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INTRODUCTION 

The mysteries of highly complex systems that have puzzled scientists for 
years are finally beginning to unravel thanks to new analytical and simula-
tion methods. Better understanding of concepts like complexity, emergence, 
evolution, adaptation and self-organization have shown that seemingly unre-
lated disciplines have more in common than we thought. These fundamental 
insights require interdisciplinary collaboration that usually does not occur 
between academic departments. This was the vision behind the first In-
ternational Conference on Complex Systems in 1997: not just to present 
research, but to introduce new perspectives and foster collaborations that 
would yield research in the future. 

As more and more scientists began to realize the importance of explor-
ing the unifying principles that govern all complex systems, the 2007 ICCS 
attracted a diverse group of participants representing a wide variety of disci-
plines. Topics ranged from economics to ecology, from physics to psychology 
and from business to biology. Through pedagogical, breakout and poster 
sessions, conference attendees shared discoveries that were significant both 
to their particular field of interest, as well as to the general study of complex 
systems. These volumes contain the proceedings from that conference. 

Even with the seventh ICCS, the science of complex systems is still in 
its infancy. In order for complex-systems science to fulfill its potential to 
provide a unifying framework for various disciplines, it is essential to provide 
a standard set of conventions to facilitate communication. This is another 
valuable function of the conference: it allowed an opportunity to develop a 
common foundation and language for the study of complex systems. 

These efforts have produced a variety of new analytic and simulation tech-
niques that have proven invaluable in the study of physical, biological and 
social systems. New methods of statistical analysis led to better understand-
ing of polymer formation and complex fluid dynamics; further development 
of these methods has deepened our understanding of patterns and networks. 
The application of simulation techniques such as agent-based models, cellu-
lar automata and Monte Carlo calculations to complex systems has increased 
our ability to understand and even predict behavior of systems which once 
seemed completely unpredictable. 

The concepts and tools of complex systems are of interest not only to 
scientists, but also to corporate managers, doctors, political scientists and 
policy makers. The same rules that govern neural networks apply to social 
or corporate networks, and professionals have started to realize how valuable 
these concepts are to their individual fields. The International Conferences 
on Complex Systems have provided the opportunity for professionals to learn 
the basics of complex systems and share their real-world experience in ap-
plying these concepts. 
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Chapter 1 

CALM: Complex Adaptive System 
(CAS)-Based Decision Support for 

Enabling Organizational Change 
Richard M. Adler, PhD 

DecisionPath, Inc. 
rich@decpath.com 

David J. Koehn, PhD 
DJ Koehn Consulting Services, Inc. 

koehndj@msn.com 

Guiding organizations through transformational changes such as restructuring 
or adopting new technologies is a daunting task. Such changes generate workforce 
uncertainty, fear, and resistance, reducing morale, focus and performance. 
Conventional project management techniques fail to mitigate these disruptive effects, 
because social and individual changes are non-mechanistic, organic phenomena. 
CALM (for Change, Adaptation, Learning Model) is an innovative decision support 
system for enabling change based on CAS principles. CALM provides a low risk 
method for validating and refining change strategies that combines scenario planning 
techniques with "what-if' behavioral simulation. In essence, CALM "test drives" 
change strategies before rolling them out, allowing organizations to practice and learn 
from virtual rather than actual mistakes. This paper describes the CALM modeling 
methodology, including our metrics for measuring organizational readiness to respond 
to change and other major CALM scenario elements: prospective change strategies; 
alternate futures; and key situational dynamics. We then describe CALM's simulation 
engine for projecting scenario outcomes and its associated analytics. CALM's 
simulator unifies diverse behavioral simulation paradigms including: adaptive agents; 
system dynamics; Monte Carlo; event- and process-based techniques. CALM's 
embodiment of CAS dynamics helps organizations reduce risk and improve 
confidence and consistency in critical strategies for enabling transformations. 



1 Introduction 
Guiding organizations through transformational change is a daunting task. Examples 
of change include downsizings, mergers, and adopting new enterprise software 
systems or technology platforms. Transformational changes drive fundamental shifts 
in personal and organization ways of thinking and doing business. As such, they 
disrupt the status quo, forcing managers and workers out of their comfort zones, 
altering their mental models, and conflicting with established behavior patterns, 
processes, and cultural norms. Reactions resemble the body's immune response: 
organizations and individuals resist change and act to maintain prior "equilibrium" 
conditions, lowering morale, focus, and performance. Even if desired changes are 
implemented successfully, major challenges remain to sustain changes: absent 
ongoing vigilance, organizations tend to revert back to older, familiar behaviors and 
attitudes. In short, change, once effected, must be institutionalized to endure. 

Businesses and government agencies report high failure rates in navigating, much 
less sustaining, transformations, even after spending considerable sums on change 
management consultants [1]. Diagnostic surveys reveal low levels of employee trust 
in management, and chronic dissatisfaction with working conditions. Unless these 
underlying root causes are addressed directly, management interventions to anticipate 
and mitigate the disruptive effects of transformational change will continue to fail. 

This paper describes an innovative methodology for enabling and sustaining change 
called CALMTM (for Change, Adaptation, and Learning Model). CALM provides a 
low risk method for validating and refining change strategies. In essence, CALM 
"test drives" change strategies before rolling them out, allowing organizations to 
practice and learn from virtual rather than actual mistakes. Equally important, 
CALM allows organizations to monitor change strategies as they are being executed, 
and perform mid-course corrections as necessary. CALM enables change teams to 
sense and respond at the right moment, just as expert sailors tack quickly in response 
to small changes in the wind. CALM thereby reduces risk and improves confidence 
and consistency in transformational strategies. 

2 Transformational Change 

2.1 Related Work 
The literature on change management is extensive, produced primarily by business 
school professors and management consultants [2]. Authors typically describe the 
disruptive forces and behaviors that they observe afflicting organizations facing 
major change, and then prescribe process-oriented methodologies designed to 
mitigate those problems. Kotter [3], for example, proposes the following process 
model. He argues that these eight phases are jointly necessary (but individually 
insufficient) to guide organizations through major changes and to sustain them. 

• Initiate change (by defining a sense of urgency and business case for change) 
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• Build a coalition of change agents 
• Fonnulate vision 
• Communication and educate 
• Empower others to act 
• Create short-tenn wins 
• Consolidate and further change 
• Institutionalize change 

Broadly speaking, change phenomenologies, while valuable for general anticipatory 
purposes, are purely qualitative and not directly actionable. We find additional 
problems with prescriptive process methodologies and how they are applied: 

• Change management programs tend to focus at a tactical level, addressing a 
specific pending transfonnation rather than strategically, on generalized 
organizational preparedness and receptivity to continuous change 

• Change process models apply the same mechanistic techniques that were 
developed to manage business and technology projects (e.g., scheduling, resource 
allocation) to the complex behaviors displayed by organizations and individuals 
facing disruptive changes - uncertainty, inertia, resistance 

• Until recently [4], the literature effectively ignored decades of research on "new 
sciences" that focus expressly on modeling the kinds of social and personal 
behaviors observed in change situations, such as CAS, system dynamics, and 
stochastic methods. This latter literature, however, is not directly actionable. 

2.1 CALM's Contribution: "Test Driving" Change Strategies 

CALM addresses these problems by providing a dynamic decision support 
methodology. Rather than simply framing plans that encompass the eight phases of 
Kotter's change process, CALM introduces scenario-based situational modeling and 
"what-if' simulation capabilities to help organizations proactively validate and refine 
such plans. Specifically, CALM adds the following elements to the mix: 

• A rich set ofmetrics designed to measure an organization's readiness to change 
• A model of the dominant environmental forces, both internal and external, that 

influence organizations while they attempt to change 
• A framework for defining organizational strategies - or transformation plans -

comprised of change initiatives such as communication and compensation 
techniques that contribute to Kotter's archetypal phases for helping organizations 
and their workforces to accept and embrace significant changes 

• A CAS-inspired dynamic model that estimates the (qualitative) effects of 
situational forces and change initiatives over time on CALM's readiness metrics 

Consultants experienced with CALM facilitate meetings with teams of organizational 
leaders, managers and key employees to characterize the following: 
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• Organizational structure, key forces, and the pending (or ongoing) change 
• Estimated current organizational readiness levels and specified target levels, 

which, if achieved would likely ensure success 
• A small number of alternate plausible futures defined by assumptions of how 

environmental forces, trends, and singular events might play out 
• One or more prospective alternate transformation plans, composed of pre-defined 

initiatives from CALM's library, which incorporate projected schedules and costs. 

The CALM methodology is embodied in a software system implemented using 
DecisionPath's ForeTell framework [4V ForeTell captures these various situational 
and assumptive elements in model constructs called scenarios. Consultants then 
apply CALM's simulation engine to project the likely outcomes of prospective plans 
- in terms of changing readiness metrics across alternate scenarios. Finally, 
integrated analytics enable projected outcomes to be explored and compared, across 
both alternate futures and transformation plans, to identify a robust change strategy. 

Intuitively, a "robust" strategy is one that produces attractive results across alternate 
futures. No one can predict the future reliably. The next best thing is to devise a 
change plan that carries a high likelihood of success regardless of which future 
obtains. By projecting the likely consequences of candidate plans across diverse 
plausible futures, CALM helps organizations identify relative strengths and 
weaknesses, and uncover unintended consequences. Stronger plans can then be 
synthesized from preceding attempts. In short, the CALM framework supports the 
validation of iterative refinement of strategies to increase robustness. 

Change strategies, however inspired, have little value unless they are executed 
competently. CALM was designed to be applied after strategies have been adopted, 
to monitor their execution. In this mode, organizations update their scenarios 
periodically to reflect current conditions and progress in improving readiness. CALM 
then re-projects the chosen strategy against these updated scenarios. If outcomes 
continue to be positive (i.e., readiness metrics reach their target levels), the chosen 
strategy is re-validated. Ifnot, CALM acts as an Early Warning System, helping to 
uncover emerging problems promptly; diagnose them; and define and validate mid-
course corrections. In this post-decision "sense and respond" mode, CALM helps 
organizations carry out and sustain change strategies across their extended 
"lifecycles," despite inevitable situational changes that occur over time. 

2.2 Modeling the Behavioral Dynamics of Organizational Change 
Enabling and sustaining transformational change is a complex, extended process that 
is influenced by several basic dynamic drivers. First, as organizations carry out 
change initiatives, internal and external stakeholders invariably respond, adapting 

I ForeTell is a software platform for rapidly developing and deploying critical 
decision support systems. It has been applied to diverse domains including counter-
terrorism and pandemic preparedness, competitive drug marketing strategy, IT 
portfolio management, and dynamic social network analysis. 
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their behaviors to advance personal and group interests. 

Second, individual and organizational attitudes and behaviors tend to evolve over 
time in complex, and often non-linear patterns. For example, trust, morale, focus, 
and acceptance typically don't build or decay continuously and smoothly; rather, they 
tend to jerk, stick, and accelerate or decelerate. 

Finally, environments such as societies and markets evolve continually, driven by 
situational forces and events. In short, the target audience and the "ground" under the 
organization'S "feet" shift continually and in ways that are difficult to anticipate. It is 
the complex interplay of intentional adaptive and non-linear behaviors and ongoing 
environmental change that causes static process models to fail. 

CALM improves how transformational plans are developed, validated, and executed 
because it recognizes and embraces these complex dynamics of change. It applies 
"new science" theories such as system dynamics, CAS, and Monte Carlo methods 
specifically designed to model individual and social behavior patterns. Finally, it 
provides an iterative and interactive process for modeling and analyzing change and 
change strategies using these "organic" dynamic modeling techniques. 

A simple analogy explains CALM's approach and differentiate it from process 
models such as Kotter's. Enabling and sustaining transformational change is similar 
to launching a rocket. Propelling a rocket into orbit requires generating sufficient 
over time to (I) overcome inertia and lift the rocket's mass, and (2) accelerate it to 
"escape" velocity for insertion into orbit despite the constant drag of gravity. If 
insufficient thrust is generated and maintained, the rocket will fall back to earth. In 
multi-stage rockets, the ignition and firing durations of booster sections must be 
designed precisely to produce sufficient thrust and appropriate acceleration profiles. 

Similarly, change strategies must generate organizational and personal "thrust" to 
bring out (i.e. accept and embrace) change and sustain it by overcoming persistent 
conservative forces such as personal and group inertia and old behavior patterns. As 
in multi-stage rocket engines, the sequencing and durations of change activities must 
be carefully coordinated to prevent the loss of momentum and perceptions of stalled 
progress, which lead directly to outright failure or unraveling of transformations. 

This analogy is admittedly imperfect. Designing rocket engines and launch trajectories 
is a well-established engineering discipline. Newton's laws of motion strictly 
determine the mechanical interactions of a small number of key parameters and forces. 
Solutions can be computed from textbooks or software programs. The same equations 
apply uniformly to all launch situations. They never change over time. 

Organizational change clearly represents a more complex and open-ended 
phenomenon. It is not obvious what parameters to measure, much less what, if any 
"universal laws" govern situational dynamics. As a result, models such as CALM are 
qualitative rather than quantitative, and exploratory than deterministic and predictive. 

6 



Process models such as Kotter's, while valuable, provide guidance that is largely 
static, passive, and broadly defined: they offer no framework for thinking through the 
dynamics of change processes, or help in designing or selecting and assembling 
specific initiatives to implement the eight stages tailored to particular organizations 
and their specific transformational challenges. 

Most organizations need more detailed guidance. Enabling change is a complex 
undertaking. Mistakes are inevitable. They may also be irreversible. Initiatives that 
fail tend to undermine stakeholder trust and confidence: management cannot simply 
switch strategies and try again from the same initial state. Something must be added 
to help organizations design and test change strategies in advance. 

Our rocket analogy provides this critical missing ingredient, namely, a model for 
anticipating how transformational change is likely to play out in terms of empirical 
metrics. CALM equates Kotter's eight step model to a multi-stage rocket engine. 
CALM also defines an explicit dynamic model of how change initiatives (and 
situational forces) impact measurable organizational readiness factors. This 
simulation model allows CALM to project how organizations, their employees, 
forces, and change initiatives will interact with one another and evolve over time. 

Transformation plans can thereby be validated dynamically, much as rockets can be 
simulated to see if they generate the required launch and thrust profiles. For CALM, 
sufficient "thrust" over time equates to improvements in the key readiness metrics. 
Reaching escape velocity corresponds to achieving target readiness values. Failure to 
achieve target values means that the transformation plan is unlikely to succeed. 

CALM's simulation, while qualitative, provides a systematic and repeatable basis for 
projecting likely outcomes. Through iterative refinement (and continuous 
improvement over successive transformations), CALM helps organizations address 
change and learn how to execute better over time. The next section describes the 
software that embodies this methodology. 

3 Embodying the CALM Methodology in Software 

CALM organizes the process of "test driving" change strategies into three primary 
processes - modeling, behavioral "what-if' simulation, and analysis. Each process is 
supported by a software application that was developed using DecisionPath's 
ForeTell® decision support software platform [5], as summarized in Figure 1. 
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Model 
• Situation: organization, environment, change 
• Candidate change strategies & tasks 

+ 
• What if situation evolves along path Y? 
• What if we intervene by doing X? Simulate 

+ 
Analyze 

• Explore projected outcomes (key metrics) 
• Compare alternate decisions & scenarios 

Figure 1. Phases of CALM Methodology 

3.1 Modeling 

CALM explicitly captures available knowledge about both static and dynamic 
aspects of situational contexts and transformations. Capturing situational dynamics is 
clearly critical for CALM's second task - projecting outcomes.2 

CALM change models, called scenarios, are comprehensive, encompassing the 
following situational elements mentioned above/ summarized pictorially in Figure 2: 

• Relevant organizational units (e.g. an agency, its member departments or groups) 
• The transformation at issue (e.g., new IT system technology, a reorganization) 
• Current and target (goal) values for metrics that measure organizational readiness 

to change (and overall performance) 
• Environmental forces and trends acting on the organizational unit on a 

continuing basis (and assumptions about how they are likely to change over the 
future) 

• Possible events that might occur and disrupt the transformation and change plan 
• Candidate transformation plans, composed of individual change initiatives 

Environmental forces include both external factors (e.g. social, political, legal, 

2 Lacking supporting software, conventional change management methodologies 
address dynamics in an informal, intuitive manner, if at all. This ad hoc approach is 
very difficult to apply consistently, much less replicate or teach. 
3 These elements are implemented as a hierarchical object-oriented model: the 
Scenario class contains (is the parent of) Organizational Unit, which contains 
Change, Metric, Environmental Force, and Transformation Plan subclasses. 
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economic) and internal factors (e.g., leadership, resources). Examples of disruptive 
events include new legislation or regulations, changes in leadership or economic 
conditions. 

Organizational Unit 

~vents 

External 
Forces 

Change Dimensions 
Org. Mindset Personal Mindset 

.,. ...... Outstanding 

Good 
Change Path 

Infrastru du re 
~----~~----~~----------------~ 

Transformati on Plan 
,.Change Initiatives 

Internal 
Forces 

Figure 2. CALM Elements for Modeling Organizational Change 

Metrics are critical for measuring an organization's initial, goal, and evolving states 
surrounding a transformation. Existing change methodologies focus primarily on 
metrics relating to business "infrastructure", which measure "physical things to do" 
regarding organizational technology processes, structures, and policies (e.g., 
functional training to use a new business software system). However, the dominant 
causes for transformation failures typically trace back to less obvious and less 
concrete organizational and workforce readiness factors, such as cultural dissonance; 
inadequate leadership support; poor communication; fear of change; lack of 
confidence; or inadequate skills or empowerment to carry out the necessary 
adaptations. Failure to attend to these intangible factors can result in winning the 
battle, but losing the war: organizations know what to do to carry out the requisite 
changes, but are unwilling to accept or embrace them. 
The CALM methodology measures organizational readiness to deal effectively with 
change across three "dimensions" - infrastructure, organizational and personal 
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(workforce) mindsets. Each CALM change readiness dimension consists of three to 
six metrics, selected from the literature to reflect diverse types of transformations and 
associated risks. Example organizational mindset metrics include teaming, cultural 
coherence, and leadership change capacity. Personal mindset metrics reflect factors 
such as emotional resilience (emotional intelligence/personal change skills), learning 
capabilities, competency development and self-confidence. Infrastructure metrics 
include operational agility, technological upgradeability and organizational 
adaptability. CALM also provides metrics for "bottom-line" performance (e.g., cost 
competitiveness, customer satisfaction).4 All metrics are estimated on a scale of 1 to 
100. Exact values are less important that the reasoning (documented by CALM) that 
teams use to come to consensus on them. 

CALM's Transformation Plan construct exploits the Kotter process model. The eight-
phased plans are constructed of finer-grained initiatives or strategies, which have 
projected schedules and estimated costs. Incorporating costs into change plans allows 
CALM to support differential cost-benefit analyses of competing plans. 

CALM's behavioral dynamics model projects the likely impacts on the target 
organization (and its readiness measures), of changes in the situational environment 
induced by forces, events, and the proposed change enablement strategy. CALM 
exploits ForeTell's dynamic architecture to project likely impacts, combining 
simulation techniques including complex adaptive systems (agents) [6,7], event 
modeling, system dynamics [8], and Monte Carlo methods [9]. 

Each environmental Force in CALM specifies its (assumed) causal impact. That is, it 
dictates how a change in magnitude (e.g., of bold new leadership, increased 
competition) is likely to impact the organizational performance and readiness metrics 
described earlier. Similarly, each change initiative (e.g., communicating vision, 
empowering employees to carry out change tasks) specifies how that activity is likely 
to impact CALM metrics over their scheduled times. 

As in the real world, these effects may take time to manifest (i.e. delay or latency), 
have bounded durations, and display cumulative build-up (i.e., non-linear response). 
The data to drive these specifications comes from expert judgment and other sources 
(e.g., surveys, benchmarking exercises, data warehouses) that may be available. 
Users construct, copy and edit, and export scenarios using an intuitive graphical user 
interface (QUI) modeled after standard tree-based controls for viewing file systems. 
The Scenario Editor contains panels that depicts the entities comprising a scenario, 
the attributes for a selected entity, and integrated help that explains the entity type 
and attribute. Pop-up editors provide text, numerical slider, list and table controls for 
entering scenario data, as appropriate. All values can be annotated with comments, 
source, and degree of certainty, facilitating transfer and maintenance of scenarios. 

For ease-of-use and speed, we are populating a library of pre-defined forces and 

4 The CALM software allows the baseline set to be extended with additional metrics 
tailored to particular organizations, sectors, and changes. 
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change initiatives integrating with CALM. Each such component provides a pre-
validated causal model, which can be tuned to specific organizations and contexts as 
required. CALM's library allows drives a ''Lego™ building block" approach to 
building scenarios that exploits best practices expert knowledge about change 
strategies and their likely impacts on organizational readiness over time. 

3.2 Simulation Engine 
CALM projects situational dynamics via ForeTell's parallel discrete event simulation 
engine. The core engine employs an agent-based simulation paradigm: at each 
simulated interval (i.e. "clock tick"), this engine invokes active scenario entities in a 
uniform order based on the object hierarchy. Each such entity runs its type-specific 
behaviors. For intentional entities (i.e., goal-directed organizations or persons), 
actions often involve sensing internal and external state and responding according to 
behavioral patterns, such as stimulus-response rules. 

The ForeTell engine employs a novel hybrid architecture that extends the core CAS 
paradigm with overlays that support other simulated dynamics, including causality 
(i.e., system dynamics), situational trends, events, and processes. For example, a 
CALM transformation plan carries out organizational change initiatives as a process 
comprised of scheduled tasks, the causal impact of which is realized by system 
dynamic productions.5 A similar embedded system dynamics model propagates the 
effects of CALM environmental forces on organizational readiness metrics. 

ForeTell's multi-modal simulator reflects the fact that real world systems are 
influenced by diverse - and interacting - dynamic drivers. Uni-modal simulators 
frequently lead to distorted or incomplete models when their chosen dynamic 
paradigm is applied outside of its ideal design stance (e.g., modeling environmental 
interactions with agents or systems of intentional entities with system dynamics). 

Users monitor and control executing scenarios through ForeTell's "dashboard" style 
GUI, made up of controls, gauges and time series plots of aggregate readiness 
metrics. Simulations can be suspended to inspect specific entities and metrics. 

3.3 Analytics 
As the ForeTell simulator runs, it logs all state changes occurring in CALM scenario 
entities to a database. An integrated analytics engine helps users retrieve and reduce 
this mass of data via graphical and tabular summaries to explore projected outcomes 
of individual CALM scenarios. More importantly, outcomes can be compared across 
scenarios for competing strategies and/or diverse plausible futures. 

Users generate summary analytics via a simple menu-driven dynamic query GUI. 

5 ForeTell's simulator incorporates a Monte Carlo utility that allows users to define 
statistical distributes of scenario parameters and perform large numbers of runs 
(trials) in batch mode, which is useful for sensitivity analysis. It also supports 
dynamic social network modeling and Bayesian inference networks. 
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Outputs include tabular reports, time series and radar plots, and frequency 
histograms. One summary report documents before/after metrics and percentage 
change, while others isolate specific dynamics (events, trends, causality) that help 
users understand why and when observed readiness changes occurred. ForeTell's 
analytics engine embeds open source math, graphics, and statistics libraries, allowing 
rapid extension to satisfy new analytic requirements. 

3.4 Validation and Verification 
Organizations typically require confidence building exercises before they are willing 
to commit to the CALM methodology. CALM employs several techniques for this 
purpose. First, when available, we use an organization's prior transformational 
projects to calibrate CALM's dynamics, by adjusting force and change initiative 
causal weighting factors to match historical patterns of changing readiness levels. 

Secondly, the CALM methodology prescribes two types of validation exercises, 
called "sanity checking" and retrospective testing. In sanity checking, scenarios are 
constructed to depict extreme conditions and change strategies. People often lack 
firm intuitions about the minor variations in forces or plans. However, they typically 
have stronger instincts about outcomes in extreme situations. 

For example, suppose employees face a change situation that entails deep pay cuts 
and/or layoffs. Given this context, most people would predict with confidence an 
outcome that includes major drops in employee morale and customer satisfaction. An 
organization's CALM scenarios should project outcomes that match these beliefs. 
They should also change gracefully as the extreme conditions are "dialed back." 

Retrospective testing on past change situations represents the "acid test". Here, 
scenarios are created that depict the organization's state and environment at the 
(historical) point of decision. Next, the forces, trends and events that actually 
occurred through to the present are added to the scenario. Finally, the change 
initiatives that were undertaken are introduced. Given these inputs, CALM's 
scenario projections should resemble the evolution of organizational readiness 
metrics that actually took place. 

4.0 Conclusions 
CALM provides a disciplined framework drawn from CAS principles for modeling 
organizational transformations and exploring alternate change enablement strategies. 
CALM acts as a "robotic juggler", uniformly manipulating the diverse interacting 
dynamic drivers of change that humans are cognitively unable to project mentally in a 
consistent manner. In essence, CALM enables organizations to practice prospective 
change strategies in a low risk virtual environment. Organizations can then learn 
from simulated mistakes at minimal cost, rather from real "blood on the tracks" errors 
that result in problems such as pervasive worker mistrust or alienated customers. 

CALM can be applied over the lifecycle of extended transformations, helping 
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organizations sense and respond to continuous situational change. CALM also 
supports decision-making for less radical incremental or transitional forms of 
organizational change. 

CALM's differential analyses of alternate change strategies across diverse plausible 
futures are key drivers of enhanced decision-making. All significant changes involve 
risk: risk is unavoidable. Managing risk effectively hinges on understanding the 
likely costs and benefits of assuming particular risks and incurring only those risks 
for which the rewards are commensurate. CALM helps organizations explore these 
trade-offs systematically and repeatably. CALM libraries capture and disseminate 
best practice analyses of change and change strategies. CALM simulations also 
provide audit trail that enhance organizational governance, continuous learning and 
improvement. Thus, the CALM methodology helps organizations reduce risk and 
increase confidence in responding to transformational change. 
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Agent-based modelling and simulation is now beginning to establish itself as a 
suitable technique for studying biological systems. However , a major issue in using 
agent-based simulations to study complex systems such as those in Systems Biology 
is the fact that simulations are 'opaque' . While we have knowledge of individuals' 
behaviour through agent rules and have techniques for evaluating global behaviour by 
aggregating the states of individuals, methods for identifying the interactive mecha-
nisms giving rise to this global behaviour are lacking. Formulating precise hypotheses 
about these multi-level behaviours is also difficult without an established formalism 
for describing them. The complex event formalism allows relationships between agent-
rule-generated events to be defined so that behaviours at different levels of abstraction 



to be described. Complex event types define categories of these behaviours, which 
can then be detected in simulation, giving us computational method for distinguishing 
between alternative interactive mechanisms underlying a higher level behaviour. We 
apply the complex event formalism to an agent-based model of cell populations in the 
colonic crypt and demonstrate how competition and selection events can be identified 
in simulation at both the individual and clonal level, allowing us to computationally 
test hypotheses about the interactive mechanisms underlying a clone's success. 

1 Introduction 
Biological systems are complex adaptive systems (CAS) where a great number of 
entities interact to give rise to system-level behaviours and processes. These sys-
tems are inherently difficult to study because they exhibit polymorphism, con-
text dependency, evolution, reprogrammability, emergence, non-linearity, het-
erogeneity, hierarchy and complexity [7], [13], characteristics shared by most 
complex systems. Agent-based modelling and simulation (ABMS) is now a fairly 
well-established technique for studying such complex systems [16J but it has only 
recently begun to be seriously adopted in Systems Biology e.g. [17J . When used 
to study biological systems, ABMS allows certain hypothes es about individual-
level behaviour (e.g. at the level of cells) to be validated and refined, since the 
overall system behaviour observed in simulation can then be compared with that 
observed in the real system. While a correspondence does not verify a hypoth-
esis, it does show that it is valid and able to generate the expected behaviour. 
ABMS is therefore seen as a way of performing 'thought experiments' [12J. Rules 
are defined at the agent level, while the behaviour of the whole system is typi-
cally represented by a macro-state variable that aggregates the states of all the 
agents in some way; this macro-state variable is then tracked through time. 

A major problem with this approach is the loss of structure when states are 
aggregated e.g. no information about spatial locality is retained. This means 
that we are unable to identify the mechanisms (the actual interactive patterns 
between agents) that give rise to a particular global behaviour. For this reason, 
simulations are usually visualised, allowing the human experimenter to observe 
visually the interactions taking place through time. Hypotheses about such 
interactions are then formulated in natural language and hence vague e.g. 'the 
cells cooperate to survive'. In this paper, we seek to address this problem by 
introducing a formalism that allows such hypotheses to be expressed precisely 
in terms of the agent model. Once expressed formally, we can then identify the 
particular interactive mechanisms or classes of mechanisms in an agent-based 
simulation, giving us a computational method for testing such hypotheses. We 
illustrate this using ABMS of cell populations in the colonic crypt. 

The section that follows (Section 2) briefly introduces the complex event 
formalism. Section 3 describes the agent-based model of colonic crypt cell pop-
ulations. Section 4 formulates hypotheses about clonal level behaviours using 
the complex event formalism and discusses the results from detecting these be-
haviours in simulations. The final section (Section 5) concludes the summarises 
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and concludes the paper. 

2 Compositionality and Complex events 
In this section, we briefly introduce the complex event formalism, which al-
lows multi-level behaviours in agent-based simulations to be described. These 
behaviours are sometimes called 'emergent' because they have organisational 
properties that are not explicitly specified in the agent rules (reviews of theories 
of emergence can be found in [6], [5] and [1]). A more detailed account of the 
formalism and its relevance to current theories of emergence can be found in [3]. 

There are four central ideas behind the formalism, all relating to way that 
properties (in this case behaviours) can be located in a system or simulation. 

• Every behaviour in a system can be described by events (state changes) 
located in an n-dimensional (hyper )space. For the lifetime of the system or 
simulation, events can be located in this space by specifying the coordinates 
in each of the dimensions. The coordinate system used to specify the 
location can be global (from a whole system point of view) or local (where 
locations are in relation to a particular constituent within the system). 1 

• If two macro-properties consist of constituents of the same types and con-
stituents of the same type have the same configuration with respect to 
each other in the two properties, we can say the two properties are of the 
same type. 

• We can describe regions as well as point locations in a system or subsys-
tem space using propositional statements about the location in the sys-
tem/simulation's various dimensions. For example, in a system with only 
time and identity represented, (before 3, 4) stands for all the states or 
state transitions that occur in component 4 before time step 3. 

• Higher level properties can be composed by defining organisational rela-
tionships between their constituents i.e. their configuration. This idea 
is generalisable to any dimension. 

2.1 Complex events and simple events 
In an agent-based simulation, every event is the result of an agent rule being 
applied; we call these simple events. Simple events can be defined at various 
levels of abstraction, depending on which of the components (e.g. variables, 
agents2 ) affected by the rule application we are concerned with. For example, a 

1 For example, if the global coordinate (12, 1, 4, 2) represents the location of a state transi-
tion in the 12th time step (first tuple item holds time), located in coordinate (1, 4) of physical 
space (second and third tuple items hold space) in component with ID 2 (final tuple item holds 
component identity); the equivalent coordinate using a local coordinate system defined with 
respect to component 2 at time step 11 in the same spatial location would be (1, 0, 0, 0). 

2 Agents can be treated as complex variables. 
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rule that causes state changes in components a, band c can cause simple events 
(qa,qb , qc) -t (q~,q~,q~), (qa,qb) -t (q~,q~) ... , qa -t q~ ... etc. We call this the 
scope of the event. Two simple events el and e2 in a system are said to be of 
the same type if (a) el and e2 result from the same agent rule and (b) the scope 
of el is identical to the scope of e2 i.e. for every component in which a state 
change occurs in el, there is a component of the same type in which the same 
type of state change occurs in e23 • 

A complex event GE is defined as either a simple event BE or two complex 
events linked by eXl: 

GE :: BE I GEl [Xl GE2 (1) 

[Xl denotes the fact that G E2 satisfies a set of location constraints with respect 
to GEl. Conceptually, complex events are a configuration of simple events where 
each component event can be located in a region or point in a hyperspace that 
includes time, physical space and any other dimensions. The set of location 
constraints can be represented as a coloured multi-graph, where the node colours 
stand for event types and the edge colours for different relationship types (the 
location constraints) existing between the events [4 J. 

2.2 Complex event types for multi-level behaviour 
We have already introduced the idea that events can be typed in our discussion 
of simple events. We now extend this to complex events. Two complex events 
GEl and GE2 are said to be of the same type if, for each constituent event 
e1 in GEl there is exactly one event e2 in GE2 satisfying the same location 
constraints, and e1 and e2 are events of the same type. To specify a complex 
event type therefore, we need to specify the types for each of the constituent 
events and the location constraints that hold between them. 

Complex event types can differ in specificity. A fully determined complex 
event type GETFull is defined as one whose constituent events are in a fully 
determined configuration i.e. given the global location of one constituent event 
in the complex event, it is possible to work out the precise location of every 
other constituent event. A partially determined complex event type GET Part is 
an event type with a partially determined configuration and therefore defines a 
set of complex events with fully determined configurations. 

(2) 

The dimensions in which configurations are not fully specified lower the res-
olution of the complex event, with weaker constraints (greater ranges of possi-
ble values) implying a lower resolution in that dimension. More generally, the 
greater the number of complex event types with fully determined configurations 
that a complex event type contains, the lower its resolution. 

3See [9] for a formal definition of types 
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Having briefly outlined the complex event formalism, we now introduce the 
agent-based model of colonic crypt cell populations used to demonstrate its 
application. 

3 Cell population model 

In this section, we describe the agent-based model used for simulations of colonic 
crypt cell populations. Section 3.1 gives the biological background that forms 
the basis of the model while Section 3.2 gives the agent rules. 

3.1 Biological background 

The colon is made up of villi, which are finger-like structures each made up of 
-300 cells - 15 cells in diameter, 20 cells from the closed bottom (colonic crypt) 
to the villus tip [14]. In a colonic crypt, cells divide, differentiate and migrate 
up the crypt. Stem cells reside at the bottom of the crypt and typically divide 
asymmetrically to give one transit cell and one stem cell. Transit cells have the 
ability to divide a limited number of times (usually around 3 times) after which 
they undergo terminal differentiation. Fully differentiated cells are removed from 
the luminal surface by programmed cell death (apoptosis). 

Cells can take two to seven days to migrate from the site of their final division 
to the villus tip [18] and stem cells have cycle times ranging from 10 to 14 hours 
(consisting of GIl S, DNA repair, G2 , and M phases) after which they enter a 
resting phase (Go) of one one or two days before they divide again [2]. 

3.2 Rules for cell agents 

In our simulations, a single time step represents an hour of real time. Given 
what we know about the durations of cell division and migratory processes (as 
outlined in Section 3.1), Table 1 summarises the event timings used in the model. 
Where a range is given, a duration within the range is randomly selected. 

Table 1: Durations for cell cycle stages and migration 

Event 
Go (Resting) 
G1 Phase 
S Phase 
Repairing DNA 
G2 Phase and M Phase 
Migration 
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Real time duration (range) 
24h-48h 

1h-5h 
8h 

1h-5h 
1h 

48h-168h 

Simulation time steps 
24-48 

1-5 
8 

1-5 
1 

48-168 
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Figure 1: (a) Possible target locations for insertion when a new cell agent is produced 
from cell division. The arrows represent the possible locations for insertion if the parent 
cell is located in the position occupied by the black dot. (i) The new cell first attempts 
to insert itself in each of the adjacent positions (the order is determined randomly). (ii) 
If the two adjacent locations are both occupied, the new cell tries the location directly 
above the parent cell. (iii) If all these positions are occupied, it randomly selects one 
of the occupied positions (including the parent cells) and attempts to oust the cell 
currently occupying that position. The parent cell itself might be ousted if its position 
is randomly selected by the newly produced cell. If the cell fails to oust the existing 
cell, it fails to be inserted and 'dies. (b) Migration. (i) The cell agent first tries to 
move into the position directly above its current location. (ii) If the position directly 
above is occupied, it tries each of the positions adjacent to this (the order is determined 
randomly). (iii) If all these locations are occupied, the cell randomly selects one of the 
occupied positions and tries to oust the cell currently occupying that position. If it 
fails, the cell remains where it is. 

When a cell agent divides, it produces an additional cell agent which needs 
to be inserted at a location close to the parent cell. If all the locations in the 
parent cell's neighbourhood are occupied, the new cell agent randomly selects 
a location that it attempts to occupy by 'killing' the cell currently occupying 
the location (this might be the parent cell). Similarly, when a cell attempts to 
migrate upwards, it can 'kill' a cell occupying the space it is trying to move into 
(see Figure 1). The likelihood of a cell agent ousting another is a function of its 
fitness relative to its competitor's so that two cells with equal fitnesses have the 
same probability of 'losing' in a competition (in the simulations presented here, 
all cells have equal fitnesses). After three divisions, transit cells differentiate and 
can no longer divide, although they continue to migrate before eventually being 
lost when they reach the villus tip. 

