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Preface to the Fourth Edition

In the present edition the illustrations of the Picture Book appear in full color.
The scope of the book was extended again. There is now a chapter on hy-
bridization and sections on bound states and on scattering in piecewise linear
potentials in one dimension.

From the web page www.extras.springer.com all illustrations can
be downloaded for easy use in lectures and seminars. The inclusion of a CD-
ROM with with that material (as in the third edition) is no longer necessary.

To generate the computer graphics of the first edition of the Picture Book,
we developed an interactive program on quantum mechanics. A modernized
version, which we call INTERQUANTA (abbreviated IQ), together with an
accompanying text has been published by Springer in various editions. The
most recent one1 can be regarded as companion to this Picture Book. It al-
lows interactive manipulation of of a host of physics and graphics parameters
and produces output in the form of static and moving pictures. The program
runs under Windows, Linux and Mac OS X. It is a pleasure to acknowledge
the generous help provided by IBM Germany in the development of IQ. In
particular, we want to thank Dr. U. Groh for his competent help in the early
phase of the work.

All computer-drawn figures in the present edition were produced using
the published version of IQ or extensions realized with the help of Mr. Anli
Shundi, Dr. Sergei Boris, and Dr. Tilo Stroh.

Siegen, January 2012 Siegmund Brandt
Hans Dieter Dahmen

1S. Brandt, H. D. Dahmen, and T. Stroh Interactive Quantum Mechanics – Quantum Ex-
periments on the Computer, 2nd ed., Springer, New York, 2011
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Foreword

Students of classical mechanics can rely on a wealth of experience from ev-
eryday life to help them understand and apply mechanical concepts. Even
though a stone is not a mass point, the experience of throwing stones cer-
tainly helps them to understand and analyze the trajectory of a mass point in a
gravitational field. Moreover, students can solve many mechanical problems
on the basis of Newton’s laws and, in doing so, gain additional experience.
When studying wave optics, they find that their knowledge of water waves,
as well as experiments in a ripple tank, is very helpful in forming an intuition
about the typical wave phenomena of interference and diffraction.

In quantum mechanics, however, beginners are without any intuition. Be-
cause quantum-mechanical phenomena happen on an atomic or a subatomic
scale, we have no experience of them in daily life. The experiments in atomic
physics involve more or less complicated apparatus and are by no means sim-
ple to interpret. Even if students are able to take Schrödinger’s equation for
granted, as many students do Newton’s laws, it is not easy for them to ac-
quire experience in quantum mechanics through the solution of problems.
Only very few problems can be treated without a computer. Moreover, when
solutions in closed form are known, their complicated structure and the special
mathematical functions, which students are usually encountering for the first
time, constitute severe obstacles to developing a heuristic comprehension. The
most difficult hurdle, however, is the formulation of a problem in quantum-
mechanical language, for the concepts are completely different from those of
classical mechanics. In fact, the concepts and equations of quantum mechan-
ics in Schrödinger’s formulation are much closer to those of optics than to
those of mechanics. Moreover, the quantities that we are interested in – such
as transition probabilities, cross sections, and so on – usually have nothing to
do with mechanical concepts such as the position, momentum, or trajectory
of a particle. Nevertheless, actual insight into a process is a prerequisite for
understanding its quantum-mechanical description and for interpreting basic
properties in quantum mechanics like position, linear and angular momentum,
as well as cross sections, lifetimes, and so on.

vii



Actually, students must develop an intuition of how the concepts of clas-
sical mechanics are altered and supplemented by the arguments of optics in
order to acquire a roughly correct picture of quantum mechanics. In partic-
ular, the time evolution of microscopic physical systems has to be studied
to establish how it corresponds to classical mechanics. Here, computers and
computer graphics offer incredible help, for they produce a large number of
examples that are very detailed and that can be looked at in any phase of their
time development. For instance, the study of wave packets in motion, which
is practically impossible without the help of a computer, reveals the limited
validity of intuition drawn from classical mechanics and gives us insight into
phenomena like the tunnel effect and resonances, which, because of the im-
portance of interference, can be understood only through optical analogies.
A variety of systems in different situations can be simulated on the computer
and made accessible by different types of computer graphics.

Some of the topics covered are

• scattering of wave packets and stationary waves in one dimension,

• the tunnel effect,

• decay of metastable states,

• bound states in various potentials,

• energy bands,

• distinguishable and indistinguishable particles,

• angular momentum,

• three-dimensional scattering,

• cross sections and scattering amplitudes,

• eigenstates in three-dimensional potentials, for example, in the hydro-
gen atom, partial waves, and resonances,

• motion of wave packets in three dimensions,

• spin and magnetic resonance.

Conceptual tools that bridge the gap between classical and quantum concepts
include

• the phase-space probability density of statistical mechanics,

• the Wigner phase-space distribution,

• the absolute square of the analyzing amplitude as probability or proba-
bility density.
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The graphical aids comprise

• time evolutions of wave functions for one-dimensional problems,

• parameter dependences for studying, for example, the scattering over a
range of energies,

• three-dimensional surface plots for presenting two-particle wave func-
tions or functions of two variables,

• polar (antenna) diagrams in two and three dimensions,

• plots of contour lines or contour surfaces, that is, constant function val-
ues, in two and three dimensions,

• ripple-tank pictures to illustrate three-dimensional scattering.

Whenever possible, how particles of a system would behave according to
classical mechanics has been indicated by their positions or trajectories. In
passing, the special functions typical for quantum mechanics, such as Legen-
dre, Hermite, and Laguerre polynomials, spherical harmonics, and spherical
Bessel functions, are also shown in sets of pictures.

The text presents the principal ideas of wave mechanics. The introductory
Chapter 1 lays the groundwork by discussing the particle aspect of light, us-
ing the fundamental experimental findings of the photoelectric and Compton
effects and the wave aspect of particles as it is demonstrated by the diffrac-
tion of electrons. The theoretical ideas abstracted from these experiments are
introduced in Chapter 2 by studying the behavior of wave packets of light as
they propagate through space and as they are reflected or refracted by glass
plates.

Chapter 3 introduces material particles as wave packets of de Broglie
waves. The ability of de Broglie waves to describe the mechanics of a parti-
cle is explained through a detailed discussion of group velocity, Heisenberg’s
uncertainty principle, and Born’s probability interpretation. The Schrödinger
equation is found to be the equation of motion.

Chapters 4 through 9 are devoted to the quantum-mechanical systems in
one dimension. Study of the scattering of a particle by a potential helps us
understand how it moves under the influence of a force and how the probabil-
ity interpretation operates to explain the simultaneous effects of transmission
and reflection. We study the tunnel effect of a particle and the excitation and
decay of a metastable state. A careful transition to a stationary bound state is
carried out. Quasi-classical motion of wave packets confined to the potential
range is also examined.

The velocity of a particle experiencing the tunnel effect has been a subject
of controversial discussion in the literature. In Chapter 7, we introduce the
concepts of quantile position and quantile velocity with which this problem
can be treated.
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Chapters 8 and 9 cover two-particle systems. Coupled harmonic oscilla-
tors are used to illustrate the concept of indistinguishable particles. The strik-
ing differences between systems composed of different particles, systems of
identical bosons, and systems of identical fermions obeying the Pauli princi-
ple are demonstrated.

Three-dimensional quantum mechanics is the subject of Chapters 10
through 16. We begin with a detailed study of angular momentum and discuss
methods of solving the Schrödinger equation. The scattering of plane waves
is investigated by introducing partial-wave decomposition and the concepts of
differential cross sections, scattering amplitudes, and phase shifts. Resonance
scattering, which is the subject of many fields of physics research, is studied
in detail in Chapter 15. Bound states in three dimensions are dealt with in
Chapter 13. The hydrogen atom and the motion of wave packets under the
action of a harmonic force as well as the Kepler motion on elliptical orbits are
among the topics covered. In Chapter 14 we discuss and illustrate hybridiza-
tion, a model used in some cases to describe chemical binding. Chapter 16 is
devoted to Coulomb scattering in terms of stationary wave functions as well
as wave-packet motion on hyperbolic orbits.

Spin is treated in Chapter 17. After the introduction of spin states and
operators, the Pauli equation is used for the description of the precession of a
magnetic moment in a homogeneous magnetic field. The discussion of Rabi’s
magnetic resonance concludes this chapter.

The last chapter is devoted to results obtained through experiments in
atomic, molecular, solid-state, nuclear, and particle physics. They can be qual-
itatively understood with the help of the pictures and the discussion in the
body of the book. Thus, examples for

• typical scattering phenomena,

• spectra of bound states and their classifications with the help of models,

• resonance phenomena in total cross sections,

• phase-shift analyses of scattering and Regge classification of reso-
nances,

• radioactivity as decay of metastable states,

• magnetic resonance phenomena,

taken from the fields of atomic and subatomic physics, are presented. Compar-
ing these experimental results with the computer-drawn pictures of the book
and their interpretation gives the reader a glimpse of the vast fields of science
that can be understood only on the basis of quantum mechanics.

In Appendix A, the simplest aspects of the structure of quantum mechan-
ics are discussed, and the matrix formulation in an infinite-dimensional vec-
tor space is juxtaposed to the more conventional formulation in terms of wave
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functions and differential operators. Appendix B gives a short account of two-
level systems that is helpful for the discussion of spin. In Appendix C, we
introduce the analyzing amplitude using as examples the free particle and the
harmonic oscillator. Appendix D discusses Wigner’s phase-space distribution.
Appendixes E through G give short accounts of the gamma, Bessel, and Airy
functions, as well as the Poisson distribution.

There are more than a hundred problems at the ends of the chapters. Many
are designed to help students extract the physics from the pictures. Others
will give them practice in handling the theoretical concepts. On the endpapers
of the book are a list of frequently used symbols, a list of basic equations, a
short list of physical constants, and a brief table converting SI units to particle-
physics units. The constants and units will make numerical calculations easier.

We are particularly grateful to Professor Eugen Merzbacher for his kind
interest in our project and for many valuable suggestions he gave before the
publication of the first edition that helped to improve the book. We are in-
debted to Ms. Ute Smolik and Mr. Anli Shundi who helped with the computer
typesetting of several editions and to Drs. Sergei Boris, Erion Gjonaj and Tilo
Stroh who contributed greatly to the computer programs used to generate the
pictures of this book. Last but not least, we would like to thank Drs. Jea-
nine Burke, Hans-Ulrich Daniel, Thomas von Foerster, and Hans Kölsch of
Springer New York for their constant interest and support.

Siegmund Brandt
Hans Dieter Dahmen
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1. Introduction

The basic fields of classical physics are mechanics and heat on the one hand
and electromagnetism and optics on the other. Mechanical and heat phenom-
ena involve the motion of particles as governed by Newton’s equations. Elec-
tromagnetism and optics deal with fields and waves, which are described by
Maxwell’s equations. In the classical description of particle motion, the posi-
tion of the particle is exactly determined at any given moment. Wave phenom-
ena, in contrast, are characterized by interference patterns which extend over
a certain region in space. The strict separation of particle and wave physics
loses its meaning in atomic and subatomic processes.

Quantum mechanics goes back to Max Planck’s discovery in 1900 that the
energy of an oscillator of frequency ν is quantized. That is, the energy emitted
or absorbed by an oscillator can take only the values 0, hν, 2hν, . . . . Only
multiples of Planck’s quantum of energy

E = hν

are possible. Planck’s constant

h = 6.262×10−34 J s

is a fundamental constant of nature, the central one of quantum physics. Often
it is preferable to use the angular frequency ω = 2πν of the oscillator and to
write Planck’s quantum of energy in the form

E = h̄ω .

Here

h̄ = h

2π
is simply Planck’s constant divided by 2π . Planck’s constant is a very small
quantity. Therefore the quantization is not apparent in macroscopic systems.
But in atomic and subatomic physics Planck’s constant is of fundamental im-
portance. In order to make this statement more precise, we shall look at ex-
periments showing the following fundamental phenomena:
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2 1. Introduction

• the photoelectric effect,

• the Compton effect,

• the diffraction of electrons,

• the orientation of the magnetic moment of electrons in a magnetic field.

1.1 The Photoelectric Effect

The photoelectric effect was discovered by Heinrich Hertz in 1887. It was
studied in more detail by Wilhelm Hallwachs in 1888 and Philipp Lenard in
1902. We discuss here the quantitative experiment, which was first carried
out in 1916 by R. A. Millikan. His apparatus is shown schematically in Fig-
ure 1.1a. Monochromatic light of variable frequency falls onto a photocathode
in a vacuum tube. Opposite the photocathode there is an anode – we assume
cathode and anode to consist of the same metal – which is at a negative voltage
U with respect to the cathode. Thus the electric field exerts a repelling force
on the electrons of charge −e that leave the cathode. Here e = 1.609×10−19

Coulomb is the elementary charge. If the electrons reach the anode, they flow
back to the cathode through the external circuit, yielding a measurable current
I . The kinetic energy of the electrons can therefore be determined by varying
the voltage between anode and cathode. The experiment yields the following
findings.

1. The electron current sets in, independent of the voltage U , at a fre-
quency ν0 that is characteristic for the material of the cathode. There is
a current only for ν > ν0.

2. The voltage Us at which the current stops flowing depends linearly on
the frequency of the light (Figure 1.1b). The kinetic energy Ekin of the
electrons leaving the cathode then is equal to the potential energy of the
electric field between cathode and anode,

Ekin = eUs .

If we call h/e the proportionality factor between the frequency of the
light and the voltage,

Us = h

e
(ν−ν0) ,

we find that light of frequency ν transfers the kinetic energy eUs to the
electrons kicked out of the material of the cathode. When light has a
frequency less than ν0, no electrons leave the material. If we call
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hν

e−

I

U

Us

Us = h
e (ν−ν0)

ν
ν = ν0

b

a

Fig.1.1. Photoelectric effect.
(a) The apparatus to measure
the effect consists of a vac-
uum tube containing two elec-
trodes. Monochromatic light
of frequency ν shines on the
cathode and liberates elec-
trons which may reach the
anode and create a current
I in the external circuit. The
flow of electrons in the vacuum
tube is hindered by the exter-
nal voltage U . It stops once the
voltage exceeds the value Us.
(b) There is a linear depen-
dence between the frequency ν
and the voltage Us.

hν0 = eUk

the ionization energy of the material that is needed to free the electrons,
we must conclude that light of frequency ν has energy

E = hν = h̄ω

with

ω = 2πν , h̄ = h

2π
.

3. The number of electrons set free is proportional to the intensity of the
light incident on the photocathode.

In 1905 Albert Einstein explained the photoelectric effect by assuming
that light consists of quanta of energy hν which act in single elementary pro-
cesses. The light quanta are also called photons or γ quanta. The number of
quanta in the light wave is proportional to its intensity.
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1.2 The Compton Effect

If the light quanta of energy E = hν = h̄ω are particles, they should also have
momentum. The relativistic relation between the energy E and momentum p
of a particle of rest mass m is

p = 1

c

√
E2 −m2c4 ,

where c is the speed of light in vacuum. Quanta moving with the speed of
light must have rest mass zero, so that we have

p = 1

c

√
h̄2ω2 = h̄

ω

c
= h̄k ,

where k = ω/c is the wave number of the light. If the direction of the light
is k/k, we find the vectorial relation p = h̄k. To check this idea one has to
perform an experiment in which light is scattered on free electrons. The con-
servation of energy and momentum in the scattering process requires that the
following relations be fulfilled:

Eγ + Ee = E ′
γ + E ′

e ,

pγ +pe = p′
γ +p′

e ,

where Eγ , pγ and E ′
γ , p′

γ are the energies and the momenta of the incident
and the scattered photon, respectively. Ee, pe, E ′

e, and p′
e are the correspond-

ing quantities of the electron. The relation between electron energy Ee and
momentum pe is

Ee = c
√

p2
e +m2

ec2 ,

where me is the rest mass of the electron. If the electron is initially at rest, we
have pe = 0, Ee = mec2. Altogether, making use of these relations, we obtain

ch̄k +mec
2 = ch̄k ′ + c

√
p′2

e +m2
ec2 ,

h̄k = h̄k′ +p′
e

as the set of equations determining the wavelength λ′ = 2π/k ′ of the scattered
photon as a function of the wavelength λ= 2π/k of the initial photon and the
scattering angle ϑ (Figure 1.2a). Solving for the difference λ′ −λ of the two
wavelengths, we find

λ′ −λ= h

mec
(1− cosϑ) .

This means that the angular frequency ω′ = ck ′ = 2πc/λ′ of the light scattered
at an angle ϑ > 0 is smaller than the angular frequency ω = ck = 2πc/λ of
the incident light.
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ϑ

p

p

e

pe

γ

= 0

’

’

  

  

pγ

b

a

Fig.1.2. The Compton effect.
(a) Kinematics of the process.
A photon of momentum pγ
is scattered by a free elec-
tron at rest, one with momen-
tum pe = 0. After the scat-
tering process the two par-
ticles have the momenta p′

γ

and p′
e, respectively. The di-

rection of the scattered pho-
ton forms an angle ϑ with its
original direction. From en-
ergy and momentum conser-
vation in the collision, the ab-
solute value p′

γ of the mo-
mentum of the scattered pho-
ton and the corresponding
wavelength λ′ = h/p′

γ can be
computed. (b) Compton’s re-
sults. Compton used mono-
chromatic X-rays from the Kα
line of molybdenum to bom-
bard a graphite target. The
wavelength spectrum of the
incident photons shows the
rather sharp Kα line at the top.
Observations of the photons
scattered at three different an-
gles ϑ (45◦, 90◦, 135◦) yielded
spectra showing that most of
them had drifted to the longer
wavelength λ′. There are also
many photons at the original
wavelength λ, photons which
were not scattered by single
electrons in the graphite. From

A. H. Compton, The Physical Review 22

(1923) 409, copyright c© 1923 by the

American Physical Society, reprinted by

permission.
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Arthur Compton carried out an experiment in which light was scattered
on electrons; he reported in 1923 that the scattered light had shifted to lower
frequencies ω′ (Figure 1.2b).

1.3 The Diffraction of Electrons

The photoelectric effect and the Compton scattering experiment prove that
light must be considered to consist of particles which have rest mass zero,
move at the speed of light, and have energy E = h̄ω and momentum p = h̄k.
They behave according to the relativistic laws of particle collisions. The
propagation of photons is governed by the wave equation following from
Maxwell’s equations. The intensity of the light wave at a given location is
a measure of the photon density at this point.

Once we have arrived at this conclusion, we wonder whether classical
particles such as electrons behave in the same way. In particular, we might
conjecture that the motion of electrons should be determined by waves. If the
relation E = h̄ω between energy and angular frequency also holds for the
kinetic energy Ekin = p2/2m of a particle moving at nonrelativistic velocity,
that is, at a speed small compared to that of light, its angular frequency is
given by

ω = 1

h̄

p2

2m
= h̄k2

2m

provided that its wave number k and wavelength λ are related to the momen-
tum p by

k = p

h̄
, λ= h

p
.

Thus the motion of a particle of momentum p is then characterized by a
wave with the de Broglie wavelength λ = h/p and an angular frequency
ω = p2/(2mh̄). The concept of matter waves was put forward in 1923 by
Louis de Broglie.

If the motion of a particle is indeed characterized by waves, the propaga-
tion of electrons should show interference patterns when an electron beam
suffers diffraction. This was first demonstrated by Clinton Davisson and
Lester Germer in 1927. They observed interference patterns in an experi-
ment in which a crystal was exposed to an electron beam. In their experi-
ment the regular lattice of atoms in a crystal acts like an optical grating. Even
simpler conceptually is diffraction from a sharp edge. Such an experiment
was performed by Hans Boersch in 1943. He mounted a platinum foil with a
sharp edge in the beam of an electron microscope and used the magnification
of the microscope to enlarge the interference pattern. Figure 1.3b shows his
result. For comparison it is juxtaposed to Figure 1.3a indicating the pattern
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b

a

Fig.1.3. (a) Interference pat-
tern caused by the scattering
of red light on a sharp edge.
The edge is the border line of
an absorbing half-plane, the
position of which is indicated
at the top of the figure. (b) In-
terference pattern caused by
the scattering of electrons on
a sharp edge. Sources: (a) From

R. W. Pohl, Optik und Atomphysik,

ninth edition, copyright c© 1954

by Springer-Verlag, Berlin, Göttingen,

Heidelberg, reprinted by permission.

(b) From H. Boersch, Physikalische

Zeitschrift, 44 (1943) 202, copyright

c© 1943 by S.-Hirzel-Verlag, Leipzig,

reprinted by permission.

produced by visible light diffracted from a sharp edge. The wavelength deter-
mined in electron diffraction experiments is in agreement with the formula of
de Broglie.

1.4 The Stern–Gerlach Experiment

In 1922 Otto Stern and Walther Gerlach published the result of an experiment
in which they measured the magnetic moment of silver atoms. By evaporating
silver in an oven with a small aperture they produced a beam of silver atoms
which was subjected to a magnetic induction field B. In the coordinate system
shown in Figure 1.4 together with the principal components of the experiment
the beam travels along the x axis. In the x , z plane the field B = (Bx , By , Bz)
has only a z component Bz. Caused by the form of the pole shoes the field
is inhomogeneous. The magnitude of Bz is larger near the upper pole shoe
which has the shape of a wedge. In the x , z plane the derivative of the field is

∂B
∂z

= ∂Bz

∂z
ez ,

∂Bz

∂z
> 0 .

Here ez is the unit vector in z direction. In the field a silver atom with the
magnetic moment μ experiences the force
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z

N

S

P

y x

O

a

b c

Fig.1.4. Stern–Gerlach ex-
periment. Experimental
setup with oven O, mag-
net pole shoes N and S, and
glass screen P (a). Silver
deposit on screen without
field (b) and with field (c)
as shown in Stern’s and
Gerlach’s original publica-
tion. The splitting is largest
in the middle and gets
smaller to the left and the
right of the picture because
the field inhomogeneity is
largest in the x , z plane.
Source: (b) and (c) from W. Ger-

lach and O. Stern, Zeitschrift für

Physik 9 (1922) 349 c© 1922 by

Springer-Verlag, Berlin, reprinted

by permission.

F =
(

μ · ∂B
∂z

)
ez = (μ · ez)

∂Bz

∂z
ez .

Since the scalar product of μ and ez is

μ · ez = μcosα ,

where α is the angle between the direction of the magnetic moment and the
z direction and μ is the magnitude of the magnetic moment, the force has its
maximum strength in the z direction if μ is parallel to ez and its maximum
strength in the opposite direction if μ is antiparallel to ez. For intermediate
orientations the force has intermediate values. In particular, the force vanishes
if μ is perpendicular to ez, i.e., if μ is parallel to the x , y plane.

Stern and Gerlach measured the deflection of the silver atoms by this force
by placing a glass plate behind the magnet perpendicular to the x axis. In
those areas where atoms hit the glass a thin but visible layer of silver formed
after some time. Along the z axis they observed two distinct areas of silver
indicating that the magnetic moments μ were oriented preferentially parallel
(α = 0) or antiparallel (α = π ) to the field B. This finding is contrary to the
classical expectation that all orientations of μ are equally probable.
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It remains to be said that the magnetic moment of a silver atom is practi-
cally identical to the magnetic moment of a single free electron. A silver atom
has 47 electrons but the contributions of 46 electrons to the total magnetic mo-
ment cancel. The contribution of the nucleus to the magnetic moment of the
atom is very small. The quantitative result of the Stern–Gerlach experiment is

1. The magnetic moment of the electron is

μ= − e

m

h̄

2
.

2. In the presence of a magnetic field the magnetic moment is found to be
oriented parallel or antiparallel to the field direction.

Problems

1.1. Thirty percent of the 100W power consumption of a sodium lamp goes
into the emission of photons with the wavelength λ = 589nm. How
many photons are emitted per second? How many hit the eye of an
observer – the diameter of the pupil is 5 mm – stationed 10 km from the
lamp?

1.2. The minimum energy E0 = hν0 needed to set electrons free is called
the work function of the material. For cesium it is 3.2 × 10−19 J. What
is the minimum frequency and the corresponding maximum wavelength
of light that make the photoelectric effect possible? What is the kinetic
energy of an electron liberated from a cesium surface by a photon with
a wavelength of 400 nm?

1.3. The energy E = hν of a light quantum of frequency ν can also be inter-
preted in terms of Einstein’s formula E = Mc2, where c is the velocity
of light in a vacuum. (See also the introduction to Chapter 18.) What
energy does a blue quantum (λ= 400nm) lose by moving 10m upward
in the earth’s gravitational field? How large is the shift in frequency and
wavelength?

1.4. Many radioactive nuclei emit high-energy photons called γ rays. Com-
pute the recoil momentum and velocity of a nucleus possessing 100
times the proton mass and emitting a photon of 1MeV energy.

1.5. Calculate the maximum change in wavelength experienced by a pho-
ton in a Compton collision with an electron initially at rest. The initial
wavelength of the photon is λ= 2×10−12 m. What is the kinetic energy
of the recoil electron?
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1.6. Write the equations for energy and momentum conservation in the
Compton scattering process when the electron is not at rest before the
collision.

1.7. Use the answer to problem 1.6 to calculate the maximum change of en-
ergy and wavelength of a photon of red light (λ= 8×10−7 m) colliding
head on with an electron of energy Ee = 20GeV. (Collisions of photons
from a laser with electrons from the Stanford linear accelerator are in
fact used to prepare monochromatic high-energy photon beams.)

1.8. Electron microscopes are chosen for very fine resolution because the
de Broglie wavelength λ = h/p can be made much shorter than the
wavelength of visible light. The resolution is roughly λ. Use the rela-
tivistic relation E2 = p2c2 + m2c4 to determine the energy of electrons
needed to resolve objects of the size 10−6 m (a virus), 10−8 m (a DNA
molecule), and 10−15 m (a proton). Determine the voltage U needed to
accelerate the electrons to the necessary kinetic energy E −mc2.

1.9. What are the de Broglie frequency and wavelength of an electron mov-
ing with a kinetic energy of 20keV, which is typical for electrons in the
cathode-ray tube of a color television set?



2. Light Wavess

2.1 Harmonic Plane Waves, Phase Velocity

Many important aspects and phenomena of quantum mechanics can be visu-
alized by means of wave mechanics, which was set up in close analogy to
wave optics. Here the simplest building block is the harmonic plane wave of
light in a vacuum describing a particularly simple configuration in space and
time of the electric field E and the magnetic induction field B. If the x axis
of a rectangular coordinate system has been oriented parallel to the direction
of the wave propagation, the y axis can always be chosen to be parallel to
the electric field strength so that the z axis is parallel to the magnetic field
strength. With this choice the field strengths can be written as

Ey = E0 cos(ωt − kx) , Bz = B0 cos(ωt − kx) ,
Ex = Ez = 0 , Bx = By = 0 .

They are shown in Figures 2.1 and 2.2. The quantities E0 and B0 are the
maximum values reached by the electric and magnetic fields, respectively.
They are called amplitudes. The angular frequency ω is connected to the wave
number k by the simple relation

ω = ck .

The points where the field strength is maximum, that is, has the value E0,
are given by the phase of the cosine function

δ = ωt − kx = 2�π ,

where � takes the integer values � = 0,±1,±2, . . . . Therefore such a point
moves with the velocity

c = x

t
= ω

k
.

Since this velocity describes the speed of a point with a given phase, c is
called the phase velocity of the wave. For light waves in a vacuum, it is inde-
pendent of the wavelength. For positive, or negative, k the propagation is in
the direction of the positive, or negative, x axis, respectively.

S. Brandt and H.D. Dahmen, The Picture Book of Quantum Mechanics, 11
 Springer Science+Business Media New York 2012DOI 10.1007/978-1-4614-3951-6_ , ©2
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B

x

E

Fig.2.1. In a plane wave the electric and magnetic field strengths are perpendicular to
the direction of propagation. At any moment in time, the fields are constant within
planes perpendicular to the direction of motion. As time advances, these planes move
with constant velocity.

At a fixed point in space, the field strengths E and B oscillate in time with
the angular frequency ω (Figures 2.3a and c). The period of the oscillation is

T = 2π

ω
.

For fixed time the field strengths exhibit a periodic pattern in space with a
spatial period, the wavelength

λ= 2π

|k| .

The whole pattern moves with velocity c along the x direction. Fig-
ures 2.3b and 2.3d present the propagation of waves by a set of curves show-
ing the field strength at a number of consecutive equidistant moments in time.
Earlier moments in time are drawn in the background of the picture, later ones
toward the foreground. We call such a representation a time development.

For our purpose it is sufficient to study only the electric field of a light
wave,
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y

z

x

E

B

Fig.2.2. For a given moment in time, the electric field strength E and the magnetic field
strength B are shown along a line parallel to the direction of motion of the harmonic
plane wave.

Ey = E = E0 cos(ωt − kx −α) .

We have included an additional phase α to allow for the fact that the maximum
of E need not be at x = 0 for t = 0. To simplify many calculations, we now
make use of the fact that cosine and sine are equal to the real and imaginary
parts of an exponential,

cosβ+ i sinβ = eiβ ,

that is,
cosβ = Reeiβ , sinβ = Imeiβ .

The wave is then written as

E = Re Ec ,

where Ec is the complex field strength:

Ec = E0 e−i(ωt−kx−α) = E0 eiαe−iωteikx .

It factors into a complex amplitude

A = E0 eiα

and two exponentials containing the time and space dependences, respec-
tively. As mentioned earlier, the wave travels in the positive or negative x
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a

b

c

d

Fig.2.3. (a) Time
dependence of
the electric field
of a harmonic
wave at a fixed
point in space.
(b) Time develop-
ment of the elec-
tric field of a har-
monic wave. The
field distribution
along the x di-
rection is shown
for several mo-
ments in time.
Early moments
are in the back-
ground, later mo-
ments in the fore-
ground. (c, d)
Here the wave
has twice the fre-
quency. We ob-
serve that the pe-
riod T and the
wavelength λ are
halved, but that
the phase veloc-
ity c stays the
same. The time
developments in
parts b and d
are drawn for the
same interval of
time.
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direction, depending on the sign of k. Such waves with different amplitudes
are

Ec+ = A e−iωteikx , Ec− = B e−iωte−ikx .

The factorization into a time- and a space-dependent factor is particularly
convenient in solving Maxwell’s equations. It allows the separation of time
and space coordinates in these equations. If we divide by exp(−iωt), we arrive
at the time-independent expressions

Es+ = A eikx , Es− = B e−ikx ,

which we call stationary waves.
The energy density in an electromagnetic wave is equal to a constant, ε0,

times the square of the field strength,

w(x , t) = ε0 E2 .

Because the plane wave has a cosine structure, the energy density varies twice
as fast as the field strength. It remains always a positive quantity; therefore the
variation occurs around a nonzero average value. This average taken over a
period T of the wave can be written in terms of the complex field strength as

w = ε0

2
Ec E∗

c = ε0

2
|Ec|2 .

Here E∗
c stands for the complex conjugate,

E∗
c = Re Ec − i Im Ec ,

of the complex field strength,

Ec = Re Ec + i Im Ec .

For the average energy density in the plane wave, we obtain

w = ε0

2
|A|2 = ε0

2
E2

0 .

2.2 Light Wave Incident on a Glass Surface

The effect of glass on light is to reduce the phase velocity by a factor n called
the refractive index,

c′ = c

n
.

Although the frequency ω stays constant, wave number and wavelength are
changed according to

k ′ = nk , λ′ = λ

n
.
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The Maxwell equations, which govern all electromagnetic phenomena,
demand the continuity of the electric field strength and its first derivative at
the boundaries of the regions with different refractive indices. We consider
a wave traveling in the x direction and encountering at position x = x1 the
surface of a glass block filling half of space (Figure 2.4a). The surface is
oriented perpendicular to the direction of the light. The complex expression

E1+ = A1 eik1x

describes the incident stationary wave to the left of the glass surface, that is,
for x < x1, where A1 is the known amplitude of the incident light wave. At
the surface only a part of the light wave enters the glass block; the other part
will be reflected. Thus, in the region to the left of the glass block, x < x1, we
find in addition to the incident wave the reflected stationary wave

E1− = B1 e−ik1x

propagating in the opposite direction. Within the glass the transmitted wave

E2 = A2 eik2x

propagates with the wave number

k2 = n2k1

altered by the refractive index n = n2 of the glass. The waves E1+, E1−, and
E2 are called incoming, reflected, and transmitted constituent waves, respec-
tively. The continuity for the field strength E and its derivative E ′ at x = x1

means that
E1(x1) = E1+(x1)+ E1−(x1) = E2(x1)

and
E ′

1(x1) = ik1

[
E1+(x1)− E1−(x1)

] = ik2 E2(x1) = E ′
2(x1) .

The two unknown amplitudes, B1 of the reflected wave, and A2 of the
transmitted, can now be calculated from these two continuity equations. The
electric field in the whole space is determined by two expressions incorporat-
ing these amplitudes,

Es =
{

A1 eik1x + B1 e−ik1x for x < x1

A2 eik2x for x > x1
.

The electric field in the whole space is obtained as a superposition of constit-
uent waves physically existing in regions 1 and 2. By multiplication with the
time-dependent phase exp(−iωt), we obtain the complex field strength Ec,
the real part of which is the physical electric field strength.
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n = n  = 1
x

1 n = n   > 12

a
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d

Fig.2.4. (a) To the
right of the
plane x = x1, a
glass block ex-
tends with refrac-
tive index n = n2;
to the left there
is empty space,
n = 1. (b) Time
development of
the electric field
strength of a har-
monic wave which
falls from the left
onto a glass sur-
face, represented
by the vertical
line, and is partly
reflected by and
partly transmit-
ted into the glass.
(c) Time devel-
opment of the
incoming wave
alone. (d) Time
development of
the reflected wave
alone.
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Figure 2.4b gives the time development of this electric field strength. It is
easy to see that in the glass there is a harmonic wave moving to the right. The
picture in front of the glass is less clear. Figures 2.4c and d therefore show
separately the time developments of the incoming and the reflected waves
which add up to the total wave to the left of x1, observed in Figure 2.4b.

2.3 Light Wave Traveling through a Glass Plate

It is now easy to see what happens when light falls on a glass plate of finite
thickness. When the light wave penetrates the front surface at x = x1, again
reflection occurs so that we have as before the superposition of two stationary
waves in the region x < x1:

E1 = A1 eik1x + B1 e−ik1x .

The wave moving within the glass plate suffers reflection at the rear surface at
x = x2, so that the second region, x1 < x < x2, also contains a superposition
of two waves,

E2 = A2 eik2x + B2 e−ik2x ,

which now have the refracted wave number

k2 = n2k1 .

Only in the third region, x2 < x , do we observe a single stationary wave

E3 = A3 eik1x

with the original wave number k1.
As a consequence of the reflection on both the front and the rear surface

of the glass plate, the reflected wave in region 1 consists of two parts which
interfere with each other. The most prominent phenomenon observed under
appropriate circumstances is the destructive interference between these two
reflected waves, so that no reflection remains in region 1. The light wave is
completely transmitted into region 3. This phenomenon is called a resonance
of transmission. It can be illustrated by looking at the frequency dependence
of the stationary waves. The upper plot of Figure 2.5 shows the stationary
waves for different fixed values of the angular frequencyω, with its magnitude
rising from the background to the foreground. A resonance of transmission is
recognized through a maximum in the amplitude of the transmitted wave, that
is, in the wave to the right of the glass plate.

The signature of a resonance becomes even more prominent in the fre-
quency dependence of the average energy density in the wave. As discussed
in Section 2.1, in a vacuum the average energy density has the form
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Fig.2.5. Top: Frequency dependence of stationary waves when a harmonic wave is in-
cident from the left on a glass plate. The two vertical lines indicate the thickness of the
plate. Small values of the angular frequency ω are given in the background, large values
in the foreground of the picture. Bottom: Frequency dependence of the quantity Ec E∗

c
(which except for a factor n2 is proportional to the average energy density) of a harmonic
wave incident from the left on a glass plate. The parameters are the same as in part a.
At a resonance of transmission, the average energy density is constant in the left region,
indicating through the absence of interference wiggles that there is no reflection.
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w = ε0

2
Ec E∗

c .

In glass, where the refractive index n has to be taken into account, we have

w = εε0

2
Ec E∗

c = n2 ε0

2
Ec E∗

c ,

where ε = n2 is the dielectric constant of glass. Thus, although Ec is continu-
ous at the glass surface, w is not. It reflects the discontinuity of n2. Therefore
we prefer plotting the continuous quantity

2

n2ε0
w = Ec E∗

c .

This plot, shown in the lower plot of Figure 2.5, indicates a resonance of
transmission by the maximum in the average energy density of the transmitted
wave. Moreover, since there is no reflected wave at the resonance of transmis-
sion, the energy density is constant in region 1.

In the glass plate we observe the typical pattern of a resonance.

(i) The amplitude of the average energy density is maximum.

(ii) The energy density vanishes in a number of places called nodes because
for a resonance a multiple of half a wavelength fits into the glass plate.
Therefore different resonances can be distinguished by the number of
nodes.

The ratio of the amplitudes of the transmitted and incident waves is called the
transmission coefficient of the glass plate,

T = A3

A1
.

2.4 Free Wave Packet

The plane wave extends into all space, in contrast to any realistic physical sit-
uation in which the wave is localized in a finite domain of space. We therefore
introduce the concept of a wave packet. It can be understood as a superposi-
tion, that is, a sum of plane waves of different frequencies and amplitudes.
As a first step we concentrate the wave only in the x direction. It still extends
through all space in the y and the z direction. For simplicity we start with the
sum of two plane waves with equal amplitudes, E0:

E = E1 + E2 = E0 cos(ω1t − k1x)+ E0 cos(ω2t − k2x) .
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Fig.2.6. Superposition of two harmonic waves of slightly different angular frequencies
ω1 and ω2 at a fixed moment in time.

For a fixed time this sum represents a plane wave with two periodic structures.
The slowly varying structure is governed by a spatial period,

λ− = 4π

|k2 − k1| ,

the rapidly varying structure by a wavelength,

λ+ = 4π

|k2 + k1| .

The resulting wave can be described as the product of a “carrier wave”
with the short wavelength λ+ and a factor modulating its amplitude with the
wavelength λ−:

E = 2E0 cos(ω−t − k−x)cos(ω+t − k+x) ,

k± = |k2 ± k1|/2 , ω± = ck± .

Figure 2.6 plots for a fixed moment in time the two waves E1 and E2, and
the resulting wave E . Obviously, the field strength is now concentrated for
the most part in certain regions of space. These regions of great field strength
propagate through space with the velocity
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�x

�t
= ω−

k−
= c .

Now we again use complex field strengths. The superposition is written as

Ec = E0 e−i(ω1t−k1x) + E0 e−i(ω2t−k2x) .

For the sake of simplicity, we have chosen in this example a superposition
of two harmonic waves with equal amplitudes. By constructing a more com-
plicated “sum” of plane waves, we can concentrate the field in a single region
of space. To this end we superimpose a continuum of waves with different
frequencies ω = ck and amplitudes:

Ec(x , t) = E0

∫ +∞

−∞
dk f (k)e−i(ωt−kx) .

Such a configuration is called a wave packet. The spectral function f (k)
specifies the amplitude of the harmonic wave with wave number k and circular
frequency ω = ck. We now consider a particularly simple spectral function
which is significantly different from zero in the neighborhood of the wave
number k0. We choose the Gaussian function

f (k) = 1√
2πσk

exp

[
− (k − k0)2

2σ 2
k

]
.

It describes a bell-shaped spectral function which has its maximum value
at k = k0; we assume the value of k0 to be positive, k0 > 0. The width of the
region in which the function f (k) is different from zero is characterized by the
parameter σk . In short, one speaks of a Gaussian with width σk . The Gaussian
function f (k) is shown in Figure 2.7a. The factors in front of the exponential
are chosen so that the area under the curve equals one. We illustrate the con-
struction of a wave packet by replacing the integration over k by a sum over a
finite number of terms,

Ec(x , t) ≈
N∑

n=−N

En(x , t) ,

En(x , t) = E0�k f (kn)e−i(ωnt−kn x) ,

where
kn = k0 +n�k , ωn = ckn .

In Figure 2.7b the different terms of this sum are shown for time t = 0,
together with their sum, which is depicted in the foreground. The term with
the lowest wave number, that is, the longest wavelength, is in the background
of the picture. The variation in the amplitudes of the different terms reflects
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the Gaussian form of the spectral function f (k), which has its maximum, for
k = k0, at the center of the picture. On the different terms, the partial waves,
the point x = 0 is marked by a circle. We observe that the sum over all terms
is concentrated around a rather small region near x = 0.

Figure 2.7c shows the same wave packet, similarly made up of its partial
waves, for later time t1 > 0. The wave packet as well as all partial waves have
moved to the right by the distance ct1. The partial waves still carry marks at
the phases that were at x = 0 at time t = 0. The picture makes it clear that all
partial waves have the same velocity as the wave packet, which maintains the
same shape for all moments in time.

If we perform the integral explicitly, the wave packet takes the simple
form

Ec(x , t) = Ec(ct − x)

= E0 exp

[
−σ

2
k

2
(ct − x)2

]
exp[−i(ω0t − k0x)] ,

that is,

E(x , t) = Re Ec = E0 exp

[
−σ

2
k

2
(ct − x)2

]
cos(ω0t − k0x) .

It represents a plane wave propagating in the positive x direction, with a field
strength concentrated in a region of the spatial extension 1/σk around point
x = ct . The time development of the field strength is shown in Figure 2.8b.
Obviously, the maximum of the field strength is located at x = ct ; thus the
wave packet moves with the velocity c of light. We call this configuration a
Gaussian wave packet of spatial width

�x = 1

σk
,

and of wave-number width
�k = σk .

We observe that a spatial concentration of the wave in the region �x nec-
essarily requires a spectrum of different wave numbers in the interval �k so
that

�x�k = 1 .

This is tantamount to saying that the sharper the localization of the wave
packet in x space, the wider is its spectrum in k space. The original harmonic
wave E = E0 cos(ωt −kx) was perfectly sharp in k space (�k = 0) and there-
fore not localized in x space. The time development of the average energy
density w shown in Figure 2.8c appears even simpler than that of the field



24 2. Light Wavess

a

b

c

Fig.2.7.
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strength. It is merely a Gaussian traveling with the velocity of light along the
x direction. The Gaussian form is easily explained if we remember that

w = ε0

2
Ec E∗

c = ε0

2
E2

0e−σ 2
k (ct−x)2

.

We demonstrate the influence of the spectral function on the wave packet
by showing in Figure 2.8 spectral functions with two different widths σk . For
both we show the time development of the field strength and of the average
energy density.

2.5 Wave Packet Incident on a Glass Surface

The wave packet, like the plane waves of which it is composed, undergoes
reflection and transmission at the glass surface. The upper plot of Figure 2.9
shows the time development of the average energy density in a wave packet
moving in from the left. As soon as it hits the glass surface, the already reflec-
ted part interferes with the incident wave packet, causing the wiggly structure
at the top of the packet. Part of the packet enters the glass, moving with a
velocity reduced by the refractive index. For this reason it is compressed in
space. The remainder is reflected and moves to the left as a regularly shaped
wave packet as soon as it has left the region in front of the glass where inter-
ference with the incident packet occurs.

We now demonstrate that the wiggly structure in the interference region
is caused by the fast spatial variation of the carrier wave characterized by
its wavelength. To this end let us examine the time development of the field
strength in the packet, shown in the lower plot of Figure 2.9. Indeed, the spa-
tial variation of the field strength has twice the wavelength of the average
energy density in the interference region.

Another way of studying the reflection and transmission of the packet is
to look separately at the average energy densities of the constituent waves,
namely the incoming, transmitted, and reflected waves. We show these con-
stituent waves in both regions 1, a vacuum, and 2, the glass, although they
contribute physically only in either the one or the other. Figure 2.10 gives

Fig.2.7. (a) Gaussian spectral function describing the amplitudes of harmonic waves of
different wave numbers k. (b) Construction of a light wave packet as a sum of harmonic
waves of different wavelengths and amplitudes. For time t = 0 the different terms of
the sum are plotted, starting with the contribution of the longest wavelength in the
background. Points x = 0 are indicated as circles on the partial waves. The resulting
wave packet is shown in the foreground. (c) The same as part b, but for time t1 > 0. The
phases that were at x = 0 for t = 0 have moved to x1 = ct1 for all partial waves. The wave
packet has consequently moved by the same distance and retained its shape.
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Fig.2.8. (a, d) Spectral functions, (b, e) time developments of the field strength, and (c,
f) time developments of the average energy density for two different Gaussian wave
packets.

their time developments. All three have a smooth bell-shaped form and no
wiggles, even in the interference region. The time developments of the field
strengths of the constituent waves are shown in Figure 2.11. The observed av-
erage energy density of Figure 2.9 corresponds to the absolute square of the
sum of the incoming and reflected field strengths in the region in front of the
glass and, of course, not to the sum of the average energy densities of these
two constituent fields. Their interference pattern shows half the wavelength
of the carrier waves.
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Fig.2.9. Time developments of the quantity Ec E∗
c (which except for a factor n2 is propor-

tional to the average energy density) and of the field strength in a wave packet of light
falling onto a glass surface where it is partly reflected and partly transmitted through
the surface. The glass surface is indicated by the vertical line.
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Fig.2.10. Time
developments of
the quantity
Ec E∗

c (which
except for a
factor n2 is
proportional to
the average
energy density)
of the constit-
uent waves in
a wave packet
of light incident
on a glass
surface: (a)
incoming wave,
(b) transmitted
wave, and (c)
reflected wave.
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a

b

c

Fig.2.11. Time
developments of
the electric field
strengths of the
constituent waves
in a wave packet
of light incident
on a glass sur-
face: (a) incoming
wave, (b) trans-
mitted wave, and
(c) reflected wave.
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Fig.2.12. Time development of the quantity Ec E∗
c (which except for a factor n2 is pro-

portional to the average energy density) in a wave packet of light incident on a glass
plate.

2.6 Wave Packet Traveling through a Glass Plate

Let us study a wave packet that is relatively narrow in space, that is, one
containing a wide range of frequencies. The time development of its average
energy density (Figure 2.12) shows that, as expected, at the front surface of
the glass plate part of the packet is reflected. Another part enters the plate,
where it is compressed and travels with reduced speed. At the rear surface this
packet is again partly reflected while another part leaves the plate, traveling to
the right with the original width and speed. The small packet traveling back
and forth in the glass suffers multiple reflections on the glass surfaces, each
time losing part of its energy to packets leaving the glass.

Problems

2.1. Estimate the refractive index n2 of the glass plate in Figure 2.4b.

2.2. Calculate the energy density for the plane electromagnetic wave de-
scribed by the complex electric field strength
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Ec = E0 e−i(ωt−kx)

and show that its average over a temporal period T is ω = (ε0/2)Ec E∗
c .

2.3. Give the qualitative reason why the resonance phenomena in Figure 2.5
(top) occurs for the wavelengths

λ= �nd

2
, �= 1, 2, 3 . . . .

Use the continuity condition of the electric field strength and its deriva-
tive. Here n is the refractive index of the glass plate of thickness d.

2.4. Calculate the ratio of the frequencies of the two electric field strengths,
as they are plotted in Figure 2.6, from the beat in their superposition.

2.5. The one-dimensional wave packet of light does not show any disper-
sion, that is, spreading with time. What causes the dispersion of a wave
packet of light confined in all three spatial dimensions?

2.6. Estimate the refractive index of the glass, using the change in width or
velocity of the light pulse in Figure 2.9 (top).

2.7. Verify in Figure 2.12 that the stepwise reduction of the amplitude of
the pulse within the glass plate proceeds with approximately the same
reduction factor, thus following on the average an exponential decay
law.

2.8. Calculate energy E and momentum p of a photon of blue (λ = 450 ×
10−9 m), green (λ= 530×10−9 m), yellow (λ= 580×10−9 m), and red
(λ= 700×10−9 m) light. Use Einstein’s formula E = Mc2 to calculate
the relativistic mass of the photon. Give the results in SI units.



3. Probability Waves of Matter

3.1 de Broglie Waves

For a particle with a finite rest mass m, which moves with a velocity v slow
compared to the velocity of light, the relation between energy and momentum
is

E = p2

2m
, p = mv .

In Section 1.3 we saw that such a particle possesses wave properties, in par-
ticular an angular frequency ω and a wave number k, which are related to its
energy and its momentum, respectively,

E = h̄ω , p = h̄k .

In analogy to the electromagnetic wave Re Ec with Ec = A e−i(ωt−kx) of
Section 2.1 we can write down a wave function for the particle of momentum
p,

ψp(x , t) = 1

(2π h̄)1/2
exp[−i(ωt − kx)]

= 1

(2π h̄)1/2
exp

[
− i

h̄
(Et − px)

]
,

which we call a de Broglie wave of matter. The factor in front of the expo-
nential is chosen for convenience. The phase velocity of a de Broglie wave
is

vp = E

p
= p

2m

and is thus different from the particle velocity v = p/m.

3.2 Wave Packet, Dispersion

The harmonic de Broglie waves, like the harmonic electric waves, are not
localized in space and therefore are not suited to describing a particle. To
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localize a particle in space, we again have to superimpose harmonic waves
to form a wave packet. To keep things simple, we first restrict ourselves to
discussing a one-dimensional wave packet.

For the spectral function we again choose a Gaussian function,1

f (p) = 1

(2π )1/4√σp
exp

[
− (p − p0)2

4σ 2
p

]
.

The corresponding de Broglie wave packet is then

ψ(x , t) =
∫ +∞

−∞
f (p)ψp(x − x0, t)dp .

For the de Broglie wave packet, as for the light wave packet, we first approx-
imate the integral by a sum,

ψ(x , t) ≈
N∑

n=−N

ψn(x , t) ,

where the ψn(x , t) are harmonic waves for different values pn = p0 + n�p
multiplied by the spectral weight f (pn)�p,

ψn(x , t) = f (pn)ψ(x − x0, t)�p .

Figure 3.1a shows the real parts Reψn(x , t) of the harmonic wavesψn(x , t)
as well as their sum being equal to the real part Reψ(x , t) of the wave function
ψ(x , t) for the wave packet at time t = t0 = 0. The point x = x0 is marked on
each harmonic wave. In Figure 3.1b the real parts Reψn(x , t) and their sum
Reψ(x , t) are shown at later time t = t1. Because of their different phase ve-
locities, the partial waves have moved by different distances�xn = vn(t1 − t0)
where vn = pn/(2m) is the phase velocity of the harmonic wave of momentum
pn. This effect broadens the extension of the wave packet.

The integration over p can be carried out so that the explicit expression
for the wave packet has the form

ψ(x , t) = M(x , t)eiφ(x ,t) .

Here the exponential function represents the carrier wave with a phase φ vary-
ing rapidly in space and time. The bell-shaped amplitude function

1We have chosen this spectral function to correspond to the square root of the spectral
function that was used in Section 2.4 to construct a wave packet of light. Since the area under
the spectral function f (k) of Section 2.4 was equal to one, the area under

[
f (p)

]2
is now

equal to one. This guarantees that the normalization condition of the wave function ψ in the
next section will be fulfilled.
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b

a

Fig.3.1. Construction of a wave packet as a sum of harmonic waves ψn of different
momenta and consequently of different wavelengths. Plotted are the real parts of the
wave functions. The terms of different momenta and different amplitudes begin with
the one of longest wavelength in the background. In the foreground is the wave packet
resulting from the summation. (a) The situation for time t = t0. All partial waves are
marked by a circle at point x = x0. (b) The same wave packet and its partial waves at
time t1 > t0. The partial waves have moved different distances �xn = vn(t1 − t0) because
of their different phase velocities vn , as indicated by the circular marks which have kept
their phase with respect to those in part a. Because of the different phase velocities, the
wave packet has changed its form and width.
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M(x , t) = 1

(2π )1/4√σx
exp

[
− (x − x0 −v0t)2

4σ 2
x

]
travels in x direction with the group velocity

v0 = p0

m
.

The group velocity is indeed the particle velocity and different from the phase
velocity. The localization in space is given by

σ 2
x = h̄2

4σ 2
p

(
1+ 4σ 4

p

h̄2

t2

m2

)
.

This formula shows that the spatial extension σx of the wave packet in-
creases with time. This phenomenon is called dispersion. Figure 3.2 shows
the time developments of the real and imaginary parts of two wave packets
with different group velocities and widths. We easily observe the dispersion
of the wave packets in time. The fact that a wave packet comprises a whole
range of momenta is the physical reason why it disperses. Its components
move with different velocities, thus spreading the packet in space.

The function φ(x , t) determines the phase of the carrier wave. It has the
form

φ(x , t) = 1

h̄

[
p0 + σ

2
p

σ 2
x

v0t

2p0
(x − x0 −v0t)

]
(x − x0 −v0t)+ p0

2h̄
v0t − α

2

with

tanα = 2

h̄

σ 2
p

m
t .

For fixed time t it represents the phase of a harmonic wave modulated in wave
number. The effective wave number keff is the factor in front of x − x0 − v0t
and is given by

keff(x) = 1

h̄

[
p0 + σ

2
p

σ 2
x

v0t

2p0
(x − x0 −v0t)

]
.

At the value x = 〈x〉 corresponding to the maximum value of the bell-
shaped amplitude modulation M(x , t), that is, its position average

〈x〉 = x0 +v0t ,

the effective wave number is simply equal to the wave number that corre-
sponds to the average momentum p0 of the spectral function,

k0 = 1

h̄
p0 = 1

h̄
mv0 .
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b e
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Fig.3.2. (a, d) Spectral functions and time developments of (b, e) the real parts and (c,
f) the imaginary parts of the wave functions for two different wave packets. The two
packets have different group velocities and different widths and spread differently with
time.

For values x > x0 +v0t , that is, in front of the average position 〈x〉 of the
moving wave packet, the effective wave number increases,

keff(x > x0 +v0t)> k0 ,

so that the local wavelength

λeff(x) = 2π

|keff(x)|
decreases.
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For values x < x0 +v0t , that is, behind the average position 〈x〉, the effec-
tive wave number decreases,

keff(x < x0 +v0t)< k0 .

This decrease leads to negative values of keff of large absolute value, which,
far behind the average position, makes the wavelengths λeff(x) short again.
This wave number modulation can easily be verified in Figures 3.1 and 3.2.
For a wave packet at rest, that is, p0 = 0, v0 = p0/m = 0, the effective wave
number

keff(x) = 1

h̄

σ 2
p

σ 2
x

t

2m
(x − x0)

has the same absolute value to the left and to the right of the average position
x0. This implies a decrease of the effective wavelength that is symmetric on
both sides of x0. Figure 3.4 corroborates this statement.

3.3 Probability Interpretation, Uncertainty Principle

Following Max Born (1926), we interpret the wave function ψ(x , t) as fol-
lows. Its absolute square

ρ(x , t) = |ψ(x , t)|2 = M2(x , t)

is identified with the probability density for observing the particle at position x
and time t , that is, the probability of observing the particle at a given time t in
the space region between x and x +�x is �P = ρ(x , t)�x . This is plausible
since ρ(x , t) is positive everywhere. Furthermore, its integral over all space is
equal to one for every moment in time so that the normalization condition∫ +∞

−∞
|ψ(x , t)|2 dx =

∫ +∞

−∞
ψ∗(x , t)ψ(x , t)dx = 1

holds.
Notice, that there is a strong formal similarity between the average energy

density w(x , t) = ε0|Ec(x , t)|2/2 of a light wave and the probability density
ρ(x , t). Because of the probability character, the wave function ψ(x , t) is not
a field strength, since the effect of a field strength must be measurable wher-
ever the field is not zero. A probability density, however, determines the prob-
ability that a particle, which can be point-like, will be observed at a given
position. This probability interpretation is, however, restricted to normalized
wave functions. Since the integral over the absolute square of a harmonic
plane wave is
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1

2π h̄

∫ +∞

−∞
exp

[
i

h̄
(Et − px)

]
exp

[
− i

h̄
(Et − px)

]
dx = 1

2π h̄

∫ +∞

−∞
dx

and diverges, the absolute square |ψ(x , t)|2 of a harmonic plane wave cannot
be considered a probability density. We shall call the absolute square of a wave
function that cannot be normalized its intensity. Even though wave functions
that cannot be normalized have no immediate physical significance, they are
of great importance for the solution of problems. We have already seen that
normalizable wave packets can be composed of these wave functions. This
situation is similar to the one in classical electrodynamics in which the plane
electromagnetic wave is indispensable for the solution of many problems.
Nevertheless, a harmonic plane wave cannot exist physically, for it would
fill all of space and consequently have infinite energy.

Figure 3.3 shows the time developments of the probability densities of
the two Gaussian wave packets given in Figure 3.2. Underneath the two time
developments the motion of a classical particle with the same velocity is pre-
sented. We see that the center of the Gaussian wave packet moves in the ex-
act same way as the classical particle. But whereas the classical particle at
every instant in time occupies a well-defined position in space, the quantum-
mechanical wave packet has a finite width σx . It is a measure for the size of
the region in space surrounding the classical position in which the particle
will be found. The fact that the wave packet disperses in time means that the
location of the particle becomes more and more uncertain with time.

The dispersion of a wave packet with zero group velocity is particularly
striking. Without changing position it becomes wider and wider as time goes
by (Figure 3.4a).

It is interesting to study the behavior of the real and imaginary parts of the
wave packet at rest. Their time developments are shown in Figures 3.4b and
3.4c. Starting from a wave packet that at initial time t = 0 was chosen to be a
real Gaussian packet, waves travel in both positive and negative x directions.
Obviously, the harmonic waves with the highest phase velocities, those whose
wiggles escape the most quickly from the original position x = 0, possess
the shortest wavelengths. The spreading of the wave packet can be explained
in another way. Because the original wave packet at t = 0 contains spectral
components with positive and negative momenta, it spreads in space as time
elapses.

The probability interpretation of the wave function now suggests that we
use standard concepts of probability calculus, in particular the expectation
value and variance. The expectation value or average value of the position of
a particle described by a wave function ψ(x , t) is

〈x〉 =
∫ +∞

−∞
xρ(x , t)dx =

∫ +∞

−∞
ψ∗(x , t)xψ(x , t)dx ,
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Fig.3.3. Time developments of the probability densities for the two wave packets of
Figure 3.2. The two packets have different group velocities and different widths. Also
shown, by the small circles, is the position of a classical particle moving with a velocity
equal to the group velocity of the packet.
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c

b

a

Fig.3.4. Time developments of the probability density for a wave packet at rest and of
the real part and the imaginary part of its wave function.



3.3 Probability Interpretation, Uncertainty Principle 41

which, in general, remains a function of time. For a Gaussian wave packet the
integration indeed yields

〈x〉 = x0 +v0t , v0 = p0

m
,

corresponding to the trajectory of classical unaccelerated motion. We shall
therefore interpret the Gaussian wave packet of de Broglie waves as a quan-
tum-mechanical description of the unaccelerated motion of a particle, that
is, a particle moving with constant velocity. Actually, the Gaussian form of
the spectral function f (k) allows the explicit calculation of the wave packet.
With this particular spectral function, the wave function ψ(x , t) can be given
in closed form.

The variance of the position is the expectation value of the square of the
difference between the position and its expectation:

var(x) = 〈
(x −〈x〉)2

〉
=

∫ +∞

−∞
ψ∗(x , t)(x −〈x〉)2ψ(x , t)dx .

Again, for the Gaussian wave packet the integral can be carried out to give

var(x) = σ 2
x = h̄2

4σ 2
p

(
1+ 4σ 4

p

h̄2

t2

m2

)
,

which agrees with the formula quoted in Section 3.2.
Calculation of the expectation value of the momentum of a wave packet

ψ(x , t) =
∫ +∞

−∞
f (p)ψp(x − x0, t)dp

is carried out with the direct help of the spectral function f (p), that is,

〈p〉 =
∫ +∞

−∞
p| f (p)|2 dp .

For the spectral function f (p) of the Gaussian wave packet given at the be-
ginning of Section 3.2, we find

〈p〉 =
∫ +∞

−∞
p

1√
2πσp

exp

[
− (p − p0)2

2σ 2
p

]
dp .

We replace the factor p by the identity

p = p0 + (p − p0) .

Since the exponential in the integral above is an even function in the variable
p − p0, the integral
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∫ +∞

−∞
(p − p0)

1√
2πσp

exp

[
− (p − p0)2

2σ 2
p

]
dp = 0

vanishes, for the contributions in the intervals −∞< p< p0 and p0< p<∞
cancel. The remaining term is the product of the constant p0 and the normal-
ization integral, ∫ +∞

−∞
| f (p)|2 dp = 1 ,

so that we find
〈p〉 = p0 .

This result is not surprising, for the Gaussian spectral function gives the
largest weight to momentum p0 and decreases symmetrically to the left and
right of this value. At the end of Section 3.2, we found v0 = p0/m as the group
velocity of the wave packet. Putting the two findings together, we have discov-
ered that the momentum expectation value of a free, unaccelerated Gaussian
wave packet is the same as the momentum of a free, unaccelerated particle of
mass m and velocity v0 in classical mechanics:

〈p〉 = p0 = mv0 .

The expectation value of momentum can also be calculated directly from
the wave function ψ(x , t). We have the simple relation

h̄

i

∂

∂x
ψp(x − x0, t) = h̄

i

∂

∂x

{
1

(2π h̄)1/2
exp

[
− i

h̄
(Et − px)

]}
= pψp(x − x0, t) .

This relation translates the momentum variable p into the momentum operator

p → h̄

i

∂

∂x
.

The momentum operator allows us to calculate the expectation value of mo-
mentum from the following formula:

〈p〉 =
∫ +∞

−∞
ψ∗(x , t)

h̄

i

∂

∂x
ψ(x , t)dx .

It is completely analogous to the formula for the expectation value of position
given earlier. We point out that the operator appears between the functions
ψ∗(x , t) and ψ(x , t), thus acting on the second factor only. To verify this for-
mula, we replace the wave function ψ(x , t) by its representation in terms of
the spectral function:



3.3 Probability Interpretation, Uncertainty Principle 43

〈p〉 =
∫ +∞

−∞
ψ∗(x , t)

h̄

i

∂

∂x

∫ +∞

−∞
f (p)ψp(x − x0, t)dp dx

=
∫ +∞

−∞

∫ +∞

−∞
ψ∗(x , t)ψp(x − x0, t)dx p f (p)dp .

The inner integral∫ +∞

−∞
ψ∗(x , t)ψp(x − x0, t)dx

=
∫ +∞

−∞
ψ∗(x , t)

1

(2π h̄)1/2
exp

{
− i

h̄

[
Et − p(x − x0)

]}
dx

is by Fourier’s theorem the inverse of the representation

ψ∗(x , t) =
∫ +∞

−∞
f ∗(p)ψ∗

p (x − x0, t)dp

= 1

(2π h̄)1/2

∫ +∞

−∞
f ∗(p)exp

{
i

h̄

[
Et − p(x − x0)

]}
dp

of the complex conjugate of the wave packet ψ(x , t). Thus we have∫ +∞

−∞
ψ∗(x , t)ψp(x − x0, t)dx = f ∗(p) .

Substituting this result for the inner integral of the expression for 〈p〉, we
rediscover the expectation value of momentum in the form

〈p〉 =
∫ +∞

−∞
f ∗(p)p f (p)dp =

∫ +∞

−∞
p| f (p)|2 dp .

This equation justifies the identification of momentum p with the operator
(h̄/i)(∂/∂x) acting on the wave function. The variance of the momentum for
a wave packet is

var(p) = 〈(p −〈p〉)2〉 =
∫ +∞

−∞
ψ∗(x , t)

(
h̄

i

∂

∂x
− p0

)2

ψ(x , t)dx .

For our Gaussian packet we have

var(p) = σ 2
p

again independent of time because momentum is conserved.
The square root of the variance of the position,

�x = √
var(x) = σx ,

determines the width of the wave packet in the position variable x and there-
fore is a measure of the uncertainty about where the particle is located. By
the same token, the corresponding uncertainty about the momentum of the
particle is

�p = √
var(p) = σp .



44 3. Probability Waves of Matter

For our Gaussian wave packet we found the relation

σx = h̄

2σp

(
1+ 4σ 4

p

h̄2

t2

m2

)1/2

.

For time t = 0 this relation reads

σxσp = h̄

2
.

For later moments in time, the product becomes even larger so that, in
general,

�x ·�p ≥ h̄

2
.

This relation expresses the fact that the product of uncertainties in position
and momentum cannot be smaller than the fundamental Planck’s constant h
divided by 4π .

We have just stated the uncertainty principle, which is valid for wave
packets of all forms. It was formulated by Werner Heisenberg in 1927. This
relation says, in effect, that a small uncertainty in localization can only be
achieved at the expense of a large uncertainty in momentum and vice versa.
Figure 3.5 illustrates this principle by comparing the time development of
the probability density ρ(x , t) and the square of the spectral function f 2(p).
The latter, in fact, is the probability density in momentum. Looking at the
spreading of the wave packets with time, we see that the initially narrow wave
packet (Figure 3.5, top right) becomes quickly wide in space, whereas the ini-
tially wide wave packet (Figure 3.5, bottom right) spreads much more slowly.
Actually, this behavior is to be expected. The spatially narrow wave packet
requires a wide spectral function in momentum space. Thus it comprises com-
ponents with a wide range of velocities. They, in turn, cause a quick dispersion
of the packet in space compared to the initially wider packet with a narrower
spectral function (Figures 3.5, bottom left and bottom right).

At its initial time t = 0 the Gaussian wave packet discussed at the be-
ginning of Section 3.2 has the smallest spread in space and momentum
because Heisenberg’s uncertainty principle is fulfilled in the equality form
σx ·σp = h̄/2. The wave function at t = 0 takes the simple form

ψ(x ,0) = 1

(2π )1/4√σx
exp

[
− (x − x0)2

4σ 2
x

]
exp

[
i

h̄
p0(x − x0)

]
= M(x ,0)exp[iφ(x ,0)] .

The bell-shaped amplitude function M(x ,0) is centered around the position
x0 with the width σx ; φ is the phase of the wave function at t = 0 and has the
simple linear dependence
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Fig.3.5. Heisenberg’s uncertainty principle. For three different Gaussian wave packets
the square f 2(p) of the spectral function is shown on the left, the time development
of the probability density in space on the right. All three packets have the same group
velocity but different widths σp in momentum. At t = 0 the widths σx in space and σp in
momentum fulfill the equality σxσp = h̄/2. For later moments in time the wave packets
spread in space so that σxσp > h̄/2.

φ(x ,0) = 1

h̄
p0(x − x0) .

This phase ensures that the wave packet at t = 0 stands for a particle with an
average momentum p0. We shall use this observation when we have to prepare
wave functions for the initial state of a particle with the initial conditions
〈x〉 = x0, 〈p〉 = p0 at the initial moment of time t = t0.
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3.4 The Schrödinger Equation

Now that we have introduced the wave description of particle mechanics, we
look for a wave equation, the solutions of which are the de Broglie waves.
Starting from the harmonic wave

ψp(x , t) = 1

(2π h̄)1/2
exp

[
− i

h̄
(Et − px)

]
, E = p2

2m
,

we compare the two expressions

ih̄
∂

∂t
ψp(x , t) = Eψp(x , t)

and

− h̄2

2m

∂2

∂x2
ψp(x , t) = p2

2m
ψp(x , t) = Eψp(x , t) .

Equating the two left-hand sides, we obtain the Schrödinger equation for
a free particle,

ih̄
∂

∂t
ψp(x , t) = − h̄2

2m

∂2

∂x2
ψp(x , t) .

It was formulated by Erwin Schrödinger in 1926.
Since the solution ψp occurs linearly in this equation, an arbitrary linear

superposition of solutions, that is, any wave packet, is also a solution of Schrö-
dinger’s equation. Thus this Schrödinger equation is the equation of motion
for any free particle represented by an arbitrary wave packet ψ(x , t):

ih̄
∂

∂t
ψ(x , t) = − h̄2

2m

∂2

∂x2
ψ(x , t) .

In the spirit of representing physical quantities by differential operators, as we
did for momentum, we can now represent kinetic energy T , which is equal to
the total energy of the free particle T = p2/(2m), by

T → 1

2m

(
h̄

i

∂

∂x

)(
h̄

i

∂

∂x

)
= − h̄2

2m

∂2

∂x2
.

The equation can be generalized to describe the motion of a particle in a
force field represented by a potential energy V (x). This is done by replacing
the kinetic energy T with the total energy,

E = T + V → − h̄2

2m

∂2

∂x2
+ V (x) .

With this substitution we obtain the Schrödinger equation for the motion of a
particle in a potential V (x):
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ih̄
∂

∂t
ψ(x , t) = − h̄2

2m

∂2

∂x2
ψ(x , t)+ V (x)ψ(x , t) .

We now denote the operator of total energy by the symbol

H = − h̄2

2m

∂

∂x
+ V (x) .

In analogy to the Hamilton function of classical mechanics, operator H is
called the Hamilton operator or Hamiltonian. With its help the Schrödinger
equation for the motion of a particle under the influence of a potential takes
the form

ih̄
∂

∂t
ψ(x , t) = Hψ(x , t) .

At this stage we should point out that the Schrödinger equation, general-
ized to three spatial dimensions and many particles, is the fundamental law
of nature for all of nonrelativistic particle physics and chemistry. The rest of
this book will be dedicated to the pictorial study of the simple phenomena
described by the Schrödinger equation.

3.5 Bivariate Gaussian Probability Density

To facilitate the physics discussion in the next section we now introduce a
Gaussian probability density of two variables x1 and x2 and demonstrate its
properties. The bivariate Gaussian probability density is defined by

ρ(x1, x2) = A exp

{
− 1

2(1− c2)

[
(x1 −〈x1〉)2

σ 2
1

− 2c
(x1 −〈x1〉)

σ1

(x2 −〈x2〉)
σ2

+ (x2 −〈x2〉)2

σ 2
2

]}
.

The normalization constant

A = 1

2πσ1σ2

√
1− c2

ensures that the probability density is properly normalized:∫ +∞

−∞

∫ +∞

−∞
ρ(x1, x2)dx1 dx2 = 1 .

The bivariate Gaussian is completely described by five parameters. They are
the expectation values 〈x1〉 and 〈x2〉, the widths σ1 and σ2, and the correlation
coefficient c. The marginal distributions defined by
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ρ1(x1) =
∫ +∞

−∞
ρ(x1, x2)dx2 ,

ρ2(x2) =
∫ +∞

−∞
ρ(x1, x2)dx1

are for the bivariate Gaussian distribution simply Gaussians of a single vari-
able,

ρ1(x1) = 1√
2πσ1

exp

[
− (x1 −〈x1〉)2

2σ 2
1

]
,

ρ2(x2) = 1√
2πσ2

exp

[
− (x2 −〈x2〉)2

2σ 2
2

]
.

Each marginal distribution depends on two parameters only, the expectation
value and the width of its variable.

Lines of constant probability density in x1, x2 are the lines of intersection
between the surface ρ(x1, x2) and a plane ρ = a = const.

One particular ellipse, for which

ρ(x1, x2) = A exp

{
−1

2

}
,

i.e., the one for which the exponent in the bivariate Gaussian is simply equal to
−1/2, is called the covariance ellipse. Points x1, x2 on the covariance ellipse
fulfill the equation

1

1− c2

{
(x1 −〈x1〉)2

σ 2
1

−2c
(x1 −〈x1〉)

σ1

(x2 −〈x2〉)
σ2

+ (x2 −〈x2〉)2

σ 2
2

}
= 1 .

Projected on the x1 axis and the x2 axis, it yields lines of lengths 2σ1 and 2σ2,
respectively.

The plots in Figure 3.6 differ only by the value c of the covariance. The
covariance ellipses are shown as lines of constant probability on the surfaces
ρ(x1, x2). For c = 0 the principal axes of the covariance ellipse are parallel
to the coordinate axes. In this situation variables x1 and x2 are uncorrelated,
that is, knowledge that x1 > 〈x1〉 holds true does not tell us whether it is more
probable to observe x2 > 〈x2〉 or x2 < 〈x2〉. For uncorrelated variables the
relation between the joint probability density and the marginal distribution
is simple, ρ(x1, x2) = ρ1(x1)ρ2(x2). The situation is different for correlated
variables, that is, for c = 0. For a positive correlation, c > 0, the major axis
of the ellipse lies along a direction between those of the x1 axis and the x2

axis. If we know that x1 > 〈x1〉 is valid it is more probable to have x2 > 〈x2〉
than to have x2 < 〈x2〉. If, on the other hand, the correlation is negative, x < 0,
the major axis has a direction between those of the x1 axis and the negative
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Fig.3.6. Bivariate Gaussian probability density ρ(x1, x2) drawn as a surface over the
x1, x2 plane and marginal distributions ρ1(x1) and ρ2(x2). The latter are drawn as curves
over the margins parallel to the x1 axis and the x2 axis, respectively. Also shown is the
covariance ellipse corresponding to the distribution. The rectangle circumscribing the
ellipse has the sides 2σ1 and 2σ2, respectively. The pairs of plots in the three rows of the
figure differ only by the correlation coefficient c.

x2 axis. In this situation, once it is known that x1 > 〈x1〉 is valid, x2 < 〈x2〉 is
more probable than x2 > 〈x2〉.

The amount of correlation is measured by the numerical value of c, which
can vary in the range −1 < c < 1. In the limiting case of total correlation,
c = ±1, the covariance ellipse degenerates to a line, the principal axis. The
joint probability density is completely concentrated along this line. That is,
knowing the value x1 of one variable, we also know the value x2 of the other.
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Also shown in Figure 3.6 are the covariance ellipses directly drawn in the
x1, x2 plane and the rectangles with sides parallel to the x1 and the x2 axes. The
lengths of these sides are 2σ1 and 2σ2, respectively. If there is no correlation
(c = 0) the principal axes of the ellipse are parallel to the coordinate axes so
that the principal semi-axes have lengths σ1 and σ2. For c = 0 the principal
axes form an angle α with the coordinate axes. The angle α is given by

tan2α = 2cσ1σ2

σ 2
1 −σ 2

2

.

3.6 Comparison with a Classical Statistical Description

The interpretation of the wave-packet solution as a classical point particle
catches only the most prominent and simplest classical features of particle
motion. To exploit our intuition of classical mechanics somewhat further, we
study a classical point particle with initial position and momentum known
to some inaccuracy only. In principle, such a situation prevails in all clas-
sical mechanical systems because of the remaining inaccuracy of the initial
conditions due to errors inevitable even in all classical measurements. The
difference in principle compared to quantum physics is, however, that accord-
ing to the laws of classical physics the errors in location and momentum of a
particle both can be made arbitrarily small independent of each other. From
Heisenberg’s uncertainty principle we know that this is not possible in quan-
tum physics.

We now study the motion of a classical particle described at the initial
time t = 0 by a joint probability density in location and momentum which we
choose to be a bivariate Gaussian about the average values x0 and p0 with the
widths σx0 and σp. We assume that at the initial time t = 0 there is no correla-
tion between position and momentum. The initial joint probability density is
then

ρcl
i (x , p) = 1√

2πσx0

exp

{
− (x − x0)2

2σ 2
x0

}
1√

2πσp

exp

{
− (p − p0)2

2σ 2
p

}
.

For force-free motion the particle does not suffer a change in momentum
as time elapses, e.g., also at a later time t > 0 the particle still moves with
its initial momentum, i.e., p = pi. Thus, the momentum distribution does not
change with time. The position of a particle of momentum pi at time t initially
having the position xi is given by

x = xi +vit , vi = pi/m .

The probability density initially described by ρcl
i (xi, pi) can be expressed at

time t by the positions x at time t by inserting
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xi = x − (p/m)t ,

yielding the classical phase-space probability density

ρcl(x , p, t) = ρcl
i (x − pt/m, p)

= 1

2πσx0σp
exp

{
−1

2

[
(x − x0 − pt/m)2

σ 2
x0

+ (p − p0)2

σ 2
p

]}

= 1

2πσx0σp
exp L .

