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Preface

Although I have had a long interest in astrophysics, my training has been in
gravitational physics. I returned to astrophysics by way of gravitational wave
astronomy, whose primary sources are expected to be binary systems containing
white dwarfs, neutron stars, or black holes. It became necessary for me to learn
about the astrophysics of the birth and evolution of systems that give rise to these
sources.

The best way to learn a new subject is to teach a course on it. This book has arisen
from an introductory graduate course in stellar astrophysics that I taught in 2007 at
the University of Texas at Brownsville. Many of my students were preparing to be
gravitational wave physicists and had little or no prior coursework in astronomy or
astrophysics. Thus, I needed a book that started from the very basics of astronomy,
but very quickly focused on stellar evolution. Unfortunately, I found no text that
met my needs, and so I began writing my own detailed notes for class. These have
evolved into the present textbook.

The intended audience consists of upper-level undergraduates or first-year
graduate students in physics. Although narrowly focused on stellar evolution, the
subject is still broad enough that individual topics are not covered in depth. The
book is organized into four sections—measuring stars, equations and processes,
stellar models, and dynamical systems. I have tried to provide enough background
in each area so that students will have the necessary vocabulary for more in-depth
studies of any topic covered in the book.

I have benefitted from numerous conversations and discussions with colleagues
at the Center for Gravitational Wave Astronomy, who have helped with developing
heuristic arguments in support of the mathematical treatments of many topics in this
book. I would also like to acknowledge the students in my courses from 2007 to
2012, who served as both test subjects and proofreaders for the text. Of course, any
and all errors in the text are my own. The final editing and polishing of the text were
done at the Aspen Center for Physics, whose peaceful environment and wonderful
support staff have made this an enjoyable process.

Brownsville, TX, USA Matthew Benacquista
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Part I
Measuring Stars

Astronomy is a very old subject with a rich history of observing and classifying
celestial objects. Over time, the distance to the stars has been understood to
be much greater than previously thought, and our observing platform has been
discovered to move. Furthermore, our measurements and measuring devices have
become substantially more sophisticated. Nonetheless, astronomy retains much of
the historical nomenclature and usage. Although all quantitative measurements can
now be defined in terms of standard units, their use can still confuse newcomers to
the field. Here we introduce the techniques and units for measuring the properties
of stars.



Chapter 1
Classifying and Describing Stars

The first thing that is necessary to begin describing stars is to have a means by which
we can locate stars in the sky so that they can be referred to by others. In other words,
we need to develop a celestial coordinate system. Generally, when developing a
coordinate system, we look for landmarks to which can anchor the coordinate
system. We begin by describing some bulk motions of the more prominent objects
in the sky. From there we describe the subtle motions of the stars and the coordinate
system used to locate them. We conclude with a system for describing the brightness
of stars.

1.1 Celestial Motions and Times

During the course of a single day, we notice that celestial objects move through the
sky from east to west and return (nearly) to their starting point in 24 hours. The
effect is an appearance that the sky is a rigid sphere with stars, planets, moons, and
the sun glued to it. This sphere seems to rotate in a westerly direction, but in fact it is
the earth that is actually rotating in an easterly direction. Continued observation of
the sky reveals that certain objects are not fixed to the sky, but move with respect to
the stars. In addition to changing shape, the moon appears to move from west to east
with respect to the stars, so that after 24 hours, it is not back at its original location.
Thus, the moon rises about 40 minutes later each day. This is due to the fact that the
moon is orbiting the earth in an easterly direction with an orbital period of about
27 days. The sun also slowly appears to move from west to east due to the orbital
motion of the earth. In this case, the timescale for the sun to return to its original
position is one year. Therefore, every day the sun appears to move about 1◦ to the
west relative to the stars. These three motions are used to define the basic time units
of day, month, and year. However, subtleties arise due to the fact that all motions
were initially measured from the non-inertial frame of the earth.
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Fig. 1.1 The appearance of
the sun and a star relative to
the meridian for a sidereal
day compared with a
solar day

The standard definition of the solar day is the average amount of time required for
the sun to go from crossing the meridian (the line dividing the sky into an eastern
and western half) to returning to the meridian. Because the earth is orbiting the
sun, the amount of time required for two successive meridian crossings of the sun
is not the same as the time required for two successive meridian crossings of a
star. The time required for two successive meridian crossings of a star is called a
sidereal day and is about 4 minutes shorter than a solar day. Figure 1.1 shows the
relative positions of a star and the sun on both a sidereal and a solar day. Because
the earth’s orbit about the sun is not perfectly circular, the actual time between
successive meridian crossings of the sun varies throughout the year. When the earth
is closer to the sun, the solar days are a little bit longer than 24 hours, and when the
earth is farther from the sun, the solar days are a little bit shorter than 24 hours.

Although the standard definitions of the months have been manipulated for
millennia due to a variety of political reasons, the underlying basis of the ∼ 30 day
month is the time between two successive full moons. This is called a synodic month
and is about 29.5 days. Since a full moon requires that the earth, moon, and sun are
aligned, a synodic month is longer than a sidereal month, which is the time it takes
for the moon to return to the same location with respect to the stars. A sidereal month
is about 27 days. The relative positions of the sun, moon, and earth at a sidereal and
synodic month are shown in Fig. 1.2.
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Fig. 1.2 The orientation of the earth, moon, and sun at full moon, a sidereal month later, and a
synodic month later

Direction to Sun

Fig. 1.3 The orientation of the vernal equinox at two times during the precession period of 27,500
years. The vernal equinox is a line joining the sun and the earth on the first day of spring. This line
is also the intersection between the plane of the earth’s equator and the plane of the earth’s orbit.
As the spin axis of the earth precesses, the direction of this line rotates in the plane of the earth’s
orbit. The dashed line shows the direction of the vernal equinox after 13,250 years

The definition of the sidereal year is the amount of time it takes for the sun
to return to the same position with respect to the distant stars. A commonly used
reference point is the position of the sun on the first day of spring. This point is
known as the vernal equinox. Because the rotation axis of the earth is precessing
slowly, the sidereal year is not quite the same as the amount of time between
successive vernal equinoxes. It takes roughly 27,500 years for the vernal equinox
to return to its initial position relative to the stars (Fig. 1.3). We will see in the next
section that this precession of the equinoxes has an influence on the coordinates used
to describe the positions of the stars.

1.2 Celestial Coordinates

Although there are a number of specialized coordinate systems for describing the
locations of objects in the sky, the most commonly used system by astronomers
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Fig. 1.4 The celestial sphere as an extension of the earth

are equatorial coordinates (also known as celestial coordinates). This system is
essentially the angular components of spherical polar coordinates centered on the
earth. As with any spherical polar coordinate system, we need to define two axes
and a right-hand rule from which we measure the angles. The equivalent of the z-
axis is the rotation axis of the earth and the equivalent of the x-axis is the location of
the sun at the vernal equinox. A recurrent consequence of the fact that astronomy is
an ancient science is that many conventions are derived from old concepts that made
sense at the time. In this case, the actual angular coordinates that are used are based
on the idea that the sky is modeled as a sphere surrounding the earth with all stars,
planets, and moons stuck on the sphere. This sphere rotates around a fixed earth in
a sidereal day. All the stars are fixed to the sphere, but the planets, moon, and sun
move on this sphere. Equatorial coordinates are then the analogues of latitude and
longitude on this sphere (Fig. 1.4).

The declination, δ , is the equivalent of latitude and ranges from 90◦ at the north
celestial pole (NCP) to −90◦ at the south celestial pole (SCP). The celestial equator
is defined by δ = 0◦. The declination is related to the polar coordinate θ (also known
as the co-latitude) by δ = 90◦−θ . Generally, δ is given in degrees, minutes of arc,
and seconds of arc.

The right ascension, α (or RA), is the equivalent of longitude. Due to the daily
rotation of the celestial sphere, the right ascension is measured in terms of the
amount of time you would have to wait from the point that the vernal equinox
crosses the meridian until the object of interest crosses the meridian. Thus, the
units of RA are in hours (not degrees or radians). In order to standardize the
units, one hour of right ascension is now defined to be exactly 15◦. Generally, α
is given in terms of hours, minutes, and seconds (of time — not arc). The right
ascension is related to the polar coordinate φ (also known as the azimuthal angle)
by α = φ/15◦ (Fig. 1.5).
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1.3 Precession and Epochs

Equatorial coordinates would be a wonderful and stable system if the earth’s axis of
rotation didn’t move. Unfortunately, the earth’s axis wobbles due to the gravitational
interaction between the nonspherical earth and the sun and moon. The dominant
period of this precession is 25,700 years. Due to the precession, the location of
the north celestial pole moves along a circle in the sky that is ∼ 47◦ in diameter.
Since the sun moves along the ecliptic (a great circle that is inclined by 23.5◦ with
respect to the celestial equator) and the plane of the celestial equator is tied to the
orientation of the north celestial pole, the position in the sky where the sun crosses
the equator will change due to the precession. The vernal equinox moves at about
50.26′′/year westward along the ecliptic. Additional earth–planet interactions add
about 0.12′′/year. Therefore, when we give the equatorial coordinates for an object,
we must also give the time, or epoch, for which those coordinates are valid.

Over reasonably small timescales the change in celestial coordinates is linear
(and most human timescales are small compared to the precession period). Thus,
we specify the epoch or time for which the celestial coordinates would be accurate.
The epoch is usually B1950 or J2000 which correspond to January 1, 1950 or 2000,
respectively. If we are taking an observation on some other day that is N years after
the epoch and want to point our telescope in the correct direction, we need to adjust
the coordinates. For small N (generally less than about 50 years), the correction is
linear in N:

Δα = [m+ nsinα tanδ ]N, (1.1)

Δδ = [ncosα]N. (1.2)

For conversion from J2000 coordinates, m = 3.075 s/year and n = 1.336 s/year =
20.043′′/year.
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For example, if we want to point our telescopes at Aldebaran (the giant orange
star in the constellation Taurus) on the night of September 30, 2009, we first need to
locate its J2000 coordinates. A very good web reference for finding the celestial
coordinates of many stars (as well as other objects) is the STScI Digitized Sky
Survey, located at

http://archive.stsci.edu/cgi-bin/dss form.

Entering Aldebaran in the Object Name field returns

α = 04h 33m 55.24s, (1.3)

δ = +16◦ 30′ 33.5′′. (1.4)

After obtaining the J2000 coordinates, we need to determine the number of years
that have passed:

N = (2009− 2000)+ 273/365.25= 9.7474 year. (1.5)

Next, we convert α and δ to degrees (or radians) for use in the trig functions:

α = (4+ 33/60+ 55.24/3600)× 15 = 68.48017◦, (1.6)

δ = 16+ 30/60+33.5/3600= 16.50931◦. (1.7)

Finally, we put these numbers into the epoch correction Eqs. (1.1) and (1.2)
to obtain

Δα = 33.565s, (1.8)

Δδ = 71.665′′ = 1′ 11.665′′. (1.9)

Therefore, we should point our telescopes at

α = 04h 34m 28.82s, (1.10)

δ = +16◦ 31′ 43.6′′. (1.11)

Unfortunately, if we point our telescopes at this position, Aldebaran won’t be
there. In addition to the slow motion of the celestial coordinate system due to
precession, the stars themselves move through space. Motion directly along our line
of sight to the star does not result in any change in the celestial coordinates. This
type of motion is called radial motion and can be detected through Doppler shifts
in the stellar spectrum, as will be discussed later in Chap. 3. Motion perpendicular
to the line of sight is called proper motion, and results in a change in the celestial
coordinates of the star. Concentrating solely on the proper motion, we can define
the two-dimensional projection of the three-dimensional velocity onto the celestial
sphere in terms of a change in angular position with respect to time, μ = dθ/dt,
where θ is the angle subtended by the star along a great circle. For a given time
interval Δ t, the star will move an angular distance Δθ = μΔ t. We can think of this

http://archive.stsci.edu/cgi-bin/dss_form
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angular displacement as a vector lying on the surface of the celestial sphere and then
break it up into components along α and δ directions. Since we are working with
angular displacements on a spherical surface, we need to use spherical trigonometry
and the spherical laws of sines and cosines. If we consider a triangle drawn on the
surface of a sphere and define the angles (which are angles) and sides (which are
also angles) as shown in Fig. 1.6, then the law of sines is

sina
sin A

=
sinb
sinB

=
sinc
sinC

, (1.12)

the law of cosines for the sides is

cosa = cosbcosc+ sinbsinccosA, (1.13)

and the law of cosines for the angles is

cosA =−cosBcosC+ sinBsinC cosa. (1.14)

Consider the triangles defined by the proper motion displacement and the
position of the star on the celestial sphere, as shown in Fig. 1.7. The sides of triangle
PAB are

P̄A = 90◦ − δ , (1.15)

ĀB = Δθ , (1.16)

B̄P = 90◦ − (δ +Δδ ) . (1.17)

Consequently, the law of sines gives

sin(Δα)
sin (Δθ )

=
sinφ

sin [90◦− (δ +Δδ )]
=⇒ sin (Δα)cos(δ +Δδ ) = sin(Δθ ) sinφ

(1.18)
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and the law of cosines for sides gives

cos [90◦− (δ +Δδ )] = cos(90◦ − δ )cos(Δθ )+ sin(90◦− δ )sin(Δθ )cosφ .
(1.19)

This looks pretty ugly until we realize that Δθ is always a small angle, and so Δα
and Δδ are also small angles. Therefore we can use the small-angle approximations
to obtain

Δα = Δθ
sinφ
cosδ

, (1.20)

Δδ = Δθ cosφ , (1.21)

Δθ = μΔ t. (1.22)

Sometimes the proper motion is described in terms of μ and φ , and other times it is
described using μ sinφ and μ cosφ .

Problem 1.1: Use the SIMBAD database at

http://simbak.cfa.harvard.edu/simbad/

to determine the position of the star Capella on your birthday for this year.
Give the new RA and dec after precessing and then the new values of RA and
dec after including proper motion. Note that the proper motions are given as
RA=μ sinφ and dec=μ cosφ in this database.

http://simbak.cfa.harvard.edu/simbad/
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1.4 The Magnitude Scale

A quick look up at the sky with the naked eye reveals that some stars are brighter
than others. This is such an obvious fact that a ranking scheme for measuring the
brightness of stars was developed in classical times using the human eye as a photon
detector. The scale used by Hipparchus ranked stars according to their brightness
with the brightest stars of first magnitude (m = 1) and the dimmest stars that he
could see were of sixth magnitude (m= 6). One odd thing about this ranking scheme
is that brighter stars have lower magnitudes. Consequently, the brightest objects
in the sky now have negative magnitudes. Another odd thing about the magnitude
scale is that it is based on the human eye, which is logarithmic. With the advent of
devices for measuring the brightness of stars, it became apparent that the magnitude
scale defined by Hipparchus could be well approximated by a logarithmic scale
where a difference of five magnitudes corresponded to a factor of 100 in brightness.
This definition of the magnitude scale can be put on firmer footing by considering
radiant flux.

The radiant flux, I, detected by an observer (using either eyeballs or more
sophisticated instruments) is defined to be the amount of light energy deposited
per unit area per unit time. Without defining the units that we shall use for I, we can
still quantify differences in the magnitude scale in terms of ratios of fluxes. If we
define the flux and magnitude for star 1 as I1 and m1 and for star 2 as I2 and m2, then

I2

I1
= 100(m1−m2)/5, (1.23)

and

m1 −m2 =−2.5log10

(
I1

I2

)
. (1.24)

Note again that lower magnitudes correspond to brighter stars.
Another thing to consider about the magnitude scale (as well as the radiant

flux) is that there is no consideration of the distance to the star in the definition.
Consequently, two identical stars may have different magnitudes if they are at
different distances. We define the luminosity, L, of an object to be the total energy
emitted by it. If an object is radiating light uniformly in all directions, then we can
relate the radiant flux to the luminosity and distance by the familiar inverse square
law for light:

I =
L

4πd2 . (1.25)

If we can measure the distance to a star, then we can determine its luminosity from
the radiant flux. We then define the absolute magnitude, M, to be the apparent
magnitude, m, that the star would have if it were placed at standard distance away.
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The standard distance that we choose is 10 parsecs where the parsec will be defined
in Chap. 3. In standard units, the parsec is

1 pc = 3.26 lyear = 3.086× 1016 m. (1.26)

(See Appendix A for tables of standard astronomical units.) In terms of the known
distance, d, to a star and its apparent magnitude, m, the absolute magnitude is

M = m− 5log10

(
d

10 pc

)
. (1.27)

The distance modulus, D, is the difference between the apparent and absolute
magnitudes, so

D = m−M = 5 [log1 (d)− 1] . (1.28)

Frequently, the symbol μ is used for the distance modulus, but we have chosen D
to avoid confusion with the proper motion. The distance modulus is useful when
describing a cluster of stars that are all at roughly the same distance because one
can simply add a constant distance modulus to each measured apparent magnitude
in order to obtain the absolute magnitudes of the stars in the cluster.

Problem 1.2: Given that the luminosity of the sun is L� = 3.84× 1026 W and
the absolute magnitude of the sun is M = 4.74, find the apparent magnitude of
the sun. The distance to the sun from the earth is 1 AU = 1.496× 1011 m.

Problem 1.3: The star Sirius is 2.64 pc away from the earth and it has an
apparent magnitude of −1.44. What is its luminosity in units of the solar
luminosity, L�?

Problems

1.1. Use the SIMBAD database at http://simbak.cfa.harvard.edu/simbad/ to
determine the position of the star Capella on your birthday for this year. Give
the new RA and dec after precessing and then the new values of RA and dec after
including proper motion. Note that the proper motions are given as RA = μ sinφ
and dec = μ cosφ in this database.

1.2. Given that the luminosity of the sun is L� = 3.84× 1026 W and the absolute
magnitude of the sun is M = 4.74, find the apparent magnitude of the sun.
The distance to the sun from the earth is 1 AU = 1.496× 1011 m.

1.3. The star Sirius is 2.64 pc away from the earth and it has an apparent magnitude
of −1.44. What is its luminosity in units of the solar luminosity, L�?

http://simbak.cfa.harvard.edu/simbad/


Chapter 2
Introduction to Binary Systems

In order to model stars, we must first have a knowledge of their physical properties.
In this chapter, we describe how we know the stellar properties that stellar models
are meant to replicate. Some of our data comes from observations of nearby single
stars, but much of our information comes from binary stars. We will begin by
describing the orbit of a binary and how these orbits are observed. We conclude
this chapter with a discussion of how stellar masses are obtained from observations
of the spectra of binary stars.

Binary systems are observed as:

1. Visual or astrometric binaries, if both or one of the stars can be observed to move
in a periodic fashion

2. Spectrum or spectroscopic binaries if there are one or two clearly identified spec-
tra indicating different Doppler shifts. Spectroscopic binaries have sufficiently
short orbital periods so that a changing Doppler shift can be measured

3. Eclipsing binaries if the light from the system is observed to vary periodically as
each star is eclipsed by its companion

Note that a given binary can be placed in more than one of these classifications.
In principal, the masses of the components of a binary can be inferred from a

measurement of its orbital properties.

2.1 The Two-Body Problem

Given a central force, the motion of two bodies is found from the Lagrangian, which
can be expressed as

L =
1
2

m1v2
1 +

1
2

m2v2
2 +

Gm1m2

|r2 − r1| . (2.1)
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Fig. 2.1 Barycenter
coordinate description of a
binary system

We choose a barycentric coordinate system, so that

m1r1 +m2r2 = 0 (2.2)

and therefore
m1r1 = m2r2. (2.3)

We define the relative separation to be

r = r1 + r2. (2.4)

We can use these two equations to solve for r1 and r2 in terms of r to get

r1 =
m2

M
r, (2.5)

r2 =
m1

M
r, (2.6)

where M = m1 +m2. Note that θ1 = θ2 −π = θ (Fig. 2.1).
Assuming that the orbits lie in a plane, we have

v2
1 = ṙ2

1 + r2
1θ̇ 2

1 =
(m2

M

)2 (
ṙ2 + r2θ̇ 2) , (2.7)

v2
2 = ṙ2

2 + r2
2θ̇

2
2 =

(m1

M

)2 (
ṙ2 + r2θ̇ 2) (2.8)

and so

L =
1
2

m1m2
2

M2

(
ṙ2 + r2θ̇ 2)+ 1

2
m2m2

1

M2

(
ṙ2 + r2θ̇ 2)+ Gm1m2

r

=
1
2

m1m2

M
ṙ2 +

1
2

m1m2

M
r2θ̇ 2 +

Gm1m2M
Mr

=
1
2
μ ṙ2 +

1
2
μr2θ̇ 2 +

GμM
r

. (2.9)
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Problem 2.1: Demonstrate that the orbit lies in a plane by obtaining the
Lagrangian using arbitrarily oriented spherical polar coordinates (r,φ ,θ ).
Calculate the Euler–Lagrange equations of motion and show that one can
recover the planar equations of motion using the initial conditions: θ = π/2
and θ̇ = 0.

Since L is independent of θ , we have

d
dt
∂L

∂ θ̇
− ∂L

∂θ
⇒ ∂L

∂ θ̇
= constant (2.10)

so

∂L

∂ θ̇
= μr2θ̇ = J = angular momentum. (2.11)

The total energy is also conserved, and it is given by

1
2

m1v2
1 +

1
2

m2v2
2 −

Gm1m2

r
=

1
2
μ
(
ṙ2 + r2θ̇ 2)− GμM

r
=C. (2.12)

(Note that here we use C for the total energy instead of E—this is because E is
reserved for the eccentric anomaly, which is an important quantity for describing
observations of orbits.) Using Eq. (2.11), we can express the total energy as an
equation that is dependent upon r only.

θ̇ =
J
μr2 ⇒ θ̇ 2 =

J2

μ2r4 , (2.13)

so

C =
1
2
μ ṙ2 +

1
2

J2

μr2 − GμM
r

. (2.14)

2.2 The Orbital Shape

From Eq. (2.14), we can obtain the time dependence of the radius of the orbit,
and then we can obtain the time dependence of the orbital angle using Eq. (2.11).
However, these results are not particularly useful for determining the orbit directly
from observations of binaries. Instead, we will first determine the shape of the orbit
using Eq. (2.14) and some clever variable substitutions. Later we will determine the
time dependence of the orbit in terms of observational quantities.

In order to determine the shape of the orbit, we first make the variable substitution
u = 1/r, so that

du
dθ

= u′ =− 1
r2

dr
dθ

⇒ dr
dθ

=−r2u′. (2.15)
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Now,

ṙ =
dr
dθ

θ̇ =−r2u′
J
μr2 =− J

μ
u′, (2.16)

where the θ̇ substitution comes from Eq. (2.13). Substitution of Eq. (2.16) into
Eq. (2.14) gives

J2

2μ
u′ 2 +

J2

2μ
u2 −GμMu =C. (2.17)

Now, we make another substitution and let � = J2/Gμ2M so that J2/μ = GMμ�,
and

1
2

GMμ�u′ 2 +
1
2

GMμ�u2 −GMμu =C. (2.18)

Finally, we divide by GMμ/2� and add 1 to both sides to obtain

�2u′ 2 + �2u2 − 2�u+ 1=
2C�

GMμ
+ 1. (2.19)

Next, we define

e2 =
2C�

GMμ
+ 1 (2.20)

and make the final substitution of x = �u− 1, so we have

x′ 2 + x2 = e2, (2.21)

or

x′ =
√

e2 − x2. (2.22)

This equation can be integrated as follows:
∫ x

x0

dx√
e2 − x2

=

∫ θ

θ0

dθ ,

arcsin
(x

e

)
− arcsin

(x0

e

)
= θ −θ0. (2.23)

Clearly, |x| ≤ |e| in order for the arcsin to make any sense. We define θ0 = 0 and
require x(0) = e to obtain

arcsin

(
x(0)

e

)
− arcsin

(x0

e

)
= 0 ⇒ arcsin

(x0

e

)
= arcsin1 =

π
2
. (2.24)

Thus,
x
e
= sin(θ +π/2) = cosθ ⇒ x = ecosθ . (2.25)

Reversing all the substitutions, we finally obtain

r =
�

(1+ ecosθ )
, (2.26)
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Fig. 2.2 Elliptical orbit with
the origin centered on one star

which is the parametric equation for an ellipse. Thus, the shape of the relative orbit
is an ellipse with the point of closest approach (or periastron) at θ = 0 and one body
at the focus. The semimajor axis (a) of an ellipse is half of the long axis, which is
also the sum of the minimum distance and the maximum distance (the apastron).
Thus,

rmin = r(0) = �/(1+ e), (2.27)

rmax = r(π) = �/(1− e) (2.28)

and

a =
1
2
(rmin + rmax) = �/(1− e2) ⇒ �= a(1− e2). (2.29)

The periastron and apastron can now be expressed in terms of the semimajor axis as

rmin = a(1− e), (2.30)

rmax = a(1+ e). (2.31)

Although initially introduced to simplify the differential equation, the value of e is
found to be the eccentricity of the elliptical orbit (Fig. 2.2).

Problem 2.2: Derive Kepler’s third law (GM = a3ω2) using J = μr2θ̇ and
r = �/(1+ ecosθ ).

The actual motion of the components of the binary are about the center of mass
(also known as the barycenter). We can show that this motion is also elliptical
and obeys a version of Kepler’s third law. Using barycentric coordinates, we have
m1r1 =−m2r2 and r1 − r2 = r. Therefore, from Newton’s law, we have

r̈1 =−Gm2

r3 r =−Gm2

r3
1

(m2

M

)3
r1

(
M
m2

)
=−Gm3

2

M2

r1

r3
1

. (2.32)
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We can obtain a similar equation for the motion of m2 by simply interchanging 1
and 2. Note that these equations of motion are similar to the relative equation:

r̈ = −GM
r3 r, (2.33)

r̈1 = −G
(
m3

2/M2
)

r3
1

r1, (2.34)

r̈2 = −G
(
m3

1/M2
)

r3
2

r2, (2.35)

and so they all obey a version of Kepler’s third law with the following values for the
mass:

Relative: M
Barycentric body 1: m3

2/M
Barycentric body 2: m3

1/M

Note also that there is a simple rescaling of the position vectors between the
barycentric frame and the relative orbit frame:

r1 =
m2

M
r. (2.36)

r2 = −m1

M
r, (2.37)

and so the barycentric orbits are simply rescaled versions of the relative orbit ellipse.

2.3 Time-Dependent Orbits

The orbital shape of the barycentric orbits is of value when we can only observe
one star in the binary system. If we see both stars and can identify the motion of
the barycenter, then we can identify the individual masses of the stars. Frequently,
we only measure part of the orbit, and often we only measure the orbital speed.
Thus, we need to know the position of the components as a function of time. This is
found from what is known as Kepler’s equation. To derive this we need to study the
geometry of an ellipse.

Consider an ellipse with semimajor axis a that is circumscribed by a circle of
radius a, as shown in Fig. 2.3.

Referring to the figure, the following line segments and angles can be defined:

OΠ = a = semimajor axis , (2.38)

SΠ = a(1− e) = periastron, (2.39)

OS = ae (2.40)
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Fig. 2.3 Properties of an
ellipse

and

• The angle θ is called the true anomaly.
• The angle E is called the eccentric anomaly.

We want to find the time dependence of the eccentric anomaly, E .
The auxiliary circle has the property that PR/QR = b/a =

√
1− e2, so

r cosθ =−RS = OS−OR = acosE − a e, (2.41)

r sinθ = PR =
(√

1− e2
)

QR = asinE
√

1− e2, (2.42)

and

r =
√

r2 cos2 θ + r2 sin2 θ

=
√

a2e2 − 2a2ecosE + a2 cos2 E + a2 sin2 E − a2e2 sin2 E

=
√

a2e2
(
1− sin2 E

)− 2a2ecosE + a2

= a
√

e2 cos2 E − 2ecosE + 1

= a(1− ecosE) . (2.43)

We use the equation for the specific angular momentum, or angular momentum per
mass:

r2dθ = Ldt (2.44)

(n.b.: L= J/μ), so we can substitute r = a(1− ecosE), but we still need an equation
for θ .

We obtain this equation by noting that

d
dE

sinθ = cosθ
dθ
dE

. (2.45)
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Using

sinθ =
a
r

sin E
√

1− e2

=
asinE

a(1− ecosE)
b
a

=
bsinE

a(1− ecosE)
(2.46)

and differentiating with respect to E gives

d
dE

(sinθ ) =
b
a

cosE − e

(1− ecosE)2 (2.47)

so that

cosθdθ =
b(cosE − e)dE

a(1− ecosE)2 . (2.48)

Now, using

cosθ =
−a(e− cosE)

r
=

−(e− cosE)
(a− ecosE)

(2.49)

we find that

dθ =− (1− ecosE)
(e− cosE)

b(cosE − e)

a(1− ecosE)2 dE =
bdE

a(1− ecosE)
. (2.50)

Finally, we have

a2 (1− ecosE)2 bdE
a(1− ecosE)

= Ldt (2.51)

or

(1− ecosE)dE =
L
ab

dt. (2.52)

Integrating this equation gives

∫
(1− ecosE)dE =

L
ab

∫
dt (2.53)

or

E − esinE =
L
ab

t + k. (2.54)

Now we need to determine the integration constant. First, we define T to be the time
at periastron passage and we note that E = 0 at periastron, so

k =− L
ab

T (2.55)
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and

E − esinE =
L
ab

(t −T ) . (2.56)

From Kepler’s second law, we have 1
2 r2dθ = dA = 1

2 Ldt, so∫ 2π

0

1
2

r2dθ = πab =
1
2

LP ⇒ L
ab

=
2π
P

= ω (2.57)

and then

E − esinE =
2π
P

(t −T ) . (2.58)

This equation is generally solved using numerical techniques. The simplest
approach is to use a Newton–Raphson iterative solution—given xn−1, we find xn by

xn = xn−1 − f (xn−1)/ f ′(xn−1). (2.59)

Here, we let f (E) = E − esinE − 2π(t−T )/P and note that f ′(E) = 1− ecosE .

2.4 The Orbital Elements

Observed binaries do not lie in the plane of the sky, so we need to describe the
orientation of the binary using the orbital elements. These are defined in terms of
both the total angular momentum vector J and the total energy of the orbit.

The orientation of the binary can be described in terms of the direction of the
total angular momentum vector and the direction of the periastron, which give the z-
and x-axes in the orbital plane, respectively. These directions are measured relative
to a coordinate system that is defined by the tangent plane to the celestial sphere
at the location of the binary. A Cartesian coordinate system is defined in terms of
the line of sight to the binary from the observer and the tangent to a great circle
joining the binary to the north celestial pole. The angle of inclination is defined
as the angle between the plane of the orbit and the tangent plane to the celestial
sphere. The ascending node (N) is the line defined by the intersection of the plane
of the orbit and the tangent plane and points in the direction where the binary passes
from inside the celestial sphere to outside the celestial sphere. Figure 2.4 shows the
orientation of the orbit relative to the tangent plane and the three angles that define
this orientation. These three angles are

Angle of inclination i
Longitude of the ascending node Ω
Longitude of the periastron ω

The shape of the orbit is then given by three quantities:

Semimajor axis a
Eccentricity e
Time of periastron T
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Fig. 2.4 Illustration of the
different angles for the orbital
elements of a binary. The line
of sight from the observer to
the binary is the along the
z-axis, viewed from z =−∞.
The x-axis is chosen so that
the positive x direction points
toward the north celestial
pole. The tangent plane of the
sky is the xy-plane

These six quantities are called the orbital elements. If the orbital elements can be
measured, then the masses of the binary can be determined. The orbit will always
appear to be an ellipse when viewed on the sky, but unless i = 0, the center of mass
of the system will not lie at the focus of this apparent ellipse (Fig. 2.5).

The angular momentum and total energy are also related to the orbital period and
orbital shape. To obtain these relations we begin by noting that the kinetic energy is

K =
1
2

m1v2
1 +

1
2

m2v2
2 =

1
2
μv2, (2.60)

where v2 = ṙ2 + r2θ̇ 2 and r and θ are relative separation variables. Now, using
r = �/(1+ ecosθ ), we find that

ṙ = θ̇
r2

�
esinθ =

L
�

esinθ (2.61)

and

rθ̇ =
r2θ̇

r
=

L
r
=

L
�
(1+ ecosθ ) . (2.62)

From here we get

v2 =

(
L
�

)2 [
e2 sin2 θ + 1+ 2ecosθ + e2 cos2 θ

]

=

(
L
�

)2 [
e2 + 1+ 2ecosθ

]
=

(
L
�

)2 [
2(1+ cosθ )− 1+ e2]

=

(
L
�

)2 [2�
r
− (

1− e2)]=
L2

�

[
�

r
− 1− e2

�

]

=
L2

�

[
2
r
− 1

a

]
, (2.63)
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Fig. 2.5 Orbits of stars around Sgr A*. Note that every orbit is an ellipse, but that the foci do not
all lie at a common point, even though all orbits are about the same object. This image was created
by Prof. Andrea Ghez and her research team at UCLA and is from data sets obtained with the W.
M. Keck Telescopes

where we have used a = �
(
1− e2

)
in the last step. Now from Kepler’s second law,

we have L = 2πab/P, where P is the orbital period. Noting that b2 = a2(1− e2) we
find

L =
4π2a2b2

P2 =
4π2a3

P
a
(
1− e2)

= GMa
(
1− e2)

= GM�, (2.64)

where we have used Kepler’s third law. Finally, we have

v2 = GM

[
2
r
− 1

a

]
, (2.65)
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and so the kinetic energy is

K =
1
2
μv2 =

1
2

m1m2

M
GM

[
2
r
− 1

a

]

=
Gm1m2

r
− Gm1m2

2a
. (2.66)

Now, the potential energy is Ω =−Gm1m2/r, so the total energy is

C = K +Ω =−Gm1m2

2a
. (2.67)

The total angular momentum is J = m1L1 +m2L2, where

L1 =
m2

2

M2 L, (2.68)

L2 =
m2

1

M2 L, (2.69)

L2 = GMa
(
1− e2) . (2.70)

This gives:

J =
1

M2

(
m1m2

2 +m2m2
1

)√
GMa(1− e2)

= m1m2

√
Ga(1− e2)

M

=
2π
P

m1m2a2
√

1− e2

M
. (2.71)

Thus, the total energy is fixed by the masses and the semimajor axis, while the total
angular momentum also depends upon the period and the eccentricity.

2.5 Spectroscopic Binaries

We now look at determining the mass from spectroscopic binaries, where we can
only measure the radial velocity of the component stars. The Doppler shift alters the
frequency of spectral lines in stars by

f ′ = f

√
c± v
c∓ v

, (2.72)

where v is the radial velocity of the star and the sign choice depends on whether
the star is moving toward us or away from us. From the frequency shifts, we can
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determine the total radial velocity which is a combination of the systemic motion of
the binary and the velocity of the individual stars, so

vrad = ż+ γ. (2.73)

From the orbital elements, we see that the z-component of the star in its orbit is
given by

z = r sin(θ +ω)sin i, (2.74)

and so the radial velocity is

ż = sin i
[
ṙ sin(θ +ω)+ rθ̇ cos(θ +ω)

]
. (2.75)

Since r = a
(
1− e2

)
/(1+ ecosθ ), we have

ṙ = erθ̇ sinθ/(1+ ecosθ ) . (2.76)

Also, we have r2θ̇ = 2πa2
√

1− e2/P, and so

rθ̇ = 2πa2
√

1− e2/rP =
2πa(1+ ecosθ )

P
√

1− e2
. (2.77)

Substituting these two equations into Eq. (2.75), we find

ż =
2πasin i

P
√

1− e2
[cos(θ +ω)+ ecosω ] , (2.78)

and so the total measured radial velocity is

vrad = K [cos(θ +ω)+ ecosω ]+ γ, (2.79)

where K = (2πasin i)/
(

P
√

1− e2
)

is the semi-amplitude of the velocity and γ is

the radial velocity of the center of mass. Note that K is not to be confused with the
kinetic energy described in the previous section. A remarkable consequence of this
result is that the extrema of vrad are at the line of nodes. Several velocity curves for
a variety of binary systems are shown in Fig. 2.6.

We can determine the value of K observationally by measuring the maximum
and minimum velocities through the Doppler shift of spectral lines. Note that these
values occur at θ +ω = 0 and π , respectively. Therefore,

vmax = K [ecosω+ 1]+ γ, (2.80)

vmin = K [ecosω− 1]+ γ, (2.81)

and so

vmax − vmin = 2K (2.82)

or

K =
1
2
(vmax − vmin) . (2.83)
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Fig. 2.6 Various velocity curves for several binary systems. Some are single-lined and some are
double-lined. Figure taken from Matijevič, et al., Astron. J., 141, 200 (2011). Reproduced by
permission from the AAS



2.5 Spectroscopic Binaries 27

By fitting Eq. (2.75) to the shape of the velocity curve, one can obtain the values
of e, ω , and γ . If a double-lined spectroscopic binary is observed, then we can
determine

K1 =
2πa1 sin i

P
√

1− e2
, (2.84)

K2 =
2πa2 sin i

P
√

1− e2
(2.85)

along with e, ω , and γ . Therefore, we know

a1 sin i =

√
1− e2

2π
K1P, (2.86)

a2 sin i =

√
1− e2

2π
K2P. (2.87)

Since we know m1a1 = m2a2 and GM = 4π2a3/P2, we make the substitution:

m2 = m1 (a1/a2) = m1

(
a1 sin i
a2 sin i

)
= m1 (K1/K2) (2.88)

so

Gm1

(
1+

K1

K2

)
=

4π2

P2 (a1 sin i+ a2 sin i)3 /sin3 i (2.89)

and

m1 sin3 i =
4π2

P2

K2

G(K1 +K2)

(√
1− e2

2π
P

)3

(K1 +K2)
3

=
P

2πG

(
1− e2)3/2

(K1 +K2)
2 K2. (2.90)

This provides an upper limit for m1 unless i is known. We can find an upper limit
for m2 by simply interchanging 1 and 2 in Eq. (2.90). If we can only measure the
radial velocity of one component of the binary (say K1), then we can determine the
mass function by using Eq. (2.88) to determine K2 in terms of m1, m2, and K1. We
substitute this expression for K2 into Eq. (2.90) to obtain

m2 sin3 i =
PK3

1

2πG

(
1− e2)3/2

(
m1 +m2

m2

)2

, (2.91)

and so

f (m) =
m3

2 sin3 i

(m1 +m2)
2 =

PK3
1

2πG

(
1− e2)3/2

, (2.92)

where f (m) is known as the mass function.
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If the orbit is also a visual binary, it is possible to obtain the angle of inclination
and consequently to obtain exact values for m1 and m2. The direct measurement of
the masses of all stars except the sun is determined in this way.

Problem 2.3: MT720 is a spectroscopic binary in the Cygnus OB2 Association.
It is found to have a period of P = 4.36 d and an eccentricity of e = 0.35.
The semi-amplitude of the radial velocities are K1 = 173km/s and K2 =
242km/s.

(a) Find msin3 i and asin i for each star.
(b) What is the mass ratio: q = m2/m1?
(c) If i = 70◦, what are the masses of each star?

Problems

2.1. Demonstrate that the orbit lies in a plane by obtaining the Lagrangian
using arbitrarily oriented spherical polar coordinates (r,φ ,θ ). Calculate the Euler–
Lagrange equations of motion and show that one can recover the planar equations
of motion using the initial conditions: θ = π/2 and θ̇ = 0.

2.2. Derive Kepler’s third law (GM = a3ω2) using J = μr2θ̇ and r = �/(1 +
ecosθ ).

2.3. MT720 is a spectroscopic binary in the Cygnus OB2 Association. It is found
to have a period of P = 4.36 d and an eccentricity of e = 0.35. The semi-amplitude
of the radial velocities are K1 = 173km/s and K2 = 242km/s.

(a) Find msin3 i and asin i for each star.
(b) What is the mass ratio: q = m2/m1?
(c) If i = 70◦, what are the masses of each star?



Chapter 3
Measuring Other Stellar Properties

The distance to nearby stars can be measured through geometrical methods. When
the distance is known, additional observations of the spectra of stars and light curves
of binary systems allow us to determine the temperatures, sizes, and luminosities of
many nearby stars. In this way we can find correlations between different stellar
properties and begin to sort stars into different categories and classifications.

3.1 Distances and Parallax

If their distances can be measured, we can find the luminosity of stars through
their magnitudes. Although there are many methods for approximating the distance
to stars (also known as the distance ladder), they are all based on the only direct
measurement method currently known—parallax.

Parallax is a triangulation method using the diameter of the earth’s orbit as a
baseline. In this method, the celestial coordinates of a star are measured at two
times separated by six months. If the star is seen to shift by an angle 2α during this
interval, we can construct an isosceles triangle whose short side is the diameter of
the earth’s orbit about the sun and whose equal sides are the distance to the star as
shown in Fig. 3.1. The distance can be expressed in terms of the astronomical unit
(AU), which is the mean distance between the earth and the sun and has a value of
149.6× 109 m. Because the distance to stars is so great, only nearby stars have an
angular shift in apparent sky location that is large enough to be measurable. These
angular shifts (α) are all less than one arcsecond. The standard unit of distance
measurement used for stellar distances is the parsec (pc), which is defined to be the
distance at which one astronomical unit subtends an arcsecond. Since the angular
shift decreases with increasing distance, we define the distance in pc to be

d pc = 1/α, (3.1)

M. Benacquista, An Introduction to the Evolution of Single and Binary Stars,
Undergraduate Lecture Notes in Physics, DOI 10.1007/978-1-4419-9991-7 3,
© Springer Science+Business Media New York 2013
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2

d

1 AU

Earth

Sun

Fig. 3.1 Geometry of a parallax measurement. In reality, d is substantially larger and α is
substantially smaller than shown in the figure

where α is measured in arcseconds. (Tables of the nearest and brightest stars can be
found in Appendix C.)

We measure the apparent brightness of stars in terms of the intensity of light
striking our instruments, so that I = Power/Area. The intensity is related to the total
luminosity by

I =
L

4πd2 , (3.2)

so the luminosity can be determined from a measurement of I and d (i.e.,
L = I4πd2). This allows us to measure the power output of stars. Some of these stars
are also in binary systems, so that their masses can also be known. If we know two
intrinsic properties of stars, it is instructive to see if there is a correlation between
these properties. It turns out that there is a relationship between the mass and the
luminosity of a star. The mass–luminosity relation is a power law:

L ∝ Mν , (3.3)

where ν appears to be around 3.5 for stars between about 1 M� and 20 M�. It
flattens out to ν ∼ 1 for very high mass stars. Recent data for intermediate-mass
stars is shown in Fig. 3.2.

3.2 Temperature and Blackbody Spectrum

If the spectrum of a star can also be measured, the first thing we notice is that the
bulk shape of the spectrum is a blackbody spectrum with absorption lines (although
some have emission lines as well) and some nonthermal features (Fig. 3.3). A
blackbody spectrum arises from the distribution of thermal energy in photons, given
that the energy per photon is given by E = hν . We can obtain an expression for the
spectrum by calculating the energy density of photons as a function of frequency
(u(ν)) for a gas of temperature T :
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Fig. 3.2 The masses and
luminosity of 201
intermediate-mass main
sequence stars showing the
power-law relationship
between the two quantities.
This plot was generated using
data from O. Yu. Malkov,
Monthly Notices of the Royal
Astronomical Society, Vol.
382, p. 1073 (2007)
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Fig. 3.3 Standard solar
reference spectrum, compared
with a pure blackbody
spectrum calculated for the
effective temperature of the
sun, Teff = 5777 K. This data
is used with permission from
the National Renewable
Energy Laboratory (NREL),
http://rredc.nrel.gov/solar/
spectra/am0/E490 00a AM0.
xls. The ASTM standard is
from ASTM Standard C33,
2003, “Specification for
Concrete Aggregates,” ASTM
International, West
Conshohocken, PA, 2003,
DOI: 10.1520/C0033-03,
www.astm.org

u(ν)dν = Ē(ν)g(ν)dν, (3.4)

where Ē(ν) is the average energy per state of frequency ν , and g(ν)dν is the density
of states with frequency ν per volume. The units of u(ν) are J · s/m3.

We can find the average energy per state by noting that the probability that a
given state will have energy E for a given temperature is

f (E) =Ce−E/kT , (3.5)

where C is a normalization constant to be determined later. Since photons come in
discrete energies, this is also the probability that a given state will contain n photons,
and can be expressed as

fn =Ce−nhν/kT . (3.6)

http://rredc.nrel.gov/solar/spectra/am0/E490_00a_AM0.xls
http://rredc.nrel.gov/solar/spectra/am0/E490_00a_AM0.xls
http://rredc.nrel.gov/solar/spectra/am0/E490_00a_AM0.xls
www.astm.org
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Fig. 3.4 Positive octant of a
spherical shell in m-space
with radius m and thickness
dm

The normalization constant can now be found by requiring ∑∞
n=0 fn = 1, or

1 =C
∞

∑
n=0

(
e−hν/kT

)n
=

C

1− e−hν/kT
=⇒C = 1− e−βhν, (3.7)

where β = 1/kT . From here, we can find the average energy per state through

Ē =
∞

∑
n=0

En fn =
∞

∑
n=0

nhνCe−nβhν =−C
∞

∑
n=0

∂
∂β

e−nβhν =−C
∂
∂β

∞

∑
n=0

e−nβhν . (3.8)

Therefore, from Eq. (3.7),

Ē =−
(

1− e−βhν
) ∂
∂β

(
1− e−βhν

)−1
=

hνe−βhν

1− e−βhν . (3.9)

The density of states can be found by considering the solution to the wave
equation for electromagnetic waves in a small cube of volume L3. The boundary
condition that the waves vanish at the edges of the cube results in the following
conditions along each axis of the cube:

kxL = mxπ , kyL = myπ , kzL = mzπ , (3.10)

where the m’s are positive integers. This results in the following constraint on the
wave number:

k =
2π
λ

=
√

k2
x + k2

y + k2
z =

π
L

√
m2

x +m2
y +m2

z =
π
L

m. (3.11)

Therefore, the number of states in a volume L3, with energy between hν and h(ν+
dν) where hν = hc/λ is equal to the number of ways you can choose the integers
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mx, my, and mz so that they all add up to the same value of m =
√

m2
x +m2

y +m2
z .

This is equivalent to determining the volume of the positive octant of a spherical
shell of radius m and thickness dm (Fig. 3.4). In addition, there are two spin states
allowed for each photon with a given wave number, so the number of states is

2

(
1
8

)
4πm2dm = πm2dm. (3.12)

Now, since

hν =
hc
λ

=
hc
2L

m, (3.13)

we have

m =
2Lν

c
, (3.14)

dm =
2L
c

dν, (3.15)

and the number of states

g(ν)dν =
πm2dm

L3 =
1
L3 π

(
2Lν

c

)2(2L
c

)
dν =

8πν2

c3 dν. (3.16)

Finally, we can combine Eq. (3.16) with Eq. (3.9) to obtain the blackbody
spectrum:

u(ν)dν =
hνe−hν/kT

1− e−hν/kT

8πν2

c3 dν =
8πhν3dν

c3
(
ehν/kT − 1

) . (3.17)

From this, we can also obtain the number density of photons with a given frequency
ν using

n(ν)dν =
u(ν)dν

hν
=

8πν2dν
c3

(
ehν/kT − 1

) . (3.18)

Finally, using ν = c/λ , we can recast the energy density in terms of wavelength:

u(λ )dλ =
8πhcdλ

λ 5
(
ehc/λ kT − 1

) . (3.19)

With this, we can determine λmax, the wavelength at which peak power is emitted.
The solution to du/dλ = 0 can be found numerically, and the result is

λmaxT = constant = 0.002897755 m ·K. (3.20)
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By measuring λmax, we can obtain the effective temperature:

Teff =
0.0029 m ·K

λmax
. (3.21)

The effective temperature is the temperature of the photosphere, the surface at
which the atmosphere of the star becomes opaque. Below this surface, photons are
scattered by the stellar atmosphere and their properties can be altered. Another way
of looking at this surface is to think of it as the depth at which a photon traveling
into the star has a 100% chance of being absorbed.

The temperature of the stars can be plotted against the luminosity to obtain
the Hertzsprung–Russell diagram (or H-R diagram) which demonstrates a relation
between these two quantities for most observed stars (see Fig. 3.5). Where it is not
possible (or at least not practical) to measure the temperature and luminosity of
stars, the “color” which is the difference in brightness of the star in two frequency
bands can be plotted against the total brightness in order to produce a plot that is
very similar to the Hertzsprung–Russell diagram. Such diagrams are called color-
magnitude diagrams or CMDs.

If we assume that the star is a perfect blackbody we can estimate the stellar radius
using the luminosity and the effective temperature. From the Stefan–Boltzmann law,
we have

σT 4
eff =

L
4πR2 , (3.22)

where Stefan’s constant is

σ =
2π5k4

15c2h3 = 5.67× 10−8 W/m2 ·K4 (3.23)

so
R =

√
L

4πσT 4
eff

. (3.24)

Equation (3.22) can also be written as

L = 4πR2σT 4
eff, (3.25)

which shows that stars with large radii lie in the upper right of the H-R diagram
and small stars lie in the lower left. This is reflected in the names of different
classifications of stars shown in Fig. 3.5.

3.3 Radii and Eclipsing Binaries

The indirect measurement of stellar radii described in the preceding section can be
confirmed using eclipsing binaries. The plot of the light from a star or stellar system
as a function of time is known as the light curve. The light curve of an eclipsing
binary shows two distinct dips as each star eclipses its companion. In order for
eclipses to occur, the angle of inclination must be close to 90◦. An idealized light
curve is shown in Fig. 3.6.



3.3 Radii and Eclipsing Binaries 35

Fig. 3.5 Hertzsprung–Russell diagram. Figure produced by Richard Powell and available from
http://www.atlasoftheuniverse.com/hr.html

On the one hand, if no radial velocity information is available, then the ratio of the
radii of both stars can be found. If the timing of the eclipses does not occur at orbital
phases separated by exactly one half of an orbit, then the orbit is eccentric and it
may be possible to measure the eccentricity e and the argument of the periastron ω .
On the other hand, if the radial velocity can be determined through analysis of the
spectrum of one or both of the stars, then the techniques of Sect. 2.5 can be used to
determine the orbital elements and orbital velocities of the system. In this case, the
timing and duration of the eclipses can be used to obtain the absolute radii of the

http://www.atlasoftheuniverse.com/hr.html
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eclipsing system and its
associated light curve

components. Eccentricity merely adds complications to the calculation of the stellar
radii, so here we assume circular orbits in order to demonstrate the procedure. The
brighter star is called the primary, while the other star is the secondary. Note that it
is not necessarily the case that the primary is also the larger star. In this example,
we assume that the primary is the smaller star.

