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Introduction

Society: a Complex Problem

It is becoming ever more clear that the twenty-first cen-
tury is not a continuation of the twentieth, but something 
new. War is qualitatively different now from what it was 
half a century ago, and so is peace. So are consumerism, 
access to information, environmental change, health care, 
demography, and perhaps the very concept of democ-
racy. It seems we are living not at the “end of history” 
after all but at the beginning of a new historical phase – 
one that demands new ways of thinking.

This is why it is time to escape the constraints of disci-
plinary thinking. The major challenges of the twenty-first 
century are not ones that can be understood, let alone 
solved, from a particular academic perspective. For ex-
ample, if today’s patterns of consumption make global 
mean temperatures destined to rise by even 2 oC, the conse-
quences for international relations, biodiversity, food and 
water security, and human migration are immense, and 
yet are at this stage little more than informed guesswork. 
Simply comprehending and forecasting such impending 
crises, let alone mitigating them, is not just a question of 
having more accurate models of global climate, but must 
involve the integration of a host of socioeconomic, tech-
nological and political factors.

The most important novelty in the changes that are 
currently being felt by our societies and our environment 
stems from the profound impact of globalization: the link-
ages and interconnections that transcend states and societ-
ies. The interdependence of economies, cultures and insti-
tutions has become deep and dense, in large part thanks 
to the pervasive nature of information and communication 
technologies (ICT). Nothing will work that fails to take this 
into account: not the economy, not policing, not interna-
tional diplomacy, not governance. Bird flu pandemics, the 
Arab Spring revolutions, the financial crisis, terrorist net-
works and the spreading of cyber-crime are all manifesta-
tions of our ever more connected world. They all illustrate 
that the current pace of technological change, particularly 
in the area of ICT, is outstripping our capacity to manage it. 

 ■ Our society is data-rich, but lacks the conceptual and technological 
tools to handle it. (Credit: worradirek/Shutterstock.)

The inter-connectedness of global phenomena, and in 
particular the roles of interactions between individuals, 
groups and institutions, give a new perspective to events 
that could look superficially like more of the same. For 
example, the fall of long-standing, dictatorial regimes in 
Tunisia, Egypt and Libya was unlike the dissolution of the 
Soviet Union, not least in terms of its bottom-up impetus. 
Alleged triggers of the ‘Arab Spring’, whether they be es-
calating food prices in North Africa or the self-immolation 
of a Tunisian street vendor in protest at official harassment, 
must be seen as catalysts that unleashed rather than created 
the phenomenon. While the importance of social network-
ing media in these uprisings (which some have called Twit-
ter revolutions) remains open to debate, the issue is not so 
much whether they ‘caused’ the revolutions but that their 
existence – and the concomitant potential for mobilizing a 
young, educated demographic – can alter the way things 
happen in North Africa, the Middle East and beyond. 
Similarly, while economic crashes have always been with 
us, the financial crisis that began in 2008 was evidently a 
product of the interconnections – strong ones, yet poorly 
known – within the institutions that instigated it. The 
crisis was partly about risk hidden so deeply as to cause 



VIII ■   Introduction 

paralytic fear; it was also about instruments too compli-
cated for users to understand, and about legal and finan-
cial systems labyrinthine enough to permit deception, 
selfishness and mendacity to thrive.

 ■ The Arab Spring of 2011: the product of a complex, deeply intercon-
nected social system. (Credit: MOHPhoto/Shutterstock.)

What is qualitatively new about these events is the crucial 
role of interdependence and interaction and the almost 
instantaneous transmission of information through social, 
economic and political networks. That novelty does not 
by itself explain why they happened, much less help us 
to identify solutions or ameliorate the unwelcome conse-
quences. But it points to an unavoidable truth: the world 
has changed, and it is not going to change back. 

We are, for one thing, now living in a world that is data-
rich, but with much of the important information highly 
dispersed so that it can be brought to light only by a smart 
process of aggregating and sifting. Intelligence may need 
to rely increasingly not on a few ‘hard facts’ but on diffuse 
‘sensing’ of mood and opinion: on patterns normally invis-

ible among the noise, such as the epidemiological data 
unearthed from Google searches by GoogleFluTrends.

Many political analysts today consider that the major 
challenges in the future will be examples of discontinu-
ous change: not gradual shifts in the balance of power or 
the organization of societies and cultures, but sudden, 
perhaps catastrophic transformations. Such changes are 
extremely hard to predict, in terms not just of their mag-
nitude, onset and occurrence but of their very nature – we 
don’t know exactly what is going to break.

All this is uncharted territory for politicians, and they 
do not know how to navigate it. That makes for a danger-
ous situation, because if political leaders feel compelled to 
improvise solutions that fail entirely to acknowledge the 
nature of the problem, they stand a good chance of making 
things worse. As Lee C. Bollinger, president of Columbia 
University in New York, has said, “The forces affecting soci-
eties around the world are powerful and novel… Too many 
policy failures are fundamentally failures of knowledge.”

This is why politicians and decision makers need new 
concepts and tools if they are not to lose the capacity to 
govern, to manage economies, to create stable societies, to 
keep the world worth living in. And they will need to learn 
the key lesson of the management of complex, interacting 
systems: solutions cannot be imposed, but must be coaxed 
out of the dynamic system itself. There is an analogy with 
earthquakes, which may never be exactly predictable, but 
might possibly be managed by mapping out in great detail 
the accumulating strains that give rise to them, and per-
haps inducing controlled, small-scale release of pent-up 
energy (for example, by injecting groundwater into fault 
systems). This approach, rather than top-down imposition 
of laws and structures, might be the way to handle ‘social 
earthquakes’ too.

It is sometimes said that by their very nature no one 
can be expected to foresee radical departures from the 

 ■ Patterns in the number of searches for influenza-related topics worldwide turn out to closely 
track flu outbreaks recorded by disease-monitoring centres, with the advantage that the data 
are available almost instantaneously. See http://www.google.org/flutrends/.
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previous status quo. Yet social and political discontinuities 
are rarely if ever random in that sense, even if there is a 
certain arbitrary character to their immediate triggers. In 
the complex systems familiar to natural scientists from the 
physical and biological sciences, discontinuities don’t re-
flect profound changes in the governing forces but instead 
derive from the interactions and feedbacks between the 
component parts. And they are not necessarily unpredict-
able: sometimes there are precursory signs, and sometimes 
we can foresee the circumstances in which they will occur, 
or at least in which they will be more likely to do so.

The notion of ‘complex systems’ is relatively new in 
the social sciences. But natural scientists have studied 
these systems with much success for several decades now. 
This book argues that the time is ripe – indeed, the need 
is urgent – to approach the social sciences from this per-
spective. It calls for a collaboration between natural and 
social scientists between, for example, computer scien-
tists, physicists, mathematicians, biologists, technologists, 
psychologists, economists, sociologists, urban planners, 
political scientists, philosophers, historians and artists – 
to build a new picture of human social behaviour and its 
consequences. This is an immense task, but it is already 
beginning. It is one we can no longer afford to neglect. 

Is Society Predictable?

The idea that the social sciences can usefully employ con-
cepts developed in the natural sciences is not new. It was 
evident at the very origin of modern political philoso-
phy. In the seventeenth century, Thomas Hobbes based 
his theory of the state on the laws of motion recently de-
duced by Galileo, in particular the principle of inertia. The 
ascendancy of the mechanistic view of the natural world, 
for which the paradigm was Isaac Newton’s gravitational 
model of the cosmos, gave rise in the eighteenth century 
to a belief that social behaviour also follows rigorous 
laws that can be expressed and understood along similar 
mechanistic lines. Adam Smith’s notion of an ‘invisible 
hand’ that creates a stable and efficient economy from the 
self-interested behaviour of its many actors already em-
bodied the image of social self-organization that required 
no over-arching guidance or authority. The operation of 
this invisible hand was deemed to be as dependable as the 
law of gravity, provided that the state did not interfere: a 
central tenet of the belief that markets must be free if they 
are to be efficient, which many economists and politicians 
still hold to some degree today.

And in the nineteenth century the cohesion of soci-
ety as a collective result of the actions of its multitude of 
members was considered in statistical terms: what mat-
tered was not the capriciousness of individual actions and 

choices, but the predictable averages. This image both 
influenced and was influenced by the evolving physical 
theories of matter envisaged as a vast collection of atoms 
and molecules: the ideas that gave rise to the twentieth-
century science of statistical physics. Just as the random, 
unpredictable movements of individual particles in a gas 
produce, en masse, the wholly reliable and mathemati-
cally simple ‘gas laws’ that relate its pressure, tempera-
ture and volume, so might society show predictable and 
regular behaviour when viewed as a whole. Thus, early 
sociology was largely constructed according to an unspo-
ken faith that there was a kind of ‘physics of society’.

What is Complexity?

In retrospect, this idea remains valid but it often drew on 
the wrong analogies. Society does not run along the same 
predictable, ‘clockwork’ lines as the Newtonian universe. It 
is closer to the kind of complex systems that typically pre-
occupy statistical physicists today: avalanches and granu-
lar flows, flocks of birds and fish, networks of interaction 
in neurology, cell biology and technology. These systems 
differ from simple gases in that the component particles 
or agents interact strongly with one another, affecting and 
responding to one another’s behaviour. That is true even 
for a non-living system like a pile of sand: tumbling grains 
can strike other grains, setting off cascades that can produce 
avalanches of all sizes, which are difficult to predict indi-
vidually but which have characteristic statistical patterns.

This means that societies are more like the communi-
ties and ecosystems studied by biologists: food chains, ant 
and bee colonies, predators and their prey. At one level 
that seems hardly surprising, for what are societies but 
communities of a particular species of animal? But what 
is striking is that analogies between the group behaviour 
in these cases exist despite the supposedly much greater 
psychological and cultural sophistication of humans. Some 
features, such as collective movements and modes of orga-
nization, seem rather insensitive to the fine details of how 
individuals interact, and are determined by the very fact 
of those interactions, along with the shape of the networks 
they define. That’s why descriptions of the resulting be-
haviour remain accessible to the kinds of theories of com-
plex systems that physicists have developed. They do not 
necessarily need a great deal of biological or psychological 
realism to capture the essence of the emergent phenomena.

Thus, on the macroscopic level, social and economic 
systems have some features that seem to be similar to 
properties of certain physical or biological systems. For 
example, they tend to develop hierarchical organization. 
In social systems, individuals form groups, which estab-
lish organizations, companies, parties and so forth. These 
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in turn make up states, which might develop alliances 
and build broader communities of states such as the 
United States, NATO or the European Union.

The field often called complexity science has evolved 
to describe systems of this sort. Definitions vary, but there 
is a general consensus that a complex system is one made 
up of many components (which might or might not be 
identical) that interact strongly with one another. When 
these components are autonomous entities that can make 
decisions – representing animals, people, institutions and 
so forth – they are often called agents.

That it has recently become possible (and popular) to 
study and model systems of this sort is due to several 
factors. One is the maturity of the discipline of statistical 
physics, which over the course of the twentieth century 
developed the theoretical tools and concepts needed to 
describe and explain the behaviour of increasingly com-
plicated phenomena. But perhaps the most important 
factor has been the explosion in computer power over 
the past several decades, which has made it possible to 
conduct simulations of complex systems in cases where 
the traditional approach of writing down and solving 
mathematical equations is intractable. 

There are some key concepts that have arisen from 
these studies, which we will encounter repeatedly in this 
book. Perhaps the most important is that complex systems 
can display ordered, regular types of behaviour. The appar-
ent complexity of their fundamental nature, with many 
components interacting with many others, does not nec-
essarily lead to chaos and unpredictability. Rather, there 
are commonly emergent collective modes of behaviour, such 
as the coherent motions seen in swarms of birds or fish. 
Here ‘emergence’ refers to the fact that it is usually im-
possible to predict this organized collective behaviour 

 
 ■ Flocking of birds and fish (left) can be mimicked in a computer model (right) in which each individual reacts only to 

the motions of its near neighbours. (Credits: (left) Flickr photo by Jef Poskanzer, for free use under Creative Commons 
licence; (right) prepared using the NetLogo free software, http://ccl.northwestern.edu/netlogo.)

by considering the details of the system: by looking at 
the rules of interaction between the constituent agents. 
The only way to find out what will emerge is to look and 
see: for example, to run a computer model. This ability of 
complex systems to adopt orderly patterns of behaviour is 
often called self-organization: it is not imposed from above, 
for example by agents all following a leader, but arises 
spontaneously from the bottom up.

These self-organized modes of behaviour typically 
appear suddenly – that’s to say, a very small change in 
the forces or properties governing the system, such as the 
density of particles, can induce an abrupt, profound global 
change in their behaviour. That’s something familiar from 
the early days of statistical physics, when physicists began 
to understand how it is that substances freeze or melt. These 
too are sudden changes that happen everywhere: just a tiny 
drop in temperature below zero degrees is enough to switch 
water from the liquid state to ice. It looks as if all the water 
molecules have somehow decided to stop moving at the 
same time. That’s because freezing is a collective property 
that depends on the interactions between molecules. Freez-
ing and melting are examples of what scientists call phase 
transitions. Models of social behaviour often also exhibit 
jumps that look like phase transitions – indeed, these are 
precisely the ‘discontinuous changes’ mentioned above. 
They happen at certain thresholds in the magnitude of the 
influences driving the system’s behaviour – the density of 
traffic flow, say, or the proportions of different types of 
agent.

One of the most important characteristics of many 
real-world complex systems, especially those in the social 
sciences, is that they never settle down to a steady, un-
changing state. Unlike, say, a block of ice, they are not in 
equilibrium: they are non-equilibrium systems. These are 
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the most challenging systems for statistical physics to de-
scribe, and it is only relatively recently that this has become 
possible. Yet many if not most real-world complex systems 
are like this. The weather system is one example: patterns 
recur, often with some predictability, and yet there will 
never be a state of unchanging weather everywhere.

What makes a system out of equilibrium is a constant 
input of energy or matter. Weather is never in equilibrium 
because it is fed by solar energy, which creates gradients 
of warmth and cold across the planet, driving movements 
of air and water. Human social systems are also perpetu-
ally fuelled in some way – literally so in the case of traffic 
flow. Lack of equilibrium does not preclude dynamic sta-
bility, where modes of behaviour or organization remain 
steady: traffic, for example, can keep flowing at a constant 
rate under certain conditions.

Commonly, however, non-equilibrium systems experi-
ence fluctuations and variations of many sorts and scales. 
The popular idealized model for this is the pile of sand. 
With no fresh input of material and energy, it settles into 
a static state. But if grains are continually dropped from 
above, the slopes are constantly growing and steepening, 
only to be relieved by avalanches of grains that might set 
just a few grains tumbling or might disrupt the whole 
slope. Each of these events is a cascade, where rolling grains 
collide with and dislodge others, which in turn collide with 
others, and so on. Cascades are very common in complex 
social and technological systems: they are manifested in 
panic selling in markets, or propagating breakdowns in 
power grids, or the epidemic spread of contagious diseases.

Fluctuations, phase transitions and cascades can make 
complex systems hard to predict, and still harder to control. 
But this isn’t impossible, once we recognize that complex 
systems can’t usually be forced to behave in a certain way 
by top-down measures. Instead, they must be guided to-
wards one of the modes of behaviour available to them by 
‘bottom-up’ control: by tweaking the conditions or the rules 
of interaction. It’s like guiding the course of a river: you have 
to work with the flow, or it will just rearrange the banks.

For complex social systems this consideration carries 
an important message for governance. It does not imply 
that political interventions are doomed to fail, but just 
that they must sometimes take other forms from those 
often advanced today: ones that facilitate the emergence 
of desirable, self-organized modes of behaviour. Such in-
terventions must happen at a deep level, and with scope 
for adaptation and flexibility. And they must acknowl-
edge which states of the system are stable, and which are 
not. None of this is to deny the value of some state-led, 
top-down regulation – but when that is applied, we must 
recognize that the consequences may be non-intuitive and 
difficult to predict.

Despite the shared characteristics of physical and 
social/economic complex systems, we should not lose 

sight of the important differences. In social systems, for 
example, the number of variables involved is typically 
much larger, the ‘rules of the game’ may change over 
time, and the timescales of these changes may overlap. 
Besides, when we are dealing with humans rather than 
inanimate particles, we have to consider the technical, 
financial, ethical and cultural dimensions (which also 
change over time), as well as the potential for changing 
behaviour merely by observing or predicting it. Human 
behaviour involves (among other things) memory, antici-
pation, emotion, creativity, and intention.

For such reasons, social systems are the most complex 
systems we know, and are certainly more complex than 
physical systems. It is scarcely surprising, then, that many 
social scientists are skeptical about the value of mathe-
matical models. But while the challenges are greater than 
some natural scientists appreciate, that is no reason for 
pessimism. The dramatic progress in this field over the 
past two decades or so gives reason to believe that social 
complexity is not impossibly complicated. We already 
have reason to think that many of the qualitative features 
and behaviours familiar from experience with physical 
systems remain evident in social ones – and indeed, it 
would be rather surprising if they did not. This book of-
fers a brief, selective survey of what we have learnt so far 
– and where the next steps might take us. 

Modeling Complex Systems

In the following chapters I describe some of the models 
that have been devised to study and explain social be-
haviour. We must then ask: how do we know if they are 
any good?

In the natural sciences there is, in principle, a clear 
procedure for answering that. The predictions of the 
model are tested against experimental results, and the 
degree to which they match is a fair indication of the de-
gree to which the model is a valid description. If two rival 
models vie to explain the same phenomenon, that one 
is preferred which offers the best match to observations.

But in social sciences it’s rarely so simple. Testing 
a model against observations in the real world is often 
hard enough in the first place, for various reasons. It is 
extremely difficult – practically, financially and ethically 
– to conduct experiments on human social systems. And 
even when this is possible, the number of parameters or 
variables describing the system is commonly very large, 
and some may be hard or impossible to quantify. How, 
for example, does one measure trust? Surveys of opinions 
are a common tool in social science, but are notoriously 
tricky to interpret or calibrate. And whereas in the physi-
cal sciences the usual experimental approach is to vary 
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one parameter while holding others constant, this might 
not be possible in social-science experiments.

The problem goes beyond these practical obstacles 
to experiment and validation. It is not unusual for one 
model or theory to appear to be supported by experience 
in one situation, but others in other circumstances. An 
example is the effect of incentives on productivity in eco-
nomic theory: incentives seem to work in some cases but 
not in others.

This situation does not necessarily imply that the theo-
ries are inadequate or ambiguous, but may be simply a 
reflection of what the social world is like. Not only do 
outcomes often depend on a host of different contingen-
cies, but sometimes there may be too much variability in 
the system – too sensitive a dependence on random fac-
tors – for outcomes to be repeatable. The converse is also 
true: a particular social phenomenon might be equally 
well ‘explained’ by two different models based on quite 
divergent assumptions.

In such cases, we need not despair of the value of 
models or theories. Rather, it might be necessary to accept 
that a particular phenomenon has no unique explanation, 
no ‘best’ model that accounts for it. In such cases, there 
might instead be a need for several complementary and 
overlapping models, some of which work well sometimes 
or for some aspects of a problem and others in other cases. 
This goes against the grain for many natural scientists, 
although in fact the situation is not unprecedented even 
for them: predictions of climate change, for example, draw 
on many different models, which include and exclude dif-
ferent aspects of the ‘living Earth’ system, and which have 
various strengths and weaknesses. The predictions are an 
amalgam of the results of all these models, expressed as 
a range of possibilities with an estimate of uncertainties 
and often with an acknowledgement of some outliers that 
exceed the limits of most model outcomes. A ‘majority 
view’ might not be philosophically very satisfactory (who 
is to say that the outlier might not include some vital fac-
tor that the other models neglect?), but it seems to work 
well enough in practice. It is very likely that a science of 
social complexity will need to embrace this position of 
‘pluralistic modeling’.

What this Book is for

The aim of this book is to show that it is possible and 
productive to try to understand social systems as complex 
systems, and in many cases to design and direct them 
with that in mind. That approach has already been found 
to work in some cases: to offer explanations for social 
phenomena, and to suggest solutions to social problems, 
where other, more conventional theories and approaches 

have failed. The examples chosen here, both in terms of 
general topics and specific case studies within them, are 
by no means comprehensive, but are intended as an il-
lustrative sample of what has been achieved.

As well as demonstrating the general validity of this 
approach, the book has a more specific agenda. It argues 
that the complex-systems view of social sciences has now 
matured sufficiently for it to be possible, desirable and 
perhaps essential to attempt a grander objective: to inte-
grate these efforts into a unified scheme for studying, un-
derstanding and ultimately planning and predicting the 
world we have made. Such a scheme would not constitute 
a single ‘model of everything’, but rather, would allow 
society and its interactions with the physical environment 
to be explored through a combination of a suite of real-
istic models and large-scale data collection and analysis. 
It is a vision that should now be possible by mobilizing 
and coupling many different research communities, and 
it is one that might enable us to find new and effective 
solutions to major global problems that are impending 
or already with us, such as conflict, disease, financial in-
stability, environmental despoliation and poverty, while 
avoiding unintended policy consequences. It could give 
us the foresight to anticipate and ameliorate crises, and at 
least to begin tackling some of the most intractable prob-
lems of the twenty-first century. The final section of the 
book outlines a project with these objectives.
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11 On the Road: 
Predicting Traffic

Traffic is a problem, and it’s going to get worse. Drivers 
in Los Angeles can expect to spend about 56 hours a year 
sitting in jams, while every day traffic jams block around 
7,500 km of roads in Europe. In Germany alone in 2012, 
the year’s total jam length amounted to 450,000 km, equal 
to the circumference of the Earth plus the distance be-
tween Earth and Moon. But that’s mild compared to the 
situation developing in China, where in the summer of 
2010 there was a single jam on the Beijing-Tibet highway 
stretching for 60 miles and lasting nine days.

Because traffic is one of the simplest and best stud-
ied of complex human social systems, it can already be 
well understood and even predicted. Feedback between 
real-time monitoring of traffic flows and modelling on 
computers provides a demonstrated capacity to ease the 
problems of congestion. What’s more, traffic modelling 
is suggesting new ways of planning road systems so that 
they are able to accommodate more vehicles with fewer 
jams. Better design of road networks, junctions and inter-
sections, along with smart management of traffic signals 
and regulations and the use of automated driver-assis-
tance technology, can help to relieve the pressures that 
are currently threatening to overwhelm traffic systems 
across the globe.

This is much more than a matter of reducing inconve-
nience for road users. Improving traffic flows by treating 
them as a complex system could also lead to improved 
road safety and fewer fatalities, would reduce pollution, 
and would save economies millions from lost working 
time and inefficiencies of transportation. In the US, traffic 
delays are said to cost nearly $ 100 billion each year (a fig-
ure that has tripled in three decades), and waste around 
10 billion litres of fuel.

Beyond this, traffic flow offers perhaps the perfect 
metaphor for and illustration of many of the general 
principles underpinning a complex-systems view of so-
ciety. In traffic we see how the interactions between many 
notionally ‘free-thinking’ agents can give rise to robust 
and inexorable collective modes of behaviour, along 
with abrupt switches between those modes in response 

to small influences – a small increase in traffic density, or 
a minor local disturbance on the highway, say, can plunge 
moving traffic into a jam. Traffic also illustrates how com-
plex systems like this might be more effectively managed 
not by top-down control but by faith in the ability of the 
agents collectively to organize themselves into optimal 
patterns of movement and behaviour, if the conditions are 
conducive. In this way, traffic represents a fairly simple 
case study for validating the general methods and objec-
tives of social complexity science.

Flow States

When we are driving along a road, we are perhaps at 
our most predictable. No one suggests that our usual au-
tonomy, free will, irrationality or impulsiveness is lost the 
moment we sit behind the wheel, and yet in general we 
are prepared to subjugate all this psychological sophisti-
cation to the simple demands of the road: we behave as 
though our only wish is to travel along a linear route from 
one place to another at a speed that suits us, while avoid-
ing collisions with other vehicles and – on the whole – not 
flouting legal constraints. In other words, we are placed 
in a situation in which our behaviour can be described by 
a few rather simple rules.

This simplicity supplies the basis of modern traffic 
modelling. Typically, a traffic model will ascribe to each 
vehicle a preferred ‘open-road’ velocity, to which it will 
accelerate if the conditions allow it. But each vehicle will 
slow down in order to maintain a minimum separation 
from the one in front. The precise details of this regime 
of acceleration and braking may differ from one model 
to another. In particular, it seems that more realistic be-
haviour is found if it’s assumed that drivers also seek a 
comfortable ride, without jerky speeding up and down. 
But the basic principles are common to all. It remains then 
for these simulated drivers to be let loose on a highway 
system, and to see what emerges.
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 ■ Traffic models suppose that vehicles move along predefined highways 
according to simple rules, chosen largely to avoid collisions. (Credit: 
Courtesy of Argonne National Laboratory - Transportation Research and 
Analysis Computing Center.)

Early studies using very simple agent-based models of 
this sort revealed one of the key considerations in traf-
fic flow: changes aren’t necessarily gradual. You might 
naively imagine that as the volume of traffic on a road 
increases, it will gradually get more and more congested. 
Even if that were so, what it would mean for the overall 
flow rate (how many vehicles pass a certain point on the 
road per hour) takes a bit of thought. The more vehicles 
there are on a certain section of road (the greater the traf-
fic density), the more will pass along it even if their speed 
remains the same. So the flow rate increases as the den-
sity increases. But there comes a point at which the ve-
hicles start to interact: they are so close together that they 
have to adjust their speed to avoid danger. Then any in-
crease in density is offset by a decrease in average speed, 
so the flow rate levels off. As the density gets higher, the 
speed might need to drop to a crawl and eventually to a 
standstill: the flow rate then drops towards zero.

Yet this switch from increasing to decreasing flow 
rate as the traffic density increases doesn’t happen 
smoothly. Computer-simulation models imply that 
there is a critical density above which the flow rate 
stops increasing and abruptly starts to fall: a ‘capacity 
drop’. This sort of threshold effect – a sudden change in 
the overall behaviour of the system triggered by only a 
small change in the governing parameters, here the traf-
fic density – is typical of complex systems. It is one of 
the features that can make them hard to predict: such be-
haviour is said to be ‘nonlinear’, meaning that the mag-
nitude of an effect doesn’t necessarily follow in propor-
tion to its cause. Precisely the same kind of nonlinearity 
is familiar in the behaviour of many-particle systems in 
physics and chemistry, where, as noted in the Introduc-
tion, it can give rise to phase transitions such as freezing. 