The exponent is a quadratic polynomial in x and p which can be written as

L = −1

2

{
(x − [x0 + p0t/m]− (p − p0)t/m)2

σ 2
x0

+ (p − p0)2

σ 2
p

}

= −1

2

σ 2
x0 +σ 2

p t2/m2

σ 2
x0

{
(x − [x0 + p0t/m])2

σ 2
x0 +σ 2

p t2/m2

−2(x − [x0 + p0t/m])(p − p0)

(σ 2
x0 +σ 2

p t2/m2)m/t
+ (p − p0)2

σ 2
p

}
.

Comparing this expression with the exponent of the general expression for a
bivariate probability density in Section 3.5 we find that ρcl(x , p, t) is a bivari-
ate Gaussian with the expectation values

〈x(t)〉 = x0 + p0t/m , 〈p(t)〉 = p0 ,

the widths

σx (t) =
√
σ 2

x0 +σ 2
p t2/m2 , σp(t) = σp ,

and the correlation coefficient

c = σpt

σx (t)m
= σpt/m√

σ 2
x0 +σ 2

p t2/m2
.

In particular this means that the marginal distribution ρcl
x (x , t), i.e., the spatial

probability density for the classical particle with initial uncertainties σx0 in
position and σp momentum is

ρcl
x (x , t) = 1√

2πσx (t)
exp

{
− (x − [x0 + p0t/m])2

2σ 2
x (t)

}
.

Let us now study the classical probability density ρcl(x , p, t) of a particle
with initial uncertainties σx0 in position and σp in momentum which satisfy
the minimal uncertainty requirement of quantum mechanics:

σx0σp = h̄/2 .
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Fig.3.7. Time development of the classical phase-space probability density ρcl(x , p, t) for
a free particle with uncertainty in position and momentum. Also shown are the marginal
distributions ρcl

x (x , t) in the back and ρcl
p (p, t) on the right-hand side of the plots.

In that case the spatial width of the classical probability distribution is

σx (t) = h̄

2σp

√
1+ 4σ 2

p

h̄2

t2

m2

and thus identical to the width of the corresponding quantum-mechanical
wave packet. Also the expectation values for x and p and the width in p
are identical for the classical and the quantum-mechanical case.

In Figure 3.7 we show the time development of the classical phase-space
probability density. At the initial time t = t0 = 0 there is no correlation be-
tween position and momentum. With increasing time the structure moves in
x direction and develops an increasing positive correlation between x and p.
The marginal distribution ρcl

p (p, t) remains unchanged whereas the marginal
distribution ρcl

x (x , t) shows the motion in x direction and the dispersion al-
ready well known from Section 3.5. The same information is presented in
different form in Figure 3.8 which shows the covariance ellipse of ρcl(x , p, t)
for several times. Its center moves with constant velocity v0 = p0/m on a
straight line parallel to the x axis. The width in p stays constant, the width in
x increases. It also becomes clear from the figure that the correlation coeffi-
cient, vanishing at t = t0 = 0, tends towards c = 1 for t → ∞, since in that
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Fig.3.8. Motion of the covariance ellipse in phase space which characterizes the classical
space probability densityρcl(x , p, t) of a free particle. The ellipse is shown for six moments
of time corresponding to the six plots in Figure 3.7. The center of the ellipse (indicated
by a small circle) moves with constant velocity on a straight trajectory. The rectangle
circumscribing the covariance ellipse has sides of lengths 2σx (t) and 2σp(t), respectively.
While σp stays constant, σx increases with time. For t = t0 = 0 there is no correlation
between position and momentum (ellipse on the far left) but with increasing time a
strong positive correlation develops.

limit the covariance ellipse degenerates towards a line along the diagonal of
the circumscribing rectangle.

The lesson we have learned so far is that the force-free motion of a clas-
sical particle described by a Gaussian probability distribution in phase space
of position and momentum yields the same time evolution of the local proba-
bility density as in quantum mechanics if the initial widths σx0,σp in position
and momentum fulfill the relation

σx0σp = h̄

2
.

In the further development of the quantum-mechanical description of particles
we shall see that this finding does not remain true for particles under the action
of forces other than constant in space or linear in the coordinates.
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Problems

3.1. Calculate the de Broglie wavelengths and frequencies of an electron
and a proton that have been accelerated by an electric field through a
potential difference of 100V. What are the corresponding group and
phase velocities?

3.2. An electron represented by a Gaussian wave packet with average en-
ergy E0 = 100eV was initially prepared to have momentum width
σp = 0.1p0 and position width σx = h̄/(2σp). How much time elapses
before the wave packet has spread to twice the original spatial exten-
sion?

3.3. Show that the normalization condition
∫ +∞

−∞ |ψ(x , t)|2 dx = 1 holds true
for any time if ψ(x , t) is a Gaussian wave packet with a normalized
spectral function f (p).

3.4. Calculate the action of the commutator [p, x] = px − xp, p = (h̄/i)
(∂/∂x) on a wave function ψ(x , t). Show that it is equivalent to the
multiplication of ψ(x , t) by h̄/i so that we may write [p, x] = h̄/i.

3.5. Express the expectation value of the kinetic energy of a Gaussian wave
packet in terms of the expectation value of the momentum and the width
σp of the spectral function.

3.6. Given a Gaussian wave packet of energy expectation value 〈E〉 and mo-
mentum expectation value 〈p〉, write its normalized spectral function
f (p).

3.7. A large virus may for purposes of this problem be approximated by a
cube whose sides measure one micron and which has the density of
water. Assuming as an upper estimate an uncertainty of one micron in
position, calculate the minimum uncertainty in velocity of the virus.

3.8. The radius of both the proton and the neutron is measured to be of the
order of 10−15 m. A free neutron decays spontaneously into a proton,
an electron, and a neutrino. The momentum of the emitted electron is
typically 1MeV/c. If the neutron were, as once thought, a bound system
consisting of a proton and an electron, how large would be the position
uncertainty of the electron and hence the size of the neutron? Take as
the momentum uncertainty of the electron the value 1MeV/c.

3.9. Show that the solutions of the Schrödinger equation satisfy the continu-
ity equation
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∂ρ(x , t)

∂t
+ ∂ j(x , t)

∂x
= 0

for the probability density

ρ(x , t) = ψ∗(x , t)ψ(x , t)

and the probability current density

j(x , t) = h̄

2im

[
ψ∗(x , t)

∂

∂x
ψ(x , t)−ψ(x , t)

∂

∂x
ψ∗(x , t)

]
.

To this end, multiply the Schrödinger equation by ψ∗(x , t) and its com-
plex conjugate

ih̄
∂ψ∗(x , t)

∂t
= h̄2

2m

∂2

∂x2
ψ∗(x , t)− V (x)ψ∗(x , t)

by ψ(x , t), and add the two resulting equations.

3.10. Convince yourself with the help of the continuity equation that the nor-
malization integral ∫ +∞

−∞
ψ∗(x , t)ψ(x , t)dx

is independent of time if ψ(x , t) is a normalized solution of the Schrö-
dinger equation. To this end, integrate the continuity equation over all
x and use the vanishing of the wave function for large |x | to show the
vanishing of the integral over the probability current density.

3.11. Calculate the probability current density for the free Gaussian wave
packet as given at the end of Section 3.2. Interpret the result for t = 0
in terms of the probability density and the group velocity of the packet.

3.12. Show that the one-dimensional Schrödinger equation possesses spatial
reflection symmetry, that is, is invariant under the substitution x → −x
if the potential is an even function, that is, V (x) = V (−x).

3.13. Show that the ansatz for the Gaussian wave packet of Section 3.2 fulfills
the Schrödinger equation for a free particle.



4. Solution of the Schrödinger Equation
in One Dimension

4.1 Separation of Time and Space Coordinates,
Stationary Solutions

The simple structure of the Schrödinger equation allows a particular ansatz in
which the time and space dependences occur in separate factors,

ψE (x , t) = exp

(
− i

h̄
Et

)
ϕE (x) .

As in the case of electromagnetic waves, we call the factor ϕE (x) that is inde-
pendent of time a stationary solution. Inserting our ansatz into the Schrödin-
ger equation yields an equation for the stationary wave,

− h̄2

2m

d2

dx2
ϕE (x)+ V (x)ϕE (x) = EϕE (x) ,

which is often called the time-independent Schrödinger equation. It is char-
acterized by the parameter E , which is called an eigenvalue. The left-hand
side represents the sum of the kinetic and the potential energy, so that E is
the total energy of the stationary solution. The solution ϕE (x) is called an
eigenfunction of the Hamilton operator

H = − h̄2

2m

d2

dx2
+ V (x) ,

since the time-independent Schrödinger equation can be put into the form

HϕE (x) = EϕE (x) .

We also say that the solution ϕE (x) describes an eigenstate of the system
specified by the Hamilton operator. This eigenstate is characterized by the
eigenvalue E of the total energy. Often the stationary solution ϕE (x) is also
called a stationary state of the system.
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The time-independent Schrödinger equation has a large manifold of solu-
tions. It is supplemented by boundary conditions that have to be imposed on
a particular solution. These boundary conditions must be abstracted from the
physical process that the solution should describe. The boundary conditions
on the solution for the elastic scattering in one dimension of a particle un-
der the action of a force will be discussed in the next section. Because of the
boundary conditions, solutions ϕE (x) exist for particular values of the energy
eigenvalues or for particular energy intervals only.

As a first example, we look at the de Broglie waves,

ψp(x − x0, t) = 1

(2π h̄)1/2
exp

[
− i

h̄
(Et − px + px0)

]
.

The function ψp(x − x0, t) factors into exp[−(i/h̄)Et] and the stationary wave

1

(2π h̄)1/2
exp

[
i

h̄
p(x − x0)

]
.

It is a solution of the time-independent Schrödinger equation with a van-
ishing potential for the energy eigenvalue E = p2/2m. A superposition of
de Broglie waves fulfilling the normalization condition of Section 3.3 forms
a wave packet describing an unaccelerated particle. Here x0 is the position
expectation value of the wave packet at time t = 0.

Since the momentum p is a real parameter, the energy eigenvalue of a
de Broglie wave is always positive. Thus, for the case of de Broglie waves,
we have found the restriction E ≥ 0 for the energy eigenvalues.

The general solution of the time-dependent Schrödinger equation is given
by a linear combination of waves of different energies. This is tantamount to
stating that the various components of different energy E superimposed in the
solution change independently of one another with time.

For initial time t = 0 the functions ψE and ϕE coincide. An initial condi-
tion prescribed at t = 0 determines the coefficients in the linear combination of
spectral components of different energies. Therefore the procedure for solving
the equation for a given initial condition has three steps. First, we determine
the stationary solutions ϕE (x) of the time-independent Schrödinger equation.
Second, we superimpose them with appropriate coefficients to reproduce the
initial condition ψ(x ,0) at t = 0. Finally, we introduce into every term of this
linear combination the time-dependent factor exp[−(i/h̄)Et] corresponding
to the energy of the stationary solution ϕE and sum them up to give ψ(x , t),
the solution of the time-dependent Schrödinger equation.

In the next section we study methods of obtaining the stationary solutions.
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4.2 Stationary Scattering Solutions:
Piecewise Constant Potential

As in classical mechanics, the scattering of a particle by a force is called
elastic if only its momentum is changed while its energy is conserved. A force
is said to be of finite range if it is practically zero for distances from the center
of force larger than a finite distance d . This distance d is called the range of
the force. The elastic scattering of a particle through a force of finite range
consists of three stages subsequent in time.

1. The incoming particle moves unaccelerated in a force-free region to-
ward the range of the force.

2. The particle moves under the influence of the force. The action of the
force changes the momentum of the particle.

3. After the scattering the outgoing particle moves away from the range of
the force. Its motion in the force-free region is again unaccelerated.

In Section 3.3 we have seen that the force-free motion of a particle of mass
m can be described by a wave packet of de Broglie waves,

ψp(x − x0, t) = 1

(2π h̄)1/2
exp

[
− i

h̄
(Et − px + px0)

]
,

E = p2

2m
.

They can be factored into the time-dependent factor exp[−(i/h̄)Et] and the
stationary wave (2π h̄)−1/2 exp[(i/h̄)p(x − x0)]. This stationary wave is a solu-
tion of the time-independent Schrödinger equation with a vanishing potential.

If the spectral function f (p) of the wave packet has values different from
zero in a range of positive p values, the wave packet

ψ(x , t) =
∫ +∞

−∞
f (p)ψp(x − x0, t)dp

=
∫ +∞

−∞
f (p)exp

(
− i

h̄
Et

)
1

(2π h̄)1/2
exp

[
i

h̄
p(x − x0)

]
dp

moves along the x axis from left to right, that is, in the direction of increasing
x values.

Now we superimpose de Broglie waves of momentum −p,

ψ−p(x − x0, t) = 1

(2π h̄)1/2
exp

[
− i

h̄
(Et + px − px0)

]
,

E = p2

2m
,
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with the same spectral function f (p). A simple change of variables p′ = −p
yields

ψ−(x , t) =
∫ +∞

−∞
f (−p′)exp

(
− i

h̄
Et

)
1

(2π h̄)1/2
exp

[
i

h̄
p′(x − x0)

]
dp′

=
∫ +∞

−∞
f (−p′)ψp(x − x0, t)dp .

We obtain a wave packet with a spectral function f (−p) having its range of
values different from zero at negative values of p. The wave packet ψ−(x , t)
moves along the x axis from right to left, that is, in the direction of de-
creasing x values. Thus we learn that for a given spectral function, wave
packets formed with ψp(x − x0, t) and ψ−p(x − x0, t) move in opposite di-
rections. This says that the sign of the exponent of the stationary wave
(2π h̄)−1/2 exp[±(i/h̄)p(x − x0)] decides the direction of motion. For a spec-
tral function f (p) different from zero at positive values of momentum p, a
wave packet formed with the stationary wave,

exp

[
i

h̄
p(x − x0)

]
= exp[ik(x − x0)] , k = p/h̄ ,

moves in the direction of increasing x . A wave packet formed with the sta-
tionary wave

exp

[
− i

h̄
p(x − x0)

]
= exp[−ik(x − x0)]

moves in the direction of decreasing x .
Let us consider a particle moving from the left in the direction of increas-

ing x . The force

F(x) = − d

dx
V (x)

derived from the potential energy V (x) has finite range d. This range is as-
sumed to be near the origin x = 0. The initial position x0 of the wave packet is
assumed to be far to the left of the origin at large negative values of the coor-
dinate. As long as the particle is far to the left of the origin, the particle moves
unaccelerated. In this region the solution is a wave packet of de Broglie waves
ψp(x − x0, t). Thus the stationary solution ϕE (x) of the time-independent
Schrödinger equation for the eigenvalue E should contain a term approaching
the function exp[(i/h̄)p(x − x0)] for negative x of large absolute value.

Through the scattering process in one dimension, the particle can only be
transmitted or reflected. The transmitted particle will move force free at large
positive x . Here it will be represented by a wave packet of de Broglie waves of
the form ψp′(x − x0, t). Therefore the solution of the stationary Schrödinger
equation must approach the function exp[(i/h̄)p′(x − x0)] for large positive
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Fig.4.1. Space is divided into
region I, x < 0, and region II,
x > 0. There is a constant po-
tential in region II, V = V0,
whereas in region I there is no
potential, V = 0.

x . The value p′ differs from p if the potential V (x) assumes different values
for large negative and large positive x . The reflected particle has momentum
−p and will leave the range of the potential to the left and thus return to
the region of large negative x . In this region it will be represented by a wave
packet of de Broglie waves ψ−p(x − x0, t). Therefore the solution of the time-
independent Schrödinger equation must also contain a contribution tending
toward a function exp[−(i/h̄)p(x − x0)] for large negative x . The conditions
for large positive and negative x just derived constitute the boundary condi-
tion that the stationary solution ϕE (x), E = p2/2m must fulfill if its superpo-
sitions forming wave packets are to describe an elastic scattering process. We
summarize the boundary conditions for stationary scattering solutions of the
time-independent Schrödinger equation in the following statement:

ϕE (x)−−−−−−→approaches

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp

[
i

h̄
p(x − x0)

]
+ B exp

[
− i

h̄
p(x − x0)

]
for large negative x

A exp

[
i

h̄
p′(x − x0)

]
for large positive x

.

Since there are no general methods for solving in closed form the Schrö-
dinger equation for an arbitrary potential, we choose for our discussion par-
ticularly simple examples. We begin with a potential step of height V = V0

at x = 0. The potential divides the space into two regions. In region I, that is,
to the left of x = 0, the potential vanishes. To the right, region II, it has the
constant value V = V0 (Figure 4.1).
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The time-independent Schrödinger equation has the form

− h̄2

2m

d2

dx2
ϕ+ Viϕ = Eϕ

in both regions, with Vi assuming different but constant values in the two
regions, VI = 0, VII = V0. Thus the stationary solution for given energy E of
the incoming wave is

ϕI = exp

[
i

h̄
p(x − x0)

]
+ BI exp

[
− i

h̄
p(x − x0)

]
, x < 0 ,

ϕII = AII exp

[
i

h̄
p′(x − x0)

]
, x > 0 .

Obviously, this solution fulfills the boundary conditions we have posed earlier
in this section.

In region I the momentum is p = √
2m E , in region II it is p′ =√

2m(E − V0). Since the potential is discontinuous at x = 0, the second
derivative of ϕ has to reproduce the same discontinuity, reduced by the factor
−h̄2/(2m). Thus ϕ and dϕ/dx are continuous at x = 0. These conditions de-
termine the complex coefficients BI and AII which are as yet unknown. The
coefficient of the incoming wave has been chosen equal to one, thus fixing the
incoming amplitude. The phase of the wave function depends on the initial
position parameter x0.

As for light waves (Section 2.2), we denote the three members on the
right-hand sides of the two expressions ϕI and ϕII as constituent waves. That
is, we call

ϕ1+ = exp
[
(i/h̄)p(x − x0)

]
the incoming constituent wave ,

ϕ1− = BI exp
[−(i/h̄)p(x − x0)

]
the reflected constituent wave ,

ϕ2 = AII exp
[
(i/h̄)p′(x − x0)

]
the transmitted constituent wave .

As a first example, we choose a repulsive step, V0 > 0, and an incoming
wave of energy E < V0, so that in classical mechanics the particle would be
reflected by the potential step. The momentum of the transmitted wave in
region II,

p′ = √
2m(E − V0) = i

√
2m(V0 − E) ,

is now imaginary so that the transmitted wave
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ϕII = AII exp

[
i

h̄
p′(x − x0)

]
= AII exp

[
−1

h̄

√
2m(V0 − E)(x − x0)

]
becomes a real exponential function which falls off with increasing x in region
II. We obtain the full solution of the time-dependent Schrödinger equation for
a given energy by multiplying the stationary wave by the factor exp(−iEt/h̄).

The upper and middle plot of Figure 4.2 show the time developments of
the real and imaginary parts of the wave function with fixed energy E . The
real and imaginary parts behave in region I like standing waves, for they are
superpositions of an incoming and a reflected wave of equal frequency and
equal amplitude. We are easily convinced of this fact by looking at Figure 4.3,
in which the time developments of the incoming and reflected constituent
waves in region I are plotted separately. In Figure 4.2, region II, both the real
and the imaginary parts are represented by exponentials oscillating in time.
The time development of the absolute square of the wave function, which we
shall call intensity (Figure 4.2, bottom), shows no variation at all in time. In
region I it is periodic in space, but in region II it shows an exponential falloff.

We now examine an incoming wave of energy E > V0. Obviously, the
momentum p′ = √

2m(E − V0) in region II for E > V0 is real. Therefore the
stationary solution in this region, as in region I, is an oscillating function in
space.

Figure 4.4 (top) shows the energy dependence of the real parts of the sta-
tionary solutions. It includes both energies E > V0 and energies E < V0. For
energies E > V0 the wavelength in region II is longer than that in region I.
For energies E < V0 the stationary wave function has the exponential falloff
just mentioned. The energy dependence of the intensity is given in Figure 4.4
(bottom). For E > V0 the intensity is constant in region II, corresponding to
the outgoing wave in this region. The periodic structure of the intensity in
region I results from the superposition of the incoming and reflected waves.

For V0 < 0 there is for all energies an oscillating transmitted wave in re-
gion II. Figure 4.5 shows the energy dependence of the real part and of the
absolute square of the wave function. Since the potential is now attractive, the
wavelength of the transmitted wave is decreased in region II.

Since for every energy E > 0 there is a stationary solution of the time-
independent Schrödinger equation for a potential step, we say that the phys-
ical system has a continuous energy spectrum. For some types of potential,
the Schrödinger equation has solutions only for certain particular values of
energy. They form a discrete energy spectrum. The most general physical sys-
tem has an energy spectrum composed of a discrete part and a continuous one
(see Section 4.4).
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Fig.4.2. Time develop-
ments of the real part,
the imaginary part,
and the intensity of
a harmonic wave of
energy E < V0 falling
onto a potential step
of height V0. The form
of the potential V (x)
is indicated by the
line made up of long
dashes, the energy of
the wave by the short-
-dash horizontal line,
which also serves as
zero line for the func-
tions plotted. To the
left of the potential
step is a standing-wave
pattern, as is appar-
ent from the time-in-
dependent position of
the nodes or zeros of
the functions Reψ(x , t)
and Imψ(x , t). The ab-
solute square |ψ(x , t)|2
is time independent.
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b

a

Fig.4.3. Time developments of the real parts of (a) the incoming constituent wave and
(b) the reflected constituent wave making up the harmonic wave of Figure 4.2.
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Fig.4.4. Energy dependence of stationary solutions for waves incident on a potential step
of height V0 > 0. Shown are the real part of the wave function and the intensity. Small
energies are in the background.
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Fig.4.5. Energy dependence of the real part and of the intensity of stationary solutions
for harmonic waves incident on a potential step of height V0 < 0.
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Fig.4.6. Energy dependence of stationary solutions for waves incident onto a positive
potential barrier (top), V0 > 0, and a negative potential barrier (bottom), V0 < 0, which
is also called a square-well potential. The real part of the wave function is shown.
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We now turn to the example of a potential barrier of height V = V0 be-
tween x = 0 and x = d. Outside this interval the potential vanishes. Here we
have to study three different regions where the solution is given by

ϕI = exp

[
i

h̄
p(x − x0)

]
+ BI exp

[
− i

h̄
p(x − x0)

]
, x < 0 ,

ϕII = AII exp

[
i

h̄
p′(x − x0)

]
+ BII exp

[
− i

h̄
p′(x − x0)

]
, 0< x < d ,

ϕIII = AIII exp

[
i

h̄
p(x − x0)

]
, d < x

for a harmonic wave moving in from the left, that is, x < 0.
As before, the momentum in region II is p′ = √

2m(E − V0) and is real for
E > V0, imaginary for E < V0. The complex coefficients A and B are again
determined by continuity conditions for the wave function and its derivative
dϕ/dx at the two boundaries of the barrier, x = 0 and x = d.

The energy dependence of the real part of the stationary solutions is pre-
sented in Figure 4.6 (top). Again transmission and reflection occur. The most
striking feature, however, is the transmission of a wave into region III even for
energies below the barrier height, E < V0. The transmission of the wave cor-
responds to the penetration of a particle through the barrier. This remarkable
quantum-mechanical phenomenon is called the tunnel effect. Within region
II, of course, the wave does not have periodic structure since p′ is imaginary,
giving rise to a real exponential function.

A potential that is constant and negative in region II, that is, V0 is less than
zero for 0< x < d, and that vanishes in regions I and III is called a square-well
potential. Here the waves keep their oscillating form in all three regions. Fig-
ure 4.6 (bottom) shows the energy dependence of the real part of the station-
ary wave function. The wavelength is now decreased within the well, through
the acceleration caused by the attractive potential. This effect is less obvious
for the higher kinetic energies since the relative difference between the wave
number kI outside and kII = √

2m(E − V0)/h̄ = √
2m(E +|V0|)/h̄ decreases

with growing kinetic energy E .

4.3 Stationary Scattering Solutions: Linear Potentials

In Section 4.2 we have investigated the stationary solutions of the Schrödin-
ger equation for piecewise constant potentials. Slightly more complicated is
the linear potential

V (x) = −mgx + V0 = −mg(x − x0) , x0 = V0

mg
,
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which, for example, governs the free fall of a body under the action of a con-
stant force F = mg. The corresponding time-independent, stationary Schrö-
dinger equation reads(

− h̄2

2m

d2

dx2
−mgx + V0

)
ϕ(x) = Eϕ(x) ,

or, in normal form,[
d2

dx2
+2

m2

h̄2 gx + 2m

h̄2 (E − V0)

]
ϕ(x) = 0 .

The position

xT = − E − V0

mg
= − E

mg
+ x0

is the classical turning point of a particle with the total energy E . Introducing
the dimensionless variable

ξ = 1

�0
(x − xT) , �0 =

(
h̄2

2m2g

)1/3

,

scaling x in multiples of the length parameter �0, we find a differential equa-
tion: (

d2

dξ 2
+ ξ

)
φ(ξ ) = 0

with
φ(ξ ) = ϕ(�0ξ + xT) .

The differential equation in ξ no longer contains an energy parameter. A so-
lution of this equation is the Airy function Ai(ξ ), cf. Appendix F, multiplied
with a normalization constant:

φ(ξ ) = N Ai(−ξ ) , N =
(

2m1/2

g1/2h̄2

)1/3

.

The Airy functions Bi(x) do not yield physical solutions since they diverge
for large positive arguments.

The main features of the solution

ϕ(x) = N Ai

(
−x − xT

�0

)
which is shown in Figure 4.7 are easily understood. For x > xT the wave
function oscillates with wavelengths λ becoming shorter with growing x . This
reflects the increase of momentum p = h/λ of the particle because of the
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acceleration in the positive x direction by the force F = mg. In fact, for (x −
xT) � �0 the solution has the asymptotic behavior

ϕas(x) = N

(
�0

x − xT

)1/4

sin

(
2

3

[
x − xT

�0

]3/2

+ π
4

)
.

This shows that the wavelength λ defined by

2

3

(
x +λ− xT

�0

)3/2

− 2

3

(
x − xT

�0

)3/2

= 2π

depends on the position x and is approximately given by

λ= 2π h̄

m
√

2g(x − xT)
.

This corresponds to the momentum

p = h/λ= m
√

2g(x − xT) = mv ,

where
v = √

2g(x − xT)

is the classical velocity of a particle at position x falling from the point xT

under the acceleration g. For x < xT the wave function falls off very quickly
to zero. Since xT is the classical turning point of the particle, this vanishing
of the wave function and thus the probability density to the left of xT is to be
expected. For x − xT < 0 and |x − xT| � �0 the asymptotic form ϕas of the
wave function is given by

ϕas(x) = N

(
�0

|x − xT|
)1/4

exp

{
−2

3

∣∣∣∣x − xT

�0

∣∣∣∣3/2
}

.

As to be expected there is no point to the left of which the wave function is
exactly zero. To the far left of the turning point, however, the probability of
finding the particle becomes very small.

Let us now consider a piecewise linear potential, i.e., a potential that is
either constant or linear in different regions,

V (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

VI = c1 = const, x < x1 = 0 region I
VII,a + (x − x1)V ′

II, x1 ≤ x < x2 region II
...
VN−1,a + (x − xN−2)V ′

N−1, xN−2 ≤ x < xN−1 region N −1
VN = c2 = const, xN−1 ≤ x region N ,

V ′
j = Vj ,b − Vj ,a

xj − xj−1
, j = II, . . . , N −1 .
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Fig.4.7. Stationary-solution wave function ϕ(x) (top) and its absolute square (bottom)
in a linear potential for various values of the total energy E . The potential is indicated
by the long-dash broken line, the total energy E by the short-dash broken line. They
intersect at the classical turning point xT. The short-dash broken line also serves as the
zero line for the functions ϕ(x) and |ϕ(x)|2.
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The potential resembles the piecewise constant potential except that the con-
stant in each region is replaced by a linear function. In general, the potential
is discontinuous at the region boundaries; continuity at xj , j = I, . . . , N − 1,
holds only if Vj ,b = Vj+1,a.

For a nonzero slope V ′
j = Vj ,b−Vj ,a

xj −xj−1
of a potential in region j , xT

j is, for a
given energy E , the (extrapolated) classical turning point, and �j represents a
scale factor:

xT
j = xj−1 + E − Vj ,a

V ′
j

, �j =
(

h̄2

2m

1

V ′
j

) 1
3

.

The stationary wave function ϕj (x) in region j is

ϕj (x) = Aj Ai((x − xT
j )/�j )+ Bj Bi((x − xT

j )/�j ) , xj−1 ≤ x < xj .

(If the potential is constant in region j , then the stationary wave function is of
the form discussed in Section 4.2.) Ai and Bi are the Airy functions, represent-
ing the solution of the stationary Schrödinger equation for a linear potential,
which decrease or increase in the classically forbidden region, respectively.
At the boundaries xj the continuity conditions have to be fulfilled, i.e., the
wave function has to be continuously differentiable. The coefficients Aj , Bj

are determined by these boundary conditions.
An example of a piecewise linear potential and the corresponding station-

ary wave functions therein is shown in Figure 4.8

4.4 Stationary Bound States

In classical mechanics the motion of a particle is also possible within the
square-well potential at a negative total energy E = Ekin + V0, Ekin > 0. Since
the motion of the classical particle is restricted to region II, the quantum-
mechanical analog is described by stationary wave functions that fall off in
regions I and III. Thus the stationary wave functions too are localized in
the vicinity of the square well. Solutions with this property are called bound
states. The exponential falloff in regions I and III guarantees the finiteness of
the integral ∫ +∞

−∞
|ϕunnormalized(x)|2 dx = N 2

in contrast to the stationary solutions of positive energy eigenvalues. Divid-
ing the unnormalized solution by N yields the normalized stationary wave
function ϕ(x) fulfilling the normalization condition∫ +∞

−∞
|ϕ(x)|2 dx = 1 ,



4.4 Stationary Bound States 73

Fig.4.8. Energy dependence of the stationary wave functions ϕ(x) for a piecewise linear
potential. In the region where the potential decreases linearly with x the wavelength is
observed to fall, since kinetic energy and momentum rise.
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which is analogous to the one for wave packets. The normalizability is a
general feature of all bound-state wave functions. For negative total energy
the Schrödinger equation admits as solutions real exponentials of the type
exp(±ipx/h̄) with p = i

√
2m|E | in regions I and III. In order to guarantee the

falloff of the exponential, only the negative sign is allowed in region I, only
the positive sign in region III. In region II the solution is still oscillating since
p′ = √

2m(E − V0) remains real. The continuity conditions at the boundaries
of the potential must now be fulfilled with only one real exponential function
in regions I and III. This is possible only for particular discrete values of the
total energy. These values form the discrete part of the energy spectrum. The
corresponding solutions can be chosen to be real. They are distinguished by
the number of zeros or nodes that they possess in region II.

The number of nodes increases as the energy of the bound states increases.
This can be understood in the following way. For the ground state the wave
function in region II is a cosine with half a wavelength slightly greater than
the width of the square well. It is fitted into the square well in such a way that
its slopes at the boundaries match those of the exponentials in regions I and
III. The next bound state occurs at higher energy. As the energy increases,
the wavelength λ = 2π h̄[2m(E − V0)]−1/2 in region II shortens. The slopes
at the boundaries next match when approximately a full wavelength fits into
the well, making the wave function a sine and thus giving rise to one node.
As more and more wavelengths fit approximately into the well, more nodes
appear.

Figure 4.9 shows the wave functions of the discrete energy spectrum and
the corresponding probability densities. For a given width and depth of the
square-well potential, there is only a finite number of bound states.

The situation is similar for stationary bound states in a piecewise linear
potential. An example is given in Figure 4.10. The potential consists of 4
regions. It is constant in regions I and IV; regions II and III form a triangular
well. In our example there are 5 bound states. As in the case of the square well
the wave functions display oscillations within the well and a strong falloff in
the outer regions. Also, again, the number of nodes increases with energy and
can be used to enumerate the individual states.

Problems

4.1. Solve the stationary Schrödinger equation for energy E with a constant
potential V = V0.

4.2. Discuss the behavior of the solutions for energies E > V0, E < V0.
Which solutions correspond to the particular energy E = V0 ? These
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Fig.4.9. Wave functions (top) and probability densities (bottom) of the bound states in a
square-well potential. On the left side of the picture an energy scale is shown with marks
for the bound-state energies (n = 1, 2, 3). The form of the potential V (x) is indicated by
the long-dash line, the energy En of the bound states by the horizontal short-dash lines.
The horizontal dashed lines also serve as zero lines for the functions shown.
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Fig.4.10. Wave functions (top) and probability densities (bottom) of the stationary
bound states in a piecewise linear potential.
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three cases play a role in the solution of the Schrödinger equation for
stepwise constant potentials. Figures 4.4, 4.5, and 4.6 give examples.

4.3. Calculate the intensities |ϕII(x)|2 of the transmitted stationary wave and
of the superposition of the incoming and reflected stationary waves
|ϕI(x)|2 of Section 4.2.

4.4. Calculate the probability current density

j(x) = h̄

2im

(
ψ∗(x)

∂

∂x
ψ(x)−ψ(x)

∂

∂x
ψ∗(x)

)
for the solution of the stationary Schrödinger equation. Consider a po-
tential step of height V0 as shown in Figure 4.1. Show that the current
density is equal in the two spatial regions if the wave function and its
derivative fulfill the continuity conditions at the boundaries between the
different regions of the potential. Explain the result for E >

<V0.

4.5. Show that the stationary bound-state wave functions can always be cho-
sen to fulfill one of the following two relations:

ϕ(−x) = ϕ(x) or ϕ(−x) = −ϕ(x)

for an even potential V (−x) = V (x). The function ϕ(x) is said to have
positive parity – also called natural or even parity – in the first relation
and negative parity – unnatural or odd parity – in the second.



5. One-Dimensional Quantum Mechanics:
Scattering by a Potential

5.1 Sudden Acceleration and Deceleration of a Particle

We now study the motion of a wave packet incident on a potential step. As
already discussed at the beginning of Section 4.2, the effect of the potential is
the elastic scattering of the particle. In one-dimensional scattering the particle
will be transmitted or reflected by the potential.

If we superimpose the stationary solutions of Section 4.2 with the spec-
tral function that was used for the construction of the free wave packet in
Section 3.2,

f (p) = 1

(2π )1/4√σp
exp

[
− (p − p0)2

4σ 2
p

]
,

we obtain an initially Gaussian wave packet which is centered around x = x0

for the values of x0 that are far to the left of the potential step. Its time de-
velopment is obtained by including the time-dependent factor exp(−iEt/h̄),
E = p2/2m, in the superposition.

First, we discuss a repulsive potential, that is, a positive step, V0 > 0, and
a wave packet with p0 >

√
2mV0. Figure 5.1 presents the time developments

of the real and imaginary parts of the wave function and of the probability
density. Figure 5.1c also shows the position of a classical particle having the
same momentum p0 as the expectation value of the quantum-mechanical wave
packet. Of course, the classical particle moves to the right in region I with ve-
locity v= p0/m. Entering region II, it is instantaneously decelerated to veloc-

ity v′ = p′
0/m =

√
p2

0 −2mV0/m. The most striking effect on the behavior of
the wave packet is that it is partly reflected at the potential step. For large times
we observe a wave packet moving to the right in region II and in addition a
wave packet which is reflected at the step and is moving to the left in region
I. The wiggly structure in the probability density that occurs close to the step
in region I stems from the interference of the incoming and reflected wave
packets. The wiggles are caused by the fast variation of the de Broglie wave
function. It is interesting to compare the behavior of our quantum-mechanical
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a

b

c

Fig.5.1. Time de-
velopments of the
real part, of the
imaginary part of
the wave function,
and of the prob-
ability density for
a wave packet in-
cident from the
left on a poten-
tial step of height
V0 > 0. The form
of the potential
V (x) is again in-
dicated by the
long-dash line, the
expectation value
of the energy of
the wave packet
by the short–
dash line, which
also serves as
zero line for the
functions plotted.
The expectation
value of the ini-
tial momentum is
p0 >

√
2mV0. The

small circles in-
dicate the posi-
tions of a classi-
cal particle of the
same initial mo-
mentum.
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a

b

c

Fig.5.2. Time de-
velopments of the
real part, of the
imaginary part of
the wave function,
and of the prob-
ability density for
a wave packet in-
cident from the
left on a potential
step V0 > 0. The
initial momentum
expectation value
of the incident
wave packet is
p0 <

√
2mV0. The

small circles in-
dicate the posi-
tions of a classi-
cal particle of the
same initial mo-
mentum.
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a

b

c Fig.5.3. Time de-
velopments of the
real part, of the
imaginary part,
and of the proba-
bility density for a
wave packet inci-
dent from the left
on a potential step
of height V0 < 0.
The small circles
in part c indi-
cate the positions
of a classical par-
ticle incident on
the same potential
step.
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a

b

c

Fig.5.4. A wave
packet falls onto
a potential step
of height V0 < 0,
as in Figure 5.3.
The time develop-
ments of the real
parts of (a) the
incident constitu-
ent wave, (b) the
transmitted con-
stituent wave, and
(c) the reflected
constituent wave.
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wave packet incident on a potential step with that of the packet of light waves
incident on a glass surface, which we studied in Section 2.5. The principal
difference between the two phenomena is that the optical wave packet shows
no dispersion, for its components with different wave numbers all move with
the velocity of light.

We now use a wave packet with a lower initial momentum expectation
value p0 so that the corresponding classical particle is reflected at the step,
that is, p0 <

√
2mV0. The time developments of the wave function and the

probability density (Figure 5.2) show that part of the wave packet penetrates
for a short while, with an exponential falloff into region II that is forbidden for
the classical particle. Eventually, the wave packet is also completely reflected.
The penetration into region II is analogous to the reflection of light off a metal
surface with finite conductivity.

For an attractive potential, that is, V0 < 0, the picture is similar to Fig-
ure 5.1. The classical particle is now suddenly accelerated at the potential step
and so is the transmitted part of the wave packet. Part of the wave packet is
also reflected, however. The time developments of the wave function and the
probability density are shown in Figure 5.3. The reflection is not too evident
in Figure 5.3 but becomes apparent in Figure 5.4. Here the real parts of the
incoming, transmitted, and reflected constituent waves are plotted separately.
The constituent waves are shown in their mathematical form for the whole
range of x values. The physical significance of ψ1+ and ψ1− is restricted to
region I, and that of ψ2 to region II. Figure 5.4c shows that there is indeed a
sizable reflected constituent wave moving to the left in region I.

5.2 Sudden Deceleration of a
Classical Phase-Space Distribution

In Section 3.6 we discussed the time development of a classical phase-space
probability density describing a particle which at time t = 0 is characterized
by the position and momentum expectation values and uncertainties (x0, p0)
and (σx0,σp), respectively. It was the bivariate Gaussian

ρcl
+(x , p, t) = 1

2πσx0σp
exp

{
− 1

2(1− c2)

[
(x − [x0 + p0t/m])2

σ 2
x (t)

−2c
(x − [x0 + p0t/m])

σx (t)

(p − p0)

σp
+ (p − p0)2

σ 2
p

]}
with

σx (t) =
√
σ 2

x0 +σ 2
p t2/m2 , c = σpt

σx (t)m
,

shown in Figure 3.7.
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We now study the reflection of the particle described by ρcl
+(x , p, t) by a

very high potential step at x = 0. It has the effect to reverse the momentum of
the particle the moment it hits the point x = 0.

For definiteness we assume that x0 < 0 and |x0| � σx0. The phase-space
density is initially (for t = 0) concentrated around the point (x0, p0) far away
from the step, i.e., it is given by ρcl = ρcl

+ and moves to the right just as in Fig-
ure 3.7. For times t � m|x0|/p0 reflection has taken place. The phase-space
density moves towards the left and behaves just as if it would have started at
t = 0 with the expectation values (−x0,−p0), i.e., it is described by

ρcl
−(x , p, t) = 1

2πσx0σp
exp

{
− 1

2(1− c2)

[
(x − [−x0 − p0t/m])2

σ 2
x (t)

−2c
(x − [−x0 − p0t/m])

σx (t)

(p + p0)

σp
+ (p + p0)2

σ 2
p

]}
.

It is now obvious that for all times we can describe the phase-space distri-
bution under the action of a reflecting force at x = 0 by the sum

ρcl(x , p, t) = ρcl
+(x , p, t)+ρcl

−(x , p, t) , x < 0 .

For positive x values we have, of course,

ρcl(x , p, t) = 0 , x > 0 .

In Figure 5.5 we show the time development of ρcl(x , p, t). The initial situa-
tion is identical to that of Figure 3.7 for the force-free case.

The marginal distribution in x ,

ρcl
x (x , t) = ρcl

x+(x , t)+ρcl
x−(x , t)

= 1√
2πσx (t)

exp

{
− (x − [x0 + p0t/m])2

2σ 2
x (t)

}
+ 1√

2πσx (t)
exp

{
− (x − [−x0 − p0t/m])2

2σ 2
x (t)

}
,

is simply the sum of the marginal distributions of ρcl
+ and ρcl

− for x < 0 and van-
ishes for x > 0. It is the classical spatial probability density and also shown
in Figure 5.5. For times long before or long after the reflection process it
is identical to the quantum-mechanical probability density, which for a sim-
ilar case was shown in Figure 5.2. During the period of reflection, however,
t ≈ m|x0|/p0, the quantum-mechanical probability density ρ(x , t) = |ψ(x , t)|2
shows the typical interference pattern, whereas the classical density ρcl

x (x , t)
is smooth. This striking difference is due to the fact that in the quantum-
mechanical calculation the wave functions ψ1+(x , t) and ψ1−(x , t) are added
and the absolute square of the sum is taken to form ρ(x , t) whereas in the
classical calculation the marginal densities ρcl

x+(x , t) and ρcl
x−(x , t) of the con-

stituent phase-space distributions are added directly.
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Fig.5.5. Classical phase-space distribution ρcl(x , p, t) reflected at a high potential wall
at x = 0 shown for various times. The marginal distribution ρcl

x (x , t) is shown over the
margin in the background, the marginal distribution ρcl

p (p, t) over the right-hand margin
of the individual plots.

5.3 Tunnel Effect

In Figure 5.2 we studied the behavior of a wave packet that was reflected
at a potential step higher than the average energy of the wave packet. We
observed that, during the process of reflection, the wave packet penetrated
to a certain extent into the region of high potential. It would be interesting
now to see what happens if the region of high potential extends only over a
distance comparable to the depth of penetration. We therefore study a wave
packet which is under the influence of a potential barrier. The potential is
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constant, V = V0, in a limited region of space, 0< x < d, called region II. It
vanishes elsewhere, that is, in region I, x < 0, and in region III, x > d.

Figure 5.6a shows the time development of the probability density for a
Gaussian wave packet incident in region I on such a potential barrier. At the
upstep of the barrier at x = 0, we observe the expected pattern of a reflection.
At the downstep at x = d we see a wave packet emerge and travel to the right
in region III. According to our probability interpretation, this means that there
is a nonvanishing probability that the particle described by the original Gaus-
sian wave packet will pass the potential barrier, although it cannot do so under
the laws of classical mechanics. Figure 5.6b shows that the probability of the
particle’s tunneling through the barrier increases when the barrier is narrower.
Finally, from Figures 5.6b and c, we see that the probability of tunneling de-
creases as the barrier becomes higher. These general features have to be taken
with caution, for in some potentials there are discrete energy ranges in which
the tunneling probability possesses maxima.

The tunnel effect just described is one of the most surprising in quantum
mechanics. It is the basis for explaining a number of phenomena, including
the radioactive decay of atomic nuclei through the emission of an α particle.
The surface region of the nucleus represents a potential barrier which with
high probability keeps the α particle from leaving the nucleus. The α particle
has only a small probability of penetrating the barrier through tunneling.

5.4 Excitation and Decay of Metastable States

The scattering of a wave packet on two repulsive barriers that are far apart
compared to the spatial width of the wave packet is a very interesting phe-
nomenon. The width of the two barriers is chosen so that the tunnel effect
allows a sizable fraction of the probability to pass through the two barriers.
Figure 5.7 shows the time development of the packet entering from the left.
We observe that although the major part of the probability is reflected at the
first barrier, another part enters the region between the barriers and retains its
bell shape at least while distant from the barriers. At a later moment in time
the injected packet hits the barrier on the right, and again there is partial re-
flection and transmission. Later on in the process the particle is with a certain
probability confined between the two walls, continuously bouncing back and
forth and each time losing part of the probability to the outside region. Ex-
cept for the continuous broadening of the particle wave packet, this situation
is very similar to the analogous process in optics, namely a light wave packet
falling onto a glass plate, which was shown in Figure 2.12.
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c

b

a

Fig.5.6. Tunnel effect. (a) Time development of the probability density for a wave packet
incident from the left onto a potential barrier of height V0. The small circles indicate the
positions of a classical particle incident onto the same potential barrier. (b) Same as for
part a, but for a barrier of half the width. (c) Same as for part b, but for a barrier of
double the height.
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Fig.5.7. Time development of the probability density for a wave packet incident from the
left onto a double potential barrier. The small circles indicate the positions of a classical
particle incident onto the same barrier.

Of course, no such phenomenon exists in classical physics, since particles
transmitted at the left barrier will also pass the second barrier without being
reflected.

The situation in which a particle is partially confined to the region between
the two barriers and the probability slowly leaks to the outside region is called
a metastable state. The term was chosen to invoke the similarity of this state
with the stable state or bound state, which we have already discussed briefly
in Section 4.4. A particle in a bound state is permanently confined to a region
of space.

In order to study metastable states more systematically, we now consider
the situation in which the Gaussian wave packet is broad compared to the dis-
tance between the two barriers. Because of Heisenberg’s uncertainty princi-
ple, the spatially wide Gaussian wave packet has a narrow momentum spread.
The energy spectrum between zero and the top of the barrier can therefore be
scanned in small intervals. For the two barriers of Figure 5.8, there are various
energy, and thus momentum, values for which a fraction of the probability en-
ters the region between the barriers and stays there for quite some time, even
though the wave packet has traveled rather far away from the reflecting barrier.
Figure 5.8 shows the time developments of the probability densities for wave
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c

b

a

Fig.5.8. Time developments of the probability densities for wave packets of mean energies
corresponding to (a) the first, (b) the second, and (c) the third metastable states in a
system of two barriers. The wave packets, which are rather wide in space and thus
possess a small momentum width, are incident from the left onto the double potential
barrier. The small circles indicate the positions of a classical particle incident on the
same barrier.
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Fig.5.9. Time development of the probability density for a wave packet that has the same
mean energy as that of Figure 5.8c but is ten times as wide. Again, the wave packet is
incident onto a double potential barrier. The small circles indicate the positions of a
classical particle incident onto the same barrier.

packets of the three average energies that correspond to the three lowest-lying
metastable states in this system of two barriers. The probability densities of
metastable states between the two walls are distinguishable by the number of
nodes they possess. This number increases as the energy of the state increases.
When the potential between the two barriers is not less than zero – in our case
it is exactly zero – the lowest metastable state has no node.

If the potential is sufficiently negative between the walls, the lowest-lying
metastable state, which, of course, has positive energy, may have one or more
nodes. Then the states with a smaller number of nodes have negative energy.
Therefore no probability can leave the region between the walls, for no par-
ticle with negative energy can exist outside the barriers. Thus these states
are stable or bound. To complicate matters, the behavior of the wave pack-
ets discussed so far depends not only on their average energy but also on their
spectral function in momentum space, that is, on their spatial form. In order to
rid ourselves of this complication, we shall study wave packets with a smaller
and smaller momentum spread. They are of course very wide in space.

Figure 5.9 shows the time development of the probability density for a
wave packet whose average energy is equal to that of the third metastable
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state. It corresponds to Figure 5.8c, except that the wave packet now has ten
times the spatial width; its width exceeds by far the dimension of the figure. In
the region to the left of the barriers, we observe the wiggly pattern typical for
the interference between the incoming and the reflected wave packet. Between
the two barriers the probability density keeps increasing with time up to the
maximum amplitude, which is reached when the bulk of the wave packet has
been reflected and has moved to the left. From then on the metastable state
with two nodes decays slowly, in fact exponentially. The excitation of the
metastable state in Figure 5.9 is much greater than the excitation of that in
Figure 5.8c. The greater width of the wave packet in Figure 5.9 implies a
narrower spectral function, which therefore contains more probability within
the energy range of the metastable state.

To study the lifetime of metastable states, we observe their excitation and
decay, as shown in Figure 5.9, over a longer period of time. In Figure 5.10a
it is easy to see that the amplitude in the region between the two barriers
drops exponentially with time. We can measure the lifetime by determining
the time in which the amplitude decreases by a factor of two. This we call
the half-life of the state. Figure 5.10b shows the excitation and decay of the
metastable state with only one node, corresponding to a lower energy, in the
same time scale as the metastable state with two nodes. The half-life is now
considerably longer. Even longer is the lifetime of the metastable state with
no nodes. In Figure 5.10c, which is in the same time scale as Figures 5.10a
and b, the amplitude has not decreased yet; the time interval of the figure is
still in the excitation phase.

5.5 Stationary States of Sharp Momentum

We have just discussed the one-dimensional scattering of wave packets of nar-
row momentum spread and large extension in space. By reducing the momen-
tum spread further, we obtain as the limiting case a harmonic wave ψE (x , t)
of fixed energy and momentum. After separating off the energy-dependent
phase factor exp(−iEt/h̄), we are left with a stationary state ϕE (x), which
was discussed in Chapter 4. The intimate relation between wide wave packets
and stationary states allows a direct physical interpretation, in terms of parti-
cle mechanics, of the characteristic features of stationary states. A stationary
state can be thought of as a limiting description of a particle with sharp mo-
mentum.

We are able to understand important details about metastable states through
the study of stationary states in our potential with two barriers. We recall that
within the barriers, that is, in regions II and IV, the potential is constant and
positive, V = V0 > 0. Outside the barriers, in regions I, III, and V, it van-
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c

b

a

Fig.5.10. (a) Time development of the process shown in Figure 5.9 but observed over a
longer period of time. Once the bulk of the wave packet has been reflected, the metastable
state decays like an exponential function in time. Parts b and c are the same as part a
but for the two metastable states that lie higher in energy. Parts a, b, and c of this figure
correspond to parts a, b, and c of Figure 5.8. The wave packets, however, are much
broader, and the time interval shown is much longer.
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Fig.5.11. Energy dependence, over a small range of energies, of the intensity of a har-
monic wave incident onto a double potential barrier. The middle line corresponds to a
resonance energy.

ishes, V = 0. Figure 5.11 shows the energy dependence of the stationary state
ϕE (x) in the potential with two barriers. That is, the solution of the time-
independent Schrödinger equation for this potential is energy dependent. The
quantity plotted in Figure 5.11 is the intensity, introduced in Section 4.2, of
this stationary solution. The range of energies shown in the figure comprises
the energy of the metastable state with two nodes, which we discussed ear-
lier and showed in Figures 5.8c, 5.9, and 5.10c. When the energy is lower
than that of the metastable state – in the background of the picture – only a
small fraction of the intensity is transmitted through the barriers into region
V. There is a prominent interference pattern in region I from the superposition
of the incoming and the reflected wave. As the energy approaches that of the
metastable state, the reflection decreases to zero, the interference pattern van-
ishes, and the full intensity of the incoming wave is transmitted through both
barriers into region V. At the energy of the metastable state, the intensity in
region III, between the barriers, reaches its maximum and assumes the two-
node structure that is characteristic of the metastable state. This phenomenon
is called a resonance of the system. As the energy increases further, the in-
tensity in region III decreases as does the transmission into region V. The
interference pattern in region I reappears as reflection grows.
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Resonance phenomena are well known in many branches of physics.
The best-known example from classical physics is the resonance of a pen-
dulum excited to forced oscillation of a particular frequency. Our example
of a quantum-mechanical resonance has a striking similarity to optical reso-
nances. In Section 2.3 we saw that light at particular frequencies is transmit-
ted through a glass plate without reflection. In the terminology of quantum
mechanics, the words metastable state and resonance are often used synony-
mously.

As long as we are not interested in the details of the propagation and
deformation of a wave packet with definite initial shape, but only in the frac-
tion of probability with which reflection or transmission occurs, knowledge
of the complex amplitudes of the stationary waves in the far left and far right
regions – in our example regions I and V, in general regions I and N – is
entirely sufficient. The stationary waves in these two regions are

ϕI(x) = exp

[
i

h̄
p(x − x0)

]
+ BI exp

[
− i

h̄
p(x − x0)

]
,

ϕN (x) = AN exp

[
i

h̄
p(x − x0)

]
.

The fact that we are dealing with a particle that can only be reflected or trans-
mitted obviously requires that

|AN |2 +|BI|2 = 1 .

This relation, which expresses the conservation of the total probability of
observing the particle, is called the unitarity relation for the scattering am-
plitudes AN and BI. For vanishing reflection, BI = 0, the unitarity relation
allows a circle of radius 1 in the complex plane for AN . Figure 5.12a shows
the energy dependence of the complex number AN , again for the problem
with two potential barriers. The upper left part of the figure is an Argand di-
agram. A plane is spanned by the axes Re AN and Im AN . For a fixed energy
value the complex number AN is given by the point AN = (Re AN , Im AN ) in

Fig.5.12. (a) Energy dependence of the complex amplitude AN of the part of a harmonic
wave that is transmitted through the system with a double potential barrier. The energy
ranges from zero to a value twice the barrier height. The energy dependence of AN

is shown as a line, starting from the origin, in the complex plane at upper left. The
circle around the origin indicates the maximally allowed region for AN . The energy
dependence of the real part, projection onto the real axis, is shown below, that of the
imaginary part, projection onto the imaginary axis, to the right. The lower right of the
figure shows the energy dependence of |AN |2. (b) The parts of this figure are the same
as those of part a, but they are for the transmission-matrix element TT = (AN −1)/(2i).
The line starts at point i/2 in the complex plane. The circle around point i/2 indicates
the maximally allowed region for TT.
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a

b

Fig.5.12.
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the Argand diagram. The line in this figure shows the variation with energy
of AN as a complex number. The outer circle corresponds to |AN | = 1. Obvi-
ously, AN always stays within this circle, indicating the energy dependence of
Im AN and Re AN , respectively. We follow the energy dependence from E = 0
to E = 2V0, where V0 is the height of both potential barriers. The imaginary
part of AN stays near zero for almost all energies below the barrier height V0,
slowly deviating from that value for larger energies. For resonance regions of
the energy, Im AN rises quickly, then falls even more steeply to negative values
in order to rise quickly again to zero. The real part of AN displayed below the
circle also shows for most energies lower than V0 very little deviation from
zero. With increasing energy it drops to negative values. For the resonance
regions it has negative peaks which become wider with increasing energies.
Finally, the absolute square of AN , shown in the lower right corner, again has
peaks of increasing width in the resonance regions. |AN |2 has a tendency to
approach one for energies far above the barrier height. For these energies total
transmission is expected.

Returning to the Argand diagram, we are now able to recognize the typical
signatures of resonances. Outside the resonance region AN varies very slowly
with energy; for energies lower than the barrier height, it stays near the origin
of the complex plane. In the resonance region it passes quickly and counter-
clockwise through a circle and causes the typical resonance patterns in the
real and imaginary parts. For energies above the barrier height, the circles no
longer return to the origin of the complex plane, for the transmission outside
the resonance regions is sizable.

Yet another set of parameters is used to characterize the effect of the po-
tential on the particle waves,

AN = 1+2iTT ,

BI = 2iTR .

The transition-matrix elements TT and TR describe the deviation of the pa-
rameters AN and BI from the situation in which the wave travels without a
potential being present, that is, the deviation from AN = 1, BI = 0. The fac-
tors 2i are introduced for convenience.

Inserting these expressions into the unitarity relation for the scattering
amplitudes, |AN |2 +|BI|2 = 1, we find the unitarity relation for the T -matrix
elements:

Im TT = TTT ∗
T + TRT ∗

R .

This equation can be rewritten in terms of real and imaginary parts of TT:

(Re TT)2 +
(

Im TT − 1

2

)2

= 1

4
− TRT ∗

R .
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For TRT ∗
R = 0 this relation describes complex numbers TT on a circle of radius

1/2 centered around the point i/2. Because of |BI|2 ≤ 1, we have |TR|2 ≤ 1/4
so that the right-hand side of the equation remains positive or zero. For non-
vanishing TR the complex numbers TT therefore fall within the circle. Figure
5.12b shows in the upper left the Argand diagram of TT with the circle of
radius 1/2 centered around i/2 limiting its possible values. It also contains
the projections Im TT(E), Re TT(E) as well as |TT(E)|2. Because of the simple
relation between TT and AN , the features of these diagrams are in one-to-one
correspondence with those of Figure 5.12a.

In elementary particle physics Argand diagrams of the type given in Fig-
ure 5.12 are used to study the complex scattering amplitude. This amplitude
describes the collision probability of two particles. Detection of characteris-
tic circular features is equivalent to the discovery of metastable states. Such
states are considered to be elementary particles with very short lifetimes.

5.6 Free Fall of a Body

In Section 4.3 we dealt with a constant force, i.e., a linear potential. The mo-
tion of a body of mass m under the action of a constant force F = mg is
described by an initially Gaussian wave packet. The initial expectation values
are x0, p0 = mv0, the initial spatial width is σx0, or equivalently in momentum
space, σp = h̄/2σx0. The time-dependent wave function of the wave packet is
given by

ψ(x , t) = 1
4
√

2π
√
σx (t)

exp

{
−

(
x −〈x(t)〉

2σx (t)

)2
}

× exp

{
i

h̄

[(
c(t)σp

x −〈x(t)〉
2σx (t)

+〈p(t)〉
)

[x −〈x(t)〉]+ h̄α(t)

]}
.

Here

α(t) = m

h̄

[(
gx0 + v

2
0

2

)
t + gv0t2 + 1

3
g2t3

]
− 1

2
arctan

(
2σ 2

p

h̄m
t

)

is a time-dependent phase,

〈x(t)〉 = x0 +v0t + g

2
t2

is the position of a free-falling classical particle of initial position x0 and ve-
locity v0, and

〈p(t)〉 = p0 +mgt
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its momentum. The time-dependent width of the wave packet is as in the
force-free motion

σx (t) =
[
σ 2

x0 + σ 2
p

m2
t2

]1/2

.

The quantity c(t) is given by

c(t) = σpt

mσx (t)
.

The phase of the wave packet contains a term proportional to [x −〈x(t)〉],

φ(t) = 1

h̄

[
〈p(t)〉+ c(t)

x −〈x(t)〉
2σx (t)

σp

]
[x −〈x(t)〉] ,

which can again be interpreted as a product of the coordinate and a time- and
position-dependent effective wave number:

keff(x , t) = 1

h̄

(
p0 +mgt + c(t)

x −〈x(t)〉
2σx (t)

σp

)
.

It reveals the correlation between x and p = h̄keff. For fixed t and at x = 〈x(t)〉
the effective wave number is equal to

keff(〈x(t)〉, t) = 1

h̄
(p0 +mgt) .

This is to say, at the classical position of the particle at time t the momentum
has the classical value p0 +mgt . For positions x > 〈x(t)〉, the effective wave
number is larger than (p0 +mgt)/h̄. For x < 〈x(t)〉 the opposite holds true.

In Figure 5.13 we show the time development of the wave function and its
absolute square for a particle initially at rest, v0 = 0, and being pulled to the
right by the constant force F = mg. It illustrates the free fall of a particle as
described by quantum mechanics.

In Figure 5.14 the situation is slightly more complicated. The particle has
an initial velocity v0 > 0 and the constant force now pulls to the left, g > 0.
In classical mechanics the resulting motion is that of a stone being thrown
upwards against the direction of the gravitational force.

The motion of a classical particle described by a Gaussian probability dis-
tribution in phase space under the action of a constant force is easily described
if one uses arguments analogous to those of Section 3.6. Also in this case
the classical phase-space probability density stays a bivariate Gaussian deter-
mined by the expectation values 〈x(t)〉 and 〈p(t)〉 of position and momentum,
the widths σx (t) and σp – the latter being constant – and the correlation coef-
ficient c(t). For all five parameters the classical and the quantum-mechanical
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Fig.5.13. Time develop-
ment of the real part, the
imaginary part, and the ab-
solute square of the wave
function for a wave packet
which is initially at rest
and which is pulled to the
right by a constant force.
The (linear) potential of the
force is indicated by the
long-dash line, the expec-
tation value of the energy
of the wave packet by the
short-dash line which also
serves as zero line for the
function plotted. The small
circles indicate the posi-
tion of a classical particle
with initial position and mo-
mentum equal to the cor-
responding expectation val-
ues of the wave packet.
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Fig.5.14. As Figure 5.13 but
for an initial velocity v0 > 0
and for a constant force
pulling the particle to the
left.
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Fig.5.15. Time development of the classical phase-space probability density ρcl(x , p, t)
corresponding to the quantum-mechanical situation of Figure 5.14. The trajectory of
the point (〈x(t)〉, 〈p(t)〉) defined by the expectation values of position and momentum
between the time t = t0 = 0 and the actual time is shown for each plot. Also shown are
the marginal distributions ρcl

x (x , t) in position and ρcl
p (p, t) in momentum.

calculations yield the same result. Moreover, the widths and the correlation
coefficient are the same as in the case of the force-free particle.

The time development of the classical phase-space probability density of
a particle with an initial velocity opposite to the direction of the constant force
is shown in Figure 5.15. The point (〈x(t)〉, 〈p(t)〉), given by the expectation
values in position and momentum, moves on a parabola in the x , p plane. The
initially uncorrelated distribution develops an increasing positive correlation
between position and momentum. While the momentum width stays constant
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Fig.5.16. Motion of the covariance ellipsoid of the classical phase-space probability
density of Figure 5.15.

the spatial width increases. All these features are also apparent in Figure 5.16
which shows the motion of the covariance ellipse in phase space.

5.7 Scattering by a Piecewise Linear Potential

The general features of scattering are similar for a piecewise constant poten-
tial used for the examples in Sections 5.1 to 5.5 and for a piecewise linear po-
tential. The solution of the Schrödinger equation for the latter was discussed
in Section 4.3. Here we present a few examples. The potential in Figures 5.17
to 5.19 can be seen as a triangular well between two triangular barriers with
perpendicular outer edges. Figure 5.17 contains the stationary states for var-
ious energies of the incoming wave. For the central energy value the wave
function and its absolute square display the typical resonance features famil-
iar from Sections 5.4 and 5.5: The absolute square is constant on both sides
of the potential structure, indicating that there is no reflection, i.e., no inter-
ference between incoming and reflected wave. Morever, the wave function
and its absolute square display a prominent shape within the potential struc-
ture. This shape – two nodes of the wave function’s real part, two zeros of
its absolute square – remind us of the third resonance for the double-barrier
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Fig.5.17. Stationary scattering states in a piecewise linear potential. Shown is the real
part (top) and the absolute square (bottom) of the stationary wave functions for different
energy values. The central diagram in each of the two plots corresponds to a resonance
energy.
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Fig.5.18. For the potential of Figure 5.17 there exist two bound states (top). The wave
function of the lowest energy state possesses no nodes; that of the state with higher
energy has one. The real part (middle) and the imaginary part of the stationary wave
function of the first resonance have two nodes within the potential structure. At the
bottom the incident wave is shown as free wave, not influenced by a potential. Compar-
ison with the middle diagram reveals that, at resonance, incident and transmitted wave
differ only by a phase shift of about π/2.

system studied in Sections 5.4 and 5.5, in particular of Figure 5.11. In the
present case, however, the resonance is the one of lowest energy; it is the first
resonance. The two-node form is due to the well between the two barriers.

A potential of this form can accomodate bound states. In our particular
case there are two, possessing zero and one node, respectively. The first reso-
nance displays symmetry features quite similar to those the next bound state
would have, if it existed. For comparison the two bound states and the sta-
tionary scattering state of the first resonance are shown in Figure 5.18. The
figure also demonstrates that, apart from a phase shift of about π/2, inci-
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dent and transmitted wave are identical at resonance. We shall come back to
this feature in more detail when we discuss scattering in three dimensions in
Chapters 12 and 15.

To exemplify the nature of the resonance a little further we display, in
Figure 5.19, the time development of both the real and the imaginary part of
the wave function at resonance. The two plots span a time interval equal to
half the oscillation period of the incoming harmonic wave. In this time both
the incoming wave left of the potential structure and the transmitted wave on
its right have equal amplitudes and wavelengths and travel along the positive
x direction by half a wavelength without changing their forms. Within the
structure, on the other hand, one observes the ups and downs of a standing
wave pattern. The absolute square of the wave function is independent of time
and has the form of the central diagram in the bottom part of Figure 5.17.

We conclude this section by observing the passage of a wave packet
through various piecewise linear potentials. Figure 5.20 displays a Gaussian
wave packet over a time interval in which it passes a wide triangular potential
well. The corresponding classical particle (indicated by the dot in the bot-
tom part of Figure 5.20) travels with constant velocity in the regions before
and behind the well; it is accelerated in the first half of the well and deceler-
ated in the second. The probability density is stretched in width while being
pulled “downhill” and compressed again when it climbs “uphill”. Overall,
some widening of the packet results by the displacement of the packet, very
similar as in the case of a free wave packet. The real part of the wave func-
tion allows us to study the momentum structure of the packet by observing
the local variation of its wavelength. It is large (indicating low momentum)
where the potential is constant and varies considerably in the region of the
well, being smallest at its minimum. There is only very little distortion of the
wave packet through interference of reflected and transmitted waves at those
points where the derivative of the potential is discontinuous. It shows up in
the form of some slight wiggles in the shape of the probability density.

We pursue this phenomenon by comparing the passage of a wave packet
through a triangular well with that through two sorts of well with somewhat
different shapes. One is similar to the square well potential. However, its
edges are skew; in these regions the potential is a linear function of x . The
other one is composed of two consecutive triangular wells. In Figure 5.21 we
observe that the passage through the trapezoidal well which resembles closely
that through the triangular well. Also quite similar is the passage through two
consecutive triangular wells, although the wave packet gets a little more dis-
torted. In both cases there is only marginally more interference than for the
single triangular well, even though there are now more points in which the
derivative of the potential is discontinuous.
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Fig.5.19. The piecewise linear potential of Figure 5.17 is traversed by a harmonic wave
at resonance energy. The time development of its real part (top) and imaginary part
(bottom) is shown over half an oscillation period.
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Fig.5.20. Wave packet traversing a triangular well. Time development of the real part
of the wave function (top) and of the probability density (bottom).
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Fig.5.21. Wave packet traversing a trapezoidal well, i.e., a “square” well with skew edges
(top), and a double triangular well (bottom). For both cases only the probability density
is displayed. There is some interference due to the discontinuity of the potential but
hardly any reflection.
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Fig.5.22. Wave packet traversing a true square well with sharp edges. The probability
density exhibits important interference and reflection.

In contrast, the passage through a true square well, depicted in Figure 5.22,
displays considerable reflection and interference at both of its sharp edges
where not only the derivative but the potential itself is discontinuous. From
this observation we may conclude that, if we want to model a quantum-
mechanical problem with a smoothly varying potential, its approximation by
a piecewise linear potential is preferable to that by a piecewise constant one.

Problems

5.1. Figure 5.1c shows the probability density and the classical position of
a particle moving toward and beyond a potential step. Why is the wave
packet narrower immediately after passing the positive potential step
than before passing it? Predict the behavior of the wave packet at a
negative potential step and verify this in Figure 5.3c.

5.2. Determine the ratios of the amplitudes of the metastable state at succes-
sive equidistant moments in time. Use a ruler to measure the amplitudes
in Figure 5.9. For later moments in time, the ratios tend to a constant
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value, indicating that the decay is becoming exponential. Why is the
decay slower earlier in time?

5.3. Plot the amplitudes of the probability densities in the region between
the two potential barriers for the energies Ei corresponding to the thir-
teen situations shown in Figure 5.11. The energies are equidistant, that
is, Ei+1 − Ei =�E = constant. Fit the result to a Breit–Wigner distri-
bution,

f (E) = A
Γ 2/4

(E − Er)2 +Γ 2/4
.

For Er, use the energy of the maximum amplitude and give the width Γ
of the distribution in units of �E .

5.4. Figure 5.12 shows the energies of the resonances in the double potential
barrier. Calculate the ratios of the energies of the three lowest resonance
peaks as they are given in Figure 5.12b. Compare the ratios to the corre-
sponding ones of the bound-state energies of Figure 4.9. Compare both
sets of ratios to Figure 6.1 and the formula for the deep square well
given at the beginning of Section 6.1.



6. One-Dimensional Quantum Mechanics:
Motion within a Potential,
Stationary Bound States

So far we have dealt with the motion of particles with a total energy E =
Ekin + V that is positive at least in region I, the region of the incoming par-
ticle. Of course, classical motion inside a finite region where the potential is
negative is also possible for negative total energies, as long as kinetic energy
Ekin = E − V is positive. We now study this system from the point of view of
quantum mechanics.

6.1 Spectrum of a Deep Square Well

As a particularly simple system, let us consider the force-free motion in a re-
gion of zero potential between two infinitely high potential walls at x = −d/2
and x = d/2. Since the potential outside this region is infinite, the solutions
of the time-independent Schrödinger equation vanish there. Within this region
they have the simple forms

ϕn(x) =
√

2

d
cos(nπ

x

d
) , n = 1, 3, 5, . . . ,

or

ϕn(x) =
√

2

d
sin(nπ

x

d
) , n = 2, 4, 6, . . . .

The energies of these bound states are

En = 1

2m

(
h̄nπ

d

)2

, n = 1, 2, 3, . . . ,

as we easily verify by inserting ϕn into the time-independent Schrödinger
equation

− h̄2

2m

d2

dx2
ϕn = Enϕn ,
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which is valid between the two walls. Figure 6.1 presents the wave function,
the probability density, and the energy spectrum. The lowest-lying state at E1,
called the ground state, has a finite energy E1 > 0, which implies a kinetic
energy Ekin > 0 since the potential energy V is zero by construction. Already
this situation differs from that in classical mechanics, where the state of least
energy is of course the state of rest with E = Ekin = 0. The higher states
increase in energy proportionally to n2. The quantum number n is equal to one
plus the number of nodes of the wave function in the region −d/2< x < d/2;
that is, the boundaries x = ±d/2 are excluded. The wave function has even
or odd symmetry with respect to the point x = 0, depending on whether n is
odd or even, respectively. Even wave functions, here the cosine functions, are
said to possess even or natural parity, odd wave functions odd or unnatural
parity. Obviously, wave functions with an even number of nodes have even
parity, those with an odd number odd parity. This property also holds for other
one-dimensional potentials that are mirror-symmetric.

6.2 Particle Motion in a Deep Square Well

In Section 6.1 we found the spectrum of eigenvalues En and the wave func-
tions describing the corresponding eigenstates ϕn(x) for the deep square well.
The solutions of the time-dependent Schrödinger equation are obtained by
multiplying ϕn(x) with a factor exp(−iEnt/h̄). Through a suitable superposi-
tion of such time-dependent solutions, we form a moving wave packet which
at the initial time t = 0 is bell shaped with a momentum average p0. Its wave
function is

ψ(x , t) =
∞∑

n=1

an(p0, x0)ϕn(x)exp

[
− i

h̄
Ent

]
,

where the coefficients an(p0, x0) have been chosen to ensure a bell shape
around location x0 for t = 0 and the momentum average p0.

Figure 6.2 shows the time development of the probability density |ψ(x , t)|2
for such a wave packet. We observe that for t = 0 the wave packet is well lo-
calized about initial position x0 of the classical particle. It moves toward one
wall of the well, where it is reflected. Here it shows the pattern typical of in-
terference between incident and reflected waves. The pattern is very similar
to that caused by a free wave packet incident on a sharp potential step, shown
in Figure 5.2c. It continues to bounce between the two walls and is soon so
wide that the packet touches both walls simultaneously, showing interference
patterns at both walls.

It is interesting to see how the spatial probability density ρcl(x , t) de-
rived from a classical phase-space probability density behaves in time. This is
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Fig.6.1. Bound states in an infinitely deep square well. The long-dash line indicates the
potential energy V (x). It vanishes for −d/2 < x < d/2 and is infinite elsewhere. Points
x = ±d/2 are indicated as vertical walls. On the left side an energy scale is drawn, and to
the right of it the energies En of the lower-lying bound states are indicated by horizontal
lines. These lines are repeated as short-dash lines on the left. They serve as zero lines for
the wave functions ϕ(x) and the probability densities |ϕ(x)|2 of the bound states.
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Fig.6.2. Top: Time development of a wave packet moving in an infinitely deep square
well. At t = 0, in the background, the smooth packet is well concentrated. Its initial
momentum makes it bounce back and forth between the two walls. The characteristic
interference pattern of the reflection process, as well as the dispersion of the packet
with time, is apparent. The small circle indicates the position of the corresponding
classical particle. The quantum-mechanical position expectation value is shown by a
small triangle. Bottom: Time development of the spatial probability density computed
from the classical phase-space distribution corresponding to the quantum-mechanical
wave packet.
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shown in the bottom part of Figure 6.2. As long as the bulk of the probabil-
ity density is not close to the walls the quantum-mechanical density |ψ(x , t)|2
and the classical density ρcl(x , t) are very similar.

Near the walls, however, the quantum-mechanical wave packet displays
the interference pattern typical for the superposition of the two wave func-
tions incident on and reflected by the wall. As the packet disperses the inter-
ference pattern fills the whole well. No interference is observed in the time
development of the classical phase-space density. It is obtained as the sum

ρcl
x (x , t) = 1√

2πσx (t)

∞∑
n=−∞

{
exp

[
− (x −v0t −2nd)2

2σ 2
x (t)

]
+ exp

[
− (x +v0t − (2n +1)d)2

2σ 2
x (t)

]}
with the time-dependent width of a free wave packet:

σx (t) = σx0

√
1+

(
σpt

σx0m

)2

by a simple generalization of the sum at the end of Section 5.2 from the re-
flection at one high potential wall to the repeated reflection between two high
walls.

We now want to study the quantum-mechanical wave packet in a deep
well over a much longer period of time. At the end of the time interval studied
in Figure 6.2 the quantum-mechanical probability density |ψ(x , t)|2 occupies
the full width of the well and one might be inclined to think that it continues to
do so. It is easy to see, however, that the quantum-mechanical wave function
ψ(x , t) must be periodic in time, the period being

T1 = 2π

ω1
,

where ω1 is the frequency of the ground-state wave function

ω1 = E1

h̄
= h̄

2m

(π
d

)2
.

Since all energies En, n = 2,3, . . . , are integer multiples of E1, the period T1 of
the ground state is also the period of the superposition ψ(x , t) that describes
the wave packet. Because of this periodicity in time the original wave packet
must be restored after the time T1 has elapsed. In Figure 6.3 we show the time
dependence of the same wave packet as in Figure 6.2 over a full period T1 and
find our expectation verified.
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Fig.6.3. Time development of the same wave packet as in Figure 6.2 but observed of a
full revival period T1. The time interval shown in Figure 6.2 is T1/60.

The periodicity is called revival of the wave packet. As we shall see in
Section 13.5, the phenomenon is also encountered in the wave-packet motion
in the Coulomb potential, e.g., in the hydrogen atom as an approximate re-
vival. To a larger or lesser degree it exists in all systems with discrete spectra
of reasonable spacing. In the case of the deep square well it is, however, an
exact revival.

In addition to the revival at t = T1 we can also observe fractional revivals
at the times t = (k/�)T1. Here k and � are integer numbers. Since in Figure 6.3
the time T1 is divided into 16 equal intervals it is easy to observe the packet
at the times t = T1/2, T1/4, T1/8, and T1/16. For these times the function
|ψ(x , t)|2 consists of 1, 2, 4, and 8 well-separated “Gaussian” humps.

6.3 Spectrum of the Harmonic-Oscillator Potential

The particle in a deep square well experiences a force only when hitting the
wall. A simple, continuously acting force F(x) can be thought of as the force
of a spring, which follows Hooke’s law,

F(x) = −kx , k > 0 .
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This force, also called a harmonic force, is proportional to the displacement
x from equilibrium position x = 0. A physical system in which a particle
moves under the influence of a harmonic force is called a harmonic oscillator.
The proportionality constant k gives the stiffness of the spring. The potential
energy stored in the spring is

V (x) = k

2
x2 .