Because the orbits are circular, the orbital speed of each component is constant.
Thus the primary has speed vp and the secondary has speed vs. Since the inclination
for an eclipsing binary is nearly 90◦, the maximum radial velocity is approximately
the velocity of the star across the line of sight to the binary during the eclipses.
Referring to Fig. 3.6, the time interval tb − ta is the time it takes for the primary to
cross the edge (or limb) of the secondary. Therefore, the distance traveled by the
primary is equal to its diameter, and the radius of the primary is

rp =
vp + vs

2
(tb − ta) . (3.26)

Similarly, the primary travels a distance equal to the diameter of the secondary
during the time interval tc − ta, and so the radius of the secondary is

rs =
vp + vs

2
(tc − ta) . (3.27)

Although the star being eclipsed is different, the same argument holds for the time
intervals t f − te and tg − te.

Additional complications arise when we consider that the surface brightness
of the disk of a star is reduced near its edge (a phenomenon known as limb
darkening). This results in more gradual transitions in the light curve during
eclipses. Furthermore, if the stars are close enough to each other to tidally distort
their shapes away from spherical, then the surface area of each star changes with the
varying orientation toward our line of sight, adding more variation to the light curve.
Finally, eccentricity and stellar rotations that are not synchronized to the orbital
period can introduce variation in the light curve that are not symmetric about each
eclipse. All of these effects must be considered when fitting an orbital and stellar
model to eclipsing binary light curves in order to obtain the orbital elements and
stellar radii of the system. Examples of several light curves are shown in Fig. 3.7
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Fig. 3.7 Light curves for several binary systems. The vertical axes are normalized flux and the
horizontal axes represent the orbital phase. Data from INTEGRAL/OMC. Reprinted from P.
Zasche, New Astronomy 14, 129 (2009) with permission from Elsevier
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Problem 3.1: GK Vir is an eclipsing spectroscopic binary with an angle of
inclination i = 89.5◦ ± 0.6◦, so that it can be considered to be viewed edge
on. The orbit is circular with semi-amplitudes of the radial velocities given by
K1 = 38.6km/s and K2 = 221.6km/s. The orbital period is P = 0.344 d. The
time required for the light curve to drop to its lowest value is tb − ta = 89.6s,
while the time required for the light curve to begin rising again is tc−ta = 817s.
Use this information to find:

(a) The radii of both stars
(b) The masses of both stars

3.4 Boltzmann and Saha Equations

We can also classify stars by their absorption spectra. At the surface of stars (by
this we mean the photosphere) we see absorption spectra when the gas near the
surface absorbs light at wavelengths that are equal to the transition frequencies
of the gas atoms. The dark lines of the absorption spectra arise because the
likelihood of a photon scattering off of the gas at these frequencies is higher than
at surrounding frequencies and so the surface of last scattering is somewhat higher
in the atmosphere of the star where it is cooler and the luminosity is lower. The
spectrum of the sun, showing numerous absorption lines is shown in Fig. 3.8.

Originally, stars were classified alphabetically according to the strength of the
Lyman series of hydrogen lines. It was later shown that the relative strength of the
Lyman lines is related to temperature, but not in a monotonic way. Consequently,
when arranged according to decreasing temperature, the alphabetical ordering is
lost. The sequence is now given by O, B, A, F, G, K, M. The spectra of different
spectroscopic types are shown in Fig. 3.9.

The relative strength of these lines is related to the composition and temperature
of the outer stellar atmosphere. This relationship is described by using a combi-
nation of the Boltzmann equation and the Saha equation. The Boltzmann equation
describes the relative number of atoms in different excited energy levels. The Saha
equation describes the relative number of atoms in different ionization states. In
local thermal equilibrium, the amount of energy in excited atoms should be in
equipartition with the kinetic energy of the atoms. Consequently, the number of
atoms that are in the required excited state to absorb a photon is related to the
temperature of the gas.

The atoms in the stellar atmosphere have a distribution of speeds described by
the Maxwell–Boltzmann distribution:

nvdv = n
( m

2πkT

)3/2
e−mv2/2kT 4πv2dv, (3.28)
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Fig. 3.8 Detailed solar spectrum, showing absorption lines. Figure courtesy of N.A. Sharp and
National Optical Astronomy Observatory/Association of Universities for Research in Astron-
omy/National Science Foundation

Fig. 3.9 Different stellar spectra, showing the varying intensities of the spectral lines with
spectroscopic type. Figure courtesy of National Optical Astronomy Observatory/Association of
Universities for Research in Astronomy/National Science Foundation



40 3 Measuring Other Stellar Properties

where nv is the number density of atoms with speed v, n is the total number density
of atoms in the gas, and m is the mass of the atoms. Individual atoms gain and lose
energy through collisions, and so the distribution in kinetic energies of the atoms
produces a characteristic distribution in excitation levels in the atoms. Let sa be the
specific set of quantum numbers associated with a state of energy Ea, and let sb be
associated with energy Eb. The ratio of the probability that the system is in state b
relative to state a is

P(sb)

P(sa)
= e−(Eb−Ea)/kT . (3.29)

If there are several states with different sets of quantum numbers, but the same
energy, these states are said to be degenerate. If there are degenerate states (and
there are), then we introduce statistical weights ga and gb which are the number of
states of each energy, and the ratio of probabilities becomes

P(Eb)

P(Ea)
=

gb

ga
e−(Eb−Ea)/kT =

Nb

Na
, (3.30)

where Na is the number of atoms with energy Ea and Nb is the number of atoms with
energy Eb.

As an example, let us now consider calculating the temperature at which we
can expect equal numbers of atoms in the ground state (n = 1) and in the first
excited state (n = 2). This is of interest because the Lyman series of absorption
lines arise from atoms that start in the first excited state. There are two ground states
corresponding to the two spin states allowed for the electron, so g1 = 2. In the first
excited state, there are four orbitals corresponding to the s and p orbitals and two
electron spin states allowed for each orbital, so there are a total of eight excited
states, so g2 = 8. The energy of the ground state is E1 = −13.6eV = −E0, and the
energy of the first excited state is E2 = E1/4. Now, we require N1 = N2, and so

1 =
N2

N1
=

8
2

e−3E0/4kT . (3.31)

This is solved by:

T =
3E0

4k ln4
= 8.54× 104 K. (3.32)

Therefore, at about 85,000 K, there should be roughly equal numbers of atoms in
the excited state as there are in the ground state. Observationally, the maximum
intensity of hydrogen lines coming from absorption in the first excited state comes
at about T = 9500 K, so we are missing something in the analysis. What we are
missing is the fact that at higher temperatures, the atoms can also be ionized. Since
an ionized hydrogen atom cannot absorb a photon, only the total number of neutral
hydrogen atoms contribute to the strength of the absorption lines. As the temperature
increases, the total number of absorbers decreases even as the relative number of
atoms in the excited state increases. Therefore in order to accurately describe the
strength of the hydrogen lines in stellar spectra we also need to calculate the number
of atoms in the ionized state relative to the number of atoms in the un-ionized state.
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The Saha equation provides a way of calculating the number of atoms in different
ionized states. A neutral atom is in ionization state i = I, a singly ionized atom is in
the i = II state, the doubly ionized atom is in the i = III state, and so on. We define
ξi as the ionizing energy required to remove an electron from an atom in the ground
state taking it from ionization state i to ionization state i+ 1. The partition function
gives the weighted sum of the number of ways an atom can have a given energy:

Z =
∞

∑
j=1

g je
−(E j−E1)/kT , (3.33)

where E1 is the ground state energy for the given ionization. The ratio of the number
of atoms in two adjacent ionization states is

Ni+1

Ni
=

2Zi+1

neZi

(
2πmekT

h2

)3/2

e−ξi/kT . (3.34)

For an element X, this equation results from considering the thermodynamic
equilibrium of the reaction Xi+1 + e � Xi. We can also express this in terms of the
free electron pressure Pe = nekT (where we have assumed an ideal electron gas):

Ni+1

Ni
=

2kTZi+1

PeZi

(
2πmekT

h2

)3/2

e−ξi/kT . (3.35)

Now, the strength of the Lyman lines in a star are proportional to the ratio of the
number of HI atoms in the second excited state (N2) to the total number of hydrogen
atoms (Ntotal). Note that Ntotal includes both HI and HII atoms. Since we know from
observation that the temperature of interest is around 104 K, we can assume that all
the HI atoms are in either the ground or first excited state; therefore the total number
of HI atoms is NI ∼ N1 +N2. Thus,

N2

Ntotal
=

N2

NI

NI

Ntotal
=

(
N2

N1 +N2

)(
NI

NI +NII

)

=

(
N2/N1

1+N2/N1

)(
1

1+NII/NI

)
. (3.36)

Now, for hydrogen, we have N2/N1 = 4e−βΔE , where β = 1/kT and
ΔE = E2 −E1 =

3
4 E0. There are no electron energy levels for an ionized hydrogen

atom, so ZII = 1, and the leading terms of the sum for ZI are

ZI = 2+ 8e−βΔE + . . . , (3.37)

so
NII

NI
=

(
mekT/2π h̄2)3/2

ne
(
1+ 4e−βΔE

) e−βξ1 (3.38)
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Fig. 3.10 Fraction of
hydrogen atoms that are in
the first excited state for a
stellar atmosphere with
Pe = 20N/m2. The rise at low
temperatures is due to the
increased number of excited
atoms, while the drop at
higher temperature is due to
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and finally,

N2

Ntotal
=

(
4e−βΔE

1+ 4e−βΔE

)(
1+

(
mekT/2π h̄2)3/2

ne
(
1+ 4e−βΔE

) e−βξ1

)−1

. (3.39)

This equation can be seen to peak at about T = 9900 K as shown in Fig. 3.10.

Problem 3.2: For a gas of neutral hydrogen atoms, at what temperature is the
number of atoms in the first excited state only 1% of the number of atoms in the
ground state? At what temperature is the number of atoms in the first excited
state 10% of the number of atoms in the ground state?

Problem 3.3: A typical atmosphere found on a white dwarf of spectral type
DB is pure helium. The ionization energies of neutral helium and singly ionized
helium are ξI = 24.6eV and ξII = 54.4eV, respectively. The partition functions
are ZI = 1, ZII = 2, and ZIII = 1. Use Pe = 20N/m2 for the electron pressure.

(a) Use the Saha equation to find NII/NI and NIII/NII for temperatures of
5000 K, 15000 K, and 25000 K.

(b) Show that NII/Ntotal = NII/(NI +NII +NIII) can be expressed in terms of
the ratios NII/NI and NIII/NII .

(c) Plot NII/Ntotal for temperatures between 5000 K and 25000 K. What is the
temperature for which NII/Ntotal = 0.5?
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Thus, through observations of binaries, we can find the masses and radii of
stars. Through observations of spectra we can find the surface temperatures and
compositions of stars. Through observations of parallax we can find the total
luminosities of stars. Plotting the luminosity vs. the mass, we find the mass–
luminosity relation. Plotting the luminosity vs. the temperature, we find the H-R
diagram which indicates that most stars lie along the main sequence. We want to
understand and model all these relations. In Part II, we look at the physics needed
to build models of stars.

Problems

3.1. GK Vir is an eclipsing spectroscopic binary with an angle of inclination i =
89.5◦±0.6◦, so that it can be considered to be viewed edge on. The orbit is circular
with semi-amplitudes of the radial velocities given by K1 = 38.6km/s and K2 =
221.6km/s. The orbital period is P = 0.344 d. The time required for the light curve
to drop to its lowest value is tb − ta = 89.6s, while the time required for the light
curve to begin rising again is tc − ta = 817s. Use this information to find:

(a) The radii of both stars
(b) The masses of both stars

3.2. For a gas of neutral hydrogen atoms, at what temperature is the number of
atoms in the first excited state only 1% of the number of atoms in the ground state?
At what temperature is the number of atoms in the first excited state 10% of the
number of atoms in the ground state?

3.3. A typical atmosphere found on a white dwarf of spectral type DB is pure
helium. The ionization energies of neutral helium and singly ionized helium are
ξI = 24.6eV and ξII = 54.4eV, respectively. The partition functions are ZI = 1,
ZII = 2, and ZIII = 1. Use Pe = 20N/m2 for the electron pressure.

(a) Use the Saha equation to find NII/NI and NIII/NII for temperatures of 5,000 K,
15,000 K, and 25,000 K.

(b) Show that NII/Ntotal = NII/(NI +NII +NIII) can be expressed in terms of the
ratios NII/NI and NIII/NII .

(c) Plot NII/Ntotal for temperatures between 5,000 K and 25,000 K. What is the
temperature for which NII/Ntotal = 0.5?



Part II
Equations and Processes

The physics involved in the structure and evolution of stars covers a wide range
of disciplines. Hydrodynamics and thermodynamics contribute at the macroscopic
scale, while quantum mechanics and nuclear physics operate at the microscopic
scale. Here we develop the equations governing stellar structure and evolution. We
then explore in some detail the underlying physics as it pertains to the descriptive
variables within these equations.



Chapter 4
Stellar Evolution Equations

We want to develop models of stellar evolution that can reproduce the mass–
luminosity relation as well as the structure of the H-R diagram. Obviously, we will
start with several simplifying assumptions that can be relaxed as we try to achieve
better fidelity to observations. These assumptions are:

1. Spherical symmetry
2. Isolation
3. Uniform initial composition

With spherical symmetry, we can describe the physical properties of stars as
functions of r alone. One of these properties is the mass enclosed within a radius r:

m(r) =
∫ r

0
4πr2ρ(r)dr, (4.1)

dm = ρ4πr2dr. (4.2)

Problem 4.1: Using the density distribution

M
4R2

sin(πr/R)
r

,

compute m(r).

It is frequently more advantageous to use m instead of r as the independent
variable since m is bounded in the range 0 ≤ m ≤ M, where M is the total mass of
the star. During the course of stellar evolution, the total mass may decrease slightly
due to stellar winds, but there is not a wide fluctuation. On the other hand, the radius
of the star will vary by several orders of magnitude during this time while there is
minimal change in mass.

M. Benacquista, An Introduction to the Evolution of Single and Binary Stars,
Undergraduate Lecture Notes in Physics, DOI 10.1007/978-1-4419-9991-7 4,
© Springer Science+Business Media New York 2013

47



48 4 Stellar Evolution Equations

We also assume that the star is in local thermodynamic equilibrium. This allows
us to calculate all of the thermodynamic properties in terms of the temperature T .
Technically, thermodynamic equilibrium implies that all interactions and processes
happen at the same rate as the inverse processes. “Local” thermodynamic equilib-
rium is achieved when the mean free path of particles in the gas is much smaller
than the length scale for temperature change. The composition of a star is described
by the mass fractions, Xi, of each element in the star.

With these assumptions in hand, we are ready to develop the equations governing
stellar evolution. These equations will eventually allow for the structure and
evolution of a star to be described in terms of three functions, ρ(m), T (m),
and Xi(m).

4.1 The Energy Equation

The energy equation for stellar structure is obtained by considering a small mass
element dm that is in a spherical shell over which the temperature T , density ρ , and
composition Xi can be considered constant. We let the internal energy per unit mass
in this shell be u and define P to be the pressure and V to be the volume. According
to the first law of thermodynamics, any changes in the internal energy are related to
the heat added and the work done through the equation

δ (udm) = dmδu = δQ+ δW. (4.3)

The work done is

δW =−PδV =−Pδ
(

dV
dm

dm

)
=−Pδ

(
1
ρ

)
dm. (4.4)

We have used dm/dV = ρ and we note that the thickness of the shell is defined in
terms of dm, so that it can be considered a constant, although dr may vary as the
internal energy and work change.

The heat added can come from the release of energy in the gas (usually from
nuclear burning) or from an imbalance between the heat added and the heat removed
due to flux through the stellar envelope. We will cover stellar envelopes and
atmospheres in Chap. 6 and nuclear burning in Chap. 7. For the time being, let
us define q to be the nuclear energy release per unit mass and F(m) to be the heat
flowing through the spherical surface defined by m, as shown in Fig. 4.1. At the
surface of the star, m=M and F(M) = L. Consequently the heat added is the change
in these quantities over a time interval δ t,

δQ = qdmδ t +F(m)δ t −F(m+ dm)δ t. (4.5)
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dm

M

m

F (m)
F (m+dm)

q

Fig. 4.1 Thin spherical shell
of thickness dm enclosing a
mass of m in a star with total
mass M. The heat flow into
the shell is F(m) and the heat
flow out of the shell is
F(m+dm)

From the definition of the derivative, we have

F(m+ dm) = F(m)+
∂F
∂m

dm, (4.6)

so

δQ =

(
q− ∂F

∂m

)
dmδ t. (4.7)

Finally, we have

dmδu = dm

(
q− ∂F

∂m

)
δ t −Pδ

(
1
ρ

)
dm. (4.8)

Dividing by δ t and converting the quantities δ/δ t into time derivatives give the
energy equation:

u̇− P
ρ2 ρ̇ = q− ∂F

∂m
. (4.9)

Note that this equation is valid even when the star is evolving. If the star is
thermally stationary (often referred to as thermal equilibrium), we assume that the
quantities do not vary in time, so u̇ = 0 and ρ̇ = 0. In this case the energy equation
becomes

q =
dF
dm

, (4.10)

and the nuclear energy generation rate is

Lnuc =

∫ M

0
qdm =

∫ M

0
dF = L. (4.11)
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As would be expected, we see that the luminosity of a star in equilibrium is equal to
the nuclear energy released in its interior.

4.2 Hydrodynamic Equation

Consider a small volume element in a star given by dV = drdS where dS is a surface
area element at radius r, as shown in Fig. 4.2. The mass in this volume is Δm =
ρdrdS (note that it is not dm because we are not looking at the mass of a spherical
shell). The forces acting on this mass element are

Gravitation: −GmΔm/r2

Pressure: P(r)dS−P(r+ dr)dS.

P is not a function of θ or φ because we have imposed spherical symmetry. Again,
from the definition of the derivative, we have

P(r+ dr) = P(r)+
∂P
∂ r

dr, (4.12)

so

Δmr̈ = −GmΔm
r2 − ∂P

∂ r
drdS,

= −GmΔm
r2 − ∂P

∂ r
Δm
ρ

. (4.13)

As a consequence of gravitationally driven systems, the mass of the mass element
can be divided out, leaving

r̈ =−Gm
r2 − ∂P

∂ r
1
ρ
. (4.14)

Since we prefer to write everything in terms of m rather than r, we note that dr =
dm/4πr2ρ and so

r̈ =−Gm
r2 − 4πr2 ∂P

∂m
. (4.15)

dr

dS
P (r+dr) dS

P (r)dS

Gm m/r 2

Fig. 4.2 The forces acting on
a volume element of mass
Δm in the interior of a star
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This equation describes time-dependent systems that may be out of equilibrium
and expanding or contracting. In equilibrium, r̈ = 0, and we find the equation for
hydrostatic equilibrium:

dP
dm

=− Gm
4πr4 . (4.16)

With the energy equation and the hydrodynamic equation, we can learn a number
of interesting properties about the relationship between the temperature and size of
a star in different situations. These are discussed later in this chapter.

4.3 Composition Equations

As we shall see later in more detail, stars shine by nuclear fusion. This means that
the composition of the star changes with time. This can have a profound impact on
the structure of the star as the nuclear fuel is used up or as the internal pressure
changes. For example, consider the pressure and temperature near the center of the
star made up of an ideal gas. The ideal gas law can be written

P =
ρ

mg
kT, (4.17)

where k is the Boltzmann constant. If the initial composition is hydrogen and after
time all of the hydrogen has been converted to helium, the mass of the gas particles
(mg) has quadrupled. In order to maintain the pressure needed to support the outer
layers of the star, the density or the temperature (or both) must increase. Thus, the
evolution of the stellar composition contributes to the evolution of the structure of a
star.

We describe the composition of the star in terms of the mass fraction of each
nuclear species (e.g., H, He), defined as

Xi =
ρi

ρ
, (4.18)

where ρi and ρ are the bulk densities in some region of the star. Frequently, when
describing the bulk composition of a star, we use X for the mass fraction of hydrogen
and Y for the mass fraction of helium, and then we lump all the other elements into
a category called metals, described by the mass fraction Z. The number density of a
given species is then

ni =
ρi

mi
, (4.19)

where mi is the mass of one nucleus of the given species. To a good approximation,
we can write the mass of one nucleus as the sum of the masses of its nucleons:

mi 
 AimH, (4.20)
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where Ai is the baryon number and mH is 1/12 of the mass of a 12C nucleus. Thus,
we have

ni =
ρi

AimH
, (4.21)

and so we can relate Xi and ni by the following:

ni =
ρ

mH

Xi

Ai
, (4.22)

Xi = ni
Ai

ρ
mH. (4.23)

Nuclear processes inside stars result in changes in ni. At the same time, the
rate of nuclear reactions depends upon ni as well as the temperature. In general,
a nuclear reaction consists of two nuclei combining to create two different nuclei.
Let us define I (Ai,Zi) and J (A j,Z j) to be the reactants with baryon number A
and nuclear charge Z . The products of the reaction are given by K (Ak,Zk) and
L(Al ,Zl). The reaction is then described by

I (Ai,Zi)+ J (A j,Z j)� K (Ak,Zk)+L(Al ,Zl) (4.24)

subject to baryon conservation (Ai + A j = Ak + Al) and charge conservation
(Zi+Z j =Zk+Zl). Several reactions will also include neutrons (A = 1, Z = 0),
electrons (A = 0, Z =−1), and positrons (A = 0, Z =+1). Protons and neutrons
are part of a class of particles called baryons. Positrons and electrons are part of a
class of particles called leptons. Leptons are also conserved, so whenever a positron
or electron is produced in a reaction, additional leptons known as neutrinos must
also be produced in order to conserve lepton number. Note that the reaction can go
both ways.

In order to obtain an equation relating the time evolution of the composition of
stars, we need to look at the rates of nuclear reactions. From terrestrial experiments
using a beam of nuclei fired at a target, we can measure an effective cross section
for a reaction using

σ(E) =
number of reactions/nucleus/time

number of incident particles/area/time
. (4.25)

It has units of area and can be thought of as roughly the cross-sectional area of the
target particle to incoming particles with energy E . To find the reaction rates in units
of reactions/volume/time, we need to consider the number of particles that will hit
a target of cross-sectional area σ(E), assuming that all the particles are moving in
one direction. Let x denote a target particle and i denote an incident particle. If the
gas is described by Maxwell-Boltzmann statistics, then

nEdE =
2n√
π

1

(kT )3/2
E1/2e−E/kT dE, (4.26)
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Fig. 4.3 Cylinder of volume
σ (E)v(E)dt containing
particles that will be incident
on the target in time dt

where nEdE is the number density of particles with energies between E and E+dE .
Then the number of reactions (dNE) is the number of particles with energy E that
can strike x in a time interval dt with a velocity v(E) =

√
2E/mi. This is the number

of particles contained in a volume σ(E)v(E)dt, so:

dNE = σ(E)v(E)niEdEdt, (4.27)

as shown in Fig. 4.3. Here, niEdE is the number density of incident particles with
energies between E and E + dE , which is a fraction of the total number of particles
(ni =

∫ ∞
0 niEdE), so

niEdE =
ni

n
nEdE, (4.28)

where n and nE refer to all particles in the gas and ni and niE refer only to species
i. The number of reactions per target nucleus per time interval dt having energies
between E and E + dE is

reactions/nucleus
time

=
dNE

dt
= σ(E)v(E)

ni

n
nEdE. (4.29)

Since there are nx target particles/volume, the reaction rate is then

rix =
∫ ∞

0
nxniσ(E)v(E)

nE

n
dE. (4.30)

Note that if x is of the same type of particle as i then we have counted each
interaction twice (once with the particle as target and once with the particle as
incident), so the reaction rate for identical particles is

rii =
1
2

∫ ∞

0
nxniσ(E)v(E)

nE

n
dE. (4.31)

We can simplify this equation by defining

Ri jk =

∫ ∞

0
σ(E)v(E)

nE

n
dE ∼ ζv, (4.32)
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where ζ and v are averaged cross sections and velocities and the assumption is that
Ri jk governs the reactions I + J → K +L (i.e., L is implied by I, J, and K and the
conservation laws). Consequently, one can write the rate of change of ni as

ṅi =−ni∑
j,k

n jRi jk +∑
k,l

nlnk

(1+ δlk)
Rlki, (4.33)

where the first term describes the depletion of species i through the forward reaction
and the second term describes the increase in species i due to the reverse reaction.
Since the mass fraction is related to the number fraction, we have

Ẋi =
Aiρ
mH

(
− Xi

Ai
∑
j,k

Xj

A j
Ri jk +∑

l,k

XlXk

AlAk

Rlki

1+ δlk

)
. (4.34)

We can write this as a vector with each component representing a different species:

Ẋ = f(ρ ,T,X), (4.35)

where X = (X1,X2, . . .). Although Eq. (4.35) may seem unsatisfyingly vague, it is
the equation governing the evolution of the composition of the star. It is usually
implemented in stellar evolution using a table of known values of Ri jk for each
reaction.

We now have the set of evolution equations describing the dynamics of the
internal structure of a star:

r̈ = −Gm
r2 − 4πr2 ∂P

∂m
, (4.36)

u̇−P

(
1
ρ2

)
ρ̇ = q− ∂F

∂m
, (4.37)

Ẋ = f(ρ ,T,X). (4.38)

This set includes the unknown structure functions ρ(m, t), T (m, t), and X(m, t) that
must be solved in order to describe the star, but it also contains other functions that
must be supplied from additional physics. Thermodynamics and statistical physics
will give P and u, atomic physics and radiation transfer will supply F , and nuclear
and particle physics will provide q and f. We will look at these processes in more
detail the next chapters.
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4.4 Virial Theorem

We can use the equation of hydrostatic equilibrium to relate the gravitational energy
of a star to its internal energy. We multiply Eq. (4.16) by the volume V = 4

3πr3 to
obtain

V
dP
dm

=−1
3

Gm
r

(4.39)

and note that

VdP = d(PV)−PdV = d(PV )− P
ρ

dm

= −1
3

Gmdm
r

. (4.40)

If we integrate over the entire star, we find that

∫ surface

center
d(PV) = 0, (4.41)

because V = 0 at the center and P(M) = 0 at the surface. Therefore, we have

− 3
∫ M

0

P
ρ

dm =−
∫ M

0

Gmdm
r

=Ω , (4.42)

where Ω is the total gravitational potential energy. Thus,

− 3
∫ M

0

P
ρ

dm =Ω . (4.43)

This equation relating the pressure and density of a star to its gravitational potential
energy is the general, global form of the virial theorem. We can apply this to the
particular case of an ideal gas of particles with mass mg to see a relationship between
the temperature and the total internal energy and the gravitational potential energy
of a star.

We expect the gas particles in stellar interiors to be completely ionized atoms,
and so we can assume that the gas is monatomic. Assuming it is an ideal gas, we
have

P =

(
ρ

mg

)
kT. (4.44)

In this case, the internal energy of the gas is simply the kinetic energy of the gas
particles; therefore,

u =
3
2

kT
mg

=
3
2

P
ρ
. (4.45)
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Therefore,

− 3
∫ M

0

P
ρ

dm =Ω =−2
∫ M

0
udm =−2U, (4.46)

and so U =− 1
2Ω . Note also that

U =

∫ M

0

3
2

kT
mg

dm =
3
2

k
mg

∫ M

0
T dm =

3
2

kT̄ M
mg

, (4.47)

where the average temperature is defined to be

T̄ =
1
M

∫ M

0
Tdm. (4.48)

Therefore the average temperature of a star is

T̄ =
2mgU

3kM
=−1

3
mgΩ
kM

. (4.49)

From dimensional arguments, the gravitational energy of the star can always be
written as Ω = −αGM2/R where α is some constant that depends upon the mass
distribution of the star. For reasonable mass distributions, α ≤ 1. Thus,

T̄ =
α
3

mgG
k

M
R
. (4.50)

Writing R in terms of the average density ρ̄ = 3M/4πR3 shows that

T̄ =
α
3

mgG
k

(
4π
3

)1/3

M2/3ρ̄1/3 (4.51)

so that for stars of equal mass, the denser star is the hotter star. This implies that if
a star contracts, it heats up and if it expands, it cools.

Problem 4.2: Using the density from Problem 4.1, compute Ω and show that
α = 0.75.

4.5 Total Energy

In order to determine the influences on the total energy of the star, we return to the
energy equation and integrate over the entire star to find

∫ M

0
u̇dm+

∫ M

0
P

d
dt

(
1
ρ

)
dm = Lnuc −L (4.52)
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and exchange the time derivative with the mass integration to find

∫ M

0
u̇dm =

d
dt

∫ M

0
udm =

d
dt

U = U̇ (4.53)

and

∫ M

0
P

d
dt

(
1
ρ

)
dm =

∫ M

0
P

(
∂
∂ t

(
∂V
∂m

))
dm

=

∫ M

0
P
∂V̇
∂m

dm

=
∫ M

0

∂
∂m

(
PV̇

)
dm−

∫ M

0
V̇
∂P
∂m

dm

= −
∫ M

0
4πr2ṙ

∂P
∂m

dm, (4.54)

so finally, we have

U̇ −
∫ M

0
4πr2ṙ

∂P
∂m

dm = Lnuc −L. (4.55)

This equation rates the total internal energy of a star to its nuclear generation rate and
the luminosity. One integral remains to be evaluated so that this equation depends
only on global quantities of the star. In order to evaluate this integral, we return to
the equation of motion and integrate it over the star after multiplying by ṙ:

r̈ = −Gm
r2 − 4πr2 ∂P

∂m
,

ṙr̈ = −Gm
r2 ṙ− 4πr2ṙ

∂P
∂m

,

∫ M

0
ṙr̈dm = −

∫ M

0

Gm
r2 ṙdm−

∫ M

0
4πr2ṙ

∂P
∂m

dm. (4.56)

The first integral can be evaluated to obtain

∫ M

0
ṙr̈dm =

∫ M

0

d
dt

(
1
2

ṙ2
)

dm =
d
dt

∫ M

0

1
2

ṙ2dm = K̇, (4.57)

where K is the radial kinetic energy, which is also the total kinetic energy since we
have assumed spherical symmetry. The second integral can also be evaluated, giving

−
∫ M

0

Gm
r2 ṙdm =

∫ M

0

d
dt

(
1
r

)
Gmdm =

d
dt

∫ M

0

Gmdm
r

=−Ω̇ . (4.58)
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Finally, we have

−
∫ M

0
4πr2ṙ

∂P
∂m

dm = K̇ + Ω̇ , (4.59)

and so we find an equation relating the total energies of the star:

U̇ + K̇ + Ω̇ = Lnuc −L. (4.60)

Since Lnuc−L is a measure of the net loss or gain of energy in the star, we can define
the total energy of the star to be E =U +K +Ω . And so Ė = Lnuc −L.

We can see that if L �= Lnuc, then the total energy must change. If the star is
in thermal equilibrium so that Lnuc = L, then Ė = 0. If it is also in hydrostatic
equilibrium, then K̇ = 0. By the virial theorem, U ∝ −Ω . Therefore, if a star is
in both thermal and hydrostatic equilibrium, U̇ = 0 and Ω̇ = 0, it cannot expand and
cool, nor can it contract and heat up.

Because U ∝ −Ω , we can set U = −αΩ , where α is a constant of propor-
tionality. If the star is in hydrostatic equilibrium but not thermal equilibrium, then
E =U +Ω , and so

E =−αΩ +Ω = (1−α)Ω =− (1−α)
α

U. (4.61)

Note that if α < 1, then (1−α)/α > 0, and so when Ė < 0, then U̇ > 0 and
therefore the temperature increases. All reasonable stellar models satisfy α < 1.
Thus, removing energy from the star will increase its temperature. Therefore, the
star has a negative heat capacity.

4.6 Timescales

Once these additional functions have been expressed in terms of the unknowns
(ρ ,T,Xi), then we must determine boundary conditions. The two space (or mass)
derivatives in Eqs. (4.36) and (4.37) require two spatial boundary conditions. The
three time derivatives in Eqs. (4.36) and (4.37) plus the n time derivatives for the
n species in Eq. (4.38) require n+ 3 initial time conditions. The spatial boundary
conditions are simple. At the surface of the star, the pressure must be zero; therefore
P(M, t) = 0. At the center of the star, there cannot be a singularity of energy, so
F(0, t) = 0. If we knew the initial state of the star, the initial conditions could
come from defining ṙ(m,0), ρ(m,0), T (m,0), and Xi(m,0). Unfortunately, we do
not know all of these functions. We can find a way out of this problem by looking at
the timescales of the physical processes governed by these equations. The evolution
equations each involve different types of change. Each of these changes has a typical
timescale which we define as

τ =
Θ
Θ̇
, (4.62)
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whereΘ is some physical quantity that changes due to a physical process.
The changes in the size of the star due to dynamical processes are described by

Eq. (4.36). The dynamical timescale can therefore be set by looking at changes in R.
Under the influence of gravity, the typical rate of change of R would be the escape
velocity vesc ∼ Ṙ =

√
2GM/R, so

τdyn ∼ R

Ṙ
=

√
R3

2GM
. (4.63)

Expressing this in terms of the average density and ignoring factors of order unity,
we have ρ̄ ∼ M/R3, and so

τdyn ∼ 1√
Gρ̄

. (4.64)

We compare this with the only star for which we have intimate knowledge and use
solar units to find

τdyn ∼ (1000 s)

√(
R

R�

)3 (M�
M

)
(4.65)

which is about 15 min This is a very short timescale compared to the lifetime of
the sun, and it implies that imbalances between pressure and gravity are either (a)
quickly restored to equilibrium or (b) quickly accelerated to catastrophic events.
Since stars tend to live a lot longer than 15 min we can assume that stars are in a state
of hydrostatic equilibrium throughout their lifetimes with their internal structure
adjusting to maintain equilibrium. Small oscillations can occur about equilibrium,
and these typically have timescales of a few minutes. If the internal structure cannot
recover equilibrium quickly enough, we get a collapse or an explosion.

Changes in the internal energy of the star due to thermodynamic processes are
governed by Eq. (4.37). The thermal timescale then can be set by changes in the
internal energy U . Because the dynamical timescale is so short compared with
known thermal variations of the sun, we can assume that the star is in hydrodynamic
equilibrium and that the virial theorem holds, so that U ∼GM2/R. The rate at which
U changes is set by the rate at which energy is radiated away from the star (U̇ = L),
so

τth ∼ U
L
∼ GM2

RL
. (4.66)

For typical solar units, we have

τth ∼
(

1015 s
)(

M
M�

)2(R�
R

)(
L�
L

)
, (4.67)

which is approximately 3× 107 year. Although this is significantly longer than the
dynamical timescale, it is still much smaller than the age of the sun. For example,
the last major extinction of the dinosaurs occurred around 60 million years (or 2τth)
ago. The consequences of this timescale is that we can consider a star to be in
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thermodynamic equilibrium throughout most of its life. If the star also maintains
hydrostatic equilibrium, we can assume that total energy is conserved and that (due
to the virial theorem) gravitational potential energy and thermal energy are each
separately conserved. This has profound consequences that we shall see later. If the
star contracts quasi-statically in one part, then it must expand in another in order to
conserve Ω . If there is a temperature increase in one part of the star, then it must
be accompanied by a temperature decrease in another in order to conserve U . The
thermal timescale can also be thought of as the time it would take a star to emit its
entire reserve of thermal energy through gravitational contraction if the luminosity
were held constant. The thermal timescale is sometimes referred to as the “Kelvin-
Helmholtz” timescale.

The nuclear timescale changes the rest mass energy (as well as the species
abundances) of the star. These effects are described by the set of equations in
Eq. (4.38). We can relate the fraction ε of total rest mass energy that is released
in typical nuclear reactions to the luminosity of the star L, so

τnuc ∼ εMc2

L
= ε

(
4.5× 1020 s

)( M
M�

)(
L�
L

)
. (4.68)

We estimate ε by considering the typical fraction of rest mass energy released by
a nucleus compared to the nuclear rest mass energy. For helium this is ε ∼ 0.007.
For other nuclei, this is smaller, so we can approximate it by ε ∼ 10−3. Thus, τnuc ∼
1017 s for the sun. This is about ten times its age. Consequently, the sun has not
burned all of its fuel and it is the rate of burning that governs the rate of stellar
evolution.

Another consequence of the different timescales is that one can assume that
the star is in thermodynamic equilibrium for changes that occur on timescales
greater than τth and it is in hydrostatic equilibrium on timescales greater than τdyn.
Therefore, we can work with a simplified set of evolution equations when looking at
the long-term evolution of stars by assuming both hydrostatic and thermodynamic
equilibrium:

dP
dm

= − Gm
4πr4 , (4.69)

dF
dm

= q, (4.70)

Ẋ = f(ρ ,T,X). (4.71)

Problem 4.3: Assuming that a star of mass M is devoid of nuclear energy
sources, determine its radius as a function of time, if it maintains a constant
luminosity L. Assume that the star is in hydrostatic equilibrium.
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Problems

4.1. Using the density distribution

M
4R2

sin(πr/R)
r

,

compute m(r).

4.2. Using the density from Problem 4.1, compute Ω and show that α = 0.75.

4.3. Assuming that a star of mass M is devoid of nuclear energy sources, determine
its radius as a function of time, if it maintains a constant luminosity L. Assume that
the star is in hydrostatic equilibrium.



Chapter 5
Gas and Radiation Pressures

In order to solve the evolution equations [Eqs. (4.36)–(4.38)] for the variables ρ , T ,
and X, we need to be able to express the auxiliary functions P, F , and q in terms
of these variables. Additional physics must be included to accomplish this. In this
chapter, we concentrate on the pressure. Equations that relate the pressure to the
density, temperature, and composition are known as equations of state. The most
familiar equation of state is the ideal gas law, which we have already seen:

PV = NkT −→ P =
N
V

kT =
ρ
m

kT. (5.1)

The ideal gas law assumes that the constituent gas particles are noninteracting point
particles that obey classical (i.e., non-quantum) statistics. In order to determine
when the ideal gas law can be used as the equation of state for stellar interiors,
we need to estimate the degree to which the gas particles can be considered
noninteracting.

At the expected temperatures in the interior of stars, the gas will consist of
completely ionized atoms. Therefore the dominant interaction will be via the
Coulomb force. The interaction can be characterized by the electrostatic energy
between constituent gas particles. If this energy is significantly smaller than the
average kinetic energy due to thermal motion, then any interaction will only alter
the thermal energy of the particle in a negligible way. In this case, the particles can
be considered to be essentially noninteracting.

The average kinetic energy due to thermal motion is comparable to kT̄ , where T̄
is the average temperature of the gas throughout the star. Using T̄ as calculated in
Eq. (4.50), we have

kT̄ 
 α
3

GM
R

A mH, (5.2)

where A is the average baryon number for the gas particles and α is the
proportionality constant introduced in Chap. 4. The typical electrostatic potential
energy between two particles is
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εC 
 1
4πε0

Z 2e2

d
, (5.3)

where Z e is the average charge of the gas particles. We estimate the separation
distance d by assuming that the average separation is the length of the side of a cube
containing a single particle; thus,

d =

(
A mH

ρ̄

)1/3

=

(
4πA mH

3M

)1/3

R, (5.4)

where M and R are the total mass and radius of the star, respectively. The ratio of
Coulomb energy to the thermal kinetic energy is then

εC

kT̄
=

{
3

α3/4ε04π

}4/3 Z 2e2

G(A mH)
4/3 M2/3

. (5.5)

Assuming that α ∼ 1, we find the factor
{

3/α3/44π
}4/3 ∼ 0.1. Further assuming

that the bulk composition of the star is hydrogen (so that A = Z = 1), then,

εC

kT̄
∼ 0.01

(
M�
M

)2/3

. (5.6)

Consequently, the Coulomb interaction contributes less than 1% to the typical
energies involved in particle interactions and so we can use the ideal gas law.

Another assumption made in using the ideal gas law is that the particles interact
classically as particles rather than quantum mechanically as waves. In order to
estimate the degree to which quantum effects play a role in the interactions between
gas particles, we will look at the typical de Broglie wavelength of a gas particle
compared with the average particle separation. If the de Broglie wavelength is small
compared with the separation, then there is negligible interference of the particle
wavefunctions, and so quantum effects can be ignored. Assuming nonrelativistic
gas particles, we have

λ =
h
p
=

h√
2mE

=
h√

2A mHkT̄
, (5.7)

and so

λ
d
=

(
3

2G

)1/2( 3
4π

)1/3 h

(A mH)
4/3

(
1

M1/6R1/2

)

= 0.01

(
M�
M

)1/6(R�
R

)1/2

. (5.8)
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Therefore, for typical solar values, the interactions are dominated by classical
effects. Thus, we can conclude that the ideal gas law is valid for the interiors of
typical stars.

5.1 Gas Pressure

A gas that consists of several different species of particles can be described by an
ideal gas law for each species. The total pressure in the star is then the sum of the
pressures due to each species. We usually break the pressures up into three types:
PI = ion pressure, Pe = electron pressure, and Prad = radiation pressure. The total
pressure is then

P = PI +Pe+Prad = Pgas+Prad. (5.9)

We can define a parameter β that gives the fraction of the total pressure due to gas,
so that Pgas = βP and Prad = (1−β )P.

Gas pressure arises from many different ions, and the number of electrons will
depend upon the temperature and the types of ions. We will start by looking at the
ion pressure, which is a sum over the pressures due to each ion species:

PI =∑
i

Pi =∑
i

nikT =∑
i

(
ρ

mH

Xi

Ai

)
kT , (5.10)

where we used Eq. (4.23) in the last step. Remembering that Xi is the mass fraction
of each species, we have

∑
i

(
Xi

mHA

)
=∑

i

ni

ρ
=
∑ni

ρ
=

n
ρ
=

1
m̄
, (5.11)

where m̄ is the average mass of a particle of the gas. We define the μ to be the mean
molecular weight or mean atomic mass to be the “atomic mass” of an average mass
so m̄ = μImH, and

1
μI

=∑
i

Xi

Ai
. (5.12)

Since the majority of the matter in a main sequence star is made up of hydrogen
and helium, we separate them out and lump all other elements in a group called
metals. As in Chap. 4, we define X = mass fraction of hydrogen, Y = mass fraction
of helium, and Z = mass fraction of metals. We find

1
μI

= X +
Y
4
+

Z
〈A 〉 = X +

Y
4
+

1−X −Y
〈A 〉 , (5.13)
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where 〈A 〉 is the average atomic number of all the metals, so it depends upon the
number and type of metals in the star. For metal composition typical of the sun,
〈A 〉 ∼ 15.5. Defining R = k/mH, we have for the ion pressure

PI =
R

μI
ρT. (5.14)

Now we can turn our attention to the electron pressure, given by

Pe = nekT. (5.15)

In the interiors of stars, we can safely assume that every atom is completely ionized,
so the electron number density is

ne =∑
i

Zini =
ρ

mH
∑

i

XiZi

Ai
. (5.16)

We define 1
μe

=∑
i

XiZi

Ai
, (5.17)

which is the average number of electrons per nucleon in the gas (so μe is the average
number of nucleons per electron). This leads to ne = ρ/μemH, and

1
μe

= X +
Y
2
+(1−X −Y )

〈
Z

A

〉
, (5.18)

where 〈Z /A 〉 is the average number of electrons per nucleon for the metals. This
can be reasonably approximated by 1/2, so

1
μe

= X +
1
2

Y +
1
2
− 1

2
X − 1

2
Y =

1
2
(1+X). (5.19)

Note that as the star burns hydrogen, the value of μe increases. The electron
pressure is

Pe =
R

μe
ρT, (5.20)

and so the total gas pressure is

Pgas = PI +Pe =

(
1
μI

+
1
μe

)
RρT =

R

μ
ρT, (5.21)

where the total mean molecular weight of the gas is defined through

1
μ
=

1
μI

+
1
μe

. (5.22)
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5.2 Radiation Pressure

The ideal gas law comes from assuming that the pressure arises from the transfer
of momentum from the particles in a gas to the walls of an imaginary container.
The calculation of the force exerted on a hypothetical surface due to a system of
particles with momentum distribution n(p)dp and velocities v results in an integral
known as the pressure integral:

P =
1
3

∫ ∞

0
vpn(p)dp. (5.23)

The pressure integral defines the pressure in terms of the momentum flux through
a unit surface area. For nonrelativistic massive particles, we use the Maxwell–
Boltzmann distribution of momentum:

n(p)dp =
n4π p2dp

(2πmkT)3/2
e−p2/2mkT (5.24)

and so obtain the ideal gas law.

Problem 5.1: Evaluate the pressure integral using the Maxwell–Boltzmann
distribution and show that you get the ideal gas law.

The pressure integral is equally valid for photons, which also carry momentum.
In this case, the momentum is expressed in terms of the light frequency by p= hν/c.
Consequently, using the Planck distribution of frequencies for a blackbody:

n(ν)dν =
8πν2

c3

dν(
ehν/kT − 1

) , (5.25)

the pressure integral gives

P =
1
3

∫ ∞

0
c

(
hν
c

)
8πν2

c3

dν(
ehν/kT − 1

) . (5.26)

The radiation pressure is found from integrating Eq. (5.26):

Prad =

(
8π5k4

15c3h3

)
1
3

T 4 =
4
3
σ
c

T 4, (5.27)

where σ is the Stefan–Boltzmann constant. The combination 4σ/c is sometimes
called the radiation constant a, so Prad =

1
3 aT 4.
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5.3 Degeneracy Pressure

If the wavefunctions of the gas particles begin to overlap, we will need to take
into account quantum effects such as the uncertainty principle and the exclusion
principle. This can occur if the density of the gas is sufficiently high. If the
temperature does not increase enough, then a significant fraction of the lowest-
energy states can become filled and collisional energy cannot elevate the low-energy
state particles up to the energy of unfilled states. We will consider here only
electrons, since their behavior is important during the evolution of stars. Nucleons
become important only at the very end of the evolution of massive stars, and the
extension of this formalism to nucleons is quite straightforward.

We begin by determining the energy levels of electrons confined to a region of
space defined by the volume of the star. Consider a cubic box of volume L3; then
the wave functions for free particles confined to the box have wavelengths:

λx =
2L
Nx

, λy =
2L
Ny

, λz =
2L
Nz

; (5.28)

consequently, the momentum is p = h/λ . If the gas is not relativistic, then E =
p2/2m, so

E =
1

2m

(
p2

x + p2
y + p2

z

)
=

h2

8mL2

(
N2

x +N2
y +N2

z

)
=

h2N2

8mL2 , (5.29)

where N2 =N2
x +N2

y +N2
z . Fundamentally, this is a result of the uncertainty principle

in that the minimum momentum of a particle is constrained by the maximum volume
that the particle may occupy.

From the exclusion principle, we know that no two fermions can occupy exactly
the same state. If the temperature is 0 K, then all states up to some maximum value

Thermal
Electrons

Degenerate
Electrons

Fig. 5.1 Number of occupied
states as a function of energy.
The vertical line indicates the
number of filled states at
T = 0; the shaded area
indicates the number of
electrons that can contribute
to the thermal energy of
the gas
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of N will be filled with electrons. Since there are two spin states allowed for each
energy state (Nx, Ny, Nz), the total number of electrons in the gas (Ne) that are
in the ground state of the entire population of electrons in the star corresponds to
twice the total number of unique quantum numbers Nx, Ny, and Nz. Since there are a
very large number of electrons in a typical stellar core, the discreteness of the states
washes out and the number of unique quantum numbers corresponds to the volume

of one-eighth of a sphere of radius N =
√

N2
x +N2

y +N2
z , so

Ne = 2

(
1
8

)(
4
3
πN3

)
. (5.30)

Solving for N gives

N =

(
3Ne

π

)1/3

. (5.31)

Thus, at T = 0, all the electron states with energies below a certain energy will be
filled with electrons. This is known as the Fermi energy and is found by substituting
Eq. (5.31) into Eq. (5.29) to obtain

EF =
h̄2

2m

(
3π2ne

)2/3
, (5.32)

where ne = Ne/L3 is the number density of electrons. Since all of the states below
this energy are filled, the number of electrons with energy between E and E +dE is
equal to twice the number of states in this range, so

n(E)dE = 2

(
1
8

)
4πN2dN =

π
2h3 (8m)3/2 E1/2dE, (5.33)

where we have used

N =

√
8mL2E

h2 . (5.34)

This condition holds when the temperature of the gas is 0 K. If the temperature is
above 0, then some electrons will have energies above the Fermi energy (Fig. 5.1).

The amount of extra energy is about 3
2 kT . Therefore, electrons with energies

above EF − 3
2 kT can move to higher energy states through collisions, while those

with energies less than this amount have no empty state to move up to. We can
relate the condition for degeneracy to a limit on the temperature and electron number
density of the gas. In particular, we note that the gas is completely nondegenerate
if EF − 3

2 kT ≤ 0 because all electrons can exchange energy and therefore contribute
to the ideal gas equation of state. Thus, the condition for degeneracy is EF ≥ 3

2 kT .
In order to relate this condition to the primary quantities ρ , T , and X, we note that
the number of electrons per unit volume can be calculated by
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ne =

(
Z

A

)
ρ

mH
, (5.35)

so

EF =
h̄2

2me

[
3π2

(
Z

A

)
ρ

mH

]2/3

. (5.36)

Setting 3
2 kT ≤ EF for degeneracy, we have

3
2

kT <
h̄2

2me

[
3π2

(
Z

A

)
ρ

mH

]2/3

(5.37)

or
T

ρ2/3
<

h̄2

3kme

[
3π2

(
Z

A

)
1

mH

]2/3

. (5.38)

For typical elements above hydrogen, (Z /A ) = 0.5, and this condition reads

T

ρ2/3
< 1261 K m2/kg2/3. (5.39)

The smaller that T/ρ2/3 is, the more degenerate the gas.
The equation of state for a degenerate gas is very different than that for an ideal

gas. In particular, the pressure is independent of the temperature. To see this, we
calculate the average energy of a degenerate electron:

Ē =
1

Ne

∫ EF

0
g(E)EdE, (5.40)

where g(E) = dNs/dE is the density of states where

Ns =
π
3

(
E
E0

)3/2

, (5.41)

with
E0 =

h2

8meL2 . (5.42)

We find that

Ē =
3
5

EF, (5.43)

and so the pressure is

P = −∂E
∂V

=− ∂
∂V

(
3
5

NeEF

)
=

1
5

h̄2

me

(
3π2)2/3

n5/3
e

=
1
5

h̄2 (3π2
)2/3

me

[
Z

A

ρ
mH

]5/3

= Kρ5/3. (5.44)
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Note that this calculation is based on the assumption that the electrons were non-
relativistic (i.e., E = p2/2m).

