCs).

4 Non-Fourier Methods of Spectrum Analysis

The DFT, strictly speaking, requires data sampled at uniform intervals. Thus the

development of NUS methods to avoid the sampling limited regime in multidimen-

sional NMR closely parallels the development of non-Fourier methods of spectrum
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analysis capable of treating data that have been collected at nonuniform intervals.

One of the first methods to be employed in NMR in conjunction with NUS is

maximum entropy (MaxEnt) reconstruction [9, 10]. MaxEnt reconstruction seeks

that spectrum containing the least amount of information that is still consistent

with the measured data. It makes no assumption regarding the nature of the

signal, and thus is suitable for application to signals characterized by non-

exponential decay (non-Lorentzian line shapes). A host of similar methods

employ functionals other than the entropy to regularize the spectrum, for example

the l1-norm [11, 12]. Another class of methods that can reconstruct frequency

spectra from data that are sampled nonuniformly assume a model for the data.

Bayesian [13] and maximum likelihood [14, 15] (MLM) methods both assume

the signal can be described as a sum of exponentially decaying sinusoids, and can

be used either to reconstruct a frequency spectrum or to determine a list of

frequency components and their characteristics; for this reason these methods

are often described as being parametric. A method that is intermediate between

the parametric methods that assume a model for the signal and regularization

methods that do not is a method called multidimensional decomposition [16]

(MDD). It assumes that frequency components in multidimensional spectra can

be decomposed into a vector product of one-dimensional lineshapes. The

approach is related to principle component analysis, and has been utilized in

the field of analytical chemistry and chemometrics (where it is called PARAFAC

[17]); a unique decomposition exists only for spectra that have three or more

dimensions.

4.1 “DFT” of NUS Data and the Point-Spread Function

From the definition of the DFT, it is clear that the Fourier sum can be modified

by evaluating the summand at arbitrary frequencies rather than uniformly

spaced frequencies. Kozminksi and colleagues have proposed utilizing this

approach for computing frequency spectra of NUS data [18]; however,

strictly speaking it is no longer properly called a Fourier transformation of the

NUS data. Consider the special case where the summand in (1) is evaluated for

a subset of the normal regularly-spaced time intervals. An important character-

istic of the DFT is the orthogonality of the basic functions (the complex

exponentials),

XN�1

n¼0

e�2piðk�k0Þn=N ¼ 0; k 6¼ k0; (2)

when the summation is carried out over a subset of the time intervals. Some of the

values of n indicated by the sum in (2) are left out, and the complex exponentials are
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no longer orthogonal. An implication is that frequency components in the signal

interfere with one another when the sampling is nonuniform.

Consider now NUS data sampled at the same subset of uniformly spaced times,

but supplemented by the value zero for those times not sampled. Clearly the DFT

can be applied to this augmented data, but it is not the same as “applying the DFT

to NUS data.” It is a subtle distinction but an important one. What is frequently

referred to as the DFT spectrum of NUS data is not the spectrum of the NUS

data but the spectrum of the zero-augmented data. The differences between the

DFT of the zero-augmented data and the spectrum of the signal are mainly the

result of the choice of sampled times, and are called sampling artifacts. While the

DFT of zero-augmented data is not the spectrum we seek, it can sometimes be

a useful approximation if the sampled times are chosen carefully to diminish

the sampling artifacts.

The application of the DFT to NUS data has parallels in the problem of

numerical quadrature on an irregular mesh, or evaluating an integral on a set of

irregularly-spaced points [19]. The accuracy of the integral estimated from

discrete samples is typically improved by judicious choice of the sample points,

or pivots, and by weighting the value of the function being integrated at each of

the pivots. For pivots (sampling schedules) that can be described analytically, the

weights correspond to the Jacobian for the transformation between coordinate

systems (as for the polar FT, discussed below). For sampling schemes that cannot

be described analytically, for example those given with a random distribution, the

Voronoi area (in two dimensions; volume in three dimensions, etc.) provides a

useful set of weights [20]. The Voronoi area is the area occupied by the set of

points around each pivot that are closer to that pivot than to any other pivot in the

NUS set.

Under certain conditions the relationship between the DFT of the zero-aug-

mented NUS data and the true spectrum has a particularly simple form. If the

sampling is restricted to the uniformly-spaced Nyquist grid (also referred to as the

Cartesian sampling grid) and there exists a real-valued sampling function with

the property that when it multiplies a uniformly sampled data vector, element-

wise, the result is the zero-augmented NUS data vector, then the DFT of the zero-

augmented NUS data is the convolution of the DFT spectrum of the uniformly

sampled data with the DFT of the sampling function. The sampling function has the

value 1 for times that are sampled and zero for times that are not. The DFT of the

sampling function is variously called the point-spread function (PSF), the impulse

response, or the sampling spectrum.

The PSF provides insight into the locations and magnitudes of sampling artifacts

that result from NUS, and it can have an arbitrary number of dimensions, corres-

ponding to the number of dimensions in which NUS is applied. The PSF typically

consists of a main central component at zero frequency, with smaller non-zero

frequency components. Because the PSF enters into the DFT of the zero-augmented

spectrum through convolution, each non-zero frequency component of the PSF

will give rise to a sampling artifact for each component in the signal spectrum,

with positions relative to the signal components that are the same as the relationship

56 M.W. Maciejewski et al.



of the satellite peaks in the PSF. The amplitudes of the sampling artifacts will be

proportional to the amplitude of the signal component and the relative height of the

satellite peaks in the PSF. Thus the largest sampling artifacts will arise from the

largest-amplitude components of the signal spectrum. The effective dynamic range

(ratio between the magnitude of the largest and smallest signal component that can

be unambiguously identified) of the DFT spectrum of the zero-augmented data can

be directly estimated from the PSF for a sampling scheme as the ratio between the

amplitude of the largest non-zero frequency component and the amplitude of the

zero-frequency component.

Using NUS approaches to reconstruct a fully-dimensional spectrum invariably

introduces sampling artifacts that are characteristic of the NUS strategy employed.

Characteristic ridge artifacts emanating from peaks in back-projection reconstruc-

tion (BPR) spectra (described below) that were initially believed to be artifacts of

back projection were instead demonstrated to be characteristic of radial sampling

by using MaxEnt reconstruction to process radially-sampled data: the MaxEnt

spectrum contained essentially identical ridge artifacts [44]. While spectral recon-

struction methods attempt to diminish sampling artifacts in the reconstructed

spectrum, their ability to suppress sampling artifacts is limited by the presence of

noise. It is thus important to have an understanding of the nature of sampling

artifacts that is independent of the method used to reconstruct the spectrum.

Provided that sampling is restricted to a uniform Cartesian grid (arbitrary sampling

schemes can be treated using successively fine grids) and one can define a real-

valued sampling function that has the value one when a sample is collected and zero

when it is not collected, sampling artifacts arise from the convolution of the impulse

response or PSF with the true spectrum. The PSF is simply given by the DFT of the

sampling function. PSFs typically exhibit a major peak at zero frequency, with

satellite peaks of varying intensity at non-zero frequencies. Using the DFT to

process NUS data, the resulting spectrum corresponds exactly to the convolution

of the PSF with the true spectrum (Fig. 1). Methods such as MaxEnt reconstruction

suppress the magnitude of sampling artifacts, but they appear at the same locations

as found in the DFT spectrum (Fig. 2).

In addition to helping to specify the frequencies of sampling artifacts (which will

depend on the frequencies contained in the signal being sampled as well as the

sampling scheme), the PSF helps to specify the magnitudes of the sampling

artifacts, as discussed above. While MaxEnt or other methods of spectrum analysis

that attempt to deconvolve the PSF can improve the dynamic range, sampling

schemes with PSFs containing smaller satellite peaks (relative to the central

component) will give rise to smaller sampling artifacts.

An implication of restricting the sampling function to being a real vector is

that if quadrature detection is employed in the indirect dimensions, e.g., States-

Haberkorn-Ruben, then all quadrature components must be sampled for a given

set of indirect evolution times. If they are not all sampled, the sampling func-

tion is complex, and the relationship between the DFT of the NUS data, the

DFT of the sampling function, and the true spectrum is no longer a simple

convolution.
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Fig. 1 The DFT of a decaying sinusoid (a, b) and a sampling function (c, d) and their multiplica-

tion in the time domain (e) resulting in their convolution in the frequency domain (f). The DFT of

the sampling function (f) is the PSF

10x

a b

Fig. 2 (a) nuDFT vs (b) MaxEnt reconstruction applied to the same data. The inset in B shows

a tenfold expansion of the baseline
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5 Nonuniform Sampling: A Brief History

5.1 The Accordion

It was recognized soon after the development of FT NMR that one way to avoid the

sampling limited regime in multidimensional situations is to avoid collecting

the entire Nyquist grid in the indirect time dimensions. The principal challenge to

this idea was that methods for computing the multidimensional spectrum from

nonuniformly sampled data were not widely available. In 1981 Bodenhausen and

Ernst introduced a means of avoiding the sampling constraints associated with

uniform parametric sampling of two indirect dimensions of three-dimensional

experiments, while also avoiding the need to compute a multidimensional spectrum

from an incomplete data matrix, by coupling the two indirect evolution times [21].

By incrementing the evolution times in concert, sampling occurs along a radial

vector in t1�t2, with a slope given by the ratio of the increments applied along each

dimension. This effectively creates an aggregate evolution time t ¼ t1 þ a*t2 that
is sampled uniformly, and thus the DFT can be applied to determine the frequency

spectrum. According to the projection-cross-section theorem, this spectrum is the

projection of the full t1�t2 spectrum onto a vector with angle a in the f1�f2 plane.
Bodenhausen and Ernst referred to this as an “accordion” experiment. Although

they did not propose reconstruction of the full f1�f2 spectrum from multiple

projections, they did discuss the use of multiple projections for characterizing the

corresponding f1�f2 spectrum, and thus the accordion experiment is the precursor to

more recent radial sampling methods that are discussed below. Because the coupling

of evolution times effectively combines time (and the corresponding frequency)

dimensions, the accordion experiment is an example of a reduced dimensionality

(RD) experiment.

5.2 Random Sampling

The 3D accordion experiment has much lower sampling requirements because it

avoids sampling the Cartesian grid of (t1, t2) values that must be sampled in order

to utilize the DFT to compute the spectrum along both t1 and t2. A more general

approach than the accordion experiment is to eschew regular sampling altogether.

A consequence of this approach is that one cannot utilize the DFT to compute the

spectrum, so some alternative method capable of utilizing nonuniformly sampled

data must be employed. In seminal work, Laue and collaborators introduced the use

of MaxEnt reconstruction to compute the frequency spectrum from nonuniformly

sampled data [22]. In analogy with the concept of matched filter apodization for

maximizing signal-to-noise ratio (S/N), Barna et al. utilized random sampling that

was exponentially biased to short times, so that the sampling distribution matched

the decay of the signal envelope. The concept of biased random sampling was
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further generalized to J-modulated experiments (cosine-modulated exponential decay)

and constant-time experiments (no decay) by Schmieder et al. [32, 33] While the

combination of biased random sampling and MaxEnt reconstruction provided high

resolution spectra with dramatic reductions in experiment time compared to conven-

tional uniform sampling because it employs samples collected at long evolution times

without the need to sample all uniformly-spaced shorter times, the approach was not

widely adopted, no doubt because neither MaxEnt reconstruction nor NUSwas highly

intuitive. Nevertheless a small cadre of investigators continued to explore novel NUS

schemes in conjunction with MaxEnt reconstruction throughout the 1990s.

5.3 RD, Redux

The first RD experiment was the accordion experiment. In the original accordion

experiment one indirect dimension represented chemical shift evolution while the

second indirect dimension encoded a mixing time designed to measure chemical

exchange. Although this experiment established the foundation for a host of

subsequent RD experiments, most of which deal exclusively with chemical shift

evolution, its utility for measuring relaxation rates and other applications is still

being developed [23, 24]. Even though it was clear from the initial description of

the accordion experiment that the method was applicable to any 3D experiment, it

was nearly a decade before it was applied to a 3D experiment where both indirect

dimensions represented chemical shifts [25, 26]. This application emerged as

a consequence of newly-developed methods for isotopic labeling of proteins that

enabled multinuclear, multidimensional experiments, with reasonable sensitivity,

for sequential resonance assignment and structure determination of proteins. The

acquisition of two coupled frequency dimensions, however, introduces some diffi-

culties. The main problem is that the two dimensions being co-evolved are mixed

and must be deconvoluted before any useful information can be extracted. Since the

evolution linearly combines the two dimensions, their frequencies are “mixed” in

the spectrum in a linear manner as well. The number of resonances observed in the

lower dimensional spectrum depends on the number of linked dimensions. Thus, if

two dimensions are linked, the RD spectrum will contain two peaks per resonance

of the higher dimensional spectrum, whereas if three dimensions are coupled, each

of the above two peaks will be split by the second frequency resulting in four

resonances and so on. The position of the peaks in the spectrum can be used to

extract the true frequency of the resonances in the spectrum. The problem obviously

becomes more complicated as the number of resonances is increased. If overlap can

be avoided, however, it is possible to reduce experimental time drastically. Among

the weaknesses of this approach are sensitivity losses, associated with both peak

splitting and relaxation losses, which effectively limit the number of dimensions

that can be coupled for a given molecular size.

An extension of RD was presented by Kim and Szyperski [27] in 2003 in

which they used a “G-matrix” to combine appropriately the hypercomplex data
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of arbitrary dimensionality to produce “basic spectra.” These spectra are much less

complicated than the RD projections and the known relationship between the

various patterns can be used to extract true chemical shifts (via nonlinear least-

squares fitting). Combination of the hypercomplex planes enables recovery of some

sensitivity that is otherwise lost in RD approaches due to peak splitting. A dis-

advantage is that the data are not combined in a higher dimensional spectrum so

that the sensitivity is related to that of each of the lower dimensional projections

rather than the entire dataset. GFT-NMR was developed contemporaneously with

advances in sensitivity delivered by higher magnetic fields and cryogenically

cooled probes, providing sufficient sensitivity to make GFT experiments feasible

for the first time, albeit using very concentrated protein samples (the GFT method

was demonstrated on a 2 mM sample of ubiquitin).

Broader appreciation for NUS was stimulated by a series of papers by Kupce and

Freeman, in which they utilized BPR from a series of experiments employing radial

sampling in t1/t2 to reconstruct the fully-dimensional f1/f2/f3 spectrum [28–32].

While the data sampling was equivalent to that employed by the accordion, GFT,

and RD experiments, the use of back-projection (by analogy to computerized

tomography) demonstrated the connection with the 3D spectrum conventionally

obtained by uniform sampling and DFT. Despite some drawbacks to radial sam-

pling (discussed below), the BPR approach was important because it provided

a useful heuristic for more general NUS approaches.

The principle underlying radial sampling in 3D experiments generalizes to higher

dimensions. For example, coupling of three indirect evolution times results in a pro-

jection of three dimensions onto a vector with one angle specifying the orientation

with respect to the t1/t2 plane, and one specifying the angle with respect to the t2/t3
plane. Two very similar approaches for circumventing sampling limitations associated

with uniform sampling in higher-dimensional experiments have been introduced to

achieve high resolution while employing prior knowledge to design sampling angles.

Chemical shift distributions expected for proteins can be used to determine a set

of radial sampling angles (projection angles) that will optimally resolve potential

overlap. Identification of frequencies in the projected spectra, together with know-

ledge of the projection angles, can be used to determine the (unprojected) frequencies

in the orthogonal coordinate system of the fully-dimensional experiment.

In addition to GFT and BPR, a host of other methods can be applied to radially-

sampled data; like BPR, these methods reconstruct the fully-dimensional spectrum.

Zhou and colleagues employed radial FT [28] to process data collected along concen-

tric rings in t1/t2 [29]. MLMmethods that fit a model (typically consisting of a sum of

exponentially-damped sinusoids) can also be used to analyze radially sampled data,

as can regularization methods that do not model the signal (e.g., l1-norm, MaxEnt).

5.4 The NUS Explosion

Since the turn of the twenty-first century, there has been a great deal of effort devoted

to developing novel NUS strategies for multidimensional NMR. A recurring theme
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has been the importance of irregularity or randomness. Approaches involving various

analytic sampling schemes (triangular, concentric rings, spirals) as well as novel

random distributions (Poisson gap) have been described.

6 General Aspects of Nonuniform Sampling

We will contrast different approaches to NUS that have been applied to multi-

dimensional NMR in a moment, but we first discuss some characteristics of NUS

that are general and apply to all NUS approaches.

6.1 On-Grid vs Off-Grid Sampling

NUS schemes are sometimes characterized as on-grid or off-grid. Schemes that

sample a subset of the evolution times normally sampled using uniform sampling at

the Nyquist rate (or faster) are called on-grid. In schemes such as radial, spiral, or

concentric ring, the samples do not fall on the same Cartesian grid. However, one can

define a Cartesian grid with spacing determined by the precision with which evolution

times are specified (discussed below). Alternatively, “off grid” sampling schemes can

be approximated by “aliasing” (this time in the computer graphics sense) the evolution

times onto a Nyquist grid, without greatly impacting the sampling artifacts (Fig. 3).

6.2 Bandwidth and Aliasing

Bretthorst was the first to consider carefully the implications of NUS for bandwidth

and aliasing [30, 31]; his important contribution was published in a rather obscure

proceedings volume, but more recently a version has been published in a more

widely-accessible publication. Among the major points Bretthorst raises is that

sampling artifacts accompanying NUS can be viewed as aliases. This is demon-

strated in Fig. 4, where the spectrum obtained using uniform but deliberate under-

sampling is contrasted with the DFT spectrum for NUS data of the same signal.

6.3 Sampling Artifacts Are Spectral Aliases

However, as Bretthorst has pointed out, when the sampling (evolution) times are

specified with finite precision (as they are in all commercial instruments), one can

always define a uniform grid on which all the samples will fall. This grid spacing

will generally be finer than the Nyquist grid. The largest grid spacing sufficient

to encompass fully an arbitrary NUS scheme is given by the greatest common
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divisor (GCD) of the sampled times, which is at least as large as the precision and

may be larger, depending on the sampling scheme. As the samples are not uniform,

the Nyquist sampling theorem does not apply, so strictly speaking there is not

a bandwidth limiting the frequencies that can be unambiguously determined.

NUS artifacts are a form of aliasing, which can be appreciated by considering

uniform undersampling as a form of NUS. Figure 4 illustrates a one-dimensional

spectrum computed by applying the DFT to a synthetic signal sampled at the

Nyquist interval (Fig. 4a) and twice the Nyquist interval (Fig. 4b). The signal

sampled at twice the Nyquist interval has one alias of the true signal. Figure 4c

depicts the DFT spectrum of a signal sampled nonuniformly. Note the strongest

sampling artifact occurs precisely at the location of the undersampling artifact.

Higher order sampling artifacts can be ascribed to aliases due to undersampling by

greater degrees.
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Fig. 3 (a) Radial sampling (left) on-grid and (right) off-grid. Dots represent the Nyquist grid,

circles represent sampled data points. The solid lines indicate the angle of the radial vector

(projection axis). (b) Reconstruction of radially sampled data; on-grid sampling reconstructed

using MaxEnt (left) and off-grid sampled data reconstructed using PR (right)
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Since sampling artifacts are aliases, they can be diminished by increasing the

effective bandwidth. One way to do this is to decrease the GCD. As shown above

the GCD need not correspond to the spacing of the underlying grid. Introducing

irregularity is one way to decrease the GCD to the size of the grid, and this helps to

explain the usefulness of randomness for reducing artifacts from NUS schemes

[46]. The ability of randomness to reduce NUS aliasing artifacts is depicted in

Fig. 5. The left panels depict a two-dimensional sampling scheme (top) in which the

data are undersampled by a factor of four in each dimension, leading to multiple

instances of each true peak in the DFT spectrum (bottom). The middle and right

panels illustrate the effect of increasing amounts of randomness incorporated into

the sampling scheme on the spectral aliases. The incorporation of randomness can

suppress artifacts in otherwise regular sampling schemes, such as radial sampling,

as shown in Fig. 6.