A classical particle of mass m performs harmonic oscillations of angular fre-
quency

ω = √
k/m

so that V (x) can be equivalently expressed by V (x) = (m/2)ω2x2. Introducing
this expression into the time-independent Schrödinger equation yields(

− h̄2

2m

d2

dx2
+ m

2
ω2x2

)
ϕ(x) = Eϕ(x) .

With the help of the dimensionless variable

ξ = x

σ0
, σ0 = √

h̄/(mω) ,

the equation above simplifies to the reduced form

1

2

(
− d2

dξ 2
+ ξ 2

)
φ(ξ ) = εφ(ξ ) , φ(ξ ) = ϕ(σ0ξ ) .

The dimensionless eigenvalue ε= E/h̄ωmeasures the energy of the oscillator
in multiples of Planck’s quantum of energy h̄ω.

The solutions of the Schrödinger equation for the harmonic oscillator can
be normalized (see Section 4.4) for the eigenvalues

εn = n + 1

2
, n = 0, 1, 2, . . . ,

thus determining the energy eigenvalues of the harmonic oscillator,

En = εnh̄ω = (n + 1

2
)h̄ω .

The state of lowest energy E0 = h̄ω/2 is the ground state. The energies En

of the higher states differ from the ground-state energy by the energy of n
quanta, each having the energy h̄ω of Planck’s quantum (see Chapter 1).

The eigenfunctions, normalized in ξ , can be represented in the form

φn(ξ ) = (
√
π2nn!)−1/2 Hn(ξ )e−ξ2/2 , n = 0, 1, 2, . . . ,

where the Hn(ξ ) are the Hermite polynomials. They are given by
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Fig.6.4. Hermite polynomials Hn(x) and eigenfunctions φn(x) of the harmonic oscillator
for low values of n.

H0(ξ ) = 1 , H1(ξ ) = 2ξ ,

and for higher values of n by the recurrence relation

Hn(ξ ) = 2ξHn−1(ξ )−2(n −1)Hn−2(ξ ) , n = 2, 3, . . . .

Figure 6.4 shows the Hermite polynomials Hn(ξ ) and the normalized eigen-
functions ϕn(ξ ) for low values of n.
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The eigenfunctions ϕn(x), normalized in x , are

ϕn(x) = (σ0
√
π2nn!)−1/2 Hn

(
x

σ0

)
exp

(
− x2

2σ 2
0

)
.

They are plotted in Figure 6.5 together with the potential energy V (x).
The dashed lines indicate the energy eigenvalues in relation to the bottom
of the potential energy. They serve as zero lines for the corresponding ϕn.
On the left-hand side the energy spectrum is shown. The exponential factor
exp(−ξ 2/2) in the formula for ϕn ensures that

ϕn(x) → 0 for |x | → ∞
rendering these wave functions normalizable.

Figure 6.5 gives the probability densities |ϕn(x)|2, showing that, even in
regions where E is smaller than V , there is a certain probability of observing
the particle. The absolute square of the wave function of the ground state
formulated in terms of the position variable x = σ0ξ has the form

|ϕ0(x)|2 = 1√
πσ0

exp

(
− x2

2σ 2
0 /2

)
.

The exponent in this equation shows that the width of the probability density
of the harmonic oscillator’s ground state is σ0/

√
2.

6.4 Harmonic Particle Motion

We now consider the quantum-mechanical description of a particle moving
under the influence of harmonic force. The particle at initial time t = 0 is
at rest when placed in a position x = x0 = 0, which is not the equilibrium
position of the oscillator. In terms of a wave function, the initial state consists
of a Gaussian wave packet of width σ with zero average momentum and an
expectation value at position x = x0 of the corresponding classical particle.
This wave packet can be decomposed into a sum over eigenfunctions ϕn(x) of
the harmonic oscillator,

ϕ(x) =
∞∑

n=0

anϕn(x) .

The time-dependent solution of the Schrödinger equation with ϕ(x) as initial
wave function at t = 0 is then simply

ψ(x , t) =
∞∑

n=0

anϕn(x)exp

(
− i

h̄
Ent

)
,

where En = (n + 1
2)h̄ω.
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Fig.6.5. Bound states in a harmonic-oscillator potential. The potential is drawn as a
long-dash line, a parabola. The eigenvalue spectrum of bound states (in units of h̄ω) is
indicated by the horizontal lines on the left side. Repeated on the right as short-dash
lines, they serve as zero lines for the wave functions ϕ(x) and the probability densities
|ϕ(x)|2 of the bound states.
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The infinite sum can be added up explicitly. For brevity we give here only
the result for the absolute square of the wave function,

|ψ(x , t)|2 = 1√
2π

2σ√
σ 4

0 s2 +4σ 4c2
exp

[
− 2σ 2

σ 4
0 s2 +4σ 4c2

(x − cx0)2

]
,

where c and s represent cosωt and sinωt , respectively, and where σ0/
√

2 is
the width of the probability distribution of the harmonic oscillator’s ground
state, as introduced in Section 6.3. This equation represents a Gaussian dis-
tribution with oscillating expectation value x0(t) = x0 cosωt and oscillating

width σ (t) =
√
σ 4

0 sin2ωt +4σ 4 cos2ωt/(2σ ). Of course, for the initial time
t = 0 the time-dependent width σ (t) reduces to the initial width σ .

Figure 6.6a shows a time development of a wave packet in the harmonic
oscillator with initial width σ < σ0/

√
2. As expected, the time dependence

of the average position performs the same oscillation as the corresponding
classical particle. The width oscillates with twice the frequency of the oscil-
lator, starting with σ and increasing for the first quarter period T/4 = π/2ω
to its maximum value σ (T/4) = σ 2

0 /(2σ ). In Figure 6.6b the initial width is
σ > σ0/

√
2. Here the wave packet is wide initially and becomes narrower in

the first quarter period, decreasing to the minimum value σ 2
0 /(2σ ). The case

σ = σ0/
√

2 (Figure 6.6c), in which the width of the packet remains constant
in time, represents the border line between the two situations. The particular
value σ0/

√
2 is exactly the width of the absolute square |ϕ0|2 of the ground-

state wave function (shown in Figure 6.5). The factor
√

2 appears since σ0

was defined conventionally as the width of the wave function ϕ0 itself. In all
three situations the behavior of the position expectation value is identical and
equal to that of the classical particle.

We now look at half a period of the oscillation in more detail. In Figure 6.7
(top), which depicts this time interval, the time development of the probability
density is plotted again for a wave packet with initial width smaller than the
ground-state width σ0/

√
2. The real and imaginary parts of the wave function

are shown in the lower plots of Figure 6.7. At the turning points, t = 0 and
t = T/2, the wave function is purely Gaussian and either real or imaginary.
For other moments in time, the wiggly structure originates from the super-
position of the eigenfunctions of the harmonic oscillator. As is true of the
eigenfunctions themselves, the distance between two nodes increases in the
vicinity of the turning points. For a free harmonic wave the distance between
two nodes is half the wavelength; a large wavelength signifies low momen-
tum. We can therefore interpret the increasing distance between nodes in the
vicinity of the turning points as the slowing down of the particle.

Finally, we look at the particular situation of a particle “at rest” in the
center of the oscillator (Figure 6.8). Initially, the particle is sharply local-
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c

b

a

Fig.6.6. Time develop-
ment of a Gaussian
wave packet, repre-
sented by its proba-
bility density, under
the influence of a har-
monic force. The cir-
cles show the motion
of the correspond-
ing classical particle.
The broken lines ex-
tend between its turn-
ing points. The wave
packet is initially at
rest at an off-center
position. (a) The ini-
tial width of the wave
packet is smaller than
that of the oscillator’s
ground state. (b) The
initial width of the
wave packet is greater.
(c) Both widths are
equal.
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Fig.6.7. Time develop-
ment of a Gaussian
wave packet under
the influence of a har-
monic force, observed
over half an oscil-
lation period. Shown
are the probability
density, the real part
of the wave func-
tion, and the imagi-
nary part of the wave
function.
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Fig.6.8. Time develop-
ment of a wave packet
at rest in the center of
a harmonic oscillator.
The packet is repre-
sented by its proba-
bility density, and by
the real part, and the
imaginary part of its
wave function. Since
its initial width is dif-
ferent from that of
the oscillator’s ground
state, the width of
the packet oscillates in
time with twice the os-
cillator frequency. Ex-
cept for the initial po-
sition, all parameters
are identical to those
of Figure 6.7.



6.4 Harmonic Particle Motion 125

ized compared to the ground-state width, that is, σ < σ0/
√

2. The expectation
value in space remains at x = 0, just as the classical particle does. The width
of the wave packet, however, oscillates with twice the oscillator frequency
between its initial value σ and its maximum value σ 2

0 /(2σ ). Only for initial
width σ = σ0/

√
2 does the absolute square of the wave packet keep its posi-

tion as well as its shape.
The wave packet of Figure 6.6c is called a coherent state of the oscillator.

While oscillating the wave packet keeps its width equal to the ground-state
width of the oscillator. At all times it is a minimum-uncertainty state, that is to
say, it fulfills Heisenberg’s uncertainty principle as an equation�x�p = h̄/2.

The ground state of the harmonic oscillator is a particular coherent state
because it is also an eigenstate of the Hamilton operator. The other coherent
states are not among the eigenstates but are particular superpositions of eigen-
states of the harmonic oscillator. Since the various eigenstates differ in energy,
a coherent state, except for the ground state, is a superposition of states with
different numbers of energy quanta h̄ω. The weights p(n), with which these
states of different numbers n of energy quanta h̄ω contribute to the coherent
state, follow a Poisson distribution, cf. Appendix G,

p(n) = 〈n〉n

n!
e−〈n〉 .

Here 〈n〉 is the expectation value of the number of quanta given by(
〈n〉+ 1

2

)
h̄ω = 〈E〉 ,

where 〈E〉 is the energy expectation value of the coherent state. It therefore
has a nonvanishing variance of the number of energy quanta and of the energy.
If an external force acts upon a harmonic oscillator in its ground state, the os-
cillator responds with a transition into another coherent state. If the action of
the external force is terminated at some time t0, the state of the oscillator be-
haves as the coherent state of Figure 6.6c. It performs a harmonic oscillation
along a classical trajectory with the frequency ω of the classical oscillator.
Coherent states play an important role in quantum optics and quantum elec-
tronics.

The initial packets shown in Figures 6.6a and b are not coherent states.
Their initial widths are different from the ground-state width σ0/

√
2. They are

called squeezed states. Squeezed states are not minimum-uncertainty states
at all moments of time. Four times during one period of oscillation, how-
ever, they develop into minimum-uncertainty states. As we have seen in Fig-
ures 6.6a and b, wave packets representing squeezed states also oscillate so
that their expectation values follow the classical trajectories. Their widths,
however, vary with time. They oscillate back and forth between a minimum
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and a maximum value. The distribution of the numbers of the energy quanta
contributing to a squeezed state deviates from a Poisson distribution. Not be-
ing minimum-uncertainty states, squeezed states allow one observable quan-
tity of an oscillator to be less uncertain than it is in the ground state, at the cost
of the other observables occurring in Heisenberg’s uncertainty principle. For
this reason squeezed states are of great interest in the theory of measurement
of weak signals.

6.5 Harmonic Motion of a
Classical Phase-Space Distribution

We will show later in this section that the classical phase-space distribution of
Section 3.6, i.e., a phase-space distribution which at the initial time t = 0 ful-
fills the uncertainty relation σx0σp0 = h̄/2, behaves in the harmonic-oscillator
potential in the very same way as a quantum-mechanical wave packet. Before
we do so we will present a qualitative argument showing that a classical Gaus-
sian phase-space density indeed oscillates as does the quantum-mechanical
probability density in Figure 6.7.

A classical particle described by a phase-space distribution of large initial
spatial width σx0 possesses a rather well-defined momentum. For a classical
particle initially at rest at x = x0 the period T of oscillation is independent of
x0. Thus, particles at rest at different initial positions x0 all reach the point x =
0 at the same time, t = T/4. Since the initial momentum spread is small but
not zero the spatial distribution at t = T/4 will have a finite spread σx (T/4)<
σx0.

For a small initial spatial width, on the other hand, the spatial definition
of the particle is rather well-defined, but the particle may start at this position
with rather different momenta. Consequently the distribution spreads in space
and, at t = T/4, has a rather large width, σx (T/4)> σx0.

There is a particular intermediate initial width, which will turn out to be
σx0 = σ0/

√
2, for which the classical phase-space distribution keeps its shape

while oscillating as a whole. This is the classical analog of the coherent state
of quantum mechanics.

We mentioned that for constant forces or for forces that depend linearly
on the coordinates the temporal evolution of the Wigner distribution (cf. Ap-
pendix D) of a quantum-mechanical wave packet is identical to that of a clas-
sical phase-space density. The phase-space probability density corresponding
to a Gaussian wave packet without correlation between momentum and posi-
tion at the initial time t = 0 is
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ρcl
i (xi, pi) = 1

2πσx0σp0
exp

{
−1

2

[
(xi − x0i)2

σ 2
x0

+ (pi − p0i)2

σ 2
p0

]}
.

Here x0i, p0i are the initial expectation values and σx0, σp0 are the initial widths
of position and momentum, respectively.

The covariance ellipse of the bivariate Gaussian is characterized by the
exponential being equal to −1/2,

(xi − x0i)2

σ 2
x0

+ (pi − p0i)2

σ 2
p0

= 1 .

The classical motion of a particle in phase space under the action of a har-
monic force is simply

x = xi cosωt +qi sinωt ,

q = −xi sinωt +qi cosωt .

Here we have introduced the variables

q(t) = p(t)

mω
, qi = pi

mω
.

A classical particle rotates with angular velocity ω on a circle around the
origin in the x ,q plane. For a given time t and given values x(t), q(t) the
initial conditions of a particle are then

xi = x cosωt −q sinωt ,

qi = x sinωt +q cosωt .

Introducing this result into the equation for the initial covariance ellipse,

(xi − x0i)2

σ 2
x0

+ (qi −q0i)2

σ 2
q0

= 1 ,

which describes an ellipse with the center (x0i,q0i) and the semi-axes σx0 and
σq0 which are parallel to the x axis and the q axis, respectively, we get

([x − x0]cosωt − [q −q0] sinωt)2

σ 2
x0

+ ([x − x0] sinωt + [q −q0]cosωt)2

σ 2
q0

= 1 .

This is again an equation of an ellipse with principal semi-axes of length σx0

and σq0. They are, however, no longer parallel to the coordinate directions but
rotated by an angle ωt with respect to these. The center of the ellipse is the
point (x0,q0) to which the set of initial expectation values (x0i,q0i) has moved
at the time t .
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Fig.6.9. Motion of the covariance ellipse of a classical phase-space density under the
influence of a harmonic force. The large circle is the trajectory of the center of the ellipse.
The ellipse is shown for equidistant moments in time. The rectangle circumscribing it
has sides σx , σq . The small circles indicate the centers of the ellipses. For the initial time it
is drawn as a full dot. The relation between the initial widths is (left) σx0 < σq0, (middle)
σx0 > σq0, and (right) σx0 = σq0.

We summarize our discussion by the following simple statements:

1. A classical phase-space distribution described by a bivariate Gaussian
keeps its Gaussian shape.

2. Its center, which is the center of the covariance ellipse, moves on a
circle around the center of the x ,q plane with angular velocity ω.

3. The covariance ellipse keeps its shape but rotates around its center with
the same angular velocity ω.

In Figure 6.9 we illustrate the motion of the covariance ellipse for the three
cases σx0 < σq0, σx0 > σq0, σx0 = σq0.

Rotation of the covariance implies a time dependence of the widths σx (t)
and σq(t) in x and q as well as a nonvanishing correlation coefficient c(t)
which also depends on time. We can rewrite the equation of the covariance
ellipse in the form known from Section 3.5,

1

1− c2(t)

{
(x − x0)2

σ 2
x (t)

−2c(t)
(x − x0)(q −q0)

σx (t)σq(t)
+ (q −q0)2

σ 2
q (t)

}
= 1

with

σx (t) =
√
σ 2

x0 cos2ωt +σ 2
q0 sin2ωt ,
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σq(t) =
√
σ 2

x0 sin2ωt +σ 2
q0 cos2ωt ,

c(t) = (σ 2
q0 −σ 2

x0) sin2ωt√
4σ 2

x0σ
2
q0 + (σ 2

x0 −σ 2
q0)2 sin2 2ωt

.

The time dependence both of the position expectation value x0(t) and
of the width σx (t) is exactly equal to what we have found in the quantum-
mechanical calculation.

In the particular case
σx0 = σq0

the covariance matrix is a circle, σx and σq are independent of time, and the
correlation vanishes for all times. If we require the minimum-uncertainty re-
lation of quantum mechanics,

σx0σp0 = h̄

2
,

to be fulfilled for our classical phase-space probability density as we have
done in Section 3.6 we have

σq0 = σp0

mω
= h̄

2mωσx0
.

Together with the requirement σx0 = σq0 we get

σx0 = 1√
2

√
h̄

mω
= σ0√

2
, σ0 =

√
h̄

mω
.

For this particular value of the initial width, the width stays constant. For
σx0 = σ0/

√
2 the spatial width of the classical phase-space density oscillates

exactly as the quantum-mechanical probability density does as shown in Fig-
ure 6.6.

6.6 Spectra of Square-Well Potentials of Finite Depths

In Section 4.4 we studied the stationary bound states in a square-well poten-
tial. We found that these states exist only for discrete negative energy eigen-
values, which form the discrete spectrum of bound-state energies. The proba-
bility densities of these states are concentrated for the most part in the square
well. We now discuss the bound-state spectra for different shapes of the square
well.

Figure 6.10 shows the wave functions and the energy spectra for several
square-well potentials of equal widths but different depths. For a well of finite
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Fig.6.10. Bound-state wave functions and energy spectra for square-well potentials of
different finite depths but identical widths. The number of bound states increases with
the depth of the potential.

depth, there is only a finite number of bound states. Their number increases
with depth. In contrast to the wave functions of an infinitely deep well, the
wave functions of a finite square well are different from zero outside the well
but drop there exponentially to zero. The exponential falloff is fastest for the
ground state. Figure 6.11 indicates that for a fixed depth the number of bound
states increases as the well becomes wider.
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Fig.6.11. Bound-state wave functions for square-well potentials of identical depth but
different widths. The number of bound states increases with the width of the well.

6.7 Stationary Bound States in Piecewise Linear Potentials

A potential accomodating bound states can also be constructed from piece-
wise linear sections; the solution of the Schrödinger equation in this case was
discussed in Section 4.4. In its simplest form such a potential is a triangu-
lar well. For three such wells of equal depth but different opening angles the
stationary bound states are shown in Figure 6.12. As for the square wells in
Figure 6.11 the number of bound states rises with the opening of the well.
Also the general features of the wave function, characterized by number and
ordering of maxima, minima, and nodes, are similar to those of the square
well. However, for the example of Figure 6.12, there is no left–right symme-
try because the potential itself does not display this symmetry.

In Figure 6.13 we can compare the bound states in a skew triangular well
with a vertical edge with those in a symmetric well. Both wells have the same
depth and are equally wide at the top. At the sharp edge of the skew well
the wave functions extend somewhat into the classically forbidden region left
of the well where the difference V − E of potential and total energy is neg-
ative. If we call D(x) = |V (x) − E | the thickness of the “roof” over a state
in a classically forbidden region, then the state extends the farther into that
region, the thinner the roof is. Left of the sharp edge the extension grows as
the energy rises; at the same time the average curvature of the wave function
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Fig.6.12. Bound-state wave functions for skew triangular potential wells of identical
depth but different opening angles. The number of bound states increases with the open-
ing of the well.

falls. To the right of the inclined edge, however, the wave function appears
to be quite independent of the energy; in the region where the wave function
is not essentially zero the roof thickness is practically independent of energy,
except for the highest energy value. The symmetric potential has two inclined
edges which facilitate extension of the states. It is interesting to note that here

Fig.6.13. Bound-state wave functions for a skew and for a symmetric triangular poten-
tial well. Both are equally wide at the top. In the symmetric potential the lowest state is
lower and the highest state is higher than in the skew potential.
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Fig.6.14. Successive approximation of the harmonic-oscillator potential of Fig. 6.5 by a
piecewise linear potential.

the lowest state has lower and the highest state has higher energy than in the
skew potential. This can now be understood if the connection between kinetic
energy and average curvature on page 137 is invoked.

It can be useful in calculations to approximate a more complicated po-
tential by a piecewise linear one. As an example we show in Figure 6.14 the
approximation of the harmonic-oscillator potential by a system of linear po-
tentials with more and more regions.

6.8 Periodic Potentials, Band Spectra

As a first step in discussing periodic potentials as they occur in crystals, let us
look at two potential wells more or less distant from each other. Figure 6.15
shows such potentials as well as the spectra of eigenvalues and eigenfunctions.
When the two wells have some distance between them, we observe pairs of
energy eigenvalues group closely together. Of the eigenfunctions belonging to
each pair, one is always symmetric, the other antisymmetric. Comparing the
eigenfunctions of two single wells with those of a single well, we observe that
in corresponding regions they strongly resemble one another. The symmetric
wave function of the double well is a smooth symmetric match with the two
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Fig.6.15. Bound-state wave functions and energy spectra for systems of two square wells.
In one system the wells are very close together, in the other some distance apart.
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wave functions of the two single wells. The antisymmetric wave function of
the double well is an antisymmetric match. In the limiting case when the
distance between the two wells becomes zero, that is, when the wall vanishes,
the eigenfunctions and the spectra become those of a single well of double
width.

We now need to study the structure of the pairs of wave functions in two
wells in more detail. The relation of their structure to that of the wave func-
tions in a single well is easily explained, using the same reasoning given in
Section 4.4. To this end we divide the x axis into five regions,

I −∞ < x < −d2 , V (x) = 0 ,
II −d2 ≤ x < −d1 , V (x) = −V0 ,

III −d1 ≤ x < d1 , V (x) = 0 ,
IV d1 ≤ x < d2 , V (x) = −V0 ,
V d2 ≤ x < ∞ , V (x) = 0 ,

where the potential has a constant value. Notice that the potential is com-
pletely symmetric with respect to the point x = 0. That is, it does not change
if x is replaced by −x . In regions I and V the wave function must show ex-
ponential falloff for large values of |x |. In regions II and IV it oscillates as a
superposition of two complex exponentials.

The behavior of the wave function is determined in particular by its struc-
ture in region III, which encompasses the origin. In this domain the wave
function is a linear combination of real exponentials which, because of the
symmetry of the problem, are either symmetric (s) or antisymmetric (a):

ϕs
III = As

1

2
(eκsx + e−κsx ) = As cosh(κsx)

and

ϕa
III = Aa

1

2
(eκax − e−κax ) = Aa sinh(κax) .

The parameters κa, κs are given by

κs = − i

h̄
p′

s = 1

h̄

√−2m Es ,

κa = − i

h̄
p′

a = 1

h̄

√−2m Ea ,

where Es and Ea are the negative bound-state energies of the symmetric and
antisymmetric solutions, respectively. The wave function in region III con-
nects the wave functions of regions II and IV. It therefore determines the
overall symmetry. The total wave function is symmetric if in region III it is
of the symmetric type, ϕs

III = As cosh(κsx). Since the antisymmetric solution
has the larger average curvature, it possesses the greater kinetic energy (clas-
sically Ekin = p2/(2m))
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Fig.6.16. Bound-state
wave functions and
energy spectra for a
potential well and for
potentials consisting
of two, three, four, and
five neighboring wells.
The states have very
similar energies.
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Ekin = −
∫ +∞

−∞
ϕ(x)

h̄2

2m

d2

dx2
ϕ(x)dx

compared to the symmetric solution. This explains why the splitting of the
two energy eigenvalues of the bound states increases when the two wells ap-
proach each other. When the separating wall in region III has disappeared, the
symmetric solution no longer has a dent in the middle.

It is now plausible that for a potential consisting of a periodic repetition
of N neighboring wells, each single-well eigenvalue reflects itself in a set of
N bound states of the periodic system of square-well potentials. The spacing
of the energy eigenvalues of these states may be very narrow. They are said
to form an energy band. A crystal consists of a large number (N ≈ 1023) of
regularly spaced atoms. They form a periodic electric potential pattern in three
dimensions giving rise to analogous band structures.

Figure 6.16 shows how the band structure, starting with the ground state
of a single square well, takes form when two, three, four, and five potential
wells are placed at equal distances next to it and to one another. The number of
states forming the band is equal to the number of potential wells. Their spac-
ing in energy becomes narrower as the number of wells increases. Certainly,
for large numbers of potential wells forming a periodic structure, each indi-
vidual band contains a large number of states represented by periodic wave
functions. The wave functions of a single band can be linearly combined to
form wave packets describing localized particles. If the time dependence of
the eigenstates is included in the superposition (see Section 6.2), the wave
packets describe particles moving freely in the periodic potential structure. In
this way the free motion of electrons in the conduction band of the lattice of
a metal or a semiconductor can be explained.

In Figure 6.17 we illustrate some details of band formation. From the bot-
tom of a square well a zigzag-shaped potential rises in several steps, forming
four separate wells of increasing depth. The four lowest states are gradually
pulled together in a band. Although their wave functions are changed, they
still retain some of the original symmetry properties. The upper states, at least
at first, are much less affected.

Problems

6.1. Calculate the integrals over the products of the eigenfunctions ϕn(x) as
given in Section 6.1 for the bound states of the deep square well,∫ d/2

−d/2
ϕn(x)ϕm(x)dx .
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Fig.6.17. The square well (top left) is gradually transformed into a quasiperiodic poten-
tial with four wells. As a result the lowest four bound states form a band with closely
space energies.
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6.2. What determines the frequency of the oscillation in the deep square well
shown in Figure 6.2? What determines the wavelength of the interfer-
ence wiggles in Figure 6.2?

6.3. Show that for n = 0, 1 the functions φn(ξ ), ξ = x/σ0 given in Sec-
tion 6.3, are solutions of the stationary Schrödinger equation for the
harmonic oscillator.

6.4. In terms of the momentum operator p̂ = (h̄/i)(d/dx), the operator of
total energy of a harmonic oscillator is

H = 1

2m
p̂2 + m

2
ω2x2 .

In a bound state of the harmonic oscillator, the expectation values 〈p〉
and 〈x〉 of momentum and position vanish. Thus the expectation values

〈p2〉 = (�p)2 +〈p〉2 = (�p)2 ,

〈x2〉 = (�x)2 +〈x〉2 = (�x)2

are equal to the squares of the uncertainties of momentum and posi-
tion. Use the uncertainty principle, from Section 3.3, to calculate the
minimum energy of a bound state in a harmonic-oscillator potential.

6.5. Give an argument why the real and imaginary parts of the wave func-
tions of Figure 6.7 have long wavelengths to the left or right when they
are close to their left or right classical turning points, but not when the
wave packet is in the center of the oscillator potential.

6.6. Compare the ratio R = E2/E1 of the energies E2, E1 of the two low-
est levels in the different parts of Figure 6.11 with the corresponding
ratio in the infinitely deep potential well; they are given in Section 6.1.
Explain your result.

6.7. A rough approximation of the wave functions of the multiple square-
well potentials in Figure 6.16 is given by

ϕn(x) =
√

BN

N
ϕn(x , BN )

N∑
�=1

ϕ1(x − x�,d) .

Here ϕ1(x − x�,d) is the ground-state wave function of a single poten-
tial well of width d and depth V0 symmetric around x = x�. With BN

the width of the whole arrangement of all N square-well potentials, in-
cluding their N − 1 separating walls, ϕn(x , BN ) is the eigenfunction of
quantum number n of the square-well potential with depth V0 and width
BN .
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Using Figure 6.11 for ϕn(x , BN ) and Figure 6.16 (top) for ϕ1(x − x�,d),
sketch the wave functions ϕn(x) for n = 1, 2, . . . , N and N = 2, 3, 4, 5.
Compare their appearance with that of the wave functions in Fig-
ure 6.16. Discuss their symmetry properties.

6.8. What is the parity of the ground state with respect to reflection about the
symmetry point of the potential for all examples given in this chapter?
Explain the result, using the square well and the harmonic-oscillator
potential as examples.



7. Quantile Motion in One Dimension

In classical mechanics the position x(t) of a point particle and its velocity
v(t) = dx(t)/dt are well defined. This is not the case in quantum mechan-
ics. For a free wave packet one can use the expectation value 〈x(t)〉 and its
time derivative d〈x(t)〉/dt to characterize the position and the velocity of a
particle. But for a particle under the influence of a force this description is
not adequate. In the case of the tunnel effect, for instance, the expectation
value 〈x(t)〉 may never pass through the barrier. In the following we shall see
that mathematical statistics allows us to define a quantile position xP(t) and
a quantile velocity dxP(t)/dt in all cases where we deal with a probability
distribution �(x , t) and that this velocity can be related to experiment. (This
chapter and Section 10.2 are based on the following publication: S. Brandt,
H.D. Dahmen, E. Gjonaj, T. Stroh, Physics Letters A 249, 265 (1998).)

7.1 Quantile Motion and Tunneling

For a probability density �(x) the quantile xQ associated with the probability
Q is defined by

Q =
∫ xQ

−∞
�(x)dx .

For the time-dependent probability density �(x , t) and time-independent prob-
ability P , 0 ≤ P ≤ 1, we define the time-dependent quantile position xP(t) by∫ ∞

xP (t)
�(x , t)dx = P .

The function x = xP(t) describes the quantile trajectory (in the x , t plane) of
a point moving along the x axis. Its time derivative

vP(t) = dxP(t)

dt

defines the quantile velocity vP(t) of the point xP(t).
The upper plot of Figure 7.1 exhibits the time development of the scatter-

ing of an initially Gaussian wave packet by a repulsive barrier of height V0.
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Fig.7.1. Quantile trajectories of the tunnel effect. The upper plot represents the time
development of the scattering of an initially Gaussian wave packet by a repulsive poten-
tial barrier of height V0. The expectation value of the kinetic energy is smaller than V0.
The small circles indicate the position of the classical particle. The shaded areas under
the curves correspond to the probability P = 0.4 in the interval xP (t) ≤ x <∞. The line
cutting through the plot from the upper left to the lower right is the quantile trajectory
for P = 0.4. The lower plot presents the quantile trajectories for the value P = 0.1 for
the top curve and in steps of �P = 0.1 for the lower curves up to P = 0.9. The thick
curve is the same quantile trajectory as the one in the upper plot.
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The expectation value of the kinetic energy E of the wave packet is smaller
than V0. The wave packet is partly reflected by the barrier. The other part tun-
nels through the barrier moving more or less like a force-free wave packet to
the right. The shaded areas under the curves cover the probability P = 0.4.
The line cutting through the plot from the upper left to the lower right is the
quantile trajectory xP(t) corresponding to P = 0.4. The lower plot of Figure
7.1 presents the quantile trajectories for P in the range between 0.1 and 0.9 in
steps of�P = 0.1. In the region of the repulsive potential barrier the quantile
velocities are smaller than in regions far from the barrier.

In Figure 7.2 the quantile trajectories for the scattering of an initially
Gaussian wave packet by a double barrier are shown. The upper plot exhibits
the time development of the wave packet incident on the double barrier from
the left. We observe the partially reflected and transmitted parts of the wave
packet and the resonance behavior due to the oscillation of part of the proba-
bility between the two barriers. The resonance decay is due to the tunneling
through the left or right barrier which occurs whenever the wave packet mov-
ing between the two barriers interacts with one of them. This leads to repeated
reflected and transmitted pulses following the first one’s with some time de-
lay. The shaded areas under the curves representing the probability density
correspond to a probability of P = 0.4. It has been chosen to be larger than
the probability contained in the earliest transmitted pulse. Therefore the quan-
tile trajectory does not leave the double-barrier region together with the first
transmitted pulse. In fact, for the probability P = 0.4 the quantile trajectory
oscillates once between the two barriers and leaves this region together with
the second transmitted pulse.

The lower part of Figure 7.2 exhibits the set of quantile trajectories starting
with the probability P = 0.1 for the top curve passing through steps of�P =
0.1 ending with the value P = 0.9 for the bottom curve. The thick line is the
same quantile trajectory as in the top picture. A fine-tuning of the probability
P to values slightly smaller than the one for the thick line would produce
quantile trajectories showing more and more oscillations between the barriers.
The quantile trajectory for the total transmission probability PT never leaves
the region between the two barriers. All trajectories for values P > PT are
eventually reflected.

7.2 Probability Current, Continuity Equation

In Section 3.3 we discussed the probability interpretation of quantum mechan-
ics introduced by Max Born. Following his reasoning, the absolute square
|ψ(x , t)|2 = �(x , t) of the wave function represents a probability density in
the following sense: The probability dP of finding the particle in the interval
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Fig.7.2. As Figure 7.1 but for a double barrier.
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(x , x +dx) is given by

dP = �(x , t)dx = |ψ(x , t)|2 dx .

Since the probability is conserved the time variation of the probability

P12 =
∫ x2

x1

dP =
∫ x2

x1

�(x , t)dx

in one interval (x1, x2) must result in a flow entering or leaving this interval.
This flow can be described by a probability current density j(x , t) defined by
the requirement

j(x , t)− j(x1, t) = − d

dt

∫ x

x1

�(x ′, t)dx ′ =
∫ x

x1

(
−∂�(x ′, t)

∂t

)
dx ′ .

It states that the resulting flow at the borders x1 and x is equal to the rate of
decrease of the probability inside the interval.

For a very narrow interval (x1, x) we may approximate the integral on the
right-hand side by [−∂�(x , t)/∂t]�x , �x = x − x1. In the limit �x → 0 we
obtain the expression

∂ j(x , t)

∂x

∣∣∣∣
x=x1

�x = lim
�x→0

(
j(x1 +�x , t)− j(x1, t)

�x

)
�x

for the left-hand side. Altogether we get the continuity equation

−∂�(x , t)

∂t
= ∂ j(x , t)

∂x
.

For current densities j(x , t) vanishing for x → ±∞ we derive

− d

dt

∫ ∞

−∞
�(x , t)dx =

∫ ∞

−∞

∂ j(x , t)

∂x
dx = 0 ,

the conservation of the total probability. The explicit form of the current den-
sity can be derived by observing

∂�(x , t)

∂t
= ψ∗(x , t)

∂ψ(x , t)

∂t
+ ∂ψ

∗(x , t)

∂t
ψ(x , t) .

The time derivatives of the wave functions ψ and ψ∗ are determined by the
Schrödinger equations for ψ and its complex conjugate ψ∗,

ih̄
∂ψ

∂t
= − h̄2

2m

∂2ψ

∂x2
+ V (x)ψ , −ih̄

∂ψ∗

∂t
= − h̄2

2m

∂2ψ∗

∂x2
+ V (x)ψ∗ .

Inserting the expressions for ∂ψ/∂t and ∂ψ∗/∂t , we obtain
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Fig.7.3. Time development of the density �(x , t) and the probability current density
j(x , t) of the force-free motion of a Gaussian wave packet. The graphs in the top row
refer to a moving wave packet, the bottom row to a wave packet at rest, 〈x(t)〉 = const = 0.
The small circles indicate the position expectation value 〈x(t)〉 of the wave packet. In the
bottom row the change with time of the wave packet is entirely due to its broadening
because of dispersion. The probability density remains even with respect to x = 0, the
current density stays odd; thus, the integral over the current density vanishes.

∂�

∂t
= − h̄

2mi

[
ψ∗ ∂2

∂x2ψ
−ψ ∂

2ψ∗

∂x2

]
.

This can be turned into the form of the continuity equation with the expression

j(x , t) = h̄

2mi

(
ψ∗ ∂ψ
∂x

−ψ ∂ψ
∗

∂x

)
for the probability current density. In Figure 7.3 the time development of the
probability density and the probability current density is shown for a free
Gaussian wave packet. The plots in the top row show a moving wave packet
with positive momentum expectation value 〈p〉 = p0, those in the bottom row
a wave packet at rest, i.e., p0 = 0. With growing time we observe a broaden-
ing of both wave packets, due to dispersion. For the wave packet at rest the
dispersion is the only reason for the change in time of the plots. Probability
flows to the right for x > 0 and to the left for x < 0. Thus, the current density
is positive for x > 0 and negative for x < 0. Its integral over the whole x axis
vanishes in agreement with p0 = 0.
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In an experiment the quantile trajectory can be determined on a statistical
basis by a series of time-of-flight measurements: One prepares by the same
procedure N single-particle wave packets and sets a clock to zero at the time
instant at which the spatial expectation value of a wave packet leaves the
source. With a detector placed at position x1 one registers the arrival times t1m

of particles for m = 1,2, . . . , N and orders them such that t11 < t12 < .. . < t1N .
One picks the time t1n which is the largest of the smallest times measured and
chooses n/N = P . The time t1n is the arrival time of the quantile xP at the
position x1, i.e., xP(t1n) = x1. By repeating the experiment with a detector at
x2 one obtains t2n, etc. The points xP(tin), i = 1,2, . . ., are discrete points on
the quantile trajectory xP(t). If x1 and x2 mark the front and rear end of the
barrier, resp., then t2n − t1n is the quantile traversal time of the barrier. In the
quantum-electronic components of electrical circuits signals are propagated
by pulses of a certain number N of electrons. The time needed for a signal
to pass a quantum-electronic component is the quantile traversal time defined
above.

7.3 Probability Current Densities of Simple Examples

We have already found that for the free motion (Section 3.2), the motion under
a constant force (Section 5.6), and the harmonic motion (Section 6.4), the
probability density of an initially Gaussian wave packet has the form

�(x , t) = 1√
2πσx (t)

exp

{
− (x −〈x(t)〉)2

2σ 2
x (t)

}
,

i.e., the shape of the packet stays Gaussian. However, its position expectation
value 〈x(t)〉 as well as its width σx (t) changes with time and that time variation
differs for the three examples as indicated in Table 7.1, which was compiled
from the sections quoted. The probability current density is

Table7.1. Time dependence of the position expectation value and variance for a
Gaussian wave packet

Free Motion Constant Force Harmonic Oscillator

V (x) 0 mgx 1
2mω2x2

〈x(t)〉 x0 +v0t x0 +v0t + gt2/2 x0 cosωt

σ 2
x (t) σ 2

x0 +
(σp

m
t
)2

σ 2
x0 +

(σp

m
t
)2 4σ 4 cos2ωt +σ 2

0 sin2ωt

4σ 2
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Fig.7.4. Time development of the probability density �(x , t) and the probability current
density j(x , t) of a Gaussian wave packet moving under the action of a spatially constant
force (top row) and under the action of a harmonic force (bottom row). The small
circles indicate the position expectation values of the wave packets. The current density
possesses regions of positive or negative values. For the case of a constant force (top
row) the wave packet moves to the right for early times; accordingly, the current density
is mainly positive. At the turning point (middle of the seven time instants) the current
density exhibits regions of positive as well as of negative values. Since the velocity
expectation value vanishes at the turning point, the integral of the current density over
the whole x axis vanishes. The wave packet in the harmonic oscillator is shown over
one time period. Since the initial position expectation value x0 is positive, the initial
velocity expectation value p0/m vanishes. The current density is mainly negative before
it reaches the turning point; thereafter its values are mainly positive.

j(x , t) =
[
〈v(t)〉+ 1

σx (t)

dσx (t)

dt
(x −〈x(t)〉)

]
�(x , t) ,

where the velocity expectation value is 〈v(t)〉 = 〈p(t)〉/m = d〈x(t)〉/dt .
In Figure 7.4 we show the time development of the probability density

and the probability current density for wave packets under the influence of a
constant and a harmonic force.



7.4 Differential Equation of the Quantile Trajectory

By definition the quantile trajectory x = xP(t) is obtained by solving the equa-
tion ∫ ∞

xP (t)
�(x , t)dx = P

for xP(t). Since P = const we have

−dxP(t)

dt
�(xP(t), t)+

∫ ∞

xP (t)

∂�(x ′, t)
∂t

dx ′ = dP

dt
= 0 .

The continuity equation derived in Section 7.2 for the probability density al-
lows us to replace ∂�/∂t by −∂ j/∂x in the integral. The integration can then
be performed explicitly to yield

�(xP(t), t)
dxP(t)

dt
= j(xP(t), t)

as differential equation for the trajectory xP(t). In terms of the velocity field
v(x , t) = j(x , t)/�(x , t) of the probability flow we have

dxP(t)

dt
= j(xP(t), t)

�(xP(t), t)
= v(xP(t), t) .

The initial position xP(t0) = x0 needed for solving this differential equation is
the quantile position at the initial time t0.

7.5 Error Function

For later use we introduce the (complementary) error function

erfc x = 2√
π

∫ ∞

x
e−u2

du .

Since the function e−u2
is positive everywhere and the integration interval

shrinks with growing lower boundary, the error function erfc x is a monotoni-
cally decreasing function of x . For x → ∞ the integration interval shrinks to
zero, the value of the integrand tapers off to zero; thus,

lim
x→∞erfc x = 0 .

Making use of the normalization of the Gaussian distribution (cf. Section 2.4),
we get

lim
x→−∞erfc x = 2√

π

∫ ∞

−∞
e−u2

du = 2
1√
2π

∫ ∞

−∞
e−u′2/2 du′ = 2 .

7.5 Error Function 149
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Fig.7.5. Plot of the (complementary) error function erfc x .

Since the integrand is an even function, we have for x = 0

erfc0 = 2√
π

∫ ∞

0
e−u2

du = 1

2

2√
π

∫ ∞

−∞
e−u2

du = 1 .

The graph of the error function erfc x is presented in Figure 7.5.

7.6 Quantile Trajectories for Simple Examples

Using the error function we have for any Gaussian probability density with
mean 〈x(t)〉 and variance σ 2

x (t)

P =
∫ ∞

xP (t)
�(x , t)dx = 1

2
erfc

(
xP(t)−〈x(t)〉√

2σx (t)

)
.

This equation determines xP(t0) for a given value of P and for a given initial
time t0. For the three examples of Section 7.3 we then have for the quantile
position at time t

xP(t) = 〈x(t)〉+ σx (t)

σx (t0)
(xP(t0)−〈x(t0)〉) .
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Fig.7.6. Quantile trajectories of a force-free Gaussian wave packet. The upper plot
presents the time development of the probability density. The small circles on the x axis
indicate the position expectation values. The hatched areas correspond to the region
x > xP (t) for P = 0.3. The thick line is the corresponding quantile trajectory. The lower
plot exhibits the quantile trajectories for this wave packet for different values of P .
The trajectories correspond to P = 0.1 (top line) and P = 0.9 (bottom line) in steps of
�P = 0.1. The thick line is the trajectory shown in the upper plot.

For the particular value of P for which the initial quantile position xP(t0)
is equal to the initial expectation value 〈x(t0)〉, the quantile trajectory xP(t)
is identical to the trajectory 〈x(t)〉 of the spatial expectation value in these
three examples. In this case the argument of the error function vanishes. Thus,
the fraction of probability associated to this particular quantile trajectory is
P = 1

2 erfc(0) = 0.5. For all other values of P the quantile trajectory differs
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Fig.7.7. As Figure 7.6 but for the motion under the influence of a constant force.

from the trajectory of the expectation value of position. In all three examples
the trajectory of the position expectation value is the same as the classical
trajectory for the same initial values. Thus, in our examples the quantile tra-
jectory x0.5(t) is the classical trajectory.

Inserting 〈x(t)〉 and σx (t) from Table 7.1 into the equation above we can
obtain explicitly the quantile trajectories xP(t) for our three examples of Sec-
tion 7.3. They are shown in Figures 7.6 to 7.8.
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Fig.7.8. As Figure 7.6 but for motion in a harmonic-oscillator potential. The line xP (t)
for P = 0.5 is identical to the trajectory 〈x(t)〉 of the position expectation value. Only this
curve is a cosine function. For all other values P = 0.5 the quantile trajectories deviate
from the trigonometric functions. This deviation is due to the time dependence of the
width σx (t), i.e., due to the time-dependent broadening and shrinking of the squeezed
state.

7.7 Relation to Bohm’s Equation of Motion

In this chapter we have introduced quantile trajectories which are strictly
based on the probability concept and are therefore quite natural in the frame-
work of “conventional” quantum mechanics and its probability interpretation.

David Bohm in 1952 has given an “unconventional” formalism of quan-
tum mechanics in which particle trajectories are possible. One can show that
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Bohm’s trajectories are in fact identical to the quantile trajectories discussed
above. Here we only sketch the proof without going through all its steps.

We begin with the equation

dxP(t)

dt
= j(xP(t), t)

�(xP(t), t)

from Section 7.4. Differentiating once more with respect to time and multi-
plying with the particle mass m we obtain

m
d2xP(t)

dt2
= m

d

dt

j(xP(t), t)

�(xP(t), t)
= −∂U (x , t)

∂x

∣∣∣∣
x=xP (t)

.

We have written the right-hand side as the negative spatial derivative of a
potential U (x , t) since the left-hand side is of the type mass times acceleration.
Then the whole equation has the form of Newton’s equation of motion. The
potential U is determined by using the expressions for � and j in terms of
ψ and ψ∗ and by making use of the time-dependent Schrödinger equation to
eliminate expressions of the type ∂ψ/∂t and ∂ψ∗/∂t . The result is

U (x , t) = V (x)+ VQ(x , t) ,

where V (x) is the potential energy appearing in the Schrödinger equation and
VQ(x , t) is the time-dependent quantum potential

VQ(x , t) = − h̄2

4m�(x , t)

(
∂2�(x , t)

∂x2
− 1

2�(x , t)

(
∂�(x , t)

∂x

)2
)

introduced by David Bohm. For a unique solution of Newton’s equation two
initial conditions xP(t0) = x0 and dxP(t0)/dt = v0 are necessary. The solution
of the differential equation for the quantile trajectory is uniquely determined
by the initial condition xP(t0) = x0, for a given probability P fixed by the last
equation of Section 7.4. The quantile trajectories xP(t) are identical to those
solutions that satisfy the particular initial condition

v0 = dxP(t0)

dt
= v(xP(t0), t0) .

The quantum potential of the free motion, the case of constant force, and
the harmonic oscillator has the explicit form

VQ(x , t) = − h̄2

2m

1

2σ 2
x (t)

[
(x −〈x(t)〉)2

2σ 2
x (t)

−1

]
.



7.7 Relation to Bohm’s Equation of Motion 155

Fig.7.9. Time development of
the quantum potential VQ(x , t)
of a force-free Gaussian wave
packet. At any time it is a repul-
sive, parabolic potential. The
force FQ = −∂VQ/∂x produces
the dispersion of the Gaussian
wave packet in Bohm’s descrip-
tion of quantum mechanics. At
t = 0 the maximum at x = 〈x(0)〉
of the potential VQ(x , t) as well
as its curvature are largest; both
values decrease with increas-
ing time. The decrease of the
quantum potential reflects the
fact that the quantile trajecto-
ries of the force-free Gaussian
wave packets are hyperbolas as
functions of time approaching
straight lines as asymptotes for
large times.

It is a repulsive parabolic potential having its maximum at the position 〈x(t)〉
of the expectation value and a curvature fixed in terms of the width σx (t) of
the wave packet. In the language of classical mechanics the quantum force
FQ = −∂VQ/∂x is the origin of the dispersion of the Gaussian wave packet.
Figure 7.9 presents the time development of the quantum potential VQ(x , t) for
the force-free motion of a Gaussian wave packet. For t = 0 the potential has
the curvature −h̄2/(4mσ 4

x0), its maximum value is h̄2/(4mσ 2
x0). With growing

time the absolute value of the potential at a given location and the curvature
decrease.

The price one pays to get a Newtonian equation of motion is to accept the
existence of an additional time-dependent potential VQ and the fixing of the
initial condition for the velocity by the initially chosen wave function, which
is by no means plausible. We would like to repeat and stress here that Bohm’s
particle trajectories (which cannot be defined as solutions of Newton’s equa-
tion without the quantum potential) are identical to the quantile trajectories
(which are defined in conventional quantum mechanics).
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Problems

7.1. Calculate the integral of the current density j(x , t) = h̄/(2mi)[ψ∗∂ψ/
∂x −ψ∂ψ∗/∂x] over the whole x axis. Express it in terms of the ex-
pectation values of momentum or velocity.

7.2. Instead of the integral of the density �(x , t) over the interval x ≤ x ′<∞
we consider the interval x ≤ x ′ ≤ x1. Show that∫ x1

xP (t)
�(x ′, t)dx ′ =

∫ t1

t
j(x1, t ′)dt

with t1 determined by xP(t1) = x1 leads to

�(xP(t), t)
dxP(t)

dt
= j(xP(t), t) .

Explain the meaning of the last but one equation in terms of the quantile
condition.

7.3. In classical mechanics bodies of different mass fall with the same ve-
locity. Is this statement true for the quantile trajectories of a Gaussian
wave packet under the action of a constant force?

7.4. Explain the obviously non-harmonic features of the lowest quantile tra-
jectory of the lower plot of Figure 7.8. What is the condition to be sat-
isfied by xP(0) for the dent in the top quantile trajectory to appear?



8. Coupled Harmonic Oscillators:
Distinguishable Particles

So far we have always studied the motion of a single particle under the in-
fluence of an external potential. This potential is, however, often caused by
another particle. The hydrogen atom, for example, consists of a nucleus, the
proton, carrying a positive electric charge, and a negatively charged electron.
The electric force between proton and electron is described by the Coulomb
potential. The proton exerts a force on the electron, and – according to New-
ton’s third law – the electron exerts a force on the proton. The proton has a
mass about 2000 times the electron mass. Therefore the motion of the pro-
ton relative to the center of mass of the atom can usually be ignored. In this
approximation the electron can be regarded as moving under the influence of
an external potential. Generally, however, we have to describe the motion of
both particles in a two-particle system. For simplicity we shall consider one-
dimensional motion only; that is, both particles move only in the x direction.

8.1 The Two-Particle Wave Function

We have seen that the basic entity of quantum mechanics is the wave function
describing a system, and we have discussed its interpretation as a probabil-
ity amplitude. A system consisting of two particles is described by a com-
plex wave function ψ = ψ(x1, x2, t) depending on time t and on two spatial
coordinates x1 and x2. Its absolute square |ψ(x1, x2, t)|2 is the joint probabil-
ity density for finding at time t the two particles at locations x1 and x2. Of
course, the wave function is assumed to be normalized, since the probability∫ +∞

−∞
∫ +∞

−∞ |ψ(x1, x2, t)|2 dx1 dx2 of observing the particles anywhere in space
has to be one. If the two particles differ in kind, such as a proton and an
electron forming the hydrogen atom, they are said to be distinguishable. Two
particles of the same kind, having the same masses, charges, and so on, as two
electrons do, are said to be indistinguishable. For distinguishable particles the
absolute square |ψ(x1, x2, t)|2 dx1 dx2 describes the probability of finding at

 Springer Science+Business Media New York 2012DOI 10.1007/978-1-4614-3951-6_ , ©
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Fig.8.1. Joint probability density ρD(x1, x2) for a system of two particles. It forms a
surface over the x1, x2 plane. The marginal distributions ρD1(x1) and ρD2(x2) are plotted
as curves over the margins parallel to the x1 axis and the x2 axis, respectively. In each
plot the classical position x10, x20 is indicated by a black dot in the x1, x2 plane as well
as by its projections on the margins. Also shown is the covariance ellipse. The three
plots apply to the cases of (a) uncorrelated variables and (b) positive and (c) negative
correlation between x1 and x2.
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time t particle 1 in an interval dx1 around position x1 and simultaneously par-
ticle 2 in an interval dx2 around x2.

Figure 8.1a illustrates the joint probability density

ρD(x1, x2, t) = |ψ(x1, x2, t)|2
for a fixed time t . Here a Cartesian coordinate system is spanned by the po-
sition variables x1, x2, and ρD is plotted in the direction perpendicular to the
x1, x2 plane. In this way the function ρD(x1, x2) appears as a surface. On two
margins of the coordinate plane, functions of only one variable, x1, or the
other, x2, are also shown. They are defined by

ρD1(x1, t) =
∫ +∞

−∞
ρD(x1, x2, t)dx2

and

ρD2(x2, t) =
∫ +∞

−∞
ρD(x1, x2, t)dx1 .

These marginal distributions describe the probability of observing one parti-
cle at a certain location, irrespective of the position of the second particle.

The black dot under the hump over the x1, x2 plane marks the expectation
values 〈x1〉 and 〈x2〉 of the positions of particles 1 and 2, respectively. From
the shape of the surface as well as from the marginal distributions, it is clear
that in our example particle 2 is localized more sharply than particle 1.

The function shown in the three parts of Figure 8.1 is a Gaussian distri-
bution of the two variables x1, x2. The mathematical form of such a bivariate
Gaussian probability density and of its marginal distributions was already dis-
cussed in Section 3.5.

8.2 Coupled Harmonic Oscillators

As a particularly simple and instructive dynamical system, let us investigate
the motion of two distinguishable particles of equal mass in external oscillator
potentials. Both particles are coupled by another harmonic force. The external
potentials are assumed to have the same form,

V (x1) = k

2
x2

1 , V (x2) = k

2
x2

2 , k > 0 .

The potential energy of the coupling is

Vc(x1, x2) = κ

2
(x1 − x2)2 , κ > 0 .

The Schrödinger equation for the wave function ψ(x1, x2, t) is then

ih̄
∂

∂t
ψ(x1, x2, t) = Hψ(x1, x2, t) ,
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where H is the Hamilton operator of the form

H = − h̄2

2m

∂2

∂x2
1

+ V (x1)− h̄2

2m

∂2

∂x2
2

+ V (x2)+ Vc(x1, x2) .

This equation is written, in analogy to the single-particle equation, so that
its right-hand side is the sum of the kinetic and potential energies of the two
particles.

The Schrödinger equation is solved with an initial condition that places
the expectation values of the two particles into positions x10 = 〈x1(t0)〉 and
x20 = 〈x2(t0)〉 at time t = t0. We consider the particular situation in which
the expectation values of the initial momenta of the two particles are zero.
In quantum mechanics there is an infinite variety of wave functions with the
expectation values 〈x1(t0)〉 = x10, 〈p1(t0)〉 = 0, and 〈x2(t0)〉 = x20, 〈p2(t0)〉 = 0
at initial time t0 describing the particles. Even if we restrict ourselves to the
bell-shaped form of a Gaussian wave packet at t0, we still have to specify its
widths and correlation. For later moments of time t > t0, the time-dependent
solution evolving out of the initial wave packet according to the Schrödinger
equation for two coupled harmonic oscillators maintains the Gaussian form.
Its parameters, however, become time dependent.

In Figure 8.2 the joint probability distribution ρD(x1, x2, t) is shown for
several times t = t0, t1, . . . , tN together with its marginal distributions ρD1(x1, t)
and ρD2(x2, t). We observe rather complex behavior. The hump where the
probability density is large moves in the x1, x2 plane and at the same time
changes its form; that is, the widths σ1,σ2 as well as the correlation coef-
ficient c are time dependent. The motion of the position expectation values
〈x1〉, 〈x2〉 is shown as a trajectory in the x1, x2 plane, and the initial positions
x10, x20 at t = t0 are marked as a black dot at the beginning of the trajectory.
The last dot on the trajectory corresponds to the time for which the proba-
bility density is plotted. A crude survey can be made by looking only at the
marginal distributions.

Figure 8.3a shows the time developments of the marginal distributions
of the system in Figure 8.2. The left-hand part contains the marginal distri-
bution ρD1(x1, t), the right-hand part ρD2(x2, t). The symbols on the x1 and
x2 axes indicate position expectation values of the particles that are identi-
cal to the classical positions. The initial momenta were chosen so that the
particles are, classically speaking, initially at rest. Particle 1 is initially in an
off-center position, particle 2 in the center. It is obvious from Figure 8.3a that
the position expectation values have the well-known energy exchange pattern
of coupled oscillators. The oscillation amplitude of particle 1 decreases with
time, whereas that of particle 2 increases until it has reached the initial am-
plitude of particle 1. At this moment the two particles have interchanged their
roles, and the energy is now transferred from particle 2 to particle 1. The time
developments of the widths in Figure 8.3a are much less clear.
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Fig.8.2. Joint probability density ρD(x1, x2, t) and marginal distributions ρD1(x1, t),
ρD2(x2, t) for two distinguishable particles forming a system of coupled harmonic oscil-
lators. The different plots apply to various times tj = t0, t1, . . . , tN . The classical position
of the two particles at the various moments in time is marked by a dot in the x1, x2 plane
and by two dots on the margins. The initial dot for tj = t0 is black. The classical motion
between t0 and tj is represented by the trajectory drawn in the x1, x2 plane.
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For a systematic study of coupled harmonic oscillators, it is important to
note the following.

1. The time dependence of the expectation values 〈x1(t)〉, 〈x2(t)〉 is de-
termined by their initial values and it is identical to that of classical
particles. It is independent of the initial values σ10, σ20, and c0 of the
widths and of the correlation coefficient.

2. The time dependence of the widths σ1(t), σ2(t) and of the correlation
coefficient c(t) is given by the initial values of these quantities. It does
not depend on the initial positions x10, x20.

The classical system of two coupled harmonic oscillators has two charac-
teristic normal oscillations. They can be excited by choosing particular initial
conditions. For one of the normal oscillations the center of mass remains at
rest. This situation can be realized by choosing initial positions opposite to
each other, x10 = −x20, so that the center of gravity is initially at the origin.
Since the sum of forces on the two masses in this position vanishes, the center
of mass stays at rest. The oscillation occurs only in the relative coordinate
r = x2 − x1. Its angular frequency is

ωr = √
(k +2κ)/m .

The second normal oscillation is brought about by initial conditions that
make the force between the two masses vanish. That is, the two particles have
the same initial position x10 = x20 = R0, which is therefore also the initial
position R of the center of mass. Since no force acts between the two parti-
cles, they stay together at all times, x1(t) = x2(t). Now, however, because the
sum of forces does not vanish, the center of mass moves under the influence
of a linear force. Thus it performs a harmonic oscillation with the angular
frequency

ωR = √
k/m .

Fig.8.3. Time development of the marginal distributionρD1(x1, t) on the left and marginal
distribution ρD2(x2, t) on the right for a system of coupled oscillators. The classical
positions of the two distinguishable particles are plotted on the two axes as circles for
particle 1 and particle 2. They coincide with the expectation values computed with
marginal distributions. (a) The initial position expectation value of particle 2 is zero. (b)
The particles are excited in a normal oscillation in which the center of mass oscillates
and there is no relative motion. (c) The particles are excited in a normal oscillation in
which there is relative motion and the center of mass is at the rest. In all three cases the
initial momentum expectation values of the two particles are zero.
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a

b

c

Fig.8.3.
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Oscillations with arbitrary initial conditions can be described as superpo-
sitions of the two normal oscillations, causing such phenomena as the trans-
fer of energy from one mass to the other. Normal oscillations can also be
produced in the quantum-mechanical coupled oscillators by exactly the same
prescription. Examples are given in Figures 8.3b and c.

Figure 8.4a presents the oscillations of the expectation values 〈x1(t)〉,
〈x2(t)〉, the widths σ1(t), σ2(t), and the correlation c(t) for a rather general
set of initial conditions. All these quantities have beats. We already know that
the beats in the time dependence of the expectation values come from super-
position of the two normal oscillations.

As we know from the example of the single harmonic oscillator (Sec-
tion 6.4), the width of the probability distribution oscillates with twice the
frequency of the oscillator. We may therefore stipulate that the widths σ1(t),
σ2(t) and the correlation coefficient c(t) will show periodicity with twice the
normal frequencies if their initial values σ10, σ20, and c0 are appropriately
chosen.

Figure 8.4b shows such a particular situation. Here the dependences of the
expectation values 〈x1(t)〉, 〈x2(t)〉 and of the widths and the correlation coef-
ficient are plotted. The initial position expectation values were chosen so that
the oscillators have the normal frequency ωR. The initial widths and correla-
tion coefficient were selected so that the frequency of these quantities is 2ωR.
As stated earlier, the time dependence of σ1, σ2, and c is totally independent
of the initial positions. In our example the positions were chosen to oscillate
with frequency ωR to allow for a simple comparison between the frequency
ωR of the positions and 2ωR of the widths.

Figure 8.4c gives the analogous plots for the other normal frequency ωr .
It is interesting to note that preparing the normal modes in the widths requires
an initial condition σ10 = σ20, a relation which then holds for all moments in
time. The variation in time of σ1 and σ2 is actually a periodic oscillation of
frequency 2ωR or 2ωr added to a constant. Furthermore, it should be remarked
that the initial value c0 of the correlation coefficient is different from zero in
both cases.

For one particular set of initial values σ1, σ2, and c, these quantities remain
constant independent of time, as shown in Figure 8.5. In this situation the
correlation coefficient is always positive, which is easily understood if we
remember the attractive force between the two oscillators. If the coordinate
of one particle is known, the other one is probably in its neighborhood rather
than elsewhere. This probability constitutes the positive correlation between
the variables x1 and x2.

In Section 6.5 we discussed the classical behavior of a bivariate Gaussian
phase-space distribution under the action of a harmonic force. We pointed out
that there is no difference between the temporal evolution of the uncorrelated
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c

b

a

Fig.8.4. Time dependences of the
expectation values 〈x1(t)〉, 〈x2(t)〉,
the widths σ1(t), σ2(t), and the cor-
relation c(t) for a system of coupled
harmonic oscillators. (a) Rather
general initial conditions were cho-
sen. (b) The oscillation of the ex-
pectation values corresponds to an
oscillation of the center of mass
with frequency ωR . The initial val-
ues σ1(t0), σ2(t0), and c(t0) were
chosen so that the two widths and
the correlation oscillate with fre-
quency 2ωR . (c) The oscillation of
the expectation values corresponds
to an oscillation in the relative mo-
tion with frequency ωr ; the widths
and the correlation oscillate with
frequency 2ωr .
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Fig.8.5. Coupled harmonic oscillators. The initial conditions 〈x1(t0)〉, 〈x2(t0)〉 are the
same as in Figure 8.4c, corresponding to an oscillation in the relative motion. The
parameters σ1(t0), σ2(t0), and c(t0), however, were chosen so that the widths and the
correlation coefficient remain constant independent of time. Top: Time developments of
the marginal distributions. Bottom: Time dependences of the quantities 〈x1(t)〉, 〈x2(t)〉,
σ1(t), σ2(t), c(t).
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classical phase-space distribution of initial spatial width σx0 and momentum
width σp = h̄/(2σx0) and of the Wigner distribution (cf. Appendix D) of an un-
correlated Gaussian wave packet of initial spatial width σx0. A corresponding
statement holds true also for the case of coupled harmonic oscillators of dis-
tinguishable particles. This is to say that the figures of this section are identical
to the ones derived from the temporal evolution of a Gaussian classical phase-
space distribution with the same initial position and momentum data and ini-
tially uncorrelated in position and momentum of each particle with widths
fulfilling Heisenberg’s uncertainty equation σx1σp1 = h̄/2, σx2σp2 = h̄/2.

8.3 Stationary States

The stationary wave functions ϕE are solutions of the time-independent
Schrödinger equation

HϕE (x1, x2) = EϕE (x1, x2) .

The Hamiltonian is that given at the beginning of Section 8.2. As in classical
mechanics, the Hamiltonian can be separated into two terms,

H = HR + Hr ,

where

HR = − h̄2

2M

d2

dR2
+ k R2

governs the motion of the center of mass

R = 1
2(x1 + x2)

and

Hr = − h̄2

2μ

d2

dr 2
+ 1

2

(
k

2
+κ

)
r 2

determines the dynamics of the relative motion in the relative coordinate

r = x2 − x1 .

Here M = 2m denotes the total mass, μ = m/2 the reduced mass of the sys-
tem.

The separation of the Hamiltonian permits a factored ansatz for the sta-
tionary wave functions,

ϕE (x1, x2) = UN (R)un(r ) ,

with the factors fulfilling the equations
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Fig.8.6. Wave function ϕE (x1, x2) for stationary states of a system of two coupled har-
monic oscillators for low values of the quantum numbers N and n. Note that ϕE (x1, x2)
is symmetric with respect to the permutation (x1, x2) → (x2, x1) for n even and antisym-
metric for n odd. The dashed ellipse in the x1, x2 plane corresponds to the energetically
allowed region for classical particles.

HRUN (R) = (N + 1
2 )h̄ωRUN (R) ,

Hr un(r ) = (n + 1
2 )h̄ωr un(r )

for the center-of-mass and relative motions, respectively. The functions UN (R)
and un(r ) are thus the eigenfunctions for harmonic oscillators of single parti-
cles, as discussed in Section 6.3. The total energy E is simply the sum of the
center-of-mass and relative energies:

E = (N + 1
2 )h̄ωR + (n + 1

2)h̄ωr .

The energy spectrum now has two independent quantum numbers, N for
center-of-mass excitations, and n for relative excitations. Figure 8.6 shows
the stationary states ϕE (x1, x2) for the lowest values of quantum numbers N
and n.
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Problems

8.1. Determine the coordinate transformation and thus the new coordi-
nates ξ1, ξ2 that transform the exponent of the Gaussian function for
ρD(x1, x2), as given in Section 8.1, to normal form so that we have

ρD(x1, x2) = A exp

{
−1

2

[
(ξ1 −〈ξ1〉)2

σ ′2
1

+ (ξ2 −〈ξ2〉)2

σ ′2
2

]}
.

8.2. Give an argument why the shape of the wave packet ρD(x1, x2, t) in Fig-
ure 8.2 changes with time as it does. It may help you to look carefully
at Figure 6.6 for the single harmonic oscillator.

8.3. Derive the relations given in Section 8.2 for the two normal frequencies
ωr and ωR for a classical system of coupled harmonic oscillators.

8.4. Verify that the Hamiltonian for a system of two coupled oscillators can
be decomposed into the Hamiltonian HR for the center-of-mass motion
and the Hamiltonian Hr for relative motion, as given at the beginning
of Section 8.3.

8.5. In Section 8.2 the oscillators decouple for κ = 0. The stationary Schrö-
dinger equation can be solved by a product ansatz in the variables x1, x2,

ϕE (x1, x2) = ϕE1(x)ϕE2(x2) , E = E1 + E2 .

Show that ϕE1(x1), ϕE2(x2) are then solutions of the stationary Schrö-
dinger equation for the one-dimensional harmonic oscillator.



9. Coupled Harmonic Oscillators:
Indistinguishable Particles

9.1 The Two-Particle Wave Function
for Indistinguishable Particles

The probability density ρD(x1, x2, t) = |ψ(x1, x2, t)|2 used in the last chapter
described the joint probability of observing particle 1 at position x1 and par-
ticle 2 at x2. There is no difficulty with this notion as long as particle 1 can
be unambiguously attributed to position x1 and particle 2 to x2. To so attribute
them, however, presupposes that particles 1 and 2 have different identities,
that they can be distinguished by properties other than being at different lo-
cations or having different momenta. They must have different intrinsic prop-
erties, for instance, different masses or different electric charges. A system
consisting of an electron and a proton is one in which the two particles have
different intrinsic properties. A system consisting of two electrons is not. For
such a system it is impossible in principle to distinguish the two particles if
they are close to each other.

To be more precise, we call two particles close to each other if their po-
sition expectation values 〈x1〉, 〈x2〉 differ by no more than the uncertainty to
which these positions are known. As usual, we denote the uncertainties in the
two positions by σ1 and σ2. Then the two particles are close if

(〈x1〉−〈x2〉)2 ≤ σ 2
1 +σ 2

2 .

For a system of two indistinguishable particles close to each other, the two
situations:

1. Particle 1 is at x1, particle 2 at x2

2. Particle 2 is at x1, particle 1 at x2

cannot be distinguished, and we can only assert that one of the two particles
is at x1 and the other at x2.

 Springer Science+Business Media New York 2012DOI 10.1007/978-1-4614-3951-6_ , ©
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Thus, in general, the probability density for such a situation does not allow
us to differentiate between the two particles. We therefore have to require that
the probability density |ψ(x1, x2, t)|2 remain unaltered if the two particles 1
and 2 are interchanged, that is, if their coordinates x1 and x2 are permuted in
the argument of ψ ,

|ψ(x1, x2, t)|2 = |ψ(x2, x1, t)|2 .

Nor can any of the measurable quantities distinguish the two particles. This
means that the potential energy of the two particles must be a symmetric func-
tion in the two position variables,

V (x1, x2) = V (x2, x1) ,

which, in turn, implies that the Hamiltonian of the two particles is also sym-
metric not only in the momenta p1 = −ih̄∂/∂x1, p2 = −ih̄∂/∂x2 but also in
the two position variables x1, x2:

H (p1, p2, x1, x2) = − h̄2

2m

∂2

∂x2
1

− h̄2

2m

∂2

∂x2
2

+ V (x1, x2)

= H (p2, p1, x2, x1) .

Therefore, together with the solution ψ ′(x1, x2, t) of the Schrödinger equation

ih̄
∂

∂t
ψ ′(x1, x2, t) = Hψ ′(x1, x2, t)

the function ψ ′(x2, x1, t) obtained by exchanging the arguments (x1, x2) is also
a solution of the Schrödinger equation. Thus any superposition

ψ(x1, x2, t) = aψ ′(x1, x2, t)+bψ ′(x2, x1, t) ,

where a and b are complex numbers, solves the Schrödinger equation

ih̄
∂

∂t
ψ(x1, x2, t) = Hψ(x1, x2, t) .

The symmetry of the probability density |ψ(x1, x2, t)|2 under the permutation
of x1 and x2 puts constraints on the coefficients a and b. We have

|ψ(x1, x2, t)|2 = a∗a|ψ ′(x1, x2, t)|2 +b∗b|ψ ′(x2, x1, t)|2
+a∗bψ ′∗(x1, x2, t)ψ ′(x2, x1, t)

+b∗aψ ′∗(x2, x1, t)ψ ′(x1, x2, t) .

Comparing this equation with the corresponding formula for |ψ(x2, x1, t)|2,
we conclude that the equations for the coefficients are

a∗a = b∗b , a∗b = b∗a .
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With factoring into absolute value and phase factor,

a = |a|eiα , b = |b|eiβ ,

we find
|a| = |b| , e2iα = e2iβ .

The periodicity of the exponential function fixes phase 2β relative to 2α mod-
ulus 2π only, that is,

2β = 2α+2nπ , n = 0, ±1, ±2, . . . .

Thus only two values for the phase factor eiβ remain,

eiβ = ei(α+nπ ) = ±eiα ,

and therefore
b = ±a .

For the superposition we find

ψ(x1, x2, t) = a[ψ ′(x1, x2, t)±ψ ′(x2, x1, t)] .

The overall phase eiα is arbitrary for any wave function, and the absolute value
|a| is fixed by the normalization condition for the wave function ψ(x1, x2, t).
Putting everything together, we conclude that the wave function for two in-
distinguishable particles is either symmetric

ψ(x1, x2, t) = ψ(x2, x1, t)

or antisymmetric
ψ(x1, x2, t) = −ψ(x2, x1, t)

under permutation of the two coordinates x1 and x2.
The behavior of these two types of wave function is characteristically dif-

ferent. The particles having a symmetric two-particle wave function are called
Bose–Einstein particles or bosons, those with an antisymmetric two-particle
wave function Fermi–Dirac particles or fermions. The distinction between
bosons and fermions becomes clear if we look at the values of their wave
functions for the particular locations x1 = x2. The symmetric wave function
is not restricted for these locations, whereas the antisymmetric solution must
vanish for them:

ψ(x , x , t) = 0 .

Thus, in particular, the probability density for two fermions at the same
position vanishes. Furthermore, if the two-particle wave function ψ(x1, x2, t)



9.2 Stationary States 173

is a product of two identical single-particle wave functions, the antisymmetric
two-particle wave function vanishes:

ψ(x1, x2, t) = ϕ(x1, t)ϕ(x2, t)−ϕ(x2, t)ϕ(x1, t) = 0 .

This result must be interpreted as saying that two fermions cannot popu-
late the same state, or that fermions must always populate different states. This
phenomenon was discovered in 1925 by Wolfgang Pauli when he was trying
to explain the fact that N electrons always populate the N lowest-lying states
in atomic shells. The postulate of antisymmetric wave functions for fermions
is called the Pauli exclusion principle.

9.2 Stationary States

As a first example, we look at the wave functions ϕE (x1, x2) for the stationary
states of two bosons or two fermions. They are obtained from solutions of the
time-dependent Schrödinger equation factored in time and space dependence
in the form

ψ(x1, x2, t) = exp

(
− i

h̄
Et

)
ϕE (x1, x2) .

For the stationary wave function the result of the last section requires symme-
try for bosons,

ϕB
E (x1, x2) = ϕB

E (x2, x1) ,

or antisymmetry for fermions,

ϕF
E (x1, x2) = −ϕF

E (x2, x1) .

For the motion of two indistinguishable particles in a system of coupled
harmonic oscillators, we start with the solutions obtained in Section 8.3 for
distinguishable particles. The function un(r ), being a solution of the one-
particle Schrödinger equation for harmonic motion in the relative coordi-
nate, is itself either symmetric, un(−r ) = un(r ) for even n, or antisymmetric,
un(−r ) = −un(r ) for odd n. Therefore the wave functions for two bosons are
simply

ϕB
E (x1, x2) = UN (R)un(r ) , n even ,

and correspondingly the wave functions for two fermions are

ϕF
E (x1, x2) = UN (R)un(r ) , n odd .

The two sets of wave functions together constitute the complete set that
we found for distinguishable particles. The symmetry or antisymmetry is ap-
parent in Figure 8.6. The spectrum of energy eigenvalues of coupled harmonic
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oscillators made up of distinguishable particles splits in two, one describing
the bosons,

E = (N + 1
2 )h̄ωR + (n + 1

2 )h̄ωr , n even ,

the other one the fermions,

E = (N + 1
2 )h̄ωR + (n + 1

2 )h̄ωr , n odd .

9.3 Motion of Wave Packets

In order to describe motions in our system of coupled harmonic oscillators,
we have to solve the time-dependent Schrödinger equation

ih̄
∂ψ

∂t
= Hψ .

If ψ(x1, x2, t) is a solution with the initial condition ψ(x1, x2, t0), then ψ(x2, x1,
t) is also a solution corresponding to the initial condition ψ(x2, x1, t0). This is
guaranteed by the symmetry of the Hamiltonian in coordinates and momenta
of indistinguishable particles, as discussed in Section 9.1.

Again, by symmetrization or antisymmetrization, we obtain still other so-
lutions of the time-dependent Schrödinger equation. They are

ψB(x1, x2, t) = aB[ψ(x1, x2, t)+ψ(x2, x1, t)] ,

ψF(x1, x2, t) = aF[ψ(x1, x2, t)−ψ(x2, x1, t)] ,

and correspond, of course, to symmetric or antisymmetric initial conditions.
The numerical factors aB, aF ensure normalization of the corresponding wave
packets.

As a first example, let us consider the motion of two bosons forming a
system of coupled harmonic oscillators. In Figure 9.1 the joint probability
density

ρB(x1, x2, t) = |ψB(x1, x2, t)|2
and the marginal distributions ρB1(x1, t) and ρB2(x2, t) are shown for several
times t = t0, t1, . . . , tN . Except for the symmetrization of the wave function,
all parameters are the same as those for distinguishable particles, whose mo-
tion was illustrated in Figure 8.2. In particular, the trajectory of the classical
particles in the x1, x2 plane is identical in both figures. Since the position ex-
pectation values x10, x20 at initial time t = t0 are farther apart than the width of
the unsymmetrized wave packet in Figure 8.2, we observe for t = t0 two well-
separated humps corresponding to points x1 = x10, x2 = x20, and x1 = x20,
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x2 = x10, respectively. The marginal distribution ρB1(x1, t0), which describes
the probability that one particle of the two will be observed at x1, irrespec-
tive of the position of the other one, also has two humps. The two humps
again reflect the fact that the two particles cannot be distinguished. Then, of
course, the marginal distribution ρB2(x2, t) has to be identical to the marginal
distribution ρB1(x1, t). In pursuit of their motion, the particles attain a distance
smaller than the width of the unsymmetrized wave packet. In this situation the
two humps are no longer separated but merge into one. For a later moment in
time they are again separated, and so on.