Problem 5.2: The relativistic form of the kinetic energy is K = (γ− 1)mc2.
Determine the density for which γ ∼ 1.1. (i.e., p2/2m ∼ 0.1mc2).

In the event that the electrons start to become relativistic, we must change our
energy calculations since the energy is then given by E = γmc2. The transition
zone from nonrelativistic to relativistic regimes is quite difficult, but the extreme
relativistic case can easily be obtained from assuming v 
 c so E 
 pc. The result
of this is that the equation of state is of the form

P = K′ρ4/3. (5.45)

Problem 5.3: For highly relativistic electrons, E 
 pc where p =√
p2

x + p2
y + p2

z . Following Eq. (5.28) we have E = h̄c πL

√
N2

x +N2
y +N2

z =

h̄cπN/L. Derive Eq. (5.45) as follows:

(a) The number of states is related to N by Ns =
(π

3 N3
)
. Use this to write E as

a function of Ns and show that

g(E) =
dNs

dE
=

1
π2

(
L
h̄c

)3

E2.

(b) Define EF = E(Ne) where Ne is the total number of free electrons in the
star and show that

Ē =
1

Ne

∫ EF

0
g(E)EdE =

3
4

EF .

(c) Noting that L =V 1/3, show that

P =− ∂
∂V

(NeĒ) =
1
4

h̄c
(
3π2)1/3

n4/3
e

where ne = Ne/V .

5.4 Internal Energy of Gas and Radiation

The specific energy (u = energy/mass) of a gas is given by

u =
1
ρ

∫ ∞

0
n(p)E(p)dp, (5.46)
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where E(p) is the kinetic energy in terms of the momentum and n(p) is the number
density of particles with momentum p. For a classical system, E = p2/2m, but for
a relativistic system,

E = mc2

[(
1+

p2

m2c2

)1/2

− 1

]
. (5.47)

If the gas is degenerate, we integrate up to the Fermi momentum pF, which
is defined such that EF = E(pF). (We make the assumption that the gas is
completely degenerate, so T = 0 and the partition function is a step function.) For a
nonrelativistic gas, we have

ugas =
3
2

nkT =
3
2

Pgas

ρ
. (5.48)

If we look at a degenerate gas and perform the integral, we obtain precisely the same
result:

ugas =
3
2

Pgas

ρ
. (5.49)

Problem 5.4: Do the integral in Eq. (5.46) for a classical degenerate gas to
obtain Eq. (5.49).

If the degenerate gas is relativistic, then

ugas =
3Pgas

ρ
. (5.50)

For radiation, we replace the integral by

urad =
1
ρ

∫ ∞

0
hνn(ν)dν =

aT 4

ρ
. (5.51)

Note that this is the energy density. Thus,

urad =
3Prad

ρ
. (5.52)

The similarity between radiation and relativistic degenerate gases is not
coincidental. The relativistic condition is that E � mc2, so that E 
 pc, which
is identical to the energy/momentum relation for photons.
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5.5 Adiabatic Exponent

Processes that are rapid compared to the thermal timescale happen too quickly for
there to be any heat exchange relative to the environment. These are called adiabatic
processes. For adiabatic processes, the thermodynamic equation [Eq. (4.37)] reads

du− P
ρ

dρ
ρ

= 0. (5.53)

Note that for ideal gases and degenerate systems, u ∝ P/ρ , so we can write

u = φ
P
ρ
, (5.54)

where φ is a proportionality constant. Thus,

du = φ
dP
ρ

−φ
P
ρ

dρ
ρ
, (5.55)

and so

φ
dP
ρ

− (1+φ)
P
ρ

dρ
ρ

= 0. (5.56)

This results in the following differential equation:

dP
P

=
1+φ
φ

dρ
ρ

(5.57)

whose solution is

P = Kaργa (5.58)

where Ka is a constant of the integration that depends upon the entropy, and
the adiabatic exponent is γa = (φ + 1)/φ . Note that for nonrelativistic ideal and
degenerate gases γa = 5/3, while for radiation and relativistic degenerate gases,
γa = 4/3. Mixtures of radiation and partially relativistic degenerate gases will give
4/3 < γa < 5/3.

It may seem that γa has a lower bound of 4/3, but the discussion so far has
centered on regions where the total number of particles is constant. This is valid
in regions where the gases are completely ionized or completely neutral. However,
there are intermediate regions where the ionization level is very dependent upon
temperature and density. In these regions, we need to take into account the Saha
equation as well. In general, this calculation can be quite complicated, so we will
focus on a simple system of a nonrelativistic, ideal hydrogen gas that can only have
two ionization states. We define the degree of ionization as

x =
NII

Ntotal
=

n+
n0 + n+

, (5.59)
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where n+ is the number density of ions and n0 is the number density of neutral
atoms. The number density of electrons is determined by the number density of
ions, so ne = n+. The Saha equation can be written as

n+ne

n0
=

g
h3 (2πmekT )3/2 e−ξ/kT , (5.60)

where the partition function information is absorbed into the constant g.
We can write the gas pressure in terms of the number densities of ions, electrons,

and atoms as

Pgas = P0 +P++Pe = (n0 + n++ ne)kT

=

(
n0 + n++ n+

n0 + n+

)
(n0 + n+)kT

= (1+ x)(n0 + n+)kT = (1+ x)(n0 + n+)RρT. (5.61)

We engage in a little algebraic manipulation to write the left-hand side of the Saha
equation as

n+ne

n0
=

n+2

n0
=

[
n+2 /(n0 + n+)

2
]
(n0 + 2n+)[

(n0 + n+)
2 − n2

+

]
/(n0 + n+)

2

=
x2

1− x2

Pgas

kT
=

g
h3 (2πmekT )3/2 e−ξ/kT . (5.62)

The specific energy of a partially ionized gas also contains the potential energy of
ionization. This is the energy that can be released when the ions recombine, so

u =
3
2

P
ρ
+ ξ

n+
ρ
. (5.63)

The density can be written as ρ = (n0 + n+)mH, and so

u =
3
2

P
ρ
+ ξ

n+
(n0 + n+)mH

=
3
2

P
ρ
+

ξ
mH

x. (5.64)

Using Eq. (5.62), we can now compute du to find

du =
3
2

1
ρ

dP− 3
2

P
ρ

dρ
ρ

+
ξ

mH

(
∂x
∂P

dP+
∂x
∂ρ

dρ
)
. (5.65)

Applying this result to the adiabatic condition and performing a hideous batch of
algebra result in
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γa =
5+

(
5
2 +

ξ
kT

)2
x(1− x)

3+

(
3
2 +

(
3
2 +

ξ
kT

)2
)

x(1− x)
. (5.66)

At either extreme of fully ionized or fully neutral gas, we find γa = 5/3. The
minimum value occurs at x = 0.5 and depends upon T and ξ . In the limit that
ξ/kT → ∞, γa → 1. The adiabatic exponent will become important as we look at
the stability of stars against convection.

Problems

5.1. Evaluate the pressure integral using the Maxwell–Boltzmann distribution and
show that you get the ideal gas law.

5.2. The relativistic form of the kinetic energy is K = (γ− 1)mc2. Determine the
density for which γ ∼ 1.1. (i.e., p2/2m ∼ 0.1mc2).

5.3. For highly relativistic electrons, E 
 pc where p =
√

p2
x + p2

y + p2
z . Following

Eq. (5.28) we have E = h̄c πL

√
N2

x +N2
y +N2

z = h̄cπN/L. Derive Eq. (5.45) as

follows:

(a) The number of states is related to N by Ns =
(π

3 N3
)
. Use this to write E as a

function of Ns and show that

g(E) =
dNs

dE
=

1
π2

(
L
h̄c

)3

E2.

(b) Define EF = E(Ne) where Ne is the total number of free electrons in the star and
show that

Ē =
1

Ne

∫ EF

0
g(E)EdE =

3
4

EF . (5.67)

(c) Noting that L =V 1/3, show that

P =− ∂
∂V

(NeĒ) =
1
4

h̄c
(
3π2)1/3

n4/3
e ,

where ne = Ne/V .

5.4. Do the integral in Eq. (5.46) for a classical degenerate gas to obtain Eq. (5.49).



Chapter 6
Radiative Transfer and Stellar Atmospheres

In order to obtain the expression for the transport of radiant energy through the
layers of the star in terms of ρ , T , and X, we need to spend a little time exploring the
envelopes of stars. We will revisit the energy density and pressure due to radiation
and discuss the consequences of local thermodynamic equilibrium. Finally, we will
also look in more detail at the nature of absorption lines in stellar spectra.

6.1 The Radiation Field

In the energy equation, F is the heat flux through a surface of constant m in the
star. This can come from conduction, convection, or radiation. We will discuss
convection later in Chap. 9, while conduction will be discussed briefly in Chap. 11.
Here we concentrate on the flow of heat through radiation. In order to talk about the
transport of energy through radiation, we need to define a quantity that describes the
radiation field and the flow of energy through that field. The heat flux is the total flow
of heat energy through a surface, integrated over all directions and wavelengths. To
obtain this value, we need to look at the energy carried in a specific direction at a
specific wavelength. We define Iλ to be the “specific intensity” and it is the power
per area emitted from a surface area element dA into a solid angle dΩ at an angle
θ from the normal to dA within a wavelength range (λ ,λ + dλ ). Although Iλ is not
a vector, we draw it with an arrow in Fig. 6.1 to indicate the implied direction of
energy flow.

The specific intensity may vary with direction, so in order to define a single
quantity at a point in the interior of a star, we compute the “mean intensity” as the
average of Iλ over all directions:

〈Iλ 〉=
1

4π

∫ 2π

0

∫ π

0
Iλ sinθdθdφ . (6.1)

M. Benacquista, An Introduction to the Evolution of Single and Binary Stars,
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Fig. 6.1 Specific intensity Iλ
and its orientation relative to
the solid angle dΩ and the
emitting area dA

dA

dh

dL
 =

 dh
/co

s

Fig. 6.2 Volume element
dV = dAdh and path of
original radiation plus
radiation entering from an
adjacent volume element

If the radiation field is entirely described by the blackbody spectrum, then the
specific intensity is isotropic and 〈Iλ 〉= Iλ = Bλ , where

Bλ =
c

4π
u(λ ) =

2hc2

λ 5
(
ehc/λ kT − 1

) (6.2)

is the specific intensity for blackbody radiation.
The energy carried by radiation in the wavelength range (λ ,λ + dλ ) through dA

in a time interval dt in the direction of dΩ is then

Eλdλ = IλdλdAcosθdΩdt. (6.3)

We can use this expression to obtain the energy density of radiation for a radiation
field given by an arbitrary Iλ . Consider a volume element that is projected normal to
the emitting surface element dA so that dV = dAdh. Energy that is emitted in a given
direction, θ , from the surface will travel through this volume until it passes through
the side. However, radiation from an adjacent volume will enter from the opposite
side to replace it. Consequently, we can set the time interval that this radiation
spends inside the volume to be dt = dL/c = dh/(ccosθ ), as shown in Fig. 6.2.
Therefore, the energy within the volume due to the radiation emitted at angle θ is

Eλdλ = IλdλdAdΩ cosθ
dh

ccosθ
=

IλdλdΩ
c

dV. (6.4)
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The total energy over all directions (including radiation coming from the top of the
volume) is found by integrating over dΩ , so

u(λ )dλ =
1
c

∫
IλdλdΩ =

4π
c
〈Iλ 〉dλ . (6.5)

We can recover the blackbody energy density [Eq. (3.19)] if we replace 〈Iλ 〉 with
Bλ .

From Chap. 5, we know that the pressure on a mathematical surface is related to
the flow of momentum through that surface. We can understand this by imagining
that the mathematical surface is replaced by a real, solid surface. The momentum
that would normally flow through the surface must now bounce off of it, reversing
direction in the component normal to the surface. This change in momentum
amounts to a force on the surface. Thus, we can calculate the radiation pressure
due to a radiation field given by Iλ by considering the flux of the component of
momentum normal to a surface. If we take the surface element dA to lie in the xy-
plane, then the pressure is

Prad =

∫
dpz

dtdA
=

∫
dpcosθ

dtdA
, (6.6)

but p = E/c for photons, and so for each wavelength interval, we have

dpλdλ = Eλdλ/c =
1
c

IλdλdAcosθdΩdt (6.7)

and

Prad,λdλ =
1
c

∫
Iλdλ cos2 θdΩ =

dλ
c

∫
Iλ cos2 θdΩ . (6.8)

Therefore, the radiation pressure can be obtained from the radiation field using

Prad =
1
c

∫ ∞

0
dλ

∫ 2π

0
dφ

∫ π

0
dθ Iλ cos2 θ sinθ . (6.9)

Problem 6.1: Show that you can recover the expression for Prad in Eq. (5.27) if
you use Bλ , the blackbody expression for the specific intensity.

The energy flux, Φλdλ , passing through a surface area element dA is the net
energy flow in a direction normal to the surface. Thus,

Φλdλ =
Eλdλ
dAdt

=
∫

Iλ cosθdΩ . (6.10)

If the radiation field is isotropic, then Φλ = 0. Therefore, if we want a nonzero flux
of energy through a surface, then Iλ must be a function of θ .
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6.2 Radiative Transfer

As radiation passes through material in a star, energy can be added and removed
from the beam due to interactions with matter. Energy is removed from the beam
as photons are scattered into different directions and wavelengths or absorbed by
atoms. Energy is added to the beam as photons are scattered into the direction of
the beam or are emitted by atoms. These processes are sketched in Fig. 6.3. The
equation giving the change in specific intensity as a function of distance traveled
through a medium is known as the transfer equation. In a steady state, the change
in Iλ along a path ds through a gas of density ρ is given by

dIλ =−κλρIλds+ jλρds, (6.11)

where κλ is the opacity of the gas at wavelength λ and jλ is the emission coefficient
of the gas. Dividing by −κλρ yields the transfer equation:

− 1
κλρ

dIλ
ds

= Iλ − Sλ , (6.12)

where the source function, Sλ = jλ/κλ , is the ratio of emission to absorption
coefficients and is a measure of how rapidly the photons in the beam are removed
and replaced by photons in the local vicinity.

The opacity of the gas has dimensions of area/mass and arises from several
different mechanisms. It is often strongly dependent on the wavelength of the photon
and the temperature of the gas. The main processes that contribute to the opacity
involve different interactions between photons and electrons, and they are described
by the initial and final states of the electron. These are known as bound–bound,
bound–free, free–free, and electron scattering.

Bound–Bound: This process involves the absorption of a photon, causing the
transition of a bound electron to a higher bound energy level in an atom. Clearly,

Scattered out

Scattered in

Absorbed

Emitted

Fig. 6.3 Processes that add
and remove energy from a
beam as it passes through a
gas. The scattering processes
can both remove and add
energy to the beam.
Absorption removes energy,
and emission adds energy
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the strength of this absorption is highly wavelength dependent, but it also depends
on the ionization and excitation states of the atoms in the gas. As we have seen in
Sect. 3.4, the ionization and excitation levels are temperature dependent. Deep
in the interiors of stars, the gas is completely ionized, and so bound–bound
scattering is important only in the atmospheres. The reverse process when the
electron drops to a lower energy level and emits a photon is included in the
emission coefficient.

Bound–Free: This process occurs if a photon has sufficient energy to completely
strip an electron from an atom and ionize it. In this case, the absorption will have
a upper bound on the wavelength based on the minimum energy needed to ionize
the atom, but all shorter wavelengths are allowed as the extra energy can be
distributed as kinetic energy of the newly freed electron. As in the case of bound–
bound absorption, the strength and wavelength dependence of this absorption
vary according to the ionization and excitation levels of the atoms in the gas.
Consequently, the opacity due to this process is temperature dependent and is
important in the atmospheres. Recombination is an emission process.

Free–Free: Although a free electron cannot absorb a photon and simultaneously
conserve energy and momentum, it is possible for a free electron to absorb a
photon if it is in an unbound interaction with a nearby atom that can accept the
excess energy and momentum. In this case, the electron is free before and after
the absorption and so the opacity is nonzero across all wavelengths. The opposite
of this effect is bremsstrahlung, when a decelerating electron emits a photon.

Electron Scattering: In the case of Thomson or Rayleigh scattering, a photon
imparts some energy and momentum to an electron or atom and is deflected out of
the beam and may also have its wavelength changed. Like free–free absorption,
this process is also applicable across a continuum of wavelengths.

Problem 6.2: The relativistic momentum of a particle is γmv and the relativistic

energy is γmc2, where γ =
(
1− v2/c2

)−1/2
. Use relativistic conservation of

momentum and energy to show that a free particle cannot absorb a photon.

The quantity κλρ has the dimensions of length−1 and can be thought of as the
inverse of the mean free path of a photon of wavelength λ in a gas of density ρ .
A dimensionless quantity called the optical depth is defined by

dτλ =−κλρds (6.13)

and is a measure of the transparency of the gas. Usually the optical depth is
measured backwards along the direction that the energy is being transported—
hence the minus sign. It can also be thought of as giving the number of scattering
or absorption events that a photon will have experienced during its passage along
integrated path. We can then rewrite the transfer equation in terms of the optical
depth to obtain

dIλ
dτλ

= Iλ − Sλ . (6.14)
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Exterior of starFig. 6.4 Radial optical depth
line element and its
relationship to the true optical
depth and the direction of the
specific intensity beam for a
small surface element inside
of a star

We are interested in finding the radiative energy flux through surfaces of constant
r (or m). Therefore we want to solve the transfer equation for the specific intensity
I(τr,θ ), where τr = τ cosθ as shown in Fig. 6.4. We can do this through the use of
an integrating factor applied to the differential equation:

cosθ
dIλ
dτrλ

= Iλ − Sλ . (6.15)

Using
e−τr/cosθ (6.16)

as the integrating factor and performing some simple algebra, we find

d
dτr

[Iλ (τr,θ )e−τr/cosθ ] =−Sλ (τr,θ )
e−τr/cosθ

cosθ
. (6.17)

This equation can be integrated to obtain the desired expression. The limits of
integration will be from the surface of interest down to the center of the star.
Technically, we need to know the optical depth at the center of the star, but we
can take it to be infinity for all reasonable stellar models. Therefore, the solution
gives

Iλ =
1

cosθ

∫ τr

∞
Sλ (t,θ )e(τr−t)/cosθdt, (6.18)

and the focus now is to find a sensible value of Sλ .
The interpretation of Eq. (6.18) is that the specific intensity at any given optical

depth is a weighted sum of the source functions from all lower depths in the star. The
weighting reflects the gradual extinction of the intensity from greater depths and the
replacement of this intensity with the local intensities at each intervening layer. At
large optical depths the weighting strongly favors nearby layers and the mean free
path of the photons is short enough that the source function can be approximated by
a Taylor expansion of the specific intensity for blackbody radiation

Sλ (t) =∑
n

(t − τ)n

n!
∂ nBλ
∂ tn

∣∣∣∣
τ
= Bλ +(t − τ)

∂Bλ
∂ t

∣∣∣∣
τ
+

(t − τ)2

2
∂ 2Bλ
∂ t2

∣∣∣∣
τ
+ · · · ,

(6.19)
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and so the specific intensity is given by

Iλ =

∫ ∞

τ

∞

∑
n=0

(t − τ)n

n!
∂ nBλ
∂ tn

∣∣∣∣
τ
e(t−τ)/cosθ dt

cosθ
. (6.20)

We can perform the integral by making a change of variables to u = (t − τ)/cosθ
and noting that

Γ (n+ 1) =
∫ ∞

0
une−udu (6.21)

to obtain

Iλ =
∞

∑
n=0

cosn θ
∂ nBλ
∂τn . (6.22)

6.3 Radiative Heat Flux

We want to obtain an expression for the radiative heat flux using Eq. (6.22). At large
optical depths, we only need to consider the leading nonzero term in the expansion.
Therefore, using Eq. (6.10) we have

Φλ =

∫
Iλ cosθdΩ = 2π

∫ π

0

∞

∑
n=0

cosn+1 θ
∂ nBλ
∂τn sinθdθ . (6.23)

Only odd values of n survive, and the leading term is

Φλ =
4π
3
∂B
∂τ

=
4π
3
∂T
∂τ

∂Bλ
∂T

. (6.24)

Expressed in terms of dr and the opacity, κλ , this is

Φλ =−4π
3ρ

∂T
∂ r

1
κλ

∂Bλ
∂T

. (6.25)

From here we can get the heat flux using

F = 4πr2
∫ ∞

0
Φλdλ , (6.26)

where the 4πr2 comes from integrating over the spherical surface of radius r. The
precise value of F depends on a knowledge of the opacity as a function of λ , but we
can sidestep this issue by introducing a quantity called the Rosseland mean opacity
defined as

κ̄ =

∫ ∞
0

∂Bλ
∂T dλ∫ ∞

0
1
κλ

∂Bλ
∂T dλ

. (6.27)

With the Rosseland mean opacity in hand, then the heat flux can be expressed as

F =−4π
3ρ

∂T
∂ r

1
κ̄
∂
∂T

∫ ∞

0
Bλdλ . (6.28)
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opacities calculated using the
Opacity Project tools for a
pure hydrogen gas (X = 1), a
gas with no metals but a
helium fraction of Y = 0.2,
and a gas with a mixture of
hydrogen, helium, and metals.
The plots are calculated using
logρ/T 3

6 =−3, where T6 is
the temperature in units of
106 K

Recalling that Bλ = u(λ )c/4π and∫ ∞

0
u(λ )dλ = aT 4 (6.29)

gives the expression
F = 4πr2 4acT3

3κ̄ρ
∂T
∂ r

. (6.30)

It remains to find κ̄ as a function of ρ , T , and X. There exist online tools such
as the Opacity Project that can produce κ̄ through numerical computation, given an
input concentration of several elements. A sample of the temperature dependence of
the Rosseland mean opacity computed from the Opacity Project is shown in Fig. 6.5.

At lower temperatures, such as those found near the surface of a star, there
may be a substantial fraction of bound electrons, and so the opacities due to
bound–bound and bound–free interactions dominate. These are the most difficult
opacities to compute since they arise from millions of absorption lines from all the
different species in the gas. Consequently, at low temperatures, κ̄ must be computed
numerically and there are no simple asymptotic formulae.

At intermediate temperatures, such as those found in the upper envelopes of stars,
the gas becomes substantially more ionized and bound–free and free–free processes
dominate the opacities. The mean opacities for these processes are proportional to
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ρT−7/2. Mean opacities that obey this relation are called Kramers opacities. The
bound–free opacity roughly follows

κ̄b f ∼ 4× 1021Z(1+X)ρT−7/2 m2/kg, (6.31)

and the free–free opacity is roughly two orders of magnitude lower, with

κ̄ f f ∼ 1019 Z2

μeμI
ρT−7/2 m2/kg. (6.32)

At still higher temperature, such as those found deep inside stars, where the atoms
are all completely ionized, then electron scattering is the dominant contributor to the
opacity. As long as the average photon energy is well below the rest mass energy of
the electron, then κ̄es is simply the number of electrons per mass times the Thomson
cross section of the electron:

κ̄es =
ne

ρ
σe =

ne

ρ
8π
3

(
e2

4πε0mec2

)2


 0.02(1+X). (6.33)

The total opacity is simply the sum of the individual opacities at a given temperature.
Now that we have the opacities in hand, we can express the radiative heat flux in

terms of either r or m:

F =−
(
4πr2

)
4acT 3

3κ̄ρ
dT
dr

=−
(
4πr2

)2
4acT3

3κ̄
dT
dm

. (6.34)

6.4 Model Atmospheres

Before turning to the details of nuclear burning rates, we will use the tools developed
in this chapter to look in more detail at the outer atmospheres of stars, where
the approximation of large optical depth begins to break down. Generally, the
atmosphere of a star is taken to be the region where the integrated optical depth
from the surface (or r = ∞) is less than 1000. Most of the photons that leave a star
come from this region. This is where we measure the spectral lines and the effective
temperature.

In order to model the atmospheres, we make some simplifying assumptions based
on the fact that the thickness of the atmosphere is very small compared to the radius
of the star. Thus, we can ignore curvature effects and approximate the atmosphere
as a flat, planar slab described by Cartesian coordinates with the xy-plane at the
surface of the atmosphere and the z-axis extending out from the surface, as shown
in Fig. 6.6. This picture is somewhat problematic, since the surface of a star is
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Fig. 6.6 Coordinate
description of plane-parallel
model atmosphere, showing
the radial optical depth as
well as the true optical depth
along a ray making an angle
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not an easily defined solid surface. However, we can use the radial optical depth as
shown in Fig. 6.4, so that

τrλ =
∫ ∞

z
κλρdz (6.35)

and define the surface to be the point where the optical depth is small enough to be
effectively zero. Returning to Eq. (6.15), we have

cosθ
dIλ
dτrλ

= Iλ − Sλ . (6.36)

Since the conditions near the surface of stars allow for bound–bound and bound–
free interactions, computation of the opacities as a function of wavelength can
be quite complicated. Fortunately, at wavelengths that are not associated with
discrete transition lines, the opacity is dominated by electron scattering. As long
as the photons involved do not have energies comparable to the rest mass energies
of electrons, the electron scattering opacities are independent of wavelength.
Consequently, if we ignore the discrete transition wavelengths, we can assume that
the opacity is constant for all wavelengths. An atmosphere based on this assumption
is called a grey atmosphere. For a grey atmosphere, we have

dτrλ −→ dτr (6.37)

and

cosθ
dI
dτr

= I − S (6.38)

with

I =
∫ ∞

0
Iλdλ , (6.39)

S =
∫ ∞

0
Sλdλ . (6.40)

If we integrate Eq. (6.38) over all solid angles, we have

d
dτr

∫
I cosθdΩ =

∫
IdΩ −

∫
SdΩ . (6.41)
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The source function is independent of direction, and using the definitions of the
energy flux, Φλ , and the mean intensity, this becomes

d
dτr

Φ = 4π (〈I〉− S), (6.42)

where Φ =
∫
Φλdλ . We can also obtain an expression for the radiation pressure by

integrating the first moment of Eq. (6.38):

d
dτr

∫
I cos2 θdΩ =

∫
I cosθdΩ −

∫
S cosθdΩ . (6.43)

Again, S is independent of direction, so the last term integrates to 0. The first term
gives the derivative of cPrad, and the second term is Φ . Therefore,

c
dPrad

dτr
=Φ. (6.44)

The equations above are valid for any grey atmosphere. Here we focus on a
plane-parallel atmosphere in equilibrium. In this case, no heat is deposited in the
atmosphere; therefore the flux through each layer is identical, and so

dΦ
dτr

= 0 =⇒ S = 〈I〉. (6.45)

Also, the radiation pressure equation can now be integrated to give

Prad =
1
c
Φτr + constant. (6.46)

From Eq. (5.27), we know that Prad = aT 4/3, and so if we knew the value of the
constant above, then we could determine the temperature as a function of depth in
the atmosphere. Furthermore, we could then determine the depth in the atmosphere
at which T = Teff and therefore know more about the environment in which the
observed light from stars originates. One approach to determining the constant is
to note that if the flux through each layer is identical, then the difference between
outgoing and incoming intensity at each surface is a constant. We treat the outgoing
intensity as being uniform over all angles 0 ≤ θ < π/2, with value 〈Iout〉, and the
incoming intensity as uniform over all angles π/2 < θ ≤ π with value 〈Iin〉 At the
very outside of the star, where there is no incoming intensity, I = 0 for θ ≤ π/2.
Therefore, the outgoing intensity is related to the flux by

Φ =

∫ π/2

0

∫ 2π

0
I cosθ sinθdθdφ ≡ π〈Iout〉. (6.47)
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Knowing that Φ is constant allows us to determine the average ingoing intensity at
any depth in terms of the average outgoing intensity at that depth. Therefore,

Φ = π (〈Iout〉− 〈Iin〉) (6.48)

and the mean intensity is simply the average between the ingoing and outgoing
intensities:

〈I〉= 1
2
(〈Iout〉+ 〈Iin〉) . (6.49)

The radiation pressure can now be expressed in terms of 〈Iout〉 and 〈Iin〉 as

Prad =
2π
3c

(〈Iout〉+ 〈Iin〉) = 4π
3c

〈I〉. (6.50)

Thus, at τr = 0, we have

Prad =
4π
3c

〈I〉= 2π
3c

〈Iout〉= 2
3c
Φ = constant. (6.51)

Now, knowing that the luminosity is related to Φ by

Φ =
L

4πR2 = σT 4
eff, (6.52)

we find

〈I〉= 3σ
4π

T 4
eff

(
τr +

2
3

)
. (6.53)

Finally, if we assume that the atmosphere is in local thermodynamic equilibrium,
then 〈I〉= ∫

Bλdλ , and so

〈I〉= σT 4

π
=

3σ
4π

T 4
eff

(
τr +

2
3

)
. (6.54)

This implies that Teff is the temperature of the star at an optical depth of τr =
2/3. The assumptions used to arrive at this result is known as the Eddington
approximation. The temperature as a function of optical depth is then

T 4 =
3
4

T 4
eff

(
τr +

2
3

)
. (6.55)
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Fig. 6.7 The geometry
showing the optical path of
light leaving the surface of a
star near the visible edge of
the star disk. Note that the
optical path is 2/3, but the
radial optical depth, τr , is less
than 2/3

Problem 6.3: Using Eq. (6.18) and setting τr = 0, the specific intensity at the
surface is given by

Iλ =− 1
cosθ

∫ ∞

0
Sλ (t,θ )e−t/cosθdt.

Show that if Sλ (τr) = aλ + bλτ , then Iλ = aλ + bλ cosθ .

The major consequence here is that the light one sees from a star comes from an
optical depth of 2/3. When one is looking at the edge of a star, the light comes from a
smaller vertical depth and therefore from a region of the atmosphere that is at a lower
temperature. This implies that the surface brightness of the star will be lower at the
edges. This phenomenon is known as limb darkening. The appropriate geometry is
shown in Fig. 6.7. The other consequence of Eq. (6.55) is that it was arrived at using
the grey atmosphere. At frequencies where there is an atomic absorption line, then
the physical depth is substantially smaller for an optical depth of 2/3, and so the
light at absorption lines comes from a smaller τr than the light in the continuum.
Therefore, it is at a lower temperature and is less luminous. This is why absorption
lines appear to be darker.

Problems

6.1. Show that you can recover the expression for Prad in Eq. (5.27) if you use Bλ ,
the blackbody expression for the specific intensity.



90 6 Radiative Transfer and Stellar Atmospheres

6.2. The relativistic momentum of a particle is γmv and the relativistic energy is

γmc2, where γ =
(
1− v2/c2

)−1/2
. Use relativistic conservation of momentum and

energy to show that a free particle cannot absorb a photon.

6.3. Using Eq. (6.18) and setting τr = 0, the specific intensity at the surface is given
by

Iλ =− 1
cosθ

∫ ∞

0
Sλ (t,θ )e−t/cosθdt.

Show that if Sλ (τr) = aλ + bλτ , then Iλ = aλ + bλ cosθ .



Chapter 7
Nuclear Processes

The energy source that powers the luminosity of stars is nuclear fusion. Atomic
nuclei consist of protons and neutrons that are bound tightly together in a volume a
few femtometers across. The strong nuclear force that interacts with nucleons and
binds them must be stronger than the repulsive electrostatic force that the protons
feel in such close proximity to each other. The nuclear force cannot be long range
or it would draw all nucleons in the universe together. A simplified cartoon of the
potential felt by a proton in and near a nucleus is shown in Fig. 7.1. As a proton
approaches it feels a repulsive electrostatic potential due to the net positive charge
of the protons already in the nucleus. Once it gets close enough, the strong nuclear
force takes over and the potential becomes negative and the proton becomes bound.
If the new nucleus is less massive than iron, the rest mass energy of the new nucleus
is lower than the combined rest masses of the incoming proton and the old nucleus.
This is a direct result of the release of the binding energy.

7.1 Nuclear Fusion

In order for fusion to occur, two nuclei must approach one another close enough
for the strong nuclear force to dominate over the electrostatic repulsion. Classically
the average kinetic energy of a nucleus in a gas is given by 3

2 kT . In the absence
of quantum effects, this energy would have to be equal to the electrostatic energy
at separations on the order of a fermi (10−15 m); thus for two nuclei with atomic
numbers Z1 and Z2 classical interactions would require temperatures given by

3
2

kT =
1

4πε0

Z1Z2e2

r
(7.1)

in order for these two nuclei to fuse. Assuming that each nucleus is hydrogen,
we find T ∼ 1010 K. This is about three orders of magnitude higher than typical
core temperatures of solar-type stars, and the temperature only increases for heavier
elements. Consequently, quantum tunneling must be important.

M. Benacquista, An Introduction to the Evolution of Single and Binary Stars,
Undergraduate Lecture Notes in Physics, DOI 10.1007/978-1-4419-9991-7 7,
© Springer Science+Business Media New York 2013
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Fig. 7.1 Cartoon of the basic
features of the nuclear
potential. At large distances,
the potential looks like a r−1

electrostatic repulsion. Within
a few femtometers, the
potential becomes attractive
and goes negative. Bound
nucleons will occupy discrete
energy levels in the potential
well

Remembering from our discussion of reaction rates in Chap. 4, we have the
following expression for the number of reactions per unit volume per unit time for
a given reaction:

rix =
∫ ∞

0
ninxσ(E)v(E)

nE

n
dE. (7.2)

In this chapter, we will estimate the functional form of σ(E). Since σ(E) acts
something like a physical area and since tunneling effects become important when
the wavefunctions of the target and incident nuclei overlap, we can approximate the
cross section by

σ(E) ∝ πλ 2 = π
(

h
p

)2

∝
1
E
, (7.3)

where we have assumed that the typical size of the wavefunction is λ and that E =

p2/2m. The probability for tunneling to occur scales as e−2π2Uc/E where Uc is the
Coulomb barrier height. The ratio of Coulomb barrier height to particle energy can
be written as

Uc

E
=

Z1Z2e2

2πε0hv
, (7.4)

where we have assumed r ∼ λ ∼ h/mv, and so we have σ(E) ∝ e−b/
√

E , where b is
a constant:

b =
π
√

mZ1Z2e2
√

2ε0h
. (7.5)
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E0
Energy

Fig. 7.2 The shape of the
integrand in Eq. (7.8),
assuming that S(E) is a
constant. The peak occurs at
E0 and indicates that a narrow
range of energies contributes
to the reaction rates for a
given temperature T

We can combine these two arguments to obtain

σ(E) ∝
e−b/

√
E

E
, (7.6)

and we assume the proportionality “constant” is some slowly varying function of E ,
so

σ(E) =
S(E)

E
e−b/

√
E . (7.7)

Thus, the reaction rate can be expressed as

rix =

(
2

kT

)3/2 ninx√
mπ

∫ ∞

0
S(E)e−b/

√
Ee−E/kT dE, (7.8)

where the first exponent in the integrand describes the tunneling probability and
the second describes the high-energy tail of the Maxwell-Boltzmann distribution.
Assuming S(E) to be very nearly constant, the integrand is peaked at

E0 =

(
bkT

2

)2/3

(7.9)

as can be seen in Fig. 7.2.
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A nucleus has energy levels much like an atom does. At the energies corre-
sponding to a bound energy state, S(E) can increase dramatically. The increase in
cross section comes from a resonance between the incident particle energy and the
target nuclear energy levels. Consequently, these are called resonance peaks. This
is similar to the opacity in a gas spiking at photon wavelengths that correspond to
atomic transition energies; except in this case, it is the reaction rate that spikes.

At the temperatures and densities where reactions are occurring, reaction rates
can be described as a power law centered on a particular temperature as

rix 
 r0XiXxρα
′
T β , (7.10)

where r0 is a constant specific to a given reaction, Xi and Xx are the mass fractions
of the two particle species, and α ′ and β are determined from the expansion of the
true reaction rate equation. For a two-body reaction, α ′ = 2.

The amount of energy released per reaction is related to the difference in mass
between the initial and final particles. For reactions of the type

I(Ai,Zi)+ J(A j,Z j)� K(Ak,Zk)+L(Al,Zl), (7.11)

the energy released is

Qi jk = (Mi +M j −Mk −Ml)c
2, (7.12)

where M is the true mass of the nucleus. This value is usually different than the
mass (A mH) that we have been using. The difference is called the mass excess and
is usually written as an energy:

ΔM (I) = (Mi −AimH)c2. (7.13)

Defining ε0 = Qi jk for a given reaction, then

εix =

(
ε0

ρ

)
rix = ε ′0XiXxραT β , (7.14)

where α = α ′ − 1 and εix has units of W/kg. If the specific reactions involve
neutrinos which can carry away energy without interacting with the star, then
ε0 = Qi jk − εν0 . Thus, the value of q is obtained by summing over all reactions.
Since most reactions are between two particles, this can be expressed as

q = q0ρTβ (7.15)

except in rare cases where more than two particles must collide for a reaction to
proceed.
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7.2 Hydrogen Burning

Although each step in the fusion burning process consists of the collision of two
or three nuclei, many of the products of these collisions are unstable. Thus nuclear
fusion proceeds along chains of many reactions until a stable end product is reached.
In some chains, some nuclei serve as catalysts that shepherd the buildup of heavier
nuclei. In this section we outline the basic reaction chains that operate at stages
during the lifetimes of most stars. The notation we use in describing the components
of each reaction is A X, where X is the chemical symbol for the element. Thus, X
tells us the value of Z .

7.2.1 The p-p Chains

The first reaction chain to occur in stars is the burning of hydrogen into helium.
This is a process involving a chain of different reactions with the net result that
4H → 4He. The first link in this chain involves the collision of two protons:

p+ p → 2D+ e++ν, (7.16)

where one of the protons is converted into a neutron with the release of an
antielectron (e+) and a neutrino (ν). The product is a proton bound with a neutron
in a nucleus known as a deuteron, given by the symbol 2D. The deuteron interacts
with another proton to form 3He via

2D+ p → 3He+ γ, (7.17)

where γ indicates an energetic photon. At this point in the chain, the 3He nucleus
can either interact with another 3He nucleus that has been created by the same chain,
or with a 4He nucleus that is either primordial or has been produced in the stellar
core. If it interacts with another 3He nucleus, then

3He+ 3He → 4He+ 2p (7.18)

completing what is known as the p-p I chain. The entire p-p I chain is shown in
Fig. 7.3. The net result is

1H+ 1H+ 1H+ 1H → 4He+ 2e++ 2ν+ 2γ. (7.19)

The positrons will annihilate electrons in the plasma and produce more photons
which will scatter off of gas particles and heat the gas. The neutrinos will simply
carry energy away from the star and not contribute to heating.
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The other possible interaction of the 3He involving a 4He nucleus is the start of
two additional proton–proton chains. The reaction results in

3He+ 4He → 7Be+ γ. (7.20)

The 7Be nucleus can then interact with an electron in the plasma to branch into the
p-p II chain:

7Be+ e− → 7Li+ν (7.21)

followed by
7Li+ p → 2 4He. (7.22)

The p-p II chain is shown in Fig. 7.4. If the 7Be nucleus interacts with a proton in
the plasma, it follows the p-p III chain:

7Be+ p → 8B+ γ (7.23)

followed by

8B → 8Be+ e++ν, (7.24)

8Be → 2 4He. (7.25)

Figure 7.5 shows the p-p III chain.
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The probability of each of these chains depends upon the temperature, density,
and composition of the plasma. In typical conditions in the solar core, the p-p I chain
occurs 69% of the time and the p-p II and III chains occur the remaining 31%. Of
the last 31%, the p-p II chain occurs 99.7% of the time and the p-p III 0.3%.

The energy released by the reaction is 26.73 MeV, but some of this energy is
carried away by neutrinos which do not contribute to heating the star. The p+ p →
2D+ e+ + ν reaction loses 0.26 MeV to neutrinos, while the 8B → 8Be+ e+ + ν
reaction loses up to 7.2 MeV. Because the branching ratio for the p-p III chain is so
small, the average energy released per 4He created is about 26 MeV.

The slowest reaction in the chain governs the rate of energy release, and for
temperatures around 1.5× 107 K, the power law form can be written

qpp = q0,ppρX2T 4
6 , (7.26)

where T6 = T/106 K and q0,pp = 1.08× 10−12 W m3/kg2.

Problem 7.1: The source of the luminosity of the sun is the fusion of 4 1H
nuclei to form one 4He nucleus. The energy from each reaction comes from the
conversion of mass to energy via E = mc2. Using the luminosity of the sun,
calculate the mass loss rate (in kg/s) due to nuclear fusion.

Problem 7.2: In the p-p chain, the net energy released for each 4He created is
26 MeV. Assuming that the entire luminosity of the sun is generated by the p-p
chain, calculate the mass of 1H that is converted to 4He (in kg/s).

7.2.2 The CNO Cycle

The initial composition of most stars will also contain a mass fraction of C, N, and
O nuclei. At higher temperatures, these nuclei can act as catalysts for the burning of
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hydrogen into helium. The CNO cycle also comes in two chains. The dominant one
follows:

12C+ 1H → 13N+ γ, (7.27)
13N → 13C+ e++ν, (7.28)

13C+ 1H → 14N+ γ, (7.29)

14N+ 1H → 15O+ γ, (7.30)

15O → 15N+ e++ν, (7.31)
15N+ 1H → 12C+ 4He, (7.32)

Note that the net result is 4 1H → 4He and we get our 12C back. This is the CNO I
cycle, and it is shown in Fig. 7.6.

Sometimes the last reaction fails to generate 4He and instead follows:

15N+ 1H → 16O+ γ, (7.33)
16O+ 1H → 17F+ γ, (7.34)

17F → 17O+ e++ν, (7.35)
17O+ 1H → 14N+ 4He. (7.36)

In this case, the net result is that 6 1H+ 12C → 4He+ 14N, but we can also consider
the reaction chain to start at 14N+ 1H → 15O+ γ and the result is 4 1H → 4He and
we get our 14N back, as shown in Fig. 7.7. Note that the only difference between
the CNO II cycle and the CNO I cycle is the addition of a proton and a neutron to
each nucleus.
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Because there are more neutrinos generated in the CNO cycle, the net energy
produced per helium nucleus is a little lower at ∼ 25 MeV. Again, at temperatures
around 1.5× 107 K, this cycle generates

qCNO = q0,CNOXXCNOρT 19.9
6 (7.37)

with q0,CNO = 8.24×10−31 W m3 kg−2 and the combined mass fraction of C, N, and
O is given by XCNO. Note that although q0,CNO is much lower than q0,pp and XCNO

is much lower than X , the steep T -dependence means that this cycle can be the
dominant energy generation mechanism in the more massive stars that have higher
central temperatures.

Note that in all of these hydrogen burning cycles, X will decrease as the hydrogen
is converted into helium. Eventually, these cycles will not be able to supply the
energy needed to support the star. At this point, the core will begin to contract and
if the temperature and density become high enough, helium will eventually begin to
fuse .

7.3 Burning Heavier Nuclei

When helium fuses, the first reaction

4He+ 4He � 8Be (7.38)

is very unstable and short-lived, with the 8Be nucleus decaying back into two 4He
nuclei in about 10−16 s. Consequently, the reaction can only proceed if another alpha
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particle strikes the 8Be nucleus almost simultaneously as it is formed. This reaction
results in

4He+ 8Be → 12C+ γ. (7.39)

The cross section for this reaction is quite large due to the fact that the combined
energies of the He and Be nuclei are close to an energy level of 12C, and so there
is a resonance. Nonetheless, the effective reaction is a three-body process and so
the energy production rate depends on the mass fraction of helium cubed and the
density squared:

q 
 q0,3αρ2Y 3T 41.0
8 , (7.40)

where T8 = T/108 K and q0,3α = 3.96×10−18W m6 kg−3. Once a sufficient number
of 12C nuclei have been built up, these can interact with 4He nuclei to generate 16O
via

12C+ 4He → 16O+ γ. (7.41)

These oxygen nuclei can combine with helium to produce neon:

16O+ 4He → 20Ne+ γ. (7.42)

At the temperatures and densities maintained during helium burning the Coulomb
barrier is too high for neon to fuse. Once the helium fuel is exhausted, the core will
again collapse and heat up. If the star is sufficiently massive, then carbon burning
can be ignited. Further fusion reactions are not very well modeled by temperature
power laws, and so we only list the reactions and their threshold temperatures.

Carbon burning begins at about 6×108 K. Some of these reactions absorb energy,
and are marked with an asterisk:

12C+ 12C → 24Mg+ γ (7.43)

∗ → 23Mg+ n (7.44)

→ 23Na+ 1H (7.45)

→ 20Ne+ 4He (7.46)

∗ → 16O+ 2 4He. (7.47)

Oxygen burning does not begin until T ∼ 109 K. Again some reactions are
endothermic:

16O+ 16O → 32S+ γ (7.48)

∗ → 31S+ n (7.49)

→ 31P+ 1H (7.50)

→ 28Si+ 4He (7.51)

∗ → 24Mg+ 2 4He. (7.52)
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By the time temperatures have reached the oxygen burning threshold, nearly all 12C
nuclei have been burned, so 12C+ 16O reactions are negligible.

Problem 7.3: In a fully convective core, the material within the core is
continually mixed so that the mass fractions are uniform throughout the core.
A star has a fully convective core that is pure 1H and has a mass of 0.1 M�.

(a) Assume that all of the hydrogen is burned to produce a core of pure 4He.
What is the mass of the resulting helium core? What is the total amount of
energy released during the hydrogen burning phase?

(b) Assume that all of the helium in the helium core is subsequently burned to
produce a core of pure 12C. What is the mass of the resulting carbon core?
What is the total amount of energy released during the helium burning
phase?

By the time we reach temperatures where 28Si+ 28Si reactions could occur, the
ambient photons are energetic enough to begin reversing the fusion process through
a process known as photodisintegration. In this case heavy nuclei are broken up
into lighter nuclei which can then overcome the Coulomb barrier more easily, and
so nuclei heavier than 28Si are built up by reactions with lighter nuclei that arise
from photodisintegration. A typical chain might flow like

28Si+ 4He � 32S+ γ, (7.53)

32S+ 4He � 36Ar+ γ, (7.54)

. . .

32Cr+ 4He � 56Ni+ γ. (7.55)

Any reactions that produce elements higher than 56Fe are endothermic. The
reactions described above are listed in Table 7.1 along with threshold temperatures
and typical duration for a 20 M� star. The nuclear binding energy per nucleon is
shown in Fig. 7.8. The rest masses of many elements can be found in Appendix B.

7.4 Neutron Capture Processes

Another process that can build up heavy nuclei arises from free neutrons that are
generated by processes such as C, O, or Si burning. These neutrons are not hindered
by the Coulomb barrier, so the reaction rates are determined by the number of
neutrons. The reactions are of two types:

Neutron capture: I(A ,Z )+ n → I(A + 1,Z )
Beta decay: I(A ,Z )→ J(A ,Z + 1)+ e−+ ν̄.
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Table 7.1 Common nuclear processes in stars

Energy per Duration
Nuclear Tthresh nucleon in a
fuel Process 106 K Products (MeV) 20 M� star

H p− p ∼ 4 He 6.55 107 year
H CNO 15 He 6.25 107 year
He 3α 100 C, O 0.61 106 year
C C+C 600 O, Ne, Na, Mg 0.54 300 year
O O+O 1,000 Mg, S, P, Si ∼ 0.3 200 d
Si Nuc. eq. 3,000 Co, Fe, Ni < 0.18 2 d
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Fig. 7.8 The binding energy
per nucleon as a function of
atomic mass number (in
arbitrary units). As you move
from lower to higher binding
energy per nucleon, energy is
released in the reaction, but if
you move from higher to
lower, then the reaction is
endothermic

The timescales of β -decay are set by the weak force and are independent of
local temperatures and densities. Neutron capture rates are set by the local density
and may vary by temperature as neutrons may participate in resonant reactions.
If neutron capture rates are slower than the β -decay rates, the process is called an s-
process (for “slow”). If the neutron capture rates are faster than β -decay rates, then
the process is called an r-process (for “rapid”). Some nuclei are built up through both
r- and s-processes, while others are only produced by one process. These reactions
also tend to be endothermic.

At very high energies and densities, a number of inverse reactions occur that
eventually return the core to a collection of protons, neutrons, and electrons. These
will be discussed in more detail as we study neutron stars and supernovae.

Problems

7.1. The source of the luminosity of the sun is the fusion of 4 1H nuclei to form one
4He nucleus. The energy from each reaction comes from the conversion of mass to



Problems 103

energy via E = mc2. Using the luminosity of the sun, calculate the mass loss rate (in
kg/s) due to nuclear fusion.

7.2. In the p-p chain, the net energy released for each 4He created is 26 MeV.
Assuming that the entire luminosity of the sun is generated by the p-p chain,
calculate the mass of 1H that is converted to 4He (in kg/s).

7.3. In a fully convective core, the material within the core is continually mixed, so
that the mass fractions are uniform throughout the core. A star has a fully convective
core that is pure 1H and has a mass of 0.1 M�.

(a) Assume that all of the hydrogen is burned to produce a core of pure 4He. What
is the mass of the resulting helium core? What is the total amount of energy
released during the hydrogen burning phase?

(b) Assume that all of the helium in the helium core is subsequently burned to
produce a core of pure 12C. What is the mass of the resulting carbon core?
What is the total amount of energy released during the helium burning phase?