The model is used to simulate a single villus with maximum capacity 300 
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cells i.e. 300 grid locations (15 cells in diameter, 20 cells from bottom to top). 
Initially, the villus only has 6 stem cells in the crypt but is then populated 
through division and migration of cells. Free locations in the crypt base are filled 
with new stem cells at each time step to model their continuous replenishment. 

4 Identifying competition and selection events 
in simulation 

Biological systems tend to be hierarchical [8], [10]. This means that the be-
haviour of a system can be observed and analysed at different levels of abstrac-
tion. In this paper, we consider relationships between clonal level behaviour and 
overall clone population dynamics. 

4.1 Clone population dynamics 
Ten 1000-time-step simulations were run based on the model. For each simu-
lation, the clonal populations were tracked through time, with several types of 
dynamics being observed (see Appendix 1). In some cases, one or two clones 
were significantly more successful than the others. (This result in itself has in-
teresting implications for the Systems Biology of Cancer, since it means that 
tumours may develop even when their cells have no intrinsic selective advan-
tage over normal cells, supporting the hypothesis that cancer is often a systems 
disease [11]). 

We try to validate two hypotheses about the strategies clones adopt to when 
they are expanding. We consider the significance of clustering and a particular 
'motif' of behaviour that it enables. The section that follows demonstrates how 
complex event types can be used to identify these. 

4.2 Complex event types for clustering structure and 
clonal behaviour 

We wish to test two hypotheses: 

1. Clustering is common in successful clones (or when clones are successful4 ) 

since members of the clone protect one another. 

2. Move events by members of a clone can lead to clonal expansion when a 
division or move by another clone member means the unoccupied previous 
location is filled by another clone member (see Figure 2). We hypothesise 
that this pattern of behaviour is more common in successful clones/when 
clones are successful. 

These can be reformulated in terms of complex events so that they can be 
tested computationally during simulation. We begin by defining the following 
simple event types, each with a particular scope: 

4As mentioned above, clone success often varies throughout the simulation. 
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Figure 2: move-win-replace complex event type. First, a cell belonging to a clone 
cluster moves into a new location and ousts a cell belonging to another clone. Then 
the cell's previous location is occupied by another cell in the clone cluster, allowing the 
cluster to expand. 

• ma: cell attempts to move into a new location. The scope consists of (i) S, the 
source location; (ii) T, the target location; and (iii) M, the moving agent. 

• ia: cell attempts to occupy a location currently occupied by another cell. The 
scope consists of (i) I, the cell attempting to occupy the location; and (ii) 0, 
the cell currently occupying the location. 

• cp: competition between two cells. The scope consists of (i) W, the cell that 
wins in the competition; and (ii) L, the cell that loses in the competition. 

• mv: cell moves to a new location. The scope consists of (i) S, the source location; 
(ii) T, the target location; and (iii) M, the moving agent. 

• dv: cell divides to give a new cell. The scope consists of (i) P, the parent cell 
and (ii) C, the child. 

• in: a newly created cell is inserted into a location. The scope consists of (i) N, 
the new cell and (ii) T, the target location. 

Within-clone competition Clone clustering can be determined by the degree 
of within-clone competition, which corresponds to the event type: 

wcc:: cp(W.cloneID = L.cloneID) (3) 

This is a sub-type of the compete event type. 

Move-win-replace A strategy that is believed to be successful for expanding 
a clone cluster is where a cells first replaces a cell from another clone and then has 
its own previous location filled by a member of its own clone. This corresponds 
to the complex event type (see Figure 2): 

mWT :: mal [XlA ia [XlB cp [Xlc mvl([XlD ma2 [XlE mv2[[ [Xlp dvl [Xle in) 

where 

• IXlA:: (; [Tma1 = O.loc, Mmal = I]), i.e.the target location Tmal of the move 
attempt mal is the same as the occupant O's location in the invade attempt ia 
and the moving agent Mmal is the invader I. 

• IXlB:: (; [I = W]), i.e. the invader I in invade attempt ia is the winner W in the 
compete event cpo 
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• IXlC:: (; [L.loc = Tmvl, W = MmvI)), i.e. the loser L's location is the target 
location Tmvl of the move event ml and the winner W in the compete event cp 
is the moving agent Mml in the move event mvl.move is winner. 

• IXlD:: (; [8mvl = Tma2, Mmvl.cloneID = Mma2.cloneID, Mml! = M ma2 )) , i.e. the 
target location T ml of the second move attempt ma2 is the same as the source 
location 8ml of the first move event ml, the moving agents Mml and M ma2 

belong to the same clone but are different indivduals. 

• IXlE:: (; [Tma2 = Tmv2, M ma2 = M mv2]) , i.e. the target Tma2 of the move attempt 
ma2 is the same as the target Tmv2 of the actual move mv2 and the moving 
agent is the same individual. 

• IXlF:: (; [Mmv1.cloneID = Cdv, Mmvl! = C dv ]), i.e. the moving agent Mmvl and 
the newly created child agent Cdv belong to the same clone but are different 
individuals. 

• IXlc:: (; [Cdv = N in , 8mv1 = Tin)), i.e. the target Tin of the insert is the same as 
the source location 8mv1 of the move mvl and the new cell from division is the 
same cell as the new cell to be inserted. 

(; is the next event operator.5 ) 

The complex event mw stands for the complex event where a cell moves into 
a space previously occupied by a cell from another clone: 

mw :: mallXlA ia I><lB ep I><lc mv 

We can now re-formulate our two hypotheses in complex event terms: 

1. When a clone is successful (has a greater number of individuals compared 
to other clones), it will have (proportionally) more within-clone competi-
tion wee events (relative to the overall number of competition events for 
the clone), indicating that more of its cells exist in a cluster. 

2. A successful clone will have (proportionally) more move-win-replace mwr 
events (relative to the number of mw events for the clone). 

Since it is highly contested whether the classical model of causality holds for 
complex systems, we do not make reference to it in our hypotheses, nor do we 
assume it. 

4.3 Results and discussion 
To validate the two hypotheses, we first considered clonal success at 100 time-
step intervals. Clonal success is represented by the average number of individuals 
in each clone f.lx over a time interval p divided by the overall average number 
of individuals f.lALL i.e. for each clone X: 

51n this particular example, we are assuming the simulation is a discrete event simulation 
so that each step does not necessarily have to represent the same unit of time. 
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where 

J1x sueeessp = --, 
J1ALL 

(4) 

p = n - m is time interval (in the anlysis presented here, p = 100), vxti is 
the number of individuals in X at time step i), and a is the number of clones. 
sueeessp therefore indicates each clone's success relative to the others in a given 
simulation. The proportions of wee events (relative to sueeessp ) and mwr events 
(relative to sueeessp ) were then calculated for these intervals. This was done 
for each simulation and then for the whole set of simulations. Results of clones 
that became extinct were omitted after the time interval in which they became 
extinct. 

The respective relationships between clonal success and wee/mwr were eval-
uated by calculating the correlation coefficient r between clonal success and 
wee/mwr occurrence (see hypotheses above). A t-test was then conducted for 
each of these to test their significance. For the single simulation analyses, 

Since each simulation had 1000 time steps and 6 clones, the total number 
of data items considered was N ::; 60 for the single simulation analyses (less if 
there were extinctions) and 1200 for the aggregated analysis. The results are 
shown in Table 2. 

Table 2: Correlations between clonal success and wee events/mwr events. Accuracy 
3 decimal places. The p values do not assume directionality and significance (sig.) is 
determined based on a 95% confidence interval. 

Sim. N df rwcc twcc Pwcc rmwr tmwr Pmwr 
1 60 58 0.277 2.196 0.032 (sig.) -0.386 -3.183 0.002 (sig.) 
2 44 42 0.301 2.043 0.047 (sig.) -0.402 -2.845 0.007 (sig.) 
3 37 35 0.212 1.285 0.207 -0.286 -1.767 0.086 
4 46 44 0.254 1.739 0.089 -0.378 -2.712 0.010 
5 52 50 0.242 1.763 0.084 -0.474 -3.807 0.000 (sig.) 
6 60 58 0.298 2.378 0.021 (sig.) -0.307 -2.458 0.017 (sig.) 
7 43 41 0.270 1.796 0.080 -0.477 -3.479 0.001 (sig.) 
8 51 49 0.333 2.469 0.017 (sig.) -0.422 -3.257 0.002 (sig.) 
9 47 45 -0.110 -0.742 0.462 -0.237 -1.634 0.109 
10 53 51 0.234 1.719 0.092 -0.300 -2.247 0.027 (sig.) 
All 493 491 0.152 3.420 0.001 (sig.) -0.179 -4.025 0.000 (sig.) 
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Overall and in four out of the ten simulations, the (positive) correlation rwee 

between wee events and clonal success was significant. There was also a signifi-
cant correlation between mwr events and clonal success overall and in six of the 
simulations, but the direction was negative, the opposite to that hypothesised. 
This latter result is counter-intuitive and will be investigated in a future paper 
since it requires analysis using other complex event types. As well as considering 
different simulations, we also carried out a correlation analysis for each clone in 
each simulation (these results are given in Appendix 2). Again, wee events and 
mwr events correlated with clonal success on some occasions but not others. 
The differences in the t values for r wee and r mwr (determining their significance) 
for the different simulations and clones implies that the same global effect (e.g. 
clonal success) can have different underlying mechanisms, even with the same 
agent-based model. The next step would be to determine which other mecha-
nisms are at work and which mechanisms tend to correlate with one another. 
This can again be done through the specification and detection of complex event 
types. 

5 Summary and conclusions 

In this paper we have shown how the complex event formalism can be used to 
specify multi-level behaviours in agent-based simulations. These can differ in 
both scope and resolution. The identification of complex event types gives us 
a computational method for testing hypotheses about such behaviours, making 
simulations less 'opaque'. We have demonstrated this by showing correlation re-
lationships between global system behaviours and the interactive mechanisms at 
lower levels. By showing that correlation relationships can differ amongst differ-
ent simulations, we have also shown that the same global system behaviour can 
have different underlying mechanisms, even with the same agent-based model. 
These multi-level interactive mechanisms are well worth investigating if we are to 
achieve an understanding of the system beyond simple individual-rule to global 
behaviour mapping. 

Given that complex event types are composed of simple event types (which 
can be related directly to the agent rules), we have a means of determining 
which agent rules play a significant role in generating a particular higher level 
behaviour. Although this has not been discussed in detail in this paper, it is 
well worth pursuing, particularly if we wish to understand how interventions 
in a system can affect behaviour. Another promising avenue for further inves-
tigation is in the use of more sophisticated statistical methods such as causal 
state splitting [15J to determine the mechanisms that are critical for a particular 
higher level behaviour. The complex event formalism would allow us to apply 
such techniques to behaviours at any level. 
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Health is a complex object for science and operative levels, partly because there are many 
approaches defining it but not scientifically sufficient or operatively accepted. This is relevant 
for health understanding but also for decision making on health related problems. 
"Determinants of Health" as a widely accepted theoretical proposal, identifies as problematic 
the reductionist view of health as the disease opposite, attempting to develop it positively 
according to WHO's definition, proposing a set of factors determining health outcomes. 
Though this allows a larger comprehension of health causes and effects, still has insufficiently 
defined theoretical statements and unproved assumptions which difficult understanding and 
effective actions orientation. Complexity deductive modeling since the insufficiently 
formalized frameworks , implies incorporating unmanageable object assumptions or reducing 
health broadness. Taking profit of Bogota government adherence to DH proposal leading a 
health information system development, was possible inductive modeling since a systemic 
massive database (690.000 registries). In this way, DH theoretical statements about health 
components connectedness were explored by classic statistic approach, and by learning 
Bayesian networks from data (data mining). First approach showed understanding difficulties. 
Second was advantageous in approximating within and between determinants relationship 
structure. However, though DH introduces a systemic approach in considering diverse 
interacting elements is not empirically satisfactory to exhibit all the meaning of health 
complexity, because just matches analytic fashioned constructs depending on data expression. 
A strong networked model developing health complexity, needs the orientation by theoretical 
constructs as human agency and organization, to explore and understand emergent patterns of 
health. 



1 Introduction 
Health is a strongly naturalized and traditional issue in human and societal 
development, becoming a structural but paradoxically, irresolute and almost 
unconscious matter, needless to be understood in a deeper way because everybody's 
roughly knowledge about it seems to be enough for social functioning. According to 
this, the most popular and widely spread is the easiest "negative notion" of health as 
disease opposite [1]. Unfortunately this simple notion does not work well while 
confronting reality manifestations, full of much more dimensions having winding 
courses and out of control outcomes at many situations, overflowing the disease 
referent. While explaining infirmity at individual small scale, technical expert 
diagnosis based upon disease and health exclusive states is blurred when at every day 
people's life both could coexist in asymptomatic states or adaptive performance. Then 
additional terms to explain ill health, as sickness or illness must be considered, but 
also at positive pole other expressions are developed to describe whole life health, as 
well-being and quality of life. Meanwhile at the large scale, health also shows 
intricacies, related to same good-bad polarity diagnosis, but evident by unsuccessful 
interventions with "out of course" results. For example, in developed countries, most 
expensive technology in health services does not warrant a better people's health, and 
could be seen that improvement and development in reality coexist with severe 
poverty related diseases reemergence. For both the "invisible hand of market" rule, 
does not extrapolate richness to individual nor general wellbeing. 

This challenging landscape leads to establish health as scientific object, beyond the 
biological knowledge, predominant at medicine, towards comprehending its 
hypothetical complexity [2, 3] contained into reality confusion. In this way, several 
scientific and academic approaches have been developed, as a basis to transform 
problematic field with knowledge based decision making, but predominantly focused 
in just fractions and/or according to biased and analytic points of view. 

Theory and prior knowledge is important for complex systems science approach 
because usually is the point of departure for exploring complex structure and 
dynamic behavior by means of the predominant methodology of agent based 
computational simulations. However, health related low and high level human 
performance is not the focus of current theories statements, because health is not 
understood as predicative but a quality substantive. Every way, existing theorization 
must be explored in order to identify its accuracy for the development of a complex 
systems approach of health phenomenon. Then, developing a scientific complex 
approach to health is a huge task that involves diverse interconnected steps for 
integrating at least three broad challenges in a coherent way [4]: Intrinsic or 
individual character of ill defined health, but also extrinsic astonishingly connected 
social field with related epistemic diversity. At step 0 was possible to explore several 
theoretical rational and experience based approaches to health, trough an epistemic 
diversity grid. Notwithstanding, at theoretical richness discovery that seems to be not 
conciliating, there was possible to find some conceptual patterns. Heath nature give 
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the idea of being a human made object, flexible enough to fit diverse epistemic needs 
highly related to human life with the specific attempt to intervene it for modifying 
unsatisfactory issues. In this way one of those issues is disease, maybe one of 
strongest and unavoidable "attractor acting" issue, also at theoretical proposals 
attempting to keep away of it. However, also there is a broad amount of other 
obligatory human circumstances visible in health, not just located at an adjacent 
place. In this sense, Determinants of Health proposal [1, 5] is an important present 
acknowledged but with ancient roots theoretical approach developed since almost 
five decades. At this paper is presented the step one on developing a complex 
approach to the health process, concerning complexity exploration of DH theoretical 
established proposals by means of searching for a complex like structure, looking at 
the evidence for identifying empirical patterns of co-occurrence [6]. 

2 Determinants of Health 
Determinants of Health proposal represents an important advancement in enlarging 
the health scope framework, that constitute some kind of hypothetic deductive 
system evidence supported, which main axe is the statement that health is related to a 
set of essential factors by a determination link [5, 7]. In this way, there are three 
recognizable parts in the proposal. First one is health, a complex phenomenon, 
narrow or social understood [3], but still, ill defined [8, 9], because although 
considered as a positive matter or special good constitutive of person well being, 
enabling people to function as agents [3], sometimes is defined in terms of its 
determinants (as individual capacity [2]) or documented trough known "negative" 
indicators of ill-health (mortality, morbidity, disability). 

Second element is the set of determinants. Four elements were included originally: 
Environment, lifestyle, human biology and health care systems. The DH general 
structure success produced an expansive evolution of the idea, and then many 
approaches of a diverse kind of determinants arrangement were developed, according 
to mUltiple points of view involved. Some examples are "Population health" proposal 
[2, 8, 10] maintaining the same main axe with twelve factors considered, but 
criticized for being incomplete in important issues [11] as politics; World Health 
Organization, WHO [12], adheres to "social determinants" emphasis proposal [13, 
14] which sub classifies determinants on context, structural and immediate ones, 
under a determinants unequal relevance assumption. 

Third element is about relationships between health and determinants, and within the 
last. General statement locates factors determination over health, but also existence of 
complex interactions between determinants. However, it is not a clear sense on an 
interaction connotation, as an additive term into a model with "independent 
variables", or if determinants are acting capable over the others. Nevertheless, two 
way direction interconnections among determinants have been explored and 
accumulated since a lot of partial evidence, including health indicators, which playa 
twofold role as determined, but also as determinants. It is not clear if this is a 
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circularity problem on definitions, or if it corresponds to a feedback additional 
assumption. Although mentioned, social relations role is marginally developed. 

2.1 Determinants of Health structural complexity exploration 
Recognizing worldwide relevance of DH proposal but also as complexity direct 
proclaiming one [2, 15], present work step 1 is dedicated to explore the DH 
complexity coherence character, under the assumption of health as a phenomenon 
compound by highly interconnected factors. The work is not focused on thematic 
specificity of particular determinants models [11] whose high variability is context 
dependent, based upon time-historical, spatio-geopolitical, and epistemic (scientific 
or not) specificities. 

Without predicative agent oriented theoretical statements, deductive approach could 
not been developed (ie MAS) at this step. By fortune, was possible to have an 
alternative inductive approach, thanks to data availability collected according to DH 
proposal, which oriented a special government public health program "Salud a su 
Hogar", of Bogota District Secretariat of Health. A subpopulation of 100.050 
registries was exploited, defined by geopolitical limits and socioeconomic 
classification of vulnerability, part of a whole data base of 690.000 rows with 139 
variables. By cause of whole access to subpopulation data, but also in order to 
preserve social networked character [6], probabilistic sampling was not done. 

1. Classical data approach: The subpopulation database was explored by non 
parametric first order relation coefficient phi ro [16] for all variables. Then 9591 
different values from a dissimilarity matrix were obtained and explored excluding 
diagonal ones. Found range of phi values were between 0 and 1, meaning no relation 
to a total one, but with centrality measures (mean 0.74, median 0.73 and mode 0.98), 
and dispersion (st.deviation 0.17) showing a right biased distribution, accounting for 
the strength of relationships established. Highly significance related Xi 2 based values 
were found, though present in a wide range (1.3ge-103 to 1), evidenced by centrality 
and dispersion measures showing a left biased distribution (mean 0.002, median 
1.63e-18 and mode 0.02, st. deviation 0.02) (graphic 1). Then more than 90% phi 
values were above 0.5, with 90% of significance values below 0.005 cut point, 
providing evidence for strong general relationships existence, at least of first order. 

However, particular cases and graphical examination (graphic 2) let see that extreme 
upper phi values have less significance values, and also that graphical pattern 
formation by descendent ordering seems to have sensibility to highest frequency 
values. This finding is confirmed by Kappa [16] test between ordered correlations 
and frequencies, significative for 90% of variables. Graphical exploration (graphic 2) 
also reveals poor organized correlations between and within determinants sets, if 
compared with an expected pattern according to DH social theory subclassification. 
Further exploration of general and specific hypothesis or conclusions of fragmented 
evidence already collected, is increasingly difficult by massive simultaneous outputs 
of higher order possible relations. 
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2. Data mznzng approach: Bayesian Networks (BN) are broadly developed 
knowledge discovering tools coupling graph and probability theories, to deal with 
uncertainty and complexity problems [17]. BN are compound by a Directed Acyclic 
Graph (DAG) and an associated joint probability distribution expressed by means of 
conditional probability tables (CPT). DAG is constituted by nodes usually 
corresponding to variables, and by arcs defining conditional or causal dependencies 
between the nodes. Probability defines quantitatively local relations and general 
structure by mean of conditional independence simplifying rule. 

BN arrange, allows introducing qualitative and quantitative statements of previous 
cumulated knowledge in a natural human comprehensive way of interconnected 
expressions, but also provides an interface to external data introduction, as posterior 
reality observations [17]. Then, prior assumptions and posterior features of a model 
could be developed. At BN field, there are diverse developed algorithms with 
different learning capabilities including parameter fitting and structure discovery at 
same time or separately. 

Inductive connectivity exploration ofDH proposal by BN learning structure methods, 
were applied for the same subpopulation data base over 134 variables (excluding 
those carrying redundant information), without structure assumptions other than those 
of variable arrange done at the subpopulation survey, by means of software GeNIe 
modeling environment developed by the Decision Systems Laboratory of the 
University of Pittsburgh (http://dsl.sis.pitt.edu). Reached structure is shown at graphic 
3. In general, a reduced 0.75% structure of 497 arcs (Avg indegree: 3.709, Max 
indegree: 7 -fixed-, Avg outcomes: 3.44, Max outcomes: 21) was obtained instead of 
a 17889 relationships full connected previous described one. Distances (error test) 
between real and model generated data percent frequencies was 0,25% on average 
(median 0.08%, range 5,6-4,ge·8%, right biased), with F test values account for non 
significant differences, though over fitting is avoided by intrinsic Occam razor [18]. 

At general landscape a modest clustered pattern between similar DH color-coded 
variable become visible. At finer local level of individual variables, a better 
connectivity fit to intuitive and preceding evidence could be observed. However, 
neither hierarchical nor thematic organization assumptions seem to consistently 
emerge. In order to diminish the still high connectivity confusing an easy view, 
middle level of 13 subsystems, according to general DH thematic, were organized. 
This arrange produces an easier view, but hierarchy still does not emerge, because 
many of subsystems as also single variables, act as similar weighted hubs (high 
connectivity nodes) that could indicate the need of intermediate ones that could be 
hidden [17]. One of those subsystems is "heath indicators" one, as receiver and also 
source, with a 76% connectivity. 

3. Discussion 
Bayesian networks seem to be important tools for modeling or constructing reality 
based complex systems, widely developed at field of artificial intelligence data 
mining techniques. Although BN (and other now available data mining tools) are able 
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of fitting massive data hidden structure, assumption about empirical neutrality and 
ability of lower level granularity (data) as paramount way to know the world, 
becomes insufficient, even though the broad access allowed at actual information, 
communication and knowledge shaped societies. At the other side rational deductive 
development from theories to models tested against reality does not take full profit of 
evidence potential. Every way we cannot forget that data have roots on cognitive 
human points of view about reality, as also have human theorization mechanisms. In 
this way, neither increasing ability to record every human and natural phenomenon or 
better tools for deductive reason, are isolated warranties of better reality 
comprehension. 

At this paper an already but ill fashioned wide accepted theory for health, was tested 
by unsupervised BN approach taking profit of a big amount of data representing a 
governmental interpretation for measuring all the fragments on DR. At a different 
granularity levels some degree of emergent organization was observed, but not 
consistently enough with intuitive reasoning and previous partial evidence results. 
This could be produced but insufficiently theoretic definition or still insufficient data, 
or both. Data insufficiency was an old problem and perhaps ever will be, though 
increasing sources availability, by cause of the always lack of fitness with changing 
needs. But theory accounts for universals, that could be changed or actualized, lasting 
a more long time period, robust to contingencies. In this way DH statements about 
multiple interconnected elements did not perform adequately for a complex system 
perspective. Then better theoretical approaches are needed, including rational but also 
evidence based for its development. 

In order to it, subsequently steps must be accomplished. Former one is about 
developing health theoretical statements (blind point) according to complex systems 
science multi agent framework, as way to recover the human and predicative character 
of health main axe, instead of occasion, unstable, highly artificial and interest 
oriented topics as DH develops. This approach could have the advantage of being the 
seed for taking profit of the natural multileveled organized human structures, which 
let to solve individual-social dichotomies. This step must go along with evidence 
incorporation. Latter step based upon multiagent networked health structure, is about 
modeling its dynamic behavior, according to human lifecycle dynamics. Additional 
steps beyond, since general structural and dynamic rules identified, are on simulation 
environments development which allows universalities improvement but also robust 
prediction tools creation utilizable at research, information systems improvement, 
policy and decision making and education. 
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Graphic l: Phi values 3d plot and histogram at left side. At right side are significance 
values 3D plot and histogram, with power 0.5 scale transformation to improve 
visualization, and 0.05 and 0.005 cut points. 3D plot color code automatically 
assigned is kept to allow visualization. 

Graphic 2: Determinants class internal expected coherence (left) and observed (right) 
graphic patterns by descendent ordering of phi values by groups of determinants 
color defined at first line in both, with color codes at first graphic bottom. 
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Graphic 3: General BN structure (left), where nodes are variables and arcs reflect 
relationships between them. Same color codes are maintained. At right side middle 
level BN structure arranged by subsystems and them 3 hierarchies. GENIE Software 
lets exploring variables inside subsystems. 
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As future personal vehicles start enjoying the ability to fly, tackling safe trans-
portation coordination can be a tremendous task, far beyond the current chal-
lenge on radar screen monitoring of the already saturated air traffic control. 
Our focus is on the distributed safe-distance coordination among a group of au-
tonomous flying vehicle agents, where each follows its own current straight-line 
direction in a 3D space with variable speeds. A virtual spring-based model is 
proposed for the group coordination. Within a specified neighborhood radius, 
each vehicle forms a virtual connection with each neighbor vehicle by a vir-
tual spring. As the vehicle changes its position, speed and altitude, the total 
resultant forces on each virtual spring try to maintain zero by moving to the me-
chanical equilibrium point. The agents then add the simple total virtual spring 
constraints to their movements to determine their next positions individually. 
Together, the multi-agent vehicles reach a group behavior, where each of them 
keeps a minimal safe-distance with others. A new safe behavior thus arises in 
the group level. With the proposed virtual spring coordination model, the vehi-
cles need no direct communication with each other, require only minimum local 
processing resources, and the control is completely distributed. New behaviors 
can now be formulated and studied based on the proposed model, e.g., how a 
fast driving vehicle can find its way though the crowd by avoiding the other 



vehicles effortlessly 1 . 

1 Introduction 
Multi agent systems offer many potential advantages with respect to single-agent 
systems such as speedup in task execution, robustness with respect to failure of 
one or more agents, and scalability [17]. The role of larger multi-agent sys-
tems has become more significant in recent years, due to lower cost for simpler 
agents and increased potential group capabilities in robustness and flexibility. 
These newly evolved, highly complex large-scaled multi-agent systems demand 
improved interaction study and innovated group coordination approaches. De-
spite these initial efforts, further investigations are desperately needed in this 
new group emergence paradigm. In the following, we will first review the current 
progress in multi-agent coordination field, and then propose a Virtual-Spring 
based group coordination to cope with the increased complexity, as the problem 
scaled to many more agents in 3D. 

1.1 Flying Vehicles 
A multi-agent System for formation flying missions is proposed in [19] and for 
collaborative sensing, multiple Unmanned Aerial Vehicles (UAVs) are considered 
in [18].Methods for optimizing the task allocation problem for a fleet of UAVs 
with tightly coupled tasks and rigid relative timing constraints are described 
in [2]. Minimization of the mission completion time for the fleet is the overall 
objective in this work that uses timing constraints and loitering. The problem 
of decentralized task assignment for a fleet of cooperative UAVs is considered 
in [1] which extends the analysis of the algorithm of previous work to consider 
the performance with different communication network topologies. In [9], [7] 
and [10] cooperative UAV routing with limited sensor range is considered (the 
problem for one UAV is investigated in [8]). 

1.2 Spatial Multi Agent Systems and their Coordination 
Multi agent coordination techniques are used in various tasks like Air Traffic 
Management [16] while there are several decentralized algorithms like [13] for 
aircraft-like vehicles. Air Traffic Management of the future allows for the possi-
bility of free flight, in which aircrafts choose their own optimal routes, altitudes, 
and velocities. The safe resolution of trajectory conflicts between aircraft is nec-
essary to the success of such a distributed control system [21]. In [14] it is tried 
to capture the idea that the less coordination a multi-robot system requires, the 
better it should scale to large numbers of robots. In [6] the real-time multi-agent 
coordination and control requirements of automobile and submarine systems are 
discussed. The use of hybrid systems techniques for analyzing and synthesizing 

1 Any kind of military uses from the content and approaches of this article is against the 
intent of the authors. 
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the control architectures have been under investigation. Also in [12] a method 
for cooperative control in a distributed autonomous robotic system is proposed. 
A reactive navigation strategy is used for controllers of robots by combining 
repulsion from obstacles with attraction to a goal. A class of dynamic vehicle 
routing problems (in which a number of mobile agents in the plane must visit 
target points generated over time by a stochastic process) are considered in [4]. 
The aim has been to minimize the expected time between the appearance of a 
target point and the time it is visited by one of the agents by making minimal or 
no assumptions on communications between agents. It is shown that inter-agent 
communication does not improve the efficiency of such systems, but merely af-
fects the rate of convergence to the steady state. In [17] a policy for steering 
multiple vehicles between assigned independent start and goal configurations is 
proposed which ensures collision avoidance. The decentralized policy rests on 
the assumption that agents are all cooperating by implementing the same traffic 
rules (each agent decides its own motion by applying those rules only on locally 
available information). In [5], formations of robots are considered. In this work 
a motion plan for the overall formation is used to control a single leader and the 
followers use local control laws. 

A simulation environment for massive systems is proposed in [3] which is 
capable of coping with 3D environments. In [15] an approach to qualitative 
spatial orientation reasoning in 3-dimensional spatial environment is proposed. 
The problem of positioning a group of autonomous but coordinating mobile 
robots into a specified spatial configuration is considered in [11]. In this work 
there is no central controller or inter-agent communication. The robots move 
into position without collision or unnecessary delay. A hierarchical controller 
with three levels (Execution, Coordination and Organization) has been adopted 
in their approach. 

2 Spatial Coordination using Spring Forces 
A virtual street is built for flying vehicles as shown in Fig.l. This environment 
is made with NetLogo program [22]. In this program a setup code specifies the 
initial positions and orientations. The group of agents moves in a 3D space and 
the behavior of each agent for every time step is defined by a piece of code. 

One of the approaches is to use virtual springs for coordination of agents. 
This idea has been used for coordination of soccer simulation footballers in [20] 
in which each of the players was constrained with a group of springs with other 
teammates. As a result, the team demonstrated group behaviors that met the 
desired criteria. 

An agent is constrained by a group of springs that specify the later position of 
the agent in the space (This applies similarly to both 2D and 3D environments). 
The length, stiffness and the total number of the springs can vary from agent to 
agent depending on the environments, systems, and designers. Under a group 
of forces, an agent moves until the total resultant forces (vectors) becomes zero 
on the agent. When the spring forces are applied to an agent, the total applied 
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Figure 1: The virtual street with some flying vehicles in the two sides (left) and 
spatial coordination of vehicles (right) 

force is calculated with Eq.1. 

(1) 

in which XA, YA and ZA specify present position of agent, n is the number of 
factors the agent has spring connections with (for this case it is equal to the 
number of neighbors), Li is the length of the spring with ith factor, Ki is the 
constant of that spring, Di is the distance to the ith factor and (Xi, Yi) specify 
the position of the ith point. 

Hence the agent moves towards the direction of the applied force to get closer 
to the mechanical equilibrium point. This changes the position of the agent and 
is able to playa role in the coordination ofthe group (the agent has only observed 
the positions of the neighbors). The proposed spring-based model is dimension 
scalable, where no extra effort is needed for agents to make movement decisions 
extending from 2D to 3 D space (see Fig.l). 

Agents with different velocities show different behaviors for finding their 
paths (according to their relative velocity to other members of the group). As 
an example, Fig.2 illustrates how the fastest agent overtakes the other slow 
agents and how the inter-agent distances change in time. It shows that how the 
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agent driving faster than others, overtakes the other slower agents and how the 
distances change during time. 

3 Benefits of Spring-Based Group Coordination 
Compared with the current, generally pre-fixed and centrally controlled multi-
agents group coordination, the benefits of the proposed spring-based method are 
detailed as follows: 

• Swift Mutual Collision A voidance Sometimes the path for an agent 
with a velocity higher than the others is blocked by front agents (as in 
Fig.3). In this case if the agents use spring forces, they not only maneuver 
their paths to squeeze through the crowd, they are also able to affect other 
agents without communicating with them directly. When the agent with 
higher velocity gets too close to other neighbors, they change to yield their 
positions respectively (to move to the new mechanical equilibrium point) 
and hence new space for the agent is made so that it can overtake. 

• Simple New Agents Inclusion to the Group When new vehicles want 
to join the group of agents, by the spring method they can enter the group 
just by setting new positions in the space (probably in the group) as their 
set points. If their positions were fixed in the group, a new vehicle should 
have waited for an available empty space to join the 3D street. 

• Easy 3D Maneuver When a vehicle wants to move horizontally or ver-
tically (X or Z directions, if considering the direction of street as Y) it 
only needs to move to that direction slowly while obeying the same coor-
dination process. This forces other neighbors to leave more room for the 
vehicle to change its position. A sample is shown in Fig.2 in which the 
agent is moving to the right constantly and for some periods it has to find 
its path (for demonstration purposes, the agent is moved to the left most 
position when it reaches the right most limit). 

4 Conclusion 
In this article, we investigated a Virtual-Spring based group coordination model 
in 3D environments. The main aspect considered in this model was to demon-
strate how collision-avoidance group level behaviors emerge from the interactions 
of agents with their individual safe-distance minded behaviors. 
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Figure 3: The agent with white color is behind the other three agents who have 
blocked the way 
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We present in this paper a personality-based architecture (PA) that combines el-
ements from the subsumption architecture and reinforcement learning to find alter-
nate solutions for problems facing artificial agents exploring unknown environments. 
The underlying PA algorithm is decomposed into layers according to the different 
(non-contiguous) stages that our agent passes in, which in turn are influenced by the 
sources of rewards present in the environment. The cumulative rewards collected by 
an agent, in addition to its internal composition serve as factors in shaping its per-
sonality. In missions where multiple agents are deployed, our solution-goal is to allow 
each of the agents develop its own distinct personality in order for the collective to 
reach a balanced society, which then can accumulate the largest possible amount of 
rewards for the agent and society as well. The architecture is tested in a simulated 
matrix world which embodies different types of positive rewards and negative rewards. 
Varying experiments are performed to compare the performance of our algorithm with 
other algorithms under the same environment conditions. The use of our architecture 
accelerates the overall adaptation of the agents to their environment and goals by al-
lowing the emergence of an optimal society of agents with different personalities. We 
believe that our approach achieves much efficient results when compared to other more 
restrictive policy designs. 



1 Introduction 
Rodney Brooks' subsumption architecture(SA)[l] was meant as a reactive sys-
tem for an exploratory robot that kept no memory or stored information from 
its environment. When applied in real life, the result was a robot that reacted 
to its surrounding's input and adjusted its actions accordingly, and while it did 
survive its environment , it did not store any meaningful abstraction of its expe-
riences. Because the subsumption architecture (SA) decomposes a system into 
parallel tasks (or behaviors) of increasing layers of competence, (versus the typ-
ical functional decomposition), it allows the system to grow incrementally and 
become resilient to sudden and unexpected changes in the environment. But 
on the other hand, the SA lacks the flexibility to implement higher-level con-
cepts which allows it to be more useful for a wider scope of applications. For 
example, application involving software-based agents and robots with hybrid 
software/hardware controllers domains find it very difficult to apply a pure sub-
sumption architecture to their design [2][3][4]. Our goal is to allow our agents to 
manipulate at a reflexive level, the knowledge that the environment presents and 
handle more complex and challenging missions by introducing hybrid learning 
algorithm (at a higher level. by introducing personalities). In our system, we 
consider the changing or driving forces that impacts the personality of the agent 
to be the activity of seeking different types of rewards from its environment and 
how this impacts the agent in choosing its best fitting personality. Using this 
paradigm, the design of our algorithm challenged us to address a fundamental 
issue in psychology, which is nature vs. nurture. When designing an agent , how 
much information should we embed into the agent and how much should we 
let the environment shape it on its own? We believe we achieved a balanced 
approach to solving this issue through our P A architecture. In the next section 
we discuss our model, followed by the experiment environments and the results. 

2 The PA model 
We present the schematic diagram in figure 1 of our PA architecture by describing 
our behavior's architecture, and then the personality's model. 