Figure 9.2 shows the corresponding motion of two fermions. For t = t0,
when the two particles are well separated, the situation looks qualitatively
similar, but it becomes strikingly different when the particles move close to
each other. The hump splits along the direction x1 = x2, where the probability
density is exactly zero as a consequence of the Pauli exclusion principle. In
fact, for fermions the probability density vanishes for locations x1 = x2 at all
moments in time. At no time can two fermions be at the same place.

Figures 9.3b and c show the time developments of the marginal distri-
butions ρB,F(x , t) for two bosons and for two fermions forming a system of
coupled harmonic oscillators. The difference between the two is much less
striking than that between the corresponding probability distributions of Fig-
ures 9.1 and 9.2. But still a trace of the Pauli exclusion principle is visible in
the marginal distributions. Near the center of Figures 9.3b and c, where the
particles are close to each other, the two humps are farther apart for fermions
than for bosons. For purposes of comparison, the time developments of the
two marginal distributions for the corresponding system of two distinguish-
able particles are given in Figure 9.3a.

9.4 Indistinguishable Particles
from a Classical Point of View

The quantum-mechanical description of the motion of indistinguishable par-
ticles poses the question whether the classical concept of the trajectory of a
particle can still be upheld or whether it has to be given up. Looking at the
joint probability distributions for indistinguishable particles in Figures 9.1 and
9.2, we observe two distinct humps as long as the classical positions are far
apart. The center of either of them moves along its classical trajectory with
the initial positions

x1 = x10 , x2 = x20 ,

or
x1 = x20 , x2 = x10 ,
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Fig.9.1. Joint probability density and marginal distributions for two bosons forming
a system of coupled harmonic oscillators. The joint probability density ρB(x1, x2, t) is
shown as a surface over the x1, x2 plane, the marginal distribution ρB1(x1, t) as a curve
over the margin parallel to the x1 axis, and the marginal distribution ρB2(x2, t) as a curve
over the other margin. The distributions are shown for various times tj = t0, t1, . . . , tN .
The positions of the classical particles are indicated by dots in the plane and on the
margins; their motion is represented by the trajectory in the x1, x2 plane.
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Fig.9.2. Joint probability density and marginal distributions for two fermions. All initial
conditions are the same as those for Figure 9.1.
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a

b

c

Fig.9.3. (a) Time developments of the two marginal distributions for two distinguishable
particles forming a system of coupled harmonic oscillators. Time developments of the
marginal distributions ρB,F(x , t) for the corresponding systems of (b) two bosons and
(c) two fermions.
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where x10, x20 are the position expectation values of the probability distribu-
tion for distinguishable particles. This observation suggests that although the
particles are indistinguishable in their intrinsic properties, they can under the
given circumstances be distinguished by their position. Thus if we call the par-
ticle that at t = t0 is in the neighborhood of x10 particle 1 and the particle that
is close to x20 particle 2, it is perfectly consistent to say that particle 1 stays
in the neighborhood of the trajectory 〈x1(t)〉 and particle 2 in that of 〈x2(t)〉,
as long as the two humps are well separated. Here, 〈x1(t)〉 is the expectation
value of the coordinate x1 for the wave packet of distinguishable particles and
also the classical position of particle 1 at time t . As soon as the particles come
closer to each other than the widths of the humps, there is no longer a clear
correspondence between the classical trajectory and the structure of the prob-
ability density. Once the positions are separated again, a new correspondence
can be established.

A look at the relevant formulae justifies this reasoning. The wave functions
ψB, for bosons, and ψF, for fermions, were obtained from that for distinguish-
able particles, ψ , by symmetrization and antisymmetrization,

ψB,F(x1, x2, t) = aB,F [ψ(x1, x2, t)±ψ(x2, x1, t)] .

The probability density is found by taking the absolute square,

ρB,F(x1, x2, t) = |ψB,F(x1, x2, t)|2
= |aB,F|2 [ρD(x1, x2, t)+ρD(x2, x1, t)± τ (x1, x2, t)] .

Here
ρD(x1, x2, t) = |ψ(x1, x2, t)|2

is the joint probability distribution for distinguishable particles with coordi-
nate x1 corresponding to particle 1 and coordinate x2 to particle 2. The density

ρD(x2, x1, t) = |ψ(x2, x1, t)|2

describes the situation in which particles 1 and 2 are interchanged.
The term

τ (x1, x2, t) = ψ∗(x1, x2, t)ψ(x2, x1, t)+ψ∗(x2, x1, t)ψ(x1, x2, t)

is called the interference term. This term is practically zero unless the two par-
ticles are closer to each other than the width of the single hump. To show this,
we consider the particular point x1 = x10, x2 = x20 in the top left-hand cor-
ner of Figure 8.2. Clearly here ψ(x10, x20, t) and its complex conjugate have
large amplitudes, whereas ψ(x20, x10, t) and its complex conjugate practically
vanish. Figure 9.5, which shows the interference term τ (x1, x2, t) for various
times t = t0, t1, . . . , tN , verifies the nature of the interference term. The figure
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Fig.9.4. Symmetrized probability density for two distinguishable particles forming a
system of coupled harmonic oscillators. All initial conditions are the same as those for
Figure 9.1.
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Fig.9.5. The interference term for two indistinguishable particles forming a system of
coupled harmonic oscillators. The distribution is shown for various times t = t0, t1, . . . , tN .
All initial conditions are the same as those for Figure 9.1.
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corresponds in all conditions to those of Figures 9.1 and 9.2. In fact, these
figures were obtained using the complex formula for ρB,F(x1, x2, t) given ear-
lier. In Figure 9.4 only the sum of the first two terms – the interference term
is excluded – is plotted. We see that the interference is comparable to the sum
of the other two only when these overlap, that is, when the particles are close
to each other.

The probability densities for bosons in Figure 9.1 and for fermions in Fig-
ure 9.2 are obtained from the symmetrized probability density for distinguish-
able particles given in Figure 9.4 and the interference term given in Figure 9.5.
We summarize this discussion by emphasizing that the probability density for
indistinguishable particles is obtained by symmetrizing the probability den-
sity for distinguishable particles and adding or subtracting the interference
term. This term contributes only if the particles are sufficiently close to each
other. Thus the concept of classical trajectories can be maintained as long as
we are able to distinguish the particles by their initial positions and as long as
we refrain from localizing them individually in the overlap region.

Finally, Figure 9.6a gives the marginal distribution for the symmetrized
probability density for distinguishable particles, which, of course, is nothing
but the sum of the two marginal distributions for distinguishable particles.
Figure 9.6b shows the marginal distribution for the interference term. Again,
the marginal distributions for bosons can be constructed by adding the distri-
butions of Figures 9.6a and b, those for fermions by subtracting the distribu-
tion of Figure 9.6b from that of Figure 9.6a.

In Section 8.3 we pointed out that for distinguishable particles there is no
difference between the classical time evolution of a Gaussian phase-space dis-
tribution of two coupled harmonic oscillators and of the Wigner distribution
(cf. Appendix D) of a corresponding Gaussian wave packet. This correspon-
dence no longer holds true for indistinguishable particles because of the ap-
pearance of the interference terms. The classical description of indistinguish-
able particles in terms of a phase-space distribution amounts to symmetrizing
ρD(x1, x2, t) and is thus given by

ρS(x1, x2, t) = 1

2
[ρD(x1, x2, t)+ρD(x2, x1, t)] ,

cf. Figure 9.4, for the initial data of the situation under consideration.

Problems

9.1. Which eigenstates of the system of two coupled harmonic oscillators,
as plotted in Figure 8.6, can be occupied by bosons, which by fermions?
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b

a

Fig.9.6. Time developments of (a) the marginal distribution for the symmetrized prob-
ability density for two distinguishable particles and (b) the marginal distribution for
the interference term for two indistinguishable particles. The particles form a system of
coupled harmonic oscillators. All initial conditions are the same as those for Figure 9.3.
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9.2. Show that the eigenfunctions for the coupled harmonic oscillators must
have the symmetry properties with respect to the permutation of x1, x2

observed in Figure 8.6.

9.3. Compare Figures 9.1 and 9.2 with Figures 9.4 and 9.5 and characterize
the role of the interference term in distinguishing bosons and fermions.

9.4. Electrons are fermions. They possess intrinsic angular momentum which
is called spin s and can assume the two projections ±h̄/2. The wave
function for an electron in a one-dimensional potential is fully charac-
terized by the spatial wave function ϕ(x) and the spin projection. The
Pauli exclusion principle then allows two electrons to occupy the same
spatial state since they can assume two spin projections.

A number N of electrons is to be accommodated in a potential well
of width d with infinitely high walls. What is the minimum total en-
ergy of all electrons? For the minimum total energy, what is the highest
energy an electron assumes? Express it in terms of the ground-state en-
ergy! How does this compare to the situation in which the potential is
occupied by N bosons?

9.5. Solve the preceding problem for the harmonic-oscillator potential.



10. Wave Packet in Three Dimensions

10.1 Momentum

The position of the classical particle in three-dimensional space is described
by the components x , y, z of the position vector:

r = (r , y, z) .

Similarly, the three components of momentum form the momentum vector:

p = (px , py , pz) .

Following our one-dimensional description in Section 3.3, we now introduce
operators for all three components of momentum:

p̂x = h̄

i

∂

∂x
, p̂y = h̄

i

∂

∂y
, p̂z = h̄

i

∂

∂z
.

The three operators form the vector operator of momentum,

p̂ = ( p̂x , p̂y , p̂z) = h̄

i

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
= h̄

i
∇ ,

which is the differential operator ∇, called nabla or del, multiplied by h̄/i.
The three-dimensional stationary plane wave

ϕp(r) = 1

(2π h̄)1/2
exp

(
i

h̄
px x

)
1

(2π h̄)1/2
exp

(
i

h̄
py y

)
× 1

(2π h̄)1/2
exp

(
i

h̄
pzz

)
= 1

(2π h̄)3/2
exp

(
i

h̄
p · r

)
with

p · r = px x + py y + pzz
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is simply the product of three one-dimensional stationary waves of the mo-
mentum components px , py , and pz corresponding to the three directions x ,
y, and z in space. The surfaces of constant phase δ are given by

i

h̄
p · r = δ .

They are planes perpendicular to the wave vector

k = p
h̄

.

The wave vector is the three-dimensional generalization of wave number k
in one dimension, as introduced in Section 2.1. It determines the wavelength
through the relation

λ= 2π

|k| .

The three-dimensional stationary plane wave is a simultaneous solution –
also called a simultaneous eigenfunction – of the three equations

p̂xϕp(r) = pxϕp(r) , p̂yϕp(r) = pyϕp(r) , p̂zϕp(r) = pzϕp(r) .

The three numbers px , py , and pz forming the vector p are called the momen-
tum eigenvalues of the plane wave ϕp(r).

The three-dimensional time-dependent wave function, like the one-dimen-
sional, is obtained by multiplying the stationary eigenfunction ϕp(r) by the
energy-dependent phase factor,

exp

(
− i

h̄
Et

)
, E = p2

2M
= 1

2M
(p2

x + p2
y + p2

z ) ,

that is,

ψp(r, t) = 1

(2π h̄)3/2
exp

(
− i

h̄
Et

)
exp

(
i

h̄
p · r

)
= ψpx (x , t)ψpy (y, t)ψpz (z, t) .

Here M is the mass of the particle. This time-dependent expression for the
three-dimensional harmonic wave also factors into exponentials correspond-
ing to the three dimensions.

The three-dimensional free, unaccelerated motion of a particle is again
described by a superposition of these plane waves with a spectral function,

f (p) = fx (px ) fy(py) fz(pz) ,

fa(pa) = 1

(2π )1/4√σpa

exp

[
− (pa − pa0)2

4σ 2
pa

]
, a = x , y, z ,
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which is the product of three Gaussian spectral functions centered around the
expectation values (px0, py0, pz0) = p0 with the widths σpx ,σpy ,σpz as intro-
duced in Section 3.2. The superposition of the functions ψp(r−r0, t) with the
spectral function f (p) is given by

ψ(r, t) =
∫

f (p)ψp(r− r0, t)d3p .

It represents the moving wave packet that starts at t = 0 around point r0 with
the average momentum p0. Because of the product forms of f (p) and ψp(r−
r0, t), the equation can also be written in product form,

ψ(r, t) = Mx (x , t)eiφx (x ,t) My(y, t)eiφy (y,t) Mz(z, t)eiφz(z,t) ,

where the meaning of the symbols can easily be inferred from the one-dimen-
sional wave packet of Section 3.2.

The set of the upper three plots of Figure 10.1 shows the probability distri-
bution |ψ(x , y,0, t)|2 in the x , y plane of the moving wave packet for the initial
moment in time, t0 = 0 and two later ones. The straight line in the x , y plane
marks the classical trajectory that has been chosen to lie in this plane. The dots
indicate the positions of the corresponding classical particle at the three mo-
ments in time. The probability distribution shown is a two-dimensional Gaus-
sian dispersing in time. The ellipse encircling the bell-shaped bump comprises
a certain fraction of the total probability. It is the covariance ellipse, which was
already discussed in Section 3.5. As the wave packet disperses, this ellipse
grows in size. For a Gaussian wave packet this ellipse completely character-
izes the position and the degree of localization of the particle in the x , y plane.
The complete three-dimensional Gaussian wave packet is then characterized
by a covariance ellipsoid. The lowest plot of Figure 10.1 shows the ellipsoids
that correspond to the three situations of Figure 10.1.

10.2 Quantile Motion, Probability Transport

In Section 7.1 the quantile motion was introduced for one-dimensional prob-
lems. We consider two different probabilities P1 < P2 with the two quantile
trajectories xP1(t), xP2(t). Then, the difference P2 − P1 is the time-independent
probability contained in the interval xP2(t)< x < xP1(t), i.e.,∫ xP1 (t)

xP2 (t)
�(x , t)dx = P2 − P1 .

For three-dimensional systems a corresponding statement holds true. We
denote by Vt the image at time t of the volume Vt0 at time t0 under the trans-
formation
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Fig.10.1.
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r = r(t ,x)

of every point x in Vt0 into r ∈ Vt . The transformation r(t ,x) is the solution of
the differential equation

∂r(t ,x)

∂t
= v(r(t ,x), t)

with the initial condition r(t0,x) = x. Here the velocity field v(r, t) is the quo-
tient v(r, t) = j(r, t)/�(r, t) of the probability current density j(r, t) and the
probability density �(r, t) of the quantum-mechanical system. With these pro-
visions the statement reads: The probability P contained in the volume Vt0 at
time t0 is contained in the volume Vt at time t ,∫

Vt

�(r, t)d3r = P .

We consider the force-free Gaussian wave packet of the last section. If for
simplicity we choose all momentum widths equal, σpx = σpy = σpz = σp, it
has the probability density

�(r, t) = 1

(2π )3/2σ 3(t)
exp

(
− (r− r0 −v0t)2

2σ 2(t)

)
with the initial expectation values of position r0 = (x0, y0, z0) and of velocity
v0 = (v0x ,v0y ,v0z) at t = 0. The square of its time-dependent width is σ 2(t) =
σ 2

0 + (σpt/m)2, where σ0 = h̄/(2σp).
In Figure 10.2 we show quantile trajectories for this wave packet. They are

curved lines, even though the motion of the wave packet is force-free. This is
due to the fact that the dispersion of the Gaussian wave packet follows the
width σ (t), which is a non-linear function of time.

In fact, the quantile trajectories for the force-free Gaussian wave have the
form

r(t ,x) = r0 +v0t + σ (t)

σ0
(x− r0) .

Fig.10.1. A three-dimensional Gaussian wave packet moves freely in space. Its position
expectation value moves on a straight line in the x , y plane. The first three illustrations
show for three equidistant moments in time the probability density in the x , y plane as
a bell-shaped surface, the expectation value as a dot on the plane, and the trajectory of
the corresponding classical particle as a straight line in the plane. The covariance ellipse
encircling the surface comprises a fixed fraction of the total probability. It contains the
complete probability density information for the x , y plane. The complete information
for the three-dimensional probability distribution is given by the probability ellipsoid.
It is centered around the position expectation value and shown at the bottom for the
three moments in time that are depicted separately in the first three plots. The classical
trajectory in space is also shown.
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Fig.10.2. The expectation value of a free three-dimensional spherically symmetric Gaus-
sian wave packet, which initially (at time t = t0) lies in the x , y plane, moves in the
positive x direction. As initial volume Vt0 comprising the probability P a sphere around
the expectation value is chosen. Quantile trajectories xP (t) of points which at t = t0 lie
on the surface of Vt0 at later times lie on the surface of volumes which also comprise the
same probability P . In this simple example all volumes Vti are spheres. The plot shows
the cuts z = 0 through three spheres Vt0 , Vt1 , Vt2 which are circles and trajectories in the
x , y plane. All parameters are as in Figure 10.1.

For a given probability P the initial sphere Vt0 with the radius R0,P consists of
all points x which satisfy the inequality |x−r0| = x < R0,P . At times t > 0 the
points x are mapped into the points r(t ,x). The mapping r(t ,x) satisfies the
above differential equation. Also images Vt of Vt0 are spheres. They contain
all the points r(t ,x) with x ∈ Vt0 .

The initial radius R0,P of the sphere is determined through the quantile
condition, i.e.,∫ R0,P

0

∫ 1

−1

∫ 2π

0

1

(2π )3/2σ 3
x0

exp

(
− x2

2σ 2
0

)
x2 dx dcosϑ dϕ = P ,

which leads to the equation

1− erfc

(
R0,P√

2σ0

)
−

√
2

π

R0,P

σ0
exp

(
− R2

0,P

2σ 2
0

)
= P ,

where erfc x denotes the error function discussed in Section 7.5. The time-
dependent radius of the sphere is determined by

RP(t) = σ (t)

σ0
R0,P .
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10.3 Angular Momentum, Spherical Harmonics

Three-dimensional motion is further characterized by angular momentum. For
a classical particle it is simply the vector product of the position vector and
the momentum vector,

L = r×p ,

or in components,

Lx = ypz − zpy , L y = zpx − xpz , Lz = xpy − ypx .

The quantum-mechanical analog is obtained by inserting the operator of mo-
mentum p̂ = (h̄/i)∇ into the classical expression for L. This yields the vector
operator of angular momentum,

L̂ = r× p̂ = h̄

i
r×∇ ,

or in components,

L̂ x = h̄

i

(
y
∂

∂z
− z

∂

∂y

)
, L̂ y = h̄

i

(
z
∂

∂x
− x

∂

∂z

)
, L̂ z = h̄

i

(
x
∂

∂y
− y

∂

∂x

)
.

Whereas the components of momentum commute with each other, that is,
[ p̂x , p̂y] = p̂x p̂y − p̂y p̂x = 0, and so on, the components of angular momentum
do not. In fact, the commutation relations are

[L̂ x , L̂ y] = ih̄ L̂ z , [L̂ y , L̂ z] = ih̄ L̂ x , [L̂ z, L̂ x ] = ih̄ L̂ y .

Because the commutators do not vanish, an eigenfunction of L̂ z cannot in
general be an eigenfunction of L̂ y as well. If, in addition to the eigenvalue
equation

L̂ zY = �zY ,

the relation
L̂ yY = �yY

would also hold, we would in general have a contradiction to the commutator
relation [L̂ y , L̂ z] = ih̄ L̂ x when applied to the eigenfunction Y :

(L̂ y L̂ z − L̂ z L̂ y)Y = (�y�z −�z�y)Y = 0 = ih̄ L̂ xY .

This observation is tantamount to the statement that noncommuting operators
do not have simultaneous eigenfunctions, except for trivial ones.

There is, however, another operator, the square of the vector operator of
angular momentum,

L̂2 = L̂2
x + L̂2

y + L̂2
z ,
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which does commute with any of the components:

[L̂2, L̂a] = 0 , a = x , y, z .

This relation is easily verified with the help of the commutation relations, for
example,

[L̂2
x + L̂2

y + L̂2
z , L̂ z]

= [L̂2
x , L̂ z]+ [L̂2

y , L̂ z]

= L̂ x [L̂ x , L̂ z]+ [L̂ x , L̂ z]L̂ x + L̂ y[L̂ y , L̂ z]+ [L̂ y , L̂ z]L̂ y

= L̂ x (−ih̄ L̂ y)− ih̄ L̂ y L̂ x + L̂ y(ih̄)L̂ x + ih̄ L̂ x L̂ y = 0 .

Thus, simultaneous eigenfunctions for L̂2 and any of the components, for
example, L̂ z, can be found. For the following discussion it is convenient to use
polar coordinates r , ϑ , and φ rather than Cartesian coordinates x , y, and z.
In a polar coordinate system a point is given by its distance r from the origin,
its polar angle ϑ , and its azimuth φ. The relations between the coordinates of
the two systems are

x = r sinϑ cosφ ,

y = r sinϑ sinφ ,

z = r cosϑ .

In polar coordinates the operators of angular momentum are

L̂ x = ih̄

(
sinφ

∂

∂ϑ
+ cotanϑ cosφ

∂

∂φ

)
,

L̂ y = −ih̄

(
cosφ

∂

∂ϑ
− cotanϑ sinφ

∂

∂φ

)
,

L̂ z = −ih̄
∂

∂φ
,

L̂2 = −h̄2

[
1

sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
+ 1

sin2ϑ

∂2

∂φ2

]
.

We can write eigenvalue equations for the two operators L̂2 and L̂ z:

L̂2Y�m = �(�+1)h̄2Y�m ,

L̂ zY�m = mh̄Y�m .

Both operators have as eigenfunctions the spherical harmonics Y�m(ϑ ,φ),
which are discussed in the next paragraphs. The eigenvalues of the square
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Fig.10.3. The first ten Legendre polynomials P�(u) = 1
2��!

d�

du�
[
(u2 −1)�

]
.
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Fig.10.4. Graphs of the associated Legendre functions Pm
� (u), top, and of the absolute

squares of the spherical harmonics Y�m(ϑ ,φ), bottom. Except for a normalization fac-
tor, the absolute squares of the spherical harmonics are the squares of the associated
Legendre functions.
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of angular momentum are �(�+ 1)h̄2. This quantum number of angular mo-
mentum � can take on only integer values �= 0, 1, 2, . . . . Thus, in contrast to
classical mechanics, the square of angular momentum can take only discrete
values that are integer multiples of h̄2. Correspondingly, the eigenvalues of the
z component Lz of angular momentum are mh̄. The quantum number m can
vary only in the range −� ≤ m ≤ �. In fact, m takes on only integer numbers
in this range. For historical reasons quantum number m is sometimes called
magnetic quantum number.

The spherical harmonics Y�m(ϑ ,φ) have an explicit representation which
is commonly based on the Legendre polynomials

P�(u) = 1

2��!

d�

du�
[
(u2 −1)�

]
.

Figure 10.3 shows the plots of these polynomials for � = 0, 1, 2, . . . , 9, and
the domain −1 ≤ u ≤ 1.

The Legendre polynomials are special cases of the associated Legendre
functions Pm

� , which are defined by

Pm
� (u) = (1−u2)m/2 dm

dum
P�(u) , m = 0, 1, 2, . . . ,� .

The top part of Figure 10.4 gives their graphs for �= 0, 1, 2, 3.
Finally, for m ≥ 0, the spherical harmonics Y�m have the representation

Y�m(ϑ ,φ) = (−1)m

√
2�+1

4π
· (�−m)!

(�+m)!
Pm
� (cosϑ)eimφ .

For negative m = −1, −2, . . . ,−� the spherical harmonics are

Y�,−m(ϑ ,φ) = (−1)mY ∗
�m(ϑ ,φ) .

Whereas the Legendre polynomials P�(u) and the associated Legendre
functions Pm

� (u) are real functions of the argument u, the spherical harmon-
ics Y�m are complex functions of their arguments. As an example, Figure 10.5
shows the real and imaginary parts as well as the absolute square of Y3m(ϑ ,φ).
As the definition and the plots indicate, |Y�m|2 depends only on ϑ . In fact, ex-
cept for the normalization factor, it is equal to [Pm

� (cosϑ)]2. For comparison,
the bottom of Figure 10.4 plots |Y�m|2 below Pm

� for �= 0, 1, 2, 3.
Since the variables of the spherical harmonics are the polar angle ϑ and

the azimuth φ of a spherical coordinate system, it is advantageous to repre-
sent |Y�m|2 in such a coordinate system. This is done in Figure 10.6 where
|Y�m(ϑ ,φ)|2 is the length of the radius subtended under the angles ϑ and φ
from the origin to the surface. In this way |Y00|2 = 1/(4π) turns out to be a
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Fig.10.5. The spherical harmonics Y�m are complex functions of the polar angle ϑ , with
0 ≤ ϑ ≤ π , and the azimuth φ, with 0 ≤ φ < 2π . They can be visualized by showing their
real and imaginary parts and their absolute square over the ϑ ,φ plane. Such graphs are
shown here for �= 3 and m = 0, 1, 2, 3.

sphere. For all possible values � and m the functions |Y�m|2 are rotationally
symmetric around the z axis. They can vanish for certain values of ϑ . These
are called ϑ nodes if they occur for values of ϑ other than zero or π . It should
be noted that |Y��|2 does not have nodes, whereas |Y�m|2 possesses �− |m|
nodes.
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Fig.10.5. (continued)

The Legendre polynomials possess the following orthonormality proper-
ties: ∫ 1

−1
P�(u)P�′(u)du = 2

2�+1
δ��′ .

Here δ��′ is the Kronecker symbol

δ��′ =
{

1 , �= �′
0 , � = �′ .
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Fig.10.6. Polar diagrams of the absolute squares of the spherical harmonics. The distance
from the origin of the coordinate system to a point on the surface seen under the angles
ϑ and φ is equal to |Y�m(ϑ ,φ)|2. Different scales are used for the individual parts of the
figure.



10.4 Means and Variances of the Components of Angular Momentum 199

(The expression orthonormality stems from the similarity of the integral with
a scalar product, cf. Appendix A, so that Legendre polynomials with different
index can be considered orthogonal to each other.)

For the spherical harmonics the orthonormality relation reads∫ −1

cosϑ=1

∫ 2π

φ=0
Y ∗
�m(ϑ ,φ)Y�′m′(ϑ ,φ)dcosϑ dφ = δ��′δmm′ .

Since the integral is extended over all possible angles ϑ and φ one can say
that integration is performed over the full solid angle Ω = 4π and one writes
the above integral in the somewhat abbreviated form∫

Y ∗
�m(ϑ ,φ)Y�m(ϑ ,φ)dΩ = δ��′δmm′ .

10.4 Means and Variances of the Components
of Angular Momentum

In Section 10.3 we discussed the eigenvalue equations for the spherical har-
monics

L̂2Y�m = h̄2�(�+1)Y�m ,

L̂ zY�m = h̄mY�m .

Application of the operators L̂ x and L̂ y yields

L̂ xY�m = h̄

2

√
�(�+1)−m(m +1)Y�m+1

− h̄

2

√
�(�+1)−m(m −1)Y�m−1 ,

L̂ yY�m = h̄

2i

√
�(�+1)−m(m +1)Y�m+1

− h̄

2i

√
�(�+1)−m(m −1)Y�m−1 ,

showing that the Y�m are not eigenfunctions of L̂ x , L̂ y .
With the help of the orthonormality relations of the spherical harmonics

given at the end of Section 10.3 we calculate the expectation values of the
three components and of the square of angular momentum,

〈Lx〉�m =
∫

Y ∗
�m(ϑ ,φ)L̂ xY�m(ϑ ,φ)dΩ = 0 ,

〈L y〉�m =
∫

Y ∗
�m(ϑ ,φ)L̂ yY�m(ϑ ,φ)dΩ = 0 ,



200 10. Wave Packet in Three Dimensions

〈Lz〉�m =
∫

Y ∗
�m(ϑ ,φ)L̂ zY�m(ϑ ,φ)dΩ = mh̄ ,

〈L2〉�m =
∫

Y ∗
�m(ϑ ,φ)L̂2Y�m(ϑ ,φ)dΩ = �(�+1)h̄2 .

Obviously, the expectation values of the three components (0,0,m) cannot
be interpreted as the three components of a vector, since the modulus square
of such a vector is m2, which is always smaller than the expectation value
�(�+1)h̄2 of L̂2,

〈Lx〉2
�m +〈L y〉2

�m +〈Lz〉2
�m = m2h̄2 ≤ �(�+1)h̄2 .

The reason for this astonishing result becomes obvious if we calculate
the expectation values of the squares of the angular momentum components.
Since Y�m is an eigenfunction of L̂ z, we find

〈L2
z〉�m =

∫
Y ∗
�m(ϑ ,φ)L̂2

z Y�m(ϑ ,φ)dΩ = h̄2m2 .

For the two other components we make use of the equations for L̂ xY�m and
L̂ yY�m given above and get

〈L2
x ,y〉 =

∫
Y ∗
�m(ϑ ,φ)L̂2

x ,yY�m(ϑ ,φ)dΩ = h̄2

2

[
�(�+1)−m2

]
.

The non-vanishing of these two expectation values 〈L2
x ,y〉�m resolves the above

difference,

〈L2
x〉�m +〈L2

y〉�m +〈L2
z〉�m

= h̄2

2

[
�(�+1)−m2

]+ h̄2

2

[
�(�+1)−m2

]+ h̄2m2 = �(�+1) .

With the help of the results for the expectation values of the squares of the
components we calculate the variances of the angular-momentum components

(var(Lz))�m = 〈
L2

z −〈Lz〉2
〉
�m

= 〈L2
z〉�m − h̄2m2 = 0 ,

(var(Lx ))�m = 〈
L2

x −〈Lx〉2
〉
�m

= 〈L2
x〉�m = h̄2

2

[
�(�+1)−m2

]
,(

var(L y)
)
�m

= 〈
L2

y −〈L y〉2
〉
�m

= 〈L2
y〉�m = h̄2

2

[
�(�+1)−m2

]
.

The uncertainties

(�Lx ,y,z)�m = (var(Lx ,y,z))
1/2
�m

of the three components of angular momentum for the eigenfunctions turn out
to be

(�Lx )�m = (�L y)�m = h̄
1√
2

[
�(�+1)−m2

]1/2
, (�Lz)�m = 0 .
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This shows that the eigenfunction Y�� belonging to the eigenvalue m = � plays
a particular role among the set −�≤ m ≤ �:

(i) For Y��(ϑ ,ϕ) the value of the z component m = � is closest to the ex-
pectation value of the modulus

√
�(�+1).

(ii) The uncertainties of the three angular-momentum components are small-
est.

For these reasons we shall take the eigenfunction Y��(ϑ ,ϕ) as the quantum-
mechanical state corresponding most closely to the classical vector

L = 〈Lz〉��ez = h̄�ez

of angular momentum. Here ez is a vector of unit length pointing in the z
direction.

10.5 Interpretation of the Eigenfunctions
of Angular Momentum

In Section 10.3 we found the eigenfunctions of angular momentum to be com-
pletely specified by the eigenvalue �(�+1)h̄2 of the square L̂2 of the angular-
momentum vector operator L̂ = (L̂ x , L̂ y , L̂ z) and by the eigenvalue mh̄ of L̂ z,
the z component of L̂. The choice of this particular coordinate frame is of no
special significance. In order to distinguish this frame from others we shall
indicate the z direction ez = (0,0,1) explicitly in the corresponding spherical
harmonics by replacing the notation,

Y�m(ϑ ,φ) → Y�m(ϑ ,φ,ez) .

We choose another direction denoted by the unit vector n = (nx ,ny ,nz) as
the z direction of another coordinate system. In this frame the polar angle
is denoted by ϑ ′ and the azimuth by φ′. The eigenfunctions of L̂2 and L̂ ′

z =
n · L̂ = nx L̂ x +ny L̂ y +nz L̂ z are then Y�m(ϑ ′,φ′,n). We shall denote the polar
and azimuthal angles of the direction n in the original coordinate system by
Θ and Φ,

n = (sinΘ cosΦ, sinΘ sinΦ, cosΘ) .

In Section 10.4 we found that the eigenfunction Y��(ϑ ,φ,n) is the quan-
tum-mechanical state which most closely resembles the classical angular-mo-
mentum vector

L = 〈L ′
z〉��n = h̄�n .
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We now analyze the wave function Y�m(ϑ ,φ,ez) of total angular momentum
�h̄ and z component mh̄ by the wave function Y��(ϑ ,φ,n). At this moment
the reader is encouraged to turn to the discussion in Appendix C about the
analysis of a wave function by another wave function. In the present case the
analyzing amplitude is

a = N
∫ 2π

0

∫ 1

−1
Y ∗
��(ϑ ,φ,n)Y�m(ϑ ,φ,ez)dcosϑ dφ

= N D(�)
m�(Φ,Θ ,0) .

These functions and the notation D(�)
m� were introduced by Eugene P. Wigner

and are known in the literature as Wigner functions. The normalization con-
stant N will be determined in the sequel.

We consider the absolute square of the analyzing amplitude

|a|2 = f�m(Θ ,Φ) = |N |2
∣∣∣D(�)

m�(Φ,Θ ,0)
∣∣∣2 = |N |2

[
d (�)

m�(Θ)
]2

.

Here, d (�)
m�(Θ) is also referred to as a Wigner function in the literature. It has

the explicit representation

d (�)
m�(Θ) =

√
(2�)!

(�+m)!(�−m)!

(
cos
Θ

2

)�+m (
sin
Θ

2

)�−m

.

These functions are shown in Figures 10.7 and 10.8. In our discussion in Ap-
pendix C we found that |a|2 is a probability density describing the result of the
measurement performed on a physical state described by one wave function
with a detector characterized by another wave function. In the particular case
at hand the physical state is described by the spherical harmonic Y�m(ϑ ,φ,ez).
The detector with which we want to measure the direction n of angular mo-
mentum is characterized by the spherical harmonic Y��(ϑ ,φ,n).

By an appropriate choice of the normalization constant

|N |2 = (2�+1)(�+1)

4π�
for �= 1,2,3, . . . ,

the quantity

f��(Θ ,Φ) = (2�+1)(�+1)

4π�

[
d (�)
�� (Θ)

]2

is turned into a directional distribution fulfilling the normalization condition

〈n〉�� =
∫ 2π

0

∫ 1

−1
n(Θ ,Φ) f��(Θ ,Φ)dcosΘ dΦ = ez .
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Fig.10.7. Polar diagrams of the Wigner functions d (�)
m�(Θ). Lines 1 and 2 show the func-

tions for � = 1, 2 and m = �, �− 1, . . . , −�. Lines 3 and 4 give them for � = 3,4 and
m = �, �−1, . . . , 0. The functions are independent of Φ. They have large values only in
a restricted region of Θ . That region is near Θ = 0 for m = � and decreases in regular
steps via Θ = π/2 for m = 0 to Θ = π for m = −�.
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Fig.10.8. Polar diagrams of the directional distributions f�m(Θ ,Φ) for �= 1.

The distribution f��(Θ ,Φ) defines the probability for the observation of a
direction within the solid-angle element

dΩ = dcosΘ dΦ = sinΘ dΘ dΦ

positioned about the direction n characterized by the polar angle Θ and the
azimuth Φ,

dP = �

�+1
f��(Θ ,Φ)dΩ .

We now introduce the “classical” angular-momentum vector with integer
length �h̄:

L�(Θ ,Φ) = h̄�n(Θ ,Φ) , �= 1,2,3, . . . .

Calculating its expectation value with the distribution f��(Θ ,Φ) yields

〈L�〉�� =
∫

L�(Θ ,Φ) f��(Θ ,Φ)dΩ = �h̄ez .

Normalizing the functions f�m(Θ ,Φ) with the same constant |N |2,

f�m(Θ ,Φ) = (2�+1)(�+1)

4π�

[
d (�)

m�(Θ)
]2

,
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we find that

〈L�〉�m =
∫

L�(Θ ,Φ) f�m(Θ ,Φ)dΩ = mh̄ez .

Therefore, we can also interpret the functions f�m(Θ ,Φ) as a measure for
angular-momentum probability densities. The probability of detecting in the
state Y�m the angular-momentum vector L� within the solid angle dΩ posi-
tioned about the direction characterized by Θ and Φ is

dP = �

�+1
f�m(Θ ,Φ)dΩ .

The “classical” average values 〈L�〉�m = mh̄ez are the same as the quantum-
mechanically calculated expectation values,

〈L〉�m =
∫

Y ∗
�m(ϑ ,φ,ez)L̂Y�m(ϑ ,φ,ez)dΩ = mh̄ez ,

as obtained in components in Section 10.4. Also the expectation value

〈L2〉�m = �(�+1)h̄2

of the square of the angular-momentum operator L̂ is reproduced by the dis-
tribution f�m(Θ ,Φ) of angular momentum,∫

L2
�(Θ ,Φ) f�m(Θ ,Φ)dΩ = �(�+1)h̄2 .

We may now ask what angle Θ the angular-momentum vector L� forms
with the z axis in the state Y�m . As a first step we form the marginal distribution
with respect to cosΘ of the distribution f�m(Θ ,Φ),

f�m cosΘ(cosΘ) =
∫ 2π

0
f�m(Θ ,Φ)dΦ = 2π f�m(Θ ,0) .

We turn this into an angular distribution in Θ by using the transformation

f�mΘ(Θ) = f�m cosΘ(cosΘ)

∣∣∣∣dcosΘ

dΘ

∣∣∣∣ = 2π f�m(Θ ,0)sinΘ .

Polar diagrams of these densities are shown in Figure 10.9.
The figures show clearly that the distribution f�mΘ(Θ) is concentrated

about a maximum value at Θ�m . With the explicit form of the d (�)
m�(Θ) given

before, the angle Θ�m can be calculated from the above formula in the form
of

cosΘ�m = m

�+ 1
2

.
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Fig.10.9. Polar diagrams of the distribution f�mΘ (Θ) for the polar angle Θ of the
direction of angular momentum. Lines 1 and 2 show the functions for � = 1,2 and
m = �, �−1, . . . , −�. Lines 3 and 4 give them for �= 3,4 and m = �, �−1, . . . , 0.
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Fig.10.10. Polar diagrams of the angular distribution f�mΘ (Θ). The top left plot contains
all polar diagrams for � = 1. In addition each polar diagram contains a line from the
origin to the point f�mΘ (Θ�m), where Θ�m is the angle for which f�mΘ has its maximum.
The second plot from the left in the top row shows the semiclassical angular-momentum
vectors Lsc

1,m which have polar angles similar to Θ�m . Pairs of plots of f�mΘ (Θ) and Lsc
�m

are also shown for �= 2,3, and 4.

We compare this with the angles of the semiclassical vector model as in-
troduced by Arnold Sommerfeld before the advent of quantum mechanics to
account for the quantization of angular momentum. He postulated the angular-
momentum vector in atomic physics to be of length

√
�(�+1)h̄, and z com-

ponent mh̄ as shown in Figure 10.10. The anglesΘ sc
�m of the various semiclas-

sical vectors of z component mh̄ are determined by

cosΘ sc
�m = m√

�(�+1)
,

which for �� 1 approaches the above formula for Θ�m if one neglects terms
of order (1/�)2 and higher in the denominator. Also for small values of �≈ 1
the angles Θ�m and Θ sc

�m do not differ very much; for � = 1, m = 1, we find
Θ sc
�m = 45◦ as compared to Θ�m ≈ 48◦.

To conclude this section we turn back to the directional distribution
f�m(Θ ,Φ). In Figure 10.11 we show polar diagrams of f��(Θ ,Φ) for increas-
ing values of �. The distributions become more and more concentrated around
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Fig.10.11. Polar diagrams of the directional distribution f��(Θ ,Φ) for �= 1,2, . . . ,6.

the z direction. In the classical limit �→ ∞ the distribution is different from
zero only in the z direction.

10.6 Schrödinger Equation

As we did for the one-dimensional harmonic wave in Section 3.2, let us com-
pare time and spatial derivatives of the three-dimensional harmonic wave
ϕp(r, t), which was introduced in Section 10.1. They are

ih̄
∂

∂t
ψp(r, t) = Eψp(r, t) ,

− h̄2

2M
∇2ψp(r, t) = p2

2M
ψp(r, t) .

Here M is the mass of the particle.1 The Laplace operator ∇2 is simply the
sum of the three second-order derivatives with respect to the coordinates:

∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
.

1From Chapter 10 onward we denote the mass of a particle by the capital letter M . This
is done to avoid confusion with magnetic quantum number m.
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Making use of the relation E = p2/(2M) between energy E , momentum p,
and mass M of a free particle, we obtain the Schrödinger equation for three-
dimensional unaccelerated motion,

ih̄
∂

∂t
ψp(r, t) = − h̄2

2M
∇2ψp(r, t) .

We may consider the operator on the right-hand side of this equation as
the operator of kinetic energy,

T = p̂2

2M
= 1

2M
( p̂2

x + p̂2
y + p̂2

z )

= 1

2M

(
−h̄2 ∂

2

∂x2
− h̄2 ∂

2

∂y2
− h̄2 ∂

2

∂z2

)
= − h̄2

2M
∇2 .

Thus the Schrödinger equation for three-dimensional free motion has the sim-
ple form

ih̄
∂

∂t
ψp(r, t) = Tψp(r, t) .

The equation can be extended to motion in a force field represented by a
potential energy V (r) by substituting for the operator of kinetic energy T the
Hamiltonian operator of total energy,

H = T + V .

The Schrödinger equation for motion under the influence of a force therefore
reads

ih̄
∂

∂t
ψp(r, t) = Hψp(r, t) =

[
− h̄2

2M
∇2 + V (r)

]
ψp(r, t) .

With the ansatz

ψp(r, t) = exp

[
− i

h̄
Et

]
ϕE (r) ,

which factors the wave function ψp(r, t) into a time-dependent exponential
and the time-independent, stationary wave function ϕE (r), we obtain the sta-
tionary Schrödinger equation[

− h̄2

2M
∇2 + V (r)

]
ϕE (r) = EϕE (r) .



210 10. Wave Packet in Three Dimensions

10.7 Solution of the Schrödinger Equation of Free Motion

Besides the solutions ψp(r, t) of the free Schrödinger equation, which repre-
sent harmonic plane waves with momentum p, there are equivalent solutions
which are determined by the quantum numbers � and m of angular momen-
tum and energy E . To find these solutions, we express the Laplace operator in
polar coordinates r , ϑ , and φ:

∇2ϕ(r ) = 1

r

∂2

∂r 2
rϕ(r )− 1

r 2

1

h̄2 L̂2ϕ(r ) .

Since the operator L̂2 of the square of angular momentum, as discussed
in Section 10.3, depends only on ϑ and φ, we now solve the Schrödinger
equation using an ansatz,

ϕE�m(r) = R(r )Y�m(ϑ ,φ) ,

which is a product of two functions. The first function R(r ) depends only
on the radial coordinate. The second function is the spherical harmonic
Y�m(ϑ ,φ), which was recognized in Section 10.3 as the eigenfunction for L̂2.
We obtain

− h̄2

2M
∇2ϕE�m(r) = − h̄2

2M

[
1

r

∂2

∂r 2
r R(r )− �(�+1)

r 2
R(r )

]
Y�m(ϑ ,φ)

= E R(r )Y�m(ϑ ,φ)

and conclude that

− h̄2

2M

[
1

r

∂2

∂r 2
r − �(�+1)

r 2

]
RE�(r ) = E RE�(r )

is the eigenvalue equation for the radial wave function RE�(r ) for positive
values of r . Here we explicitly indicate the dependence of the radial wave
function on energy E and total angular momentum �. We call ϕE�m(r) =
RE�(r )Y�m(ϑ ,φ) a partial wave of angular momentum � and z component
m. The solutions of this “free radial Schrödinger equation” are discussed in
some detail in the next section.

10.8 Spherical Bessel Functions

Let us consider the solutions of the linear differential equation that depends
on the integer parameter �,
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1

ρ

d2

dρ2
ρ− �(�+1)

ρ2
+1

]
f�(ρ) = 0 .

For ρ = kr , k = (1/h̄)
√

2M E , it is equivalent to the free radial Schrödinger
equation.

The complex solutions of this linear differential equation are the spherical
Hankel functions of the first (+) and second (−) kind,

h(±)
� (ρ) = C±

�

e±iρ

ρ
,

where the complex coefficients C� are polynomials of ρ−1 of the form

C±
� = (∓i)�

�∑
s=0

1

2ss!

(�+ s)!

(�− s)!
(∓iρ)−s .

The first few of the Hankel functions are

h(±)
0 = e±iρ

ρ
, h(±)

1 =
(

∓i+ 1

ρ

)
e±iρ

ρ
.

An equivalent set of solutions are the spherical Bessel functions, which
are simply the linear combinations

j�(ρ) = 1

2i

[
h(+)
� (ρ)−h(−)

� (ρ)
]

.

The spherical Neumann functions

n�(ρ) = 1

2

[
h(+)
� (ρ)+h(−)

� (ρ)
]

are also solutions of the linear differential equation. In terms of the spher-
ical Bessel and Neumann functions, the spherical Hankel functions can be
expressed as

h(±)
� (ρ) = n�(ρ)± i j�(ρ) .

The first few spherical Bessel and Neumann functions are

j0(ρ) = sinρ

ρ
, j1(ρ) = sinρ

ρ2
− cosρ

ρ
,

n0(ρ) = cosρ

ρ
, n1(ρ) = cosρ

ρ2
+ sinρ

ρ
.
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Fig.10.12. Spherical Bessel functions j�(ρ) and spherical Neumann functions n�(ρ) for
�= 0, 1, . . . , 4.
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Fig.10.13. For purely imaginary arguments iη, η real, the spherical Bessel functions j�,
the spherical Neumann functions n�, and the spherical Hankel functions h(+)

� are either
purely real or purely imaginary. The functions shown, that is, (−i)� j�(η), i�+1n�(η), and
i�+1h(+)

� (η), are purely real.
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The behavior of the spherical Bessel and Neumann functions for small
values of the argument is

j�(ρ) ∼ ρ� , n�(ρ) ∼ ρ−(�+1) ,

and for large ρ,

j�(ρ) −−−−→ρ→∞
1
ρ

sin(ρ− 1
2�π) ,

n�(ρ) −−−−→ρ→∞
1
ρ

cos(ρ− 1
2�π) .

Since the spherical Neumann functions n�(ρ) diverge at the origin, only the
spherical Bessel functions j�(ρ) are physical solutions of the free radial Schrö-
dinger equation. The n�(ρ) as well as the spherical Hankel functions h(±)

� (ρ),
however, are needed for the discussion of the radial Schrödinger equation
for a square-well potential. Figure 10.12 plots the j�(ρ) and the n�(ρ) for
�= 0, . . . , 4.

In connection with the wave functions for a square-well potential, we en-
counter negative energies Ei that make values of wave number ki = √

2m Ei/h̄
imaginary. Therefore the functions j�, n�, and h(+)

� are needed for imaginary
arguments ρ = iη. Using the original definition, we can write

h(±)
� (iη) = (∓)�±1

�∑
s=0

1

2ss!

(�+ s)!

(�− s)!
(±η)−s e∓η

η
.

The j�(iη) and n�(iη) are again given by the linear combinations of the
h(+)
� (iη) and the h(−)

� (iη). The values of these functions for such arguments are
either real or purely imaginary. Figure 10.13 presents the functions

(−i)� j�(iη) , i�+1n�(iη) , i�+1h(+)
� (iη)

for � = 0, 1, . . . , 4. The powers of i in front of j�(iη), n�(iη), and h(+)
� (iη)

ensure that the functions plotted in Figure 10.13 are real.
The h(+)

� (iη) play a role in describing bound states outside the potential
well. Their asymptotic behavior for large η is

i�+1h(+)
� (iη) ∼ e−η

η
, η→ ∞ .

10.9 Harmonic Plane Wave in
Angular-Momentum Representation

The spherical waves j�(kr )Y�m(ϑ ,φ), like the harmonic plane waves, form a
complete set of functions which can also be used for constructing wave pack-
ets by superposition or for decomposing stationary solutions into spherical
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)f(r,

z

r

ϑ

ϑ

Fig.10.14. The polar coordinate system used throughout the book for functions of the
type f = f (r ,ϑ). The admissible range of variables, 0 ≤ r <∞, 0 ≤ ϑ ≤ π , corresponds
to a half-plane. Here a half-circle around the origin, r = 0, is viewed perspectively from
a point outside the half-plane. The polar angle ϑ is measured against the z axis, which
points to the lower right. Lines of constant ϑ are straight lines beginning at the origin.
Lines of constant r are half-circles. Using the direction perpendicular to the half-plane
to define an f coordinate, we can represent a function f (r ,ϑ) as a surface in r ,ϑ , f
space. Figures 10.15 and 10.16 show lines of constant r and constant ϑ on this surface.

waves. In particular, we decompose the stationary harmonic plane wave into
partial waves,

eik·r = eikz = eikr cosϑ =
∞∑
�=0

(2�+1)i� j�(kr )P�(cosϑ) ,

where the z axis was chosen to be parallel to k and ϑ is therefore the angle
between k and r. Since the left-hand side of this relation does not depend on
the azimuth φ, only the spherical harmonic function Y�0 = √

(2�+1)/4π P�
occurs in the sum.

Figures 10.15 and 10.16 illustrate this decomposition. The polar coordi-
nates r and ϑ are used to plot functions over the r ,ϑ half-plane. The po-
lar coordinate system used throughout the book for functions of the type
f = f (r ,ϑ) is explained in Figure 10.14.

In the top right corner of Figure 10.15, the function cos(kz) = Re{eikz} is
presented. The left column contains the functions

(2�+1)i� j�(kr )P�(cosϑ) , �= 0, 2, . . . , 8 ,

which are the first few real terms in this decomposition. The right column
shows the sums of the first two terms, three terms, and so on. In the neigh-
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Fig.10.15. Decomposition of a plane wave into spherical waves. The real part
Re {eikz} = cos(kz) of a plane wave is shown in the top right corner. The left column
contains the terms of the decomposition that are purely real. The right column contains
the sums of the first two terms (N = 2), three terms (N = 4), and so on, of the left column.
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Fig.10.16. Decomposition of a plane wave into spherical waves. The imaginary part
Im{eikz} = sin(kz) of a plane wave is shown in the top right corner. The left column
contains the terms of the decomposition that are purely imaginary. The right column
contains the sums of the first two terms (N = 3), three terms (N = 5), and so on, of the
left column.
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borhood of the origin, the plane wave is described well by the first few terms
of the sum. Farther away from the origin, more terms have to be added. Near
the origin the first few terms are adequate because the functions j�(ρ) are sup-
pressed there for increasing � (see Figure 10.12). A similar illustration for the
imaginary part of the plane wave is given in Figure 10.16.

10.10 Free Wave Packet and Partial-Wave Decomposition

In Section 10.1 we discussed a three-dimensional unaccelerated wave packet
moving with group velocity v0 = p0/M . The wave packet was represented as
a superposition of plane waves that are eigenfunctions for the momentum op-
erator. The details of the superposition were determined by the spectral func-
tion f (p) which specifies the contribution of the plane wave with wave vector
k = p/h̄. Analogously, the same wave packet can be understood as a super-
position of the eigenfunctions Y�m(ϑ ,φ) for angular momentum multiplied by
appropriately chosen weight functions a�m(r ,0) for the radius variable r and
at time t = 0. In this kind of representation, the weight function regulates the
relative weight contributed by the various angular momenta.

The representation of the wave packet at initial time has the form

ψ(r,0) =
∞∑
�=0

�∑
m=−�

a�m(r ,0)Y�m(ϑ ,φ) .

In an additional step we may decompose the radial functions a�m(r ,0) into
purely wave number, that is, energy-dependent, coefficients,

b�m(k) =
∫ ∞

0
j�(kr )a�m(r ,0)r 2 dr ,

a�m(r ,0) = 2

π

∫ ∞

0
b�m(k) j�(kr )k2 dk ,

so that the free wave packet at t = 0 is now

ψ(r,0) = 2

π

∞∑
�=0

�∑
m=−�

∫ ∞

0
b�m(k) j�(kr )Y�m(ϑ ,φ)k2 dk .

In this decomposition of the free wave packet in terms of the eigenfunctions
of the free Schrödinger equation for the eigenvalues E , �, and m, the functions
b�m(k) play the role of spectral coefficients for angular momentum and spec-
tral functions for energy E = h̄2k2/2M . In Section 10.1 the spectral function
f (p) played a similar role in decomposition of the wave packet in terms of
eigenfunctions of the three momentum components.
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The moving wave packet is described by the time-dependent wave func-
tion ψ(r, t) which is obtained from the initial wave function by taking into
account the time-dependent phase factor exp(−iEt/h̄), that is,

ψ(r, t) = 2

π

∞∑
�=0

�∑
m=−�

∫ ∞

0
b�m(k)exp

[
− i

h̄
Et

]
j�(kr )Y�m(ϑ ,φ)k2 dk .

The angular-momentum content of the free wave packet is given by the spec-
tral coefficients b�m(k). They are time independent because angular momen-
tum is conserved.

If we ask for the contribution having angular-momentum quantum number
� and magnetic quantum number m irrespective of wave number k, we have
to integrate the probabilities b∗

�m(k)b�m(k)k2 dk over all wave numbers:

W�m = 2

π

∫ ∞

0
b∗
�m(k)b�m(k)k2 dk .

The probabilities W�m fulfill the normalization condition

∞∑
�=0

�∑
m=−�

W�m = 1 .

As an example, we consider the wave packet shown in Figure 10.17a.
Its center moves with constant velocity in the negative x direction keeping a
constant distance b from the x axis. That is, it behaves like a classical particle
with time-dependent position vector

r(t) = (x(t),b,0) ,

and constant momentum vector

p(t) = (−p,0,0) .

The angular-momentum vector of the classical particle,

L = r×p = (0,0,bp) ,

is independent of time and is oriented along the z direction. The absolute value
of the angular momentum is

L = |L| = bp .

We now consider a particle of constant momentum p which travels along an
arbitrary straight line. The shortest distance of this line from the origin is
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b

a

Fig.10.17. (a) The probability ellipsoid, here a sphere, of a free wave packet moving in the
x , y plane antiparallel to the x axis, shown at two moments of time. The dispersion of the
wave packet is apparent through the growth of the sphere with time. (b) Decomposition
of the wave packet shown in part a into angular-momentum states. The height of the
column drawn at point (�,m) is proportional to the probability W�m that the particle,
which is described by the wave packet, has angular-momentum quantum number � and
quantum number m for the component of angular momentum along the quantization
axis n. In this figure n was chosen to be the z axis. Also shown, on the upper margin, are
the probabilities W�, that the particle possesses quantum number � irrespective of the
value of m.
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called the impact parameter b. Obviously, for reasons of symmetry, the abso-
lute value of angular momentum for this particle is again L = bp.

Let us now study the probabilities W�m for the wave packet of Fig-
ure 10.17a. We quantize the angular momentum in the z direction, that is,
we use the eigenfunctions of L̂2 and L̂ z in decomposing the wave packet.
In Figure 10.17b the probabilities W�m are plotted for various values of �
and m. In the graphical representation each probability is proportional to the
height of the column sitting on top of point (�,m) in the coordinate grid.
Obviously, the probabilities can be different from zero only in points lying
within a sector between two straight lines, for which m = � and m = −�.
We note that, in contrast to the classical point particle, various angular mo-
menta contribute to the wave packet. In fact, for the quantization axis chosen,
the probabilities at points � = m are by far the largest for every �. This is
not surprising since the angular momentum of the corresponding particle has
only a z component. Nevertheless, values m < � also contribute. The contri-
butions W�m for m = �−1, �−3, . . . vanish. Because of the mirror symmetry
of the wave packet with respect to the x , y plane, functions Y�m(ϑ ,φ) with
m = �− 1, �− 3, . . . do not contribute. They are antisymmetric in ϑ with re-
spect to point ϑ = π/2.

The probabilities that a certain quantum number �will contribute irrespec-
tive of m are

W� =
�∑

m=−�
W�m .

They are plotted on the upper margin of Figure 10.17b. As a function of �, the
probabilities W� have a bell-shaped envelope reminiscent of a Gaussian. The
maximum of the marginal distribution corresponds to the angular momentum
of the classical particle.

We now study the dependence of the W�m distribution on the quantization
axis. Instead of the z axis, we first choose an axis n that forms an angle of
π/4 with the y axis in the z, y plane. Figure 10.18a shows that many more m
values now participate in the superposition of the wave packet. The marginal
distribution, however, remains unchanged. There are changes in the m distri-
bution because the new quantization axis does not point in the direction of
the classical angular-momentum vector. The distribution W� of the modulus
of angular momentum is independent of the quantization axis.

Finally, Figure 10.18b shows the probabilities W�m for the y axis as the
quantization direction of angular momentum, and Figure 10.18c shows them
for the x axis as the quantization direction. Since in both figures the quantiza-
tion direction is perpendicular to the classical angular-momentum vector, we
foresee that the expectation value of m will vanish. Indeed, the two distribu-
tions are symmetric around m = 0.
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c

b

a

Fig.10.18. All
three figures ap-
ply to the situ-
ation of Figure
10.17a. Like Fig-
ure 10.17b, they
show the decom-
position of the
wave packet in-
to angular-mo-
mentum states.
The quantization
axes are differ-
ent, however.
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Problems

10.1. Assuming that the components of the momentum operator in the three
spatial dimensions are given by

p̂i = h̄

i

∂

∂xi
, p̂ = ( p̂1, p̂2, p̂3) ,

show that the simultaneous stationary eigenfunction for the three mo-
mentum operators p̂i is the product of three one-dimensional momen-
tum eigenfunctions.

10.2. Calculate the probability density ρ(r, t) = ψ∗(r, t)ψ(r, t) of the three-
dimensional Gaussian wave packet of Section 10.1, using the explicit
form of M(x , t) as given in Section 3.2. In which direction does the
wave packet move? What is the square of its velocity? What determines
in which direction the wave packet disperses fastest?

10.3. Verify the commutation relations of the components of angular momen-
tum as given at the beginning of Section 10.3.

10.4. The spatial reflection is the transformation r → −r. How is this trans-
formation expressed in spherical coordinates? How do the spherical har-
monics Y�m(ϑ ,φ) behave under reflections?

10.5. Calculate the commutators of the angular-momentum-component oper-
ators L̂ x , L̂ y , L̂ z, and L̂2 with the coordinate operators x , y, and z and
with the momentum-component operators p̂x , p̂y , and p̂z.

10.6. Calculate the commutators of Lx , L y , Lz, and L̂2 with the radial coor-
dinate r = √

x2 + y2 + z2, and with p̂2. Use the results to compute the
commutators of angular momentum with a Hamiltonian for a spheri-
cally symmetric potential,

H = p̂2

2M
+ V (r ) .

10.7. Show that the three-dimensional free wave packet, as given by its spec-
tral representation in Section 10.1,

ψ(r, t) =
∫

f (p)ψp(r− r0, t)d3p ,

is a solution of the Schrödinger equation for three-dimensional free mo-
tion.
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10.8. What is the difference between the classical and the quantum-mechan-
ical centrifugal term L2/2Mr 2 in the Hamiltonian for a given angular
momentum?

10.9. Verify that the explicit expressions of the spherical Bessel functions
j0(ρ) and j1(ρ) and the spherical Neumann functions n0(ρ) and n1(ρ)
satisfy the free radial Schrödinger equation given at the beginning of
Section 10.8.

10.10. The explicit form of the spherical Hankel functions h(±)
� (ρ) is given at

the beginning of Section 10.8. Show that the asymptotic forms of the
spherical Bessel and Neumann functions for ρ → 0 and ρ → ∞ are as
given in this section.

10.11. Calculate the expression L̂ϕp(r). Explain why the result does not imply
that ϕp(r) is a simultaneous eigenfunction of the angular-momentum
operators L̂ x , L̂ y , L̂ z.

10.12. Calculate the expressions L̂{ j�(kr )Y�m(ϑ ,φ)} for �= 0, 1. What distin-
guishes the two cases �= 0 and �= 1?

10.13. What is the expectation value of angular momentum of a Gaussian wave
packet as given in Section 10.1? Explain why the result is time indepen-
dent.

10.14. Why is the m distribution in Figure 10.18b wider than that in Fig-
ure 10.18c? To find the answer, consider the y and z components of
angular momentum for the classical assembly of particles imitating the
wave packet.



11. Solution of the Schrödinger Equation
in Three Dimensions

In Section 10.6 the time-dependent Schrödinger equation for three-dimen-
sional motion under the influence of a potential was separated with respect to
time and space coordinates with the help of the ansatz

ψ(r, t) = exp

[
− i

h̄
Et

]
ϕE (r) .

The three-dimensional stationary Schrödinger equation for the function ϕE (r)
obtained at the end of that section is[

− h̄2

2M
∇2 + V (r)

]
ϕE (r) = EϕE (r) .

We now restrict ourselves to spherically symmetric systems, those in
which the potential V (r) depends only on the radial coordinate r . Following
the same line of thought used in Section 10.7, we separate radial and angular
coordinates,

ϕE�m(r) = R(r )Y�m(ϑ ,φ) ,

and arrive at the radial Schrödinger equation for the radial wave functions
R�(k,r ):

− h̄2

2M

[
1

r

d2

dr 2
r − �(�+1)

r 2
− 2M

h̄2 V (r )

]
R�(k,r ) = E R�(k,r ) .

Because the potential has spherical symmetry, this equation does not de-
pend on quantum number m of the z component of angular momentum. There-
fore the R�(k,r ) do not depend on m. Besides the kinetic and potential ener-
gies, the terms on the left-hand side of this equation represent the centrifugal
potential

h̄2

2M

�(�+1)

r 2
,

which is attributable to the angular momentum. This and the potential term
V (r ) are often combined to give the effective potential for a given angular
momentum �,
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V eff
� (r ) = h̄2

2M

�(�+1)

r 2
+ V (r ) .

The radial Schrödinger equation then reads[
− h̄2

2M

1

r

d2

dr 2
r + V eff

� (r )

]
R�(k,r ) = E R�(k,r ) .

This equation is a differential equation with one variable. Its solution for
potential functions that are simple in structure proceeds along the same lines
used to solve the one-dimensional Schrödinger equation in Chapter 4. Since
the radius variable r assumes positive values only, here we are looking for
solutions R�(k,r ) only on the positive half-axis. At the origin the solution
R�(k,r ) must be finite. Again, we have to distinguish the two types of solu-
tions, those for scattering processes and those for bound states.

In contrast to the three-dimensional Schrödinger equation, which does not
refer to a particular angular momentum, the radial Schrödinger equation de-
scribes a particle of a given angular-momentum quantum number �. The cen-
trifugal potential acts as a repulsive potential, also called a centrifugal barrier,
and keeps the particle of momentum p sufficiently distant from the origin
of the polar coordinate system. This way the impact parameter b – see Fig-
ure 10.17 – remains sufficiently large to guarantee that angular momentum
L = bp is conserved.

11.1 Stationary Scattering Solutions

As in Section 4.2, we have to formulate the boundary conditions for the so-
lutions that describe elastic scattering of a particle on a potential. In Sec-
tions 10.7 and 10.8 we have seen that the solutions of the radial Schrödin-
ger equation of free motion are the spherical Bessel and Neumann functions
j�(k,r ) and n�(k,r ). From Section 4.2 we learned that for forces of finite range
the particles move force free at distances far from the range of the force. For
elastic scattering on a potential of finite range d, the radial wave functions
R�(k,r ) must therefore approach a linear combination of spherical Bessel and
Neumann functions for values of r large compared to range d:

R�(k,r ) → A� j�(kr )+ B�n�(kr ) , r � d .

For some potentials the solution of the radial Schrödinger equation can be
given explicitly. As a particularly instructive example, we consider a square-
well potential:

V (r ) =
⎧⎨⎩

VI , 0 ≤ r < d1 , region I
VII , d1 ≤ r < d2 , region II
VIII = 0 , d2 ≤ r <∞ , region III

.
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Since the potential vanishes in region III, we say that it has the finite range
d = d2.

Scattering solutions of the radial Schrödinger equation have energy E > 0.
The solution in inner region I consists of j�(kIr ) only, since n�(kIr ) is singular
for r = 0. In regions II and III the solution can be written as a superposition
of j� and n�:

R�(k,r ) =
⎧⎨⎩

R� I = A� I j� (kIr )
R� II = A� II j� (kIIr )+ B� IIn� (kIIr )
R� III = A� III j� (kr )+ B� IIIn� (kr )

.

Here the wave numbers ki in regions i = I, II are

ki = 1

h̄

√
2M(E − Vi ) .

In region III

k = 1

h̄

√
2M E

is the wave number of the incident particles.
For every value of �, four of the coefficients A�N and B�N are determined

in terms of the fifth by the continuity conditions for the wave function and its
derivative at r = d1 and r = d2:

R� I(k,d1) = R� II(k,d1) ,
dR� I

dr
(k,d1) = dR� II

dr
(k,d1)

and

R� II(k,d2) = R� III(k,d2) ,
dR� II

dr
(k,d2) = dR� III

dr
(k,d2) .

The coefficient A� III can be chosen equal to unity, thus fixing a normaliza-
tion for the incident wave. For this choice the four coefficients A� I, A� II, B� II,
and B� III calculated from the continuity conditions as functions of the inci-
dent wave number k are real coefficients. Therefore the radial wave function
R�(k,r ) is real. Figure 11.1a presents the solutions R�(k,r ) as functions of
r for a fixed-energy value, that is, a fixed value of E0, and for a number of
angular-momentum values �.

Figure 11.1b shows for comparison the functions j�(kr ), which are in fact
the functions R�(k,r ) for a vanishing potential, that is, for the undisturbed
plane waves. Because j�(kr ) ∼ (kr )� is strongly suppressed near the origin
for high �, the wave function R�III for high enough � is approximated well
by the term A� III j�(kr ) so that B� III is numerically small. Therefore the cases
with and without a potential do not differ substantially for high enough �.
We obtain a rough idea of the size of the value of � above which the radial
function R� is only slightly changed by the potential.
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b

a

Fig.11.1. (a) Solutions R�(k,r ) of the radial Schrödinger equation for a potential that
is negative in region I, VI < 0; is positive and larger than the particle energy in region
II, VII > E; and vanishes in region III. The shape of the potential V (r ) is indicated by
the long-dash line, the particle energy E by the short-dash line. The short-dash lines
also serve as zero lines for the functions R�(k,r ). The energy is kept constant. The
various curves correspond to different angular-momentum quantum numbers �. (b)
The situation is the same as that in part a except that the potential is zero everywhere,
V (r ) ≡ 0. Here the solutions R�(k,r ) are identical to the spherical Bessel functions j�(kr ),
k = √

2M E/h̄.
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The argument rests on the discussion in Section 10.10. In Figure 10.17b
we showed the distribution of the angular-momentum components of a Gaus-
sian wave packet representing a classical particle moving with momentum
p = h̄k and impact parameter b. The classical angular momentum has the
value L = pb. We found that the spectral distribution of the angular momenta
of the wave packet peaks at this classical value L . If the impact parameter b is
larger than the range d of the potential, b > d, that is, if the classical angular
momentum L is high enough,

L > L0 , L0 = h̄kd ,

the trajectory of the classical particle will not be changed by the potential. By
implication, the radial wave functions R�(k,r ) with angular momenta h̄�> L0,
that is, �> kd, are essentially unaffected by the potential. Comparing the wave
functions of Figures 11.1a and 11.1b shows that they are very similar for high
values of �.

11.2 Stationary Bound States

The bound-state solutions occur for discrete values of negative energies E .
Let us study the “spherical square-well” potential, the simplest situation:

V (r ) =
{

VI < 0 , 0 ≤ r < d , region I
VII = 0 , d ≤ r <∞ , region II

.

The wave number
ki = √

2M(E − Vi )/h̄

is real in region I for E > VI and imaginary in region II for E < 0:

kII = iκII , κII = √−2M E/h̄ .

The wave function has to be proportional to j�(kIr ) in region I, again be-
cause n�(kIr ) is singular at r = 0. In region II the solution has to be propor-
tional to h(+)

� (iκIIr ), for only this function converges toward zero for large
distances r :

R�(k,r ) =
⎧⎨⎩ R� I(k,r ) = A� I j� (kIr )

R� II(k,r ) = A� IIh
(+)
� (iκIIr )

.

The coefficient A� II is determined in terms of A� I as a function of energy
by the two continuity conditions for the wave function and its derivative at
r = d. The continuity can be achieved only for certain discrete bound-state
energies. The constant A� I is fixed by the normalization of the wave function,∫ ∞

0
|R�(k,r )|2r 2 dr = 1 .
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Fig.11.2. Bound-state solutions Rn�(r ) of the radial Schrödinger equation for a
square-well potential for two angular-momentum values, � = 0, � = 1. The form of
the potential V (r ) is indicated by the long-dash line. On the left side an energy scale is
drawn, and to the right of it the energies En of the bound states are indicated by hori-
zontal lines. These lines are repeated as short-dash lines on the right. They serve as zero
lines for the solutions Rn�(r ). For � = 0 the radial dependence of the “effective potential”
V eff
� (r ) shown as a short-dash curve indicates the influence of angular momentum (see

Section 13.1).
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Because the wave function falls off exponentially in region II, the particle
is essentially confined to region I, the region of the potential. This confinement
is the typical signature of a bound state. Figure 11.2 shows for low angular
momenta the wave functions for the bound states in the square-well potential
described.

Problems

11.1. Explain by a wave-mechanical argument resting on the potential of the
centrifugal barrier why the radial wave functions R�(k,r ) for higher val-
ues of � do not penetrate into the potential region in Figure 11.1.

11.2. Show by direct calculation that the spherical wave ϕ(r ) = sin(kr )/r is
a solution of the three-dimensional Schrödinger equation

− h̄2

2M
∇2ϕ(r ) = Eϕ(r ) , E = h̄2k2

2M
.

11.3. A bound-state solution of vanishing angular momentum in a square-
well potential of finite depth V0 is given by

ϕ(r) = A

2i

(
eikr

r
− e−ikr

r

)
= A

sin(kr )

r
,

k = 1

h̄

√
2M(V0 − E) .

Outside the well the r dependence of the wave function is given by
exp(−κr )/r , κ = (1/h̄)

√
2M E . Therefore the function sin(kr ) must

have negative or zero slope at the edge r = d of the well. Use this in-
formation about the slope to find a minimum value for the potential V0

within the well so that there is at least one bound state. Explain why
there is always at least one bound state in a one-dimensional square
well.



12. Three-Dimensional Quantum Mechanics:
Scattering by a Potential

12.1 Diffraction of a Harmonic Plane Wave. Partial Waves

In Section 11.1 we found the solutions R�(k,r ) of the radial stationary Schrö-
dinger equation for spherical square-well potentials. Since the radial Schrö-
dinger equation is linear, its solutions are determined up to an arbitrary com-
plex normalization constant, which has to be inferred from the boundary con-
ditions of the three-dimensional problem we want to solve. As we have found
in Section 5.5, a harmonic plane wave is an appropriately chosen idealization
of an incoming wave packet representing a particle with sharp momentum. We
want to apply this finding to the three-dimensional case, that is, the scattering
or diffraction of a three-dimensional harmonic plane wave which represents a
particle of sharp momentum. Then the normalization of the radial wave func-
tion has to be chosen in such a way that, for great distances from the region
of the potential, the three-dimensional wave function consists of an incoming
plane wave exp(ik · r) and an outgoing wave.

In Section 11.1 the solutions R�(k,r ) of the radial Schrödinger equation
for spherical well potentials were chosen to be real so that in particular the
coefficients A� III and B� III are real. To help us find the correct normalization,
we turn to the physical interpretation of the solution R�(k,r ) in region III,

R� III(k,r ) = A� III j�(kr )+ B� IIIn�(kr ) ,

using the decomposition of the spherical Bessel functions j� and n� into the
spherical Hankel functions h(±)

� of Section 10.8,

j�(kr ) = 1

2i

[
h(+)
� (kr )−h(−)

� (kr )
]

,

n�(kr ) = 1

2

[
h(+)
� (kr )+h(−)

� (kr )
]

.

The spherical Hankel functions have the asymptotic behavior of complex
spherical waves,
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h(±)
� (kr )−−−−→kr→∞

1

kr
exp

[
±i(kr −�π

2
)
]

= (∓i)�
1

kr
exp(±ikr ) .

In Section 4.2 we learned that wave packets formed with a stationary wave
exp(ikx) move in the direction of increasing x , whereas those with exp(−ikx)
move in the direction of decreasing x values. For spherical waves this implies
that a stationary wave exp(−ikr ) describes a particle moving from large val-
ues of r toward the origin r = 0, that is, an incoming particle. By the same to-
ken exp(ikr ) describes an outgoing particle. Thus, except for an r -independent
factor, the decomposition of R� III into spherical Hankel functions

R� III = i

2

[
(A� III − iB� III)h

(−)
� − (A� III + iB� III)h

(+)
�

]
describes an incoming, h(−)

� , and an outgoing, h(+)
� , part of the wave function.

We now divide the radial functions R� by A� III − iB� III and obtain

R(+)
� (k,r ) = 1

A� III − iB� III
R�(k,r ) ,

which takes in region III the explicit form

R(+)
� III(k,r ) = − 1

2i
h(−)
� (kr )+ 1

2i
S�(k)h(+)

� (kr ) .

Here S�(k) is the scattering-matrix element of the �th partial wave

S�(k) = A� III + iB� III

A� III − iB� III
.

Now, finally, we have achieved the decomposition of R(+)
� III into the �th compo-

nent j�(kr ) of the plane wave and the outgoing spherical wave h(+)
� (kr ). This

structure becomes obvious if we add to the first term and subtract from the
second (1/2i)h(+)

� (kr ):

R(+)
� III = 1

2i

[
h(+)
� (kr )−h(−)

� (kr )
]
+ 1

2i
(S�−1)h(+)

� (kr )

= j�(kr )+ f�(k)h(+)
� (kr ) .

Here f� is the partial scattering amplitude

f�(k) = 1

2i
(S�(k)−1) .

It determines the amplitude of the outgoing spherical wave in relation to the
�th component j�(kr ) of the incoming plane wave.
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The recipe for constructing the three-dimensional stationary wave func-
tion is indicated by the formula for decomposing the plane wave exp(ik · r)
into partial waves:

eik·r =
∞∑
�=0

(2�+1)i� j�(kr )P�(cosϑ) , cosϑ = k · r/(kr ) .

Replacing the free radial wave function j�(kr ) by the solution R(+)
� (k,r ) of the

radial Schrödinger equation for a potential V (r ), we obtain

ϕ
(+)
k (r) =

∞∑
�=0

(2�+1)i�R(+)
� (k,r )P�(cosϑ) .

Figure 12.1 gives the real and imaginary parts and the absolute square
of ϕ(+)

k for the scattering of a plane wave from a repulsive potential that is
constant within a sphere around the origin:

V (r ) =
{

V0 > 0 , 0 ≤ r < d
0 , r ≥ d

.

The energy E of the wave is two-thirds of the height of the potential, that is,
E = 2V0/3. The two upper plots of Figure 12.1 for the real and the imaginary
parts show that the plane wave coming in from the left is strongly suppressed
within the sphere of the repulsive potential and that its pattern is modified,
particularly in the forward direction, by interference with the outgoing scat-
tered spherical wave. The patterns in these figures bear a certain resemblance
to those of water waves diffracted on a cylindrical obstacle in a ripple tank.
The real and imaginary parts of ϕ(+)

k are dominated by the incident plane wave
exp(ik · r). The pattern of the absolute square |ϕ(+)

k |2, however, stems entirely
from the superposition of the incident and scattered waves, since the absolute
square of the unscattered incident wave |exp(ik ·r)|2 = 1 would produce a flat
sheet. In particular, the ripples to the left of center in the bottom plot of Fig-
ure 12.1 are caused by the interference of the incident wave and the scattered
wave in the backward direction. This interference pattern accordingly exhibits
a wavelength half that of the incident wave. It tapers off with 1/r because the
outgoing spherical wave itself falls off with 1/r . There are no such ripples in
the forward direction because the exponentials in the scattered spherical wave
and the incident wave are identical.