Part III
Stellar Models

With the equations of stellar evolution in hand and an understanding of the physical
processes at play, we can begin modeling the life cycles of stars. Although numerical
methods are necessary for accurate descriptions, many general properties and stages
of stellar life can be understood through analytical means. In this section, we
develop some analytical models and descriptions of the many stages of stellar life.



Chapter 8
Simple Stellar Models

Now that we have an understanding of the physics behind both the equations of
stellar structure and their auxiliary functions, we are in a position to describe some
simple static models of stellar structure. Setting all time derivatives to zero gives the
static structure equations:

dP
dm

= − Gm
4πr4 , (8.1)

dr
dm

=
1

4πr2ρ
, (8.2)

dT
dm

= − 3
4ac

κ
T 3

F

(4πr2)2 , (8.3)

dF
dm

= q. (8.4)

The auxiliary equations are

P =
R

μI
ρT +Pe +

1
3

aT 4, (8.5)

κ = κ0ρaT b, (8.6)

q = q0ραTβ . (8.7)

8.1 Polytropes

We begin by looking at solutions that can be obtained analytically for a set of
somewhat reasonable assumptions. First, we note that if there existed a simple
relationship between P and ρ that was independent of T , then the first two equations

M. Benacquista, An Introduction to the Evolution of Single and Binary Stars,
Undergraduate Lecture Notes in Physics, DOI 10.1007/978-1-4419-9991-7 8,
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could be solved without reference to the second two equations. We have seen some
of these equations of state already as

P = Kργ , (8.8)

which describe degenerate gases. These are known as polytropic equations of state
and γ is related to the polytropic index n by γ = (n+ 1)/n. Stars whose structure is
determined by a polytropic equation of state are called polytropes. Polytropes can
be used to model degenerate stars such as neutron stars or white dwarfs.

We start solving for the polytropic model by manipulating the dynamical
equation as follows:

r2

ρ
dP
dr

= −Gm, (8.9)

d
dr

(
r2

ρ
dP
dr

)
= −G

dm
dr

, (8.10)

1
r2

d
dr

(
r2
(

1
ρ

dP
dr

))
= −4πGρ . (8.11)

Note that the left-hand side is suspiciously like the radial part of the Poisson
equation. This is not surprising, when we note that Eq. (8.1) can also be written as

dP
dr

=
dm
dr

dP
dm

=−Gm
r2 ρ =

dφ
dr
ρ , (8.12)

where φ is the gravitational potential at the surface of m. Therefore,

1
ρ

dP
dr

=
dφ
dr

, (8.13)

and Eq. (8.11) becomes

1
r2

d
dr

(
r2 dφ

dr

)
= ∇2φ =−4πGρ . (8.14)

Using the polytrope equation of state, we can recast Eq. (8.11) into a differential
equation governing ρ :

1
r2

d
dr

(
r2

(
1
ρ

Kγργ−1 dρ
dr

))
=−4πGρ , (8.15)

or
γK

4πG
1
r2

d
dr

(
r2ργ−2 dρ

dr

)
=−ρ . (8.16)
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We now set about rewriting this equation in terms of dimensionless quantities. This
is a standard approach to obtaining solutions to many differential equations. Let
ρ = ρcθ n where θ is a dimensionless function of r, such that 0 < θ (r)< 1 and ρc =
central density. Substituting gives

γK
4πG

1
r2

d
dr

(
r2ργ−2

c θ (γ−2)nρcnθ n−1 dθ
dr

)
= ρcθ n, (8.17)

but

(γ− 2)n =

(
n+ 1

n
− 2

)
n = 1− n, (8.18)

so
nγK
4πG

ργ−1
c

1
r2

d
dr

(
r2 dθ

dr

)
=−ρcθ n, (8.19)

or [
(n+ 1)K

4πG
ργ−2

c

]
1
r2

d
dr

(
r2 dθ

dr

)
=−θ n. (8.20)

Since the term in brackets is a constant with units of area, we write it as

[
(n+ 1)K

4πG
ργ−2

c

]
= α2, (8.21)

where α is a length. We can now introduce a dimensionless variable ξ such that
r = αξ , and then the equation reads

1
ξ 2

d
dξ

(
ξ 2 dθ

dξ

)
=−θ n. (8.22)

This is known as the Lane–Emden equation.
We need two boundary conditions in order to solve the Lane–Emden equation.

For the first boundary condition, we note that θ (0) = 1 in order for ρ(0) = ρc. For
the second boundary condition, we expand the derivatives in Eq. (8.22) to find

1
ξ 2

d
dξ

(
ξ 2 dθ

dξ

)
=

2
ξ

dθ
dξ

+
d2θ
dξ 2 =−θ n. (8.23)

At ξ = 0, the right-hand side becomes −θ n = −1, but the left-hand side has a
division by 0 in the first term. Either we force d2θ/dξ 2 to be equally undefined
but with opposite sign (which is unphysical), or we require dθ/dξ = 0 at ξ = 0.
This is our second boundary condition. Therefore, our two boundary conditions are

θ (0) = 1 and
dθ
dξ

∣∣∣∣
0
= 0. (8.24)



110 8 Simple Stellar Models

Since the density cannot be negative, we define the first zero of θ (ξ ) to correspond
to the radius of the star, so θ (ξ1) = 0 ⇒ R = αξ1.

In order to relate the solution of the Lane–Emden equation to the total mass, we
note that

M =

∫ R

0
4πr2ρdr = 4πα3ρc

∫ ξ1

0
ξ 2θ ndξ

= −4πα3ρc

∫ ξ1

0

d
dξ

(
ξ 2 dθ

dξ

)
dξ

= −4πα3ρcξ 2
1

(
dθ
dξ

)∣∣∣∣
ξ1

. (8.25)

Noting that R = αξ1 ⇒ α = R/ξ1, so

M = −4π
(

R
ξ1

)3

ρcξ 2
1

(
dθ
dξ

)∣∣∣∣
ξ1

=
4
3
πR3ρc

[
−3
ξ1

(
dθ
dξ

)∣∣∣∣
ξ1

]
(8.26)

or
M( 4

3πR3
) = ρ̄ = ρc

[
−3
ξ1

(
dθ
dξ

)∣∣∣∣
ξ1

]
. (8.27)

The relation between average density, ρ̄ , and central density, ρc, is

ρc = Dnρ̄, (8.28)

where

Dn =

[
−3
ξ1

(
dθ
dξ

)∣∣∣∣
ξ1

]−1

. (8.29)

The mass equation also provides a relation between mass and radius:

[
GM
Mn

]n−1 [ R
Rn

]3−n

=
[(n+ 1)K]n

4πG
, (8.30)

where Mn = −ξ 2
1 (dθ/dξ )|ξ1

and Rn = ξ1. Note that there are two special cases:
n = 1 and n = 3.

For n = 1 polytropes, we find that

[
R
R2

]2

=
K

2πG
, (8.31)
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and so only one value of R will satisfy hydrostatic equilibrium for a given value of
K. Note that the equation of state for n = 1 is

P = Kρ2. (8.32)

For n = 3, then [
GM
M3

]2

=
16K3

πG
, (8.33)

and there is only one possible mass that will satisfy hydrostatic equilibrium for a
given K. For n= 3, the equation of state has γ = 4/3 and describes a fully relativistic
degenerate gas. Thus, a fully relativistic degenerate gas defines a limiting mass for
an equation of state given by K.

Between the limiting values of n = 1 and n = 3, we have

R3−n ∝
1

Mn−1 . (8.34)

In the case of a nonrelativistic degenerate gas,

P = Kρ5/3 (8.35)

so n = 1.5. The Lane–Emden equation cannot be solved analytically for this value
of n, but we can determine the mass-radius relation:

R ∝
1

M1/3
, (8.36)

so the radius decreases with increasing mass. Thus, the density obeys

ρ ∝
M
R3 ∝ M2. (8.37)

Therefore, the density increases as the square of the mass. Recalling that the Fermi
energy increases with the density,

EF =
h̄2

2me

[
3π2

(
Z

A

)
ρ

mH

]2/3

, (8.38)

we see that the electrons will eventually become relativistic and the equation of state
will smoothly change over to

P = Kρ4/3 (8.39)

with increasing mass. This is a polytrope with n = 3, which has only one value of
the mass for hydrostatic equilibrium. This will be the maximum mass allowed for a
star to be supported by degenerate electron pressure.
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Stars supported by degenerate electron pressure are known as white dwarfs.
When the maximum mass is exceeded, one possible outcome is a star supported
by degenerate neutron pressure. These are known as neutron stars. Returning to the
equation for a fully relativistic degenerate electron gas, we can find this maximum
mass for different compositions. We have

P =
hc
8

(
3
π

)1/3 1

m4/3
H

(
ρ
μe

)4/3

, (8.40)

so

K =
hc
8

(
3
π

)1/3( 1
mHμe

)4/3

(8.41)

and

M = 4πM3

(
K

4πG

)3/2

. (8.42)

Numerical solutions of the n = 3 polytrope give M3 = 2.02, and so

M = 4π (2.02)

(
1

4πG

)3/2(hc
8

)3/2( 3
π

)1/2 1

m2
H

1
μ2

e
(8.43)


 5.83μ−2
e M�. (8.44)

Recall from Chap. 5 that

μ−1
e = X +

1
2

Y +(1−X −Y )

〈
Z

A

〉
. (8.45)

For a hydrogen white dwarf, μe = 1 and the maximum mass is 5.83M�. However,
this is an unphysical situation since the pressures and densities attained in any
reasonable evolution will ignite the p–p chain before a relativistic degenerate state is
reached. For He, C, O, and Ne, 〈Z /A 〉= 1

2 , and so μe = 2, and the maximum mass
is 1.46M�. These are reasonable masses, and all known white dwarfs have masses
below this value. Some binary evolution combined with mass transfer to the white
dwarf is necessary to achieve the maximum mass. For single star evolution, the
final end product is an iron core of 56

26Fe, and so 〈Z /A 〉= 0.464, so the maximum
mass is 1.26M�. This explains that fact that there are neutron stars with masses
around 1.3 M�, even though the maximum mass of a white dwarf is greater than
this value. The maximum mass for He, C, O, and Ne white dwarfs is known as the
Chandrasekhar Mass.
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8.2 Polytrope Solutions

The simplest analytic solution to the Lane–Emden equation is the case of n = 0. In
this case,

1
ξ 2

d
dξ

(
ξ 2 dθ

dξ

)
=−1, (8.46)

so
d

dξ

(
ξ 2 dθ

dξ

)
=−ξ 2. (8.47)

This can be directly integrated to obtain

ξ 2 dθ
dξ

=−1
3
ξ 3 +C1. (8.48)

Using the first boundary condition,

dθ
dξ

∣∣∣∣
0
= 0, (8.49)

we find C1 = 0. Rearranging and integrating a second time give

dθ
dξ

=−1
3
ξ =⇒ θ =−1

6
ξ 2 +C2. (8.50)

The second boundary condition requires θ (0) = 1, so C2 = 1. Thus, the solution is:

θ = 1− 1
6
ξ 2, (8.51)

and the zero is at ξ1 =
√

6, so R = αξ1 ⇒ α = R/
√

6. The total mass is then given
by

M = −4π
(

R√
6

)3

ρc

(√
6
)2

(
−1

3

√
6

)

=
4
3
πR3ρc. (8.52)

Thus, the n = 0 case is a constant density solution. (Just because it is solvable,
doesn’t mean it is an interesting case.) Note that this should have been expected
since n = 0 corresponds to γ = undefined. Thus, P = Kργ is undefined and P must
therefore be independent of ρ .
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Fig. 8.1 Numerical solutions to the Lane–Emden equation for values of n = 0, 1, 1.5, 2, 2.5, 3, 4,
and 5. The solution for n = 5 asymptotically approaches 0

The Lane–Emden equation can be solved analytically for two other cases, n = 1
and n = 5. For all other cases, one must use numerical methods. One of the simplest
approaches is to increment ξ by small steps dξ , so

θi+1 = θi +

(
dθ
dξ

)
i
dξ , (8.53)

where

(
dθ
dξ

)
i+1

=

(
dθ
dξ

)
i
+

(
d2θ
dξ 2

)
i
dξ =

(
dθ
dξ

)
i
−
(

2
ξ

dθ
dξ

+θ n
)

i
dξ . (8.54)

Starting with the boundary condition, we start from the center of the star and work
our way out toward the surface, stopping the computation when θ < 0. The results
of this computation are shown in Fig. 8.1. The important values for a range of
polytropic indices are given in Table 8.1.

Problem 8.1: Solve the Lane–Emden equation for n = 1. Calculate the mass of
the star in terms of the central density ρc.
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Table 8.1 Numerically
computed values of Rn, Mn,
and Dn for polytropes with
values of n between 0 and 5

n Rn Mn Dn

0 2.45 4.89 1.00
1 3.14 3.14 3.29
1.5 3.65 2.71 5.98
2 4.35 2.41 11.38
2.5 5.36 2.19 23.44
3 6.90 2.02 54.21
4 15.00 1.80 625.00
5 ∞ – –

8.3 The Eddington Standard Model

Using a polytropic equation of state, we can also obtain a simplified model of
a nondegenerate star. In this model, known as the Eddington Standard Model,
we assume only that the gas pressure is a constant fraction of the total pressure
throughout the star. This implies that β is constant. We can write the total pressure
in terms of the radiation pressure, so

P =
Pgas

β
=

Prad

1−β
, (8.55)

or
R

βμ
ρT =

aT 4

3(1−β )
. (8.56)

Because β is constant, we can obtain a relation between T and ρ throughout the
star:

T =

[
3R (1−β )

aμβ

]1/3

ρ1/3, (8.57)

and the ideal gas law goes to a polytropic equation of state of index n = 3:

P =
R

μ
ρT =

[
3R4 (1−β )

aμ4β 4

]1/3

ρ4/3. (8.58)

From Eq. (8.33), we can see that the mass of the star is uniquely determined by the
constant in the equation of state. Therefore,

M = 4πM3

(
K
πG

)3/2

= 4πM3

(
1
πG

)3/2[3R4 (1−β )
aμ4β 4

]1/2

. (8.59)

This can be rewritten as an equation giving β as a function of μ and M:

(1−β ) = μ4M2β 4
[

aG3

48πM2
3R4

]

 0.03

[
M

M�

]2

μ4β 4. (8.60)
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Problem 8.2: The solar value of the mean molecular weight is 0.61. Use this
to determine β for the Eddington Standard Model of the sun.

Problem 8.3: Using the value of β found in Problem 8.2 and the solutions for
the n = 3 polytrope, determine the central density and central temperature of
the sun in the Eddington Standard Model.

Problem 8.4: Numerically solve the n = 3 polytrope equation using solar
values to determine the radius at which the temperature is high enough for
the p–p chain to be operating (T6 = 15).

8.4 The Eddington Luminosity

If the radiation pressure dominates the gas pressure (as can occur in the atmospheres
of stars or accretion disks), then

P 
 Prad and
dP
dr


 dPrad

dr
=

−κρF
4πcr2 . (8.61)

This pressure must be counterbalanced by the gravitational force if the star is to be
in hydrostatic equilibrium. Consider starting at the surface of the star where P = 0.
If the gradient of the radiation pressure is steeper than the gradient of the hydrostatic
pressure, then the star is unstable and the outer layers will be pushed off. This is
equivalent to stating that the star will be stable if

∣∣∣∣dPrad

dr

∣∣∣∣= κρF
4πcr2 <

∣∣∣∣dP
dr

∣∣∣∣= Gρm
r2 , (8.62)

or
κF < 4πcGm. (8.63)

When Eq. (8.63) is satisfied, then the star is said to be in radiative equilibrium. This
condition can be violated by large fluxes due to intense nuclear burning. Near the
center of the star, the core nuclear burning rate, qc, is related to the flux by:

F
m

→ qc as m → 0. (8.64)
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Therefore, a star has a radiative core as long as

qc <
4πcG
κ

. (8.65)

Equation (8.63) can also be violated by very high opacity, such as that which is
usually encountered in regions where the temperature is close to the ionization
temperature for the gas in the star. Near the surface of the star, F = L, and so the
surface is in radiative equilibrium if

L <
4πcGM

κ
. (8.66)

If the luminosity increases beyond this threshold, then the surface layer feels an
outward pressure that is greater than the gravitational attraction and so it is blown
off of the star and becomes unbound. This threshold luminosity is known as the
Eddington luminosity: LEdd = 4πcGM/κ . The opacity is often expressed relative to
the electron scattering opacity, which is a constant, so

LEdd = 3.2× 104
(

M
M�

)(κes

κ

)
L�. (8.67)

One consequence of the Eddington luminosity is that it requires the existence of an
upper bound on the masses of main sequence stars when combined with the mass
luminosity relation (L ∝ Mν ).

Problem 8.5: Using ν = 3.5, determine the upper bound on the mass of a main
sequence star.

Problems

8.1. Solve the Lane–Emden equation for n = 1. Calculate the mass of the star in
terms of the central density ρc.

8.2. The solar value of the mean molecular weight is 0.61. Use this to determine β
for the Eddington Standard Model of the sun.

8.3. Using the value of β found in Problem 8.2 and the solutions for the n = 3
polytrope, determine the central density and central temperature of the sun in the
Eddington Standard Model.



118 8 Simple Stellar Models

8.4. Numerically solve the n= 3 polytrope equation using solar values to determine
the radius at which the temperature is high enough for the p–p chain to be operating
(T6 = 15).

8.5. Using ν = 3.5, determine the upper bound on the mass of a main sequence
star.



Chapter 9
Stability

The stellar models developed in the last chapter were valid for equilibrium states.
However, equilibrium is not the same as stability. For example, a pencil balanced on
its point is also in equilibrium, but it is not stable against small perturbations. We
now need to consider when our equilibrium solutions are also stable against small
perturbations. In so doing, we will encounter a number of potential instabilities that
may have a significant effect in the structure and evolution of stars.

9.1 Thermal Stability

Usually, when a star is in hydrostatic equilibrium, it is stable. This is because of
the temperature dependence of the nuclear reaction rates and the equation of state.
To better understand the instabilities that may arise, it is useful to first look at the
conditions that bring about stability.

The total energy of a star in hydrostatic equilibrium is the sum of the internal
energy and the gravitational potential energy, but these two are related through the
virial theorem, so

3
∫ M

0

P
ρ

dm =−Ω . (9.1)

If the gas can also be described by the ideal gas law and the star has non-negligible
radiation pressure, then

P
ρ
=

Pgas

ρ
+

Prad

ρ
=

R

μ
T +

aT 4

3ρ
=

2
3

ugas +
1
3

urad. (9.2)

Applying this to the virial theorem, we have

Ugas =−1
2
(Ω +Urad) , (9.3)
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E =Ugas +Urad +Ω =
1
2
(Ω +Urad) =−Ugas. (9.4)

We also have

Ė = Lnuc −L, (9.5)

which simply states that if the power generated in the star through nuclear fusion is
not equal to the power radiated from the surface, then the total energy will change.
Combining Eqs. (9.4) and (9.5) leads to

Lnuc −L =−U̇gas. (9.6)

In equilibrium, Ė = 0 and Lnuc = L. We have seen in Chap. 7 that the rate of heat
generated by nuclear reactions is strongly dependent upon the temperature in the
core. Let us now consider the consequences of a small imbalance between the
luminosity and the total rate of nuclear energy generation in the core. Equation (9.6)
indicates that the internal energy of the star will drop if Lnuc > L and it will increase
if Lnuc < L.

If there is an increase in the nuclear generation rate or a decrease in the stellar
luminosity, then Lnuc > L. For the star to be thermally stable, then this change must
set off a chain of events that restores the balance between Lnuc and L by either
lowering Lnuc or increasing L (or both). From Eq. (9.6), we see that when Lnuc > L,
then U̇gas < 0. This implies that the internal energy of the gas will decrease, leading
to a decrease in the temperature. A decrease in the temperature leads to a decrease
in the internal energy of the radiation, so U̇rad < 0. From Eq. (9.5), we see that the
total energy of the star must increase, so Ė > 0, but the energy equation [Eq. (9.4)]
requires that

Ω̇ = Ė −U̇, (9.7)

and so the gravitational potential energy of the star must increase. This requires
that the star expand. If the star expands, then the average density must decrease.
Consequently, both ρ and T decrease if Lnuc−L increases. Since the nuclear energy
generation rate is

q = q0ραT β , (9.8)

then q must also decrease. Finally, since

Lnuc =
∫ M

0
qdm, (9.9)

the nuclear energy generation decreases and equilibrium is restored. A similar
argument can be used in the case where Lnuc < L, leading to a contraction of the
star and an increase in density and temperature. Thus, any small perturbations in
the nuclear generation rate or the luminosity will result in a change in the nuclear
generation rate that restores equilibrium.

so
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9.2 Thermal Instability

The crucial assumption that was made in the previous section was that the gas
followed the ideal gas law and so Pgas ∝ ρaT b. The chain of events described in
the preceding section can also be explained as follows. An increase in Lnuc leads to
an increase in temperature, which causes an increase in pressure (due to the ideal
gas law), which causes the gas to expand, which does work on the surrounding star,
causing the gas to expand and cool, lowering the temperature and returning Lnuc to
equilibrium.

If the gas is degenerate, then Pgas ∼ Pe = Kρ5/3 (or ρ4/3 if the gas is relativistic)
and Pgas is independent of temperature. In this case an increase in Lnuc will not
result in an increase in pressure, even though the temperature increases. To get a
better understanding of this effect, we consider a homologous change in the star. By
this, we mean that in time dt, a shell of radius r is displaced to r+ dr = r(1+ xdt),
where x is a constant, so that all layers of the star increase in size with the same
proportion. This implies that

ṙ
r
=
∂ lnr
∂ t

= x. (9.10)

Since x is a constant throughout the star,

∂
∂m

(
∂ lnr
∂ t

)
= 0, (9.11)

and so

∂
∂ t

(
∂ lnr
∂m

)
=

∂
∂ t

(
1
r
∂ r
∂m

)
=

∂
∂ t

(
1

4πr3ρ

)
=

1
4πr3ρ

(
−3

ṙ
r
− ρ̇
ρ

)
= 0, (9.12)

or
ρ̇
ρ
=−3

ṙ
r
. (9.13)

From the equation of hydrostatic equilibrium,

P =

∫ M

0

Gm
4πr4 dm, (9.14)

we obtain

Ṗ =

∫ M

0

∂
∂ t

(
1
r4

)
Gm
4π

dm =

∫ M

0
− ṙ

r
Gm

4πr4 dm =−4
ṙ
r

P. (9.15)

We combine Eqs. (9.13) and (9.15) to get a relation between P and ρ :

Ṗ
P
=

4
3
ρ̇
ρ
, (9.16)
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which implies

dP
P

=
4
3

dρ
ρ

. (9.17)

We can look at a variety of equations of state by assuming a generic form

P =CρaT b, (9.18)

where a and b are positive constants; then

dP
P

= a
dρ
ρ

+ b
dT
T

, (9.19)

and so: (
4
3
− a

)
dρ
ρ

= b
dT
T

. (9.20)

As long as a < 4/3, then an increase in density (due to contraction) leads to an
increase in temperature. This is the case for ideal gases where a = b = 1. However,
for degenerate gases, which have a ≥ 4/3 and b � 1, the pressure is determined
by ρelectron alone and an expansion would result in a slight increase in temperature.
This is usually applied to the core of a star so that if the temperature increase leads
to an increase in Lnuc, then the density will further decrease, leading to an increase
in T . This is an unstable result and will continue until the temperature is so high and
the density is so low such that the degeneracy is lifted.

9.3 Thin-Shell Instability

Another instance of thermal instability occurs when nuclear burning happens in a
spherical shell. This can happen when nuclear fuel has been exhausted in the core
but the temperatures are high enough outside of the core for fusion to continue in
a layer surrounding the core. Consider a thin shell of mass Δm, temperature T ,
and density ρ , shown in Fig. 9.1. The shell lies between a fixed inner boundary r0

(generally set by a core) and an outer boundary r, such that �= (r− r0)� r0. This
is a thin shell. If the shell is in thermal equilibrium, then the rate of nuclear energy
generation within the shell, q(Δm), is equal to the net rate of heat flow out of the
shell. If q increases, then the shell will expand and lift the layers above it. This, in
turn, will result in a decrease in pressure. Depending upon the thickness of the shell
and the equation of state of the gas, this can result in an instability. As we have seen,
hydrostatic equilibrium requires

dP
P

=−4
dr
r
. (9.21)
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m, T, 
m, T+dT, +d

r0

r r+dr

� �+d�

Before After

Fig. 9.1 Configuration of a
nuclear burning thin shell.
The configuration prior to
expansion is on the left and
the configuration of the shell
after expansion is on the
right. If the temperature
increases after expansion,
then the nuclear burning rate
will increase, causing the
expansion to continue

Since
Δm = 4πr2

0�ρ , (9.22)

we have
dρ
ρ

=−d�
�
. (9.23)

Noting that d�= dr, this becomes

dρ
ρ

=−dr
�
=−dr

r
r
�
, (9.24)

and
dP
P

= 4
�

r
dρ
ρ
. (9.25)

Applying the generic equation of state from Eq. (9.18), we find

(
4
�

r
− a

)
dρ
ρ

= b
dT
T

. (9.26)

In this case, thermal stability requires that a < 4�/r. As can be seen, a sufficiently
thin shell can always violate this condition for any value of a, at which point an
expanding shell will result in an increase in temperature, which will increase the
nuclear burning rate. The expansion will continue until � becomes large enough for
the stability condition to be met.
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Problem 9.1: A shell of hydrogen is burning around a helium core of radius r.
If the gas is described by an ideal gas, what is the minimum outer radius of this
shell if the hydrogen burning is stable? What is the minimum outer radius if the
gas is a nonrelativistic degenerate gas?

Finally, we note that significant variations of F as a result of variations of T can
alter this discussion as a change in F can also result in an increase in the temperature
in a shell of the star. In completely ionized gases, F is much less sensitive to
temperature than q is. However, instabilities can also occur at temperatures near
the ionization energies of the constituent gases. Fluctuations about stable thermal
equilibrium points and unstable deviations from equilibrium occur on thermal
timescales. Thus, these instabilities usually occur over millions of years.

9.4 Dynamical Instabilities

Dynamical instabilities result in fluctuations (or catastrophic collapses or
expansions) on dynamical timescales. The following discussion is a simplified
example of how dynamical perturbations can lead to instabilities. We will consider
perturbations in the pressure and density of a shell at r(m). If the system is in
equilibrium, then the pressure induced by the weight of the gas above the shell is
equal to the internal pressure of the gas in the shell. For this configuration to be
stable, any compression of the shell should result in an excess of pressure within
the shell, exerting a restoring force that returns the shell to equilibrium.

The pressure is set by the equation of hydrostatic equilibrium:

Ph =

∫ M

m

Gm
4πr4 dm, (9.27)

where we have assumed P(M) = 0 and we have retained the subscript h to indicate
that this is the hydrostatic pressure needed to support the outer layer of the star. The
density of the star at r(m) is given by the continuity equation:

ρ =
1

4πr2

dm
dr

. (9.28)

As before, we consider a homologous perturbation that results in a contraction:

r′ = r(1− ε), (9.29)

where ε � 1. As a result of this contraction, the new density is

ρ ′ =
1

4πr′2
dm
dr′

=
1

4πr2 (1− ε)2

dm
dr

dr
dr′

=
ρ

(1− ε)3 
 ρ(1+ 3ε). (9.30)
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Now, if we are looking at dynamical perturbations, the timescale is short enough
that we can assume the contraction is adiabatic, so

P′
gas = P

(
ρ ′

ρ

)γa

= P(1+ 3ε)γa 
 P(1+ 3γaε). (9.31)

The perturbation also changes the required hydrostatic pressure by

P′
h =

∫ M

m

Gmdm

4πr4 (1− ε)4 
 Ph(1+ 4ε). (9.32)

If the star is to remain stable, then the new gas pressure [Eq. (9.31)] must be greater
than the new hydrostatic pressure [Eq. (9.32)] in order to restore equilibrium. Since
Pgas = Ph prior to the contraction, this implies

P′
gas > P′

h =⇒ 3γa > 4 =⇒ γa >
4
3
. (9.33)

If γa >
4
3 throughout the star, then there is global stability. If the adiabatic exponent

varies throughout the star, it can be shown that if

∫ M

0

(
γa − 4

3

)
P
ρ

dm < 0, (9.34)

then the star will be unstable. In other words, we weight the adiabatic exponent by
the ratio of P to ρ , so that if γa <

4
3 in the core of the star where P/ρ is large, it will

be unstable even if γa > 4
3 in the atmosphere. On the other hand, if γa < 4

3 in the
atmosphere but γa >

4
3 in the core, the star can still be marginally stable.

Stars may become dynamically unstable near the end of their lives. If the core
of a star reaches the Chandrasekhar mass and the gas becomes relativistic and
degenerate, then γa → 4

3 and the star is at an inflection point. Any perturbation will
lead to collapse that proceeds on a dynamical timescale. This is generally the fate
of massive stars. If the pressure of a star becomes dominated by radiation pressure,
then β → 0. In this case, γa → 4

3 . Then, the virial theorem gives −Ω =Urad and so
E = Ω +Urad = 0 and the star becomes unbound, in agreement with the discussion
of the Eddington luminosity in Sect. 8.4.

When the temperature of the gas in a star is just at the threshold of ionization,
the adiabatic exponent can drop below 4

3 and lead to dynamical instability. In this
case, if the number density of ions/electrons is low, then ionization is more likely to
occur than recombination. If the number density is high, then recombination is more
likely. Returning to Sect. 5.5 and Eq. (5.66) which gives the adiabatic exponent for
a mixture of ionized and neutral gas and applying kT ∼ ξ , we have

γa =
20+ 49x(1− x)
12+ 31x(1− x)

. (9.35)

This gives γa < 4
3 for 0.18 ≤ x ≤ 0.82. Thus partially ionized gases near the

ionization temperature can be unstable to dynamical perturbations.
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If the star is dynamically stable, it will oscillate about its equilibrium state with
a characteristic frequency. We can determine this frequency using the dynamical
equation and considering Eq. (9.29) as a perturbation with a time-dependent ε .
Starting with an equilibrium radius r0 and pressure P0, the dynamical equation gives

0 =−Gmdm

r2
0

− 4πr2
0dP0, (9.36)

since r̈ = 0 at equilibrium. Using r = r0 (1− ε), the dynamical equation gives

r̈dm =−r0dmε̈ =−Gmdm
r0

(1− ε)−2 − 4πr2
0 (1− ε)2 dP. (9.37)

Continuing with the assumption that ε � 1, we keep only terms of order ε in the
dynamical equation and use Eq. (9.31) to find dP = dP0 (1+ 3γaε), so that

− r0dmε̈ =−Gmdm

r2
0

(1+ 2ε)− 4πr2
0dP0 (1− 2ε+ 3γaε) . (9.38)

Substituting in for 4πr2
0dP0 from Eq. (9.36), we find

ε̈ =−Gm

r3
0

(3γa − 4)ε. (9.39)

This is the equation for a simple harmonic oscillator with an oscillation frequency of

ω =

√
(3γa − 4)

Gm

r3
0

. (9.40)

If γa < 4/3, then the frequency is imaginary and ε grows exponentially, so the
perturbation is unstable. If γa > 4/3, then the perturbation oscillates about the
equilibrium state and the system is stable.

Problem 9.2: For an ideal gas, what is the stable oscillation frequency for m =
1M� and r0 = 1R�?

9.5 Convection

The dynamical stability discussed so far has been for shells of matter. Another
instability involves individual packets of gas within a shell. This is convection. In
convection, a packet of gas at slightly higher temperature and lower density than the
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Fig. 9.2 The configuration
for analyzing the criterion for
convection. Note that since
the temperature decreases
toward the surface of a star,
the temperature gradient in a
star is negative. Therefore
dTad and dTstar are both
negative

surrounding gas will continue to rise until it is no longer hotter or less dense than its
surroundings. In convection, the packet of gas is always assumed to have the same
pressure as its surrounding gas.

When determining whether convection can be sustained, we need to look at the
conditions that allow a rising bubble of gas to remain hotter than its surroundings.
We consider a bubble of gas that rises and expands adiabatically as shown in Fig. 9.2.
From the ideal gas law P = (R/μ)ρT , we have

dP
dr

=−P
μ

dμ
dr

+
P
ρ

dρ
dr

+
P
T

dT
dr

, (9.41)

and if we assume that the composition doesn’t change, then μ = constant, and

dP
dr

=
P
ρ

dρ
dr

+
P
T

dT
dr

. (9.42)

Since the expansion is adiabatic, we have P = Kργa , and so

dP
dr

= γa
P
ρ

dρ
dr

. (9.43)
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Combining these two equations, we can obtain the temperature gradient of the rising
gas bubble:

dT
dr

∣∣∣∣
ad
=

T
P

(
1− 1

γa

)
dP
dr

. (9.44)

Since the gas bubble is in pressure equilibrium with the surrounding gas,

dP
dr

=−ρGm
r2 , (9.45)

and dT
dr

∣∣∣∣
ad
=

T
P

(
1− 1

γa

)(
−ρGm

r2

)
. (9.46)

Finally, we use the ideal gas law again to obtain

T
P
=

μ
Rρ

, (9.47)

and
dT
dr

∣∣∣∣
ad
=−Gmμ

Rr2

(
1− 1

γa

)
. (9.48)

This is the change in temperature of the bubble as it rises.
If the actual temperature gradient in the star is steeper than the adiabatic

temperature gradient, then the bubble will remain hotter (and therefore less dense)
than its surroundings and continue to rise. Thus the condition for convection is

∣∣∣∣dT
dr

∣∣∣∣
star

>

∣∣∣∣dT
dr

∣∣∣∣
ad
=

GMμ
Rr2

(
1− 1

γ

)
. (9.49)

Once this condition has been met, convection will be the dominant energy transport
mechanism and the equation

dT
dr

=− 3
4ac

κρ
T 3

F
4πr2 (9.50)

will no longer be valid—unless F is replaced by a function that includes energy
transport by convection.

Problem 9.3 Starting with Eq. (9.44), show that the condition for convection
can also be written

d lnP
dlnT

<
γa

γa − 1
.
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9.6 Mixing Length Theory

The details of energy transport by convection are not well modeled, but an
empirical model called the “mixing length theory” can provide an approximation
of the convective flux, Fc. In this model, we assume that the gas bubble will
eventually transfer its excess heat to the surrounding stellar material after traveling
a characteristic distance �, called the mixing length. The mixing length is expressed
as �= αHp, where Hp =−(∂ lnP/∂ r)−1 is the scale height of pressure variation in
the star and α is some constant to be determined empirically. The convective flux
will then be the rate at which this heat is transferred during the bubble’s rise. Since
the process of convection is a constant pressure process, the amount of heat that
flows from the bubble to the surroundings over the mixing length can be written:

δQ = ρCpδTf , (9.51)

where Cp is the specific heat at constant pressure and δTf is the temperature
difference between the bubble and its surroundings if no heat flow had occurred:

δTf =

(
dT
dr

∣∣∣∣
ad
− dT

dr

∣∣∣∣
star

)
�= δ

(
∂T
∂ r

)
. (9.52)

Thus, in order to obtain an expression for the convective flux, we need to determine
the rate at which the bubbles transfer this heat. If we assume the bubbles travel at an
average speed v̄c, then the rate of heat transfer over the mixing length is

Fc = δQv̄c =CpδTfρ v̄c. (9.53)

Now, we need to estimate v̄c. We do this by assuming that the kinetic energy gained
by the bubble is equal to the work done on the bubble by the buoyant force and
that v̄c is proportional to the average speed found from the kinetic energy. The net
force is

f =−gδρ , (9.54)

where δρ is the density difference between the bubble and its surroundings and g is
the local acceleration:

g =
Gm
r2 . (9.55)

The fluid is an ideal gas under constant pressure, so

δP =
P
ρ
δρ +

P
T
δT = 0, (9.56)

δρ = −ρ
T
δT, (9.57)
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f = ρg

(
δT
T

)
, (9.58)

where δT is the instantaneous temperature difference and varies from 0 at the
beginning up to δTf after the bubble has traveled �. Thus, we will approximate
the average force as

f =
1
2
ρg

δTf

T
. (9.59)

Thus, the work done by the buoyant force is f �.
The average kinetic energy is 1

2ρ
〈
v2
〉
, and we will express v̄c as v̄2

c = α ′ 〈v2
〉
,

where α ′ is another constant to be determined empirically. Therefore

1
2
ρg�

δTf

T
=

1
2
ρ

v̄2
c

α ′ , (9.60)

so

v̄c =

[
α ′g
T

]1/2[
δ
(
∂T
∂ r

)]1/2

�. (9.61)

Finally, we have

Fc = δQv̄c =Cp

[
δ
(
∂T
∂ r

)]3/2 [α ′g
T

]1/2

ρ�2. (9.62)

The pressure scale height can be written

Hp =
P
ρg

=
RT
μg

, (9.63)

so

�= αHp = α
RT
μg

(9.64)

and

Fc = Cp

[
δ
(
∂T
∂ r

)]3/2[α ′g
T

]1/2

ρα2
[
R

μ

]2 [T
g

]2

= α2α ′1/2ρCp

[
R

μ

]2 [T
g

]3/2 [
δ
(
∂T
∂ r

)]3/2

. (9.65)

This theory requires two “fudge factors” (α and α ′) that are of order unity,
although there is a stronger dependence on α . Additionally, there is a fairly strong
dependence on the differences in temperature gradients. Since a larger value of Fc

will tend to reduce this difference, the net result is that convection nearly always
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results in a temperature gradient that is equal to the adiabatic temperature gradient.
Consequently, Fc is chosen in order to maintain the adiabatic temperature gradient
when the star is unstable with respect to convection.

Problems

9.1. A shell of hydrogen is burning around a helium core of radius r. If the gas
is described by an ideal gas, what is the minimum outer radius of this shell if
the hydrogen burning is stable? What is the minimum outer radius if the gas is a
nonrelativistic degenerate gas?

9.2. For an ideal gas, what is the stable oscillation frequency for m = 1M� and
r0 = 1R�?

9.3. Starting with Eq. (9.44), show that the condition for convection can also be
written

d lnP
dlnT

<
γa

γa − 1
.



Chapter 10
Stellar Birth

We are now in a position to begin describing the evolution and structure of
stars. We have the dynamical equations that were developed in Chap. 4. We have
the descriptions of the auxiliary variables, P, F , and q, that were developed
in Chaps. 5–7. Finally, we have an understanding of the appropriate instabilities
developed in Chap. 9. With all of these tools in hand, we will start with the birth of
stars from clouds of cold interstellar gas and dust.

10.1 The Jeans Criteria

Most stars in the Galaxy are thought to have formed in clusters through the collapse
of cold interstellar clouds. These clouds consist of molecular hydrogen as well as
dust and other molecules. They have temperatures in the range of 10–100 K and
number densities around 108 m−3. The total masses are about 106 M� and typical
sizes are about 30 pc (100 lyr) across. Typically, these clouds are in hydrostatic
equilibrium until some perturbation drives them out of equilibrium. By this we mean
that the perturbation must be large enough to push the cloud outside of the stability
regime so that the cloud starts to collapse. When collapse begins, the cloud will
fragment into separate collapsing regions whose size and mass can be estimated
using the equation for radial evolution for a spherically symmetric cloud:

d2r
dt2 =−Gm(r)

r2 − 1
ρ
∂P
∂ r

=−Gm
r2 − 4πr2 ∂P

∂m
. (10.1)

If the pressure term dominates, then the cloud will expand on a timescale governed
by the speed of sound in the gas, cs. For a cloud of mass m, density ρ , and
temperature T , this timescale is

ts 
 R
cs
∝

Rρ1/2

P1/2
∝ m1/3ρ−1/3T−1/2. (10.2)
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On the other hand, if the self-gravity term dominates, then the cloud will collapse at
a rate governed by free fall:

tff 

(

Gm
r3

)−1/2

∝ (Gρ)−1/2 . (10.3)

The entire cloud does not collapse, only those regions with tff � ts will do so. Thus,
in regions where tff � ts, deviations from equilibrium will tend to result in collapse.
This provides us with the means to estimate the mass of a collapsing cloud in terms
of the density and temperature.

We can obtain an expression of the typical mass of a collapsing cloud by
considering the virial theorem, written as

∫ Ps

Pc

VdP =−1
3

∫ Ms

0

Gmdm
r

, (10.4)

where the subscript “s” indicates the value on the surface of the collapsing part of
the cloud and Pc is the pressure at the center of the collapsing part. Using integration
by parts, we have ∫ Ps

Pc

VdP = [PV ]|Ps
Pc
−

∫ Vs

0
PdV . (10.5)

Because Vc = 0, [PV ]|Ps
Pc
= PsVs and

∫ Vs

0
PdV = PsVs +

1
3

∫ Ms

0

Gmdm
r

= PsVs +
α
3

GM2
s

Rs
, (10.6)

where α depends upon the internal structure of the cloud. For the conditions in
molecular clouds, the gas can be assumed to be isothermal, since the optical depth
is nearly zero at these temperatures and densities. Therefore,

∫ Vs

0
PdV =

R

μ
T
∫ Vs

0
ρdV =

R

μ
T Ms, (10.7)

or
R

μ
T Ms = PsVs +

α
3

GM2
s

Rs
. (10.8)

Since Vs is clearly nonnegative and Ps is the external pressure pushing on the cloud
(so Ps ≥ 0), then equilibrium cannot occur if

R

μ
T Ms <

α
3

GM2
s

Rs
. (10.9)
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Defining the mean density to be ρ0 = Ms/(
4
3πR3

s ), we have

Rs =

(
3Ms

4πρ0

)1/3

(10.10)

and
R

μ
T <

α
3

GMs

(
4πρ0

3Ms

)1/3

=
α
3

G

(
4πρ0

3

)1/3

M2/3
s . (10.11)

Solving for the mass, we have

Ms >

[
R

μ
T

3
αG

(
3

4πρ0

)1/3
]3/2

= MJ, (10.12)

where the Jeans mass is defined as

MJ =

[
RT
μG

]3/2 [ 3
4π

]1/2[ 3
α

]3/2

ρ−1/2
0 . (10.13)

If we assume constant density, then α = 3/5, and

MJ =

[
5RT
μG

]3/2[ 3
4πρ0

]1/2

. (10.14)

For typical values found in interstellar clouds, this is

MJ = 1.2× 105 M�
(

T
100K

)3/2( ρ0

10−21 kg/m3

)−1/2

μ−3/2. (10.15)

Problem 10.1: The Jeans length (RJ) is defined to be the minimum radius
necessary to collapse a cloud of density ρ0.

(a) Use the expression of the Jeans mass to obtain the following one for the
Jeans length:

RJ =

√
15RT

4πμGρ0
.

(b) For a typical diffuse hydrogen cloud, T = 50K and n = 5× 108 m−3. If
we assume that the cloud is entirely composed of H I, ρ0 = mHn = 8.4×
10−19 kg/m3. Taking μ = 1, determine RJ for this cloud.



136 10 Stellar Birth

In an interstellar gas cloud, only objects with M ≥ MJ can begin to collapse.
Of course, most stars are considerably less massive than 105 M�. Clearly some
other effects must eventually become important in order to reduce the mass of
collapsing objects to typical stellar masses. Initially, the cloud is transparent to
the blackbody radiation emitted by a cold cloud, so the collapse can be considered
isothermal as any increase in temperature is immediately radiated away. However,
the density will naturally increase and thus, since MJ ∝ T 3/2ρ−1/2, the Jeans mass
will decrease. This means that smaller subregions of the collapsing cloud that are
slightly overdense to start with can then begin to collapse. This process is known as
fragmentation.

Fragmentation will continue until the temperature begins to rise. While the
collapsing cloud is transparent, the collapse is isothermal and continues on a free-
fall timescale. Once the density of the gas is high enough that the cloud becomes
opaque and can no longer radiate away the energy gained through gravitation,
then the collapse will become adiabatic. Generally at this point, the gas can be
considered to be a monatomic ideal gas, and so the adiabatic collapse proceeds
along P∝ T 5/2 ∝ ρ5/3, so T ∝ ρ2/3 and MJ ∝ ρρ−1/2 = ρ1/2, and the fragmentation
ceases since the Jeans mass now increases with increasing density. To estimate the
lowest mass stars that can be formed by this process, we note that the rate of energy
loss during isothermal collapse is

A 
 E
tff

=
GM2

R
(Gρ)1/2 =

(
3

4π

)1/2 G3/2M5/2

R5/2
. (10.16)

This rate cannot be larger than the blackbody rate for a cloud of the same
temperature:

B = (4πR2)
(
σT 4) f , (10.17)

where f is some fraction less than 1. During isothermal collapse, B � A. When
B 
 A, then the transition to adiabatic collapse occurs. Equating B and A gives

M5 =

[
64π3

3

][
σ2 f 2T 8R9

G3

]
. (10.18)

Replacing R by 3M/4πρ0 and applying Eq. (10.14) to eliminate ρ0, we find

MJ =

(
3× 59

64π3

)1/4
1√
σG3

(
k

μmH

)9/4

f−1/2T 1/4. (10.19)

If f = 1, then we can set a lower limit on MJ of MJ ≥ 0.036. More reasonable values
of f ∼ 0.1 and T ∼ 103 K give MJ ≥ 0.36.
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10.2 Formation of a Protostar

In the preceding section, we made a number of simplifying assumptions in order to
obtain an analytical description of the dynamically unstable and inherently nonlinear
process of the collapse and fragmentation of an interstellar cloud to form stellar
mass objects that will further collapse to form stars. After fragmentation, the process
involves more of the dynamical evolution equations once the opacity, equation
of state, molecular dissociation, and atomic ionization begin to come into play.
Eventually, the central densities and temperatures will become high enough for
nuclear processes to begin. A comprehensive treatment of star formation requires
numerical solution to these coupled, nonlinear equations.

Nonetheless, certain gross features and processes can be understood from a
more qualitative description of the process of the formation of a protostar. Here we
will look at the evolution of a 1 M� fragment from isothermal collapse to nuclear
ignition. For this example, we will take the initial temperature of the fragment to be
Ti = 50 K. From this information and the assumption that the fragment is initially
in virial equilibrium, we can obtain the initial size and luminosity of the fragment.
From virial equilibrium, we have

1
2

Mv2
rms 


3
5

GM2

Ri
, (10.20)

and vrms =
√

3kTi/μmH = 1000 m/s for Ti = 50 K. Therefore,

Ri =
2
5

GMμmH

kTi

 2× 105 R�, (10.21)

and the luminosity is
Li = 4πσR2

i T 4
i 
 102 L�. (10.22)

We can also obtain the particle number density:

ni =
3M

4πμmHR3
i


 1014μ−1 m−3. (10.23)

If it were visible, the fragment would appear above and to the right of its final
location on the main sequence on the H-R diagram.

The initial collapse will be isothermal, so the track would be a vertical line in the
H-R diagram. Since the radius will decrease and L ∝ R2T 4

eff, the luminosity drops.
Although the temperature is constant, the pressure for an ideal gas will increase as
the density increases. In particular, consider the radial evolution equation:

r̈ =−Gm
r2 − 4πr2 ∂P

∂m
=−Gm

r2 − 1
ρ
∂P
∂ r

. (10.24)
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For an order of magnitude estimate, note that

1
ρ
∂P
∂ r


 1
ρ0

Pc

R
∝

T
R
, (10.25)

where Pc is the central pressure and

− Gm
r2 
−GM

R2 . (10.26)

Therefore, for constant M and T , gravity dominates once the collapse begins and
R shrinks. We can assume the pressure term is negligible during this first stage of
collapse, so the timescale for the isothermal collapse is the free-fall timescale.

We can quickly estimate the free-fall timescale by considering the time it takes
for a test mass to fall from R to 0 due to the gravity of a point mass M at the origin.
This can be calculated from Kepler’s third law, using an orbit with e = 0 and 2a= R:

tff =
Porb

2
=

√
4π2a3

4GM
=

√
π2R3

8GM
=

√
3π

32Gρ0
. (10.27)

For the fragment under discussion, T ∼ 50 K, n = 1014 m−3, ρ 
 mHn 
 2 ×
10−13 kg/m3, then

tff 
 4,700years. (10.28)

Note that tff ∝ ρ−1/2, and so the central regions will be more dense, and their
density will increase during the collapse. The optical depth is given by τ = κρR
and is proportional to density for the central regions of the star. At the beginning,
the opacity is mainly due to dust, so κ 
 10−3 m2/kg and the density is ρ 

10−10 kg/m3. Once the density becomes large enough, the star becomes opaque
as the optical depth begins to exceed τ = 2/3 at its center. At this point, the rate
of collapse slows substantially in the core as the internal temperature and pressure
begin to increase, while the photosphere begins to move out from the center. This
leads to a central object called a protostar with freely falling gas around it. The
temperature and luminosity of the protostar are set by the photosphere which
is defined as the radius where τ = 2/3. This radius is typically out where the
temperature is still ∼ 50 K.

Problem 10.2: Using the opacity for dust and taking the initial density to
be ρ 
 10−10 kg/m3, determine the radius of the star when the optical depth
becomes 2/3 at the center. Assume constant density.

The protostar is in hydrostatic equilibrium, and the gas from the collapsing cloud
continues to fall onto the surface of the protostar. A shock wave develops once
the speed of the in-falling material exceeds the local speed of sound in the
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Fig. 10.1 A cartoon of the structure of the collapsing cloud with a hydrostatic protostar,
surrounded by a shock front, embedded in a freely falling collapsing cloud

gas (Fig. 10.1). From the perspective of the gas, the surface of the protostar is
crashing into it at supersonic speeds. Remembering that we are still working on
the assumption of spherical symmetry, the accretion rate of material onto the shock
front can be approximated by assuming that the mass of a shell (m(r)) falls onto the
front in the free-fall time from radius r. This can be related to the escape velocity by

Ṁ =
m(r)
tff(r)


 v2
escr/G
r/vesc

=
v3

esc(r)
G

, (10.29)

where v2
esc(r) = Gm(r)/r. The shock front is found when the escape velocity equals

the speed of sound, vesc = cs, so

Ṁ =
c3

s

G
= 2× 10−6

(
T

10K

)3/2

M� year−1. (10.30)

Thus, a protostar of mass M is built up in a time given by

t∗ 
 5× 105
(

M
M�

)(
T

10K

)−3/2

year. (10.31)

The next stage in evolution occurs as the central temperature of the protostar reaches
∼ 2000 K. At this temperature the molecular hydrogen begins to dissociate. Similar
to the discussion of ionization, dissociation absorbs energy and doubles the number
of gas particles. This tends to decrease the adiabatic exponent. Since the adiabatic
exponent for a diatomic molecule is 7/5= 1.4, a reduction in the adiabatic exponent
results in a dynamical instability where γa < 4/3. The result is that the core becomes
unstable and begins to collapse again. Qualitatively, the energy of collapse goes into
dissociation rather than increasing the temperature. After dissociation is complete,
the adiabatic exponent grows to γa = 5/3 for a monatomic gas and the collapse halts.
Another shock wave develops in the envelope, but there is very little gas left in the
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envelope, and the growth of the mass of the star essentially stops. The collapse of
the core now begins to cause the temperature to rise and eventually hydrogen and
helium are ionized.