 ■ In simple agent-based models of traffic flow, the flow rate (number of 
vehicles passing a point per hour) increases steadily with traffic density 
until it reaches a critical value, at which point there may be a switch to 
a congested state. Then, the flow rate drops as density increases, until 
finally a more or less stationary jam develops (solid line). But apparently 
‘free’ flow can persist above the critical traffic density (dashed line) un-
less it is disturbed by some random fluctuation.

We can in fact draw an analogy between these physical 
states of matter and the behaviour of traffic. Free-flow 
traffic, in which each vehicle can move independently 
of the others at low traffic density, could be considered 
analogous to a gas, in which the particles barely interact. 
But if the density of a gas is increased, there comes a point 
where it condenses abruptly to a liquid, in which the par-
ticles do interact but nevertheless remain in motion. This 
is rather like a ‘congested’ state of traffic: all the vehicles 
keep moving, perhaps even reasonably rapidly, and yet 
they are aware of and constrained by one another’s pres-
ence. At a still greater density, the liquid freezes to a solid, 
just as the traffic may ‘freeze’ into a stationary jam. That 
this too is an abrupt transition is something all drivers 
recognize: you may be driving along steadily in heavy 
traffic, and then within the space of just a few vehicle 
lengths you are suddenly at a standstill.

Simple traffic models reveal still more. For one thing, 
the switch from free to congested flow can be postponed 
beyond the traffic density at which it ‘should’ happen. 
In other words, even above the critical density the flow 
rate can go on increasing with density: the traffic is able 
to ‘pretend’ that it is still free. This, however, is a precari-
ous state. As long as all drivers keep moving fast, all is 
well. But if one individual loses nerve or concentration 
and brakes too sharply, this tiny fluctuation can trigger 
a switch to the congested state. In fact, in such a situa-
tion a fluctuation can plunge the traffic straight into a 



1

 On the Road: Predicting Traffic ■ 3

jam, from which it is impossible to emerge back into this 
‘pseudo-free’ flow. This makes the traffic flow not only 
sensitive to small perturbations but also dependent on 
its own history: it might depend not only on the traffic 
density but also on how it got to be the way it was. This 
history- or path-dependence is another common charac-
teristic of complex social phenomena, and it too is familiar 
from physical systems: water can be cooled below freez-
ing point without actually freezing (that is, it can be su-
percooled) if this is done carefully so as to eliminate the 
chances of tiny crystallites of ice growing and ‘seeding’ 
the freezing-up of the whole system.

All Together Now

Chance fluctuations, driver over-reactions or overtaking 
manoeuvres can trigger a change in the flow mode to cre-
ate the well-known phenomenon of phantom jams: traffic 
jams that seem to have no cause, and which apparently 
congeal ‘out of nowhere’ on busy roads. Congestion may 
also be triggered by physical disturbances to the flow such 
as intersections where a side road joins or leaves the free-
way, or bottlenecks caused by lane closures. Traffic models 
have shown that in those situations there are several more 
possible flow modes than just free, congested and jams.

For example, jams at the point of disruption might 
grow and ease repeatedly as time progresses. Or a jam 
might move slowly upstream; or there could be a series 
of these moving waves of congestion, so that vehicles re-

 ■ Phantom jams. In a computer model, cars move down a road at a steady speed if their progress is unimpeded (left). 
But if the traffic is sufficiently dense, a single small and transient disturbance can trigger jams (middle: jams are the 
dark bands) which move upstream against the direction of driving and develop complex forms, such as splitting into a se-
ries of knots of congestion. Jams like this are commonly seen in real traffic data (right). (Credits: (middle) from K. Nagel 
& M. Paczuski, Phys. Rev. E 51, 2909 (1995); (right) from J. Treiterer et al., ‘Investigations and Measurement of Traffic 
Dynamics’, Appendix IV to the Final Report EES 202-2, Ohio State University, Columbus, 1965.)

peatedly enter and escape from them. It’s possible to plot 
out a ‘map’ of these various traffic states, called a phase 
diagram, as a function of the traffic flow along the main 
highway and that entering at the junction. All of the states 
seen in these models have been spotted in real traffic. The 
boundaries between the different states are usually sharp: 
they are separated by threshold values of traffic flow den-
sity. This exemplifies another common characteristic of 
complex social systems: they tend to have distinct modes 
of behaviour under different conditions even when the ba-
sic rules governing the interactions of the agents remain un-
changed. Moreover, switches between these modes are 
abrupt rather than gradual. A big part of the challenge of 
understanding social complexity lies with mapping out 
the landscape of possible behaviours. That can help us to 
understand why, say, changing the underlying rules 
(such as speed limits) might have a big effect in some 
situations but none in others, depending on whether or 
not we are close to one of these boundaries between 
modes. It might also help to avoid vain attempts to engi-
neer a particular mode of behaviour under conditions 
where this is simply not stable. The value of models like 
this is not just that they allow us to predict what will hap-
pen under a specific set of circumstances, but that they 
can offer a global view of the landscape of possible out-
comes.

Aside from conventional approaches to engineering 
the flow of traffic – lane and overtaking restrictions, say, 
or opening and closing parts of a road network – there are 
now new technological possibilities for altering the basic 
rules of vehicle interaction in useful ways. Automobile 
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 ■ An example of a ‘traffic phase diagram’ (middle right), showing the 
different flow modes as a function of the traffic densities on a main road 
and an inflowing side road. The contour plots show representative flow 
patterns for some of these states, where high points indicate congestion. 
(Credit: Courtesy of Dirk Helbing, ETH Zurich.)

 ■ How ‘adaptive cruise control’ (ACC), an automated driver-assistance system that optimizes the acceleration and 
deceleration of vehicles to the prevailing traffic conditions, can dissolve a jam. With no ACC (top left), a jam (orange/yel-
low) develops and spreads upstream of a junction at which new traffic enters a freeway, in this computer simulation with 
rush-hour traffic densities. As the proportion of vehicles with ACC increases, the jam shrinks, and if 1 in 4 vehicles have 
ACC (bottom right), it vanishes. (Credit: Courtesy of Dirk Helbing, ETH Zurich.)
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manufacturers are developing ‘driver assistance’ systems 
that automate aspects of driving, not just to lighten the 
load on the human driver but to improve safety and reli-
ability. For example, radar and laser sensors can detect 
the proximity of other vehicles or obstacles to avoid col-
lisions, alert drivers who begin to drift out of a lane, help 
with lane changing, and allow for smooth hill descent 
without the driver having to apply brakes. The improve-
ments offered by such systems – for example, making 
braking manoeuvres smoother – can help to avoid jam-
triggering fluctuations. It has been estimated that some 
jams in heavy traffic can be ‘evaporated’ if just one-fifths 
of the vehicles have driver-assistance systems that enable 
them to respond optimally to changes in traffic flow. Here, 
then, new information and communication technologies 
can help not only to understand and predict complex so-
cial dynamics but literally to steer them towards more 
desirable states.

Traffic Lights Can Organize 
Themselves

Improving traffic flow is not so much a matter of impos-
ing particular behaviours as of creating the conditions 
under which the traffic can spontaneously organize itself 
in the most efficient manner. That philosophy doesn’t al-
ways sit easily with managers and planners, but it is look-
ing increasingly to be the best way to approach all manner 
of social phenomena: to relinquish top-down control in 
favour of a faith in the bottom-up capacity of complex 
systems to find their own efficient modes of behaviour, 
given the opportunity. 

This is illustrated by a reconsideration of how to coor-
dinate traffic lights. The normal approach is to synchro-
nize a periodic sequence of on-off times for a series of 
lights at a cluster of intersections. But there is no reason 
to suppose either that the best sequence is strictly peri-
odic or that it has to remain the same regardless of the 

traffic conditions. It turns out to be better to allow each 
individual traffic light to respond adaptively to the flow 
conditions at any moment. 

The notion of allowing traffic signals individual au-
tonomy could sound like a recipe for disaster – why should 
there be any guarantee that what is ‘best’ for one inter-
section will also suit what is happening at the others? 
However, if each signal is supplied with information not 
only about the traffic at that particular junction it but also 
about the traffic coming from neighbouring junctions, this 
sharing of information can enable the system as a whole to 
find more effective, flexible solutions at any moment than 
are available from an insistence on regimented periodicity.

The idea is that traffic sensors placed a little before an 
intersection feed information about the incoming flow to 
each individual light-controlling system. This makes it 
possible to calculate the expected delays, and correspond-
ing ‘traffic pressures’, at different parts of the network. 
Priority for green signals is then given to those parts ex-
periencing the greatest pressures. In this way, the traffic 
itself controls the lights, rather than vice versa. Chance 
fluctuations, such as temporary lulls in the traffic on some 
routes, can be exploited to relieve congestion elsewhere. 
The behaviour that emerges can in fact look surprisingly 
synchronized, for example in the appearance of ‘waves’ 
of green lights that travel through the network.

Simulations of traffic flow on a network where au-
tonomous lights are coordinated in this way show that 
overall average delays can be reduced by 30–40 % relative 
to today’s state-of-the-art conventional control methods, 
and that the travel times for individual vehicles through 
the network actually become more predictable. 

A simulation study of a real-world urban network – 13 
intersections in the busy city centre of Dresden, compli-
cated by tram lines and pedestrian crossings – has shown 
that self-organized traffic lights can significantly reduce 
the waiting times for all the modes of transport, including 
pedestrians. The same principle can be applied to other 
traffic-control measures such as speed limits: allowing 
them to adapt to the prevailing flow conditions can re-
duce congestion and delays.

 ■ Adaptive cycles of traffic-light operation (off = solid bars) for the four-way, multi-lane intersection shown on the right. 
The optimal sequence changes as the overall incoming traffic density (represented here by the ‘utilization’ u) increases. 
(Credit: Courtesy of Dirk Helbing, ETH Zurich.)
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Theory Into Practice

The key principle here again serves as a metaphor for the 
management of social complexity more generally. What 
is needed for efficient solutions is bottom-up autonomy 
of agents, informed by feedback from other parts of the 
system, and guided by real-time data that samples the 
instantaneous behaviour in the real world and uses it as 
the basis for anticipating probabilistically what is going 
to happen in the near-term: an x percent chance of this, 
a y percent chance of that. In other words, we don’t im-
pose solutions, but rather, adjust the rules governing the 
interaction of agents so that robust and effective modes 
of behaviour can emerge. 

Models that can predict traffic flow on a real road 
network, based on measurements of traffic at a few key 
locations, should be valuable for planning journeys and 
for alerting road authorities to potential congestion prob-
lems before they arise, thereby potentially averting them. 
Schemes like this are already being implemented in Eu-
ropean and American cities and urban areas to allow 
real-time prediction of road use. One, called the Trans-
portation Analysis and Simulation System (TRANSIMS), 
has been used to plan road networks in Dallas, Texas, 
and is now being expanded to give a broader vision of 
urban transportation networks in other cities (see page 
47). Another one uses models like those described here 
to forecast traffic on the autobahn system in the North 

Rhine-Westphalia region, encompassing 2,250 km of 
highway. Schemes like this should not only make traffic 
flow more freely but could also make them safer, reduce 
pollution, and make the design of transportation net-
works more rational, flexible and sustainable.
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22 Every Move You 
Make: Patterns of 
Crowd Movement

Walking from here to there doesn’t seem like the most 
complex choice we face in our lives. Don’t we, like light 
beams or the proverbial crow, just take the most direct 
route, proceeding at a pace that suits us? But exploring 
and navigating our environment on foot is rarely so sim-
ple. What if there are obstacles in our path? Robotics en-
gineers have long realized that it is no mean feat to find a 
compromise between directness and smoothness of trajec-
tory, with no abrupt changes of direction. What if the ter-
rain varies – some paved, some grassy or muddy? Tricki-
est of all, what if the objects in our way are themselves 
moving, if they are other pedestrians headed somewhere 
else? How crowds move around open spaces is a sophis-
ticated process of collective negotiation that depends vi-
tally on how we interact with one another.

Extraordinarily (self-)organized movement can arise from 
many individual decisions uncoordinated by any leader, 
as is clear from the flocking of birds, the swarming of fish 
or bees, or the foraging of ants. These collective motions 
in the natural world have become almost emblematic in 
complexity science of the way that coherent, coordinated 
modes of behaviour can emerge from simple behavioural 
rules – we now know that flocking can arise merely from 
each bird responding in simple ways to what its near-
neighbours do. And because they are not imposed ‘from 
above’, these group motions can be highly adaptive to 
changing circumstances – for example, to the arrival of 
a predator.

But human group motions typically lack such ele-
gance, in part because the intentions of the group are not 
usually so unanimous. Shoppers in a busy city plaza have 
a hundred agendas and destinations. Some are in a hurry; 
some enjoy meandering; some are in family groups, per-
haps with small children; some are on roller-blades or 
have motion-impairing disabilities. But all have at least 
one thing in common: they don’t want to bump into any-
one. And that, it seems, is largely all it takes for a crowd 
to find what are often surprisingly efficient ways of self-
organizing. 

Knowing how people move around public spaces 
should enable architects and urban planners to design 
them more efficiently and safely. Designers of shops and 
galleries might want their floor plans to allow and in-
deed encourage everyone to go everywhere. Architects 
want to know where to put doorways so that they will be 
used most efficiently; likewise for park designers decid-
ing where the footpaths should go. ‘Dead spots’ in urban 
spaces may deter traders and encourage crime and decay.

There are more urgent reasons to know how crowds 
move around. Rock concerts, sports events and religious 
festivals have all been blighted by disasters in which 
crowd congestion has caused crushes and fatalities. 
Avoiding such hazards is partly a question of identify-
ing bottlenecks and flashpoints, but it may also depend 
on understanding how and why crowd movements can 

 ■ Getting about in a crowd is a complex affair. (Credit: Courtesy of 
Michael Schreckenberg, University of Duisburg.)
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themselves change qualitatively – what makes a con-
gested group of people switch from a frustrating but or-
derly shuffle to a panicked crush? What types of collective 
motion are safe, and which can presage catastrophe?

Walking on Computers

Social scientists have long spoken of ‘social forces’ that 
govern behaviour. Some of the earliest ‘complexity’ models 
of crowd dynamics took this image rather literally, positing 
forces of attraction and repulsion between individuals that 
determine the routes they take. It’s not that we really do 
exert such mutual forces – rather, we act as though this is 
so. In particular, we avoid collisions as if a repulsive force 
holds us back from bumping into each other. 

On this basis, it is possible to develop pedestrian mod-
els that are rather like the traffic models described in the 
previous chapter, in which individuals move through 
space towards their destination at a velocity that will de-
crease or change direction if necessary to avoid collision. 
This minimalist picture of pedestrians, when simulated 
on the computer, produces complex emergent behaviour 
that looks not only surprisingly reminiscent of the real 
world but also somehow imbued with intelligence, an-
ticipation, even good manners. 

One of the simplest scenarios sets the walkers trav-
elling in both directions down a narrow corridor. If the 
crowd density is high, one might expect to see chaos 
and congestion. But the ‘model crowd’ can avoid this by 
adopting collective orderliness. The pedestrians arrange 
themselves into counterflowing streams in which individ-
uals track each other’s path. This makes sense: following 
the person in front of you means you are far less likely 
to collide with someone coming the other way. But there 
is no ingredient in the model that insists on ‘following’ 
behaviour – it’s simply what appears once the rules are 
allowed to unfold.

 ■ Streams in a computer model of pedestrians in a corridor. (Credit: 
Courtesy of Dirk Helbing, ETH Zurich.)

This streaming can be enhanced by adding obstacles such 
as pillars to divide the flow, even without specifying 

which side the walkers should pass on. Similarly, model 
pedestrians coming to a multi-way intersection may self-
organize themselves intermittently into an efficient cir-
culating motion, as if at a roundabout – and this pattern 
is enhanced if there is an obstacle such as a pillar at the 
centre of the intersection. At doorways, walkers moving 
in opposite directions will organize themselves into what 
almost resembles a traffic flow controlled by lights, with 
alternating bursts of egress through the opening in one 
direction and the other – a relatively efficient way of mini-
mizing congestion. Each group stands back from time to 
time to make way for walkers coming in the other direc-
tion, giving an illusory appearance of cooperation simply 
as a result of the desire for collision-avoidance.

 ■ Snapshots of model ‘walkers’ negotiating a crossroads (top) and a 
doorway (bottom, showing two snapshots where ‘red’ and ‘blue’ capture 
the doorway). (Credit: Courtesy of Dirk Helbing, ETH Zurich.)

Spontaneous lane formation is also found in some animal 
group movements, such as those of foraging ants that 



2

 Every Move You Make: Patterns of Crowd Movement ■ 9

lay down pheromone trails to attract others. This helps 
to avoid collisions between ants leaving and returning 
to the nest. Humans don’t follow scent trails in the same 
way, but there are other situations that induce us to fol-
low in each other’s footsteps even when we don’t see one 
another. On open grassy spaces such as public parks, we 
have a tendency to walk where others have previously 
worn the grass away, both because it requires slightly 
less effort and because of a psychological impulse to 
‘stick to the path’. The path taken by a walker over an 
open space is therefore a compromise between this trail-
following behaviour and the wish to take the most direct 
route. In this way spontaneous paths are created and re-
inforced, leaving an imprint of the collective consensus 
about the preferred routes. The trails must be sustained 
by use: if old paths are abandoned, grass eventually ob-
scures them. 

Pedestrian models can account for the non-intuitive 
geometry of these human trails. Over time, the most di-
rect trails between the points of entry and exit are re-
placed by curved routes, with islands of grass isolated in 
the middle of intersections. This information could guide 
planners and architects to put paths where they will be 
used, rather than trying to impose a pattern that might be 
undermined or ignored.

Panic

Self-organized crowds can thus find collective modes of 
movement that ease the flow and enable people to move 
past each other with the minimum of congestion and 
discomfort. But not all crowds are so civilized. In crowd 
disasters, panic can lead people to push over others and 
trample them. Riots, building fires, and crushes at sports 
stadiums and rock concerts have in the past claimed 
many lives as a result of the uncontrolled movements of 
crowds gripped by panic.

 
 ■ Trails spontaneously trodden over grassy spaces have a curved, ‘organic’ feel to 

them (left). This is what emerges in a pedestrian model too (right). (Credit: Courtesy of 
Dirk Helbing, ETH Zurich.)

Pedestrian models show a switch from orderly motion 
to what looks like panic as the desire to move fast over-
whelms the urge to avoid collisions. A crowd like this can 
become jammed if all the individuals try to pass quickly 
through a single doorway, for example to escape from a 
burning room. As walkers press in against one another in 
the dense throng in front of the door, they can become 
locked into arch-shaped lines, unable to move forward. 
Such locked arches of particles can cause salt to get stuck 
in the salt cellar even though each grain is small enough 
to pass through the hole. The result is counterintuitive: as 
everyone tries to move faster, the crowd exits through a 
doorway more slowly than it would if everyone kept to 
a moderate pace. Very high pressures may build up in 
a jammed crowd: in real crushes they have been large 
enough to bend steel barriers and knock over walls. Mice 
trying to escape from a flooded chamber show just the kind 
of ‘escape panic’ exhibited by these computer model, with 
flow through the exit occurring in short, erratic bursts.

 ■ A simulated crowd trying to exit rapidly from a room can get jammed 
in a ‘panic state’, in which individuals escape only slowly and sporadi-
cally. (Credit: Courtesy of Dirk Helbing, ETH Zurich.)

One of the key findings of these panic simulations is that 
exits are generally not used efficiently: some become 
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jammed while others are neglected. This can result from 
herding behaviour: individuals tend to follow others 
rather than locating exits themselves. There is an opti-
mal level of crowd-following behaviour which allows 
exits to be used efficiently: too little herding means that 
people fail to benefit from others having found a way out, 
whereas too much means that a few exits get jammed 
while others remain barely used. In any event, room-
emptying calculations based on average equal use of all 
exits may not be adequate for anticipating how well they 
serve in an emergency. 

Better Rules, Better Data

Although pedestrian models based on attractive and re-
pulsive forces seem to do a fair job of reproducing some 
real-world behaviour, they can scarcely reflect the rules 
that govern the movements of real people. Models that 
are more rooted in cognitive psychology substitute these 
fictitious forces for a set of so-called heuristics: rules of 
thumb that mimic more closely how we make decisions. 
For example, it seems that walkers adjust their speed 
and direction by estimating when a collision would oc-
cur if they don’t take evasive action, and by seeking the 
least deviation from the direct route to their destination. 
That’s to say, instead of being repelled by their neigh-
bours, pedestrians seek the most convenient free path 
among them. Using heuristic rules like this, pedestrian 
models can provide rather accurate predictions of the 
precise trajectories that people take past obstacles and 
other walkers.

While these models of crowd behaviour display 
many realistic features in a qualitative manner, they also 
highlight the fact that we don’t actually know very much 
about precisely how people do move around. Planning 
for crowd management and safety has long relied on 
collecting information about, for example, how heavily 
used particular exits or routes are, but this very coarse-

grained information says little about the paths of indi-
viduals, let alone about what governs them. Such purely 
empirical findings aren’t much help for determining 
how, why and when the collective behaviour of a crowd 
changes – when, for example, orderly motions break up 
into chaotic, turbulent ones. Neither is it straightforward 
to know or predict the effects of altering the underly-
ing constraints on crowd movement (changing access 
routes, say).

In short, studies of pedestrian movements need more 
data. New technologies make it increasingly easy to 
gather them. For example, safe and unobtrusive radiofre-
quency tags are already used to track the whereabouts of 
individuals who are considered potentially at risk. These 
can be used to gather information not only about move-
ments but face-to-face encounters, as was recently done 
in a study on school children to understand how such 
contacts might contribute to the transmission of infectious 
disease. In fact we already carry tracking devices most 
of the time in the form of mobile phones, which can be 
used to deduce a lot about how we navigate our personal 
worlds (see page 29).

Sensors worn on the body can reveal not only where 
we are but how we are moving: accelerometers, for ex-
ample (which are also contained in most mobile phones), 
register changes in speed or direction. In one recent 
study, accelerometers were used to track changes in the 
walking speeds of many people at a public event in Malta. 
Distinctive patterns could be seen for different types of 
collective behaviour. Queueing was characterized by 
short bursts of activity separated by periods of stasis, 
while motion down a crowded corridor led to periodic 
clogging. By comparing individual data sets, one can 
deduce which people are walking together in groups, 
and it might be possible to identify signals in individual 
motion that presage and herald changes in the overall 
dynamics of a crowd. This is just one example of how 
information and communications technology can, at very 
little expense, enrich our picture of social complexity as 
manifested in daily life.

 ■ Patterns of acceleration in individuals (each represented by one of the horizontal traces). On the left, people queue-
ing are revealed by sporadic bursts of movement. In the middle, the top trace shows a person walking freely while the 
lower trace shows a person moving down a clogged corridor. On the right, the top two people can be seen to be moving 
together, while the bottom person is not. (Credit: from D. Roggen et al., Networks and Heterogeneous Media 6, 521–544 
(2011).)
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Planning Public Spaces

Town planners and architects have too often planned 
public spaces according to how they think people ought 
to move around them, rather than how people would 
naturally like to do so. As a result, studies have shown 
that pedestrians in some urban developments such as 
housing estates seem to traverse the space more or less 
randomly: at the statistical level, they look lost. These 
spaces have clearly not been designed with people in 
mind. The effect is not just that human intentions are 
thwarted, but that our movements and decisions might 
in turn be directed by our environment. By the same to-
ken, modeling of visitor trajectories in the Tate Britain 
art gallery in London has shown that over 70 percent of 
the differences in visitor numbers to each room could be 
accounted for purely in terms of the ground-plan layout, 
without any reference to what the rooms actually con-
tained. As Winston Churchill once said, “We make our 
buildings and afterwards they make us. They regulate 
the course of our lives.”

Computer models of pedestrian motion should make 
it possible for our buildings and spaces to be shaped by 
us rather than shaping us. They are now being integrated 
into architectural design schemes. For example, the Lon-
don-based company Space Syntax has used them to help 
plan the pedestrianization of the busy tourist destination 
of Trafalgar Square in central London, and is currently 
working on urban-design problems in cities ranging from 
London to Jeddah and Beijing.

Pedestrian simulations have been used to help de-
sign crowd-management and safety measures for large 
public events. In one study, a model simulating crowd 
movements in the Notting Hill carnival in west London 
was able to identify flashpoints where there was a high 
potential for dangerous congestion, so that stewarding 
and crowd-control measures could be concentrated there. 

Modelling of crowds served an even more urgent need in 
a study of the annual pilgrimage of Muslims to Mecca in 
Saudi Arabia. This event, called the Hajj, draws more than 
three million pilgrims, and hundreds of lives have been 
lost in the past as a result of overcrowding and stam-
pedes. In 1990 over a thousand people were trampled 
to death in a pedestrian tunnel leading to the so-called 
Jamarat Bridge in the nearby town of Mina, where a sym-
bolic ritual stoning of pillars (the jamarat) takes place. 
Despite a major redesign of this area, the stoning in Mina 
has been a flashpoint for several disasters: fatalities have 
occurred on six occasions since 1994. In January 2006 over 
300 pilgrims died, and many more were injured. 

At that event, video cameras installed to monitor the 
movements of the crowd happened to record that, as the 
crowds on the Jamarat Bridge became denser, the steady 
flow changed to stop-and-go waves like those in heavy 
traffic. And as the crowd density increased still further, 
people were pushed around by an earthquake-like state 
denoted ‘crowd turbulence’, in which uncontrolled shock 
waves threatened to make people lose their balance and 
fall to the ground. 

The onset of this hazardous turbulence happens when 
a parameter equal to the crowd density multiplied by the 
variation in speed of motion exceeds a certain threshold 
value. Real-time monitoring and analysis of video data on 
dense crowds can give advance warning of when this 
highly dangerous state is about to develop, so that inter-
ventions might relieve the pressure and avoid the onset 
of a catastrophic accident.