Another way to increase the effective bandwidth is to sample from an oversampled

grid. We saw earlier that oversampling can benefit uniform sampling approaches

by increasing the dynamic range. When employed with NUS, oversampling has the

effect of shifting sampling artifacts out of the original spectral window [47]. This

effect is shown in Fig. 7.

Frequency

a

b

c

d

Fig. 4 Examples of aliasing

using uniform (a, b) and

nonuniform (c, d) sampling.

(a, b) DFT spectrum using

uniform sampling for a single

synthetic sinusoid; (a) at the

Nyquist rate, (b) at one-half

the Nyquist rate. (c, d) nuDFT

(DFT in which samples not

measured are set to zero) for

the same synthetic signal

using nonuniform sampling

from the Nyquist grid. In

(c) an alias appears at the

frequency expected using

deliberate undersampling by

a factor of 2, but with a height

slightly less than the true

(unaliased) peak. In (d) the

alias is greatly diminished,

a result of the greater number

of samples in the NUS set

spaced at the Nyquist interval
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7 A Menagerie of Sampling Schemes

While the efficacy of a particular sampling scheme depends on a host of factors,

including the nature of the signal being sampled, the PSF provides a useful first-

order tool for comparing sampling schedules. Figure 8 illustrates examples of

several common two-dimensional NUS schemes, together with PSFs computed for

varying levels of coverage (30%, 10%, and 5%) of the underlying uniform grid.

Some of the schemes are off-grid schemes, but they are approximated here by

mapping onto a uniform grid. As noted previously, on-grid approximation of off-

grid sampling schemes coupled with reconstruction methods such as MaxEnt gives

results that are very similar to off-grid sampling. The PSF gives an indication of the

distribution and magnitude of sampling artifacts for a given sampling scheme;

schemes with PSFs that have very low values other than the central component

give rise to weaker artifacts. Of course the PSF alone does not tell the whole story,

because it does not address relative sensitivity. For example, while the random

schedule has a PSF with very weak side-lobes, and gives rise to fewer artifacts

than a radial sampling scheme for the same level of coverage, it has lower sensitivity

for exponentially decaying sinusoids than a radial scheme (which concentrates more

samples at short evolution times where the signal is strongest). Thus more than one

metric is needed to assess the relative performance of different sampling schemes.

1

128

1 128 1 128

t2

t1 t1t1

1 128

Fig. 5 MaxEnt spectra for synthetic two-dimensional data consisting of five exponentially decay-

ing sinusoids plus noise. The left-most panels depict deliberate undersampling selecting every

fourth point along both dimensions. The center and right panels depict blurred undersampling,

RMS 0.625 and 1.25, respectively.White contour levels are plotted at multiples of 1.4 starting with

3% of the height of the highest peak
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7.1 Random and Biased Random Sampling

Exponentially-biased random sampling was the first general NUS approach

applied to multidimensional NMR [22]. By analogy with matched filter apodiza-

tion (which was first applied in NMR by Ernst, and maximizes the S/N of the

uniformly-sampled DFT spectrum), Laue and colleagues reasoned that tailoring

NUS so that the signal is sampled more frequently at short times, where the signal

is strong, and less frequently when the signal is weak, would similarly improve

S/N. They applied an exponential bias to match the decay rate of the signal enve-

lope; we refer to this as envelope-matched sampling (EMS). Generalizations of the

approach to sine-modulated signals, where the signal is small at the beginning,

and constant-time experiments, where the signal envelope does not decay, were

described by Schmieder et al. [32, 33].

1

128

1 128 1 128

t2

t1 t1t1
1 128

Fig. 6
1H/13C plane (15N chemical shift 121.96 ppm) from the HNCO spectrum of Ubiquitin,

using data collected at 9.4 T (400 MHz for 1H) on a Varian Inova instrument. Spectra were

computed using MaxEnt reconstruction and radial sampling using five projections with different

amounts of random “blurring” of the sampling schedule (RMS zero (none), 0.625 and 1.25,

left to right). Top: sampling schedules. Bottom: MaxEnt spectra. Contour levels are chosen as

in Fig. 5
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Fig. 8 (Continued)
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7.2 Triangular

Somewhat analogous to the rationale behind exponentially-biased sampling, Delsuc

and colleagues employed triangular sampling in two time dimensions to capture the

strongest part of a two-dimensional signal [34]. The approach is easily generalized

to arbitrary dimension.

7.3 Radial

Radial sampling results when the incrementation of evolution times is coupled, and

is the approach employed by GFT, RD, and back-project reconstruction methods.

Radial sampling has also found application in MRI. When a fully-dimensional

spectrum is computed from a set of radial samples (e.g., BPR, radial FT, MaxEnt),

the radial sampling vectors are typically chosen to somewhat uniformly span the

orientations from 0� to 90�. When the fully-dimensional spectrum is not reconstructed,

Fig. 8 A menagerie of sampling schemes. The first column depicts examples of two-dimensional

sampling schemes that have been employed in NMR, for 30% coverage of a 128 � 128 uniform

grid (i.e., approx. 4915 samples out of 16,384). Successive columns depict the PSF for 30%, 10%,

and 5% coverage. The PSFs are normalized to the value of the central component, and the color

coding is depicted on the far right. Sampling schedules depicted include (c) circular shell, (cr)
randomized circular, (r) radial, (Poisson) Poisson gap, (rand) random, (EMS) envelope-matched,

(BMS) beat-matched, (burst) bursty, and (triangle) triangular
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but instead the individual one-dimensional spectra (corresponding to projected

cross sections through the fully-dimensional spectrum) are analyzed separately,

the sampling angles are typically determined using a knowledge-based approach

(HIFI, APSY [35, 36]). Prior knowledge about chemical shift distributions in

proteins is employed to select sequentially radial vectors to minimize the likelihood

of overlap in the projected cross section.

The successes of methods like RD, GFT, and BPR notwithstanding, when the

aim is to reconstruct the fully-dimensional spectrum, radial sampling is a rather

poor approach compared to less regular sampling schemes. When the aim is not
to reconstruct the fully dimensional spectrum, but to analyze projections separately,

a complete separate and dedicated infrastructure for the analysis is required

(which comprises much of the effort behind GFT, HIFI, and APSY approaches).

The advantage of reconstructing the fully dimensional spectrum is that the data are

isomorphic with spectra computed using conventional uniform sampling methods,

and the abundance of graphical and analysis tools that exist for multidimensional

NMR data can be used to visualize and quantify the spectra. This includes XEASY

[37], NMRDraw [38], NMRViewJ [39], Sparky [40], and a host of automated

scripts for “strip” plots and sequential assignment of proteins. Figure 9 compares

the use of radial sampling with exponentially biased random sampling in two

indirect dimensions, using MaxEnt reconstruction to compute the 3D spectrum.

The top panels depict contour plots using one, two, and three radial sampling

vectors (from left to right). Below each panel are shown contour plots for spectra

computed using biased random sampling using the same number of samples as the

radial sampling example given directly above. The accuracy of the reconstruction

of the 3D spectrum from a set of sparse samples is dramatically better when biased

random sampling is used instead of radial sampling.

7.4 Concentric Rings

Coggins and Zhou introduced the concept of concentric ring sampling (CRS),

and showed that radial sampling is a special case of CRS [29]. They showed that

the DFT could be adapted to CRS (and radial sampling) by changing to polar

coordinates from Cartesian coordinates (essentially by introducing the Jacobian for

the coordinate transformation as weighting factors). Optimized CRS that linearly

increases the number of samples in a ring as the radius increases and incorporates

randomness were shown to provide resolution comparable to uniform sampling for

the same measurement time, but with fewer sampling artifacts than radial sampling.

They also showed that the discrete polar FT is equivalent to the result from

weighted back projection reconstruction.

7.5 Spiral

Spiral sampling is used mainly in MRI, where it permits reduced exploration of

k-space (and thus a reduction of scan time).
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7.6 Beat-Matched Sampling

The concept of matching the sampling density to the signal envelope, in order

to sample most frequently when the signal is strong and less frequently when it is

weak, can be extended to match finer details of the signal. For example, a signal

containing two strong frequency components will exhibit beats in the time domain

signal separated by the reciprocal of the frequency difference between the
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Fig. 9 HNCO spectra of ubiquitin. Top panels show the addition of 0�, 90�, and 30� projections of
the two jointly sampled indirect dimensions at a proton chemical shift of 8.14 ppm, reconstructed

using back projection reconstruction. Each projection contains 52 complex points; thus the total

number of complex points sampled from left to right is 52, 104, and 156. The lower panel shows
MaxEnt reconstruction using the same number of complex data points, distributed randomly along

the nitrogen dimension (constant time) and with an exponentially decreasing sampling density

decay rate corresponding to 15 Hz in the carbon dimension. A 1D trace at the position of the

weakest peak present in the spectrum is shown at the top of each spectrum (indicated by a dashed
line). The insets depict the sampling scheme
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components. As the signal becomes more complex, with more frequency compo-

nents, more beats will occur corresponding to frequency differences between the

various components. If one knows a priori the expected frequencies of the signal

components, one can predict the location of the beats (and nulls, or zero-crossings),

and tailor sampling accordingly. The procedure is entirely analogous to EMS,

except that the sampling density is matched to the fine detail of predicted time-

domain data, not just the signal envelope. We refer to this approach as beat-matched

sampling (BMS). Possible applications where the frequencies are known a priori

include relaxation experiments or multidimensional experiments in which scout

scans or complementary experiments provide knowledge of the frequencies. In

practice, BMS sampling schedules appear similar to EMS (e.g., exponentially

biased) schedules; however, they tend not to be as robust, as small difference in

noise level or small frequency shifts can have pronounced effects on the location of

beats or nulls in the signal.

7.7 Poisson Gap Sampling

Hyberts and Wagner [41] noted empirically that the distribution of the gaps in

a sampling schedule are also important. Long gaps near the beginning or end of

a sample schedule were particularly detrimental. They adapted an idea employed in

computer graphics, Poisson gap sampling, to generate sampling schedules that avoid

long gaps while ensuring the samples are randomly distributed. Similar distributions

can be generated using other approaches, for example quasi-random (e.g., Sobolev)

sequences. In addition to being robust, Poisson gap sampling schedules show

less variation with the random deviate than other sampling schemes. A potential

weakness of Poisson gap sampling, however, is that the minimum distance between

samples must not be too small, otherwise aliasing can become significant.

7.8 Burst Sampling

In burst or burst-mode sampling, short high-rate bursts are separated by stretches

with no sampling. It effectively minimizes the number of large gaps, while ensuring
that samples are spaced at the minimal spacing when sub-sampling from a grid.

Burst sampling has found application in commercial spectrum analyzers and com-

munications gear. In contrast to Poisson gap sampling, burst sampling ensures that

most samples are separated by the grid spacing to suppress aliasing [42].

7.9 Nonuniform Averaging

The concept underlying EMS or BMS can be applied to the amount of signal aver-

aging performed, in contexts where a significant number of transients are averaged
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to obtain sufficient sensitivity. In this sensitivity-limited regime, varying the num-

ber of transients in proportion to the signal envelope could be utilized in conjunc-

tion with uniform or nonuniform sampling in the time domain. An early application

of this idea in NMR employed uniform sampling with nonuniform averaging, and

computed the multidimensional DFT spectrum after first normalizing each FID by

dividing by the number of transients summed at each indirect evolution time [43].

Although the results of this approach are qualitatively reasonable provided that

the S/N is not too low, a flaw in the approach is that noise will not be properly

weighted. A solution is to employ a method where appropriate statistical weights

can be applied to each FID, e.g., MaxEnt or MLM reconstruction.

7.10 Random Phase Detection

We’ve seen how NUS artifacts are a manifestation of aliasing, and how randomi-

zation can mitigate the extent of aliasing. There is another context in which aliasing

appears in NMR, and that is determining the sign of frequency components (i.e., the

direction of rotation of the magnetization). An approach widely used in NMR to

resolve this ambiguity is to detect simultaneously two orthogonal phases (simulta-

neous quadrature detection). When simultaneous quadrature detection is not feasi-

ble, for example in the indirect dimensions of a multidimensional experiment,

oversampling by a factor of two together with placing the detector reference fre-

quency outside the spectral window spanned by the signal can resolve the ambigu-

ity (TPPI). Alternatively, two orthogonal phases can be detected sequentially

(sequential quadrature detection). The total number of samples required to resolve

the sign ambiguity is the same whether quadrature detection or oversampling is

employed. Single-phase detection using uniform sampling with random phase

(random phase detection, RPD) is able to resolve the frequency sign ambiguity

without oversampling, as shown in Fig. 10. This results in a factor of two reduction

in the number of samples required, compared to quadrature or TPPI detection

methods, for each indirect dimension of a multidimensional experiment. For

experiments not employing quadrature or TPPI detection, it provides a factor of

two increase in resolution for each dimension.

7.11 Optimal Sampling?

Any sampling scheme, whether uniform or nonuniform, can be characterized by its

effective bandwidth, dynamic range, resolution, sensitivity, and number of samples.

Some of these metrics are closely related, and it is not possible to optimize all of

them simultaneously. For example, minimizing the total number of samples (and

thus the experiment time) invariably increases the magnitude of sampling artifacts.

Furthermore, a sampling scheme that is optimal for one signal will not necessarily
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be optimal for a signal containing frequency components with different character-

istics. Thus the design of efficient sampling schemes involves tradeoffs. Simply put,

no single NUS scheme will be best suited for all experiments.

8 Concluding Remarks

The use of NUS in all its guises is transforming the practice of multidimensional

NMR, most importantly by lifting the sampling limited obstacle to obtaining the

potential resolution in indirect dimensions afforded by ultra high-field magnets.

NUS is also beginning to have tremendous impact in MRI, where even small

reductions in the time required to collect an image can have tremendous clinical

impact. For all the successes using NUS, our understanding of how to design

optimal sampling schemes remains incomplete. A major limitation is that we lack

a comprehensive theory able to predict the performance of a given NUS scheme

a priori. This in turn is related to the absence of a consensus on performance

metrics, i.e., measures of spectral quality. Ask any three NMR spectroscopists to

quantify the quality of a spectrum and you are likely to get three different answers.

Further advances in NUS will be enabled by the development of robust, shared

metrics. An additional hurdle has been the absence of a common set of test or

a b c

0 0 0
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f 2
(H

z)

0

Fig. 10 Two-dimensional f1/f2 cross-sections from four-dimensional N,C-NOESY data for the

DH1 domain of Kalirin. One dimensional cross sections parallel to the f1 axis at the f2 frequencies
indicated by the colored lines are shown above each panel. Panel A is the real/real component of

the two dimensional DFT spectrum using quadrature detection in all dimensions. Panel B is the

DFT spectrum obtained using only the real/real/real component from the three indirect time

dimensions of the time domain data. Panel C is the maximum entropy spectrum obtained using

random phase detection. Panels B and C employ 1/8th the number of samples used in panel A
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reference data, which is necessary for critical comparison of competing approaches.

Once shared metrics and reference data are established, we anticipate rapid addi-

tional improvements in the design and application of NUS to multidimensional

NMR spectroscopy.
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Generalized Fourier Transform

for Non-Uniform Sampled Data

Krzysztof Kazimierczuk, Maria Misiak, Jan Stanek,

Anna Zawadzka-Kazimierczuk, and Wiktor Koźmiński

Abstract Fourier transform can be effectively used for processing of sparsely

sampled multidimensional data sets. It provides the possibility to acquire NMR

spectra of ultra-high dimensionality and/or resolution which allow easy resonance

assignment and precise determination of spectral parameters, e.g., coupling

constants. In this chapter, the development and applications of non-uniform Fourier

transform is presented.
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1 Introduction

Nuclear Magnetic Resonance (NMR) spectroscopy is one of the most important

tools in structural studies of chemical compounds, ranging from small molecules up

to medium-sized proteins. NMR spectra provide valuable information about molec-

ular structure, interactions and dynamics. However, there is still a need for more

robust and more effective methods of acquisition and processing of NMR data.

Early NMR spectroscopy utilized the Continuous Wave (CW) detection tech-

nique. It was based on continuous sweeping of the B0 field strength, or the

frequency of electromagnetic wave, through the resonance conditions of nuclei in

the assumed spectral range. The main drawbacks of CW detection were low

sensitivity and loss of time needed for sweeping through empty spectral regions.

The breakthrough in NMR spectroscopy was the development of pulse excitation

for generation of the Free Induction Decay (FID) signal, and the observation that

the time dependent FID signal and the NMR spectrum can be converted one into the

other by applying the Fourier transform (FT) [1]. This method greatly shortened

spectral acquisition times and enabled the development of thousands of pulse

sequences for numerous emerging applications. New experimental methods

allowed the more accurate determination of parameters which were earlier difficult

to obtain or inaccessible.

Despite considerable progress in the field, NMR spectroscopy still has two

significant limitations: the intrinsically low sensitivity, due to the low Boltzmann

polarization of nuclear spins in thermal equilibrium, and the low dispersion

of observed frequencies, due to small differences in nuclear shielding by

surrounding electrons for nuclei of the same kind. The first problem is continuously
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circumvented by technological developments, i.e., construction of higher field

magnets, cryogenically cooled probe-heads and pre-amplifiers, modern electronics,

cleaner RF sources, and recently, introduction of the Dynamic Nuclear Polarization

(DNP) technique enabling sensitivity gain of even two orders of magnitude. The

new generations of NMR spectrometers feature higher sensitivity and allow studies

of large molecules at lower concentration. The problem of resolving overlapped

resonances is more severe. Even spectra of simple molecules often exhibit a peak

overlap. Additionally, the assignment of signal frequencies to the respective nuclei

could be difficult and sometimes impossible. To some extent, in simple cases, the

problem can be solved by employing a stronger magnetic field, but the general

approach to resolve the resonances is to spread them in different frequency

dimensions of multidimensional spectra. The idea was practically implemented

by the indirect sampling of spins evolution and was referred to as two-dimensional

NMR spectroscopy [2, 3]. This development not only allowed resolution of indi-

vidual peaks by introducing additional spectral dimensions, but also facilitated

spectral assignment by detecting groups of mutually interacting nuclei which give

rise to correlation peaks. The application of multiple polarization transfer revealed

other important aspects of multidimensional spectroscopy: sensitivity enhancement

by excitation and observation of FID signal of sensitive, high-g spins, and observa-
tion of directly undetectable multiple quantum coherences. At the beginning, the

two-dimensional NMR techniques were demonstrated to be useful for examination

of small organic molecules. Soon, homonuclear 2D NMR experiments were suc-

cessfully applied for studies of biological macromolecules in solution [4]. Later,

with increasing availability of isotopically enriched proteins, significant improve-

ment was achieved by introduction of triple-resonance three- and four-dimensional

experiments utilizing scalar couplings for polarization transfers [5–9]. However,

due to the reasons given below, acquisition of multidimensional NMR spectra with

a sufficient resolution in all frequency dimensions can be an extremely time

consuming task.

Indirect sampling of spin coherences evolution, the key concept of multidimen-

sional NMR experiments, is realized in a parametric way. This means that to sample

a point of indirect time space, a specific delay (or delays) in a pulse sequence should

be set to achieve desired evolution time, and then one directly observed FID signal

is acquired. As a consequence, in order to acquire a multidimensional spectrum one

needs to record many single FID signals. The overall measurement time grows

rapidly with a number of indirectly sampled dimensions and a desired resolution.