If we assume that all the internal energy increase from collapse goes into
dissociation and ionization of the hydrogen and helium, then we can find an upper
bound on the radius of the ionized part of the forming protostar. The energy
available from collapse to some radius R is GM2/2R. The energy required to ionize
a component gas in a star of mass M is

E = M

(
Xi

AimH

)
ξ , (10.32)

where ξ is the ionization energy per atom and Ai is the atomic mass of component
species i, which has mass fraction Xi in the star. For dissociation, the equation
is similar in form, but A is replaced by the molecular mass and ξ is now the
dissociation energy. Thus, the total energy required to dissociate and ionize the
hydrogen and helium in a star of mass M is

E =
M

4mH
[X (4ξH + 2ξd)+YξHe] , (10.33)

where the dissociation energy of molecular hydrogen is ξd = 4.48eV, and the
ionization energies of hydrogen and helium are ξH = 13.6eV and ξHe = 78.98eV,
respectively. If we now assume that the metal content of the collapsing cloud is
negligible, we can set Y = 1−X and then

E =
MξHe

4mH

[
1+

(
4ξH + 2ξd

ξHe
− 1

)
X

]
=

(
3× 1039 J

)
(1− 0.2X)

M
M�

. (10.34)

Equating this energy to the energy released from collapse to R allows us to solve for
the final radius:

R
R�

=
GM�2

2R� (3.8× 1039 J) (1− 0.2X)

M
M�


 50
1− 0.2X

M
M�

. (10.35)

For a typical primordial composition of X = 0.75, the size of a 1M� protostar is
approximately 60R�. The central temperature of the protostar is

T 
 GMmH

κR
∼ 105 K. (10.36)

The photosphere is still governed by the dust opacity and so the effective tempera-
ture still remains constant at Teff ∼ 50K. Since

L ∝ T 4
effR

2, (10.37)



10.2 Formation of a Protostar 141

so
Li

L f
=

R2
i

R2
f

=

(
105

60

)2

= 3× 106 (10.38)

and the final luminosity is Lf 
 10−4 L�.

Problem 10.3: The typical metal composition of a star with solar metallicity is
described by X = 0.68, Y = 0.3, and Z = 0.02. Using these values, determine
the radius and central temperature of the star after ionization of hydrogen and
helium.

As the outer edge of the star moves inward, the effective temperature now begins
to rise. When Teff ∼ 103 K, the dust vaporizes and the opacity drops substantially
and so the photosphere approaches the surface of the hydrostatic core. At this point a
strong temperature gradient develops and convection becomes the dominant energy
transport mechanism. This part of the contraction is very poorly modeled, so the
exact process is uncertain, but the end result is that the effective temperature is
increased to ∼ 4000 K and the radius is ∼ 60R�. Because the main process at work
here is convection, this stage occurs quickly at ∼ 300 days. A qualitative way of
describing this process is to consider that the luminosity is produced by the release
of gravitational energy:

E 
 GM2

R
(10.39)

in a timescale of

t 

(

GM
R3

)−1/2

, (10.40)

so

L ∼ E
t
∝ R−5/2. (10.41)

Now, the effective temperature is Teff ∝
(
L/R2

)1/4 ∝ R−9/8, so

L ∝ T 20/9
eff . (10.42)

This change in the effective temperature continues until the dense core is essentially
complete. Then, the luminosity is governed by the release of energy from matter
accreted from the gas cloud, so

L ∝ GMṀ/R. (10.43)

Initially, L increases as M increases and R decreases, but as M and R stabilize, L is
essentially constant and fixed by Ṁ.
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10.3 Contraction to Main Sequence

At the end of the formation of the protostar, the cloud of gas has become a fully
convective ball of radius R ∼ 50R�, Teff ∼ 4,000 K, and L ∼ 100L�. This ball
will continue to collapse since the only source of energy for the luminosity is
gravitational energy. Thus, the temperature of the star will continue to increase.
Eventually, the temperature of the outer atmosphere is great enough to partially
ionize the heavier elements. The electrons released by this process can form H−
ions. The opacity law for H− is

κH− ∝ ρ1/2T 9. (10.44)

For a protostar that is fully convective, we can obtain a relationship between Teff, M,
and L for an opacity law of the form κ = κ0ρnT−s. The thin radiative atmosphere
of the protostar governs the rate at which energy can be emitted from the protostar,
while the convective bulk of the protostar governs the rate at which energy is brought
up to the surface. At the boundary between the atmosphere and the bulk of the
protostar, we can equate the pressure calculated down from the atmosphere to that
calculated up from the bulk, which will relate the effective temperature to the bulk
properties of the protostar.

Near the surface of the star the structure equations read

dP
dm

= − GM
4πR4 , (10.45)

dT
dm

= − 3
4ac

κ
T 3

L

(4πR2)2 . (10.46)

Combining these yields
dP
dT

=
16πacGMT3

3κL
. (10.47)

Using the ideal gas law, we can write the density in terms of the pressure and
temperature to find

ρ =
P
T
μ
R

, (10.48)

so using κ = κ0ρnT−s gives

dP
dT

=
16πacGM

3κ0L

(
R

μ

)n

P−nT n+s+3. (10.49)

Integrating this equation gives us the relation for the pressure near the surface of
the star:

Pn+1
s ∝

M
L

T n+s+4. (10.50)
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Within the convective bulk of the protostar, we know that the pressure and
temperature are related by the condition for convection, so

dP
dT

=
γa

γa − 1
. (10.51)

For a monatomic ideal gas, γa = 5/3 and therefore

P = KT 5/2, (10.52)

where K is a constant that depends on the mass and radius of the protostar. We can
determine this dependence by expressing Eq. (10.52) in terms of a dimensionless
pressure and temperature. From the hydrostatic equation and dimensional consider-
ations, we define a dimensionless pressure p = P/P0, where

P0 =
GM2

R4 . (10.53)

Using the ideal gas law, we can define a dimensionless temperature t = T/T0 by

P = pP0 ∝
(

R

μ

)
3M

4πR3 T0t, (10.54)

so

T0 = P0

( μ
R

) R3

M
=

( μ
R

) GM
R

. (10.55)

Returning to Eq. (10.52), we have

pP0 = KT 5/2
0 t5/2. (10.56)

Therefore,

K =
P0

T 5/2
0

∝ M−1/2R−3/2. (10.57)

Finally, using the Stefan–Boltzmann law, we can write R ∝ L1/2T−2, and the
pressure relation for the convective bulk is

Pb ∝ M−1/2L−3/4T 11/2. (10.58)

Equating Pb and Ps at the photosphere gives us the following relation for Teff in a
fully convective photosphere:

Teff ∝
(

M
M�

)7/51( L
L�

)1/102

K. (10.59)
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This is a very weak dependence on L, so as the star contracts, the luminosity drops,
but there is almost no change in Teff. As the star contracts, it follows an almost
vertical line in the H-R diagram known as a Hayashi track. Stars will continue to
move along Hayashi tracks until the temperature gradient favors radiative transport
over convection. We can determine this point on the H-R diagram by considering
the actual temperature gradient and comparing this with the radiative temperature
gradient for a given L(r) and κ .

The internal temperature varies as T ∝GM/R as the star moves down the Hayashi
track, so the actual temperature gradient is

∂T
∂ r

∝
GM
R2 . (10.60)

The radiative temperature gradient is

dT
dr

∣∣∣∣
rad

=− 3κρF
16πacT3r2 ∼ κ

(
M/R3

)
L

(μMR3)R2 ∼ κL
μ3M2R2 . (10.61)

Since κ ∝ ρnT−s ∼ Mn−sRs−3n, then

dT
dr

∣∣∣∣
rad

∝ Mn−s−2LRs−3n−2. (10.62)

Now, when the radiative temperature gradient equals the actual temperature gra-
dient, then radiative transfer will take over and convection will cease. This occurs
when the ratio of these gradients equals one. This is equivalent to requiring

Ms−n+3

LRs−3n =C, (10.63)

where C is a constant. Since Teff is essentially constant as the star moves along the
Hayashi track, we assume L ∝ R2, so

C =
Ms−n+3

Rs−3n+2 , (10.64)

and
dlnL
dlnM

= 2

(
s− n+ 3

s− 3n+ 2

)
(10.65)

if Ms−n+3 ∝ Rs−3n+2.
From the equation of effective temperature, we have

∂ lnTeff

∂ lnM

∣∣∣∣
L
=

n+ 3
9n+ 3− 2s

, (10.66)
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so the line of constant ratios has a slope of

∂ lnL
∂ lnTeff

=
2(9n+ 3− 2s)

n+ 3
s− n+ 3
s− 3n+ 2

. (10.67)

For H− opacity, this slope is 39. Accurately calculating these gradients for a specific
case will set the location of this line. Once a collapsing star crosses this line, it will
leave the Hayashi track as the core begins to become radiative. At this point, the
luminosity evolution again follows from the conversion of gravitational energy, so

L ∝ T 2.2
eff . (10.68)

The track along this line is called the Henyey track. At this point, the core density
increases and the core temperature increases until fusion begins and the collapse is
halted. The star is now at the zero age main sequence (ZAMS). Very low mass stars
may not achieve sufficient temperature and density in the core to ignite fusion. In
this case electron degeneracy pressure may be sufficient to halt the collapse. These
are called brown dwarfs.

Problem 10.4: Assume that the opacity is dominated by the H− ion. Show that

R ∝
(

M
M�

)13/17

R�

when a star enters the Henyey track. If a 1M� star has a radius of 5R� when
it enters the Henyey track, what is the radius of a 2M� star at this point in its
evolution?

The generic path of the birth of a star from collapse of the cloud to ZAMS is shown
in Fig. 10.2. Stars with final masses below about 0.5M� will achieve fusion in the
core before leaving the Hayashi track. In general, the timescales are determined by
the mass of the object, and so low-mass stars spend more time at every phase of the
birthing process.

Problems

10.1. The Jeans length (RJ) is defined to be the minimum radius necessary to
collapse a cloud of density ρ0.

(a) Use the expression of the Jeans mass to obtain the following one for the Jeans
length:

RJ =

√
15RT

4πμGρ0
.
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(b) For a typical diffuse hydrogen cloud, T = 50K, and n = 5 × 108 m−3. If
we assume that the cloud is entirely composed of H I, ρ0 = mHn = 8.4 ×
10−19 kg/m3. Taking μ = 1, determine RJ for this cloud.

10.2. Using the opacity for dust and taking the initial density to be ρ 

10−10 kg/m3, determine the radius of the star when the optical depth becomes
2/3 at the center. Assume constant density.

10.3. The typical metal composition of a star with solar metallicity is described
by X = 0.68, Y = 0.3, and Z = 0.02. Using these values, determine the radius and
central temperature of the star after ionization of hydrogen and helium.

10.4. Assume that the opacity is dominated by the H− ion. Show that

R ∝
(

M
M�

)13/17

R�

when a star enters the Henyey track. If a 1M� star has a radius of 5R� when it enters
the Henyey track, what is the radius of a 2M� star at this point in its evolution?



Chapter 11
Main Sequence Structure

Numerical solutions to the equations of stellar structure can provide detailed
description of the interiors of stars. Some general features of stellar structure can
be discovered through these solutions. The mass distribution indicates that for high-
mass stars with M ≥ 1.2M� over 95 % of the mass is contained within ∼ 60% of the
radius. For lower-mass stars, this extends out to about 80 % of the radius. Naturally,
the energy production is significantly higher in high-mass stars and extends out
to larger radii. Combined with the increased density in the cores of higher-mass
stars, this increased energy production results in a convective core and a radiative
envelope for stars with M ≥ 1.2M�. The situation is reversed for low-mass stars
with M ≤ 1.2M�, which have a radiative core and a convective envelope. The
convection in the envelope is due to the increased opacity caused by the lower
temperatures of low-mass stars. In this chapter, we will discuss the zero age main
sequence (ZAMS) structure and subsequent evolution of high- and low-mass stars.

11.1 High-Mass Stars

When hydrogen begins to fuse into helium in the core of a star, it is considered to
be at ZAMS. For most high-mass stars, the high densities and pressures in the core
cause the CNO cycle to dominate the hydrogen burning process and the core is
convective. As the hydrogen burning progresses, the number of nuclei in the core
decreases and the mass fractions, X and Y , change. From Sect. 5.1, we have

1
μ
=

1
μI

+
1
μe

= 2X +
3
4

Y +(1−X −Y )

〈
1+Z

A

〉
, (11.1)

where we have used the fact that X +Y +Z = 1 to eliminate Z from the equation.
Noting that
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〈
1+Z

A

〉
∼ 1

2
(11.2)

for lower-mass metals, we can write this as

1
μ
=

1
2
+

3
2

X +
1
4

Y. (11.3)

Thus, as X decreases and Y increases, μ increases. During hydrogen burning, the
gas at the core can be treated as an ideal gas, so

P =

(
R

μ

)
ρT (11.4)

and an increase in μ results in a decrease in the pressure. This decrease in
pressure results in a contraction of the core and a subsequent rise in the density
and temperature, restoring the pressure required to support the star. This is a
consequence of the secular thermal stability discussed in Sect. 9.2. The increase
of ρ and T also produces an increase in the nuclear burning rate, increasing the
luminosity, L. Recalling the power-law approximations to the nuclear burning rates
from Sect. 7.2, the CNO cycle depends on T 19.9, compared to the p-p chain which
only depends on T 4. Consequently, there is a substantial increase in the luminosity
for high-mass stars as a result of a small change in the core temperature.

Problem 11.1: Assume that the core contraction associated with the increase
in μ is homologous, so that throughout the core, r → r+δ r. For an energy rate
given by q = q0ρTβ , show that the fractional change in energy rate is given by:

δq
q

=−(3+β )
δ r
r
.

Since the changes in the star are occurring on the nuclear timescale, we can assume
that the star remains in both thermal and hydrodynamic equilibrium during these
changes. Consequently, both the internal energy and the gravitational potential
energy are separately conserved. Therefore, when the core shrinks, the envelope
must expand to maintain the gravitational potential energy. Likewise, because the
core temperature increases, the envelope must cool to maintain the internal energy.
This produces the counterintuitive result that the contraction and heating of the
core causes the surface of the star to expand and cool. Despite the increase in Lnuc,
the effective temperature drops. Thus the star moves off to the right and above its
ZAMS location during the main sequence evolution. This is a standard feature of
stellar evolution that the radius, luminosity, and central temperature of a star increase
during the main sequence phase.
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Eventually, the core hydrogen will be almost completely depleted and hydrogen
burning stops in the core. For stars with convective cores, this occurs nearly
simultaneously throughout the convective region in the core. When nuclear burning
stops, the core quickly becomes isothermal as there are no new sources of heat in
the core. In order to maintain hydrostatic pressure, the core must set up a pressure
gradient to support the layers above it. From the ideal gas law, an isothermal core
can only set up a pressure gradient by developing a density gradient, since P ∝ ρT .
A generic feature of the cessation of core nuclear burning is a contraction of the
core in order to produce this density gradient. The gravitational energy released
through the collapse increases the luminosity, and the temperature at the outer edge
of the core increases enough to ignite a hydrogen burning shell around the core.
This causes the envelope to expand and the effective temperature to drop. The exact
details of the ignition of shell burning hydrogen and the collapse of the helium core
depend upon the ability of the isothermal core to support itself and the envelope
above it. We will now look at the details of isothermal core equilibrium.

In hydrostatic equilibrium, the pressure supplied by the isothermal core as
calculated from the core outward should equal the pressure caused by the weight
of the envelope above it as calculated from the surface inward. By imposing this
condition, we can obtain a constraint on the mass of the isothermal core, Mic, as a
fraction of the total mass M of the star. We define the mass fraction as

q =
Mic

M
. (11.5)

The basic configuration is shown in Fig. 11.1, and we will impose the condition
Penv = Pic.
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We begin by calculating Penv, the pressure in the envelope from the equation of
hydrostatic equilibrium:

Penv =

∫ Penv

0
dP =−

∫ Mic

M

Gmdm
4πr4 . (11.6)

The precise value of the integral depends upon the mass distribution in the envelope.
Nonetheless, from dimensional considerations, we can approximate this integral by:

Penv 
 −G
8π 〈r4〉

(
M2

ic −M2) , (11.7)

where
〈
r4
〉

is the “weighted average” value of r4 from the integral. Since we expect
the isothermal core to be a small fraction of the total mass of the star we approximate
M2 −M2

ic ∼ M2, so

Penv 
 GM2

8π 〈r4〉 . (11.8)

In the absence of any compelling reason to do otherwise, we assume the average of
r4 is half the maximum value, so

Penv 
 G
4π

M2

R4 . (11.9)

At the boundary between the isothermal core and the envelope, the temperature of
the gas in the envelope should equal the temperature of the isothermal core, so

P =
k

μmH
ρT =⇒ Tic =

PenvμenvmH

ρenvk
. (11.10)

We approximate the density of the envelope at the boundary by the mean density, so

ρenv 
 3M
4πR3 , (11.11)

and

R 
 1
3

GM
Tic

μenvmH

k
. (11.12)

We can now turn this around and substitute this expression for R back into the
equation for the hydrostatic pressure to obtain

Penv 
 81
4π

1
G3M2

(
kTic

μenvmH

)4

. (11.13)

This is the downward pressure of the envelope on the surface of the isothermal core.
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The outward pressure from the isothermal core is calculated using the virial
theorem. Recalling from Sect. 4.4, the virial theorem can be written as

d(PV )− P
ρ

dm =−1
3

Gmdm
r

. (11.14)

Integrating outward from the center to the surface of the isothermal core gives

3PicVic − 3
∫ Mic

0

P
ρ

dm =−
∫ Mic

0

Gmdm
r

, (11.15)

where the subscript “ic” indicates the values at the surface of the isothermal core.
The first term on the left-hand side of Eq. (11.15) is 4πR3

icPic. Assuming the core is
an ideal gas, the second term is

3
∫ Mic

0

P
ρ

dm = 2Uic, (11.16)

where Uic is the internal energy of the ideal gas, so

Uic =
3
2

(
Mic

μicmH

)
kTic. (11.17)

On the right-hand side of Eq. (11.15), we have the gravitational potential of the
isothermal core:

−
∫ Mic

0

Gmdm
r

=Ωic 
−3
5

GM2
ic

Ric
, (11.18)

where the factor of 3/5 arises from the assumption of constant density in the core.
Combining all of this together, we have for the pressure

Pic =
3

4πR3
ic

[
MickTic

μicmH
− GM2

ic

5Ric

]
. (11.19)

The term in brackets is quadratic in Mic, and so it has a maximum value at

Mic =
5
2

kTicRic

GμicmH
. (11.20)

This implies that the pressure of an isothermal core of mass Mic and temperature Tic

has an upper bound, and so

Pic,max =
375
64π

1

G3M2
ic

(
kTic

μicmH

)4

. (11.21)
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Equating the maximum isothermal core pressure to the envelope pressure gives a
critical value for the mass fraction of the isothermal core:

qcrit =
Mic

M
=

√
375

1296

(
μenv

μic

)2


 0.54

(
μenv

μic

)2

. (11.22)

This is known as the Chandrasekhar–Schonberg limit. A more rigorous calculation
using the mass distribution for a n = 1.5 polytrope for a radiative envelope gives
qcrit = 0.37(μenv/μic)

2.

Problem 11.2: A star starts out with a composition of X = 0.7, Y = 0.26,
and Z = 0.04, the metals have a solar distribution. Assume all the hydrogen
is burned in the core. What is the Chandrasekhar–Schonberg limit for this star?

If the isothermal core mass exceeds 0.37(μenv/μic)
2 M, then the core cannot support

the envelope and it begins to collapse. In some cases, the core can become partially
degenerate prior to or during this collapse, and so the above analysis needs to be
modified to handle the degeneracy.

Returning to the virial theorem in Eq. (11.15), we note that the internal energy
is the only term that needs to be modified to include degeneracy. In order to
approximate the smooth transition from classical to degenerate gas, we write the
pressure as a combination of an ideal gas plus the contribution from degenerate
electrons:

P =
ρ

μmH
kT +Kρ5/3, (11.23)

where

K =
1
5

h̄2 (3π2
)2/3

me

[
Z

A mH

]5/3

. (11.24)

Recalling that
1
μe

=∑
i

XiAi

Zi
(11.25)

and understanding that the composition of the core will change during the evolution,
we can pull out the composition dependence by defining K∗ such that

K =
K∗
μe

. (11.26)

Thus, we arrive at the approximation for the pressure of a partially degenerate gas:

P =
ρkT
μmH

+K∗
(
ρ
μe

)5/3

. (11.27)
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Consequently, the internal energy integral in Eq. (11.15) becomes

3
∫ Mic

0

P
ρ

dm =
3MickTic

μicmH
+ 3K∗

∫ Mic

0

ρ2/3

μ5/3
e

dm. (11.28)

From dimensional considerations, the integral on the right-hand side can be written:

3K∗
∫ Mic

0

ρ2/3

μ5/3
e

dm = α
3K∗
μ5/3

e

M5/3
ic

R2
ic

(11.29)

where α is a proportionality constant of order unity that depends on the mass
distribution in the isothermal core.

Therefore, the core pressure can be written:

Pic =
3

4πRic3

[
MickTic

μicmH
− 1

5
GM2

ic

Ric
+
αK∗
μe

M5/3
ic

R2
ic

]
. (11.30)

Partial degeneracy adds the third term in the brackets on the right-hand side. As a
function of Ric, the pressure now has two turning points at

Ric =
2

15
μic

GMicmH

kTic

⎡
⎣1±

(
1− 375αK∗

4mHG2

kTic

μicμeM4/3
ic

)1/2
⎤
⎦ . (11.31)

At the critical value of

Mcrit =

[
375αK∗kTic

4G2μicμemH

]3/4

, (11.32)

the two turning points coincide at an inflection point. For higher masses, there are
two turning points. For lower masses, there are none. For a core temperature of Tic ∼
2×107 K, the critical mass is ∼ 0.1M� for reasonable values of α . The pressure as
a function of radius for values of Mic around Mcrit is shown in Fig. 11.2.

When hydrogen burning stops in the core and q is less than qcrit, then the
isothermal core can support the envelope and the pressure and radius are given by
a point on the P(R) curve appropriate for the envelope pressure given by q. While
hydrogen burning continues in a shell around the core, the mass ratio increases.
An increasing mass ratio causes the P(R) curve to move to that defined by higher
core masses. If the core mass never exceeds Mcrit, then the core smoothly transitions
from ideal gas to degenerate gas. If the core mass eventually exceeds Mcrit, then as
the mass ratio increases, it will reach qcrit. At that point in the star’s evolution, there
is no stable solution and the core collapses toward the degenerate solution as the
temperature increases.
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Fig. 11.2 The pressure as a function of radius for various isothermal core masses. The steep rise in
pressure at small radii is due to the increasing degeneracy of the core gas. The star starts at a point
on the curve at large radius. As q increases, the star moves up the pressure curve. For Mic < Mcrit,
the star smoothly transitions to degeneracy. For Mic > Mcrit, q will eventually ready qcrit, and the
core will rapidly collapse

Stars with M ≥ 3M� have a core mass larger than Mcrit. We will now follow
the evolution of a high-mass star with shell hydrogen burning around an isothermal
helium core. The shell burning increases the mass of the core until q exceeds qcrit

and the core can no longer support the envelope. The ensuing collapse of the core
occurs at a thermal timescale tth ∼GM2/RL. For typical core values of Mic ∼ 0.1M�
and Ric ∼ 0.3R�, the timescale is tth ∼ 106 years. In this case, energy conservation
and the virial theorem require the gravitational potential energy,Ω , and the internal
energy, U to be each conserved separately.

The self-energy of the core is substantially greater than the self-energy of the
envelope, due to the smaller size and greater density of the core. Therefore, we can
approximate the total potential energy of the star as the self-energy of the core plus
the potential energy of the envelope due to the gravitational attraction of the core,
and ignore the self-energy of the envelope. Thus, we have

|Ω | 
 GM2
ic

Ric
+

GMicMenv

R
∼ constant, (11.33)

where R is the radius of the star. During the relatively rapid collapse of the core,
shell burning does not have time to appreciably add to the mass of the core, so we
can treat Mic and Menv as constants. Conservation of Ω then gives
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d
dt

|Ω |=−GM2
ic

R2
ic

dRic

dt
− GMicMenv

R2

dR
dt

= 0. (11.34)

Therefore, we have
dR
dt

=−
(

Mic

Menv

)(
R

Ric

)2 dRic

dt
, (11.35)

and the radius of the star increases as the core contracts. During this phase, the
matter below the hydrogen burning shell is collapsing while the matter above it is
expanding. This stage where the bulk of the luminosity arises from the collapse of
the core happens quickly (106 years) and so it is rare to observe stars at this point in
their evolution off the main sequence over to the red giant phase. This region of the
Hertzsprung–Russell diagram is called the Hertzsprung gap.

Problem 11.3 During the transition over the Hertzsprung gap, the radius of a
10M� star increases from Ri = 8R� to R f = 250R�. Assume that the core has
a mass of Mic = 0.1M� and initial radius of R0ic = 0.3R�. Use Eq. (11.35) to
show that the radius of the core after the collapse is 0.065R�.

As the envelope expands and cools, eventually the temperature drops to the point
that H− ions can form and begin to contribute to the opacity. The increased opacity
results in the development of a convection zone in the outer atmosphere. The
star continues to expand and cool due to the collapsing core, and so its effective
temperature and luminosity follow a Hayashi track, but in the reverse direction
from a collapsing protostar. Thus, the luminosity increases substantially while the
effective temperature remains fairly constant. At this point the star is a red giant.
The convection zone can reach all the way down to the hydrogen burning shell and
transport material enriched in metals from nuclear burning in the shell up to the
surface. This process is known as dredge-up.

The core remains nondegenerate during the collapse and as the temperature in
the core increases, it eventually reaches the ignition temperature for the triple alpha
process (T ∼ 108 K). The contraction of the core then halts and the star settles into
thermal and hydrodynamic equilibrium. The core expands slightly and the envelope
contracts. The star now consists of a helium burning core surrounded by a hydrogen
burning shell. As helium burning proceeds, the mean molecular weight increases
in the core as three helium nuclei are combined to form one carbon nucleus. The
change is not as dramatic as for hydrogen burning, but the core does contract slightly
and the luminosity increases.

During the helium burning stage, the convective region in the envelope shrinks
toward the surface, but the high-temperature dependence of the triple alpha process
causes a convective core to again develop. Stars burning helium in their cores occupy
a region in the Hertzsprung–Russell diagram called the horizontal branch. Stars
proceed through the horizontal branch on a nuclear timescale, so they are frequently
seen. Eventually a carbon core develops with a helium burning shell. Once again,
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we have a contracting core surrounded by a burning shell and so the envelope
expands and the luminosity drops. The evolution is now similar to the evolution
toward the red giant phase, except there are two shells of burning—an inner one of
helium and an outer one of hydrogen. A convective envelope develops and there is a
second dredge-up. The star follows the Hayashi track again along what is called the
asymptotic giant branch (AGB). A typical track of a massive star in the Hertzsprung–
Russell diagram is shown in Fig. 11.3. Further evolution depends strongly on the
mass of the star and can end in either a white dwarf or a supernovae. Before we
cover the details of late-stage evolution, we will look at low-mass stars.

11.2 Low-Mass Evolution

On the main sequence, low-mass stars have radiative cores and convective
envelopes. This has consequences as the core hydrogen is burned into helium.
In contrast to high-mass stars where convection ensures that fresh hydrogen is
mixed throughout the core, low-mass stars develop a hydrogen gradient and so
the transition from core burning to shell burning is gradual. Furthermore, the
temperature sensitivity of the p-p chain is lower, so the increased temperature at
the core due to changes in the mean molecular weight does not result in significant
changes in the radius of the star. Thus, during the core hydrogen burning of the
star, there is only a slight increase in Teff and L. Once the hydrogen is exhausted
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in the center of the core, it begins to contract and shell burning slowly moves out
from the core. This causes the envelope to expand, but with very little change in
luminosity, so the effective temperature drops. As the mass of the isothermal helium
core grows, the core becomes nearly degenerate while supporting the hydrogen
shell. Thus, there is no rapid collapse of the core as there is in higher-mass stars.
Low-mass stars simply move on a nuclear timescale from main sequence to red
giant with a degenerate helium core and a hydrogen burning shell. Consequently,
there is no Hertzsprung gap for low-mass stars.

As core contraction proceeds, the temperature and densities will eventually reach
the values where the triple alpha process can ignite. This occurs when the core mass
is ∼ 0.45M� and Tc ∼ 108 K. At this point, however, the core is fully degenerate,
and the equation of state

P ∝ ρ5/3 (11.36)

is independent of temperature. Thus, the onset of nuclear burning is thermally
unstable and does not cause the core to expand and cool. Instead, the temperature
increases and the nuclear burning increases with it until the degeneracy is lifted. The
unstable runaway of helium burning is known as the helium flash.

The helium flash describes the final few days of helium burning in a degenerate
core, prior to the lifting of the degeneracy. During this time the nuclear luminosity
of the core rises as high as Lnuc > 109 L�. This burst of luminosity does not
manifest itself as an explosive event. Instead, the helium core slowly expands
while convection, conduction, and radiation smoothly deliver the energy to the
surface. Detailed two- and three-dimensional hydrodynamic simulations are needed
to model the helium flash. The energy production rate for a simple one-dimensional
model is shown in Fig. 11.4.

Once the degeneracy is lifted, then further increases in T result in an expansion
of the core and the burning becomes stable. The expansion of the core results in a
shrinking of the envelope and there is a reduction in the luminosity of the star as it
stably burns helium into carbon and oxygen. If a star is sufficiently low mass, then
the expansion to the red giant phase is accompanied by an increased stellar wind and
mass loss from the envelope. This is caused by the increased opacity of the stellar
envelope and the increased luminosity from the contracting helium core. Since the
expanded envelope is also less gravitationally bound to the core, low-mass stars may
lose their entire envelope before the core reaches temperatures high enough to ignite
helium burning. The degenerate helium core simply continues to contract and cool,
resulting in a helium white dwarf. Stars with masses low enough to result in helium
white dwarfs have very long lifetimes and have not had the opportunity to reach
this stage in their lives within the age of the universe. Any helium white dwarfs
that are observed in the universe today must have followed a different evolutionary
path than the isolated stellar evolution described here. We will see in Chap. 13 how
helium white dwarfs arise from the evolution of interacting binary stars.
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Fig. 11.4 The time history of the energy production rate from helium burning as calculated from
a one-dimensional model of Dearborn, Lattanzio, and Eggleton. The rate of change of the thermal
energy of the core is shown in blue. Figure from Dearborn, Lattanzio and Eggleton, Astrophysical
Journal, 639, 405 (2006). Reproduced by permission of the AAS

11.3 Late-Stage Evolution

At this point, we have evolved both high- and low-mass stars up to the onset of
helium burning. So far, the main difference between high- and low-mass evolution
is that high-mass stars tend to smoothly transition to helium burning while low-mass
stars undergo a dramatic flash event that injects a pulse of energy into the envelope.
This trend continues through the subsequent evolution. This time we will start with
low-mass stars and conclude with high-mass stars.

For low-mass stars, the burning of helium into carbon and oxygen proceeds until
a carbon–oxygen core develops. With the loss of energy, the carbon–oxygen core
becomes isothermal and begins to collapse. Repeating the process at the creation
of the helium core, the collapse of the carbon–oxygen core results in an expansion
and cooling of the envelope of the star. The star grows even larger and is found
in the Hertzsprung–Russell diagram on what is called the AGB. These are known
as AGB stars. The expansion of the envelope at first includes the hydrogen burning
shell around the helium core, and so hydrogen burning is extinguished as the shell
cools. A second convection zone develops that reaches down to the upper regions of
the now quiescent hydrogen burning shell. This second dredge-up transports helium
and nitrogen to the surface of the star.
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The structure of an AGB star consists of a degenerate carbon–oxygen core,
surrounded by a shell of helium, that is surrounded by an envelope of hydrogen.
Because of the different energy generation rates and the response of the star to
the changing core, nuclear burning in the shells undergoes a series of pulses, with
burning oscillating between the hydrogen and helium shells. Hydrogen burning in
the outer shell leads to the deposition of helium onto the quiescent helium shell,
which contracts and heats up due to the addition of mass. As mass is added to
the helium shell, it eventually reaches the conditions necessary for the helium to
ignite. Burning in the helium shell is subject to the thin-shell instability discussed
in Chap. 9, and so ignition is accompanied by explosive burning called a shell flash.
The rapid release of energy during the shell flash causes the outer hydrogen burning
shell to expand and cool—turning off the hydrogen burning shell. After the shell
flash, the helium burning continues through the helium shell, depositing the carbon–
oxygen ashes onto the core until the helium shell is depleted. At this point, the
hydrogen shell reignites and begins to refill the helium shell.

The high luminosity of the shell flash can also push off the outer layers of the
star. We can see this by noting that the maximum convective luminosity is set by
the speed of sound. If a convective cell tries to transport matter faster than the speed
of sound (cs), then a shock wave will develop. Therefore, the maximum convective
luminosity is

Lmax, c 

(
4πr2)Ucs, (11.37)

where U ∝ ρkT/mH and cs 
 (kT/μmH)
1/2, so

Lmax, c 
 4πr2ρμ
(

kT
μmH

)3/2

. (11.38)

If the luminosity at the base of the envelope exceeds this value, then the radiative
transport takes over at the base of the envelope. The pressure gradient set up by
this is

dP
dr

=
dPrad

dr
+

dPgas

dr
=

4a
3

T 3 dT
dr

+
kT
μmH

dρ
dr

+
kρ
μmH

dT
dr

. (11.39)

We know the radiative luminosity in terms of the temperature gradient as

L =−16πac
3κρ

r2T 3 dT
dr

, (11.40)

so
Pgas

ρ
dρ
dr

=
1
r2

[(
κρL
4πc

)(
3Pgas

4Prad
+ 1

)
−mGρ−ρr2r̈

]
. (11.41)

If hydrostatic equilibrium is maintained, then r̈ = 0 and dρ/dr < 0, so at the base of
the envelope (at radius r1), we must have
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κρL(r1)

4πGcm(r1)

(
3Pgas

4Prad
+ 1

)
≤ 1 (11.42)

or

L(r1)≤ 4πGcm(r1)

κρ

(
3Pgas

4Prad
+ 1

)−1

. (11.43)

If the shell flash luminosity exceeds this value then r̈ > 0 at the base of the envelope
and the envelope accelerates away. If the flash is strong then some of the envelope
can be accelerated up to the escape velocity and be ejected. On the other hand, if
the shell flash is weak, then the envelope can expand enough that opacity drops and
the outer envelope cools sufficiently that there is a pressure drop and the envelope
recollapses. The shock front that develops when the envelope falls back on the core
can also eject outer layers of the envelope. Numerical simulations indicate that AGB
envelopes can be ejected in this fashion on timescales of a few thousand years.

Another mechanism by which stars can lose mass is through a stellar wind.
The details of stellar winds are not well understood, but the gross features can be
understood from an interplay of the expansion of the atmosphere and the increased
heating of the core. The expanding atmosphere cools to the point that molecules and
dust particles begin to coalesce in the outer layers of the envelope. These particles
are accelerated by the radiation pressure from the increasingly hot core. If they
achieve escape velocity, they will entrain gas about them and carry away some of
the atmosphere as well. This reduces the mass of the envelope and consequently the
escape velocity is also lowered, making it easier for more mass to escape. Although
the details are sketchy, the end result is clear. The loss of the envelope leaves a
naked carbon–oxygen core with a thin atmosphere of either helium or hydrogen,
depending on the last stage of the shell burning cycle. The core is surrounded by a
shell of the ejected gas that fluoresces due to the strong ultraviolet emission from
the hot core. These are known as planetary nebulae. The naked core eventually cools
off to become a white dwarf. Carbon–oxygen white dwarfs are the end products of
stars with initial masses of M ≤ 10M�.

Higher-mass stars smoothly transition from helium burning to carbon burning,
maintaining shell burning in both the helium shell and the hydrogen shell. This
is due to the fact that the core mass is greater than the critical mass described in
Sect. 11.1 and so collapse proceeds to ignition before the core becomes degenerate.
This same process is repeated when the carbon is depleted in the core, leading to
neon and oxygen burning. Successively heavier nuclei are fused in the core of the
star until a core of nickel and iron develops. Despite the presence of nickel and other
heavy elements, this is referred to as an iron core. The typical structure of a massive
star at this point in its evolution is shown in Fig. 11.5.

Recalling from Chap. 7, the fusion of higher-mass nuclei yields less energy per
mass and so the burning rates must increase in order to supply the needed energy
to support the star. The last phase of silicon burning typically lasts only a few days.
Further fusion in the iron core is endothermic and cannot supply any extra energy.
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Fig. 11.5 Schematic of the
nuclear burning shells in a
high-mass star at the
development of the iron core.
Burning is proceeding in each
shell, fusing elements in the
shell to feed the shell below
it. The relative sizes of the
shells are not to scale and the
size of the envelope would be
substantially larger than
shown

Therefore, once the iron core reaches the critical mass ratio and begins to collapse,
no new source of energy is available to halt the collapse. The increased density
and temperature lead to photodissociation of the heavy nuclei, returning the core
to a collection of protons, neutrons, and electrons. Degenerate electron pressure
is insufficient to halt the collapse once the Chandrasekhar mass is reached. At
sufficiently high densities, the process of inverse beta decay occurs as the electrons
and protons combine to form neutrons. All of these processes continue to remove
energy from the core during further collapse. Additionally, the inverse beta decay
removes electrons from the core, eliminating any degenerate electron pressure and
lowering the total number of particles in the gas, which further drops the pressure.

The net result is a catastrophic loss of pressure and support for the core and it
collapses. The collapse is homologous, so the inward velocity of each layer in the
core is proportional to its radius. This means that there exists a radius where the
collapse velocity exceeds the speed of sound in the gas and the core decouples from
the envelope. The upper envelope falls in with free-fall velocity.

The collapsing core continues to shrink until the central density surpasses
typically nuclear densities and the neutrons become degenerate. The degenerate
pressure halts the collapse. The core rebounds slightly and ends at a radius of
about 10–20 km. When the falling envelope strikes the rebounding core, an outward
traveling shock wave develops. However, the shock is eventually overcome by the
envelope and stalls, becoming an accretion shock, similar to the one encountered in
the formation of a protostar. A major difference between star formation and this case
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is a strong outflow of neutrinos coming from the core. The shock front is sufficiently
opaque to neutrinos so that the momentum added from absorption of these neutrinos
can push the envelope off of the core and unbind it in a supernova explosion.

The remaining core will emerge as a neutron star if the mass of the core is low
enough to be supported by degenerate neutron pressure. If the core mass exceeds
a certain value that depends upon the equation of state for neutrons at nuclear
densities, then the neutrons become relativistic and the core collapses to a black
hole. For sufficiently massive stars, particle pair production during the evolution
can cause an instability that disrupts the star before any degenerate core develops,
and there is nothing left after the supernova.

Problems

11.1. Assume that the core contraction associated with the increase in μ is
homologous, so that throughout the core, r → r+ δ r. For an energy rate given by
q = q0ρTβ , show that the fractional change in energy rate is given by

δq
q

=−(3+β )
δ r
r
.

11.2. A star starts out with a composition of X = 0.7, Y = 0.26, and Z = 0.04, the
metals have a solar distribution. Assume all the hydrogen is burned in the core. What
is the Chandrasekhar–Schonberg limit for this star?

11.3. During the transition over the Hertzsprung gap, the radius of a 10M� star
increases from Ri = 8R� to R f = 250R�. Assume that the core has a mass of Mic =
0.1M� and initial radius of R0ic = 0.3R�. Use Eq. (11.35) to show that the radius
of the core after the collapse is 0.065R�.



Chapter 12
Compact Remnants

White dwarfs, neutron stars, and black holes are the compact remnants that are the
endpoints of stellar evolution. Although nuclear processes have stopped in these
objects, they each continue to evolve in ways that are unique to their structure. As
white dwarfs cool and become more degenerate, their baryon structure changes,
altering their cooling process. Neutron stars are frequently born with high magnetic
fields that slowly decay and spin down the neutron star. Black holes, however,
will not change much for eons. In this chapter, we will look at the properties and
continued evolution of these exotic objects.

12.1 White Dwarfs

A white dwarf is supported by degenerate electron pressure, and so its structure
can be approximated quite well by a polytrope of index n = 1.5 if the electrons
are nonrelativistic. In this case, the mass–radius relation scales as R ∝ M−1/3.
The typical radius can be found by noting that R = αRn, where α is found from
Eq. (8.21):

α =

[
(n+ 1)K

4πG
ρ (1−n)/n

c

]1/2

, (12.1)

and K is found from Eq. (5.44):

K =
1
5

h̄2(3π2)2/3

me

[
Z

A

1
mH

]5/3

. (12.2)

We can relate the central density ρc to the average density (and thus to the mass M
and radius R of the white dwarf) by

ρc = Dnρ̄ = Dn
3M

4πR3 . (12.3)
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Fig. 12.1 Approximate
structure of a white dwarf
showing the atmosphere and
the core. The thickness of the
atmosphere is greatly
exaggerated

Combining these together yields the radius as a function of the mass:

R =

(
3π2

)1/3

16
h̄2

Gmem5/3
H

R2
n

D1/3
n

1

M1/3
, (12.4)

where Rn and Dn come from the numerical solution for the n = 1.5 polytrope. The
radius for a typical white dwarf of mass M = 0.7M� is found to be about R =
10,000km, or nearly twice the size of the earth.

Near the surface, the density drops to zero and so there must be a nondegenerate
atmosphere of the white dwarf. The thickness of this atmosphere is on the order of
10−3 of the white dwarf radius, and so it is a very thin surface layer. This thin layer
of non-degenerate matter provides an insulating layer that regulates the rate of heat
loss from the white dwarf.

The rate of heat loss through the atmosphere can be approximated by assuming
that the white dwarf consists of a degenerate core of radius rc surrounded by a layer
of an ideal gas that extends out to the surface at radius R. Although the transition
from degenerate to ideal gas should be smooth and gradual, we approximate the
transition as a discrete step at rc. The approximated structure of a cooling white
dwarf is shown in Fig. 12.1.

Due to the high conductivity of the degenerate electrons, the core can be
considered to be isothermal with temperature Tc. The temperature at the base of the
atmosphere must also be Tc so that the temperature is continuous. As there are no
additional sources of energy in the atmosphere, the heat flux is constant throughout
the atmosphere and is equal to the luminosity L of the white dwarf. Therefore,
we can determine the temperature and luminosity evolution of the white dwarf by
considering the luminosity as a function of the core temperature Tc and relate this to
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the heat capacity of degenerate core. We can use the hydrostatic equation [Eq. (8.1)]
and the heat equation [Eq. (8.3)] combined with a Kramers opacity law to obtain an
expression relating the pressure and temperature throughout the atmosphere.

We assume that the mass of the atmosphere is negligible and so m = M
throughout the atmosphere, and we have

dP
dm

=− GM
4πr4 . (12.5)

The heat equation reads
dT
dm

=− 3
4ac

κ
T 3

L

(4πr2)
2 , (12.6)

with a Kramers opacity given by

κ = κ0ρT−7/2. (12.7)

Combining these using

dP =
dP
dm

dm
dT

dT (12.8)

gives

dP =
16πGacMT13/2

3κ0ρL
dT. (12.9)

We can eliminate the density from this equation by using the ideal gas law:

ρ =
Pμ
RT

, (12.10)

where μ is the mean molecular weight of both electrons and ions in the atmosphere.
Thus, we have

PdP =
16πGacR

3κ0μ

(
M
L

)
T 15/2dT. (12.11)

Integrating both sides of this equation from the surface of the white dwarf down to
any depth between R and rc gives an equation describing the pressure as a function
of the temperature, mass, and luminosity of the white dwarf:

P(T ) =

[
64πGacR

51κ0μ
M
L

]1/2

T 17/4. (12.12)

At the boundary where r = rc, the temperature must be continuous, so T = Tc. Since
the atmosphere is in hydrostatic equilibrium, the pressure in the atmosphere must
be equal to the degenerate pressure in the core. The ions are not degenerate and so



166 12 Compact Remnants

the ion pressures are identical on either side of the boundary. Therefore, equating
the pressures is equivalent to setting the degenerate electron pressure equal to the
ideal gas pressure due to the electrons:

Kρ5/3 =
R

μe
ρTc. (12.13)

This provides a relation between the density of the atmosphere at the boundary and
the temperature of the core which can be used to find an additional relationship
between P and Tc:

P =
1

μ2μ3
e

R

K3 T 5
c . (12.14)

Combining this with Eq. (12.12) gives the luminosity of the white dwarf as a
function of its mass and core temperature:

L
M

=

[
64πGacμμ3

e K3

51κ0R4

]
T 7/2

c . (12.15)

For typical white dwarfs, the atmosphere consists of a thin layer of hydrogen above
a layer of helium with some carbon and oxygen mixed in. The dominant source of
opacity is then bound–free scattering, so

κ0 = 4× 1021Z (1+X)
m5K7/2

kg2 . (12.16)

Although there is hydrogen in the atmosphere, the mass fraction is almost negligible
and so we adopt typical mass fraction values of X = 0, Y = 0.95, and Z = 0.05. In
this case, κ0 = 2×1020. Assuming that the contribution to Z comes from equal parts
carbon and oxygen, the mean molecular weight for ions is

1
μI

= X +
Y
4
+

Z
〈A 〉 =

0.95
4

+
0.05
14

= 0.24, (12.17)

where we have set 〈A 〉=(12+ 16)/2. This leads to μI = 4.15. The mean molecular
weight for the electrons is μe = 2 because we have assumed X = 0 and there are no
high A metals in the atmosphere. Therefore, the mean molecular weight is

1
μ
= 0.24+ 0.5= 0.74 =⇒ μ = 1.35. (12.18)

For μe = 2, the degenerate equation of state constant is K = 3.16×106. Combining
these typical white dwarf values with the other physical constants in Eq. (12.15),
we find

L
M


 1.1

(
Tc

108 K

)7/2 L�
M�

. (12.19)
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The source of this luminosity is the gradual cooling of the core. Since the degenerate
core is nearly incompressible, the cooling process can be modeled as a constant
volume process, and so

L =−MCV
dTc

dt
. (12.20)

The specific heat at constant volume can be split into two parts—one part due to the
ideal gas of ions and the other part due to the fraction of degenerate electrons that
can absorb or release thermal energy. The first part is quite simple:

Cion
V =

3
2

k
μmH

=
3
2

R

μ
. (12.21)

The contribution of electrons to the specific heat is somewhat more complicated, but
it can be approximated by noting that only those electrons with energy within kT of
the Fermi energy can absorb and release thermal energy. Thus, we simply scale the
specific heat to reflect this fraction:

Ce
V =

3
2

k
μemH

kTc

EF
. (12.22)

From this, we can see that although electron cooling can be important at the birth of
a white dwarf, the core is degenerate and it is cooling; therefore the contribution of
the electrons to the specific heat quickly becomes negligible as kTc � EF and grows
progressively less important. Therefore, we will approximate the specific heat as
Cion

V . Thus, the luminosity can be related to the cooling of the core by

L
M

=−3
2

R

μ
dTc

dt
. (12.23)

The temperature of the isothermal core is not an observable quantity for a white
dwarf. The important quantity is the luminosity. Using Eq. (12.15), we can relate
dT/dt to dL/dt, which we can then substitute into Eq. (12.23) and obtain a
differential equation governing the time dependence of the white dwarf luminosity:

dL
dt

∝ L12/7. (12.24)

The solution to this equation is

L(t) = L0

[
1+

(
L0

M

)5/7 t
τ

]−7/5

, (12.25)

where τ is the characteristic cooling time given by

τ =
3R

5μ

[
51κ0R

4

64πGacμμ3
e K3

]2/7

. (12.26)
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Fig. 12.2 Simple white
dwarf luminosity evolution
for a 0.7M� white dwarf with
a carbon–oxygen core and an
atmosphere composition of
Y = 0.95 and Z = 0.05. The
solid line gives the evolution
for an initial luminosity of 0.1
L�, while the dashed line
gives the evolution for an
initial luminosity of 104 L�.
This model ignores any
contribution to the luminosity
arising from heat released
during crystallization

For the typical white dwarf conditions described above, τ ∼ 60Myr. This is a
substantial underestimate at later times because the cooling time grows as the
temperature decreases, but it shows that the initial cooling is quite rapid. The
luminosity evolution for a 0.7M� white dwarf is shown in Fig. 12.2. As can be
seen there is a rapid drop in the luminosity in the first few hundred million years,
after which the white dwarf luminosity stays around 0.001L� for billions of years.
Because the initial drop in luminosity is so rapid, the choice initial luminosity is
almost unimportant in describing the long-term evolution of white dwarf luminosity.

Problem 12.1: Calculate the effective temperature and the core temperature of
a 0.7M� white dwarf if its luminosity is 10−3 L�.