With the guidance of crowd modelling, a new route 
between the pilgrim camps and the Jamarat Bridge in 
Mina was devised for the 2007 event, with time schedules 
arranged to limit and distribute the flow of pilgrims. The 
redesigned route was successful: despite the even higher 
number of pilgrims than previous years, the Hajj passed 
without incident. This was an indication that models of 

 ■ Crowd movements at the 2006 Hajj in Mina, revealed in video recordings that average images over 1–2 seconds so 
that people in motion look blurred. As the crowd became denser, stop-and-go waves appeared (left), and, for still denser 
crowds, earthquake-like turbulent motion could be seen (right). (Credit: Courtesy of Dirk Helbing, ETH Zurich.)
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pedestrian motions can have a real and immediate impact 
on our daily lives, helping to make the built environment 
more conducive, more accessible, and safer.
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33 Making Your Mind 
Up: Norms 
and Decisions

While the causes of the Arab Spring of 2011 are still dis-
puted, no one imagines that the popular uprisings in 
Tunisia, Egypt and Libya happened one after the other 
by pure coincidence. Even before President Mubarak 
of Egypt was forced to relinquish his rule in February, 
there was talk of a ‘domino effect’ and ‘copycat’ behav-
iour across the North African nations, leading political 
leaders in Algeria, Morocco and Libya to lower the prices 
of essential goods in an attempt to avoid spreading of this 
‘contagious’ unrest. Such knock-on effects of social distur-
bance and conflict were nothing new. For example, the 
civil war in Rwanda in the 1990s spread into the neigh-
bouring Congo, at the cost of millions of lives, and also 
affected Burundi and Uganda. 

At much the same time as the Arab Spring was dem-
onstrating that the mass behaviour of one group can influ-

ence that of another, a similar phenomenon was wit-
nessed in the United Kingdom. Rioting and looting in 
north London in response to the shooting and death of a 
man being arrested by the police triggered similar out-
breaks of violence in many parts of England, apparently 
without a specific motive and sometimes in areas that 
were not conspicuously deprived and which had never 
before experienced serious unrest of this sort.

One of the most baffling and disturbing aspects of the 
English riots, aside from their unexpected and unprec-
edented occurrence in itself, was the varied demographic 
profile of the rioters. While politicians lamented the exis-
tence of pockets of society lacking any restraining norms 
of civility, those convicted of the disturbances in fact came 
from many different social strata. And yet despite lack-
ing any orchestrating agency, the riots ceased as abruptly 
as they had begun. The phenomenon was reminiscent of 
episodes of spontaneous ‘mass hysteria’ recounted by 
historians.

This capacity for sociopathic behaviour to spread like 
a disease has long been remarked upon, and feared – most 
notably, it has been invoked to explain the rise of geno-
cidal regimes such as those of Nazi Germany, which seem 
to involve collusion between extremist leaders and the 
populace. But by the same token, benevolent or neutral 
behaviour can be propagated too. For better or worse, mo-
bile phone technology has altered the norms and the eti-
quette of public conduct in ways that no one consciously 
consented to. Behaviour deemed normal three decades 
ago, such as racism and homophobia, is widely consid-
ered unacceptable in many nations today. (Conversely, 
one suspects that the tide could turn back just as quickly, 
as witnessed by the rise of far-right movements in some 
parts of Europe and Russia.)

In the light of such developments, the mechanisms 
and dynamics of collective opinion formation are argu-
ably among the most important questions facing the so-
cial sciences today. They can determine whether products 
and ideas succeed or fail. They set the bounds of how we 
may or may not behave in public and in private. They go 

 ■ The English riots of 2011: an example of spontaneous group deci-
sion-making mediated by new information technologies? (Credit: adapted 
from the blog http://vikkilittlemore.wordpress.com/ .)
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to the very heart of what it means to live in a democracy: 
how, for example, we negotiate as a society the balance 
between personal freedoms and collective responsibility. 
It may be the ebb and flow of collective opinion forma-
tion, rather than the aggregate of independent decisions, 
that determines who our leaders are and what powers 
and responsibilities they are able to exercise. It seems 
likely that major challenges facing the planet, such as 
the threat of climate change, will be determined not so 
much by laws, legislation and international negotiation 
as by whether or not a sea change in public opinion can 
be triggered.

All in This Together?

Much of the debate around multiculturalism in Europe 
has centred on the issue of whether societies with a plu-
rality of views on religion, authority, politics, personal re-
sponsibility and state intervention can operate as coherent 
entities. Regardless of where we feel the balance must lie, 
it is generally agreed that societies are not tenable without 
shared norms. At the apparently trivial level (although 
the genesis of any custom is far from trivial), we must 
all agree on which side of the road to drive. More con-
tentiously, we must establish norms, or at least bounds 
of acceptability, that govern choices of clothing, taxation 
levels, personal honesty, privacy and much else. These 
norms are necessary not only for social stability but also 
because we could barely function as individuals without 
them. Norms exist so that we do not need to decide afresh 
all the time how we should behave, dress, or speak. 

In his 1978 book Micromotives and Macrobehaviour, the 
economist (and later Nobel laureate) Thomas Schelling 
pointed out how decision-making is an interactive social 
process, the outcome of which is not always predictable 
from an inspection of individual beliefs or behaviours. 
Schelling’s book pioneered the vision of society as a com-
plex interactive system, although these concepts were 
then still in gestation. Schelling presented his book as an 
exploration of how the ‘invisible hand’ that Adam Smith 

evoked to explain the self-organization of the economy 
might operate also in social life. Yet he included in his 
analysis the very factor that economists have tended (to 
their cost) to ignore: interaction. As Schelling put it, 

We usually have to look at the system of interaction be-
tween individuals and their environment, that is, between 
individuals and other individuals or between individuals 
and the collectivity. And sometimes the results are sur-
prising. Sometimes they are not easily guessed. Some-
times the analysis is difficult. Sometimes it is inconclu-
sive. But even inconclusive analysis can warn against 
jumping to conclusions about individual intentions from 
observations of aggregates, or jumping to conclusions 
about the behavior of aggregates from what one knows or 
can guess about individual intentions.

Schelling’s classic illustration of how interaction can 
create non-intuitive outcomes in collective decision-mak-
ing concerned the issue of social segregation. At that time, 
several US cities had experienced so-called ‘white flight’, 
in which affluent white people left the inner city for the 
suburbs, leaving behind deprived ghettos populated by 
racial minorities. This rather extreme racial segregation 
seemed indicative of a high degree of racial intolerance. 
But was it really?
Schelling described a model in which two kinds of agent – 
call them red and white – move about on a checkerboard 
grid according to simple rules based on the colour of their 
neighbours. An agent is selected at random and, if more 
than one-third of the eight nearest neighbours are found 
to be of the other colour, it will move to one of the free 
spaces on the grid where this will not be the case. After 
each agent had moved on average just three or four times, 
an initially highly mixed population became strongly 
segregated into islands of a single agent type. Schelling’s 
model has since been explored in various different incar-
nations, and can be seen to be formally analogous to the 
physical separation of liquids, such as oil/water or molten 
metal alloys.

On the one hand, this model suggested that it takes 
only a small degree of individual prejudice – indeed, 

 ■ Segregation of two populations in Schelling’s model happens very quickly as time progresses (from left to right). Im-
age kindly supplied by Michael Batty. (Credit: Courtesy of Michael Batty, University College London.)
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what some might regard as a natural human desire to be 
in a majority – to create rather extreme segregation. The 
collective effect of many marginal decisions is stronger 
than each might individually seem to imply. On the other 
hand, the implication seems to be that segregation may be 
inevitable, or at least rather hard to suppress. 

In other words, the political implications are open to 
debate. Must we accept segregation (by race, culture, re-
ligion, class…) as a fact of life? Or can we use models like 
this to find ways of rendering it less likely? Must segrega-
tion in fact be seen as a ‘bad thing’? Evidently the growth 
of ethnic districts in cities can contribute to their diversity 
and to the avoidance of bland homogeneity, as well as of-
fering mutual support and identity to their residents. But 
segregation can also lead to unrest and mutual distrust 
of communities.

Regardless of these open and difficult questions, 
Schelling’s model makes an important general point 
about interactive social systems: individual behaviour 
cannot necessarily be extrapolated to infer group behav-
iour. More specifically, when individuals are offered the 
opportunity to express choices by aligning with one com-
munity or another, there is a strong likelihood that seg-
regation will quickly develop. While Schelling’s original 
model seems particularly prone to exhibit strong segrega-
tion, related agent-based models that allow the agents to 
exploit the benefits of diversity still struggle to find stable 
mixed states: there is always a pull towards segregation. 

This message is not always acknowledged within po-
litical ideologies that promote choice. For example, one 
recent study of choice and segregation in US schools con-
cluded that “Programs that allow the unfettered move-
ment of children across schools will exacerbate existing 
race and class-based segregation in traditional, local 
neighborhood schools that children leave, further deterio-
rating the educational conditions faced by the most dis-
advantaged students.” However, other studies in the UK 
offer mixed evidence for whether school choice policies 
have increased segregation. If anything, the evidence so 
far underlines the need for these social models to become 
considerably more sophisticated: not just to offer agents 
a simple binary choice (move/stay), but to acknowledge 
the many factors that influence decisions of this sort, 
such as the interplay between in-group and out-group 
determinants such as race, class and wealth, and the often 
complex cost/benefit considerations of different choices. 
In other words, understanding this important social phe-
nomenon has only just begun. However, the problems 
associated with segregation – such as the formation of 
poverty traps, so-called ‘sink estates’ and ‘no go’ areas, 
the tensions associated with immigration, and the increas-
ing disparity in some countries between private and pub-
lic provision of education, health and security – all show 
that this is a vitally important area for future research. 

Peer Pressure

In situations like these, we express our choices by “vot-
ing with our feet” – by moving house or moving school, 
say. But social norms and codes, and indeed the out-
comes of any democratic voting process, tend to arise 
in a more interactive, negotiated manner. In particular, 
we often attempt to persuade others to make the same 
choice as us.

The study of opinion formation and the emergence of 
social consensus has witnessed an explosion of activity 
in the past two decades. Models in which the decision-
making agents are arrayed on a grid and exert ‘forces’ 
that encourage neighbours to adopt the same behavioural 
‘orientation’, like spinning compass needles, are formally 
very similar to microscopic models of magnetism, in 
which each magnetic atom in a crystal influences those 
around it. Under some conditions the system can settle 
into complete consensus – all the ‘needles’ point in the 
same direction, as they do in a piece of magnetized iron. 
But the system can also break up into patches with ori-
entations that are uniform within the patch but different 
from those of other patches – a situation long known in 
magnetic materials. And if there is too much randomness 
influencing individual orientations, even local consensus 
becomes impossible, just as thermal jiggling will destroy 
the magnetic ordering of iron above a certain tempera-
ture. Such simplified ‘opinion models’ are largely well 
understood now, but run the risk of becoming more a 
matter of formalized physics than a description of what 
happens in a real society.

 ■ A simplified representation of a voting model, in which agents 
arranged on a grid are like magnetic needles that try to force their neigh-
bours to point in the same direction.

Studies of opinion formation commonly now try to in-
ject more real-world relevance. What if the agents are 
arranged not on a grid but in a branching network that 
better reflects the shapes of our own social networks of 
peers? As Chapter 5 shows, the topological structure of 
a network of interactions – who is connected to whom 
– can make a big difference to the collective behaviour 
that emerges. In this case, a realistic network structure 
can, relative to a simple grid, boost the number of dis-
tinct opinions that survive in the case where no outright 
consensus emerges.
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And what if some agents are more influential than oth-
ers, or more stubborn in sticking to their views? Under 
what conditions does a consensus tend towards moderate 
opinions, and when do extremist views come to domi-
nate? How are opinions altered by overall ‘orienting 
fields’, which could mimic the effects of advertising or 
media bias?

The results of such studies offer some provocative 
conclusions. For example, extremist groups that are re-
sistant either to altering their own views or to interact-
ing with those with very different views can, if they are 
not wholly isolated, actually help to maintain a diversity 
of opinion in the rest of society. (This frustration of con-
sensus could be regarded as either a positive or negative 
outcome.) In some situations, the presence of extremists 
can eventually catalyse a switch to an extreme consensus, 
even after a prolonged phase of near-consensus on a more 
moderate opinion.

Agent-based approaches like this can be extended to 
look at how cultural traits spread through a population as 
individuals tend to copy their neighbours or accede to the 
traits of the local majority. Must majority-copying lead to 
a monoculture, a ‘Macdonaldization’ of diversity? Even 
for simple models this is a subtle question, which can de-
pend on factors such as how big the overall population 
is and how rich the cultures are (that is, how many dif-
ferent ‘features’ they contain that distinguish one culture 
from other). For example, there seems to be a threshold of 
‘cultural richness’ beyond which a single dominant cul-
ture can never colonize the entire population. There are 
obvious implications here for issues such as commercial 
globalization and the survival of minority languages. So 
far, most of the models remain rather too abstract to draw 
reliable conclusions about the real world, but they already 
establish that complex behaviour can emerge from simple 
rules and that it’s unwise to rely too heavily on intuition 
to predict how the normative behaviour of many agents 
will evolve.

The influence of public and peer opinion on our own 
choices has long been recognized by social scientists, but 
has been difficult to demonstrate or quantify. An inge-
nious social-science experiment accomplished this in 
2006. The researchers enlisted over 14,000 volunteers who 
could listen online to songs recorded by 48 unknown rock 
bands, and download ones they liked. Social influence on 
these choices was studied by presenting the information 
to the participants in different ways. Some were simply 
shown a list or grid of the songs in random order. The 
number of subsequent downloads was then assumed to 
be a measure of the ‘objective quality’ of the songs – not in 
any formal sense, but in terms of how this was perceived 
by the study group. Other subsets of the group were pro-
vided with information about the song’s popularity, in 
terms of the number of times it had been already down-

loaded. This information was supplied in two different 
ways: either as a bare number attached to a random listing 
of the songs, or as a list ranked in order of popularity. The 
latter makes the ‘social information’ much more transpar-
ent, and thus increases the strength of the social influence.

This influence was found to have a marked effect on 
the choices made. In particular, the stronger the social 
interaction, the more ‘inequality’ there was in the outcome: 
popular songs were more popular, and unpopular ones 
less so. In other words, the choices reinforced one another 
when they were known to other members of the group. 
Moreover, when there was this feedback about the choices 
of others, ‘quality’ (as measured by the group that made 
decisions independently) became a less reliable indica-
tor of a song’s ‘success’, and increasingly so as the social 
interaction got stronger. While ‘bad’ songs never did par-
ticularly well, and ‘good’ ones rarely did poorly, all things 
seemed possible in between: social interaction made it 
more likely that mediocre songs could become runaway 
successes. In other words, there was greater unpredict-
ability of outcomes, since small, random differences in 
individual judgement could become amplified by social 
feedback into major differences in the group rankings.

Reputation and Trust

Findings like this take on considerable significance once 
we recognize that many of our choices rely ever more on 
social interaction and feedback rather than on a tradi-
tional deference to central authority. As consumers, we 
might be swayed by online recommender systems that 
attempt to correlate our own past choices with those of 
other users. Rather than buying from a few trusted major 
stores or suppliers, we shop amongst a huge variety of 
providers on eBay and other online markets. We receive 
a constant stream of suggestions, statements and influ-
ences from Twitter streams. Our sources of information 
and news are attaining a bewildering diversity in terms 
of cultural and political orientation, standards of rigour 
and accountability, and so on. Increasingly, we navigate 
these potentially hazardous waters by relying on feed-
back that advises us of the reputation of our sources and 
thereby determines our degree of trust. For providers, the 
active construction of reputation is vital. Influence is not 
only reflected in but also determined by the quantity and 
the opinions of followers and users. One of the revelations 
of today’s networked world is that this mechanism of 
trust-building, which aggregates the evaluations of peers 
rather than relying on the monolithic, institutional status 
of traditional stores, brands, critics and experts, can en-
gender a self-organized system of trade, exchange, debate 
and discourse that allows individuals to trust one another 
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(or not) without any previous first-hand encounters. We 
are all, in a sense, mining the collective experience in or-
der to make judgements and choices.

How reputation and trust are maintained seems 
likely to be one of the most significant and fertile areas 
for exploration through a complex-systems approach. 
One of the lessons of the financial crisis is that trust has 
always been the invisible lubricant of the financial sys-
tem – and that, when it evaporates, the consequences are 
catastrophic. The same might already be true also for our 
commercial and political systems. So we had better un-
derstand how, in these webs of advice and persuasion, 
such things as influence, consensus and power arise and 
can be manipulated.
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4 Broken Windows: 
The Spread and 
Control of Crime

Early social statisticians in the nineteenth century were 
astonished to find that the prevalence of crimes from year 
to year followed a precise mathematical pattern. Specifi-
cally, variations from the long-term average fitted onto a 
bell curve – the same curve that described variations in 
births and deaths, or in errors in experimental measure-
ments. This means that small deviations from the average 
happen more often than large ones, and that very large 
deviations tend to be vanishingly rare. How could it be 
that these acts of crime, committed with free will, obeyed 
such regularity? To some, such as the influential Belgian 
mathematician Adolphe Quetelet, this meant that crimes 
must be somehow compelled by a higher force – not by 
individual choices, but by “the customs of the people”, 
and that they must therefore be regarded as an inevitabil-
ity: a “budget that is paid with frightening regularity”.

We are now generally less fatalistic about crime. The 
vast literature of criminology is predicated on the idea 
that crime has specific causes, whether psychological 
or social, and that these can, at least to some extent, be 
understood – which should then suggest ways in which 
crime might be reduced, even if not eliminated. However, 
this research has produced no consensus. Is crime com-
mitted after a rational cost-benefit analysis of the gains 
and risks, as some economists have suggested, or is it 
done in the heat of the moment? There is evidently a 
link to socioeconomic circumstances, but this link is not 
straightforward – many socially deprived areas have low 
crime rates, while there are also ‘crimes of the wealthy’ 
such as tax avoidance. Do deterrents work? Do they work 
better if they are harsher? Because there is no simple or 
single answer to such questions, approaches to crime pre-
vention are often based more on faith and ideology than 
evidence. 

But what about those bell-curve statistics that im-
pressed Quetelet? We now know that there is nothing so 
surprising in them, for a bell curve is the characteristic 
signature of random fluctuations in independent events – 
you find the same thing in statistics of coin tossing, where 
each toss takes no heed of the last. These statistics suggest 

that, whatever the reasons people commit crimes, they do 
so independently of one another.

Yet crime is not always like that. In March 2010 a man 
stabbed eight children to death in an elementary school 
in southeast China. Within two months there were four 
other such child attacks of a similar nature, killing 17 peo-
ple in total, in different provinces. Although this is an 
extreme example, the phenomenon of the copycat crime 
is well attested, and often seems likely to be sparked by 
wide, sensationalist media coverage of the original event. 
Crime is often spoken of as an epidemic, with the implica-
tion that it involves an element of contagion that causes 
criminality to spread and wane episodically. Knife crime 
in Britain and organized drug crime in Latin America, for 
example, have been described in these terms. This picture 
implies that, not only can criminality be ‘caught’ from 
others, but so can lawfulness.

These aspects of crime – the evident but complicated 
dependence on a range of social ‘drivers’, and the feed-
back effects between behaviours – make it a complex 
social phenomenon as much as a question of individual 
psychology. Even in people who have identifiable mental-
health problems that might give them a greater propensity 
towards criminal activity, such as violence, it seems that 
social factors, including the behaviour of other people, 
can determine whether such traits are manifested or not.

With prison populations on the point of overload in 
some developed countries, methods of policing under the 
spotlight, and the possibilities for both criminal activity 
and security monitoring being multiplied by information 
and communication technology, understanding crime 
has become one of the most urgent problems for govern-
ments and societies. A complex-systems approach cannot 
guarantee to provide all the answers, but it undoubtedly 
shows the promise to provide a broader perspective that 
allows criminality to be embedded in a more inclusive 
landscape, as an aspect of social decision-making that 
depends, among other things, on the establishment of 
norms, changing demographics, multiculturalism, eco-
nomic conditions, urban planning and education. This 
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perspective can accommodate the evident fact that crime 
is not, after all, a random and individual act but a collec-
tive social behaviour. As such, it is unlikely that a linear 
cause-and-effect approach will do much to solve it. More-
over, seeing crime as a complex social system encourages 
a multi-tiered strategy towards its alleviation: applying 
local measures to thwart it in the short term, say, while 
implementing deeper, longer-term social changes to at-
tack the root causes. 

On the Streets

Some early models of crime as a complex system have 
neglected social interaction and focused instead on other 
factors known to influence the likelihood of offences. It 
has been clearly shown, for example, that the incidence 
of burglary is related to characteristics of the built envi-
ronment: it is more common in terraced houses, say, and 
tends to be directed at wealthier areas and at students 
(obviously for different reasons!). And burglars prefer not 
to travel far from their own homes. These spatial and de-
mographic factors are hard to embody in some theoretical 
approaches, but agent-based models are well suited to in-
cluding them. One recent model that used these factors to 
determine the likelihood of burglaries in the English city 
of Leeds achieved a reasonably good match to observed 
data provided that the modelling was conducted at a de-
tailed spatial resolution of about 1 km – an indication that 
too much aggregation of statistics (‘crime rates have in-
creased by 15 percent’) may mask important information. 

Most crime can be considered to be a social interac-
tion, albeit an unpleasant one, between the criminal and 
the victim, analogous to the encounters of predators and 
their prey in the wild. Criminological studies have shown 
that victim behaviour can be very important in determin-
ing the susceptibility to crimes such as household bur-
glary: most obviously, it is more likely when the residents 
are not at home. For this reason, some models have taken 
both perpetrators and victims explicitly into account. 
One criminological theory supposes that crimes occur 
when routine activities bring a potential offender into 
contact with a potential victim in a circumstance where 
the offender calculates that there is sufficient absence of 
‘guardianship’ – police officers or members of the public 
likely to intervene – to make the crime, and consequent 
economic gain, worth the risk. 

In this picture, patterns of routine activity for both 
parties become key. Street robberies, for example, are 
highly sensitive to the patterns of human movements, 
which in turn are dependent on the spatial structure of 
the urban environment as discussed in Chapter 2. In one 
study, movements of three types of agent – law-abiders, 

who might be either potential victims or ‘guardians’, po-
lice, and potential criminals – was modelled on the street 
network of Seattle, with demographic and socioeconomic 
distributions matching the real data for that city. This 
model aimed to create realistic patterns of movement 
based on the locations of homes and centres of activities 
such as retail, recreation and employment. This realistic 
‘siting’ of the simulation turned out to be crucial: street 
robberies were much more tightly clustered for a ‘real’ 
Seattle than for a simple grid street network, reflecting 
the greater convergence of victims and offenders along 
certain popular routes. Even if the quantitative predic-
tions of a model like this are open to question, it makes 
the general point that, at least for robberies and mug-
gings, it is essential to make space an explicit part of the 
picture. Identifying crime hotspots in an urban space, for 
example, shows where policing needs to be concentrated. 
This model also lends support to the theory that crime 
increases as people spend an increasing amount of time 
away from their homes.

 ■ Model predictions of street robberies in Seattle, showing a concentra-
tion on major thoroughfares. (Credit: Courtesy of Elizabeth Groff, Temple 
University, Philadelphia.)

Including victim behaviour in the above-mentioned 
model of household burglaries in Leeds also improved its 
realism: for example, how affluent they are and over what 
proportion of time their house is occupied. Such detailed 
information is not usually available for specific houses 
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in a geographical area, but anonymous census informa-
tion of this sort can at least be used to make the model 
representative of local characteristics. One of the findings 
in this case is that location may be a dominant influence 
on the likelihood of being burgled: unemployed people 
living near potential burglars were more likely to be vic-
tims than affluent individuals living further away, even 
though the former houses are more often occupied (and 
probably have less to offer the burglar). The next step for 
such models is to increase the psychological complexity of 
the agents: to base decision-making on the kinds of moti-
vations known to be relevant to real offenders, including 
their awareness of their environment (such as potential 
target houses for burglary) and their perception of risks. 
In such models, different agents will develop different 
‘cognitive spaces’ – mental maps of their surroundings 
and behavioural rules of thumb – that affect their choices.

As with other simulations and models of complex 
social systems, the value of these studies may lie not so 
much in identifying what will happen where and when, 
but in facilitating counterfactual ‘virtual experiments’ that 
can explore the general consequences of particular poli-
cies and events in ways that cannot be done by real-world 
experimental testing. We can ask, for example, what is 
the effect of intensifying or reducing policing, or how so-
cioeconomic changes, shifts in the age demographic, and 
increased surveillance, affect crime levels. 

Bad Influence

The idea that crime breeds more crime has a long pedi-
gree, but it has been very hard to demonstrate. It assumes 
that we will be more likely to behave in antisocial or ir-
responsible ways if we see others doing so. One could 
regard this from the perspective of game theory (see 
Chapter 8): if everyone around us is acting selfishly and 
for their own gain, we will be suckers if we don’t do the 
same. By the same token, cooperative ‘good’ behaviour 
by our peers not only makes us feel safe enough to act 
likewise but can create a social pressure that enforces 
‘goodness’ with the threat of ostracism. 

While there is surely some truth in this picture, the 
effect of interaction on social behaviour can also be more 
indirect and subtle. We seem to react not just to the ac-
tions we see around us but to proxies of them imprinted 
on the environment. 

This is the so-called ‘broken windows’ hypothesis of 
sociologists James Q. Wilson and George Kelling, which 
supposes that people are most likely to commit crimi-
nal and antisocial acts when they see evidence that oth-
ers have already done so – for example, when they are 
in public places that show signs of decay and neglect. 

This idea motivated the New York subway system’s fa-
mous zero-tolerance policy on graffiti in the late 1980s 
(for which Kelling acted as a consultant), which is cred-
ited with improving the safety of the network. The idea 
is that simply by removing evidence of neglect on the 
subway, users were prompted to behave better: not just to 
refrain from painting graffiti, but to be more law-abiding 
all round.

Some have even argued that the graffiti removal 
spurred the general reduction in crime in New York City 
between the 1980s and the 1990s. Others believe the causes 
lay elsewhere: better policing, say, or an improvement in 
the economy or an increasing average age in the popula-
tion. In any event, the crime rate in the city undoubtedly 
changed profoundly in a relatively short space of time: 
the numbers of both violent assaults and robberies halved 
between 1989 and 1999. This transformation certainly has 
the appearance of an ‘epidemic of lawfulness’.

 ■ Did the removal of subway graffiti solve New York’s crime problem? 
(Credit: ChameleonsEye/Shutterstock.)