A conventional N-dimensional experiment requires acquisition of 2N�1 � k1 � k2 �
::: � kN�1 single FID signals (where ki ¼ swi � tmax i, is the number of points in the ith
dimension, swi and tmax i are the required spectral width and maximum evolution

time respectively, and 2N�1 is the number of components needed for quadrature

detection). Conventional sampling is performed with points placed on a Cartesian

grid. In each dimension, spacing between points is related to the expected range of

frequencies by the Nyquist Theorem (see Sect. 3.2.3). Thus, fulfilling the Nyquist

theorem implicitly limits the maximum evolution time and, therefore, the obtain-

able resolution for the given duration of experiment. In a case of directly detected
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dimension the above limitation is insignificant. Here, data points are successively

sampled by conversion of a voltage in a receiver circuit into numbers reflecting

signal amplitude. The acquisition of a whole signal has to be performed in one step,

and it usually takes from a fraction of second to a few seconds until the signal

decays below the noise level. This does not significantly extend the experiment

duration. Thus, the best possible resolution is almost always achievable at no

additional cost. Moreover, in modern NMR spectrometers, oversampling is usually

employed, i.e., more points than necessary are sampled in order to improve spectral

dynamic range and enable digital filtering [10].

Sampling limitations have more severe consequences in the case of indirectly

sampled dimensions, where acquisition of each sampling point takes up to a few

seconds. Even in 3D NMR experiments of proteins, featuring relatively fast trans-

verse relaxation, it is almost impossible to reach the natural (determined by

relaxation) line width in a reasonable experimental time. Limited experiment

duration causes signal truncation and results in broadened spectral peaks, according

to the Fourier Uncertainty Principle [11].

The problem of sampling requirements in multidimensional NMR is becoming

relatively more severe with increasing B0 fields. The stronger magnetic field

increases proportionally separation between resonances; however, at the same

time, it broadens spectral regions of interest. Hence, an x-fold increase in B0 causes

the necessity of xN�1-fold extension of time required for N-dimensional experiment

in order to preserve the peak width. This effect, although usually of minor impor-

tance for 2D experiments, became significant for the larger number of dimensions.

In the last 10 years many approaches were proposed to overcome the sampling

limitation problem. The most straightforward is the modification of pulse sequences

to allow increased repetition rate of FID signal acquisition, which leads to reduction

of the experiment time [12–14]. It was also shown that the spatial encoding of

spectral frequencies can be employed for measurement of multidimensional spectra

in a single scan [15–20]. However, most of the efforts to accelerate acquisition of

multidimensional NMR spectra were dedicated to the reconstruction of so-called

“sparsely sampled” spectra, i.e., with less data points than required by Nyquist

condition. Both experiment duration and desired resolution can be optimized by the

use of sparse sampling. The simplest version of sparse sampling is a straightforward

signal truncation. In such a case it is possible to attempt signal extrapolation using

linear prediction [21] or filter diagonalization methods [22–24]. Enhanced spectral

resolution can also be achieved from relatively highly truncated data sets

employing Covariance Spectroscopy [25–30], and some variants of the maximum

entropy method [31]. Another simple approach to undersampling is increasing of

the distance between points which leads to shortened experiment duration, at the

expense of peak aliasing. Thus, if chemical shifts are known from other

experiments, assignment of cross-peaks is still possible [32]. The sparse sampling

can also be applied in order to extend the sampled space in several ways. Among

them, two are of particular importance: sampling at constant intervals, but along the

radius in a time domain [33], or randomly [34]. The former option is utilized in

projection spectroscopy, and requires the algebraic decoding of peak frequencies
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[35–39], or the reconstruction of multidimensional spectrum [40–43]. The latter

enables one to reconstruct a fully-dimensional spectrum featuring improved

resolution which is acquired faster than conventionally. The sparsely and randomly

sampled data sets can be processed using FT [44–46], maximum entropy [47–49] or

multidimensional decomposition [50–52] methods.

In this review we will focus on applications of FT to processing of non-

uniformly (sparsely) data sets devoted to the reconstruction of high-resolution

multidimensional NMR spectra.

2 Fourier Transform: Basics

2.1 Definition

FT is a mathematical operation that converts function s(t) into function S(f)
according to the formula

Sð f Þ ¼
ðþ1

�1
sðtÞ � e�2piftdt; (1)

which, for convenience, may be denoted as a linear operator “FT” acting on s(t):

Sð f Þ ¼ FT sðtÞ½ �: (2)

Function e�2pift that multiplies signal s(t) is often referred to as a transform
kernel.

Both t and f are real variables, while s(t) and S(f ) may be complex in general.

In many fields of signal processing (including NMR spectroscopy), the two

variables correspond to time and frequency domains. Function s(t) is a time-domain

signal recorded in the experiment. Function S(f) is its frequency representation, i.e.,
it shows how a signal can be decomposed into oscillatory functions of frequencies f.
Knowing frequency representation of a signal, one can retrieve s(t) by applying

Inverse Fourier Transform (IFT):

sðtÞ ¼
ðþ1

�1
Sð f Þ � e2pift d f : (3)

Hence, s(t) and S(f) are equivalent representations of a signal and are often

referred to as a Fourier pair. For the simplest infinite oscillatory signal of frequency

n the Fourier pair is
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e2pint
FT
���!
IFT
 ����

dð f � nÞ; (4)

where dð f � nÞ is the Dirac delta, and can be informally thought of as an infinitely

narrow and infinitely high peak centered at n:

dð f � nÞ ¼ þ1 for f ¼ n
0 for f 6¼ n

�
: (5)

The result can be explained by the orthogonality of oscillatory exponentials that

are basis functions for FT, i.e.,

ðþ1

�1
e2pint � e�2piftdt ¼ þ1 for f ¼ n

0 for f 6¼ n

�
: (6)

Thus, as the result of FT, one obtains a function that reaches high values for

coordinates corresponding to frequencies present in a signal. This function, called

spectrum, is of particular interest, especially in scientific tasks. Representing

oscillatory time-domain signal as a peak in frequency domain often provides better

insight into physical phenomena, as discussed in the next section.

Description of measured signals based on complex numbers may be quite

confusing and requires brief explanation. Notably, complex signal is artificially

constructed from actually measured real-valued signals of the same frequencies and

amplitudes, but shifted in phase by
p
2
:

sðtÞ ¼ scosðtÞ þ issinðtÞ; (7)

e.g., sðtÞ ¼ e2pintconsists of scosðtÞ ¼ cosð2pntÞ; and ssinðtÞ ¼ sinð2pntÞ:
Equivalently, one may use a two-dimensional vector to describe the complex

signal:

sðtÞ ¼ scosðtÞ
ssinðtÞ

� �
: (8)

This notation will be used in discussion of multidimensional FT in the next

section. Variants of FT featuring real-valued kernel, i.e., Cosine FT (Cos-FT) and

Sine FT (Sin-FT), can be defined as

Scosðf Þ ¼
ðþ1

�1
sðtÞ � cos 2pftð Þdt; (9a)
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Ssinðf Þ ¼
ðþ1

�1
sðtÞ � sin 2pftð Þdt: (9b)

Again, for convenience, operator notation can be introduced:

Scosðf Þ ¼ FTcos sðtÞ½ �; (10a)

Ssinðf Þ ¼ FTsin sðtÞ½ �: (10b)

Complex FT of a complex signal can be described as a sum of Cosine FT and

Sine FT:

Sð f Þ ¼ FTcos scosðtÞ½ � þ FTsin ssinðtÞ½ � � i FTsin scosðtÞ½ � � FTcos ssinðtÞ½ �ð Þ: (11)

This notation allows easy visualization of the essence of complex FT

(see Fig. 1).

2.2 Multidimensional FT

Fourier Transform can be extended to N dimensions:

S ~f
� �
¼

ð

<N

s ~tð Þ � cos 2p f1t1ð Þ
sin 2p f1t1ð Þ

� �
� cos 2p f2t2ð Þ

sin 2p f2t2ð Þ
� �

� :::� cos 2p fNtNð Þ
sin 2p fNtNð Þ

� �� �
d~t;

(12)

scos(t)

FTcos

FTsin

ssin(t)

scos(t)

ssin(t)

dt

dt

dt)

. cos (2p¶t)

. sin (2p¶t)

.exp(–2pi¶t)(

Scos(f)

Ssin (f)

Sreal (f) s(t)Re

=

=

=

∞
∞

+
–Ú

∞
∞

+

+

–Ú

∞
∞

–Ú

Sumate

Fig. 1 Idea of complex FT. Two signals of the same frequency and amplitude, shifted in phase by

p/2, scos(t) and ssin(t) are transformed with cosine and sine FT and added. This may be described as

one complex operation on one complex signal s(t) ¼ scos(t) + issin(t)
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where ~f ,~t, are N-dimensional vectors:

~f ¼ f1; f2; :::; fNð Þ;

~t ¼ t1; t2; :::; tNð Þ:

It is noteworthy, that the transform kernel is represented by direct product (�)
of one-dimensional complex functions. The kernel is thus a 2N-dimensional vector.

One can represent both signal ŝ ~tð Þ and spectrum Ŝð~f Þ in a similar fashion:

ŝ ~tð Þ ¼ s t1ð Þ � s t2ð Þ � :::� s tNð Þ;

Ŝ ~f
� �
¼ S f1ð Þ � S f2ð Þ � :::� S fNð Þ;

where S fið Þ ¼ FT s tið Þ½ �:
The first element of Ŝð~f Þ corresponds to the real part of a spectrum.

The FT of the simplest multidimensional signal is thus a multidimensional

delta function, i.e.,

cos 2pn1t1ð Þ
sin 2pn1t1ð Þ

� �
� cos 2pn2t2ð Þ

sin 2pn2t2ð Þ

� �
� :::� cos 2pnNtNð Þ

sin 2pnNtNð Þ

� � ���!FT
 ���IFT

d f1 � n1; f2 � n2; :::; fN � nNð Þ;
(13)

where d f1 � n1; f2 � n2; :::; fN � nNð Þ ¼ d f1 � n1ð Þ � d f2 � n2ð Þ::: � d fN � nNð Þ:
Again, signal frequency (frequencies) is (are) clearly visualized in the spectral

domain as a “peak” centered at n1; n2; :::; nNð Þ. Its position informs about correlated

frequencies present in the multidimensional signal, which is usually the most

essential experimental information.

2.3 FT: Two Basic Features

At the end of this section, we would like to mention two of the most important

features of FT, which will be helpful in the analysis of specific case of NMR signal.

These are:

1. Linearity:

FT af ðtÞ þ bgðtÞ½ � ¼ aFT f ðtÞ½ � þ b FT gðtÞ½ �: (14)
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2. Convolution Theorem:

FT f ðtÞ � gðtÞ½ � ¼ FT f ðtÞ½ � � FT gðtÞ½ �; (15)

where � denotes convolution, defined as (see also Fig. 2a, b)

uðxÞ � vðxÞ ¼
ð1

�1
uðxÞ�v y� xð Þdy: (16)

The two above features of FT will help us to evaluate how simple manipulations

of the signal, like multiplication and addition, affect its spectrum. Notably, using

only these two kinds of operations allows one to change from the monochromatic,

non-decaying, perfectly continuous and infinite signal discussed above to the

actually measured NMR signal.

Fig. 2 The main features of FID signal and its spectrum: (a) Relaxing NMR signal (bold line) is
product of decaying exponential function and oscillatory function (thin lines). (b) Spectrum of

relaxing NMR signal (bold line) is convolution of Lorentzian function and a delta peak (thin lines).
(c) Relaxing NMR signal of some amplitude A (bold line) is decaying sinusoid (thin line)
multiplied by constant A. (d) Spectrum of relaxing NMR signal of some amplitude A (bold line)
is Lorentzian peak (thin line) multiplied by constant A. (e) Multi-component NMR signal

(bold line) is a sum of decaying components of different amplitudes (thin lines). (f) Spectrum
of multi-component NMR signal (bold line) is a sum of spectra of individual components

(thin lines)
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3 Fourier Transform of the NMR Signal

3.1 Perfect FID

FID signal is a time-domain function resulting from NMR measurement. Although

it is quite complicated, one can easily separate its features and discuss how they

manifest themselves in frequency representation, i.e., a spectrum. These features

are: relaxation, signal amplitude and multiple components (see Fig. 2).

3.1.1 Relaxation

NMR signal decays exponentially with time (or with “times”, in multidimensional

cases). This can be represented by element-wise multiplication of a signal ŝ0 ~tð Þ ¼
e�i2pn1t1 ; e�i2pn2t2 ; ::: e�i2pnNtNð ÞT by decaying exponential:

ŝ1 ~tð Þ ¼ ŝ0 ~tð Þ e�R1t1 ; e�R2t2 ; :::e�RNtN
	 
T

: (17)

The FT of ŝ1 ~tð Þ is, according to statements from Sect. 2.3, a convolution of

multidimensional peak d f1 � n1; f2 � n2; :::; fN � nNð Þ (i.e., FT ŝ0 ~tð Þ½ �) and

Lorentzian function (being FT of a decay function):

FT ŝ1 ~tð Þ½ � ¼ d f1 � n1; f2 � n2; :::; fN � nNð Þ

� 1

R1 þ if1
;

1

R2 þ if2
; :::

1

RN þ ifN

� �
: (18)

The result is Lorentzian peak centered at n1; n2; :::; nNð Þ.

3.1.2 Amplitude

NMR signal has certain amplitude. This can be represented by multiplying ŝ1 ~tð Þ
by some constant A:

ŝ2 ~tð Þ ¼ A � ŝ1 ~tð Þ: (19)

Obviously, multiplying the signal by a constant is equivalent to multiplication

of the spectrum by the same constant:

FT A � ŝ1 ~tð Þ½ � ¼ A � FT ŝ1 ~tð Þ½ �: (20)
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3.1.3 Multiple Components

An NMR signal consists of multiple components, corresponding to groups of

equivalent spin systems. Each of the components has its own amplitude and

relaxation parameters:

ŝ3 ~tð Þ ¼
X

i

ŝi2 ~tð Þ: (21)

To summarize, as a model of multidimensional FID signal, one can use an

oscillatory function consisting of multiple, decaying components of various

amplitudes. The spectrum of such a signal is built of Lorentzian peaks centered at

frequency coordinates corresponding to component frequencies. Peak heights are

proportional to component amplitudes in time domain. Peak half-widths are the

inverse of signal decay rates.

3.2 Measured FID

The above model gives an idea of what a perfect signal and its spectrum look like.

The real output of an NMR experiment is quite far from the model. Three factors

are most important here, namely noise, finite measurement time, and sampling.

3.2.1 Noise

NMR signal contains some random noise e(t). Its spectrum is thus the sum of two

FTs:

Ŝ ~f
� �
¼ FT ŝ3 ~tð Þ½ � þ FT e ~tð Þ½ �: (22)

Assuming that the noise is white and Gaussian, i.e., its amplitude is independent

of frequency and described by Gaussian distribution, the signal to noise ratio is

proportional to the square root of the number of measurements (see Fig. 3).

3.2.2 Finite Measurement Time

Obviously, maximum time of spin evolution cannot be infinite (which would be

pointless anyway, because of relaxation). This limit can be represented by

multiplying signal by step function P t1; t2:::; tmð Þ:
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P t1; t2:::tmð Þ ¼ 1 ti < timax; i ¼ 1; :::; m
0 otherwise

�
; (23)

where timax is a maximum evolution time set in the ith spectral dimension. Signal

ŝtmax ~tð Þ, i.e., time-limited noiseless NMR signal, can be described as

ŝtmax ~tð Þ ¼ ŝ3 ~tð Þ �P t1; t2:::; tmð Þ: (24)

The effect of multiplication in time domain is, according to the Convolution

Theorem, the convolution in frequency domain:

FT ŝtmax ~tð Þ½ � ¼ FT ŝ3 ~tð Þ½ � � FT P t1; t2:::; tmð Þ½ �: (25)

The FT of step function is a sinc function of width inversely proportional to timax

(see Fig. 4):

FT P ~tð Þ� � ¼ sin 2pf1 � t1maxð Þ
2pf1 � t1max

sin 2pf2 � t2maxð Þ
2pf2 � t2max

:::
sin 2pfN � tNmaxð Þ
2pfN � tNmax

: (26)

Thus, finite acquisition time causes a convolution of NMR spectrum with sinc
function. This manifests itself in peak broadening and presence of sinc “wiggles”.
The broadness of the NMR peak is thus dependent not only on relaxation rate but

also on the maximum evolution time. Both effects correspond to the Fourier

Uncertainty Principle [53] stating that, in general, the “broadness” of time repre-

sentation and frequency representation are inversely proportional to each other.

3.2.3 Sampling

An NMR signal is measured in a discrete manner, i.e., sampled. This may be

represented by a sampling function, being a multidimensional train of K delta

pulses:

Fig. 3 Peak amplitude, noise level, and signal-to-noise ratio for spectrum of non-decaying signal

of frequency 10 Hz, sampled with: (a) 512, (b) 256, (c) 128 pts. Noise is white and Gaussian
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III t1; t2:::tmð Þ ¼
XK

k¼1
d t1 � tk1; t2 � tk2; :::; tN � tkN
	 


: (27)

Discrete sampling can be thus represented by multiplication of continuous signal

by III t1; t2:::tmð Þ:
In general, one can distinguish between two kinds of sampling: uniform (or

conventional), i.e., with sampling coordinates tk1; t
k
2; :::; t

k
N

	 

corresponding to full

Cartesian grid and non-uniform, i.e., with coordinates chosen arbitrarily, according

to one of the sampling schedules (see Sect. 4).

Conventional discrete sampling influences a spectrum in quite a straightforward

way because of the simplicity of the corresponding Fourier pair:

III
t1
t1

;
t2
t2

:::;
tm
tm

� � FT���!
IFT ���

III t1 f1; t2 f2:::; tm fmð Þ: (28)

Fig. 4 Signal truncation and spectral line width (real and imaginary parts marked with solid and

dashed lines, respectively). (a) Signal truncated to 250 ms. (b) Signal truncated to 125 ms. (c)

Spectrum of a signal truncated to 250 ms – sinc function. (d) Spectrum of a signal truncated to

125 ms – sinc function
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As a result, an infinite number of “copies” are produced in spectral domain, with

the distance 1
t1
; 1
t2
:::; 1

tm

� �
between “copies” (see Figs. 5 and 6a, b). If the distance is

greater than half the signal bandwidth, then copies do not overlap. This leads to the

well known Shannon–Nyquist Sampling Theorem [54], which says that the spec-

trum of a band-limited signal can be perfectly recovered from discrete samples if

sampling frequency is at least two times higher than highest frequency present in

the signal. Obviously, if the spectrum is perfectly recovered, then a continuous
signal is recovered as well, meaning that discrete points are interpolated with sinc
functions.

Usually, the sampling frequency is set based on predicted spectral width of a

signal. Assuming that the frequency band is limited, one can take the central, low-

frequency spectrum “copy” that is equivalent to the perfect spectrum (see Fig. 5b).

Actually, this is done by default by standard FT algorithms, e.g., Fast Fourier

Transform (FFT). In the case, when the prediction is wrong, i.e., sampling interval

is higher than required by the Shannon–Nyquist criterion, the “copies” of spectrum

overlap, which leads to the phenomenon known as peak folding or aliasing. This
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Fig. 5 Aliasing phenomenon. (a) Train of delta pulses representing sampling with t ¼ 0.03 s

(sampling rate 33.33 Hz). (b) Continuous signal – multi-component oscillatory function. (c) Train

of delta pulses representing sampling with t ¼ 0.066 s (sampling rate 15 Hz). (d) Train of delta

pulses in frequency domain being FT of sampling schedule (a). (e) Spectrum of continuous signal

(b). (f) Train of delta pulses in frequency domain being FT of sampling schedule (c). (g)

Convolution of (d) and (e) corresponding to FT of signal (b) sampled according to (a). Properly

sampled spectral bandwidth with central spectrum “copy” between dashed lines. No aliasing. (g)

Convolution of (f) and (e) corresponding to FT of signal (b) sampled according to (c). Properly

sampled spectral bandwidth with central spectrum “copy” between dashed lines. Aliasing due to

insufficient sampling rate
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phenomenon manifests itself by the presence of peaks at false frequency

coordinates in the spectral region of interest.

It should be noted that an upper limit for the sampling interval results in a lower

limit for peak width. This becomes especially significant in the multidimensional

NMR experiments, where each sampling point takes a few seconds of experimental

time (see Scheme 1). Moreover, the requirements of regular sampling grow expo-

nentially with the number of dimensions and, despite measurements over hours or

days, natural, relaxation-determined peak widths are rarely obtained even in 3D

spectra.