As the core of the white dwarf cools, the thermal energy of the ions will eventually
become comparable to the energy of the electrostatic repulsion between the ions. At
this point the ideal gas law will no longer be a valid description of the core. When
this occurs, the ions will settle down into a crystal lattice with residual thermal
energy of the ions appearing as vibrations about their lattice positions. This process
is known as crystallization and is similar to a phase transition to a solid and so there
is a release of a latent heat. The additional source of heat slows the cooling process
at low luminosities. Once the core has become crystallized, coherent vibrations
known as phonons then accelerate the cooling process at very low temperatures.
The ultimate fate of a carbon–oxygen white dwarf is a large, dark carbon crystal.

One of the most notable features of white dwarfs is their faintness. From the
cooling curves, most white dwarfs will have luminosities on the order of 10−3 L�.
This corresponds to an absolute magnitude of about M = 12. At distances of 5 kpc,
typical of nearby globular clusters, the apparent magnitude is 25.7. White dwarfs
in the Magellanic clouds would be at the limiting magnitude for the Hubble space
telescope.



12.2 Neutron Stars 169

Table 12.1 Spectral classification of white dwarfs

Spectral type Spectral features

DA Hydrogen balmer lines; no He or metals
DB HeI lines; no H or metals
DC Blackbody only; no lines
DO HeII lines; HeI and/or H lines may be present
DZ Metal lines only; no H or HeI lines
DQ Carbon lines present
DX Otherwise unclassifiable

Since they shine entirely by cooling, their position in the H-R diagram is found
from L = 4πσR2T 4

eff. Using logL and logT as variables, we have

logL = log4πσR2 + 4logT. (12.27)

Because a white dwarf of a given mass has a specific radius, white dwarfs lie along
lines of slope 4 in the H-R diagram, with intercepts determined by the mass. The
spectrum of a white dwarf is dominated by the blackbody spectrum with spectral
lines indicating the composition of the atmosphere. White dwarfs are classified
by the dominant lines in their absorption spectra. The spectral classes are given
in Table 12.1

12.2 Neutron Stars

When the core of a massive star collapses, the subsequent explosion is called a
type II supernova. One of the possible remnants of a supernova is a neutron star—a
compact object of around 1.4M� that is supported by degenerate neutron pressure.
We can estimate the size of a typical neutron star by replacing me and mH in
Eq. (12.2) with mn and setting 〈Z /A 〉= 1 to obtain

Rns =

(
3π2

128

)1/3
h̄2

G
R2

n

m8/3
n

1

(DnM)1/3
. (12.28)

For M = 1.4M�, this gives Rns = 13.5km. This is a remarkably dense object with
over a solar mass concentrated in a volume the size of a small city. The escape
velocity for such an object is

vesc =

√
2GM

R
= 0.55 c. (12.29)

This clearly indicates that relativistic effects will be important when discussing
neutron stars. The gravitational potential energy of an object at the surface is about
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15 % of its rest mass. Nonetheless, the assumption of a nonrelativistic degenerate
equation of state is still valid for a typical 1.4M� neutron star, since EF ∼ 0.03mnc2.

The average density of a 1.4M� neutron star is 2.7 × 1017 kg/m3, which is
slightly higher than the density of the typical atomic nucleus. Using a n = 1.5
polytrope model, the central density is then ρc = Dnρ̄ = 1.6× 1018 kg/m3. There
are few observations of matter under these conditions and the full equation of
state is unknown for matter at densities above the nuclear density. Thus, our
understanding of the conditions in the centers of neutron stars is still uncertain.
Nonetheless, we expect the core of a neutron star to be a mixture of neutrons,
pions, other baryons and mesons, and possibly a quark-gluon plasma. As we move
outward from the core, we encounter the bulk of the neutron star interior, which
consists of degenerate neutrons that supply the necessary pressure to support the
star. In addition to the degenerate neutrons, there are a few protons and electrons
whose relative abundances are determined by the equilibrium state of the reaction
n � p + e−, taking into account the degeneracy of the electrons and protons.
Despite the relatively high temperature of neutron stars (∼ 106 K), the neutrons
and protons can be considered cold compared to the Fermi temperature. Thus, they
form Cooper pairs in a process similar to the behavior of electrons in a typical low-
temperature superconductor. This results in a fluid of neutrons and protons which
is a superconducting superfluid. In a superconductor, electric current flows without
any resistance. In a superfluid, the fluid itself flows without any viscosity. One effect
of superfluidity and superconductivity is to freeze in any magnetic fields that are
present in the interior of a neutron star at its creation and to lock in much of the
internal angular momentum.

The density continues to drop as we get closer to the surface of the neutron star.
Eventually, individual nuclei can begin to condense out of the degenerate neutron
fluid forming the inner crust. This inner crust consists of a mixture of free neutrons,
neutron-rich nuclei, and relativistic free electrons. The inner crust is a transition
zone where relativistic degenerate electrons supply the pressure and it becomes
energetically favorable of some neutrons to exist outside the nuclei. Ordinarily, free
neutrons will spontaneously decay into a proton and an electron in a process known
as beta decay. However, since there are no free electron states in the degenerate gas
available for the emitted electrons, the free neutrons remain. The process by which
free neutrons escape from neutron-rich nuclei is known as neutron drip.

The outer boundary of the inner crust is where the density becomes too low
for neutron drip to occur. Above this zone, the outer crust consists of a lattice of
nuclei and a sea of relativistic degenerate electrons. Near the surface, the nuclei are
mostly 56Fe, but at increasing depths, the Fermi energy of the degenerate electrons
becomes high enough that inverse beta decay can occur and the effect is to combine
electrons with protons to produce excess neutrons in the nuclei. This process is
known as neutronization. The nuclei become increasingly neutron-rich, producing
elements such as 62Ni, 80Zn, or 118Kr. The relativistic degenerate electrons in the
outer crust would normally produce a high conductivity, but the existence of strong
magnetic fields within the core inhibits the conductivity in directions orthogonal to
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Fig. 12.3 A cartoon of the
structure of the interior of a
neutron star. The bulk of the
neutron star is made up of
degenerate neutrons that
supply the pressure. The
crusts are supported by
degenerate electron pressure.
The outer crust consists of a
lattice of neutron-rich nuclei.
The inner crust contains both
nuclei and free neutrons as
neutron drip begins to be
important

the magnetic field lines crossing the crust. The generic structure of a neutron star is
shown in Fig. 12.3. The outer atmosphere of a neutron star is also strongly affected
by the magnetic field as we will see in the next section.

The birth of a neutron star is accompanied by the catastrophic collapse of the iron
core, followed by a type II supernova explosion. During the collapse of the iron core,
it shrinks from a roughly earth-sized (104 km) down to about 10 km. The collapse
is rapid and the core decouples from the envelope, so the angular momentum of the
core is conserved during the collapse. Therefore, the final rotational period, Pf , is
related to the initial rotational period, P0, by

Pf = P0

(
R f

R0

)2

, (12.30)

where R0 and R f are the initial and final radii. The initial rotation of the iron core
is not well known, but we can approximate it by noting that the last few stages
of nuclear burning take place on very short timescales and are accompanied by
contraction at each burning cycle. Thus, starting with a core radius of ∼0.3R� and
a typical solar rotation period of ∼10 days, we find the rotation period of the iron
core to be approximately 1 day. After collapse to a neutron star, the rotation period
shrinks to ∼100 ms. The angular momentum of the initial rotation is then frozen
into the superfluid core of the neutron star.

Problem 12.2: The minimum rotational period of an object held together by
gravity is found by equating the tangential velocity at the equator to the orbital
velocity of a test particle at the surface. Assume a neutron star remains spherical
even at these high rotation rates and determine the minimum orbital period.
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At the same time as the angular momentum is being frozen into the neutron star, any
magnetic fields present in the iron core will also be trapped by the superconducting
material in the core. The magnetic flux through the surface of the core scales as
Φm ∝ BR2, where B is the magnetic field. Thus, the growth of the magnetic field
scales similarly to the increase in the rotational period, resulting in a growth of a
factor of 106 in the magnetic field strength. The initial strength of the magnetic field
in the iron core is even less well known than the rotational period. However, typical
magnetic fields in young neutron stars are on the order of 108 T. If this is entirely
due to the freezing in of the flux, then the typical iron core magnetic fields would
be around 100 T. This value is enormous compared to the solar magnetic field of
∼ 1G ∼ 10−4 T, but is within the range of typical white dwarf magnetic fields.

12.3 Pulsars

When they are born, neutron stars are very hot, with internal temperatures of
∼1011 K, but they cool down rapidly due to a neutrino emission process whereby
a neutron undergoes beta decay to form a proton and an electron, which then
recombine through neutralization to form a neutron. The net result is that a neutron
emits a neutrino/antineutrino (νν̄) pair that both escape the neutron star and carry
away energy:

n → p+ e+ ν̄ p+ e → n+ν. (12.31)

This process is known as the URCA process. It continues to cool the neutron
star until the temperature is low enough that there are too few nondegenerate
neutrons and protons for there to be available states for the decay products. Typically
this is about 109 K. Further neutrino-based cooling can occur with neutron collisions
emitting νν̄ pairs as the very high-energy neutrons settle down into degenerate
states. Combined with photon emission from the surface, the neutron star cools
to about 106 K over the next few thousand years. Even at these temperatures, the
luminosity of neutron stars is less than solar luminosity, and the spectrum peaks
in the X-ray band. Thus, neutron stars are quite difficult to observe without X-ray
detectors.

In addition to the isotropic thermal emission, neutron stars also emit beamed
radiation due to their rapid rotation and the huge magnetic fields that are frozen in
at their birth. The radiation is beamed along an axis defined by the dipole moment
of the neutron star magnetic field. If the dipole moment vector is not aligned with
the angular momentum vector, then this beam of radiation is swept around with
the rotational period of the neutron star. If the beam crosses the line of sight to the
earth, we see a pulse of radiation. Typically, the radiation is in the radio band of the
spectrum and so these objects are given the designation PSR for pulsating source of
radio. They are called pulsars.
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Fig. 12.4 The magnetic field surrounding a neutron star. The dipole magnetic moment m is offset
by an angle α from the axis of rotation. The lines labeled RL denote the edge of the light cylinder,
where a co-rotating particle would have a tangential velocity equal to c. Outside of the light
cylinder, the dipole field lines do not accurately represent the true field lines of the pulsar

Consider the magnetic field to be pure dipole inclined at an angle α with respect
to the spin axis, as shown in Fig. 12.4. As the neutron star rotates, the magnetic field
near the surface varies rapidly. From Faraday’s law, this induces a large electric field
near the surface of the neutron star. The electric field dominates even the strong
gravity found at the surface and can pull ions and electrons off of the star. Thus,
the space surrounding the neutron star is filled with a plasma made up of ions and
electrons torn from the surface. This plasma creates a magnetosphere of charged
particles spiraling along the magnetic field lines and being dragged along with the
neutron star’s rotation. At a certain distance from the axis of rotation of the neutron
star, the tangential velocity of corotating particles will exceed the speed of light.
This defines a light cylinder aligned with the spin axis and with a radius of:

RL =
c
ω

=
cP
2π

, (12.32)

where ω = 2π/P for a pulsar with rotational period P. For a typical pulsar with
P = 100ms, RL = 4.8× 106 m, which is about two-thirds of the earth’s radius, but
about 500 times larger than the neutron star itself. At this radius, the plasma can no
longer keep up with the rotation and it distorts the magnetic field beyond the light
cylinder, carrying it away in a pulsar wind. Plasma near the poles of the magnetic
field are strongly accelerated and generate both curvature radiation and synchrotron
radiation which after some reprocessing through the plasma eventually become the
radio pulses observed at large distances.
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The main source of energy for the pulses and pulsar wind is the kinetic energy of
rotation of the neutron star. Although the interaction between the dipole magnetic
field and the plasma of the magnetosphere prevents the magnetic field from radiating
a pure dipole radiation field, we can estimate the rate at which rotational kinetic
energy is lost by looking at the power radiated by a rotating magnetic dipole and
assuming that this energy is simply reprocessed into the pulsar wind and radio
pulses. If we define a Cartesian coordinate system with the z-axis along the spin
axis of the pulsar, the magnetic dipole moment shown in Fig. 12.4 is given by

m =

√
π
μ0

BR3 (ex sinα cosωt + ey sinα sinωt + ez cosα) . (12.33)

A magnetic dipole moment radiates power at a rate related to the second time
derivative of the magnetic moment. Thus, the radiated power is

L =
2

3c3 |m̈|2 = 4πB2R6ω4 sin2α
6c3μ0

. (12.34)

We assume this power is reprocessed into pulsar radiation and the pulsar wind
through the plasma in the magnetosphere. The energy to drive this power comes
from the rotational kinetic energy; thus the pulsar should spin down as this energy
is lost. Relating the time derivative of the rotational kinetic energy to the radiated
power gives up a relation between the period, P, the period derivative, Ṗ, and the
magnetic field, B. Thus,

Iωω̇ =− 2
3c3 |m̈|2 =−4πB2R6ω4 sin2α

6c3μ0
(12.35)

or

Ṗ =
8π3B2R6 sin2α

3c3μ0PI
, (12.36)

where I is the moment of inertia of the neutron star.

Problem 12.3: Consider a pulsar with a mass of 1.4M� and a magnetic field
of B = 108 T at an angle of α = 30◦.

(a) Assume that the pulsar has constant density and calculate its moment of
inertia.

(b) Define the characteristic lifetime of a pulsar to be τ =P/Ṗ and compute the
characteristic lifetimes for P = 100ms, P = 10ms, and for the minimum
period.
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Pulsars are very precise clocks and both the pulse period and its time derivative
can be measured very accurately. Plotting Ṗ versus P shows that most pulsars are
born with short orbital periods and high magnetic fields which both gradually decay
as the pulsar loses energy to the wind and pulse emission. One class of pulsars
that show up in a P-Ṗ plot have short orbital periods, but low values of Ṗ. From
Eq. (12.36), we see that this implies a low magnetic field strength. These systems
are assumed to have been recycled by being spunup through the accretion of matter
from a companion.

12.4 Black Holes

If the mass of the central core is large enough at the end of a massive star’s life, then
degenerate neutron pressure will be unable to halt the collapse. There is no other
source of pressure known that will prevent the radius of the core from shrinking
beyond the point at which the escape velocity equals the speed of light. Clearly,
at this point, relativity is necessary to describe these compact objects. Although
a detailed treatment using general relativity is beyond the scope of this book,
several general features can be determined using a combination of special relativity
and Newtonian gravity. The critical surface at which vesc = c is called the “event
horizon.” Below this surface no information can escape from the black hole and so
the event horizon is frequently used to describe the size of the black hole although
it is not a solid surface at all. For a spherically symmetric black hole, the event
horizon is described by the Schwarzschild radius. Using Newtonian gravity, the
Schwarzschild radius would be found from equating the escape velocity to c:

vesc = c =

√
2GM

Rs
=⇒ Rs =

2GM
c2 . (12.37)

A detailed solution of the vacuum equations for general relativity yields precisely
the same result.

Given that the speed of light should be constant, one might ask how light
behaves when the escape velocity is equal to the speed of light. To fully answer
this question, we must use general relativity, which describes the gravitational
field around an object as a manifestation of curved space-time. We can gain some
understanding of the effects of a curved space-time by looking at the metric, which
is important in defining distances in space-time that are invariant or independent
of coordinate choice. Around a nonrotating, spherically symmetric black hole, the
invariant infinitesimal distance is described by the Schwarzschild metric, so

ds2 =

(
1− Rs

r

)
c2dt2 −

(
1− Rs

r

)−1

dr2 − r2 (dθ 2 + sin2 θdφ2) , (12.38)
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where the coordinates r, θ , and φ are closely related (but not identical) to the
usual spherical polar coordinates and t is the time measured by a clock at infinity.
The proper time (dτ) measured at radius r from the black hole is found by setting
all the spatial intervals to zero, so

dτ = dt

√
1− Rs

r
. (12.39)

If we consider dτ to measure the local period of oscillation of an electromagnetic
field at r, then the frequency of light emitted at radius r is redshifted by an amount
given by

f ′ = f0

√
1− Rs

r
(12.40)

for an observer at infinity. Note that at r = Rs, the frequency is redshifted to zero,
and so the photon carries no energy.

As we have seen with neutron stars, the remnant core of a massive star will
carry some angular momentum with it, and so it spins up as it collapses. Therefore,
we should expect black holes to also possess angular momentum and so the
Schwarzschild metric is inadequate for describing real black holes. The appropriate
metric for a spinning black hole with an angular momentum J, is the Kerr metric.
In a coordinate system which approximates spherical polar coordinates at large
distances, the invariant infinitesimal distance described by the Kerr metric is

ds2 =

(
1− Rsr

ρ2

)
c2dt2 − ρ2

Δ
dr2 −ρ2dθ 2 −

(
r2 +α2 +

Rsrα2

ρ2 sin2 θ
)

sin2 θ dφ2

+
2Rsrα sin2 θ

ρ2 cdtdφ , (12.41)

where Rs is still the Schwarzschild radius and

α =
J

Mc
(12.42)

ρ2 = r2 +α2 cos2 θ , (12.43)

Δ = r2 −Rsr+α2. (12.44)

A couple of notable features about the line element in the Kerr metric are that (1)
there is a cross term involving dtdφ and (2) the coefficients in front of dt2 and dr2

are no longer reciprocals of each other.
There are two important surfaces around spinning black hole. When Δ = 0, the

coefficient in front of dr2 becomes undefined. This surface gives the event horizon
at which it is impossible to escape from the black hole. Clearly the solution to Δ = 0
gives two values for r. The outer value is the event horizon:
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Fig. 12.5 The basic shape of
the event horizon and
ergosphere for a spinning
black hole

Rh =
Rs

2

(
1+

√
1− 4α2

R2
s

)
. (12.45)

Note that Rh ≤ Rs for all values of α , so that in some sense spinning black holes are
smaller than Schwarzschild black holes. The second surface is defined as the radius
at which the coefficient in front of c2dt2 goes to zero. It is still possible to escape
from the black hole from points between this surface and the event horizon. If we
assume that dr = dθ = dφ = 0, then the space-time interval becomes zero at this
surface. A space-time interval of zero implies that the path is followed by a particle
traveling at the speed of light. Therefore, just below this surface, it is impossible to
remain at rest with respect to the distant stars. This means that the space-time itself
is being dragged around by the spin of the black hole. This space within this surface
is called the ergosphere. Again, there are two solutions for the ergosphere, but the
inner one is within the event horizon, so the outer one defines the ergosphere:

Re =
Rs

2

(
1+

√
1− 4α2

R2
s

cos2 θ

)
. (12.46)

The horizon structure of a spinning black hole is shown in Fig. 12.5.

Problem 12.4: Determine the maximum value of the angular momentum that
a black hole may have and still have an event horizon.

An isolated black hole is clearly invisible, but it can make itself known in the
presence of a companion. At large separations, a black hole can be inferred by
its gravitational influence on a visible companion in a binary system. At closer
separations, the black hole can draw matter off of its companion. The infalling
material must lose energy as it is accreted into the black hole. This energy is radiated
away as X-rays.
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Problems

12.1. Calculate the effective temperature and the core temperature of a 0.7M�
white dwarf if its luminosity is 10−3 L�.

12.2. The minimum rotational period of an object held together by gravity is found
by equating the tangential velocity at the equator to the orbital velocity of a test
particle at the surface. Assume a neutron star remains spherical even at these high
rotation rates and determine the minimum orbital period.

12.3. Consider a pulsar with a mass of 1.4M� and a magnetic field of B = 108 T at
an angle of α = 30◦.

(a) Assume that the pulsar has constant density and calculate its moment of inertia.
(b) Define the characteristic lifetime of a pulsar to be τ = P/Ṗ and compute the

characteristic lifetimes for P = 100ms, P = 10ms, and for the minimum period.

12.4. Determine the maximum value of the angular momentum that a black hole
may have and still have an event horizon.



Part IV
Dynamical Systems

Up to half of all stars in the sky are thought to be binary systems. This implies that
nearly two-thirds of all stars evolve in the presence of a companion that may alter
their evolution. Furthermore, many stars are born in clusters. If the clusters are dense
enough, the dynamics of the stars in the cluster can cause single and binary stars to
encounter one another during their lives. These encounters can affect the further
evolution of the stars involved. Here we examine the consequences of dynamical
processes on the evolution of stars.



Chapter 13
Binary Evolution

Stars in binary systems do not evolve in isolation. If the orbital separation is small
enough, the tidal perturbations due to the companion can break the spherical sym-
metry that was assumed in the development of the evolution equations in Chap. 4
and then used in later chapters. For the most part, these additional considerations
do not significantly alter the evolution of the components of a binary since the
orbital periods are generally greater than dynamical timescales, yet much shorter
than thermal timescales. However, if the stars begin to directly interact through
mass transfer and mass loss, then the bulk properties of the components can change
in mid-evolution, resulting in a dramatically different outcome in the evolution
compared to isolated stars with the same properties. In this chapter, we will look
at the physics of mass transfer and the consequences of mass transfer and mass loss
on the evolution of the components of a binary as well as the binary system itself.

13.1 The Roche Model

We are interested in understanding the gravitational potential about a binary system
so that we can determine the motion of test bodies under the influence of the
gravitational field of both components of the binary. The behavior of the matter
in both stars will be governed by this combined potential. For simplicity, we will
consider only circular binaries in this section. In effect, we are looking at a three-
body problem. We consider the mass of the third body, m, to be infinitesimally small
compared with the components of the binary, so that its presence does not affect the
motion of the binary. In this case we can choose coordinates that rotate with the
binary, so that the components of the binary are at fixed coordinate positions. We
choose them to lie along the y-axis in this coordinate system with the origin located
at the center of mass of the system. We place the more massive star, m1, a distance
a1 in the negative y-direction, and the less massive star m2 is a distance a2 in the
positive y-direction. The rotational frequency is then

M. Benacquista, An Introduction to the Evolution of Single and Binary Stars,
Undergraduate Lecture Notes in Physics, DOI 10.1007/978-1-4419-9991-7 13,
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m1 m2a
1 a 2

rr1
r2

x

y

zFig. 13.1 Configuration of
the three-body problem with
the third body as a test mass
using corotating coordinates.
The origin is placed at the
center of mass of the system
and the rotation rate is
determined by the orbital
frequency of the binary
system consisting of m1
and m2

ω =
2π
P

=

√
G(m1 +m2)

a3 , (13.1)

with a = a1 + a2. The configuration is shown in Fig. 13.1. We can now write a
Lagrangian for the third body in these coordinates, making sure to include the
kinetic energy of rotation about the z-axis:

L =
1
2

m
(
ẋ2 + ẏ2 + ż2)+ 1

2
mω2 (x2 + y2)+ Gm1m

r1
+

Gm2m
r2

, (13.2)

where r1 = |r− a1| and r2 = |r− a2|. Note that we can group the last three terms of
the Lagrangian as a pseudopotential in the non-inertial corotating frame and the test
mass will then act like a particle moving under the influence of this pseudopotential:

Φ ′ =
1
2

mω2 (x2 + y2)+ Gm1m
r1

+
Gm2m

r2
. (13.3)

This has the effect of adding a fictitious “centrifugal” force to the problem. When
plotting out the equipotential surfaces of the pseudopotential, it is convenient to
translate the coordinates so that the origin lies on top of m1 and m2 is then located
at y = a. We can then rescale our lengths so that a = 1 and

a1 =
m2

m1 +m2
, (13.4)

and r1 =
√

x2 + y2 and r2 =

√
x2 +(y− 1)2. In the translated coordinates, the

pseudopotential becomes

Φ =−Gm1

r1
− Gm2

r2
− ω2

2

[
x2 +

(
y− m2

m1 +m2

)2
]
. (13.5)

We define Φn = −2Φ/G(m1 +m2) to be the normalized potential and define the
mass ratio to be q = m2/m1 so that 0 ≤ q ≤ 1. Then, we have

Φn =
2

(1+ q)r1
+

2
(1+ q)r2

+ x2 +

(
y− q

(1+ q)

)2

. (13.6)
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Fig. 13.2 Cross section of equipotential surfaces in the orbital plane of a binary with q = 0.4

Equipotential surfaces can be found by setting Φn = constant. A cross section of
equipotential surfaces in the xy-plane is shown in Fig. 13.2. All distances are in units
of a, and the shape of the surfaces is dependent upon q. There are five extrema in the
orbital plane, known as Lagrange points. A point between the two masses along the
line joining them is the saddle point called L1. The equipotential surface containing
L1 outlines the Roche lobes for both stars. Particles within the Roche lobes are under
the gravitational control of a single star. The L1 point is also referred to as the inner
Lagrange point. There is an outer Lagrange point (L2) located at y > 1 and a slightly
higher potential point at L3 at y < 0. There are two maxima at the third vertex of
equilateral triangles with m1 and m2 at the other two vertices. Remember that this
surface is in a corotating frame, and so these points are also rotating about the center
of mass of the system.

Very close to each component, the equipotential surfaces are nearly spherical and
therefore stars that are small compared to their Roche lobes evolve as if they were
in isolation. However, as the stars evolve, their radii increase. If the radius of a star
increases to the point that it begins to approach its Roche lobe, then the shape of
the star begins to become nonspherical as its surface is defined by the equipotential
surface which is also nonspherical. Although stellar evolution generally assumes
spherical symmetry, we usually work with locally defined quantities such as density.
Therefore, we are more concerned with the volume of the star, rather than its
radius. Hence, we introduce the effective radius, rL, of the Roche lobe. This is the
radius of a sphere that has the same volume as the Roche lobe. There are several
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approximations used for rL based on numerical modeling of the Roche geometry.
The most widely used one is from Eggleton and is calculated from the normalized
potential to be

rL =
0.49q2/3

0.69q2/3+ ln(1+ q1/3)
, (13.7)

where rL is the effective Roche lobe radius about the star whose mass is in the
numerator of q. Thus, the value of rL2 is computed using q = m2/m1, while the
value of rL1 requires using q=m1/m2. Since these radii are based on the normalized
potential, the actual Roche lobe radius is

RL = rLa. (13.8)

Once a star fills its Roche lobe, mass transfer begins as matter from the Roche lobe
filling star can now flow across L1 in a process known as Roche lobe overflow or
RLOF. During mass transfer, the mass-losing star is called the donor and the other
star is called the accretor. The transfer of matter between stars changes the mass
ratio of the system and therefore the Roche lobe geometry changes. In addition, the
loss of mass from the Roche lobe filling star can alter the rate at which its radius
changes. If the relative rate of change between the Roche lobe and the Roche lobe
filling star is such that it drives the surface of the star even further beyond the Roche
lobe, then the mass transfer will become unstable.

13.2 Mass Transfer Stability

We will first consider the case of conservative mass transfer in which no mass is
lost from the system. In this case, angular momentum is conserved and ṁ1 = −ṁ2.
Using Eq. (2.71) for the angular momentum of a circularized binary, we have

J = m1m2

√
Ga
M

, (13.9)

where M =m1+m2 is the total mass of the system. Since J̇ = 0, the rate of change of
the orbital separation can be expressed in terms of the rate of change of the primary
mass:

ȧ =
2(m1 −m2)a

m1m2
ṁ1. (13.10)

Note that, since m1 ≥m2, if the more massive star is the donor, then the orbit shrinks,
and if the less massive star is the donor, then the orbit expands.

If we want to know the rate at which the Roche radius changes with mass transfer,
we need to write Eq. (13.7) in a way that includes the change in a. Note that the
orbital separation can also be written as

a =
J2

GM3

(1+ q)4

q2 = ac
(1+ q)4

q2 , (13.11)
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Fig. 13.3 The Roche lobe
radius in units of ac as a
function of q. Note that the
slope is −2 for small q and 2
for large q. The minimum
occurs near q = 1

where ac = J2/GM3 is a constant throughout the mass transfer. The Roche lobe
radius is then

RL = ac
0.49(1+ q)4

0.69q2 + q4/3 ln(1+ q1/3)
. (13.12)

When both components of the binary are main sequence stars, the more massive star
usually evolves off the main sequence and fills its Roche lobe first. Therefore, we
should consider q = m1/m2 > 1 in Eq. (13.12). During mass transfer, it is quite
possible that m2 can gain enough matter from m1 so that it becomes the more
massive star. Thus, it is important to look at the behavior of RL for the full range of q
(i.e., 0 < q <∞). At small values of q, Rl ∝ q−2, while at large values of q, RL ∝ q2.
The minimum lies around q 
 0.8. Figure 13.3 shows RL/ac for 0.01 < q < 10.

The rate at which a radius changes with mass is usually described by the radius–
mass exponent, ζ = dlnR/dlnM, which is the logarithmic derivative of the radius
with respect to the mass. For the Roche lobe radius–mass exponent, we want to
know how RL1 varies with m1, on the assumption that m1 is the donor. Since
Eq. (13.12) gives RL as a function of q, we note that

∂ lnRL1

∂ lnm1
=

m1

RL1

∂q
∂m1

∂RL1

∂q
. (13.13)

Because the mass transfer is conservative, m2 also varies as m1 is changing.
Therefore we express m1 as a function of M and q:

m1 = M
q

1+ q
. (13.14)
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Thus,

ζL1 =
∂ lnRL1

∂ lnm1
= (1+ q)

∂ lnRL1

∂ lnq
. (13.15)

From here, we find that the radius–mass exponent for the Roche lobe is

ζL1 = 4q− 2
3
(1+ q)

[
2+

0.6q2/3+ 0.5q1/3
(
1+ q1/3

)−1

0.6q2/3+ ln
(
1+ q1/3

)
]
. (13.16)

Although it is not immediately apparent from the equation, ζL1 is a monotonically
increasing function of q. In the limit q → 0, ζL1 →−5/3, while ζL1 → 2q for large
q. In fact, it can be closely approximated by a line.

Mass transfer begins when one component of the binary fills its Roche lobe.
Since the mass transfer itself will cause q to change, the Roche radius will also
change. Similarly, mass loss from the donor star will cause its radius to change. The
stability of mass transfer will depend on the relative rates of change between the
stellar radius and the Roche radius. If the mass transfer drives the Roche radius to
become smaller than the stellar radius, then a runaway scenario will ensue and the
mass transfer will become unstable. On the other hand, if the mass transfer tends to
expand the Roche radius relative to the donor radius, then the mass transfer is stable.
Consequently, the radius–mass exponent of the donor star, combined with the mass
ratio of the binary, determines the stability of the mass transfer episode.

The radius–mass exponent for the mass donor depends on both the mass of the
donor as well as its evolutionary state. Generally, if the donor star is not degenerate,
then the transfer event will occur while the star is either burning hydrogen on the
main sequence, expanding to a red giant, or burning helium. These three states
are classified as case A, case B, or case C mass transfer. The typical radius of a
10M� star is shown in Fig. 13.4. At the onset of mass transfer, the star can only
adjust adiabatically as the mass transfer occurs on timescales much shorter than
the thermodynamic timescale. We compute the radius–mass exponent for the donor,
ζ∗ in the adiabatic limit. At the onset of mass transfer, R = RL1. If ζ∗ > ζL, then
the radius of the star becomes smaller than the Roche radius and the rate of mass
transfer is driven by stellar evolution causing the radius of the star to increase in size
at constant mass. Stable mass transfer therefore occurs on either a thermodynamic
or nuclear timescale. On the other hand, if ζ∗ < ζL, then the radius of the star
grows larger than the Roche radius and the mass transfer is unstable. Unstable mass
transfer occurs on a dynamical timescale. There is a critical value of mass ratio, qc,
when ζ∗ = ζL for a given type of star. Because ζL is a monotonic function of q,
binaries with q > qc will be unstable to mass transfer.

Polytropic models with adiabatic index γa = 5/3 are good approximations to
stars with convective envelopes. From Eq. (8.34)

R3−n ∝ m1−n, (13.17)
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Fig. 13.4 Evolution of the radius of a 10M� star with a metallicity of Z = 0.001, showing the
times of case A, case B, and case C mass transfer. Figure from Pfahl, Rappaport, & Podsiadlowski,
Astrophysical Journal 573, 283 (2002). Reproduced by permission of the AAS

we see that

ζ∗ =
1− n
3− n

. (13.18)

Therefore, for n = 1.5, ζ∗ = −1/3 for stars with convective envelopes. For fully
radiative envelopes, we would expect γa = 4/3, and so the polytropic index is n= 3.
Unfortunately, Eq. (8.34) then gives ζ∗ = −2/0, which is undefined. We are then
forced to use more sophisticated models to determine ζ∗. Typical results for main
sequence stars with M < M� give ζ∗ ∼ 0.7. For more massive stars with radiative
envelopes, then ζ∗ > 2. These typical values are shown in Fig. 13.5, along with the
curve of ζL(q). It is interesting to note that the radius–mass exponent for degenerate
objects such as white dwarfs is also ζwd =−1/3.

During mass transfer, the companion to the donor is accreting matter that is
falling into its Roche lobe from the donor. The matter entering from the L1 point
must lose its energy in order to fall into the companion. This causes the matter
to heat up and radiate away the lost energy. The luminosity of accretion can be
estimated by assuming the matter is falling in from infinity and so

Lacc =
Gm2ṁ2

R2
. (13.19)
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Fig. 13.5 The curve of ζL as a function of q. Typical values of ζ∗ are given as horizontal lines
in this plot. The value of qc is found by setting ζL = ζ∗. For values of q > qc, mass transfer is
dynamically unstable

where we have assumed that ṁ2 is positive. If the luminosity of accretion is greater
than the Eddington luminosity, then radiation pressure will be strong enough to
prevent the matter from accreting. This sets an upper bound on the accretion rate,
found from

Lacc < LEdd =
4πcGm2

κ
, (13.20)

where κ is usually taken to be the value for electron scattering:

κes = 0.02(1+X) m2/kg. (13.21)

Assuming the accreted matter is all hydrogen, then κes = 0.04m2/kg, and the
Eddington accretion rate is

ṀEdd = 3.3× 10−4 M�/year

(
R

R�

)
. (13.22)

13.3 Unstable Mass Transfer and Mass Loss

There are two basic ways that mass transfer can be nonconservative. If the mass
transfer is dynamically unstable, then the radius of the donor star continues to
expand beyond the Roche lobe. In this way, the envelope of the donor star grows
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to encompass the companion and a common envelope is formed around both stars.
If the mass transfer is dynamically stable, but matter is transferred at a greater
rate than the companion can accrete it, then the transferred matter also eventually
accumulates into a common envelope about both stars. When a common envelope
is formed, then orbital motion of the companion and the core of the donor star
can mechanically eject the common envelope. The energy required to unbind the
envelope from the binary will come from the orbital energy of the system. Thus, the
core and the companion will end up closer together. The details of this process are
still not well modeled,but two prescriptions for determining the final orbital state of
the binary are commonly used.

The most commonly used approach is the α-prescription in which the energy
required to eject the envelope comes from the orbital energy of the binary and thus
the orbit shrinks. The efficiency of this process determines the final orbital period
after the common envelope is ejected. The efficiency parameter is defined as

α =
ΔEbind

ΔEorb
, (13.23)

where ΔEbind is the binding energy of the envelope just prior to mass transfer and
ΔEorb is the change in orbital energy during the ejection of the common envelope.
The efficiency parameter can be thought of as the fraction of orbital energy that goes
into unbinding the envelope. The binding energy of the envelope is

ΔEbind =−Gm1me
1

λRL1
, (13.24)

where m1 is the initial mass of the donor, me
1 is the mass of the envelope, RL1 is the

Roche lobe radius of the donor, and λ is an averaging factor (of order 1), used to
account for the density distribution of the matter in the envelope. The change in the
orbital energy of the systems is

ΔEorb =−G
2

[
mc

1m2

a f
− m1m2

ai

]
, (13.25)

where mc
1 is the mass of the core of the donor, m2 is the mass of the accretor, a f

is the final orbital separation, and ai is the initial orbital separation at the onset of
mass transfer. The final orbital separation is obtained from solving Eq. (13.23) for
a f . Typical values of α are on the order of unity.

The other approach is the γ-prescription, in which the lost mass carries away
angular momentum that comes from the total angular momentum of the binary. The
parameter γ describes the fraction of angular momentum carried away by the ejected
envelope. Thus,

Jf = Ji

(
1− γ

Δm
m

)
, (13.26)

where m = m1 +m2 and Δm = me
1. Again, the final orbital separation is found from

solving Eq. (13.26) for Jf . Although this method uses angular momentum loss to
determine the final state of the binary, energy is still conserved.
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In addition to nonconservative mass transfer, mass can be lost from a binary
during catastrophic events. Supernovae can occur during the evolution of a high-
mass star. Binary systems can also undergo novae when the accreted hydrogen or
helium on the surface of a white dwarf reaches an ignition point and nuclear shell
burning occurs on the surface. In these cases, the mass from the explosion is expelled
quickly from the binary system. Usually the amount of mass lost during a nova is
small compared to the total mass of the system, so the effect is a minor adjustment
of the binary system. In a supernova, a large fraction of the mass of the exploding
star can be lost. If this star is the more massive star in the binary, the effect on the
binary can be quite dramatic.

Let us consider the example of a circular system with semimajor axis a in which
a star with mass m1 explodes leaving behind a compact remnant with mass mco.
The compact remnant can be either a black hole or a neutron star. Using the virial
theorem for binaries, the initial energy of the binary can be written:

E =−Gm1m2

2a
. (13.27)

After the explosion, the expanding mass shell will quickly cross the orbit of m2,
decreasing the gravitational force acting on the secondary. The new energy of the
system will be

E ′ =
1
2

mcov2
1 +

1
2

m2v2
2 −

Gmcom2

a
. (13.28)

The passage of the mass shell is unlikely to impart significant momentum to the
companion, so we can assume that v2 is unchanged. On the other hand, the explosion
is quite likely to impart significant momentum to the remnant, as neutron stars are
known to receive kicks at birth resulting in velocities around 200–500 km/s. The
direction of the kick may be random, and so it can either increase or decrease the
kinetic energy of the remnant. In order to gain some understanding of the outcome
of catastrophic mass loss, we will assume that the kick velocity is precisely zero.
In this case, the final velocities of both m2 and mco are unchanged from the initial
velocities. Therefore,

E ′ =
1
2

(
mcom2

mco +m2

)
v2 − Gmcom2

a
, (13.29)

where

v2 =
G(m1 +m2)

a
. (13.30)

Therefore, the final energy is

E ′ =
Gmcom2

2a

(
m1 +m2

mco +m2
− 2

)
. (13.31)
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If the final energy of the system is positive, then the binary will be disrupted. We
can see that this implies that the binary will not survive the loss of more than half
of its mass. If we include the possibility of kicks to the compact remnant, then this
criterion is not exact, since a kick can add or remove kinetic energy from the system.

If the binary is not disrupted, the new orbit will become eccentric and expand to
a larger semimajor axis, given by

a′ = a

(
m2 +mco

m2 −m1 + 2mco

)
, (13.32)

with orbital period

P′ = P

(
a′

a

)3/2(2a′ − a
a′

)1/2

. (13.33)

Noting that the supernova ejecta also carries away angular momentum given by

ΔJ =
2πa2

P
(m1 −mco)m2

2

(m1 +m2)
2 (13.34)

we can calculate the eccentricity using

Jf =
2πa′2

P
mcom2

mco +m2

√
1− e2 =

2πa2

P
m1m2

m1 +m2
−ΔJ. (13.35)

13.4 Binary Evolution Example

The preceding discussion included a number of simplifications in order to illustrate
the basic physics behind mass transfer and binary evolution. Here we give two
examples from a full binary stellar evolution code. The first example describes
the formation of a microquasar, consisting of a black hole accreting matter from
main sequence companion, shown in Fig. 13.6. The second example describes the
formation of a double neutron star system, shown in Fig. 13.7.

The initial system for the microquasar consists of a primary with ZAMS mass
m1 = 42.8M� and a secondary with m2 = 1.22M�. The binary is highly eccentric,
with e= 0.6. The semimajor axis is a= 5,330R� = 24.8AU. After roughly 4.6 Myr
have passed, the primary evolves off the main sequence and begins to grow into
a giant. When the radius of the giant approaches the size of the periastron, then
tidal interactions become efficient and the orbit circularizes. When this happens,
energy is removed from the orbit, while the angular momentum is conserved. This
results in a circular orbit with a semimajor axis of a′ = a

(
1− e2

)
. By the time the

primary has grown to fill its Roche lobe, it has lost 17.3M� to stellar winds, and
mass transfer begins for a Roche lobe filling giant star with m1 = 25.5M� in orbit
around a m2 = 1.22M� main sequence star. The mass ratio is high enough that the
mass transfer is dynamically unstable and a common envelope develops. During
the common envelope phase, the primary loses its envelope and its mass drops to
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Fig. 13.6 Evolutionary phases leading to a model for the microquasar GRS 1915+105. Figure
taken from Belczynski and Bulik Astrophysical Journal Letters 574, L147 (2002). Reproduced by
permission of the AAS

15.9M�. The semimajor axis of the orbit shrinks dramatically from 3,501R� down
to 88.2R�.

Problem 13.1: Assuming no mass loss from the stellar winds, use conservation
of angular momentum to compute the semimajor axis of the tidally circularized
orbit for step (I) to (II) in the microquasar example. How does it compare to the
value of 3,501R� obtained from the results of the stellar evolution code?
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Fig. 13.7 Evolutionary phases leading to a model for a double neutron star system. Figure taken
from Belczynski and Kalogera Astrophysical Journal Letters 550, L183 (2001). Reproduced by
permission of the AAS
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Problem 13.2: Determine the combination of the efficiency parameter and the
structure parameter, αλ used for the common envelope phase from step (II) to
(III), using the values from the microquasar example.

The common envelope phase happens on a dynamical timescale, so the secondary is
almost unaffected. On the other hand, the primary now consists of a massive helium
core with no surrounding envelope of hydrogen. Clearly, its further evolution will be
dramatically altered by this change in its structure and composition. Such a star is
called a helium star. It has sufficient mass to drive successive nuclear burning phases
until an iron core develops. The helium star loses nearly 3M� through stellar winds
during this phase of its evolution, but when the core collapses there is no supernova.
The star is massive enough to implode directly to a black hole. With no mass lost
through the collapse event, the properties of the binary remain unchanged. The
system maintains its configuration while the secondary continues to evolve along
the main sequence. After another 5 Gyr, with the hydrogen exhausted in its core,
the secondary ascends up the red giant branch and eventually fills its Roche lobe.
The mass ratio is now very small (q = 1.22/13.04∼ 0.09), and so the mass transfer
is dynamically stable and proceeds on a thermal timescale. Since the mass transfer
now proceeds from the lower-mass star to the higher-mass star, the orbital separation
increases as does the orbital period. The mass transfer drives two jets from the
accretion onto the black hole. The evolutionary phases are shown in Fig. 13.6.

Problem 13.3: Assume an initial period of 26.1 days for a binary containing
a black hole with mass m1 = 13.04M� and a red giant star with mass
m2 = 1.22M�. If the binary is undergoing stable, conservative mass transfer
from the red giant to the black hole with a mass transfer rate of ṁ2 = 1.0×
10−8 M�/year, what are the masses and orbital period after 10.5 Myr?

There are a few binary neutron star systems in the Milky Way. The formation of
one is modeled from an initially eccentric binary containing two stars with ZAMS
masses of m1 = 12.8M� and m2 = 11.9M� with a semimajor axis of a = 830R�
and eccentricity of e = 0.7.

As the stars evolve through the main sequence, they lose mass through a stellar
wind. When the more massive star evolves off the main sequence to become a giant,
it circularizes the orbit as described in the example above, resulting in a semimajor
axis of a = 380R�. At the onset of Roche lobe overflow from the primary, the
masses are m1 = 12.5M� and m2 = 11.8M�. The mass ratio at this point is nearly
1 and so the mass transfer is dynamically stable, but nonconservative. The mass
loss from the system tends to widen the system, but the mass transfer from the
more massive to the less massive star tends to bring the stars together. The result
is a loss of 4.7M� from the system and a transfer of 4.8M� to the secondary. The
primary is now a helium core with a mass of m1 = 3.0M� and the secondary has
grown to m2 = 16.6M�. When the secondary evolves off the main sequence, the
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mass transfer is dynamically unstable due to the large mass ratio, and a common
envelope develops. After the envelope is ejected, the system consists of two helium
stars with masses m1 = 2.8M� and m2 = 4.3M�, and an orbital separation of 5R�.
These two stars evolve through core helium burning and eventually develop CO
cores with convective envelopes. The expansion of the stars brings them into contact
at roughly the same time, leading to a double common envelope. Both envelopes are
ejected, leaving two CO cores, with masses of m1 = 1.7M� and m2 = 2.4M�. The
orbital separation is now a = 0.5R�. These two cores subsequently explode in type
Ic supernovae, which occur in stars that have lost their hydrogen envelopes. The
remnant is a tight double neutron star binary. The evolutionary phases are shown in
Fig. 13.7.

Problems

13.1. Assuming no mass loss from the stellar winds, use conservation of angular
momentum to compute the semimajor axis of the tidally circularized orbit for step
(I) to (II) in the microquasar example. How does it compare to the value of 3,501R�
obtained from the results of the stellar evolution code?

13.2. Determine the combination of the efficiency parameter and the structure
parameter, αλ used for the common envelope phase from step (II) to (III), using
the values from the microquasar example.

13.3. Assume an initial period of 26.1 days for a binary containing a black hole with
mass m1 = 13.04M� and a red giant star with mass m2 = 1.22M�. If the binary is
undergoing stable, conservative mass transfer from the red giant to the black hole
with a mass transfer rate of ṁ2 = 1.0× 10−8 M�/year, what are the masses and
orbital period after 10.5 Myr?



Chapter 14
Star Cluster Dynamics

Many stars are born in clusters arising from the collapse and subsequent
fragmentation of giant molecular clouds. During the birth process, radiation pressure
from the ignition of bright massive stars and the pressure waves from the following
supernovae can sweep away residual mass in the cloud. In some cases, the cluster
will become unbound due to the loss of mass. The constituent stars of the cluster
are then scattered and they continue to evolve in isolation. Some clusters are more
massive and have greater central densities, so that they survive the initial mass loss.
In these clusters, even the single stars may not evolve in isolation as they interact
with the other stars in the cluster. The archetypical clusters of this type are globular
clusters. In this chapter, we will cover some of the basics of modeling the dynamical
evolution of these clusters.

14.1 Cluster Timescales

The evolution of star clusters depends on three basic timescales. The first timescale
is the typical evolution time of the member stars of the cluster. This is comparable to
the nuclear timescale. The next timescale is the crossing time, which measures the
typical time required for a star to move through a characteristic radius of the cluster.
Thus,

tcr =
r
v
, (14.1)

where v is a typical velocity and r is a characteristic distance. Since different clusters
do not have well-defined surfaces, the characteristic distance could refer to several
length scales. Globular clusters are roughly spherical distributions of stars, with
three basic radii that can be defined either observationally or theoretically. The
innermost radius is the core radius, rc. This radius is defined observationally as

M. Benacquista, An Introduction to the Evolution of Single and Binary Stars,
Undergraduate Lecture Notes in Physics, DOI 10.1007/978-1-4419-9991-7 14,
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Fig. 14.1 The configuration for a weak encounter. The incident star mi comes from the right with
speed v and impact parameter b. After the encounter, the star leaves to the left with an additional
velocity component v⊥

the radius at which the surface brightness of the cluster drops to one-half of the
central value. The theoretical definition of rc is the radius at which the space density
of stars drops to one-third of the central value. The half-mass radius, rh, is defined
theoretically as the radius of the sphere that contains half the mass of the system.
Its observational counterpart is the half-light radius that contains half the light of
the system. This is defined in terms of the integrated luminosity of the cluster. If
the nature of the stellar population is dependent upon the radius, it is likely that the
half-light radius and the half-mass radius will not coincide. The third length scale
is the tidal radius, rt, at which the host Galaxy’s gravitational field dominates over
the cluster’s field. The typical velocity of a star will vary depending on its location
in the cluster, and so the crossing time has different values for different locations in
the cluster.

The third important timescale is the relaxation time, trlx, which measures the
typical time required for the velocity of a star to change by an amount on the order
of magnitude of itself. Another way of interpreting the relaxation time is that it is the
time required for gravitational interactions with other stars to completely erase any
trace of a star’s initial orbit. The relaxation time can be computed by considering
the time interval between interactions with other stars, combined with the size of
the deflection expected to arise from such interactions.

A typical interaction in a cluster is a weak encounter where a star of mass mi and
speed v is incident on a stationary target star of mass mt with an impact parameter
b, as shown in Fig. 14.1. The time-dependent force on the incident star is

F(t) =
Gmtmi

d2 =
Gmtmi

(b2 + v2t2)
(14.2)

where t = 0 at the point of closest approach. We ignore the strong encounters, so
we assume only a slight deflection. Therefore, after the encounter, a small velocity
component, v⊥, perpendicular to the initial velocity has been added to the velocity
of the incident star. We compute v⊥ using Newton’s law:

mi
dv⊥
dt

= F⊥ = F sinθ =
Gmtmib

(b2 + v2t2)3/2
, (14.3)
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b
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vt

mi

Fig. 14.2 The cylindrical
shell of width db, radius b,
and length vt containing stars
that will engage in a weak
encounter with the incident
star mi

which integrates to

v⊥ =
∫ ∞

−∞
Gmtb

(b2 + v2t2)3/2
=

2Gmt

bv
. (14.4)

Each interaction will randomly kick the star, so the cumulative effect is like a
random walk. This means that the kicks add in quadrature, so the net change in
velocity after N weak encounters is the square root of the sum of the squares of the
kicks:

Δv2 =
N

∑
i=1

(Δvi)
2 . (14.5)

Accurately computing this sum requires knowing the mass and impact parameter
for each target mass. If we assume some sort of averaged value of the mass, we can
treat the problem as if there were identical target masses. In this case, then we can
convert the sum to an integral over impact parameters. The fraction of encounters,
dN, is related to the number density of stars, n, and the volume of a cylindrical shell
of length vt, radius b, and thickness db through

dN = ndV = nvt2πbdb, (14.6)

as shown in Fig. 14.2. Therefore, the average change in the velocity through weak
encounters is found from

〈Δv2〉=
∫
Δv2dN =

∫ bmax

bmin

(
2Gmt

bv

)2

nvt2πbdb=
8πG2m2

t nt
v

ln

(
bmax

bmin

)
, (14.7)

where the limits of integration give the minimum impact parameter where the weak
limit is valid (bmin) and the maximum impact parameter (bmax) that is usually the
size of the cluster. Remembering that the relaxation time is the typical time required
for the velocity of a star to change by an order of magnitude of itself, we can set
〈Δv2〉= v2 to obtain
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trlx =
v3

8πG2m2
t n ln(bmax/bmin)

. (14.8)

The logarithm in the denominator is known as the Coulomb logarithm and can also
be described in terms of N, the total number of stars in the cluster, as lnγN, where
γ is an empirically determined number that depends on the mass distribution of the
system. Typical values of γ range from 0.02 to 0.4.