Although its influence on crime rates remains an open 
question, there is now good evidence that the ‘broken 
windows’ effect is real: that criminal and antisocial be-
haviour is affected by what we infer about the behaviour 
of others from our environment. This is not merely a 
copying effect: it is well-known that people drop more 
litter in a setting that is already litter-strewn, but that 
doesn’t imply that they will indulge other antisocial 
habits in the same place too. However, experiments in 
the Netherlands have shown that visual evidence of 
the violation of one norm of ‘good behaviour’ does en-
courage people to violate others. For example, cyclists 
were significantly more inclined to drop on the ground 
an advertising flyer attached to the handlebars of their 
parked cycles when these were located in front of a wall 
on which graffiti defied a prominent notice that prohib-
ited it, than when the wall was clean. Pedestrians would 
ignore ‘no entry’ signs into fenced-off areas when bi-
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cycles were left locked to the fence in defiance of signs 
prohibiting this. And they were twice as likely to steal 
money from an envelope lodged in a letterbox when the 
box was defaced with graffiti or when the ground was 
littered than when it was clean.

These findings show rather dramatically, perhaps 
even shockingly, that many of us are not either categori-
cally law-abiding and considerate or criminal and selfish, 
but may display either trait in the face of simple, sub-
conscious cues about behavioural norms. They provide 
good reason to believe that criminality has a significant 
dependence on social interaction.

Hotspots

Social feedback offers one explanation for why crime 
seems to occur geographically in hotspots. This phenom-
enon is well attested but poorly understood. Sometimes 
hotspots can be suppressed by increasing police activity 
in those regions, but sometimes this merely moves the 
focus of crimes to adjacent areas. Considering the sys-
tem as one in which ‘predators’ (offenders) seek ‘prey’ 
(victims) while both move around in the available space 
casts the problem within a framework familiar to ecolo-
gists, who have long described such interactions using so-
called ‘reaction-diffusion’ models developed in chemistry, 
in which spatial patterns can arise as the ‘agents’ diffuse 
through space and react with one another. In the case of 
crime, the ‘reaction’ – predation of criminals on victims 
– can be potentially suppressed by an inhibiting agency 
such as a security measure or a police force. Inhibition in 
chemical reaction-diffusion schemes can lead to spatial 
patterning, with different concentrations of the reagents 
persisting in some regions even while the individual mol-
ecules continue to diffuse. Biochemical processes of this 
type are thought to underlie the formation of pigmentation 

patterns on animals. Reaction-diffusion systems can be 
equivalently modelled within an agent-based approach.

A similar process might explain the formation of crime 
hotspots. In this model, the hotspots turn out to come in 
two varieties. In one case they are merely aggregates of 
individual crimes with overlapping spheres of influence. 
The other sort of hotspot is caused more directly by posi-
tive feedback: crime induces more crime. The first sort of 
hotspot can be eradicated completely by a sufficiently 
strong inhibiting influence: that is, by locally concentrated 
policing. But the second sort is harder to eliminate. Fo-
cused inhibition can cause the hotspots to break up into 
smaller spots or rings in the close vicinity. If this picture 
is an accurate reflection of the world, it suggests that not 
all hotspots will yield to the same style of policing, but 
that different strategies might be needed in different situ-
ations.

Although models like this have not yet been used 
to devise or guide law-enforcement strategies, there is 
growing recognition that a more empirical approach to 
policing based on detailed crime statistics can be valuable. 
The Santa Cruz police department in California has been 
running a trial in which crime data are fed into a com-
puter algorithm which uses statistical inference to predict 
where crimes will happen next. The algorithm identifies 
hotspots for offences such as car thefts and house bur-
glaries, not simply by looking at where these have oc-
curred previously but by using an approach analogous 
to that used to predict the locations of aftershocks after 
earthquakes: the high-risk areas aren’t necessarily ones 
that have just experienced crime spikes. This approach 
may bear short-term fruit for law enforcement, but it re-
lies merely on statistical correlations and offers little real 
insight into why crimes happen. While it demonstrates 
the value of having more data about crimes, such data 
might yield a better harvest once they are used to inform 
models rooted in the movements and behaviours of real 
people. For while it has been said that predicting crime is 

 
 ■ Crime hotspots, here shown in red, can arise in a ‘reaction-diffusion’ model of the 

interaction of criminals and victims (left). Under some circumstances, if these are 
suppressed locally by policing (purple), then the crime might simply be displaced into 
the surrounding neighbourhood (middle, green ring). These patterns arise in a manner 
analogous to the biochemical processes thought to produce pigment spots in animal 
skins (right). (Credits: (left and middle) from Short et al., Proc. Natl. Acad. Sci. USA 
107, 3961–3965 (2010); (right) W.Scott/Shutterstock.)
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like predicting the weather, the weather does not respond 
to deterrents and incentives. Not all crime is rational, but 
a rational approach is surely needed to understand it.
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55 The Social Web: 
Networks 
and Their Failures

In 2003 a massive power blackout on the east side of North 
America affected one third of Canada’s population and 
one in seven people in the USA. The cause was disputed 
– some sources blamed a lightning strike in the Niagara 
region, others a fire at a power plant in New York or an 
alleged breakdown at a nuclear power plant in Pennsylva-
nia. A report in 2004 finally alleged that a computer error 
caused the shutdown of a generating plant in Ohio when 
the demand became too high. This put a strain on nearby 
high-voltage power lines, which failed when they came in 
contact with overgrown trees. As a result, less than three 
hours later the problem had cascaded to shut down 256 
power plants over the east coast region.

This sensitivity to what seemed like a minor disrup-
tion would appear to imply that the electricity network 
was dangerously fragile. But such huge failures are rare, 
whereas localized problems are fairly common. The 2003 
power cut reveals not so much that the network is deli-
cate, but that its behaviour is extremely hard to predict: 
some, perhaps most disturbances create only small-scale 
failures, but others can be catastrophic.

Events like this are significant in themselves for the 
security and robustness of our societies: had the power 
failure occurred in winter, the consequences might have 
been far graver. Physical networks play vital roles in the 
operation of society, whether they are webs of roads and 
streets, or telecommunications lines, or supply networks 
for water and gas. But many other complex social and 
technological networks exist in a more abstract, intangible 
realm: the webs of trade and travel that link global air and 
sea ports, say, or the networks of friends and associates, 
or those that arise in business and commerce, or which 
connect ideas and innovations.

None of these networks was designed. They have all 
grown spontaneously, lacking any blueprint that dictated 
how the nodes should be joined together. While each link 
in the electricity grid will have been discussed, planned 
and executed, no one had responsibility for the overall 
shape, and until recently no one thought to ask what it 
looks like, let alone suspected that the answer could have 

vital implications for the grid’s performance. All of these 
complex social and technological networks are in some 
sense the product of human actions and intentions, and 
yet their contours are often unknown. We must explore 
them as we would aspects of the natural world. And in-
deed it is now becoming clear that they share many char-
acteristics with networks that exist in nature, such a food 
webs or the communication between genes and proteins 
in our cells. 

The 2003 American power failure illustrates why it 
is so important to understand these networks. Research 
over the past decade or so has revealed not only that their 
topologies – the patterns of connectivity – are quite dif-
ferent from those that have been assumed in the past, but 
also that these topologies hold the key to their perfor-
mance and robustness: how easily the webs can be negoti-
ated and searched, and how sensitive they are to break-
age of links. A small effect can have major consequences; 
conversely, its influence might remain small. As a result, 
interventions that seek to alter the networks must be con-
sidered with great care, since there is a strong potential 
for unanticipated consequences. As if this were not com-
plicated enough, many networks in society are hierarchi-
cal and multi-functional: they are networks of networks. 
The flow of physical entities – people, materials, energy 
– along networks might be guided by the flow of infor-
mation in cyber-networks, and might itself be influenced 
by other interdependencies such as geographical proxim-
ity or the interactions of institutions and authorities. It is 
precisely in those interdependencies that possible vulner-
abilities and catastrophic failures lurk.

Both the mathematical study of networks in an abstract 
sense, and interest in real social networks, have histories 
stretching back for at least half a century. Nonetheless, 
‘network science’ can claim to be a genuinely new disci-
pline, having begun in earnest only in the 1990s. It is now 
one of the most vibrant, diverse and insightful areas of 
complex-systems research, which has cast a new light on 
many areas of the social, natural and engineering sciences, 
from trade and business to epidemiology (the subject of 
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the next chapter), ecology and computer technology. It 
impinges on all the other topics in this book. As indicated 
in the Introduction, inter-connectivity is one of the defin-
ing and determining features of the modern world.

Small Worlds

One of the most striking and important characteristics of 
social networks that develop ‘organically’ through the un-
planned addition of new nodes and links – for example, 
networks of friends and acquaintances, or of professional 
collaborators, or of links between web pages on the World 
Wide Web – is that there is almost always a shortcut con-
necting any two points. As the popular notion puts it, ‘it’s 
a small world’: we regularly find that new acquaintances 
already share a friend, or a friend of a friend, with us. This 
is the message of the famous ‘six degrees of separation’, a 
phrase inspired by experiments conducted in the 1960s by 
the social scientist Stanley Milgram. He sent letters to sev-
eral people in Omaha, Nebraska, asking them to forward 
the letters to a stockbroker from Sharon, Massachusetts 
who worked in Boston. Milgram provided just the tar-
get’s name, and instructed recipients to send the letter to 
someone else they knew personally who might be better 
placed to know the stockbroker. Of the (rather few) letters 
that reached their intended destination, an average of just 
six steps was required. Modern experiments using email 
contacts have verified this finding, although the precise 
number of ‘degrees of separation’ is open to debate.

Early attempts to map out networks of contact and 
friendship tended to assume that they were random, 
meaning that any new node (individual) joining the web 
became linked to others at random. (Of course friendships 
do not exactly form at random, but the assumption was 
that statistically they look as though they do.) One way of 
characterizing a network is in terms of how well connected 

it is – that’s to say, how easily it may be traversed from any 
one node to another. This depends on the average number 
of links per node. If this number is small, some nodes will 
remain unconnected or linked only into isolated groups. 
But if there are many more links than nodes, there is a 
good chance of finding a route between any two nodes in 
the network: it is ‘fully connected’. For random graphs the 
distinction between these two situations is rather abrupt: 
above a threshold value of average connectivity, the larg-
est interconnected component grows in size very rapidly, 
quickly approaching the size of the entire network.

In that case, there are in general many alternative 
routes between any two points, and it is very likely that 
some will involve only a few jumps – there will be short-
cuts, where the random linkage of nodes has connected 
two distant ones. This makes such a random network a 
‘small world’. Compare this to a grid network like that 
of the Manhattan street system. There are no shortcuts 
here: to get from an intersection in Tribeca, say, to one in 
Harlem, you have to traverse much the same number of 
links between junctions no matter which route you take.

Small-world social networks are some of the best-ex-
plored examples of complex networks, because in some 
cases all their links have been catalogued. One such is the 
network of collaborations between movie actors. This has 
been popularized by the so-called Kevin Bacon Game, in 
which one must link any named actor to Kevin Bacon in 
as few steps as possible (see Box, page 25). The average 
path length in this network is 3.65, which means that on 
average any actor can be connected to any other in be-
tween 3 and 4 links: there are ‘three and a half degrees of 
separation’. The same is true of several other collabora-
tions. For example, the network formed by jazz musicians 
active between 1912 and 1940 has an average path length 
of 2.79.

However, just because a network is a small world does 
not imply that it is a random network. In fact many if not 
most social networks are not. With hindsight, this isn’t 

 
 ■ A random network (left) and a grid network (right). The former, but not the lat-

ter, typically contains shortcuts between any two points. (Credit: (left) Courtesy of 
Hawoong Jeong, Korea Advanced Institute of Science and Technology.)
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surprising. The random-network model assumes that any 
two of your good friends have no greater chance of know-
ing each other than they have of knowing anyone else in 
the population. But that’s unrealistic: friends tend to form 
clusters with a strong degree of interconnectivity, with 
fewer links between clusters. The same is true of other 
social networks: companies tend to cluster in their mutual 
dealings, as do collaborating scientists and musicians.

Clustering implies that there’s a bias towards forming 
new links to other nodes already close by: in other words, 
a bias against making short cuts. Nevertheless, it turns 
out that a rather high degree of clustering can develop in 
networks without compromising the shortcuts that a truly 
random network displays. This is the situation for many 
real small-world networks.

There are several distinct classes of such networks, but 
one of the most common is exemplified by the network of 
hyperlinks between pages on the World Wide Web. One 
survey of a representative small section suggests that any 
web page is connected to any other by an average of 19 
links – a number that changes only very slowly as the net-
work grows. The topology of this network is revealed by 
the statistics of connectivity: that is, how many nodes have 
different numbers of links. This statistical distribution has 
a form known as a power law: the number of web pages 

Six Degress of Kevin Bacon

Here’s an example of how to play the Kevin Bacon Game for the 
case of Elvis Presley. Elvis never appeared in a movie with Ba-
con himself, but he was in Harum Scarum (1965) with Suzanne 
Covington, who appeared with Bacon in Beauty Shop (2005). So 
Elvis has a Bacon Number of 2. The average Bacon Number for 
all movie actors is about 2.98, which implies that Kevin Bacon is 

indeed better connected than an average actor. But there never-
theless thousands of actors with comparably small average path 
lengths, and several hundred are better connected than Bacon. 
The best is currently Dennis Hopper, with a Bacon Number of 
2.80. For details, see http://oracleofbacon.org.

 
 ■ Scale-free networks are non-random small-world networks, which typically have a 

‘pinched’ appearance in which some nodes have a disproportionately high connectiv-
ity (left). The Internet has this structure (right). (Credits: (left) prepared using the 
NetLogo free software, http://ccl.northwestern.edu/netlogo; (right) Courtesy of http://
www.opte.org/.)

having k connections (N(k)) is proportional to the inverse 
of k raised to some power α: N(k) ~ 1/kα. Systems whose 
structure is described by power laws have the general prop-
erty that they are scale-free – there is no characteristic size 
to them. What this means here is that there is no ‘typical’ 
number of links to a node of the network. In other words, 
the connectivity of nodes is highly unequal: some are much 
better connected than others. The power-law statistics also 
mean that, compared with a random network, the WWW 
has a disproportionate number of very highly connected 
pages. The physical structure of the Internet – the actual 
links between computers – also has this topology. 

Many social networks are scale-free, with power-law 
distributions of connectivity: for example, email com-
munications, direct flights between airports, trade links 
between countries, and the movie-actor network. Where 
does this topological structure come from? Many so-
cial networks grow ‘organically’ by the addition of new 
nodes. Scale-free networks grow according to the rule that 
a new node connects to an existing node at random but 
with a bias: the more links a node already has, the more 
likely it is to be chosen. So well-connected nodes are likely 
to become even more so: a feedback effect often called the 
‘rich get richer’ principle or the Matthew Principle, after 
the Gospel of Matthew: “For unto every one that hath 



26 ■ The Social Web: Networks and Their Failures 

shall be given, and he shall have in abundance”. This is 
basically the principle used in the Google page-ranking 
scheme: in assessing the connectedness and thus signifi-
cance of a particular page, more highly connected incom-
ing pages are given a higher weighting.

The bias in the growth rule for scale-free networks 
means that the connectedness of different nodes does not 
necessarily reflect real differences in their significance 
(how ‘good’ a web page is, say). The positive feedback 
means that ‘fame’ artificially inflates some nodes over oth-
ers. In other words, even if some slight superiority makes 
some nodes intrinsically more ‘attractive’, this feedback 
can blow it out of all proportion – a phenomenon that 
sounds all too plausible as a reason for the success of some 
books, music, commercial products, or indeed movie stars.

Clubs and Communities

Small-world networks, then, can be random or scale-
free. But these are not the only options, and indeed not 
all social and technological small-world networks are 
scale-free. Many power grids, for example, are not, and 
it is not clear that friendship networks are either. In any 
event, much of the current work on networks focuses not 
so much on the overall topology as on the substructure: 
the hierarchical divisions of nodes into distinct communi-
ties or modules. On the Internet the communities of us-
ers tend to be defined partly by geography and partly by 
profession. Similarly, friendship networks might be struc-
tured around a neighbourhood or a workplace. This kind 
of modularity is a reflection of the high degree of cluster-
ing characteristic of small worlds. There are now several 
mathematical techniques for deducing the community 

structure of complex networks. Extracting this ‘buried’ 
information can reveal how we organize our lives and 
the information we access. For example, a community-
finding scheme applied to purchases of books on US poli-
tics through the online bookseller Amazon.com showed a 
division into communities buying only the ‘liberal’ books 
or only the ‘conservative’ ones, suggesting that people 
tend to read things that reinforce their own views. 

One common feature of small-world networks is that 
highly connected nodes have a greater-than-average 
chance of being linked to other highly connected nodes, 
forming what has been dubbed a ‘rich club’. There are 
rich clubs, for example, in the collaboration networks of 
scientists, movie stars and company directors. Their exis-
tence in social, economic and professional networks could 
have significant implications for the way society func-
tions. Members of a ‘rich club’ might, for instance, share 
privileged information that percolates only slowly into 
the rest of the network. 

The shape and form of networks can have a crucial 
bearing on how it performs its function. For instance, how 
does the topology affect the ease with which a network 
can be navigated? A key characteristic of social small-
world networks is that they are searchable: we can often 
find the shortcuts, as Milgram’s experiment demonstrated. 
The origin of this searchability seems to lie with the com-
munity structure. If most people belong to several differ-
ent communities (work, family, friends, sports club and so 
on), then messages or information can be efficiently routed 
through the network even though no individual is able to 
see the whole map: it’s sufficient that individuals be aware 
only of their local links to friends and colleagues a short 
‘social distance’ away. Thus, ‘unexpected’ shortcuts may 
be found so long as the network contains many overlap-
ping communities.

Cascade Failures – a Growing Problem

On 4 November 2006, an electricity line was temporarily turned 
off in Ems, Germany, to enable the passage of a Norwegian ship. 
This caused a chain reaction that left many parts of Europe with-
out electricity. 
On 22 December 2010, Skype initiated a faulty auto-update of 
its Internet telephone software. This led to a crash and reboot 
of most Skype ‘super-nodes’, a crucial part of their distributed 
system. To make matters worse, the reboot of the super-nodes 
launched a distributed ‘denial of service’ attack on the central 
Skype servers, incapacitating worldwide traffic.
Heavy solar storms disrupt telecommunications from satellites, 
and have in the past caused failures of some networks. As these 
networks become increasingly interconnected, the potential for 

massive failure cascades grows stronger, with the danger that 
cash machines, sales and customer supplies, computer and com-
munication systems could all fail critically at the same time over 
large regions.
The current economic crises began with a ‘local’ problem: a 
bursting real-estate bubble in the US. The mortgage crises even-
tually hit building companies and caused the bankruptcy of more 
than 400 US banks. It continues now to endanger the stability of 
the European currency and even of the European Union. Several 
countries, including Greece, Ireland, Portugal, Spain, Italy and 
the US, are on the verge of bankruptcy. A second crisis seems 
likely to fuel social unrest, political extremism and increasing 
crime and violence.
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When Systems Fail

Flows, whether of material, information, rumour or dis-
ease, on scale-free networks are not easily disrupted. If a 
few links get broken, the network is in no danger of fall-
ing apart or becoming non-navigable, because the many 
shortcuts means that alternative routes can generally be 
found. The nodes remain continuously connected even for 
almost total breakdown of links. In random networks, in 
contrast, only a few broken links can fragment the network 
into isolated clusters. In other words, one could say that 
random networks are shattered by failures while scale-free 
networks are slowly deflated. This robustness to node or 
link failures is a fortunate and unplanned result of the way 
scale-free networks like the Internet have grown.

 ■ Random removal of nodes has different effects on random and scale-
free networks. The former are fragmented by many such breakdowns, 
while the latter tend to remain largely connected, deflating only slowly 
even when a large proportion of nodes have ‘gone dead’.

But the resilience of scale-free networks relies on the fact 
that they contain some very highly connected hubs. If, 
rather than nodes failing at random, the hubs are de-
stroyed selectively, it’s a different story. Deactivating 
just 18 percent of the most highly connected nodes of the 
Internet would break it into tiny pieces. That is a crucial 
insight for defending against the intentional disruption of 
computer networks, known as cyberwarfare – an objec-
tive that has now become a major concern for national 
and international defence and security agencies.

Moreover, in contrast to their resistance to node break-
downs, small-world networks seem especially prone to 
failure cascades like that which caused the 2003 US black-

out (see Box, page 26) It is possible to design networks 
that don’t have this weakness, but they are generally not 
small worlds, having rather long average path lengths be-
tween nodes. This implies that there is a tradeoff between 
resilience to cascade failure and ease of navigation.

Yet cascade failures and vulnerability to targeted at-
tack may not be inevitable even in small-world networks. 
It might, for example, be possible to tailor them for ‘fail-
ure response’ strategies such as reinforcing the most 
highly connected nodes. To implement such solutions, 
we first need to understand which topology the network 
has, and what specific strengths and weaknesses that con-
veys. Whether we are talking about the networks of the 
banking system, mobile phones, international crime or 
the Internet, the science of complex networks evidently 
has a lot to teach us.
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6 Spreading It Around: 
Mobility, Disease 
and Epidemics

The Black Death, generally thought to be bubonic plague, 
spread into Europe from the Caspian Sea, brought by 
Mongols attacking the city of Kaffa in 1346. Carried by 
fleas on ship rats, it was ferried to ports throughout Eu-
rope. Over the next seven years it killed about a third of 
the population.

The transmission of an infectious disease in the Mid-
dle Ages is fairly predictable. While ships could transport 
the plague over long distances, its spread across the Eu-
ropean continent from the Mediterranean ports resembles 
the steady advance of an ink blot. Human mobility was 
then very low: most people barely ventured a few miles 
beyond their hometown, and so infection advanced more 
or less village by village.

It’s different today. Individuals cross the globe in less 
than a day, while road, rail and water transport also al-
low rapid, long-distance movements. Increased human 
mobility recently has become a focus of attention because 
of fears about the spread of particularly virulent forms of 

influenza, such as H5N1 (bird flu) and H1N1 (swine flu). 
Yet despite recognition of how much more mobile we are 
than in the fourteenth century, many models of epidemics 
still assume that diseases spread in smoothly advancing 
fronts. Largely this is due to a sheer lack of information 
about what patterns of human movement really look like.

Once these patterns are taken into account, the com-
plexity of epidemiology is greatly increased: what seems 
at first like a purely medical question becomes linked to 
quite different areas of social science, such as the nature of 
transportation networks and their patterns of usage. At a 
local scale, modeling of epidemics might need to take ac-
count of the kinds of human movement models described 
in Chapter 2, which could determine for example how 
many people we encounter in our daily routines. Human 
movements, the nature and patterns of our social (and in-
deed sexual) intercourse, and variations in susceptibility 
to disease must also acknowledge the influence of socio-
economic demographics: affluence/poverty and culture 

 ■ When human mobility was low, infectious diseases such as the Black Death spread slowly and predictably, like an 
ink blot (left). Today, humans criss-cross the globe in an instant (right), with potentially dire consequences for disease 
epidemics. (Credit (right): from B. Balcan et al., Proc. Natl. Acad. Sci. USA 106, 21484-21489 (2009).)
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affect all these things. In short, understanding the spread 
of disease today demands a truly cross-disciplinary per-
spective that, among other things, recognizes the complex 
interplay of many networks and modes of interaction.

The vital and urgent importance of that objective is 
in no doubt. AIDS is now the third biggest cause of pre-
mature death in the world, and kills two million people a 
year in sub-Saharan Africa alone. Around one in 20 people 
in that region aged between 15 and 49 are HIV-positive, 
reaching a level of almost one in seven in southern Africa. 
The disease is partly responsible for a life expectancy of 
around 50 and for preventing economic growth in the 
continent. Meanwhile, epidemiologists generally agree 
that a new flu pandemic, comparable to those in 1957–8 
and 1968–9 that killed millions worldwide, is inevitable 
and yet impossible to predict. Although combating such 
major health problems is partly a question of developing 
new drugs and understanding the biology of the patho-
gens, more than ever before it relies on understanding 
how the diseases are transmitted and spread through pat-
terns of human movement and behaviour. Only then, for 
example, can effective vaccination and quarantine strate-
gies be devised. 

Getting About

In 2006 researchers in Germany described an ingenious 
way of assessing how people move throughout the US 
by using banknotes as proxies. An amateur online data-
base called wheresgeorge.com (referring to the picture of 
George Washington on a $ 1 bill) records the whereabouts 
of specific dollar banknotes, which are logged according 
to serial number by volunteer users. These entries obvi-
ously provide a highly incomplete record of the trajec-
tory of any particular bill, but they offer an approximate 

indication of where and when people move from place to 
place: a bill usually changes hands when it is physically 
carried between transactions.

If these movements were like the diffusion of ink par-
ticles in water, a bill would travel a distance from its 
original location that is proportional to the square root of 
the time elapsed. But that’s not what the researchers 
found. While many bills travel only short distances be-
tween successive reports on wheresgeorge.com, some 
jump hundreds of kilometres in that interval, presumably 
because someone has traveled far afield with them before 
using them to pay for goods or services. On average, for 
relatively short time spans the probability that a bill has 
traveled a distance r within that time is proportional to 
1/r raised to the power of about 1.6: a power law (see page 
25). This sort of spreading behaviour is characteristic of 
entities traveling not by diffusion but by a so-called Lévy 
flight, in which the short random hops of diffusion are 
interrupted every so often by ‘scale-free’ jumps, which 
can be of any size.

Monitoring mass human movements directly, rather 
than by proxies of uncertain representativeness, is becom-
ing ever easier because we carry with us wireless detec-
tors of our location, such as mobile phones. Telecommu-
nications companies collect data about where individual 
calls were made, in part to monitor the completeness of 
their network coverage but also because the location of 
the user’s nearest mobile-network tower can affect bill-
ing. Some companies make this anonymous data avail-
able for research purposes. A study of 100,000 people 
tracked via their mobile phones over six months showed 
that individuals’ movements are generally highly predict-
able, and that we regularly return to a few locations and 
spend most of our time there. What’s more, we typically 
make phone calls in a ‘bursty’ fashion – not spaced out 
evenly over time, but in groups interspersed with periods 
of inactivity. This seems to be a very common pattern in 

 ■ While a particle moving diffusively follows a ‘random walk’ – a series of small steps 
in random directions (left), human movements seem more like so-called Lévy flights, 
where the small steps are occasionally interrupted by large ones (right). (Credit: Cour-
tesy of Diederick Wiersma, Università degli Studi di Firenze.)
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human behaviour, seen also for example in the way we 
respond to letters or emails.