Coupling between peak width and number of sampling points (i.e., experimental

time) is the main reason for the use of non-uniform sampling in NMR.

For non-uniform sampling the FT of sampling schedule (sometimes referred to

as Point Spread Function, PSF) is not a simple train of delta pulses, but becomes a

more complex function (see Sect. 4 and Fig. 6). This, in general, leads to three

conclusions:

1. For arbitrary, non-uniform sampling it is no longer possible to obtain a spectrum

that is equal to a spectrum of continuous signal, even if it is strictly band-limited.

Spectral artifacts, depending on the sampling schedule, appear as part of Point

Spread Function.

2. Aliasing, however, occurs in the presence of a sampling grid, from which

sampling points are taken. For purely off-grid sampling aliasing does not appear

(notably, NMR hardware allows very fine approximation of off-grid sampling).

This means that one can use non-uniform sampling to remove coupling between

sampling rate and line width and obtain high spectral resolution in a relatively

short experimental time (see Sect. 8).

3. The negative effect of non-regular sampling, i.e., presence of artifacts, is sepa-

rate from all other spectral effects associated with various signal features,

Scheme 1 Scheme

illustrating limitations

associated with conventional

sampling, i.e., coupling

between experimental time

and line width
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Fig. 6 Point Spread Functions of various sampling schemes (presented on insets in the upper left
part of each panel): (a) conventional sampling (t1max ¼ t2max ¼ 50 ms), (b) conventional sam-

pling (t1max ¼ t2max ¼ 5 ms), (c) radial sampling with one sampling line, (d) radial sampling with

94 K. Kazimierczuk et al.



e.g., relaxation, amplitude, etc., and can be discussed independently. In other

words, FT of an irregularly sampled signal has the same features as FT of a

conventionally sampled signal, differing only in PSF.

4 Non-Uniform Sampling Schemes

Conventional (Cartesian grid) sampling as a scheme is an obvious method of

choice, when experimental time and/or line width expense is acceptable. However,

when especially narrow spectral lines or high dimensionality are required, irregular

sampling should be employed. As stated above, it can make peak widths indepen-

dent of experimental time. Nevertheless, one should always remember about cost of

irregularity, i.e., introduction of spectral artifacts, whose pattern and level is

dependent on a sampling scheme.

4.1 Radial Sampling

Radial sampling was the first sparse sampling scheme introduced into NMR. Apart

from FT [44, 55, 56], other data processing techniques were proposed. These

include reduced dimensionality [57], projection-reconstruction [41], and multi-

way decomposition [58]. Radial sampling scheme consists of points placed on a

set of lines in the time domain (see Fig. 6c, d). The coordinates of the ith point, lying
on the jth line, can be described in a polar coordinate system as

t1 ¼ i � Dr � coscj; (29a)

t2 ¼ i � Dr � sincj: (29b)

PSF of radial distribution is a set of ridges (see Fig. 6c, d). Each pair of ridges is a

FT of one sampling line and they are oriented at cj and cj + p/2 angles.

�

Fig. 6 (continued) five sampling lines, (e) concentric rings sampling, (f) spiral sampling, (g)

purely random sampling, (h) Poisson disk sampling. Number of points in each sampling scheme is

equal to 100. For panels (c)–(h) t1max ¼ t2max ¼ 50 ms

Generalized Fourier Transform for Non-Uniform Sampled Data 95



4.2 Concentric Rings Sampling

Concentric rings sampling was proposed by Coggins and Zhou [59]. The sampling

scheme is depicted in Fig. 6e. Importantly, the number of points situated on each

ring increases linearly with a ring’s radius (linearly increasing concentric ring

sampling, LCRS). The coordinates of the ith time point, lying on jth ring are

t1 ¼ r � cosði � Dcj þ cj
0Þ; (30a)

t2 ¼ r � sinði � Dcj þ cj
0Þ: (30b)

In LCRS c0
j is the same for all rings. If this phase is chosen randomly for each

ring independently, the scheme is called RLCRS (randomized LCRS). PSF of

LCRS takes the form of a set of ring-shaped ridges, and for RLCRS this pattern

is slightly disturbed, covering the spectral space more evenly.

4.3 Spiral Sampling

Point coordinates in the spiral sampling scheme [44] are defined as

t1 ¼ i � Dr � cosði � DcjÞ; (31a)

t2 ¼ i � Dr � sinði � DcjÞ: (31b)

Notably, both radial and LCRS schemes can be considered as special cases of the

spiral sampling scheme. PSF of this distribution is the combination of the two above

PSFs. The artifacts form ring-shaped ridges, but the intensity is not constant along

the rings, but varies with angle (see Fig. 6f) [60].

4.4 Random Sampling

As can be clearly seen from the above examples, regularity in time domain results

in regularity in frequency domain. This suggests that very irregular, random

sampling schemes can be particularly useful (see Fig. 6g). In this case the artifacts

are “spread” evenly over the spectral space; their level is thus reduced, comparing

to more regular sampling schemes, and consequently it is less probable that false

peaks will come up.

Optimization of such purely random distribution can be done by introducing

certain constraints which protect against choosing one point too close to another.
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A few algorithms of generation of such semi-random sampling schemes were

investigated [60, 61]. Among them, Poisson disk sampling was found to be the

most optimal (see Fig. 6h). It directly assumes a minimal distance between time

points. The artifact level is not as even as in a purely random case. It is lower in the

vicinity of the peaks. Moreover, by slight modification of the restraints, one can

adjust the shape of the “clean” region to spectral widths or to compensate for different

maximum evolution times in different dimensions. Another variant of distance-

restrained sampling, referred to as Poisson-gap sampling, was presented by Hyberts

and coworkers and used with forward maximum entropy processing [62].

4.5 Weighted Samples and Weighted Probability

In a conventional case, usually a certain weighting function is applied in each

dimension for improving signal-to-noise ratio or reducing the effect of signal

truncation (sinc “wiggles”). This procedure is called Weighted Samples (WS) and

can also be performed for random sampling schemes. In the case of irregular

sampling, however, an alternative solution can also be employed. Instead of

applying weighting function to a sampled signal, the function may be used as a

probability distribution during generation of a randomized sampling scheme. Such

an approach is referred to as Weighted Probability (WP). The two procedures (WS

and WP) result with spectra of the same line shape and S/N for a non-decaying

signal (i.e., if S/N is constant in time) [63]; see Fig. 7. However in the case of a real,

relaxing, and noisy FID signal, the WP method is more effective, as more points of

higher S/N (from the beginning of FID) are measured [60].

5 Methods of Integration

FT is an integral operation. In a real case the transformed function is discrete, and

thus the integral has to be replaced by a sum. Therefore, for irregular points

distributions, unequal distances between sampling points can be taken into account

by applying certain weights. In analogy to 1D numerical integration employing a

rectangular or trapezoidal rule, for the multidimensional case one can obtain

weights by Voronoi tessellation [60, 64] or Delaunay triangulation [46]. These

methods, although helpful in the case of polynomials integration or rational

functions, are rather unsuitable for rapidly oscillating functions. When the sampling

density is lower than density determined by Sampling Theorem (i.e., always, when

non-uniform sampling is justified), introduction of mentioned weights diminishes

the signal-to-artifact ratio (see Fig. 8). Therefore, for oscillatory functions, simple

summation is more appropriate, i.e., Monte Carlo integration [65, 66]. It does not

affect signal-to-noise ratio and the result converges to the exact value with
ffiffiffi
n
p

.
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6 Sparse Sampling and FT as a Linear Algebra Issue

One-dimensional FT of a sampled signal (or its spectrum) may be thought of as a

solution to a system of equations:

1
ffiffiffiffi
N
p

ei2pf
1t1 ei2pf

2t1 ::: ei2pf
mt1

ei2pf
1t2 ei2pf

2t2 ::: ei2pf
mt2

::: ::: ::: :::
ei2pf

1tn ei2pf
2tn ::: ei2pf

mtn

2

664

3

775

S f 1ð Þ
S f 2ð Þ
:::

S f mð Þ

2

664

3

775 ¼
s t1ð Þ
s t2ð Þ
:::

s tnð Þ

2

664

3

775: (32)

Or, more briefly:

Â~S ¼~s (33)

Fig. 7 Comparison of simulated spectra obtained using (a) Weighted Probability (exponential

distribution, dashed line on panel c) and (b) Weighted Samples (exponential weighting, solid line
on panel c) methods. The signal was simulated without thermal noise. Both methods give spectra

with the same signal to artifact ratio and line widths
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where Â is an inverse FT matrix with number of rows n equal to the number of time

points and number of columns m equal to the number of frequency points, ~S is anm-
element vector representing spectrum, and~s represents vector of n signal samples:

Aij ¼ ei2pf
jti

ffiffiffiffi
N
p ; (34a)

Si ¼ S f i
	 


; (34b)

sj ¼ s tj
	 


: (34c)

Thus, the usual spectral processing task is to find unknown ~S that agrees with

known~s (fulfils the system of equations). The possible situations are:

1. n ¼ m and matrix Â is full rank. Then the system of equations has a unique

solution and it may be obtained by multiplying both sides by FT matrix, which is

a Hermitian transpose (conjugate transpose) of matrix Â:

Fig. 8 The plot of spectral signal-to-artifact ratio of simulated spectrum f ðt1; t2Þ ¼ expð�2pi1 �
300 Hz � t1 � 50HZ � t1 � 2pi2 � 300 Hz � t2 � 50 Hz � t2Þ in function of relative density of time

domain points ðY ¼ r=rNÞ comparing WP method and surface integration procedure (512

evolution time points of Gaussian PDF: expð�t2=2s2Þ;s ¼ 0:5). Spectral widths and maximum

evolution times were equal: sw1 ¼ sw2, t1max ¼ t2max ¼ tmax ¼ 0.02 s.Ywas changed by varying

both spectral widths (and consequently rN) keeping constant number of points and evolution time

surface tmax
2 (and r consequently). Reprinted with permission from [46]
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~S ¼ Â
�� �T

~s: (35)

In the case of equally spaced sampling, matrix Â is highly symmetric and FFT

algorithms may be employed to reduce computational time.

The number of samples taken from the signal (n) determines the number of

frequency points that are possible to be determined. Adding zero-valued, “artifi-

cial” sampling points at the end of the signal allows one to calculate the

increased number of spectral points. This procedure (known as zero filling) is
the equivalent of interpolation in the spectral domain [67].

2. n > m. The system of equations is overdetermined and strictly speaking there is

no solution. However, the number of equations may be reduced and the solution

can be obtained with additional gain on signal-to-noise ratio. This is achieved by

various digital filtering techniques. The situation corresponds to oversampling
and in practice exists only in directly detected signal.

3. n < m. The system of equations is underdetermined and there are many possible

solutions. This corresponds to sparse, non-uniform sampling.

Among the spectral vectors, that fulfil the system of equations, there is an

optimal one, i.e., spectrum of a signal sampled in a uniform manner. Finding it,

however, is not a simple task (even if thermal noise could be neglected). Many

approaches were presented, differing in type of constraints that limits the number of

solutions. Some of these include the following:

Maximum Entropy Methods – the solution with highest entropy is found. Various

“entropy” functions were used in the past [49, 68].

Integration of frequency and time domain information [69] by assuming that some

of the frequency points are equal to zero.

l1-norm minimization, the solution with smallest l1-norm (sum of absolute values of

spectral points) is found. It was proved recently that for signals featuring “dark”

spectra (small number of non-zero frequencies) l1-norm should lead to an

optimal solution by convex minimization [70]. This approach has been success-

fully employed in many branches, including MRI [71, 72]. So far, only a few

examples of use of this method in NMR spectroscopy were presented [73, 74],

but l1-norm penalty function has been used before in various NMR processing

tasks [75, 76].

Interpolation or gridding of sparse dataset may help to recover missing data points

and use conventional FT processing. This, however, may lead to significant

disturbances if the simplest, polynomial interpolation is used [77]. More

advanced gridding techniques are helpful here [78].

Non-uniform FT (nuFT) employing an equation identical to (35), but with non-

quadratic matrix Â (or with full m � m matrix Â and zeros at non-sampled points

of m-long vector ~s). The obtained solution features minimum l2-norm (power),

which can be easily proved, considering that FT is an unitary operation and thus

l2-norms of signal and spectrum are equal (Parseval’s theorem). Although, the
solution is not the optimal one, the processing is fast and was successfully
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employed in many applications [79–84]. Moreover, the spectrum can be addition-

ally improved by application of various artifact-cleaning algorithms [60, 83, 85].

7 Suppression of Sampling Artifacts in FT Spectra

7.1 The Principle of CLEAN Algorithm

7.1.1 The Model of “Dark” Spectrum

As mentioned in Sect. 6, in the case of sparse sampling there are insufficient data to

determine uniquely the Fourier representation of the measured signal. Therefore,

sampling artifacts observed in nuFT spectra can be regarded as an unavoidable

consequence of missing data. However, more accurate spectral estimates can be

obtained by incorporating a priori knowledge about the nature of sampled signal.

For a certain class of signals it might be assumed that the continuous Fourier

spectrum consists of a small number of well-localized components (peaks) and

relatively weak flat (frequency independent) noise:

Ŝð~f Þ ¼
X

i

Ŝið~f Þ þ eð~f Þ: (36)

This general model, usually referred to as “dark” spectrum, allows a variety of

reconstruction methods to be employed (see Sect. 6). The CLEAN algorithm,

proposed originally for the reconstruction of two-dimensional maps in radio astron-

omy [86], utilizes essentially the same signal properties. It is noteworthy that the

“dark spectrum” model is especially well suited to multidimensional NMR

spectroscopy.

7.1.2 Description of the CLEAN Procedure

The starting point of the procedure is a discrete FT spectrum:

Ŝð~f Þð0Þ ¼ Ŝð~f Þ ¼ FT½sð~tÞ � IIIð~tÞ�; (37)

which is a convolution of continuous spectrum with the FT of sampling function

(Point Spread Function). The latter is usually termed “dirty mask” in this context.

The aim of the procedure is to identify well-localized sources of artifacts present

in FT spectra. Intuitively, one may suppose that they can be found by computing the

convolution of FT spectrum and the PSF:

Ĉð~f Þ ¼ Ŝð~f Þ � ~IIIð~f Þ: (38)
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Following the convolution theorem (see Sect. 2.3) one shows that this convolu-

tion is the FT spectrum itself:

Ĉð~f Þ ¼ Ŝð~f Þ � ~IIIð~f Þ ¼ FT½ŝð~tÞ � IIIð~tÞ � IIIð~tÞ� ¼ FT½ŝð~tÞ � IIIð~tÞ� ¼ Ŝð~f Þ: (39)

Not surprisingly, it appears that one can use discrete FT spectrum to find the

most probable sources of spectral artifacts.

In the first step, one shifts the centre of PSF (normalized to one at maximum) to

the point where Ŝð~f Þ has a maximum absolute value Imaxj j (see also Fig. 9). Then

one subtracts a fraction 0 < g � 1 (called “loop gain”) of the shifted PSF:

Ŝð~f Þðiþ1Þ ¼ Ŝð~f ÞðiÞ � g ~IIIð~f �~fmaxÞ: (40)

The extracted component gives rise to the so-called “replica”, G(f), which is

hoped to reproduce the perfect spectrum S(f) at the end of the procedure:

Ĝð~fmaxÞðiþ1Þ ¼ Ĝð~fmaxÞðiÞ þ g � Imax: (41)

Providing that the peak at the selected point was a real feature, one obtains a new

spectrum Ŝð~f Þðiþ1Þwith decreased level of artifacts.

Fig. 9 The principle of the CLEAN algorithm visualized on a simulation of three signals of

relative amplitudes 1:5:10 and equal decay rates. The sparsely sampled signal (a) is Fourier

transformed (b), then the mask (c) is subtracted to yield the residual spectrum. Reconstruction

after the first iteration is shown (d). The final result of the CLEAN procedure (e) can be used to

obtain reconstruction of the time-domain signal (f)
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In the next iteration, one can repeat the steps of (1) finding the most intense

spectral amplitude and (2) subtraction of shifted PSF. The whole procedure should

be continued until there are no significant peaks in the spectrum. This condition can

be formulated as follows:

Imaxj j < a � si; (42)

where si is the estimated noise level in the ith iteration, and a is usually a small

integral value (3–5). It should be noted that si is a measure of both remaining

artifacts and usual thermal noise eð~f Þ:
Finally, the residual spectrum may be added to “replica” in order to retain

smaller features that might have been omitted by the CLEAN algorithms, or to

reintroduce the usual noise eð~f Þ. The latter might be useful to judge which peaks

selected during the iterations are false [87]. It was emphasized that displaying the

“replica” without the addition of residual spectrum is merely a “cosmetic” opera-

tion and does not improve the sensitivity at all [88].

It is noteworthy that the uncertainty of peak amplitudes caused by the presence of

noise eð~f Þ limits the capability of CLEAN algorithm to improve the quality of

spectrum [89]. This, however, should apply for the most of reconstruction algorithms,

e.g., similar conclusions were drawn for the maximum entropy method [90].

7.1.3 Discussion of the Parameters of CLEAN

Apparently, CLEAN has two parameters which can affect both efficiency (in terms

of computational effort) and accuracy of the final results. Loop gain, g, determines

how fast the artifacts are removed from the spectra in each iteration. Generally, it

should reflect the probability that the selected peak is true (neither an artifact nor a

noise peak) and that the intensity observed in the spectrum Imax comes entirely from

the component centered at ~fmax. Therefore, small values should be used for spectra

containing overlapped peaks [91], peaks broader than PSF [87, 91], or noisy ones.

Alternatively, loop gain can take a variable value depending on the ratio Imaxj j si= .

Clearly, only the infinitesimally small value of loop gain ensures maximum safety

of the procedure [86]. However, decreasing the loop gain causes a serious efficiency

penalty, and the compromised values between 0.25 and 0.5 are typically used [88].

It has been pointed out that larger values can result in false splittings, especially

when there is a mismatch of the “mask” line widths and the experimental ones [91].

The second parameter is the intensity threshold, which can be determined by

the operator in advance and kept fixed, or evaluated dynamically on the basis of the

current noise level in the spectrum. The former option requires prior knowledge

of noise amplitude, whereas the latter needs a robust method of measuring the

noise level.

Regarding the termination criterion, one should comment that there is a trade-off

between the safety of peak identification and completeness of artifact suppression

[91]. For example, the threshold of 5si provides great confidence that only genuine
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peaks are extracted; however, it also limits the benefits of the CLEAN procedure as

the artifacts originating from less intense components remain in the spectrum.

It has also been agreed that a fixed number of iterations is difficult to apply in

practice for NMR spectra and could lead to misinterpretations of the results of

CLEAN algorithm [89]. Therefore, one should rather use the intensity threshold as

the stopping condition.

Other authors [88] also noted that it is advantageous to use fine digitization in

the frequency domain as it enables one to position precisely the “mask” (PSF). On

the other hand, this does not seem critical for the results and may unnecessarily

increase the computational burden.

7.2 Development of the CLEAN Algorithm

As noticed by Coggins and Zhou [83], if CLEAN is employed to suppress

artifacts originating from irregular sampling, the artifact level varies greatly in

the multidimensional spectrum along a directly detected dimension. Consequently,

it is impractical to use a fixed intensity threshold in this case. Apart from the

commonly used dynamic threshold of 5si, it was suggested to employ the noise

stabilization criterion, which stops the iteration if CLEAN no longer efficiently

removes artifacts. The condition was quantified as follows:

sj � ð1þ tÞsi for i� 25 � j < i; (43)

where sj denotes the average noise level measured in the jth iteration. The tolerance
for noise stabilization t of approximately 0.05 was suggested. One may consider

this condition a practical optimization of CLEAN algorithm in terms of numerical

efficiency, not necessarily improving the quality of the final spectra.