12.2 Scattered Wave and Scattering Cross Section

If we insert into the right-hand side of the formula for ϕ(+)
k (r) the function

R(+)
� III in terms of j�(kr ) and the outgoing spherical wave h(+)

� , we obtain the
superposition
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Fig.12.1. Scattering of a plane wave incident from the left, that is, along the z direction, by
a repulsive potential. The potential is confined to the region r < d, indicated by the small
half-circle marked off by a short-dash line. The energy E of the plane wave is two-thirds
the height of the potential in this region. Shown are the real part, the imaginary part,
and the absolute square of the wave function ϕ(+)

k .
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ϕ
(+)
k (r) = eik·r +ηk(r)

of the incoming plane wave and the scattered spherical wave

ηk(r) =
∞∑
�=0

η�(r ,ϑ) ,

where η� is the �th scattered partial wave:

η� = (2�+1)i�
[

R(+)
� (kr )− j�(kr )

]
P�(cosϑ) .

In region III this scattered partial wave has the explicit form

η� = (2�+1)i� f�(k)h(+)
� (kr )P�(cosϑ) ,

which, for far-out distances, kr � 1, is dominated by the asymptotic term for
h(+)
� (kr ),

η� = (2�+1) f�(k)
eikr

r
P�(cosϑ) .

In external region III the scattered spherical wave has the explicit representa-
tion

ηkIII(r) =
∞∑
�=0

(2�+1)i� f�(k)h(+)
� (kr )P�(cosϑ) .

For far-out distances, kr � 1, this expression becomes

ηkIII(r)−−−→
kr�1 f (ϑ)

eikr

r
,

where the scattering amplitude

f (ϑ) = 1

k

∞∑
�=0

(2�+1) f�(k)P�(cosϑ)

modulates the amplitude of the scattered spherical wave for the various polar
angles ϑ .

Figure 12.2 plots the real and imaginary parts of the �th scattered partial
wave η� for values � = 0, 1, 2, 3, 4, 5. This partial wave is the product of an
r -dependent factor responsible for the variation along lines ϑ = const and
a ϑ-dependent factor responsible for the variation along lines r = const. As
expected from the Legendre polynomials P�(cosϑ), there is no ϑ variation
for � = 0, whereas the increasing complexity of the higher P� is signaled by
their � nodes in ϑ . The pictures indicate a 1/r falloff for large values of r ,
as expected from the asymptotic form of the η�. As already mentioned in
Section 11.1, the deviations of the radial wave functions from the free radial
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Fig.12.2. Real and imaginary parts of the scattered partial waves η�, resulting from the
scattering of a plane wave by a repulsive potential, as shown in Figure 12.1.
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wave function j� are substantial only for � ≤ kd . Indeed, we observe that
η5 is essentially zero, as are η6, η7, and so on. In our example kd equals 4.
We may wonder why the scattered partial waves η� for low � have important
contributions within the potential sphere. They are expected to contribute,
however, for the superposition of the η� has to compensate for the harmonic
plane wave in this region since ϕ(+)

k (r) is small in the sphere of a repulsive
potential.

Figures 12.3a and b give the real and imaginary parts of the scattered
spherical wave ηk(r) obtained by summing the scattered partial waves for
0 ≤ � ≤ 5. The η� essentially vanish for � > 5. Whereas the scattered partial
waves η� have the symmetry of the corresponding P�, their superposition ηk(r)
shows a definite forward structure, indicating that the scattering occurs for the
most part in the forward direction. Obviously, ηk(r) also falls off with 1/r for
large r .

Figure 12.3c gives the absolute square |ηk(r)|2. This function falls off
asymptotically with 1/r 2. The physical significance of |ηk|2 is the average
particle density for the scattered particles moving with velocity v = h̄k/M
radially away from the center. In experiments the scattered particles can be
detected only at distances that are large compared to the size of the scatter-
ing center. The average number �n of scattered particles passing through the
sensitive area �a of the detector during the time interval �t is the quantity
usually measured. For a given sensitive area �a, this number is the product
of the current density |ηk(r)|2v of the particles and the area �a times �t :

�n = v|ηk(r)|2�a�t .

The detector is located at r.
For fixed experimental conditions �a, �t , and v, the quantity |ηk(r)|2 is

directly proportional to the number of scattered particles observed. We as-
sume that many detectors are distributed evenly along a half-circle of radius r
around the scattering center. The direction of the incident particles forms the
diameter of the half-circle. Then we have only to compute |ηk(r)|2 to predict
the counting rates in all detectors. Figure 12.4a illustrates this situation. The
function |ηk(r)|2 is plotted in a half-circle band in the region where the detec-
tors could be placed. To overcome the 1/r 2 suppression in |ηk|2 the values of
this function have been blown up by a scaling factor. It becomes obvious from
this figure that |ηk|2 depends to a considerable extent on the scattering angle
ϑ , that is, the angle between the incident and the scattered particle.

Actually, the asymptotic form of ηk, that is, of ηkIII, which we found to be

ηkIII−−−→
kr�1 f (ϑ)

eikr

r
,

shows that the quantity



12.2 Scattered Wave and Scattering Cross Section 239

a

b

c

Fig.12.3. Real part, imaginary part, and absolute square of the scattered spherical wave
ηk resulting from the scattering of a plane wave by a repulsive potential, as shown in
Figure 12.1.
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b

a

Fig.12.4. (a) Intensity of the scattered spherical wave resulting from the scattering of a
plane wave by a repulsive potential, as shown in Figure 12.1. The intensity at a fixed
radius far outside the scattering region and for a given scattering angle ϑ is indicated
by the height of the band. The band corresponds to the outer rim of Figure 12.3c, blown
up by a scale factor. (b) Energy dependence of the differential scattering cross section
dσ (ϑ)/dΩ for the scattering of a plane wave by a repulsive potential. The differential
cross section is proportional to the intensity of the scattered wave, as we can see by
comparing the curve in the middle of part b with the band in part a. Both correspond to
the same energy.
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|rηkIII|2−−−→
kr�1 | f (ϑ)|2

is dependent only on the scattering angle ϑ . Its physical interpretation in terms
of the counting rate�n becomes clear if we observe that�a/r 2 =�Ω is the
sensitive solid angle of the detector. Furthermore, the incident current density
is equal to the incident average particle density times the average velocity,

j = |eik·r|2v = v .

Thus the number of scattered particles�n can be re-expressed in the form

�n = j
�a

r 2
|rηkIII|2�t

= j | f (ϑ)|2�Ω�t ,

which shows that | f (ϑ)|2 has the following physical meaning. It is the average
number of particles from an incident particle current of density 1 scattered per
second at angle ϑ per unit solid angle,

| f (ϑ)|2 = 1

j

�n

�Ω�t
.

In a classical experiment in which a particle beam is incident on a hard
sphere, the quantity on the right-hand side is the differential scattering cross
section. This notion is derived from the elastic scattering of a beam of point
particles with current density j incident on a rigid sphere of radius d. As
Figure 12.5 indicates, the impact parameter b is related to the scattering angle
ϑ by

b = d cos
ϑ

2
.

The number �n of particles incident during �t in the azimuthal sector �φ
with an impact parameter between b and b +�b is

�n = j�t b�b�φ .

This number of particles is scattered into the solid angle �Ω = �cosϑ�φ
where �cosϑ corresponds to �b through the relation

db

dcosϑ
= dϑ

dcosϑ

db

dϑ
= d

4

1

cosϑ/2
.

The number of particles scattered at angle ϑ per unit solid angle and unit time
is then

�n

�Ω�t
= 1

4
d2 j .
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d

ϑ=π−2α

b

α α

z

Fig.12.5. The classical elastic scattering of a point particle by a rigid sphere.

This rate of particles for a current density one is completely determined by
the properties of the scattering center, here a rigid sphere. The rate per unit
current density is the differential scattering cross section dσ/dΩ . For a rigid
sphere it is

dσ

dΩ
= 1

4
d2 .

In general, the differential scattering cross section is not constant but de-
pends on the direction of the scattered particle. When the scattering center is
spherically symmetric, the differential scattering cross section is a function
only of the scattering angle ϑ . Integration over the full solid angle 4π yields
the total scattering cross section. When classical particles are scattered off a
hard sphere, it is obtained by multiplying 1

4d2 by the full solid angle 4π ,

σtot = πd2 .

As expected, it is the geometrical cross section of the rigid sphere.
Coming back to our quantum-mechanical discussion, we can identify the

differential scattering cross section as

dσ

dΩ
= | f (ϑ)|2 .
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The function f (ϑ) as calculated earlier has the form

f (ϑ) = 1

k

∞∑
�=0

(2�+1) f�(k)P�(cosϑ) ,

which shows that it depends not only on the scattering angle but also on
the energy E = (h̄k)2/2M of the incident particles. It is customary to plot
dσ/dΩ = | f (ϑ)|2 as a function of cosϑ rather than ϑ . In Figure 12.4b this is
done for a range of energies and for the potential used in the earlier figures
of this chapter. For very low energy the differential cross section is constant
in cosϑ . With increasing energy it acquires a more complicated angular de-
pendence. This dependence is easily explained by observing that for very low
energy only the lowest partial wave, �= 0, contributes to the scattering ampli-
tude f (ϑ) through the Legendre polynomial P0(cosϑ), which is a constant.
With increasing energy more and more partial waves contribute, allowing a
richer structure in cosϑ .

The total cross section is obtained by an integration over the full solid
angle

σtot =
∫

dσ

dΩ
dΩ = 2π

∫ +1

−1
| f (ϑ)|2 dcosϑ .

For the following we need the orthogonality of different Legendre polynomi-
als, ∫ +1

−1
P�(cosϑ)P�′(cosϑ)dcosϑ = 2

2�+1
δ��′ ,

which can be inferred from the orthonormality of the spherical harmonics Y�0

and their relation to the P�, as discussed in Section 10.3. If we insert the series
for f (ϑ) into the integral for σtot, we obtain

σtot = 4π

k2

∞∑
�=0

(2�+1)| f�(k)|2 =
∞∑
�=0

σ� .

The terms in this sum are called partial cross sections,

σ� = 4π

k2
(2�+1)| f�(ϑ)|2 .

Figure 12.6 shows the various partial cross sections as functions of energy.
We notice that the partial cross section for � > 0 starts at zero for k = 0.
Furthermore, the contribution of the cross sections for increasing � sets in
with increasing energy so that for a given energy the sum over the partial
cross sections can be truncated at lmax

>∼kd , the maximum value of the classical
angular momentum at which scattering takes place. The total cross section
obtained by the summation is plotted as the topmost diagram of Figure 12.6.
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Fig.12.6. The partial cross
sections σ�(E) for � = 0, 1,
. . . , 5, and the total cross sec-
tion σtot(E), which is approx-
imated by the sum over the
first five partial cross sec-
tions for the scattering of a
plane wave by a repulsive
potential.

12.3 Scattering Phase and Amplitude, Unitarity,
Argand Diagrams

In Section 12.1 we obtained as a representation for the radial wave function
R(+)
� III(k,r ) the form

R(+)
� III(k,r ) = i

2

[
h(−)
� (kr )− S�(k)h(+)

� (kr )
]

.

We interpreted this solution as the superposition of the incoming spherical
wave h(−)

� and the outgoing spherical wave h(+)
� , which is multiplied by the

S-matrix element S�. Potential scattering conserves particle number, angu-
lar momentum, and energy E = (h̄k)2/2M so that the magnitude of velocity
h̄k/M remains unaltered. Therefore the current density of the incoming spher-
ical wave has the same size as the current density of the outgoing spherical
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wave. As a consequence, the particle densities in the incoming and outgoing
spherical waves in region III have to be the same. Since particle densities are
determined by the absolute squares of amplitudes, the scattering-matrix ele-
ment S�, representing the relative factor between the incoming and outgoing
spherical waves must have absolute value one.

In fact, the representation for S�, found in Section 12.1,

S� = A� III + iB� III

A� III − iB� III
,

satisfies this requirement,

S∗
� S� = A� III − iB� III

A� III + iB� III
· A� III + iB� III

A� III − iB� III
= 1 ,

which is called the unitarity relation for the S-matrix elements. Thus S� can
be represented as a complex phase factor

S�(k) = A� III + iB� III

A� III − iB� III
= e2iδ�(k) .

The scattering phase δ� determining S� can be calculated directly from
A� III and B� III if we observe that

e±iδ� = A� III ± iB� III√
A2
� III + B2

� III

allows the identification

cosδ� = A� III√
A2
� III + B2

� III

, sinδ� = B� III√
A2
� III + B2

� III

.

These relations can be used to show that δ� is a phase shift produced by
the potential. To this end we use the asymptotic representations, kr � 1, for
j�(kr ) and n�(kr ), as given in Section 10.8. In fact, the solution R� III of the
stationary Schrödinger equation presented at the beginning of Section 12.1
has the form

R� III =
√

A2
� III + B2

� III

[
cosδ� j�(kr )+ sinδ� n�(kr )

]
,

which asymptotically becomes

R� III −−−→
kr�1

√
A2
� III + B2

� III

1

kr

[
cosδ� sin

(
kr −�π

2

)
+ sinδ� cos

(
kr −�π

2

)]
,



246 12. Three-Dimensional Quantum Mechanics: Scattering by a Potential

l

Δλ

λ

δ = 2πΔ/λ

Fig.12.7. Definition of the scattering phase shift δ�. The solution R� of the radial Schrö-
dinger equation for a given �, here �= 0, is shown for the scattering of a wave of energy
E by a repulsive potential (top) and for vanishing potential (bottom). Asymptotically,
that is, far outside the potential region, both solutions differ only by a phase shift δ�.

i.e.,

R� III −−−→
kr�1

√
A2
� III + B2

� III

1

kr
sin

(
kr −�π

2
+ δ�

)
.

Figure 12.7 plots R�, together with j�, the �th partial wave of the harmonic
plane wave. The scattering phase shift δ� is easily recognized as the phase
difference between the two in the asymptotic region. In Figure 12.8 the energy
dependence of the various phase shifts δ� is shown for the repulsive square-
well potential used as our example. We have chosen the phases δ� so that
they are equal to 0 for E = 0. For the potential of our example, they fall off
smoothly with increasing energy.

In terms of the scattering phase δ�(k) the partial scattering amplitude can
be represented as

f�(k) = 1

2i
[S�(k)−1] = 1

2i
(e2iδ� −1) = eiδ�

[
1

2i
(eiδ� − e−iδ�)

]
= eiδ� sinδ� .
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Fig.12.8. Energy depen-
dence of the phase shifts
δ0(E), δ1(E) . . ., δ5(E) for
scattering by a repulsive
potential. There is an ambi-
guity in the definition of δ�,
which is resolved by choos-
ing δ�(0) = 0. All phase
shifts vary slowly with en-
ergy for scattering by a
repulsive potential.

The relation expressing that S� has absolute value one, reflects itself in the
equivalent unitarity relation for the partial scattering amplitude f�,

Im f�(k) = | f�(k)|2 .

As a complex number, the partial scattering amplitude can be plotted in an
Argand diagram similar to the one in Section 5.5. Here, however, f� stays on
the circumference of the circle with radius 1/2 centered at i/2 in the complex
plane because the unitarity relation can be written as

(Re f�)
2 +

(
Im f�− 1

2

)2

= 1

4
.

This relation is the equation for a circle of radius 1/2 centered at i/2 in the
complex plane. It is shown in Figure 12.9a.

As the wave number k = (1/h̄)
√

2M E of the incident wave changes, f�
moves on the circle. The scattering phase δ� is the angle between the ar-
row representing the complex number f�, and the real axis. The energy de-
pendence of the complex scattering amplitude f� is shown in detail in Fig-
ure 12.9b. The real and imaginary parts of f� as a function of the energy are
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Im f 

Re f

l

|

l

1

1
f l

f l

δ l

|2

b

a

Fig.12.9. (a) Unitarity circle. (b) Through the unitarity relation Im f� = | f�|2 the elastic
partial-wave amplitude is confined to a circle in an Argand diagram. The angle between
the vector f� in the complex plane and the real axis is the phase shift δ�. As the energy E
increases the point f�(E) moves on the circle starting at f�(0) = 0. Points equidistant in
energy are marked off by small circles (top left). Projections onto a vertical and horizontal
axis yield graphs of Im f�(E) (top right) and Re f�(E) (bottom left), respectively. The
function δ�(E) is also shown (bottom right).
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then obtained by projecting the Argand diagram onto the real and imaginary
axes. Finally, for completeness, we also show the energy dependence of the
scattering phase shift δ�.

There is an interesting relationship between the function f�(ϑ) in the for-
ward direction and the total cross section. We have

σtot = 4π

k2

∞∑
�=0

(2�+1)| f�(k)|2 .

Using the unitarity relation for the partial scattering amplitude,

| f�(k)|2 = Im f�(k) ,

and the particular value of P�(cosϑ) in the forward direction (ϑ = 0),

P�(1) = 1 ,

we obtain

σtot = 4π

k

1

k

∞∑
�=0

(2�+1)Im f�(k)P�(1) ,

σtot = 4π

k
Im f (0) ,

if we use the partial-wave representation of f (ϑ) for ϑ = 0.
This equation is called the optical theorem. It states that the total cross

section is directly given by the imaginary part of the forward scattering am-
plitude. The optical theorem reflects the conservation of the particle current in
the scattering process. In fact, the total current contained in the scattered wave
has to be supplied by the incident current. That is done through the interfer-
ence between the incident and the scattered waves in the forward direction.

Problems

12.1. Why is the wave function ϕ(+)
k (r) in Figure 12.1 suppressed beyond

the potential region indicated by the dashed circle close to the center?
Which effect makes it recover along the positive z axis? Use Huygens’
principle to draw an analogy to the scattering of light by a black disk.

12.2. Why must the scattered spherical wave ηk(r) as shown in Figure 12.3
be unequal to zero in the region of the repulsive potential and have a
wave pattern there? What can be said about its wavelength within the
potential region?
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12.3. In Section 12.2 the classical elastic scattering of point particles by a
rigid sphere of radius d was discussed. Replace the point particles by
spheres of radius a. Show that the results for the differential and total
cross sections stay valid if d is replaced by d +a.

12.4. Verify the unitarity relation for the partial scattering amplitude f�,

Im f� = f� f ∗
� ,

using the unitarity relation for the scattering-matrix element S�,

S�S
∗
� = 1 ,

as derived in Section 12.3. Put the unitarity relation for f� into the form
of an equation for the unitarity circle as given in Section 12.3.



13. Three-Dimensional Quantum Mechanics:
Bound States

13.1 Bound States in a Spherical Square-Well Potential

Figure 11.2 has already shown the radial wave function of bound states in a
three-dimensional square-well potential. Now in Figure 13.1 we plot the radial
wave function Rn� together with its square R2

n� and the function r 2 R2
n� for the

low angular-momentum quantum numbers �= 0, 1, 2. The reason for showing
r 2 R2

n� is that r 2 R2
n�(r )dr represents the probability that a particle is within a

spherical shell of radius r and thickness dr . Also shown in Figure 13.1 is the
energy spectrum of the eigenvalues. We observe that the number of bound
states is finite. The spacing between the different eigenvalues increases with
increasing energy. For a given � value the lowest-lying state has no node in
r , the next one has one node, and so on. We can enumerate the eigenvalues
En�, n = 1, 2, . . ., for a given � by the number n − 1 of nodes they possess.
In Figure 13.1 the square-well potential V (r ) is drawn as a long-dash line,
the effective potential as a short-dash line. The effective potential, as we have
learned, is made up of the centrifugal potential and the square-well potential,

V eff
� (r ) = h̄2

2M

�(�+1)

r 2
+ V (r ) .

The repulsive nature of the centrifugal potential suppresses the radial wave
function,

Rn�(r ) = AI j�(kr ) → AI

(2�+1)!!
(kr )� , kr � 1 , (2�+1)!! = 1 ·3 . . . (2�+1) ,

for small values of r and � > 0. It is also responsible for the increase in energy
En� for given n and increasing �. This suppression of the wave function for
� ≥ 1 near the origin is easily verified in Figure 13.1. For � = 0 the wave
functions start with values larger than zero at the origin. For � = 1 the wave
function is zero at the origin; however, it increases linearly close to r = 0.
For � = 2 the growth of the wave function from zero at the origin is only
that of a parabola. The slopes close to the origin become steeper with higher
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quantum numbers n at fixed �. Thus for fixed � the particle comes closer to the
origin for higher values of n. Higher values of n correspond to higher values
of the energy and of the momentum p. For a given angular momentum L the
classical relation L = bp shows that larger momenta p correspond to smaller
impact parameters b. In this respect the quantum-mechanical behavior of the
particle corresponds to classical mechanics.

The plot of r 2 R2
n�(k,r ) allows a particularly simple discussion. Let us start

with the value � = 0. The radial wave functions within the potential region
r < d are

Rn0(r ) = AI j0(kInr ) = AI
sinkInr

kInr
,

kIn = √
2m(En0 − V0) ,

so that the function

r 2 R2
n0(r ) = A2

I

k2
In

sin2 kInr

behaves in a simple sine-squared manner. For the higher angular momenta we
recall the asymptotic relation

j�(kr ) → 1

kr
sin

(
kr −�π

2

)
, kr � 1 ,

so that for r � 1/kIn the behavior is again sine-squared,

r 2 R2
n�(r ) → A2

I

k2
In

sin2
(

kInr −�π
2

)
, kInr � 1 .

Again, looking at Figure 13.1, we recognize the approach of the quantity
r 2 R2

n� toward this behavior. In region I close to the edge of the potential at
r = d, the centrifugal barrier is low for low values of �; it can therefore be
neglected in a coarse approximation. Thus, close to the outer rim of the po-
tential, the wave functions for different �, but equal n should look almost alike
and behave in a sine-squared manner. This is easily verified in Figure 13.1.

Fig.13.1. The radial eigenfunctions Rn�(r ) of bound states in a square-well potential for
three angular-momentum values, � = 0, 1, 2, are shown as continuous lines in the left
column. The form V (r ) of the potential is indicated by the long-dash line. Also shown for
� = 0 is the effective potential V eff

� (r ) which contains the influence of angular momentum.
On the left is an energy scale and to the right of it the energy eigenvalues En are indicated
by horizontal lines. These lines are repeated as short-dash lines on the right. They serve
as zero lines for the plotted functions. In the middle column the squares R2

n�(r ) of the
radial eigenfunctions are shown. Along a fixed direction ϑ , φ away from the origin, this
quantity is proportional to the probability that the particle will be observed within a
unit volume element around point r , ϑ , φ. In the right column are the functions r2 R2

n�(r ).
Their values are a measure for the probability of observing the particle anywhere within
a spherical shell of radius r and unit thickness.
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Fig.13.1.
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Fig.13.2. Dependence of the eigenvalue spectrum of a square-well potential on (top) the
width and (bottom) the depth of the well. The function shown is r2 R2

n�(r ) for the fixed
angular-momentum quantum number �= 2.

Figure 13.2 shows the dependence of the eigenvalue spectrum on the
width and depth of the potential. The number of eigenvalues grows as the
potential widens and deepens.

The full three-dimensional wave function is obtained by multiplying the
radial wave function Rn�(r ) by the spherical harmonic Y�m(ϑ ,φ),

ϕn�m(r) = Rn�(r )Y�m(ϑ ,φ) .

Since the absolute square ρn�m(r ,ϑ) of this wave function is independent of φ,

ρn�m(r ,ϑ) ≡ |ϕn�m(r)|2
= R2

n�(r )
2�+1

4π

(�−|m|)!
(�+|m|)!

[
P |m|
� (cosϑ)

]2
,
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a b

Fig.13.3. Absolute squares ρn�m(r ,ϑ) = |ϕn�m(r ,ϑ ,φ)|2 of the full three-dimensional
eigenfunction of a square-well potential. Here ρn�m(r ,ϑ)dV represents the probabil-
ity of observing the particle in the volume element dV at location (r ,ϑ ,φ). It is a function
only of the distance r from the origin and of the polar angle ϑ . (a) In this figure, which
applies to zero angular-momentum quantum number �, the function ϕ(r) depends only
on r . For values n = 1, 2, 3 of the principal quantum number it has n −1 = 0, 1, 2 nodes
in r indicated by the dashed half-circles. Each plot gives the probability density for
observing the particle at any point in a half-plane containing the z axis. Here and in
Figure 13.4 all plots have the same scale in r and ϑ . They do, however, have different
scale factors in ρ. (b) The functions ρn�m(r ,ϑ) as given in (a) but for �= 1 and m = 0, 1.
The ϑ dependence is given by the Legendre functions P |m|

� (cosϑ) which have �− |m|
nodes in ϑ , indicated by the dashed lines ϑ = const.
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Fig.13.4. The functions ρn�m(r ,ϑ) as given in Figure 13.3 but for �= 2 and m = 0, 1, 2.

it can be shown in an r ,ϑ plot. In Figures 13.3 and 13.4 this function is plotted
as a surface over a half-circle (0 ≤ r ≤ R; 0 ≤ ϑ ≤ π ) in the x , z plane. It is
the probability density for observing a particle at location (r ,ϑ ,φ); that is to
say

dw = |ϕn�m(r)|2 dV

= R2
n�

2�+1

4π

(�−|m|)!
(�+|m|)!

[
P |m|
� (cosϑ)

]2
r 2 dr dcosϑ dφ

is the probability of finding the particle in the volume element dV = r 2 dr
dcosϑ dφ at (r ,ϑ ,φ). In Figures 13.3 and 13.4 we recognize the nodes in r
as half-circles in the plane at which the probability density vanishes. They are
attributable to the nodes in the radial wave function Rn�(r ). In addition, there
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are �− |m| nodes in ϑ along rays ϑ = const in the plane originating from
zeros of Pm

� (cosϑ).

13.2 Bound States of the Spherically Symmetric
Harmonic Oscillator

For many model calculations in nuclear physics, a harmonic-oscillator poten-
tial has proved to be useful. The potential energy of a spherically symmetric
harmonic oscillator is

V (r) = k

2
r 2 = k

2
(x2

1 + x2
2 + x3

3 ) .

The stationary Schrödinger equation for a particle of mass M moving in this
potential has the form(

− h̄2

2M
∇2 + k

2
r 2

)
ϕ(r) = Eϕ(r) .

Instead of the separation of variables in polar coordinates, as discussed
in Section 10.7, we may just as well carry out the separation in Cartesian
coordinates, for the potential is a sum of terms, each of which depends on
only one of these coordinates. We start with the factorized ansatz

ϕ(r) = ϕ1(x1)ϕ2(x2)ϕ3(x3)

and arrive at three Schrödinger equations for one-dimensional harmonic os-
cillators in the coordinates x1, x2, and x3, which are identical to the equation
discussed in Section 6.3 for the coordinate x ,(

− h̄2

2M

d2

dx2
i

+ M

2
ω2x2

i

)
ϕi (xi ) = Eiϕi (xi ) , i = 1, 2, 3 ,

ω = √
k/M .

From Section 6.3 we know that the energy eigenvalues are

Ei = E(ni ) = (ni + 1

2
)h̄ω , ni = 0, 1, 2, . . . ,

with independent integer quantum numbers ni for the three oscillators. The
total energy E depends on the three quantum numbers n1, n2, and n3,

E(n1,n2,n3) = E(n1)+ E(n2)+ E(n3)

= (n1 +n2 +n3 + 3

2
)h̄ω .

The eigenfunctions ϕni (xi ) are normalized products of Hermite polynomials
and Gaussians. They were shown in Figures 6.4 and 6.5.
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The eigenfunctions of the three-dimensional harmonic oscillator are

ϕ′
n1,n2,n3

(x1, x2, x3) = ϕn1(x1)ϕn2(x2)ϕn3(x3)

with the eigenvalue E(n1,n2,n3). Figure 13.5 shows, as an example, the eigen-
function

ϕ′
210(x1, x2, x3) = ϕ2(x1)ϕ1(x2)ϕ0(x3) .

Since it is a function of the independent coordinates x1, x2, and x3, we
represent it by plotting it for various planes x3 = const in x1, x2, x3 space.
Since the x3 dependence is given by the simple Gaussian factor

ϕ0(x3) = const · exp

(
− x2

3

2σ 2
0

)
, σ 2

0 = h̄

Mω
,

the function is symmetric in x3 and is damped away as x3 increases in magni-
tude (see Section 6.3). It is also symmetric in x1, and antisymmetric in x2.

Obviously, all the different quantum-number triplets n1, n2, n3 having the
same sum correspond to different eigenfunctions ϕ′

n1n2n3
, that is, to different

physical states of the system. All these physical states, however, have the same
energy eigenvalue. They are therefore called degenerate states.

The usual separation of the three-dimensional Schrödinger equation in
polar coordinates yields the radial Schrödinger equation[

− h̄2

2M

1

r

d2

dr 2
r + V eff

� (r )

]
Rn�(r ) = En Rn�(r )

with the effective potential

V eff
� (r ) = h̄2

2M

�(�+1)

r 2
+ k

2
r 2 .

The solutions of this equation are

Rn�(r ) = Nn�

(
r 2

σ 2
0

)�/2
exp

(
− r 2

2σ 2
0

)
L�+1/2

nr

(
r 2

2σ 2
0

)
,

where the functions L�+1/2
nr

are the Laguerre polynomials,

L�+1/2
nr

(x) =
nr∑

j=0

(−1) j

(
nr +�+ 1

2
nr − j

)
x j

j!
, nr = 0, 1, 2, . . . .

The normalization constants are

Nn� =
√

nr !2n+2

[2(�+nr )+1]!!
√
πσ 3

0

.
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Fig.13.5. Eigenfunction ϕ′
210(x1, x2, x3) = ϕ2(x1)ϕ1(x2)ϕ0(x3) of the three-dimensional har-

monic oscillator expressed in Cartesian coordinates x1, x2, x3 and written as a product
of three one-dimensional harmonic-oscillator eigenfunctions. For this figure the width
parameter σ0 = 1 was chosen. The function is plotted for three planes x3 = 0, 1, 2. Be-
cause ϕ0(x3) is symmetric, the plots remain unchanged if the substitution x3 → −x3 is
performed. This figure should be compared with Figure 6.4.
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Fig.13.6. Laguerre polynomials of half-integer upper index. The lower index is equal to
the degree of the polynomial and to the number of its zeros. All zeros are at positive
values of the argument x .

The energy eigenvalues are given by

En = (n + 3

2
)h̄ω

with
n = 2nr +� .

Before studying the radial solutions Rn�, we first present the Laguerre polyno-
mials in Figure 13.6. The degree of the polynomial is equal to its lower index
and to the number of zeros on the positive x axis.

The radial solutions Rn� are shown in Figure 13.7. Their zeros are deter-
mined by the zeros of the corresponding Laguerre polynomial. Because of the
relation between the integer quantum numbers n, nr , and �, quantum number
n takes the values �, �+2, �+4, . . ..

In Figure 13.8 the functions Rn�, R2
n�, and r 2 R2

n� are shown together with
the potential V (r ), the effective potential V eff

� (r ), and the eigenvalue spectra
for the lowest eigenstates of the harmonic oscillator and the lowest angular-
momentum quantum numbers � = 0, 1, 2. With increasing energy the func-
tions reach out farther in r since the potential increases with r 2. The functions
are again suppressed near r = 0 for � = 0 by the centrifugal barrier. The sup-
pression is strongest for low energy E but high angular-momentum quantum
numbers �.
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Fig.13.7. Radial eigenfunctions Rnr �(ρ), n = 2nr +� for the three-dimensional harmonic
oscillator. Their zeros are the (n − 1)/2 zeros of the Laguerre polynomial L�+1/2

(n−�)/2(ρ2).
The argument ρ is the distance r from the origin divided by the width σ0 of the ground
state of the oscillator. Graphs in the same column belong to the same value of nr . Graphs
in the same row belong to the same value of �.

The three-dimensional stationary wave functions are

ϕn�m(r) = Rn�(r )Y�m(ϑ ,φ) .

Their absolute squares |ϕn�m|2, which are independent of the azimuth φ, are
plotted in Figures 13.9 and 13.10 for low values of n and �= 0, 1, 2. Since the
energy eigenvalues En depend on one quantum number only, there are again
degenerate eigenfunctions. From the properties of the spherical harmonics,
we know that for every � there are 2�+1 states of different quantum number
m. Moreover, for a given energy eigenvalue En there are eigenstates with
different angular momenta �. Because of the relation n = 2nr +�, the number
n of quanta of energy h̄ω above the energy 3

2 h̄ω of the ground state is even
or odd, depending on whether � is even or odd. Actually there are (n +1)(n +
2)/2 degenerate eigenfunctions to a given energy eigenvalue En.

How are the two different sets of solutions ϕ′
n1,n2,n3

and ϕn�m related? Ob-
viously, we have to be able to describe the same physical states by either set.
In fact, we are able to do so because most of the states are degenerate; that
is, a large number of states have the same eigenvalue. Obviously too, a lin-
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Fig.13.8. Radial eigenfunctions Rn�(r ), their squares R2
n�(r ), and the functions r2 R2

n�(r )
for the lowest eigenstates of the harmonic oscillator and the lowest angular-momentum
quantum numbers �= 0, 1, 2. On the left side are the eigenvalue spectra. The form of the
harmonic-oscillator potential V (r ) is indicated by a long-dash line, and, for � = 0, that
of the effective potential V eff

� (r ) by a short-dash line. The eigenvalues have equidistant
spacing. The eigenvalue spectra are degenerate for all even � values and all odd � values,
except that the minimum value of the principal quantum number is n = �.
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Fig.13.9. The absolute squares ρnr �m(r ,ϑ) = |ϕnr �m(r ,ϑ ,φ)|2, nr = (n − �)/2 of the full
three-dimensional eigenfunctions for the harmonic oscillator. The absolute squares are
functions only of r and ϑ . There are nr radial nodes, and �−|m| polar nodes, indicated
by dashed half-circles and rays, respectively. Each figure gives the probability density
for observing the particle at any point in a half-plane containing the z axis. All pictures
have the same scale in r and ϑ . They do, however, have different scale factors in ρ. In
this figure the ρnr �m are shown for �= 0 (left) and �= 1 (right).

ear superposition of degenerate eigenstates is again an eigenstate of the same
energy. Thus it is possible to express the eigenstates of a given energy in one
set by a linear superposition of the eigenstates of the same energy in the other
set. The only nondegenerate eigenstate is the ground state

ϕ′
000(r) = π−3/4σ

−3/2
0 exp

(
− r 2

2σ 2
0

)
= ϕ000(r) ,
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Fig.13.10. As Figure 13.9 but for �= 2.

which has the ground-state energy E0 = 3
2 h̄ω. This eigenstate is the same in

both sets. All other states are degenerate. As an example of a superposition
of Cartesian eigenstates ϕ′

n1n2n3
which forms an angular-momentum eigenstate

ϕn�m , we look at n = 2, �= 2, and m = 0. We have

ϕ220(r) = − 1√
6
ϕ′

200(r)− 1√
6
ϕ′

020(r)+
√

2

3
ϕ′

002(r) .

Figure 13.11 demonstrates this particular superposition. Figures 13.11 a,
b, and c give the three terms of this superposition in the x1, x3 plane. In Fig-
ure 13.11d the sum ϕ220(r) is shown. In Figure 13.11e its absolute square is
plotted in the x1, x3 half-plane to facilitate comparison with the r ,ϑ plot of
this same function |ϕ220(r)|2, which is given in Figure 13.11f.
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c f

b e

a d

Fig.13.11. An eigenstate ϕn�m(r ,ϑ ,φ) of the harmonic oscillator can be written as a linear
superposition of the degenerate eigenfunctions ϕ′

n1n2n3
(x1, x2, x3) having the same energy

eigenvalue (a,b,c). The three eigenfunctions for n = 2 in the x1, x2 plane each multiplied
by the appropriate factor; (d) the sum; (e) its square; (f) the function |ϕ220|2 in r ,ϑ
representation as known from Figure 13.10. Parts e and f are identical except that part
e has Cartesian coordinates, part f polar coordinates.

13.3 Harmonic Particle Motion in Three Dimensions

In Section 6.4 we described the motion of a Gaussian wave packet in a
one-dimensional harmonic-oscillator potential. We obtained for the absolute
square of the time-dependent wave functions a Gaussian distribution with an
expectation value oscillating like the classical point particle. Its width os-
cillates with twice the oscillator frequency. We therefore anticipate that in
the three-dimensional oscillator the expectation value of a three-dimensional
Gaussian wave packet moves on an elliptical trajectory as a classical point
particle does. The shape of the three-dimensional wave packet is completely
described by its covariance ellipsoid, which we introduced in Section 10.1.
The shape of the covariance ellipsoid itself oscillates, that is, it changes peri-
odically with time, its frequency being twice the oscillator frequency.

Figure 13.12 shows two examples for such a motion. The classical tra-
jectory is chosen to be identical for both. For simplicity the covariance el-
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Fig.13.12. A three-dimensional Gaussian wave packet, represented by its probability
ellipsoid, moves under the influence of an attractive force described by a harmon-
ic-oscillator potential. Its expectation value, that is, the center of the ellipsoid, describes
an elliptical trajectory. The initial conditions were chosen so that the ellipsoid does not
tumble, that is, its principal axes keep constant orientations. The magnitudes of the
principal axes oscillate with twice the oscillator frequency. Two examples are shown.
Top: The ellipsoid stays rotationally symmetric with respect to the z axis. Bottom: All
three principal axes of the ellipsoid are different.

lipsoid has two of its principal axes in the plane of motion. Moreover, the
initial conditions were chosen so that the directions of its principal axes do
not change while the ellipsoid is moving. Because the harmonic oscillator is
spherically symmetric, the oscillation in magnitude of all three principal axes
has the same frequency but may have different phases. In Figure 13.12 (top)
the covariance ellipsoid stays rotationally symmetric with respect to the axis
perpendicular to the plane of motion. The size of the ellipsoid changes dra-
matically with time. So does its shape: it oscillates between prolate and oblate.
In Figure 13.12 (bottom) all three principal axes of the ellipsoid are in general
different: the ellipsoid does not have rotational symmetry.
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13.4 The Hydrogen Atom

The most fundamental application of quantum mechanics is atomic physics.
The simplest atom is that of hydrogen; it consists of a simple nucleus, the
proton, and one electron bound by the electric force acting between them.
Since the mass of the proton is nearly 2000 times that of the electron, M, the
center of mass of the atom, for our purposes, coincides with the position of
the proton. We choose it to be the origin of our polar coordinate system. The
potential energy of the electron, which carries the charge −e in the electric
field of the proton of charge +e, is given by the Coulomb potential of the
proton,

U (r) = e

4πε0

1

r
,

multiplied by the charge of the electron:

Epot = V (r ) = − e2

4πε0

1

r
.

Here the ε0 = 8.854188×10−12 C
Vm is the electric field constant also called the

permittivity of free space. The constant e2/(4πε0) has the dimension of action
times velocity. It can therefore be expressed by a multiple of two fundamen-
tal constants of nature, namely Planck’s constant h̄ and the speed of light c.
Inserting numbers, we obtain

e2

4πε0
= αh̄c , α = 1

137
.

The dimensionless proportionality constant α is called the fine-structure con-
stant. It was introduced by Arnold Sommerfeld in 1916.

The stationary Schrödinger equation for the hydrogen atom then has the
form (

− h̄2

2M
∇2 − h̄c

α

r

)
ϕ(r) = Eϕ(r)

with M the electron mass. We solve this equation with the separation ansatz
in polar coordinates,

ϕ(r) = R(r )Y�m(ϑ ,φ) ,

which yields the radial Schrödinger equation for the hydrogen atom,[
− h̄2

2M

1

r

d2

dr 2
r + V eff

� (r )

]
Rn�(r ) = En Rn�(r ) .

It is an eigenvalue equation for the radial eigenfunctions Rn� with the energy
eigenvalues En. The effective potential is the sum of the centrifugal potential
and the Coulomb potential:



268 13. Three-Dimensional Quantum Mechanics: Bound States

V eff
� (r ) = h̄2

2M

�(�+1)

r 2
− h̄c

α

r
.

The energy eigenvalues En depend on the principal quantum number n only.
We have

En = −1

2
Mc2α

2

n2
, n = 1, 2, . . . .

They form an infinite set of discrete energies. The coefficient in this equation
has the value Mc2α2/2 = 13.61eV.

The normalized radial wave functions Rn� have the form

Rn� = Nn�

(
2r

na

)�
e−r/na L2�+1

n−�−1

(
2r

na

)
,

n = 1, 2, 3, . . . , �= 0, 1, 2, . . . ,n −1 ,

with the normalization factor

Nn� = 1

a3/2

2

n2

√
(n −�−1)!

(n +�)! .

Here the parameter

a = h̄

αMc
= 0.5292×10−10 m

is the Bohr radius of the innermost orbit. In the model of the hydrogen atom
that was put forward by Niels Bohr in 1913, the electron can turn around the
nucleus in circular orbits. These orbits can have only certain discrete radii
rn = n2h̄/(αMc). The innermost orbit for n = 1 is r1 = a.

The function L2�+1
n−�−1(x) is a particular Laguerre polynomial,

Lk
p(x) =

p∑
s=0

(−1)s

(
p + k
p − s

)
xs

s!
,

with the integer upper index k = 2�+1. Some of these polynomials with low
values of p and k are shown in Figure 13.13. We note that the number of
zeros equals p, and that all zeros occur for positive values of the argument
x . In Section 13.2 we found that the radial wave functions of the spherically
symmetric harmonic oscillator contain the Laguerre polynomials L�+1/2

nr
(x) of

half-integer upper index. They were plotted in Figure 13.6 for a few values of
the indices. A comparison of Figures 13.13 and 13.6 reveals a strong similarity
between the two sets of polynomials.

The radial wave functions Rn� for the electron in the hydrogen atom are
shown in Figure 13.14. Their behavior for large values of r is dominated
by the exponential exp[−r/(na)]. Near r = 0 it is determined by the power
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Fig.13.13. Laguerre polynomials of integer upper index. The lower index is equal to the
degree of the polynomial and to the number of its zeros. All zeros are at positive values
of the argument x . The graphs look rather similar to those of Figure 13.6, which shows
the Laguerre polynomials of half-integer upper index. That they are in fact different
can be seen, for example, from the positions of the zeros.

[2r/(na)]�. Their zeros are those of the corresponding Laguerre polynomial,
that is, the radial wave functions Rn�(r ) possess n −�−1 zeros.

Let us compare the radial wave functions of the hydrogen atom with those
of the harmonic oscillator. We realize that with increasing energy eigenvalue
the wave functions of the hydrogen atom spread much faster to larger radii
than do those of the harmonic oscillator. Obviously, the reason is that the
Coulomb potential becomes wide with total energy much more quickly than
the harmonic-oscillator potential does. This difference manifests itself in the
analytic form of the wave functions of the two systems. The radial wave func-
tions of the harmonic oscillator, as presented in Section 13.2, contain the fac-
tor exp[−r 2/(2σ 2

0 )], which varies little for r 2/(2σ 2
0 ) � 1 and approaches zero

very quickly for values r 2/(2σ 2
0 ) > 1. The radial wave functions of the hy-

drogen atom contain the factor exp[−r/(na)], which varies more strongly for
r/(na) � 1 and falls off to zero much more slowly in the region r/(na)> 1.

The spectrum of energy eigenvalues is highly degenerate because, for a
given quantum number n, the angular-momentum quantum number � can take
any one of the values 0 ≤ �≤ n −1, and, for a given �, quantum number m of
the z component Lz of angular momentum runs between −� ≤ m ≤ �. Thus
for a given n there are

∑
(2�+ 1) = n2 different states, all having the same

eigenvalue En.
In Figure 13.15 the radial wave functions Rn�(r ) are shown together with

the Coulomb potential V (r ) and the effective potential V eff
� (r ) for the lowest
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Fig.13.14. Radial eigenfunctions Rn�(ρ) for the electron in the hydrogen atom. Their ze-
ros are the n −�−1 zeros of the Laguerre polynomials L2�+1

n−�−1(2ρ/n). Here the argument
of the Laguerre polynomial is 2ρ/n with n being the principal quantum number and
ρ = r/a the distance between electron and nucleus divided by the Bohr radius a.

values of the principal quantum number, n = 1, . . . ,5, and for the lowest val-
ues of the angular-momentum quantum number, �= 0, 1, 2. Figure 13.15 also
contains the plots for R2

n�(r ) and r 2 R2
n�(r ).

It is interesting to compare the radial wave functions and the energy spec-
tra for the three types of potentials discussed in this chapter, namely the
square-well potential (Figure 13.1), the harmonic-oscillator potential (Fig-
ure 13.8), and the Coulomb potential (Figure 13.15). For the square-well
potential, which vanishes in the external region, the wave functions fall off
like an exponential function in this region. The Coulomb potential approaches
zero with increasing r . The wave functions are products of polynomials and an
exponential function, so that they taper off for large r like a power of r times
the exponential function. Finally, for the quadratically increasing potential of
the harmonic oscillator, the falloff of the wave functions is more pronounced.
They behave like rn exp(−r 2/2σ 2

0 ) for large r . This behavior reflects the in-
tuitive expectation that an ever-increasing potential confines the particle best
and that attractive potentials that approach zero better confine the particle the
faster they reach zero.
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Fig.13.15. Radial eigenfunctions Rn�(r ), their squares R2
n�(r ), and the functions r2 R2

n�(r )
for the lowest eigenstates of the electron in the hydrogen atom and the lowest angu-
lar-momentum quantum numbers �= 0, 1, 2. Also shown are the energy eigenvalues as
horizontal dashed lines, the form of the Coulomb potential V (r ), and, for � = 0, the forms
of the effective potential V eff

� (r ). The eigenvalue spectra are degenerate for all � values,
except that the minimum value of the principal quantum number is n = �+1.
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Now, looking at the energy spectra, we observe that the spacing between
levels increases with energy for the square-well potential, is equidistant for
the harmonic oscillator, and decreases for the Coulomb potential.

Finally, we turn to the three-dimensional wave functions for the electron
in the hydrogen atom,

ϕn�m(r) = Rn�(r )Y�m(ϑ ,φ) .

The probability density

ρ(r) = ρn�m(r ,ϑ) = |ϕn�m(r ,ϑ ,φ)|2

contains the complete information about the probability for the electron in a
particular eigenstate (n,�,m) of the hydrogen atom to be at a given position r
in space. Then, of course, the graphs of ρ(r ,ϑ) in Figure 13.16 again contain
the full information. The graphs can be understood as surfaces in x , z,ρ space
depicting the function ρ(x , z) as a surface over the x , z plane (more exactly a
half-plane bounded by the z axis). Since the function is rotationally symmetric
with respect to the z axis, the surface looks the same over any other plane
which contains the z axis, e.g., the y, z plane.

However, the surfaces shown in Figure 13.16 are still a somewhat abstract
representation of the probability density ρn�m since they are constructed in
x , z,ρ space and not in the three-dimensional position space, i.e., in x , y, z
space. We will therefore construct plots which give a direct impression of the
probability density in space although they cannot contain the full information
about ρn�m . We start with the different states for n = 2.

The left-hand column of Figure 13.17 again shows the surfaces represent-
ing ρ2�m over the x , z plane. (Note that the scale in ρ is different for the three
plots, such that the maximum of ρ appears at the same height in each plot.)
Cuts through these surfaces by planes ρ = const (i.e., planes parallel to the
x , z plane) yield lines ρ = const. Such lines in the x , z plane are shown for
ρ = 0.02 in the right-hand column. (The units used for the spatial probability
density is a−3, a being the Bohr radius.) The interpretation of these contour
plots is simple. If we compare the two plots in the top row of Figure 13.17 we
see that ρ200 > 0.02 inside the inner circle in the contour plot and in the ring
between the two outer circles. Similarly, ρ210 > 0.02 inside the two contours
above and below the x axis which are symmetrically traversed by the z axis,
and ρ211 > 0.02 inside the two contours situated symmetrically with respect
to each other to the left and to the right of the z axis.

The generalization of contour lines in the x , z plane to surfaces of con-
stant probability density in three-dimensional x , y, z space is now simple. The
surfaces are created by rotation of the contour lines around the z axis. The
surfaces of constant probability are shown in Figure 13.18. In the right-hand
column they are shown in all of space, in the left-hand column only in the
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ρn�m(r ,ϑ) = |ϕn�m(r ,ϑ ,ϕ)|2

Fig.13.16. The absolute squares ρn�m(r ,ϑ) = |ϕn�m(r ,ϑ ,φ)|2 of the full three-dimension-
al wave functions for the electron in the hydrogen atom. They are functions only of r
and ϑ . All eigenstates having the same principal quantum number have the same energy
eigenvalue En . The possible angular-momentum quantum numbers are �= 0, 1, . . . ,n−1.
The wave functions have n −�−1 nodes in r and �−|m| nodes in ϑ , indicated by dashed
half-circles and rays, respectively. Each figure gives the probability density for observing
the electron at any point in a half-plane containing the z axis. All pictures have the same
scale in r and ϑ . They do, however, have different scale factors in ρ.
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Fig.13.17. Left: Spatial probability density ρ2�m for an electron in the hydrogen atom
shown over a half-plane bounded by the z axis. Different scales in ρ2�m are used in the
three plots. Right: Contour lines ρ2�m = 0.002 in the x , z plane. Numbers are in units of
the Bohr radius.
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Fig.13.18. Surfaces of constant probability density ρ2�m = 0.002 in full x , y, z space (right)
and in the half-space x > 0 (left).
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Fig.13.19. Spatial probability density ρ3�m for an electron in the hydrogen atom shown
over a half-plane bounded by the z axis. Different scales in ρ3�m are used.



13.4 The Hydrogen Atom 277

Fig.13.20. Contour lines ρ3�m = 0.0002 in the x , z plane. Numbers are in units of the Bohr
radius.
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Fig.13.21. Surfaces of constant probability density ρ3�m = 0.0002 in the half-space x > 0.
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Fig.13.22. Surfaces of constant probability density ρ3�m = 0.0002 in full x , y, z space.
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Fig.13.23. Contour lines ρ4�m = 0.00002 in the x , z plane. Numbers are in units of the
Bohr radius.
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Fig.13.24. Surfaces of constant probability density ρ4�m = 0.00002 in x , y, z space.

half-space x > 0, i.e., they are cut open to reveal a possible inner structure.
Obviously, the lines generated by the cut are the contour lines of Figure 13.17.
Regions of high probability density (ρ > 0.02) are enclosed by the surfaces.
Outside the surfaces the probability density is small (ρ < 0.02). The region
of high probability density is a kind of torus for ρ211, it consists of two lobes
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symmetrical to each other with respect to the x , y plane for ρ210, and of a
sphere around the origin and a spherical shell further outside for ρ200. In the
cases where regions of high probability density consist of separate volumes
in space they are separated by node surfaces on which the probability density
vanishes. These are surfaces r = const (spheres) or ϑ = const (cones about
the z axis and, for ϑ = π/2, the x , y plane).

In summary we can say that surfaces of constant probability density in
x , y, z space allow a rather direct visualization of the probability density al-
though, in contrast to other plots, they do not contain the full information
about that quantity.

We conclude this chapter by showing plots of the probability density
ρn�m(r) for the principal quantum numbers n = 3 and n = 4. Figures 13.19
through 13.22 apply to n = 3 and contain the probability density in the x , z
plane or – equivalently – r ,ϑ plane, the contour lines ρ3�m = 0.0002 in the x , z
plane and the corresponding surfaces in x , y, z space. For n = 4 we only show
the contour lines ρ4�m = 0.00002 and the contour surfaces in Figures 13.23
and 13.24, respectively.

13.5 Kepler Motion in Quantum Mechanics

In classical mechanics motion under the action of a central force is greatly
simplified by the conservation of angular momentum in addition to energy.
Also in quantum mechanics time-independent central forces conserve energy
and angular momentum. We decompose the initial Gaussian wave packet

ψ(r,0) = 1

(2π )3/4σ 3/2
exp

{
− (r− r0)2

4σ 2
+ ik0 · r

}
into a linear superposition of eigenfunctions of the hydrogen atom. We choose
the initial position r0, the initial momentum p0 = h̄k0, and the spatial width σ
such that the initial wave packet ψ(r,0) can to a sufficient approximation be
superimposed by bound-state eigenfunctions ϕn�m(r),

ψ(r,0) =
∞∑

n=1

n−1∑
�=0

�∑
m=−�

bn�mϕn�m(r) .

The ϕn�m(r) are eigenfunctions of the Hamiltonian containing the Coulomb
potential to the eigenvalue (cf. Section 13.4)

En = − E1

n2
, n = 1,2,3, . . . .
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Here

E1 = 1

2
Mc2α2 = 13.61eV

is the modulus of the ground-state energy.
The time-dependent wave packet can be obtained from ψ(r,0) by mul-

tiplying the members of the sum with the time-dependent phase factors
exp(−iωnt) with the angular frequencies

ωn = En

h̄
.

The wave packet at time t is given by

ψ(r, t) =
∞∑

n=1

n−1∑
�=0

�∑
m=−�

bn�me−iωntϕn�m(r) .

As discussed in Section 10.10 the angular-momentum content of a Gaussian
wave packet is described by the probability W�m for the total angular momen-
tum � and the z component m in the direction of classical angular momentum
Lcl = r0 ×p0. In terms of the coefficients bn�m the probabilities W�m of angular
momentum are given by the sum W�m = ∑∞

n=1 |bn�m|2.
In Figure 13.25 the plot of the probability W�m for the Gaussian wave

packet chosen is shown. As already remarked in Section 10.10 for fixed �
the probabilities W�� are at maximum if the quantization axis n is chosen in
the direction of classical angular momentum. The marginal distribution W�

has its maximum close to the value �cl = Lcl/h̄ given by the classical angular
momentum.

The distribution of the principal quantum number n and total angular mo-
mentum � is given by the probabilities

Pn� =
�∑

m=−�
|bn�m|2 .

Additional summation over � yields the marginal distribution

Pn =
n−1∑
�=0

Pn�

of the energy eigenvalues, while by summing over n we obtain the marginal
distribution W�,

W� =
∞∑

n=�+1

Pn� .
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Fig.13.25. Distributions of the probabilities W�m of the quantum number of total angu-
lar momentum � and its z component m for the wave packet shown in Figures 13.27
through 13.30. The quantities are defined for integer values of �, m only. Their graphical
representations are connected by straight lines. Also shown is the marginal distribution
W�. The inlay is a magnification of the central part of the figure.

Figure 13.26 exhibits the distribution of Pn� for the same wave packet together
with the two marginal distributions Pn and W�. The maximum of Pn is close
to the value

ncl = Ecl

E1

given by the classical energy

Ecl = p2
0

2M
− αh̄c

r0

in terms of the initial expectation values p0 and r0 = |r0| of momentum and
position of the Gaussian wave packet.

Figure 13.27 presents the first revolution of the wave packet at the time
instants t = 0, 1

3 TK, 2
3 TK, and TK, where TK is the classical Kepler period.

The solid line represents the classical elliptical Kepler orbit for the initial
conditions r0, p0. The dot on the ellipse marks at time t the position of the
classical particle with the initial conditions r0, p0. The function shown is the
spatial probability density
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Fig.13.26. Probability distribution Pn� of the principal quantum number n and the
angular-momentum quantum number � of the wave packet shown in Figures 13.27
through 13.30 together with the marginal distributions W� and Pn . The probability is set
equal to zero if Pn� < 10−5.

ρ(r, t) = |ψ(r, t)|2
over the plane r = (x , y,0) of the classical orbit.

We compare the behavior of the quantum-mechanical wave packet with
the time development of a classical phase-space distribution which has at t = 0
the form

ρcl(r,p) = 1

(2π )3σ 3/2σ
3/2
p

exp

{
− (r− r0)2

2σ 2
− (p−p0)2

2σ 2
p

}
of the product of two Gaussian distributions in space and momentum. The
momentum width σp is chosen according to Heisenberg’s uncertainty relation
for a Gaussian wave packet,

σp = h̄/(2σ ) .

The time evolution ρcl(r,p, t) of the phase-space distribution is calculated
with Newton’s laws. The classical probability distribution in space is the
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Fig.13.27. Plots in the left column show the time evolution of an initially Gaussian wave
packet in the plane z = 0, i.e., the plane of the classical Kepler orbit indicated by the
ellipse. The full dot represents the corresponding position of the classical particle. The
temporal instants shown are the thirds of the first Kepler period TK. Plots in the right
column show the time evolution of the spatial probability density of the corresponding
classical phase-space distribution.
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marginal distribution

ρcl
r (r, t) =

∫
ρcl(r,p, t)d3p

obtained by integration over all values of the momentum.
The time development of the classical spatial probability distribution is

shown also in Figure 13.27. For computational reasons the plots are not
smooth but look as composed of columns. They are called histograms. The
height of each column is proportional to the probability per rectangular region
in x and y. The histogram shows only columns which correspond at least to
a certain minimum probability. The main features of the classical probability
distribution are very similar to the quantum-mechanical distribution.

The deformation of the Gaussian wave packet showing at t = TK/3 for the
first time is thus seen to be a purely classical effect. It is in particular due to
the distribution of momentum in classical phase space initially of Gaussian
shape about the point p0. For example, the distribution at any given point r
in the x , y plane also contains momenta p0 +p1, where p1 is pointing toward
the center of force. The time of revolution for a particle with this momentum
is shorter than for one with p0. Therefore the spatial distribution will have a
forerunning part inside the classical ellipse. Analogous arguments show that
momenta p0 −p1 are responsible for a delayed tail located outside the classical
orbit. These features catch the eye at first glance in the plots of Figure 13.27.

As time elapses the distributions widen and finally wind around the or-
bit. As soon as the bow of the quantum-mechanical wave function overlaps
with its stern we expect and observe interference phenomena, Figure 13.28.
An earlier example of this phenomenon we have met in Section 6.2 of a wave
packet in a deep square well. There, the interference leads to a revival of
the wave packet at the revival time t = Trev and to fractional revivals at times
t = k

�
Trev, k, � integer. The same phenomenon of the revival of the wave packet

exists for the wave packet on a Kepler orbit with the revival time given by

Trev = ncl

3
TK ,

where ncl = Ecl/E1 is the classical value of the principal quantum number.
The existence of a revival time in the quantum-mechanical Kepler prob-
lem was pointed out by Parker and Stroud (Physical Review Letters 56,
716 (1986)). Figure 13.29 exhibits the distribution ρ(x , y,0, t) at the times
t = (ncl/3 − 1

2)TK, nclTK/3, (ncl/3 + 1
2)TK. It is surprising that there is a time

difference between the positions of the revived wave packet and the classi-
cal particle. A more detailed discussion of the origin of the quasiperiodicity
in the quantum-mechanical hydrogen atom as carried out by Averbukh and
Perelman in Physics Letters A 139, 449 (1989) reveals the reason.
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Fig.13.28. Quantum-mechanical probability density in the Kepler plane for various
multiples of the Kepler period. The wave packet widens from period to period. Once
both ends of the wave packet overlap, interference sets in.
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Fig.13.29. Re-
vival of the
wave pack-
et for the
times t = Trev −
TK/2, Trev, Trev

+ TK/2.
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Fig.13.30. Fractional revivals of the wave packet.

Figure 13.30 exhibits the fractional revivals of the wave packet. At Trev/2
we have two, at Trev/3 three wave packets, etc., on the Kepler orbit. They
are equidistant in time as a consequence of the second Kepler law, i.e., of
angular-momentum conservation.

As expected, the classical spatial distribution ρcl shows no such revivals.

Problems

13.1. Calculate the energies En of the states of angular momentum zero for an
infinitely deep potential well in three dimensions. Compare this spec-
trum with the one in Figure 13.1. Explain the deviations.
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13.2. Why are the energies of the same quantum numbers n for � = 1, 2 in
Figure 13.1 larger than those for �= 0?

13.3. Why does the energy of the lowest (in general, the nth) state decrease
with increasing width of the spherical square-well potential of the same
depth (Figure 13.2)?

13.4. Why does the difference E1� − V0 of the state of lowest energy for a
given angular momentum � increase as the potential well deepens?

13.5. Explain the structure of the product function ϕ′
210(x1, x2, x3), as plot-

ted in Figure 13.5, in terms of the structures of the harmonic-oscillator
functions in one dimension, as plotted in Figure 6.4.

13.6. Why does the average probability density in a spherical shell of unit
volume, given by r 2 R2

n�(r ) as plotted in Figure 13.8, increase toward
the harmonic-oscillator wall?

13.7. What do you expect the harmonic-oscillator probability densities for
n = 5, �= 0, 1, 2, 3 to roughly look like? Describe their nodes in r and
ϑ in analogy to those in Figures 13.9 and 13.10.

13.8. Verify by explicit calculation that the angular-momentum eigenstate
ϕ220(r) of the harmonic oscillator can be decomposed as was done in
Figure 13.11.

13.9. Let us consider time-dependent motion in a rotationally symmetric
harmonic oscillator. The wave function of the initial state ψ(r,0) at
t = 0 is given explicitly in terms of a decomposition into eigenfunc-
tions ϕ′

n1n2n3
(x1, x2, x3),

ψ(r,0) =
∑

n1,n2,n3

an1n2n3ϕ
′
n1n2n3

(x1, x2, x3) ,

corresponding to the eigenvalues En = (n + 3
2)h̄ω, n = n1 +n2 +n3, of

the harmonic oscillator as described in Section 13.2. The an1n2n3 are the
spectral coefficients of the initial state in the harmonic-oscillator base
ϕ′

n1n2n3
. Show that the time-dependent wave function (n = n1 +n2 +n3)

ψ(r, t) =
∑

n1,n2,n3

e−iEnt/h̄an1n2n3ϕ
′
n1n2n3

(x1, x2, x3)

is a solution of the time-dependent Schrödinger equation

ih̄
∂

∂t
ψ(r, t) =

(
− h̄2

2M
∇2 + k

2
r 2

)
ψ(r, t)

and fulfills the initial condition.
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13.10. Analyze the behavior of the three-dimensional wave packet under the
influence of a harmonic force, as plotted in Figure 13.12, in terms of the
behavior of three independent one-dimensional oscillators, as plotted in
Figures 6.6 and 6.8. Describe the initial conditions of these independent
oscillators in terms of classical mechanics.

13.11. Show that the general solution ψ(r, t) for the motion in a harmonic
oscillator,

ψ(r, t) =
∑

n1,n2,n3

exp

[
− i

h̄
Ent

]
an1n2n3ϕ

′
n1n2n3

(x1, x2, x3) ,

with the energy of the state ϕ′
n1n2n3

,

En = (n + 3

2
)h̄ω , n = n1 +n2 +n3 ,

possesses the following periodicity property:

ψ

(
r, t +m

2π

ω

)
= e−imπψ(r, t), m = 1, 2, 3, . . . .

The periodicity property implies that∣∣∣∣ψ(
r, t +m

2π

ω

)∣∣∣∣2

= |ψ(r, t)|2 .

This result can be read off Figure 13.12.

13.12. Calculate the minimum of the effective potential, V eff
2,min, for �= 2 of the

hydrogen atom,

V eff
2 (r ) = h̄2

2M

6

r 2
− h̄c

α

r
.

Find the differences between the eigenvalues En of the electron in the
hydrogen atom and this minimum, En − V eff

2,min. Explain why only states
with n ≥ 3 exist for angular momentum �= 2 in the hydrogen atom.

13.13. Show that the Bohr radius a as given in Section 13.4 is at the position
of the maximum of r 2 R2

10(r ), that is, show that, at r = a,

d

dr
[r R10(r )] = 0 .

13.14. The energy of the ground state of a two-particle system bound by a
Coulomb force is
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E1 = −1

2
μc2α2 ,

where μ= M1 M2/(M1 + M2) is the reduced mass of the system of two
particles of masses M1 and M2. For M1 � M2, μ tends toward M1.
Using this formula, calculate the ground-state energy E1 for the hydro-
gen atom and for a positronium, which is a system of an electron and a
positron, that is, an electron of positive charge.

13.15. Muons are particles similar to the electron but possessing a mass

mμ = 105.6MeV/c2 .

The Bohr radius, that of the innermost orbit, of a system made up of a
positive and negative charge is

a = h̄

αμc
,

where μ is the reduced mass of the system, as given in the preceding
problem. Calculate the Bohr radii for a hydrogen atom; for a muonic
hydrogen atom, whose electron has been replaced by a muon; and for
positronium, a hydrogen-like system in which the proton has been re-
placed by a positron.

13.16. The Bohr radius a of the innermost orbit of a nucleus with atomic num-
ber Z is

a = h̄

Zαμc
,

where μ is the reduced mass of the system. For the uranium nucleus,
Z = 92, the reduced mass can safely be taken as the mass of the particle
in the innermost orbit. Calculate the Bohr radius for a muonic uranium
atom and compare the result with the radius of the uranium nucleus,
r0 ≈ 6×10−15 m.



14. Hybridization

14.1 Introduction

In Section 13.4 we studied in detail the stationary wave functions

ϕn�m(r) = ϕn�m(r ,ϑ ,φ) = Rn�(r )Y�m(ϑ ,φ)

of the electron in the hydrogen atom and the corresponding probability den-
sities

ρ(r) = ρn�m(r ,ϑ) = |ϕn�m(r ,ϑ ,φ)|2 .

Here r ,ϑ ,φ are the spherical coordinates, n is the principal quantum number,
� the quantum number of angular momentum, and m that of its z component;
Rn,� = Rn,�(r ) is the radial wave function, which depends on the radial po-
sition r , and Y�,m = Y�,m(ϑ ,φ) the spherical harmonic (Section 10.3), which
depends on the angles ϑ and φ. The energy eigenvalues En depend on n only.
Accordingly, in general, there are several eigenstates of the same eigenvalue
(which are called degenerate) and therefore linear combinations of these are
again eigenstates.

Figures 13.16 to 13.24 show that the ρn�m are either spherically symmetric
with respect to the origin or rotationally symmetric around the z axis. Com-
mon to all is a mirror symmetry with respect to the xy plane. In a particular
model of chemical bonds, the hybridization model, wave functions are con-
structed for which the probability density has a single preferred direction,
pointing from the nucleus of one atom towards the nucleus of a partner atom
to which it is bound. In this section we show how such wave functions can be
constructed starting out from the stationary states ϕn�m .

We consider exclusively the superposition of a state � = 0,m = 0 (called
an s state) with a state �= 1,m = 0 (a p state) and introduce the notation

sn = ψn,0,0 = Rn,0Y0,0 = 1√
4π

Rn,0 ,

pn = ψn,1,0 = Rn,1Y1,0 =
√

3
4π cosϑRn,1 .

The wave functions sn and pn are real; sn has no angular dependence whereas
pn is proportional to cosϑ , i.e., it is antisymmetric with respect to the equato-
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rial plane ϑ = π/2. There is no φ dependence. Because of the orthonormality
of the Rn,� and the Y�,m the states sn and pn are orthonormal, i.e.,∫

|sn|2 dV = 1 ,
∫

|pn|2 dV = 1 ,
∫

sn pn dV = 0 ;

the integration is performed over all space.
A normalized linear combination of sn and pn,

hn = 1√
1+λ2

(sn +λpn) ,

is called a hybrid state with the hybridization parameter λ.
Figures 14.1 and 14.2 show, in a plane containing the z axis, the functions

s2, p2, h2, and |h2|2 for a particular value of λ. Due to the different symmetry
properties of s2 and p2 the hybrid h2 is asymmetric with respect to ϑ = π/2.
The square |h2|2, which is a probability density, extends much farther along
the negative z axis than along the positive one. This feature of hybrid states
is used to explain some type of chemical bonds: An electron in a hybrid state
in one atom reaches out to its partner in another atom along that preferred
direction.

The hybrid state is rotationally symmetric around the z axis, which we
call the orientation axis. We can denote it by the unit vector â; here â = ez.
In general, the orientation axis is given by a unit vector â, characterized by a
polar angle ϑa and an azimuthal angle φa with respect to the x , y, z coordinate
frame.

The general form of a hybrid state is therefore

hn(λ;ϑa,φa) = 1√
1+λ2

(sn +λpn(ϑa,φa)) ,

where pn(ϑa,φa) is a p state of principal quantum number n with the symme-
try axis

â = sinϑa cosφa ex + sinϑa sinφa ey + cosϑa ez .

In the form of pn which we wrote down first, for which the symmetry axis
is the z axis, the angular dependence showed up as cosϑ or, written as scalar
product, as r̂ · ez. Its generalization reads r̂ · â. Therefore the general form of
pn is

pn(ϑa,φa) =
√

3

4π
(r̂ · â)Rn,1 .

A good impression of the spatial orientation is given by a contour-surface
plot. In Figure 14.3 such a plot is shown for the hybrid probability density
|h2(λ = 1.73;ϑa = 0,φa = 0)|2. It is obtained by rotating one of the contour
lines in the bottom right of Figure 14.2 about the z axis.



296 14. Hybridization

Fig.14.1. The wave function ϕ = s2 is symmetric with respect to the xy plane, i.e., the
plane perpendicular to the z axis. The wave function ϕ = p2 is antisymmetric. A super-
position of both, the hybrid ϕ = h2, displays neither symmetry nor antisymmetry: it is
unsymmetric. Its absolute square, the probability density |ϕ|2 = |h2|2, is markedly more
extended along the negative z direction compared to the positive z direction.

Atoms other than hydrogen have more than one electron. Here we do not
attempt a quantitative discussion of their properties. Nevertheless, the study
of the simple hybrid states hn(λ;ϑa,φa) allows some understanding of hybrid
bonds. In Section 14.2 we summarize the assumptions made in the simplest
hybridization model and try to justify them by qualitative arguments. In Sec-
tion 14.3 we shall compute the hybridization parameter and the orientations
for some hybrid states in situations of particularly high symmetry.
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Fig.14.2. The functions displayed in Fig. 14.1 are shown here in the form of contour
plots in the xz plane. Function values are positive on blue lines, negative on magenta
lines, and vanish on red lines. The unit length used for the scales in x and z is the Bohr
radius.

14.2 The Hybridization Model

In our qualitative discussion of the model we first study the structure of atoms
in the first few periods of the Periodic Table and shall see that the wave func-
tions of the valence electrons, responsible for the binding of atoms, retain
some similarity to the hydrogen wave functions. We then consider the bind-
ing energy which becomes available when atoms approach each other and the
role it plays in bringing about hybrid states.
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Fig.14.3. The probability density shown in the bottom right of Figs. 14.1 and 14.2 is
displayed here as a contour-surface plot. On the left it is shown for the half-space y > 0
only and thus appears as cut open. On the right the surface is closed since it is shown in
full space.

Pauli Exclusion Principle and Periodic Table

In Chapter 9 we discussed the simplest case of a system of identical parti-
cles, i.e., only 2 particles with a total of 2 degrees of freedom, the coordinates
x1, x2 of the particles. We found that the wave function describing the sys-
tem is either symmetric or antisymmetric under the exchange of x1 and x2.
In the former case the particles are called bosons, in the latter case fermions.
Antisymmetry signifies that the two fermions cannot have the same position.
In a realistic case of more particles, each with more degrees of freedom, an-
tisymmetry means that there cannot be two identical fermions in the same
quantum-mechanical state. This statement is the Pauli exclusion principle.

Particles with half-integer spin (h̄/2,3h̄/2, . . .) are fermions, those with
integer spin (0, h̄,2h̄, . . .) are bosons. Electrons carry spin h̄/2 and thus are
fermions. An atom with atomic number Z consists of a nucleus with electric
charge Ze and Z electrons, each of charge −e. Because of the Pauli principle
there cannot be two electrons in an atom with exactly the same set of quantum
numbers n,�,m,sz. For a given principal quantum number n there are n dif-
ferent values of the angular-momentum quantum number � (�= 0, . . . ,n −1);
for each value of � there are 2�+1 different values of the quantum number m
of the z component of angular momentum (m = −�,−�+ 1, . . . ,�); there are
two possible values, sz = ±1/2, of the quantum number of the z component
of spin for every electron. In all, for a given value of n there are 2n2 different
sets of quantum numbers �,m,sz.
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Fig.14.4. Radial wave functions and their eigenvalues in a 3D square-well potential.
The eigenvalues are systematically higher for states with � = 1 (right) compared to the
corresponding states with �= 0 (left).

For n = 1 there are 2 states. One is occupied in the hydrogen atom (Z = 1),
both are filled in the helium atom (Z = 2). In the case of the lithium atom
(Z = 3) there is no free place for an electron in the inner shell of lowest energy.
The third electron necessarily has the principal quantum number n = 2. Its
probability density is shifted further away from the nucleus. This electron
“sees” a potential similar to that of the hydrogen nucleus, because the nuclear
charge 3e is “shielded” by the charge −2e of the two electrons in the inner
shell. If the shielding were perfect, all states with n = 2 were degenerate.
Since it is not, the states with n = 2,�= 0, called 2s states, have a somewhat
lower energy than the 2p states (n = 2,� = 1). (For an illustration, in which
we use a square-well rather than a Coulomb potential, see Figure 14.4.)

As Z increases, more electrons are added and new states are filled, see Ta-
ble 14.1. For the lithium atom, one of these 2s states is filled; in the beryllium
atom both are occupied. Boron, in addition to the two 2s electrons, has one 2p
electron; carbon has two, nitrogen three. In all, there are 6 different 2p states.
They are all filled in neon, which concludes the second period of the Periodic
Table. In the third period, the outer shell comprises states with n = 3. That
shell is begun with sodium and completed with argon. In particular, we note
that silicon, situated directly below carbon in the Periodic Table, in its outer
shell has two 3s and two 3p electrons. Its situation is that of carbon but with
n = 3 instead of n = 2.

Only the electrons in the outermost shell of an atom, the valence electrons,
contribute significantly to chemical binding. For the single valence electron
of an alkali atom (H, Li, Na, . . . ) the shielding of the nuclear charge by the
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Table14.1. Elements in the first 3 periods of the Periodic Table. For each element
the number of electrons with allowed combinations of the principal quantum num-
ber n and angular-momentum quantum number � is listed. The top line contains the
conventional abbreviations for such combinations, e.g., 2p for n = 2,�= 1.

1s 2s 2p 3s 3p
n = 1 n = 2 n = 2 n = 3 n = 3

Element Z �= 0 �= 0 �= 1 �= 0 �= 1

Hydrogen H 1 1
Helium He 2 2

Lithium Li 3 2 1
Beryllium Be 4 2 2
Boron B 5 2 2 1
Carbon C 6 2 2 2
Nitrogen N 7 2 2 3
Oxygen O 8 2 2 4
Fluorine F 9 2 2 5
Neon Ne 10 2 2 6

Sodium Na 11 2 2 6 1
Magnesium Mg 12 2 2 6 2
Aluminum Al 13 2 2 6 2 1
Silicon Si 14 2 2 6 2 2
Phosphorous P 15 2 2 6 2 3
Sulfur S 16 2 2 6 2 4
Chlorine Cl 17 2 2 6 2 5
Argon Ar 18 2 2 6 2 6

remaining electrons is nearly perfect. Nevertheless, in our simplified compu-
tations of hybrid wave functions we do assume perfect shielding also for the
valence electrons of other atoms: We compute the hydrogen wave functions
for given quantum numbers and then superimpose them to obtain the desired
hybrid wave function.

Simple Example

As a first qualitative example we consider a molecule of lithium hydride LiH,
formed of an atom of lithium Li and one of hydrogen H. The single electron of
hydrogen is in the 1s state. Since there is no 1p state, there can be no question
of hybridization in that atom. The outer electron of lithium is in the 2s state,
which is nearly degenerate with the 2p state, since shielding is nearly perfect.
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The electron is assumed to be in a hybrid state formed by a superposition of
the states 2s and 2p. There are models in which the binding energy of the
LiH molecule is computed from the overlap of this hybrid wave function with
the 1s wave function in the hydrogen atom. The binding energy outweighs
the slight extra energy of the lithium hybrid state compared to its original 2s
state. The hybrid state is of the form h2(λ;ϑa,φa); the orientation axis â points
along the line connecting the hydrogen nucleus with that of the lithium atom.
The hybridization parameter λ depends on the details of the model used.