2.1 The behavior architecture 
We define a behavior to be a collection of actions. An action represents a 
procedural heuristic of several small processes that an agent can perform at a 
reflexive level. In relevance to Brooke's subsumption architecture, where we 
have different layers of behaviors, a behavior in our architecture can comprise 
multiple layers of actions. All actions receive input from the environment and 
forward their outputs to junctions via connections. A junction serves as an 
evaluator/relay for all its "inputs" and then outputs the resulting evaluation. 
In a simple behavior, shown in the diagram to the left in figure 1, we see a 
behavior comprised of 2 actions: Action A and Action B with a single junction 
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Junction J, where the junction's output represents the overall behavior output. 
In more elaborate behaviors, we have layers of actions, such as the composite 
behavior to the right in figure 1. In these behaviors, the junctions evaluate the 
actions across the same level and also, from junctions that forward their outputs 
to other junctions, i.e. Junction J in level 1 subsumes/connects to Junction 
J' in layer 2 in C-JJ'. The final junction in the lowest layer handles the final 
output, or the final output of the behavior. 

n m 

i=l k=l 

where J is the junction. i represents the available actions and k the number of 
other junctions that input into J. Wi is the weight of action i and Ci,J is the 
weight of the connection from action i to junction J. (similarly for the junctions 
k). Every individual action and junction has an associated weight that deter-

Figure 1: Behavior Architecture. 

mines the relevance of its output to the behavior's dynamics, i.e. Action A has 
weight W-A. Also, every connection has a weight that works as an attenuator 
or reinforcer to the output value it represents, i.e. the connection connecting 
Action A to Junction J is C-AJ. It is worth mentioning also that the layers are 
not hard boundaries, and that an action A in a high level can "subsume" (be 
connected via a junction to) the output of an action A' in a lower level. The 
behavior's architecture is based on a neural network design with more function-
alities added at the neuron level. 



2.2 The personality model 

In our architecture an agent's personality, see figure 2, represents the collective 
values and weights of a behavior's components (actions, junction, connections). 
Our personality architecture applies a reinforcement learning architecture where 
the learning algorithm's objective is to maximize the available rewards present in 
the environment. This is achieved by predicting what best values for the weights 
and connections for a behavior to assume that would let the agent collect the 
largest number of rewards possible. As mentioned earlier, an action's weight 
determines the action's relevance and impact on the final output of the behav-
ior, similarly connections' weights determine if this connection is valid, strong 
or non-existent. All these values have the effect of shaping the generic behav-
ior architecture into more specialized behaviors, for example in the Composite 
Behavior to the right in figure 1, if the value of C-BJ = 0, then this means that 
Action B, and its contribution, are not part of the architecture. In practice, 
this change could mean the difference between an agent that has an aggressive 
behavior or a careful behavior. The ramifications of having different values for 
all the involved parameters is that we end up having an endless number of pos-
sible behaviors. This of course seems to be the natural way of the world, as in 
relevance to human beings, every person has a distinct personality that allows 
him/her to behave and respond uniquely to a situation. For simplicity and to 
facilitate the analysis of the system, we decided to make it a discrete learning 
problem where we define precisely what constitutes the different kinds of possi-
ble behaviors we wish to have. The personality therefore can pick from a mood 
collection (containing the lists of corresponding values and weights), the possible 
behavior type or mood it wishes to be in. The learning algorithm is divided into 
subtasks to maximize the corresponding reward components. For every type of 
identifiable reward, we assign a subtask that contributes towards maximizing 
the cumulative total reward. The PA architecture is especially geared towards 
mUltiple reward sources and multiple goal requirements in order to bridge and 
marry these goals into a uniform behavior that maximizes the overall rewards. In 
the extreme case where there is one identifiable reward, the agent distinguishes 
between its internal state of rewards and the external state of rewards, (which 
is the internal state of rewards of other agents it comes into contact with), and 
assigns an emotional maturity arbitrator (or M) to each one of them that serves 
a predictor of the expected rewards. Let Si, be the current behavior mood of 
the agent, where i represents its index in an array of available behaviors [i .. n] 
where n is some integer. Let Ri be a reward with index i associating behavior 
Si to reward R i . Also let Ai be a decreasing factor (constant) for reward value 
Ri as time progresses and the agent is still in behavior Si. Then we can write 
M as the expected sum of potential future rewards for time t + n (where n are 
discrete time units) as: 

Mi(Si) = E(Ri,t+1 + Ai R i,t+2 + AiR i,t+3 + ... AiRi,Hn) 

Mi(Si) is the emotional maturity arbitrator value for behavior Si at time t. 
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The winning mood (Si) is projected to the template behavior architecture 
to apply to the corresponding virtual behavior. In a way the template behavior 
architecture acts as a projector, and every behavior type is a projection or a 
virtual representation of the template behavior. (To clarify what we meant by 
stages in the abstract, the moods of the personality are actually the stages). Fi-
nally the rewards are abstractions for an accumulated stimulation or incentives. 
They are accumulated by the agent, and the agent can have either no, partial or 
full access to the rewards of other agents, depending on the personality of other 
agents (how much they like to share). The information from other agents allows 
the agent to assess its performance and stance with respect to the rest. 
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Figure 2: Personality Architecture. 

3 Experiments 
To test our propositions and validate the utility of our PA, we developed a 3D 
simulated environment with artificial agents and applied our concepts to the 
agents in the terrain. We show how by applying the P A to agents with a specific 
goal allows the emergence of an optimal society of agents with personalities 
and behavioral dynamics fit to perform that task. For our testing, we chose 
the simplest and most visited example for this kind of applications, namely 
exploration by an autonomous agent. We chose this example in particular to i) 
compare the performance of our architecture and stem against a well understood 
and studied case, in which the subsumption architecture presents the ultimate 
solution given its simplicity and specification compatibility, ii) to show how the 



PA performs in a situation where there is one main objective (i.e. exploration) 
which is against the PA's strong points: Le. joining multiple objectives, iii) 
limited space to address more elaborate applications such as exploration and 
exploitation. 

3.1 The environment 
The environment(terrain) we're describing is a 3 dimensional lattice (N x N x Z) 
where (N) represents the discrete longitude and latitude value and (Z) represents 
the elevation value at every (N x N) coordinate, or locations. The value of N 
ranges discretely from 0 till N. The elevation Z represents an associated cost 
matrix drawn over the 2 dimensional (N x N) area (where the cost is a penalty 
value drawn from the agent's energy and time). The terrain is textured, to 
present to the agent another type of cost penalty, where every different trre of 
texture represents a different resistance factor /-L to the agent's velocity (V) by 
/-L x V and energy consumption. 

3.2 The agents 
Our simulated agents are relatively small robotic vehicles that are capable of lim-
ited data processing and communication capabilities. Each agent has a limited 
non-renewable energy source, and all its functionalities (mobility and commu-
nication) draw their energy requirements from it. Every agent is capable of 
detecting its own remaining energy level and can move in all directions of the 
compass (0° --+ 360°) at a velocity that is determined by factors such as the 
terrain's texture and terrain elevation (uphill or downhill). 

3.3 The behavior architecture 
Our exploration behavior is made up of 5 different actions divided in 3 layers 
of subsumption dominance, see figure 3. In the top level we have the Avoid 
Boundaries and Avoid Obstacles actions, in the middle level we have the 
Wander action and in the low level we have the Sweep and Line actions. As each 
of their namesakes reveal, every action performs in manners that reflect that sub-
behavior. The Avoid Boundaries action allows the agent to steer away areas to 
avoid crossing into territory that is not part of the mission. Avoid Obstacles 
on the other hand helps direct an agent around an obstacle (if possible), and 
allows it to resume afterwards whatever course it was taking, once it cleared the 
obstacle. Wander is an action for the agent to move randomly in the terrain, 
Sweep makes the agent systematically explore every location in a specified area, 
while Line makes the agent explore in a straight line. 

We also devised 3 types of moods that affect the behavior architecture's 
variables shown in figure 3 (Le. the weights and connections). The moods or 
personality types are shown in figure 4 and are Blind, Tolerant and Dedicated. 
In the coming paragraph, the terms high, low, moderate and average represent 
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Figure 3: Exploration Behavior Architecture 

the values that one might assume for the simulation. They are in reference to 
each other and do not represent a specific number. In the simulation results we 
will show the numerical values that we used. The Blind personality is usually 
characteristic of a fresh agent because it has no rewards of any kind. It does not 
"worry" much about negative rewards (hard terrain), for its Avoid Obstacles 
and Avoid Boundaries it has relatively low weights. Its Wander action is ex-
tremely random, and its Sweep areas are relatively large and its weights for 
Sweep are higher than that of the Line. (It appears as if it is in "desperate 
need" to accumulate rewards no matter what the cost). On the other hand,the 
Dedicated personality is usually of an agent that has usually accumulated one 
type of reward more than the other. Its weights for the avoid boundaries and 
Avoid obstacles is high, while its Wander's direction values are within a short 
range from each other and its weight is low. Its Sweep's areas are relatively 
smaller, so its Line's values. The Tolerant personality is usually for an agent 

II Blind I Tol.nnt 

Figure 4: Personality Types (Moods) 

that has a balance between its current values for its rewards. It has high weights 



for its avoid actions, its Wander's direction values range moderately and it has a 
high weight for it, while it favors the Line action over the Sweep action for which 
it has moderate values (area and line). For the purposes of this experiment we 
made all personalities want to share all the information when nearby agents ask 
for it. We devised no negative reward for the communication, in order to keep 
the application simple and focused. Following are the results that we collected. 

4 Results 
For both our experiments our N = 100 and Z = 00 ,300 ,600 • Agents move 
at a constant velocity V of 1 N unit per 1 time unit when at Z = 00 and 
texture J1, = 1. The agents have a power supply of 10 Joules, and their energy 
consumption matches that of small robots according to the average from various 
technical reports. The agents are distributed randomly on the terrain (not for 
the same experiment) and all start at the same time. 
For our first experiment, we ran simulations to compared the average results of 5 
agents that employ a pure subsumption architecture vs 5 agents that employ our 
PA (with its 3 available moods). The agents using PA all started with randomly 
selected personalities and the simulation ran for x time units. The results are 
shown in graphs 5 As the results show, the overall performance of the PA is 
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Figure 5: Exploration Coverage Ratio between PA and Subsumption 

better than that of a pure subsumption architecture despite the simplicity of the 
application. Both architectures match up in the first phases of the experiment 
but as time progresses PA's out performs subsumption. 

For our second experiment shown in graph 6, we compared the average re-
sults of 5 agents that are always Blind, 5 agents that are always Dedicated, 
5 that are Tolerant and 5 that have a dynamics personality. The purpose of 
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this experiment was to compare (on average) the performance of these 4 per-
sonalities. The results showed an almost identical match amongst the Dynamic 
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Figure 6: Exploration Coverage Ratio between different static and dynamic person-
alities 

31%, Dedicated 30.54% and Tolerant 30.3% with Blind 25.23% lagging be-
hind. Due to the complexity of the experiments, the results can only show the 
emergent dynamics after applying our designs and architectures. Obviously our 
designation of the moods and the weights chosen played a pivotal role in deciding 
the outcome of the experiment, which brought us back to the question we asked 
before, how much information should the agent have before going to the world. 
From the results it does show that having a changing personality offers a slight 
advantage over static personalities, but then again the task at hand was not com-
plex enough to allow the PA to improve the general performance. For future 
work, this issue will be addressed and more in depth applications will be chosen 
for the test beds. As a conclusion, we believe that our architecture offers a first 
step and a work-bench in the right direction to improve upon the performance 
of autonomous agents with multiple goals in unknown environments. 
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On the one hand, research in self-assembling systems, whether natural or artificial, has 
traditionally focused on pre-existing components endowed with fixed shapes. Biological devel-
opment, by contrast, dynamically creates new cells that acquire selective adhesion properties 
through differentiation induced by their neighborhood. On the other hand, pattern formation 
phenomena are generally construed as orderly states of activity on top of a continuous 2-D or 
3-D substrate. Yet, again, the spontaneous patterning of an organism into domains of gene ex-
pression arises within a multicellular medium in perpetual expansion and reshaping. Finally, 
both phenomena are often thought in terms of stochastic events, whether mixed components 
that randomly collide in self-assembly, or spots and stripes that occur unpredictably from insta-
bilities in pattern formation. Here too, these notions need significant revision if they are to be 
extended and applied to embryogenesis. Cells are not randomly mixed but pre-positioned 
where cell division occurs. Genetic identity domains are not randomly distributed but highly 
regulated in number and position. In this work, I present a computational model of program-
mable and reproducible artificial morphogenesis that integrates self-assembly and pattern for-
mation under the control of a nonrandom gene regulatory network. The specialized properties 
of cells (division, adhesion, migration) are determined by the gene expression domains to 
which they belong, while at the same time these domains further expand and segment into sub-
domains due to the self-assembly of specialized cells. Through this model, I also promote a 
new discipline, embryomorphic engineering to solve the paradox of "meta-designing" decen-
tralized, autonomous systems. 

1 Self-Assembly of Pre-Patterned Components 

1.1 From puzzles to self-assembly 
In the "jigsaw puzzle" metaphor of self-assembling systems, in particular molecular 
and biological self-assembly, a "piece" of the puzzle represents an elementary com-
ponent of the system, such as a molecule or a cell. The "shape" of this piece repre-
sents its binding affinities with other components-an electric field in the case of 
molecules (via ionic or hydrogen bonds) or differential adhesion in the case of cells 



(via specific membrane proteins). At any instant, the puzzle finds itself in a certain 
state, which corresponds to a particular spatial arrangement of its pieces. Associating 
an energy or cost function with states, the "solutions" of the puzzle can then be de-
fined as the energy minima, i.e., those states where all pieces "fit" well together and 
satisfy each other's constraints. 

Naturally, several fundamental aspects also distinguish complex self-assembling 
systems from jigsaw puzzles (Fig. 1): 
(i) Affinities: The fit between components is not necessarily all-or-none but approx-

imate or flexible (compare Fig. la,d) and may exhibit different degrees of well-
formedness, associated with varying energy costs. Thus, the "solutions" of the 
system need not be strict energy minima but simply low-cost states. 

(ii) Component types: Components' shapes are far from unique. The system is gen-
erally composed of distinct types (molecule species or cell types) shared by a 
multitude of components that are copies of each other (Fig. Id-f). This allows for 
a large number of equivalent states, invariant by permutation of components, and 
greatly facilitates convergence toward one of the many low-energy solutions. 

(iii)Control: No centralized control or "visible hand" actually moves the pieces. 

(e) 

(d ) (e l (I) 

Fig. I: Differences between jigsaw puzzles and self-assembly. (a)-(c) Jigsaw puzzles are made 
of uniquely "shaped" pieces, where shape constraints result from specific geometry as in (a), 
specific markings as in (b) or both geometry and markings as in (c). Compatibility with other 
pieces is a rare or unique event, and fit between pieces is rigidly all-or-none. Generally, there is 
only one solution, which requires a long time to find. (d)-(e) By contrast, natural self-assembly 
(molecular or multicellular) consists of only a few types of identical components-schematized 
by one type in (d), two in (e), three in (f)-fitting each other tightly in tilings (e) or loosely in 
aggregates (d) and (t). This multiplicity and flexibility give rise to many possible approximate 
"solutions" via quick convergence times. Finally, no central process is steering the pieces. 
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1.2 From molecular self-assembly to multicellular self-assembly 
How, then, do self-assembling pieces find their way to their final positions on the ba-
sis of purely local interactions and create global order at the system level? At this 
point, principles of molecular self-assembly, on the one hand, and multicellular self-
assembly, on the other hand, diverge in several important regards: 
(iV)Existence of components: Molecules generally pre-exist in the solution before 

they self-assemble. Cells, however, are dynamically created during self-assem-
bly by the division of other cells. l 

(v) Binding fate: Molecules initially form a homogeneous mixture (the puzzle box) 
and bind to each other through stochastic collisions (possibly with help from en-
zymes, but the original encounter remains stochastic). Cells, however, appear on 
the spot, again by cellular division, in the neigborhood of the cells to which they 
bind (possibly later changing neighborhood through migration, but this is also a 
highly nonrandom process). 

(vi)Shape determination: Possibly folding upon themselves after synthesis, mole-
cules settle on a relatively fixed (passive) geometrical shape and admit only a 
limited amount of deformation when coming into contact with other molecules. 
Cells, however, dynamically and actively change their shape as they differentiate 
under the influence of molecular signalling from other cells (such as induction). 

1.2.1 Existence of components and binding fate 
The distinctions outlined in points (iv) and (v) are illustrated here with a simple 
model of swarm behavior (Fig. 2). In 2-D space, two types of particles, a and fJ (re-
spectively dark and light colored spots in the figure), interact via attractive and repul-
sive forces. By analogy with electric fields, these interactions are modeled as local 
energy potentials VCr) that each particle emits in its vicinity as a function of vector r 
from its center. In this model, interaction potentials are the equivalent of the geomet-
rical "shapes" of components, i.e., the specific binding affinities that they have with 
their neighbors. The two types of isotropic potentials, Va (r) and Vp (r), with r = II r II, 
used in Fig. 2 are graphed in Fig. 3a,b. In both cases, they contain an impenetrable 
core of infinite values below rc, representing the fact that particles are nondeformable 
discs of radius rcf2. At the other end of their interaction range, their "horizont" is de-
fined by roo Beyond that distance, the energy landscape is flat and particles do not see 
one another. What distinguishes the two types is that an a particle is surrounded 
with a ring-shaped basin of attraction at some equilibrium distance re < ro (Fig. 3a), 
while a fJ particle is not and simply repels other particles that come too close without 
attracting them (this virtually corresponds to ro < re). The type-a basin is quadratic, 
simulating the establishment of a spring-like force with resting length re as soon as 
two particles come closer than ro (but farther than rc). 

1 Naturally, a new cell does not appear ex nihilo but is itself the result of self-assembly at a 
lower level of molecules synthesized by the mother cell, which draws pre-existing biochemical 
resources from the extracellular matrix. The present analogy, however, focuses on whole com-
ponents and whether they are ready to assemble with other components at their own level. 
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Fig_ 2: Constrasting molecular-style self-assembly with multicellular-style self-assembly by a 
simple swarm model and metaphorical illustrations. The model contains particles of two types, 
a (dark color discs) and f3 (light color discs), that exert an attractive and/or repulsive poten-
tial V on their neighbors, with V = Va for a -a interactions (Fig. 3a with rc = 1.6, re = 3.5, 
ro = 5) and V = Vp for a -f3 and f3 -f3 interactions (Fig. 3b with rc = 1.6, ro = 2.5). Molecular 
self-assembly (a) relies on a random mix of pre-existing particles that sort out and aggregate 
through chance encounters. This would be equivalent to shaking a magnetic construction block 
game (b), in which pieces bear selective geometrical affinities. Multicellular self-assembly (c), 
however, as in animal development (d), mostly results from growth through cell division, not 
stochastic collisions. New cells are born already pre-positioned and rearrange only locally. 

This swarming system is similar to previous models of collective motion in com-
puter graphics [Reynolds 1987] and physics [Vicsek et al. 1995; see, e.g., Gregoire & 
Chate 2004], with the difference that in those models particles are self-propelled at 
constant speed Vo and only their direction of motion () i is updated at every time step. 
In the present model, the velocity may vary in both norm and direction according to a 
simplified equation of motion: 

(1) 

where Xi is the position of particle i, V(Xh Xi) is the potential created by particle j in Xi, 

and TJ is white noise. (The above equation can be derived from m cfx/dr = 
-,1, dx;/dt - Lj V Y(Xh Xi) + TJ by neglecting the inertia term mx" in front of the vis-
cosity term A x', or assuming that particles are quasi-stationary.) Now, in the mixed 
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type system of Fig. 2, V(Xh Xi) depends on both types of particles i andj, such that 
V(Xh Xi) = Va (ry), with ry = II Xi -Xj II, if and only if i and j are of type a ; otherwise 
V(Xh Xi) = Vp (ry) for the other type interactions a -{3 and f3 -{3 . This means that 
only a particles attract and lock in with other a particles, whereas they repel f3 
particles, which also repel each other. "Shape" is thus a relative concept for a parti-
cles, as they can switch between two affinity configurations depending on their 
neighbor's type. 
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Fig. 3: The "shape" or binding affinities of self-assembling components can be modeled by the 
emission oflocal attractiollirepulsion potentials V. In each frame: top--graph of Vas a function 
of distance r from the particle's core; middle-2-D view "from above" of a neighbor particle's 
motion within V; bottom--example of a few particles interacting through V. (a) Isotropic elas-
tic potential used in the a 1X interactions of Fig. 3. (b) Isotropic repulsion used in the a-f3 
and f3 -f3 interactions of Fig. 3. (c) Anisotropic "polar" attraction potential used in Fig. 4. 

As a result, in Fig. 2a, an initial random mix of 110 particles of each type reliably 
converges toward a lower energy state: a particles collide by chance (random walk 
due to the stochastic term 17 ), stick to one another and progressively form larger ag-
gregates until a giant component containing all a particles is created in the midst of 
a sea of f3 particles. Self-sorting processes such as this one have also been simulated 
using the Potts formalism [Graner & Glazier 1992], a multivalued Ising model in 
which a pixel on the grid represents a fragment of a biological cell, and a local region 
of equal pixel values represents one cell. Instead of the point-wise motion of swarm 
systems, the Potts model shifts cell boundaries by flipping pixel values according to a 
stochastic surface energy minimization. Similarly to Eq. (1), Potts surface energy in-
cludes differential adhesion as a sum of pairwise interactions between cell types. 

Although dissociated and mixed cells can spontaneously sort out again into homo-
geneous tissues, this phenomenon is seen mainly in artificial experiments whose goal 
is to demonstrate differences in cell adhesiveness. Cell sorting does not constitute a 
major natural developmental mechanism-despite common features with cell migra-
tion at the level of adhesion proteins. It might intervene locally as a correction mech-
anism (e.g., to compensate for small fluctuations or errors in cell differentiation) but, 
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in the end, an organism does not emerge from a giant swarm of trillions of disaggre-
gated cells that reassemble in parallel. Biological morphogenesis is mostly the prod-
uct of regulated growth, i.e., guided positioning by division and migration, not chance 
encounters. 

For these reasons, Fig. 2a is a more faithful illustration of the molecular style of 
self-assembly (the first half of points (iv) and (v)), while multicellular-style self-as-
sembly is better captured by Fig. 2b (the second half of points (iv) and (v)). Here, the 
system starts out with only a few particles of each type, which later divide into same-
type particles according to a certain probability. New particles pop up already pre-po-
sitioned near the type that produced them and only briefly rearrange within their local 
neighborhood. Not addressed in this simple model is cell migration, which also plays 
an important role in animal development. Yet again, migration has little to do with 
stochastic collisions. After its birth within a given neighborhood, a cell may traverse 
its environment toward a specific remote location, but it does so only under tight 
guidance from extracellular signals and cell-to-cell adhesion properties. 

1.2.2 Shape determination 
Once positioned, biological cells, unlike puzzle pieces or molecules, are also able to 
modify their individual shape dynamically and, consequently, the local geometrical 
arrangement that they form with their neighbors. This is an important aspect of multi-
cellular self-assembly that was mentioned in point (vi) and will be modeled here by a 
variant of the previous swarm system. In this variant, illustrated in Fig. 3c and Fig. 4, 
the isotropic potentials Va (r) and Vp (r) are replaced with an anisotropic or "polar" 
potential Vy (r). Instead of Va's ring-shaped basin of attraction at distance re from the 
cell center, the potential landscape Vy has two localized basins of attraction (qua-
dratic wells of radius rb) centered around two poles rl = (B I, re) and r2 = (B 2, re). For 
example, in Fig. 3c the values of Bland B 2 are 0 and 1C in the case of the horizontal 
(green) segments. In Fig. 4, the swarm consists of r particles with "vertical" binding 
affinities B 1 = 1C /2 and B 2 = -;r 12 (Fig. 4a,c) or variable angles (Fig. 4b,d). To rep-
resent the shape of this polar potential, these particles are displayed as short segments 
of length re and thickness rc, instead of discs. In Fig. 4a-b the particles pre-exist in a 
mix and have fixed shapes, whereas in Fig. 4c-d they dynamically appear and reshape 
themselves. Thus, while the constrast between Fig. 4a (colliding) and Fig. 4c (grow-
ing) reiterates points (iv) and (v) already illustrated in Fig. 2, here in the case of polar 
particles, the contrast between Fig. 4b (fixed shapes) and Fig. 4d (dynamical shapes) 
focuses on point (vi). By dynamically changing their shape after placing themselves 
into chain formation (through colliding or growing), the particles of Fig. 4d create a 
specific morphology, which is otherwise difficult or impossible to attain sponta-
neously through sheer stochastic encounters (Fig. 4b). The preshaped particles of 
Fig. 4b have specific pairs of angles that replicate the final state of Fig. 4d but are un-
able to coordinate; they only explore suboptimal and unstable states. By contrast, 
Fig. 4d is analogous to the invagination of cell membranes, a common mechanism of 
animal development most striking during gastrulation, whereby a few cells constrict 
one of their sides (using filaments of motor proteins) and adopt an elongated "wedge" 
aspect that draws the entire sheet of neighbor cells towards them. 
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Fig. 4: Constrasting different modes of self-assembly in I-D. In all frames, particles are of the 
same type r , i.e., they interact via the polar potential Vr (r) of Fig. 3c. To remind of their an-
isotropic affinities, particles are drawn as small rectangles instead of discs. (a) Colliding self-
assembly: 15 particles with vertical poles (() I, () 2) = (n 12, -7C 12) quickly snap into place, 
forming a straight chain. (c) Growing self-assembly: as in Fig.2c, the same string can be 
formed by dividing particles. (d) Reshaping self-assembly: each particle of (c) now dynami-
cally bends its shape in specific ways (see Fig. 5c), making the string invaginate. (b) Preshaped 
self-assembly: the invagination cannot be reproduced by giving fixed angles to the particles in 
advance (the same angles that appear at the end of (d)) and letting them randomly collide. 

In summary, biological self-assembly at the cellular level relies on principles that 
greatly facilitate and accelerate morphogenesis. When designing self-organized artifi-
cial systems in future, letting components dynamically create and reshape themselves 
"on the spot," as cells do, would be a far more efficient approach than letting them 
haphazardly try to match each other's pre-existing constraints, like molecules in a so-
lution. (Obviously, a major technical difficulty will be to implement and control the 
self-replication of artificial components made of electric, chemical or even biological 
materials.) In any case, to transition from stochastic (molecular-style) self-assembly 
to programmable (multicellular-style) self-assembly, components must be able to 
modify their behavior (divide, differentiate, migrate) dynamically through communi-
cation. Cells do not just snap into place; they send molecular signals to each other, 
forming patterns of differentiation at the same time that they are self-assembling. 

2 Pattern Formation in Pre-Assembled Media 
Since Turing's 1952 seminal model of the spontaneous symmetry breaking and ap-
pearance of regular structures in biological organisms, the concept of morphogenesis 
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has largely, but somewhat inaccurately, become synonymous with pattern formation. 
Morphogenesis originally referred to the biological development of the organs and 
structures of an organism during embryogenesis and, by extension of its etymology, 
any "generation of form" at various scales in other types of complex systems, such as 
physical (geomorphogenesis) or social (urban morphogenesis). Pattern formation, in 
contrast, generally refers to the emergence of statistically regular motifs in quasi-con-
tinuous and initially homogeneous 2-D or 3-D media. To be sure, both phenomena in-
volve the decentralized self-organization of a myriad of elements and produce con-
trast where there was uniformity, yet they do not emphasize the same aspect of 
emerging order. The latter looks at shimmering landscapes of activity on a more or 
less fixed backdrop, while the former emphasizes the creation of intricate architec-
tures and structures. Using an artistic metaphor, it could be said that pattern forma-
tion "paints" a pre-existing space, while morphogenesis "sculpts" its own space. 

There is a huge diversity of pattern formation behaviors across many scales and 
substrates (e.g., fluid, electromagnetic, mechanical, chemical, biochemical), from 
which a few broad classes of mechanisms and models have been identified (e.g., con-
vection cells, reaction-diffusion, activator-inhibitors, synchronization of oscillators). 
The observed patterns can be static, steady-state or dynamically changing (e.g., trav-
eling waves) and organize themselves into patches or domains that also fall into a few 
classical geometrical families (e.g., spots, stripes, spirals, branches). Morever, the 
pattern formation processes typically studied are for the most part inherently stochas-
tic, at both the microscopic level of elements and the macroscopic level of the distri-
bution of patterns. Continuing the tradition initiated by Turing, most models have 
been focusing on systems that rely on instabilities and amplification of fluctuations to 
transition toward order and form patterns. Because of their randomness, and without 
carefully set boundary conditions (possibly themselves the product of morphogenesis; 
see below), the outcome of those processes is generally unpredictable in the number 
and position of the emerging meso scopic domains (spots, stripes, convection cells). 
At the same time, the whole formation on the macroscopic level is fairly regular or 
even periodic, at least piecewise, since it essentially consists of repeated motifs. It 
displays statistical uniformity similar to textures. 

In biological development, by contrast, the meso scopic elements (organs, limbs, 
parts, tissues, etc.) are always very reliably positioned-unlike random spots and 
stripes-and display complex and heterogeneous morphologies-unlike uniform tex-
tures. Although the well-known colorful animal coats, such as seashell, zebrafish or 
leopard, have been (debatably) assumed to arise from morphogen-based reaction-dif-
fusion pattern formation, they make up only a minor part of the whole organism. The 
unique characteristic of biological morphogenesis, absent from simpler physical-
chemical pattern formation, is that each one of its self-organizing elements, the cell, 
contains a rich source of information stored in the DNA, which endows it with a vast 
repertoire of highly nontrivial behaviors. Even admitting that DNA is less than a 
"program," in the sense that it does not control the cell deterministically along a lin-
ear flow of execution, it is nonetheless, at the very least, a repository of stimuli-re-
sponse rules, vastly superior in quantity of functional information to any physical or 
chemical element involved in one of the habitual pattern formation dynamics. 
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Embryogenesis, therefore, combines both pattern formation and morphogenetic 
self-assembly in a tightly integrated loop: It creates shape from patterning (Fig. 5) 
and patterns from shaping. Structures are "sculpted" from the assembly of elements 
that have been prompted to do so by the "painting" of their genetic identity. Con-
versely, newly formed shapes are able to support, and trigger, new domains of ge-
netic expression. DNA is "consulted" at every step of this exchange, in every cell, to 
produce the proteins that will guide the cell's highly specific biomechanic behavior 
(shaping) and signalling behavior (patterning) at a given time in a given location, de-
pending on the signals received from the neighborhood. A schematic illustration of 
the "shape from patterning" process is shown in Fig. 5. 
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Fig. 5: "Shape from patterning" examples: deriving morphogenetic self-assembly (bottom 
frames) from pattern formation (top frames). (a) Amoebae in the slime mold Dictyostelium first 
generate waves of chemical signalling, modeled as a lattice of coupled oscillators (top). After a 
while, the lattice breaks up as cells follow the concentration gradient toward wave centers and 
aggregate (bottom). (snapshots from T. Schmickl's online simulations at http://zoo133.uni-
graz.atlschmickl) (b) Augmented view of the swarm of Fig. 2a, where the a particles are as-
sumed to have differentiated from a prepattern of chemical concentration before assembling as 
above. (c) Augmented view of the chain of Fig. 4d, in which the bending angle of each cell is 
also determined by a prepattern of identity. (The type of pattern formation in (b) and (c), 
whether Turing-like, genetically regulated or a combination of the two, is not specified here.) 

3 Integrating Self-Assembly and Pattern Formation 
Under Genetic Regulation 
The model of artificial embryogenesis that I have recently proposed [Doursat 2006, 
2007] is an original attempt to integrate the three fundamental ingredients discussed 
above: (i) self-assembly (SA) and (ii) pattern formation (PF), triggering each other in 
a feedback loop under the tight control of (iii) nonrandom genetic instructions (GI)-
here, a gene regulatory network-stored in each cell of the system. Previous theoreti-
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cal models of biological development or bio-inspired artificial life systems have sel-
dom included all three mechanisms. The evo-devo works of Hogeweg [2000], 
Salazar-Ciudad & Jernvall [2002] or, with lesser morphogenetic abilities, the Celler-
ator system [Shapiro et al. 2003] and Nagpal's origami [2002] are a few notable 
achievements. Other interesting studies have explored the combination of two out of 
three ingredients: SA and PF, no GI-self-assembly based on cell adhesion and sig-
nalling pattern formation, but using only predefined cell types without internal ge-
netic variables [e.g., Man!e & Hogeweg 2001]; PF and GI, no SA-nontrivial pattern 
formation from instruction-driven intercellular signalling, but on a fixed lattice with-
out self-assembling motion [e.g., von Dassow et al. 2000, Coore 1999]; SA and GI, 
no PF-heterogeneous swarms of genetically programmed, self-assembling particles, 
but in empty space without mutual differentation signals [e.g., Sayama 2007]. 

The present model has been explained in detail elsewhere [Doursat 2006, 2007]. It 
is summarized here, highlighting the interplay between pattern formation and self-as-
sembly, as illustrated in Fig. 6. 

3.1 Gene-regulated pattern formation 
A virtual embryo is a swarm of cells, where each cell contains a gene regulatory net-
work (GRN) coding for its signalling and mechanic activity. Through intercellular 
coupling between neighboring GRNs, the embryo becomes patterned into identity do-
mains of differentiated gene expression, creating a "hidden geography" revealed by 
in situ hybridization (Fig.6c,e). Essentially, logical combinations of regulatory 
switches (OR, AND) translate into geometric combinations of precursor patterns into 
new patterns (union, intersection). Developmental genes are roughly organized in 
tiers, or "generations." Earlier genes map the way for later genes and gene expression 
propagates in a cascade. This principle has been beautifully demonstrated in the 
Drosophila embryo. The intersection of various striping patterns along its three main 
axes gives rise to smaller domains such as the organ primordia and "imaginal discs," 
which are groups of cells marking the location and identity of the fly's future ap-
pendages (legs, wings, antennae). Going back in time, the whole process begins with 
concentration gradients of maternal proteins diffusing across the initial cluster of 
cells. These gradients are the functional equivalent of a coordinate system. 

3.2 Biomechanic self-assembly 
In parallel to genetic patterning, the embryo continues to grow and undergo extensive 
reshaping as cells divide and proliferate. Previous identity domains expand and de-
form while becoming partitioned into new and finer identity domains. Three main 
biomechanic principles responsible for these morphogenetic changes are integrated 
into the model as schematic rules: (a) differential adhesion as elastic forces between 
cells, (b) inhomogeneous cell division as internal probability rates, and (c) tropic cell 
migration as internal velocity vectors. In parallel to chemical coupling between their 
GRNs, neighboring cells are connected by abstract mechanical edges between their 
nuclei, established through Delaunay triangulation-the cell shapes being the com-
plementary Voronoi domains. Similarly to the Va (r) potential of Fig. 3a, cell-to-cell 
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edges are modeled as small springs, so that each cell tries to set the distance with its 
neighbors' nuclei to reo Biological cells also stick to one another by means of adhe-
sion proteins that cover their membrane. The great diversity of surface adhesion pro-
teins gives them the ability to selectively recognize one another by modulating their 
degree of "stickiness." In the elastic force model, differential adhesion on edge i+-+j 
between cells i and j is modeled by resting lengths {ij spring coefficients kij that can 
vary from edge to edge. Different proliferation frequencies p ; also create deforma-
tion in the embryo, as compartments expand faster than others. Migration, repre-
sented by additional time- and space-varying vectors Vi, is not shown in this article. 

3.3 Pattern-regulated self-assembly, assembly-triggered patterns 
Closing the loop, the complete model establishes a functional dependency between 
cell identities and mechanical cell behaviors (Fig. 6). The self-assembly rules of sec-
tion 3.2 are linked to the self-patterning process of section 3.1 by making mechanical 
parameters p i, lij and kij depend on the current state of the genetic expression of i and 
j, i.e., the identity (colored) domains to which cells belong. See Fig. 6 for details. 

(a) 

PF1 

Fig. 6: Integrating self-assembly (SA) and pattern formation (PF) under genetic regulation. 
(a) Starting from a small clump, cells proliferate at a uniform division rate to reach about 800. 
All cells are of same type a with an anisotropic 2:1 ratio along x (ellipsoid version of elastic 
potential Va, Fig. 3a). (b) As in Fig. 2b, spontaneous rearrangements give the embryo a convex 
shape, here oval. During expansion, protein gradients (x-gradient in purple) spread across the 
unique domain. (c) The varying concentration levels are then read out by each cell and input 
into the first stages of their GRNs (not shown), producing in output different values of gene ex-
pression, i.e., defining new cell types a I, a 2 and so on. (d) These types, in turn, determine the 
new division rates p (a) in each domain and adhesion coefficients k( a , a ') between do-
mains. For example, a 3 and three other types start proliferating at a faster rate than the rest of 
the embryo, while they lose adhesion with neighboring domains, thereby creating limb-like 
bulges. (e)-(f) The same alternation of PF-induced differentiation and heterogenous-type SA 
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continues at a finer scale of detail with respect to the overall expanding organism. 