Such phone-tracking data show that, while people do 
seem to follow Lévy-flight trajectories, there is a lot of 
person-to-person variation in their precise characteristics: 
we each have our own ‘signature’ variation on the same 
basic pattern. People who are closely linked in a social 
network – who call each other frequently – also show sim-
ilar patterns of mobility: they tend to frequent the same 
places. And the chance of forming a new link between 
two nodes in a social network is considerably greater if 
those nodes are already close together, separated by only 
a few steps – or equivalently, if they display similar mo-
bility trajectories. Thus, studying mobile-phone data can 
not only tell us about people’s physical movements in 
space but can also serve as a proxy for uncovering so-
cial network structures. This could be useful, not least 
for epidemiological modeling, but it also has a surprising 
and sobering implication from the perspective of privacy: 
purely by virtue of how we move around, we unwittingly 
encode and broadcast information about who we are and 
who we know.

Going Viral

The transmission of some infectious diseases, such as 
AIDS and other sexually transmitted diseases, requires 
more intimate contact than merely transient proximity. 
The dynamics of infection are therefore determined not 
so much by how people move around as by what their 
networks of social, physical and sexual contact look like.

Biologists have studied the transmission of disease 
through populations for over a century, but it is only re-
cently that they have started to realize how important a 
role the topology of these network plays – in other words, 
that it matters what shape the branching has. One of the 
most widely used of the traditional models for study-
ing epidemics, called the susceptible-infected-suscepti-
ble (SIS) model, supposes that individuals come in two 
classes: healthy and infected. If a healthy person encoun-
ters an infected one, they have a chance of becoming in-
fected. Meanwhile, infected individuals can recover and 
become healthy again. In this model, the disease spreads 
at a rate that depends on the relative probabilities of in-
fection and of recovery. If this spreading rate exceeds 
some threshold value, the disease becomes an epidemic, 
sweeping through the entire population and persistently 
infecting some constant proportion of them. If the rate 
is smaller than this threshold, the disease dies out. An 
epidemic can be avoided by keeping the spreading rate 
below this threshold level, for example by vaccinations 
that reduce the infection probability.

But if the encounters between people are described by 
the kind of ‘scale-free’ network that characterizes many 
real-world social networks (see Chapter 5), the outcome 
of the SIS model is rather different. There is no longer 
an epidemic threshold: all diseases can pervade the net-
work no matter how slow-spreading they are. (In fact, 
despite their ‘small world’ interconnectedness, spreading 
on scale-free networks can be surprisingly slow, because 
it doesn’t necessarily take advantage of the short cuts.) 
That seems to be the case for computer viruses, which 
are transmitted by messages passing through the scale-
free email network: they linger at a low level for long 
times by persistently infecting a very small fraction of 
computers.

Sexual contacts define the network on which the AIDS 
virus HIV spreads, and to develop effective strategies for 
attacking the epidemic we need to know its topology. This 
is still under debate. A study of 3,000 Swedes suggested 
that the distribution in the number of sexual partners over 
a twelve-month period follows a power law: the signature 
of a scale-free network. But other studies have questioned 
this conclusion. All the same, it seems likely that networks 
of sexual contact share with scale-free networks the prop-
erty of having a few very highly connected hubs – highly 
sexually active individuals – that can potentially infect a 
great many others. Several of the earliest cases of AIDS 
in Europe were tracked to a Norwegian sailor who con-
tracted it in West Africa in the 1960s and then passed it on 
during a promiscuous career as a truck driver in Germany 
in the 1970s.

These ‘hubs’ are the key to an effective strategy for 
combating infectious diseases that spread on such net-
works. By targeting immunization or preventative treat-
ments at such key individuals, the chances of an epidemic 
developing can be greatly reduced without the need for 
expensive or impractical mass prophylactic programs. 
Even if it can be hard to locate the most highly connected 
individuals accurately, their influence is so great that a 
relatively inefficient ‘targeted’ campaign can raise the epi-
demic threshold significantly.

However, a high degree of connectivity in the con-
tact network may not be the only, or even the main, fea-
ture that determines the influence of individuals in the 
spreading of infectious diseases. For example, if a ‘hub’ 
is situated only at the periphery of the network, such that 
it has many local connections but few that link it into the 
main body of the web, it won’t play such a big role. Less 
well-connected nodes at the core of the network may be 
more significant. Moreover, if spreading starts from sev-
eral locations at once, the extent of spreading depends 
on how far apart they are. So targeted immunization 
strategies may need to consider quite carefully the over-
all shape of the network and the locations of individuals 
within it.
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 ■ The importance of hubs depends on their position in the whole net-
work. Here the blue and yellow hubs both have a high degree of connec-
tivity: eight links. But the blue one, lying in the core of the network (red 
region), has a much greater impact on spreading through the network 
than the yellow one at the edge (blue region).

Findings like this have major implications for strategies 
to combat contagious disease. They illustrate that an un-
derstanding of social complexity is urgently needed if 

epidemic modeling is to adapt itself to the public-health 
challenges of the coming century.

Contagious Behaviour

Ultimately, even a more sophisticated view of the pat-
terns of human mobility and contact aren’t enough for 
accurately anticipating how epidemics and pandemics 
may spread. For one thing, faced with the threat of seri-
ous or fatal disease, people may change their behaviour. 
This was clearly the case for AIDS, where awareness of 
the dangers transformed the nature of sexual interactions 
in many communities. It was also evident in changing 
travel patterns to Asia during outbreaks of bird and swine 
flu. Moreover, cultural norms can influence the ways a 
disease might be transmitted and the responses to pre-
ventative strategies. For example, gender differences in 
attitudes to condom use, religious beliefs, and politically 
motivated ‘HIV denial’ have all strongly impacted the ef-
fectiveness of AIDS prevention in Africa. 

 ■ Part of the social network for a medical study conducted between 1971 (left) and 2000 (right). Each circle repre-
sents a person: yellow borders denote women, and red borders men. The interior colour and size indicate daily cigarette 
consumption – yellow for smokers (with a size proportional to intake), green for non-smokers. Orange links denote a 
friendship or marital tie, purple a familial tie. By 2000, most smokers appear at the peripheries of the network, in rela-
tively small subgroups. The black circles in the 2000 network show some densely connected clusters of predominantly 
non-smokers, with a few smokers on the periphery. (Credit: from N. A. Christakis & J. H. Fowler, New Engl. J. Med. 358, 
2249–2258 (2008).)
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This suggests that understanding and predicting the 
spread of diseases are multi-dimensional problems that 
need to integrate broader social dynamics, opinion forma-
tion, the readiness and resources of medical services, and 
other factors not generally incorporated into today’s epi-
demic models. There are already the beginnings of such 
efforts, for example in the Global-Scale Agent Model de-
veloped at the Brookings Institution in Washington DC. 
An agent-based social-behaviour model devised at the US 
National Institutes of Health was also used to shape pol-
icy towards bird flu, and to devise containment strategies 
in the event of a terrorist-induced outbreak of smallpox.

One important aspect of such models will be the kind 
of collective decision-making discussed in Chapter 3. ‘Fear 
epidemics’ such as that witnessed for the MMR vaccine in 
the UK, which was spuriously linked to autism, and that 
which still threatens to affect flu vaccination programs in 
the US, could undermine otherwise well-planned preven-
tative regimes. Peer pressure can inhibit rational responses 
or objective assessments, leading to runaway feedbacks 
analogous to the crowd-following or herding behaviour 
that may cause economic crashes (see Chapter 7). 

This element of social interaction can even give a health 
issue such as obesity – which is becoming increasingly 
prevalent in many affluent nations – the characteristics 
of an infectious disease. Not only do obese people form 
clusters in the social network, but these clusters function 
more as cause than as consequence: people are more likely 
to become obese if their friends or siblings do, as opposed 
to people who are already obese preferentially forming 
social ties. One study revealed that a person’s chance of 
becoming obese increases by 57 % if one of their friends 
does. The reasons for this ‘contagion’ of obesity are not 
yet fully clear – it could for example be simple mimicry 
of eating habits, or increased tolerance of weight gain, or 
even a physiological effect of imitation-induced changes in 
the brain’s ability to impose limits on food intake. In any 
event, regarding this kind of behaviour-governed health 
problem as if it were a contagion could make a big differ-
ence to the effectiveness of preventative campaigns. As so-
cial scientists Nicholas Christakis and James Fowler have 
put it, “people are connected, so their health is connected.”

Conversely, healthy behaviour can spread through 
social networks too. Non-smoking appears to have done 
so. The prevalence of smoking in the US has declined sub-
stantially in the past four decades (from 45 % of adults and 
young people to 21 %). A network analysis of over 12,000 
people showed that smokers tend to cluster together and 
that the size of these clusters has remained more or less 
unchanged during that time. So the decline seems to be 
caused by cessation of smoking in entire social clusters. 
This study found that a smoker has a 67 % smaller chance 
of smoking if their spouse quits, 25 % smaller if a sibling 
quits, and 36 % if a friend quits. This emulation behaviour 

was stronger for people with higher levels of education. 
And the remaining clusters of smokers were located in-
creasingly on the periphery of the social network, showing 
which individuals and groups need to be most targeted in 
anti-smoking programmes. It’s worth bearing in mind too 
that, not only does the increasing complexity and intercon-
nectedness of our world suggest and demand new ways of 
thinking about problems such as this, but it also promises 
to assist the implementation of solutions: information and 
communication technologies make it increasingly feasible 
to target health information at specific individuals.
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77 After the Crash: 
Economic and 
Financial Systems

“Economic predictions are notoriously unreliable”, wrote 
the Nobel laureate economist Amartya Sen in 1986. “It is, 
in fact, tempting to see the economist as the trapeze-per-
former who tends to miss the cross-bar, or as the jockey 
who keeps falling off his horse.” In October of the fol-
lowing year the stock market crashed on ‘Black Monday’ 
– and like all previous crashes, it came as a surprise to 
almost everyone.

The poor track record of economists in forecasting ma-
jor shocks like this is now routinely cited as vindication 
of Thomas Carlyle’s famous (and usually misunderstood) 
characterization of economics as “the dismal science”. But 
this may be unfair. If ever there was a subject demon-
strating how inappropriate it is to label the social sciences 
‘soft’, it is economics. Unlike the ‘hard’ science of physics, 
whatever laws there might be that govern economic be-
haviour, they seem sure to be context-dependent, partial 
and inconstant over time.

All the same, the catastrophic consequences of the 
global financial crisis that began in 2008 have strength-
ened a growing conviction that we can’t carry on this way 
– and that something is missing from the conventional 
economic models that prevents them from describing, let 
alone predicting, such serious deviations from normality. 
Perhaps we’re wrong even to consider crashes (and bub-
bles) to be distinct from economic normality in the first 
place. Given that they have always existed, might they 
not instead be intrinsic features of the way markets work?

It is no mystery that conventional economic theories 
– such as those widely employed by central banks and 
economic institutions that inform government policies – 
fail to anticipate market crashes. For these theories are 
systematically constructed to exclude the very existence 
of such events. They insist that the economy is prevented 
from operating in a stable, regular fashion by distur-
bances that originate outside the economic system itself, 
and which therefore cannot possibly be taken into ac-
count by the models.

There has in the past several decades been a grow-
ing readiness to modify or even set aside these conven-

tional concepts in favour of a recognition that the global 
economy is an immensely complex system, best studied 
and modelled by taking advantage of the insights gleaned 
from other facets of the science of complexity, whether 
these be in ecology, behavioural biology or physics. This 
perspective is still a minority view. But it has already 
demonstrated its worth and its potential benefits, and 
has been endorsed by some leading figures in economics.

The 2008 crisis ought to mark a turning point. The 
credit crunch and the ensuing national debt crises have 
revealed more clearly than ever how many of the phe-
nomena now familiar from other areas of social com-
plexity science also operate in the economic system. 
Hierarchical networks of interdependency, cascading 
breakdowns, herding behaviour and collective opinion 
formation, feedbacks that create extreme sensitivities to 
small perturbations – all have been implicated in the lat-
est, tumultuous crash and its continuing and alarming 
repercussions. Moreover, the crisis shows the true finan-
cial and social cost of ignoring these considerations. If 
massive investment in a science of economic complexity 
were to relieve the consequences of events such as the 
2008 crisis by only a percent or so – let alone predicting 
and avoiding them – then the expenditure will have been 
justified many times over.

The Problem with Economics

Traditional economic theory makes several fundamental 
assumptions that seem now to be excessively simplistic. 
The first is to imagine that the economy is an equilibrium 
system. In other words, in the absence of confuting in-
fluences from ‘outside’, supply and demand would find 
a perfect balance everywhere so that all markets would 
clear: there would be no surpluses or supply shortfalls, 
and prices would be stable. This assumption stems from 
the origins of microeconomic theory as an analogue of 
theories of equilibrium physical systems such as gases, 
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which have stable, unchanging states. The physical sci-
ences have long since moved on to describe non-equilib-
rium processes such as the weather system (in which cha-
otic behaviour was identified in the 1960s), but economics 
has not. The implications are huge. The ‘equilibrium 
paradigm’ explains why the so-called dynamic stochastic 
general equilibrium models prevalent in economic fore-
casting ignore the potential for major fluctuations such 
as slumps and crashes. It also motivated the disastrous 
suggestions by many politicians before the 2008 crisis that 
such crises had been banished for good. 

Conventional models make additional over-simplifi-
cations. At their most basic, they state that all agents in 
the economy are identical, and that all have access to to-
tal information about the economy, on the basis of which 
they make the rational choices that will optimize their 
‘utility’: maximizing revenue or profits, say, or finding an 
ideal work/leisure balance. These assumptions have been 
relaxed in various ways by more sophisticated models, 
which for example recognize inequalities in the informa-
tion that agents can access, or bounds on their ability to 
reach a rational optimum decision. However, the recent 
emergence of experimental behavioural economics – which 
examines how people really behave in making transactions 
– has revealed the gulf that still exists between the behav-
iour that models assume and that exhibited by real people.

Also notably lacking in these models is an acknowl-
edgement of feedbacks and interdependencies of behav-
iour. Agents only interact with one another via the indi-
rect mechanism of how their decisions affect prices. The 
fact that fluctuations, bubbles and even crashes can be 
driven by herd-like copying – irrationally inflated asset 
prices or panic selling, for example – is widely remarked 
in the financial press but rarely admitted into models. As 
the economics Nobel laureate Joseph Stiglitz put it in 2008, 
“Many of the problems our economy faces are the result 
of the use of misguided models. Unfortunately, too many 
[economic policy-makers] took the overly simplistic mod-
els [used in] courses in the principles of economics (which 
typically assume perfect information) and assumed they 
could use them as a basis for economic policy.”

These shortcomings are precisely the kinds of things 
that models based on complex systems are well placed to 
handle. One of the most promising alternatives to the pen-
and-paper equations that are typically used to describe an 
equilibrium economy ruffled by random noise are agent-
based models, in which the assumptions are not top-down 
conditions such as economic equilibrium or perfect infor-
mation but rather, the rules of interaction and trading of 
individual agents. There are far fewer top-down (and of-
ten quasi-ideological) assumptions built into these models 
about the gross nature of the economic markets. Rather, 
one simply observes what aggregate behaviour the ‘mi-
croscopic’ rules produce. As economist Alan Kirman has 

put it, agent-based models “provide an account of macro 
phenomena which are caused by interaction at the micro 
level but are no longer a blown-up version of that activity.”

Such economic models typically ascribe certain de-
cision-making rules to each agent – which need not be, 
and in general are not, identical from one agent to the 
next. Given a set of prices, for example, the agents might 
each apply different rules of thumb in deciding which 
transactions to make. These rules may take account of 
what others are doing. They could be probabilistic rather 
than deterministic: given a certain set of circumstances, 
there could be a 70 % probability that an agent will take 
action A, and a 30 % chance of action B. As in real life, 
some agents could make their decisions on the basis of 
calculations, others by looking at past trends, and so forth.

Crucially, the agents may respond to one another, en-
abling the copycat behaviour that leads to herding and 
other collective actions. They may learn from experience, 
or switch their strategies according to the majority opin-
ion. They can aggregate into institutional structures such 
as banks and firms. These things are very hard, sometimes 
impossible, to build into conventional models. 

With so many possibilities for how to describe and 
quantify agent behaviour, can anything general be said 
about the outcomes? Yes, it can. In agent-based models, 
the economy that emerges tends to be out of equilibrium: 
it never settles down into a steady state. The fluctuations 
in pricing are then not imposed by outside disturbances 
(exogenous) but are an intrinsic aspect of the system (en-
dogenous), resulting from the intricate web of interactions 
and feedbacks between agents, just like the variability in 
the weather. And in the same way, this variability – or 
what economists call volatility – might be greater in some 
circumstances, or some sectors, than in others.

One of the most significant aspects of fluctuations in 
agent-based models is that they tend to happen on all 
scales. Day-to-day variations in prices are usually small, 
but occasionally they can reach big peaks or lows. These 
are generally not related to changes in the intrinsic value 
of those commodities (although of course in reality asset 
prices do feel the effects of exogenous influences, for ex-
ample if a technology company benefits from a scientific 
breakthrough), but are the collective result of many indi-
vidual decisions. These fluctuation statistics contrast with 
those usually imposed on conventional models by injecting 
random ‘white noise’ into the equations: they look more 
like the ‘scale-free’ statistics seen in the real economy, and 
moreover tend to be manifested in bursts just like real-
world ‘volatility clustering’. In short, they look realistic.

This is not a mere technicality. A correct description 
of fluctuations is, for example, an essential ingredient in 
theories for pricing and risk assessment of derivatives. 
The conventional assumption that these are like white 
noise can lead to dangerously inaccurate results. 
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Really large fluctuations like those seen in bubbles and 
crashes appear automatically in these models as an aspect 
of the endogenous complex behaviour. In traditional 
models that assume white-noise variability, these very 
large events are so rare that to all intents and purposes 
they never happen. In contrast, agent-based models sug-
gest that such events are a recurrent, albeit uncommon, 
feature of how the economy works. Crises are ‘natural’ to 
them. It was a failure to acknowledge the true likelihood 
of ‘rare’ big fluctuations that ultimately lay behind the 
collapse of the British bank Northern Rock in the early 
stages of the credit crisis.

Agent-based approaches that venture beyond the 
classical paradigm of equilibrium economics are not – or 
should not be considered – in competition with that older 
picture. They are a generalization of it, an extension of 
the old methods. Given certain assumptions and condi-
tions, the predictions of the out-of-equilibrium models 
can reduce to those of equilibrium models. This is as it 
should be, for some markets, under some conditions, do 
seem to be fairly well described by the traditional pic-
ture. But they are special cases, and not representative 
ones. Just as physicists and chemists have moved be-
yond a consideration of equilibrium phenomena to look 
at complex process that happen out of equilibrium, so it 
makes sense for social scientists, and especially for econ-
omists, to do so. 

 
 ■ In traditional models, economic fluctuations are often assumed to be like white noise (top left). But in fact they tend 

to have bigger spikes than that (top right). A plot of the statistical distribution (lower left, here for fluctuations of the 
Standard & Poor’s 500 market index) shows how different the real variability is from white noise, which would give the 
dashed curve. Agent-based economic models typically produce more realistic fluctuations with more large spikes: an 
example is shown in the lower right.

High Expectations

All economic decisions are made on the basis of expecta-
tions. A venture capitalist’s decision to invest in a com-
pany depends on his or her expectations of how the com-
pany will fare in the future. Stocks are bought or sold on 
the basis of expectations about whether their value will 
rise or fall. 

But there’s a fundamental problem. These decisions 
don’t just depend on the expectations, but affect whether 
the expectations are accurate or not. If no one invests in 
a company making a particular product, there will never 
be a market for it in the future. Prices of stocks tomorrow 
depend on how they are traded today. So these decisions 
are not only self-referential but require us to guess what 
other agents will decide.

Conventional economics cuts this Gordian knot with 
the assumption of rational expectations: there is a single 
best choice that can be determined on the basis of all the 
information available now, and which, if it is adopted by 
everyone, will lead to an outcome that validates the ex-
pectations which led to it. In short, this approach assumes 
that everyone knows the ‘right’ answer, that everyone 
will choose that answer, and that they will continue to 
do so indefinitely.

Unfortunately, not only is the probability of this hap-
pening as unlikely as it sounds, but there are some situ-
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ations in which it is guaranteed to fail. One such is the 
so-called El Farol problem, in which agents have to decide 
whether or not to go to a popular bar (the El Farol, named 
after a bar in Santa Fe). If they assume that everyone else 
will go, then they will choose not to, so as to avoid an 
uncomfortably overcrowded evening. If they assume that 
others will stay away because of that very prospect, then 
they will go. But if there is a ‘rational expectations’ algo-
rithm that tells everyone what to do, and everyone uses 
it, then everyone will make the wrong choice all the time, 
whether to go or stay away.

This situation has been explored by agent-based mod-
elling. Each agent adopts a decision-making strategy, 
which may be different from others’ and might incorpo-
rate past experience. What happens is that the attendance 
at the El Farol fluctuates continually, but converges to 
an average value in which some constant proportion of 
the agent population attends. It finds its own equilibrium 
by self-organization – but it is an equilibrium constantly 
prone to fluctuations, including occasional episodes of 
serious over-crowding or relative emptiness. This situa-
tion mimics a common one in economics in which agents 
seek to be in the minority – often a desirable position, for 
example being a buyer in a seller’s market.

 ■ An agent-based model of the ‘El Farol problem’ (see text) converges 
on a constant average attendance but with constant and sometimes large 
fluctuations.

The Bigger Picture

While ‘toy’ models like the El Farol problem have estab-
lished that an agent-based complex-systems approach can 
address economic questions that fox conventional theory, 
there are now ambitions that this approach should say 
something more specific about the markets and financial 
institutions of the real world. Unlike the microeconomic 
models still regularly used by institutions such as the US 
Federal Reserve, agent-based models can include banks, 
institutions and companies, modelling their interactions, 
their formation and growth, and their failure. They can 
give insights into why firms fail, and can offer explana-

tions for the observed statistical distributions of firm size. 
Because they can accommodate interactions between 
agents, they may demonstrate the cascades and herding 
effects that give rise to economic bubbles and panics. In 
view of the critical role played in the current financial cri-
sis by chains of interaction in bank lending and borrow-
ing – the difficulty of tracing debt through this network, 
and its consequent vulnerability to breakdowns of trust – 
this ability to capture the structures of real markets could 
be crucial for better economic modelling and prediction.

Researchers are now discussing the feasibility of con-
structing an agent-based model capable of simulating a 
nation’s or indeed the world’s economy. That would be 
an immense undertaking: a whole-economy model would 
need to draw on the knowledge of economic experts in 
finance, labour markets, supply chains, marketing and 
retail, among others, as well as areas such as psychology 
and law, for example to elaborate the ground-rules that 
underlie human decision-making. Following the interac-
tions of millions, or perhaps billions, of agents, compa-
nies and institutions with diverse agendas and decision-
making rules would also demand huge computer power 
and would need vast inputs of data: patterns of spending 
and financial transactions, say, and detailed maps of the 
networks along which loans and risks are channeled.

The scale of the task would probably mean we’d need 
not one single model but many, whose collective forecasts 
could be pooled to map out possible futures. Such efforts 
have already begun. Between 2006 and 2009 a European 
team created a model called Eurace, the largest agent-
based model of the economy developed so far. It simu-
lated a fictitious economy with several million agents, 
including markets for labour, goods, credit and finance. 
Firms within the model were characterized as collections 
of ‘worker’ agents, and the model had an explicit spatial 
structure: firms and workers were located somewhere in 
real space, linked via social and business networks.

The Eurace team aim to use the model as a testing 
ground for aspects of European economic policy. For ex-
ample, they were able to probe one of the most pressing 
questions today: how best to deal with massive govern-
mental debts like those of Greece and Italy. Is the answer 
fiscal tightening, reducing the debt with high taxes or 
low public spending, or quantitative easing, keeping 
taxes low and plugging the debt by selling government 
bonds? Eurace’s simulations suggest that in the long run 
economic growth is boosted and unemployment reduced 
more by the second approach – as long as firms are finan-
cially robust. More work is needed to prove that these and 
other preliminary results from Eurace scale up to the size 
of the actual national or international economy. 

Agent-based models are not a panacea. There’s still 
no general prescription for how to construct one that of-
fers realistic, relevant and reproducible results, particu-
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larly in terms of what behavioural rules should guide the 
agents (how much psychological complexity they should 
include, for instance). It remains to be seen whether they 
can offer reliable policy advice on questions that tradi-
tional economic theories fail to tackle. Yet there has never 
been a clearer case for bringing the lessons of complexity 
science to bear on the behaviour of economic and finan-
cial markets. We are still living, perilously, with the fail-
ures of the traditional model: with an inability to predict 
the current crisis or to offer any kind of consensual and ef-
fective means of escaping it. It is now evident that events 
like these are not ‘imperfections’ that ruffle an equilib-
rium economy, but an intrinsic and deeply hazardous 
feature of the existing capitalist system, which can blight 
the economy for a decade or more. The existence of these 
fragilities can now be seen to stem from the influence of 
one economic actor on another, and on the structure of 
that network of interactions and its hidden vulnerabili-
ties. Whether or not a complex-systems approach will 
ultimately succeed in taming the economy’s worst con-
vulsions, it would be nothing short of reckless not to try it.
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88 Love Thy Neighbour: 
How to Foster 
Cooperation

Society is a collaborative effort: it works to the extent that 
we can get along with our neighbours, agree on common 
goals, and accept shared responsibilities. Even opponents 
of state taxation generally recognize that there are benefits 
to the collective financing of public services – we don’t 
want to build and maintain our own roads or hospitals. 
And because the growth of an economically disadvan-
taged ‘underclass’ can threaten the stability of society, a 
degree of redistribution of wealth benefits everyone. So 
while some of the most fundamental political divisions 
hinge on the question of where to draw the balance be-
tween collective responsibilities and individual liberties, 
all democratic societies acknowledge that their citizens 
have to some extent to find ways of cooperating with 
one another. In particular, liberal philosophers since the 
seventeenth century have concurred that civil peace and 
order come at the expense of individual restraint, includ-
ing at the very least the renunciation of attempts to harm 
others.