In contrast to other implementations, Coggins and Zhou used the mask

computed directly from the sampling function, without the knowledge of minimal

signal line width. It was argued that such approach is more general, as broad or

overlapped peaks can be represented sufficiently accurately by a superposition of

narrow peaks. Indeed, frequently the resolution of spectra of biomolecules is mostly

determined by signal truncation, and the natural peak line widths can be neglected

when using CLEAN in these applications.

A different approach to CLEAN processing was suggested by Kazimierczuk and

co-workers [60]. In their implementation, peaks are manually fitted in the initial

spectrum using assumed shapes (e.g., Lorentzian or Gaussian, depending on the

decay of sampling density employed). The list of peaks and their line widths, which

can be considered the analytic equivalent of “replica”, are then provided to the

processing program. In the following, the artifacts generated by the peaks in the list

are computed and subtracted from the initial spectrum, except for the peak positions

and their vicinities. The procedure can be repeated if advantageous, e.g., if a
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significant number of (new) medium and small peaks were found after subtraction

of the artifacts.

It should be noted that the use of an appropriate analytic function instead of

discrete “replica” may be beneficial as this (1) is less influenced by noise and (2)

allows one to reproduce the “wings” of the resonances, which are neglected in the

original CLEAN algorithm due to intensity threshold. On the other hand, if the line

widths in the Fourier domain are mainly due to signal truncation, the fitted

parameters poorly reflect the true signal properties, and this may affect the perfor-

mance of described procedure.

A remedy for this was proposed by Stanek and Koźmiński [85]. In their signifi-

cantly modified version, referred to as Signal Separation Algorithm (SSA), peaks

are automatically found and fitted using the mono-exponentially decaying functions

in the time domain. As a consequence, the simulated line shapes in the Fourier

domain are affected by the sampling process in the same manner as the real peaks in

the spectrum. The advantages of this approach over the original CLEAN were

demonstrated [85] (see also Fig. 10). Another modification proposed by these

authors regards the case of overlapped peaks or when decay parameters cannot be

reliably established. It was suggested to find a replica that reproduces the observed

peak shape in the iterative process. The idea to vary the amplitudes in replica until

the desired peak shape is obtained clearly alleviates the problem of the appropriate

value of loop gain.

7.3 The Early Applications of CLEAN to NMR Spectroscopy

The original CLEAN algorithm was invented to deconvolve effectively the Fourier

spectrum from the PSF. In radio astronomy it was either impossible or impractical

to arrange detectors on a regularly spaced grid due to malfunctioning of the part of

equipment, occultations caused by the Moon, or if telescopes were operating over a

Fig. 10 Comparison of the efficiency of CLEAN (b) and SSA (c) shown on a simulated signal

containing six components of relative amplitudes 1:2:4:8:16:32 and equal decay rates of 20 s�1.
Additionally, white Gaussian noise of s ¼ 0.02 was present. Both algorithms started from the

same initial nuFT spectrum (a), and the same threshold for peak detection equal to 5si was used.
Spectral width of 4 kHz and max. evolution time of 70 ms were set. Seventy out of 280 points were

sampled, yielding a relative sampling density of 0.25
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large area to provide high resolution maps [86]. The aim of CLEAN was to convert

the map obtained from an irregular and/or coarse grid of interferometers to that

which would be obtained from a fine and complete grid.

As pointed out by Davies and co-workers [91], many high-resolution 2D spectra

are not sparse and suffer rather from signal overlap or line shape distortions

occurring for several reasons (twisted-shape, truncation artifacts, inhomogeneous

broadening). Although these difficulties seem quite different from those in radio

astronomy, it became possible to employ essentially the same algorithm to alleviate

these problems.

The idea was to construct the “mask” similar to an undesired shape observed in

the spectra, and use CLEAN to replace distorted peaks with those of a perfect

Lorentzian shape. Shaka and co-workers [88] showed that the algorithm is able to

convert a twisted shape to a double-absorption in 2D phase-sensitive J spectra of

complex organic molecules. This was achieved by (1) locating the twisted-shape

peaks, (2) simulating double-dispersion signals of the same line width at the same

frequency coordinates, and (3) subtraction of the latter from the original spectrum.

Effectively, the most intense peaks were in double-absorption while those ignored

by CLEAN remained in the twisted shape.

A similar approach was presented by Keeler in application to heteronuclear J
spectra with highly truncated echo modulation [87]. Truncation of signal, used for

sensitivity reasons, results in “sinc wiggles”. These artifacts can be suppressed by

apodization, although at the expense of resolution. Keeler showed that CLEAN is

an inexpensive alternative to the maximum entropy method, which can also remove

truncation artifacts without degrading resolution.

The difficulty that has arisen in both applications was to adjust the line width of

the mask in order to fit all signals. It has been suggested that, if there is a mismatch

of the line widths between the mask and experimental line shapes, one has to

decrease loop gain and represent broad peaks as a superposition.

Davies and co-workers alleviated the problem of the optimal mask, by using

experimental line shape of a well separated singlet resonance [91]. This was

showed to enhance resolution of spectra more effectively than when a simulated

Lorentzian mask is employed. Additionally, CLEAN was compared to maximum

entropy method, giving similar results in a considerably shorter computational time.

One should note that the use of experimental aperture shape to compensate for

spatial inhomogeneity of a magnetic field is limited to the cases of high S/N,

otherwise the mask is heavily biased by noise.

In all the cases described above the fixed threshold (of a few per cent of the

tallest peak) was used to terminate processing. This was possible as the noise level

does not significantly vary during the iterations. The latter does not hold in the case

of irregular sampling and more careful termination criteria have to be applied when

deconvolving the PSF [89]. It has been showed on both experimental data and

simulations that similar results can be obtained by CLEAN and maximum entropy

method, and that CLEAN performs much better in recovery of missing samples

than in extrapolation of a truncated signal [89]. As mentioned above, the success of

CLEAN was limited by S/N.
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According to these observations, the power of CLEAN algorithm was utilized in

high-dimensional (3D and 4D) NMR spectroscopy of proteins (see Fig. 11), where

sparse sampling has to be employed due to practical limitation on experiment time

(see Sect. 9.4).

In conclusion, the application of CLEAN algorithm to sparsely sampled data is

especially beneficial if (1) the technique features good thermal sensitivity and (2) a

high dynamic range of peak amplitudes is expected. Otherwise, artifact suppression

is hampered or irrelevant in view of the general noise level.

7.4 Algorithms Related to CLEAN

It is noteworthy that the principle of CLEAN algorithm was also utilized in several

other processing methods [40, 75]. Kupče and Freeman adapted the processing

scheme to remove ridges and false peaks present in the projection-reconstruction of

3D spectra [40]. As noted by the authors, it can be confidently assumed that the

tallest peak in the reconstruction is genuine. It is then possible to extract it from the
projections and reconstruct the full spectrum again. As usual, the process can be

repeated to suppress projection-reconstruction artifacts further until no significant

peaks are present. At the final stage, the extracted peaks are reintroduced to the full

spectrum.

Fig. 11 F2/F3 projections (along F1(C
0) dimension) of 3D HNCO-TROSY spectra for maltose

binding protein (371a.a., uniformly-deuterated, 0.5 mM D2O/H2O 1:19 solution), obtained using

sparse on-grid sampling, nuFT (a), and SSA processing (b). The data were recorded at the Varian

700 MHz spectrometer, assuming the spectral widths of 2.8 and 2.5 kHz in F1(C
0) and F2(N)

dimensions, respectively. A total of 1,750 sampling points were generated using decaying sam-

pling density (exp(�t2/2s2), s ¼ 0.5). Maximum evolution times of 30 and 50 ms were set,

yielding a relative density of y ¼ 16.7%
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Hyberts and co-workers described a “distillation” procedure which improves the

quality of Forward Maximum entropy (FM) and l1-norm reconstructions [75]. The

purpose of this processing scheme is to divide FID signal into two components, one

containing “tall” and another “small” spectral information. The division is

performed in the Fourier domain according to the relative amplitude of each pixel

to the most intense one, and both parts “small” and “tall” are inversely transformed

to the time domain. The advantage is that FM performs the reconstruction on a sub-

spectra of decreased dynamic range of peak amplitudes. This was shown to improve

both linearity of the method and suppression of sampling artifacts. This is in

analogy to CLEAN processing, where time domain signal is effectively split to

the contributions from strong and weak signals. It is noteworthy that the “distilla-

tion” procedure does not require any parameters and usually up to eight iterations

are sufficient.

8 FT as a Tool for Large Evolution Time Domain

8.1 Features of “Sampling Noise”

As mentioned above, the nuFT does not find the optimal solution that fits to the

experimental data. Spectra obtained by nuFT suffer from additional artifacts,

which, in the case of random sampling, take a noise-like form. Luckily, they also

reveal similar properties like thermal noise, i.e., the artifact level is proportional toffiffiffiffi
N
p

(see Fig. 12) and does not depend on a dimensionality of a signal, maximum

evolution times nor spectral widths [45]. This fact may be proved in various ways

(two of them were presented in [45]), and below we will present a new, simpler

proof, based on known properties of Monte Carlo integration [66].

Discrete multidimensional FT of randomly sampled signal may be considered as

an estimation of continuous multidimensional integral (12) with Monte Carlo

procedure. According to properties of Monte Carlo integration, associated with

Fig. 12 Peak amplitude, artifact level, and signal-to-artifact ratio for spectrum of non-decaying

signal of frequency 10 Hz, sampled with: (a) 512, (b) 256, and (c) 128 points. Uniform random

sampling was used
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the law of large numbers and the central limit theorem, the approximate value of an

integral with some finite integration volume V:

I ¼
ð

V

f �xð Þd�x (44)

is given by

Q ¼ V

N

XN

i¼1
f �xið Þ; (45)

with an expected value equal to the value of a continuous integral (unbiased

estimator):

E Q½ � ¼ I; (46)

and the variance decreasing with N:

varðQÞ ¼ V2 var f �xð Þð Þ
N

: (47)

Thus, the error of approximation is decreasing with
ffiffiffiffi
N
p

. The only difference

between signal processing and numerical integration is the way samples are

obtained. Instead of calculating the values of function at randomly selected points,

as is done in the Monte Carlo procedure, the integrated function is experimentally
measured at these points (or, more strictly, measured and multiplied by the trans-

form kernel). Nevertheless, the way points are obtained does not affect general

conclusions, i.e., that the estimator is unbiased and converges to the perfect,

artifact-free spectrum with a growing number of sampling points and that the

relative error of the result (S/A ratio) is inversely proportional to
ffiffiffiffi
N
p

. Notably,

the estimation error does not depend on parameters that cause sampling-related

problems (i.e., limited resolution) in a conventional approach, e.g., dimensionality

of a signal and maximum evolution time (see Fig. 13). This feature makes random

sampling a perfect tool for high-dimensional (4D, 5D, 6D, etc.) NMR experiments

[45] with quite high absolute numbers of sampling points (not necessarily meaning

high sampling density!). For the same reasons, Monte Carlo is known to be a

favorable method for integration of high-dimensional functions [66]. It is also

noteworthy that other features of random sampling processed with nuFT have

their equivalents in the Monte Carlo method. For instance, stratified sampling is

known to reduce variance of an integral estimation [66].

Besides the absolute number of points, the artifact level is also inherently

associated with a number of peaks and their intensities (as artifacts are “part” of

the Point Spread Function, see Fig. 14). Thus, the more peaks in a spectrum, the
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lower the average signal-to-artifact ratio. This makes nuFT processing more chal-

lenging when applied to spectra featuring large numbers of signals with high

dynamic range of peak intensities (e.g., NOESY). In this case, artifact-cleaning

algorithms may be employed (see Sect. 7).

8.2 Sparse MFT

According to (12) it is possible to choose arbitrarily frequency points for FT, e.g., to

calculate just an interesting region(s) of a spectrum. This approach is of particular

use when dimensionality and/or resolution is high and the full spectral matrix would

be of an extremely large size. There are various possibilities for restricting spectral

space to the regions of interest, depending on the type of spectrum and type of
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Fig. 13 2D cross-sections from simulated spectra: (a) 3D, (b) 4D, (c) 5D. The threshold was set at

10% of peak intensity; 256 time points were generated randomly with uniform distribution and

maximum evolution time of 0.4 s (a), 0.8 s (b), and 1.6 s (c), in all dimensions. The distance

between spectral points was set to the reciprocal of maximum evolution time in order to hide the

effect of signal truncation. The insets show a spectral line narrowing obtained by MFT using

higher digital resolution. Simulation was repeated for the conventional set of 256 points, with the

Nyquist rate of 16 � 16 (a), 8 � 8 � 4 (b), and 4 � 4 � 4 � 4 (c). Peaks obtained in this way

are shown with grey lines. Reprinted with permission from [80]

Fig. 14 Decrease in signal-to-artifact ratio with growing number of peaks: (a) 2, (b) 4, (c) 8. S/N

was calculated using “true” peak amplitude (not influenced by artifacts)
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information to be extracted [80]. All of them are based on prior examination of

other (simpler) spectra. The restriction not only allows one to save disk space, but

also accelerates calculations and facilitates data analysis.

8.2.1 “Slice” MFT

In spectra of high dimensionality, peak coordinates in some spectral dimensions are

usually known from the spectrum of lower dimensionality (later called “basic

spectrum”). The complete and regular frequency grid is not needed in these

dimensions and they may be reduced to a set of frequencies corresponding to the

tops of peaks [81] (see Fig. 15). The number of lower-dimensional (e.g., 2D) cross-

sections obtained with this approach is equal to the number of peaks found in the

basic spectrum. Noteworthy, the basic spectrum, used for frequency selection,

should also be recorded with high resolution, as an accuracy in determination of

peaks frequencies is crucial here. Such a procedure dramatically reduces the

amount of data to be stored. In general, the size of data matrix of N-dimensional

spectrum is equal to

size ¼ m1 � m2 � ::: � mN; (48)

where: mi is a number of spectral points in the ith dimension.

If the frequencies of the first k dimensions are “reduced” during FT, the data

matrix size becomes

size ¼ ns � mkþ1 � mkþ2 � ::: � mN; (49)

where ns is a number of frequency sets obtained from a lower-dimensional spec-

trum used for Sparse MFT (SMFT). For instance, let us assume that the number of

spectral points in each dimension of a 5D data set is equal to 128 and SMFT is

Fig. 15 The idea of a “slice” SMFT. (a) Scheme of a 3D spectrum. Frequency coordinates of

peaks from this spectrum (labeled A–E) are used as the basis for SMFT calculation. (b) Scheme of

a 5D spectrum. Three frequency dimensions o1, o2, and o3, which correspond to nuclei observed

in 3D spectrum, are symbolized by one axis; two other dimensions (o4 and o5) are shown on

separate axes. Only 2D (o4–o5) cross-sections that contain peaks (marked with colors) are

calculated in SMFT. Reprinted with permission from [80]
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performed on the basis of a 3D spectrum containing 150 peaks. In this case, the total

size of the resulting set of 2D planes will be 128 � 128 � 128=150 ffi 13981 times

smaller than the size of the full 5D spectrum, which in practice means reduction of

the file size from about 100 GB to approximately 10 MB. Moreover, a set of lower-

dimensional spectra is easier to handle than one spectrum of high dimensionality

(see Sect. 9).

8.2.2 “Cube” MFT

Using techniques of extraordinary resolution, it is possible to measure efficiently

peak splitting (E.COSY pattern) associated with internuclear couplings [79].

By increasing maximum evolution times one can reach peak width determined

practically only by relaxation rate. However, ultra-narrow peaks require enhanced

digital resolution (number of points per Hertz) to be properly visualized. This often

causes the need to use another procedure employing reduced frequency space.

Prior to processing of such high-resolution data, positions of peaks should

be roughly determined from an equivalent decoupled (i.e., with singlets) spectrum

(or spectra) of lower resolution. Afterwards, the spectrum of high resolution is

calculated only in the close vicinity of these peaks positions, resulting in a set of

full-dimensional “cubes” (see Fig. 16). In each “cube” the numerical resolution

should be sufficiently high to visualize the multiplets and determine coupling

constants. Again, reduction of the required disk space is significant. The size of

data matrix is reduced from that defined by (48) to the following value:

size ¼ ns � m1 � sw
loc
1

sw1

� m2 � sw
loc
2

sw2

� ::: � mN � sw
loc
N

swN
; (50)

Fig. 16 The idea of a “cube” SMFT. (a) Scheme of a full 3D spectrum, containing peaks revealing

E.COSY multiplet structure. The digital resolution is too low to approximate properly the narrow

components of multiplets. (b) Scheme of a set of “cubes”, calculated just in vicinities of peaks,

featuring much higher digital resolution. Determination of small coupling constants is possible.

Reprinted with permission from [80]
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where: ns is a number of frequency sets used for SMFT, swi is spectral width in

dimension i of full spectrum, and swi
loc is spectral width in dimension i of a single

“cube”.

For example, in the case of a 4D spectrum, when spectral width of a “cube” is in

each dimension ten times smaller than the full spectral width in this dimension, and

the number of “cubes” is 150, the data set is reduced about 40,000 times. Typically,

it can result in reduction of disk space requirement from tens of terabytes to the

order of a gigabyte.

9 Applications

The interpretation of one- and two-dimensional spectra of large biomolecules such

as proteins and nucleic acids is usually impossible due to the large number of highly

degenerated peaks. Hence, even for the medium-sized molecules, it is necessary to

use isotopic enrichment with 13C and 15N nuclei, and to perform triple-resonance

3D NMR experiments for resonance assignment and extraction of structural

constraints. However, as we pointed out above, the resolution of conventionally

acquired 3D spectra, is limited by sampling requirements. Therefore, it is rarely

possible to obtain line widths close to the natural ones in a reasonable time, even for

very fast-relaxing molecules. The conventional 4D spectra, such as 15N,13C, or 13C,
13C-edited NOESY experiments, are rarely employed owing to the short evolution

times achievable. On the other hand, NMR spectra of biomolecules feature rela-

tively narrow and well-defined spectral regions such as HN, NH, C
0, Ca, and CaCb

in proteins. This feature allows the development of numerous multidimensional

experiments, which correlate spin interactions in different dimensions. Thus, the

most important applications of sparse sampling techniques are focused on the

important field of structural studies of biomolecules in solution. Sparse non-

uniform sampling and FT enable acquisition and processing of multidimensional

NMR spectra featuring extraordinary resolution, such as 4-6D NMR spectra dedi-

cated to resonance assignment, techniques for precise determination of coupling

constants from 3D and 4D experiments and proton–proton contacts from well-

resolved NOESY spectra.

9.1 Development and Implementations

The early applications of sparse sampling and FT processing were devoted to

demonstrating the features of the proposed methods rather than to cases of a really

demanding nature. Kazimierczuk and coworkers compared 3D HNCO spectra of

human ubiquitin employing radial and spiral sampling, showing significant

advantages of the latter [44]. Shortly after that, Marion demonstrated FT processing
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in polar coordinates in application to radially sampled 3D HNCO of human

ubiquitin [55]. Next was the work of Coggins and Zhou [56], who formulated the

expression for polar FT and applied it for 3D TROSY-HNCO for 13C/15N/2H-

labeled OTU protein. In the consecutive works all three groups concentrated on

the reduction of the artifact level. Koźmiński’s and Marion’s groups switched to

random sampling, motivating it by the lower intensity and noise-like nature of

artifacts in randomly sampled spectra. In the following works, the issue of approxi-

mation of Fourier integral was discussed. Kazimierczuk and co-workers [46]

demonstrated that the surface integration using Delaunay triangulation improves

S/A only for sampling above the Nyquist density. It was also shown that in the

case of unweighted FT the S/A ratio does not depend on the relative samples density

(see Fig. 8). The usability of the method was verified on 3D HNCA, HNCACB,

and 15N-edited NOESY experiments on ubiquitin, using random sampling with

exponential and Gaussian distributions of sampling points. Later on, the same

authors [60] showed that the simple regularization of the samples distribution

reduces artifacts in the signal vicinity. Moreover, it was demonstrated that this

effect is more pronounced in comparison with Voronoi tessellation used as an

integral quadrature rule. Additionally, in this work the usability of a simple variant

of CLEAN algorithm (see Sect. 7) was demonstrated on the 3D 15N-edited NOESY

spectrum of ubiquitin. Pannetier and coworkers [64] for the first time applied

random sampling and FT processing for intrinsically unstructured protein, namely

60-residue NTAIL (443–501) fragment of nucleoprotein N from the paramyxovirus

Sendai. They obtained backbone resonance assignment using two 3D CBCANH

and CBCA(CO)NH experiments with 6.5-fold undersampling. At the same time,

Coggins and Zhou introduced concentric ring sampling, demonstrating its

advantages over the initially used radial alternative, and employed it for 3D

HNCO of uniformly 13C, 15N labeled spectrum of the B1 domain of protein G

(GB1) [59]. The next development in Zhou’s group was concentric shell sampling

adjusted to a fine grid which was employed for the 4-D HCCH-TOCSY [83]. In this

work artifact suppression was accomplished by an adaptation of the CLEAN

algorithm (see Sect. 7).