4 Toward Evolutionary Meta-Design 
Exploding growth in hardware components, software modules and network users will 
force us to find an alternative to rigidly designing and controlling computational sys-
tems in every detail. Instead, future progress in information and communication tech-
nologies will depend on our ability to meta-design mechanisms allowing those sys-
tems to self-assemble, self-regulate and evolve. Nature offers a great variety of de-
centralized, autonomous systems, most conspicuously biological organisms. Deemed 
"complex," these systems might in fact be less costly, more efficient or even "sim-
pler" than human-designed and centrally controlled contrivances. Complex systems 
are characterized by the self-organization of a great number of small, repeated ele-
ments into large-scale, adaptive patterns, where each element may itself obey the dy-
namics of an inner network of smaller entities at a finer scale (microprogram). The 
new engineering challenge is thus to "guide" this self-organization, i.e., to prepare the 
conditions and mechanisms favorable to nonrandom, heterogeneous and reproducible 
morphogenesis (macro-program). At the same time, it is also to allow the parameters 
of this process evolve in order to freely generate innovative designs. Finding efficient 
systems will require matching loose selection criteria with productive variation mech-
anisms. The first point concerns the openness of the designers to "surprising" out-
comes; the second point concerns the intrinsic ability of complex systems to create a 
"solution-rich" space [Minai et al. 2006] by combinatorial tinkering on highly redun-
dant parts. Embryogenesis, the development of an entire organism from a single cell, 
provides the most striking example of self-organization guided by evolvable genetic 
information. 

This work describes an original model of bio-insipred, artificial embryomorphic 
system growth, integrating pattern formation and self-assembly under non-random 
genetic regulation. A virtual organism is represented by a mass of cells that prolifer-
ate, migrate and self-pattern into differentiated domains. Each cell contains an inter-
nal gene regulatory network and acquires a specific gene expression identity by inter-
action with neighboring cells. Differentiated cell types trigger different cell behav-
iors, which in tum induce new identities. The organism's final architecture depends 
on the detailed interplay between the various rates of cell division and movement, 
propagation of genetic expression and positional information. Ultimately, on this 
score of "theme and variations" (developmental laws and parameters), evolution will 
be the player. 

Based on these first results, I propose a new discipline, embryomorphic engineer-
ing as a "fine-grain" approach to systems design, based on swarms of relatively sim-
ple, cloned elements. It emphasizes the need for hyper-distributed architectures and 
self-organized development as prerequisites for evolutionary innovation. In possible 
future hardware applications, nano-units containing the same instructions could self-
organize without the need for reliability or precise arrangement as in traditional VLSI 
[Coore 1999, Nagpal 2002]. In software or network applications (servers, security, 
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etc.), a swarm of small-footprint software agents could diversify and self-deploy to 
achieve a desired level of functionality. 
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Sensory extension and increasingly powerful computation underpinning emerging new science 
provides us with daunting conceptual challenges. It is here argued that because they are 
primarily philosophical in nature, high-level conceptual challenges are unique and different 
from those that help us refine outputs and achievements based on solving our technical and 
political problems. This paper explores the practical implications of such unique conceptual 
challenges and discusses the need for enhancement of conceptual skills. Such conceptual 
enhancement may provide us with a good opportunity to best respond to and benefit from these 
challenges. 

1 Introduction 
The use of information to achieve knowledge, derived from data originating with 
many sources, is essential to successful enterprise in any human effort. Indeed, we 
note that the derivation and use of knowledge is key to human advance in any field. 
This appears to be obvious, but the central argument provided in this paper is that the 
obviousness of this phenomenon that leads us through our processes of scientific 
discovery and advance may mask the emergence of unique conceptual challenges to 
our conceptual skill capacity defined by their philosophical nature, where such 
challenges are not at all obvious. 



2 Background 
To accomplish the derivation of scientific knowledge, we engage in two essential 
activities of science: [i] we continue to extend our senses to gather increasingly 
detailed, voluminous and complex data sets having to do with the very large and the 
very small, and the very complex and the very dynamic; and [ii], we apply many 
tools of analysis and synthesis to those data, and in the modern era we continue to 
develop and employ increasingly complex, networked, and very powerful advanced 
perceptual and computational tools for this purpose, especially those having to do 
with simulation, to assist us with and help us continue to develop and explore how to 
enhance theory and knowledge yields from these fundamental tasks. We create, 
develop, enhance and strengthen our perceptual and computational tools to the extent 
that, today, we are capable of deriving very useful and sometimes unexpected and 
exceptionally valuable information about extremely complex systems comprised of 
vast numbers of interacting components and agents [I]. This is important exploratory 
work that we could not accomplish, or even dream of accomplishing, only a relatively 
short time ago [2], 

Prior to the advent of the current era where both highly advanced sensing devices 
coupled with very powerful computational machines continue to be developed, not 
much could be known about either the working intricacies of high dimensional 
complex systems, or of the extent and emergent nature of highly complex interactions 
among large numbers of high dimensional complex system variables and 
components. This meant that high levels of functional detail about complex systems 
might have been postulated, or how such systems behave might have been 
contemplated, but such detail or postulation was either inaccessible or undeveloped -
with the exception, perhaps, of those blessed with a capacity for genius who, based 
on available early evidence, might be able to work out plausible hypotheses and 
develop new and useful mathematical models more effectively than others [3]; but 
even geniuses would not have privileged access to tools of extended perception and 
advanced computational capacities in advance of everyone else. Such characteristics 
and features of complex systems were hidden behind the limits to human perception, 
were postulated hypothetically by those who had the capacity to push to the edges of 
the hypothesis development envelope, and awaited discovery beyond a computational 
ceiling that could begin to be penetrated only by advanced mathematical modeling of 
plausible systems - but again, in relative terms, this ceiling was kept low by early 
generation computational capacities. Knowledge about what actually comprised such 
complex systems and their environments, as well as their behaviours - or even 
knowledge [not speculation] that such systems themselves existed - could not be 
accessed or perhaps not even surmised except in very special circumstances of 
hypothesis construction, and certainly not beyond rational conceptual limits which 
would relegate such thinking to the realm of fantasy. 
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Such complex systems, when rationally contemplated, could be dealt with only at 
relatively high levels of plausible abstraction, or, when available, in terms of their 
known components where, for example, limited principles of structure, logic and 
function might be explored mathematically and fundamental aspects of emergent 
theory might consequently be developed [4]. This meant that complexity theory - that 
is, any adequate theory building having to do with high dimensional, extremely 
complex systems with large numbers of variables - would initially be difficult in any 
scientifically meaningful fashion and could not be verified through experiment or 
simulation except in the most general terms, and therefore, almost exclusively, were 
known only in principle. For example, features and behaviours of complex systems 
such as ecologies, cortical columns, weather systems, genetic regulatory networks, 
quantum chemical interactions, dynamical activities among subatomic particles, 
energy and work networks of a cell, the Internet, or hitherto unknown dynamical 
astronomical objects could, in essence, be "sketched out" conceptually and perhaps 
mathematically modeled in some useful but limited fashion - and, all had in common 
the feature of residing in and perhaps even defining the archetypical "black box" 
[although of course as we well know, it is a very important step forward in 
knowledge generation when a black box is recognized where before none was 
perceived or even postulated!] [5]. 

Keeping these thoughts having to do with the advance of science as a backdrop to this 
paper, we note that, in the current era, based on the development and use of tools that 
extend our perceptual capabililty and provide advanced computation that together do 
such a good job at enhancing our productivity, creativity and problem solving 
capacities, we continue to explore, discover, invent and develop at a rapid pace. In 
other words, science continues to rapidly move forward on increasingly broad and 
comprehensive fronts and its valuable outputs proliferate. It is no surprise to note that 
part of this is taking place with regard to the very perceptual and computational tools 
we employ. Although I do not here address any details of the technical enhancement 
of computation and perception, a fundamental question with two related parts 
underpins what is addressed here: [i] what frameworks will allow us to best 
understand the components that allow us to make scientific advances; and [ii], if it is 
the case that we continue to develop our scientific capacities and knowledge, what is 
the extent and nature of challenges that present themselves as this development takes 
place, and how can we make best use of them? Let us explore where these formative 
questions lead us. 

3 The Challenge 
I have argued elsewhere [6] that conceptual and philosophical challenges in the 
quantum mechanical and holonic enterprise fields illustrate a serious problem having 
to do with scientific advance; these two realms have a striking isomorphism with the 
fundamental two-part question outlined above. That is, given unfolding new 
knowledge about complex systems in many realms of science such as those 
mentioned earlier, and the improving tools we use to explore this diverse realm, we 
are faced with the challenge of developing a comprehensive conceptual foundation 
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that would successfully account for this emerging "new science", a foundation that 
goes beyond what I am here describing as the type of conceptual work necessary for 
spectacular technical scientific advance such as what was accomplished by the 
Manhattan Project and American moon landing teams, for example [7]. By this I 
mean that solving a vast array of technical, mathematical and physics problems 
having to do with complex systems as identified above, and coming up with novel 
solutions to those problems, does indeed take advanced conceptual skills of a 
particular kind rooted in and colored by the very technologies we develop [e.g., we 
need to think effectively about mathematical models and the engineering of new tool 
development to permit us to work in the particular complex systems realm of interest] 
- and clearly, we have to be very smart and well-trained to accomplish such tasks. 
However, we must at the same time be very cautious about assuming that our 
extensive technical [and even political] work that results in accumulations of good 
prescriptive knowledge [8] in the multiplicity of complex systems realms, some of 
which are identified above, will automatically result in some form of a solid 
conceptual foundation that permits us to stand confidently on a new epistemology of 
complex systems which in tum would be a specific example of the general case of the 
emergence of new science [see, for example, Kuhn (9), Nickles (10) and Suppe (11)]. 

The point here is that, from an epistemological perspective, there is a potentially 
serious danger of assuming that new propositional knowledge [8] derived from what 
is learned from vast amounts of new accumulated prescriptive knowledge that has 
originated from extended sense perception and computational capacity is the 
equivalent of an adequate conceptual foundation capable of supporting new 
epistemologies of new science [12]. Assuming that this is the case would amount to 
"masking" the authentic conceptual challenge of emerging new sciences of 
complexity, for example, which is what I have suggested elsewhere may also be 
taking place with regard to quantum physics and the holonic enterprise: in other 
words, new propositional knowledge about complex systems derived from extensive 
investigation and work in specific fields of inquiry can potentially be mistaken for the 
conceptual adequacy necessary to effectively deal with and account for new 
epistemologies of new science. This may be a state of misapprehension into which 
many contemporary scientists might easily fall, and I am among those ranks; it is, I 
think, natural to assume that if truly difficult scientific problems have been "cracked" 
and new emerging science has indeed been developed and advanced, especially 
problems having to do with complex systems on "the leading edge" that require 
advanced tools of perception and computation, that such advance is itself necessary 
and sufficient evidence to qualify as well-understood progress in the essential 
philosophical foundation of science [13]. However, I do not think that this is the case; 
in fact, I believe that this is a philosophical error that may be more common than we 
would like to think, and we are compelled to guard against falling victim to it. As I 
have stated elsewhere [6], "This type of conceptual slippage is of great concern in the 
emergence of new science for it speaks to the potential for making important 
conceptual errors that are generally not perceived, and this has great significance in 
the context of how we then actualize new science in our organizations and diffuse 
new science throughout our cultures." In other words, if we do good work in a field 
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of emerging science such as the complexity sciences, and if we become a part of a 
growing community of investigation and enterprise based on this field of emerging 
science and are rewarded in these pursuits, because of the above-mentioned 
conceptual slippage we may lose sight of the philosophical foundation of that science 
and therefore arrive at and commit to non-optimal decisions about how further 
investigation into that emerging field should be funded, supported, criticized, and, in 
the end, how that emerging field should be understood. It may be the case, in other 
words, that without careful consideration of the philosophical foundation of new 
emerging science, we may not think well enough about how to make good and 
effective use of that emerging science. This possibility has many scientific, economic 
and societal implications. 

4 Conclusion 
The challenges of scientific advance include how well we develop and make use of 
new tools of analysis and synthesis that permit us to explore new fields and derive 
new data that we can then reduce to new information about our objects of interest and 
investigation, whether they be cancer stem cells or micro-loan economies, plasma 
furnaces or climate models, stellar atmospheres or human consciousness, predator-
prey relations or communication network dynamics. From these investigations we 
derive everything from methods to achieve economic advance and sustainability to 
new scientific paradigms. But the challenges of scientific advance also include our 
collective conceptual capacity to understand and shape an emerging epistemology of 
new science. I do not believe we can have one without the other; nor do I believe we 
can afford to be blind to the relationship between the two. It is our higher-level 
conceptual capacity to deal with issues of the epistemology of science, and especially 
our shared awareness of this capacity, that I suggest we need to refine and build in 
order to not slip into a state where we are compelled to be satisfied with the default 
outcomes of scientific advance, founded on fine technically-focused accomplishment 
coupled with the error of mistaking such accomplishment for philosophical clarity. 
To assume that this argument is unimportant, or that it is not necessary to think about 
and then make good use of enhanced understanding of the philosophy of science 
regardless of our fields of specialization, or that the philosophy of science is 
essentially a passive enterprise and will take care of itself without much thought are, I 
believe, components of a serious and in fact costly error. Good science proceeds and 
advances not only with creative investigation coupled with innovative and productive 
solutions to perplexing problems in many fields [as well as new interdisciplinary 
fields], it proceeds with a robust foundation of philosophical clarity about our higher-
level conceptual skills [14], and, especially, clarity about how to use those skills to 
our best advantage. Placing the challenge of epistemological awareness in a more 
prominent place in our consideration of and actions taken to support scientific 
advance will, I believe, help us think with enhanced high-level conceptual clarity 
about our sciences in general and the full extent of scientific, economic and societal 
advances, outcomes and benefits we aim to achieve. Commencing with complexity 
sciences in this way may be a very good place to start. 
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Team decision making dynamics are investigated from a novel perspective by shifting agency 

from decision makers to representations of potential solutions. We provide a new way to 

navigate social dynamics of collective decision making by interpreting decision makers as 

constituents of an evolutionary environment of an ecology of evolving solutions. We 

demonstrate distinct patterns of evolution with respect to three forms of variation: (I) Results 

with random variations in utility functions of individuals indicate that groups demonstrating 

minimal internal variation produce higher true utility values of group solutions and display 

better convergence; (2) analysis of variations in behavioral patterns within a group shows that a 

proper balance between selective and creative evolutionary forces is crucial to producing 

adaptive solutions; and (3) biased variations of the utility functions diminish the range of 

variation for potential solution utility, leaving only the differential of convergence performance 

static. We generally find that group cohesion (low random variation within a group) and 

composition (appropriate variation of behavioral patterns within a group) are necessary for a 

successful navigation of the solution space, but performance in both cases is susceptible to 

group level biases. 

1 Introduction 
Collective decision making is becoming more central and indispensable in human 
society as modem problems increasingly involve interactivity and inseparability 
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within large scale tasks [4]. In high-tech product and software development, for 
example, the amount of workers participating in a design project can be in the order 
of thousands as a result of a product's complexity exceeding an individual's capacity, 
which almost inevitably results in suboptimal outcomes [5]. More recently, online 
collective decision making among large populations of anonymous participants via 
computer mediated networks has been implemented for product rating and common 

knowledge base formation. Both individual behavior and the organizational structure 
greatly influence decision processes. The complexity of the processes is more 
manifested when constituents of groups are heterogeneous with regard to both their 

world views and behavioral propensities. Collective human decision making in such 
conditions is poorly understood, being one of the most significant challenges in the 
social sciences. 

The leadership, psychology and organizational behavior/management 
disciplines have examined collective dynamics using both experimental and applied 
studies. They generally emphasize linear statistical relationships of team and 
individual level variables [4], without accounting for nonlinear processes, high-

dimensional problem space and non-trivial social structure. Complex, nonlinear 
problem space has been considered in dynamical modeling studies [5], in which 
interdependence of aspects of problem are considered, but not nontrivial social 

interactions. 
Here we investigate collective decision making dynamics from a novel 

perspective by shifting the focus of agency from group members to potential 
solutions being discussed. The decision making processes are described using 
concepts in evolutionary theory, where evolution acts on a population of potential 
solutions through mechanisms of selection and variation as effected by human 
discussants. Group members thus serve both as an evolutionary environment and as 
implements of evolutionary action on a popUlation of solutions. Within this context, 
several evolutionary operators can be mapped to human behaviors. Examples include 
replication (advocacy of an existing idea), subtractive selection (criticism against an 
existing idea), mutation (revision of an existing idea) and recombination (creation of 

a new idea by mixing existing ideas). 

2 Model 
2.1 Groups 

We apply evolutionary framework to model simple group decision making processes 

within a small-sized, well-connected social network structure. We conduct multiple 
levels of analysis [1,7] on how homogeneities or heterogeneities of world views/goals 

among the participating agents, as well as group-level behavioral patterns and biases, 
affect the decision making dynamics and the final outcomes [2]. 



When group members are heterogeneous in world views, differences 
between individual utility functions play a crucial role in determining the group 
dynamics; the relevant level of analysis is within groups. Each member acts as 
"group parts" [1] to achieve individual objectives. Conflicts of interest make the 
problem space more complex than that of groups consisting of homogeneous, world 
perspectives. On such complex landscapes there is more possibility for populations to 
become stuck at local optima, detrimenting the overall adaptiveness. Contingently, 
the importance of variation relates to escaping from the local optima in order to reach 
better so lutions. 

If group members are homogeneous in their world view, they behave as 
"group wholes" [1]; the relevant level of analysis is between groups. The population 
of solutions evolves to adapt to a single utility function shared by all the group 
members, so the problem space would be simpler than with heterogeneous groups. 
With little conflicts of interest, selection is relatively important to adaptiveness as 
speeding up the convergence of discussion. Variation still holds importance, 
especially with complex nonlinear problems. 

Our model assumes that groups are initiated with a list of randomly 
generated ideas, whereupon they begin to perform a set of actions on the existing 
population of solutions repeatedly for a fixed number of iterations. Individuals 
always act in the same order and groups always demonstrate a full rotation. The 
number of actions on the population of solutions is a product of the number of group 
members, N, and the number of iterations, t. 

In the population, there may be multiple copies of the same type of solution, 
which represents the relative popularity among group members. Each action is 
performed on a single copy of solution, not on an equivalence class of all solution 
replicates. 

2.2 Utility Functions 

Groups are situated in an M-dimensional binary problem space, with 2M possible 
solutions. For a simulation, every solution has a utility value specified by a master 
utility function U that is unavailable to group members. Individuals perceive solution 
utility values based on their own utility functions Ch constructed by adding noise to U. 
We develop a semi-continuous assignment of utility values in the problem space in 
the following way. First, s representative solutions S = {Vi} ( i = l...s ) are 
generated as random bit strings, where each Vi represents one solution made of M 

bits. One solution is assigned the maximum fitness value, I, and another, the 
minimum fitness value, O. The remaining s - 2 solutions are assigned a random real 
value between 0 and 1, ensuring that the entire range of utility values is from 0 to I, 

for the sake of comparisons between simulation results. 
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The utility values of all possible solutions in the domain of the master utility 
function are defined by interpolation using the utility values of representative 
solutions in S. We use the Hamming distance as a measure of dissimilarity between 
two bit strings. With this measure, the utility value of each possible solution not 
present in S is calculated as a weighted average of the utility values of the 
representative solutions calculated as follows: 

U(v) = "2,f.lU (VJ·D(vi'vr2 
"2,f.l D (vi ,vr2 (1 ) 

where v~S is the solution in question, U(v) is the utility of a representative 

solution Vi in S, and D( Vi' v) is the Hamming distance between viand v. 
Each individual in a group will unconsciously have a different set of utility 

values for the possible solutions of the problem. Individual utility functions U/v) 
(j = I.. .N) are generated by adding random noise to the master utility function so 
that: 
U/v)E[max(U(v) -v,O),min(U(v) +v,l)] (2) 

for all v, where v is the parameter that determines the range of noise. Individuals do 
not access global maximum/minimum utility values, though they can retrieve a utility 
value from the function when a specific solution is given. 

In addition to individual deviations from a common master utility function, 
we investigate the effect of common deviations from the "true" utility function, or 
group level biases. For simulating group level bias we introduce a new step in the 
generation of individual utility functions, in which the master utility function U(v) 
differs from the original true utility function, U T (v). Specifically, a bias /3 is 
imposed on the true utility function both by flipping bits with probability 0.25 /3 per 
bit and adding a random number ranged [-/3, f3J to utility values. Solution sets are 
renormalized to the range [0, 1 J. The master utility function is generated from the 
biased representative solution set. Subsequent methods follow as described above. 
Bias represents fidelity of information at the group level, where /3 = 0 denotes perfect 
information, and complete randomization is asymptotically approached as bias 
increases. 

2.3 Evolutionary Operators 

We identify six evolutionary operators representing individual behaviors reflecting 
selection or variation. Some operators use a preferential search algorithm to 
stochastically search the solution population, where rp solutions are randomly 

selected and ranked according to their perceived utility values, and then the best or 
worst solution is selected depending on the nature of the operator being executed. 

Replication. Replication adds an exact copy of a solution from the 
population of solutions back onto the list. Solutions are chosen for replication with 



the preferential search algorithm. Replication therefore can neither produce a novel 
solution nor remove one, but it gently sways the ecology of the population by 
increasing the popularity of favorable existent solutions. This represents an advocacy 
of a particular solution under discussion. 

Random point mutation. Random point mutation adds a copy of a solution 
with point mutations, flipping of bits at each aspect of a problem with a probability 
pm. The solution on which the operator acts is chosen from the active population with 
a preferential search algorithm (discussed in more detail below). This represents an 
attempt of making random changes to the existing ideas, reflected in asking "what if" 
questions. Random point mutations help escape local maxima of a utility function in 
the problem space when a utility function is nonlinear and many-peaked. 

Intelligent point mutation. A solution is selected from the population with 
a preferential search algorithm. It makes several (r m) offspring of the parent solution 
and selects that of the highest perceived fitness for addition to the population. This 
represents a proposal of an improved idea derived from existing ideas under 
discussion. The intelligent point mutation can be useful in maximizing a utility 
function with one maximum by climbing monotone gradients, but it may perform 
poorly in a complex utility landscape. 

Recombination. Recombination chooses one solution at random and one 
with a preferential search algorithm. It then creates two offspring from the two parent 
solutions. Sexual reproduction is simulated with a multiple point cross-over 
recombination: parent solutions are aligned by aspects, for each of which there is a 
probability Ps of switching their contents. Of the two offspring, that of higher 
perceived utility is selected and added to the population. This represents a creation of 
a new idea from two existing ideas. 

Subtractive selection. The preferential search algorithm is used to find the 
solution with the worst fitness, whereupon it is singled out and deleted from the 
population. This represents a criticism against a bad idea. Subtractive selection is the 
only operator that reduces the number of existing solutions and is therefore essential 
to groups attempting to attain convergence in the population distribution. 

Random generation. Finally, random generation of solutions adds a 
randomly generated solution to the population. There is no use of an individual's 
utility function, nor any connection to the existing solutions "on the table" at that 
time. New solutions are generated utterly randomly. This represents a sudden 
inspiration of a totally unique idea that is unrelated to the existing ideas under 
discussion. 

2.4 Simulation Settings 

The following parameter settings were held constant for all simulations: group size N 

79 



80 

= 6; problem space dimensionality M = 10; number of sample solutions in the 
preferential search algorithm rp = 5; number of offspring generated in the intelligent 
point mutation rm = 5; random mutation rate per bit pm = 0.2; probability of random 
switching in recombination Ps = 0.4; number of iterations t = 60. It was also assumed 
that groups were initialized with four random ideas. For each group, the noise 
parameter V and the bias parameter {3 were varied from 0 to 1.2 by increments of 0.2. 

2.5 Metrics of Group Performance 

We use two separate performance metrics: the true utility of the mode solution at the 
end of group simulation and the convergence of solutions. Convergence is based on 
entropy 

n 

H = - ~ p(xJ ·log2 p(xi ) , (3) 

where P(Xi) is a normalized frequency of the i-th type of solutions in the population. 
Since the maximum possible value of His M (this is the case when there are exactly 
2M solutions in the population which are different from each other), M - H is a 
quantitative measure that intuitively means the number of aspects of the problem on 
which the group has formed a cohesive opinion. For normality, we will use (M - H) / 

M as the metric. 

3 Results 
We first conducted a within-group analysis examining effects of heterogeneity in 
world views (utility functions) within a group. Here we assumed group members 
were "balanced" behaviorally; in each iteration, they randomly chose one of the six 
operators with equal probability. Figure I indicates the results with several different 
settings of within-group variation v and group-level bias {3, plotting them in a 2-D 
performance space using the two metrics described above. 
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Figure 1: Simulation results showing the effects of within-group heterogeneity and group level 

bias. The level of convergence and the true utility value of mode solutions for several different 

noise levels are plotted. V = 0 represents the case of completely homogeneous groups, while 

larger values of V represent more heterogeneous group cases and larger values of bias 

represent large discrepancies between group utility functions and true utility function. 

Group-level bias affects the utility of group solutions while convergence is 

largely unaffected. On the other hand, within-group variation degrades both 
convergence and utility. Groups performed better in both performance metrics when 

they were homogeneous in their utility functions. As the groups' members become 

more heterogeneous, the true utility value of the mode solution decreased and the 
final population of solutions after discussion became more diverse. The decrease of 
the true utility value was particularly drastic; in nonbiased conditions with no 

heterogeneity, the groups were able to fmd nearly perfect solutions for the problem 

(i.e., the utility close to I). As the groups become more heterogeneous the utility 

achieved dropped to just above 0.5, meaning that there was no net improvement 

achieved during the group discussion. This was due to the conflicts of interest among 

the group members. 

Contrary to other findings regarding heterogeneous groups outperforming 

homogeneous groups on creative and intellectual problem solving tasks [3, 6], our 

findings indicate the opposite, which may seem to support the negative relationship 

reported between both surface-level (i.e., demographic) and deep-level (i.e., 

psychological) diversity and group functioning and performance [2]. We must note 

here, however, that the diversity considered in this set of experiments is about the 

individual utility functions only, and not about the individual behavioral patterns. 

In order to explore the effects of various compositions of individual 

behaviors, we ran another set of experiments using the same simulation model with 
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different behavioral patterns assumed for different groups. In forming different group 
properties, we modeled only a handful of potential evolutionary operatorslbehaviors 
combinations. We modeled some operators singularly (e.g., random generation was 
the only operator within the group), and for other groups we combined two 
evolutionary operators to reflect increasing complexity of group behavior (e.g., 
recombination and intelligent point mutation). For the former cases group members 
were assumed to choose the designated operator for 95% of their total actions, with 
1 % for each of the other five operators. For the latter combined cases they were 
assumed to choose each of the two operators for 48% of their total actions (96% in 
total), with I % for each of the other four operators. We limited our examination to 
eight group types: replication and subtractive selection (Group I); subtractive 
selection and random point mutation (Group 2); replication and recombination 
(Group 3); recombination (Group 4); recombination and intelligent point mutation 
(Group 5); intelligent point mutation and random generation (Group 6); random 
generation (Group 7); and, finally, the balanced team we used in the previous 
experiment as a control (Group 0). 

Figure 2 shows the results of the second set of experiments comparing group 
performances with different group properties, plotting them in the same 2-D 
performance space as used for Figure I. The effect of group-level bias is similar to 
that seen in Figure 1. Among the groups examined, the "balanced" Group 0 case was 
the best in terms of the utility value of the mode solution. Interestingly, however, we 
saw a variety of different group performances achieved by groups with different 
properties, seen as a kind of "wave front" near the upper-right comer of the 
performance space. 

We further noticed in Figure 2 that the groups that sit along this wave front 
were arranged roughly in the order of the balance between selection and variation in 
evolutionary operators; Group I, which was the best in terms of the convergence but 
poor in the mode selection utility, used the combination of replication and subtractive 
selection, which are both selection-oriented operators. Group 2, the second best in 
convergence and second worst in mode selection utility within the wave front, used 
the combination of subtractive selection and random point mutation, which is more 
variation-oriented than Group I. Along the way toward Group 0, we saw Group 3 
(replication and recombination), Group 4 (recombination only), and Group 5 
(recombination and intelligent point mutation), where the qualitative shift of balance 
of evolutionary operators from selection-oriented to variation-oriented can be seen. It 
is also notable that the random generation operators (used in Groups 6 and 7) were 
generally not working for improving group performance. 
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Figure 2: Simulation results showing the effects of group-level difference of behavioral 

patterns. The level of convergence and the true utility value of mode solutions under varying 

conditions of group-level behavioral patterns and bias are plotted. Group 0 is the balanced team 

that uses all of the six evolutionary operators with equal probability; Group I uses replication 

and subtractive selection mostly; Group 2 subtractive selection and random point mutation; 

Group 3 replication and recombination; Group 4 recombination only; Group 5 recombination 

and intelligent point mutation; Group 6 intelligent point mutation and random generation; and 

Group 7 random generation only. 

4 Conclusion 
The application of the evolutionary paradigm is illuminating for studying collective 

decision making dynamics because it allows the researcher to remove themselves 

from the traditional teleology adopted in most simulations of human groups. We have 

portrayed group dynamics in a novel way by treating members of the group as 

constituents of an evolutionary environment in which populations of solutions evolve. 

In this new framework, we have characterized the properties of the population of 

solutions after discussion as quantitative metrics of the performance of a group. We 

demonstrated through simulations that heterogeneous groups with random variations 

in individual utility functions had a drop in both utility and convergence of solution 

populations compared to more homogeneous groups. We also demonstrated that 

variations in the compositions of individual behavioral patterns between groups 

resulted in a large spectrum of performance, in which groups well balanced between 

reductive and creative evolutionary forces yielded solutions that were highly adaptive 

by both performance metrics. All operators have a particular utility in appropriate 

circumstances, but we highlight that recombination operators are particularly 

important in that they demonstrate creative changes on large and small scales with a 
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single mechanism, as are selection operators essential to promoting the best ideas by 
converging a solution population on the best solutions. 
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1.1 Introduction 

The study of terrorist networks as well as the study of how to impede their 
successful functioning has been the topic of considerable attention since the odious 
event of the 2001 World Trade Center disaster. While serious students of terrorism 
were indeed engaged in the subject prior to this time, a far more general concern has 
arisen subsequently. Nonetheless, much of the subject remains shrouded in 
obscurity, not the least because of difficulties with language and the representation or 
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translation of names, and the inherent complexity and ambiguity of the subject 
matter. 

One of the most fruitful scientific approaches to the study of terrorism has been 
network analysis (Krebs, 2002; Carley, 2002a; Carley and Dombroski, 2002; Butts, 
2003a; Sageman, 2004, etc.) As has been argued elsewhere, this approach may be 
particularly useful, when properly applied, for disrupting the flow of communications 
(C4I) between levels of terrorist organizations (Carley, Krackhardt and Lee, 2001; 
Carley, 2002b; Fellman and Wright, 2003; Fellman and Strathem, 2004; Carley et ai, 
2003; 2004). In the present paper we examine a recent paper by Ghemawat and 
Levinthal, (2000) applying Stuart Kauffman's NK-Boolean fitness landscape 
approach to the formal mechanics of decision theory. Using their generalized NK-
simulation approach, we suggest some ways in which optimal decision-making for 
terrorist networks might be constrained and following our earlier analysis, suggest 
ways in which the forced compartmentation of terrorist organizations by counter-
terrorist security organizations might be more likely to impact the quality of terrorist 
organizations' decision-making and command execution. 

1.2 General Properties of Terrorist Networks 

Without attempting to be either exhaustive or exhausting, recent research on 
terrorism has revealed several relevant characteristics of terrorist organizations which 
a prudent modeler ought to keep in mind. These networks are first and foremost, 
covert, which means that they have hidden properties, and our information about 
them is necessarily incomplete, hence demanding complex methodological tools for 
determining the properties of the network structure (Butts, 200 I, 2003a; Carley 
2002a, 2003; Krebs, 2001, Clemens and O'Neill, 2004). While we are primarily 
concerned in the present paper with formal properties of terrorist networks, it does 
bear keeping in mind that at the operational level they are purposive, which lends 
them not only formal characteristics, but depending upon the organization in 
question, a considerable ideological history (Hoffman, 1997; Hoffman and Carr, 
1997), and in some cases, rather serious (path-dependent) constraints on recruiting 
(Codevilla, 2004a; Fellman and Strathern, 2004) targets, and methods (Sageman, 
2004). Some other, rather interesting properties of terrorist networks include the fact 
that they are often separated by larger than normal degrees of distance between their 
participants, a condition arising from their covert nature (Krebs, 2001; Fellman and 
Wright, 2003; Carley, 2003). Curiously, this kind of structure appears to have an 
emergent shape, which can be mapped as a distributed network (Krebs, 2001; 
Fellman and Strathern, 2004; Clemens and O'Neill, 2004), commonly illustrated by a 
social network diagram of the 9-11 Hijackers and informally referred to as "the 
dragon". 

Carley et al (2001,2002b, 2003, 2004) have developed useful models for 
distinguishing cohesive vs. adhesive organizations as well as defining probably 
outcomes for the removal of higher visibility nodes. Formal models of network 
analysis can also suggest where removal of key nodes or vertices can disrupt the 
organization's ability to transmit commands across hierarchical levels of the 
organization, thus leading to command degeneration (Butts, 2003a; Carley et ai, 
2004). The difficulty with this approach is that an important aspect of the dynamics 
of terrorist networks is that they are learning organizations (Hoffman, 1997; 
Tsvetovat and Carley, 2003). 



If one bears all of these features in mind, some of the complexities of dealing 
with terrorist organizations become immediately apparent. Terrorists are slippery 
foes, they are hidden, they have redundant command structures, they change their 
membership (not all of which changes are visible) and they learn from their mistakes. 
Nobody who has to deal with terrorist threats wants to see those threats, and the 
organizations that make them, evolve. The obviousness of this proposition is 
evidenced by the U.S. reaction to 9-11. What then, are the possible approaches? 

Complexity science has afforded a number of approaches to evolution in general 
(Kauffman, 1993, 1996, 2000) as well as to the evolution of organizations and the 
ways in which complexity science may be applied to problems of organizational 
behavior. In particular, Kauffman's NK-Boolean fitness landscape model appears to 
offer a number of fruitful heuristics (Lissack, 1996; McKelvey, 1999; Meyer, 1996; 
Fellman et aI, 2004). In 1999, seeking to define the formal properties of an optimal 
business organization decision-making process, Pankaj Ghemawat of Harvard 
Business School and Daniel Levinthal of the Wharton School ran an agent based 
simulation of decision-making in order to define the ways in which decisional 
interdependence and the interdependence of business units affect overall performance 
(fitness). In the section which follows, we will explore a number of their findings 
and suggest how they might be applied to inhibiting the fitness of terrorist 
organizations. 

2.1 The Structure of the Ghemawat-Levinthal NK Simulation 

A primary goal of the simulation was to model interdependent choices. 
Levinthal and Ghemawat focus on this aspect of decision making because they are 
attempting to understand the formal structure of decision-making in organizations 
with interdependent parts. While they rapidly come to focus on the same measures 
that we have seen used to characterize terrorist networks, hierarchy and centrality 
(Butts, 2001, 2003; Carley et aI, 2001; 2003, 2004; Carley, 2002, 2003), plus an 
additional factor of randomness (which most of us are wont to deny) they come at 
these factors from a slightly different approach than what one might anticipate. N 
and K are chosen simply as (a) the number of total decisions modeled and (b) the 
number of decisions which depend upon other decisions. As they explain (p. 16): 

The model has two basic parameters, N, the total number of 
policy choices and K « N), the number of policy choices that each 
choice depends upon. More specifically, each of the choices is 
assumed to be binary, and choice-by-choice contributions to fitness 
Icvels are drawn randomly from a uniform distribution over [0,1] 
for each of the 2K + I distinct payoff-relevant combinations a choice 
can be part of. Total fitness is just the average of these N choice-
by-choice fitness levels. Note that with K equal to its minimum 
value of 0, the fitness landscape is smooth and single-peaked: 
changes in the setting of one choice variable do not affect the 
fitness contributions of the remaining N-I choice variables. At the 
other extreme, with K equal to N-l, a change in a single attribute of 
the organism or organization changes the fitness contribution of all 
its attributes, resulting in many local peaks rather than just one, 
with each peak associated with a set of policy choices that have 
some internal consistency. No local peak can be improved on by 
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perturbing a single policy choice, but local peaks may vary 
considerably in their fitness levels. 