The numerical values of these timescales depend upon the typical masses,
velocities, and number densities of the constituent stars in the cluster. Assuming
a standard distribution of initial masses of stars in the cluster, the current mass
distribution will depend upon the age of the cluster and the details of stellar
evolution. The typical velocity of a star in the cluster can be obtained from a version
of the virial theorem applied to stars in a self-gravitating system. The treatment
of the virial theorem in Chap. 4 assumed that the gas in a star was in hydrostatic
equilibrium. Here we will find a less restrictive requirement to relate the average
kinetic energy of a star in a cluster to the gravitational potential of the cluster.

To obtain the virial theorem for clusters, we start with the moment of inertia
evaluated about a point for a cluster of point masses:

I =∑
i

mir
2
i =∑

i

mi (ri · ri) (14.9)

and take two derivatives with respect to time to obtain

d2I
dt2 = 2∑

i
mi

(
v2

i + ri ·ai
)
. (14.10)

Since the dynamics of the cluster is completely determined by gravitation, we can
relate the acceleration to the gravitational potential via

miai =−∇iΩ(ri) (14.11)

where ∇i indicates the gradient taken with respect to the coordinates of mi and the
gravitational potential at ri is

Ω(ri) =∑
j �=i

Gm jmi∣∣ri − r j
∣∣ . (14.12)

Using this expression for the acceleration, Eq. (14.10) reads

d2I
dt2 = 2∑

i
miv

2
i − 2∑

i
ri ·∇i

(
∑
j �=i

Gm jmi∣∣ri − r j
∣∣
)
. (14.13)
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Because the last sum on the right-hand side is over both i and j, we can exchange
the indices to find

2∑
i

ri ·∇i

(
∑
j �=i

Gm jmi∣∣ri − r j
∣∣
)

= 2∑
i�= j

(
ri∇i

Gm jmi∣∣ri − r j
∣∣ + r j∇ j

Gm jmi∣∣r j − ri
∣∣
)

= −2∑
i�= j

Gm jmi∣∣ri − r j
∣∣ =−2Ω , (14.14)

where Ω is the total gravitational potential energy of the cluster. The total kinetic
energy of the cluster is

K =
1
2∑i

miv
2
i , (14.15)

so the second derivative of the moment of inertia of the cluster is then

d2I
dt2 = 4K + 2Ω . (14.16)

We can see that if the moment of inertia of the cluster varies linearly with time, then
the kinetic and potential energies of the cluster obey a virial theorem:

K =−1
2
Ω . (14.17)

Problem 14.1 Evaluate the gradients in Eq. (14.14) to show that

2∑
i

ri ·∇iΩ(ri) =−2Ω .

As the cluster evolves, it slowly loses mass as individual stars randomly acquire
escape velocity through interactions. This is analogous to the evaporation of a gas.
The speeds of the stars can be modeled using a Maxwell–Boltzmann distribution,
and the relaxation process tends to maintain the Maxwell–Boltzmann distribution.
The average escape velocity for stars in a cluster is twice the average speed, so
〈v2

e〉= 4〈v2〉. From the Maxwell–Boltzmann distribution, the fraction of stars having
a speed v > 2〈v2〉 is δ = 0.00738, and so we can assume that this fraction of
stars escapes the cluster during each relaxation time. Therefore, we define the
evaporation time as

tevap =
trlx
δ

= 136trlx. (14.18)

The evaporation time gives a timescale for the life of the cluster before it disappears
through this process. Note that this definition of the evaporation time does not
include the effect of any external potential, which would tend to reduce the
evaporation time.
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From the virial theorem, we can calculate the average velocity in a cluster
and get estimates for the crossing time and the relaxation time. If we assume
an average mass 〈m〉 and root-mean-square velocity 〈v2〉, then Eq. (14.17) can be
approximated by

1
2

N〈m〉〈v2〉= 1
2

GN2〈m〉2

r
, (14.19)

where N is the total number of stars in the cluster and r is the typical radius of the
cluster. Thus, the typical velocity in Eq. (14.1) is

v =
√
〈v2〉 


√
GN〈m〉

r
. (14.20)

Approximating the density as ρ = N〈m〉/r3, we find

tcr 
 1√
Gρ

, (14.21)

which is of the same form as the dynamical timescale from Eq. (4.64). Note that this
approximation gives a local definition of the crossing time. We see that the crossing
time is shorter in the core of a cluster where the density is greater. Using the virial
theorem in conjunction with the relaxation time, we find that

trlx 
 N
8π lnγN

1√
Gρ

∼ 0.1N
lnγN

tcr. (14.22)

Problem 14.2 Using Eq. (14.20) and an estimate of the density, derive
Eq. (14.22).

Open clusters, with N ∼ 102, have trlx < 10 tcr. Therefore a star in an open
cluster will have its motion perturbed from what you would expect for a point
particle in a smooth potential after a few crossings. A typical open cluster has a
mass of a few hundred solar masses and a central density of about 100M�/pc3.
Therefore, the crossing time is around tcr = 2× 106 year, and the relaxation time is
trlx = 2× 107 year. Consequently, the evaporation time is 136trlx = 2.7× 109 year.
Open clusters tend to dissolve in about three billion years, releasing their stars to
the disk or field population. This timescale is less than the main sequence lifetime
of many of the low-mass stars and substantially less than the age of the Galaxy.
Thus, open clusters tend to be young and the likelihood of strong stellar interactions
within them is quite low.

Globular clusters, with N ∼ 106, tend to have trlx ∼ 104 tcr. This means that
stars in globular clusters make many crossings with little significant change in
their orbits due to weak interactions. A typical globular cluster has a total mass
of 105 M� and a central density of nearly 104 M�/pc3. The crossing time is around
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Table 14.1 Timescales and properties for open and globular clusters

Type Mtot (M�) ρ0 (M�/pc3) N tcr (year) trlx (year) tevap (year)

Open 250 100 100 2×106 2×107 2.7×109

Globular 6×105 8,000 106 1.5×105 1.5×109 2×1011

tcr = 1.5× 105 year, and so the relaxation time is trlx = 1.5× 109 year. From this,
we find the evaporation time to be tevap = 2 × 1011 year, which is greater than
the age of the universe and greater than the lifetime of most stars. However,
tidal interactions between globular clusters and their host galaxies can significantly
enhance evaporation rates. Typical properties and timescales for open and globular
clusters are shown in Table 14.1.

14.2 Globular Cluster Structure

The timescales associated with open clusters imply that such clusters have little
or no influence on the formation of binaries and hence the evolution of stars.
Therefore, stars in open clusters evolve similarly to isolated field stars. On the other
hand, globular clusters have much higher densities and longer lives, and so they
can influence the evolution of their constituent stars. Because of the significant
difference between the crossing time and the relaxation time, it is possible to
break the evolution of clusters into two separate regimes. On timescales shorter
than the relaxation time, the cluster potential can be treated as a smooth, static
background potential in which the cluster stars behave as a collisionless gas.
On longer timescales, the background potential also evolves as weak interactions
between the stars become important. In this case the stars behave as a collisional
gas. In this section, we will concentrate on the short timescales and the collisionless
gas model in order to develop models of the cluster potential.

The challenge of determining the structure of a globular cluster lies in the fact
that the potential is determined from the distribution of stars in the cluster, but the
distribution of stars in the cluster is determined by the potential. Therefore, we
need to find a self-consistent way of relating the dynamics of cluster stars with the
potential. One way of doing this is to model the cluster as a collisionless gas where
each star is treated as a gas particle. The properties of the cluster stars are described
using a distribution function f (r,v,m) that describes the probability of finding a star
of mass m at a particular location in a six-dimensional position-velocity phase space.
When normalized to the total number of stars in the cluster (N), the distribution
function can also be interpreted as the density of stars of a given mass with a given
velocity and position:

ρ(r,v,m)d3vd3rdm = N f (r,v,m)d3vd3r dm. (14.23)
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If the dynamics of the cluster are governed by simple Newtonian gravity, we can
consider f to be a conserved quantity in phase space, and so the continuity equation
for f reads

d f
dt

=
∂ f
∂ t

+ v ·∇r f + a ·∇v f = 0, (14.24)

where

v ·∇r f =
3

∑
i=1

vi
∂ f
∂xi

, (14.25)

a ·∇v f =
3

∑
i=1

ai
∂ f
∂vi

. (14.26)

If we now define the gravitational potential Φ , using

∇2Φ = 4πGρ(r), (14.27)

where

ρ =

∫
f d3vdm, (14.28)

then the acceleration is
a =−∇rΦ. (14.29)

Thus, the evolution of f is governed by the collisionless Boltzmann equation:

∂ f
∂ t

+ v ·∇r f −∇rΦ ·∇v f = 0. (14.30)

Globular clusters are nearly spherical, so if we assume spherical symmetry as we did
for stellar evolution and we require a stationary solution, then we can substantially
simplify the problem of solving Eq. (14.30) for Φ . In a spherically symmetric,
stationary system, the distribution function can only depend on one variable. Since
energy is conserved throughout the orbit, then E(r,v) obeys

dE
dt

= 0 =
∂E
∂ t

+ v ·∇rE −∇rΦ ·∇vE, (14.31)

and so E is, itself, a solution to Eq. (14.30). For the spherically symmetric case, this
implies that any distribution function of the form f (E) is also a stationary solution
to the collisionless Boltzmann equation. It follows that one approach to finding a
self-consistent solution to Eq. (14.30) is to propose a functional form for f (E) and
then determine the form of Φ by obtaining ρ and solving the Poisson equation.
Before doing this, we will introduce two functions of the potential and the energy.
This is done to obtain a solution in which the argument of the distribution function
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behaves kind of like a radius (i.e., it is positive everywhere). The relative potential
is defined as

Ψ =−Φ+Φ0, (14.32)

where Φ0 is chosen so that the relative energy

E =−E +Φ0 (14.33)

is always greater than 0. The relative energy can also be written in terms of Ψ
and v as

E =Ψ − 1
2

v2. (14.34)

Since E is a simple linear function of E , we write the distribution function as

f (E ) = FE n−3/2. (14.35)

The peculiar choice of the exponent is to simplify the equations later on. Computing
the density from this distribution function gives:

ρ(r) =
∫ ∞

0

∫
f (E )d3vdm =CnΨn. (14.36)

Taking this density, we can write the Poisson equation in spherical coordinates with
spherical symmetry to find

1
r2

d
dr

(
r2 dΨ

dr

)
=−4πGCnΨn, (14.37)

which is dangerously close to the Lane–Emden equation! Following the procedure
in Chap. 8, we first rewrite everything in a dimensionless form. DefineΨ0 =Ψ(0),
and introduce the dimensionless potential:

φ =
Ψ
Ψ0

. (14.38)

Next, noting that 4πGCnΨ n−1
0 must have dimensions of length, we introduce the

characteristic length

d =
1√

4πGCnΨ n−1
0

(14.39)

and the dimensionless variable s = r/d. With these substitutions, we recover the
Lane–Emden equation:

1
s2

d
ds

(
s2 dφ

ds

)
=−φn, (14.40)
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with the boundary conditions

φ(0) = 1, (14.41)

dφ
ds

∣∣∣∣
0
= 0. (14.42)

In this case, the variable s corresponds to radius and the variable φ is related to the
density through ρ =CnΨn

0 φ
n. We have seen from the solutions to the Lane–Emden

equation for polytropes that 1 ≤ n < 5 produce objects with finite mass and finite
radius. Solutions with n ≥ 5 yield objects with finite mass, but infinite radius.
Since globular clusters do not have well-defined surfaces, solutions with n ≥ 5 will
describe these objects. The only analytic solution to the Lane–Emden equation is for
n = 5, and so this solution is frequently used to describe the mass distribution and
potential of globular clusters on timescales much shorter than the relaxation time.
This solution is called the Plummer model.

The n = 5 solution to Eq. (14.40) is

φ(s) =
(

1+
s2

3

)−1/2

. (14.43)

If we define the Plummer radius to be a = 3d, then for a cluster of mass M, the
stellar density is

ρ(r) =
3Ma2

4π
√
(r2 + a2)5

(14.44)

and the associated potential is

Φ(r) =− GM√
r2 + a2

. (14.45)

The Plummer distribution function is f (E ) = E 7/2. The Plummer model is one of
many models that can be used to describe the orbits and mass distribution of stars
in globular clusters over timescales that are short compared to the relaxation time,
so that the cluster can be treated as a stationary system. A synthetic globular cluster
using a Plummer model is compared with the globular cluster M80 in Fig. 14.3.
Over longer timescales, it will be necessary to include the evolution of the cluster.

Problem 14.3: Using the density of the Plummer model, compute the core
radius rc using the theoretical definition.
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Fig. 14.3 Comparison of the Plummer model (left) with the globular cluster M80 (right). Photo
courtesy of NASA

Problem 14.4: Use the density of the Plummer model.

(a) Compute the surface density of stars using

Σ(R)RdRdφ =

∫ +∞

−∞
ρ(

√
R2 + z2)RdRdφdz,

where the integration is over z. R and φ are cylindrical coordinates.
(b) Compute the core radius rc using the observational definition.

14.3 Globular Cluster Evolution

On longer timescales that are comparable to the relaxation time or the stellar
lifetime, then the cluster structure evolves and we can no longer assume a stationary
distribution function or background potential. In effect, the cluster becomes a
collisional gas. This requires a modification of the Boltzmann equation to include
a term governing the effect of stellar interactions on the distribution function. The
collisional Boltzmann equation takes the form

∂ f
∂ t

+ v ·∇r f −∇rΦ ·∇v f = Γ ( f ) . (14.46)
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It is not possible to evaluate Γ analytically, and so it is approximated by a variety of
numerical methods.

The most direct method of solution is to simply numerically compute the
trajectories of every star in the cluster. Since the interactions are entirely determined
by gravitational interactions, this approach is conceptually the simplest, but it
entails a large number of computations for each time step and is hindered by the
amount of computing time required for realistic clusters. Other approaches involve
approximating Γ in the weak-scattering limit or by a Monte Carlo selection of
weak encounters of timescales shorter than the relaxation time. In any case, these
approaches are beyond the scope of this book.

The primary interest here is how membership in a cluster alters the evolution
of binary and single stars. Therefore, we will look at specific features of cluster
evolution that result in an increase in the number density of stars and therefore cause
the approximation of isolation that we have used for both single and binary stars to
break down.

At the birth of a cluster, the more massive stars will ignite first. The resulting
stellar winds and radiation pressure will expel some of the gas in the cluster. As a
result of the relatively rapid loss of mass, the potential changes quickly and the stars
in the cluster are thrown out of virial equilibrium. This means that the positions and
velocities are uncorrelated and independent of the masses of the stars. This initial
process is called violent relaxation.

After violent relaxation, the cluster begins to return to virial equilibrium as
encounters between stars distribute the energy equally among all stars. This
equipartition of energy causes stars with large kinetic energies to transfer their
energy to stars with kinetic energies that are below the average kinetic energy. In
general, this means that more massive stars tend to end up with lower velocities
than low-mass stars. Thus, the more massive stars tend to sink toward the center of
the cluster while low-mass stars migrate to the outer halo of the cluster. This process
is known as mass segregation. During mass segregation, the more massive stars are
losing kinetic energy to the less massive stars through weak encounters. Therefore
the timescale for equipartition is related to trlx. Numerical simulations show that for
massive stars of mi, the equipartition timescale is teq ∝ trlx (〈m〉/mi), where 〈m〉 is
the average mass of a star in the cluster.

Mass segregation can become unstable so that equipartition is never reached.
In this case, the most massive stars sink to the core of the cluster and effectively
decouple from the rest of the stars. This is known as the Spitzer instability. The
important features of the Spitzer instability can be seen in a simple two-component
model of a cluster. Consider a cluster consisting of two populations of stars. There
are N1 stars with mass m1 and N2 stars with mass m2, with m2 > m1. The total mass
of each population is given by Mi = Nimi where i = 1,2. If we assume that the two
populations have reached equipartition, then

m1〈v2
1〉= m2〈v2

2〉. (14.47)
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Since each population would also be in virial equilibrium, they also obey

〈v2
1〉 =

αGM1

rh1
+

G
M1

∫ ∞

0

ρ1M2(r)
r

4πr2dr, (14.48)

〈v2
2〉 =

αGM2

rh2
+

G
M2

∫ ∞

0

ρ2M1(r)
r

4πr2dr, (14.49)

where ρi is the local density of stars of mass mi, rhi is the half-mass radius of
population i, and Mi(r) is the total mass of population i contained within radius
r. The first term on the right-hand side represents the self-gravity of the population
and α is a parameter that describes the density distribution throughout the cluster.
For Plummer-type polytrope models, α = 0.38. The second term on the right-hand
side represents the gravitational energy of one population due to the other.

We assume that the more massive stars make up a small fraction of the total
mass of the cluster, so M2 � M1. At the same time, we assume that the more
massive stars are substantially more massive than the less massive stars, so m2 �m1.
Furthermore, we expect the more massive stars to have segregated and become
centrally concentrated compared to the distribution of low-mass stars. Therefore,
we assume that

M1(r)
 4
3
πr3ρc1, (14.50)

where ρc1 is the central density of stars of mass m1. With these assumptions, we can
neglect the second term in Eq. (14.48), and so

〈v2
1〉 =

αGM1

rh1
, (14.51)

〈v2
2〉 =

αGM2

rh2
+Gρc1

4
3
πr2

s2, (14.52)

where r2
s2 represents some sort of integrated average value of r2 for stars of mass

m2. Now, we define the mean density of stars of each type within their half-mass
radius to be

ρmi =
1.5Mi

4πr3
hi

. (14.53)

Using this equation to express rh2/rh1 in terms of ρm2/ρm1 and substituting the
values of 〈v2

1〉 and 〈v2
2〉 from Eqs. (14.51) and (14.52) into the equipartition condition

(Eq. (14.47)), we obtain

M2

M1

(
m2

m1

)3/2

=
(ρm1/ρm2)

1/2

(1+β (ρm1/ρm2))
3/2

, (14.54)
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where

β =
ρc1

ρm1

1
2α

(
rs2

rh2

)2

. (14.55)

The left-hand side of Eq. (14.54) has a maximum value of γ =
√

4/27β at
ρm1/ρm2 = (2β )−1. Therefore, if

M2

M1
> γ

(
m2

m1

)3/2

, (14.56)

then equipartition will never be reached and the stars in population two will
decouple from the cluster. For typical cluster profiles modeled on polytropes with
3 < n < 5, α varies over a small range of 0.38 < α < 0.42. For these same
polytropes, the ratio of central density to the half-mass mean density ranges between
2.5 and 4.5. Therefore,

γ 
 35
8

(
rs2

rh2

)2

. (14.57)

We would expect the ratio of radii to be of order 1, and for a Maxwell–Boltzmann
distribution in a parabolic potential well, it is 0.9. Thus, 5 < γ < 6, for reasonable
values. In Spitzer unstable systems, massive stars sink to the center of the cluster
and interact only with themselves.

Even if equipartition is reached, the evolution of the cluster slowly leads to a
concentration of stars in the core of the cluster. This is a direct result of the fact that
stellar clusters can be thought of as self-gravitating gas clouds where the stars play
the role of gas particles. In this analogy, one can talk about a dynamical temperature,
T , of the cluster, where

K =
1
2∑i

miv
2
i =

3
2

NkT. (14.58)

From the virial theorem, we see that the total energy of the cluster is

E = K +Ω =−K =−3
2

NkT. (14.59)

As with stars in hydrostatic equilibrium, this implies a negative heat capacity, C:

C =
dE
dT

=−3
2

Nk. (14.60)

Therefore, as the cluster loses energy, it heats up.
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The introduction of the collisional term in Eq. (14.46) is similar to adding a heat
conduction term to a gas. In the core of the cluster, the stars are moving faster than
the average speed for the cluster, and therefore the core can be considered to be
“hotter” than the outer regions of the cluster. The collisional term allows this heat
energy to be conducted to the outer regions of the cluster. Because of the negative
heat capacity, this causes the inner regions to contract and heat up while the outer
regions expand and cool. The cluster develops an unstable “core-halo” structure
and the core continues to collapse while the halo expands and evaporates. Once the
density in the core exceeds a limit set by ρc = 709ρh, then an instability known as the
Antonov instability comes into play and rapidly drives the core to a singular solution
in a process known as the gravothermal catastrophe. Numerical simulations have
shown that this core collapse takes place over a timescale of a few tens of relaxation
times. This process is similar to the collapse of a gas sphere to form a star. In the case
of a star, the collapse is halted by a source of energy in the form of nuclear fusion.
For a cluster, the source of energy is the gravitational binding energy released when
binary stars are driven closer together through encounters in the core. In the next
chapter, we will discuss both the dynamical formation and the disruption of binaries
within stellar clusters.

Problems

14.1. Evaluate the gradients in Eq. (14.14) to show that

2∑
i

ri ·∇iΩ(ri) =−2Ω .

14.2. Using Eq. (14.20), and an estimate of the density, derive Eq. (14.22).

14.3. Using the density of the Plummer model, compute the core radius rc using
the theoretical definition.

14.4. Use the density of the Plummer model.

(a) Compute the surface density of stars using

Σ(R)RdRdφ =
∫ +∞

−∞
ρ(

√
R2 + z2)RdRdφdz,

where the integration is over z. R and φ are cylindrical coordinates.
(b) Compute the core radius rc using the observational definition.



Chapter 15
Dynamical Evolution of Binaries

Stellar clusters are expected to be born with a fraction of their stars in binary
systems. The primordial binary fraction is somewhat uncertain because the pop-
ulation of binaries is altered throughout the evolution of the cluster. Primordial
binaries can be disrupted in the core of the cluster in order to provide the energy
needed to halt core collapse. In addition, single stars can combine through strong
interactions in order to form new binaries. In this final chapter, we will look at the
ways in which dynamical interactions within clusters can alter the population of
binary stellar systems within the cluster.

15.1 Dynamical Formation

Strong dynamical interactions between stars in a cluster can dissipate the energy of
two stars so that they become gravitationally bound, forming a binary. Two of the
most common mechanisms are tidal dissipation through two-body interactions and
three-body interactions. Two-body interactions are much more common than three-
body interactions; however, they require very close encounters in order to dissipate
enough energy through tides to bind the system. Starting with two stars that are
unbound, but still members of the cluster, we can determine the amount of energy
that must be dissipated in tidal heating in order to form a binary. Although the
system evolves from inside the cluster potential, we consider the two stars to be
isolated with a relative velocity of v∞ prior to the encounter. We can take v∞ =
10km/s, which is a typical dispersion velocity of a star in a cluster. Therefore, in
a coordinate system which is centered on one star, the total initial energy of the
system is

Ei =
1
2
μv2

∞, (15.1)

where μ is the reduced mass. This initial energy is the minimum amount of energy
that must be dissipated in order for the encounter to produce a bound binary
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system. The closest point of the encounter, rmin, will also be the periastron of the
newly formed binary. At periastron, tidal forces will cause the stars to deviate from
spherical symmetry. The oblateness in star i due to star j is

εi j =
m j

mi

(
Ri

rmin

)3

, (15.2)

where Ri is the undisturbed radius of star i. If we assume that the gravitational energy
of this distortion is removed from the kinetic energy of the stars and periastron and
then dissipated within each star, then the tidal interaction removes

ΔEt =
Gm2

1ε
2
12

R1
+

Gm2
2ε

2
21

R2
(15.3)

from the system. Therefore a bound system will result when

ΔEt >
1
2
μv2

∞. (15.4)

This places an upper bound on rmin in order for tidal dissipation to produce a
binary of

rmin <

[
2G
μv2

∞

(
m2

2R5
1 +m2

1R5
2

)]1/6

. (15.5)

We can relate this upper bound on rmin to an impact parameter, b. First we note that
conservation of angular momentum requires vprmin = v∞b, where vp is the velocity
at rmin. The velocity at rmin can be found through conservation of energy, giving

v2
p = v2

∞

(
1+

2GM
rmin

)

 2GMv2

∞
rmin

, (15.6)

where M = m1 +m2. Therefore,

b 

√

2GMrmin

v2
∞

(15.7)

and the cross section for an encounter resulting in tidal capture is

σ = πb2 
 2π
GMrmin

v2
∞

. (15.8)

From here, we can compute the rate of tidal capture encounters in terms of the
density and number of stars in the center of a cluster:

Ṅ = Nσv∞n = 2πNn
G(m1 +m2)

v∞

[
2G
μv2

∞

(
m2

2R5
1 +m2

1R5
2

)]1/6

. (15.9)
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Typically, the binaries that are formed through tidal capture encounters have very
high eccentricity and are marginally bound. As we shall see later, such binaries are
frequently disrupted in later encounters.

Three-body (and higher order) encounters can produce binaries as the bodies
exchange kinetic energy during close interactions. A qualitative description of
the process can be obtained by considering the few-body interaction in isolation.
Restricting ourselves to a three-body encounter for simplicity, the three bodies are
marginally unbound at the start of the encounter, so we take the total energy to be
∼0. During the encounter, the kinetic energy of the three bodies will try to equalize.
In this case, the lowest mass object is most likely to gain the most velocity through
the encounter. If this velocity exceeds the escape velocity of the three-body system,
it can carry away enough energy so that the total energy of the remaining two stars is
negative and they become bound. This qualitative argument is based on a statistical
description of the outcome of many three-body interactions. In practice, many three-
body encounters simply leave three unbound stars. In the cases where a binary is
formed, it is not necessary that the lowest mass star is the one ejected, but it is the
most common outcome.

The production rate of binaries formed through three-body encounters can be
described in terms of the number density of single stars and a rate function Q. Since
the density of stars within a cluster has a radial dependence, we write the number
density as n(R), where R is the radial distance from the center of the cluster. The
rate function depends on the dynamics of the three-body interaction and can be
expressed in terms of x, the relative binding energy of the resulting binary. This is
written in such a way so that x > 0, so

x =−1
2
μv2 +

GMμ
r

, (15.10)

where M = m1 +m2, μ = m1m2/M, and v = ṙ. Because this is a three-body process,
the rate of formation of binaries with binding energies in the range x to x + dx
depends on the cube of the number density, and it is

ṅ(R,x)dx = n3(R)Q(x)dx. (15.11)

Evaluation of Q(x) requires a knowledge of the distribution functions for stars in
the cluster, and so a detailed computation of Q is beyond the scope of this book. For
many reasonable cluster models, Q(x) ∝ x−7/2. This implies that most binaries that
are formed through three-body encounters have small binding energies and so they
are loosely bound. Since the formation rate also depends on n3, most binaries are
formed in the central regions of clusters where the number densities are the greatest.
The rate function is also independent of the eccentricity and so the eccentricities
of these binaries follow a distribution that has been determined from numerical
simulations to be

f (e) = 2e. (15.12)

This is also known as a thermal distribution.
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Problem 15.1: Calculate the average and median values of the eccentricity for
a population of binaries with a thermal distribution of eccentricities.

Binaries formed through dynamical interactions are thought to be quite rare due to
the close encounters required for tidal dissipation and the reduced likelihood of three
bodies interacting at once. Furthermore, both formation scenarios tend to produce
weakly bound, eccentric systems. Such systems are likely to interact later with other
stars in the cluster and these interactions tend to disrupt weakly bound systems.
Thus, we expect most binaries in a cluster to begin their lives as primordial binaries.
The interaction of binary systems within a cluster is discussed in the next section.

15.2 Binary Interactions

The population of stars within a cluster will contain single stars and binary stars.
Although some of the binary stars in a cluster will be formed through the dynamical
processes previously discussed, most of the binary systems are expected to be
primordial. In the crowded environment found in the center of a cluster, these
systems are highly likely to interact with one another. These interactions will alter
the properties of the binaries throughout the evolution of the cluster, resulting in
binary systems that cannot have formed in isolation. The details of these interactions
are not amenable to a simple quantitative description, and so the expected outcomes
are usually determined through numerical solution of the equations of motion for
few-body systems. A brief introduction to numerical methods will be discussed in
the next section, while here we will use more qualitative, statistical arguments to
describe likely outcomes of these interactions.

The most common form of interaction involving a binary system will be a binary–
single encounter. In these encounters, there are two important variables, the relative
binding energy of the binary, x, and the relative kinetic energy of the single star,
msv2/2. In a close encounter, the components of the binary will exchange energy
with the single star, tending to equally distribute the kinetic energy between all
three stars. The kinetic energy of the components of the binary is directly related
to the relative binding energy through the virial theorem. Therefore, if the single
star comes in with a kinetic energy greater than the binding energy then it will
increase the kinetic energy of the components of the binary and the net result will
be a widening of the binary and a net reduction of the relative binding energy.
(Remember that the binding energy is actually negative, so the addition of energy
to the systems results in a reduction of the relative binding energy.) Conversely, if
the single star comes in with a kinetic energy less than the binding energy, then
it will gain energy from the binary and leave the binary in a tighter orbit with a
greater relative binding energy. At a crude level, where we assume that the mass of
every star in the system is equal to the average mass, the average incoming kinetic
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energy of the single star will be related to the dynamical temperature defined in
Eq. (14.58), so msv2 
 3kT . Therefore, binary systems with x < kT , will tend to
be driven to ever smaller values of x through repeated encounters. Such systems are
said to be “soft” because they are likely to be disrupted over time. On the other hand,
binary systems with x> kT will have their relative binding energy increased through
repeated encounters, becoming more tightly bound. These systems are called “hard”
binaries. This positive feedback results in the Heggie–Hills law, which states that
“hard binaries get harder while soft binaries get softer.”

Problem 15.2: Assume a globular cluster consists of stars with mass m =
0.7M� and has a dispersion velocity of 〈v〉 = 20km/s. Determine the maxi-
mum orbital period of a “hard” binary.

When we include a distribution of masses for the stars in the cluster, the distinction
between hard and soft binaries becomes dependent upon the three masses in the
encounter. Through numerical experiments a critical velocity is found, such that

v2
c =

2x(m1 +m2 +m3)

m3 (m1 +m2)
, (15.13)

where m1 and m2 are the masses of the binary with an initial relative binding energy
x, and m3 is the mass of the single star. If the velocity of the incoming single star
is greater than vc, then the binary will become softer and may even be disrupted. If
the velocity of the incoming single star is less than vc, then the binary will become
harder or may capture the incoming single star. During a capture event, the incoming
binary star can be exchanged with one of the original components of the binary
system. From simple arguments relating the equipartition of kinetic energy during
the encounter, we can see that the star with the lowest mass is most likely to end
up with the highest velocity and therefore be ejected from the binary, while the
star with the highest mass is most likely to end up with the lowest velocity and
therefore be retained in the binary. If the incoming star is the most massive star, then
it has a high probability of being exchanged with the lowest mass star in the original
binary. These exchange interactions can result in binary systems with components
that could not possibly have evolved together in an isolated binary. Two examples
of exchange interactions are shown in Fig. 15.1.

Interactions involving two binary systems are even more rare, but occur often
enough that they can have an effect on the population of binaries within a
cluster. Clearly, the interactions will be much more complicated than three-body
interactions, but some qualitative statements can be made about the expected
outcomes. For sufficiently distant encounters, each binary will appear to be a single
object to the other one. Thus, the tidal dissipation mechanism can be used as an
analogy for such an interaction and possible outcomes include the hardening or
softening of both binaries, depending on their relative binding energies and relative
kinetic energy. If one of the binaries is much harder than the other, then one can
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Fig. 15.1 Three-body interactions in which an incoming single star is exchanged with one
component of a binary. The incoming single star is shown in black, while the components of the
initial binary are shown in blue and red. The interaction on the left is in the plane of the binary
and so the interaction is quite simple. For the interaction on the right, the incoming single star is
coming from an arbitrary direction out of the plane of orbit for the initial binary and the ensuing
interaction is very complicated (These simulations were graciously provided by Ladislav Šubr)

use the binary–single interaction as an analogy, treating the hard binary as a single
star. This can result in the creation of a hierarchical triple system with a single
star in orbit about a tight binary. Particularly close interactions between binaries
with comparable properties can even result in the exchange of members so that
the binaries leaving the encounter are not the same as those that entered it. Of
course, it is also quite probable that one or both of the binaries can be disrupted
during the encounter. Numerical simulations have shown that at least one binary is
disrupted in ∼88% of binary–binary encounters.

15.3 N-Body Integration

In order to obtain a quantitative description of few-body encounters, we must
numerically integrate and solve the N-body problem. In principle, a description
of the N-body problem is quite simple. Since the timescale for the encounter is
extremely short, we ignore any stellar or cluster evolution, and the entire system
is described by the gravitational interaction. Thus, the position of each body, ri(t),
is found from numerically integrating the acceleration:

ai(t) =−
N

∑
j �=i

Gm j (ri − r j)∣∣ri − r j
∣∣3 . (15.14)
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Since this is a second-order differential equation, the boundary conditions can be the
initial positions and velocities (ri(0) and vi(0)). The simplest approach to finding
ri(t) is to choose a very small time step, Δ t, and then compute

ri(t +Δ t) = ri(t)+Δ tvi(t), (15.15)

vi(t +Δ t) = vi(t)+Δ tvi(t) (15.16)

for each star in the system. Although simple in its description, its implementation
introduces several complications. The time step must be chosen carefully in order
to avoid introducing unacceptable numerical errors. The time step must be small
enough that the stars don’t move a distance comparable to their separation during a
single step. In practice, this is implemented by requiring

Δ ti = ηmin

( ∣∣ri − r j
∣∣∣∣vi − v j
∣∣
)
, (15.17)

where η is a “fudge factor” such that η � 1. If Δ t is too small, an unnecessarily
large number of computations are performed and round-off errors begin to grow too
large.

Another method for improving the accuracy of the numerical integrations
is to introduce a “predictor–corrector” scheme. The expressions in Eqs. (15.15)
and (15.16) are simply the leading order terms in a Taylor expansion about t. We
can consider extending this expansion to higher order terms, so that

r(t +Δ t) = r(t)+Δ tv(t)+
1
2
(Δ t)2 a(t)+

1
6
(Δ t)3 ȧ(t)

+
1
24

(Δ t)4 ä(t)+
1

120
(Δ t)5 ˙̈a(t), (15.18)

v(t +Δ t) = v(t)+Δ ta(t)+
1
2
(Δ t)2 ȧ(t)+

1
6
(Δ t)3 ä(t)

+
1
24

(Δ t)4 ˙̈a, (15.19)

a(t +Δ t) = a(t)+Δ tȧ(t)+
1
2
(Δ t)2 ä(t)+

1
6
(Δ t)3 ˙̈a(t), (15.20)

ȧ(t +Δ t) = ȧ(t)+Δ tä(t)+
1
2
(Δ t)2 ˙̈a(t), (15.21)

where ä and ˙̈a are the second and third time derivatives of the acceleration, and we
have dropped the subscript i for simplicity. We can compute ȧ directly in terms of
the initial conditions r and v:

ȧ =−
N

∑
j �=i

Gm j∣∣ri − r j
∣∣3

[
(vi − v j)+ 3(ri − r j)

(ri − r j) · (vi − v j)∣∣ri − r j
∣∣2

]
, (15.22)
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but the higher derivatives of a are more problematic. The predictor–corrector
scheme works by evaluating Eqs. (15.18) and (15.19) out to the ȧ terms, using
values calculated directly from the configuration of the system at time t. We then use
these values of r(t +Δ t) and v(t +Δ t) in Eqs. (15.14) and (15.22) to approximate
the values of a(t + Δ t) and ȧ(t + Δ t). These predicted values are then used in
Eqs. (15.20) and (15.21) to solve for ä(t) and ˙̈a(t), which are then inserted into
Eqs. (15.18) and (15.19) to correct the values of r and v out to the ˙̈a terms.

Problem 15.3: Solve Eqs. (15.20) and (15.21) to obtain expressions for
(Δ t)2 ä(t) and (Δ t)3 ˙̈a(t) in terms of a(t), a(t +Δ t), ȧ(t), and ȧ(t +Δ t).

15.4 Binary–Cluster Interactions

The interplay between the evolution of the cluster as a whole and the individual
dynamical interactions of stars and binaries results in a modification to both the
cluster evolution and the binary population. In this section we will look at some of
the more prominent features of the combined cluster and binary evolutions. Again,
the quantitative description requires numerical solution of the N-body problem, so
we will rely on qualitative arguments.

As we have seen in Sect. 14.3, clusters undergo violent relaxation early in their
history as the potential changes drastically due to initial mass loss. Following violent
relaxation, the equipartition of energy will cause the more massive stars to segregate
toward the center of the cluster. Hard binaries will appear to the cluster as single
objects with a mass equal to the sum of the components. Therefore, they will also
sink toward the center of the cluster. However, since the relaxation time in a globular
cluster is on the order of 109 year, the more massive stars will have evolved through
their life cycle and ended up as either neutron stars or black holes. After a few
relaxation times, only stars with masses less than 2M� will still be on the main
sequence. Thus, the center of the cluster will be a region with a high density of
compact objects and binaries. This will result in an increased number of interactions
between binaries and other stars within the center of the cluster. Following the
Heggie–Hills law, the soft binaries will become softer or even be disrupted. This
process removes energy from the cluster and can accelerate the concentration of
stars in the core. On the other hand, the hard binaries will become harder—a
process that adds energy to the cluster and delays the core collapse associated with
the gravothermal catastrophe. This process of releasing energy from binaries by
hardening them is known as binary burning and is thought to be responsible for the
fact that many globular clusters have not yet undergone core collapse despite being
several relaxation times old.

The process of binary burning can be accompanied by exchange interactions.
The Galactic globular cluster systems are roughly 1010 years old, and so at this age,
the average mass of a star in the cluster is ∼0.6M�. Therefore, typical exchange
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interactions in the central regions of a cluster will result in the exchange of a
compact object such as a black hole, neutron star, or massive white dwarf for one of
the low-mass main sequence stars originally in the binary. During the course of the
evolution of the cluster, the initial population of binaries will be altered. The overall
number of binaries will be reduced as soft binaries are eventually disrupted. As a
result, the distribution of orbital periods will be skewed toward shorter periods. This
effect will be further enhanced as the hard binaries are further hardened through
encounters. Furthermore, the mass distribution of the binary components will be
shifted toward higher masses as exchange interactions preferentially remove the
low-mass components and replace them with higher mass objects. The resulting
population of binary systems consists of a disproportionate number of high-mass
compact objects in tight orbits. This is reflected in the proportionately large number
of accreting neutron star binaries in the Galactic globular cluster system. It is
possible that some of these systems will consist of two objects that evolved
completely separate from each other in isolation and were brought together through
dynamical interactions.

Problems

15.1. Calculate the average and median values of the eccentricity for a population
of binaries with a thermal distribution of eccentricities.

15.2. Assume a globular cluster consists of stars with mass m = 0.7M� and has a
dispersion velocity of 〈v〉 = 20km/s. Determine the maximum orbital period of a
“hard” binary.

15.3. Solve Eqs. (15.20) and (15.21) to obtain expressions for (Δ t)2 ä(t) and
(Δ t)3 ˙̈a(t) in terms of a(t), a(t +Δ t), ȧ(t), and ȧ(t +Δ t).



Appendix A
Useful Constants

A.1 Physical Constants

Table A.1 Physical constants in SI units

Symbol Constant Value

c Speed of light 2.997925×108 m/s
e Elementary charge 1.602191×10−19 C
ε0 Permittivity 8.854×10−12 C2s2/

(
kgm3

)
μ0 Permeability 4π×10−7 kgm/C2

mH Atomic mass unit 1.660531×10−27 kg
me Electron mass 9.109558×10−31 kg
mp Proton mass 1.672614×10−27 kg
mn Neutron mass 1.674920×10−27 kg
h Planck constant 6.626196×10−34 Js
h̄ Planck constant 1.054591×10−34 Js
R Gas constant 8.314510×103 J/(kgK)

k Boltzmann constant 1.380622×10−23 J/K
σ Stefan–Boltzmann constant 5.66961×10−8 W/

(
m2 K4

)
G Gravitational constant 6.6732×10−11 m3/

(
kgs2

)

M. Benacquista, An Introduction to the Evolution of Single and Binary Stars,
Undergraduate Lecture Notes in Physics, DOI 10.1007/978-1-4419-9991-7,
© Springer Science+Business Media New York 2013

223



224 A Useful Constants

Table A.2 Useful combinations and alternate units

Symbol Constant Value

mHc2 Atomic mass unit 931.50MeV
mec2 Electron rest mass energy 511.00keV
mpc2 Proton rest mass energy 938.28MeV
mnc2 Neutron rest mass energy 939.57MeV
h Planck constant 4.136×10−15 eVs
h̄ Planck constant 6.582×10−16 eVs
k Boltzmann constant 8.617×10−5 eV/K
hc 1,240eVnm
h̄c 197.3eVnm
e2/(4πε0) 1.440eVnm

A.2 Astronomical Constants

Table A.3 Astronomical units

Symbol Constant Value

AU Astronomical unit 1.4959787066×1011 m
ly Light year 9.460730472×1015 m
pc Parsec 2.0624806×105 AU

3.2615638ly
3.0856776×1016 m

d Sidereal day 23h 56m 04.0905309s

8.61640905309×104 s
d Solar day 86,400 s
yr Sidereal year 3.15581498×107 s

365.256308 d
yr Tropical year 3.155692519×107 s

365.2421897 d
M� Solar mass 1.9891×1030 kg
L� Solar luminosity 3.839×1026 W
R� Solar radius 6.95508×108 m



Appendix B
Atomic Properties of Selected Elements

B.1 Atomic Properties of Selected Elements

Table B.1 Atomic properties of selected elements

Symbol Element Mass (mH)
Ionization
energy (eV)

Ground state
configuration

1H Hydrogen 1.007825 13.598 1s
2H 2.014102
3H∗ 3.016049
3He Helium 3.016029 24.587 1s2

4He 4.002603
6He∗ 6.018889
6Li Lithium 6.015123 5.392 1s22s
7Li 7.016004
8Li∗ 8.022487
7Be∗ Beryllium 7.016930 9.323 1s22s2

8Be∗ 8.005305
9Be 9.012182
10B Boron 10.012937 8.298 1s22s2p
11B 11.009305
11C∗ Carbon 11.011434 11.2603 1s22s2p2

12C 12.000000
13C 13.003355
14C∗ 14.003242
12N∗ Nitrogen 12.018613 14.5341 1s22s2p3

13N∗ 13.005739
14N 14.003074
15N 15.000109

(continued)
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Table B.1 (continued)

Symbol Element Mass (mH)
Ionization
energy (eV)

Ground state
configuration

14O∗ Oxygen 14.008596 13.6161 1s22s2p4

15O∗ 15.003066
16O 15.994915
17O 16.999132
18O 17.999161
17F∗ Fluorine 17.002095 17.4228 1s22s2p5

18F∗ 18.000938
18F 18.998403
20F∗ 19.999981
19Ne∗ Neon 19.001880 21.5645 1s22s2p6

20Ne 19.992440
21Ne 20.993847
22Ne 21.991385
23Na Sodium 22.989769 5.1391 [Ne]3s
23Mg∗ Magnesium 22.994124 7.6462 [Ne]3s2

24Mg 23.985042
25Mg 24.985837
26Mg 25.982593
26Al∗ Aluminum 25.986892 5.9858 [Ne]3s23p
27Al 26.981539
28Si Silicon 27.976927 8.1517 [Ne]3s23p2

29Si 28.976495
30Si 29.973770
31P Phosphorus 30.973962 10.4867 [Ne]3s23p3

32S Sulfur 31.972071 10.3600 [Ne]3s23p4

33S 32.971459
34S 33.967867
35S∗ 34.969032
36S 35.967081
34Cl∗ Chlorine 33.973763 12.9678 [Ne]3s23p5

35Cl 34.968853
36Cl∗ 35.968307
37Cl 36.965903
36Ar Argon 35.967545 15.7596 [Ne]3s23p6

38Ar 37.962732
40Ar 39.962383
41Ar∗ 40.964501
41Ar∗ 40.964501
38K∗ Potassium 37.969081 4.2407 [Ar]4s
39K 38.963707
40K∗ 39.963998
41K 40.961826

(continued)
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Table B.1 (continued)

Symbol Element Mass (mH)
Ionization
energy (eV)

Ground state
configuration

40Ca Calcium 39.962591 6.1132 [Ar]4s2

41Ca∗ 40.962278
42Ca 41.958618
43Ca 42.958767
44Ca 43.955482
45Ca∗ 44.956187
46Ca 45.953693
47Ca∗ 46.954546
48Ca 47.952534
41Sc∗ Scandium 40.969251 6.5615 [Ar]3d4s2

42Sc∗ 41.965516
45Sc 44.955912
47Sc∗ 46.952408
48Sc∗ 47.952231
49Sc∗ 48.950024
46Ti Titanium 45.952631 6.8281 [Ar]3d24s2

47Ti 46.951763
48Ti 47.947946
49Ti 48.947870
50Ti 49.944791
51V Vanadium 50.943960 6.7462 [Ar]3d34s2

50Cr Chromium 49.946044 6.7665 [Ar]3d54s
51Cr∗ 50.944767
52Cr 51.940508
53Cr 52.940649
54Cr 53.938880
50Mn∗ Manganese 49.954238 7.4340 [Ar]3d54s2

51Mn∗ 50.948211
53Mn∗ 52.941290
55Mn 54.938045
56Mn∗ 55.938905
57Mn∗ 56.938285
54Fe Iron 53.939611 7.9024 [Ar]3d64s2

55Fe∗ 54.938293
56Fe 55.934938
57Fe 56.935394
58Fe 57.933276

(continued)
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Table B.1 (continued)

Symbol Element Mass (mH)
Ionization
energy (eV)

Ground state
configuration

54Co∗ Cobalt 53.948460 7.8810 [Ar]3d74s2

55Co∗ 54.941999
57Co∗ 56.936291
58Co∗ 57.935753
59Co 58.933915
57Ni∗ Nickel 56.939794 7.6399 [Ar]3sd84s2

58Ni 57.935343
59Ni∗ 58.934347
60Ni 59.930786
61Ni 60.931056
62Ni 61.928345
63Ni∗ 62.929669
64Ni 63.927966



Appendix C
Closest and Brightest Stars

C.1 Closest Stars

Table C.1 Twenty closest stars

Name
Spectral
class

Right
ascension Declination

Distance
(pc)

V645 centauri M5.5 14h 29m 43.0s −62◦ 40′ 46′′ 1.30
α centauri A G2 14h 39m 36.5s −60◦ 50′ 02′′ 1.34
α centauri B K1 14h 39m 35.1s −60◦ 50′ 14′′ 1.34
Barnard’s star M4 17h 57m 48.5s +04◦ 41′ 36′′ 1.83
Wolf 359 M6 10h 56m 29.2s +07◦ 00′ 53′′ 2.39
Lalande 21185 M2 11h 03m 20.2s +35◦ 58′ 12′′ 2.54
Sirius A A1 06h 45m 08.9s −16◦ 42′ 58′′ 2.63
Sirius B DA2 06h 45m 08.9s −16◦ 42′ 58′′ 2.63
Luyten 726-8A M5.5 01h 39m 01.3s −17◦ 57′ 01′′ 2.68
Luyten 726-8B M6 01h 39m 01.3s −17◦ 57′ 01′′ 2.68
Ross 154 M3.5 18h 49m 49.4s −23◦ 50′ 10′′ 2.97
Ross 248 M5.5 23h 41m 54.7s +44◦ 10′ 30′′ 3.16
ε eridani K2 03h 32m 55.8s −09◦ 27′ 30′′ 3.23
Lacaille 9352 M1.5 23h 05m 52.0s −35◦ 51′ 11′′ 3.29
Ross 128 M4 11h 47m 44.4s +00◦ 48′ 16′′ 3.35
EZ aquarii A M5 22h 38m 33.4s −15◦ 18′ 07′′ 3.45
EZ aquarii B M 22h 38m 33.4s −15◦ 18′ 07′′ 3.45
EZ aquarii C M 22h 38m 33.4s −15◦ 18′ 07′′ 3.45
Procyon A F5 07h 39m 18.1s +05◦ 13′ 30′′ 3.50
Procyon B DA 07h 39m 18.1s +05◦ 13′ 30′′ 3.50
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C.2 Brightest Stars

Table C.2 Twenty brightest stars

Name
Spectral
class

Right
ascension Declination

Apparent
magnitude

Sirius A A1 06h 45m 08.9s −16◦ 42′ 58′′ −1.46
Canopus F0 06h 23m 57.1s −52◦ 41′ 44′′ −0.72
Arcturus K1 14h 15m 39.7s +19◦ 10′ 56′′ −0.04
α centauri A G2 14h 39m 36.5s −60◦ 50′ 02′′ −0.01
Vega A0 18h 36m 56.3s +38◦ 47′ 01′′ 0.03
Rigel B8 05h 14m 32.3s −08◦ 12′ 06′′ 0.12
Procyon A F5 07h 39m 18.1s +05◦ 13′ 30′′ 0.34
Betelgeuse M2 05h 55m 10.3s +07◦ 24′ 25′′ 0.42
α eridani B3 01h 37m 42.8s −57◦ 14′ 12′′ 0.50
β centauri B1 14h 03m 49.4s −60◦ 22′ 23′′ 0.60
Capella A G8 05h 16m 41.4s +45◦ 59′ 53′′ 0.71
Altair A7 19h 50m 47.0s +08◦ 52′ 06′′ 0.77
Aldebaran K5 04h 35m 55.2s +16◦ 33′ 34′′ 0.85
Capella B G1 05h 16m 41.4s +45◦ 59′ 53′′ 0.96
Spica G1 13h 25m 11.6s −11◦ 09′ 41′′ 1.04
Antares M1 16h 29m 24.0s −26◦ 25′ 55′′ 1.04
Pollux K0 07h 45m 18.9s +28◦ 01′ 34′′ 1.15
Fomalhaut A3 22h 57m 39.0s −29◦ 37′ 20′′ 1.16
Deneb A2 20h 41m 25.9s +45◦ 16′ 49′′ 1.25
Mimosa B0 12h 47m 43.3s −59◦ 41′ 20′′ 1.30



Solutions

Problems of Chapter 1

1.1 Use the SIMBAD database at http://simbak.cfa.harvard.edu/simbad/ to deter-
mine the position of the star Capella on October 2, 2012. Give the new RA and
dec after precessing and then the new values of RA and dec after including proper
motion. Note that the proper motions are given as RA=μ sinφ and dec=μ cosφ in
this database.