The influence of different constrained random sampling schedules on Point

Spread Function was further investigated by Kazimierczuk and coworkers con-

sidering both artifact level and distribution [61]. It was shown that Poisson disk

sampling provides the largest low-artifact area in the signal vicinity. The new

sampling schemes were verified by application to the 3D HNCACB and 15N-

edited NOESY-HSQC acquired for human ubiquitin. The analysis of signal-to-

artifact ratio with respect to relative sampling density and dimensionality was

analyzed in the next work from the same group [45]. It was proven that for

random sampling S/A ratio depends neither on sampling density nor dimension-

ality of the experiment. These results were experimentally confirmed by acquisi-

tion of 5D HC(CC-TOCSY)CONH, performed for doubly labeled human

ubiquitin within 0.0054% of the time necessary for analogical conventional

experiment.
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9.2 Easy Resonance Assignment in Proteins Using
the Spectra of High Dimensionality

High resolution and dimensionality achievable in spectra acquired with the use of

sparse random sampling and processed by FT feature a significant improvement in

peak dispersion. This facilitates resonance frequency assignment, especially in

demanding cases such as intrinsically disordered proteins. The first such example,

mentioned above, was the backbone assignment of intrinsically unstructured 60-

residue NTAIL (443–501) fragment of nucleoprotein N from the paramyxovirus

Sendai using the 3D experiments [64].

After the feasibility of 5D experiments acquired by random sampling and SMFT

processing by Kazimierczuk et al. was demonstrated [45], the same group proposed

a set of 4D (HNCOCA, HNCACO, HNCACACB, HN(CA)NH, and HabCabNH)

[81], and later 5D (HN(CA)CONH, HabCabCONH) experiments [80] dedicated to

the effective protein backbone signal assignment. All of these techniques employ

sparse random sampling and FT processing to achieve high resolution spectra in a

tiny fraction of the time needed conventionally. The 4D experiments were tested on

two proteins differing in size, i.e., a protein interacting with NIMA-kinase from

Cenarcheaum symbiosum (96 a.a. residues) and maltose binding protein (371 a.a.

residues) (see, for example, Fig. 17).

The feasibility of the 5D techniques was demonstrated using the sample of 5–79

fragment of bovine Ca2+-loaded Calbindin D9K P47M mutant [81]. However, the

true test of the new assignment strategy was performed on the particularly demand-

ing case of the d subunit of RNA polymerase from Bacillus subtilis containing a

disordered C-terminal region of 81 amino acids with a highly repetitive sequence

[92]. While the backbone assignment of this protein appeared to be unachievable

using conventional 3D techniques, the strategy based on the new 5D experiments

(HN(CA)CONH, HabCabCONH, and HC(CC-TOCSY)CONH) provided a com-

plete backbone and side-chain assignment (see Fig. 18).

9.3 Determination of Coupling Constants in Proteins

Backbone scalar couplings are widely used in NMR studies of structure and

dynamics of biomolecules [93]. Additionally, there is a substantial interest in

precise determination of residual dipolar couplings for structural studies of weakly

oriented biomolecules. Most of the relevant coupling constants in proteins are

rather small – of the magnitude from a few to a hundred hertz. Therefore, in

order to achieve the sufficient resolution in indirectly measured dimensions, the

majority of traditional methods devoted to coupling constants determination in

biomolecules are limited to two-dimensional techniques, which frequently suffer

from peak overlap. However, the random sampling of evolution time domain

allows one to obtain spectra of resolution limited only by transverse relaxation
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and suffices to differentiate multiplet components. Moreover, when couplings with

passive spins are resolved in two or more dimensions, the E.COSY [94] multiplet

patterns provide valuable information about relative signs of coupling constants.

Kazimierczuk and co-workers [79] showed an example of a 3D HNCO-Ca-coupled
spectrum of ubiquitin protein. Each peak in this spectrum reveals 3D E.COSY

pattern due to couplings with two passive Ca spins. Thus, six coupling constants of

HN, N, and C0 with intra- and inter-residual Ca spins can be determined. The

resolution achieved in this experiment would require over a month of conventional

acquisition, making it impractical. The coupling constants measured from 3D

HNCO-Ca-coupled experiment revealed correlation with ’ and c protein backbone

torsional angles. Later on, a feasibility of determination of a 4D E.COSY patterns

was also shown and exemplified with the 4D HNCACO-{Ha} experiment for the

sample of 5–79 fragment of bovine Ca2+-loaded Calbindin D9K P47Mmutant [80];

see Fig. 19. In this experiment the “cube”-SMFT procedure was employed in order

to achieve extraordinary disc space savings.

Fig. 17 Example of application of 4D HNCACO technique. (a) Pulse sequence. Evolution for CO

is in the real-time mode, and for N and CA in semi-constant-time mode (ai ¼ (ti + D)/2, bi ¼
ti(1�D/tmaxi)/2, ci ¼ D(1�ti/tmaxi)/2) or constant-time mode (ai ¼ (D + ti)/2, bi ¼ 0, ci ¼ (D�ti)/
2), where D stands for DN–CA and DCA–CO, respectively, ti is the evolution time in ith dimension

and tmaxi is the maximal length of evolution time delay. Delays were set as follows: DN–H ¼ 5.4 ms

DN–CA ¼ 22 ms DCA–CO ¼ 6.8 ms. (b) Coherence transfer in the peptide chain. Amide nitrogen

and proton frequencies (filled colored rectangles) are fixed during Fourier transformation. Each

plane contains CO–CA peak for i and i�1 residue. (c) 2D spectral planes for CsPin protein

obtained by SMFT procedure performed on the 4D HNCACO randomly sampled signal (Poisson

disk sampling) with “fixed” HN and N frequencies obtained from 3D HNCO peak list. (d) 2D

spectral planes for MBP obtained in the same manner. Reprinted with permission from [81]

116 K. Kazimierczuk et al.



Fig. 18 1H,15N-HSQC spectra of RNA polymerase d subunit. (a) Entire spectrum. (b) With the

central region expanded. Central region of 1H,15N-HSQC spectrum (c) and the corresponding

region of a 2D cross-section extracted from the 5D HN(CA)CONH spectrum (right). The 2D
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9.4 Heteronuclear-Edited NOESY Experiments

NOESY experiments are still the primary source of structural information. The

presence of the cross-peaks in NOESY spectra indicates spatial proximity of nuclei,

and their integral is proportional to the r�6, where r denotes internuclear distance.
However, NOESY spectra are significantly more difficult to obtain in comparison

with other NMR techniques. The most important differences are the large number

of correlation peaks, dependent on the number of interacting proton nuclei, and a

high dynamic range of peak amplitudes up to two to three orders of magnitude.

Consequently, NOESY spectra require an excellent sensitivity and almost perfect

suppression of spectral artifacts. Moreover, in order to preserve the relationship

between peak integral and internuclear distances, the linearity of the method should

Fig. 18 (continued) cross-section was obtained by fixing frequencies in o3, o4, and o5 dimensions

to the values of chemical shifts of 13C0 of I157, 15N of I158, and 1HN of I158, respectively. Peaks

corresponding to the sequential and intraresidual correlations are displayed in black and red,
respectively. Experiment was acquired within 20 h on 700 MHz spectrometer using RT-probe.

Only a fraction of 0.00034% points was collected in indirect time domains. See [92] for further

details

Fig. 19 Experimental example of ultra-high resolution multidimensional NMR spectra obtained

by the proposed technique: I74 intra-residual resonance from 89 h 4D HNCACO-{Ha}-coupled

experiment acquired for 5–79 fragment of bovine Ca2+-loaded Calbindin protein. Depicted cross-

sections of 4D “cube” 50 � 450 � 40 � 100 Hz surrounding the peak allow determination of

coupling constants from resolved 4D E.COSY pattern. 1JCaHa ¼ 135.9 Hz, 3JHNHa ¼ 5.8 Hz,
2JC‘Ha ¼ �5.0 Hz, 2JNHHa ¼ �1.0 Hz with numerical resolution of 0.4 Hz/point, 1.7 Hz/point,

0.2 Hz/point, and 0.7 Hz/point in dimensions F1, F2, F3, and F4, respectively. Reprinted with

permission from [80]
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be maintained. Thus, this type of applications is very demanding for all sparse

NMR techniques. In the case of nuFT processing, effective artifact suppression is

necessary.

Kazimierczuk and co-workers applied their semi-automatic CLEAN procedure

to suppress artifacts in a randomly sampled 15N-labeled NOESY-HSQC spectrum

of ubiquitin [60]. It was demonstrated that the process does not systematically

influence relative peak amplitudes, and is therefore applicable to NOESY spectra.

Similar conclusions were later drawn by Stanek and Koźmiński [85], and

by Werner-Allen and co-workers [84], who compared their reconstructions with

conventionally sampled three-dimensional spectra of the same spectral resolution.

The algorithm proposed by Kazimierczuk and co-workers was later also applied

to higher-dimensional experiments [80].

Coggins and Zhou implemented the CLEAN algorithm to process four-dimen-

sional spectra [83], with only slight modifications with respect to the original

procedure from radio astronomy. The advantages of CLEAN processing in con-

junction with Randomized Concentric Shell Sampling were demonstrated on the

4D HCCH-TOCSY spectrum of 56 a.a. GB1 protein. In this experiment, 1.2% of

samples was used, and CLEAN was shown to decrease the apparent noise from 2.4

to 1.4 of thermal noise level on average.

The same program was later used to process the 4D amide–amide diagonal-

suppressed TROSY-NOESY-TROSY (ds-TNT) spectrum of 23 kDa C13S Sssu72

protein [84]. The largest decrease in apparent noise level due to the CLEAN process

was 22%. The application of sparse sampling and FFT-CLEAN processing allowed

a more than tenfold reduction in experimental time in comparison with the conven-

tional approach to acquisition. The experiment was shown to provide valuable

information on distance restraints between amide protons by avoiding the

ambiguities and frequent resonance overlap typical for 3D NOESY spectra of

large proteins (see Fig. 20).

A more challenging example was demonstrated by Stanek and Koźmiński [85],

who applied their algorithm to 3D 15N- and 13C-labeled NOESY spectra of

ubiquitin without suppression of diagonal peaks. The efficiency of artifact suppres-
sion was investigated by comparison of the reconstruction with the conventionally

acquired reference spectrum. Less than 2% of peaks were missing, and about 1.5%

false peaks were reported. The correlation coefficient between peak volumes of

R2 ¼ 0.998 was obtained.

9.5 3D Spectra of Complex Organic Compounds

Compared to the progress and the variety of new multidimensional methods

proposed in the area of biomolecules, in the field of organic molecules the devel-

opment is slower, caused mainly by less demanding applications and additional

experimental limitations. However, in the case of complex organic molecules, it is

sometimes necessary to add the third dimension to separate crowded, overlapping
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signals in order to avoid ambiguities in the spectral assignment. The use of

unconventional approaches in the acquisition of multidimensional NMR signals

makes it possible to record 3D NMR spectra of small molecules in shorter experi-

mental time. So far there are only very few examples of using 3D NMR

experiments dedicated to the spectral assignment [95–99] and the measurement

of coupling constants [100].

Generally, in organic chemistry two-dimensional spectra are widely used, while

3D NMR spectra of small molecules were hardly achievable, because of the very

long measurement time required in the conventional approach. In contrast to

proteins, organic compounds at the natural isotopic abundance are more demanding

due to the low sensitivity and the necessity of sampling the wide frequency range

especially in the 13C dimension. On the other hand, the slower transverse relaxation

rates allow one to achieve narrow peaks, which again is limited by sampling. That is

why in many cases these problems precluded the full assignment of NMR signals

and the evaluation of coupling constants of organic compounds. Due to the

employment of non-uniform sampling, the application of multidimensional NMR

spectra in the structure investigation of organic molecules became practically

possible.

Recently the method employing DNP for recording heteronuclear 2D NMR

spectra of small drug-like molecules was proposed by Ludwig and coworkers

[101]. This method ensures significant improvement in sensitivity due to the high

spin polarization, but limits the number of points sampled in indirectly detected

dimension, so the combination with the non-uniform sampling scheme was

necessary.
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Fig. 20 F1(HN)/F2(N) cross-sections from 4D amide-amide ds-TNT spectrum of C13S Ssu72

protein. Residual diagonal peaks of Ile176 (a) and overlapped Leu72 and Asn92 (b) are enclosed

with green boxes. Corresponding strips in each panel, plotted from conventionally sampled 3D ds-

TNT spectra, show severe overlap of the amide-amide cross-peaks. In contrast, in the sparsely

sampled 4D ds-TNT spectrum the peaks were clearly resolved and assigned. Reprinted with

permission from [84]
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Three-dimensional NMR spectra based on random sampling of the evolution

time space followed by MFT processing were successfully applied by Misiak and

Koźmiński in the structural analysis of complex organic compounds [95]. Three

new 3D NMR techniques (TOCSY-HSQC, COSY-HMBC, and HSQMBC) which

allow the spectral assignment have been proposed. The comparison of 3D spectra of

strychnine recorded in the conventional way with that acquired using randomly

distributed data points in the evolution time space revealed that by using this new

approach it is possible to acquire 3D spectra in reasonable experimental time, while

retaining high resolution in indirectly detected domains (see Fig. 21). The use of 3D

TOCSY-HSQC and 3D COSY-HMBC allowed for the complete assignment of 1H

and 13C chemical shifts of natural abundance prenol-10 [96], which was earlier

impossible by employing 1D and 2D spectra, mostly because of the signal

overlapping caused by similarity of the ten isoprene units. The application of 3D

HSQC-TOCSY spectra with E.COSY- type multiplets enabled the accurate deter-

mination of heteronuclear coupling constants of organic molecules in an overnight

experiment [100].

Fig. 21 Comparison of 3D COSY-HMBC F1/F2 cross-sections for F3 (1H) ¼ 3.904 ppm, i.e.,

resonance frequency of the H16 atom of the strychnine molecule: (a) conventional and (b) random

sampling of t1/t2 evolution time space. The spectra were recorded in the same experimental time, and

transformed with the resolution of 128 � 256 � 1,024 points in F1, F2, and F3, respectively. The

vertical arrows indicate the positions of the extracted traces. Reprinted with permission from [95]
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In the case of naturally abundant complex organic compounds playing important

biological roles, detailed structural analysis is very important. We believe that, in

the future, recording of sparsely sampled 3D NMR spectra should also become a

routine procedure for the structural analysis of complex organic molecules.

10 Conclusions

The application of sparse sampling for the acquisition of multidimensional NMR

spectra leads to the presence of spectral artifacts. They appear in a regular form (e.g.,

ridges, rings) for the regular sampling, and resemble the noise in the case of random

sampling. The spectral reconstruction aims to obtain the spectrum with minimized

artifact level. Among a variety of reconstruction methods, the FT has favorable

computational requirements. The important feature of off-grid random sampling and

FT processing is the independence of artifact intensity of the degree of sparseness,

and decreasing of artifacts with the square root of number of sampled points.

Therefore, it should not be applied for the acceleration of experiments attributing

conventional resolution, which is a usual task of “fast NMR” techniques. FT is rather

the method of choice for the acquisition and processing of spectra of high

dimensionality (4D–6D) or of high resolution, approaching natural line width.

Frequently, the artifact level in such spectra is low enough to allow their interpreta-

tion without further processing. However, for the analysis of high dynamic range

spectra featuring a large number of signals, such as, for example, NOESY

experiments, additional artifact “cleaning” is required. Until now, the number of

such applications is still minor. However, we expect that it will grow systematically

in parallel with dissemination of the necessary software. We believe that the random

sparse sampling and FT processing could be aimed at a variety of new applications,

especially in the field of NMR-based structural studies of biomolecules.
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Applications of Non-Uniform Sampling

and Processing

Sven G. Hyberts, Haribabu Arthanari, and Gerhard Wagner

Abstract Modern high-field NMR instruments provide unprecedented resolution.

To make use of the resolving power in multidimensional NMR experiment standard

linear sampling through the indirect dimensions to the maximum optimal evolution

times (~ 1.2 T2) is not practical because it would require extremely long measure-

ment times. Thus, alternative sampling methods have been proposed during the past

20 years. Originally, random nonlinear sampling with an exponentially decreasing

sampling density was suggested, and data were transformed with a maximum

entropy algorithm (Barna et al., J Magn Reson 73:69–77, 1987). Numerous other

procedures have been proposed in the meantime. It has become obvious that the

quality of spectra depends crucially on the sampling schedules and the algorithms

of data reconstruction. Here we use the forward maximum entropy (FM) recon-

struction method to evaluate several alternate sampling schedules. At the current

stage, multidimensional NMR spectra that do not have a serious dynamic range

problem, such as triple resonance experiments used for sequential assignments, are

readily recorded and faithfully reconstructed using non-uniform sampling. Thus,

these experiments can all be recorded non-uniformly to utilize the power of modern

instruments. On the other hand, for spectra with a large dynamic range, such as 3D

and 4D NOESYs, choosing optimal sampling schedules and the best reconstruction

method is crucial if one wants to recover very weak peaks. Thus, this chapter

is focused on selecting the best sampling schedules and processing methods for

high-dynamic range spectra.
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1 Introduction

The introduction of pulsed NMR and Fourier transformation of the time domain

data has revolutionized NMR spectroscopy [1]. The routine application of this

technology became possible with the fast Fourier transformation (FFT) algorithm

[2]. It requires time domain data to be sampled in linear increments to enable its

application. This technology has dominated NMR spectroscopy ever since. The

sampling procedures used are called linear or uniform sampling. With the avail-

ability of higher field magnets and considering the low sensitivity of biological

samples new ideas have come up to depart from uniform sampling and use new

processing methods to enhance the capabilities of NMR spectroscopy, in particular

of biological macromolecules.

The first proposal to abandon linear sampling was made by Barna et al. who

suggested placing the sampling points in the indirect dimension with exponentially

decreasing separation and transforming the spectra with a maximum entropy

algorithm [3] developed by Skilling et al. [4]. This proposal has found many

followers since and numerous sampling methods and data processing procedures

have been proposed. The approach has been further developed with the Maximum

Entropy (MaxEnt) reconstruction tool using a different algorithm [5], and many

applications and implementations have followed [6–14]. The principle advantages

of non-uniform sampling are increasingly recognized [15]. Besides Maximum

Entropy reconstruction, other methods are used for processing non-uniformly

recorded spectra, such as the Maximum Likelihood Method (MLM) [16], a Fourier

transformation of non-uniformly spaced data using the Dutt–Rokhlin algorithm

[17], and multi-dimensional decomposition (MDD) [18–22]. Several other methods

have been presented to allow for a rapid acquisition of NMR spectra with suitable

processing tools, including radial sampling and GFT [23–31].

While there is still much research to be done to find optimal non-uniform

sampling schedules and processing methods, the large benefits are already quite
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obvious. Nevertheless, most laboratories still acquire multidimensional NMR data

with the traditional uniform acquisition schedules and process data with the FFT

algorithm. This is despite the fact that linear sampling of 3D and 4D NMR data at

modern high-field NMR spectrometers can only cover a fraction of the indirect time

domains, and the resolution power of the new instruments is often largely wasted.