However, a pure NK approach suffers from the disadvantage that all choices are 
assumed to be equal. To avoid this problem and to model a richer decisional 
landscape they employ an adjacency matrix, moving us into the familiar Carter Butts 
(1997, 2000, 2001, 2003a, 2003b) territory of connected graphs (Carley and Butts, 
1997; Butts, 2000), and formal, axiomatically determined complex systems.' 

2.2 Adjacency Matrices 

With respect to this process, in Kauffman's original NK-Boolean dynamic 
fitness landscape model all of the potential choices that a firm could make were 
considered to be equally important and the search for higher levels of fitness was 
carried out through a random walk across the fitness landscape (Meyer, 1996). 
However, under these conditions the NK model could not account for the asymmetric 
relationship between strategic choices that decision-makers faced. In order to better 
represent the asymmetric nature of the choices facing a corporation (or, as in our 
case, a terrorist organization), Ghemawat and Levinthal replace the interactive 
parameter K, as described above, with an adjacency matrix: 

How different choices (the vertices in the graph) are linked (the lines 
in the graph). In such a matrix, choice variable j ' s effect on other 
variables is represented by the patters of Os and I s in column j, with a 
value of 1 indicating that the payoff to the variable in the row being 
considered is contingent on variable j, and a value of 0 denoting 
independence. Similarly, reading across row i in such a matrix 
indicates the variables the payoff of choice variable i is itself 
contingent upon. The principle diagonal of an adjacency matrix 
always consists of 1 's, but the matrix itself need not be symmetric 
around that diagonal. 

In order to simplify their examination of the relationship between asymmetric 
choices Ghemawat and Levinthal elected to look at two adjacency matrices that 

, Replacement of the interactivity parameter, K, with an adjacency matrix is meant to let us generalize the 
NK approach in the directions presently of interest. A few general observations can be made about special 
types of graphs and the fitness landscapes that they induce over the choices and linkages they embody. 
Thus, given disconnected graphs, fitness landscapes are smooth as the choices corresponding to 
disconnected vertices are varied- irrespective of the values of other variables. Such vertices therefore lend 
themselves to the notion of universal (and uncontingent) best practices. And for star graphs, in which one 
central choice influences the payoffs from each of N-I peripheral choices but other linkages among choices 
are absent (corresponding to an adjacency matrix with I's in the first column and along the principal 
diagonal and Os evetyWhere else), getting the first choice right is sufficient, in conjunction with a standard 
process of local search in an invariant environment, to lead the organization to the global optimum. But 
what about graphs more generally? Exhaustive enumeration of all the graphs with N vertices and analysis 
of their fitness landscapes is unlikely to prove productive for even moderately large N: the number of 6-
vertice graphs is 157, 7-vertice graphs 1,044, 8-vertice graphs 12,346, and so on. Restricting attention to 
connected graphs doesn't help much with the numbers problem since the number of connected graphs 
grows much more quickly than the number of disconnected graphs: with N equal to 5, disconnected graphs 
account for about 38% of the total, but with N equal to 8, that figure is down to less than 10%. We 
therefore pass up the opportunity to engage in exhaustive (and exhausting) enumeration. We begin, instead, 
by considering two classes of adjacency matrices that highlight two fundamental sources of asymmetry 
among choices, in terms of hierarchy and centrality, and comparing them with the canonical NK structure 
on which previous work has focused. (pp. 17-18). 



highlight the classical types of choice asymmetry: hierarchy, and centrality. In the 
hierarchical matrix choice I is the most important influencing all other choices below 
it choice two is the second most important and so on to the final choice (in this case 
choice 10 were N=IO) which is influences by all proceeding choices but influences 
only itself. For the centrality matrix choice I is the most central both influencing and 
also being influenced by all other possible choices, choice two is the second most 
central being influenced by all other choices and influencing all choices with 
exception 10 and so on. These two matrices are benchmarked against a traditional 
NK structure. The matrix in this case is structured such that there will be K I's in 
each row and column but they will be randomly distributed across the matrix. 2 In 
their simulation, Ghemawat and Levinthal put K=6 which proved the same number of 
peaks at the other two matrices [Ghemawat and Levinthal 2005]. 

2. 3 Hierarchy 

Ghemawat and Levinthal treat hierarchical decisions as directed trees where the 
I appears to the left of the principal diagonal. In this regard as we have explained 
above, choice I is the most hierarchically important, choice 2 the second most 
important, etc. (Ghemawat and Levinthal, 2000). 

Figun' 4a. llit'1'31'c."by 

! :: 3 4 S e 7 9 10 

0 0 \) v 0 0) .) u 
~ 0 Q 0 0 v 0 

J 1 C ~ 0 0 " 0 

1 1 1 0 0 0 0 .) 0 

0- ! 1 0 0 () \j 0 

<: 1 1 0 Q 0 0 

7 !) " 0 

3 1 1 1 1 " 0 

~ - 1 1 1 1 1 0 

0 1 1 1 1 1 1 1 

2 In most cases Ghemawat and Levinthal use a Poisson distribution or another, uniform distribution, noting, 
in any case that the probability distribution is not likely to be a mathematically relevant factor in the 
overall distribution of decision outcomes (i.e., the probability distribution is not the determinative 
property). 
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2. 4 Centrality 

In contrast, their treatment of centrality involves interconnected decisions and, 
hence produces an almost perfect 90 degree rotated distribution (Ghemawat and 
Levinthal,2000):3 

Figure 4b. Centrality 
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3. 1 Modeling Policy Choices 

Levinthal and Ghemawat then benchmark what happens in these two types of 
structures against the random (but symmetric) activity which is built into the 
canonical NK structure. As they explain: 

For all three structures, an organization's policy choices are 
represented by a vector of length N where each element of the 
vector can take on a value of 0 or I (not to be confused with the Os 
and I s assigned, respectively, to denoting the absence or presence 
of linkages between every pair of policy elements). The overall 
fitness landscape will then consist of 2N possible policy choices, 
with the overall behavior of the organization characterized by a 
vector {Xl, X2, .•. , XN}, where each xi takes on the value of 0 or 1. 

3 (p. 19) "The particular form of hierarchy we explore in this paper has I s as all the entries to the left of the 
principal diagonal (see Figure 4a). Choice I is hierarchically the most important, choice 2 the second most 
important, and so on. In contmst, in a set of interaction patterns ordered by a centmlity measure, policies 
vary in terms of their interdependence with other policy choices and this interdependence is taken to be 
symmetric (to distinguish it as sbarply as possible from the one-way influences of hierarcby). As a result, 
the Is to the left of the principal diagonal are mirrored by Is to its right. Wbetber tbe Is cluster centmlly in 
the adjacency matrix, however, depends on the order in which choice variables are labeled. The particular 
form of centrality we explore in this paper embodies a structure and a labeling scheme that has 1 s as all the 
entries to the left of the interior diagonal (but distributed symmetrically to the left and the rigbt of the 
principal diagonal}-see Figure 4b. Thus, choice 1 is most central, choice 2 second most central, and so 
on. 



If the contribution of a given element, xi, of the policy vector to the 
overall payoff is influenced by Ki other elements-in ways that 
vary across the three structures we will analyze-then it can be 
represented as fCxilxil, xi2, ... , xiKi). Therefore, each element's 
payoff contribution can take on 2Ki+l different values, depending 
on the value of the attribute itself (either 0 or I) the value of the Ki 
other elements by which it is influenced (each of these Ki values 
also taking on a value of 0 or I) and-less commonly highlighted 
-the luck of the draw. Specifically, it is common to assign a 
random number drawn from the uniform distribution from zero to 
one to each possible f(xilxil, xi2, ... , xKi) combination with the 
overall fitness value then being defined as 
1:i=1 to N f(xilxil, xi2, ... , xiKi) / N. (pp. 19-20) 

Their simulation structure assumes for the random benchmark that K=6, primarily 
because this value generates roughly the same number of local peaks as the 
hierarchical and central distributions.4 Similarly they set N = 10, which is sufficient 
to generate more than a million distinct graphs, which allows them to report results 
averaged over a thousand independent landscapes which share the same structure. 
These landscapes will be either hierarchical, central or random, characterized by the 
particular adjacency matrix structure for each type, but with a distinct seeding (0, I) 
from a uniform random distribution for the fitness of the policy variables. 

4.1 Analytical Results of the Ghemawat-Levinthal Simulation 

The first question which the authors ask "what are the effects of presetting a 
certain number of policy choices equal to their values at the global optimum with the 
remaining choices determined by a process of local search?" is interesting from a 
complexity science point of view, but not immediately obvious in its application to 
terrorist organizations. The reason for this is that while answering this question 
allows Ghemawat and Levinthal to address issues of strategic planning and "grand 
strategy" in business organizations, it doesn't really provide a reliable guide for the 
C4I functioning of terrorist organizations. If this were all that their simulation 
achieved, it would have rather limited interest for us. However their second question 
"what happens when one of the N values of the policy variable is preset to a value 
inconsistent with the value ofthat variable for the global peak?" is of very substantial 
interest as it speaks to exactly the kind of distortions which we would wish to induce 
in the terrorist decision-making chain. 

4 Ghemawat and Levinthal provide five additional caveats. of which the three important for our purposes 
are: "A number of important assumptions, based on prior applications, are built into this specification. First 
of all, there is the emphasis on choice under uncertainty. In addition to its arguable descriptive realism, 
initial uncertainty helps explain why an organization launched over a fitness landscape may not instantly 
alight on the globally optimal policy vector. Second, there is the assumption that randomness takes the 
form of a uniform distribution. While some might argue that this distribution is too diffuse, we retain this 
assumption to provide at least some basis for numerical comparability with prior work, which suggests, 
among other things, that the structure of the fitness landscape is not sensitive to the particular probability 
distribution employed (Weinberger, 1991). Third, there is the equal weighting of different choices in terms 
of their direct contribution (potential) to overall fitness. Again, we retain this prior assumption even though 
we intend to focus on asymmetries among choices. Putting different weights on the direct contributions of 
choice elements does not seem to us to be the best way of gaining insight into the indirect contributions 
that choice elements can make to overall performance by virtue of the linkages among them. (p. 21) 
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The first interesting result of the simulation is the difference between an optimal 
preset of policy configurations, the hierarchical, the central and the random 
simulation arrays:5 
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Ghemawat and Levinthal describe this as: 

5 Ibid. 

With a degree of match of 1, only the first , most strategic, variable is set equal 
to the global optimum. As more variables are matched with their settings at the 
global optimum, fitness rises steadily according to Figure 5. However, the global 
optimum is not approached until nearly all policy variables are specified to equal 
their settings at the global optimum. Similarly, hamming distances tend to be quite 
large (see Figure 6). 
The gap between the curve depicting performance under the random network 
structure and the other two curves indicates the power of presetting more strategic 
variables to their values at the global optimum. In contrast, the gap between the 



realized fitness level and the value of I, indicates the loss from the not fully 
articulating the optimal policy array. 

Admittedly, while this is an interesting result, so far it does not tell us much more 
than the intuitively plausible idea that an inability or failure to articulate global 
optima means that you probably never get there. There is, however, a slightly more 
interesting subtext here with respect to the complexity of rugged fitness landscapes, 
something originally articulated by Farmer, Packard and Kauffman ("The Structure 
of Rugged Fitness Landscapes" in Kauffman, 1993): 

To make more sense of these patterns, it is useful to note that the fitness 
landscapes we are analyzing are quite complex, typically comprising over 40 local 
peaks. In such worlds, the powers of local search are relatively limited. Local search 
rapidly leads to the identification of a local peak but conveys no assurance about the 
local peak' s global properties (i.e. , its fitness value relative to the global optimum). 
Presetting the most strategic variables to their values at the global optimum does 
lead to the identification of a better-than-average local peak (recall that the 
normalized fitness value would have a value of zero if the average realized fitness 
level equaled the average value oflocal peaks in the fitness landscape). However, a 
high level of specificity is necessary to obtain the highest possible fitness levels or 
configurations close to the global optimum: in rugged landscapes, there are just too 
many positive-gradient paths that lead to local peaks other than the global one. (p. 
26) . 

What is perhaps most interesting here are the suggestions that (1) the events of 
9-11 are likely to prove the exception, rather than the rule (also giving some 
optimism to the long-run possibility of ultimately negating terrorist threats, 
something as unthinkable today as the end of the Cold War was forty or fifty years 
ago) and (2) the indication that even very hierarchical terrorist organizations are 
unlikely to reach an optimal policy set through local search (and, following 
Kauffman, there simply are no other search mechanics available). Figure 7 provides 
what may be a slightly more interesting insight. Much in the fashion of Lissack 
(1996), Ghemawat and Levinthal use an approach similar to "patching" in order to 
simulate a feedback situation where initial errors in policy choice can be corrected 
and the corrections incorporated into subsequent searches. They note that (p. 26): 

... while the articulation of and insistence on adherence to a single (or low-
dimensional) strategic choice may not be sufficient to lead to the identification of a 
high-performing set of choices, a lack of such strategic discipline is likely to lead to 
even less attractive results. Compare the top line in Figure 7, tracing the value of 
partially articulated activity maps in a hierarchical context in which preset choices 
cannot be varied (a la Figure 5) with the bottom line, which looks at a hierarchical 
context in which the preset policy choices can be revised in the process of local 
search. It turns out that with the degree of match of I, the latter, "unconstrained" 
approach underperforms the "constrained" approach, and the gap between the two 
widens for intermediate degrees of match prior to convergence as the degree of 
match hits 10. Similarly. the unconstrained approach fails to generate smaller 
hamming distances than the constrained approach. In that sense, strategic discipline 
is useful. 
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In this regard, as we have previously suggested (Fellman, Wright and Sawyer, 2003; 
Fellman and Wright, 2003) forcing compartmentation of terrorist cells and 
interrupting communications between command echelons is likely to significantly 
impede the ability of those cells to function effectively. From a counter-terrorism 
perspective, however, the most interesting part of the simulation is the section which 
deals with "the constraints of history". In this case, Ghemawat and Levinthal 
artificially inject a variable inconsistent with the global maximum and then observe 
how the three different types of organization adapt to this distortion. Their Figure 8 
summarizes the (normalized) fitness levels achieved in the simulation when they 
preset a variable to a value which is inconsistent with the global optimum; this is 
shown below. 

Figure 8_ Constt-aints of Histol-Y 
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The green line, representing a random pattern of interactions, not surprisingly has a 
fitness which is essentially "history independent", The more surprising finding is that 
while under conditions of hierarchy the fitness level changes quite rapidly as the 
mismatched variable is shifted from the most important decision to decisions of less 
importance, centrality conveys virtually no "recovery advantage" at all. This is a 
striking contrast to Porter (1996) who argues that under conditions of "third order 
strategic fit" (strong interlinkage/strong centrality) the decision chain becomes "as 
strong as its strongest link", In dealing with terrorist organizations, which are 



primarily hierarchical in nature (Sageman, 2004), what this finding says is that 
disinformation is a useful tactic (or strategy) only if it succeeds in influencing one of 
the key decisional variables. In other words, disinformation at the local level is 
unlikely to have any lasting impact on terrorist organizations. This finding also 
challenges the institutional wisdom of assigning case officers in the field to this type 
of counter-terrorism operation (Gerecht, 2001; Codevilla, 2004b).6 In fact, from an 
operational point of view, the hierarchical nature of terrorist organizations means that 
there may be something of a mismatch in the entire targeting process. As Ghemawat 
and Levinthal note, "Less central variables not only do not constrain, or substantially 
influence the payoff of many other choices, but they themselves are not greatly 
contingent upon other policy choices. Being contingent on other policy choices 
facilitates compensatory shifts in policy variables other than the one that is preset. As 
a result of the absence of such contingencies, the presetting of lower-order policy 
choices is more damaging to fitness levels under the centrality structure." (p. 27) The 
problem, however, is that decisionmaking in terrorist organizations is apt to be 
operating under conditions of hierarchy rather then centrality. Perhaps even more 
annoyingly, those organizations operating against terrorist cells may themselves be 
organized in a more modem fashion, availing themselves of divisional interlinkages 
and flat management structure, so that the mismatch between operational objectives 
and terrorist organizations may, in fact, prove organizationally damaging to the 
counter-terrorist organization both in a relative and an absolute sense. In this regard, 
pointless, or fruitless counter-terrorism operations, particularly when conducted at the 
field level may do considerably more damage than good, particularly to the 
organization striving to combat terrorism. This is a feature of counter-terrorism that 
is not entirely unfamiliar to case officers who have operated in this capacity 
(Gilligan, 2003; Gerecht 2001). 

In their final section, Ghemawat and Levinthal examine choice structures. 7 To 
do this, they set up three classes of variables: independent variables (1-3), whose 
payoff is not dependent upon that of any other variables, but which influences the 
payoff of the dependent variables (4-6), and three variables (7-9) which are simply 
independent of all others (Figure 12). 

, Ghemawat and Levinthal test this another way and come to essentially the same conclusion: "Another 
striking feature of this set of simulations concerns how few of the optima with preset mismatches 
constitute local peaks of the fituess landscape. Given the importance of configurational effects, one might 
reasonably conjecture that constraining one variable to differ from the global optimum would lead to the 
selection of a different, non-global, peak in the fitness landscape. However, Figure 9 indicates that this is 
relatively uncommon except as one turns to presetting the least important variables under the hierarchy and 
centrality structures." (pp. 28-29) 
7 "The broader suggestion is that the 'natural' adjacency matrices we have looked at so far mix up at least 
three very different types of effects: influence, contingency and autonomy. Variables may be more or less 
influential to the extent that they affect the payoffs to other variables. In an adjacency matrix, this is 
represented by the prevalence of I s in the relevant column. Independent of influence, the payoffs from 
specific variables may be more or less contingent on other choices, as reflected in the number of I s in the 
relevant row of the adjacency matrix. And autonomy is characterized by variables that are neither 
influential nor contingent: variables that correspond, in graphotheoretic terms, to disconnected vertices. In 
this subsection, we look at a choice structure--distinct from the three that we have already examined-that 
distinguishes particularly clearly among these three effects." (p. 29) 
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Figure 12, Influence. ontingency, and Autonomy 
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They illustrate their findings in Figure 13: 

Figure 13. Constl'aints of History: 
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Interestingly, Ghemawat and Levinthal are surprised that constrammg the 
independent variables to values different from the global maximum affects overall 
fitness more than the constraint of contingent variables: 

Figure 13 indicates that constraining one of the "influential" variables to differ 
from the global maximum has a profound effect on the relative fitness level of the 
constrained optimum, Surprisingly, constraining the independent variables to differ 
from the global optimum has a larger impact than constraining the seemingly more 
important "contingent" variables. The reason for this is that the presence of 
contingency allows for the possibility of substituting or compensating changes in 
policy variables, While tightly linked interaction patterns have generally been 
viewed as fragile, the equifinality that high levels of interaction engender also 
allows for a certain robustness, In contrast, when an autonomous variable is 
misspecified, that doesn't create negative ramifications elsewhere in the system of 
policy choices; at the same time, however, there is no opportunity to compensate for 
tlte misspecification, 



5. 1 Conclusion 

Terrorist networks are complex, possessing multiple, irreducible levels of 
complexity and ambiguity. This complexity is compounded by the covert, dynamic 
nature of terrorist networks where key elements may remain hidden for extended 
periods oftime and the network itse1fis dynamic. The NK.-Boolean fitness landscape 
simulation approach offers a number of tools which may be particularly useful in 
sorting out some of the complexities of terrorist networks. In the present study the 
biggest surprise was that coupled decisional structures have a compensatory feature 
which makes them less vulnerable to certain kinds of decisional disruption than 
hierarchical decision structures. The lesson here for intelligence organizations is that 
in dealing with terrorist networks, counter-terrorism efforts are best be directed at 
hitting them hard, hitting them at the highest levels of the hierarchy and leaving the 
"cleanup" to local authorities or local law enforcement organizations. In this context, 
there are many circumstances where less engagement may, in fact, yield more results. 
Conversely, if "sometimes less is more", clearly "sometimes more is a whole lot 
less." In other words, it's better to do a little of the right thing, or even do nothing at 
all than to undertake counter-productive activities on a massive scale. 
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This paper discusses the benefits of describing the world as information, especially 
in the study of the evolution of life and cognition. Traditional studies encounter prob-
lems because it is difficult to describe life and cognition in terms of matter and energy, 
since their laws are valid only at the physical scale. However, if matter and energy, 
as well as life and cognition, are described in terms of information, evolution can be 
described consistently as information becoming more complex. 

The paper presents eight tentative laws of information, valid at multiple scales, 
which are generalizations of Darwinian, cybernetic, thermodynamic, psychological, 
philosophical, and complexity principles. These are further used to discuss the na-
tions of life, cognition and their evolution. 

lCurrent affiliation. A considerable part of this work was developed while at other institu-
tions. 



1 Introduction 
Throughout history we have used concepts from our current technology as 
metaphors to describe our world. Examples of this are the description of the 
body as a factory during the Industrial Age, and the description of the brain as a 
computer during the Information Age. These metaphors are useful because they 
extend the knowledge acquired by the scientific and technological developments 
to other areas, illuminating them from a novel perspective. For example, it is 
common to extend the particle metaphor used in physics to other domains, such 
as crowd dynamics [27]. Even when people are not particles and have very com-
plicated behaviour, for the purposes of crowd dynamics they can be effectively 
described as particles, with the benefit that there is an established mathemati-
cal framework suitable for this description. Another example can be seen with 
cybernetics [4, 28], where the system metaphor is used: everything is seen as a 
system with inputs, outputs, and a control that regulates the internal variables 
of the system under the influence of perturbations from its environment. Yet 
another example can be seen with the computational metaphor [60], where the 
universe can be modelled with simple discrete computational machines, such as 
cellular automata or Turing machines. 

Having in mind that we are using metaphors, this paper proposes to extend 
the concept of information to describe the world: from elementary particles to 
galaxies, with everything in between, particularly life and cognition. There is no 
suggestion on the nature of reality as information [58]. This work only explores 
the advantages of describing the world as information. In other words, there are 
no ontological claims, only epistemological. 

In the next section, the motivation of the paper is presented, followed by a 
section describing the notion of information to be used throughout the paper. In 
Section 4, eight tentative laws of information are put forward. These are applied 
to the notions of life (Section 5) and cognition (Section 6). The paper closes 
presenting future work and conclusions. 

2 Why Information? 
There is a great interest in the relationship between energy, matter, and infor-
mation [32, 54, 43]. One of the main reasons for this arises because this rela-
tionship plays a central role in the definition of life: Hopfield [30] suggests that 
the difference between biological and physical systems is given by the meaning-
ful information content of the former ones. Not that information is not present 
in physical systems, but-as Roederer puts it-information is passive in physics 
and active in biology [49]. However, it becomes complicated to describe how this 
information came to be in terms of the physical laws of matter and energy. In 
this paper the inverse approach is proposed: let us describe matter and energy in 
terms of information. If atoms, molecules and cells are described as information, 
there is no need of a qualitative shift (from non-living to living matter) while 
describing the origin and evolution of life: this is translated into a quantitative 
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shift (from less complex to more complex information). 
There is a similar problem when we study the origin and evolution of cog-

nition [20J: it is not easy to describe cognitive systems in terms of matter and 
energy. The drawback with the physics-based approach to the studies of life and 
cognition is that it requires a new category, that in the best situations can be 
referred to as "emergent". Emergence is a useful concept, but it this case it is 
not explanatory. Moreover, it stealthily introduces a dualist view of the world: 
if we cannot relate properly matter and energy with life and cognition, we are 
forced to see these as separate categories. Once this breach is made, there is 
no clear way of studying or understanding how systems with life and cognition 
evolved from those without it. If we see matter and energy as particular, simple 
cases of information, the dualist trap is avoided by following a continuum in the 
evolution of the universe. Physical laws are suitable for describing phenomena 
at the physical scale. The tentative laws of information presented below aim at 
being suitable for describing phenomena at any scale. Certainly, there are other 
approaches to describe phenomena at multiple scales, such as general systems 
theory and dynamical systems theory. These approaches are not exclusive, since 
one can use several of them, including information, to describe different aspects 
of the same phenomena. 

Another benefit of using information as a basic descriptor for our world is 
that the concept is well studied and formal methods have already been developed 
[14, 46J, as well as its philosophical implications have been discussed [19J. Thus, 
there is no need to develop a new formalism, since information theory is well 
established. I borrow this formalism and interpret it in a new way. 

Finally, information can be used to describe other formalisms: not only par-
ticles and waves, but also systems, networks, agents, automata, and computers 
can be seen as information. In other words, it can contain other descriptions 
of the world, potentially exploiting their own formalisms. Information is an 
inclusive formalism. 

3 What Is Information? 
Extending the notion of Umwelt [57], the following notion of information can be 
given: 

Notion 1 Information is anything that an agent can sense, perceive, or observe. 

This notion is in accordance with Shannon's [52], where information is seen 
as a just-so arrangement, a defined structure, as opposed to randomness [12, 13J, 
and it can be measured in bits. This notion can be applied to everything that 
surrounds us, including matter and energy, since we can perceive it-because it 
has a defined structure-and we are agents, according to the following notion: 

Notion 2 An agent is a description of an entity that acts on its environment 
[22, p. 39}. 
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Noticing that agents (and their environments) are also information (as they 
can be perceived by other agents, especially us, who are the ones who describe 
them as agents), an agent can be a human, a cell, a molecule, a computer 
program, a society, an electron, a city, a market, an institution, an atom, or a 
star. Each of these can be described (by us) as acting in their environment, 
simply because they interact with it. However, not all information is an agent, 
e.g. temperature, color, velocity, hunger, profit. 

Notion 3 The environment of an agent consists of all the information interact-
ing with it. 

Information will be relative to the agent perceiving it2 • Information can exist 
in theory "out there", independently of an agent, but for practical purposes, it 
can be only spoken about once an agent-not necessarily a human-perceives 
/ interacts with it. The meaning of the information will be given by the use 
the agent perceiving it makes of it [59], i.e. how the agent responds to it [7]. 
Thus, Notion 1 is a pragmatic one. Note that perceived information is different 
from the meaning that an agent gives to it. Meaning is an active product of the 
interaction between information and the agent perceiving it [13, 44]. 

Like this, an electron can be seen as an agent, which perceives other electrons 
as information. The same description can be used for molecules, cells, and 
animals. We can distinguish: 

First order information is that which is perceived directly by an agent. For 
example, the information received by a molecule about another molecule 

Second order information is that which is perceived by an agent about in-
formation perceived by another agent. For example, the information per-
ceived by a human observer about a molecule receiving information about 
another molecule. 

Most of the scientific descriptions about the world are second order informa-
tion, as we perceive how agents perceive and produce information. The present 
approach also introduces naturally the role of the observer in science, since ev-
erything is "observing" the (limited, first order) information it interacts with 
from its own perspective. Humans would be second-level observers, observing 
the information observed by information. Everything we can speak about is 
observed, and all agents are observers. 

Information is not necessarily conserved, i.e. it can be created, destroyed, or 
transformed. These can take place only through interaction. Computation can 
be seen as the change in information, be it creation, destruction, or transfor-
mation. Matter and energy can be seen as particular types of information that 
cannot be created or destroyed, only transformed, along with the well-known 
properties that characterize them. 

2Shannon's information [52] deals only with the technical aspect of the transmission of 
information and not with its meaning, i.e. it neglects the semantic aspect of communication. 
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The amount of information required to describe a process, system, object, 
or agent determines its complexity [46]. According to our current knowledge, 
during the evolution of our universe there has been a shift from simple informa-
tion towards more complex information [2] (the information of an atom is less 
complex than that of a molecule, than that of a cell, than that of a multicellular 
organism, etc.). This "arrow of complexity" [11] in evolution can guide us to 
explore general laws of information. 

4 Tentative Laws of Information 
Seeing the world as information allows us to describe general laws that can be 
applied to everything we can perceive. Extending Darwin's theory [15], the 
present framework can be used to reframe "universal Darwinism" [17], which 
explores the idea of evolution beyond biological systems. In this work, the laws 
that describe the general behaviour of information as it evolves are introduced. 
These laws are only tentative, in the sense that they are only presented with 
arguments in favour of them, but they still need to be thoroughly tested. 

4.1 Law of Information Transformation 

Since information is relative to the agents perceiving it, information will poten-
tially be transformed as different agents perceive it. Another way of stating this 
law is the following: information will potentially be transformed by interacting 
with other information. This law is a generalization of the Darwinian principle 
of random variation, and ensures novelty of information in the world. Even 
when there might be static information, different agents can perceive it differ-
ently and interact with it, potentially transforming it. Through evolution, the 
transformation of information generates a variety or diversity that can be used 
by agents for novel purposes. 

Since information is not a conserved quantity, it can increase (created), de-
crease (destroyed), or be maintained as it is transformed. 

As an example, RNA polymerase (RNAP) can make errors while copying 
DNA onto RNA strands. This slight random variation can lead to changes 
in the proteins for which the RNA strands serve as templates. Some of these 
changes will lead to novel proteins that might improve or worsen the function of 
the original proteins. 

The transformation of information can be classified as follows: 

Dynamic. Information changes itself. This could be considered as "objective, 
internal" change. 

Static. The agent perceiving the information changes, but the information itself 
does not change. There is a dynamic change but in the agent. This could 
be considered as "subjective, internal" change. 
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Active. An agent changes information in its environment. This could be con-
sidered as an "objective, external" change. 

Stigmergic. An agent makes an active change of information, which changes 
the perception of that information by another agent. This could be con-
sidered as "subjective, external" or "intersubjective" change. 

4.2 Law of Information Propagation 
Information propagates as fast as possible. Certainly, only some information 
manages to propagate. In other words, we can assume that different informa-
tion has a different "ability" to propagate, also depending on its environment. 
The "fitter" information, i.e. that which manages to persist and propagate faster 
and more effectively, will prevail over other information. This law generalizes 
the Darwinian principle of natural selection, the maximum entropy production 
principle [37] (entropy can also be described as information), and Kauffman's 
tentative fourth law of thermodynamics3 . It is interesting that this law contains 
the second law of thermodynamics, as atoms interact, propagating informa-
tion homogeneously. It also describes living organisms, where genetic informa-
tion is propagated across generations. And it also describes cultural evolution, 
where information is propagated among individuals. Life is "far from thermo-
dynamic equilibrium" because it constrains [32] the (more simple) information 
propagation at the thermodynamic scale, i.e. the increase of entropy, exploiting 
structures to propagate (or maintain) the (more complex) information at the 
biological scale. 

In relation with the law of information transformation, as information re-
quires agents to perceive it, information will be potentially transformed. This 
source of novelty will allow for the "blind" exploration of better ways of propa-
gating information, according to the agents perceiving it and their environments. 

Extending the previous example, if errors in transcription made by RNAP are 
beneficial for its propagation (which entails the propagation of the cell producing 
RNAP), cells with such novel proteins will have better chances of survival than 
their "cousins" without transcription errors. 

The propagation of information can be classified as follows: 

Autonomous. Information propagates by itself. Strictly speaking, this is not 
possible, since at least some information is determined by the environment. 
However, if more information is produced by itself than by its environment, 
we can call this autonomous propagation (See Section 5). 

Symbiotic. Different information cooperates, helping to propagate each other. 

Parasitic. Information exploits other information for its own propagation. 

Altruistic. Information promotes the propagation of other information at the 
cost of its own propagation. 

3 "The workspace of the biosphere expands, on average, as fast as it can in this coconstruct-
ing biosphere" [32, p. 209] 
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4.3 Law of Requisite Complexity 
Taking into account the law of information transformation, transformed infor-
mation can increase, decrease, or maintain its previous complexity, i.e. amount 
[46]. However, more complex information will require more complex agents to 
perceive, act on, and propagate it. This law generalizes the cybernetic law of 
requisite variety [4]. Note that simple agents can perceive and interact with 
part of complex information, but they cannot (by themselves) propagate it. An 
agent cannot perceive (and thus contain) information more complex than itself. 
For simple agents, information that is complex for us will be simple as well. 
As stated above, different agents can perceive the same information in different 
ways, giving it different meanings. 

The so called "arrow of complexity" in evolution [11] can be explained with 
this law. If we start with simple information, its transformation will produce by 
simple drift [39, 41] increases in the complexity of information, without any goal 
or purpose. This occurs simply because there is an open niche for information to 
become more complex as it varies. But this also promotes agents to become more 
complex to exploit novel (complex) information and propagate it. Evolution does 
not need to favour complexity in any way: information just propagates to every 
possible niche as fast as possible, and it seems that there is often an "adjacent 
possible" [32] niche of greater complexity. 

For example, it can be said that a protein (as an agent) perceives some 
information via its binding sites, as it recognizes molecules that "fit" a site. More 
complex molecules will certainly need more complex binding sites. Whether 
complex molecules are better or worse is a different matter: some will be better, 
some will be worse. But for those which are better, the complexity of the 
proteins must match the complexity of the molecules perceived. If the binding 
site perceives only a part of the molecule, then this might be confused with 
other molecules which share the perceived part. Following the law of information 
transformation, there will be a variety of complexities of information. The law 
of requisite complexity just states that the increase in complexity of information 
is determined by the ability of agents to perceive, act on, and propagate more 
complex information. 

Since more complex information will be able to produce more variety, the 
speed of the complexity increase will escalate together with the complexity of 
the information. 

4.4 Law of Information Criticality 
Transforming and propagating information will tend to a critical balance be-
tween its stability and its variability. Propagating information maintains itself 
as much as possible, but transforming information varies it as much as possi-
ble. This struggle leads to a critical balance analogous to the "edge of chaos" 
[36, 31]' self-organized criticality [8, 1], and the "complexity from noise" princi-
ple [6]. The homeostasis of living systems can also be seen as the self-regulation 
of information criticality. 
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This law can generalize Kauffman's four candidate laws for the coconstruc-
tion of a biosphere [32, Ch. 8]. Their relationship with this framework demands 
further discussion, which is out of the scope of this paper. 

A well known example can be seen with cellular automata [36] and random 
Boolean networks [31, 21, 23]: stable (ordered) dynamics limit considerably or 
do not allow change of states so information cannot propagate, while variable 
( chaotic) dynamics change the states too much, losing information. Following 
the law of information propagation, information will tend to a critical state 
between stability and variability to maximize its propagation: if it is too stable, 
it will not propagate, and if it is too variable, it will be transformed. In other 
words, "critical" information will be able to propagate better than stable or 
variable one, i.e. as fast as possible (cf. law of information propagation). 

4.5 Law of Information Organization 
Information produces constraints that regulate information production. These 
constraints can be seen as organization [32]. In other words, evolving information 
will be organized (by transformation and propagation) to regulate information 
production. According to the law of information criticality, this organization 
will lie at a critical area between stability and variability. And following the 
law of information propagation, the organization of information will enable it to 
propagate as fast as possible. 

This law can also be seen as information having a certain control over its 
environment, since the organization of information will help it withstand pertur-
bations. It has been shown [33,47, 34] that using this idea as a fitness function 
can lead to the evolution of robust and adaptive agents, namely maximizing the 
mutual information between sensors and environment. 

A clear example of information producing its own organization can be seen 
with living systems, which are discussed in Section 5. 

4.6 Law of Information Self-organization 
Information tends to its preferred, most probable state. This is actually a tautol-
ogy, since observers determine probabilities after observing tendencies of infor-
mation dynamics. Still, this tautology can be useful to describe and understand 
phenomena. This law lies at the heart of probability theory and dynamical sys-
tems theory [5]. The dynamics of a system tend to a subset of its state space, 
i.e. attractors, depending on its history. This simple fact reduces the possibility 
space of information, i.e. a system will tend towards a small subset of all pos-
sible states. If we describe attractors as "organized", then we can describe the 
dynamics of information in terms of self-organization [25]. 

Pattern formation can be described as information self-organizing, and re-
lated to the law of information propagation. Information will self-organize in 
"fit" patterns that are the most probable (defined a posteriori). 

Understanding different ways in which self-organization is achieved by trans-
forming information can help us understand better natural phenomena [24] and 
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design artificial systems [22J. For example, random Boolean networks can be 
said to self-organize towards their attractors [23J. 

4.7 Law of Information Potentiality 
An agent can give different potential meanings to information. This implies 
that the same information can have different meanings. Moreover, meaning-
while being information-can be independent of the information carrying it, i.e. 
depend only on the agent observing it. Thus, different information can have the 
same potential meaning. The precise meaning of information will be given by 
an agent observing it within a specific context. 

The potentiality of information allows the effective communication between 
agents. Different information has to be able to acquire the same meaning 
(homonymy), while the same information has to be able to acquire different 
meanings (polysemy) [44J. The relationship between the laws of information 
and communication is clear, but beyond the scope of this paper. 

The law of information potentiality is related to a passive information trans-
formation, i.e. a change in the agent observing information. 