Yet that seems to conflict with the supposed Darwin-
ian imperative of competition, in which every individual 
is out for themselves. Long before Darwin’s theory, some 
philosophers insisted that the only way to avoid the ra-
pacious state of affairs that followed from humankind’s 
greed and desire for power over others was to impose the 
restraining authority of the state. Others had more faith in 
humanity: they felt that God had made people inherently 
good and rational, and that this for the most part guaran-
tees that our relations with our neighbours are civilized. 

But appeals to the privileged ‘rationality’ of human-
kind are undermined by the fact that cooperation and al-
truism are seen also in the animal kingdom – for example, 
in pack hunting, grooming activity and the collective ac-
tivities of social insects. Some of this behaviour was given 
a Darwinian explanation as it became understood that 
altruism among kinship groups can help to propagate 
genes at the expense of individuals, so that a genetic pre-
disposition to cooperate with closely related individuals 
can foster survival at the genetic level. But not all altruism 
relies on kin relations. 

Explaining how cooperation arises and is sustained in 
populations of self-interested agents has become a topic 
of intense interest among both evolutionary biologists 
and social scientists. The good understanding of this is-
sue that has now developed is founded on the recogni-
tion that sociality arises from choices made by interacting 
agents who may come to realize the long-term benefits of 
cooperation with their neighbours. In other words, the 
explanation depends on considering the population as a 
complex system involving interactions and feedback.

The implications of these studies for social science are 
immense. Cooperation – its creation and its vulnerabili-
ties – is arguably the defining feature of civilization. It 
is essential, for example, for the mutually beneficial ex-
change of goods, the payment of taxes, teamwork, man-
agement of common resources, collusion among firms, 
the reduction of socioeconomic inequality, participation 
in collective actions such as demonstrations, and adher-
ence to socially beneficial norms. Many, perhaps even 
most, of the serious challenges and crises considered 
in this book – from crime and riots to the illiquidity of 
economic crashes, wars, and environmental degradation 
and global warming – are at root breakdowns of coopera-
tion. All this makes it imperative for a science of social 
complexity to have a firm general understanding of how 
cooperation can arise and what factors can stabilize or 
undermine it. 

In human society, cooperation is influenced and com-
plicated by many other individual and collective traits, 
such as learning, reputation, incentives, the formation of 
institutions and laws, the capacity for punishment, and 
the interplay with conflict between rival groups. In some 
ways this means that the more we study cooperation, the 
more complicated it seems. On the other hand, many of 
these factors can now be incorporated into models and 
theories, and they are enabling the ‘science of coopera-
tion’ to move ever further from idealized and perhaps 
over-simplified models towards descriptions that come 
close to capturing the complexity and subtlety of real-
world behaviour.

P. Ball, Why Society is a Complex Matter, DOI 10.1007/978-3-642-29000-8_8,
© Springer-Verlag Berlin Heidelberg 2012 
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Resolving the Dilemma

In one sense it doesn’t seem hard to understand why, 
even in a starkly Darwinian world, we should be pre-
disposed to cooperate. For there are many situations in 
which we can accomplish far more through group ef-
fort than through uncoordinated individual action. Lone 
hunters in the Pleistocene could not hope to kill large, 
savage beasts, and even a shared spoil is better than none. 
The fundamental difficulty is not so much finding a mo-
tivation for cooperative behaviour, but explaining why it 
does not constantly succumb to selfishness. Indeed, often 
it does. The ‘tragedy of the commons’ refers to the me-
dieval tradition of grazing livestock on shared common 
ground, where individuals sometimes figured that no one 
would notice if they over-grazed their own herds As this 
tendency grew, eventually the land was left barren for all. 
The same is happening to fish stocks today.

This is the basic problem for societies based on the 
principle of unenforced cooperation: they are ripe for ex-
ploitation by those who put self before community. In 
this sense, the policing role of the state might be consid-
ered not so much a question of forcing everyone to coop-
erate against their instincts, but of protecting against 
‘defectors’ and free-riders. This dilemma has been recog-
nized for centuries, but it was framed in a formal, scien-
tific way in the 1950s within the context of the nascent 

discipline of game theory, which seeks a description of 
behaviour in which individuals anticipate how others 
will act towards them. The classic model system for in-
vestigating cooperation and defection is a ‘game’ called 
the Prisoner’s Dilemma, in which two players are pre-
sented with the choice of whether to cooperate or not 
(that is, to ‘defect’), with the temptation that, while mu-
tual cooperation is a good outcome for both players, uni-
lateral defection has an even better payoff for the defector 
(see Box below). A rational analysis of the options indi-
cates that, regardless of what the other player does, it is 
always better to defect. Yet this must then lead to both 
prisoners defecting, which is a worse outcome than if 
they both cooperate.

If the game is repeated many times, it should there-
fore eventually dawn on truly rational players that their 
long-term interests are best served by cooperating. Thus 
self-interest can promote apparent altruism. This outcome 
of cooperation as a learnt response to the depredation of 
mutual defection was evident in the spontaneous truces 
that arose between entrenched forces in World War I. 
Both sides would cease shelling, or would fire shells obvi-
ously off target to maintain a pretense of combat, by silent 
mutual agreement. Here the emergence of cooperation 
relies on both parties expecting to continue to interact in 
the future, and being sufficiently able to anticipate what 
those future encounters could be like.

The Prisoner’s Dilemma

The basic temptation to free-load or ‘defect’ in a cooperative 
group was recognized by Jean-Jacques Rousseau in the eigh-
teenth century, who imagined a team collaborating on a stag 
hunt. When a hare comes within reach of one of the men, he 
grabs it – but without his help, the stag escapes. The ‘defector’ 
enjoys stewed hare, but his fellows have nothing.
In the 1950s two researchers at the RAND Corporation in Cali-
fornia devised a simple mathematical model of a two-agent in-
teraction, which became known as the Prisoner’s Dilemma, that 
incorporated this element of temptation. The two players of the 
game are imagined as prisoners suspected of committing a crime. 
If one will testify against the other, he will receive a more lenient 
sentence while the other receives the harshest penalty. But if 
both testify against each other, they will both be more harshly 
sentenced than if both do not – that is, than if they cooperate 
with one another.
Logic dictates that it is always best for a prisoner to denounce 
the other (to defect), for the outcome is then better whichever 
choice the other prisoner makes. If prisoner 1 testifies and pris-
oner 2 does not, prisoner 1 gets off the charge – the best of all 
outcomes for him, while prisoner 2 is the ‘sucker’ who gets the 
worst outcome. If prisoner 2 testifies, on the other hand, then it 
is still better for prisoner 1 to testify than not: he gets a lighter 

sentence in the former case than the latter. So if the agents play 
‘rationally’, they always get the meagre payoff of mutual defec-
tion, which is only just better than the sucker’s payoff, and not 
as good as the reward of mutual cooperation.
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 ■ The choices in the Prisoner’s Dilemma can be expressed in terms of 
this table of quantitative payoffs for each pair of decisions. The exact 
numbers don’t matter, apart from tuning the degree of ‘temptation’ – the 
point is in the ordering of benefits or penalties for each decision.
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But just as unconditional defection is not a wise strat-
egy, neither is unconditional cooperation. That works fine 
against another unconditional cooperator, but if a coop-
erative player comes up against a habitual defector, he 
will be exploited ruthlessly. 

To identify the best strategy – the one that leads to 
optimal benefits over repeated rounds of the game – early 
studies of the Prisoner’s Dilemma staged ‘tournaments’ 
in which agents using different strategies were pitched 
against one another. These studies found that the most 
effective strategy was a very simple one: make the same 
choice of cooperation or defection as your opponent made 
in the last round. This was called the Tit-for-Tat (TfT) 
strategy. It can lead to sustained coordination: against 
an unconditional cooperator, TfT always cooperates and 
never exploits. But it also punishes defection with defec-
tion: it is “tough but fair”.

Patterns of Niceness

Subsequent studies of the Prisoner’s Dilemma and related 
‘cooperation games’ have revealed an immense amount 
of complexity in this simple model. For one thing, TfT is 
not by any means the ‘perfect player’. There is no unique 
best strategy in the game – that depends in part on how 
the opposition plays, an illustration that the notion of an 
optimal, rational behaviour in an interactive situation like 
this has no real meaning unless the context, and particu-
larly the behaviour of other agents, is taken into account. 
TfT itself is vulnerable to errors – one defection (perhaps 
a random mistake or ‘misunderstanding’) prompts an-
other in an unending cycle. That sort of relentless reprisal 
is all too familiar from human conflicts such as those in 
the Middle East and formerly in Northern Ireland, and 
clearly frustrates any convergence to long-term peace. So 
in a game where ‘noise’ leads to some randomness in play-
ers’ choices, a more forgiving strategy can perform better.

The context-dependence of outcomes is brought out in 
studies in which the agents are arranged in a spatial con-
figuration such as a grid. This places constraints on the 
interactions that the players have: for example, coopera-
tors that can draw mutual strength against defectors in a 
well mixed population might not be able to do so if locked 
into a grid: spatial isolation militates against cooperation, a 
conclusion that might be relevant to the foreign policies of 
Israel. Conversely, defectors can steadily ‘colonize’ a pop-
ulation of cooperators, often in complex spatial patterns 
that develop because defectors ‘repel’ other defectors (they 
fare poorly when pitched against each other). Depending 
on the precise payoffs of cooperation and defection, these 
spatial games can generate constantly shifting patchworks 
of cooperation and defection, some of them orderly and 

some chaotic. Moreover, studies with real players show 
that cooperative behaviour can spread in cascades through 
a social network: one person’s ‘good’ behaviour can induce 
the same in another even if the two never interact directly.

 ■ The spread of defectors (red) in a population of cooperators (blue) 
can exhibit complex spatial patterns. Here yellow and green sites denote 
agents that switched between cooperation and defection in the previous 
round. (Credit: from M. A. Nowak & R. M. May, Int. J. Bifurcation & 
Chaos 3, 35 (1993).)

To investigate how behaviour evolves, many studies set 
up an evolutionary process in which agents can generate 
offspring that adopt the same strategy as their ‘parents’. If 
those that are more successful – that achieve higher scores 
– produce more offspring, there is a kind of Darwinian 
selection for the best strategies: the ‘fittest’ multiply and 
the unfit die out. Equivalently, this could be posed as a 
process of learning from experience: agents are apt to 
copy strategies that prove successful for others. In other 
words, they change their behaviour in response to one 
another. These evolutionary Prisoner’s Dilemma games 
can display complex time histories that are hard to pre-
dict – for example, exhibiting abrupt switches between 
predominantly cooperative and defecting populations, 
and concurrently, between the pre-eminence of differ-
ent strategies. In one such study, widespread defection 
was overwhelmed suddenly by TfT, which itself then 
mellowed into a ‘generous Tit for Tat’ that forgave occa-
sional defections: once this selfish society was tamed by 
tough reprisals, it could ‘afford’ to be more lenient. Such 
populations can eventually become even more forgiving, 
eventually to the extent that they become vulnerable to 
takeover by a few defectors that arise by chance – and so 
the cycle might continue, with ‘nice’ and ‘nasty’ periods 
following one another.

Cooperative interactions link us into networks much 
like those of friendship and collaboration. The two-way 
cooperation network between manufacturers and contrac-
tors turns out to have the same structural features, such as 
division into modules and statistics of link connections, as 
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that seen for insect-plant pollination co-dependency, sug-
gesting that there may be simple, rather universal laws of 
how cooperation operates in very different settings both 
in human society and the natural world.

If a genetic predisposition towards altruism in humans 
did evolve in the way that these game-theoretical models 
imply, this does not necessarily imply a steady historical 
progression away from violence and towards coopera-
tion. One agent-based model of group behaviour in early 
humans suggests that altruistic behaviour might initially 
have been parochial – concentrated within groups – and 
have been stimulated by inter-group conflict. If that’s 
true, our genetic legacy might simultaneously predispose 
us both to cooperation and war. This somewhat pessi-
mistic view does not have to provide a prescription for 
the future, however, for humans are highly susceptible to 
social learning: to evolving cultural modes of behaviour 
that can overcome our baser impulses. 

Reputation Matters

One striking aspect of cooperative behaviour in the real 
world is that it need not take time to emerge via a series 
of repeated interactions between individuals. We tend 
to cooperate with strangers who we might not reason-
ably expect to see again. Evolutionary games are often 
underpinned by an assumption that tendencies towards 
cooperation can become genetically hardwired when co-
operation is a successful strategy. This may well be so, but 
it is difficult here to separate what is innate from what is 
learnt or culturally acquired. It can also benefit individu-
als to cultivate a reputation for cooperation: to send out 
social signals that will enable them immediately to ex-
tract from new encounters the benefits that cooperation 
can offer. Reputation also helps to avoid a ‘tragedy of the 
commons’: it means that agents can contribute to the com-
mon good with a strong expectation that their cooperative 
behaviour will be reciprocated.

By the same token, being known for a tough but not 
necessarily automatic reprisal policy could be the best 

 ■ A time history of an evolutionary Prisoner’s Dilemma game, showing the rise and fall of periods of cooperation (yellow).

way to police defection. There can be a societal benefit 
in converting private transgressions into public infor-
mation, for example via the procedures of civil trials, so 
that defectors are identified by bad reputations and their 
transgressions do not threaten general dissolution of the 
important social capital of trust.

The function of reputation as the midwife of coopera-
tion has become apparent empirically in online markets 
such as eBay, where it was instituted through a lucky 
hunch. But while one can always construct plausible nar-
ratives to explain such effects, there is nothing obvious 
or inevitable about them. Only by modelling these social 
interactions as a complex system can one hope to develop 
a systematic understanding of how, why and when such 
measures will be effective.

Crime and Punishment

Political philosophers such as Hobbes and Locke con-
sidered that one of the functions of the state is to enact 
reprisals on defectors so that cooperators don’t have to 
do it themselves. A police force relieves us from the need 
to meet aggressors with violence, for example via bru-
tal vigilante groups. But recent studies in which human 
participants play ‘games’ involving cooperation and de-
fection have shown that punishment seems to satisfy a 
more deep-seated need. Players typically exhibit a strong 
sense of justice that makes them willing to punish defec-
tors even at a cost to themselves.

In these studies, punishment is often examined in so-
called public-goods games, where players are asked to 
pool a resource – usually real money, which makes them 
take the game seriously. The more they contribute, the 
more they are rewarded. But freeloaders can benefit from 
the share-out of rewards without themselves contribut-
ing. Players are usually insistent on such behaviour being 
punished, even if in effect they have to pay for it. In other 
words, there is more involved in these decisions than a 
hard-headed ‘maximization’ analysis.

How severe does punishment need to be? One model 
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of a public-goods game suggests that fostering coop-
eration may depend on the strength of punishment in 
subtle, non-intuitive ways. Above a critical punishment 
threshold (the size of the fine imposed for defection, 
say), cooperators who punish can gain strength by stick-
ing together, eventually crowding out both defectors and 
non-punishing cooperators (who can also be considered 
a kind of free-rider). But if punishment is carried out not 
by cooperators but by other defectors, too high a fine is 
counterproductive and reduces cooperation. Defectors 
who punish other defectors not only are found in behav-
ioural experiments but are also familiar in reality: there 
are both ‘hypocritical’ punishing defectors (evangelists 
whose condemnation of sexual misdemeanours ignores 
their own, say) and ‘sincere’ ones, who deplore certain 
types of cheating while practising others.

From Games to Reality

Game theory and its implications for cooperative behav-
iour have already influenced political policies. But its 
early, simplistic variants offered no guarantee of sound 
advice. The original Prisoner’s Dilemma itself, for exam-
ple, seemed to imply that a defection strategy was the best 
course for Cold War nuclear-weapons policy: unilateral 
armament, and arguably even a first-strike agenda. Over 
time, the crippling cost and the catastrophic sensitivity to 
error made cooperation – arms limitations and disarma-
ment – seem the better option. 

It seems very likely that behaviour arising initially 
from rational ‘best choices’ will become over time rein-
forced by cultural norms that are divorced from their orig-
inal raison d’être. And of course people’s decisions about 
‘cooperation’ and ‘defection’ are seldom made in context 
of single, transparent and quantitative payoffs, nor do 
they tend to involve black-and-white options for aligned 
or opposed behaviour. We are guided by a complicated 
mixture of moral and ideological preconceptions, conflict-
ing impulses, social pressures (will we behave ‘well’ if no 
one will witness our trespasses?) and changing circum-
stances (would poverty make us more inclined to steal?).

Nonetheless, the strong resonances already appar-
ent between the predictions and outcomes of coopera-

tive games and real-world behaviour – for example, the 
benefits of solidarity for altruism, the need for deterrents 
to free-riders, and the collective evolution of norms of 
mutual help or selfishness – suggest that certain social 
traits might already be captured to some degree in these 
models, and that there is already a sound foundation on 
which to build a deeper understanding of how societies 
succeed or fail in developing a cohesive and collaborative 
community. 

Further Reading

R. Axelrod, The Evolution of Cooperation. Basic Books, New York, 
1984.

M. A. Nowak & R. Highfield, SuperCooperators: Why We Need Each 
Other to Succeed. Simon & Schuster, New York, 2011.

M. Milinski, D. Semmann & H.-J. Krambeck, ‘Reputation helps 
solve the ‘tragedy of the commons’’, Nature 415, 424–426 
(2002).

S. Saavedra, F. Reed-Tsochas & B. Uzzi, ‘A simple model of bipar-
tite cooperation for ecological and organizational networks’, 
Nature 457, 463–466 (2009).

D. Helbing, A. Szolnoki, M. Perc & G. Szabó, ‘Punish, nut not too 
hard: how costly punishment spreads in the spatial public 
goods game’, New J. Phys. 12, 083005 (2010).

D. Helbing, A. Szolnoki, M. Perc & G. Szabó, G., ‘Evolutionary 
establishment of moral and double moral standards through 
spatial interactions’, PLoS Comput. Biol. 6, e1000758 (2010).

D. Helbing & A. Johansson, ‘Cooperation, norms, and revolutions: 
a unified game-theoretical approach’, PLoS ONE 5, e12530 
(2010).

D. Helbing & W. Yu, ‘The outbreak of cooperation among success-
driven individuals under noisy conditions’, Proc. Natl. Acad. 
Sci. USA 106, 3680–3685 (2009).

E. Fehr & S. Gächter, ‘Altruistic punishment in humans’, Nature 
415, 137–140 (2002). 

A. Dreber, D. G. Rand, D. Fudenberg & M. A. Nowak, ‘Winners 
don’t punish’, Nature 452, 348–351 (2008).

S. Bowles & H. Gintis, ‘Cooperation’, in The New Palgrave Dic-
tionary of Economics, eds L. Blume & S. Durlauf. Macmillan, 
London, 2008.

J.-K. Choi & S. Bowles, ‘The coevolution of altruism and war’, Sci-
ence 318, 636–640 (2007).



 43P. Ball, Why Society is a Complex Matter, DOI 10.1007/978-3-642-29000-8_9,
© Springer-Verlag Berlin Heidelberg 2012 

99 Living Cities: Urban 
Development 
as a Complex System

A United Nations report in 2007 announced that more 
than half the world’s population now lives in cities. This 
shift in the balance between urban and rural dwelling is 
unprecedented in human history, and implies that for 
most of humankind the future is an urban one. Over the 
past several decades there has been massive migration of 
people from the countryside into cities. Partly as a result, 
there are now many mega-cities with populations of over 
10 million, most of which are in developing countries in 
Asia, Africa and South America. Nearly all the population 
growth forecast for the next two decades will be based in 
such cities.

Given that cities have been growing for centuries, these 
demographic changes might seem like just more of the 
same. But they are not. They present many new and serious 
challenges, for which past experience will be a poor guide. 
For one thing, the pace of the changes is much greater than 
in the past: in China, for example, the exodus to cities has 
been greatly stimulated by the country’s recent economic 
acceleration. Climate and environmental change are also 
predicted to force many rural dwellers to find a new urban 
livelihood – even though those cities often lie on coasts 
or floodplains that could actually be exposed to greater 
environmental risk. The aims of and constraints on urban 
development have also shifted: today there is a recognition 
that such changes need to be managed in a sustainable way, 
with a balance found between several social, economic and 
environmental factors. As one urban theorist put it recently, 
“the planner must reconcile at least three conflicting inter-
ests: to ‘grow’ the economy, distribute this growth fairly, 
and in the process not degrade the ecosystem.” 

Yet already the infrastructures for water supply, sani-
tation, transport, energy and health are inadequate to 
meet the needs of many cities in the developing world. 
At the same time, cities have been relatively neglected in 
poverty relief programs. According to Hans van Ginkel, 
former rector of the United Nations University in Tokyo, 
“Public officials and researchers have often underesti-
mated, or even denied, the importance of cities… This 
partly explains why policy interventions rarely address 

the root causes of urban problems, and why, in some 
cases, the policies are misguided.”

Besides all this, cities in the future will not necessarily 
resemble those today. Indeed, the whole concept of a city 
is likely to become hazy: they will not be well defined 
entities with clear boundaries, but rather, webs of urban 
development of varying size, density and function. “This 
new ‘melded’ landscape, characterized by the emergence 
of large populated regions interacting with their hinter-
lands and beyond, in ever-more complex and kaleido-
scopic patterns, represents our urban future”, says van 
Ginkel. “There is no escape from it.”

Partly these developments tend to be framed as a techni-
cal challenge, requiring new means of ensuring clean water, 
affordable housing and so forth. But the challenge is also, 
and perhaps more significantly, a conceptual one: can we 
understand how cities evolve, and how they will do so in 
the future? An integrated view of urban growth is essential 
for managing these expected changes. It’s not enough to 
consider, say, transportation networks in isolation from 
energy distribution or the patterns of wealth and age de-
mographics. One of the messages emerging from studies of 
urban growth is the same that we have heard earlier in other 
fields of social complexity: it is no longer tenable to imagine 
planning and prediction as a matter of top-down control. 
The only effective way to manage cities will be to discover 
their intrinsic bottom-up principles of self-organization, 
and then to work with those so as to guide the process 
along desirable routes, rather than trying to impose some 
unreachable or unsustainable order and structure. 

City as Organism

Cities have since the 1950s been viewed as complex sys-
tems whose organization and structure is the result of a 
hierarchy of lower-level components. But the traditional 
view was that these were ‘controlled’ systems, main-
tained in an equilibrium state by negative feedbacks. 
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The new view is that they are dynamic, non-equilibrium 
systems that are constantly changing and adapting, and 
that where organization exists it has emerged spontane-
ously from the interactions of the component parts. As 
urban theorist Michael Batty has said, “Planned cities are 
always the exception rather than the rule and when di-
rectly planned, they only remain so for very short periods 
of time.”

The organic quality of urban growth has long been 
recognized. The American social theorist Lewis Mumford 
called growing cities “amoeboid”, and considered the un-
controlled sprawl of big American cities to be alienating 
and disempowering, a “crystallization of chaos”. But his 
protégé Jane Jacobs argued that we should trust in the 
self-organizing vitality of cities rather than in received 
ideas of what they should look like. In her 1962 book The 
Death and Life of Great American Cities, she attacked 
modernist urban renewal schemes as a “mad spree of de-
ceptions and vandalism and waste”. Her ideas stimulated 
the movement known as New Urbanism, which argues 
that good cities emphasise characteristics such as walk-
ability, diversity, neighbourhood structure and sustain-
ability. Jacobs insisted that cities should be considered as 
living organisms, with their own metabolism and modes 
of growth. Her discussion is one of the first in any disci-
pline to acknowledge how complex systems of many in-
teracting parts can display orderly, self-organized behav-
iour.

 ■ The shapes of cities. A real city (top left) resembles the 
shape of a cluster of particles grown by aggregation (top 
right). One common model of such aggregation processes 
produces ramified, fractal shapes (bottom left), and with a 
little adaptation it can produce a plausible mimic of a real 
city confined by coasts and rivers (bottom right). (Credits: 
(top left & lower right) Courtesy of Michael Batty, Univer-
sity College London; (top right) Courtesy of Arne Skjeltorp, 
Institute for Energy Technology, Kjeller; (lower left) from 
D. L. Turcotte & W. I. Newman, Proc. Natl. Acad. Sci. USA 
93, 14295 (1996) and copyright National Academy of Sci-
ences, USA.)

Despite these insights, urban planning has been domi-
nated until relatively recently by the view that the city is 
a kind of machine, comprised of many parts designed 
to operate together to fulfill a purpose, to meet certain 
goals or targets. This top-down view of form and func-
tion assumes that behaviour can be imposed by fiat: that 
the components of the urban system will be shaped by 
a vision of what they should do. It is now apparent that 
cities do not, in general, live up to this image. When cit-
ies succeed, that might often be irrespective of, or even 
in spite of, planning. When they fail, it is not so much 
because of bad planning as of an inability to make plan-
ning effective at all. Cities have a life of their own, and it 
is one that arises spontaneously from the interactions of 
the component parts.

As with other complex systems, this self-organization 
spawns certain regularities. There are, for example, ex-
tremely general mathematical laws that describe how 
many urban activities, ranging from technological in-
novation to income, employment levels and power con-
sumption, depend on a city’s population size, regardless 
of its geographical and historical setting. These take the 
form of power laws, which we have seen previously to be 
a common signature of complex systems. The quantity in 
question is proportional to the population size raised to 
some power, which is typically greater than 1 for quan-
tities reflecting wealth creation and innovation, but less 
than 1 for quantities that depend on physical infrastruc-
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ture. One of the implications of this finding is that the 
pace of urban life increases with a city’s physical scale, 
much as we might expect. Moreover, it seems likely that 
the self-organization of cities operates in a hierarchical 
manner, with ‘laws’ at each level of the hierarchy that 
do not depend on the fine details of those operating at 
lower levels.

Some early theories of city growth as a complex sys-
tem hinted at the origins of universal laws like these. They 
drew an analogy with the growth of ‘fractal’ clusters from 
randomly drifting particles that stick together when they 
touch: a process called diffusion-limited aggregation that 
has been used to model the structures of soot, cracks and 
snowflakes. The analogy here was in the way that new 
development units, such as business or residential neigh-
bourhoods, are gradually added to the city by ‘attaching’ 
to existing development. The cities grown by such models 
have the ramified and rather disorderly boundaries of 
real urban centres: densest in the centre and getting more 
tenuous towards the periphery.