Solution. From SIMBAD we get the following J2000 coordinates: α =
05h 16m 41.359s and δ = +45◦ 59′ 52.77′′. The proper motion is μα cosδ = 75.25
mas/year and μδ = −426.89 mas/year. October 2 is the 275th day of the year, so
the number of years is

N = (2012− 2000)+ 275/365.25= 12.7529year.

The right ascension and declination in degrees are

α = 15(5+ 16/60+ 41.359/3600)= 79.1723◦,

δ = 45+ 59/60+ 52.77/3600= 45.9980◦.

The epoch corrections are

Δα = [3.075+(1.336)sin(79.1723) tan(45.9980)]12.7529 = 56.543s,

Δδ = [20.043cos(79.1723)]12.7529 = 48.017′′.

Therefore, the precessed coordinates are

α = 05h 17m 37.902s,

δ = 46◦ 00′ 40.79′′.

M. Benacquista, An Introduction to the Evolution of Single and Binary Stars,
Undergraduate Lecture Notes in Physics, DOI 10.1007/978-1-4419-9991-7,
© Springer Science+Business Media New York 2013

231

http://simbak.cfa.harvard.edu/simbad/


232 Solutions

The proper motions are given in the form μ sinφ = 0.07525′′/year and μ cosφ =
−0.42689′′/year. Therefore the proper motion changes are

Δα =
Nμ sinφ

cosδ
=

12.7529× 0.07525
cos45.9980

= 1.3814′′ = 0.0921s,

Δδ =
Nμ cosφ

=
12.7529× (−0.42689) =−5.444′′.

Finally, we have the coordinates after accounting for the proper motion:

α = 05h 17m 37.994s,

δ = 46◦ 00′ 35.35′′.

1.2 Given that the luminosity of the sun is L� = 3.84× 1026 W and the absolute
magnitude of the sun is M = 4.74, find the apparent magnitude of the sun. The
distance to the sun from the earth is 1AU = 1.496× 1011m.

Solution.

M = m− 5log10

(
d

10pc

)
=⇒ m = M+ 5log10

(
d

10pc

)
.

Therefore,

m = 4.74+ 5log10

(
1.496× 1011

3.086× 1017

)
=−26.83.

1.3 The star Sirius is 2.64 pc away from the earth and it has an apparent magnitude
of −1.44. What is its luminosity in units of the solar luminosity, L�?

Solution.
L

L�
=

I/4π (10pc)2

I�/4π (10pc)2 = 100(M−M�)/5.

We find the absolute magnitude of Sirius with

M =−1.44− 5log10 0.264 = 1.45,

so
L

L�
= 100(4.74−1.45)/5 = 20.70.
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Problems of Chapter 2

2.1 Demonstrate that the orbit lies in a plane by choosing arbitrarily oriented
spherical polar coordinates.

Solution. Start with

L =
1
2

m
(
ṙ2 + r2θ̇ 2 + r2 sin2 θ φ̇2)+ GMm

r
.

Now, the Euler–Lagrange equations read

d
dt
∂L

∂ φ̇
− ∂L

∂φ
=

d
dt

(
mr2 sin2 θ φ̇

)
= 0,

d
dt
∂L

∂ θ̇
− ∂L

∂θ
=

d
dt

(
mr2θ̇

)−mr2 sinθ cosθ φ̇2 = 0,

d
dt
∂L

∂ ṙ
− ∂L

∂ r
=

d
dt

(mṙ)−mrθ̇ 2 −mr sin2 θ φ̇2 +
GMm

r2 = 0.

When θ = π/2, sinθ = 1 and cosθ = 0, so these equations read

d
dt

(
mr2φ̇

)
= 0,

d
dt

(
mr2θ̇

)
= 0,

d
dt

(mṙ)−mrθ̇ 2 −mrφ̇2 +
GMm

r2 = 0.

If, in addition, θ̇ = 0, then the θ equation implies that θ̇ is a constant, so θ̇ is always
0 and the equations read

d
dt

(
mr2φ̇

)
= 0,

d
dt

(0) = 0,

d
dt

(mṙ)−mrφ̇2 +
GMm

r2 = 0.

The middle equation is an identity, and the other two equations are the planar
equations.

2.2 Derive Kepler’s third law (GM = a3ω2) using J = μr2θ̇ and r = �/(1+ecosθ ).



234 Solutions

Solution. First, we notice that the area of an ellipse is

A = πab = πa2
√

1.e2 = 2
∫ π

0

∫ r(θ)

0
r drdθ =

∫ π

0
r2dθ .

Now,

J = μr2θ̇ =⇒ J
μ

dt = r2dθ ,

so
J
μ

∫ T/2

0
dt =

J
μ

T
2
=

∫ π

0
r2dθ = πa2

√
1− e2

and

J2

μ2 = GM� = GMa
(
1− e2)= 4π2

T 2 a4 (1− e2)=⇒ GM =
4π2

T
a3 = a3ω2.

2.3 MT720 is a spectroscopic binary in the Cygnus OB2 association. It is found to
have a period of P = 4.36d and an eccentricity of e = 0.35. The semi-amplitudes of
the radial velocities are K1 = 173km/s and K2 = 242km/s.

(a) Find msin3 i and asin i for each star.
(b) What is the mass ratio of q = m2/m1?
(c) If i = 70◦, what are the masses of each star?

Solution. (a) P = 4.36(86,400) = 3.767× 105 s, K1 = 1.73× 105 m/s, and K2 =
2.42× 105 s, so

m1 sin3 i =
3.767× 105

2π6.67× 10−11

(
1− (0.35)2

)3/2(
4.15× 105

)2
2.42× 105

= 3.08× 1031 kg = 15.4M�,

m2 sin3 i =
3.767× 105

2π6.67× 10−11

(
1− (0.35)2

)3/2(
4.15× 105

)2
1.73× 105

= 2.20× 1031 kg = 11.0M�,

a1 sin i =

√
1− (0.35)2

2π

(
1.73× 105

)(
3.767× 105

)

= 9.72× 109 m = 13.96R�,

a2 sin i =

√
1− (0.35)2

2π

(
2.42× 105

)(
3.767× 105

)

= 1.36× 1010 m = 19.53R�.
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(b)

q =
m2

m1
=

K1

K2
=

173
242

= 0.715.

(c) If i = 70◦, then sin3 i = 0.83 and

m1 =
15.4M�

0.83
= 18.6M�,

m2 =
11.0M�

0.83
= 13.3M�.

Problems of Chapter 3

3.1 GK Vir is an eclipsing spectroscopic binary with an angle of inclination i =
89.5◦±0.6◦, so that it can be considered to be viewed edge on. The orbit is circular
with semi-amplitudes of the radial velocities given by K1 = 38.6km/s and K2 =
221.6km/s. The orbital period is P = 0.344d. The time required for the light curve
to drop to its lowest value is tb − ta = 89.6s, while the time required for the light
curve to begin rising again is tc − ta = 817s. Use this information to find:

(a) The radii of both stars
(b) The masses of both stars

Solution. (a) If the orbit is circular, then K1 = v1 and K2 = v2. Therefore the radii
are found from

r1 =
K1 +K2

2
(tb − ta) =

2.602× 105 m/s
2

(89.6s) = 1.166× 107m = 0.017R�,

r2 =
K1 +K2

2
(tc − ta) =

2.602× 105 m/s
2

(817s) = 1.063× 108 m = 0.153R�.

(b) Use the spectroscopic binary formula to find the masses:

m1 =
P

2πG
(K1 +K2)

2 K2 =
(0.344)(86,400)
2π (6.67× 10−11)

(
2.602× 105

)2(
2.216× 105

)

= 1.064× 1030kg = 0.532M�,

m2 =
P

2πG
(K1 +K2)

2 K1 =
(0.344)(86,400)
2π (6.67× 10−11)

(
2.602× 105

)2 (
3.86× 104)

= 1.853× 1029kg = 0.093M�.

3.2 For a gas of neutral hydrogen atoms, at what temperature is the number of atoms
in the first excited state only 1% of the number of atoms in the ground state? At what
temperature is the number of atoms in the first excited state 10% of the number of
atoms in the ground state?
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Solution.

N2

N1
= r =

8
2

e−3e0/4kT =⇒ T =
3E0

4k ln(4/r)
.

Use E0 = 13.6eV and k = 8.617× 10−5 eV/K, so

r = 0.01 =⇒ T = 19,756K

and
r = 0.1 =⇒ T = 32,088K.

3.3 A typical atmosphere found on a white dwarf of spectral type DB is pure helium.
The ionization energies of neutral helium and singly ionized helium are ξI = 24.6eV
and ξII = 54.4eV, respectively. The partition functions are ZI = 1, ZII = 2, and
ZIII = 1. Use Pe = 20N/m2 for the electron pressure.

(a) Use the Saha equation to find NII/NI and NIII/NII for temperatures of 5,000 K,
15,000 K, and 25,000 K.

(b) Show that NII/Ntotal = NII/(NI +NII +NIII) can be expressed in terms of the
ratios NII/NI and NIII/NII .

(c) Plot NII/Ntotal for temperatures between 5,000 K and 25,000 K. What is the
temperature for which NII/Ntotal = 0.5?

Solution. (a) From the Saha equation, we have

NII

NI
=

(
2k
Pe

)(
2πmec2k

(hc)2

)3/2
ZII

ZI
T 5/2e−ξI/kT .

Some useful constants to know are mec2 = 511keV, hc = 1,240eVnm, k =
8.617× 10−5eV/K, and 1Pa = 6.242× 1018 eV/m3. Therefore,

NII

NI
=

2
(
8.617× 10−5eV/K

)
20(6.242× 1018 eV/m3)

(
2π

(
5.11× 105 eV

)(
8.617× 10−5eV/K

)
(1.240× 10−6eVm)

2

)3/2

×2
1

T 5/2e(24.6eV)/(T 8.617×10−5 eV/K)

= 6.66× 10−3
(

T
K

)5/2

e−(2.85×105 K)/T .

So

T = 5,000K =⇒ 1.88× 10−18,

T = 15,000K =⇒ 9.96× 10−1,

T = 25,000K =⇒ 7.23× 103.
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For NIII/NII the only thing that changes is ξ = 54.4eV and ZIII = 1, so

NIII

NII
= 1.67× 106

(
T
K

)5/2

e−(6.31×105 K)/T .

So

T = 5,000K =⇒ 4.31× 10−49,

T = 15,000K =⇒ 2.42× 10−11,

T = 25,000K =⇒ 1.78× 10−3.

(b)
NII

Ntotal
=

NII

NI +NII +NIII
=

1
NI
NII

+ 1+ NIII
NII

.

(c) From the plot, we see that 15,000 < T < 16275.

Problems of Chapter 4

4.1 Using the density distribution

M
4R2

sin(πr/R)
r

,

compute m(r).

Solution.

m(r) = 4π
∫ r

0
ρ(r)r2dr =

πM
R2

∫ r

0
r sin (πr/R)dr

=
M
π

[
sin(πr/R)− πr

R
cos(πr/R)

]
.

4.2 Using the density from Problem 4.1, compute Ω and show that α = 0.75.

Solution.

Ω =−
∫ M

0

Gmdm
r

=−GM2

R2

∫ R

0

[
sin(πr/R)− πr

R
cos(πr/R)

]
sin(πr/R)dr.

Make the substitution x = πr/R, so that
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Ω = −GM2

πR

[∫ π

0
sin2 xdx−

∫ π

0
xcosxsinxdx

]

= −GM2

πR

[
1
2
(x− sinxcosx)− 1

8
(sin2x− 2xcos2x)

]π
0

= −3GM2

4R
.

So α = 0.75.

4.3 Assuming that a star of mass M is devoid of nuclear energy sources, determine
its radius as a function of time if it maintains a constant luminosity L. Assume that
the star is in hydrostatic equilibrium.

Solution. Assume that the star is in hydrostatic equilibrium and that the virial
theorem holds. Therefore,

L = Ė = K̇ + Ω̇ +U̇ = 0+ Ω̇− 1
2
Ω̇ =− d

dt

(
1
2
αGM2

R

)
=−αGM2

2R2

dR
dt

.

Consequently,
dR
dt

=− 2LR2

αGM2 .

Note that we can find the time dependence of R by integrating

∫ R

R0

dR
R2 =−

∫ t

0

2L
αGM2 dt.

So
−1
R

+
1

R0
=− 2Lt

αGM2 =⇒ R =
αR0GM2

αGM2 + 2LR0t
.

Problems of Chapter 5

5.1 Evaluate the pressure integral using the Maxwell–Boltzmann distribution and
show that you get the ideal gas law.

Solution. First, we note that the Maxwell–Boltzmann distribution has the following
property:

n =
∫ ∞

0
n(p)dp =

4πn

(2πmkT )3/2

∫ ∞

0
p2e−p2/2mkT dp.

Now, using v = p/m, the pressure integral gives
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P =
1
3

∫ ∞

0

4πnp4

m(2πmkT )3/2
e−p2/2mkT dp.

Use the fact that

pe−p2/2mkT =−mkT
d

dp
e−p2/2mkT ,

and integrate by parts to get

P =
1
3

4πn

m(2πmkT )3/2
mkT

∫ ∞

0
3p2e−p2/2mkT dp

or

P = kT
4πn

(2πmkT )3/2

∫ ∞

0
p2e−p2/2mkT d p = nkT.

5.2 The relativistic form of the kinetic energy is K = (γ− 1)mc2. Determine the
density for which γ ∼ 1.1. (i.e., p2/2m ∼ 0.1mc2).

Solution.

Ē =
3
5

EF =
3
5

h̄2

2me

[
3π2

(
Z

A

)
ρ

mH

]2/3

= 0.1mec2.

Some algebra gives

ρ =

(
A

Z

)
mH

π2

1

35/2

[mec
h̄

]3
=

16π
35/2

mH

[mec
h

]3
.

Taking Z /A = 1/2 using 1.661× 10−27 kg for mH and 2.426× 10−12 m for the
Compton wavelength (h/mec), we get

ρ = 3.7× 108 kg/m3.

5.3 For highly relativistic electrons, E 
 pc where p =
√

p2
x + p2

y + p2
z . Following

Eq. (5.28), we have E = h̄c πL

√
N2

x +N2
y +N2

z = h̄cπN/L. Derive Eq. (5.45) as

follows:

(a) The number of states is related to N by Ns =
(π

3 N3
)
. Use this to write E as a

function of Ns and show that

g(E) =
dNs

dE
=

1
π2

(
L
h̄c

)3

E2.
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Solution.

E =

(
h̄cπ

L

)(
3Ne

π

)1/3

=⇒ Ne = E3
(

L
h̄cπ

)3(π
3

)
,

so

g(E) =
dNe

dE
= 3E2

(
L

h̄cπ

)3(π
3

)
=

1
π2

(
L
h̄c

)3

E2.

(b) Define EF = E(Ne) where Ne is the total number of free electrons in the star
and show that

Ē =
1

Ne

∫ EF

0
g(E)E dE =

3
4

EF .

Solution.

Ē =
1

Ne

∫ EF

0

1
π2

(
L
h̄c

)3

E3dE =
1

Ne

1
π2

(
L
h̄c

)3 1
4

E4
F .

From part (a), we have

Ne = E3
F

(
L

h̄cπ

)3(π
3

)
,

so

Ē =

(
h̄cπ

L

)3( 3
π

)
1
π2

(
L
h̄c

)3 1
4

EF =
3
4

EF .

(c) Noting that L =V 1/3, show that

P =− ∂
∂V

(NeĒ) =
1
4

h̄c
(
3π2)1/3

n4/3
e ,

where ne = Ne/V .

Solution.

P = − ∂
∂V

(
Ne

3
4

(
h̄cπ

L

)(
3Ne

π

)1/3
)

=−3
4

h̄c
(
3π2)1/3

N4/3
e

∂
∂V

V−1/3

=
1
4

h̄c
(
3π2)1/3

N4/3
e V−4/3 =

1
4

h̄c
(
3π2)1/3

n4/3
e .

5.4 Do this integral (Eq. (265)) for a classical degenerate gas to obtain Eq. (268).

Solution. Using N = 2Lp/h, the number of momentum states per volume is
given by

n(p)d(p) =
2

8V
4πN2dN =

8π
h3 p2dp,

so

u =
1
ρ

∫ pF

0
n(p)ε(p)dp =

1
ρ

∫ pF

0

8π
h3 p2 p2

2m
dp =

4π
mh3ρ

1
5

p5
F .
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Now, we need to rewrite pF in terms of P, so

pF =
√

2mE =
√

2m
h̄√
2m

[(
3π2)(Z

A

)
ρ

mH

]1/3

and

P =
1
5

h̄2 (3π2
)2/3

m

[
Z

A

ρ
mH

]
=⇒

[
Z

A

ρ
m

]1/3

=

[
5Pm

h̄2 (3π2)2/3

]1/5

,

so
pF = h̄3/5 (3π2)1/5

(5Pm)1/5

and

u =
4π

mh3ρ
1
5

h̄3 (3π2)5Pm =
3
2

P
ρ
.

Problems of Chapter 6

6.1 Show that you can recover the expression for Prad in Eq. (5.27) if you use Bλ ,
the blackbody expression for the specific intensity.

Solution. The integral is

Prad =
1
c

∫ ∞

0
dλ

∫ 2π

0
dφ

∫ π

0
dθ Iλ cos2 θ sinθ

and the specific intensity for a blackbody is

Bλ =
2hc2

λ 5
(
ehc/λ kT − 1

) .

Since Bλ is independent of θ , we can quickly do the angle integrals, so

Prad =
8πhc

3

∫ ∞

0

dλ
λ 5

(
ehc/λ kT − 1

) .

Now, make the variable substitution:

y =
hc
kT

1
λ
,
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so

Prad =
8πk4T 4

3h3c3

∫ ∞

0

y3dy
(ey − 1)

.

Looking at the integral, we note that it can be rewritten:

∫ ∞

0

y3dy
(ey − 1)

=

∫ ∞

0
y3e−y

(
1

1− e−y

)
dy,

and the term in brackets is simply the geometric series:

1
1− e−y =

∞

∑
n=0

e−ny,

so ∫ ∞

0

y3dy
(ey − 1)

=
∞

∑
n=1

∫ ∞

0
y3e−nydy.

Make another variable substitution z = ny, and the integral becomes

∞

∑
n=1

n−4
∫ ∞

0
z3e−zdz =

∞

∑
n=1

n−4Γ (4) = ζ (4)Γ (4).

Finally, Γ (4) = 3! and ζ (4) = π4/90, so

∫ ∞

0

y3dy
(ey − 1)

=
π4

15

and

Prad =

(
8π5k4

15h3c3

)
1
3

T 4.

6.2 The relativistic momentum of a particle is γmv and the relativistic energy is

γmc2, where γ =
(
1− v2/c2

)−1/2
. Use the relativistic conservation of momentum

and energy to show that a free particle cannot absorb a photon.

Solution. Start with the particle at rest and an incoming photon and assume that
both energy and momentum are conserved:

h f
c

= γmv,

h f +mc2 = γmc2.

If momentum is conserved, then h f = γmvc. Substitute this into the energy equation
to find

mc2 + γmvc = γmc2.
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Dividing out the m and solving for the final velocity of the particle, we find that
v = c. Since no particle can travel at the speed of light, then the assumption that
energy and momentum are both conserved is false. Therefore a free particle cannot
absorb a photon.

6.3 Using Eq. (6.18) and setting τr = 0, the specific intensity at the surface is
given by

Iλ =− 1
cosθ

∫ ∞

0
Sλ (t,θ )e−t/cosθdt.

Show that if Sλ (τr) = aλ + bλτ , then Iλ = aλ + bλ cosθ .

Solution.

Iλ = − 1
cosθ

∫ ∞

0
(aλ + bλ t)e−t/cosθdt

= − aλ
cosθ

∫ ∞

0
e−t/cosθdt − bλ

cosθ

∫ ∞

0
te−t/cosθdt

= aλ e−t/cosθ
∣∣∣∞
0
+ bλ e−t/cosθ (t + cosθ )

∣∣∣∞
0

= aλ + bλ cosθ .

Problems of Chapter 7

7.1 The source of the luminosity of the sun is the fusion of four 1H nuclei to form
one 4He nucleus. The energy from each reaction comes from the conversion of mass
to energy via E = mc2. Using the luminosity of the sun, calculate the mass loss rate
(in kg/s) due to nuclear fusion.

Solution.

L =
dE
dt

=
dm
dt

c2 =⇒ dm
dt

=
L
c2 =

3.84× 1026

9× 1016 = 4.27× 109 kg/s.

7.2 In the p-p chain, the net energy released for each 4He created is 26 MeV.
Assuming that the entire luminosity of the sun is generated by the p-p chain,
calculate the mass of 1H that is converted to 4He (in kg/s).

Solution. The number of reactions per second is N = L/ΔE where ΔE = 26MeV
and the mass of hydrogen consumed per second is dmH/dt = 4NmH . Therefore,

dmH

dt
= 4

L
ΔE

mH =
4LmHc2

ΔEc2 = 4
L
c2

mHc2

ΔE

= 4
(
4.27× 109 kg/s

) 938.27MeV
26MeV

= 6.15× 1011 kg/s.
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7.3 In a fully convective core, the material within the core is continually mixed so
that the mass fractions are uniform throughout the core. A star has a fully convective
core that is pure 1H and has a mass of 0.1M�.

(a) Assume that all of the hydrogen is burned to produce a core of pure 4He. What
is the mass of the resulting helium core? What is the total amount of energy
released during the hydrogen-burning phase?

Solution. The number of 4He atoms in the helium core is four times the number of
1H atoms in the original core. Taking the atomic mass of 1H to be 1.007825mH and
the atomic mass of 4He to be 4.0026032mH, the mass of the helium core is

MHe = MH
4.0026032

4× 1.007825
= 0.09929M�.

The total amount of energy released is (MH −MHe)c2 = 1.281× 1044J.

(b) Assume that all of the helium in the helium core is subsequently burned to
produce a core of pure 12C. What is the mass of the resulting carbon core?
What is the total amount of energy released during the helium-burning phase?

Solution. Using the same procedure as part (a) but taking the atomic mass of 12C =
12mH, the mass of the carbon core is

MC = MHe
12

3× 4.0026032
= 0.09922M�.

The total amount of energy released is (MHe −MC)c2 = 1.162× 1043 J.

Problems of Chapter 8

8.1 Solve the Lane–Emden equation for n = 1. Calculate the mass of the star in
terms of the central density ρc.

Solution. For n = 1, the Lane–Emden equation becomes

ξ 2Θ ′′+ 2ξΘ ′+ ξ 2Θ = 0,

which is the differential equation for a spherical Bessel function of order 0.
Therefore, the general solution is

Θ = A j0(ξ )+By0(ξ ) = A
sinξ
ξ

−B
cosξ
ξ

.
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Imposing boundary conditionsΘ(0) = 1 andΘ ′(0) = 0 gives

Θ(ξ ) =
sinξ
ξ

.

The first zero is found at ξ1 = π , and so the mass of the star is

M =−4πα3ρcξ 2
1

(
cosξ1

ξ1
− sinξ1

ξ 2
1

)
= 4π2α3ρc.

8.2 The solar value of the mean molecular weight is 0.61. Use this to determine β
for the Eddington Standard Model of the sun.

Solution. The solar value for the mass is M = M�, so we numerically solve the
quartic equation: (0.00415)β 4+β − 1 = 0. This gives β 
 0.996. This means that
the pressure in the sun is almost entirely due to gas pressure.

8.3 Using the value of β found in Problem 8.2 and the solutions for the n = 3
polytrope, determine the central density and central temperature of the sun in the
Eddington Standard Model.

Solution. Using M = M� = 2× 1030 kg and R = R� = 6.96× 108 m, the average
density is

ρ̄ =
3M

4πR3 = 1.416× 103kg/m3.

From Table 8.1, we have D3 = 54.21, and so

ρc = D3ρ̄ = 7.677× 104 kg/m3.

The temperature is found from

Tc =

[
3R (1−β )

aμβ

]1/3

ρ1/3
c .

Using R = 8,314.51J/kgK, a = 7.5646×10−16 J/m3K4, μ = 0.61, and β = 0.996,
this gives

Tc = 2.55× 107 K.

8.4 Numerically solve the n = 3 polytrope equation using solar values to determine
the radius at which the temperature is high enough for the p-p chain to be operating
(T6 = 15).

Solution. We want to find the value of ξ for which T = 1.5× 107 K. Note that

T =

[
3R (1−β )

aμβ

]1/3

ρ1/3 =

[
3R (1−β )

aμβ

]1/3 (
ρcθ 3(ξ )

)1/3
= Tcθ (ξ ).
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Therefore, we numerically solve the Lane–Emden equation and determine the value
of ξ for which θ = T/Tc = 15/25 = 0.6. This is

ξ = 1.935.

Now we want to convert this into solar radii. Noting that R� = αR3, we find that

R =
R�
R3

ξ =
1.935
6.90

R� = 0.28R� = 1.95× 108 m.

8.5 Using ν = 3.5, determine the upper bound on the mass of a main sequence star.

Solution. Use solar units for the mass-luminosity relation, then the proportionality
constant is 1, and the maximum mass occurs when the luminosity reaches the
Eddington luminosity. For massive stars, the dominant source of opacity is electron
scattering; therefore,

LEdd = Mν
max = 3.2× 104Mmax =⇒ Mmax =

(
3.2× 104)1/(ν−1)

= 63.4M�.

Problems of Chapter 9

9.1 A shell of hydrogen is burning around a helium core of radius r. If the gas
is described by an ideal gas, what is the minimum outer radius of this shell if the
hydrogen burning is stable? What is the minimum outer radius if the gas is a non-
relativistic degenerate gas?

Solution. For an ideal gas, a = 1, and so the minimum thickness of the shell is
given by 4� = r. Therefore, the outer radius of the shell is 5r/4. If the gas is a
nonrelativistic degenerate gas, then a = 5/3, and then 4� = 5r/3 and so � = 5r/12
and the outer radius is at 17r/12.

9.2 For an ideal gas, what is the stable oscillation frequency for m = 1M� and
r0 = 1R�?

Solution. For an ideal gas, γa = 5/3. Therefore,

ω =
√

Gm/r3
0 =

√
(6.67× 10−11)(2× 1030)

(6.96× 108)3 = 6.29× 10−4Hz.

This corresponds to an oscillation frequency of 10−4 Hz and a period of oscillation
of about 10,000 s, or about 2.8 h.
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9.3 Starting with Eq. (9.44), show that the condition for convection can also be
written

d lnP
dlnT

<
γa

γa − 1
.

Solution. The condition for convection is

dT
dr

>
T
P

(
1− 1

γa

)
dP
dr

.

Dividing by T and rearranging slightly gives

1
T

dT
dr

>
1
P

dP
dr

(
γa − 1
γa

)
.

Noting that
1
T

dT
dr

=
dlnT

dr
,

we have
dlnT

dr
dr

dlnP
>
γa − 1
γa

or
d lnP
dlnT

<
γa

γa − 1
.

Problems of Chapter 10

10.1 The Jeans length (RJ) is defined to be the minimum radius necessary to
collapse a cloud of density ρ0.

(a) Use the expression of the Jeans mass to obtain one for the Jeans length.

Solution. The Jeans length is related to the Jeans mass by

ρ0 =
3MJ

4πR3
J

=⇒ RJ =

(
3MJ

4πρ0

)1/2

,

so

RJ =

(
3

4πρ0

[
5RT
μG

]3/2 [ 3
4πρ0

]1/2
)1/3

=

√
15RT

4πμGρ0
.

(b) For a typical diffuse hydrogen cloud, T = 50K, and n = 5 × 108 m−3. If
we assume that the cloud is entirely composed of H I, ρ0 = mHn = 8.4 ×
10−19 kg/m3. Taking μ = 1, determine RJ for this cloud.
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Solution. Using the following constants:

R = 8.314× 103Jkg−1 K−1,

G = 6.67× 10−11m3 kg−1 s−2,

and so

RJ =

√
15(8.314× 103)50

4π (6.67× 10−11) (8.4× 10−19)

= 9.41× 1016m = 1.37× 107 R�.

10.2 Using the opacity for dust and taking the initial density to be ρ 
 10−10 kg/m3,
determine the radius of the star when the optical depth becomes 2/3 at the center.
Assume constant density.

Solution. Assuming constant density, then

R =
τ
κρ

=
2

3× 10−3× 10−10 = 6.7× 1012 m = 9.6× 103 R�.

10.3 The typical metal composition of a star with solar metallicity is described
by X = 0.68, Y = 0.3, and Z = 0.02. Using these values, determine the radius and
central temperature of the star after ionization of hydrogen and helium.

Solution. Using the mass fractions, the energy needed to ionize the hydrogen and
helium is

E =
M

4mH
[0.68(4(13.6eV)+ 2(4.48e))+ 3(78.98eV)] =

M
4mH

66.78eV.

Converting to Joules gives

E =
(
3.2× 1039 J

) M
M�

.

Equating this energy to the energy released from collapse gives

R
R�

=
GM2

2ER�
= 60

M
M�

.

Thus, the addition of metallicity does not change the results.

10.4 Assume that the opacity is dominated by the H− ion. Show that

R ∝
(

M
M�

)13/17

R�,
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when a star enters the Henyey track. If a 1M� star has a radius of 5R� when it enters
the Henyey track, what is the radius of a 2M� star at this point in its evolution?

Solution. When the star enters the Henyey track, Ms−n+3 ∝ Rs−3n+2. For H−
opacity, s =−9 and n = 1/2, so M13 ∝ R17. Therefore,

R ∝
(

M
M�

)13/17

R�.

If a 1M� star has a radius of 5R�, then the proportionality constant is 5, and so a
2M� star has a radius of

R = 513/17 R� = 8.5R�.

Problems of Chapter 11

11.1 Assume that the core contraction associated with the increase in μ is
homologous, so that throughout the core, r → r+ δ r. For an energy rate given by
q = q0ρTβ , show that the fractional change in energy rate is given by

δq
q

=−(3+β )
δ r
r
.

Solution.
δq
q

=
δρ
ρ

+β
δT
T

.

Using ρ = 3m/4πr3, we have

δρ
ρ

=−3
δ r
r
.

Assuming that the core is described by an ideal gas, we can use Eq. (9.20) with a= 1
and b = 1, so (

4
3
− a

)
δρ
ρ

=
1
3
δρ
ρ

=−δ r
r

=
δT
T

.

Combining these two results gives

δq
q

=−3
δ r
r
−β

δ r
r

=−(3+β )
δ r
r
.

11.2 A star starts out with a composition of X = 0.7, Y = 0.26, and Z = 0.04; the
metals have a solar distribution. Assume all the hydrogen is burned in the core. What
is the Chandrasekhar–Schoenberg limit for this star?
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Solution. For the envelope, we have

1
μenv

=
1
μI

+
1
μe

= X +
Y
4
+

Z
〈A 〉 +

1
2
(1+X).

Solar metallicity has 〈A 〉= 15.5, so μenv = 0.618. For the isothermal core, we note
that Z doesn’t change; therefore Y = 0.96, and

1
μic

=
1
2
+

Y
4
+

Z
〈A 〉 = 0.7426.

Therefore μic = 1.346. Finally, the Chandrasekhar–Schoenberg limit is

q = 0.37

(
μenv

μrmic

)2

= 0.078.

11.3 During the transition over the Hertzsprung gap, the radius of a 10M� star
increases from Ri = 8R� to R f = 250R�. Assume that the core has a mass of Mic =
0.1M� and initial radius of R0ic = 0.3R�. Use Eq. (11.35) to show that the radius
of the core after the collapse is 0.065R�.

Solution. Starting with
dR
R2 =−

(
Mic

Menv

)
dRic

R2
ic

,

we integrate to find

1
Ri

− 1
R f

=

(
Mic

Menv

)(
1

R f ic
− 1

R0ic

)
,

where R f ic is the final core radius. Using Menv = M−Mic = 9.9M�, we get

R f ic = 0.065M�.

Problems of Chapter 12

12.1 Calculate the effective temperature and the core temperature of a 0.7M� white
dwarf if its luminosity is 10−3 L�.

Solution. Using the Stefan–Boltzmann law, we have

Teff =

[
L

4πσR2

]1/4

=

[
10−3 L�

4πσ (107 m)2

]1/4

= 8,570K.
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Using Eq. (12.19), we have

Tc = 108 K

[
1

1.1
M�
M

L
L�

]2/7

= 1.5× 107 K.

12.2 The minimum rotational period of an object held together by gravity is found
by equating the tangential velocity at the equator to the orbital velocity of a test
particle at the surface. Assume a neutron star remains spherical even at these high
rotation rates and determine the minimum orbital period.

Solution. Using Kepler’s law and setting ω = 2π/P, a = R = 13.5km, and M =
1.4M�, we have

P =

√
4π2R3

GM
= 7.2× 10−4 s = 0.72ms.

12.3 Consider a pulsar with a mass of 1.4M� and a magnetic field of B = 108 T at
an angle of α = 30◦.

(a) Assume that the pulsar has constant density and calculate its moment of inertia.

Solution. For a constant density sphere, I = 2
5 MR2, so

I =
2
5

(
2.8× 1030 kg

)(
13.5× 103 m

)3
= 2.04× 1038 kgm2.

(b) Define the characteristic lifetime of a pulsar to be τ = P/Ṗ and compute the
characteristic lifetimes for P = 100ms, P= 10ms, and for the minimum period.

Solution.

τ =
P

Ṗ
=

3c3μ0I

8π3B2R6 sin2α
P2 = 5.53× 1015 P2.

Therefore,

P = 100ms =⇒ τ = 5.53× 1013 s = 1.75Myr,

P = 10ms =⇒ τ = 5.53× 1013 s = 17,500year,

P = 0.72ms =⇒ τ = 2.87× 109 s = 91year.

12.4 Determine the maximum value of the angular momentum that a black hole
may have and still have an event horizon.

Solution. The event horizon for a spinning black hole is

Rh =
Rs

2

(
1+

√
1− 4α2

R2
s

)
.
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This equation has no solution if 1− 4α2/R2
s < 0, so the maximum value of angular

momentum occurs at α = Rs/2. Using α = J/Mc and Rs = 2GM/c2, we find

J =
Rs

2
Mc =

GM2

c
.

Problems of Chapter 13

13.1 Assuming no mass loss from the stellar winds, use conservation of angular
momentum to compute the semimajor axis of the tidally circularized orbit for step
(I) to (II) in the microquasar example. How does it compare to the value of 3,501R�
obtained from the results of the stellar evolution code?

Solution. Starting with the initial semimajor axis of 5,330R� and eccentricity of
0.6, the tidally circularized orbit will have

a′ = 5,330
(

1− (0.36)2
)
= 3,411R�.

This is only slightly smaller than the numerically evaluated number.

13.2 Determine the combination of the efficiency parameter and the structure
parameter, αλ used for the common envelope phase from step (II) to (III), using
the values from the microquasar example.

Solution. The combination αλ is found from

αλ =
2m1me

1a f ai

RL
[
mc

1m2ai −m1m2a f
] ,

where

RL =
0.49q2/3ai

0.69q2/3+ ln
(
1+ q1/3

) ,
with q=m1/m2. Using m1 = 25.5M�, mc

1 = 15.9M�, m2 = 1.22M�, a f = 88.2R�,
and ai = 3,501R�, we find

αλ = 1.17.

13.3 Assume an initial period of 26.1 days for a binary containing a black hole with
mass m1 = 13.04M� and a red giant star with mass m2 = 1.22M�. If the binary is
undergoing stable, conservative mass transfer from the red giant to the black hole
with a mass transfer rate of ṁ2 = 1.0× 10−8 M�/year, what are the masses and
orbital period after 10.5 Myr?
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Solution. Starting with

ȧ = a
2(m1 −m2)

m1m2
ṁ

with a constant ṁ= 1.0×10−8 M�/year, then m1(t) =m1+ṁt and m2(t) =m2−ṁt
with m1 = 13.04M� and m2 = 1.22M�, we have

ȧ
a
=

2ṁ(Δm+ 2ṁt)
m1m2 −Δmṁt − ṁ2t2 ,

where Δm =m1−m2. We integrate from the initial separation a0 at t = 0 to the final
separation a at t = T = 10.5Myr:

∫ a

a0

da
a

=

∫ T

0

2ṁ(Δm+ 2ṁt)
m1m2 −Δmṁt − ṁ2t2 dt,

so
ln(a)|aa0

= −2ln(ṁt (Δm+ ṁt)−m1m2)|T0 .
This evaluates to

a = a0

[
m1m2

m1m2 − ṁT (Δm+ ṁT )

]2

.

Noting that

a =

[
G(m1 +m2)

4π2 P2
]1/3

,

we have

P = P0

[
m1m2

m1m2 − ṁT (Δm+ ṁT )

]3

.

Plugging in all the appropriate numbers gives P = 33.4d and ṁT = 0.105M�, so
m1(T ) = 13.145M� and m2(T ) = 1.115M�.

Problems of Chapter 14

14.1 Evaluate the gradients in Eq. (14.14) to show that

2∑
i

ri ·∇iΩ(ri) =−2Ω .

Solution. We need to evaluate

∇
1

|r− a| =
3

∑
i=1

êi
∂
∂ ri

1√
(r1 − a1)

2 +(r2 − a2)
2 +(r3 − a3)

2
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where êi is the unit vector pointing in the ith direction. The derivatives give

∇
1

|r− a| =− (r− a)

|r− a|3 .

Therefore

2∑
i

ri ·∇iΩ(ri) = 2∑
i�= j

[
−ri · Gmim j (ri − r j)∣∣ri − r j

∣∣3 −−r j · Gmim j (r j − ri)∣∣ri − r j
∣∣3

]

= −2∑
i�= j

[
(ri − r j) · Gmim j (ri − r j)∣∣ri − r j

∣∣3
]

= −2∑
i�= j

Gmim j∣∣ri − r j
∣∣ =−2Ω .

14.2 Using Eq. (14.20), and an estimate of the density, derive Eq. (14.22).

Solution.

trlx =
v3

8πG2m2
t n ln(γN)

.

Use mtn 
 〈m〉n = ρ and v =
√

GN〈m〉/r, so

trlx =
G3/2N3/2〈m〉3/2r−3/2

8πG2〈m〉ρ ln(γN)

=
[N〈m〉/r]3/2

8π
√

G〈m〉ρ ln(γN)

=
N
[
N〈m〉/r3

]1/2

8π
√

Gρ ln(γN)

=
N
√ρ

8π
√

Gρ ln(γN)
=

N
8π

√
Gρ ln(γN)

.

14.3 Using the density of the Plummer model, compute the core radius rc using the
theoretical definition.

Solution. The Plummer density is

ρ(r) =
3Ma2

4π
√
(r2 + a2)5

,
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so the central density is ρ(0) = 3M/4πa3. At the core radius,

ρ(rc) =
ρ(0)

3
=

M
4πa3 =

3Ma2

4π
√
(r2

c + a2)
5
.

Solving for rc gives

rc = a
√

32/5 − 1 = 0.743a.

14.4 Use the density of the Plummer model.

(a) Compute the surface density of stars using

Σ(R)RdRdφ =
∫ +∞

−∞
ρ(

√
R2 + z2)RdRdφdz,

where the integration is over z. R and φ are cylindrical coordinates.

Solution.

Σ(R)RdRdφ =
3Ma2

2π
RdRdφ

∫ ∞

0

(
R2 + a2 + z2)−5/2

dz.

The integral evaluates to

∫ (
R2 + a2+ z2)−5/2

dz =
1

(R2 + a2)
2

⎡
⎣ z√

R2 + a2 + z2
− 1

3
z3√

(R2 + a2 + z2)
3

⎤
⎦ .

Taking the appropriate limits, we have

Σ(R) =
Ma2

(R2 + z2)2 .

(b) Compute the core radius rc using the observational definition.

Solution. Using the surface density computed in (a), the central surface density is

Σ(0) =
M
πa2 .

From the observational definition of the core radius,

Σ(Rc) =
1
2
Σ(0) =

M
2πa2 =

Ma2

π (R2
c + a2)2 .
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Solving for Rc gives

Rc = a

√√
2− 1 = 0.644a.

Problems of Chapter 15

15.1 Calculate the average and median values of the eccentricity for a population
of binaries with a thermal distribution of eccentricities.

Solution. The mean is found from the integral:

〈e〉=
∫ 1

0
e2ede = 2

∫ 1

0
e2de =

2
3

 0.67.

The median (em) is found by solving the following integral equation:

1
2
=

∫ em

0
2ede = e2

m =⇒ em =

√
2

2

 0.71.

15.2 Assume a globular cluster consists of stars with mass m = 0.7M� and has a
dispersion velocity of 〈v〉 = 20km/s. Determine the maximum orbital period of a
“hard” binary.

Solution. From the virial theorem, the relative binding energy of a binary is

x =−1
2
μv2

orb +
GMμ

r
=

Gm2

2a
,

where a is the semi-major axis of the orbit, vorb is the orbital velocity, and Mμ = m2

for equal mass systems. The dynamical temperature of this cluster is

kT =
1
3

m〈v〉2.

Therefore the critical binding energy for a hard binary is found from x = kT , and so:

Gm2

2a
=

1
3

m〈v〉2.

Solving for a and using Kepler’s third law, we have:

a =
3Gm
2〈v〉2 =

(
2GmP2

4π2

)1/3

.
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Solving for P gives

P =
3
√

3πGm
2〈v〉3 = 9.53× 107 s = 3.02year.

15.3 Solve Eqs. (15.20) and (15.21) to obtain expressions for (Δ t)2 ä(t) and
(Δ t)3 ˙̈a(t) in terms of a(t), a(t +Δ t), ȧ(t), and ȧ(t +Δ t).

Solution. Start with

a(t +Δ t) = a(t)+Δ tȧ(t)+
1
2
(Δ t)2 ä(t)+

1
6
(Δ t)3 ˙̈a(t),

ȧ(t +Δ t) = ȧ(t)+Δ tä(t)+
1
2
(Δ t)2 ˙̈a(t).

Multiply the second equation by (Δ t)/3 to get

1
3
(Δ t) ȧ(t +Δ t) =

1
3
(Δ t) ȧ(t)+

1
3
(Δ t)2 ä(t)+

1
6
(Δ t)3 ˙̈a(t)

and subtract this from the first equation to find

a(t +Δ t)− 1
3
(Δ t) ȧ(t +Δ t) = a(t)+

2
3
(Δ t) ȧ(t)+

1
6
(Δ t)2 ä(t).

Solving for (Δ t)2 ä(t) gives

(Δ t)2 ä(t) = 6(a(t +Δ t)− a(t))− 2(Δ t)(ȧ(t +Δ t)+ 2ȧ(t)) .

Substitute this back int either of the first two equations to find

(Δ t)3 ˙̈a(t) =−12(a(t +Δ t)− a(t))+ 6Δ t (ȧ(t +Δ t)+ ȧ(t)) .
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Symbols
α-prescription, 189
γ-prescription, 189
H− opacity, 142

A
Absolute magnitude, 11
Absorption line, 38
Absorption lines, 30
Adiabatic exponent, 73
Adiabatic temperature gradient, 131
Aldebaran, 8
Angle of inclination, 21, 34
Apastron, 17
Apparent magnitude, 11
Ascending node, 21
Astrometric binary, 13
Astronomical unit, 29
Asymptotic giant branch, 156, 158
Atomic mass unit, 52
Auxiliary circle, 19
Azimuthal angle, 6

B
Barycenter, 17
Beta decay, 170
Binary burning, 220
Binary stars, 13
Blackbody specific intensity, 78
Blackbody spectrum, 30, 33
Boltzmann equation, 38
Bound-free opacity, 85
Brehmstrahlung, 81

C
Carbon burning, 100
Celestial coordinates, 3, 6
Celestial equator, 6
Chandrasekhar mass, 112
Chandrasekhar-Schoenberg limit, 152
CNO cycle, 97
CNO II cycle, 98
CNO-I cycle, 98
Co-latitude, 6
Collisional Boltzmann equation, 207
Collisionless Boltzmann equation, 204
Color-Magnitude diagram, 34
Common envelope, 189
Composition equation, 54
Convection, 126
Convective flux, 129
Core collapse, 211
Core radius, 197
Coulomb logarithm, 200
Crossing time, 197
Crystallization, 168
Curvature radiation, 173

D
Declination, 6
Degeneracy condition, 69
Degeneracy equation of state, 70
Degeneracy pressure, 68
Degenerate state, 40
Density of states, 32
Dissociation, 139
Distance modulus, 12
Distribution function, 203
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Doppler shift, 13, 25
Dredge up, 155
Dynamical instability, 124
Dynamical temperature, 210
Dynamical timescale, 59

E
Eccentric anomaly, 15, 19
Eccentricity, 17, 21, 35
Eclipsing binary, 13, 34
Ecliptic, 7
Eddington approximation atmosphere, 88
Eddington luminosity, 117
Eddington standard model, 115
Effective temperature, 34
Electron pressure, 66
Electron scattering opacity, 85
Emission coefficient, 80
Energy equation, 49
Energy flux, 79
Epoch, 7
Equation of state, 63
Equatorial coordinates, 6
Ergosphere, 177
Evaporation time, 201
Evolution equations, 54, 63

F
Fermi energy, 69
Fermi momentum, 72
Fragmentation, 136
Free-fall timescale, 134
Free-free opacity, 85

G
Gas constant, 66
Gas pressure, 65
Gravitational potential energy, 55
Gravothermal catastrophe, 211
Grey atmosphere, 86

H
Half-light radius, 198
Half-mass radius, 198
Hayashi track, 144, 155
Heggie-Hills law, 217
Helium flash, 157
Henyey track, 145
Hertzsprung gap, 155
Hertzsprung-Russell diagram, 34

Hipparchus, 11
Horizontal branch, 155
Hydrodynamic equation, 50
Hydrostatic equilibrium, 119

I
Ideal gas law, 51, 63
Intensity, 30
Internal energy, 71
Invariance, 175
Ion pressure, 65
Ionization state, 41
Iron core, 160
Isothermal collapse, 136
Isothermal core, 149

J
Jeans criteria, 133
Jeans mass, 135

K
Kepler’s 2nd Law, 21
Kepler’s 3rd Law, 17
Kepler’s equation, 18
Kerr metric, 176
Kramers opacity, 85

L
Lagrange points, 183
Lane-Emden equation, 109
Light curve, 34
Light cylinder, 173
Limb, 36
Limb darkening, 36, 89
Local thermodynamic equilibrium, 38, 48, 88
Longitude of the ascending node, 21
Longitude of the periastron, 21, 35
Luminosity, 11, 30

M
Magnetosphere, 173
Magnitude scale, 11
Mass excess, 94
Mass fraction, 51, 65
Mass function, 27
Mass segregation, 208
Mass transfer – case A, 186
Mass transfer – case B, 186
Mass transfer – case C, 186
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Mass-Luminosity relation, 30
Maxwell-Boltzmann distribution, 38, 67
Mean atomic mass, 65
Mean intensity, 77
Mean molecular weight, 65
Meridian, 4
Metallicity, 51, 65
Metric, 175
Micro quasar, 191
Mixing length, 129

N
Neutron capture, 101
Neutron drip, 170
Neutron stars, 112
Neutronization, 170
Newton-Raphson, 21
Normalized potential, 182
North celestial pole, 6
Nuclear fusion, 51, 91
Nuclear timescale, 60

O
Oblateness, 214
Opacity, 80
Opacity Project, 84
Optical depth, 81
Orbital elements, 21, 22, 35
Orbital velocity, 35
Oxygen burning, 100

P
P-P I chain, 95
P-P II chain, 96
P-P III chain, 96
Parallax, 29
Parsec, 12, 29
Periastron, 17
Photodisintegration, 101
Photons, 30
Photosphere, 34, 38
Planck distribution, 33, 67
Plane-parallel atmosphere, 85
Plummer model, 206
Plummer radius, 206
Polytropes, 108
Polytropic equation of state, 108
Polytropic index, 108
Precession of the equinox, 5, 7
Pressure integral, 67
Proper motion, 8

Proton-proton chain, 95
Protostar, 138
Pseudopotential, 182

R
R-process, 102
Radial motion, 8
Radiant flux, 11
Radiation constant, 67
Radiation pressure, 65, 79
Radiative heat flux, 85
Radius-mass exponent, 185
Reaction rate, 94
Relaxation time, 198
Resonance peak, 94
Right ascension, 6
Roche lobe, 183
Roche lobe overflow, 184
Roche lobe radius, 184
Rosseland mean opacity, 83

S
S-process, 102
Saha equation, 38, 41
Schwarzschild metric, 175
Schwarzschild radius, 175
Secular thermal instability, 122
Semi-amplitude of the velocity, 25
Semi-major axis, 17, 21
Shell flash, 159
Shockwave, 138
Sidereal day, 4
Sidereal month, 4
Sidereal year, 5
Solar day, 4
Source function, 80
South celestial pole, 6
Specific angular momentum, 19
Specific intensity, 77
Spectral class, 38
Spectroscopic binary, 13, 24
Spherical law of cosines, 9
Spherical law of sines, 9
Spitzer instability, 208
Stefan constant, 34
Stefan-Boltzmann constant, 67
Stefan-Boltzmann laws, 34
Stellar atmosphere, 85
Structure equations, 107
Supernova, 162
Synchrotron radiation, 173
Synodic month, 4
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T
Thermal eccentricity, 215
Thermal timescale, 59
Thin shell instability, 123
Tidal radius, 198
Time of periastron, 21
Transfer equation, 80
Triple alpha process, 99
True anomaly, 19

U
URCA process, 172

V
Vernal equinox, 5
Violent relaxation, 208
Virial theorem, 55
Visual binary, 13, 28

W
White dwarfs, 112

Z
ZAMS, 145, 147
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