In spite of information potentiality, not all meanings will be suitable for 
all information. In other words, pure subjectivism cannot dictate meanings of 
information. By the law of information propagation, some meanings will be 
more suitable than others and will propagate. The suitability of meanings will 
be determined by their use and context [59J. However, there is always a certain 
freedom to subjectively transform information. 

For example, a photon can be observed as a particle, as a wave, or as a 
particle-wave. The suitability of each given meaning is determined by the context 
in which the photon is described/observed. 

4.8 Law of Information Perception 
The meaning of information is unique for an agent perceiving it in unique, always 
changing open contexts. If meaning of information is determined by the use an 
agent makes of it, which is embedded in an open environment, we can go to 
such a level of detail that the meaning will be unique. Certainly, agents make 
generalizations and abstractions of perceptions in order to be able to respond to 
novel information. Still, the precise situation and context will never be repeated. 
This makes perceived information unique. The implication of this is that the 
response to any given information might be "unexpected", i.e. novelty can 
arise. Moreover, the meaning of information can be to a certain extent arbitrary. 
This is related with the law of information transformation, as the uniqueness 
of meaning allows the same information perceived differently by the same or 
different agents to be statically transformed. 

This law is a generalization of the first law of human perception: "whatever 
is perceived can be perceived only from a uniquely situated place in the overall 
structure of points of view" [29, p. xxivJ (cited in [44, p. 250]). We can describe 
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agents perceiving information as filtering it. An advantage of humans and other 
agents is that we can choose which filter to use to perceive. The suggestion 
is not that "unpleasant" information should be solipsistically ignored, but that 
information can be potentially actively transformed. 

For example, T lymphocytes in an immune system can perceive foreign agents 
and attack them. Even when the response will be similar for similar foreign 
agents, each perception will be unique, a situation that always leaves space for 
novelty. 

Scales of perception 

Different information is perceived at different scales of observation [9]. As the 
scale tends to zero, then the information tends to infinite. For lower scales, more 
information and details are perceived. The uniqueness of information perception 
dominates at these very low (spatial and temporal) scales. However, as gener-
alizations are made, information is "compressed", i.e. only relevant aspects of 
information are perceived4 . At higher scales, more abstractions and general-
izations are made, Le. less information is perceived. When the scale tends to 
infinite, the information tends to zero. In other words, no information is needed 
to describe all of the universe, because all the information is already there. This 
most abstract understanding of the world is in line with the "highest view" of 
Vajrayana Buddhism [45]. Implications at this level of description cannot be 
right or wrong, because there is no context. Everything is contained, but no 
information is needed to describe it, since it is already there. This "maximum" 
understanding is also described as vacuity, which leads to bliss [45, p. 42]. 

Following the law of information criticality, agents will tend to a balance 
where the perceived information is minimal but maximally predictive [51] (at a 
particular scale): few information is cheaper, but more information in general 
entails a more precise predictability. The law of requisite complexity applies at 
particular scales, since a change of scale will imply a change of complexity of 
information [9]. 

5 On the Notion of Life 
There is no agreed notion of life, which reflects the difficulty of defining the 
concept. Still, many researchers have put forward properties that characterize 
important aspects of life. Autopoiesis is perhaps the most salient one, which 
notes that living systems are self-producing [55, 38]. Still, it has been argued 
that autopoiesis is a necessary but not sufficient property for life [50]. The 
relevance of autonomy [10, 42, 35] and individuality [40, 35] for life have also 
been highlighted . 

These approaches are not unproblematic, since no living system is completely 
autonomous. This follows from the fact that all living systems are open. For 

4The relevance is determined by the context, i.e. different aspects will be relevant for 
different contexts. 
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example, we have some degree of autonomy, but we are still dependent on food, 
water, oxygen, sunlight, bacteria living in our gut, etc. This does not mean that 
we should abandon the notion of autonomy in life. However, we need to abandon 
the sharp distinction between life and non-life [11, 35], as different degrees of 
autonomy escalate gradually, from the systems we considered as non-living to 
the ones we consider as living. In other words, life has to be a fuzzy concept. 

Under the present framework, living and non-living systems are information. 
Rather than a yes/no definition, we can speak about a "life ratio": 

Notion 4 The ratio of living information is the information produced by itself 
over the information produced by its environment. 

Being more specific-since all systems also receive information-a system 
with a high life ratio produces more (first order) information about itself than 
the one it receives from its environment. Following the law of information orga-
nization, this also implies that living information produces more of its own con-
straints (organization) to regulate itself than the ones produced by its environ-
ment, and thus it has a greater autonomy. All information will have constraints 
from other (environmental) information, but we can measure (as second-order 
information) the proportion of internal over external constraints to obtain the 
life ratio. If this is greater than one, then the information regulates by itself more 
than the proportion that is regulated by external information. In the opposite 
case, the life ratio would be less than one. 

Following the law of information propagation, evolution will tend to informa-
tion with higher life ratios, simply because this can propagate better, as it has 
more "control" and autonomy over its environment. When information depends 
more on its environment for its propagation, it has a higher probability of being 
transformed as it interacts with its environment. 

Note that the life ratio depends on spatial and temporal scales at which 
information is perceived. For example, for some microorganisms observed at a 
scale of years, the life ratio would be less than one, but if observed at a scale of 
seconds, the life ration would be greater than one. 

Certainly, some artificial systems would be considered as living under this 
notion. However, we can make a distinction between living systems embodied 
in or composed by biological cells [16], i.e. life as we know it, and the rest, i.e. 
life as it could be. The latter ones are precisely those explored by artificial life. 

6 On the Notion of Cognition 
Cognition is certainly related with life [53]. The term has taken different mean-
ings in different contexts, but all of them can be generalized into a common 
notion [20]. Cognition comes from the Latin cognoscere, which means "get to 
know". Like this, 

Notion 5 A system is cognitive if it knows something [20, p.135}. 
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From Notion 2, all agents are cognitive, since they "know" how to act on 
their environment, giving (first order) meaning to their environmental informa-
tion. Thus, there is no boundary between non-cognitive and cognitive systems. 
Throughout evolution, however, there has been a gradual increase in the com-
plexity of cognition [20]. This is because all agents can be described as possessing 
some form of cognition, i.e. "knowledge" about the (first-order) information they 
perceiveS. 

Following the law of requisite complexity, evolution leads to more complex 
agents, to be able to cope with the complexity of their environment. This is 
precisely what triggers the (second-order) increase in the complexity of cognition 
we observe. 

Certainly, there are different types of cognition6 . We can say that a rock 
"knows" about gravity because it perceives its information, which has an effect 
on it, but it cannot react to this information. Throughout evolution, infor-
mation capable of maintaining its integrity has prevailed over that which was 
not. Robust information is that which can resist perturbations to maintain its 
integrity. The ability to react to face perturbations to maintain information 
makes information adaptive, increasing its probability of maintenance. When 
this reaction is made before it occurs, the information is anticipative7 . As in-
formation becomes more complex (even if only by information transformation), 
the mechanisms for maintaining this information also become more complex, as 
stated by the law of requisite complexity. This has led gradually to the advanced 
cognition that animals and machines posses. 

7 Future Work 
The ideas presented here still need to be explored and elaborated further. One 
way of doing this would be with a simulation-based method. Being inspired by 
E-machines [51, 26], one could start with "simple" agents that are able to per-
ceive and produce information, but cannot control their own production. These 
would be let to evolve, measuring if complexity increases as they evolve. The 
hypothesis is that complexity would increase (under which conditions still re-
mains to be seen), to a point where "E-agents" will be able to produce themselves 
depending more on their own information than that of the environment. This 
would be similar to the evolution in Tierra [48] or A vida [3] systems, only that 
self-replication would not be inbuilt. The tentative laws of information presented 
in Section 4 would be better defined if such a system was studied. 

One important aspect that remains to be studied is the representation of 

50ne could argue that, since agency (and thus cognition) is already assumed in all agents, 
this approach is not explanatory. But I am not trying to explain the "origins" of agency, since 
I assume it to be there from the start. I believe that we can only study the evolution and 
complexification of agency and cognition, not their "origins". 

6For example, human, animal, plant, bacterial, immune, biological, adaptive, systemic, and 
artificial [20]. 

7For a more detailed treatment on robustness, adaptation, and anticipation, see [22] 
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thermodynamics in terms of information. This is because the ability to per-
form thermodynamic work is a characteristic property of biological systems [32]. 
This work can be used to generate the organization necessary to sustain life 
(cf. law of information organization). It is difficult to describe life in terms 
of thermodynamics, since it entails new characteristic properties not present in 
thermodynamic systems. But if we see the latter ones as information, it will be 
easier to describe how life--also described as information-evolves from them, 
as information propagates itself at different scales. 

A potential application of this framework would be in economy, considering 
capital, goods, and resources as information (a non-conserved quantity) [18]. 
A similar benefit (of non-conservation) could be given in game theory: if the 
payoff of games is given in terms of information (not necessarily conserved) , non-
zero sum games could be easier to grasp than if the payoff is given in material 
(conserved) goods. 

It becomes clear that information (object), the agent perceiving it (subject) 
and the meaning-making or transformation of information (action) are deeply 
interrelated. They are part of the same totality, since one cannot exist without 
the others. This is also in line with Buddhist philosophy. The implications of an 
informational description of the world for philosophy have also to be addressed, 
since some schools have focussed on partial aspects of the object-subject-action 
trichotomy. Another potential application of the laws of information would be 
in ethics, where value can be described accordingly to the present framework. 

8 Conclusions 

This paper introduced general ideas that require further development, extension 
and grounding in particular disciplines. Still, a first step is always necessary, and 
hopefully feedback from the community will guide the following steps of this line 
of research. 

Different metaphors for describing the world can be seen as different lan-
guages: they can refer to the same objects without changing them. And each 
can be more suitable for a particular context. For example, English has several 
advantages for fast learning, German for philosophy, Spanish for narrative, and 
Russian for poetry. In other words, there is no "best" language outside a par-
ticular context. In a similar way, I am not suggesting that describing the world 
as information is more suitable than physics to describe physical phenomena, 
or better than chemistry to describe chemical phenomena. It would be redun-
dant to describe particles as information if we are studying only particles. The 
suggested approach is meant only for the cases when the physical approach is 
not sufficient, i.e. across scales, constituting an alternative worth exploring to 
describe evolution. 

It seems easier to describe matter and energy in terms of information than 
vice versa. Moreover, information could be used as a common language across 
scientific disciplines [56]. 
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After Shannon 

Adorn Giffin 
Department of Physics 

University at Albany-SUNY 
Albany, NY 12222,USA 

The diversity of a community that cannot be fully counted must be inferred. The 
two preeminent inference methods are the MaxEnt method, which uses information in 
the form of constraints and Bayes' rule which uses information in the form of data. It 
has been shown that these two methods are special cases of the method of Maximum 
(relative) Entropy (ME). We demonstrate how this method can be used as a measure of 
diversity that not only reproduces the features of Shannon's index but exceeds them by 
allowing more types of information to be included in the inference. A specific example 
is solved in detail. Additionally, the entropy that is found is the same form as the 
thermodynamic entropy. 

1 Introduction 
Diversity is a concept that is used in many fields to describe the variability of 
different entities in a group. In ecology, the Shannon entropy [1] and Simpson's 
index [2] are the predominate measures of diversity. In this paper we focus on 
the Shannon entropy for two reasons: First, it has been shown that Simpson's 
index is an approximation of Shannon's [3]. Second, Shannon's entropy is closely 
tied to many other areas of research, such as information theory and physics. 

It is often the case that the species in a community cannot be fully counted. 
In this case, when one has incomplete information, one must rely on methods of 
inference. The two preeminent inference methods are the MaxEnt [4] method, 
which has evolved to a more general method, the method of Maximum (relative) 
Entropy (ME) [5, 6, 7] and Bayes' rule. The choice between the two methods 
has traditionally been dictated by the nature of the information being processed 



(either constraints or observed data). However, it has been shown that one can 
accommodate both types of information in one method, ME [8]. The purpose 
of this paper is to demonstrate how the ME method can be used as a measure 
of diversity that is able to include more information that Shannon's measure 
allows. 

Traditionally when confronted with a community whose count is incomplete, 
the frequency of the species that are counted are used to calculate the diversity. 
The frequency is used because it represents an estimate of the probability of 
finding a particular species in the community. However, the frequency is not 
equivalent to the probability [9] and as such is a poor estimate. Fortunately, 
there are much better methods for estimating or inferring the probability such 
as MaxEnt and Bayes. Even more fortunate is that the new ME method can 
reproduce every aspect of Bayesian and MaxEnt inference and tackle problems 
that the two methods alone could not address. 

We start by showing a general example of the ME method by inferring a 
probability with two different forms of information: expected values l and data, 
simultaneously. The solution resembles Bayes' Rule. In fact, if there are no 
moment constraints then the method produces Bayes rule exactly. If there is no 
data, then the MaxEnt solution is produced. 

Finally we solve a toy ecological problem and discuss the diversity calculated 
by using Shannon's entropy and the diversity calculated by the ME method. 
This illustrates the many advantages to using the ME method. 

2 Simultaneous updating 

Our first concern when using the ME method to update from a prior to a poste-
rior distribution2 is to define the space in which the search for the posterior will 
be conducted. We wish to infer something about the values of one or several 
quantities, e E e, on the basis of three pieces of information: prior information 
about e (the prior), the known relationship between x and e (the model), and 
the observed values of the data x EX. Since we are concerned with both x 
and e, the relevant space is neither X nor e but the product X x e and our 
attention must be focused on the joint distribution P(x, e). The selected joint 
posterior Pnew(x, e) is that which maximizes the entropy, 

J P(x, e) 
S[P,Po1d ] = - dxde p(x,e) log Pold(X,e) , (1) 

1 For simplicity we will refer to these expected values as moments although they can be 
considerably more general. 

2In Bayesian inference, it is assumed that one always has a prior probability based on some 
prior information. When new information is attained, the old probility (the prior) is updated 
to a new probability (the posterior). If one has no prior information, then one uses an ignorant 
prior [10]. 
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subject to the appropriate constraints. Pold(X, e) contains our prior information 
which we call the joint prior. To be explicit, 

(2) 

where po1d(e) is the traditional Bayesian prior and Po1d(xle) is the likelihood. 
It is important to note that they both contain prior information. The Bayesian 
prior is defined as containing prior information. However, the likelihood is not 
traditionally thought of in terms of prior information. Of course it is reasonable 
to see it as such because the likelihood represents the model (the relationship 
between e and x) that has already been established. Thus we consider both 
pieces, the Bayesian prior and the likelihood to be prior information. 

The new information is the observed data, x', which in the ME framework 
must be expressed in the form of a constraint on the allowed posteriors. The 
family of posteriors that reflects the fact that x is now known to be x' is such 
that 

C1 : P(x) = J de P(x, e) = S(x - x') . (3) 

This amounts to an infinite number of constraints: there is one constraint on 
P(x, e) for each value of the variable x and each constraint will require its own 
Lagrange multiplier A(X). Furthermore, we impose the usual normalization con-
straint, J dxde P(x, e) = 1 , (4) 

and include additional information about e in the form of a constraint on the 
expected value of some function f(e)3, 

C2 : J dxdBP(x,B)f(B) = (f(B)) = F. (5) 

We emphasize that constraints imposed at the level of the prior need not be 
satisfied by the posterior. What we do here differs from the standard Bayesian 
practice in that we require the constraint to be satisfied by the posterior distri-
bution. 

Maximize (1) subject to the above constraints, 

S +f3 [J dxdep(x, e)f(e) - F] { 
S + a [J dxdep(x, e) - 1] 

+ f dXA(X) [J dep(x, e) - S(x - xl] 
(6) 

yields the joint posterior, 

e)..(x)+/3f(f)) 

Pnew(x, e) = Pold(X, e) z ' (7) 

3Including an additional constraint in the form of J dxd8P(x,8)g(x) = (g) = G could only 
be used when it does not contradict the data constraint (3). Therefore, it is redundant and 
the constraint would simply get absorbed when solving for >.(x). 
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where Z is determined by using (4), 

Z = e-a+ 1 = J dxd()e>..(x)+f3f(O)Pold (X,()) 

and the Lagrange multipliers >.(x) are determined by using (3) 

>..(x) _ Z J:( _ ) 
e - Jd()ef3f(O)POld(X,())ux x. 

The posterior now becomes 
ef3f (O) 

Pnew(x,()) = Pold (X,())6(x - x) ((X, (3) , 

where ((X, (3) = J d()ef3f (O)Pold(X,()). 

(8) 

(9) 

(10) 

The Lagrange multiplier (3 is determined by first substituting the posterior 
into (5), 

J dxd() [POld (X,())6(X - x) ~~:,(~)] f(()) = F . (11) 

Integrating over x yields, 

J d()ef3f (O) Pold(X', ())f(()) 
((X', (3) =F, (12) 

where ((X, (3) -- ((X', (3) = J d()ef3 f(O)Pold(X',()). Now (3 can be determined by 

aln~~',(3) = F. (13) 

The final step is to marginalize the posterior, Pnew(x, ()) over x to get our 
updated probability, 

ef3f (O) 
Pnew(()) = POld(X',()) ((X' , (3) 

Additionally, this result can be rewritten using the product rule as 
ef3f (O) 

Pnew (()) = Pold (())Pold (x'I()) ('(X', (3) , 

(14) 

(15) 

where (' (x' , (3) = J d()ef3 fCO ) POld (())Pold (x'I())· The right side resembles Bayes the-
orem, where the term Pold(x'I()) is the standard Bayesian likelihood and Pold (()) 
is the prior. The exponential term is a modification to these two terms. Notice 
when (3 = 0 (no moment constraint) we recover Bayes' rule. For (3 -# 0 Bayes' 
rule is modified by a "canonical" exponential factor. 

It must be noted that MaxEnt has been traditionally used for obtaining a 
prior for use in Bayesian statistics. When this is the case, the updating is se-
quential. This is not the case here where both types of information are processed 
simultaneously. In the sequential updating case, the multiplier (3 is chosen so 
that the posterior Pnew only satisfies C2 • In the simultaneous updating case the 
multiplier (3 is chosen so that the posterior Pnew satisfies both C1 and C2 or 
C1 1\ C2 [8]. 
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3 Inference in Ecology 

In the following sections we will discuss the traditional way diversity is measured 
and the way it is measured using ME. This will be done by examining a simple 
example and comparing the two methods. In addition, we will show how the 
ME method could include information that the traditional method cannot. 

The general information for the example is as follows: There are k types of 
plants in a forest. A portion of the forest is examined and the amount of each 
species is counted where mi, m2 ... mk represents the counts of each species 
and n represents the total count so that n = 2:7 mi. Additionally, we know 
from biological examination that one species, 82 and another species, 85 are 
codependent. Perhaps they need each others pollen in such supply that they 
cannot exist unless there are on the average, twice the number of 82 as compared 
to 85. 

3.1 Traditional Diversity 

We calculate the Shannon diversity by using Shannon's entropy as follows, 

k 

STradtional = - L Pi log Pi , (16) 

where Pi = mi/n. The problem with using this method is not in the method 
itself but with the reason it is being used. If the purpose of using this method 
was to measure the diversity of the portion that was counted then the method 
is acceptable. However, if the purpose of the method is to estimate or infer the 
diversity of the whole forest , then it is a poor estimate. First, Pi is meant to 
represent the probability of finding the ith species in the forest. As previously 
stated, the frequency of the sample is not equivalent to the probability. In fact, 
it is the expected value of the frequency that is equivalent to the probability, 
(F) = P [9]. It would only make sense to use the frequency as an estimate of the 
probability when n is very large (Le. n ~ 00) but this is not usually the case. 
Second, the diversity of two samples that have the same ratio of frequencies 
will be the same. Therefore this measure does not reflect the abundance of the 
species. This might be a desirable feature [3]. Third, there is no clear way to 
process the information about the codependence using Shannon's entropy. 

3.2 ME Diversity 

Here we intend to use a better method to estimate or infer Pi and that method 
is the ME method. The first task is to realize that the correct mathematical 
model for the probability of getting a particular species where the information 
that we have is the number of species counted is a multinomial distribution. The 
probability of finding k species in n counts which yields mi instances for the ith 
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species is 

where m = (m1,"" mk) with 2:7=1 mi = n, and P = (p1,'" ,Pk) with 
2:7=1 Pi = 1. The general problem is to infer the parameters P on the basis 
of information about the data, m'. Here we see the first advantage with using 
the ME diversity; we allow for fluctuations in our inference by looking at a 
distribution of P' 8 as opposed to claiming that we know the "true" p. 

Additionally we can include information about the codependence by using 
the following general constraint, 

k 
(f(p)) = F where f(p) = Li fiPi , (18) 

where fi is used to represent the codependence. For our example, on the average, 
we will find twice the number of 82 as compared to 85 thus, on the average, 
the probability of finding one of the species will be twice that of the other, 
(P2) = 2 (P5)' In this case, h = 1, !5 = -2 and hcp(2,5) = F = O. 

Next we need to write the data (counts) as a constraint which in general is 

P(mln) = bmm' , (19) 

where m' = {m~, ... , m~}. Finally we write the appropriate entropy to use, 

'" J P(m,pln) S[P, Pold] = - ~ dpP(m,pln) log p. ( I)' 
m old m,pn 

(20) 

where 

(21) 

and 
(22) 

and where Pold(m,pln) = Pold(pln)Pold(mlp,n). The prior Pold(p) is not impor-
tant for our current purpose so for the sake of definiteness we can choose it 
flat for our example (there are most likely better choices for priors). We then 
maximize this entropy with respect to P(m,pln) subject to normalization and 
our constraints which after marginalizing over m' yields, 

where 

ef3f (p) 
P(p) = POld(m'lp,n)-,- , 

,= J dpef3f(p)Pold(m'lp,n) and F = 8~;' . 
(23) 

(24) 
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The probability distribution P(p) has sometimes been criticized for being too 
strange. The idea of getting a probability of a probability may seem strange at 
first but makes absolute sense. We do not know the" true" distribution of species, 
Pi. Therefore it seems natural to express our knowledge with some uncertainty 
in the form of a distribution. Notice that if one has no information relating the 
species then (3 = o. 

Finally by substituting (23) into (20), and using our constraints (18) and 
(19) we introduce our new general measure for diversity, 

8ME = log ( - (3F . (25) 

4 Conclusions 

Diversity is an important concept in many fields. In this paper we provided a toy 
example of how ME would be used as a measure of diversity that may simulate 
real world situations. By using the multinomial, we not only properly infer p 
so that fluctuations are represented, we get the additional bonus of having the 
abundance of the species represented in the measure. It is critical to note that 
our diversity, 8ME satisfies all of Pielou's axioms [l1J. 

This of course could all be done with only using Bayes to infer p. However, 
by using the ME method we can include additional information allowing us to 
go beyond what Bayes' rule and MaxEnt methods alone could do. Therefore, 
we would like to emphasize that anything one can do with Bayesian or MaxEnt 
methods, one can now do with ME. Additionally, in ME one now has the ability 
to apply additional information that Bayesian or MaxEnt methods could not. 
Further, any work done with Bayesian techniques can be implemented into the 
ME method directly through the joint prior. 

Although Shannon had discovered the entropy that bears his name quite 
independently of thermodynamic considerations, it nevertheless is directly pro-
portional to the thermodynamic entropy. The realization that the ME diversity 
is of the exact same form as the thermodynamic entropy4 is of no small conse-
quence. All of the concepts that thermodynamics utilizes can now also be utilized 
in ecology, whether it be energy considerations or equilibrium conditions, etc. 

To see a detailed method for calculating (, see [8], for a numeric example, 
see [12J and for an example of what do when one knows that there are species 
in the forest but simply have not been counted (perhaps they are rare), see [13J. 

Acknowledgements: We would like to acknowledge many valuable discussions 
with A. Caticha 

4The thermodynamic entropy is actually, S = log ( +f3F. The fact that our entropy (25) 
has a -f3F is a reflection of our choice to add our Lagrange multipliers in (6) as opposed to 
subtracting them as is the case in thermodynamics. However, this is trivial because when 
one solves for f3 in (13) the sign will be accounted for. Thus, if the Lagrange multiplier was 
subtracted, the solution to (13) would be -F and the entropy would have a +f3F. 
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Genetic regulatory networks are often represented as Boolean networks and characterised by 
average parameters such as internal homogeneity (the probability that a node outputs a 1). Here 
we present a different formalism in which the nodes interact through positive and negative 
links with the state of the nodes determined by a single, general logical function. The main 
parameter of the system is in this case the proportion of negative links. At a critical value of 
the proportion of negative links the networks display a phase transition from a periodic to a 
chaotic regime The proportion of negative links in the bacterium Escherichia coli corresponds 
in our model to a range where the network behaves at the edge of chaos. 



1 Introduction 
The genetic regulatory network of a cell is a complex dynamical system yielding a 
wide diversity of living cells and organisms. Specific variations at any small or large 
scale in the level of expression of the genes, in their timing of action and in the 
architecture of the network are amongst the factors responsible for such diversity [1]. 
Boolean networks, a general form of cellular automata, have long been used to study 
the dynamical properties of such biological systems at both small and large scale 
[2,3]. For example, Boolean networks are used to represent the genetic regulatory 
networks inferred from mRNA data [4] and as models of cell differentiation [3,5]. 

Here, we use a variant of Boolean networks to model genetic regulation and to study 
properties related to architecture and dynamics. In the Boolean network introduced 
by Kauffman [3], also called the NK-model, the state of each of N nodes is 
represented by a Boolean variable (ON or OFF) where the output value is determined 
by a Boolean function, or transition function, that has for input the K connections to 
that node. The model is characterised by parameters such as the internal 
homogeneity, p, that is the probability that an output is ON [3,6], and the size of the 
stable core given by the number of stable nodes, that is the nodes that have a constant 
state independent of the initial state [7]. This model displays a complex dynamics. A 
major result of the NK-model [3] is the phase transition occurring at K = 2 between a 
crystallised phase (K < 2) and a chaotic phase (K> 2). For K = 2, the network is said 
to operate at the "edge of chaos" [3]. 

From the point of view of genetic regulation, the traditional representation of 
Boolean networks does not capture adequately the regulatory mechanism of the 
genes. We choose a different representation by assigning to the links either a positive 
or a negative regulatory effect in a way similar to the activating or inhibiting effect of 
regulatory genes on those that they regulate. Although this could be modelled in the 
framework of classical Boolean networks, our results differ in many aspects and, 
allow comparisons to real biological data. 

We first introduce the genetic regulatory model and then show that a critical regime 
occurs for two ranges of the proportion of inhibitor links, 11 . Further analysis of this 
critical regime shows that the network behaves at the edge of chaos. Though this 
transition is usually observed for variation of the internal homogeneity [6,8], our 
study shows that 11 and p are different parameters. Furthermore, we find that the 
fraction of negative links in this critical regime corresponds to that found in the 
transcriptional network of the bacterium Escherichia coli, suggesting that it too 
behaves at the edge of chaos. 
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2 The Model 
2.1 Architecture of the model 
We consider directed networks where the agents, or nodes, represent the cellular 
machinery of gene regulation and the links represent the regulating influence of the 
agents on each other. The links, which are fixed, can either have an activating or 
inhibiting effect on the nodes to which they are connected. A network is represented 
by its adjacency matrix A, with elements aij given by 0 if there is no link from node j 
to node i; 1 if node j is connected and directed to node i and acts as an inducer on i; 
and -1 if node j is connected and directed to node i and acts as a repressor on i. 

We denote by 11 the proportion of repressors in the network, that is the number of 
negative links in the matrix A as a fraction of the number of non-zero links. The 
mean connectivity of the network is k = <1: aij>. 

2.2 Dynamics 
As for Boolean networks, each agent of the network is characterised by its binary 
state. The configuration of the network at anyone time is given by a vector S(t), 
where the element Si(t) is the state of agent i at time t, such that Si(t) = 0 if the agent is 
OFF and slt) = 1 otherwise. 

The dynamics of the network is provided by a simple rule in which the state of the 
nodes at a given time step depends only on the configuration of the network at the 
previous time. This rule states that a node is ON if the number of active positive 
incoming links to the node is greater than the number of active negative ones. 
Furthermore, only the nodes that are ON can exert their control over the other nodes: 
that is a node that is OFF does not exert any control on other nodes whatever its 
outgoing links may be. This translates to the following expression in which a node i 
is ON at t + 1 if 

(1) 
j 

and otherwise the node is OFF. A consequence is that if all of the nodes connecting a 
node i are OFF, this node does not receive signals; this node is OFF by default. The 
nodes that remain OFF in this way during the simulation belong to the inactive core 
of the network. The other nodes are part of the active core. 

Although the activation function in equation (1) could be expressed as a Boolean 
function, this would neither be the most appropriate approach, nor the simplest. The 
function given in (1) is a more general function than the standard activation-
inhibition functions, where a node is activated if there is at least an activator but no 
inhibitor and not activated otherwise. Indeed, expression (1) carries a simple 
symmetrical cooperative effect between activators and between inhibitors: the more 
activator the more likely a node will be activated and, conversely, with the more 
inhibitors the more likely a node will be inhibited. Finally, observations suggest that 
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the binding of a regulator to specific DNA sequences may not be binary, that is 
designed to bind or not. On the contrary, there are apparently thresholds conditioned, 
for example, by the specificity of the sequence or the concentration of the regulator 
[13]. Nevertheless for simplicity in this paper we set the threshold to zero. 

2.3 External input 
We consider that the networks are not autonomous, that is they cannot exhibit a 
dynamics in the absence of a constraining environment. A subset of the nodes is 
chosen to receive an external input, or signal, which are subsequently considered as 
input nodes. There are several possibilities for the choice of those nodes: the nodes 
without incoming links, a subset of those, a subset of any nodes, etc. However, for 
simplicity, the subset of input nodes is chosen at random regardless of the 
connectivity of the nodes. The chosen nodes remain ON at any time regardless the 
value of equation (1), which provides a clamping effect on the network. 

3 Result 
In the following, we consider two different network architectures: a random network 
in which links are formed between pairs of nodes at random [10] and a power-law 
network [14]. These networks differ in many aspects such as in their degrees of 
clustering and diameter [10]. The networks presented below are constructed with a 
number of nodes and a mean connectivity of the order of magnitude that is observed 
in typical bacterial models, that is of the order of 1000 nodes and a small mean 
connectivity, in view of the sparseness of the regulatory networks in cellular 
organisms [15]. 

At the start of a simulation, all the nodes of the network are set to be OFF. A number 
of nodes, set to I = 50 in the following, is selected at random with equal probability, 
to receive an external input. The state of each node is then repeatedly updated until 
either an attractor is found, which occurs after a transient phase, or until a maximum 
number of set time steps, L, is reached. 

3.1 Phases 
For Il varying between 0 and 1, simulations show that for random networks with 
N = 1500 nodes and k = 8.0 the model displays three different behaviours 
characterised by the nature of the attractor. The network is (i) crystallised if the 
attractor is a fixed point, (ii) periodic if the attractor cycles over a length of time < L 
and (iii) considered to be chaotic if no period is found, that is the network has a 
period> L. This relates to the fact that for large scale networks a period may not be 
reached in a reasonable computational time, despite the fact that in a finite 
deterministic model a period must exist. The three observed behaviours are 
characteristic of classical Boolean networks and cellular automata [3,6,16]. 
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Figure 1. Fraction of a given attractor according to the fraction of negative links. The curves 
represent the fraction of static attractors (cross), periodic attractors (open circle) and chaotic 
attractors (open square) according to the proportion of negative links. Each point gives the 
fraction of network of a given attractor over 500 repeats. For each repeat, a random network of 
N = 1500, k = 8.0 is generated and a random subset of 50 nodes chosen as external inputs. Each 
simulation runs for a maximum of 105 time steps beyond which an attractor is considered 
chaotic. 
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Figure 2 (left): Illustration of local and propagating structures. In both cases, the nodes A and 
C compose the neighbourhood of the node B. (a) The oscillation of the state of node a spreads 
locally to its neighbourhood whilst in (b) the oscillation spreads outside the neighbourhood. 
Figure 3 (right): Transition in a single network for variation of the proportion of negative 
links. A network of 1500 nodes is initially constructed with J.1 = 0.3. The proportion of 
negative links is then increased and the number of nodes of variable states and the number of 
cyclic patterns formed from the nodes of variable state at the steady state is recorded. The 
variation of the number of cyclic motifs is given in (a) and the number of nodes of variable 
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state in (b). 
As shown in Fig. 1 for L = 105, the probability of finding a particular attractor 
depends on the value of J.l . Thus, for J.l < 0.27 and J.l > 0.78, the network is likely 
to have a have a fixed point attractor while for 0.27 < J.l < 0.38 and 0.65 < J.l < 0.78 
the network is more likely to reach a periodic attractor with a peak at J.l -0.35 and 
J.l - 0.70. Finally, for 0.38 < J.l < 0.65 the network is most likely to be in the 
chaotic regime with a symmetry in the distribution at J.l - 0.53. 

Networks with a power-law distribution of the degree of connectivity show identical 
results (data not shown), which suggests that the architecture does not influence the 
behaviour of the model in this respect. 

Further information is required to determine whether the periodic behaviour of the 
network has properties similar to that of cellular automata at the edge of chaos. In 
cellular automata, the probability for a node to be ON depends on a parameter ')... , 
that is identical to the internal homogeneity of Boolean networks [16] . For')... close to 
o the system presents no activity after a very short number of steps. For')... around 0.2 
some oscillatory states will persist either locally or propagating through the system in 
what are defined either as local or as propagating structures, respectively [16]. For ')... 
around 0.3 those structures start to interact in complex patterns and when ')... reaches 
0.5 the system has become chaotic [16]. Here, a local structure is characterised by a 
periodic pattern confined to its neighbourhood (a node and the nodes it is directly 
connected to), while a propagating structure is a pattern that travels across 
neighbourhoods. In the network model, these structures are characterised by specific 
motifs. For example, the oscillatory state of node B generated by the structural motif 
in Fig.2(a) can spread only to its neighbouring node C, and similarly, the oscillatory 
state of node C can spread only to its neighbouring node B. The oscillatory pattern 
formed by the variation of the states of the nodes Band C is therefore local. 
Introducing a series of nodes between the nodes Band C, as shown in Fig. 2(b), 
allows the oscillatory states to propagate beyond its neighbourhood. The oscillatory 
pattern in the neighbourhood of node B is then a propagating structure. 

To test whether the network behaves at the edge of chaos we need to look first at the 
number of local and propagating structures observed in a given network as the 
proportion of negative links increases [16]. This is equivalent to looking at the 
number of cyclic motifs in the part of the network formed by only the nodes of 
variable state. In addition, we need to check whether these structures are interacting 
with each other, that is, whether these structures can be connected by paths between 
the nodes of variable state. The number of cyclic motifs for a network of 1500 nodes 
and k = 8.0 is shown in Fig. 3(a) for a given network, and a given set of input nodes, 
as J.l increases from 0.3 to 0.46. The number of cyclic motifs is measured by 
investigating the network made up of the nodes of variable state. First, we list all the 
nodes that are connected to a chosen starting node. Those nodes become starting 
nodes and the nodes connected to them are subsequently included in the list. This is 
repeated until no new node is added to the list. We then extract the nodes that appear 
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at least twice in the list as they are either part of parallel pathways, as in a feed-
forward loop for example [17], or they belong to a cycle, or both. Each of the selected 
nodes is then considered as the potential start of a cyclic pathway with the condition 
that once any such starting node has been identified as part of a cycle it cannot be 
part of any other cycles. This tends to under-estimate the number of cycles although 
it does not impair the result as shown below. 

We also show in Fig. 3(b) the number of nodes of variable state forming the network. 
Thus for a small proportion of negative links ()l - 0.3), where the network is likely 
to be crystallised, the number of cyclic motif is small (Fig. 4(a». As the proportion of 
negative links increases to about)l ~ 0.39, the number of cycles rises by one order of 
magnitude. Beyond this value where the network is likely to be chaotic (Fig. 1), the 
number of cyclic motifs varies as N, despite the under-estimation of the number of 
cyclic patterns. Note that all these structures are propagating: the probability of 
having a simple local structure such that of Fig. 2(a) is proportional to k ~, hence 
close to zero in a network of small connectivity. Figure 3(b) shows also that the size 
of the network made of nodes of variable states varies similarly to the number of 
cyclic motifs. Finally, the measured number of independent components is less than 
3, meaning that the propagating structures are interacting with each other. This 
demonstrates that for a range of)l , the network behaves at the edge of chaos. 