But these fractal cities grow as a single mass, whereas 
in reality areas of development at the edges of a big city 
are not always part of the main ‘cluster’. There are typi-
cally many little satellite towns, which may be swallowed 
up as the city boundaries sprawl. A better model allows 
the components of the urban mass to interact: develop-
ment attracts further development. If two small popula-
tion clusters grow close to one another, for instance, there 
is a greater-than-average chance that development will 
spring up between them: shops to serve the new inhab-
itants, or local businesses keen to gain a foothold in an 
up-and-coming area. In other words, the growth of new 
clusters is interdependent (correlated). When that factor 
is included, the ‘simulated city’ that emerges is a clumpy 
form decorated with sub-clusters and tendrils. This model 
can also mimic how city shapes evolve over time, and 
reproduces some of the observed mathematical relation-
ships of urban centres, such as that between number of 
settlements (cities, towns, villages, hamlets) in an urban-
ized area and their size.

 ■ The shape and growth of a real city like Berlin (left, in 1945) is rather well mim-
icked by a model of ‘correlated’ aggregation of particles representing the urban units 
(right). (Credit: from H. A. Makse, S. Havlin & H. E. Stanley, Nature 377, 608–612 
(1995).)

Universal Maps

Looking at the boundaries of cities tells only part of 
the story about their growth and form. Urban theorist 
Bill Hillier has argued that comparisons between cities 
in many different cultures seem to point to a universal 
spatial pattern of streets and neighbourhoods which 
has been called a ‘deformed wheel’: a centre linked by 
radial ‘spokes’ to a surrounding grid of residential ar-
eas. This pattern, which can be discerned in cities from 
Tokyo to Venice to Baltimore, repeats hierarchically at 
different scales: in local districts as well as in the whole 
city. By encouraging free flow of pedestrians and traffic, 
the spokes promote safety, in contrast to the preference 
of some planners to build cul-de-sacs. Superimposed on 
this universal structure are culture-specific variations: the 
complex residential districts of Arabic cities, for example, 
reflect a stronger separation of public and private life.

 ■ The ‘deformed wheel’ backbone of city street grids is exemplified here 
in the city of Nicosia in Cyprus. (Credit: Courtesy of Bill Hillier.)

A mapping scheme in which open spaces are represented 
as straight lines that are extended until they cross another 
line, creating so-called axial maps, reveals other aspects of 
the generic nature of city layouts. The probability distri-
butions of axial line length for many different cities sug-
gest that two distinct types of city structure exist: rela-
tively ‘open’ structures, with many axial lines that cross 
the whole urban space (such as Bangkok, Eindhoven, Se-
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attle and Tokyo), and a denser web of lines dominated by 
short ones (London, Hong Kong, Athens and Dhaka). The 
growth of the former group of cities seems to have been 
influenced by global planning of the large-scale structure, 
while the latter group has been guided only by local plan-
ning, so that there are fewer city-scale features such as 
long avenues.

 ■ ‘Axial maps’ of cities, in which straight lines designating open spaces 
are extended until they cross, reveal distinct classes of urban structures, 
as shown here in examples of open (Tokyo, Bangkok), dense (Athens), 
and intermediate (Las Vegas) structures. (Credit:  from R. Carvalho & A. 
Penn, Physica A 32, 539–547 (2004).)

Clearly, then, unplanned but statistically predictable 
structures do emerge through self-organization in cities. 
Exactly how that happens, and what kind of structures 
result, are still debated. But the basic principle is not 
hard to discern: here, as in many natural systems, self-
organization is the consequence of interactions between 
a system’s component parts. Business development tends 
to occur on empty land, which stimulates the construction 
of new transport and communication infrastructure, at-
tracts service industries, and eventually encourages the 
development of residential areas. All of these things are 
interdependent. A road linking two districts may attract 
development in the area in between. Business and hous-
ing attract more business and housing.

These processes can be captured in so-called cellular-
automata models, closely related to the agent-based mod-
els mentioned earlier, in which the state of each element 
on a grid is determined by those of the surrounding grid 
points according to some simple rules. One such model 
allows five distinct land uses – housing, manufacturing/
primary industry, commerce and services, transport in the 
form of the street/road network, and vacant land. Each 
land use can generate quantities and locations of other 

land uses according to certain rules: for example, the de-
velopment of industrial space might depend on whether 
there are adequate transport links and available free land, 
while commercial districts might need to be close to resi-
dential ones, and so forth. Land use can also decline, so 
that cells in the grid become vacant again. Because of lags 
in redevelopment, urban growth in this model is not neces-
sarily monotonic but can show dips and oscillations, just 
as has been seen for cities such as London and New York.

Ideally a self-organizing process of city growth will 
produce a globally optimal structure in terms of, say, the 
efficiency of land use or transportation. But there is no 
guarantee that this will be so, and indeed the two solutions 
will differ in general. The conventional planning approach 
is simply to impose a (supposedly) optimal configuration 
by regulation, for example by penalizing sub-optimal land 
use. But one model of urban self-organization suggested 
that the emergent structure might instead be guided to-
wards the optimal one by ‘pinning’ just a few key cells to 
certain land uses, so that they might act as catalysts that 
help the dynamic urban pattern converge on the optimum. 
That is welcome news for planners, because it implies that 
there is no need to expend lots of resources, or to apply 
restrictive land-use regulations over large areas of urban 
space, in order to steer development towards a desired 
goal. Rather, it may be feasible to identify the crucial ‘cata-
lytic sites’ that will help a city to evolve spontaneously to-
wards the state that maximizes its efficiency and potential. 

This lack of a need for strong central planning sup-
ports the contention of the eminent social theorist Her-
bert Simon that its absence does not necessarily result in 
poorly ‘designed’ cities. On the contrary, Simon claimed, 
they are (or at any rate, they once were) often remark-
ably effective in arranging for goods to be transported, 
for land to be apportioned between residential, business 
and manufacturing districts, and for a lot of activity to be 
fitted into a small area. Given the right conditions, these 
things can take care of themselves.

Planning or Managing?

Michael Batty has suggested that the view of cities as dy-
namic complex systems means that 

planning, design, control, management – whatever con-
stellation of interventionist perspectives are adopted – are 
difficult and potentially dangerous. If we assume that so-
cial systems and cities [are] like biological systems… then 
interventions are potentially destructive unless we have 
a deep understanding of their causal effects. As we have 
learned more, we become more wary of the effects of such 
concerted action.
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However, far from being a prescription for stasis or lais-
sez-faire, this situation argues that we need good models 
of urban complexity that will enable us to try out solu-
tions ‘in the laboratory’ before we implement them in 
the real world. It is increasingly important that urban 
planners be provided with such models in order to pose 
‘what if’ questions. What if we build a high-speed rail link 
here? What if we impose a congestion charge or reduce 
bus fares? What if climate change renders this part of the 
land unusable because of flood risk? What if natural di-
sasters or terrorist attacks necessitate evacuation of part 
or all of the city? 

One model of this sort, developed at the Argonne Na-
tional Laboratory in collaboration with the US Depart-
ment of Energy, is called TRANSIMS. It began as a model 
of urban transportation systems, but has since expanded 
into a simulation of many aspects of urban development, 
using census data to construct ‘synthetic’ populations: 
individuals and households who have daily activities to 
which they will need to travel. The TRANSIMS model has 
been used to investigate transport options, including car-
bon emissions, for the city and environs of Portland, Or-
egon. There is a proposal to extend it to Phoenix, Arizona, 
and the system has also been used to model mass evacu-
ation scenarios from the Chicago metropolitan area. 
While still primarily focused on one aspect of urban de-
velopment (transport), TRANSIMS illustrates that such 
issues cannot be studied in isolation: they require a de-
tailed picture of many facets of urban life: where people 
live and work, say, and how they choose to go between 
the two. This approach is likely to become a vital ingredi-
ent in the quest to make cities smarter.

 ■ Peaks of heat emission predicted for a simulated evacuation of 
Naperville, Illinois, using the TRANSIMS model of urban transporta-
tion. (Credit: Argonne National Laboratory - Transportation Research and 
Analysis Computing Center.)
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1010 The Transformation 
of War: Modelling 
Modern Conflict

War is not what it used to be. Since the late twentieth cen-
tury there has been a discontinuity in the very nature of 
war, a fact that the rhetoric of a ‘war on terror’ following 
the attacks on the World Trade Center on 11 September 
2001 failed catastrophically to acknowledge. It is hard to 
avoid the suspicion that this ‘war on terror’ was one for 
which political leaders were determined to find conven-
tional battlegrounds – in Afghanistan and Iraq – only to 
discover that the battle refused stubbornly to materialize, 
because that is no longer what armed conflict is about. 
Typically, there is not in any meaningful sense a declara-
tion of war to kick things off, nor a peace treaty to con-
clude them. Formal armed forces are peripheral; so are 
formal leaders. Armies may be mobilized not to fight war 
but (allegedly) to keep peace – or, in Afghanistan and 
Iraq, to do both at once. According to strategic analyst 
Anthony Cordesman, “One of the lessons of modern war 
is that war can no longer be called war.”

The changing character of wars argues for a shift in 
military tactics. In many ways, fighting against terrorist-
style insurgency is like fighting an illness that continually 
evolves, adapts and changes. Political scientist Mary Kal-
dor asserts that US military action in Iraq was predicated 
on the view that it was a war much like those fought until 
the middle of the twentieth century, where two military 
states vie for control of a territory. This, she says, is the 
wrong approach – and what is more, “The US failure to 
understand the reality in Iraq and the tendency to impose 
its own view of what war should be like is immensely 
dangerous.” Instead of approaching it as a conflict that 
can be conclusively won by military force, they should 
see it as an ongoing effort, Kaldor argues. For terrorist-
style conflicts seem to be sustainable indefinitely: “These 
wars,” says Kaldor, “are so much harder to end than to 
begin.”

How and why are these changes happening? Are we 
seeing a change in the reasons why many (if not all) wars 
begin, or in the ways they are waged, or in the objectives 
that are pursued, or the nature of the combatants? Or all 
of these, and more?

The Power of War

According to Carl von Clausewitz in his classical 1832 
treatise On War, “War is an act of violence to compel our 
opponent to fulfil our will.” But while for Clausewitz a 
‘theory of war’ (he was unsure if this was an art or a sci-
ence) pertained simply to the best way to wage it, violence 
is not the only, or necessarily the best, way to compel 
your opponent. Wars are immensely costly, and put at 
risk the very existence of the states waging them. A theory 
of war must surely examine why opponents go to war, 
and should explain why sometimes they do not.

It was in the hope of answering such questions that, 
from the 1920s to the 1950s, the British physicist Lewis 
Fry Richardson gathered statistic data on what he called 
‘deadly quarrels’: armed conflicts ranging from small 
local skirmishes to world wars. Richardson, a pioneer 
of meteorology, was a Quaker and conscientious objec-
tor in the First World War, and hoped that by analys-
ing the ‘facts of war’ he could find a way to promote 
world peace. He found that his data could be described 
by a surprisingly simple mathematical relationship: 
the number of conflicts with N fatalities declined such 
that the probability of such a conflict was proportional 
to N-α where α is called the exponent. This form, which 
we have encountered several times earlier in the book, is 
called a power law. It implies that small wars are more 
common than large ones; specifically, a tenfold increase 
in the severity of a war decreases its probability by a fac-
tor of 2.6.

Similar power-law relationships between size and fre-
quency apply to other phenomena, such as earthquakes 
and fluctuations in economic markets. The persistence of 
the law for events of all sizes indicates that even the big-
gest, most infrequent earthquakes are created by the same 
processes that produce hordes of tiny ones, and that occa-
sional market crashes are generated by the same internal 
dynamics of the marketplace that produce daily wobbles 
in stock prices. In the context of warfare, it suggests that 
there may be a degree of universality in the mechanisms, 
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of war: small ones are qualitatively the same type of phe-
nomenon as big ones.

What’s more, the power-law relationship implies that 
one cannot tell how big any particular conflict will be-
come, just as one cannot tell whether an earthquake or 
landslide, once triggered, will be a major or a minor event. 
Perhaps a war will destabilize neighbouring regions and 
spread like a forest fire; or perhaps it will remain local-
ized. Which of these will be the case seems almost impos-
sible to predict. The implication is that, at least during the 
nineteenth and twentieth centuries, international rela-
tions existed in a state that was prone to this propagation 
of conflict – not inevitably, but with a potentiality that 
made interstate concord extremely fragile.

The same kind of power-law relationship can be seen 
in the statistics of terrorist attacks: that is, in a graph of the 
number of attacks plotted against their severity (in terms 
of injuries and/or fatalities). This relationship holds for 
events ranging from those that injured or killed just a few 
people to those that, like the Al Qaeda Nairobi car bomb 
in August 1998, produced over 5,000 casualties. 

As with wars, the power-law relationship implies that 
the biggest terrorist attacks such as 9/11 are not ‘outliers’, 
one-off events somehow different from suicide bombings 
that kill or maim just a few people. Instead, it suggests 
that they are somehow driven by the same underlying 

 ■ How the number of deaths in a war between states (from 1820 to 
1997) varies with the frequency (equivalently, the probability) of such a 
conflict. The relationship is a mathematically simple one, called a power 
law. The last two data points are, respectively, World Wars I and II.

mechanism. Note, however, that the precise form of the 
power law depends on the type of country to which it 
relates. Terrorist attacks in Western industrialized nations 
are rare but tend to be large when they happen. Terrorist 
attacks in the less-industrialized world tend to be smaller, 
more frequent events. The two classes are distinguished 
by different power-law exponents, which reveal some 
qualitative distinction that is yet to be understood.

Similarly, the slope of the power-law graph – the ex-
ponent α of the power-law – for conventional wars dif-
fers from those for terrorist attacks, which suggests that 
the two are also distinct classes of conflict: terrorism is 
not like conventional war. However, these distinctions 
are becoming far less evident in modern warfare. The 
recent war in Iraq and the ongoing civil conflict in Co-
lombia at first followed the Richardson power-law for 
traditional warfare, but later approached the different 
power law characteristic of terrorist attacks in non-in-
dustrialized nations. In Iraq, the conflict began as a con-
ventional confrontation between large armies. But 
smaller attack units came to predominate as the war 
continued. Between 2003 and 2005, the ‘casualties per 
attack event’ for Iraq followed a gradually changing 
power-law which came more closely to resemble that 
found for terrorism. The same trend is seen in the Co-
lombian conflict, which has been fought between the 

 ■ How the number of deaths in a terrorist attack (between 1968 and 
2008) varies with the frequency of such an attack. The relationship is 
another power law, but with a different exponent from that of inter-state 
wars.
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government and various left- and right-wing guerrilla 
groups for many decades.

These findings are preliminary, and still debated. 
Some civil wars still look like conventional ones, while 
in other cases (such as the Algerian civil war of the 1950s 
and 60s) the blurring of conventional and terrorist-style 
conflict goes back a long way. Perhaps the point is not 
so much that all ‘new’ wars are different from all ‘old’ 
ones – that is almost certainly not the case – but that we 
can hope to use the tools and concepts of complexity to 
identify some distinctions between them.

Computerized Conflict

The key question is then surely: why do these differences 
(sometimes) exist? In honesty, no one knows. One idea 
is that terrorist attacks emerge from a balance between 
two factors. The severity of an attack is likely to increase 
in relation to the time spent planning it. But the longer 
this timescale, the more likely it is that counter-terrorism 
measures will intervene and suppress the attack before it 
happens. This balance can, in certain circumstances, cre-
ate a power law. 

Another model tries to understand how terrorism 
and insurgency evolve from the bottom up: how terrorist 
networks composed of ‘cells’ of different sizes arise. The 
idea is based on emerging understanding of how terrorist 
organizations are structured: unlike armies, they tend to 
be decentralized, operating in loose-knit networks that 
are to some extent autonomous. Moreover, they draw 
their members from communities that include radicalized 
individuals who may become inclined towards terrorist 
activities. Cells can accumulate new individuals, but they 
also grow by aligning with other cells – and by the same 
token they may fall apart, for example because of internal 
conflicts. With the final ingredient that an attack launched 
by a particular cell has a severity proportional to its size, 
this ‘aggregation’ model of terrorist organizations can 
generate power-law casualty statistics with essentially 
the same exponent as that seen in the real data.

These models are evidently not the last word; in many 
ways they are simplistic and crude. But they illustrate 
that the statistics of armed conflicts demand new ways of 
looking at how they arise, and that agent-based models 
predicated on interactions between the key players can at 
least in principle offer explanations of why these numbers 
take the forms that they do. Most importantly, they can be 
used to address questions such as which counter-terror-
ism strategies might be effective: whether it is better, for 
example, to focus on reducing the radicalized proportion 
of a population, or to seek out the largest cells, or to sever 
links between cells.

A perspective based on cost-benefit choices made by 
aggressors can also be productive in understanding how 
and why terrorism arises in the first place. Despite the 
moral rhetoric of nations and governments that have suf-
fered terrorist acts, terrorism is not a nihilistic gesture but 
a strategic choice – a particular mode of combat usually 
deployed by groups that lack military might, and which 
may (as with the ANC in South Africa or the Republicans 
in Northern Ireland) be abandoned if more advantageous 
options are available. The dynamics of terrorist activities 
may be different when there is just one, or several com-
peting parties involved in them, such as Fatah and Hamas 
in Palestine. However deplorable it might seem, terrorism 
is rarely irrational. All the same, the statistics of terrorist 
attacks in the Isareli-Palestinian conflict suggest that the 
causative factors are considerably more complex than cur-
rent theories tend to predict.

Why Fight?

This comes back to the broader question posed at the 
outset: why do conflicts happen? The issue has naturally 
received a huge amount of attention in recent decades, 
whether from military strategists, political scientists or 
agencies devoted to fostering peace. But while no one 
imagines that there will ever be a one-size-fits-all theory 
of warfare and conflict, it’s possible to identify some gen-
eral questions that might have quite general answers.

For example, it is obvious that many wars between 
states happen when they share a border or a resource 
such as water. There is a clear link to economic prosper-
ity: in the modern era, wealthy nations do not tend to 
fight one another. The actors in many of the most violent 
modern conflicts have been defined in terms of ethnicity 
and culture rather than nationality: for example, in former 
Yugoslavia, Rwanda and the Democratic Republic of the 
Congo. Why do some ethnic groups seem able to coexist 
stably with one another, while others do not? What fac-
tors seem to spark civil wars? In particular, and contrary 
to some political naivety about interventions and upris-
ings in Iraq, Afghanistan and North Africa, the process 
of democratization seems often to make internal conflict 
more likely (even if the achievement of a stable democracy 
does eventually foster excellent prospects for subsequent 
national and international peace).

Traditional political science has tended to regard 
states as actors with fixed borders that engage in self-
interested competition, based primarily on national in-
terest and security: the so-called realist paradigm, which 
accords with Clausewitz’s view that war is merely a con-
tinuation of politics by other means. Here, international 
relations represents a struggle for power much like that 
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invoked between individuals by Thomas Hobbes in the 
seventeenth century.

This picture lends itself well to agent-based modeling. 
One such model, called GeoSim, developed in the late 
1990s, has been used to explore the effects on interstate 
conflict of such factors as alliance formation and democ-
ratization. The GeoSim model has furnished a possible 
explanation of the power-law statistics of wars, based on 
the way technological change alters the balance of 
strengths between states and thus (in the realist view) 
their readiness to wage war.

Such models can be adapted to explore broader ques-
tions. GeoSim has, for example, been used to look at civil 
wars in which provinces rebel against the central state au-
thority. Here geography proves to be important: violence 
is often concentrated in mountainous regions, which are 
hard to suppress. There is now a strong perceived need to 
tie such models more explicitly to real data and to allow 
them to explore the many dimensions of conflicts, such as 
onset, duration, spatial extent and casualty levels.

Civil wars are in fact a key focus of current research 
on conflict, not least because they are so widespread. 
During the past several decades, civil war was been 
waged on average in 1 out of every 10 countries world-
wide, a disproportionate number of them being poor. 
These conflicts challenge the traditional view of a state 
as being ‘at war’ or not, since such conflicts are often lo-
calized – in Kashmir or Chechnya, say. As a result, they 
lend themselves to – indeed, they demand – a picture 
that considers interactions between several different ac-
tors, influenced by complex, local and heterogeneous fac-
tors within a state. In one recent model, for example, ei-
ther (two-sided) civil violence or (one-sided) government 
repression was found to arise in a two-faction population 
in response to fluctuations in wages or aid, if political in-
stitutions were weak. This is consistent with the observa-
tion that civil war is highly sensitive to economic factors, 
rather than primarily to social or cultural ones: diverse 

 ■ A snapshot from the GeoSim model of nationalist in-
surgency in a model state with ‘real’ topography. Rebelling 
provinces are indicated as red needles, and are located 
mostly in mountainous areas. (Credit:  from L.-E. Cederman 
& L. Girardin, paper prepared for the Annual Meeting of the 
Am. Polit. Sci. Assoc., 2007.)

populations can coexist peaceably if they are wealthy 
enough. 

The more we understand these issues, the more they 
suggest that violent conflict fits within the broader picture 
of complex social systems. For example, the likelihood of 
civil violence depends on the specific modes of organiza-
tion in rebel groups. Large excluded groups have more 
resources, but may not have much coercive power if, as 
with the Palestinians, they are fragmented into several 
competing organizations. Small, cohesive organizations 
have a disproportionate tendency to fight. This makes it 
important that models include some representation of 
spatial and social network structures and communities, 
rather than just undifferentiated hordes of aggressors. 

One of the big questions about the onset of violence 
within a region, state or population is whether it is ren-
dered more or less likely by cultural or ethnic segregation. 
Anecdotally, either possibility can be attested. There is 
good evidence that social desegregation improves toler-
ance and reduces hostility, while segregation can harden 
prejudice, as seen for example in Northern Ireland or the 
racially segregated cities of northern England. On the 
other hand, the genocide in Rwanda in 1994 took place 
in the context of a highly mixed population of Tutsi and 
Hutu people, while urban violence between Muslims 
and Hindus in Ahmedabad in 2002 was greater in mixed 
rather than segregated neighbourhoods. Ethnic migration 
– a lessening of mixing – following deadly attacks has 
been found to reduce violence.

These apparent contradictions can only be understood 
by considering the spatial element of conflict: where the 
actors physically reside in space. One such model was 
based on the segregation model of Thomas Schelling (see 
page 14) but with an added impetus for migration: a wish 
to escape recent violent conflict in the neighbourhood. 
Interactions between the agents were represented by a 
concept of ‘social distance’, which depended on several 
factors: the greater the distance, the greater the tension, 
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and above a certain threshold this tension could erupt 
into violence. The model was used to simulate the situa-
tions in Jerusalem during the violent Intifada of 2001–4 
and the somewhat more settled period of 2005–9, based 
on real data about the spatial demography of the Muslim 
and Jewish populations at these times. Having estab-
lished that the model did a reasonably good job of pre-
dicting the spatial distribution and severity of outbreaks 
of violence during both periods, the researchers used it to 
explore the likely consequences of different real-world 
proposals for distributing the populations: from complete 
mixing to different modes of segregation defined by the 
division of city districts into those under Israeli or Pales-
tinian authority. Here the fully mixed scenario produced 
the most violence. But while it declined in segregated 
scenarios, there was less violence when segregation was 
partial (most markedly for the case of a return to 1967 
boundaries) than when it was total.

 ■ Predictions of a model that describes tensions and violent outbreaks 
in Jerusalem as a function of the segregation of Jewish and Muslim 
populations. Here the colour coding shows how the predicted levels of 
violence compare with those in reality over two time periods. (Credit: 
from R. Bhavnani et al., submitted (2012).)

Models like this are certainly not advanced enough yet 
to offer strong policy recommendations. But they teach 
an important lesson: outcomes of interventions in situ-
ations like this are not always intuitively obvious, since 
they involve a complex interplay of effects. And simplis-
tic notions that segregation is universally ‘good’ or ‘bad’ 
for reducing violent conflict are potentially misleading: 
it is unwise to assume that ‘one size fits all’. While in this 
model the primary driver of unrest is ‘social distance’, 
the factors contributing to this measure will differ from 
place to place – they may be economic, cultural, or linked 
to property rights, say. Models like this can be tuned to 
the local specifics of culture and geography, rather than 
purporting to make general statements about what does 
and does not work. 

As all these examples illustrate, there is diversity in 
the causes of conflicts, but also some regularity and per-
haps even predictability. War and other violent conflicts 
are complex phenomena, but not random ones. It is far 
from utopian to imagine that they can be understood, 
at least in part, as a complex social phenomenon which 
might therefore be amenable to planning, guidance, con-
trol and mitigation.
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Summary 

For the past 30 years or so there has been a more or less 
conscious effort both to make societies more globalized 
and to foster technological advances that promote social 
interdependence. But we have not made a concomitant 
effort to build a science that enables us to understand the 
strongly coupled systems we have created. To do so, we 
need to reach out beyond conventional disciplinary bor-
ders and to develop tools for exploring the interactions 
of many aspects of society. This book has argued that, 
as a result, it is valuable and necessary to consider soci-
ety as a whole as a complex system that can be explored, 
explained and to some extent predicted using idealized 
models.

In most of the studies conducted so far, these mod-
els have been highly simplified. In some cases, however, 
such as the descriptions of traffic, pedestrian movement 
and social networks, they are already adequate to address 
real-world problems and needs. And experience with 
these attempts to understand social behaviour, as well as 
with complex systems more generally in the physical and 
biological sciences, offers some important messages about 
how we might best manage our increasingly complicated 
and interconnected human world. For example:
•  Abandon linear and one-size-fits-all thinking.
•  Don’t impose solutions, but create the conditions for 

effective solutions to emerge spontaneously.
•  Let randomness rescue you from dead ends, bottle-

necks and non-optimal states.
•  Embrace and take advantage of diversity.
•  Let self-organization create adaptability and innovation.
•  Remember that where you are may depend on how 

you got there: history matters. 

One key objective of this book is to show that, while 
some social phenomena can be studied in isolation, in 
general the challenges we face pertain to many strongly 
connected social activities, which are often themselves 
coupled to processes in the natural world. To understand 
the spread of infectious diseases, for example, we need to 
know about infection, recovery and death rates, but also 

about how people come into contact with one another and 
how they move around, whether in routine trips or via 
trans-continental travel. This in turn requires a consider-
ation of, among other things, public transportation and 
social activity patterns, including behavioural changes in 
response to epidemic spreading. Evidently, this picture 
can become extremely complex, and exceeds the expertise 
of any single academic discipline, including traditional 
epidemiology itself.