Here we analyze the benefits of non-uniform sampling for NMR spectroscopy on

challenging biological macromolecules. The application of NUS has been well

established with spectra that have no dynamic range problem, such as triple

resonance experiments as described previously [6, 32]. This allows recording of

multidimensional triple resonance spectra at resolutions matching the resolving

power of modern high-field instruments in a reasonable time. The current challenge

of NUS approaches is more for experiments with high dynamic range problems,

such as 3D and 4D NOESY spectra. Thus, the following is more concerned with this

aspect. The following steps are taken in this chapter. First we discuss procedures

towards finding optimal sampling methods using point spread functions. Second,

we analyze the variation of performance due to the selection of the seed numbers

used for creating random sampling schedules in different densities. Third, we

compare different sampling schedules when using just straight FFT for reconstruc-

tion. Fourth, we analyze the variation of the performance depending on the sto-

chastic type of noise. Fifth and finally, we compare the use of different sampling

schedules on an experimental 3D NOESY spectrum. Since the benefits of NUS

depend on the processing methods we start out with a discussion of several

processing principles but compare different sampling strategies primarily with the

FM reconstruction procedure developed in our laboratory [33].

2 The Forward Maximum Entropy Reconstruction

Relative to Other Procedures

The purpose of this chapter is to compare different sampling schedules. We do this

using the FM reconstruction procedure described in detail previously [32, 33]. In

short, FM reconstruction is a minimization procedure that obtains the best spectrum

consistent with the non-uniformly sampled time domain data set by minimizing a

target function Q(f), which is a norm of the frequency spectrum, such as the

Shannon entropy S, or simply the sum of the absolute values of all spectral points.

Initially, all data points not recorded are set to zero. This initial time domain data set

is Fourier transformed yielding the initial Q(f). Each of the time domain data points

that were not recorded are then altered somewhat and transformed independently to

create a whole set of somewhat perturbed spectra and hence Q(f + di) for each of

the altered time domain data points. The relation between Q(f) and Q(f + di) for
each i defines the gradient∇, and a Polak Riviere conjugate gradient minimization

of the target function Q(f) with respect to the values of the missing time domain
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data points is carried out. This procedure minimizes Q(f) of all frequency-domain

data points while only altering the non-measured time domain data points.

The only variable in this procedure is the choice of the target function; we prefer

to use the sum of the absolute values of the frequency domain data points, and the

number of iterations to be carried out. Below we use this FM reconstruction

procedure for comparing different sampling schedules.

3 Description of the Software and Computer Hardware

The FM reconstruction program has been described previously [32] but some key

aspects and recent developments are summarized here. The program requires

a gradient for the minimization algorithm. Since the points that vary are in the

time domain, and the target function is defined in the frequency-domain, each

calculation of a partial derivative requires a forward Fourier Transform of the

deviation in the time domain to the frequency-domain. A couple of considerations

are immediately possible: first, contemplating that FFT is linear, i.e., FFT(t1 + t2) ¼
FFT(t1) + FFT(t2), the set t1 corresponding to the present set of values of the time

domain data and the set t2 corresponding to a small value at the particular point

i to which the partial derivative address, zero elsewhere; the FFT for the present set t1
and the alteration set can bemade separately. Hence, the FFT for the present set t1 can

be made once for all partial derivatives in the gradient. Second, as the set only

describes one point, an FFT is not required since the transform is already known as a

sinusoidal wave in the frequency domain. Third, if it is possible to store the result in

memory for all indices of the gradient, this will also reduce the execution time to a

certain extent.

The execution time for each partial derivative of the gradient with the above

considerations will be of O(nmax), where nmax is the number of points in the trial

spectrum. This is due to the fact that a summation of all altered data points in the

frequency domain is made for the target function Q(f). With nvariable data points

in the time domain, the execution time of one conjugate gradient iteration is hence

proportional to nvariable � nmax. It follows that the time for reconstruction will be

quadratic in n, orO(n2), depending both on the number of points to be reconstructed

and on the size of the reconstructed data. The total time for a complete reconstruc-

tion is hence further proportional to the number of iterations (niterations) of the

conjugate gradient iteration and proportional to the number of points kept of the

processed uniformly sampled dimension(s) (nprocessed). The latter usually refers to

the kept points after processing the direct dimension and extracting the area of

interest, but it may also include the result after processing an indirect dimension

that was not obtained non-uniformly.

Except for making the calculation of the gradient as efficient as possible, two

approaches for parallelization are possible: (1) farming of the individual

calculations for the points kept of the processed uniformly sampled dimension(s)
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(nprocessed) and (2) internal parallelization of each of the partial derivatives

(nvariable � nmax).

We constructed a program termed mpiPipe, to farm the individual calculations

according to (1) above. It does the following. (1) Initiating and connecting with the

other processing nodes. (2) Receiving data according to NMRPipe specifications.

(3) Once initiating is done, the head node engages each external processor with a

job; (a) a task identifier is sent to the external processor, (b) a static command

operation is sent to the processor, (c) a unique job order is assigned and kept,

allowing asynchronous work flow, (d) the data are prepared and sent, (e) a non-

blocking receive is requested. (4) Once a processor node has completed its task, the

head node receives it and new data are delegated. (5) Once all processed data have

been received from the processing nodes, the processed data are moved from the

internal storage to the output pipe according to NMRPipe specifications. Notably,

the mpiPipe program may be used for most types of NMRPipe processing on a

cluster or a farm via MPI (Message Passing Interface).

As an alternative to using MPI, simple queuing to a cluster is also actively

used. As NMRPipe is built on a 2D principle, we are typically using MPI for one-

dimensional reconstruction of, e.g., 2D HSQC spectra, whereas the more

approachable use of a queuing system comes into question for multi-dimensional

reconstructions, such as of triple resonance and four-dimensional spectra. Pres-

ently, we are using a 32-node cluster, each equipped with 2 dual 3.0 GHz core

Xeon processors with a total of 128 cores.

In order to approach an internal parallelization, specific hardware is required.

Fortunately, recent developments within the field of HPC (High Performance

Computation) have led to the option of programming GPUs with high numbers of

cores. Using CUDA C language, we re-wrote the appropriate calculation of the

gradient. Applying the code on a NVIDIA 240 core Tesla C-1060 computer, we

find that we can get a speedup of a factor 90 compared to one core of a 3.0 Xeon

processor. Practically, this means using a workstation equipped with 4 of these

cards (a total of 960 cores), we have achieve a speedup of a factor of 3 relative to

our 128-core cluster. Presently, the 448 core Tesla C-2050 has been released,

where each card is three times faster than its predecessor. Equipping

a workstation with four of these cards hence yielded a single node computer that

is nearly ten times faster than our 128-cpu cluster at a fraction (around one tenth) of

its cost.

As an alternative to using the high-end of these workstations and graphics cards,

a smaller work station can be employed that is capable of using a graphics card

comparable to the C-2050, such as the GTX-460, at a cost of less than $1,000. This

would yield a speed comparable or faster than our 128-cpu cluster. When working

with Open CL, it is also possible to use the ATI graphics cards. We have found that

this yields a performance comparable to the NVIDIA C-1060 card.
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4 Principles of Non-Uniform Sampling

It is worth noting that one could say that a form of non-uniform sampling was

applied prior to the introduction of Fourier transform NMR in routine continuous

wave spectroscopy when only the interesting parts of the spectra were scanned.

With the introduction of pulsed NMR a set of uniformly sampled equidistant data

points spaced by the dwell-time were to be acquired for proper input to the Fast

Fourier Transform (FFT) algorithm. This was soon amended with zero filling,

which can be considered a new general form of non-uniform sampling.

With the introduction of 2D and generally nD NMR, the number of increments

grows exponentially with t(n�1) whereas the information content remains restricted.

This means that higher dimensional spectra contain a larger fraction of empty

frequency-domain areas with only noise to spread out the signals. While this allows

for better identification of signals due to reduced overlap, it is paid for by the need

for recording more increments and thus longer measuring times.

The desire for reducing the experimental time has revoked the idea of non-

uniform sampling. Is it possible to design a sampling strategy, which does not

necessarily inherit the requirement of equidistant data points, in order to reduce the

total acquisition time and maintain the ability to distinguish otherwise overlapped

signals? If this is the case, can one re-use the saved time and acquire more scans for

the measured increments in order to improve sensitivity while maintaining

resolution?

As indicated before, the use of FFT requires uniformly sampled equidistant data

points. If it is desired to preserve a traditional looking spectrum, the unobtained

data points have hence to either be left zero (as with zero filling), or the values of the

data points have to be emulated or reconstructed prior to Fourier transformation.

A non-trivial issue with implementing non-uniform sampling is that the tradi-

tional test functions for the Fourier Transform (i.e., the set of sinusoidal functions),

or even a subset of them, are no longer orthogonal. This leads to artifacts via a

mechanism called signal leaking. This does in fact occur for uniform sampling as

well: when a signal’s frequency is not one of the sinusoidal test-functions, signal

leakage is manifested in so-called sinc-wiggles. Since sinusoidal functions no

longer provide an orthogonal set when non-uniform sampling is used, signal

leaking occurs even when the acquired signal is one of the sinusoidal functions

traditionally displayed in a spectrum. In the frequency domain, these leakage

artifacts are viewed as the so-called point-spread function. They can easily over-

shadow the noise, especially when strong signals are present. This is particularly

serious in NMR spectra with a large dynamic range. It is hence imperative for non-

uniform sampling methods to use schedules where the set of test functions deviates

least from being orthogonal.
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5 The Point-Spread Function for Evaluation

of Sampling Schedules

Intrinsic to all non-uniform sampling is the selection of a sampling schedule.

Choosing an optimal schedule is central to the faithful reconstruction of the true

spectra from NUS data. Randomly selecting 256 out of 1,024 points can be done in

1024

256

� �
ways, or more than 10248 combinations. A more modest selection, 64 out

of 256 data points, still yields 1061 combinations. Theoretically, sampling through

all of these possibilities would give us some schemes that were obviously not to be

considered, such as selecting just the first 256 data points, or picking every fourth

point. Here we use random or weighted random selection of sampling points,

relying on a random number generator, such as the UNIX drand48 or equivalent,

which only promises a randomization to 248 ways, or just above 1014 combinations.

Each of these alternative schedules would be generated with a unique seed value.

Note that, as we are utilizing a pseudo-random generator, the sequence of random

numbers is completely determined by its seed value.

To predict the performance of a sampling schedule we rely on the point spread

function. We create a synthetic exponentially decaying signal, select a subset of

points with a sampling schedule, and create a spectrum with the FM reconstruction

algorithm. The spectrum is then compared with that obtained by FFT from the full

uniformly sampled free induction decay, and the difference is expressed in terms

of an L2 norm. This is analogous to a w2 analysis, but the values are not normalized.

As we have reported previously, the performance of the sampling schedule (lowest

L2 norm) depends on the value of the initial random seed number [34]. This is

shown in Fig. 1, where we evaluate different sampling schedules with the point-

spread function using 100 different seed numbers. The resulting L2 differences are
sorted from worst (left) to best (right). Here we select 256 out of 1,024 time domain

data points, a 25% sampling schedule.

6 Evaluating Sampling Schedules with the Point-Spread

Function

We first explore some typical sampling schedules that have been proposed in the

literature.

1. Uniformly random

Here 256 out of 1,024 sampling points are selected randomly using the Unix

random number generator with different seed numbers, but uniformly spread over

the time axis. Figure 1 shows that the deviation from the correct spectrum (L2 norm)

ranges from 95 (worst) to 32 (best). Thus, there is a large variation of fidelity

depending on the pick of the seed number.
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2. Exponentially weighted random sampling

A modification to the uniformly random sampling is the exponentially weighted

random sampling scheme. The rationale for this is that, by decaying signals, the

signal intensity is higher at the beginning of the FID, yielding better sensitivity. The

probability function is altered in an exponential fashion, so that it picks more points

for shorter rather than longer evolution times. Randomization is used similarly to

the uniformly random sampling. It should be mentioned that those samplings

created by exponential weighting are a subset of the complete uniformly random

one – the method only yields different results when a restricted subset is taken, such

as a subset of 100 schedules as described above. Figure 1 shows that the exponen-

tially weighted sampling schedule yields L2 differences between 74 (worst) and 28

(best). Thus, this schedule is less likely to make big mistakes and has a greater

probability of creating high-fidelity reconstructions. However, the variation of

fidelity is still very large.
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Fig. 1 Sorted L2 norm evaluation of five sampling strategies for non-uniform sampling of NMR

data. The L2 norm (¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf refi � f reci Þ2

q
) in this case describes the deviation between the reference

spectrum (a singlet with no line-width) and the FM reconstructed equivalent, when selecting 256

of 1,024 complex data points in the time domain based on particular sampling strategy and seed

value. One hundred seed values were used to create 100 specific sampling schedules for each

sampling strategy. The L2 values were hence sorted and the “best-of-100” (represented rightmost
in the figure) and “worst-of-100” (represented leftmost) sampling schedules were identified for

each strategy for further evaluation. (Note: for practical use, only the “best-of-100” schedule

would be of interest)
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3. 5*Exponential sampling

Whereas the exponential sampling strategy matches the decay of the signal,

attempts at optimizing the weighting of the probability function has been suggested.

As it is common to apodize the reconstructed FID, the actual decay is faster than

given by a single T2. “Over-weighting” the probability function up to five times has

hence come into question.

To improve schedules we considered the results from these various sampling

strategies and tried to elucidate what makes a generally “good” sampling schedule,

i.e., those with fewer aberrations than “bad” sampling schedules. We observed that

when there are larger and/or more gaps in the beginning of the sampling schedule,

the resulting reconstructions yield “dips” or “trenches” around the reconstructed

peak. This is especially a problem when working with spectra with high dynamic

range. These are naturally more pronounced for the uniformly random schedules

than for the exponentially weighted ones. By “over-weighting” the exponential

probability the problem is less severe. This would initially lead to the conclusion

that “over-weighting” the sampling schedule strategy is better. However, just like

apodization, it trades resolution for sensitivity – working contrary to the idea of

NUS. Also, by “over-weighting” the probability function, the sampling scheme is

biased towards sampling the very beginning of the FID. This raises the question as

to whether it may be just as good simply to acquire the first part of the schedule

uniformly, essentially falling back to uniform sampling (US) with fewer data

points. Figure 1 demonstrates that the 5*exponential schedule exhibits the same

worst-case scenario and disappointingly results in the worst overall performance.

4. US/NUS sampling

The considerations above have suggested that it may be good to sample the

initial part uniformly (US), and then the rest of the schedule with NUS but in a

uniformly-random point selection. As this introduces a discontinuity, many options

are possible. For our search, we have typically sampled the first eighth of the

schedule with US and the subsequent seven eighths with NUS and-uniformly

random sampling point selection. Based on the point spread function analysis

(Fig. 1) this schedule performs on average significantly better than the schedules

discussed above. We find this strategy removes the artifacts, which manifest as

“dips” or “trenches.” However, to use this strategy one needs to make decisions as

to how long to sample linearly and how to weight the NUS period. Thus, the

selection appears to be arbitrary and is in general hard to optimize; however, further

optimization of this approach may be worthwhile.

5. Poisson Gap sampling

As it is often desirable to use less or even much less than 50% sparse sampling

where the number of non-obtained data coordinates are larger than the obtained

data coordinates, it is valuable to look not only at the distribution of points to be

acquired, but to study the nature and distribution of the gaps created in the sampling

schedule. Doing so we found that (1) large gaps are more detrimental to the fidelity
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of the reconstruction and (2) gaps located in the beginning as well as in the end of

the schedule impact the ability of good reconstruction. (Note, as it is most common

to apply an apodization prior to transforming the time domain data to the frequency

domain, the impact of gaps at the end of the schedule is much less than that at the

beginning.) In addition, (3) the distribution should be sufficiently random in order

to satisfy the Nyquist theorem on average.

When analyzing the distribution of gaps in large uniform sampling schedules we

find that the gap sizes approach a Poisson distribution with the average gap size of

1/sparsity minus one. Here the sparsity is the fraction of recorded vs non-recorded

data points. Thus, for a sparsity of 1/4, the average gap size would be 4 � 1 ¼ 3.

Our experience is that it is typically easier to find a “good” sampling schedule with

high fidelity reconstruction when using 25% sparse sampling of 8,000 data points

rather than with 25% sparse sampling of 256 data points. We hypothesize that this is

due to the stochastic nature of smaller sets. We further hypothesize that our ability

to find a “good” sampling schedule increases when adding the constraint of a

general Poisson distribution of the gaps in the sampling schedule. Generally,

considering the observation that large gap sizes are more detrimental at the begin-

ning and at the end of the sampling schedule, we can vary the local average of gap

sizes during the sampling schedule so that the sampling is denser at the beginning

and at the end of the schedule.. The selection of sampling points with Poisson gap

sampling has recently been described in detail [34]. Figure 1 shows that this

sampling schedule is least dependent on the seed number and has on average the

lowest L2 values.

7 Performance of Sampling Schedules on a Set of Four Peaks

Using FM Reconstruction

So far, our analysis has been based on a single non-decaying signal without noise.

This is certainly helpful to optimize the particular sampling schedule by entering

different seed values into the underlying pseudo-random generator. However, it has

little resemblance to the reality of NMR spectroscopy. In order to evaluate further

the qualities of the above sampling strategies, we now simulate a set of four peaks

that emulate a time domain acquisition to one T2 (Figs. 2 and 3), and we extract

subsets of the data with the particular sampling schedules. Next we reconstruct the

time domain data with the FM procedure and create the 2D spectra with FFT.

Finally we add synthetic Gaussian noise and evaluate reconstruction performance.

The synthetic spectrum consists of one intense and well-separated peak, and three

weak peaks, two of them almost overlapping.

Figure 2 shows FM reconstructions using the five NUS schedules discussed

above and compares the spectra with the reference (top). The bottom spectrum

is a simulation of traditionally US acquired data for a 1,024 complex data point

FID, processed with cosine apodization, one set of zero filling and Fourier
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transformation. The leftmost signal has ten times the signal intensity of the three

signals on the right. This is for evaluation of strong peaks, such as diagonal peaks in

NOE spectroscopy (NOESY), and wherever a high dynamic range is exhibited. We

chose a factor of 10 only for visibility purpose; we are aware that in real spectros-

copy often a factor of 1,000:1 appears. The two rightmost signals provide a doublet,

barely visible using uniform sampling. This arrangement allows for easy inspection

of reconstruction fidelity and ability to preserve resolution.

In the left panel we use the sampling schedule with the best seed number as

found in the data shown in Fig. 1. At the right side we use the seed numbers of the

least favorable reconstruction. Thus, the two panels span the range of reconstruc-

tion fidelity consistent with the analysis of Fig. 1. The performance of the sampling

schedules is most different for the least favorable seed numbers.

Reference
(US acq)

FM reconstruction using most
optimal seed of 100 trials.

a b FM reconstruction using least
optimal seed of 100 trials.

Sinusoidal
Poisson Gap

US/NUS
Hybrid

5*exponential

Exponential

Uniformly
Random

US acq

940 980 1020 1060 1100

Reference
(US acq)

Sinusoidal
Poisson GapL2 = 10.2 L2 = 14.1

L2 = 46.7

L2 = 34.5

L2 = 87.5

L2 = 103.0

L2 = 24.1

L2 = 20.6

L2 = 32.2

L2 = 42.3

US/NUS
Hybrid

5*exponential

Exponential

Uniformly
Random

US acq

Pts

940 980 1020 1060 1100

Pts

Fig. 2 Justification of prior selecting seed values and evaluation of sampling strategy based on

a simulated spectrum with four signals, each simulated to been acquired to the equivalent of one

T2 and with no noise. (i.e., the simulated FID decays to 1/e.) The intensity of the leftmost signal is
tenfold compared to each of the three others. (a) FM reconstruction using the sampling schedule

based on labeled sampling schedules and seed value found to be “best-of-100” from previous

evaluation (Fig. 1). (b) FM reconstruction using the sampling schedule based on labeled sampling

schedules and using the seed value found to be “worst-of-100” from previous evaluation.