4. Discussion 
Classically, the behaviour of Boolean networks is affected by the bias introduced by 
the internal homogeneity parameter, p [3,6]. In the present model, the behaviour of 
the network is similarly affected by the proportion of negative links, )l . However, 
the parameters p and)l are noticeably different, this for the two following reasons. 
First, the value of p calculated from expression (1) for given values of)l does not 
equal)l . For example, in a structural motif where one incoming link is positive and 
another one is negative, that is)l = 0.5, the probability for a node to be ON 
according to (1) isp = 0.25. Second, in the classical case, each value ofp corresponds 
to a set of Boolean functions, whereas in our model each value of)l corresponds to a 
specific p calculated according to (1), but also to a Boolean function. Expression (1) 
determines the only possible Boolean function for a given value of)l and a given 
number of incoming links, ensuring that the logic of the transition functions is 
constant over the range of)l ~ This has the modelling advantage that)l together with 
(1) provides a control parameter over the internal homogeneity of the system. 

The rather different formalism adopted in the representation of the interactions 
between genes allows us to make comparisons with real genetic regulatory networks. 
For instance in RegulonDB, the transcriptional network of the bacterium Escherichia 
coli is described in term of the activating, inhibiting or dual function of regulators on 
the genes they regulate [18]. Considering the dual effect as a neutral one, the 
proportion of negative links to that of the total number of links, excluding those with 
a dual effect, gives)l = 0.4. This corresponds in our model to a range at which the 
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network is almost as likely to be periodic as to be chaotic, that is, it operates at the 
edge of chaos. This suggests that, similarly to the model, the transcriptional network 
of E. coli operates at the edge of chaos. Furthermore, the value of Il at which the 
networks are more likely to be periodic spans a small range, meaning that the value 
of Il for real systems may not be unique. However, because of the need for both 
robustness and adaptability we do expect a fine tuning of this value. Indeed, a small 
increase in Il and the networks may become too sensitive to perturbations, while 
conversely a small decrease in Il and the networks may become unresponsive to a 
change of vital signals. Note that such direct comparison would not be possible using 
the internal homogeneity as the key parameter. 
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There are many challenges facing businesses in the modern commercial climate. One 
challenge is the 'product-service shift', whereby organisations go from delivering a 
product to the provision of through-life availability of an instantiated capability. This 
will have implications for any organisation in the processes and procedures it 
employs, especially for knowledge and information management. Whilst it is true that 
there is a large technical content within the area of knowledge and information 
management, it is still, essentially, a human and organisational issue. This is the focus 
of the KIM (Knowledge and Information Management - through life) Grand 
Challenge. 
This paper will introduce the KIM project and aims. Focus will be on a particular 
area of research within the project, concerned with decision-making, decision support 
and human aspects of such systems. Ongoing studies within this research are 
discussed, looking at the bid stage for major aerospace projects and at decision 
networks within flagship construction projects. 
The implications of complexity, in its organisational guises of intrinsic and induced 
complexity will be discussed. 
There is a discussion on how the limited information horizon contributes to (often 
unwanted) emergent behaviour as projects progress, and how decision-making 



systems may be configured to help cope with issues of complexity and the surprises 
such emergent behaviour can manifest. 

1 Introduction 

1.1 The KIM Grand Challenge 
The Engineering and Physical Sciences Research Council (EPSRC) in the UK has 
funded five Grand Challenges. All involve academic and industrial partners and aim 
to improve the performance of UK businesses (specifically in manufacturing and 
construction). 'Knowledge and Information Management - Through Life' (KIM) is 
the biggest of these Grand Challenges, being funded at approximately £5 million (US 
$11 million). 
KIM involves 11 academic institutions and number of industrial partners. Application 
and use in industry is a big focus of the output of this research. The overall aim of the 
project, as stated on the project website (www.kimproject.org).is: 

"The identification of approaches to information and knowledge 
management that may be applied to the through-life support of long 
lived, complex engineered products." 

The work is split into four work packages and each of those into sub tasks. Each sub 
task has a team of people working on it from different universities. Loughborough 
University is involved with several of the sub tasks. However, the focus of the 
research reported in this paper is the third sub task within the third work package -
'Managing the Knowledge System Life Cycle'. 

1.2 The Scope of Task 3.3 
The task objective is to evaluate the potential of alternative methods of decision 
support in improving the quality of decision-making throughout the project lifecycle. 
The team personnel are from the University of Salford, the University of Cambridge, 
the University of Reading and Loughborough University. 
The scope of the research is to investigate the effect of a shift from product delivery 
to through life service support on decision-making and decision support in teams 
'through life' . As noted on the project website, timescales may be ' 10, 20 or 30 years 
and beyond, during which time the 'information and knowledge' will be stored, 
accessed, used and received many times over in many different situations and 
contexts.' 
The issues which arise from consideration of such a time frame can be summarised, 
as follows: beyond 30 years we will be designing (and servicing) products and 
systems whose requirements and uses not yet known, using materials and processes 
not yet invented or developed, using suppliers who will be very different to now, and 
who may have a shorter lifetime than the system itself, and all of this will be done, 
including maintaining system information and knowledge, with people who are not 
yet born and who will not be in post for more than a decade. (This has been termed as 
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the 'looking forwards problem'.) There are also things to be learned 'looking 
backwards', i.e. how are legacy systems dealt with that were first designed and 
produced many years ago (e.g. the RAF Canberra photo reconnaissance aeroplane, 
designed in the 1950s and still flying today). 

1.3 The Implications 
The implications of a shift to 'through-life' service are not insignificant, not simply 
due to an extension to the traditional supply chain to cover service/support providers, 
but also because of the extended times cales and responsibilities to be considered. 
Many of the customer's harder decisions about the future are delegated to the supplier 
(who can no longer pass risks on along the chain). The supplier, following Ashby's 
Law [Ashby 1956], must create and maintain a much more complex organisational 
structure to assess the issues arising. Immediate considerations are: (a) provision of 
the capability and its upgrades on time; (b) maintaining the availability of the 
capability after delivery for its lifetime; and (c) the provision of a problem resolution 
capability to support (a) and (b) above, by addressing unexpected happenings 
affecting the capability. 

Design Deliver 
~~----------~~----------, 

\// 
Unresolved issues here 

• Maturity problems 
Over-complicated design 
Under-performance 
Etc. 

i 
will produce complexity here 

• More complex supply chain 
Rework issues 

• Several base-lines 
Documentation issues 
Etc. 

Figure 1: CADMID Lifecycle for a System Capability 

Use Dispose 

t 
and here (for next 25+ years) 

• More skilled operators 
• More management required 

Reduced reliability/availability 
Variable performance 
Under-performance 
Etc. 

The increase in effort, co-ordination and control is significant; if organisations do not 
rise to meet this challenge, the effects can be long lasting, as illustrated in Figure 1. 
This incorporates the CADMID lifecycle, well known in the UK defence industry and 
originally specified by the Ministry of Defence in the UK. The diagram illustrates 
possible knock on effects of earlier unresolved problems. 
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2 Decision Making Systems 
Decision-making is affected by a number of things. There will be external 
environmental and commercial pressures, but there are also internal effects and 
pressures. Many of these, such as established processes, organisational structures and 
incentivisation policies are typically determined by the company's overall strategy 
(for example, having an aim to work 'faster, better, cheaper' than competitors). It is 
important that strategy is developed and implemented in an arena of good 
governance, otherwise the endeavour to make good decisions will be academic and 
detrimental emergent behaviour will be a near certainty. 
Note the use of the term Decision-Making Systems (DMS): this includes: 
• Agents - software or human based, who are involved with decisions, 
• Activities - the decision-making activities which enable decisions to be made, 
• Infrastructure - which enables decision-making and may include computer based 

support, 
• Knowledge and information - necessary for decision-making. 
DMS will also of course be affected by time (time available in which to make the 
decision, time by when the decision must be made, time when the output or effect of 
the decision is realised, and the duration of the decision) and the style or process of 
decision-making. 
In the view of the authors, DSS (Decision Support Systems) form part of the overall 
DMS. In much of the literature [e.g. Silver 1991, Finlay 1989] the term DSS or 
decision support is considered to extend only to computer based tools. However, this 
research widens that definition to include any form of support or guidance, which 
may be computer based, or from a human source, such as in Communities of Practice 
(CoPs) [Coakes and Clarke 2006, Wenger 2000]. 

3 The Effects of Complexity 
"Complexity is really just reality without the simplifying assumptions that we make 
in order to understand it." [Allen et al. 2005] 
This is a very neat encapsulation of complexity; however, for the purposes of this 
research, we have adopted a definition very similar to that of Rycroft and Kash 
[1999]: 

"A system exhibits complexity if it is composed of many integrated 
entities of heterogeneous parts, which act in a coordinated way and 
whose behaviour is typically nonlinear." 

Issues of complexity and emergence typically are often considered from two pools of 
interest. Firstly, there are those researchers concerned with the emergence of order 
from disorder, Conway's 'Game of Life' being a good example of this [Gardner 
1970]. A different approach, attuned to an organisational perspective, is to consider 
the emergence of a different order (or disorder) from an established or planned order. 
This research is positioned in this second pool of interest, since it is likely to be of 
most interest to those in the service industries. 
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Within this latter class of complexity, it is also possible to identify two sources of 
complexity. Intrinsic complexity is that which arises from what is being attempted in 
the process or in the problem being addressed. Secondly, there is induced complexity 
due to the way the organisation is structured and organised to deal with the problem. 

3.1 Intrinsic Complexity 
Intrinsic complexity arises largely from the interactions between components in a 
system, both intended and unintended. There are a number of potential solutions/ 
issues to consider which may help reduce intrinsic complexity (it should be realised 
that elimination of intrinsic complexity is impossible): 
• Modularity in design can enable containment of complexity, 
• System maturity, for example state of knowledge and quality of knowledge 

management, 
• Architecture for core components/ system facets and rigid adherence to 

standards, 
• Clear understanding of the problem context, 
• A stable project environment, in terms of budget, timescales, client coherence, 

partners etc. I(has the biggest impact, but is the most difficult to achieve and 
unlikely to occur. 

3.2 Induced Complexity 
Induced complexity is perhaps the most prevalent and powerful reason why 
development and change projects do not deliver as planned. 

Inducing extra complexity into the delivered capability via inappropriate project 
management (or conversely avoiding or reducing induced complexity via appropriate 
project management) is discussed widely in literature [de Meyer, Loch and Pich, 
2002; Koskela and Howell, 2002; Williams, 2005]. 
However, as these authors indicate, the style of project management is the result of 
organisational culture, role assignment and knowledge of the problem area [Sinclair, 
2007] but is not the only source of induced complexity; the client, the legal 
framework, and many other entities can create a project environment that is almost 
certain to trigger induced complexity. 

4 Ongoing studies and Future Work 
Initial empirical work included an in-depth literature review and case studies; the first 
set looked at student engineering groups, investigating the identification of key 
decision points and the mechanisms of decision making and decision support 
employed; the second set were based in the aerospace and construction sectors. 
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Space does not permit a full description of these studies, but will look at one key 
output- a DMS Framework (see figure 2). The aim of the framework is to help orient 
organisations with regards to their issues, especially with regards to DMS. The 
increased information provided will allow the organisations to more appropriately 
configure their own DMS.1t allows data to be captured and represented in a common 
format and an exemplar of the framework, is shown in figure 2 partially populated 
with issues, items etc. drawn from accident reports, the literature and the case studies 
themselves. The row headings are the component parts of a DMS, as explained earlier 
in the paper. The column headings are aspects of the overall system or system of 

1. Contextual Variables 2. Environmental 3. Organisational 4. Level of DM 

Variables Culture 

Poor agent allocation or Agents in place Poor agent Agents do not 

definition for particular cannot deal with allocation due to have correct 

part of the Iifecycle - e.g. external variables, organisational authority to 

i finance representative e.g. are unable to structure. make decisions. 

~ 
not present even though act on changing 

-; budgetary decisions are inputs . .. 
lOll -< to be made. -< 

Inappropriate activities Correct activities Mandated activities Inappropriate 

for the particular part of are not in place to prevent effecti ve acti vities for the 

the IifecycJe. deal with external collaboration. level of 

influences, e.g. not decision-

configured to take making. 
~ advantage of 
~ .e; external t: -< opportunities. 
== 

Inappropriate or non- Inappropriate Inappropriate Inappropriate .. .. availability of infrastructure to infrastructure infrastructure = t: 
E infrastructure for phase deal with external prevents effective for the level of -; 

of IifecycJe . influences. collaboration. decision-.. -.s making. U 
Inappropriate Inappropriate or Inappropriate Inappropriate 

= information and unavailable information or information or 
.9 .... knowledge for phase of knowledge or knowledge knowledge for e .. IifecycJe, e.g. detailed information preventing effecti ve level of decision -8 - requirements not regarding external risk management. making, e.g. ." 
;) available during testing . influences. detailed .. 
lOll 
." technical .!! 
~ information at a ~ 

~ strategic level. Q 

Figure 2: Example DMS framework with example contents 
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systems, which could affect or be affected by the DMS. These are: 
• Contextual variables - internal issues, for example, what stage are you at in the 

ELC (Engineering Life Cycle) and what impact does this have? 
• Environmental variables- external influences, for example legislation and health 

and safety. 
• Organisational culture, issues such as: Power distance - structure and 

empowerment; Risk - how much risk are the agents and the organisation willing 
to take? What impacts are there on the risk management system? Is it possible to 
take too much or too little risk?; Regimentation - what is mandated? How are 
things 'usually done'? What is standard practice for the organisation?; 
Collaboration - individual work vs. collaborative work; Level of decision-
making (DM) - Strategic, tactical or operational. 

This framework will be matured as the research continues and will be reported in 
more detail in the future. 

5 Conclusion 
Across all domains there is an exponential growth in the complexity of a range of 
long-life systems that comprise our industrialised society. We need a step-change in 
knowledge of how to design, integrate, operate and evolve systems a) that are not 
fully understood by all stakeholders b) whose behaviour may not be fully predictable 
and c) which function in an environment which cannot always be controlled. 
Complexity is an inherent feature of these systems and is characterized by: 

• A (usually large) number of (usually strongly) interacting individual components 
of the system, and (probably) evolving interaction between the system and its 
environment, and; 

• The requirement for the system to adapt to change in a way that does not have 
adverse effects on the system's usefulness, nor its ability to operate within a 
defined envelope of appropriate measurable parameters. 

Although provider companies have in-depth expertise and knowledge about 
characteristics and behaviour of individual system building-block components, there 
is a lack of understanding of the multiple, non-linear connections and dependencies 
among components - and of the way that they may self-organise, or co-evolve within 
a constantly changing environment over its lifecycle. The response of the complex 
system, therefore, cannot be adequately planned, understood, nor anticipated. 
Understanding these issues is an incremental process. Developing tools and 
approaches to aid decision making to ensure the integration of hierarchies of 
components, sub-systems etc. and to at least allow the properties of a complex 
System of System (SoS) to be bounded, would be a valuable first step. 

The end goal for this research is described as being able to identify key decision 
points and the appropriate configuration of DMS capable of delivering and servicing 
complex long-life systems, which must function with a high degree of uncertainty in 
the system operating space. The DMS must cope with: 

• The containment of undesirable emergent behaviour in the delivered system, 
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• Reduced timescales with controlled costs within the delivery system, 

• On-going customer requirement for improved flexibility, interoperability and 
supportability of the system through its life cycle. 

Decision support must be extended beyond rules and guidelines for each and every 
decision. Decision makers must be enabled with the tools and knowledge to make 
them aware of the likelihood of emergent behaviour of the systems and help them 
make resilient decisions. Any tools must be flexible enough to cope with the potential 
variety of events and robust enough to withstand the challenge of complexity. 
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The high complexity of modem software systems, described more than twenty years 
ago in the well-know paper by Fred Brooks [Brooks 1986] has become proverbial 
amongst practitioners. While the software engineering community has accepted and 
learned to cope, albeit in a limited way, with what Brooks termed essential 
difficulties, i.e. intractable obstacles due to the nature of software itself, there is a 
consensus that the ultra large-scale systems of the future call for a fundamental 
change in our understanding and practice of software construction [Northrop 2006]. 

In this paper, we present a new approach to software development, based on the 
idea of evolutionary engineering [Bar-Yam 2002, 2003] and describe a concrete 
platform facilitating its implementation. First we outline the essential high-level 
features of our proposal - a live, multi-paradigm, knowledge-driven, distributed 
network of operating environments where programmers and users interact within the 
same environment on a large scale. Next we describe the distributed memory 
architecture at the foundation of the platform - a generalized hypergraph data 
structure with a universal representation schema and discuss some of the low and 
high-level evolutionary dynamics based on it. Finally, we illustrate some social 
ramifications should such a platform be adopted. 

2 Evolving Software 
In recent years parallels between the living world and software programs have 
become recurrent. However, the practice of software development remains the fruit of 
historical accidents, largely untouched since the early foundational days of the field, 
when the theoretical focus was chiefly on algorithmic efficiency and the practice of 



artifact construction inspired by industrial engineering processes that mandate a 
substantial amount of forethought due to the prohibitive costs of design flaws. 
Attacking the complexity of large projects through divide-and-conquer methods such 
as abstraction and modularity is the modus operandi of the engineering community. 
Even when inspired from living systems, researchers usually focus on defining the 
proper abstractions and modularization boundaries [Gabriel 2006, Imbusch 2005, 
Fleissner 2006]. This is only natural since engineering tasks are tackled top-down, 
starting from the problem and sub-dividing it into simpler problems. Unfortunately, 
the strategy does not scale as argued extensively in [Bar-Yam 2002]. Software 
systems suffer from the rigidity of their abstractions and from the unpredictable, non-
linear interactions between their modularized components. What can be done? 

When faced with the task of creating highly complex systems where top-down 
decomposition is not possible, one realizes a basic contradiction: emergent behavior 
is by definition unpredictable and therefore contrary to the engineering mandate of 
building systems with well-defined functions. 

How does one achieve goal-directed emergence? The answer is through biological 
evolution. Classical engineering achieved its success by turning a descriptive theory 
about the world (physics) into a prescriptive tool. Similarly, we expect the theory of 
evolution to yield successful emergent systems when applied in a prescriptive 
engineering context. 

Goal-directed evolution presupposes a fitness function, a way to measure the 
relative merits of organisms. It has been successfully applied at a low-resolution 
scale, where the fitness function is some easily computable numerical quantity, in the 
case of genetic algorithms. However, evolving large end-user programs from bit 
strings would be clearly impractical. At the opposite spectrum we have a market-
based ecosystem of software programs, each grown by following a classical 
engineering lifecycle. There the fitness function is defined by collective human 
feedback and the process works, but with significant shortcomings: first, there must 
be an actual market for a particular application domain (frequently not the case for 
highly specialized, commissioned projects); second, the evolutionary time-scale is 
large (actually a function of the complexity of the software); third, the granularity is 
too coarse (we frequently witness the disappearance of high-quality features when the 
whole program loses the market battle). 

A more promising approach to software evolution would frame it as a middle 
ground, between the above two extremes, and within software's natural habitat: the 
cognitive landscape of human knowledge, interaction and information exchange. In 
other words, the right scale of evolutionary units is the one at which human cognition 
operates, the level of abstraction permitted by current technology and where entities 
can be recombined in a meaningful way. This could mean a single programming unit 
such as a data type or a procedure, or a piece of data upon which behavior is based in 
a clearly recognizable way. It is primarily humans who make up the environment 
where computer programs evolve and therefore all forms of human participation, 
from the hard-core programmer to the neophyte end-user, should be woven together 
into the same computing medium. 

The sharing of the same interactive medium between consumers and producers of 
software is a key point if feedback must operate at fine granularity. Programs are 
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usually conceived as standalone executable files compiled out of source code 
representation in some high-level language. The abstract models present in the source 
code are lost during the compilation process and much engineering effort is spent in 
categorizing software behavioral decisions into design time, compile time, 
deployment time, and run time. However, alternative models where the compile time 
vs. run-time distinction is blurred have emerged over the years, the most notable 
perhaps being one of the first object-oriented languages Smalltalk [Goldberg 1993] 
and its modem reincarnation Squeak [Squeak]. Another prominent example is the 
Self environment [Ungar 1987]. Those systems are termed "live" systems because 
they are entirely made up of persistent live objects, completely exposed and 
modifiable by the user in the very form in which they were originally created. Our 
platform falls in the category of live systems, but with several essential differences. 

First, we avoid tying the programming task to any meta-model, programming 
paradigm or language. Rationale: programmers with diverse backgrounds should be 
able to participate; software problems yield themselves better to one paradigm or 
another; diversity is good. 

Second, in order for fine grained software artifacts to replicate, diversify, be 
selected for or against, the platform is distributed in nature, yielding a decentralized 
network of such live systems. 

Third, knowledge representation capabilities are natively incorporated for the 
following main reason. In classical monolithic systems, the gluing of components is 
to a large extent based on the programmer's hidden intent behind each part 
(including, but not limited to the so called "implementation details" that software 
designers try to make irrelevant). In an evolutionary system where much variation 
and recombination of sub-components is common and where, in addition, such 
variation is to be primarily induced by contextual particularities of the environment, 
semantic metadata about both artifacts and environment is of essence for 
management features such as compatibility/applicability checks, exception handling 
and the like. 

Finally, we note that human cognition is capable of operating at different 
resolution scales, depending on context. Therefore, the units of evolution should span 
different organization levels as well. A crucial component of the platform, allowing it 
to meet all of the above requirements, is a highly flexible, structured, distributed 
memory model which we now describe. 

3 HyperGrapb Structured Memory Domain 
The memory model is based on the most fundamental principle of organization -
aggregating two or more entities. In formal terms, it is a generalized hypergraph. A 
hypergraph is a graph where edges may point to more than two nodes. The 
generalization further allows edges to point to other edges. Edges and nodes are thus 
unified into the single notion of a hypergraph atom where each atom has an arity - the 
number of atoms it points to - which is a number ~ O. An atom with arity 0 is called a 
node while an atom with arity > 0 is called a link. The atoms a link points to are 
called its target set. This structure was invented and proposed as a cognitive model 
for artificial general intelligence by Ben Goerztel [Goerztel 2006]. In addition, atoms 
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are typed and carry a value as a payload. However, the connection of an atom with 
the rest of hypergraph is independent of its type and value. The type system itself is 
embedded in the hypergraph structure and it is completely open and able to 
accommodate virtually all computer languages. Each type is also a hypergraph atom 
that is typed in tum. Types of types are called type constructors. The system is 
bootstrapped with a set predefined types and type constructors from which other 
types are built and evolved. The whole storage model is open and it is based on the 
following organizational schema: 

Atom ---> Type Value TargetSet 
TargetSet ---> Targetl Target2 . . . TargetN 
Type ---> Atom 
Value ---> Partl Part2 ... 
Value ---> Raw Data 

Each element in the above grammar except RawData, which is simply a sequence of 
bytes, is a UUID (Universally Unique Identifier). This ensures a globally unique 
identity of all hypergraph elements and provides an universal addressing schema, 
thereby allowing the memory to be distributed into a decentralized network of local 
environments. 

By convention, atoms are mutable while their values are not. This means that an 
atom can have its value replaced, or its target set modified while still preserving its 
identity and therefore the network structure of the hypergraph. There's no preset 
level of granularity for hypergraph atoms. Uniformity of the data representation 
schema has proven of essence in many systems, and we stick to that principle. Atoms 
range from simply-valued (e.g. strings, numbers) to complex records, self-contained 
user interface components, logical terms (e.g. represented as links between sub-
terms), any kind of executable (in source or compiled form) or documentation 
resource l . Therefore, all those familiar software artifacts share the same 
representation medium and can therefore freely refer to each other opening the door 
for arbitrary layers and levels of organization. For instance, semantic information 
about executable entities is readily available to a run-time environment and 
interpreted to enforce constraints and manage dependencies. 

In the following section, we illustrate how the hypergraph memory domain 
foundation is used to implement an evolutionary engineering software platform. 

4 Dynamics of Evolutionary Software Construction 
4.1 Overview 
The platform is based on the idea of a large number of interconnected operating 
environments, which we call niches, linking together end users and developers within 
a single computational medium. A niche is bound to a single hypergraph instance. 
The environment is bootstrapped as a standard application based on the current user's 

1 It is not hard to imagine how all those examples can be represented with the general 
representation schema above. We omit such details for brevity. 
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configuration (essentially from where the user left of during the last run). Each 
instance is connected to other instances so that hypergraph atoms can be shared, 
replicated or distributed in a peer-to-peer fashion. Clusters of hypergraphs may exist 
within a single organization, or span geographic locations and serve as a collaborative 
medium for teams and programmers. We expect the topology of the niche network to 
resemble a scaled-down version of the topology of the internet. 

The units of evolution are atoms. It is atoms that get replicated, vary and are 
selected for or against. Because an atom is a handle to an entity at any level of 
organization, the granularity of the elements of evolution is not mandated by the 
platform. Instead, it is contextual for a specific application, development task and/or 
organization. Selective pressures operate in two ways: 

1. On atoms, where participants decide what atoms to keep in their niche. For 
instance, programmers decide what software components they need while end-users 
decide on "end-user" software artifacts, or the system itself decides to eliminate 
atoms that are no longer in use. 

2. On an atoms' informational import (i.e. its type, value and target set). Recall 
that atoms always keep their identity while their informational import can vary 
between niches. This mechanism is important for establishing a boundary between a 
reference (the atom UUID) and its exact interpretation which is allowed to vary while 
still preserving referential integrity. 

A user may be connected to such a cluster solely for consumption purposes without 
ever participating in variation of the population of atoms as created by programmers. 
On the other hand, more sophisticated users may induce variation by modifying data 
that drives behavior, for example by changing a significant "configuration setting" or 
encoding expert knowledge in some declarative logical form or creating a macro 
command. 

4.2 Low-Level Dynamics 
We now describe a few low-level scenarios of atom replication and vanatlOn. 
Assume a peer-to-peer communication layer between two given niches Nand M and 
suppose that N promotes/publishes/offers an atom to M. This publishing can be 
triggered manually or automatically through some preset negotiation protocol, or 
simply be part of a larger update process. The atom may encompass functionality at 
any level - from the background color of a window to a word processing program. If 
the atom doesn't exist at M, it is simply transmitted and it's up to N to keep it or 
remove it at a later time. If the atom exists at M and it has the same informational 
import, nothing is done. If, on the other hand, the atom exists at M and has a different 
informational import, it is updated recursively by updating its type and target set. The 
old version is preserved under different UUID and tagged (via a hypergraph link) as 
being overwritten by this particular update. Thus an update can be completely 
reversed in the future - selected against. 

What kind of variation of a given atom may we expected? The simplest case is 
when its value has changed. A more elaborate one is a type change since it may 
result in a different run-time instance of the atom. In this case approaches such as 
[Evans 1999] can be adopted. But atoms in the target set can change as well. For 
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example, one of the mechanism responsible for the efficiency of the evolutionary 
process in the living world is sexual reproduction. This gives rise to generational 
variation through recombination (crossover) of existing characteristics. Hypergraph 
atoms exhibit such phenomena by mutating their target sets. For instance, suppose an 
atom A has type T, value V and a target set consisting of atoms X, Y and Z: 

A -+ T, V, X, Y, Z 

For concreteness, one may imagine that A is a software module and X, Y and Z are 
sub-modules. Suppose further that at a certain point in time A is identical across a 
topology of three niches N], N2 and N3 where NJ is connected to both N2 and N3, but 
N2 and N3 are not connected. Now, eventually Y turns into Y' at N2 and Z turns into 
Z' at N3. The niche NJ can then acquire both changes sequentially thus recombining 
the two versions - a crossover effect. It may tum out that when both changes are 
combined, this has an adverse overall effect on the function of A in which case one, 
one or both updates can be rolled back. If, on the other hand, all goes well, N J may 
redistribute its aggregated version back to N2 and N3 which may in tum reverse the 
change because it fails within their context, or propagate it further. 

The nature of the representation in the above example was essential for the 
possibility of crossover variation. For this reason, programmers are encouraged, but 
not forced, to create representations that rely on the hypergraph structure. Such 
representations may evolve, of course. 

Note that those scenarios don't assume human communication. When a target 
niche is updating an existing functionality and it has a battery of automated tests to 
ensure quality and/or measure improvement, no human involvement is necessary. 

4.3 High-Level Dynamics 
At a larger scale, we note two important aspects of evolutionary dynamics. The first 
is stability vs. chaos. Given highly structured representations where dependencies are 
explicit in the graph structure, the system can be very helpful in tracking and 
resolving them. However, unpredictable inconsistencies can occur due to atom inter-
dependencies that are not explicitly represented in the graph. And here lies one of the 
main difficulties: many failures in software are latent, subtle and the result of side-
effects. This leads to (what is perceived as) chaotic behavior. The proposed platform 
does not attempt to solve the complexity problem by encoding every possible 
dependency between entities in a graph structure. Rather, it makes the process of 
parallel exploration of possibilities more efficient, in part by allowing for failure, 
experimentation and improvement at a fine-granular level. In this context, various 
niches assume roles similar to current development/deployment processes. For 
instance, in a missionlbusiness critical environment, a "staging" niche would adopt a 
change before it is broadcast to "production" niches while a cluster of development 
niches will be highly fluctuating. A complementary aspect to niche role partitioning 
are atom update negotiation protocols which range from automatic synchronization to 
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controlled, manually triggered requests. Stability then emerges at the local level out 
of social pressures (usage, tolerance) as well as computational resources constraints. 

The second aspect is uniformization vs. diversification. Uniformization is the result 
of such pressures as predictability - one wants to know what to expect from a piece of 
software, common understanding - one wants to be able to share information such as 
training materials and costs reduction - cheaper to reuse something existing than 
building anew. Diversification is the result of adaptation to a context of use where 
context includes thing like business processes, individual preference, computational 
resources available. Uniformization and diversification occur at all levels of 
organization. For example, there's little reason for different versions of a sorting 
routine while there are good reasons for different implementations of an abstract data 
type (such as a key-value lookup structure) that perform better depending on the 
nature of the data. Similarly, there's little reason for the implementation of a pull-
down menu component to vary from system to system, but there is good reason to 
vary the implementation of a command navigation system in the context of users with 
disabilities. 

5 Social Implications 
The long-term vision behind our effort is a large network of niches connecting 
participants with any conceivable software needs and technical knowledge. A 
sweeping fine-grained decentralization of the production of software artifacts would 
certainly alter its economic dynamics. The current open-source model of a large body 
of freely available software with a service economy around it may well serve as a 
precursor, albeit a mediocre one. Open-source software is still centralized and it 
follows standard engineering practices. In addition, code ownership remains the de 
facto reality. By contrast, our proposal entails the eventual abundance of 
interconnected fine-grained information artifacts with collective ownership. 

The live aspect of the platform encourages more active participation from traditional 
end-users. Enforced or emergent variability within the software artifact space breaks 
the traditional information sharing about and trust in the predictability of immutable 
monolithic programs with identical behavior everywhere. One consequence could be 
the birth of localized services or "artisans" offering technical expertise in niche 
contextualization and absorbing the adverse effects of failed evolutionary 
experiments. 

As a more down to earth example, consider the widespread software business model 
where a company licenses a product and offers customization services. The internal 
organization of such companies usually follows a pattern where the product is 
developed by a core team of highly skilled engineers with satellite teams providing 
solutions in the form of a set of services and customizations to different clients. This 
organization can be depicted in Figure I. The product team interacts with several 
solutions teams and each solution team interacts with several customers in what 
amounts to a strict hierarchical organization. All customers share the same core 
product capabilities. Customizations are possible only when variability has been 
explicitly introduced upfront. When this is not the case, customer demands drive a 

146 



core future to be detached as customizable. In fact, there's pressure for the core 
product to incorporate enough variability so as to meet everybody's needs, thereby 
augmenting its complexity and creating the bottleneck so characteristic of other 
hierarchical structures. By contrast, in an evolutionary platform there is no core 
product at all (see Figure 2). The company instead maintains a cluster of niches, each 
loosely adapted to particular customers. Solution teams form a decentralized 
collaboration network where each manages a niche tailored towards specific business 
needs. The variety of the company's business environment is much better represented 
in the new arrangement as suggested by the Law of Requisite Variety [Ashby 1956). 

Figure 1 Figure 2 

6 Final Remarks 
In this work, our main assumption has been that the key to mastering the complexity 
of the software systems of the future is not the "right" set of abstractions, for it is their 
endless deluge that generates the complexity in the first place. Rather, it is in the 
process of goal-directed emergence as enacted through evolutionary engineering. Our 
ongoing work on the hypergraph memory domain and run-time environment for the 
platform (both free and open-source) can be found at http://www.kobrix.com. 
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1. Introduction 
Algae are the principal primary producers of aquatic ecosystems. Modem chemical 
residues from water pollution (such as pesticides in surface and ground waters, 
antibiotics, chemical substances of military use, heavy metals, oil, oil products, etc.) are 
a challenge to survival of microagal populations. Growth of many species was 
restricted even by micromolar concentrations of such xenobiotics. 

Laboratory populations of micro algae are widely used as sensitive test object for the 
evaluation of the phytotoxicity of chemicals and wastewater streams. Cell populations 
of micro algae are complex systems with resistant and sensitive cells. When pollutants 
are added to a dense microalgal culture, the cell density will be reduced after a few days 
due to the death of sensitive cells. However, after further incubations, the culture will 
sometimes increase in density again due to the growth of cell variant, which is resistant 
to the contaminants. Numerous studies have shown that heavy metals are extremely 
toxic to microalgae in both laboratory cultures and natural populations. It has also been 
reported that microalgae from contaminated sites appear to have adapted to high metal 
concentrations whereas algae from unpolluted sites remain sensitive [Knauer 1999]. 



Rapid adaptation of microalgae to environmental changes resulting from water 
pollution has been demonstrated recently [Costas 2001, L6pez-Rodas 2001]. 
Unfortunately, the evolution of micro algae subsequent to a catastrophic environmental 
change is insufficiently understood. Little is known about the mechanisms allowing 
algal adaptation to such extreme conditions. Within limits, organisms may survive in 
chemically-stressed environments as a result of two different processes: physiological 
adaptation (acclimation), usually resulting from modifications of gene expression; and, 
adaptation by natural selection if mutations provide the appropriate genetic variability 
[Belfiore 2001]. Because physiological adaptation is bounded by the types of 
conditions commonly encountered by organisms, it remains for genetic adaptation to 
overcome extreme environmental conditions [Hoffmann 1991]. 

The changes of population structure of freshwater green alga Scenedesmus 
quadricauda and marine diatom alga Thalassiosira weissjlogii were studied under 
different regimens of heavy metal (chromium) exposure. Adaptation of the algae to 
growth and survival in an extreme environment was analysed by using an experimental 
model. The main aims of this work were: (1) to estimate the effect of chromium 
contamination on microalgal populations under different regimens of chromium 
addition; (2) to determine the nature and origin of chromium-resistant cells that arise; 
(3) to estimate the mutation rate from chromium sensitivity to chromium resistance. 

2. Materials and Methods 
The culture of green chlorococcal alga Scenedesmus qudricauda (Turp.) Breb. (strain 
S-3) was grown non-axenic ally in Uspenskii medium N1 (composition, gIl: 0.025 
KN03, 0.025 MgS04, 0.1 KH2P04, 0.025 Ca(N03)2, 0.0345 K2C03,0.002 Fez(S04)3; pH 
7.0-7.3) in conical flasks in luminostat under periodic illumination (12:12 h). The 
culture of diatom alga Thalassiosira weissjlogii (Grunow) Fryxell et Hastle was grown 
non-axenically in Goldberg-Kabanova medium (composition, gil: 0.2024 KN03, 
0.007105 Na2HP04; mg/l: 0.1979 MnCb, 0.2379 CoCb, 0.2703 FeCI3). 

Toxicity test: effect of chromium on population growth. We investigated the toxic 
action of potassium dichromate (K2Cr207, PD), well known as standart toxicant [Wang 
1997], in view of maintenance of a constant dose of chromium per one cell during 
experiments in order to pass from concentration dependence to dose dependence, The 
laboratory algal cultures were exposed to increasing concentrations of the toxicant in 
the long-term experiments in three replicates. The experiments were performed both 
with single chromium addition at the start of experiment and with multiple additions 
during exposure time. The periods between toxicant additions approximately 
corresponded to doubling time for algae so that the dose of the toxicant per one cell was 
particularly the same as that at the initial day of experiment. The effect of chromium on 
S. qudricauda and T. weissjlogii was estimated by calculating total cell number, a share 
of alive, dead and dying cells during exposure time (28 and 21 days, respectively). 
Cells were counted with a Goryaev's hemocytometer and Nazhotta cytometer under a 
light microscope. Number of alive, dead and dying dead cells was counted with 
luminescent microscope Axioskop 2FS (Carl Zeiss, Germany). 

For experiment with S. quadricauda we used concentration of chromium: 0.001; 
0.01; 0.1; 1; 5 and 10 mgIL. Concentration of toxicant in a stock solution was 1 mglmL 
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(counting per chromium). Initial number of cells after inoculation was 50 000 cells/mL. 
After that cells grew within 5 days on reaching of a logarithmic growth phase by 
culture. Number of cells at this moment was 28-30.104 cells/mL. Experiment was 
performed in conic flasks in volume of 100 mL, volume of culture in which was 50 mL. 
We added toxicant to cultures at 0 day of experiment (single addition) and further at 3, 
6, 10 and 17 day until necessary concentrations (multiple additions). Frequency of 
toxicant addition was defined by growth rate of cultures and rate of cell division. 