But this does not mean that the situation is hopeless or 
intractable. Many of these issues are already reasonably 
well understood in isolation. Others, such as the patterns 
of human mobility, are new fields of study but have ben-
efitted from major advances in conceptual understanding 
and empirical data-collection. What is now needed is a 
means of integrating these various topics so that some of 
the most serious challenges we face on the planet – war, 
poverty, economic instability, environmental change – 
can be studied in a flexible yet comprehensive manner.

Climate science can serve as a good analogy here. The 
field has steadily expanded its scope beyond a consid-
eration of how greenhouse-gas emissions will affect the 
energy balance of the atmosphere, to include such fac-
tors as the cycling of elements like carbon and nitrogen 
between living and inorganic reservoirs in the oceans and 
on land, the dynamics of ice-sheet growth and movement, 
the circulation patterns of the deep and shallow oceans, 
and now increasingly the dependence of greenhouse-gas 
emissions on human economic and social activity. Cli-
mate researchers understand that these developments 
will not and should not result in a single, over-arching 
computer model on which all forecasts will be based; 
rather, what is needed is a suite of complementary models 
that together offer multiple perspectives of the range of 
possible futures and their relative probabilities and un-
certainties. We might recognize too that despite ongoing 
controversy about the long-term predictive capabilities of 
climate models, in the shorter term modelling the same 
suite of physical phenomena – atmospheric and ocean 
dynamics, cloud formation and precipitation, effects of 
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ecosystems and so forth – has furnished a largely reliable 
and trusted tool for weather prediction that is now rou-
tinely used for decision-making. 

It is time to build a similar broad platform for mod-
elling and prediction of many other social and environ-
mental challenges, using the approaches, concepts and 
tools described in this book. Such an effort would require 
large-scale federated coordination, and would have to pro-
mote interdisciplinary integration of natural, social, and 
engineering sciences to address a wide range of global 
challenges. Of course, we cannot expect models to solve 
all our problems or reliably to predict our future in detail. 

However, again weather forecasting demonstrates that 
even somewhat approximate and uncertain short-term 
predictions can be useful, for agriculture, for air traffic, and 
for everyone. Such forecasts have improved considerably 
over time, by combining models with supercomputing and 
real-time sensing. The investment in such systems today is 
thought to repay itself many times in the benefits it confers. 
Even though humans are doubtless much harder to model 
and predict than the physical processes that underlie the 
weather, one can certainly anticipate similar benefits from 
modelling our techno-socioeconomic systems. This is an 
endeavour whose time has arrived.
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New Ways to Promote Sustainability 
and Social Well-Being in a Complex, 
Strongly Interdependent World: 
The FuturICT Approach

Dirk Helbing

The FET Flagship Initiative

The FuturICT project is the response to the Flagship Initiative 
launched by the Future and Emerging Technology (FET) section 
of the European Commission: a call for ‘Big Science’ projects 
with genuinely transformative potential and a ‘man on the moon’ 
scope of vision. In the first round of the process, 21 candidates 
were narrowed down to six Flagship Pilots, of which FuturICT 
received the highest rating.
Each pilot will submit detailed proposals in April 2012, and at 
least two of them will be selected for funding of up to €1 billion 
each over ten years, starting by the end of 2013. (Note that this 
is about a tenth or less of what is currently invested in other Big 
Science projects such as the Large Hadron Collider at CERN, the 
ITER nuclear-fusion reactor, the Galileo satellite program and the 
Human Genome Project.) Approximately half of the money must 
be mobilized by the project partners from national budgets and 

funding agencies, from business and industry, or from donations. 
A considerable fraction of the Flagship funding will be distributed 
through ‘Open Calls’, which will allow a wide scientific commu-
nity to contribute to the goals. 
Among the particular strengths of the FuturICT proposal are:
•	 its societal relevance,
•	 the immediate importance of its results for the everyday life 

of ordinary citizens,
•	 its large and rapidly growing community and multidisci-

plinary nature,
•	 the participation of many European countries,
•	 the significant support of scientific communities in other 

continents,
•	 its open-access and transparent project architecture, and
•	 its educational activities. 

FuturICT is one of six proposals currently being considered for 
support within the European Commission’s Flagship Initiative 
(see Box 1). The vision of the FuturICT project is to develop 
new science and new information and communication systems 
that will promote social self-organization, self-regulation, well-
being, sustainability, and resilience. One of the main aims of the 
approach is to increase individual opportunities for social, eco-
nomic and political participation, combined with the creation of 
collective awareness of the impact that human actions have on 
our world. This requires us to mine large datasets (‘Big Data’) 
and to develop new methods and tools: a Planetary Nervous 
System (PNS) to answer “What is (the state of the world)…” 
questions, a Living Earth Simulator (LES) to study “What … 
if…” scenarios, and a Global Participatory Platform (GPP) for 
social exploration and interaction.

Today, we understand our physical universe better 
than our society and economy. Challenges like the finan-
cial crisis, the Arab spring revolutions, global flu pandem-
ics, terrorist networks, and cybercrime are all manifesta-
tions of our highly and ever more connected world. They 

also demonstrate the gaps in our present understanding 
of techno-socio-economic-environmental systems. 

In fact, the pace of global and technological change, in 
particular in the area of Information and Communication 
Technologies (ICTs), currently outstrips our capacity to 
handle them. To understand and manage the dynamics 
of such systems, we need a new kind of science and novel 
socially interactive ICTs, fostering transparency, trust, sus-
tainability, resilience, respect for individual rights, and 
opportunities for participation in political and economic 
processes. 

Information and Communication Technologies (ICTs) 
are increasing playing a key role for the understanding 
and solution of problems that our society is facing. Many 
ICT devices take autonomous decisions, based on real-
world data, an internal representation of the outside 
world, and expectations regarding the future. In some 
sense, ICT systems are increasingly becoming something 
like ‘Artificial Social Systems’. Already today, supercom-
puters perform most financial transactions in the world. 
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However, today’s ICT systems are not constructed in 
a way that ensures beneficial outcomes. This can result in 
problems, which we are also facing in our real society, e. g. 
breakdowns of coordination and performance, ‘tragedies 
of the commons’, instabilities, conflicts, (cyber) crime, or 
(cyber-)war. Furthermore, ICT systems influence not just 
their own state, but also impact the real world and human 
behavior. We, therefore, need a deep understanding of 
techno-social systems to get ICT systems right and also 
mitigate our societal problems.

We now have a global exchange of people, goods, 
money, information, and ideas, which has created a 
strongly coupled and strongly interdependent world. 
This often causes feedback and cascading effects, extreme 
events, and unwanted side effects. In fact, these systems 
behave fundamentally differently from weakly coupled 
systems. Multi-component systems can be dynamically 
complex and hard to control. Therefore, we need a para-
digm shift in our thinking, moving our attention from the 
properties of the system components to the collective be-
havior and emergent systemic properties resulting from 
the interactions of these components. 

The paradigm shift from a geocentric to a heliocen-
tric worldview has facilitated many things, from modern 
physics to our ability to launch satellites. In a similar way 
will the paradigm shift towards an interaction-based, sys-
temic perspective and a co-evolution of ICT with society 
open up entirely new solutions to address old and new 
problems, such as financial crises, social and political in-
stabilities, global environmental change, organized crime, 
the quick spreading of new diseases, and how to build 
future cities and smart energy systems.

As the previous chapters by Philip Ball have shown, 
there are promising new approaches to manage complex-
ity: While external control of complex systems is hardly 
possible due to their self-organized dynamics, one can 
promote a favorable self-organization by modifying the 
interaction rules and institutional settings. The potential 
of a flexible, self-regulating approach has been impressively 
demonstrated for urban traffic light control and a number of 
other problems. This approach is based on real-time sensing, 
short-term anticipation, and the implementation of suitable 
adaptive interaction rules between the connected system 
elements. The decentralized self-regulatory principle can 
be scaled up to systems of almost any size and any kind. 

To successfully transfer this approach to other areas 
and make an effective contribution to mitigating our 21st 
century problems, we need to develop a better, holistic 
understanding of the global, strongly coupled and interde-
pendent, dynamically complex systems that humans have 
created. For this, it is necessary to push complexity science 
towards practical applicability, to invent a novel data sci-
ence (which reveals how information is transformed into 
knowledge and influences human action), to create a new 
generation of socially interactive, adaptive ICT systems, 

and to develop entirely new approaches for systemic risk 
assessment and integrated risk management. 

The FuturICT project is a perfect opportunity to foster 
the creation of such knowledge and the development of 
the fundaments of new information and communication 
systems such as a ‘Planetary Nervous System’ to enable 
collective, ICT-based awareness of the state of our world, 
a ‘Living Earth Simulator’ to explore side effects and op-
portunities of human decisions, a ‘Global Participatory 
Platform’ to create opportunities for social, economic 
and political participation, an ‘Open Data Platform’ (a 
‘Data Commons’) to foster the creativity of people and 
new business opportunities, a ‘Trustable Web’ to support 
safer, privacy-respecting information exchange, as well as 
value-sensitive ICT to promote responsible interaction. 
In fact, Europe could well be leading the upcoming age 
of social and socially inspired innovations, which comes 
with enormous societal and economic potential.

Why FuturICT is Needed

The current lack of a project of this scope and ambition is 
surprising and, one might even say, deplorable. Big Science 
projects such as the Human Genome Project, the Large 
Hadron Collider and the Hubble Space Telescope have 
revealed, or are revealing, fundamental insights into our 
genetic constitution and the laws that govern our physical 
world. However, we have not given the social sciences the 
same priority as the natural sciences, even though they are 
highly relevant for maintaining and increasing social well-
being. As we have seen in earlier chapters, this is partly 
because traditional approaches to social problems such 
as violent conflict and economic instability have often not 
been very effective in alleviating them. But this is due to the 
fact that societal challenges have a particular, complex na-
ture as a result of the strongly interconnected patterns and 
structures of life. Strongly connected, dynamical systems 
have a number of characteristic properties, for example: 
•  Even the most powerful computers cannot perform 

an optimization of the system behaviour in real time, 
when the number of interacting system elements is 
large. 

•  Most real-life complex systems behave probabilisti-
cally rather than deterministically, i. e. their behaviour 
cannot be exactly predicted. 

•  Strongly connected systems with positive feedbacks 
tend to change fast, often faster than we can responds 
and collect enough experience about their behaviour. 

•  Extreme events occur more often than expected, and 
can impact the whole system.

•  Self-organization and strong correlations dominate 
the system behaviour. This can lead to surprising, 
‘emergent’ properties of the system.
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•  The system behaviour can be rich, complex and hard 
to predict. Planning for the future may be difficult or 
impossible. 

•  Complex systems may appear uncontrollable. In par-
ticular, opportunities for external, top-down control 
are very limited. 

•  Due to possible cascading effects, the vulnerability to 
random failures or external shocks may be great.

•  The loss of predictability and control may lead to an 
erosion of trust in private and public institutions, 
which in turn can lead to social, political, or economic 
destabilization.

Some of these properties challenge our common way 
of thinking and defy intuition. Even in purely financial 
terms, the consequences of failing to appreciate and man-
age these characteristics of global systems and problems 
are immense. For example:
•  The financial crisis has caused estimated losses of $20 

trillion. 
•  Crime and corruption consumes 2–5% of global GDP: 

about $2 trillion annually.
•  Global military expenditures amount to $1.5 trillion 

annually. 
•  The 9/11 terrorist attacks on the US cost the country’s 

economy $90 billion.
•  A true influenza pandemic infecting 1% of the world 

population would cause losses of $1–2 trillion per an-
num.

•  Traffic congestion costs the economy £7–8 billion in 
the UK alone.

If FuturICT could reduce the impact of these societal prob-
lems by just 1%, this would already represent a return of 
many times the prospective €1 bn Flagship investment. 
Based on previous success stories regarding a better manage-
ment of complex systems, an improved understanding of the 
fundamental underlying issues could actually be expected 
to facilitate improvements (e. g., in efficiency) of 10–30%. 

There are also strong ethical arguments to support the 
FuturICT project (see Box 2). The fragility of the financial 
and economic system, for example, carries a serious risk of 
endangering the stability of society, which may promote 
crime, corruption, violence, riots, and political extremism, 
and ultimately undermine democracies and destroy cul-
tural heritage. Rapid scientific progress is needed to learn 
how to prevent such cascading effects and deterioration. It 
is also vital to ensure that the social innovations that a proj-
ect like FuturICT could engender will benefit all of human-
ity and not end up in the hands of a few stakeholders – a 
situation that has threatened to arise, for example, in ge-
netic engineering and other transformative technologies.

Why Information and Communication 
Technology (ICT) is Crucial

In the global challenges we face, information and commu-
nication technologies are part of the problem. People feel 
that they have created too much speed, too much data, 

The FuturICT Approach

FuturICT has also a strong ethical motivation. Among its aims are 

•	 to promote human well-being and responsible behaviour,
•	 to promote the provision of unbiased, high-quality informa-

tion, and to increase individual and collective awareness of 
the impact of human behaviour,

•	 to reduce vulnerability and risk, increase resilience, and re-
duce damages,

•	 to develop contingency plans and explore options for future 
opportunities and challenges,

•	 to increase sustainability,
•	 to facilitate flexible adaptation,
•	 to promote fairness and happiness, 
•	 to protect and increase social capital, 
•	 to improve opportunities for economic, political, and social 

participation,
•	 to find a good balance between central and decentralised 

(global and local) control,
•	 to protect privacy and other human rights, pluralism and 

socio-bio-diversity, 

•	 to support collaborative forms of competition (‘co-opetition’) 
and

•	 to promote responsible behaviour.

Over its ten-year funding period, FuturICT will aim to develop a 
new ICT paradigm, focusing on socio-inspired ICT, the design of 
a ‘trustable web’, ethical, value-sensitive, culturally fitting ICT 
(responsive+responsible), privacy-respecting data-mining tech-
nologies that give users control over their own data, platforms 
for collective awareness, a new information ecosystem, the co-
evolution of ICT with society, public involvement and democratic 
control. FuturICT plans to provide an open data, simulation, ex-
ploration and participatory platform to promote new opportunities 
for everyone. This platform would represent a new public good 
on which all kinds of services can be built. It will support both 
commercial and non-profit activities. To prevent misuse and en-
able reliable high-quality services, the platform will be decen-
tralized and built on principles of transparency, reputation and 
self-regulation. 
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and too much complexity. In fact, our global ICT system 
is the most complex artefact ever created. It is made up 
of billions of interacting elements (such as computers, 
smartphones, users, companies, cars, etc.). 

Although humans have built the individual compo-
nents that compose the system, we are increasingly losing 
the ability to understand the system as a whole and its 
interaction with society. No one planned this system as 
a whole, and no one is in control of it. Often, we do not 
even know what it ‘looks’ like – what, for example, the 
topology of the connectivity network is. We also do not 
know its weak points and vulnerabilities. We can’t predict 
its behaviour.

But information and communication technologies will 
inevitably also have to be a part of the solution. We’ve seen 
earlier how such systems already collect and embody a 
tremendous amount of data, some of which encodes vi-
tal information about performance, reliability and robust-
ness. Moreover, the pervasiveness of such systems creates 
an infrastructure that allows us to capture the kind of data, 
which are needed to model and understand our complex 
techno-socio-economic-environmental systems. It is an 
opportunity that must be handled with care (see Box 2).

Despite the need for more data, it’s important to collect 
and use it at the appropriate level. That’s to say, FuturICT 
would not need or desire ‘all the data in the world’, and 
the objective is not to model every individual in detail. It 
is in the very essence of complex systems that this level of 
detail is not needed: many of the important behaviours, 
such as trends, norms and cultural shifts, are collective 
ones, which can be understood without knowing every-
thing about the single individuals and their interactions. 
That is precisely what makes the complexity approach 
tractable: it does not involve a 1:1 mapping of the world 
onto models. In general, different questions require one 
to focus on different levels of hierarchically organized 
systems or strongly connected parts of a system, with a 
degree of data aggregation that is fit to the purpose. (Doc-
tors do not need genetic information to fix a tooth, nor 
brain scans to operate on the knee.)

Concomitant with the need for massive data collec-
tion, FuturICT will require innovations in the extraction 
of information and meaning. Some new technologies now 
supply means of gathering data in volumes and rates that 
exceed our ability to store, retrieve, catalogue, and inter-
pret them. This is a problem felt particularly keenly in the 
science of genomics and bio-informatics, where data col-
lection has sometimes proceeded apace in the absence of 
a conceptual framework for asking questions and testing 
hypotheses. Data is good only to the extent that it can be 
mined for meaning. To generate valuable knowledge, data 
mining must often be combined with theoretical models. 
Advances in this area will, therefore, require input from 
computer scientists and specialists in data visualization. 
But the perspective of the social and complexity sciences 

to identify meaningful trends and correlations will also 
be essential. 

The Components of FuturICT

The FuturICT project primarily aims at bringing data, 
models and people together. It will develop new infor-
mation and communication technologies (ICTs) to collect 
massive data sets and mine them for useful or meaningful 
information, and build ICT systems that have the capacity 
to self-organize and adapt to the collective needs of us-
ers. These ICT systems will be the basis of the FuturICT 
Platform, which will have three main components: the 
Planetary Nervous System, the Living Earth Simulator, and 
the Global Participatory Platform. The measurement, mod-
elling, and participatory elements of these components 
will be used for practical applications, such as Explorato-
ries for Society, Economy, Technology, and the Environment. 
These Exploratories serve to interactively explore inter-
dependencies in our world and will be created by con-
necting Interactive Observatories for social well-being, for 
conflicts and wars, for financial systems, transportation 
and logistic systems, any many other areas. 

The Living Earth Simulator will enable the exploration 
of possible future scenarios at different degrees of detail, 
employing a variety of perspectives and methods (such 
as sophisticated agent-based simulations and multi-level 
models). It will act as a Policy Simulator or Policy Wind 
Tunnel, enabling one to test alternative choices and differ-
ent policies in advance to explore their possible or likely 
consequences. These simulations will be enabled by the 
so-called World of Modelling – an open-software platform, 
comparable to an App store, to which scientists and de-
velopers can upload theoretically informed and empiri-
cally validated modelling components that map parts of 
our real world. Rather than giving an ultimate answer, the 
pluralistic approach of this platform will offer multiple 
perspectives on difficult problems and, thereby, support 
better informed decision-making guided by the values 
and priorities of the respective users. 

The Living Earth Simulator will require the develop-
ment of interactive, decentralized, scalable computing in-
frastructures, coupled with the access to Big Data. Gather-
ing these data is the role of the Planetary Nervous System 
(PNS). Our bodies are constantly responding and adjust-
ing to new data – for example, tuning our metabolism 
to the energy requirements, ambient temperature and 
current energy reserves. Sensory feedback is essential for 
navigating our environment, avoiding danger and per-
forming fine motor tasks. The Planetary Nervous System 
will provide the same sort of function for our Earth. It will 
be comprised of a global sensor network, where ‘sensors’ 
include anything able to provide data in real-time about 
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socio-economic, environmental or technological systems, 
including the Internet. Such an infrastructure will enable 
real-time data mining (‘reality mining’), e. g. of news, in-
formation feeds, or search trends. 

A crucial part of the FuturICT platform are the Interactive 
Observatories, which will use the Planetary Nervous System 
to spot potential weaknesses or problems arising in specific 
sectors, such as the financial system or conflict-prone re-
gions. These Observatories will continuously monitor the 
‘health’ of the economy, of urban and transportation sys-
tems, or of international relations, say, to give early warn-
ings of hazard, where possible. Analogous to seismic-mon-
itoring networks, they will watch out for the build-up of 
stresses or for precursory signals of impending collapse or 
catastrophe. They will thus facilitate pre-emptive searches 
for solutions based on specific, locally tuned scenarios. 

The Global Participatory Platform (GPP) will make Fu-
turICT’s new methods and tools available for everyone 
(with reputation and transparency mechanisms in place 
to foster responsible use). This will enable people to look 
at all interesting issues from many angles and to use the 
power of crowd sourcing and the wisdom of crowds. The 
Global Participatory Platform will promote communica-
tion, coordination, cooperation and the social, economic 
and political participation of citizens. In this way, the tra-
ditional separation between users and providers, or cus-
tomers and producers will be overcome, thereby unleash-
ing new economic potentials. Building on the successful 
principles of Wikipedia and the Web x.0, societies will 
be able to harness the knowledge and creativity of many 
minds much more effectively than we can do today. 

The Global Participatory Platform will include Interac-
tive Virtual Worlds, where possible futures can be explored 
and enacted using techniques like those developed for 
multi-player online games. The purpose of these virtual 
copies of our world is to explore possible futures, i. e. to 
identify likely systemic outcomes of interactions, given 
certain ‘rules of the game’ and institutional settings. For 
example, one could study different kinds of financial ar-
chitectures and the market dynamics resulting from them. 
Such participatory experiments could also inform the de-
signs of shopping malls, airports, and future cities. 

In addition to the interconnected systems forming the 
Living Earth Platform, FuturICT will create an Innovation 
Accelerator (IA) to identify inventions and innovations 
early on, to distil valuable knowledge from a flood of in-
formation, to find the best experts for projects, and to fuel 
distributed knowledge generation by ‘crowd-sourcing’. 
This Innovation Accelerator will also catalyse the integra-
tion of project activities in one single platform. Because 
the Innovation Accelerator will support communication 
and flexible coordination in large-scale projects, it will 
form the basis of the innovative management of the Fu-
turICT Flagship itself.

Towards More Resilient and 
Sustainable Systems: How It All 
Comes Together 

One of the scientific challenges behind attempts to pro-
mote social well-being will be to measure the relevant fac-
tors for it on a global scale and in real-time with sufficient 
accuracy. (Note that delayed policy response may cause 
an unstable system dynamics).

Measuring social well-being is even more difficult 
than measuring GDP. Currently, reliable official numbers 
for GDP are published only with a delay of many months. 
However, new ways of measuring GDP have recently 
been suggested. For example, it seems feasible to esti-
mate GDP from satellite pictures of global light emissions. 
Such estimates are possible almost in real-time. Similarly, 
it has been shown that health-related indicators (such as 
the number of patients during flu pandemics) can be well 
estimated based on Google Trends data. 

Therefore, the vision of FuturICT is to make the differ-
ent dimensions of social well-being globally measurable 
in real-time. This could be done by mining freely available 
data on the internet, by sentiment analysis of tweets and 
blogs, or by use of sensor data of various kinds. Recent 
attempts to measure happiness and its variation in space, 
time and across social communities point the way for this. 

Determining the ‘Social Footprint’ 
to Protect the Fabric of Society

FuturICT’s Planetary Nervous System will provide the 
methods and tools to measure human activities and socially 
relevant variables in real-time, on a global scale, and in a 
privacy-respecting way. By extending measurements to so-
cial and economic domains, FuturICT will complement and 
go beyond the scope of similar projects focused on environ-
mental and climate-oriented measurements (e. g. ‘Planetary 
Skin’ and ‘Digital Earth’). The ambition of the Planetary 
Nervous System is more than measurement. It also intends 
to create individual and collective awareness of the impact 
of human decisions and actions, particularly on the social 
fabric on which our society is built (the ‘social footprint’). 

The Planetary Nervous System serves to detect pos-
sible opportunities and threats, in order avoid mistakes 
that one may regret later on. This requires a certain ability 
to anticipate (in a probabilistic way) possible courses of 
events. While our own consciousness performs such an-
ticipation by ‘mental simulation’, FuturICT’s Living Earth 
Simulator will perform the equivalent task for complex 
techno-socio-economic-environmental systems, by simu-
lating simplified models of our society and economy and 
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other relevant activities in our world. On top of this, In-
teractive Virtual Worlds and Mixed Reality Environments 
will provide an online laboratory to explore human inter-
actions under close-to-realistic conditions. 

While FuturICT’s new concepts for the measurement, 
simulation and interactive exploration of the impact 
of human decisions and actions will support collective 
awareness, the Global Participatory Platform will create 
new opportunities for social, economic, and political par-
ticipation. Altogether (and with suitable rating and repu-
tation mechanisms in place), this will promote better de-
cisions and responsible actions. In particular, measuring 
the value of human and social capital and quantifying the 
‘social footprint’ will help us to protect the social fabric on 
which our society is built, in a similar way as the measure-
ment of the ‘environmental footprint’ has empowered 
people and institutions to better protect our environment.

In Conclusion

The FuturICT flagship project seeks to create an open and 
pluralistic, global but decentralized, democratically con-
trolled information platform that will use online data to-
gether with novel theoretical models to achieve a para-
digm shift in our understanding of today’s strongly 
interdependent and complex world and make both our 
society and global ICT systems more flexible, adaptive, 
resilient, sustainable, and humane through a participatory 
approach. FuturICT is a big project: an unprecedented 
multi-disciplinary, international scientific endeavour re-
quiring the collaborative effort of hundreds of scientists 
worldwide (see Box 3). The first practical results are ex-
pected 2–3 years after the project starts, with results and 
tools being made available to the public throughout the 
ten-year lifetime of the project. 

This is an ambitious goal, but one that is within our reach. 
It will require advances in ICT, social science and complex-
ity science. It will involve all levels and facets of society in 
developing and shaping the project’s outcomes. Without an 

FuturICT’s Partners and Supporters

FuturICT is currently supported by about 1000 scientists world-
wide (see www.futurict.eu). It involves Europe’s academic pow-
erhouses, such as ETH Zurich, University College London (UCL), 
Oxford University, the Fraunhofer Society, the Consiglio Nazio-
nale delle Ricerche (CNR), the Centre National de la Recherche 
Scientifique (CNRS), Imperial College, and many more excellent 
academic institutions. More than five supercomputing centres 
support FuturICT. The project has letters of support from the 
OECD, the European Commision’s Joint Research Center (JRC), 

research labs of Disney, IBM, Microsoft, SAP, Xerox, and Yahoo, 
international companies including banks, insurance and tele-
communication companies, several regulatory authorities, and 
notable individuals such as George Soros. Furthermore, FuturICT 
has already managed to integrate many different research com-
munities, and its leaders have a long track record of successful 
collaborations between scientists across disciplinary boundaries. 
FuturICT’s supporters have also been involved in hundreds of 
successful projects with business partners.

enterprise of this sort, the world is sure to fall increasingly 
behind the reach of orderly planning and management. 
Given the 21st century challenges that we need to tackle, 
it would be irresponsible not to undertake a project of this 
ambition. Everyone in the world is being affected by these 
new problems. They should all have a say in their solution. 
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For further information, please consult the the following links:
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http://vimeo.com/futurict: FuturICT on vimeo
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euro-eu.html: FET Flagship Poll
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