Binding Energy and Promotion. Orientation of pn States

Here and in Section 14.3 we concentrate on the atoms of carbon C and of
silicon Si. Both have four electrons in their outer shell with principal quantum
number n = 2 for C and n = 3 for Si. In a solitary C or Si atom there are two
s electrons and two p electrons in the outer shell. In the presence of one or
more neighboring atoms, to which they are bound, the electrons can assume
“binding” states of lower energy, see Figure 14.5. Part of the binding energy
can be used to “promote”one of the two s electrons to a p state; that is possible
as long as the binding energy per atom exceeds the promotion energy. With
this promotion there are one s electron and three p electrons in the outer shell.

The state sn and and the three states pn (n, as usual, is the principal quan-
tum number) are normalized and all are orthogonal to each other. We align
the pn states along the coordinate directions z, x , y, i.e., we write them in the
form

pnz = pn(ϑa = 0) =
√

3

4π
Rn,1 cosϑ ,

pnx = pn(ϑa = 90◦,φa = 0) =
√

3

4π
Rn,1 sinϑ cosφ ,

pny = pn(ϑa = 90◦,φa = 90◦) =
√

3

4π
Rn,1 sinϑ sinφ ,

see Figure 14.6.
We now consider superpositions of the three pn states along the Cartesian

coordinate axes with coefficients az,ax ,ay:

az pnz +ax pnx +ay pny =
=

∑
f =x ,y,z

af pn f =
∑

f =x ,y,z

af

√
3

4π
Rn,1(r̂ · e f )

=
√

3

4π
Rn,1

⎛⎝r̂ ·
∑

f =x ,y,z

af e f

⎞⎠ =
√

3

4π
Rn,1 (r̂ ·a)
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Fig.14.5. Eigenvalues and eigenfunctions in a 1D potential. For every state in a single
well (left), there are two states in the double well: one with lower, the other with higher
energy than in the single well. The state of lower energy is binding, that of higher energy
is anti-binding.

= |a|
√

3

4π
Rn,1 (r̂ · â) = |a|pn(ϑa,φa) ,

where the coefficients ax ,ay ,az have been interpreted as those of an (unnor-
malized) vector a defining an orientation axis of a general pn state. With

|a| =
√

a2
x +a2

y +a2
z and |a⊥| =

√
a2

x +a2
y the relations of these coefficients

to the spherical angles ϑa,φa, defining the orientation axis, read

cosϑa = az

|a| , sinϑa = |a⊥|
|a| , cosφa = ax

|a⊥| , sinφa = ay

|a⊥| .

14.3 Highly Symmetric Hybrid States

A diamond crystal is a symmetric arrangement of carbon atoms. Every atom
is in the center of a tetrahedron with carbon atoms at its four corners. In
graphite, a hexagonal planar structure, each C atom has three nearest neigh-
bors to which it is tightly bound; in comparison, the binding between planes
is rather loose. In a linear molecule like carbon dioxide CO2 with the structure
O–C–O the carbon atom is bound to two oxygen atoms which are situated in
exactly opposite positions.
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Fig.14.6. Contour-surface plots illustrating the four orthogonal states s2, p2z , p2x , p2y

States resulting from hybridization again have to be normalized and to be
orthogonal to each other (and to those states which do not hybridize). With
these assumptions the following, particularly symmetric, situations are possi-
ble.

sp Hybridization The sn state and one of the pn states form two hybrid
states. We assume that pn state to be oriented in z. The other pn states stay
unchanged. We consider the most symmetric case, in which the two hybrids
are identical in form but oriented back to back. This is a picture for the bonds
(as far as they are due to hybrids of the carbon atom) in the carbon dioxide
molecule CO2.

We first construct two pn states oriented in z and in −z direction, i.e.,
with ϑa = 0 and ϑa = 180◦, respectively. (We assign φa = 0 to these states
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even though at the given values of ϑa the angle φa need not be specified.)
From (14.2.1) we get

pn1 = pn(ϑa = 0,φa = 0) = pnz ,

pn2 = pn(ϑa = 180◦,φa = 0) = −pnz .

Using these and the sn state we form the two orthonormal superpositions

hn1 = 1√
2

(sn + pnz) , hn2 = 1√
2

(sn − pnz) .

Written in the general form hn(λ;ϑa,φa), these hybrids are determined by the
following hybridization parameters and orientation axes:

λ1 = 1 , ϑa1 = 0 , φa1 = 0 ,
λ2 = 1 , ϑa2 = 180◦ , φa2 = 0 .

The hybrids were constructed such that the term pn(ϑa,φa), in turn, is oriented
towards each of the neighboring atoms and that the hybridization parameter
λ ensures orthonormalization. Because of the high symmetry in the present
case (and the two cases discussed below), λ has the same value for all hybrids
(within one case). For n = 2 the two sp hybrids are illustrated as contour-
surface plots of the functions |h21|2 and |h22|2 in Figure 14.7.

Fig.14.7. sp hybrids for n = 2: Contour-surface plots of |h21|2 and |h22|2
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Fig.14.8. Contour-surface plots of sp2 hybrids for n = 2.

sp2 Hybridization The sn state and two of the pn states form three hybrid
states. We assume these pn states to be oriented in x and in y. Again, we con-
sider a particularly symmetric case: The hybrid orientation axes lie in the x , y
plane, each forming angles of 120◦ with the other two. We begin by construct-
ing three pn states with these orientations,

pn1 = pn(ϑa = 90◦,φa = 0) = pnx ,

pn2 = pn(ϑa = 90◦,φa = 120◦) = −1

2
pnx +

√
3

2
pny ,

pn3 = pn(ϑa = 90◦,φa = 240◦) = −1

2
pnx −

√
3

2
pny .

Superposition with sn and proper normalization yield the three hybrids



306 14. Hybridization

hn1 = 1√
3

(
sn +√

2pnx

)
,

hn2 = 1√
3

(
sn − 1

2

√
2pnx + 1

2

√
6pny

)
,

hn3 = 1√
3

(
sn − 1

2

√
2pnx − 1

2

√
6pny

)
.

They are determined by the parameters

λ1 = √
2 , ϑa1 = 90◦ , φa1 = 0 ,

λ2 = √
2 , ϑa2 = 90◦ , φa2 = 120◦ ,

λ3 = √
2 , ϑa3 = 90◦ , φa3 = 240◦ .

An example for sp2 hybridization is graphite, which we mentioned above. The
rather strong bonds within a layer are explained by these hybrids. Responsible
for the weaker binding between layers is the single electron in each atom,
remaining in the pnz state. The sp2 hybrids for n = 2 are displayed in Figure
14.8.

sp3 Hybridization The sn state and three pn states form four hybrid states.
We assume the pn states to be oriented in x , in y, and in z. Yet again, we
consider only the most symmetric case: The hybrid orientation axes point
from the center to the corners of a tetrahedron. An equivalent formulation
is that they point from the coordinate origin to four out of the eight corners
of a cube surrounding it. Such hybrid states serve, for instance, to explain
the binding of carbon atoms in a diamond crystal and of silicon atoms in a
crystal with diamond structure. Construction of the pn states with the desired
orientations yields

pn1 = pn(ϑa = 54.74◦,φa = 45◦) = 1√
3

(pnx + pny + pnz) ,

pn2 = pn(ϑa = 125.26◦,φa = 135◦) = 1√
3

(pnx − pny − pnz) ,

pn3 = pn(ϑa = 54.74◦,φa = 225◦) = 1√
3

(−pnx + pny − pnz) ,

pn4 = pn(ϑa = 125.26◦,φa = 315◦) = 1√
3

(−pnx − pny + pnz) .

Superposition with the sn state yields the hybrids

hn1 = 1

2
(sn + pnx + pny + pnz) , hn2 = 1

2
(sn + pnx − pny − pnz) ,

hn3 = 1

2
(sn − pnx + pny − pnz) , hn4 = 1

2
(sn − pnx − pny + pnz)
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Fig.14.9. Contour-surface plots of sp3 hybrids for n = 2.

with the parameters

λ1 = √
3 , ϑa1 = 54.74◦ , φa1 = 45◦ ,

λ2 = √
3 , ϑa2 = 125.26◦ , φa2 = 135◦ ,

λ3 = √
3 , ϑa3 = 54.74◦ , φa3 = 225◦ ,

λ4 = √
3 , ϑa4 = 125.26◦ , φa4 = 315◦ .

An illustration of the sp3 hybrids with n = 2 is given in Figure 14.9.

Hybrids for n = 3 So far, all illustrations showed hybrids for the principal
quantum number n = 2; they applied to elements in the second period of the
Periodic Table and, in particular, to carbon for which we mentioned several
examples. If we proceed to the third period, and especially to silicon, the
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Fig.14.10. The wave functions ϕ= s3, ϕ= p3, their superposition ϕ= h3, and its absolute
square, the probability density |ϕ|2 = |h3|2. In comparison to Fig. 14.1 the scale in the
rϑ plane is different; the functions shown here extend over a wider region.

only change is in the radial wave functions which now are R30(r ) and R31(r )
rather than R20(r ) and R21(r ). These functions display more zeros in the radial
coordinate r . They also extend to larger values of r . After all, they describe
electrons in the third shell.

In Figure 14.10 we display the functions s3, p3 as well as the sp3 hy-
brid wave function h3, constructed from them as a linear combination, and
the corresponding spatial probability density |h2|2. (The corresponding func-
tions for n = 2 were shown in Figure 14.1.) The functions h3 and |h3|2 are
depicted as contour-line plots in Figure 14.11. The probability density ex-
tends farthest along the negative z axis, appreciably farther than in the case of
n = 2. Because of the comparatively complicated form of of the radial wave
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Fig.14.11. The functions ϕ = h3 and |ϕ|2 = |h3|2 displayed in Fig. 14.10 are shown here
in the form of contour plots in the xz plane. Function values are positive on blue lines,
negative on magenta lines, and vanish on red lines. The unit length used for the scales
in x and z is the Bohr radius. Note the difference in scale with respect to Fig. 14.2.

Fig.14.12. The probability density of the sp3 hybrid for n = 3 shown as contour-surface
plot in the half-space y > 0.
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functions there is some interesting structure in the inner region where r is
small. Since that is the region which is populated by the electrons on inner
shells, our assumption of perfect shielding certainly does not hold there. We
do not, therefore, expect that our simple calculation yields a realistic picture
near the nucleus; but we keep in mind that it is the outer region which matters
most in chemical bonds.

The full spatial structure of |h3|2 becomes apparent in the contour-surface
plot of Figure 14.12. As we did above for carbon we can construct sp, sp2,
and sp3 hybrids for silicon. The same rules as for carbon apply for the values
of the hybridization parameter λ and the spatial orientations. The parameters
chosen for Figs. 14.10 to 14.12 were those of an sp3 hybrid oriented in z
direction.



15. Three-Dimensional Quantum Mechanics:
Resonance Scattering

15.1 Scattering by Attractive Potentials

We now return to the discussion of scattering in three dimensions. In Chap-
ter 12 we looked only at scattering by repulsive potentials. Now we shall study
the effects of an attractive potential.

In Figure 15.1 the wave function ϕ(+)
k (r) is shown in terms of its real part,

imaginary part, and absolute square. The figure is analogous to Figure 12.1,
except for the sign of the square-well potential in region I. In comparing Fig-
ures 12.1 and 15.1, we observe no striking differences except that in region I
where the potential is nonzero the probability density |ϕ(+)

k (r)|2 is appreciably
larger for the attractive potential. This larger probability density was to be ex-
pected since for the repulsive potential the particle can enter region I only by
the tunnel effect.

Figure 15.2 presents the scattered spherical wave ηk(r) as defined in Sec-
tion 12.2. Again we observe that the plot of |ϕ(+)

k (r)|2 has a ripple structure
whereas the plot of |ηk(r)|2 does not. As discussed at the end of Section 12.1,
the ripples of |ϕ(+)

k (r)|2 are caused by the interference of the incident wave
exp(ik ·r) and the scattered spherical wave ηk(r). The absolute square of ηk(r)
shows no such ripples, and for larger r there is only a | f (ϑ)|2/r 2 falloff.

Comparing the two sets of pictures for the attractive and repulsive poten-
tials (Figures 15.1 and 12.1), we realize that the forward scattering, the scat-
tering into angles ϑ close to zero, is for the repulsive potential only shadow
scattering. In other words, immediately beyond the repulsive square well there
is very little probability of finding the particle, whereas there is considerable
probability that the particle has traversed the attractive square-well region.

 Springer Science+Business Media New York 2012DOI 10.1007/978-1-4614-3951-6_ , ©
S. Brandt and H.D. Dahmen, The Picture Book of Quantum Mechanics,
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Fig.15.1. Scattering of
a plane wave incident
from the left along the
z direction by an at-
tractive potential. The
potential is confined to
region r < d indicated
by the small half-cir-
cle. Shown are the real
part, the imaginary
part, and the abso-
lute square of the wave
function ϕ(+)

k . The fig-
ure corresponds ex-
actly to the situation of
Figure 12.1, except for
the change V0 → −V0

in the scattering po-
tential.
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Fig.15.2. Real part,
imaginary part, and
absolute square of
the scattered spheri-
cal wave ηk resulting
from the scattering of
a plane wave by an
attractive potential, as
shown in Figure 15.1.
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15.2 Resonance Scattering

In the preceding example the energy of the incoming wave was chosen at
random. Let us now consider the scattering of a plane wave at a particular
energy Eres by the attractive potential used in Figures 15.1 and 15.2. A sys-
tematic way for determining the particular energy Eres will be presented in
Section 15.3.

Real and imaginary parts of the wave function ϕ(+)
k (r) with particular en-

ergy Eres are plotted in Figure 15.3 together with |ϕ(+)
k |2. Unlike the situation

in Figure 15.1, there is now a rather symmetric structure in the region of the
attractive potential. This symmetry is also apparent in the plots of the scattered
spherical wave ηk(r) in Figure 15.4.

To clarify the origin of the dominating symmetric structure, we inspect the
scattered partial waves η�, as introduced in Section 12.2. Their real and imag-
inary parts are plotted in Figure 15.5, revealing the dominant contribution of
the scattered partial wave for angular momentum � = 3. Since scattered par-
tial waves are significantly different from zero only for low values of � – in
our example for � = 0, 1, 2, 3 – clearly close to the potential region wave η3

dominates the wave function ϕ(+)
k as well as the scattered spherical wave ηk.

15.3 Phase-Shift Analysis

In this section we investigate the energy dependence of the partial cross sec-
tions σ�(E), the phase shifts δ�(E), and the partial scattering amplitudes f�(E)
for scattering by an attractive potential. The parameters of the potential are the
same as those already used in Figures 15.3 through 15.5.

In Figure 15.6 the partial cross sections are shown as a function of energy
for �= 0, 1, . . . , 5. The striking feature of this figure is the rather pronounced
maximum in the energy dependence of σ3. This maximum produces a peak in
the total cross section σtot, shown in the top plot of Figure 15.6. The energy
value of this maximum is very near the energy Eres at which we observed the
striking structure in η3(r) in Figure 15.5. It was this structure that dominated
the functions ϕ(+)

k (r) and ηk(r). To investigate this phenomenon further, we
study the behavior of the phase shifts δ�(E) in Figure 15.7. Except for �= 3,
the phase shifts show a rather smooth energy dependence. The phase shift δ3,
however, rises sharply in the neighborhood of Eres crossing the value 3π/2 at
Eres. From the phase shifts δ� we now construct the complex partial scattering
amplitudes f�, as described in Section 12.3.

Figure 15.8 shows the corresponding Argand diagrams for the complex
functions f�(E). The Argand diagram for f3(E) shows a swift counterclock-
wise motion of point f3 in the complex plane as the energy passes through
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Fig.15.3. Real part,
imaginary part, and
absolute square of the
wave function ϕ(+)

k for
the scattering of a
plane wave by an at-
tractive potential as
given in Figure 15.1,
but for a resonance en-
ergy E = Eres of the
wave.
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Fig.15.4. Real part,
imaginary part, and
absolute square of
the scattered spher-
ical wave ηk result-
ing from the scatter-
ing of a plane wave
of resonance energy
E = Eres by the same
attractive potential as
in Figure 15.3.
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Fig.15.5. Real and
imaginary parts of
the scattered par-
tial waves η� result-
ing from the scatter-
ing of a plane wave
of resonance energy
E = Eres by the at-
tractive potential as
in Figures 15.3 and
15.4. The resonance
is in the partial wave
for �= 3.
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Fig.15.6. The partial
cross sections σ�(E)
and the total cross
sectionσtot(E) approx-
imated by the sum
over the first few par-
tial cross sections for
the scattering of a
plane wave of en-
ergy E by the attrac-
tive potential used in
Figures 15.1 through
15.5. For resonant en-
ergy E = Eres there is
a sharp maximum in
σ3 which is reflected in
σtot approximated by
the sum over the first
six partial cross sec-
tions and shown in the
top diagram of the fig-
ure.

the energy Eres. As we have learned from the examples of one-dimensional
scattering (Section 5.5), this is the signature for a resonance-scattering pro-
cess. As the phase ascends through π/2, the real part passes through zero in a
sharp decrease, whereas the imaginary part reaches its maximum, Im f� = 1.
Figure 15.8 indicates that none of the scattering amplitudes f0, f1, and f2 has
a resonance.

Of particular interest is the differential scattering cross section

dσ

dΩ
= | f (ϑ)|2
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Fig.15.7. The phase
shifts δ�(E) for the sit-
uation of Figure 15.6.
For E = 0 we put
δ�(0) = 0. All phase
shifts except δ3 vary
only slowly with en-
ergy. Near E = Eres

the phase shift δ3(E)
rises sharply, passing
through δ3(E = Eres)
= π/2, see also the
bottom right diagram
in Figure 15.8.

with

f (ϑ) = 1

k

∞∑
�=0

(2�+1) f�(k)P�(cosϑ) .

The differential cross section is used to measure the angular momentum of
resonances. If near the resonance energy the absolute values of all partial
scattering amplitudes f� except the resonant one are small, the differential
cross section is determined by the square of the Legendre polynomial cor-
responding to the angular momentum of the resonance. This is the case for
our example. At the resonance energy we expect the differential cross sec-
tion to be approximately proportional to [P3(cosϑ)]2. Figure 15.9b shows the
differential cross section as a function of cosϑ for various energies. For the
resonance energy it is indeed very similar to (P3)2, as we can see by compar-
ing this figure with Figure 10.3. In Figure 15.9a the intensity of the scattered
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Fig.15.8. Argand diagrams,
that is, diagrams of the
energy dependence of the
complex partial scattering
amplitudes f�(E), for the
scattering of a plane wave
of energy E by the attrac-
tive potential used in Fig-
ures 15.1 through 15.7 for
�= 0, 1, 2, 3. The amplitude
f� moves on a circle in the
complex plane. Small cir-
cles are placed on the circle
at points equidistant in en-
ergy. For the nonresonant
partial waves, � = 0, 1, 2,
only the Argand diagram it-
self and its projection on the
Im f�, E plane are shown.
The function Im f�(E) is
closely related to the par-
tial cross section σ�(E).
For resonant wave � = 3
both Im f�(E) and Re f�(E)
projections and the phase
shift δ3(E) are shown. Near
resonance energy E = Eres

the partial scattering am-
plitude f3(E) performs a
swift counterclockwise mo-
tion through point (0,1) in
the complex plane, giving
rise to (1) the pronounced
maximum in Im f3(Eres), (2)
the steep drop of Re f3(E)
through Re f3(Eres) = 0, and
(3) the sharp rise of δ3(E)
through δ3(Eres) = π/2.
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b

a

Fig.15.9. (a) Intensity of the scattered spherical wave resulting from the scattering of a
plane wave incident in the z direction onto an attractive potential restricted to a small
region r < d, indicated by the small dashed half-circle. The intensity far outside the
potential region is a function of the scattering angle ϑ . The energy of the incident wave
is the resonance energy E = Eres. (b) Energy dependence of the differential scattering
cross section dσ/dΩ shown over a linear scale in cosϑ . The differential cross section is
constant in cosϑ , indicating isotropic scattering, for E ≈ 0 (background). At resonance
energy E = Eres (fourth line from the back) it is given approximately by the square of
the Legendre polynomial P3(cosϑ), since the partial scattering amplitude f3 dominates
the cross section.
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wave at the resonance energy is plotted over a half-circle in a plane contain-
ing the z axis. The detectors measuring the flux of scattered particles could be
situated on this half-circle.

Often the background from nonresonant amplitudes is not small. By care-
ful analysis of the angular distribution, it is often possible to separate resonant
and nonresonant partial-wave contributions in the differential cross section
and thus to measure the angular momentum of a resonance that has already
been seen in the total cross section.

So far in this section we have studied the phase shifts δ� and the quantities
derived from them that describe the scattering globally. We now turn to the de-
tailed features of the radial wave functions R�(k,r ). Here k = √

2M E/h̄ is the
wave number for a vanishing potential, as introduced in Section 11.1. In Fig-
ure 15.10 the energy dependence of these functions is shown for �= 0, 1, 2, 3.
We observe that R0, R1, and R2 do not change appreciably with energy except
for the decrease in the wavelength that is clearly visible in the region out-
side the potential. The wave function R3, however, changes its shape rapidly
as the energy varies. At the resonance energy it has a pronounced maximum
within the attractive square-well potential. It is this maximum that character-
ized the wave function ϕ(+)

k (r) and the scattering wave function ηk(r), which
were shown in Figures 15.3 and 15.4 to introduce the resonance phenomena.

15.4 Bound States and Resonances

The pronounced maximum of the radial wave function R3(kres,r ), kres =√
2M Eres/h̄, in the range of the attractive square-well potential signifies that

the particle in a resonant state has a rather large probability of being in the po-
tential range. This situation resembles to some extent that of a particle bound
within a square-well potential. The relation between bound states and reso-
nances is indeed intimate, and we shall try to indicate their connection. We
start with Figure 15.11d. It shows the attractive square-well potential used
throughout this chapter, the effective potential for �= 3, the energy of the res-
onance, and the radial wave function R3(k(1)

res ,r ). This plot reveals the reason
why the resonance phenomenon occurs. We remember from the introduction
to Chapter 11 that the effective potential is the sum of the potential V (r ) and
centrifugal potential h̄2�(�+ 1)/(2Mr 2). Thus the effective potential has a
wall just outside the square well, that is, a region where V eff

� is larger than
Eres. This wall keeps the particle from leaving the potential region except by
the tunnel effect. The wall is of finite thickness, however, so that the particle,
unlike the particle in the bound state, can also populate the outside region.
For this depth of the potential there is no bound state for � = 3. We now in-
crease the depth of the potential well. There is a continuous decrease of the
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E = h̄2k2

2M

Fig.15.10. Energy
dependence of the
radial wave func-
tion R�(k,r ) for
scattering by an
attractive square-
well potential. The
form of the po-
tential is indicated
by the long-dash
line, the wave en-
ergy by the short-
-dash line, which
also serves as zero
line for the wave
function. Whereas
R0, R1, and R2

change very little
within the poten-
tial region, near
the energy Eres

the wave function
R3 of the reso-
nant partial wave
develops a very
pronounced max-
imum. Outside the
potential region
all wave functions
show trivial short-
ening of the wave-
length with grow-
ing energy.
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a b c d

Fig.15.11. Bound states and resonances of an attractive square-well potential for angu-
lar-momentum quantum number � = 3. The potential wells have constant fixed widths
but different depths. The potential V (r ) is shown as a long-dash line. The effective po-
tential is also shown. (a) For a rather deep potential well there are two bound states with
negative energies indicated by the horizontal short-dash lines. The lower bound state
has no radial nodes; the second has one node. (b) A somewhat shallower well has only
one bound state but it does have a resonance. The resonance energy corresponds to the
horizontal line of positive energy. The radial wave function R3(k(2)

res ,r ) has one node in
the potential region, just as the second bound state in part a has. (c) This potential well
has only one bound state. (d) The bound state in part c now reappears as a resonance.
Its wave function is R3(k(1)

res ,r ). The resonance is the same as that in Figures 15.3 through
15.10.

resonance energy Eres as the potential increases in depth, and eventually the
resonant state turns into a bound state with negative energy and with the radial
wave function R13(r ). This situation is shown in Figure 15.11c. If we increase
the potential depth even further (Figure 15.11b), a new resonance with the
wave function R3(k(2)

res ,r ) appears possessing one node within the potential re-
gion, just as the second bound state would have. When the depth is increased
even further (Figure 15.11a), this resonance too becomes a bound state with
the wave function R23(r ).
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b

a

Fig.15.12. Energy de-
pendence of the par-
tial cross sections
σ�(E) and of the total
cross section σtot(E),
which is approximat-
ed by the sum over
the first few partial
cross sections. Reso-
nances for the dif-
ferent partial waves
are visible as maxi-
ma in σ� and σtot. The
maxima are rather
sharp for the first res-
onance and broader
for the second. The
resonances shift sys-
tematically to higher
energies as angu-
lar-momentum quan-
tum number � in-
creases. The energy
ranges from E = 0 to
E = 2V0.

15.5 Resonance Scattering by a Repulsive Shell

We have found that resonances occur when there is a repulsive wall in the
effective potential. In our example of an attractive square-well potential, this
wall originated from the centrifugal force. We can also study resonance scat-
tering on a repulsive shell potential:

V (r ) =
⎧⎨⎩

0, 0 ≤ r < d1

V0, d1 ≤ r < d2

0, d2 ≤ r <∞
.
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Fig.15.13. Energy de-
pendence of the phase
shifts δ�(E). At a
resonance energy the
corresponding phase
shift rises steeply
and passes through
−π/2. See also Fig-
ure 15.14. The energy
ranges from E = 0 to
E = 2V0.

Here V0 is positive and denotes the height of the potential within the shell.
The shell potential provides a spherical potential wall of height V0, of inner
radius d1, and of outer radius d2 around the origin. We can expect that this
wall will produce resonances quite independent of a centrifugal force.

Figure 15.12 shows the total cross section σtot and the partial cross sections
σ�, and Figure 15.13 shows the phase shifts δ�, for � = 0, 1, . . . ,5. The reso-
nances are clearly visible as peaks in σ� and as jumps in δ�. For �= 0, 1, 2, 3
there are two resonances at two different energies. We shall refer to them as
first and second resonances. For �= 4, 5 only the first resonance is visible in
the energy range of the figure. The second resonance is much wider in energy
than the first. The width of both resonances increases with angular momen-
tum �. There is also a striking regularity between the angular momentum and
the energy of the first resonance. In a plane spanned by energy E and angular
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Fig.15.14. Argand dia-
grams for the com-
plex partial scatter-
ing amplitudes f1(E)
and f2(E) for scat-
tering by a repul-
sive shell. As in Fig-
ures 15.12 and 15.13,
the energy ranges from
E = 0 to E = 2V0.
The resonances have
a swift counterclock-
wise motion of f�
through the point (0,1)
in the complex plane,
and the characteristic
resonance patterns in
Im f�(E), Re f�(E), and
δ�(E) already familiar
from Figure 15.8 (bot-
tom). Because of the
shell structure of the
potential, there are now
more resonances.
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(2. Res)

(1. Res)

(2. Res)

(1. Res)

E = h̄2k2

2M

Fig.15.15. Energy
dependence of
the radial wave
functions R�(k,r )
within restrict-
ed energy inter-
vals surrounding
the resonances in
�= 0 and in �= 1
for scattering by
a repulsive shell.
The form V (r ) of
the potential is
indicated by the
long-dash line, the
energy E of the
wave by the short-
-dash line. The
middle diagram
of each series cor-
responds to the
resonance energy.
The wave func-
tions R�(kres,r )
shown in these
middle diagrams
display no node
and one node
inside the shell
for the first and
second resonance,
respectively.
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Fig.15.16. Wave func-
tions ϕ(+)

k for the scat-
tering of a plane wave
incident along the z
direction by a repul-
sive shell. The energy
is that of the first
resonance in partial
wave � = 1. The two
half-circles near the
center indicate the in-
ner and outer bound-
aries of the spherical
potential shell.
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Fig.15.17. The scat-
tered spherical wave
ηk resulting from the
scattering of a plane
wave incident along
the z direction by a re-
pulsive shell. The en-
ergy is that of the first
resonance in partial
wave �= 1.
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Fig.15.18. Scattered partial waves η�, �= 0, 1, 2, resulting from the scattering of a plane
wave incident along the z direction by a repulsive shell. The partial wave η1 has its first
resonance at this particular energy of the incident plane wave.

momentum �, the first resonances fall on a curved, smooth line called a Regge
trajectory. There is a similar trajectory for the second resonances.

In the total cross section, also shown in Figure 15.12, the various reso-
nances in different partial waves appear as peaks. When they are sufficiently
narrow, they can easily be separated from the smooth background.

Figure 15.14 gives the Argand diagrams for the partial-wave amplitudes
f1 and f2. It shows the resonance structure known from the bottom part of
Figure 15.8. In both amplitudes there are now two resonances indicated by
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Fig.15.19. Wave
function ϕ

(+)
k , for

the first resonance
in � = 0 produced
by the scattering of
a plane wave inci-
dent along the z di-
rection by a repul-
sive potential shell.
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Fig.15.20. Scat-
tered spherical
wave ηk for the
first resonance
in � = 0 pro-
duced by the
scattering of a
plane wave in-
cident along the
z direction by a
repulsive poten-
tial shell.
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Fig.15.21. Scattered partial waves η� for the first resonance in � = 0 produced by the
scattering of a plane wave incident along the z direction by a repulsive potential shell.

the swift counterclockwise motion of f� through the top of the unitarity circle,
that is, point Re f� = 0, Im f� = 1.

In Figure 15.15 the energy dependence of the radial wave functions
R0(k,r ) and R1(k,r ) is shown in energy intervals around the first and sec-
ond resonances. The radial wave functions have the typical enhancement at
resonance energies. Since the potential vanishes inside the shell, the wave
function has no node in r for the first resonance and one node for the second
resonance.

We conclude this section by showing for some resonances the full station-
ary wave function ϕ(+)

k (r), the scattered spherical wave ηk(r), and the scat-
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tered partial waves η�(r) for �= 1, 2, 3. In each figure the size of the spherical
potential shell is indicated by the two half-circles near the origin. They corre-
spond to the inner and outer boundaries of the shell. The first resonance with
angular momentum � = 1 is illustrated in Figures 15.16 through 15.18. In
Figure 15.18 we observe that only the partial scattered wave for �= 1, that η1

shows a resonance structure. It has no node in r , indicating the first resonance.
There is one node in the polar angle ϑ at ϑ = π/2. It is caused by the Leg-
endre polynomial P1(cosϑ) = cosϑ , which determines the ϑ dependence of
η1 as discussed at the beginning of Section 12.2. The scattered spherical wave
ηk(r) in Figure 15.17 is obtained by summing up the partial scattered waves
η�(r). Since the dominating term in this sum is η1(r), it is not surprising that
the structure of ηk(r) in the central region is that of η1(r), displaying no node
in r but one node in ϑ . Even the full stationary wave function ϕ(+)

k (r), which is
shown in Figure 15.16 and is a superposition of the incoming harmonic plane
wave and the scattered spherical wave ηk(r), retains much of this structure.

Finally, we turn to the resonance of angular momentum zero. Figures
15.19, 15.20, and 15.21 show the functions ϕ(+)

k (r), ηk(r), and η�(r) for the
first resonance. The resonating partial wave is now η0. It has no node in ϑ
since the Legendre polynomial P0 does not depend on ϑ . As a first resonance
it also has no node in r . These simple features of η0 are very clearly retained
in the scattered spherical wave ηk(r), Figure 15.20, and in the stationary wave
function ϕ(+)

k (r), Figure 15.19.

Problems

15.1. What is the relation between the wavelengths inside and outside the
potential region of Figure 15.1?

15.2. Explain the features of the plots of Figure 15.1 with the help of the plots
of Figure 15.2 in terms of the initial plane wave, the scattered spherical
wave, and their interference pattern.

15.3. Find the features in the r and ϑ dependence of the resonant partial wave
η3 in Figure 15.5 that are characteristic for angular momentum �= 3.

15.4. Given the form of the resonant partial wave η3 in Figure 15.5, is there
for � = 3 a bound state or resonance with lower energy than the one
plotted?

15.5. Relate the appearance of the backward peak in the differential scatter-
ing cross section at resonance energy in Figure 15.9 to the partial-wave
decomposition of the scattered wave in Figure 15.5 and to |ηk|2 in Fig-
ure 15.4.
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15.6. Describe the behavior, for large values of r , of the bound-state wave
function of the first excited state in Figure 15.11a and of the resonance
wave function in Figure 15.11b.

15.7. Compare the criteria for a resonance, as found in Figure 15.8, with the
resonances indicated in the Argand diagrams in Figure 15.14. Which
peaks correspond to resonance phenomena and why?

15.8. Are the energies of the resonances in Figure 15.15 higher or lower than
the energies of bound states in an infinitely deep potential well?



16. Coulomb Scattering

16.1 Stationary Solutions

In Section 13.4 we discussed the stationary bound states in the attractive
Coulomb potential. The bound-state wave functions were characterized by
three quantum numbers, the principal quantum number n, total angular-
momentum quantum number �, and the quantum number m of the z compo-
nent of angular momentum. The energies of the bound states are all negative,
En = −Mc2α/(2n2). The set of the bound states in the hydrogen atom is not
complete. Since the Coulomb potential vanishes at infinity there exists also a
set of continuum scattering states for all positive energy eigenvalues E .

As in Section 13.4 the radial Schrödinger equation reads[
− h̄2

2M

1

r

d

dr
r + V eff

� (r )

]
R�(k,r ) = E R�(k,r )

with the continuous energy eigenvalue

E = h̄2k2

2M

parametrized in terms of the wave number k.
The effective potential for angular momentum �,

V eff
� (r ) = h̄2

2M

�(�+1)

r 2
− Zh̄c

α

r
,

again consists of the repulsive centrifugal term and the Coulomb term. In
contrast to the corresponding formula in Section 13.4 here we have incorpo-
rated the charge number Z of the nucleus off which the electron is scattered.
If the charge number Z is negative the Coulomb potential is repulsive and
the Schrödinger equation describes repulsive Coulomb scattering. Of course,
in this case no bound states exist. For instance, the charge number Z = −1
would describe the charge of an antiproton with a negative elementary charge.
Of course, repulsive scattering also takes place if the scattering center carries
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Fig.16.1. Radial scat-
tering wave function
R�(k,r ) in an attrac-
tive Coulomb poten-
tial. In each of the
four plots the total en-
ergy E is varied but
the angular-momen-
tum quantum number
� is kept fixed. The lat-
ter is varied from plot
to plot.
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Fig.16.2. As Figure
16.1 but for a repul-
sive Coulomb poten-
tial.
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positive charge, i.e., in an ordinary nucleus, provided the incoming particle is
also positively charged. It could for instance be a positron, another nucleus,
or a positively charged meson.

We divide the Schrödinger equation by (−h̄2)/(2M) and introduce the
function

w� = r R�(k,r ) ,

the dimensionless variable
ζ = kr ,

and the dimensionless parameter

η = − Z

ka
,

where

a = h̄

αMc
is the Bohr radius, cf. Section 13.4. In terms of these quantities we get the
differential equation of second order:(

d2

dζ 2
− �(�+1)

ζ 2
−2
η

ζ
+1

)
w�(η,ζ ) = 0 .

In the case of a potential of finite range R0 like a square-well potential
vanishing for all r > R0 or of a potential falling off faster than 1/r 2 for large
r > R0 the leading potential for r > R0 is the centrifugal term. The leading
term in the solution w� for large r is then a linear combination of two expo-
nentials of the form exp(±ikr ) as we saw in Chapter 12.

For Coulomb scattering for large distances r the leading potential is the
1/r term. The leading term of the solution for large r is now a linear combi-
nation of two exponentials of the form exp{±i(kr −η ln2kr )}.

We introduce the dimensionless variable

z = −2ikr = −2iζ , ζ = kr ,

and factorize the function w�,

w�(η,ζ ) = e− 1
2 z

(
i

2
z

)�+1

v�(η, z) ,

to get Laplace’s differential equation[
z

d2

dz2
+ (2�+2− z)

d

dz
− (�+1+ iη)

]
v�(η, z) = 0 .
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Fig.16.3. Radial scattering wave function R�(k,r ) in an attractive (top) and in a repulsive
(bottom) Coulomb potential for different values � of the angular-momentum quantum
number but for fixed energy.
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Fig.16.4. Stationary wave function ϕ(r) for the scattering of an incoming Coulomb wave
by an attractive Coulomb potential. Shown are the real part, the imaginary part, and
the absolute square of ϕ(r).
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Fig.16.5. As Figure 16.4 but for a repulsive Coulomb potential.



344 16. Coulomb Scattering

This is a particular case of the equation(
z

d2

dz2
+ (b − z)

d

dz
−a

)
F(a|b|z) = 0 .

Its solution, regular at z = 0, is the confluent hypergeometric function given
by the series

F(a|b|z) = 1+ a

b

z

1!
+ a(a +1)

b(b +1)

z2

2!
+·· ·+ (a)n

(b)n

zn

n!
+·· ·

with
(a)n = a(a +1) · . . . · (a +n −1) .

The series is convergent for all complex z. The parameter a in this equation
should not be confused with the Bohr radius. For our particular case we have

a = �+1+ iη , b = 2(�+1) ,

so that the solution v�(η, z) is given by

v�(η, z) = F(�+1+ iη|2(�+1)|z) .

The solution R�(k,r ) of the radial Schrödinger equation thus reads

R�(k,r ) = A�
r

eikr (kr )�+1 F(�+1+ iη|2(�+1)|−2ikr ) .

The normalization is given by

A� = 2�

(2�+1)!
e− 1

2πη|�(�+1+ iη)| .

Here �(z) is Euler’s gamma function, cf. Appendix E.
With this choice the asymptotic behavior for large kr � 1 is obtained:

R�(k,r )−−−→r→∞
1

r
sin(kr −η ln2kr − 1

2
�π + δ�) .

The Coulomb scattering phase δ� is given by

ei2δ� = �(�+1+ iη)

�(�+1− iη)
, δ� = 1

2i
ln
�(�+1+ iη)

�(�+1− iη)
.

The asymptotic form of R�(k,r ) differs from the corresponding formulae of
Section 12.3 by the additional phase η ln2kr which diverges for kr → ∞.
This is a particular feature of the Coulomb interaction.
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The solution ψc(r) of the three-dimensional Schrödinger equation with
Coulomb potential can be reconstructed with the help of the partial-wave de-
composition

ψc(r) =
∞∑
�=0

(2�+1)i�eiδ� R�(k,r )P�(cosϑ) .

It is called a Coulomb wave function. The asymptotically leading term for
large |r − z| → ∞ has the form

ψc(r) → ei(kz+η lnk(r−z)) .

This asymptotic Coulomb wave differs from a plane wave because of the ap-
pearance of the logarithm in the exponent. This effect is due to the long range
of the Coulomb potential h̄cα/r . It is said to have infinite range. Only po-
tentials falling off faster than r−1 for large r possess finite range. Scattering
solutions in these potentials approach a plane wave exp{ikz} asymptotically.

The total stationary scattering solution is the product of R�(k,r ) and the
spherical harmonics Y�m(ϑ ,ϕ):

ϕ�m(k,r) = R�(k,r )Y�m(ϑ ,ϕ) .

In Figure 16.1 we show the radial wave function R�(k,r ) for different total
energies and for various fixed values of the angular-momentum quantum num-
ber �. For large r the wave function is an oscillating function of r which can
be qualitatively described by an r -dependent wavelength. As we would expect
the wavelength is large for large distances from the origin, where the kinetic
energy is small, and decreases towards the origin. Besides r the wavelength
depends on k and therefore on the total energy E . It decreases with increas-
ing energy. Near the origin the wave function is suppressed by the centrifugal
barrier. This effect becomes particularly evident in Figure 16.3 in which the
wave function R�(k,r ) is shown at a fixed energy, i.e., at a fixed k value, for
different angular-momentum quantum numbers �.

In Figures 16.4 and 16.5 the real and imaginary part and absolute square
of the Coulomb wave function ϕ(r) are shown. It is the solution of the three-
dimensional stationary Schrödinger equation for an incoming Coulomb wave
scattered by a Coulomb potential. The summation over partial waves ϕ�m(k,r)
is carried out up to angular momentum �= 25. For the range shown in r this
guarantees sufficient accuracy.

In Figure 16.4 the case of the attractive Coulomb potential is presented. In
the region of the singularity of the potential energy the wave function acquires
a shorter wavelength due to the increase of the momentum of the particle.

Figure 16.5 exhibits the case of a repulsive Coulomb potential. In the cen-
ter of the plots the wave function is suppressed since here the repulsive po-
tential dominates over the kinetic energy. Towards the center of repulsion the
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wavelength increases indicating the loss of momentum of the particle as it
climbs the repulsive wall.

16.2 Hyperbolic Kepler Motion:
Scattering of a Gaussian Wave Packet
by a Coulomb Potential

We consider a Gaussian wave packet as described in Section 13.5 as initial
wave function of an electron with expectation values of position r0 and mo-
mentum p0. The spatial width is σ . The quantities r0, p0 and σ are chosen
in such a way that the wave packet contains negligible contributions from
bound states. Thus it can be represented by a superposition of scattering wave
functions ϕ�m(k,r) only. As quantization axis for angular momentum, i.e., as
z axis of the coordinate frame, we choose the direction of classical angular
momentum L0 = h̄r0 ×k0.

The decomposition reads

ψ(r,0) = 2

π

∞∑
�=0

�∑
m=−�

∫ +∞

0
b�m(k)ϕ�m(k,r)k2 dk .

The coefficients b�m(k) are probability amplitudes, their absolute squares

P�m(k) = |b�m(k)|2
represent probabilities for angular momentum �,m at given k and probability
densities in k for given �, m, if we choose as integration measure (2/π )k2 dk.

The function

P�(k) =
�∑

m=−�
|b�m(k)|2

is shown in Figure 16.6 for attractive (top) and repulsive (bottom) Coulomb
scattering for the same initial wave packet. Its marginal distributions

P(k) =
∞∑
�=0

P�(k)

and

W� = 2

π

∫ +∞

0
P�(k)k2 dk

are also exhibited. The peaks of the distributions are close to the classical
values of

k2
0 = 2M

h̄2 E0 , E0 = p2
0

2M
− Zh̄c

α

r0
.
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Fig.16.6. Probability distributions P�(k) and marginal distributions W� and P(k) for
the wave packet used in attractive (top) and repulsive (bottom) Coulomb scattering in
Figure 16.7 and 16.8, respectively.
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Fig.16.7. Left: Time development of the spatial probability density of an initially Gaus-
sian wave packet undergoing attractive Coulomb scattering. The trajectory of the cor-
responding classical particle is a hyperbola and indicated by the solid line. The density
is shown in the plane of the classical trajectory for four moments in time. The position is
marked by a dot. Right: The corresponding time development for the spatial probability
density in a classical phase-space distribution.
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Fig.16.8. As Figure 16.7 but for repulsive scattering.
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Depending on the sign of Z we deal with attractive scattering (Z positive) or
repulsive scattering (Z negative). As to be expected for repulsive scattering
the peak of the k distribution is located at higher k values.

Figure 16.7 presents the plots of the time evolution of an initially Gaus-
sian wave packet with an impact parameter equal to its spatial width under the
action of an attractive potential. The solid line indicates the trajectory of the
classical particle with initial conditions r0 and p0 = h̄k0. The black dot marks
its position at time t . The circular density distribution with the scatterer as
center indicates the scattered spherical wave. Also shown in Figure 16.7 is the
time evolution of the corresponding spatial density derived from a classical
phase-space distribution which initially is identical to the one of the Gaussian
wave packet. The main features are the same as in the quantum-mechanical
distribution. In particular, we realize that in both cases the position of the
classical particle does not coincide with the maximum of the probability dis-
tribution. This is due to the fact that the angle of deflection of the trajectory
of a particle with smaller impact parameter is much larger than for a larger
impact parameter, cf. Figure 16.9 (top) below.

Analogously, Figure 16.8 presents the corresponding plots for a repulsive
Coulomb potential. The large deflection of a particle at very small impact
parameters causes the gap in the probability density in forward direction, cf.
Figure 16.9 (bottom) below.

In the case of the elliptical orbits the most striking feature of the quantum-
mechanical probability density in contrast to the classical distribution is the
revival of the wave packet at the time t = Trev = (ncl/3)TK. It is a consequence
of the interference of the widening wave packet with itself on the closed orbit.

Figure 16.9 (top) shows classical trajectories in an attractive Coulomb
field for a series of initial conditions which differ only in the impact pa-
rameter. The trajectories intersect in a region situated behind the scatter-
ing center as seen from the initial position. We expect this region to be
the one where quantum-mechanical interference is important. The quantum-
mechanical probability density shown for this region in Figure 16.10 (top)
verifies this expectation. For Figure 16.10 the initial spatial width of the wave
packet was increased and consequently the initial width in momentum was
decreased. In this way the spread in de Broglie wavelength is reduced for the
wave packet and the interference pattern characterized by half the de Broglie
wavelength becomes more apparent.

Finally, we look for interference in repulsive scattering. An inspection
of classical trajectories with different impact parameters, Figure 16.9 (bot-
tom), shows that they interact behind and sideways of the scattering center
as seen from the initial position. In Figure 16.10 which shows the quantum-
mechanical probability density we indeed observe interference just there.
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Fig.16.9. Classical trajectories in an attractive Coulomb potential (top) and in a repulsive
Coulomb potential (bottom). The individual trajectories beginning on the far left and
containing marks corresponding to equal time intervals differ only by their impact
parameter.
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Fig.16.10. Scattering of a wave packet by an attractive potential (top) and by a repul-
sive potential (bottom). All physics parameters of the wave packet are the same as in
Figure 16.7 and Figure 16.8, respectively, except for the initial spatial width which is 2.5
times higher, and the momentum width which is 2.5 times lower.



17. Spin

17.1 Spin States, Operators and Eigenvalues

In Chapter 10 we introduced orbital angular momentum

L̂ = r× p̂

in terms of the position operator r = (x , y, z) and momentum operator p̂ =
(h̄/i)(∂/∂x , ∂/∂y, ∂/∂z) of a particle moving in space. In a magnetic field
electrons on atomic orbits with orbital angular momentum h̄� exhibit mag-
netic moments

μ= − e

2M
h̄�

with −e being the charge and M the mass of the electron. The Stern–Gerlach
experiment shows, however, that in addition electrons possess an intrinsic
magnetic moment μs . This led George Uhlenbeck and Samuel Goudsmit to
postulate an intrinsic angular momentum or spin of the electron. The intrinsic
magnetic moment is then related to the spin quantum number s by

μs = −gs
e

2M
h̄s .

The coefficient gs is called gyromagnetic factor, its value for the electron is
(nearly exactly) 2.

It can be shown that the spin states cannot be represented as wave func-
tions of the space coordinates x , y, z. We use the concepts introduced in
Appendix B concerning the quantum mechanics in a two-level system and
describe the spin state of a particle in a two-dimensional space with the base
vectors

η1 =
(

1

0

)
, η−1 =

(
0

1

)
.

For later use we already introduce here the notation

η+
1 = (1,0) , η+

−1 = (0,1) ,
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for the adjoint vectors. The three Pauli matrices σ1, σ2, σ3 together with the
unit matrix σ0 form a basis for all Hermitean 2×2 matrices in this space. We
introduce the matrices

Sx = h̄

2
σ1 , Sy = h̄

2
σ2 , Sz = h̄

2
σ3 .

The commutation relations for the components Sx , Sy , Sz and for the sum

S2 = S2
x + S2

y + S2
z

of their squares are the same as for the components L̂ i and the square L̂2 of
the orbital angular-momentum operator L̂ = (L̂ x , L̂ y , L̂ z), i.e.,

[Sx , Sy] = ih̄Sz , [Sy , Sz] = ih̄Sx , [Sz, Sx ] = ih̄Sy ,

[S2, Sa] = 0 , a = x , y, z .

Therefore, we interpret the components of the vector

S = (Sx , Sy , Sz)

as the operator of the spin of the electron. Because of the non-commutativity
of these components there are no common eigenstates of the three compo-
nents. As for orbital angular momentum, we choose the third component Sz

and the square S2 for the definition of a base of common eigenvector equations

S2ηr = 3

4
h̄2ηr , Szηr = 1

2
r h̄ηr , r = 1,−1 .

The eigenvalues of Sz are msh̄, ms = ±1/2, the one of S2 is s(s + 1)h̄2 =
(3/4)h̄2 with s = 1/2 corresponding to the situation for orbital angular mo-
mentum L.

We conclude the electron possesses half-integer intrinsic angular momen-
tum, sh̄ = 1

2 h̄. In analogy to the integer quantum numbers � and m of orbital
angular momentum (m = �, �− 1, . . . , −�) we introduce the spin quantum
numbers s = 1

2 and ms = 1
2 , − 1

2 .
The expectation values of the operators Sx , Sy , Sz for the states η1, η−1 are

η+
r Sxηr = 0 , η+

r Syηr = 0 , η+
r Szηr = r

2
h̄ .

The three equations are equivalent to one vectorial equation:

〈S〉r = η+
r Sηr = r

2
h̄ez , r = 1,−1 .

Since the two states η1, η−1 are eigenstates of Sz the variance of Sz vanishes,

(�Sz)
2 = η+

r (S2
z −〈Sz〉2

r )ηr = 0 .

For the two other components we get

(�Sx )2 = (�Sy)2 = 1

4
h̄2 .
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17.2 Directional Distribution of Spin

The general spin state is a linear superposition of the two basic states η1 and
η−1,

χ = χ1η1 +χ−1η−1

= e−iΦ/2 cos
Θ

2
η1 + eiΦ/2 sin

Θ

2
η−1 .

The expectation value for the spin vector of the state χ is

〈S〉χ = χ+(Θ ,Φ)Sχ(Θ ,Φ) = h̄

2
n(Θ ,Φ) .

Here n(Θ ,Φ) is the unit vector in the direction given by the polar angle Θ
and the azimuthal angle Φ in the x , y, z coordinate system

n(Θ ,Φ) = ex sinΘ cosΦ+ ey sinΘ sinΦ+ ez cosΘ

and

χ+ = χ∗
1 η+

1 +χ∗
−1η

+
−1

= eiΦ/2 cos
Θ

2
η+

1 + e−iΦ/2 sin
Θ

2
η+

−1 .

The general spin state χ(Θ ,Φ) is an eigenstate of the n component n · S
of the spin vector S,

(n ·S)χ (Θ ,Φ) = h̄

2
χ(Θ ,Φ) .

The two basic states η1 and η−1 may also be considered as eigenstates to ez ·S
and −ez ·S, respectively.

In Section 10.5 we have used the angular-momentum state Y��(ϑ ,φ,n) to
analyze another angular-momentum state Y�m(ϑ ,φ,ez). Likewise we now use
the state χ(Θ ,Φ) to analyze our basic states η1 and η−1. The scalar product

χ+(Θ ,Φ) ·ηr = D(1/2)
r/2,1/2(Φ,Θ ,0) , r = 1,−1 ,

is the probability amplitude for detecting the spin angular momentum h̄
2 n in

the state ηr . Here

D(1/2)
1/2,1/2(Φ,Θ ,0) = e−iΦ/2 cos

Θ

2
,

D(1/2)
−1/2,1/2(Φ,Θ ,0) = eiΦ/2 sin

Θ

2

are the Wigner functions for spin 1/2.
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Fig.17.1. Polar diagrams of the Wigner functions d (1/2)
ms ,1/2(Θ).

The absolute square of this amplitude is∣∣χ+(Θ ,Φ) ·ηr

∣∣2 =
[
d (1/2)

r/2,1/2(Θ)
]2

, r = 1,−1 ,

where the functions

d (1/2)
1/2,1/2(Θ) = cos

Θ

2
,

d (1/2)
−1/2,1/2(Θ) = sin

Θ

2

are also called Wigner functions for spin 1/2. In order to obtain a direc-
tional distribution we normalize like in Section 10.5 by a factor (2s + 1)(s +
1)/(4πs) = 3/(2π),

f1/2,ms (Θ ,Φ) = 3

2π

[
d (1/2)

ms ,1/2(Θ)
]2

, ms = 1

2
,−1

2
.

Figure 17.1 shows the Wigner function, and Figure 17.2 the directional dis-
tribution for spin ±1/2. For f1/2,1/2 the probability is largest for the direction
Θ = 0. In contrast to the distributions f�� for integer values of �, cf. Fig-
ure 10.11, the distribution for the electron spin is not sharply peaked in the
direction Θ = 0. The distribution of f1/2,−1/2 is the mirror image of f1/2,1/2

under a reflection Θ → π −Θ .
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Fig.17.2. Polar diagrams of the directional distributions f1/2,1/2(Θ ,Φ) and
f1/2,−1/2(Θ ,Φ).

In complete analogy to our discussion in Section 10.5 we can also con-
struct angular distributions

f1/2,ms ,Θ(Θ) = 2π f1/2,ms (Θ ,0)sinΘ

or, explicitly,

f1/2,1/2,Θ(Θ) = 3cos3 Θ

2
sin
Θ

2
,

f1/2,−1/2,Θ(Θ) = 3sin3 Θ

2
cos
Θ

2
.

They are shown in Figure 17.3. These functions have their maxima at the
angles given by

cosΘ1/2,1/2 = 1

2
, cosΘ1/2,−1/2 = −1

2
,

i.e., Θ1/2,1/2 = 60◦, Θ1/2,−1/2 = 120◦.
For the corresponding semiclassical angular-momentum vectors Lsc

1/2,ms
of

length
√

1/2(1/2+1)h̄ = (
√

3/2)h̄ and z component ±(1/2)h̄ the angles are
given by
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Fig.17.3. Polar diagrams of the angular distributions f1/2,1/2,Θ (Θ) and f1/2,−1/2,Θ (Θ).

cosΘ sc
1/2,1/2 = 1√

3
, cosΘ sc

1/2,1/2 = − 1√
3

,

i.e.,
Θ1/2,1/2 ≈ 55◦ , Θ1/2,−1/2 ≈ 125◦ .

In Figure 17.4 we show the angular distributions f1/2,±1/2,Θ(Θ), the direc-
tion given by the most probable angles Θ1/2,±1/2 and compare them with the
semiclassical angular-momentum vectors Lsc

1/2,±1/2.
The spin state χ (Θ0,Φ0) for a polar angleΘ0 and the azimuthΦ0 is eigen-

state to the spin projection n0 ·S,

(n0 ·S)χ (Θ0,Φ0) = h̄

2
χ (Θ0,Φ0) ,

onto the direction n0 characterized by Θ0 and Φ0.
The directional distribution describing – after dividing by 3 – the prob-

ability to find in χ (Θ0,Φ0) the spin s = 1
2 in the direction n(Θ ,Φ) is given

by

f1/2,1/2(Θ ,Φ,Θ0,Φ0) = 3

2π

(
n(Θ ,Φ)+n(Θ0,Φ0)

2

)2

= 3

4π
(1+n(Θ ,Φ) ·n(Θ0,Φ0)) .
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Fig.17.4. The left-hand plot contains polar diagrams of the angular distributions
f1/2,ms ,Θ (Θ) for ms = ±1/2. Also shown are lines from the origin to the points
f1/2,ms ,Θ (Θ1/2,ms ) where Θ1/2,ms is the angle for which f1/2,ms ,Θ has its maximum. The
right-hand diagram shows the semiclassical angular-momentum vectors Lsc

1/2,ms
.

Plots of this distribution are shown in Figure 17.5. They exhibit the same
apple-shaped form as those in Figure 17.2 but now with n0 as the symmetry
axis rather than the z axis.

17.3 Motion of Magnetic Moments in a Magnetic Field.
Pauli Equation

With the help of the spin operator S the magnetic-moment operator of the
electron can now be expressed as the negative product of the gyromagnetic
ratio

γ = gs
e

2M
and the spin vector S:

μ = −γS .
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Fig.17.5. Polar diagrams of the distribution f1/2,1/2(Θ ,Φ, t) for the direction of the spin
of an electron precessing around the z axis which is the direction of a homogeneous
field of magnetic induction. The tip of the vector of the spin expectation value moves
with angular frequency Ω on a circle around the z axis. The plots show the directional
distribution for t = 0, T/4, T/2,3T/4 with T = 2π/Ω being the precession period.

The potential energy of the static magnetic moment μ in a field of mag-
netic induction B is given by

H = −μ ·B = γB ·S = γ h̄B · σ

2
.

The factor in front of the Pauli matrices can be expressed by a precession
frequency

Ω = γ B .

We choose the z axis of a coordinate frame in the direction of the B field:

B = Bez .

The Hamiltonian now takes the form

H = −μ ·B = h̄

2
Ωez ·σ = h̄

2
Ωσ3 .

A homogeneous field of magnetic induction exerts no force on the electron
but it does exert a torque on its magnetic moment. In analogy to the Schrödin-
ger equation we may write down the Pauli equation for the temporal evolution
of the spin state χ(t) of the electron,
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ih̄
d

dt
χ(t) = Hχ(t) = h̄

Ω

2
σ3χ(t) .

Its solution is

χ(t) =
(

cos
Ω

2
t − iσ3 sin

Ω

2
t

)
χ0 ,

where χ0 is the initial spin state at time t = 0. For the two base states η1, η−1

taken as initial states we find in particular

χ±1(t) =
(

cos
Ω

2
t ∓ i sin

Ω

2
t

)
η±1 = e∓iΩ2 tη±1 .

As a particular case we study the motion of the magnetic moment initially
described by a state

χ0 = χ (Θ0,Φ0) = exp

{
−i
Φ0

2

}
cos
Θ0

2
η1 + exp

{
i
Φ0

2

}
sin
Θ0

2
η−1

in a homogeneous field of magnetic induction along the z direction.
The time-dependent state is given by

χ(t) = χ1(t)η1 +χ−1(t)η−1

with the complex coefficients

χ1(t) = exp

{
−i
Ωt +Φ0

2

}
cos
Θ0

2
, χ−1(t) = exp

{
i
Ωt +Φ0

2

}
sin
Θ0

2
.

For the expectation values of the components of the spin vector we find

〈S〉χ = χ+(t)Sχ (t) = h̄

2
[ex sinΘ0 cos(Ωt +Φ0)

+ ey sinΘ0 sin(Ωt +Φ0)+ ez cosΘ0

] = h̄

2
n(t) .

We differentiate the expectation value 〈S〉χ with respect to time,

d

dt
〈S〉χ = h̄

2

dn
dt

= h̄

2
Ω [−ex sinΘ0 sin(Ωt +Φ0)

+ ey sinΘ0 cos(Ωt +Φ0)
]

.

Using Ω = γ B we recognize the right-hand side as the vector product of
the magnetic-induction field B = B ez with the expectation value of the spin
vector 〈S〉χ :
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γB×〈S〉χ = h̄

2
Ω

[
ez ×n(t)

]
.

Thus, the expectation value 〈S〉χ of the spin-vector operator obeys the equa-
tion of motion

d

dt
〈S〉χ = γB×〈S〉χ .

Introducing μ = −γS we obtain for the expectation value 〈μ〉 of the magnetic
moment

d

dt
〈μ〉 = γB×〈μ〉 .

These results correspond to a rotation of the vector 〈S〉χ (t) of expectation val-
ues about the ez axis with angular frequency Ω = gs

e
2m B. The expectation

value of the spin vector and therefore of the magnetic moment exhibit Larmor
precession about the z axis. The time dependence of the expectation value is
identical to the result obtained in classical physics for the motion of the mag-
netic moment in a homogeneous magnetic field.

Of course, the expectation values and their motion present only part of the
quantum-mechanical information contained in the time-dependent state χ (t).
The probability for finding the spin 1

2 in the direction n(Θ ,Φ) is given by

1

3
f 1

2 , 1
2
(Θ ,Φ, t) = 1

2π

∣∣χ+(Θ ,Φ)χ(t)
∣∣2

= 1

2π

∣∣∣χ1(t)D(1/2)
1
2

1
2

(Φ,Θ ,0)+χ−1(t)D(1/2)
− 1

2
1
2
(Φ,Θ ,0)

∣∣∣2

= 1

2π

∣∣∣d (1/2)
1
2

1
2

(Θn)
∣∣∣2

,

where Θn is the polar angle relating to the time-dependent direction

n(t) =
⎛⎝ sinΘ0 cos(Ωt +Φ0)

sinΘ0 sin(Ωt +Φ0)
cosΘ0

⎞⎠ .

In Figure 17.5 plots of f 1
2 , 1

2
(Θ ,Φ, t) for the time instants t = 0, 1

4 T , 1
2 T ,

3
4 T of one period T = 2π/Ω are shown. The initial distribution f 1

2 , 1
2
(Θ ,Φ,0)

is centered about the initial axis

n(0) =
⎛⎝ sinΘ0

0
cosΘ0

⎞⎠ .

For later times it moves as a rigid structure with a time-dependent axis n(t)
rotating with constant angular frequencyΩ on a cone about the z axis with an
opening angle Θ0.
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17.4 Magnetic Resonance. Rabi’s Formula

We study the motion of the spin of a particle under the influence of a time-
independent magnetic-induction field B0 = B0ez in z direction and a time-
dependent field perpendicular to the z direction,

B1(t) = B1(cosωt ex + sinωt ey) ,

rotating with angular frequency ω about the z axis. In the total field

B(t) = B0 +B1(t)

the magnetic moment
μ = −γS

moves under the action of forces described by the time-dependent potential
energy

H (t) = −μ ·B(t) = −μ
2

B(t) ·σ .

We introduce the two frequencies,

Ω0 = −μ
h̄

B0 , Ω1 = −μ
h̄

B1 ,

related to the components B0 and B1 of the magnetic-induction field. This
leads to a reformulation of the Hamiltonian

H (t) = h̄

2
[Ω0σ3 +Ω1(σ1 cosωt +σ2 sinωt)] ,

or in matrix form

H (t) = h̄

2

(
Ω0 Ω1e−iωt

Ω1eiωt −Ω0

)
.

The Pauli equation for this situation determines the motion of the spin state
χ (t),

ih̄
d

dt
χ(t) = H (t)χ(t) .

The decomposition of the spin state χ(t) into the basic spinors, η1, η−1,

χ (t) = χ1(t)η1 +χ−1(t)η−1 ,

leads to the two coupled equations

i
dχ1

dt
= Ω0

2
χ1(t)+Ω1

2
e−iωtχ−1(t) ,

i
dχ−1

dt
= Ω1

2
eiωtχ1(t)−Ω0

2
χ−1(t)
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for the time-dependent coefficients χ1(t), χ−1(t). The explicit time depen-
dence of the coefficients can easily be removed by the introduction of a rotat-
ing coordinate frame described by the time-dependent spin states η̃1(t), η̃−1(t),

η1 = exp
{

i
ω

2
t
}
η̃1(t) , η−1 = exp

{
−i
ω

2
t
}
η̃−1(t) ,

i.e., for the components

χ1(t) = exp
{
−i
ω

2
t
}
χ̃1(t) , χ−1(t) = exp

{
i
ω

2
t
}
χ̃−1(t) .

This leads to the decomposition

χ(t) = χ̃1(t )̃η1(t)+ χ̃−1(t )̃η−1(t)

of the spin state χ(t) and to the differential equations

i
d

dt
χ̃1(t) = −Δ

2
χ̃1(t)+Ω1

2
χ̃−1(t) ,

i
d

dt
χ̃−1(t) = Ω1

2
χ̃1(t)+ Δ

2
χ̃−1(t) ,

with Δ= (ω−Ω0). In terms of the initial state

χ0 = χ(0) = χ (0)
1 η1 +χ (0)

−1η−1 = χ (0)
1 η̃1(0)+χ (0)

−1η̃−1(0)

and its components χ1(0) = χ (0)
1 , χ−1(0) = χ (0)

−1 we find as solution for the
components in the rotating frame

χ̃1(t) = χ
(0)
1 cos

Ω

2
t − i(ω1χ

(0)
−1 −ω3χ

(0)
1 ) sin

Ω

2
t ,

χ̃−1(t) = χ
(0)
−1 cos

Ω

2
t − i(ω1χ

(0)
1 +ω3χ

(0)
−1) sin

Ω

2
t .

Here we used the following notation:

Ω2 =Ω2
1 +Δ2 , ω1 = Ω1

Ω
, ω3 = Δ

Ω
.

We choose the coordinate frame in such a way that the initial state coincides
with the basic spinor

χ0 = η1 , i.e., χ
(0)
1 = 1 , χ

(0)
−1 = 0 .

Then, we get as the solution for the components relative to the time-independ-
ent coordinate frame η1, η−1,
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χ1(t) = exp
{
−i
ω

2
t
}(

cos
Ω

2
t + i

Δ

Ω
sin
Ω

2
t

)
,

χ−1(t) = −i
Ω1

Ω
exp

{
i
ω

2
t
}

sin
Ω

2
t .

Also the time-dependent spinor

χ (t) = χ1(t)η1 +χ−1(t)η−1

has length one,

χ+(t)χ (t) = |χ1(t)|2 +|χ−1(t)|2 = 1 .

For the frequency ω of the time-dependent component of the external
magnetic-induction field B1 equal to the precession frequency Ω0 = μB0

of the time-independent field component B0 the difference frequency Δ =
1
2 (ω−Ω0) vanishes. In this case the motion of the spin state turns out to be
particularly simple:

χ1(t) = exp
{
−i
ω

2
t
}

cos
Ω

2
t , χ−1(t) = −i exp

{
i
ω

2
t
}

sin
Ω

2
t .

The expectation values of the spin vector S = h̄
2σ are given by

〈Sx〉χ (t) = h̄

2

(
Ω1

Ω
sinωt sinΩt +Ω1

Ω

Δ

Ω
cosωt cosΩt

−Ω1

Ω

Δ

Ω
cosωt

)
,

〈Sy〉χ (t) = − h̄

2

(
Ω1

Ω
cosωt sinΩt −Ω1

Ω

Δ

Ω
sinωt cosΩt

+Ω1

Ω

Δ

Ω
sinωt

)
,

〈Sz〉χ (t) = h̄

2

(
Δ2

Ω2
+Ω

2
1

Ω2
cosΩt

)
.

Figure 17.6 exhibits the orbit of the tip of the vector 〈S〉χ(t) on the sphere of
radius h̄/2 for the first period

T = 2π/Ω

for different values of the ratio ω/Ω0 of the frequency ω of the rotating mag-
netic field B1(t) and the Larmor frequency Ω0 of the time-independent field
B0 = B0ez vertical to the plane of rotation of the field vector B1(t). At t = 0
the vector 〈S〉χ(t) starts from the z direction spiraling about the z axis up to
maximal opening angle Θmax given by

cosΘmax = (Δ2 −Ω2
1 )/Ω2 .
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Fig.17.6. Magnetic resonance. Trajectory of the tip of the expectation value of the spin
vector within one period T . The value of ω is varied from plot to plot whereasΩ0 andΩ1

are kept constant. The plot in the middle of the figure corresponds to exact resonance
frequency ω =Ω0.

Thus its z component oscillates with the angular frequencyΩ within the range

h̄

2

Δ2 −Ω2
1

Ω2
≤ 〈Sz〉 ≤ h̄

2
.

If the frequency ω of the time-dependent magnetic-field component B1 coin-
cides with the Larmor frequencyΩ0 corresponding to the time-independent z
component B0, i.e., Δ = 0, Ω1 =Ω , one observes the phenomenon of mag-
netic resonance. The expectation value of the spin vector S becomes simply

〈S〉χ(t) = h̄
2

(
ex sinωt sinΩt − ey cosωt sinΩt + ez cosΩt

)
= h̄

2

(
ex sinΩt cos(ωt − π

2 )+ ey sinΩt sin(ωt − π

2 )+ ez cosΩt
)

.
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Fig.17.7. As Figure 17.6 but for ω fixed to the resonance frequency ω = Ω0 and for
various values of Ω1. In all plots the trajectory is shown for one half of a period T .

The tip of the vector 〈S〉χ moves on the surface of a sphere with radius h̄/2 pe-
riodically from the z direction to the negative z direction. Polar and azimuthal
angle follow the time dependence

Θ(t) =Ωt , ϕ(t) = (ωt − π
2

) .

The z component of the spin-vector expectation value exhausts the full range

− h̄

2
≤ 〈Sz〉χ ≤ h̄

2
.

Figure 17.7 presents a set of graphs of the orbits during half a period
T/2 = π/Ω for different values of the ratio Ω1/Ω0 = B1/B0 of the Larmor
frequencies Ω1, Ω0 or, equivalently, the field strengths of the rotating field
B1 and the constant field B0. For values Ω1 � Ω0 the orbit forms a spiral
with dense winding on the sphere. The distance of the windings grows with
growing ratio Ω1/Ω0.

The directional distribution for the spin direction is, of course, of the same
form

f1/2,1/2(Θ ,Φ, t) = 3

2π

∣∣∣d (1/2)
1/2,1/2(ϑn)

∣∣∣2
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Fig.17.8. Amplitude A as a function of ω for a fixed value of Ω1. For smaller values of
Ω1 the resonance becomes sharper. For larger values it becomes broader.

found in Section 17.3 and Figure 17.5. But ϑn is now the polar angle with re-
spect to the expectation value of the spin vector, so that the whole distribution
moves along with that vector.

In experiments with atomic or molecular beams Isidor Rabi used magnetic
resonance for the measurement of the magnetic moments of protons and nu-
clei. These can be directly determined from the resonance frequency ω=Ω0,
since the Larmor frequencyΩ0 =μB0 is directly proportional to the magnetic
moment μ.

Finally, we quote the Rabi formula from Isidor Rabi’s celebrated paper
“space quantization in a gyrating magnetic field” published in 1937. Starting
initially (t = 0) from the state η1, it gives the probability P− 1

2
(t) of finding at

time t the state η−1 if the initial state was η1,

P− 1
2
(t) = |η+

1 χ (t)|2 = |χ−1(t)|2 = Ω2
1

Ω2
sin2 Ω

2
t .

The probability P− 1
2
(t) is at maximum for odd multiples of the time

T

2
= π

Ω
= π√

Δ2 +Ω2
1

, Δ= (ω−Ω0) .

At these instants the probability has the maximum value
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A = P− 1
2

(
T

2

)
= Ω2

1

Ω2
= Ω2

1

Ω2
1 + (ω−Ω0)2

= (Ω1/Ω0)2

(Ω1/Ω0)2 + (1−ω/Ω0)2
.

It reaches the value one for the resonance frequency ω=Ω0. A plot of A as a
function of the ratio ω/Ω0 for fixed value Ω1/Ω0 is shown in Figure 17.8. It
is of the typical resonance form.

17.5 Magnetic Resonance in a Rotating Frame of Reference

At the end of Section 17.3 we obtained the equation of motion

d

dt
〈S〉 = γB×〈S〉

for the expectation value 〈S〉 of the spin vector in a constant induction field
B = Bez. The equation described the precession of the vector 〈S〉 around the
direction of B with the angular velocity Ω = γ B.

For the time-dependent field used in magnetic-resonance experiments,

B(t) = B0 +B1(t) = B1 cos(ωt)ex + B1 sin(ωt)ey + B0ez ,

both vectors on the right-hand side of the equation of motion become time
dependent.

The discussion simplifies if one considers a rotating reference frame
e′

x , e′
y , e′

z = ez the x ′ axis of which always coincides with the direction of the
rotating field B1(t),

B1 = B1e′
x (t) = B1 cos(ωt)ex + B1 sin(ωt)ey .

This implies

e′
x (t) = ex cosωt + ey sinωt ,

e′
y(t) = −ex sinωt + ey cosωt .

The rotation of the field B1(t) and of the vectors e′
x (t), e′

y(t) is described by
the vector

ω = ωez

of angular velocity. The time derivatives of an arbitrary vector 〈S〉 in the lab-
oratory frame and in the rotating frame are connected by

d〈S〉
dt

= d′〈S〉
dt

+ω×〈S〉 .
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We rewrite the relation in the form

d′〈S〉
dt

= d〈S〉
dt

−ω×〈S〉

and introduce the equation of motion and obtain

d′〈S〉
dt

= (γB−ω)×〈S〉 = γBeff ×〈S〉

with the effective field

Beff = B− ω

γ
=

(
B0 − ω

γ

)
e′

z + B1e′
x ,

which is, of course, constant in the rotating frame. The equation of motion
describes the precession of the vector 〈S〉 about the direction of the field Beff

in the rotating frame. The frequency of precession is

Ω = γ Beff =
√

(γ B0 −ω)2 +γ B2
1 =

√
(Ω0 −ω)2 +Ω2

1 .

Since experiments are always performed for B1 � B0, the effective field is
practically parallel or antiparallel to the z axis except for frequencies ω near
the Larmor frequency Ω0 in the static field B0,

ω =Ω0 = γ B0 .

If initially the vector 〈S〉 is parallel to the z axis then for ω appreciably
different from the resonance frequency it will deviate only very little from
the z direction since it precesses around the direction of Beff which is nearly
parallel (or antiparallel) to the z axis. At resonance, however, 〈S〉 precesses
about the x ′ axis since at resonance Beff = B1 = B1e′

x and the polar angle of
〈S〉 with the z axis changes periodically between 0 and π with the angular
frequency Ω1 = γ B1.

The situation is illustrated in Figure 17.9. This figure corresponds in all
parameters to Figure 17.6 but it shows the trajectory of the tip of 〈S〉 in the
rotating reference frame e′

x ,e′
y ,e′

z rather than in the laboratory frame ex ,ey ,ez.
It is interesting to note that in most experiments the time-dependent field

B1 is not realized as a rotating field but as a field oscillating in the x direction,

B(exp)
1 = 2B1 cosωtex .

It can, however, be interpreted as a sum

B(exp)
1 = B1+(t)+B1−(t)

with the two fields



17.5 Magnetic Resonance in a Rotating Frame of Reference 371

Fig.17.9. As Figure 17.6 but presented in the rotating frame of reference. The arrow
shown in the x ′, z′ plane is the direction of the effective field Beff. The tip of the expectation
value of the spin vector moves on a circle around that direction. Its initial position is on
the z′ axis.

B1± = B1 cos(ωt)ex ± B1 sin(ωt)ey

rotating in opposite directions. The vector of angular velocity of these fields is
ωez and −ωez, respectively. In the frame rotating with B1+ resonance occurs
since in the effective field the z component B0 −ω/γ vanishes for ω= γ B0. In
this frame of reference B1− varies very rapidly with time so that its influence
on 〈S〉 averages out and can be neglected. In a frame rotating with B1− the z
component of the effective field is B0 +ω/γ and no cancellation takes place.
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Problems

17.1. Show that the expectation values of the spin vector S = (Sx , Sy , Sz) for
the two basis spinors η1, η−1 are given by

〈S〉a = η+
a Sηa = a

2
h̄ ez , a = 1,−1 .

17.2. Show that the expectation value of the spin vector S = (Sx , Sy , Sz) for a
coherent spin state

χ(Θ ,Φ) = e−iΦ/2 cos(Θ/2)η1 + eiΦ/2 sin(Θ/2)η−1

is

〈S〉χ = χ+(Θ ,Φ)Sχ(Θ ,Φ) = h̄

2
n(Θ ,Φ) .

17.3. Calculate the expectation value of the Hamiltonian H = −μ · B, μ =
gseS/(2m) for the coherent state χ(Θ ,Φ) given in problem 17.2.

17.4. By Taylor expansion of the exponential function show the validity of
the identity

exp{−iΩ(n ·σ )t} = cos
Ω

2
t − in ·σ sin

Ω

2
t .

17.5. Verify that the exponential function of problem 17.4 solves the Pauli
equation

ih̄
d

dt
exp {−iΩ(n ·σ )t} = H exp {−iΩ(n ·σ )t}

with

H = 1

2
h̄Ω(n ·σ ) .



18. Examples from Experiment

So far we have investigated mechanical systems using the description and
tools of quantum mechanics. In this final chapter we look at actual systems as
they occur in nature. We shall discuss scattering phenomena, bound systems,
and metastable states as they play a role in rather different fields of science.