The experience is described in the text
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The second trace from the bottom (Uniformly Random) visualizes the same data

as above; however, 256 of the 1,024 complex data points in the FID were chosen in

a uniformly random fashion and FM reconstructed prior to apodization and further

processing. Clearly in both the “best” and the “worst” cases, baseline abnormalities

occur. These may not be detrimental in the case of spectra with more uniform size

of signals, where these abnormalities are easily hidden in the noise, but are cause for

concern for spectroscopy when the signals exhibit a high dynamic range. The third

sections in both panels (Exponential) visualize the situation using exponential

decaying sampling instead of uniformly random sampling. The baseline

abnormalities are less pronounced, yet still present. Over-weighting the sampling

using five times the exponent (5*Exponential) provides a flat but somewhat

fluctuating baseline. However, the reduction of the baseline abnormalities has

come at the price of lower resolution. The result of the US/NUS hybrid method

is provided in the fifth section. The strategy does indeed provide a better baseline

in the “best” case, with no apparent loss of resolution, yet is obviously in need

FT w/ no reconstruction using most optimal seed of 100 trials.

Reference
(US acq)

Sinusoidal
Poisson Gap

US/NUS
Hybrid

5*exponential

Exponential

Uniformly
Random

US acq

940 960 1020

Pts

1060 1100

L2 = 442.5

L2 = 473.5

L2 = 409.0

L2 = 475.6

L2 = 493.9

Fig. 3 Demonstration of

initial state before FM

reconstruction setting all

non-obtained data values

to zero, effectively using

a discrete Fourier

transformation (DFT) with

the same sampling schedules

as in Fig. 2a. The residual

between reconstructed and

reference here describe

the combined point spread

function from the four signals
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of optimization of the particular sampling/seed; this fact is made evident by

comparing the “best” case (Fig. 2) with the “worst” case. Here the sinusoidal
Poisson gap sampling exhibits the best results (trace 6 from the bottom). Only

deeper inspection can find differences between the reconstructed and the original

data. Even the displayed “worst” reconstruction looks better than any of the other

“best” cases. The top traces repeat the bottom traces (US acq) for visual reference.

8 Fourier Transformation of NUS Data

Without Reconstruction of Missing Points

As it has been discussed in the literature, we also compare the performance of

straight Fourier transformation FFT on the NUS synthetic four-line spectrum in

Fig. 3. We used the schedules obtained with the best seed numbers as in Fig. 2a and

leave the missing time domain data points at zero value. The traces presented in

Fig. 3 show that the artifacts due to the sampling schedules and lack of reconstruc-

tion are severe and mask the small peaks. However, the intense line is readily

observable. Thus, straight Fourier transformation may be an option if one is only

concerned with very intense peaks, such as methyl resonances in a protein, and

weak peaks are of little concern. This treatment of NUS data may be useful for a

quick inspection of an NUS data set to find out whether an experiment has worked.

However, it should be followed by a reconstruction effort to retrieve best the full

information content of the NUS data.

9 Evaluation with Noise, Good and Bad

Experimental NMR spectra always contain noise. Hence, to evaluate the more

realistic situation of the mentioned sampling schedules we add noise to the above

test spectrum of four signals. The noise is generated with the NMRPipe utility

addNoise; we tune the rms-value of the noise to a realistic situation generating a set

of 100 different Gaussian distributions with seed values ranging from 1 through

100. To the reference situation of the traditionally uniformly sampled FID, we also

add noise, but with twofold higher rmsd. This is to simulate the situation where

equal time would be spent for data acquisition with uniform sampling (US) and

non-uniform sampling (NUS). Since four times more scans can be accumulated per

increment when only one quarter of the increments are measured, the noise-to-

signal ratio in the time domain is twofold higher in the uniformly sampled spec-

trum. It is worth mentioning that even though the noise added in the time domain is

of Gaussian or white noise character, the resulting distribution of the noise in the

frequency spectrum is not Gaussian. This is due to apodization as well as non-

uniform distribution of the noise in the NUS test cases.
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We generated 100 noise test cases for each sampling strategy. This is because the

effect of noise is intrinsically non-predictive. Reconstruction will work well in one

distribution of the noise and less in another. Also, even though the initial noise is the

same for each test case and seed value, different points of the noise will be sampled

when the sampling schedule is applied. Hence, for a fairer comparison it is

important not to draw a conclusion using just one set of noise.

In order to distinguish better and worse reconstructions, again an L2 norm is

applied. If the norm were applied to the whole spectrum, only noise itself would

be evaluated which would unfairly favor the NUS cases. Hence, we applied the

L2 norm evaluation only to a very restricted area around the three small signals of

interest shown bracketed with two vertical bars in the top trace of Fig. 4a. The best-

of-100, mean, and worst-of-100 reconstruction results based on this L2 norm

application are provided in Fig. 4a–c, respectively, and the calculated L2 norms

are given in the spectra.

Figure 4a provides the considered best-of-100 results. The signals can easily be

detected in each of the cases, and the splitting between the two adjacent signals can

be seen to various degrees in all of the situations. The values of L2 improve from the

bottom to the top. Figure 4b illustrates the case for average (mean) noise. The

splitting between the two overlapping signals has mostly vanished, or cannot

be fully confirmed based on surrounding noise. The more isolated signal of the

three small peaks is present in all traces, except possibly in the exponential

weighted case. The values of the L2 norm vary more than for the best case. Here,

the 5*exponential distribution performs best. Figure 4c visualizes the situation

when the reconstruction picks the least favorable noise set. For each of the sampling

cases, the three small signals are hard to identify and barely resemble the spectrum

without noise. The L2 values are hence greater than in the mean- and the best-case

scenarios. Note, the rightmost peak in the US spectrum, worst-case scenario,

appears to have a shift in its position. However, the strongest peak still lines up

with the reference. Shift of signal positions is something that has been associated

with NUS, but evidently occurs in uniformly sampled spectra as well when the S/N

ratio (SNR) is low. Of the reconstructed NUS spectra, it seems that the US/NUS

sampling schedule features a similar shift of the position; the situation is however

not worse in the NUS reconstructed spectra than in the case of traditional uniform

sampling. Of interest is that the traditional US acquisition (bottom traces) has a

tendency to produce false positive peaks. Note that this analysis applies to the case

when sampling is tested for equal measuring times for US and NUS. If NUS is used

to reduce the total experimental time the difficulties with maintaining signal

positions are proportionally greater.

The L2 analysis is simplistic but provides an illustrative picture of the situation.

A total of 42 frequency data points were used, reflecting about an equal number of

points representing signals in the reference spectrum and adjacent noise. There is,

however, a strong indication that the likeness to the reference spectrum is greater in

the FM reconstructed NUS spectra than in a traditional US acquired spectrum. The

spread between the best-case scenario (where the noise “cooperates”) and the

worst-case scenario is greater than the differences in sampling strategy. Note that
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the particular sampling was optimized previously according to the method of using

a single signal and no noise. There is, however, a trend that the sinusoidal Poisson

gap sampling and the five times over-weighted exponential decay method are more

faithful to the reference than the three other sampling strategies. The sinusoidal

Poisson gap sampling strategy may offer better resolution, while the five times

over-weighted strategy may produce somewhat better signal strength. Surprisingly,

exponentially decaying sample weighting performs poorest in this evaluation.

10 Implementing NUS Schedules in Two Indirect Dimensions

Extending the probability weighted sampling strategies to two indirect dimensions

is commonly done by creating a matrix and simply multiplying the weights from the

two axes for probabilities of the individual points. The matrix is then converted into

a one-dimensional object by taking the rows and concatenating them together. This

is appropriate for all but the Poisson gap sampling strategy.

As Poisson gap sampling does not associate probabilities to a point but defines a

relation between points in a one-dimensional string, a different approach is

required. We use individual strings “woven” together, as outlined in Fig. 5, which

allow us to cover two dimensions. First, a schedule with a desired weighting is

implemented in one column followed by two rows and again two columns and so on

(Fig. 5 left). What the figure does not reveal is that the strands have to be “pulled

back” when a beginning is not occupied as a gap start is otherwise not defined. This

Fig. 5 Woven implementation of NUS Poisson gap sampling schedules in two indirect

dimensions. First schedules are created with the selected schedule in the first t1 column. This is

followed by using the first two rows where the time points have not yet been selected. Subse-

quently, the next two columns are picked as indicated and so on
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approach truly “weaves” the strands together. An example created with the

“woven” Poisson gap sampling strategy is shown in Fig. 5 on the right.

11 Comparison of Sampling Schedules in Two Dimensions

as Used in 3D NMR Spectra

In Fig. 6 we compare different sampling schemes for a matrix of nine synthetic

peaks. Figure 6a shows the 2D spectra without noise. The left panel shows the

entire 2D spectrum; the subspectrum that contains the peaks and was analyzed with

the L2 norm is indicated with a box. The subspectrum consists of a 31 � 31 point

section of the middle part of the total 128 � 128 frequency point grid where the 2D

frequency domain is determined from a 64 � 64 (or 4k) hyper complex matrix in

the time domain. The signals of the matrix have increasing relative intensities,

starting at a value of 2 and ending with an intensity of 10. The order of intensities is

written next to the peaks in the rightmost panel. The initial synthetic time domain

data set was created with the signals exponentially decaying to a value at point 64

of 1/e of its initial value in both dimensions to create 2D Lorenzian line shapes.

Cosine apodization and zero filling to 128 points were applied to the time

domain data prior to processing in both dimensions. A common exponential stack

is used for plotting contour levels, and the multiplier from one level to the next is

1.5. The two panels in the middle and at the right are plotted with different lowest

starting levels to visualize the different intensities. The plot denoted with *6.0 is

plotted on six times higher minimal level than the right hand plot. Thus, four more

levels should be visible for each peak in the rightmost plot relative to the center one.

To simulate an appearance of real spectra, 100 sets of Gaussian noise were

created, each in a 64 by 64 hypercomplex matrix and added to the synthetic time

domain data. In Fig. 6b, d, uniform sampling (top left) is compared with different

non-uniform sampling schedules. We are interested in comparing the situation

where equal measuring time is used for US and NUS. Thus, when only measuring

1/16th of the increments, 16 times more scans can be acquired for each increment.

For a fair comparison, and since noise adds non-coherently, we have added the

same set of noise four times to the data set used to demonstrate US with FFT

processing. Alternatively, we could have added 16 different sets of noise. Only one

set of noise was added to the data sets used for simulating NUS and FM reconstruc-

tion. Five NUS strategies were evaluated, and in each case only 6.25% (1/16th) of

the grid points were selected according to the sampling strategies. In other words,

256 of 4,096 hypercomplex time domain sampling points were used, selected based

on sampling schedules optimized with the respective strategy and L2 norm point

spread function of a singlet without noise.

Each NUS data set selected for the seed number that gave the smallest L2 value
was combined with each of the 100 noise spectra and then FM reconstructed. The

data were then processed with cosine apodization in both dimensions, including the
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Fig. 6 Comparison of sampling schedules on a simulated spectrum of two indirect dimensions

including Gaussian noise. Nine peaks of relative intensities 2–10 were created. (a) Complete

spectrum simulated. The central area containing the peaks is boxed and expanded in the panels of
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uniformly sampled data, and an L2 evaluation was made in the 31 by 31 point sub-

area displayed in Fig. 6. The “best-of-100” (spectra with the smallest L2 deviation
from the reference) are shown in Fig. 6b. The “worst-of-100” are shown in Fig. 6c.

The contours are plotted at the 1.0 level as defined in Fig. 6a except for the US

panels (top left), where the noise was so overwhelming that the data had to be

plotted at a minimum level six times the typical level for the NUS (*6.0).

The simulations presented in Fig. 6 show that, with two indirect dimensions,

NUS has quite significant benefits in terms of signal to noise and the ability to detect

weak peaks. Among the sampling schedules, 5*Exponential and sinusoidal Poisson

gap sampling outperform the other sampling schedules. At least seven, and poten-

tially all nine, of the peaks can be observed in the above two cases, while US detects

only four or five at best. This is consistent with a previous report that NUS can

enhance sensitivity [34].

12 Comparison of NUS in a 3D NOESY Spectrum

To evaluate sampling schedules on a 3D 15N dispersed NOESY spectrum of a

protein we recorded high-resolution data sets on 15N labeled translation initiation

factor eIF4E (Fig. 7). As a reference, the data was transformed with standard cosine

apodization, zero filling, and FFT. A representative slice and cross section along the

indirect 1H dimension are shown in Fig. 7a. Reducing the time domain data to one

third and one tenth with uniform sampling obviously leads to low resolution in the

indirect dimension as shown in Fig. 7b1, b2. This is compared with NUS spectra

following exponential weighting (Fig. 7c) and sinusoidal Poisson gap sampling

(Fig. 7d). The 2D sinusoidal Poisson gap sampling schedule was created in a

“woven” fashion as indicated in Fig. 5.

The comparison of the NUS spectra with the reference shows that reduction of

the number of acquired increments to 30% results in good quality spectra, compa-

rable to the reference and reduction of measurement time to one third. This is highly

significant considering the fact that typical US 3D NOESY spectra for proteins are

�

Fig. 6 (continued) the rest of the figure. Contour plots of the central part plotted at two different

starting levels of lowest contours. The contours (middle and right panel) are spaced by a factor of

1.5, and the relative intensity is indicated in the right-hand panel. (b, c) Peak recovery with the best

(c) and worst (d) of the 100 Gaussian noise sets. As best and worst noise sets we selected those that

resulted in the lowest and highest L2 values for the selected area containing the peaks. This

indicates the quality range of peak recovery one can expect. The six panels in (c) and (d)

correspond to the same total number of scans. Thus, 16 times more scans per increment can be

collected for the NUS data. To take account of this we multiplied the added noise by a factor of

four for the US spectra (top left panel). The simulations show that NUS recovers the peaks in the

noisy spectrum significantly better than US when equal measuring times are considered. For all

NUS schedules the best of 100 seed numbers were used as selected with minimizing the point

spread function (c)
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Fig. 7 Comparison of alternative processing on a 3D 15N-NOESY-HSQC spectrum of human

translation initiation factor eIF4e. (a) Uniformly sampled reference. The time domain data were

acquired as 6,400 hyper-complex points sampled in the two indirect dimensions [128 (Hindir) � 50

(15N)]. The spectra were measured on a 700-MHz spectrometer with sweep widths of 9765 Hz and

2270 Hz, respectively. The tmax hence were 0.013 and 0.022 s each for the indirect proton and

nitrogen dimensions, respectively, representing nearly an optimal situation for the nitrogen

dimension, but not for the indirect proton dimension. Data were transformed with the standard

FFT procedure after cosine apodization and doubling the time domain by zero filling. (b) Reducing

the number of complex points to 42 (32%) (b1) and 13 (10%) (b2) in the indirect proton

dimension, cosine apodization, and zero filling result in low resolution spectra in the indirect
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recorded for several days. On the other hand, reduction of sampling points to 10%

(Fig. 7c2, d2) leads to loss of weak peaks. The NUS schedules of Fig. 7 use equal

dilution of sampling in both indirect dimensions. It seems that less dilution in the

proton dimension and a more drastic dilution in the heteronuclear (15N) dimension

should be explored and might lead to superior results.

13 Discussion

Uniform sampling of multidimensional NMR spectra requires a large amount of

measuring time if the resolution promised by high field spectrometers is to be fully

utilized. Paradoxically, if one obtains a higher field magnet and maintains the same

number of increments as on a lower field spectrometer, resolution is lost because

one does not reach the same maximum evolution time as the dwell time is

shortened. Thus the spectroscopist has to record more increments to utilize the

increased resolving power of the higher field instrument. Obviously this requires

more measuring time. Ideally one wants to sample up to 1.2*T2 of the respective

coherence in each indirect dimension [8]. This is an unacceptable situation, and

replacing US with more economic alternatives has been a widely accepted goal of

NMR development.

The first NUS approaches have used experimentally weighted random sampling

methods and variations of random sampling. However, other NUS methods, such as

radial sampling with projection reconstruction, have been proposed (see introduc-

tion). Different algorithms have been used for reconstruction of NUS data, such as

Maximum Entropy or Maximum Likelihood Methods. It is beyond the scope of this

chapter to compare exhaustively the different approaches. Here we use just the FM

reconstruction software to compare the performance of different random sampling

schedules where the randomness is skewed by weighting functions.

We have shown previously that the resolution of triple resonance experiments

can be dramatically enhanced with random NUS in the indirect dimensions, and

high-resolution 3D or 4D triple-resonance spectra of large proteins can be recorded

within a few days, which would otherwise require months of instrument time with

US [32, 35]. This works rather well with triple resonance experiments where peaks

have similar intensities and there is not much of a sensitivity and dynamic range

issue. In fact, if there are primarily strong signals, such as methyl peaks in ILV

labeled samples, a straight Fourier transformation of the NUS data where the

�

Fig. 7 (continued) dimensions. (c) FM reconstruction of 2,048 (32%) (c1) and 640 (10%) (c2) data

points sampled with an exponential weighting schedule in the two indirect dimensions. (d) FM

reconstruction of 2,048 (32%) (d1) and 640 (10%) (d2) sampled data points according to weaved

sinusoidal Poisson gap sampling. For all spectra, equal numbers of scans were recorded per

increment. Thus, the NUS spectra were acquired in one third and one tenth of the time used for

the US spectrum, respectively
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missing data points are left at zero may faithfully retrieve the positions of the

strongest peaks (see Fig. 3) but weaker signals are lost.

The focus of this chapter is to evaluate different sampling schedules on samples

that have a sensitivity issue, and we have evaluated sampling schedules assuming

equal total measuring times. We investigated five sampling strategies: uniformly

random, exponentially decaying random sampling, fivefold steeper decaying expo-

nential weighting, a hybrid of US and NUS, and sinusoidal Poisson gap sampling.

We find that the performance of any sampling schedule created with the help of

a random number generator depends crucially on the original seed number.

To determine optimal seed numbers we use the point-spread function, which

determines the quality of the reconstruction by calculating the L2 norm, the squared

difference between a synthetic signal and the reconstruction using a particular

sampling schedule.

Among all sampling schedules tested, we find that sinusoidal Poisson gap

sampling depends least on the choice of the seed number but for the best seed

numbers the different sampling schedules produce nearly identical results (Fig. 1).

The different sampling schedules were then compared for situations without and

with noise. Random noise has also to be created with seed numbers, and the noise

can interfere with signals constructively (good noise) or destructively (bad noise).

Thus, using both situations we have explored the range of reconstruction

performances (Figs. 4 and 6).

To implement NUS schedules for Poisson gap sampling in two indirect

dimensions we use a “woven” selection by alternate picking of numbers in two

columns followed by two rows and two columns and so on. Sampling times in each

row or column are picked according to a desired sampling schedule. In this way we

can evaluate sampling performance in two indirect dimensions. A similar weave

NUS scheduling can also be used in higher dimensions.

Most of the evaluation of sampling schedules was done with simulated spectra

and noise assuming equal total instrument time. This indicates that when using the

time gained by not sampling all Nyquist grid points, and using the time gained for

measuring more transients for the sampled points, one can obtain a better signal-

to-noise ratio and detect peaks that are otherwise lost in the noise, which

corresponds to a sensitivity gain (Fig. 6). This is consistent with a previous

observation with 13C detected spectra [34].

Finally, we have compared different sampling schedules on an experimental
15N dispersed NOESY of a protein, where an equal numbers of scans were recorded

per increment, and using NUS results in a shorter measuring time (Fig. 7). Here it is

obvious that, with one third of the increments, one can recover nearly the same

quality spectrum as obtained with the threefold longer US acquisition. It seems,

however, that in heteronuclear-dispersed NOESY spectra it is worthwhile to main-

tain a higher sampling density in the 1H dimension than in the heteronuclear

dimension.
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