Before discussing the results of actual experiments, we need to spend a
little time on the units in which the data are given. The velocities of several of
the particles studied are not much slower than the speed of light. To describe
them we therefore have to use Einstein’s theory of relativity. It states that, if
E is the total energy and p the magnitude of the momentum of a particle, the
quantity

E2 − p2c2 = m2c4

has the same value in any frame of reference in which E and p are measured.
Here c = 3 × 108 m/s is the speed of light in vacuum. In the particular frame
of reference in which the particle is at rest, p = 0, we have

E = mc2 .

Therefore the constant m is called the rest mass of the particle. The quan-
tity mc2 is the rest energy of the particle. In a frame of reference in which the
particle is not at rest, p = 0, the total energy is larger:

E =
√

m2c4 + p2c2 = mc2 + Ekin .

The additional term is called the kinetic energy of the particle.
In the experiments discussed in this section, the particles are character-

ized by their momentum p, their total energy E , or their kinetic energy Ekin.
The energies are measured in electron volts (eV). A particle that carries the
elementary charge

e = 1.602×10−19 C

and that has traversed an accelerating potential difference of 1V has gained
the kinetic energy

1eV = 1.602×10−19 Ws = 1.602×10−19 J .

 Springer Science+Business Media New York 2012DOI 10.1007/978-1-4614-3951-6_ , ©
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A convenient notation for higher energies is 1keV = 103 eV, 1MeV = 106 eV,
1GeV = 109 eV. Since mc2 is an energy, masses can be measured in electron
volts per c2:

1
eV

c2
= 1.602×10−19

(3×108)2
kg = 1.782×10−36 kg .

The rest mass of the electron is

me = 511keV/c2 .

The rest masses of the proton and the neutron are nearly 2000 times larger,

mp = 938.3MeV/c2 , mn = 939.6MeV/c2 .

It is important to remember that a proton with kinetic energy of Ekin =
10MeV has a total energy of E = mpc2 + Ekin = 948.3MeV. Often the mo-
mentum p is easiest to measure. Since the product pc is an energy, the mo-
mentum is measured in electron volts per c:

1
eV

c
= 1.602×10−19

3×108
kgm/s = 5.3×10−28 kgm/s .

Once the momentum p and the rest mass m of a particle are known, its total
energy E and its kinetic energy Ekin are easily computed.

18.1 Scattering of Atoms, Electrons, Neutrons, and Pions

In Chapters 12, 15, and 16 we have discussed the scattering of a particle in-
cident on a spherically symmetric potential, which was assumed to be fixed
in space. In actual experiments projectile particles scatter on target particles.
In “colliding beam” experiments the projectile and target particles both move
in opposite directions within a storage ring and scatter on each other in a
head-on collision. An example for such an arrangement is given at the end
of Section 18.4, where the production of the elementary particles J/ψ and
Υ in colliding beams of electrons and positrons is discussed. In “fixed tar-
get” experiments the target particles are at rest before the scattering process;
however, they move after the collision. As in classical mechanics, this two-
body process can be reduced to a one-body problem if the coordinate r in the
wave function is taken to be the distance vector between the two particles,
and the mass appearing in the one-body Schrödinger equation is taken to be
the reduced mass M = m1m2/(m1 +m2) of the two bodies. It is customary to
present results of scattering experiments as differential cross sections dσ/dϑ∗
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with respect to the scattering angle ϑ∗ in the center-of-mass system (CMS).
In this reference frame target and projectile have initially equal and opposite
momenta (Figure 18.1a).

Figures 18.1b through e show results obtained in scattering experiments
in entirely different fields of physics using completely different experimental
techniques. Figure 18.1b shows the differential cross section for the scatter-
ing of sodium atoms by mercury atoms. The kinetic energy in the laboratory
frame is only a fraction of an electron volt. The momentum is of the order
of 100keV/c corresponding to a de Broglie wavelength of about 10−11 m,
which is one order of magnitude below the atomic radius. Scattering experi-
ments such as this one provide information about the electric potential acting
between atoms. Such investigations are helpful in studying problems of chem-
ical bonds.

Nuclear forces can be investigated by using neutrons, which carry no
electric charge, as projectiles incident on nuclei. The differential cross sec-
tion for the scattering of neutrons on lead nuclei is given in Figure 18.1c for
two energies E lab

kin = 7MeV and 14.5MeV. The corresponding momenta are
plab = 110MeV/c and 160MeV/c. They in turn correspond to de Broglie
wavelengths of roughly 11 × 10−15 m and 7.6 × 10−15 m. These wavelengths
are of the same order of magnitude as the radius of the lead nucleus, which is
roughly 7 × 10−15 m. As expected, there are more minima in the differential
cross sections for the higher energy, that is, for the shorter wavelength, of the
incoming particles (see Figure 15.9b).

To investigate the electric potential of nuclei, we choose electrons as pro-
jectiles because they are not affected by the nuclear forces of the nucleus.
Figure 18.1d shows the differential cross section of electrons with a labo-
ratory energy of 420MeV scattered by oxygen nuclei. Because the electron
mass is very light, the electron momentum is 420MeV/c, its corresponding
wavelength about 3 × 10−15 m. From such experiments the electrical charge
distribution of the oxygen nucleus was found to have a characteristic radius
of about 3×10−15 m.

The nuclei are composed of protons and neutrons, often referred to by the
collective term nucleons. If we want to study the internal structure of protons
or neutrons, we can perform scattering experiments using either electrons or
particles with nuclear interaction as projectiles. Results of an experiment us-
ing particles with nuclear interaction as projectiles are shown in Figure 18.1e.
Here the projectiles are π mesons. These particles exert nuclear forces and
have a mass of about 140MeV/c2. The experiment was performed with lab-
oratory energies of 10GeV, that is, a momentum of 10GeV/c corresponding
to a wavelength of 0.1×10−15 m, which is one order of magnitude below the
proton radius.
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Fig.18.1.
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The results given in Figure 18.1 bear a qualitative resemblance to the
differential scattering cross sections shown in Figures 12.4b and 15.9b. No
quantitative comparison is justified, for the forces acting in the collisions in
Figure 18.1 cannot be described by simple square-well potentials. Moreover,
effects attributable to the spin of the target and the projectiles were not taken
into account in the calculations of Chapters 12 and 15.

18.2 Spectra of Bound States in Atoms, Nuclei, and Crystals

The first striking success of quantum mechanics was the explanation of the hy-
drogen spectrum. Sufficiently heated atomic hydrogen emits light with a char-
acteristic wavelength spectrum consisting of discrete wavelengths. In Sec-
tion 13.4 we found that the energy levels of the electron bound in the hydrogen
atom are

En = −1

2
Mc2 α

n2
, n = 1, 2, . . . .

Here M is the electron mass, c is the speed of light, and α = 1/137 is the
fine-structure constant. A transition from one level to another is effected by
the emission or absorption of the energy difference

�E = En1 − En2 = −1

2
Mc2α2

(
1

n2
1

− 1

n2
2

)
in the form of a light quantum of frequency ν corresponding to

�E = hν

Fig.18.1. (a) Scattering of a projectile particle 1 on a target particle 2. In the laboratory
the target particle is initially at rest, p2 = 0. In the center-of-mass system (CMS) the
particles have initially equal and opposite momenta, p∗

1 = −p∗
2. For elastic scattering,

considered here, the momenta are also equal and opposite after the scattering process,
p′∗

1 = −p′∗
2 . (b) Sodium atoms scattered on mercury atoms, (c) neutrons on lead nuclei,

(d) electrons on oxygen nuclei, and (e) π mesons on protons. The differential cross
section dσ/dΩ for the elastic scattering of two particles is given as a function of the CMS
scattering angle ϑ∗. The laboratory kinetic energy Ekin of the projectile is given on each
figure. For part b the ordinate is a linear scale given in arbitrary units. For parts c, d,
and e it is a logarithmic scale given in square centimeters per steradian. Sources: (b) From

U. Buck and H. Pauly, Zeitschrift für Naturforschung 23a (1968) 475, copyright c© 1968 by Verlag der Zeitschrift

für Naturforschung, Tübingen, reprinted by permission. (c) From F. Perey and B. Buck, Nuclear Physics 32 (1962)

352, copyright c© 1962 by North-Holland Publishing Company, Amsterdam, reprinted by permission. (d) From R.

Hofstadter, Nuclear and Nucleon Scattering of Electrons at High Energies, reproduced with permission from the

Annual Review of Nuclear and Particle Science, Volume 7, copyright c© 1957 by Annual Reviews Inc. (e) From a

conference contribution by J. Orear et al. as reported by G. Belletini, Intermediate and High Energy Collisions, in

Proceedings of the 14th International Conference on High Energy Physics at Vienna (J. Prentki and J. Steinberger,

editors), copyright c© 1968 by CERN, Geneva, reprinted by permission.
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or to the wavelength

λ= c

ν
= hc

�E
.

A set of transitions for a fixed value of n1 but variable n2 is called a spec-
tral series (see Figure 18.2a). In particular, the one with n1 = 2 and n2 > 2
is called the Balmer series. Its wavelengths are in the region of visible light
and can be easily measured with a prism spectrograph. The spectral lines of
the Balmer series are observed in the light emitted by electric discharges in
hydrogen gas but also in the light emitted by some stars, proving that there
is hot hydrogen in the atmospheres of such stars. Outside the region of some
stars that emit light, the hydrogen gas is cold. Then we observe dark lines
in the spectrograph for the wavelengths of the Balmer series, indicating that
hydrogen atoms of the cold gas have absorbed light. Stellar spectra show-
ing the Balmer series in emission and absorption are given in Figure 18.2b.
The energy spectrum shown in Figure 18.2a has already been obtained in
Section 13.4. It is characteristic of the Coulomb potential acting between the
nucleus of the hydrogen atom and its electron. It possesses an infinite number
of levels accumulating at the upper end of the spectrum, E = 0. The spectra
of more complicated atoms which contain more electrons in the atomic shell
become more involved but retain these general features.

Transitions between different energy levels effected by the absorption or
emission of photons are also observed in atomic nuclei. A typical energy scale
for these photons is 1MeV, compared to 1eV in atoms. Nuclear spectra are
complex because the nucleus usually consists of a large number of protons
and neutrons bound together by nuclear forces. Some of the low-lying levels
of nuclei can be explained by the following model. Every nucleon moves in
the nuclear potential owing to the presence of all the other nucleons in the
nucleus. Since nucleons are fermions and obey the Pauli exclusion princi-
ple, they fill up the lowest states in a common nuclear potential, forming the

Fig.18.2. (a) The energy levels that the electron of the hydrogen atom can take are
indicated by horizontal lines and enumerated by the principal quantum number n.
Vertical lines indicate the energies at which transitions between different energy levels
take place. Transitions to or from the same lower energy level form a series. For example,
transitions to or from energy level n = 1 make up the Lyman series. Those to or from
energy level n = 2 make up the Balmer series. Transitions to a lower level consist of the
emission of a light quantum corresponding to the transition energy. Those to a higher
level consist of the absorption of a light quantum. (b) Wavelength spectra of light from
different stars show the Balmer series in emission (top) and absorption (bottom). The
stars are α Cassiopeiae and β Cygni. From R. W. Pohl, Optik und Atomphysik, ninth edition, copyright

c© 1954 by Springer-Verlag, Berlin, Göttingen, Heidelberg, reprinted by permission. (c) The different energy
levels of the carbon nucleus 12C. The ground state of the nucleus has been chosen to
be the zero point of the energy scale. Some of the observed transitions between energy
levels are indicated. These transitions, like those for the hydrogen atom in part a, consist
of the emission or absorption of a photon.
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Fig.18.2.
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ground state of the nucleus. The simplest states of higher energy are those in
which a single nucleon occupies a higher state. Figure 18.2c shows the en-
ergy spectrum of the low-lying states of the carbon nucleus 12C. The nucleus
contains six protons and six neutrons, that is, twelve nucleons. Since the car-
bon nucleus is a twelve-particle system, its spectrum, as might be expected, is
rather different from the energy spectrum of the hydrogen atom.

In Section 6.8 we saw that the energy levels of periodic potentials form
bands. Because a crystal is a regular lattice of atoms and therefore has spatial
periodicity, the energy levels of the electrons in a crystal form such bands.
Figure 6.16 indicates that the number of levels inside each band is equal to
the number of single potentials, that is, to the number of atoms in the crystal.
Since this is a very large number indeed, we do not expect to resolve the sin-
gle energy levels within a band. Experimentally, the band hypothesis can be
verified using the photoelectric effect. Monoenergetic photons of high ener-
gies, that is, monochromatic X-rays, are directed onto a crystal surface. The
energy of the electrons liberated from the crystal by the photoelectric effect
can be measured using the principle illustrated in Figure 1.1 or more refined
techniques.

In Figure 18.3a the energy spectrum of electrons obtained by directing
monochromatic X-rays on silver is shown. The bulk of photoelectrons appears
in the low-energy range between W1 and W2, which has a width of about 5eV.
A small fraction is emitted with an energy range between W2 and Wmax, which
has a width of about 4eV. This result is taken as evidence that there are two
different energy bands in the silver crystal. They are shown schematically
in Figure 18.3b. These bands are the conduction band with edges EC1, EC2

and the valence band with edges EV1, EV2. The valence band is completely
filled with electrons. The conduction band is only partly filled; the electrons
with maximum energy in this band have Fermi energy EF. It is therefore clear
that the minimum energy needed to free an electron is equal to the Fermi
energy; a photoelectron with energy Wmax originates from the Fermi edge in
the conduction band. We now identify photoelectrons with energies W2 and
W1, as originating from the upper, EV2, and lower, EV1 edges of the valence
band. The number of electrons freed from the valence band is much larger
than the number freed from the conduction band because the valence band
contains many more electrons.

18.3 Shell-Model Classification of Atoms and Nuclei

The only atom we have studied in some detail is the hydrogen atom, which
consists of a proton of charge +e as nucleus and an electron of charge −e.
The heavier atoms have Z protons and additional uncharged neutrons in their
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b

a

Fig.18.3. (a) Current I of pho-
toelectrons emitted by a sil-
ver crystal, which has been
irradiated by monochromatic
X-rays, as a function of the
kinetic energy W of the pho-
toelectrons. By energy conser-
vation we have W = hν − |E |,
where hν is the energy of the
X-ray photon and E the energy
with which the electron was
originally bound in the crys-
tal. Adapted from K. H. Hellwege,

Einführung in die Festkörperphysik, copy-

right c© 1976 by Springer-Verlag, Berlin,

Heidelberg, New York, reprinted by per-

mission. (b) Energy bands of elec-
trons in the silver crystal shown
schematically. The conduction
band C is only partly filled
with electrons, indicated by the
hatched area. The valence band
V, which is completely filled,
partly overlaps with the con-
duction band. Photoelectrons
with the highest energy origi-
nate from the region of highest
energy in the conduction band,
that is, Wmax = hν−|EF |.

nucleus, and Z electrons in their hull. This Z number representing the positive
charge of the nucleus of the atom of an element is its atomic number. The
potential energy of a single electron in the electric field of the nucleus of a
heavier atom is

V (r ) = −Zαh̄c
1

r
.

Consequently, the energy levels are
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En = −1

2
Mc2α

2

n2
Z 2 .

Here the forces acting between the electrons have been neglected. In Sec-
tion 9.1 we learned that fermions obey the Pauli exclusion principle, which
says that two identical fermions cannot populate the same state. Let us now
count the number of different states for a given value n of the principal quan-
tum number. The angular-momentum quantum number � can take the values
� = 0, 1, . . . , n − 1. For a given � there are 2�+ 1 states of different quan-
tum number m, which measures the z component of angular momentum,
m = −�, −�+1, . . . , �. Thus the total number of states for a given n is

n−1∑
�=0

(2�+1) = n2 .

This number still has to be multiplied by 2 since the electron possesses spin.
An electron with given “orbital” quantum numbers n, �, and m can therefore
still exist in the two different spin states, characterized by the quantum number
ms = 1

2 , − 1
2 , so that the total number of states for a given n is equal to 2n2.

In our simplified description, all electrons in an atom that have the same
principal quantum number n have the same energy. They are said to be in the
same shell. There can be two electrons in the innermost shell which has n = 1,
eight electrons in the next shell with n = 2, and so on. In this way the Periodic
Table of elements is easily explained.

For hydrogen (Z = 1) and helium (Z = 2) the electrons have principal
quantum numbers n = 1. For lithium (Z = 3) both states with n = 1 are filled;
therefore the third electron has to be in state n = 2 and in a second shell. When
all the states with n = 2 are filled, the element is the noble gas neon (Z = 10 =
2 × 12 + 2 × 22). The element sodium (Z = 11) has an additional electron
with n = 3, which goes in the third shell, and so on. The electrons in shells
that are filled up are chemically inactive, which is seen from the chemical
inertia of the noble gases helium and neon. Elements with the same number of
electrons in an unfilled shell possess similar chemical properties, for example,
lithium, sodium, and so on. The consecutive filling of the n = 3 shell continues
only until the � = 0 and � = 1 states are all occupied. The element is argon
(Z = 18), which again has the chemical properties of a noble gas. After argon
the shell with n = 4 and � = 0 begins filling, forming potassium (Z = 19)
and calcium (Z = 20). Only then are the so-far vacant states with n = 3 and
�= 2 filled. The reason for this irregularity is that the states with n = 4, �= 0
are situated at lower energy than the states n = 3, � = 2. This situation is in
contrast to our simple scheme, in which we have totally neglected the forces
between the electrons in an atom.

Because of the forces acting between electrons, the energy levels of atoms
with more than one electron are not simply the energy levels of a hydrogen-
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like atom with Z protons in its nucleus and with its lowest states filled with Z
electrons. In fact, the actual calculation of the levels of many-electron atoms is
complicated and can be carried out only with simplifying approximations. The
levels least influenced by interactions between the electrons are the innermost
levels for n = 1 and n = 2. Their Z dependence is given by the formula

En = −1

2
Mc2α2 Z 2

n2
.

The difference between the energy of the state with the principal quantum
number n2 and that of the ground state with n1 = 1 for an atom with atomic
number Z is then

�E = −1

2
Mc2α2

(
1

n2
2

− 1

n2
1

)
Z 2 = 1

2
Mc2α2

(
1− 1

n2
2

)
Z 2 .

This difference can be measured in an experiment in which electrons acceler-
ated to some 10keV knock an electron out of the ground state of an atom with
atomic number Z . The unoccupied state (n1 = 1) can be filled by an electron
jumping from state n2 = 2, n2 = 3, and so on in the atom to the ground state.

The energy difference between the two states is radiated off as an X-ray
quantum of frequency

ν = 1

h
�E .

With this formula for �E , we find a linear relation between the atomic
number Z and the square root of the frequency,

√
ν, of the emitted X-ray:

√
ν = √

Mc2/(2h)α

(
1− 1

n2
2

)1/2

Z .

Henry G. J. Moseley first measured these transitions in 1913. His results are
reproduced in Figure 18.4a. They allow the simple interpretation that the
atomic number Z is the number of positive charges on the nucleus of the
atom, since the data take the expected line in a Z ,

√
ν plot. Actually, the line

of the data does not follow our formula exactly. The deviation is caused by
the screening – even though small for the inner atomic shells – of the nuclear
Coulomb field by other inner electrons.

Another test for the viability of the shell model of the atomic hull is indi-
cated by the formula

E(Z ,n) = −1

2
Mc2α2 Z 2

n2

for the energy of the outermost electron with principal quantum number n in
the hull of an atom with nuclear charge Z . This energy is called ionization
energy. The expression for E(Z ,n) is actually only a rough estimate of the
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b

a

Fig.18.4. (a) Moseley’s plot showing the square root of the X-ray frequency versus the
atomic number Z for Kα radiation, n2 = 2 (upper line), and for Kβ radiation, n2 = 3
(lower line). From H. G. J. Moseley, The Philosophical Magazine 27 (1914) 703, copyright c© 1914 by Taylor

and Francis, Ltd., London, reprinted by permission. (b) Ionization energies for atoms as a function of
the atomic number Z . The maxima for noble gases, which have closed shells with Z = Zc

electrons – Zc = 2 for helium, Zc = 10 for neon, and so on – are pronounced, and the
drop from Z = Zc to Z = Zc +1 – that is, from helium to lithium, from neon to sodium,
and so on – is sharp.
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ionization energy, since it does not take into account the mutual interaction
of the electrons in the atomic hull. Nevertheless, for atoms with low atomic
number it suffices to demonstrate how the values of the ionization energies
indicate the closure of atomic shells.

In the process of “constructing” the chemical elements by filling the levels
with electrons, the ionization energy E(Z ,n) rises with Z as long as levels are
filled with the same principal quantum number n. The highest value E(Zc,n)
within each shell is reached in the element that has a closed shell with atomic
number Zc, that is, a noble gas. For the element with the next atomic number,
a new shell with the principal quantum number n + 1 begins to be occupied.
Even though Z increases in this step from Zc to Zc +1, the increase from n to
n + 1 means a definite decrease in ionization energy E(Zc + 1,n + 1) for the
first element in the new shell compared to the value E(Zc,n) for the noble gas.
Because there are many states belonging to each principal quantum number n,
for each electron the principal quantum number is smaller than Zc. The ratio
of the two ionization energies is

r (Zc) = E(Zc +1,n +1)

E(Zc,n)
= (Zc +1)2

(n +1)2

n2

Z 2
c

= (1+1/Zc)2

(1+1/n)2
< 1 ,

because Zc is larger than n. For the jump from helium to lithium, neon to
sodium, and argon to potassium, we find these values:

lithium/helium r (2) = 0.56 ,
sodium/neon r (10) = 0.54 ,
potassium/argon r (18) = 0.63 .

In contrast, the ratio of the ionization energy of an element closing a shell to
the energy of the preceding element in the Periodic Table is

r ′(Zc) = E(Zc,n)

E(Zc −1,n)
= Z 2

c

(Zc −1)2
= 1

(1−1/Zc)2
> 1 .

For the corresponding closures of the atomic shells, we find

helium/hydrogen r ′(2) = 4 ,
neon/fluorine r ′(10) = 1.23 ,
argon/chlorine r ′(18) = 1.12 ,

that is, values larger than one. The peak behavior expected by these arguments
can be immediately verified by looking at the measured ionization energies
plotted in Figure 18.4b, even though the experimental values for the ratios r
and r ′ are different from the ones we have given.
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In the classification of nuclei, the nuclear shell model has been success-
ful in explaining observed regularities. For the electrons in a light element,
it was reasonable to describe their motion in the Coulomb potential of the
nucleus, neglecting the repulsion between electrons. For the protons and neu-
trons forming the nucleus, no analogous center of force exists. Nevertheless,
it has proved useful in describing the motion of a single nucleon in the nuclear
potential created by all remaining nucleons. Such a potential has, as does the
nuclear force of a single nucleon, short range. For our simple discussion we
assume that the potential is that of a harmonic oscillator. The lowest states in
this potential are filled by the nucleons. Since protons and neutrons have spin
1
2 according to Pauli’s exclusion principle, every state characterized by n, �,
and m can be occupied by two protons and two neutrons. The lowest state in
the harmonic oscillator (see Section 13.2) has quantum numbers n = 0, �= 0;
therefore it can accommodate at most two protons and two neutrons. This is
the case for the nucleus of the element helium. This nucleus, also called the
α particle, is the most stable nucleus known; for its disintegration the largest
amount of energy is needed. The helium nucleus has a closed proton shell and
a closed neutron shell.

For the nuclei of the next heavier elements, the n = 1, � = 1 shell of the
oscillator potential is successively filled. It offers 2 × (2�+ 1) = 6 states for
protons as well as six states for neutrons, so that the next closure of the proton
shell, as well as of the neutron shell, is reached for Z = 8 and N = 8. Here Z ,
as before, gives the number of protons in the nucleus and N gives the num-
ber of neutrons. The nucleon number A = Z + N together with the chemical
symbol which itself contains the information about Z is commonly used to
characterize the nucleus. The shells Z = 8 and N = 8 are those of the oxy-
gen nucleus, 16O. As we know from Section 13.2, in the harmonic-oscillator
potential the states with principal quantum number n = 2 are degenerate for
� = 0 and � = 2. The nuclear shell with n = 2 contains 2 × 1 + 2 × 5 = 12
states for protons and for neutrons. Thus the next closed shell is reached for
Z = N = 20, the nucleus of the element cadmium, 40Ca. As was true of the
atomic hull, this simple constructive scheme for finding the closed nuclear
shells works for the lighter nuclei only.

It was the achievement of Maria Goeppert-Mayer and of Otto Haxel, Hans
Jensen, and Hans Suess to discover the physical reason for the structure of
the higher closed shells. They are reached at the higher magic numbers 28,
50, 82, 126, which cannot be obtained from the oscillator potential. In fact,
these numbers are “magic” because they denote a large spin-orbit interaction,
that is, a large interaction between spin s and angular momentum � of the
nucleons. This coupling gives rise to an additional potential energy term in the
Schrödinger equation. Evidence for nuclear shells comes from experiments in
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nuclear spectroscopy. We do not present them here, for their interpretation
would require discussing additional details of nuclear physics.

18.4 Resonance Scattering off Molecules, Atoms, Nuclei,
and Particles

In Chapter 15 we studied resonance phenomena in some detail. We have seen,
in particular, that the total cross section for elastic scattering of a particle by
a spherically symmetric potential may have pronounced maxima, as a func-
tion of the energy of the particle (see Figures 15.6 and 15.12). Such resonance
phenomena are not restricted to simple potential scattering. They are observed
in a variety of physical situations. In a more general situation, the collision of
two particles, the total cross section is a measure of the probability that they
will react. One or both particles may even be compound systems. The total
cross section then is a measure of the probability for a reaction between these
systems. In fact, we have seen evidence for such reactions earlier in this chap-
ter when looking at the absorption spectrum of hydrogen (see Section 18.2,
Figure 18.2b). The process is actually a collision between a photon and the
hydrogen atom, which excites the electron in the atom into a higher energy
level. The photograph of the spectrum shows that the absorption probability,
that is, the total cross section, has pronounced maxima at particular photon
energies. These energies correspond to the differences between the bound-
state energies of the hydrogen atom. It turns out that in this process the higher
bound states of the hydrogen atom are not absolutely stable. After excitation
by absorbing a photon, a higher bound state, through photon emission, decays
with a certain average lifetime into a state of lower energy and finally into the
ground state. In our original calculations of the hydrogen atom (Section 13.4),
only the Coulomb interaction between electron and proton was taken into ac-
count. Now we are also considering the interaction of photons and electrons.
The total process of absorption and emission of a photon is nothing but the
resonance scattering of a photon by the atom. We expect the process to show
the qualitative features of resonance scattering discussed in Section 5.4 and
Chapter 15.

Of course, similar resonance structures in total cross sections can be ob-
served in more complicated atoms and even in molecules. Figure 18.5a shows
the absorption spectra of infrared light by different paraffin molecules,

n-pentane CH3 −CH2 −CH2 −CH2 −CH3 ,
n-hexane CH3 −CH2 −CH2 −CH2 −CH2 −CH3 ,
...
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Fig.18.5. Total cross sections for various reactions as a function of the kinetic energy of
the incident particle in the laboratory frame. (a) The absorption coefficient A for infrared
light passing through a layer of paraffin 0.02mm thick. The abscissa is the wave number
λ−1 = ν/c (bottom), which is proportional to the energy E = hν of the light quanta (top).
A high rate of absorption corresponds to a large total cross section. Thus the graphs can
be interpreted as measurements of the total cross sections as a function of energy. Two
characteristic resonances near E = 0.17eV, which are associated with the vibrations
of neighboring CH2 groups, are present in all paraffins considered. From Landolt-Börnstein,

Zahlenwerte und Funktionen, sixth edition, Volume 1, part 2 (A. Eucken and K. H. Hellwege, editors), Figure 33,

p. 365, Copyright c©1951 by Springer-Verlag, Berlin, Göttingen, Heidelberg, reprinted by permission. (b) Total
cross section for neutrons scattered off lead nuclei. There are many resonances at low
energies corresponding to the formation of various metastable states of lead isotopes.
(c) Total cross section for positive pions scattered on protons. The wide resonance near
Ekin ≈ 0.2GeV corresponds to the excitation of the metastable state Δ++(1232).
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There is a strong similarity in the absorption spectra, indicating the excita-
tion of very similar resonances in the different molecules. They correspond
to vibrations between neighboring CH2 groups, which are common to all the
paraffin molecules.

Figure 18.5b presents an example from nuclear physics, the total cross
section of neutrons scattered off lead nuclei. The many resonances indicate
that the nuclei can exist in a variety of metastable states, covering a rather
wide range of energies.

We have seen that resonance scattering reveals the presence of excited
states in molecules, atoms, and nuclei. Single nucleons, for example, protons,
can also be investigated by scattering different projectiles on them. We choose
here positive pions, also called π mesons. These particles are lighter than
protons but heavier than electrons. They play an important role in explain-
ing nuclear forces. In Figure 18.5c the total cross section for the scattering of
positive pions on protons is shown as a function of the pion energy. The pro-
nounced resonance at the left side of the picture we interpret as a metastable
state. Actually, it corresponds to a short-lived particle called the Δ++ baryon.
The sequence of its production in a pion–proton collision and its subsequent
decay into a pion and a proton is written as

π+ p →Δ++ → π+ p .

Electrons and positrons can be accelerated to very high energy, more than
50GeV; they can be accumulated in a storage ring and be brought to head-on
collisions. The total cross section as a function of the center-of-mass energy
of the e+e− system has characteristic resonances. Figure 18.6 shows two se-
ries of resonances which are located near 3 and 10GeV. They are evidence
for short-lived particles called the J/ψ family and the Υ family. The first one
found is the J/ψ particle with a mass of 3.1GeV. Its production and subse-
quent decay into electron and positron is a resonance scattering of the form

e+e− → J/ψ → e+e− .

Besides this elastic process, the inelastic one,

e+e− → J/ψ → hadrons ,

is also observed. Hadrons are particles that interact strongly in the nucleus, in
particular pions, protons, and neutrons. All hadrons are assumed to be com-
posed of only a few constituent particles called quarks q and antiquarks q.
The J/ψ particle is composed of the very heavy charm quark c and its an-
tiparticle c, so that the reaction above reads

e+e− → (cc) → hadrons ,
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b
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Fig.18.6. Total cross section observed for the reaction in which an electron (e−) and a
positron (e+) annihilate each other to form a number of strongly interacting particles,
such as π mesons. The cross section shows very sharp resonances near (a) ECM ≈ 3GeV
and (b) ECM ≈ 10GeV. Here ECM is the total energy in the center-of-mass system,
the system in which e+ and e− have equal and opposite momenta. The unexpectedly
sharp resonances are interpreted as evidence that metastable states consisting of a
quark–antiquark pair have formed. The J/ψ family of states is composed of a “charm”
quark and its antiparticle. The Υ family of states is a bound system of a “beauty” quark
and the corresponding antiquark. Sources: (a) From A. M. Boyarski et al., Physical Review Letters

34 (1975) 1357 and from V. Lüth et al., Physical Review Letters 35 (1975) 1124, copyright c© 1975 by American

Physical Society, reprinted by permission. (b) From D. Andrews et al., Physical Review Letters 44 (1980) 1108 and

45 (1980) 219, copyright c© 1980 by American Physical Society, reprinted by permission.
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where (cc) symbolizes the metastable state J/ψ of c and c. The next res-
onance, ψ ′ at 3.7GeV, is another resonance of the cc system that can be
regarded as an exited state of the J/ψ particle. In fact, these and the other
observed (cc) states can be explained as bound states in a potential describing
the interaction of c and c. The discovery of these states has led to a much bet-
ter understanding of quark bound states and to deeper insight into the structure
of matter.

A similar series of resonances in electron–positron scattering is observed
at 9.46GeV and beyond. The family of Υ particles are understood to be bound
states of the even heavier beauty quark b and its antiquark b.

It is interesting to note that the quantum-mechanical phenomena studied in
this section span an energy range of eleven orders of magnitude, from infrared
radiation at 0.2eV to high-energy electron storage rings at 10GeV.

18.5 Phase-Shift Analysis in Nuclear and Particle Physics

In the preceding section we identified a resonance in the total cross section
as evidence for the existence of a metastable state. Figure 15.6 showed that a
maximum in the total cross section is usually an indication for a resonance in
a single partial wave. The quantum numbers of the resonant partial wave are
therefore those of the metastable state which, in elementary particle physics,
we have also called a particle. To determine the quantum numbers of such a
particle, we use the method of phase-shift analysis outlined in Section 15.3.
We decompose the measured differential cross section into partial waves, ob-
taining the complex partial-wave amplitudes f�, as a function of the energy,
or equivalently, the momentum of the incident particle. From the different
partial-wave amplitudes Argand diagrams analogous to those in Figure 15.14
can be constructed.

Figure 18.7a shows the differential cross section for the elastic scattering
of positive pions on protons for various pion energies E . Near E = 200MeV
the cross section has a simple parabolic form, indicating the dominance of the
Legendre polynomial P1(cosϑ) = cosϑ in the expression

dσ

dΩ
= | f (ϑ)|2 ∼ |P1(cosϑ)|2

for the differential scattering cross section. This parabola indicates a reso-
nance with angular momentum � = 1. The proton has an intrinsic angular
momentum, that is, a spin of 1

2 h̄. It turns out that the metastable state has
total angular momentum 3

2 h̄. Figure 18.7b gives the Argand diagram for the
corresponding partial-wave amplitude. As in Figure 15.14, the partial scatter-
ing amplitude is recognized to move, as a function of energy, on the unitarity
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Fig.18.7.
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circle in the complex plane. The deviation of the experimental points from
the unitarity circle designate an inelastic process. Not only elastic scattering
but also the production of one or more additional pions is possible at these
energies. The real and imaginary parts of the partial-wave amplitude have the
characteristic features of a resonance at a center-of-mass energy of 1.232GeV
in the pion-proton system. By this phase-shift analysis the intrinsic angular
momentum of the Δ++ hadron, which we first observed in the total cross sec-
tion (Figure 18.5c), is found to be 3

2 h̄.
The method of phase-shift analysis, which has proved very successful in

particle physics, had already been used earlier in nuclear physics. The elastic
scattering of α particles on helium nuclei is an interesting example. In Fig-
ure 18.7c the phase shifts δ0, δ2, and δ4 are given directly as functions of the
energy of the incident particle. The phase shift δ2 shows a typical resonance, a
quick rise through the value π/2. The resonance corresponds to a metastable
state of angular momentum 2 of the beryllium nucleus, 8Be, which is formed
by two 4He nuclei colliding.

18.6 Classification of Resonances on Regge Trajectories

Figure 15.12 indicated that there is a striking regularity between the energies
of the lowest-lying resonances of a system and their angular momenta. In a
plane spanned by energy E and angular momentum �, the resonances lie on a
curve in such a way that energy E of the resonance increases monotonically
with angular momentum �. The correlation between the energies of a fam-
ily of resonances and their angular momenta in potential scattering has been
derived by Tullio Regge. In elementary particle physics families of particles
lying on the same Regge trajectory are observed. As an example, Figure 18.8

Fig.18.7. Phase-shift analysis. (a) The differential cross section for the elastic scattering
of positive π mesons on protons, shown for various kinetic energies of the meson, has
a simple parabolic form at Ekin = 200MeV, indicating a resonance at this energy with
angular momentum � = 1. (b) The Argand diagram of the corresponding partial scat-
tering amplitude, reconstructed from measured data. All the features of a resonance at
Ekin = 200MeV are evident. The phase shift passes swiftly through 90 degrees, while the
imaginary part goes through a maximum and the real part vanishes. (c) A resonance at
much lower energies. Various phase shifts for the elastic scattering of an α particle on a
helium nucleus, that is, another α particle, are plotted as a function of the kinetic energy
of the incoming particle. The resonance in δ2 indicates that both particles form a res-
onance with angular momentum � = 2. Source: (a) From Robert C. Cence, Pion–Nucleon Scattering,

copyright c© 1969 by Princeton University Press, Figure 5.2, p. 62, reprinted by permission of Princeton University

Press. (b) Adapted from G. Höhler in Landolt–Börnstein, Numerical Data, New Series, volume 9b2 (H. Schopper,

editor), Figure 2.2.6, p. 58, copyright c©1983 by Springer-Verlag, Berlin, Heidelberg, New York, reprinted by per-

mission. (c) From T. A. Tombrello and L. S. Senhouse, The Physical Review 129 (1963) 2252, copyright c© 1963 by

American Physical Society, reprinted by permission.
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Fig.18.8. Regge trajectory of the Δ particles, which can be understood as resonances
formed by a proton and a π meson. The square of the resonance mass M2 is plotted
against the angular momentum J of the resonance. For the three lowest-lying resonances
(black points) both M and J have been experimentally determined. For the last two (open
circles) only the mass has been measured so far.

shows the Regge trajectory containing the Δ++ hadron, already discussed in
Sections 18.4 and 18.5. We now call it more specifically Δ(1232) by indicat-
ing in brackets its mass in MeV. On the same trajectory four more resonances
are shown. In this diagram, in which the square of the resonance mass is plot-
ted on the abscissa and its spin on the ordinate, the trajectory is a straight
line. From resonance to resonance, the spin is increased by two units, that is,
it takes the values 3

2 h̄, 7
2 h̄, and so on. This complication is attributable to the

half-integer spin of these resonances.
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18.7 Radioactive Nuclei as Metastable States

The disintegration of a radioactive nucleus by the emission of an α particle
can be considered as the decay of a metastable state. George Gamow has
given a quantum-mechanical analysis of how the α particle behaves in the
potential of the other protons and neutrons in the nucleus. The effect of the
short-range nuclear forces can be approximated by a square-well potential. In
addition, the α particle, which carries the electric charge +2e, experiences the
repulsive long-range Coulomb force of the other protons. The total potential
of both nuclear and Coulomb forces is attractive for small radii but repulsive
for greater distances, as indicated in Figure 18.9a. Such a potential can con-
tain bound states of negative energies that are stable as well as metastable
states of positive energies that have a finite lifetime. In particular, metastable
states with energies lower than the height of the repulsive wall are expected
to have long lifetimes. An α particle in such a metastable state can leave the
nucleus only by tunneling through the potential barrier. For an α particle in
a metastable state, only the repulsive barrier is important. The repulsive shell
studied in detail in Chapter 15 can therefore serve as a model for the potential.
Figure 15.15 shows the radial wave functions of several metastable states in
this potential. Figures 15.12, 15.13, and 15.14 contain the total cross sections
and Argand diagrams. They indicate that resonance widths increase with res-
onance energy. The repulsive shell of Chapter 15 has its one-dimensional ana-
log in the two-potential barriers of Section 5.4. The widths of the metastable
states confined between two potential barriers also grow with energy, as in-
dicated in Figure 5.12. Figures 5.9 and 5.10 examined the time dependence
of the decay of metastable states and revealed that the lifetime decreases with
increasing energy, that is, with increasing width. Indeed, the probability for
the penetration of the barrier grows with the energy of the particle, which
is tantamount to saying that the lifetime decreases with the energy of the α
particle.

This phenomenon is observed experimentally. The energy of α particles
is easily measured by their range in air. Figure 18.9b shows a cloud chamber
photograph displaying the tracks of α particles emitted by radioactive polo-
nium, 214Po. All tracks except one have very similar ranges, indicating the
energy of the lowest-lying metastable state. A single track in the photograph
has a considerably greater length. Its energy is that of a higher metastable
state, which is already much depopulated because of its shorter lifetime. A
systematic study of the relation between energy and the lifetime of α decays
of nuclei was first carried out by Hans Geiger and John Mitchell Nuttall. Fig-
ure 18.9c shows this correlation for many radioactive elements.
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Fig.18.9.

18.8 Magnetic-Resonance Experiments

Units and Orders of Magnitude

The operator μ of the magnetic moment of an electron and its spin operator S
are simply proportional to each other,
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μ = −γS .

The quantity γ , the gyromagnetic ratio of the electron, is given as

γ = g0μB/h̄ .

The constant
μB = e

2M
h̄ = 9.274078×10−24 Am2

is called the Bohr magneton. Here M denotes the electron mass. The gyro-
magnetic factor of the free electron g0 can be computed in the framework of
quantum electrodynamics (QED). Precision measurements of g0 are therefore
important tests of the validity of QED. Current experimental and theoretical
values are

g(exp)
0 = 2.002319304386±20×10−12 ,

g(th)
0 = 2.002319304822±332×10−12 .

The astonishing accuracy of the experimental value is due to magnetic reso-
nance experiments performed with a single electron by Hans Dehmelt and his
group.

Because of the negative charge of the electron the vectors μ and S are
antiparallel. For particles with positive charge, in particular for atomic nuclei,
they are parallel. Since one wants γ to be positive also for nuclei one has to
write

μ = γS .

We shall use this relation for both electrons and nuclei. Our formulae will
correspond to those given in the literature specific to the field of electron spin
resonance (ESR) if γ is replaced by −γ .

In order to get g factors of the order of one also for atomic nuclei with a
magnetic moment one writes for nuclei:

γ = gNμp/h̄ .

Fig.18.9. α decay. (a) Potential energy V (r ) of an α particle in a nucleus. Although
the total energy E (dashed line) of an α particle may be positive, the particle can leave
the nucleus only by tunneling through the potential barrier created by the Coulomb
attraction between nucleus and α particle. Therefore metastable states of positive energy
can exist. (b) Cloud chamber photograph of tracks of α particles from the decay of the
polonium nucleus, 214Po. All particles except one have approximately the same range
in the chamber gas, indicating that they possess equal energies. The single, long-range
track was caused by the decay of an exited state of 214Po possessing a higher energy. From

K. Phillip, Naturwissenschaften 14 (1926) 1203, copyright c© 1926 Verlag von Julius Springer, Berlin, reprinted by

permission. (c) Geiger–Nuttall diagram showing the relation between the half-life T1/2 and
the energy of the emitted α particles for the lowest-lying states of radioactive nuclei. The
diagram indicates that the lifetime decreases very rapidly with energy.
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Here

μp = e

2Mp
h̄ = 1

1836
μB = 5.051×10−27 Am2

is the nuclear magneton and Mp = 1836M the proton mass. Measurements of
the gyromagnetic factor gproton of the proton yield

gproton = 5.58 .

This value cannot be computed in the framework of QED. It is assumed that
the magnetic moment of the proton results from the intrinsic magnetic mo-
ments of its constituents, the quarks, and from magnetic moments of orbital
motion of the quarks within the proton. The determination of the magnetic
moment of the proton, the neutron, and in general of atomic nuclei is an im-
portant field of nuclear physics.

In Section 17.4 we have discussed the phenomenon of magnetic reso-
nance. In a homogeneous magnetic induction field B0 = B0ez the expectation
value 〈μ〉 of a magnetic moment precesses around the field direction with
the Larmor frequency Ω0 = γ B0. The polar angle ϑ of 〈μ〉 with respect to
B0 stays constant. If in addition to the constant field B0 there is a field B1(t)
perpendicular to B0 and itself rotating with a frequency ω equal to the Lar-
mor frequency Ω0 then the angle ϑ changes by π within the time T/2 where
T = π/Ω1, Ω1 = γ B1. This way the direction of 〈μ〉 which may originally
have been parallel to B0 is changed to be antiparallel to B0.

The difference in potential energy between the two spin states in which the
spin (and therefore the magnetic moment) is oriented parallel or antiparallel
to the time-independent magnetic-induction field B0 is

�E = |μB0| .

At resonance the frequency ω of the rotating field B1 is equal to the Larmor
frequency Ω0 = μB0, so that

�E = h̄Ω0 = h̄ω = |μB0| .

The transition from the state of lower energy to the state of higher energy is
made possible through the absorption of a quantum h̄ω of energy from the
rotating field. The transition from the higher to the energetically lower level
is accompanied by the emission of a quantum of electromagnetic energy h̄ω.
In the presence of the rotating external field the transition is accelerated due
to stimulated emission.

For a typical field B0 of 1 T = 1 V s m−2 and a magnetic moment of 1μp

(1 nuclear magneton) the frequency of the oscillating field has to be

ν = ω/2π = μp B0/h = 0.762×107 s−1 .
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Such a frequency is easily produced with radio frequency (RF) technology,
which is therefore used in nuclear magnetic resonance (NRM) experiments.

For B0 = 1 T and a magnetic moment of 1μB (1 Bohr magneton) the fre-
quency is

ν = ω/2π = μB B0/h = 1.4×1010 s−1 .

Microwave techniques are required to generate fields which oscillate in this
frequency range. Consequently, experiments measuring the electron spin
resonance (ESR), sometimes also called electron paramagnetic resonance
(EPR), use the microwave technology.

Experiments with Atomic and Molecular Beams

We can now discuss the magnetic resonance method with atomic and molec-
ular beams pioneered by Isidor Rabi and collaborators. A beam of neutral
atoms or molecules passes through three consecutive magnetic fields denoted
A, C, and B in Figure 18.10. The fields A and B are inhomogeneous fields of
the Stern–Gerlach type, cf. Section 1.4. They are identical except for the fact
that the field gradient of A is directed downwards in the plane of Figure 18.10
and that of B is directed upwards. In region C there is a constant homogeneous
field B0 directed upwards and an oscillating field B1. The latter is produced by
the current from a radio-frequency generator which is run through a wire in
the plane of Figure 18.10 parallel to the beam somewhat above the beam and
returns through a parallel wire below the beam. Due to the force exerted by
the inhomogeneous fields on the magnetic moment the trajectories in regions
A and B are parabolae. Particles with magnetic moments pointing upwards in
region A and having a certain limited range in initial direction and momentum
will pass a slit in front of region C. If the orientation of the magnetic moment
is not changed in C the particles pass through region B on a trajectory sym-
metrical to the one in region A and are registered by a detector beyond region
B. If, however, the orientation of the magnetic moment is turned downwards
in region C by magnetic resonance, i.e., if the oscillating frequency ω of the
field B1 is equal to the Larmor frequency Ω0 = μB0/h̄ of the magnetic mo-
ment in the field B0 and if the time the particle needs to traverse region C is
about T/2 = h/(μB1), then the particle will be deflected downwards in region
B rather than upwards and the intensity registered in the detector will decrease
drastically. Figure 18.11 shows the first resonance curve reported by Rabi et
al. for a beam of LiCl molecules which is due to the magnetic moment of the
7Li nucleus. The strength of the field B0 rather than the RF frequency ω was
varied in their experiment.

The method of atomic and molecular beams was and is very successfully
used to measure magnetic moments of nuclei and to study the interaction be-
tween the nuclear magnetic moments and the electrons in the atomic shell
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Fig.18.10. Rabi apparatus. The magnetic-induction field B points upwards (in the z
direction) in the three magnets A, B, and C. In A and B the field is inhomogeneous, the
field gradient dBz/dz being negative in A and positive in B. The field in C is homogeneous.
For molecules with magnetic moment in z direction and with momentum within a certain
range the trajectory from the source O through the slit S to the detector D is drawn as
a solid line. If the direction of the magnetic-moment expectation value is changed to
the −z direction due to magnetic resonance in the additional oscillating field in C the
trajectory changes to the broken line and the molecules no longer reach the detector.

which gives rise to the hyperfine structure of atomic spectra. The distance
between atoms or molecules within the beam is very large. Therefore the ex-
periments are essentially performed with free atoms or molecules.

Magnetic Resonance in Bulk Matter

Apparatus. In bulk matter (solid, liquid, or gaseous) a large number of parti-
cles are present per unit volume and the collective effect of their magnetic mo-
ments can be recorded by magnetic-resonance methods. Nuclear magnetic-
resonance (NMR) experiments of this type were first developed by the re-
search groups of Edward Purcell and of Felix Bloch in 1945. Electron mag-
netic (or spin) resonance (ESR) was discovered also in 1945 by E. Zavoisky.

The principal components of an apparatus for NMR experiments are
shown in Figure 18.12. A large homogeneous field B0 = B0ez is provided
by an electromagnet. A field B1 = 2B1 cos(ωt)ex oscillating in x direction is
generated by a coil oriented in x direction and connected to a radio-frequency
generator. The sample of bulk matter is placed inside the coil. (In ESR ex-
periments instead of the coil one has a microwave resonator excited by a mi-
crowave transmitter.) The complex resistance of the coil is measured with
high precision with a radio-frequency version of a Wheatstone bridge. We
will show further down that near the resonance frequency of the magnetic
moments of the sample this resistance changes dramatically. At resonance en-
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Fig.18.11. Magnetic-resonance curve obtained for LiCl molecules. The signal SD in the
detector (in percent of the maximum signal) is shown as a function of the current IC in
the exciting coil of the C magnet and thus the field B0 while keeping the frequency ω of
the oscillating field constant. From I. I. Rabi, J. R. Zacharias, S. Millman, and P. Kusch, Physical Review

53 (1938) 318, c© 1938 by American Physical Society, reprinted by permission.

ergy is absorbed from the RF field. Thus the resonance manifests itself as a
maximum in the real part of the complex resistance of the coil. But at reso-
nance energy is also emitted by the sample which is excited by the RF field.
The emission of energy can be detected as an induced current in a pick-up
coil the axis of which is oriented along the y direction in Figure 18.12. In the
following we discuss magnetic resonance in bulk matter in a little more detail.

Magnetization. In a homogeneous induction field B0 the expectation value
〈μ〉 of the magnetic moment of an isolated particle precesses around the field
direction. The energy expectation value −〈μ〉 ·B0 stays constant. In the pres-
ence of many other particles, i.e., in bulk matter, energy exchange with other
particles occurs and a statistical distribution of the potential energies −〈μ〉·B0

is established which depends on the temperature T of the sample. To give an
idea for the order of magnitude of this effect we note that the ratio of the num-
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Fig.18.12. NMR apparatus. An electromagnet (with pole faces N, S) provides a strong
homogeneous field B0 in the z direction. A coil oriented along the x direction contains
the sample. It is excited by a radio-frequency generator RF of frequency ω. The complex
resistance of the coil is measured in a bridge circuit B and registered while either B0 or
ω are varied. In addition there may be a coil oriented along the y direction which can
pick up magnetic-induction signals from the sample. The signals are amplified by the
amplifier A and also registered as a function of B0 or ω.

ber N+ of particles with the highest potential energy (〈μ〉 antiparallel to B0)
to the number N− with the lowest energy (〈μ〉 parallel to B0) is

N+
N−

= exp

{
−|μB0|

kT

}
≈ 1− |μB0|

kT
,

where k = 1.381×10−23 JK−1 is Boltzmann’s constant. At room temperature
(T = 300K) one has kT = 4.14 × 10−21 J which is very large compared to
μB0 = 5.05 × 10−27 J where we have set μ = μp and B0 = 1T. Therefore,
N+/N− is of the order of 1−10−6. If we form the statistical average over the
expectation values 〈μ〉 of the magnetic moments of all particles in the sample
in thermal equilibrium,

μ = 〈μ〉 ,

we find a vector parallel to B0. However, the magnitude of this vector is by a
factor of the order of 10−6 smaller than the magnitude of 〈μ〉.
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The magnetization of a sample is the magnetic moment per unit volume,

M = nμ ,

with n being the number of particles per unit volume which carry the magnetic
moment of interest.

The Bloch Equations. Since the magnetization M is a sum over magnetic-
moment expectation values 〈μ〉 which in turn are proportional to spin-vector
expectation values 〈S〉, the equation of motion for M is identical to that for
〈S〉 discussed at the end of Section 17.4 and the beginning of Section 17.5,(

dM
dt

)
L

= γM×B .

The index L indicates that this equation describes a Larmor precession of M
about the direction of B. The equation holds as long as the magnetization is
influenced only by the field B. We have to extend it in order to take into ac-
count in a global way the relaxation effects that take place in the sample. The
magnetization is the sum over all magnetic moments 〈μi〉 in a unit volume.
The 〈μi〉 are not only influenced by the external field but also by the fields
originating from the components of the sample. As a result of such interac-
tion within the sample the magnetization tends in an irreversible way towards
an equilibrium magnetization.

As before we consider a field of the form

B(t) = B0 +B1(t)

with
B0 = B0ez

and
B1(t) = B1 cos(ωt)ex + B1 sin(ωt)ey .

If initially (at time t = 0) there is a nonvanishing transverse magnetization

M⊥ = Mxex + Myey ,

then it will decrease exponentially,(
dM⊥

dt

)
T2

= −M⊥
T2

.

This effect is called spin–spin relaxation. It is characterized by the spin–spin
relaxation time T2.
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Spin–spin relaxation does not change the z component 〈μi〉z of the indi-
vidual moments and therefore it does not change the magnetic energy density

wm = −M ·B0 = −Mz B0 .

If the sample was for a long time in the constant field B0 then M will be the
vector of equilibrium magnetization

M0 = M0ez .

A longitudinal magnetization

M‖ = Mzez

different from the equilibrium magnetization M0 will develop towards the
equilibrium in an exponential way,(

dM‖
dt

)
T1

= M0 − Mz

T1
ez .

In this process energy is transferred between the magnetic moments and their
surrounding atoms. Since these atoms in many cases form a regular lattice
the process is called spin-lattice relaxation. Because in contrast to spin–spin
relaxation energy transfer is involved the spin-lattice relaxation time T1 is
usually much longer than the spin–spin relaxation time T2,

T1 � T2 .

The model sketched above was developed by Felix Bloch in 1946. It has
proved to be very successful for the understanding of magnetic resonance in
bulk matter although it needs to be refined in particular situations. In sum-
mary, it yields

dM
dt

= γM×B− M⊥
T2

+ M0 − Mz

T1
ez

as equation of motion for the vector of magnetization. Writing this equation
in components we obtain the Bloch equations,

dMx

dt
= γ (M×B)x − Mx

T2
,

dMy

dt
= γ (M×B)y − My

T2
,

dMz

dt
= γ (M×B)z + M0 − Mz

T1
.
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Complex Susceptibility. In the following we recall some results from classi-
cal electrodynamics. The relation between the magnetic field H, the induction
field B, and the magnetization M is

H = 1

μ0
B−M

with μ0 = 4π × 10−7 VsA−1 m−1 being the permeability of free space. For a
sample with relative permeability1 μ the field strength is

H = B/(μμ0) , i.e., μμ0H = B = μB−μμ0M .

For all types of samples of interest in magnetic-resonance experiments one
has μ≈ 1 and, therefore,

M = 1

μ0
(μ−1)B = 1

μ0
χB ,

where χ = μ−1 is the magnetic susceptibility of the sample.
We now consider the time dependence of the vector B⊥ in the x , y plane,

B⊥ = B⊥ cos(ωt)ex + B⊥ sin(ωt)ey

= Re
{

B⊥eiωt
}

Re{ec}− Im
{

B⊥eiωt
}

Im {ec}
= Re

{
B⊥eiωtec

} = Re{Bc⊥ec}
with

ec = ex − iey .

We call
Bc⊥ = B⊥eiωt = B⊥ cosωt + iB⊥ sinωt

the complex magnetic induction in the transverse plane.
Correspondingly, we have

M⊥ = Re{Mc⊥ec} ,

however, with the representation

Mc⊥ = M⊥ei(ωt−δ) .

The angle δ allows for a phase shift between Mc⊥ and Bc⊥. It describes the fact
that while rotating the vectors B⊥ and M⊥ need not have the same direction
at a given time t . This is consequence of a complex susceptibility

1Of course, the symbols μ0 and μ used in this context must not be confused with magnetic
moments.
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χ = |χ |e−iδ = χ ′ − iχ ′′

with real and imaginary part being equal to

χ ′ = |χ |cosδ , χ ′′ = |χ |sinδ .

It relates the complex magnetization Mc⊥ and the complex magnetic induction
Bc⊥ by

Mc⊥ = 1

μ0
χBc⊥ .

After cancellation of the factor exp{iωt} on both sides of this equation we find

M⊥e−iδ = M⊥ cosδ− iM⊥ sinδ = 1

μ0
χ ′B⊥ − i

1

μ0
χ ′′B⊥

yielding

χ ′ = μ0
M⊥ cosδ

B⊥
, χ ′′ = μ0

M⊥ sinδ

B⊥
.

The quantities χ ′ and χ ′′ are called dispersive part and absorptive part of the
susceptibility, respectively. In the rotating frame of reference of Section 17.5
one has B⊥ = B1 = Bx ′ and M⊥ cosδ = Mx ′ , M⊥ sinδ = My′ so that

χ ′ = μ0 Mx ′/B1 , χ ′′ = μ0 My′/B1 .

NMR Spectra Obtained by Slow Passage through Resonance Conditions.
In order to detect a resonance the external field conditions have to be changed
with time so that a passage through the resonance region at

ω =Ω0 = γ B0

is achieved. The reaction of the sample depends on the speed of passage. We
discuss here only the case of slow passage.

In the rotating reference frame the effective field vector Beff, cf. Sec-
tion 17.5, moves in the x ′, z′ plane. This motion can be made so slow that
the magnetization is at any moment in equilibrium, so that the time derivative
of M can be neglected. In the rotating frame Bloch’s equations thus read in
components

0 = dMx ′

dt
= γ (Beff ×M)x ′ − Mx ′

T2
= −(γ B0 −ω)My′ − Mx ′

T2
,

0 = dMy′

dt
= γ (Beff ×M)y′ − My′

T2
= (γ B0 −ω)Mx ′ −γ Bx ′ Mz′ − My′

T2
,

0 = dMz′

dt
= γ (Beff ×M)z′ − M0 − Mz′

T1
= γ Bx ′ My′ − M0 − Mz′

T1
.
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Fig.18.13. Frequency dependence of the real part χ ′ (thin line) and the imaginary part
χ ′′ (thick line) of the complex susceptibility.

Solution of this set of equations for the components of M and multiplication
by μ0/Bx ′ = μ0/B1 yields

χ ′ = μ0
Mx ′

B1
= −μ0

γ (γ B0 −ω)T 2
2 M0

1+ (γ B0 −ω)2T 2
2 +γ 2 B2

1 T1T2
,

χ ′′ = −μ0
My′

B1
= μ0

γ T2 M0

1+ (γ B0 −ω)2T 2
2 +γ 2 B2

1 T1T2
.

For small values of B1, i.e., γ 2 B2
1 T1T2 � 1, one gets for the frequency depen-

dence of χ ′ and χ ′′ the relations

χ ′′ = μ0
γ T2

1+ (γ B0 −ω)2T 2
2

M0 ,

χ ′ = −(γ B0 −ω)T2χ
′′ .

They are shown graphically in Figure 18.13.
The imaginary part χ ′′ of the complex susceptibility gives rise to a real

part in the complex resistance

Z = iωL = iωμ0(1+χ ′ − iχ ′′)N 2a/�
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Fig.18.14. NMR spectrum due to the protons in benzylacetate (first three peaks from
the left) in the presence of tetramethylsilane as a reference substance (peak on the far
right). On the scale at the bottom of the figure the relative difference of the resonance
frequency to the reference peak is given in parts per million (ppm). Adapted from H. Günter,

NMR-Spektroskopie, 1993 c© by Georg Thieme Verlag, Stuttgart, reprinted by permission.

of the coil (N windings, length �, cross section a, inductivity L =μ0μN 2a/�)
which generates the time-dependent field and thus to an energy absorption by
the sample. The function χ ′′(ω) has its maximum for ω = γ B0. It drops to
half the maximum value at the frequencies

ω = ω± = γ B0 ±�ω , �ω = 1

T2
.

The quantity �ω is a measure for the width of the peak in χ ′′(ω). Therefore
two peaks at positions ω1 and ω2 can be separated if |ω2 −ω1|>�ω.

In Figure 18.14 we present a spectrum obtained for a sample of benzy-
lacetate C8H10O2 for B0 = 1.4 T and frequencies ν = ω/2π around 60 MHz.
These are resonance conditions for the proton. Rather than to observe one ab-
sorption line at the exact resonance frequency ω0 of the free proton we see
three lines which are shifted to slightly different frequencies ω1, ω2, ω3. It
is customary to express these shifts in dimensionless units, i.e., to define the
ratios

δi = ωi −ω0

ω0
.
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In practice not the free proton resonance frequency is used as reference fre-
quency ω0 but the frequency of a sharp absorption line produced by a refer-
ence substance (e.g., tetramethylsilane Si(CH3)4) which is simply added to
the sample substance. The relative shifts δi are of the order of a few times
10−6 (or a few parts per million (ppm)).

The reason for the chemical shift in resonance frequency is due to the
presence of electrons in the molecule. Let us suppose for the moment that the
sample was simply atomic hydrogen. Then the time-dependent external field
would induce an orbital magnetic moment in the ground state of the electron.
This moment would give rise to an additional magnetic field at the position
of the proton and thus shift the resonance frequency. In complex molecules
these frequency shifts are different for protons in different positions within the
molecule. In the example of Figure 18.14 the three lines are characteristic for
the environment experienced by a proton within a benzol ring (left), in a CH2

group (middle), and in a CH3 group (right). This interpretation is verified by
the fact that the integrals over the three peaks are in the ratio 5:2:3 just as the
numbers of protons in the three groups are. It is obvious from this very simple
example that NMR measurements are an important tool used to determine the
structure of organic molecules.

Spin Echo. Measurement of Relaxation Times. Information about the sur-
roundings of a nucleus with a magnetic moment is not only contained in the
exact resonance frequency ω (for a given external field B0) but also in the
spin–spin relaxation time T2 and in the spin-lattice relaxation time T1. Mea-
surements of T1 and T2 require good time resolution and cannot, of course, be
done using the method of slow passage described before.

We begin by discussing the sudden application of resonance conditions
to the sample and the observation of the time dependence of the change of
magnetization brought about by it. If a sample with equilibrium magnetization
M = M0ez is exposed suddenly to resonance conditions, e.g., by switching on
the field B1 at resonance frequency for a time which is short compared to the
relaxation times T1 and T2 and if the system is studied for a time which is
also short compared to T1 and T2, then the terms containing T1 and T2 can be
neglected in Bloch’s equations. The magnetization M, originally parallel to
the z axis, precesses around the x ′ axis in the rotating frame. If the resonance
condition is applied exactly for the time T/4 = π/(2γ B1) then M is rotated
by exactly 90◦ (we speak of the application of a 90◦ pulse) and falls onto
the negative y′ axis. In the laboratory system it then rotates in the x , y plane
with the resonance frequency. After the time T/4 the field B1 is switched off,
the vector M keeps rotating in the x , y plane and radiates off electromagnetic
waves of frequency ω. These can be detected for instance by the signal they
induce (the free induction signal) in the additional coil shown in Figure 18.12
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or also in the exciting coil since the exciting radio frequency is now switched
off.

The signal detected indeed falls rapidly as expected from the decay of the
transverse magnetization in Bloch’s equations. The time constant T̃2 of this
decay is, however, considerably shorter than the spin–spin relaxation time T2.
The reason for this effect is that, in addition to the irreversible decrease of
the transverse magnetization (described by T2 in Bloch’s equations) there is a
reversible decrease. The latter can for instance be due to a small inhomogene-
ity of the static field B0. The vectors Mi of local magnetization at different
locations i within the sample which are in phase directly after the 90◦ pulse
then rotate in the x , y plane with slightly different angular velocities. With
time they develop larger and larger relative phase differences so that the mag-
netization being the average over the Mi goes to zero. Since the time constant
T̃2 of this process is smaller than T2 the latter cannot be measured from the
decay of the free induction signal.

This difficulty is overcome by the spin-echo technique invented by Erwin
Hahn. Of the many clever schemes in use now we mention but two:

Measurement of T2 with a pulse sequence 90◦–180◦. Figure 18.15 displays
several vectors Mi of local magnetization at various times during the exper-
iment. Initially all Mi are along the z′ direction. By the 90◦ pulse (of length
T/4) they are rotated and fall onto the negative y′ axis. In the x ′, y′ plane the
vectors spread out because they rotate with slightly different angular veloc-
ities in the laboratory system, i.e., they are not all exactly stationary in the
rotating frame. At the same time the magnitude of the Mi decreases with the
time constant T2 according to Bloch’s equations. At the time T/4+τ , τ � T ,
a 180◦ pulse (of length T/2) is applied, i.e., all Mi are rotated by 180◦ about
the x ′ axis. During the time from t = 3T/4+τ to t = 3T/4+2τ they get back
into phase again along the y′ direction, since the Mi with the highest relative
angular velocity which have got furthest away from the −y′ direction in the
spread-out period have the largest angle to the y′ direction at the beginning of
the rephasing period. The result is that at t = 3T/4+2τ ≈ 2τ another induc-
tion signal, the spin echo, is detected. Its amplitude, however, has decreased
by the factor exp{−2τ/T2}. By repeating the measurement for various values
of τ signals similar to the curves shown in Figure 18.16 are obtained and the
spin–spin relaxation time T2 can be easily extracted.

Measurement of T1 with a pulse sequence 180◦–90◦. If at t = 0 a 180◦

pulse is applied the magnetization is turned from equilibrium M = M0ez to
M = −M0ez. According to Bloch’s equations it develops back towards equi-
librium, the z component being

Mz(t) = −M0(2exp{−t/T1}−1) .
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Fig.18.15. Spin echo with 90◦–180◦ pulse sequence shown in the rotating frame of refer-
ence. Top row: Application of 90◦ pulse; local magnetization vectors Mi , initially parallel
to each other and to the z′ direction, are rotated onto the −y′ direction. Second row: The
Mi get out of phase and spread out in the x ′, y′ plane. Third row: Application of 180◦
pulse; each Mi is rotated by 180◦ about the x ′ axis. Bottom row: The Mi back into phase.
Because of spin–spin relaxation the magnitudes Mi of all local magnetization vectors
decrease with time.
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Fig.18.16. Free induction signal (near t = 0) and spin-echo signal at t = 2τ for various
values of the time τ between the applications of the 90◦ pulse and the 180◦ pulse.

An induction signal proportional to Mz(t) is detected if a 90◦ pulse is applied
at the time t . Again, by varying t , the spin-lattice relaxation time can be ex-
tracted from the measurements.



A. Simple Aspects of the Structure
of Quantum Mechanics

In Chapters 2 to 16 we have used the formulation of quantum mechanics in
terms of wave functions and differential operators. This is but one of many
equivalent representations of quantum mechanics. In this appendix we shall
briefly review that representation and develop an alternative representation in
which state vectors correspond to the wave functions and matrices to the op-
erators. To keep things simple we shall restrict ourselves to systems with dis-
crete energy spectra exemplified on the one-dimensional harmonic oscillator.

A.1 Wave Mechanics

In Section 6.3 the stationary Schrödinger equation(
− h̄

2m

d2

dx2
+ m

2
ω2x2

)
ϕn = Enϕn(x)

of the harmonic oscillator has been solved. The eigenvalues En were found to
be

En = (n + 1
2 )h̄ω

together with the corresponding eigenfunctions

ϕn(x) = 1

(
√
πσ02nn!)1/2

Hn

(
x

σ0

)
exp

{
− x2

2σ 2
0

}
, σ0 =

√
h̄

mω
.

Quite generally, we can write the stationary Schrödinger equation as an eigen-
value equation

Hϕn = Enϕn ,

where the Hamiltonian H – as in classical mechanics – is the sum

H = T + V

of the kinetic energy
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T = p̂2

2m
and the potential energy

V = m

2
ω2x2 .

The difference to classical mechanics consists in the momentum being given
in one-dimensional quantum mechanics by the differential operator

p̂ = h̄

i

d

dx

so that the kinetic energy takes the form

T = − h̄2

2m

d2

dx2
.

Two eigenfunctions ϕn(x), ϕm(x), m = n belonging to different eigenvalues
Em = En are orthogonal, i.e.,1∫ +∞

−∞
ϕ∗

m(x)ϕn(x)dx = 0 .

Conventionally, for m = n the eigenfunctions are normalized to one, i.e.,∫ +∞

−∞
ϕ∗

n (x)ϕn(x)dx = 1 ,

so that we may summarize∫ +∞

−∞
ϕ∗

m(x)ϕn(x)dx = δmn ,

where we have used the Kronecker symbol

δmn =
{

1 , m = n
0 , m = n

.

The infinite set of mutually orthogonal and normalized eigenfunctions
ϕn(x), n = 0, 1, 2, . . . , forms a complete orthonormal basis of all complex-
valued functions f (x) which are square integrable, i.e.,∫ +∞

−∞
f ∗(x) f (x)dx = N 2 , N <∞ .

N is called the norm of the function f (x). Functions with norm N can be
normalized to one,

1The functions ϕn(x) are real functions. We add an asterisk (indicating the complex con-
jugate) to the function ϕm(x) in the integral, since in other cases one often has to deal with
complex functions.
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−∞
ϕ∗(x)ϕ(x)dx = 1 ,

by dividing them by the normalization factor N ,

ϕ(x) = 1

N
f (x) .

The completeness of the set ϕn(x), n = 0, 1, 2, . . . , allows the expansion

f (x) =
∞∑

n=0

fnϕn(x) .

Because of the orthonormality of the eigenfunctions the complex coefficients
fn are simply

fn =
∫ +∞

−∞
ϕ∗

n (x) f (x)dx .

We also get

N 2 =
∫ +∞

−∞
f ∗(x) f (x)dx =

∞∑
n=0

| fn|2 .

The superposition of two normalizable functions

f (x) =
∞∑

n=0

fnϕn(x) , g(x) =
∞∑

n=0

gnϕn(x)

with complex coefficients α, β may be expressed by

α f (x)+βg(x) =
∞∑

n=0

(α fn +βgn)ϕn(x) .

Their scalar product is defined as∫ +∞

−∞
g∗(x) f (x)dx =

∞∑
n=0

g∗
n fn .

A.2 Matrix Mechanics in an Infinite Vector Space

The normalizable functions f (x) form a linear vector space of infinite di-
mensionality, i.e., each function f (x) can be represented by a vector f in that
space,

f (x) → f .
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With the base vectors

ϕ0 =

⎛⎜⎜⎜⎝
1
0
0
...

⎞⎟⎟⎟⎠ , ϕ1 =

⎛⎜⎜⎜⎝
0
1
0
...

⎞⎟⎟⎟⎠ , ϕ2 =

⎛⎜⎜⎜⎝
0
0
1
...

⎞⎟⎟⎟⎠ , . . .

a general vector f takes the form

f =
∞∑

n=0

fnϕn =

⎛⎜⎜⎜⎝
f0

f1

f2
...

⎞⎟⎟⎟⎠ .

The axioms of the infinite space of complex column vectors are the natural
extension of the ones for finite complex vectors:

(i) Linear superposition (α, β complex numbers):

αf+βg =

⎛⎜⎜⎜⎝
α f0 +βg0

α f1 +βg1

α f2 +βg2
...

⎞⎟⎟⎟⎠ .

(ii) Scalar product:

g+ · f = (g∗
0 , g∗

1 , g∗
2 , . . .)

⎛⎜⎜⎜⎝
f0

f1

f2
...

⎞⎟⎟⎟⎠ =
∞∑

n=0

g∗
n fn .

Here the adjoint g+ of the vector g has been introduced, g+ = (g∗
0 , g∗

1 , g∗
2 , . . .),

as the line vector of the complex conjugates g∗
0 , g∗

1 , g∗
2 , . . . of the components

of the column vector

g =

⎛⎜⎜⎜⎝
g0

g1

g2
...

⎞⎟⎟⎟⎠ .

Because of the infinity of the set of natural numbers an additional axiom has
to be added:
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(iii) The norm |f| of the vectors f is finite,

|f|2 = f+ · f =
∞∑

n=0

f ∗
n fn = N 2 , N <∞ ,

i.e., the infinite sum has to converge. Because of Schwartz’s inequality

|g+ · f| ≤ |g||f|
all scalar products of vectors f, g of the space are finite.

As in the ordinary finite-dimensional vector spaces we call a linear trans-
formation A of a function f (x) into a function g(x),

g(x) = A f (x) ,

the linear operator A. Examples of linear transformations are

• the momentum operator p̂ = −ih̄ d/dx ,

p̂ f = h̄

i

d f

dx
(x) ,

• the Hamiltonian H = −(h̄2/2m)d2/dx2 + V (x),

H f = − h̄2

2m

d2 f (x)

dx2
+ V (x) f (x) ,

• the position operator x̂ = x ,

x̂ f = x f (x) .

Linear operators can be represented by matrices. We show this by the
following argument. The function g is represented by the coefficients gm ,

g(x) =
∞∑

m=0

gmϕm(x) , gm =
∫ +∞

−∞
ϕ∗

m(x)g(x)dx .

The image function g of f is given by

g(x) = A f (x) = A

( ∞∑
n=0

fnϕn(x)

)
=

∞∑
n=0

Aϕn(x) fn ,

i.e., by a linear combination of the images Aϕn of the elements ϕn of the
orthonormal basis. The Aϕn themselves can be represented by a linear com-
bination of the basis vectors
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Aϕn =
∞∑

m=0

ϕm(x)Amn , n = 0, 1, 2, . . . ,

with the coefficients

Amn =
∫ +∞

−∞
ϕ∗

m(x)Aϕn(x)dx .

Inserting this into the expression for g(x) we obtain

g(x) =
∞∑

m=0

∞∑
n=0

ϕm(x)Amn fn .

Comparing with the representation for g(x) we find for the coefficients gm the
expression

gm =
∞∑

n=0

Amn fn .

We arrange the coefficients Amn like matrix elements in an infinite matrix
scheme

A =

⎛⎜⎜⎜⎝
A00 A01 A02 · · ·
A10 A11 A12 · · ·
A20 A21 A22 · · ·
...

...
...

. . .

⎞⎟⎟⎟⎠
and recover an infinite dimensional extension of the matrix multiplication

g = Af

in the form⎛⎜⎜⎜⎝
g0

g1

g2
...

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
A00 A01 A02 · · ·
A10 A11 A12 · · ·
A20 A21 A22 · · ·
...

...
...

. . .

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

f0

f1

f2
...

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
∑∞

n=0 A0n fn∑∞
n=0 A1n fn∑∞
n=0 A2n fn

...

⎞⎟⎟⎟⎠ .

It should be noted that the two descriptions by wave functions and opera-
tors or by vectors and matrices are equivalent. The correspondence relations

ϕ(x) =
∞∑

n=0

anϕn(x) ↔ ϕ =

⎛⎜⎜⎜⎝
a0

a1

a2
...

⎞⎟⎟⎟⎠
with

an =
∫ +∞

−∞
ϕ∗

n (x)ϕ(x)dx
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for wave functions and vectors work in both directions. For a given wave func-
tion ϕ(x) we can uniquely determine the vector ϕ relative to the basis ϕn(x),
n = 0, 1, 2, . . . . Conversely, for a given vector ϕ relative to the basis ϕn(x)
we can reconstruct the wave function ϕ(x) as the above superposition of the
ϕn(x). The descriptions in terms of ϕ(x) and ϕ contain the same information
about the state the system is in.

Thus, generally one does not distinguish the two descriptions and says the
system is in the state ϕ, often denoted by the ket |ϕ〉 as introduced by Paul A.
M. Dirac.

The wave function ϕ(x) or the vector ϕ are considered merely as two
representations out of which many can be invented. The same statements
hold true for the representation of operators in terms of differential operators
or matrices. Also these are only representations of one and the same linear
transformation called linear operator. The states ϕ like the wave functions or
vectors ϕ form a linear vector space with scalar product. This general space
is called Hilbert space. The linear operators transform a state of the Hilbert
space into another state.

A.3 Matrix Representation of the Harmonic Oscillator

Since the ϕn(x) are normalized eigenfunctions of the Hamiltonian, we find for
its matrix elements

Hmn =
∫ +∞

−∞
ϕ∗

m(x)Hϕn(x)dx

= (n + 1
2 )h̄ω

∫ +∞

−∞
ϕ∗

m(x)ϕn(x)dx = (n + 1
2)h̄ωδmn .

Thus, the matrix representation of the Hamiltonian of the harmonic oscillator
in its eigenfunction basis is diagonal:

H = h̄ω

⎛⎜⎜⎜⎝
1
2 0 0 . . .

0 3
2 0 . . .

0 0 5
2 . . .

...
...

...
. . .

⎞⎟⎟⎟⎠ .

The representation of the eigenfunctions ϕn(x) in their own basis are given by
the standard columns

ϕ0 =

⎛⎜⎜⎜⎝
1
0
0
...

⎞⎟⎟⎟⎠ , ϕ1 =

⎛⎜⎜⎜⎝
0
1
0
...

⎞⎟⎟⎟⎠ , ϕ2 =

⎛⎜⎜⎜⎝
0
0
1
...

⎞⎟⎟⎟⎠ , . . . .
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Of course, the eigenvector equation is recovered also in matrix representation,

Hϕn = (n + 1
2 )h̄ωϕn .

With the help of the recurrence relations for Hermite polynomials,

dHn(x)

dx
= 2nHn−1(x) ,

Hn+1(x) = 2x Hn(x)−2nHn−1(x) ,

we find the matrix representations for the position operator x̂ and the momen-
tum operator p̂ in harmonic-oscillator representation,

x̂ϕn = xϕn(x) = σ0

(
√
πσ02nn!)1/2

(
nHn−1(x)+ 1

2 Hn+1(x)
)

exp

{
− x2

2σ 2
0

}
= σ0√

2

(√
n ϕn−1(x)+√

n +1ϕn+1(x)
)

.

The coefficients xmn are given by

xmn =
∫ +∞

−∞
ϕ∗

m(x)xϕn(x)dx = σ0√
2

(√
n δm(n−1) +

√
n +1 δm(n+1)

)
,

and the matrix representation of the position operator is

x = σ0√
2

⎛⎜⎜⎜⎜⎜⎝
0 1 0 0 . . .

1 0
√

2 0 . . .

0
√

2 0
√

3 . . .

0 0
√

3 0 . . .
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎠ .

For the momentum operator we obtain in a similar way the matrix represen-
tation

p = h̄√
2σ0

⎛⎜⎜⎜⎜⎜⎝
0 i 0 0 . . .

−i 0 i
√

2 0 . . .

0 −i
√

2 0 i
√

3 . . .

0 0 −i
√

3 0 . . .
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎠ .

One easily verifies the commutation relation

[p, x] = px − xp = h̄

i

also for the infinite matrix representations of x and p̂. Both matrices for x and
p̂ are Hermitean, i.e.,

x∗
nm = xmn , p∗

nm = pmn .
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A.4 Time-Dependent Schrödinger Equation

The time dependence of wave functions is determined by the time-dependent
Schrödinger equation

ih̄
∂

∂t
ψ(x , t) = Hψ(x , t) .

The eigenstates ϕn(x) of the Hamiltonian are the space-dependent factors in
an ansatz

ψn(x , t) = exp

{
− i

h̄
Ent

}
ϕn(x) ,

and the eigenvalues En determine the time dependence of the phase factor.
In the matrix representation of the harmonic oscillator the time-dependent

Schrödinger equation simply reads

ih̄
d

dt
ψ(t) = Hψ(t) ,

where ψ(t) is a vector in Hilbert space,

ψ(t) =

⎛⎜⎜⎜⎝
ψ0(t)
ψ1(t)
ψ2(t)

...

⎞⎟⎟⎟⎠ .

Because of the linearity of the Schrödinger equation any linear combina-
tion

ψ(x , t) =
∞∑

n=0

anψn(x , t) =
∞∑

n=0

an exp

{
− i

h̄
Ent

}
ϕn(x)

also solves the Schrödinger equation. In vectorial representation we have

ψ(t) =
∞∑

n=0

an exp

{
− i

h̄
Ent

}
ϕn , En = (n + 1

2)h̄ω .

The initial condition at t = 0 for the time-dependent Schrödinger equation is
the initial wave function

ψ(x ,0) = ψi(x) =
∞∑

n=0

ψinϕn(x) .

In vector notation this is an initial state vector ψ i. Its decomposition into
eigenvectors ϕn,
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ψi0

ψi1

ψi2
...

⎞⎟⎟⎟⎠ = ψ i =
∞∑

n=0

anϕn =

⎛⎜⎜⎜⎝
a0

a1

a2
...

⎞⎟⎟⎟⎠ ,

directly provides the identification of the expansion coefficients an with the
components ψin of the initial vector ψ i,

an = ψin .

This way the time-dependent Schrödinger equation is solved by the ex-
pression

ψ(t) =
∞∑

n=0

ψin exp

{
− i

h̄
Ent

}
ϕn

for the initial condition
ψ(0) = ψ i .

The time-dependent vector ψn(t) corresponding to ψn(x , t) is

ψn(t) = exp

{
− i

h̄
Ent

}
ϕn = exp

{
− i

h̄
Ht

}
ϕn ,

where En is the energy eigenvalue corresponding to the eigenvector ϕn, i.e.,
En = (n + 1

2 )h̄ω for the harmonic oscillator. The last equality is meaningful if
we define the exponential of a matrix by its Taylor series

exp

{
− i

h̄
Ht

}
=

∞∑
n=0

1

n!

(
− i

h̄
Ht

)n

.

For the case of the diagonal matrix H the nth power is trivial,

H n =

⎛⎜⎜⎜⎝
En

0 0 0 . . .

0 En
1 0 . . .

0 0 En
2 . . .

...
...

...
. . .

⎞⎟⎟⎟⎠ ,

and the explicit matrix form is

exp

{
− i

h̄
Ht

}
=

⎛⎜⎜⎜⎜⎜⎜⎝
exp

{
− i

h̄ E0t
}

0 0 . . .

0 exp
{
− i

h̄ E1t
}

0 . . .

0 0 exp
{
− i

h̄ E2t
}
. . .

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎠ .
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Using the operator representation of

ψn(x , t) = exp

{
− i

h̄
Ent

}
ϕn = exp

{
− i

h̄
Ht

}
ϕn

as derived above we may rewrite ψ(t) into the form

ψ(t) =
∞∑

n=0

ψin exp

{
− i

h̄
En

}
ϕn

= exp

{
− i

h̄
Ht

} ∞∑
n=0

ψinϕn

= exp

{
− i

h̄
Ht

}
ψ(0)

= UH (t)ψ(0) .

The operator

UH (t) = exp

{
− i

h̄
Ht

}
is called the temporal-evolution operator.

A.5 Probability Interpretation

The eigenfunctions ϕn(x), equivalently the eigenvectors ϕn, describe a state
of the physical system with the energy eigenvalue En. Thus, a precise mea-
surement of the energy of this system in the state ϕn should be devised to
produce as a result the value En. In order to preserve the reproducibility of
the measurement it should not change the eigenstate ϕn of the system during
the measurement, i.e., immediately after the energy measurement the state of
the system should still be ϕn.

The question arises what result will be found in the same energy measure-
ment carried out at a system in a state ϕ described by the wave function ϕ(x),
or equivalently, by the vector ϕ being a superposition of eigenfunctions ϕn(x)
or eigenvectors ϕn,

ϕ =
∞∑

n=0

anϕn ,

with norm one, i.e.,
∞∑

n=0

|an|2 = 1 .
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The single measurement of the energy will result in one of the energy eigen-
values which we call Em . Reproducibility of the measurement then requires
that the system is in the state ϕm after the measurement.

The absolute square |am|2 of the coefficients am in the superposition of the
ϕm defining ϕ is the probability with which the energy eigenvalue Em will be
determined in the single measurement.

Let us assume that we prepare a large assembly of N identical systems,
all in the same state ϕ. If we carry out single measurements on these vari-
ous identical systems we shall measure the energy eigenvalue Em with the
abundance |am|2 N .

Performing a weighted average over the results of all measurements yields
the expectation value of the energy

〈E〉 = 1

N

∞∑
n=0

|an|2 N En =
∞∑

n=0

|an|2 En .

Using the state-vector representation of ϕ,

ϕ =

⎛⎜⎜⎜⎝
a0

a1

a2
...

⎞⎟⎟⎟⎠ ,

we find that the energy expectation value is simply

ϕ+Hϕ = (a∗
0 ,a∗

1 ,a∗
2 , . . .)

⎛⎜⎜⎜⎝
E0 0 0 . . .

0 E1 0 . . .

0 0 E2 . . .
...

...
...

. . .

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

a0

a1

a2
...

⎞⎟⎟⎟⎠
=

∞∑
n=0

a∗
n Enan = 〈E〉 .

Equivalently, in wave-function formulation, we have∫ +∞

−∞
ϕ∗(x)Hϕ(x)dx =

∫ +∞

−∞
ϕ∗(x)

∞∑
n=0

Enanϕn(x)

=
∞∑

n=0

Enan

∫ +∞

−∞
ϕ∗(x)ϕn(x)dx

=
∞∑

n=0

Enana∗
n = 〈E〉 .



B. Two-Level System

In Appendix A the equivalence of wave-function and matrix representation of
quantum mechanics was shown. The simplest matrix structure is the one in
two dimensions, i.e., in a space with two base states:

η1 =
(

1

0

)
, η−1 =

(
0

1

)
.

The linear space consists of all linear combinations

χ = χ1η1 +χ−1η−1 =
(
χ1

χ−1

)
of the base states with complex coefficients χ1 and χ−1. The two states η1 and
η−1 form an orthonormal basis of this space, i.e.,

η+
1 ·η1 = 1 , η+

−1 ·η−1 = 1 , η+
1 ·η−1 = η+

−1 ·η1 = 0 .

For the linear combination χ to be normalized to one we have

χ+ ·χ = χ∗
1χ1 +χ∗

−1χ−1 = |χ1|2 +|χ−1|2 = 1 .

This suggests a representation of the absolute values |χr |, r = 1,−1, of the
complex coefficients by trigonometric functions:

|χ1| = cos
Θ

2
, |χ−1| = sin

Θ

2
.

The use of the half-angle Θ/2 is a convention, the usefulness of which will
become obvious in the sequel. The complex coefficients themselves are ob-
tained by multiplication of the moduli |χr | with arbitrary phase factors:

χ1 = e−iΦ1/2 cos
Θ

2
, χ−1 = e−iΦ−1/2 sin

Θ

2
.

Since a common phase factor is irrelevant the general form can be restricted
to
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χ1 = e−iΦ/2 cos
Θ

2
, χ−1 = eiΦ/2 sin

Θ

2
with

Φ = (Φ1 −Φ−1)/2 .

The general linear combination is therefore

χ(Θ ,Φ) = e−iΦ/2 cos
Θ

2
η1 + eiΦ/2 sin

Θ

2
η−1 =

(
e−iΦ/2 cos Θ2
eiΦ/2 sin Θ2

)
.

The operators corresponding to physical quantities are Hermitean matri-
ces

A =
(

A1,1 A1,−1

A−1,1 A−1,−1

)
.

The Hermitean conjugate of A is defined as

A+ =
(

A∗
1,1 A∗

−1,1

A∗
1,−1 A∗

−1,−1

)
, i.e., A+

rs = A∗
sr .

The condition of Hermiticity,

A+ = A , i.e., A∗
sr = Ars ,

requires
A∗

1,1 = A1,1 , A∗
1,−1 = A−1,1 ,

A∗
−1,1 = A1,−1 , A∗

−1,−1 = A−1,−1 .

Thus, the diagonal elements A1,1, A−1,−1 are real quantities, the off-diagonal
elements A1,−1, A−1,1 are complex conjugates of each other. Hermiticity of the
operator A ensures that the expectation value of A for a given general state is
real,

χ+ Aχ =
∑

i , j=1,−1

χ∗
i Ai jχj

= χ∗
1 A1,1χ1 +χ∗

1 A1,−1χ−1 +χ∗
−1 A∗

1,−1χ1 +χ∗
−1 A−1,−1χ−1 .

All Hermitean matrices can be linearly combined as the superpositions

A = a0σ0 +a1σ1 +a2σ2 +a3σ3

(with real coefficients a0, . . ., a3) of the unit matrix

σ0 =
(

1 0

0 1

)
and the Pauli matrices
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σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

since the four matrices σ0, . . . , σ3 are Hermitean. One directly verifies the re-
lations

σ 2
i = σ0 , i = 0, 1, 2, 3 ,

and
σ1σ2 = iσ3 , σ2σ3 = iσ1 , σ3σ1 = iσ2 .

These yield the commutation relations

[σ1,σ2] = σ1σ2 −σ2σ1 = 2iσ3

and cyclic permutations.
The three Pauli matrices can be grouped into a vector in three dimensions,

σ = (σ1,σ2,σ3) ,

with the square
σ 2 = σ 2

1 +σ 2
2 +σ 2

3 = 3σ 2
0 .

The base states η1, η−1 are eigenstates of the Pauli matrix σ3 and of the sum
of their squares σ 2,

σ3ηr = rηr , σ 2ηr = 3σ0ηr = 3ηr , r = 1,−1 ,

since σ3 and σ0 are diagonal matrices.
According to Section A the time-dependent Schrödinger equation reads

ih̄
d

dt
ξ (t) = Hξ (t) ,

where the Hamiltonian is a Hermitean 2×2 matrix,

H =
(

H1,1 H1,−1

H−1,1 H−1,−1

)
,

with real diagonal matrix elements H1,1, H−1,−1 and with off-diagonal ele-
ments H−1,1 = H ∗

1,−1. It can be represented by a superposition of the σ matri-
ces,

H = h0σ0 +h3σ3 +h1σ1 +h2σ2 ,

where

h0 = 1

2
(H1,1 + H−1,−1) , h3 = 1

2
(H1,1 − H−1,−1) ,

and
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h1 = 1

2
(H1,−1 + H−1,1) = Re H1,−1 ,

h2 = i

2
(H1,−1 − H−1,1) = −Im H1,−1 .

Introducing the hi (i = 0, 1, 2, 3) into the matrix H we obtain

H =
(

h0 +h3 h1 − ih2

h1 + ih2 h0 −h3

)
.

Introducing the factorization

ξ r (t) = exp

{
− i

h̄
Er t

}
χ r , r = 1,−1 ,

into the time-dependent phase factor and the stationary state χ r we obtain the
stationary Schrödinger equation

Hχ r = Erχ r , r = 1,−1 ,

for the eigenstate χ r belonging to the energy eigenvalue Er . For the eigenval-
ues we find

E±1 = h0 ±|h| , |h| =
√

h2
1 +h2

2 +h2
3 .

Since there are only two eigenvalues our system is called a two-level system.
The eigenstates are

χ1 = 1√
2|h|

( √|h|+h3 e−iΦ/2√|h|−h3 eiΦ/2

)
,

χ−1 = 1√
2|h|

( −√|h|−h3 e−iΦ/2√|h|+h3 eiΦ/2

)
,

with the phase factor determined by

ei2Φ = h1 + ih2

h1 − ih2
.

Introducing the angle Θ by

cos
Θ

2
=

√
|h|+h3

2|h| , sin
Θ

2
=

√
|h|−h3

2|h|
we may write the eigenstates in the form
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χ1 = e−iΦ/2 cos
Θ

2
η1 + eiΦ/2 sin

Θ

2
η−1 ,

χ−1 = −e−iΦ/2 sin
Θ

2
η1 + eiΦ/2 cos

Θ

2
η−1 .

They are normalized and orthogonal to each other.
The eigenstates χ1, χ−1 of the two-level system exhibit a time dependence

which is given by a phase factor only,

ξ r (t) = exp

{
− i

h̄
Er t

}
χ r , r = 1,−1 .

If initially the system is not in an eigenstate the state oscillates. We assume
that the initial state is

ϕ(0) = η−1 .

Decomposition into the eigenstates yields

η−1 = ζ1χ 1 + ζ−1χ−1

with

ζ1 = χ+
1 ·η−1 = e−iΦ/2 sin

Θ

2
,

ζ−1 = χ+
−1 ·η−1 = e−iΦ/2 cos

Θ

2
.

The time-dependent state is obtained as

ϕ(t) = ζ1ξ 1(t)+ ζ−1ξ−1(t)

= e−iΦ/2 sin
Θ

2
e−iω1tχ1 + e−iΦ/2 cos

Θ

2
e−iω−1tχ−1

with the angular frequencies

ωr = Er/h̄ , r = 1,−1 .

The probability to find the system (originally in the state η−1) in the state η1

is given by

P1,−1 = sin2Θ sin2 |h|
h̄

t ,

and, of course, the probability to find it in the state η−1 is

P−1,−1 = 1− P1,−1 .



C. Analyzing Amplitude

C.1 Classical Considerations: Phase-Space Analysis

We consider a detector which is capable of measuring position and momen-
tum of a particle simultaneously with certain accuracies. If the result of a
measurement is the pair xD, pD of values we may assume that the true val-
ues x , p of the quantities to be measured are described by the uncorrelated
bivariate Gaussian (cf. Section 3.5) probability density

ρD(x , p, xD, pD) = 1

2πσxDσpD
exp

{
−1

2

[
(x − xD)2

σ 2
xD

+ (p − pD)2

σ 2
pD

]}
.

That is to say, the probability for the true values x , p of the particle to be the
intervals between x and x +dx and between p and p +dp is

dP = ρD(x , p)dx dp .

The particle to be measured by the detector possesses position and mo-
mentum values x and p. The particle may have been produced by a source
which does not define exactly the values of x and p but according to a proba-
bility density

ρS(x , p, xS, pS) = 1

2πσxSσpS
exp

{
−1

2

[
(x − xS)2

σ 2
xS

+ (p − pS)2

σ 2
pS

]}
.

This is an uncorrelated bivariate Gaussian probability density with the expec-
tation values xS and pS and the variances σ 2

xS and σ 2
pS.

We now describe how much information can at best be obtained about the
probability density ρS(x , p) using the above detector. The probability for a
particle prepared by the source to be detected within the intervals (xD, xD +
dxD) and (pD, pD +dpD) is given by

dP = wcl(xD, pD, xS, pS)dxD dpD

with the probability density in phase space
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wcl(xD, pD, xS, pS)

=
∫ +∞

−∞

∫ +∞

−∞
ρcl

D(x , p, xD, pD)ρcl
S (x , p, xS, pS)dx dp

= 1

2πσxσp
exp

{
−1

2

[
(xD − xS)2

σ 2
x

+ (pD − pS)2

σ 2
p

]}
.

Here the variances σ 2
x and σ 2

p are obtained by summing up the variances of
the detector and source distribution,

σ 2
x = σ 2

xD +σ 2
xS , σ 2

p = σ 2
pD +σ 2

pS .

The quantity wcl(xD, pD, xS, pS) is the result of analyzing the phase-space
probability density of the source ρS(x , p, xS, pS) with the help of the phase-
space probability density ρD(x , p, xD, pD). The function wcl(xD, pD, xS, pS) is
itself a phase-space probability density and obtained through a process we
shall call phase-space analysis.

This distribution can be measured in principle if the source consecutively
produces a large number of particles which are observed in the detector. For
a detector of arbitrarily high precision,

σxD → 0 , σpD → 0 ,

the distribution wcl approaches the source distribution ρS(x = xD, p = pD, xS,
pS).

We have seen that with a detector of high precision and with a sufficiently
high number of measurements the source distribution can be measured with
arbitrary high accuracy. We now assume that the minimum-uncertainty rela-
tions,

σxDσpD = h̄

2
, σxSσpS = h̄

2
,

hold for the widths characterizing the detector and the source. Besides this
restriction we stay within the framework of classical physics. Now it is no
longer possible to measure the source distribution exactly.1 However, we may
still measure the distribution in position alone or the distribution in momen-
tum alone with arbitrary accuracy. To show this we construct the marginal
distributions of wcl in the variables xD − xS, and pD − pS, respectively,

wcl
x (xD, xS) = 1√

2πσx

exp

{
−1

2

(xD − xS)2

σ 2
x

}
and

1We could, however, compute the source distribution ρS by unfolding it from wcl.
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Fig.C.1. Phase-space distributions ρS (top), ρD (middle), and their product ρSρD (bottom)
together with the marginal distributions of ρS and ρD. The two columns differ only in
the spatial mean xS of ρS. Units are used in which h̄ = 1.

wcl
p (pD, pS) = 1√

2πσp

exp

{
−1

2

(pD − pS)2

σ 2
p

}
.

The first distribution approaches the corresponding marginal position distri-
bution of the source,

ρSx (x , xS) =
∫ +∞

−∞
ρS(x , p, xS, pS)dp = 1√

2πσxS

exp

{
−1

2

(x − xS)2

σ 2
xS

}
in the case of σxD → 0. However, because of the minimum uncertainty rela-
tions, σpD as well as σp approach infinity. Therefore, the second distribution



C.1 Classical Considerations: Phase-Space Analysis 433

Fig.C.2. The phase-space distribution ρS (top), the distribution ρD for a particular point
(xD, pD) of mean values (middle), and convolution of ρS with ρD for all possible mean
values (bottom). Also shown are the marginal distributions. The two columns differ in
the widths of ρS. Units h̄ = 1 are used.

wcl
p becomes so wide – and actually approaches zero – that no information

about the momentum distribution can be obtained from it.
Conversely, for σpD → 0 the momentum distribution of the source can be

measured accurately. However, then the information about the position distri-
bution is lost.

We illustrate the concepts of this section in Figures C.1 and C.2. We begin
with the discussion of the result of a single measurement, yielding the pair xD,
pD of measured values. In the two columns of Figure C.1 we show (from top
to bottom) the probability density ρS(x , p) characterizing the particle as pro-
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duced by the source, the density ρD(x , p) characterizing the detector for the
case xD = 0, pD = 0, and the product function ρS(x , p)ρD(x , p). The integral
over the product function is the probability density wcl. It is essentially dif-
ferent from zero only if there is a region, the overlap region, in which both ρS

and ρD are different from zero. In the left-hand column of Figure C.1 ρS and
ρD were chosen to be identical, so that wcl is large. In the right-hand column
the overlap is smaller.

By very many repeated measurements, each yielding a different result
xD, pD we obtain the probability density wcl(xD, pD). In the two columns of
Figure C.2 we show (from top to bottom) the probability density ρS(x , p)
characterizing the particle, the density ρD(x , p) characterizing the detector
for the particular set measured values xD = 0, pD = 0, and the probability
density wcl(xD, pD) for measuring the pair of values xD, pD. Also shown are
the marginal distribution ρSx (x), ρDx (x), and wcl

x (xD) in position, and ρSp(p),
ρDp(p), and wcl

p (pD) in momentum. Comparing in the left-hand column the
diagram of ρS with the diagram of wcl we see that the latter distribution is ap-
preciably broader than the former in both variables. In the right-hand column,
however, the spatial width of the detector distribution σxD is very small at the
expense of the momentum width σpD = h̄/(2σxD), which is very large. The
distribution wcl is practically identical to ρS what concerns its spatial varia-
tion. The width in momentum of wcl is, however, very much larger than that
of ρS.

C.2 Analyzing Amplitude: Free Particle

Quantum-mechanically we describe a particle by the minimum-uncertainty
wave packet

ϕS(x) = ϕS(x , xS, pS) = 1

(2π )1/4σ
1/2
xS

exp

{
− (x − xS)2

4σ 2
xS

+ i

h̄
pS(x − xS)

}
.

We consider this wave packet as having been prepared by some physical ap-
paratus, the source. The question now arises how the phase-space analysis
of the particle as discussed in the last section can be described in quantum
mechanics.

If, in a particle detector with position-measurement uncertainty σxD and
momentum-measurement uncertainty σpD = h̄/(2σxD), the values xD, pD are
measured, we want to interpret the result as in Section C.1. The same proba-
bility density

ρD(x , p, xD, pD) = 1

2πσxDσpD
exp

{
−1

2

[
(x − xD)2

σ 2
xD

+ (p − pD)2

σ 2
pD

]}
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describes the probability density of position x and momentum p of the parti-
cle. Quantum-mechanically this probability density is the phase-space distri-
bution introduced by Eugene P. Wigner in 1932 of the wave packet

ϕD(x , xD, pD) = 1

(2π )1/4σ
1/2
xD

exp

{
− (x − xD)2

4σ 2
xD

+ i

h̄
pD(x − xD)

}
.

Therefore, ρD(x , p, xD, pD) is also called Wigner distribution of ϕD (cf. Ap-
pendix D).

Let us construct the analyzing amplitude

a(xD, pD, xS, pS) = 1√
h

∫ +∞

−∞
ϕ∗

D(x , xD, pD)ϕS(x , xS, pS)dx

representing the overlap between the particle’s wave function ϕS and the de-
tecting wave function ϕD. It turns out to be

a(xD, pD, xS, pS) = 1√
2πσxσp

exp

{
− (xD − xS)2

4σ 2
x

− (pD − pS)2

4σ 2
p

− i

h̄

σ 2
xD pD +σ 2

xS pS

σ 2
x

(xD − xS)

}
,

where, like in Section C.1,

σ 2
x = σ 2

xD +σ 2
xS , σ 2

p = σ 2
pD +σ 2

pS .

The absolute square of the analyzing amplitude

|a|2 = 1

2πσxσp
exp

{
−1

2

[
(xD − xS)2

σ 2
x

+ (pD − pS)2

σ 2
p

]}
= wcl(xD, pD, xS, pS)

is identical to the probability density wcl(xD, pD, xS, pS) of Section C.1.
We conclude that the probability amplitude analyzing the values xD and

pD of position and momentum of a particle as a result of the interaction of a
particle with a detector is given by

a(xD, pD, xS, pS) = 1√
h

∫ +∞

−∞
ϕ∗

D(x , xD, pD)ϕS(x , xS, pS)dx .

Here, ϕS is the wave function of the particle and ϕD the analyzing wave func-
tion. The probability to observe a position in the interval between pD and
pD +dpD is

dP = |a(xD, pD, xS, pS)|2 dxD dpD .



436 C. Analyzing Amplitude

In analogy to the classical case we may now ask whether we can still
recover the original quantum-mechanical spatial probability density

ρS(x) = |ϕS(x)|2 = 1√
2πσxS

exp

{
−1

2

(x − xS)2

σ 2
xS

}
from |a|2. Information about the position of the particle only is obtained by
integrating |a|2 over all values of pD, i.e., by forming the marginal distribution
with respect to xD,

|a|2x =
∫ +∞

−∞
|a|2 dpD = wcl

x (xD, xS) .

The result is the same as in the classical case. Again in the limit σxD → 0
we find that the function |a|2x approaches the quantum-mechanical probability
density ρS(x) which is equal to the classical distribution ρSx (x).

In Figures C.3 and C.4 we demonstrate the construction of the analyzing
amplitude using particular numerical examples. Each column of three plots
in the two figures is one example. At the top of the column the particle wave
function is shown as two curves depicting ReϕS(x) and ImϕS(x) together with
the numerical values of the parameters xS, pS, σxS which define ϕ(x). Like-
wise, the middle plot shows the detector wave function, given by ReϕD(x)
and ImϕD(x). The bottom plot contains the real and imaginary parts of the
product function

ϕ∗
D(x)ϕS(x) ,

which after integration and absolute squaring yields the probability density

|a|2 = 1

h

∣∣∣∣∫ +∞

−∞
ϕ∗

D(x)ϕS(x)dx

∣∣∣∣2

of detection. Also given in the bottom plot is the numerical value of |a|2.
Four different situations are shown in the two figures. In each case the same
detector function ϕD is used. Only the particle wave function ϕS changes from
case to case.

(i) In the left-hand column of Figure C.3 ϕS and ϕD are identical. For
that case we know that the overlap integral is explicitly real and that∫ +∞

−∞ ϕ
∗
SϕS dx = 1, so that |a|2 = 1/h = 1/2π in the units h̄ = 1 used.

(ii) In the right-hand column of Figure C.3 the particle wave packet is
moved to a position expectation value xS = xD, but we still have
pS = pD, σxS = σxD. By construction, the overlap function is different
from zero in that x region where both ϕS and ϕD are sizably different
from zero. As expected, the value of |a|2 is considerably smaller than
in case (i).
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Fig.C.3. Wave function ϕS (top) and ϕD (middle) and the product function ϕ∗
DϕS (bottom).

Real parts are drawn as thick lines, imaginary parts as thin lines. The two columns differ
in the mean value xS of ϕS. Units h̄ = 1 are used.

(iii) In the left-hand column of Figure C.4 the position expectation values
and the widths of particle and detector wave function are identical, xS =
xD, σxS = σxD, but the momentum expectation values differ, pS = pD.
As in case (i) the product function ϕ∗

DϕS is different from zero in the
region x ≈ x0 but due to the different momentum expectation values it
oscillates. Therefore, the value of |a|2 is much smaller than in case (i)
since positive and negative regions of the product function nearly cancel
when the integration is performed.
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Fig.C.4. As Figure C.3 but for different functions ϕS. The two columns differ only in the
value of σxS.

(iv) In the right-hand column of Figure C.4 the particle wave packet has
a larger width σxS > σxD. All other parameters are as in case (iii). The
product function is similar to that for case (iii) and is concentrated in the
region xD −σxD ≤ x ≤ xD +σxD where both wave functions are apprecia-
bly different from zero. However, the amplitude of the product function
is smaller than in case (iii) since the amplitude of ϕS(x) is smaller in the
overlap region. Therefore, the value of |a|2 is also smaller.



C.3 Analyzing Amplitude: General Case

The lesson learned in the last section can be generalized to the analysis of an
arbitrary normalized wave function ϕ(x) describing a single particle in terms
of an arbitrary complete or overcomplete set of normalized wave functions
ϕ(x) or ϕ(x ,q1, . . . ,qN ). The functions ϕn(x) can in particular be eigenfunc-
tions of a Hermitean operator, e.g., the energy. Examples for a set of over-
complete functions ϕ(x ,q1, . . . ,qn) are

• free wave packets ϕD(x , xD, pD) as in the last section,

• coherent states of the harmonic oscillator ϕ(x , x0, p0) as we shall study
in detail in the next section, and

• minimum-uncertainty states of a set of noncommuting operators like
the operators Lx , L y , Lz of angular momentum or Sx , Sy , Sz of spin as
investigated in Sections 10.5 and 17.2.

The analyzing amplitude for the different cases is given by

a = 1

N1

∫ +∞

−∞
ϕ∗

n (x)ϕ(x)dx

or

a = 1

N2

∫ +∞

−∞
ϕ∗(x ,q1, . . . ,qN )ϕ(x)dx .

Of course, a mutual analysis of two sets of analyzing functions is also of
interest, e.g.,

a = 1

N3

∫ +∞

−∞
ϕ∗

n (x)ϕ(x ,q1, . . . ,qN )dx .

The normalization constants have to be individually determined for every type
of analyzing amplitude.

C.4 Analyzing Amplitude: Harmonic Oscillator

For the harmonic oscillator of frequency ω we have discussed in Sections 6.3
and 6.4 two sets of states in particular:

(i) The eigenstates ϕn corresponding to the energy eigenvalues En = (n +
1
2 )h̄ω,

ϕn(x) = (
√

2π2nn!σ0)−1/2 Hn

(
x

σ0

)
exp

{
− x2

2σ0

}
,
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with the ground-state width

σ0 = √
2σx , σx =

√
h̄

2mω
.

Plots of the ϕn are shown in Figure 6.5.

(ii) The coherent states,

ψ(x , t , x0, p0) =
∞∑

m=0

am(x0, p0)ϕm(x)exp

{
− i

h̄
Emt

}
,

where the complex coefficients an are given by

an(x0, p0) = zn

√
n!

exp

{
−1

2
z∗z

}
, n = 0, 1, 2, . . . .

The variable z is complex and a dimensionless linear combination of
the initial expectation values x0 of position and p0 of momentum,

z = x0

2σx
+ i

p0

2σp
, σp = h̄

2σx
.

Plots of the coherent states ψ(x , t) are shown in Figure 6.6c.

The set of energy eigenfunctions ϕn(x) is complete, the set of coherent states
is overcomplete. We can form four kinds of analyzing amplitudes.

Eigenstate – Eigenstate Analyzing Amplitude

We analyze the energy eigenfunctions using energy eigenfunctions as analyz-
ing wave functions. Thus, we obtain as analyzing amplitude

amn =
∫ +∞

−∞
ϕm(x)ϕn(x)dx = δmn ,

which yields as probability

a2
mn = δmn .

This result, based on the orthonormality of the eigenfunctions ϕn(x), is illus-
trated in Figure C.5 which shows the functions ϕmϕn. Whereas ϕ2

m is non-
negative everywhere so that the integral over ϕ2

m cannot vanish it is qualita-
tively clear from the figure that the integral over ϕmϕn vanishes for m = n.

The analysis of an eigenstate ϕn(x) with all eigenstates ϕm(x) thus yields
with probability a2

mn = 1 the answer that the original wave function was indeed
ϕn, and with probability amn = 0 the result that the original wave function
was ϕm with m = n. Such an analysis can also be considered as an energy
determination which with certainty yields the energy eigenvalue En.
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Fig.C.5. Product ϕm(x)ϕn(x) of the wave functions of the harmonic oscillator for h̄ω= 1.
The long-dash curve indicates the potential energy V (x), the short-dash lines show the
energy eigenvalue En of the functions ϕn . These lines also serve as zero lines for the
product functions.

Eigenstate – Coherent-State Analyzing Amplitude

The function to be analyzed is the time-dependent wave function ψ(x , t , x0,
p0) of the coherent state. The analyzing function is the energy eigenfunction
ϕn(x). As analyzing amplitude we obtain

a(n, x0, p0) =
∫ +∞

−∞
ϕn(x)ψ(x , t , x0, p0)dx

= zn

√
n!

exp

{
−1

2
z∗z

}
exp

{
− i

h̄
Ent

}
.

The corresponding probability is given by

|a(n, x0, p0)|2 = (|z|2)n

n!
e−|z|2 , |z|2 = x2

0

4σ 2
x

+ p2
0

4σ 2
p

.

The probabilities |a(n, x0, p0)|2 for fixed x0, p0 are distributed in the integer n
according to a Poisson distribution, cf. Appendix G. Its physical interpretation
can be understood if we express |z|2 in terms of the expectation value of the
total energy of an oscillator with initial values x0 and p0,
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E0 = p2
0

2m
+ m

2
ω2x2

0 .

We find
|z|2 = E0/(h̄ω) = n0 ,

i.e., |z|2 equals the number n0 of energy quanta h̄ω making up the energy E0

of the classical oscillator. This number, of course, need not be an integer. For
the absolute square of the analyzing amplitude we thus find

|an(x0, p0)|2 = nn
0

n!
e−n0 .

It is the probability of a Poisson distribution for the number of energy quanta
n found when analyzing a coherent wave function with the eigenfunctions ϕn.
It has the expectation value

〈n〉 = n0

and the variance
var(n) = n0 .

Coherent-State – Eigenstate Analyzing Amplitude

Analyzing the eigenstate wave functions ϕn(x) with the coherent state wave
functions for t = 0,

ϕD(x , xD, pD) =
∞∑

n=0

an(xD, pD)ϕn(x) ,

with the coefficients

an(xD, pD) = zn
D√
n!

exp

{
−1

2
z∗

DzD

}
, zD = xD

2σx
+ i

pD

2σp
,

we find as the analyzing amplitude

a(xD, pD,n) = 1√
h

∫ +∞

−∞
ϕ∗

D(x , xD, pD)ϕn(x)dx

= 1√
h

zn
D√
n!

exp

{
−1

2
z∗

DzD

}
,

and for its absolute square

|a(xD, pD,n)|2

= 1

2π (
√

2σx )(
√

2σp)

1

n!

(
x2

D

4σ 2
x

+ p2
D

4σ 2
p

)n

exp

{
−

(
x2

D

4σ 2
x

+ p2
D

4σ 2
p

)}
.
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Fig.C.6. Absolute square |a(xD, pD,n)|2 of the amplitude analyzing the harmonic-oscil-
lator eigenstate ϕn(x) with a coherent state of position and momentum expectation value
xD and pD.

For a given quantum number n of the eigenstate, |a|2 is a probability den-
sity in the xD, pD phase space of the analyzing coherent state which is shown
in Figure C.6 for a few values of n. It has the form of a ring wall with the
maximum probability at

|zD|2 = x2
D

4σ 2
x

+ p2
D

4σ 2
p

= n .

In terms of the energy

ED = p2
D

2m
+ m

2
ω2x2

D

of a classical particle of mass m with position xD and momentum pD in a
harmonic oscillator of angular frequency ω, we have

|zD|2 = x2
D

4σ 2
x

+ p2
D

4σ 2
p

= nD ,

where nD is the average number of energy quanta h̄ω in the analyzing wave
function ϕD(x , xD, pD). We find



444 C. Analyzing Amplitude

|a(xD, pD,n)|2 = 1

h
e−nD

nn
D

n!
.

For a given eigenstate ϕn(x) of the harmonic oscillator the probability den-
sity in the xD, pD phase space of coherent states depends only on the average
number nD of quanta in the analyzing coherent state.

The expectation value of nD is given by

〈nD〉 =
∫ +∞

−∞

∫ +∞

−∞
nD|a(xD, pD,n)|2 dxD dpD = n +1 .

Its variance has the same value:

var(nD) = n +1 .

Coherent-State – Coherent-State Analyzing Amplitude

Using as analyzing wave functions the coherent states ϕD(x , xD, pD), the an-
alyzing amplitude for the time-dependent coherent states ψ(x , t , x0, p0) turns
out to be

a(xD, pD, x0, p0, t)

= 1√
h

∫ +∞

−∞
ϕ∗

D(x , xD, pD)ψ(x , t , x0, p0)dx

= 1√
h

exp

{
−1

2

(
z∗

DzD +2z∗
Dz(t)+ z∗(t)z(t)

)}
exp

{
− i

2
ωt

}
with

z(t) = ze−iωt , z = x0

2σx
+ i

p0

2σp
.

The absolute square yields

|a(xD, pD, x0, p0, t)|2

= 1

2π (
√

2σx )(
√

2σp)
exp

{
−1

2

[
(xD − x0(t))2

2σ 2
x

+ (pD − p0(t))2

2σ 2
p

]}
with

x0(t) = x0 cosωt + p0

mω
sinωt ,

p0(t) = −mωx0 sinωt + p0 cosωt

representing the expectation values of position and momentum of the coherent
state ψ(x , t , x0, p0) at time t . It is a bivariate Gaussian in the space of xD and
pD centered about the classical positions x0(t), p0(t) of the oscillator. The
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probability density |a(xD, pD, x0, p0, t)|2 shows the same behavior as that of a
classical particle. The expectation values of the position xD and of momentum
pD are simply given by the classical values

〈xD〉 = x0(t) , 〈pD〉 = p0(t) .

The variances of xD and pD are

var(xD) = 2σ 2
x ,

var(pD) = 2σ 2
p .

This is twice the values of the ones of the coherent state itself, a consequence
of the broadening caused by the analyzing wave packet ϕD(x) having itself
the variances σ 2

x and σ 2
p .

The classical Gaussian phase-space probability density corresponding to
ψ(x , t , x0, p0) is of the same form as |a(xD, pD, x0, p0, t)|2. It possesses, how-
ever, the widths σx and σp, and has the explicit form

ρcl(x , p, x0, p0, t)

= 1

2πσxσp
exp

{
−1

2

[
(x − x0(t))2

σ 2
x

+ (p − p0(t))2

σ 2
p

]}
.

By the same token the classical phase-space density corresponding to the de-
tecting wave packet is

ρcl
D(x , p, xD, pD)

= 1

2πσxσp
exp

{
−1

2

[
(x − xD)2

σ 2
x

+ (p − pD)2

σ 2
p

]}
.

The functions ρcl and ρcl
D are equal to the Wigner distributions (cf. Ap-

pendix D) of ϕ and ϕD, respectively. The analyzing probability density |a|2
can again be written as

|a(xD, pD, x0, p0, t)|2

=
∫ +∞

−∞

∫ +∞

−∞
ρcl

D(x , p, xD, pD)ρcl(x , p, x0, p0, t)dxD dpD ,

which once more shows the reason for the broadening of |a|2 relative to ρ.



D. Wigner Distribution

The quantum-mechanical analog to a classical phase-space probability den-
sity is a distribution introduced by Eugene P. Wigner in 1932. In the sim-
ple case of a one-dimensional system described by a wave function ϕ(x) the
Wigner distribution is defined by

W (x , p) = 1

h

∫ +∞

−∞
exp

{
i

h̄
py

}
ϕ(x − y

2
)ϕ∗(x + y

2
)dy .

For an uncorrelated Gaussian wave packet with the wave function

ϕ(x , x0, p0) = 1
4
√

2π
√
σx

exp

{
− (x − x0)2

4σ 2
x

+ i
p0

h̄
(x − x0)

}
it has the form of a bivariate normalized Gaussian:

W (x , p, x0, p0) = 1

2πσxσp
exp

{
−1

2

[
(x − x0)2

σ 2
x

+ (p − p0)2

σ 2
p

]}
,

where σx and σp fulfill the minimum-uncertainty relation

σxσp = h̄/2 .

The expression obtained for W (x , p, x0, p0) coincides with the classical phase-
space probability density for a single particle introduced in Section 3.6. The
marginal distributions in x or p of the Wigner distribution are

Wp(x) =
∫ +∞

−∞
W (x , p)dp = ϕ∗(x)ϕ(x) = ρ(x)

and

Wx (p) =
∫ +∞

−∞
W (x , p)dx = ϕ̃∗(p)ϕ̃(p) = ρp(p) ,

where ϕ̃(p) is the Fourier transform
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ϕ̃(p) = 1√
2π h̄

∫ +∞

−∞
exp

{
− i

h̄
px

}
ϕ(x)dx

of the wave function ϕ(x), i.e., ϕ̃(p) is the wave function in momentum space.
For the case of the Gaussian wave packet we find for the marginal distri-

butions

Wp(x) = 1√
2πσx

exp

{
−1

2

(x − x0)2

σ 2
x

}
,

Wx (p) = 1√
2πσp

exp

{
−1

2

(p − p0)2

σ 2
p

}
.

An alternative representation for the Wigner distribution can be obtained
by introducing the wave function in momentum space into the expression
defining W (x , p) with the help of

ϕ(x) = 1√
2π h̄

∫ +∞

−∞
exp

{
i
p

h̄
x

}
ϕ̃(p)dp .

We find

W (x , p) = 1

h

∫ +∞

−∞
exp

{
− i

h̄
xq

}
ϕ̃
(

p − q

2

)
ϕ̃∗

(
p + q

2

)
dq .

A note of caution should be added: For a general wave function ϕ(x) the
Wigner distribution is not a positive function everywhere. Thus, in general it
cannot be interpreted as a phase-space probability density. It is, however, a
real function

W ∗(x , p) = W (x , p) .

As an example we indicate the Wigner distribution W (x , p,n) for the
eigenfunction ϕn(x) of the harmonic oscillator,

W (x , p,n) = (−1)n

π h̄
L0

n

(
x2

σ 2
x

+ p2

σ 2
p

)
exp

{
−1

2

(
x2

σ 2
x

+ p2

σ 2
p

)}
.

Here, the widths σx , σp are given by

σx = √
h̄/(2mω) , σp = h̄/(2σp) ,

and L0
n(x) is the Laguerre polynomial with upper index k = 0 as discussed in

Section 13.4.
Figure D.1 shows the Wigner distributions for the lowest four eigenstates

of the harmonic oscillator n = 0, 1, 2, 3 plotted over the plane of the scaled
variables x/σx , p/σp. Accordingly, the plots are rotationally symmetric about
the z axis of the coordinate frame. The nonpositive regions of W (x , p,n) can
be clearly seen. The corresponding plots for the absolute square of the ana-
lyzing amplitude are shown in Figure C.6.
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Fig.D.1. Wigner distributions W (x , p,n) of the harmonic-oscillator eigenstates ϕn(x),
n = 0, 1, 2, 3.

The relation to the analyzing amplitude can easily be inferred from the
following observation. For an arbitrary analyzing wave function ϕD(x) we
form the Wigner distribution

WD(x , p) = 1

h

∫ +∞

−∞
exp

{
i

h̄
py′

}
ϕD

(
x − y′

2

)
ϕ∗

D

(
x + y′

2

)
dy′ .

Then, the integral over x and p of the product of WD and W yields∫ +∞

−∞

∫ +∞

−∞
WD(x , p)W (x , p)dx dp = 1

h

∣∣∣∣∫ +∞

−∞
ϕ∗

D(x)ϕ(x)dx

∣∣∣∣2

= |a|2 .

This is to say, analyzing the Wigner distribution W (x , p) of a wave function
ϕ(x) with the Wigner distribution WD(x , p) of an (arbitrary) analyzing wave
function ϕD(x) yields exactly the absolute square of the analyzing amplitude

a = 1√
h

∫ +∞

−∞
ϕ∗

D(x)ϕ(x)dx

introduced in Appendix C.
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The temporal evolution of a Wigner distribution

W (x , p, t) = 1

h̄

∫ +∞

−∞
e

i
h̄ pyψ∗(x + y

2
, t)ψ(x − y

2
, t)dy

corresponding to a time-dependent solution ψ(x , t) of the Schrödinger equa-
tion with the Hamiltonian H = p2/2m +V (x), p = (h̄/i)d/dx , is governed by
the Wigner–Moyal equation. It is the quantum-mechanical analog of the Li-
ouville equation for a classical phase-space distribution. For potentials V (x)
which are constant, linear, or quadratic in the coordinate x or linear combina-
tions of these powers the two equations of Wigner and Moyal, and of Liouville
are identical. For these types quantum-mechanical and classical phase-space
distributions that coincide at one instant t in time, say the initial one, coincide
at all the times.



E. Gamma Function

The gamma function �(z) introduced by Leonhard Euler is a generalization
of the factorial function for integers n,

n! = 1 ·2 ·3 · . . . ·n , 0! = 1! = 1 ,

to noninteger and eventually complex numbers z. It is defined by Euler’s in-
tegral

�(z) =
∫ ∞

0
t z−1e−t dt , Re(z)> 0 .

By partial integration of ∫ ∞

0
t ze−t dt = �(1+ z)

we find the recurrence formula

�(1+ z) = −t ze−t
∣∣∞
0

+ z
∫ ∞

0
t z−1e−t dt = z�(z)

valid for complex z.
From Euler’s integral we obtain

�(1) = 1

and, thus, with the help of the recurrence relation for non-negative integer n,

�(1+n) = n! .

Euler’s integral can also be computed in closed form for z = 1/2,

�

(
1

2

)
= √

π ,

so that – again through the recurrence relation – it is easy to find the gamma
function for positive half-integer arguments.
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For nonpositive integer arguments the gamma function has poles as can
be read off the reflection formula

�(1− z) = π

�(z) sin(π z)
= π z

�(1+ z) sin(π z)
.

In Figure E.1 we show graphs of the real and the imaginary part of �(z)
as surfaces over the complex z plane. The most striking features are the poles
for nonpositive real integer values of z. For real arguments z = x the gamma
function is real, i.e., Im(�(x)) = 0. In Figure E.2 we show �(x) and 1/�(x).
The latter function is simpler since it has no poles. The gamma function for
purely imaginary arguments z = iy, y real, is shown in Figure E.3.

For complex argument z = x + iy an explicit decomposition into real and
imaginary part can be given,

�(x + iy) = (cosθ + i sinθ)|�(x)|
∞∏

j=0

| j + x |√
y2 + ( j + x)2

,

where the angle θ is determined by

θ = yψ(x)+
∞∑

j=0

[
y

j + x
− arctan

y

j + x

]
.

Here ψ(x) is the digamma function

ψ(x) = d

dx
(ln�(x)) = �′(x)

�(x)
.

For integer n the following formula follows from the recurrence formula:

�(n + z) = � (1+ (n −1+ z))

= (n −1+ z)(n −2+ z) · . . . · (1+ z)z�(z) .

For purely imaginary z = iy we find

�(n + iy) = (n −1+ iy)(n −2+ iy) · . . . · (1+ iy)iy�(iy) .

The gamma function of a purely imaginary argument can be obtained by spe-
cialization of the argument x + iy to x = 0 in �(x + iy) to yield

�(iy) = (sinθ − i cosθ )
√

π

y sinh y

with

θ = −γ y +
∞∑

j=1

[
y

j
− arctan

y

j

]
,

where Euler’s constant γ is given by

γ = −ψ(1) = lim
n→∞

(
n−1∑
k=1

1

k
− lnn

)
= 0.5772156649 . . . .
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Fig.E.1. Real part (top) and imaginary part (bottom) of �(z) over the complex z plane.
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Fig.E.2. The functions �(x) and 1/�(x) for real arguments x .
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Fig.E.3. Real and imaginary parts of the gamma function for purely imaginary argu-
ments.



F. Bessel Functions and Airy Functions

Bessel’s differential equation

x2 d2 Zν(x)

dx2
+ x

dZν(x)

dx
+ (x2 −ν2)Zν(x) = 0

is solved by the Bessel functions of the first kind Jν(x), of the second kind
(also called Neumann functions) Nν(x), and of the third kind (also called Han-
kel functions) H (1)

ν (x) and H (2)
ν (x) which are complex linear combinations of

the former two. The Bessel functions of the first kind are

Jν(x) =
(x

2

)ν ∞∑
k=0

(−1)k

k!�(ν+ k +1)

(
x2

4

)k

,

where �(z) is Euler’s gamma function.
The Bessel functions of the second kind are

Nν(x) = 1

sinνπ
[Jν(x)cosνπ − J−ν(x)] .

For integer ν = n one has

J−n(x) = (−1)n Jn(x) .

The modified Bessel functions are defined as

Iν(x) =
(x

2

)ν ∞∑
k=0

1

k!�(ν+ k +1)

(
x2

4

)k

.

The Hankel functions are defined by

H (1)
ν (x) = Jν(x)+ iNν(x) ,

H (2)
ν (x) = Jν(x)− iNν(x) .

The following relations hold for the connections of the functions just dis-
cussed and the spherical Bessel, Neumann, and Hankel functions, cf. Sec-
tion 10.8. The spherical Bessel functions of the first kind are
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j�(x) =
√
π

2x
J�+1/2(x) .

The spherical Bessel functions of the second kind (also called spherical Neu-
mann functions) are given by

n�(x) = −
√
π

2x
N�+1/2(x) = (−1)� j−�−1(x) ,

and the spherical Bessel functions of the third kind (also called spherical Han-
kel functions of the first and second kind) are

h(+)
� (x) = n�(x)+ i j�(x) = i[ j�(x)− in�(x)] = i

√
π

2x
H (1)
�+1/2(x) ,

h(−)
� (x) = n�(x)− i j�(x) = −i[ j�(x)+ in�(x)] = −i

√
π

2x
H (2)
�+1/2(x) .

In Figures F.1 and F.2 we show the functions Jν(x) and Iν(x) for ν =
−1, −2/3, −1/3, . . . , 11/3. The features of these functions are simple to de-
scribe for ν ≥ 0. The functions Jν(x) oscillate around zero with an amplitude
that decreases with increasing x , whereas the functions Iν(x) increase mono-
tonically with x . At x = 0 we find Jν(0) = Iν(0) = 0 for ν > 0. Only for ν = 0
we have J0(0) = I0(0) = 1. For ν > 1 there is a region near x = 0 in which the
functions essentially vanish. The size of this region increases with increasing
index ν. For negative values of the index ν the functions may become very
large near x = 0.

Closely related to the Bessel functions are the Airy functions Ai(x) and
Bi(x). They are solutions of the differential equation(

d2

dx2
− x

)
f (x) = 0

and are given by

Ai(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

3

√
x

{
I−1/3

(
2

3
x3/2

)
− I1/3

(
2

3
x3/2

)}
, x > 0

1

3

√
x

{
J−1/3

(
2

3
|x |3/2

)
+ J1/3

(
2

3
|x |3/2

)}
, x < 0

,

and

Bi(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

x

3

{
I−1/3

(
2

3
x3/2

)
+ I1/3

(
2

3
x3/2

)}
, x > 0√

x

3

{
J−1/3

(
2

3
|x |3/2

)
− J1/3

(
2

3
|x |3/2

)}
, x < 0

.

Graphs of these functions are shown in Figure F.3. Both functions oscillate
for x < 0. The wavelength of the oscillation decreases with decreasing x . For
x > 0 the function Ai(x) drops fast to zero whereas Bi(x) diverges.
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Fig.F.1. Bessel functions Jν(x).
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Fig.F.2. Modified Bessel functions Iν(x).
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Fig.F.3. Airy functions Ai(x) and Bi(x).



G. Poisson Distribution

In Section 3.3 we first introduced the probability density ρ(x), which is nor-
malized to one, ∫ +∞

−∞
ρ(x)dx = 1 .

We also introduced the concepts of the expectation value of x ,

〈x〉 =
∫ +∞

−∞
xρ(x)dx ,

and of the variance of x ,

var(x) = σ 2
x = 〈

(x −〈x〉)2
〉

.

We now replace the continuous variable x by the discrete variable k which
can assume only certain discrete values, e.g., k = 0,1,2, . . . . In a statistical
process the variable k is assumed with the probability P(k). The total proba-
bility is normalized to one, ∑

k

P(k) = 1 ,

where the summation is performed over all possible values of k.
The average value, mean value, or expectation value of k is

〈k〉 =
∑

k

k P(k) ,

and the variance of k is

var(k) = σ 2(k) = 〈
(k −〈k〉)2

〉 = ∑
k

(k −〈k〉)2 P(k) .

The simplest case is that of an alternative. The variable only takes the
values

κ = 0,1 .

The process yields with probability p = P(1) the result κ = 1 and with prob-
ability P(0) = 1 − p the result κ = 0. Therefore, the expectation value of κ
is

〈κ〉 = 0 · (1− p)+1 · p = p .
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We now consider a process which is a sequence of n independent alter-
natives each yielding the result κi = 0,1, i = 1,2, . . . ,n. We characterize the
result of the process by the variable

k =
n∑

i=1

κi ,

which has the range
k = 0,1, . . . ,n .

A given process yields the result k if κi = 1 for k of the n alternatives and
κi = 0 for (n − k) alternatives. The probability for the sequence

κ1 = κ2 = · . . . · = κk = 1 , κk+1 = · . . . · = κn = 0

is pk(1 − p)n−k . But this is only one particular sequence leading to the result
k. In total there are (

n

k

)
= n!

k!(n − k)!

such sequences where

n! = 1 ·2 ·3 · . . . ·n , 0! = 1! = 1 .

Therefore, the probability that our process yields the result k is

P(k) =
(

n

k

)
pk(1− p)n−k .

This is the binomial probability distribution. The expectation value can be
computed by introducing P(k) into the definition of 〈k〉 or, even simpler, from

〈k〉 =
n∑

i=1

〈κi〉 = np .

In Figure G.1 we show the probabilities P(k) for various values of n but
for a fixed value of the product λ = np. The distribution changes drastically
for small values of n but seems to approach a limiting distribution for very
large n. Indeed, we can write

P(k) = n!

k!(n − k)!

(
λ

n

)k
(
1− λ

n

)n(
1− λ

n

)k



462 G. Poisson Distribution

Fig.G.1. Binomial distributions for various values of n but fixed product np = 3.

= λk

k!

(
1− λ

n

)n n(n −1) · . . . · (n − k +1)

nk
(
1− λ

n

)k

= λk

k!

(
1− λ

n

)n
(
1− 1

n

)(
1− 2

n

) · . . . · (1− k−1
n

)(
1− λ

n

)k .

In the limit n → ∞ every term in brackets in the last factor approaches one,
and since

lim
n→∞

(
1− λ

n

)n

= e−λ

we have

P(k) = λk

k!
e−λ .

This is the Poisson probability distribution. It is shown for various values of
the parameter λ in Figure G.2. The expectation value of k is

〈k〉 =
∞∑

k=0

k
λk

k!
e−λ =

∞∑
k=1

k
λk

k!
e−λ

=
∞∑

k=1

λλk−1

(k −1)!
e−λ = λ

∞∑
j=0

λ j

j!
e−λ = λ .
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Fig.G.2. Poisson distributions for various values of the parameter λ.

In a similar way one finds

〈k2〉 = λ(λ+1)

and therefore, also the variance of k is equal to λ,

var(k) = 〈
(k −〈k〉)2

〉 = 〈
k2 −2k〈k〉+〈k〉2

〉
= 〈k2〉−2〈k〉2 +〈k〉2 = 〈k2〉−〈k〉2

= λ(λ+1)−λ2 = λ .

The Poisson distribution is markedly asymmetric for small values of λ. For
large λ, however, it becomes symmetric about its mean value λ and in that
case its bell shape resembles that of the Gaussian distribution.



Index

Acceleration, sudden, 78
Airy functions, 72, 456
α particle, 86, 386, 395
Analyzing amplitude, 430, 435
– coherent-state – coherent-state, 444
– coherent-state – eigenstate, 442
– eigenstate – coherent-state, 441
– eigenstate – eigenstate, 440
– free particle, 434
– general case, 439
– harmonic oscillator, 439
Angular
– distribution, 205
– frequency, 11
– momentum, 191
– – variances, 200
– – expectation values, 199
– – in polar coordinates, 192
– – interpretation of eigenfunctions,

201
– – intrinsic , 353
– – of free wave packet, 219
– – of plane waves, 214
– – vector, semiclassical, 207, 358
– – z component, 195
Antiquarks, 389
Antisymmetry, 172
Argand diagram, 94, 247, 314
Atomic
– beam, 399
– number, 381
Average value, 38, 460

Azimuth, 192

Balmer series, 378
Band spectra, 133, 380
Base
– states, 425
– vectors, 416
Bessel functions, 455
– modified, 455
– spherical, 210, 211, 455
Binomial distribution, 461
Bivariate Gaussian, 47
Bloch equations, 404
Bloch, Felix, 400
Boersch, Hans, 6
Bohm, David, 153
Bohr
– magneton, 397
– radius, 268
Bohr, Niels, 268
Born, Max, 37
Bose–Einstein particles, 172
Boson, 172, 298
Bound states
– and resonances, 322
– in atoms, 377
– in crystals, 377
– in deep square well, 111
– in harmonic oscillator, 117
– in nuclei, 377
– in periodic potential, 133
– in spherical square well, 251
– in square well, 129
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– stationary, 72
– three-dimensional, 229, 251
Boundary condition, 57, 72
Breit–Wigner distribution, 110
Bulk matter, 400

Carrier wave, 21, 33
Centrifugal
– barrier, 226
– potential, 225
Charm quark, 389
Chemical shift, 409
Classical phase space
– distribution
– – free motion, 51
– – harmonic motion, 126
– – Kepler motion, 285, 350
– – linear potential, 97
– – sudden deceleration, 83
– probability density, 51
Classical statistical description, 50
Classical turning point, 69
Coherent state, 125
Commutation relations, 191, 420, 427
Compton
– effect, 4
Compton, Arthur H., 6
Conduction band, 137, 380
Confluent hypergeometric function,

344
Constituent wave, 16, 61
Continuity equation, 143, 145
Continuous spectrum, 62
Contour plot, 272
Correlation coefficient, 47
Coulomb
– potential, 267
– scattering, 337
– – phase, 344
Coupled harmonic oscillators, 170
– distinguishable particles, 157
– indistinguishable particles, 170
– stationary states, 167, 173

Covariance
– ellipse, 48
– ellipsoid, 187, 265
Cross section
– differential, 241, 242, 375
– partial, 243
– total, 243, 249
Crystal, 133, 380

Davisson, Clinton, 6
Deceleration, sudden, 78, 83
Deep square well
– particle motion, 112
– stationary states, 111
Dehmelt, Hans, 397
Del, 185
De Broglie
– wave, 32
– wavelength, 6
De Broglie, Louis, 6
Differential operator, 414
Diffraction, 232
– of electrons, 6
Digamma function, 451
Directional distribution, 202
Discrete spectrum, 62
Dispersion, 35
Distinguishable particles, 157
Distribution
– angular, 205, 357
– directional, 202, 356

Effective
– field, 370
– potential, 225
Eigenfunction, 56, 413
– degenerate, 258
– of angular momentum, 192
– of momentum, 186
– of spherical harmonic oscillator, 258
– orthonormality, 414
– simultaneous, 186
Eigenstate, 56, 428
– degenerate, 258
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Eigenvalue, 56, 413, 428
– equation, 413
Einstein, Albert, 3
Elastic scattering, 58
– classical, 241
Electric field, 11
Electron, 2
– spin resonance, 397, 399, 400
– volt, 373
Electron–positron annihilation, 389
Elementary charge, 373
Elements, Periodic Table, 382
Energy
– band, 137
– density, 15
– ionization, 383
– kinetic, 6, 373
– relativistic, 4, 373
– spectrum
– – discrete, 74
– – of spherical harmonic oscillator,

257
– – of the hydrogen atom, 268, 378
Error function, 149
Euler’s
– constant, 451
– integral, 450
Euler, Leonhard, 450
Exclusion principle, 173
Expectation value, 38, 47, 424, 460
Exponential decay, 91

Factorial function, 450
Fermi–Dirac particles, 172
Fermion, 172, 298
Field
– electric, 11
– magnetic, 11
Fine-structure constant, 267
Force, 58, 59
– nuclear, 375
– range of, 58
Free fall, 97
Free induction signal, 409

Gamma function, 450
γ quantum, 3
Gamow, George, 395
Gaussian distribution, 22
– bivariate, 47
Geiger, Hans, 395
Gerlach, Walther, 7
Germer, Lester, 6
Goeppert-Mayer, Maria, 386
Ground state, 112
Group velocity, 35
Gyromagnetic
– factor, 397
– ratio, 359, 397

Hahn, Erwin, 410
Half-life, 91
Hallwachs, Wilhelm, 2
Hamilton operator, 47
Hamiltonian, 47, 413, 417
Hankel functions, 455
– spherical, 211, 456
Harmonic oscillator
– analyzing amplitude, 439
– coupled, 157
– matrix representation, 419
– particle motion, 119, 121, 265
– potential, 117
– spherical, 257
– stationary state, 116
Harmonic plane wave, 11
Haxel, Otto, 386
Heisenberg’s uncertainty principle, 44
Heisenberg, Werner, 44
Hermite polynomials, 117
– recurrence relations, 420
Hermitean
– conjugate, 426
– matrix, 426
– – operator, 420
Hertz, Heinrich, 2
Hilbert space, 419
Hybridization, 294
– parameter, 295
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– sp, 303
– sp2, 305
– sp3, 306
Hydrogen
– atom, 267
– spectrum, 377
Hyperfine structure, 400

Image function, 417
Impact parameter, 221
Index, refractive, 15
Indistinguishable particles, 157, 170
– classical considerations, 175
Intensity, 38
Interference
– in scattering of electrons, 6
– in scattering of light, 6
– term, 179
Intrinsic
– angular momentum, 353
– magnetic moment, 353
Ionization energy, 383

Jensen, Hans, 386
Joint probability density, 157
J/ψ particle, 391

Kepler motion
– on elliptic orbits, 282
– on hyperbolic orbits, 346
Kinetic energy, 6, 373
Kronecker symbol, 197, 414

Laguerre polynomial, 258, 268
Laplace operator, 208
– in polar coordinates, 210
Laplace’s differential equation, 340
Larmor precession, 362
Legendre
– functions
– – associated, 195
– polynomials, 195
– – orthogonality, 243
Lenard, Philipp, 2

Lifetime
– of metastable states, 91, 395
– of radioactive nuclei, 395
Light
– quantum, 3
– wave, 11
Linear
– operator, 417
– superposition, 416
– transformation, 417
– vector space, 415

Magic numbers, 386
Magnetic
– field, 11
– moment, 7
– – motion in magnetic field, 359
– – intrinsic, 353
– – operator, 359
– quantum number, 195
– resonance, 363, 366
– – rotating frame, 369
Magnetic-resonance experiments, 396
Magnetization, 401, 403
– equilibrium, 404
– longitudinal, 404
– transverse, 403
Magneton
– Bohr, 397
– nuclear, 398
Marginal distribution, 47
Matrix
– exponential, 422
– Hermitean, 420, 426
– mechanics, 415
– multiplication, 418
– operator, 418
Mean value, 460
Metastable state, 86, 94, 395
Millikan, R. A., 2
Minimum-uncertainty state, 125
Molecular beam, 399
Momentum
– operator, 42
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– relativistic, 4
– vector, 185
– vector operator, 185
Moseley, Henry, 383

Nabla, 185
Neumann functions, 455
– spherical, 211, 456
Node, 20, 74
– surface, 282
Norm, 414, 417
Normal oscillations, 162
Normalization, 37, 72
Nuclear
– force, 375
– magnetic resonance, 399, 400
– magneton, 398
– shell model, 386
Nucleon number, 386
Nuttall, John Mitchell, 395

Operator
– Hamiltonian, 47, 417
– Hermitean, 420
– Laplace, 208
– of angular momentum, 191
– of kinetic energy, 46, 414
– of magnetic moment, 359
– of momentum, 42, 414, 417
– – vector, 185
– of position, 417
– of spin, 353, 354
– temporal evolution, 423
Optical theorem, 249
Orientation axis, 295
Orthonormal basis, 414, 425
Orthonormality, 199
Overlap, 435

Parity, 77, 112
Partial
– scattering amplitude, 233
– – unitarity relation, 247
– wave, 215
– – scattered, 236

Passage through magnetic resonance,
406

Pauli
– equation, 360
– exclusion principle, 173, 298
– matrices, 426
– – vector of, 427
Pauli, Wolfgang, 173
Period, 12
Periodic potential, 133
Periodic Table, 382
Phase, 11, 33
Phase-shift analysis, 314
– in nuclear and particle physics, 391
Phase space
– analysis, 430
– probability density, classical, 51
Phase velocity, 11
– of de Broglie waves, 32
Photoelectric effect, 2
Photon, 3
Pion-proton scattering, 375, 389
Planck’s constant, 1
Planck, Max, 1
Plane wave, 11
– angular-momentum representation,

214
– diffraction, 232
– three-dimensional, 185
Poisson distribution, 462
Polar
– angle, 192
– coordinate system, 215
– coordinates, 192
Position
– expectation value, 38
– quantile, 141
– vector, 185
Potential
– barrier, 85
– centrifugal, 225
– Coulomb, 267
– deep square well, 111
– double barrier, 86
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– effective, 225
– harmonic oscillator, 117
– linear, 68
– periodic, 133
– piecewise constant, 58
– piecewise linear, 70, 131
– quantum, 154
– repulsive shell, 325
– square-well, 68, 129
Precession frequency, 360
Principal quantum number, 268
Probability, 424, 460
– current, 77, 143
– – density, 145, 147
– density, 37, 47, 460
– – directional, 202
– – joint, 157
– interpretation, 37, 423
– – of tunnel effect, 86
– transport, 187
Projectile, 374
Proton radius, 375
Purcell, Edward, 400

Quantile, 141, 187
– position, 141
– trajectory, 141, 149, 150
– velocity, 141
Quantum
– number, 112
– – magnetic, 195
– – of angular momentum, 195
– – principal, 268
– – spin, 354
– of energy, 1
– of light, 3
– potential, 154
Quarks, 389

Rabi’s formula, 368
Rabi, Isidor, 368, 399
Radial
– Schrödinger equation, 210, 225
– wave function, 210, 225
Radioactive nuclei, 395

Refractive index, 15
Regge trajectory, 393
Regge, Tullio, 393
Relativity, 373
Relaxation
– spin–lattice, 404
– spin–spin, 403
– times, measurement, 409
Repulsive shell, 325
Resonance, 94
– of transmission, 18
Resonance scattering, 314
– by a repulsive shell, 325
– off atoms, 387
– off molecules, 387
– off nuclei, 387
– off particles, 387
Rest
– energy, 373
– mass, 373
Ripple tank, 234

Scalar product, 415, 416
Scattered
– partial wave, 236
– wave, 234
Scattering
– amplitude, 236
– – partial, 233
– Coulomb, 337
– cross section, 241
– – differential, 242
– – partial, 243
– – total, 243
– elastic, 58
– matrix
– – element, 233, 245
– – unitarity, 245
– of atoms, 374
– of electrons, 374
– of neutrons, 374
– of pions, 374
– phase, 245
– – Coulomb, 344
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– resonance, 314
– three-dimensional, 226, 232
Schrödinger, Erwin, 46
Schrödinger equation, 46
– for the hydrogen atom, 267
– in one dimension, 56
– radial, 210, 225
– stationary, 413, 428
– – scattering solution, 58
– three-dimensional, 208, 225
– time-dependent, 421, 427
– time-independent, 56
Schwartz’s inequality, 417
Separation of variables in Schrödinger

equation, 56
Shell model
– atomic, 380
– nuclear, 386
Solid-angle element, 204
Sommerfeld, Arnold, 267
Spectral
– function, 22, 33, 187
– series, 378
Spectrum
– atoms, 377
– band, 133
– continuous, 62
– deep square well, 111
– discrete, 62
– harmonic oscillator, 116
– hydrogen, 268, 377
– square well, 129
Spherical
– harmonics, 192
– square well, 251
Spin, 353
– echo, 410
– operator, 353, 354
– quantum numbers, 354
– spatial probability distribution, 355
– states, 353
Spin–lattice relaxation, 404
Spin–orbit interaction, 386
Spin–spin relaxation, 403

Square well
– potential, 68, 129
– spherical, 251
– stationary states, 129
Squeezed states, 125
Stationary
– bound states, 72
– scattering solution, 58
– – three-dimensional, 226
– state, 56
– wave, 15
Statistical description, classical, 50
Stern, Otto, 7
Stern–Gerlach experiment, 7
Suess, Hans, 386
Superposition, 20
– of degenerate eigenfunctions, 263
Susceptibility, 405
– absorptive part, 406
– dispersive part, 406
Symmetry, 172

Target, 374
Temporal-evolution operator, 423
Time development, 12
Transition-matrix elements, 96
Transmission, 18
– coefficient, 20
– double barrier, 86
– tunnel effect, 68
Tunnel effect, 68, 85, 141
– α particle, 395
Turning point, classical, 69
Two-level system, 428
Two-particle wave function
– distinguishable particles, 157
– indistinguishable particles, 170

Uncertainty, 43
– principle, 44
Unitarity relation, 94, 247
Units, 373
Υ particle, 391
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Valence
– band, 380
– electrons, 299
Variance, 41, 460
Vector
– model, semiclassical, 207, 358
– space, linear, 415
Velocity field, 189

Wave
– constituent, 16, 61
– de Broglie, 32
– equation, 46
– function
– – antisymmetric, 172
– – distinguishable particles, 167
– – indistinguishable particles, 172
– – radial, 210, 225
– – symmetric, 172
– harmonic, 11
– light, 11
– mechanics, 11

– number, 11, 35
– optics, 11
– packet, 22, 33
– – coupled harmonic oscillator, 174
– – Gaussian, 23
– – in harmonic oscillator, 121, 265
– – in three dimensions, 185
– – partial-wave decomposition, 218
– – tunnel effect, 85
– plane, 11, 185, 214
– stationary, 15
– vector, 186
Wavelength, 12
– de Broglie, 6
Width of wave packet, 22, 47
Wigner
– distribution, 445, 446
– functions, 202, 355
Wigner, Eugene, 446

X-ray, 383

Zavoisky, E., 400



Frequently Used Symbols

a Bohr radius

a(x0, p0, xS, pS) analyzing amplitude

AI, AII, . . .
BI, BII, . . .

amplitude factors in regions

I, II, . . . of space

B magnetic-induction field

c speed of light

c correlation coefficient

d�mm′ Wigner function

D�
mm′ Wigner function

dσ/dΩ differential scattering

cross section

e elementary charge

Ec complex electric field strength

E energy

En energy eigenvalue

Ekin kinetic energy

E electric field strength

f (k) spectral function with respect to

wave number

f (p) spectral function with respect to

momentum

f (ϑ) scattering amplitude

f� partial scattering amplitude

f�m(Θ ,Φ) directional distribution

g gyromagnetic factor

h
h̄ = h/(2π )

Planck’s constant

h(+)
� (ρ) spherical Hankel function

of the first kind

h(−)
� (ρ) spherical Hankel function

of the second kind

H Hamiltonian

j probability current density

j�(ρ) spherical Bessel function

k wave number

� angular-momentum

quantum number

Lαn Laguerre polynomials

L angular momentum

L̂ angular-momentum operator

m quantum number

of z component

of angular momentum

m, M mass

M(x , t) amplitude function

M magnetization

n refractive index

n principal quantum number

n�(ρ) spherical Neumann function

n unit vector

p momentum

p̂ momentum operator

〈p〉 momentum expectation value

p momentum vector

p̂ vector operator of momentum

P� Legendre polynomial

Pm
� associated Legendre function

r relative coordinate

r radial distance

r position vector

R center-of-mass coordinate



R(r ), R�(k,r ) radial wave function

Rn� radial eigenfunction

s spin quantum number

S = (S1, S2, S3) spin-vector operator

S� scattering-matrix element

t time

T oscillation period

T transmission coefficient

T kinetic energy

TT, TR transition-matrix elements

U voltage

v0 group velocity

vp phase velocity

V potential (energy)

V eff
� effective potential

w average energy density

W Wigner distribution

W energy

W�, W�m coefficients in the angular

decomposition of a wave packet

x position

〈x〉 position expectation value

Y�m spherical harmonic

Z atomic number

α fine-structure constant

δ� scattering phase shift

�k wave-number uncertainty

�p momentum uncertainty

�x position uncertainty

ε0 vacuum permittivity

η1, η−1 spin 1
2 base states

ηk(r) scattered wave

η�(r) scattered partial wave

ϑ ,Θ polar angle

ϑ scattering angle

λ wavelength

μ0 vacuum permeability

μ reduced mass

μ magnetic moment

ρ probability density

ρcl classical phase-space probability

density

σ0 width of ground state

of harmonic oscillator

σ1, σ2, σ3 Pauli matrices

σk width in wave number

σ� partial cross section

σp width in momentum

σx width in position

σtot total cross section

ϕ(x) stationary wave function

ϕp(r) stationary harmonic

wave function

ϕ state vector of stationary state

φ,Φ azimuthal angle

χ magnetic susceptibility

χ general spin state

ψ(x , t) time-dependent wave function

ψp(r, t) harmonic wave function

ψ state vector

ω angular frequency

Ω solid angle

∇ nabla (or del) operator

∇2 Laplace operator



Basic Equations

de Broglie wave ψp(r, t) = 1

(2π h̄)3/2
exp

(
− i

h̄
Et

)
exp

(
i

h̄
p · r

)

time-dependent

Schrödinger equation
ih̄
∂

∂t
ψ(r, t) =

[
− h̄2

2M
∇2 + V (r)

]
ψ(r, t)

stationary

Schrödinger equation

[
− h̄2

2M
∇2 + V (r)

]
ϕE (r) = EϕE (r)

momentum operators p̂ = ( p̂x , p̂y , p̂z) = h̄

i

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
= h̄

i
∇

angular-momentum

operators
L̂ = r× p̂ = h̄

i
r×∇

radial Schrödinger

equation for spherically

symmetric potential
− h̄2

2M

[
1

r

d2

dr 2
r − �(�+1)

r 2
− 2M

h̄2 V (r )

]
R�(k,r ) = E R�(k,r )

stationary scattering wave ϕ
(+)
k (r)−−−−−→

kr � 1
eik·r + f (ϑ)

eikr

r

scattering amplitude f (ϑ) = 1

k

∞∑
�=0

(2�+1) f�(k)P�(cosϑ)

differential, partial,

and total cross sections

dσ

dΩ
= | f (ϑ)|2 , σ� = 4π

k2
(2�+1)| f�(k)|2 , σtot =

∞∑
�=0

σ�



Physical Constants

Planck’s constant h = 4.136 ·10−15 eVs = 6.626 ·10−34 Js
h̄ = h/(2π ) = 6.582 ·10−16 eVs

= 1.055 ·10−34 Js

speed of light c = 2.998 ·108 ms−1

elementary charge e = 1.602 ·10−19 C

fine-structure constant α = e2

4πε0h̄c
= 1

137.036

electron mass me = 0.5110MeV/c2 = 9.110 ·10−31 kg

proton mass mp = 938.3MeV/c2 = 1.673 ·10−27 kg

neutron mass mn = 939.6MeV/c2 = 1.675 ·10−27 kg

Conversion Factors

mass 1kg = 5.609 ·1035 eV/c2 , 1eV/c2 = 1.783 ·10−36 kg

energy 1J = 6.241 ·1018 eV , 1eV = 1.602 ·10−19 J

momentum 1kgms−1 = 1.871 ·1027 eV/c , 1eV/c = 5.345 ·10−28 kgms−1
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