For experiment with T. weissflogii we used concentration of chromium: 0.001; 0.01; 
0.1 and 1 mglL. The initial number of cells taken for experimemt was 5 000 cells/mL. 
Experiment was performed in small phials with 10 mL of culture. Chromium was 
introduced into growth medium at 0 day of experiment until necessary concentrations 
(single addition). Further, in one series of culture we did not add the toxicant 
(conditionally named by us as "control") and in another series chromium was added at 
3,6, 10 and 13 day (multiple additions). 

Average growth rate of both cultures (without chromium) was 0.33 division/day. 
Toxicant was introduced into the growth mediums proportionally to an increase of cell 
number of S. quadricauda and T. weissflogii so that the toxicant quantity per one cell 
( dose) was kept constant. 

Fluctuation test: analysis of transfonnation from chromium sensitivity to chromium 
resistance. A modified Luria-De1briick fluctuation analysis was performed as 
previously described [Lopez-Rodas 2001] in liquid medium to distinguish resistant 
cells that had originated as a result of random spontaneous pre-selective mutations 
(prior to chromium exposure) from those arising through acquired post-selective 
adaptation (during the exposure to chromium). 

Two different sets of experimental cultures were prepared with both species of 
algae. The first set of experiments was performed in 52 (S. quadricauda) and 49 (T. 
weissflogii) parallel culture flasks with cell number No = 200 cells and Nt = 2.8.104 (S. 
quadricauda), Nt = 105 (T. weissflogii) cells; and treated with 2.5 (S. quadricauda), 1.5 
(T. weissflogii) mglL chromium after reaching Nt. For the second set of experiments, 30 
aliquots of 104 (S. quadricauda) and lOS (T. weissflogii) cells from the same parental 
populations were separately transferred to flasks containing fresh liquid medium with 
2.5 (S. quadricauda) and 1.5 (T. weissflogii) mglL chromium. Cultures were observed 
for approximately 14 days, and the resistant cells in each culture (both in set 1 and set 
2) were counted. The cell count was performed by at least two independent observers. 

If resistant cells arise by rare spontaneous mutations, each parallel culture in set 1 
would have a given probability of generating resistant variants with each cell division. 
Then, inter-flask variation would not be consistent with the Poisson model. The number 
of cells from each flask in set 2 would show variation due only to random sampling; 
variation from flask to flask would be consistent with the Poisson model. If there is rare 
spontaneous mutation, the variance/mean ratiosetl is usually many times higher than the 
variance/mean ratioset2• The method allows estimation of the rate of spontaneous 
mutation in algae and the rate of appearance of resistant cells. The proportion of set 1 
cultures showing no mutant cells after chromium exposure (Po estimator) was the 
parameter used to calculate the mutation rate (Il). The Po estimator [Luria 1943] is 
defined as follows: Po = e·p (Nt-No), where Po is the proportion of cultures showing no 
resistant cells. Therefore, Il was calculated as: Il = -LogePo / (Nt -No). 
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3. Results and Discussion 
We tried to develope an experimental model of toxic effect using constant toxicant dose 
per cell during the experiments. 

The presented data show (Fig. 1), that at presence of high chromium concentration 
(1 mgIL and more) the total cell of both species slightly varied or decreased, since the 
moment of the first chromium addition and down to the end of experiment in 
comparison with the initial cell number and drastically decreased in comparison wich 
control without chromium. At toxic influence of such intensity, the dose of chromium 
per one cell remains practically constant during all term of experiment. Therefore with 
reference to high concentration of substances it is possible to speak about concurrence 
of concepts "concentration" and "dose" even if we add the toxicant one time at the 
beginning of the experiment. 
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Figure 1. Changes of the 
total cell number of S. 
quadricauda under 
chromium exposure 
(multiple chromium 
additions ). 

At medium 
chromium 
concentration of 0.1 
mglL number of cells 
increased, but growth 

rate of culture has been slowed down in comparison with control one. At low chromium 
concentration of 0.001 and 0.01 mglL growth rate of S. quadricauda corresponded to 
the control parameters down to 10 day of experiment, then growth rate have decreased, 
however by the end of experiment number of cells at presence of these concentrations 
of chromium has appeared close to the control. Thus, the most sensitive stage at 
repeated additions of chromium in medium is, apparently, second half of logarithmic 
growth phase (10-14 day of experiment). As concentration of chromium of 0.001 and 
0.01 mglL are low enough, it is not likely, that they provoke selection of resistant cells. 
In this case chromium could cause "synchronization" (full or partial) of cultures 
seaweed by delay or arrest of cellular division at 7-10 day of experiment. After that 
there was an acclimation of algal cells, and cellular division also was synchronously 
restored. Thus cultures have reached "control" levels of number of cells. 

Thus, at low chromium concentrations of 0.001 and 0.01 mglL during the 
experiments with the periodical additions growth rate of S. quadricauda was close to 
the control (without chromium) although the total final concentrations were 3.3-3.4 
times more than initial ones. 
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The final cell number of T. weissflogii was slightly decreased in the presence of 
0.001 mgIL chromium and was reliably smaller in the presence of 0.01; 0.1 and 1 mg/L 
chromium during the multiple intoxication as compared with the single one (Fig. 2). 
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Figure 3. Changes of share 
of alive cell of T. weissflogii 
under chromium exposure: 
single addition at the start of 
experiment and multiple (*) 
additions at 0, 3, 6, 10 and 13 
day of experiment. 

The share of dead and dying cells was slightly higher at the multiple intoxication 
than at the single one (Fig. 3) during experiments with both species (data for S. 
quadricauda are not presented). 

We have determined earlier [Prokhotskaya 2006] the number of resistant cells 
within the heterogeneous S. quadricauda population under triple chromium 3.5 mglL 
intoxication during 90 days. In spite of the long-term exposition with the toxicant some 
algal cells remained alive. Their number was 5-6 % of initial population density. 

In the present study we have analysed the spontaneous occurrence of chromium-
resistant cells in cultures of chromium-sensitive (wild-tipe) cells of S. quadricauda and 
T. weissflogii. Modified Luria-Delbriick fluctuation analysis with algae as experimental 
organisms [Luria 1943; L6pez-Rodas 2001] was used to distinguish between resistant 
cells arising by rare spontaneous pre-adaptive mutations occurring randomly during 
replication of organisms prior to the incorporation of chromium and chromium resistant 
cells arising through post-selective adaptation in response to chromium and, 
subsequently, to estimate the rate of occurrence of resistant cells. 

On the base of hypothesis that adaptation to chromium occurs by selection on 
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spontaneous mutations, the controls should have had a low variance-to-mean ratio 
consistent with the error in sampling resistants from one large culture, whereas the 
fluctuation test cultures should have had a high variance-to-mean ratio. Spontaneous 
mutation thus predicts a high variance-to-mean ratio in the number of resistant cells 
among cultures, whereas resistance acquired in response to exposure predicts a 
variance-to-mean ratio that is approximately 1, as expected from the Poisson 
distribution. 

When algal cultures were exposed to 2.5 mglL (S. quadricauda) and 1.5 mglL 
chromium (T. weissflogii), growth of the algae was inhibited. Chromium killed the 
wild-type sensitive cells but allowed the growth of resistant cells. Every experimental 
culture of both sets 1 and 2 apparently collapsed following chromium exposure. In set 
1, only some cultures recovered after 14 day of chromium exposure, apparently due to 
the growth of chromium resistant cells (recovered cultures increased their cell number 
compared to the control level). A high fluctuation in set 1 (in contrast with the scant 
variation in set 2) was found in both species (Table 1,2), which indicated that the high 
variance found in set 1 cultures should be due to processes other than sampling error. 

Table 1. Fluctuation analysis of resistant variants in Scenedesmus quadricauda 

Set 1 Set 2 

No. of replicate cultures 52 30 
No. of cultures containing the following no. of resistant cells/mL: 
o 45 0 
0-2x104 2 0 
~l~-l~ 5 ~ 
>l~ 0 0 
Variance/mean (of the no. of resistant cells per replicate) 61.5 3.2 
1.1 (mutants per cell division) 5.2 x 10-6 

Table 2. Fluctuation analysis of resistant variants in Thalassiosira weissflogii 

Set 1 

No. of replicate cultures 49 
No. of cultures containing the following no. of resistant cells/mL: 
o 36 
l-l300 4 
l300-5000 9 
>5000 o 

Set 2 

30 

o 
o 

30 
o 

Variance/mean (of the no. of resistant cells per replicate) 
11 (mutants per cell division) 

16.8 0.95 
3.1 x 10-6 

The data from a fluctuation test were used to calculate a spontaneous mutation rate 
per cell division using the proportion of cell cultures that exhibit no mutants at all 
[Luria 1943]. The estimated mutation rates (11) using the Po estimator were 5.2.10-6 and 
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3.1.10-6 mutants per cell division in S. quadricauda and T. weissflogii, respectively. 
The data of this study correspond to the results of other work carried out on 

understanding algal adaptation to anthropogenic chemical water pollutants [Costas 
2001; Lopez-Rodas 2001; Baos 2002; Garcia-Villada 2002; Flores-Moya 2005]. The 
mutation rate from 3.1.10-6 to 5.2.10-6 mutants per cell per generation was the same 
order (or one order lower and higher) of magnitude found for the resistance to several 
pollutants in other cyanobacterial and microalgal species. The presence of resistant 
cells in the populations of algae is regulated by the recurrent appearance of mutants and 
their elimination by selection, yielding an equilibrium frequency of 3-5 resistant cells 
per 106 cell divisions. This fraction of resistant mutants is presumably enough to assure 
the adaptation of algal populations to catastrophic water contamination, since the algal 
natural populations are composed of countless cells. Nevertheless, mutations usually 
imply an energetic cost that may affect the survival of adapting populations [Coustau 
2000], as it has been demonstrated by a decreased growth rate in resistant cells 
compared to growth rate in sensitive ones [Flores-Moya 2005; Lopez-Rodas 2007]. 
Thus, resistant cells could develop in freshwater ecosystems polluted with the toxicants, 
but their contribution to primary production will be significantly lower than that 
occurring in pristine ecosystems with sensitive cells. 

4. Conclusion 
The present study is a simple model of algal adaptation to stressful environments. Our 
results suggest that rare preselective mutants can be sufficient to ensure the adaptation 
of eukaryotic algae to extreme natural habitats. These values are low (-10-6 mutants per 
cell division). Such mutation rate coupled with rapid growth rates, are presumably 
enough to ensure the adaptation of microalgae to water contamination. The resistant 
cells arise randomly by rare spontaneous mutation during replication of cells prior to 
the addition of the contaminant. Resistant mutants are maintained in the absence of 
contaminants as the result of balance between new resistant cells arising from 
spontaneous mutation and resistant cells eliminated by natural selection, so that about 
3-5 chromium-resistant mutants per million cells are present in the absence of 
chromium. Within limits micro algal species should survive in polluted environments as 
a result of physiological adaptation. With increasing concentrations of contaminants, 
however, physiological adaptation is not enough, but the genetic variability of natural 
populations could assure the survival of at least some genotypes [Mettler 1988]. 
Genetic variability in natural populations is the most important guarantee of surviving 
most environmental changes [Lewontin 1974; Mettler 1988]. Some populations are 
being exposed to new xenobiotics for the first time. Sudden toxic spills of residual 
materials can be lethal to microalgae. Rare spontaneous pre-adaptive mutation is 
enough to ensure the survival of microalgal populations in contaminated environments 
when the population size is large enough. Adaptation of algal populations to modem 
pollution-derived environmental hazards seems to be the result of a rare instantaneous 
events and the result of resistant cells selection within heterogeneous population. 

155 



References 
Baos, R., GarClia-Villada, L., Agrelo, M., Lopez-Rodas, V., Hiraldo, F., & Costas, E., 2002, 

Short-term adaptation of microalgae in highly stressful environments: an experimental model 
analysing the resistance of Scenedesmus intermedius (Chlorophyceae) to the heavy metals 
mixture from the Aznalcollar mine spill, Eur. 1. Phyco/., 37, 593. 

Belfiore, N. M., & Anderson, S. L., 2001, Effects of contaminants on genetic patterns in aquatic 
organisms: a review, Mutat. Res., 489, 97. 

Costas, E., Carrillo, E., Ferrero, L. M., Agrelo, M., Garcia-Villada, L., Juste, J., & Lopez-Rodas, 
V., 2001, Mutation of algae from sensitivity to resistance against environmental selective 
agents: the ecological genetics of Dictyosphaerium chlorelloides (Chlorophyceae) under lethal 
doses of 3-(3,4-dichlorophenyl)-l, I-dimethylurea herbicide, Phycologia, 40, 391. 

Coustau, c., Chevillon, c., & Ffrench-Constant, R., 2000, Resistance to xenobiotics and 
parasites: can we count the cost?, Trends Ecol. Evo/., 15, 378. 

Flores-Moya, A, Costas, E., Bafiares-Espafia, E., Garcfa-Villada, L., Altamirano, M., & Lopez-
Rodas, V., 2005, Adaptation of Spirogyra insignis (Chlorophyta) to an extreme natural 
environment (sulphureous waters) through preselective mutations, New Phytol., 165, 655. 

Garcfa-Villada, L., Lopez-Rodas, V., Bafiares-Espafia, E., Flores-Moya, A, Agrelo, M., Martin-
Otero, L., & Costas, E., 2002, Evolution of microalgae in highly stressing environments: an 
experimental model analyzing the rapid adaptation of Dictyosphaerium chlorelloides 
(Chlorophyceae) from sensitivity to resistance against 2,4,6-trinitrotoluene by rare 
preselective mutations, 1. Phycol, 38, 1074. 

Hoffmann, A A, & Parsons, P. A, 1991, Evolutionary Genetics and Environmental Stress, 
Oxford University Press Inc. (New York). 

Knauer, K., Behra, R., & Hemond, H., 1999, Toxicity of inorganic and methylated arsenic to 
algal communities from lakes along an arsenic contamination gradient, Aquat. Toxicol., 46, 
221. 

Lewontin, R. C., 1974, The genetic basis of evolutionary change, Columbia University Press, 
(New York). 

Lopez-Rodas, V., Agrelo, M., Carrillo, E., Ferrero, L. M, Larrauri, A, Martin-Otero, L., & 
Costas, E., 2001, Resistance of microalgae to modem water contaminants as the result of rare 
spontaneous mutations, Eur. 1. Phycol., 36, 179. 

Lopez-Rodas, V., Flores-Moya, A, Maneiro, E., Perdigones, N., Marva, F., Garcia, M. E., & 
Costas, E., 2007, Resistance to glyphosate in the cyanobacterium Microcystis aeruginosa as 
result of pre-selective mutations, Evo!. Eco!., 21, 535. 

Luria, S. E., & Delbrtick, M., 1943, Mutations of bacteria from virus sensitivity to virus 
resistance, Genetics, 28, 491. 

Mettler, L. E., Gregg, T., & Schaffer, H. E., 1988, Population Genetics and Evolution, 2nd edn. 
Prentice-Hall, Englewood Cliffs (New Jork). 

Prokhotskaya, V. Yu., Ipatova V. 1., & Dmitrieva, A G., 2006, Intrapopulation Changes of Algae 
under Toxic Exposure, Proc. Int. Con! on Complex Systems 2006, 
http://nccsi.or2:/cvcntsliccs6/vicwpaper.php?id=50. 

Wang, W., 1997, Chromate ion as a reference toxicant for aquatic phytotoxicity tests, Environ. 
Toxico/. Chem., 6, 953. 

156 



Chapter 16 

Modularity and 
Self-Organized Functional 

Architectures in the Brain 
Laxmi Iyer and Ali A. Minai 

University of Cincinnati 
iyer lr@email. uc.ed u 

Ali.Minai@uc.edu 

Simona Doboli and Vincent R. Brown 
Hofstra University 

Simona.Doboli@hofstra.edu 
Vincent.R.Brown@hofstra.edu 

It is generally believed that cognition involves the self-organization of coherent dy-
namic functional networks across several brain regions in response to incoming stimulus 
and internal modulation. These context-dependent networks arise continually from the 
spatiotemporally multi-scale structural substrate of the brain configured by evolution, 
development and previous experience, persisting for 100-200 ms and generating re-
sponses such as imagery, recall and motor action. In the current paper, we show that 
a system of interacting modular attractor networks can use a selective mechanism for 
assembling functional networks from the modular substrate. We use the approach to 
develop a model of idea-generation in the brain. Ideas are modeled as combinations of 
concepts organized in a recurrent network that reflects previous associations between 
them. The dynamics of this network, resulting in the transient co-activation of concept 
groups, is seen as a search through the space of ideas, and attractor dynamics is used 
to "shape" this search. The process is required to encompass both rapid retrieval of 
old ideas in familiar contexts and efficient search for novel ones in unfamiliar situations 
(or during brainstorming). The inclusion of an adaptive modulatory mechanism allows 
the network to balance the competing requirements of exploiting previous learning and 
exploring new possibilities as needed in different contexts. 



1 Introduction 
A consensus is gradually developing that cognition involves the continual self-
organization and dissipation of functional networks across several brain regions 
- especially the neocortex - in response to incoming stimulus and internal mod-
ulation [25, 19, 18, 21, 23, 42, 3, 37]. Each functional network emerges from the 
brain's substrate in response to contextual information, persists while the con-
text applies, and then dissolves back into the substrate to allow a new network 
- or networks - to emerge. 

As pointed out by Doyle and colleagues [8, 7], useful systems are typically 
heterogeneous and specific rather than homogeneous and generic. The configura-
tion of such specific heterogeneity usually requires optimization, but that is not 
feasible in real-time for a complex system like the brain. Instead, such systems 
must work through self-organization arising naturally from the structure and 
dynamics of the system. However, rapid self-organization of functional networks 
is only possible in the brain if it provides the structure and mechanisms that 
facilitate the process - and it does! The cortex is organized into modules called 
cortical columns that group together into larger modules termed hypercolumns 
[28]. Such modularity is a fundamental enabling mechanism for self-organized 
complexity in living systems [38], and provides exactly the sort of flexibility that 
is needed for efficient reconfiguration of functional networks. 

We postulate that five factors combine to produce the emergence of effective, 
flexible, robust and reliable functional networks in the brain. These are: 

1. A modular substrate with sufficient diversity: The underlying network, 
which is configured over the multiple time-scales of evolution, develop-
ment and experiential learning, provides modules with a wide variety of 
functional micro-behaviors. 

2. A dynamic selective process to bind functional structures: This process 
selectively combines an appropriate set of modules so that the correct 
macro-functionality emerges from the interaction of their micro-behaviors 
[4]. 

3. A dynamic modulatory process to control scope and switching: This pro-
cess modulates the excitability of neural units to determine which ones 
participate in the current functional network, thus controlling the effective 
breadth of these networks, and the transition between networks. 

4. An evaluative feedback process: This provides a reinforcement signal back 
to the system so that it can appropriate functional networks can be con-
figured and triggered. 

5. A repertoire of learning processes: These include: a) Self-organization 
of micro-behaviors in modules to provide a good behavioral basis; b) 
Reinforcement-driven Hebbian learning to associate contexts with appro-
priate functional networks; c) Reinforcement-driven Hebbian learning to 
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configure the interactions among modules so that useful functional net-
works become embedded in the substrate through self-organization. 

In order to study these principles in a concrete, albeit much simplified, frame-
work, we consider a model for idea generation in a neural system. 

A major motivation for the development of the model presented here is our 
goal to develop a detailed, neurally plausible model of the process of creative idea 
generation commonly called 'brainstorming'. Brainstorming refers to idea gener-
ation under specific guidelines designed to promote quantity and creativity with 
minimal censorship and criticism [32). Although these guidelines were designed 
for use in groups, individuals can obviously engage in creative idea generation as 
well. In fact the vast majority of laboratory research on brainstorming finds that 
an equal number of solitary brainstormers outperform interactive groups by al-
most a 2 to 1 margin when quantity of ideas is counted [13, 29, 35). Nonetheless 
being exposed to the ideas of others can be stimulating and, under conditions 
designed to reduce social inhibition, groups can match or exceed the perfor-
mance of an equal number of solitary brainstormers, thus closing or eliminating 
the 'group productivity gap' [33, 36). Theoretically groups provide the stimu-
lation necessary to get individuals "out of a rut" by activating less accessible 
categories of ideas and activating atypical sequences of ideas that can be fuel for 
novel conceptual combinations [6, 30). There is accumulating evidence for the 
stimulating effects of the exposure to others' ideas [10, 16, 26) (although see Nijs-
tad et al. [31) for evidence that exposure to other ideas can also have interfering 
effects on brainstorming). Recent models based on brainstorming as activation, 
search, and recall of ideas in associative memory can account for a number of 
these empirical results and have proven fruitful in generating testable hypothe-
sis about a number of important cognitive processes involved in brainstorming, 
including attention, working memory, memory accessibility, and convergent vs. 
divergent thinking [6, 34, 30). One major limitation of these models is the inabil-
ity to account for the important process of conceptual combination in generating 
creative responses. One goal of the model presented here is to provide a neuro-
computational mechanism for the generation of novel conceptual combinations. 
In addition, with recent work on the neuroscience of creativity [22, 24, 15), there 
is the need for more detailed neurally-inspired models of the brainstorming pro-
cess. Prototypes of the model presented here based on the attractor network 
architecture have shown promise in accounting for some of the basic empirical 
brainstorming results in both individuals and groups [5, 14). 

2 Problem Formulation 
We begin by postulating that ideas are combinations of concepts, which are the 
basic representational units in our model. Novel ideas are conceptual combi-
nations whose elements have not been combined in the past, while groups that 
have been formed previously represent familiar ideas. A cognitive system must 
be able to retrieve familiar ideas and to generate novel ones. 
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Ideas always arise - and make sense - within a context, e.g., a task situation. 
Each context - even if it is not completely familiar - tends to elicit a set of 
ideas by association and suppresses others, presumably making the search for 
useful ideas more efficient. Thus, a context, <P, can be seen as a semantic biasing 
mechanism that preferentially implicitly unmasks a subset, IiI>, of ideas from the 
space of all ideas, allowing a search process to explore this subset and "discover" 
good ideas. Since ideas are combinations of concepts, we model this process 
as the selective activation of a context-dependent concept network (CCN) whose 
states represent ideas, and whose dynamics embodies the search process. The 
CCN is a functional network. 

Ideas can be seen more broadly as internal responses of the cognitive sys-
tem, and idea-generation is essentially no different from the generation of motor 
responses, memory recall or mental imagery (indeed, mental images can be re-
garded as ideas too!) It is well known that mental responses fall into two broad 
categories: Automatic and effortful [12]. The former (automatic) are faster, 
stereotypical and fluent, while the latter (effortful) appear to entail some type 
of constructive process or search. It has been proposed that effortful responses 
require the involvement of working memory [2] or global workspace [1], which 
functions essentially as a temporary "hidden layer" facilitating direct linkage 
between stimulus and response. Once the direct linkage is consolidated, the me-
diating process is cut out, leaving behind an automatic response for the future 
[12]. Alternatively, working memory may remain involved in complex, context-
dependent tasks - again as a biasing hidden layer [27, 17, 11]. While these 
abstract formulations clearly capture important elements of the phenomenol-
ogy of response generation, they represent an implicitly teleological view, where 
automatization of response is seen as an end towards which the mechanism of 
learning works. In contrast, we seek a neural system where the emergence of 
novel responses and facilitation of familiar ones both arise naturally from the 
intrinsic dynamics of the system. Embedded in an environment, such a system 
continually creates responses to the information flowing through it - perpet-
ually adjusting its internal constraints to facilitate especially useful responses. 
Behavior, in this view, is not a goal or a purpose of the system, but a property. 

In the case of idea generation, we develop a simple neural model show-
ing how modular organization, selectivity, modulation, evaluative feedback and 
reinforcement-driven adaptation combine to produce an efficient search process 
through the system's natural dynamics. 

3 The Idea Generation Process 
Search is useful only if it is efficient. Exhaustive search, while guaranteed to 
succeed, is typically not an option. Thus, our primary focus is on how the 
search for ideas is shaped and guided by the system's dynamics so that it is as 
broad as necessary and as narrow as possible. We only consider this criterion 
heuristically, and will refine it further in future studies. 

Efficiency in search requires effective use of information. There are three 

160 



Category Layer (G) 

Concept Layer IC) 

000 
00 0 o ---r---- Stlmulus Respoos;;e---r---

Features Features 

Reinforcement 

Figure 1: Architecture of the idea generation model. 

major sources of information available to guide the search for ideas in our model, 
and form the basis of its utility. These are: 

1. Current task or domain context: The search should focus on concepts 
that, in combination, are likely to be relevant to the context at hand. A 
neural system does this by associating context representations with specific 
patterns of module activation, forming functional networks. 

2. Previous experience: The flow of the search should be guided, and its 
extent determined, by the experience of the system in inferring the regu-
larities of its operating environment. The only way for a neural system to 
do this is by embedding such experiential knowledge in its structure and 
dynamical parameters, so that the emergent flow of the system's activity 
is appropriately constrained to productive regions and trajectories in the 
search space. 

3. The progress of the search so far: As the search proceeds, it should be 
guided continually by the incoming evaluative feedback towards more pro-
ductive regions. This is necessary because novel ideas often require the 
formation of functional networks other than those triggered initially by 
the context. This can only happen if feedback can overcome the initial 
bias and create new structures in a systematic way - again, guided by the 
experiential knowledge implicit in the system's structure. 

The primary hypothesis behind our model can be stated in two parts: 1) 
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The interaction between afferent context/stimulus information, network struc-
ture and modulation create a dynamic energy landscape in concept space; and 2) 
The itinerant flow of activity over this landscape represents the search for ideas, 
which are metastable attractors. Thus, the mechanisms for rapidly generating 
productive energy landscapes in concept space is the fundamental focus of the 
research. 

3.1 Convergent vs. Divergent Thinking 
An important issue in idea generation is the style of thinking. In the divergent 
thinking mode (or exploration), there is some possibility that concepts or cat-
egories that are not strongly connected to each other normally or not strongly 
associated with the same context, will still become co-active, leading to a large 
number of relatively random combinations, but occasionally to useful novel asso-
ciations. These useful novel associations are less likely to occur in the convergent 
thinking mode (exploitation) where the search of the conceptual space is more 
restricted to existing ideas. 

We hypothesize that these differences can be understood through the dy-
namics of activity on the dynamic energy landscape described above, and arise 
from the relative flexibility of this landscape. A system with insufficient mod-
ulation and short-term learning is only able to produce stereotypical energy 
landscapes with relatively high barriers between attractors. It, therefore, tends 
to get trapped in suboptimal regions of search space and leads to convergent 
thinking. In contrast, a more flexible system can adapt the energy landscape 
to create new attractors through the recombination of old ones, thus evincing 
divergent thinking. 

The model we develop embodies this view of idea generator, implementing 
it in a connectionist framework. 

4 Model Description 
The model we propose is shown in Figure 1. It comprises the following compo-
nents: 
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• A stimulus or input layer, I, providing a set of n[ stimulus feature units 
(SFUs) encoding afferent stimuli, including context information. 

• A response layer, R, comprising a fixed pool of nR response feature units 
(RFUs) denoting response-relevant characteristics of concepts. 

• A concept layer, C, comprising a pool of nc concept units (CU s). Each con-
cept unit has connections (both excitatory and inhibitory) with a subset of 
RFUs, thus implicitly defining the response semantics of the concept. The 
concept layer also has fast recurrent excitatory connections among concept 
units, which tend to stabilize specific patterns of coactive units, and slower 



recurrent self-inhibition that stochastically limits how long a unit can re-
main continuously active. These competing tendencies generate a flow of 
activity patterns - similar to itinerant dynamics over a set of metastable 
attractors [43] - consistent with the hypothesis that mental constructs 
are represented as slightly persistent patterns of coherent cortical activ-
ity [20, 41]. The patterns of coactive concepts temporarily stabilized by 
fast connections represent ideas. Each idea activates the response features 
corresponding to its constituent concepts, which is the effective response 
of the system. As a whole, the concept layer can be seen as comprising a 
distributed semantic network. 

The pattern of recurrent connectivity within the concept layer reflects 
the utility of associations between concepts based on previous experience. 
Thus, if CUs i and j have been coactive in several "good" ideas, they have 
strong positive reciprocal connections, while the connection may be weak, 
non-existent or even negative if this is not the case. Thus, given the noisy 
activation and refractoriness of concept units, the dynamics of the concept 
layer tends to stochastically reactivate attractors that are previously seen 
good ideas or their mixtures . 

• A category layer, G, comprising a set of Ns concept group units (CGUs) 
organized into nQ cliques, {Qk}, k = 1, ... , nQ . These cliques correspond-
ing (roughly) to utilitarian categories. CGUs within the same clique are 
(relatively) densely interconnected by excitatory connections, while pairs 
of cliques are symmetrically connected by relatively sparse excitatory or in-
hibitory connections in a specific pattern reflecting the system's experience 
of whether joint activity by clique pairs is useful or otherwise. Each CGU 
has reciprocal connections with a subset of concept units, thus defining a 
conceptual group (CG) which can be seen roughly as "basis functions" for 
ideas. Several cliques may include the same CG - each associated with 
its own CGU, and the concepts within a conceptual group may be quite 
different in terms of their features. The presence of two CGs in the same 
clique indicate that they have been useful together in the same context at 
various times, implying that good ideas can be elicited in similar contexts 
simply by activating CGs in this clique. This utilitarian clustering typ-
ically means that cliques are also semantically distinct from each other, 
so that every clique does not include concepts with all possible features. 
Thus, while the concepts and CGs associated with a clique, Qk, are quite 
heterogeneous, they cover only a subset, Rk, of response features, and only 
a subset in the space of possible CGs. 

It should be noted that the modular structure imposed by layer G on 
layer C is consistent with but not identical to the structure implicit in 
the recurrent connectivity of C. Concepts may be strongly connected 
even if they do not share a clique if they have been part of good ideas 
in the past. Over time, learning should adjust clique memberships and 
conceptual groups to remove this "mismatch", but the current model does 
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not address that issue yet. 

• A critic, 1l1, that takes input from layer R and compares the activity pat-
tern of this layer with an internally stored criterion pattern of features, 
generating a graded scalar response evaluation. This response evaluation 
is used as feedback by the system to modulate its parameters, and to 
control learning. The critic is intended to be a phenomenological model 
of internal and external evaluative mechanisms (e.g., a dopamine signal 
triggered by a reinforcement signal [40, 39]). 

Afferent input from the stimulus layer drives all three layers through mod-
ifiable connections. The category layer is also subject to adaptive inhibitory 
modulation, which controls the total amount of activity allowed in the layer. 
Competitive inhibition in the concept layer also constrains the number of simul-
taneously active concept units. 

5 System Functionality 
As discussed earlier, the system's response is generated through a transiently 
stable (metastable) spatiotemporal pattern of activity spanning the whole sys-
tem - a reverberatory (or resonant) [9] pattern involving the category, concept 
and response layers. However, it is specifically the activity of the concept layer 
that represents the system's internal response at the level of ideas. This re-
sponse is projected into the common semantic space spanned by the response 
features, where it can be evaluated. These features can thus be seen as "inter-
nal actuators", or as verbalization components. Given a context (and possibly 
a stimulus stream), the goal is to generate responses that meet the functional 
criteria known to the critic as efficiently, rapidly, and copiously as possible. 

Processing starts when the system is stimulated by a context stimulus, <I>j 
through layer S. This results in the activation of one or more cliques in G based 
on the association between the stimulus pattern and CGUs, and creates a stable 
activation pattern in layer G that persists even after the context stimulus is 
removed. This G-layer activity projects a selective bias onto Layer C, creating 
an implicit energy landscape in concept space with ideas as attractors. However, 
since only a small number of CUs can be co-active and individual CUs can remain 
active only for limited durations, the energy landscape keeps changing as ideas 
emerge, persist for a brief time, and dissolve. This "sticky" flow of ideas in C is 
the search process shaped by the interaction of bias from G and the recurrent 
connectivity in C. 

As ideas are produced, they generate a stream of evaluations, ¢(t) , through 
the critic. This is integrated by a low-pass filter 

¢(t) = a¢(t) + (1 - a)¢(t - 1); 0< a < 1 

and modulates the inhibition level on layer G. As ¢(t) becomes lower (be-
cause no good responses have been found), inhibition on G is also lowered, 
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eventually leading to the activation of more cliques and their CGs. This changes 
the bias on Layer C and, therefore, the energy landscape for the flow of ideas. 
The order in which new cliques are activated as inhibition is lowered is robustly 
dependent on two factors: 

1. The original context stimulus, which determined the original clique activity 
pattern. 

2. The inter-clique connectivity reflecting the expected utility of co-activating 
certain cliques (or CGUs within cliques). 

This broadening of the search for ideas is useful, but is not likely to be very 
efficient without a concurrent process for narrowing the search so it can focus 
in more productive regions of idea space. This is achieved using feedback from 
the concept layer to the category layer. As the search is widened and some good 
ideas start appearing, this results in a gradual increase in ¢, which then tries to 
decrease the activity in G. Also, each time a good idea is rewarded sufficiently, 
two processes are triggered: 

1. Short-term performance-dependent reorganization of G-layer connectivity: 
The reward signal causes the connections from the concept layer to the 
category layer to be transiently, but strongly, potentiated (shown by the 
gate in Figure 1). Thus, the concept units active at the time of the reward 
(which presumably comprised the good idea) send an unusually strong 
excitation to the CGUs active at the same time, which respond to this 
jolt by firing strongly (e.g., bursting). This, in turn, leads to short-term 
synaptic potentiation of connections between bursting units [18], and a 
short-term depression of connections between bursting and non-bursting 
units. The net result is that Layer G units projecting to concepts in good 
ideas become relatively more strongly connected to each other, as do the 
cliques in which they reside, thus changing the G-layer connectivity to 
reflect recent experience. 

2. Permanent performance-based change in association between concepts: The 
reward signal causes the concept units active at the time of the reward to 
permanently strengthen their excitatory connectivity. 

The effect of (2) is that good ideas become more embedded in the concept 
layer, which makes them likelier to arise in the future. The effect of (1) is more 
pertinent to the current search. The change in G-Iayer connectivity means that 
the cliques likely to survive the process of increasing inhibition due to greater 
reward are not necessarily those originally activated by the context, but those 
responsible for the recent good ideas. If more good ideas are forthcoming from 
this restricted set of cliques, the system will go on restricting the search further. 
If the process becomes too restrictive (and good ideas cease), inhibition will 
drop again and the search will widen. However, the pattern of widening will be 
affected by the recent experience of the system because the original inter-clique 
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connectivity has been modified (transiently) by this experience. Eventually, the 
system will reach a stage where a set of cliques dense in good ideas is acti-
vated, so that the increased reinforcement sustains this set even at maximum 
inhibition. Basically, the system has arrived at the best set of cliques - and 
thus the best pool of ideas - through a process of "intelligent annealing" that 
takes into account the current context, the system's past experience, and the 
results of the system's current search. This discovered set of cliques and/or con-
cepts/ideas can be associated with the original context, and slightly change the 
inter-clique connectivity to reflect the new discovery. More significant changes 
such as realignment of clique membership are left for the future. 

6 Results 
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Figure 2: Simulation of the search process. 

A somewhat simplified version of the model described above has been im-
plemented, and search processes simulated using this model. The main simpli-
fication in the simulations is that each concept is typically associated with CGs 
from only one or two cliques. The cliques themselves are connected but non-
overlapping (i.e., they do not share CGs), and both category and concept layer 
units are arranged such that units associated with the same clique are plotted 
together in figures. The dynamics of the simulated network incorporates two 
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Figure 3: Simulation of the search process. 

time-scales: A slow scale over which the CG activations are updated, and a fast 
scale used to update the concept units. Thus, each cycle of G layer update em-
beds 100 steps of the fast cycle. Each concept unit, however, can only be active 
for a random duration between 4 and 8 fast steps, and must then be refractory 
for a similar random duration. This allows for the context-dependent itinerant 
dynamics to emerge in concept space. 

Figure 2 shows an example run of the simulator. The G layer has 10 cliques 
of 20 units each, while the C layer has 500 concept units . The system emulates 
a situation where good ideas arise preferentially from concepts associated with 
cliques 3, 6 and 10 together. The search starts by activating clique 6, and grad-
ually discovers the right combination of cliques through the process described 
above. At that point, rewards become much more dense in time, indicating 
success. 

Figure 3 shows a close-up view of the concept layer dynamics at different 
stages of the search process. The itinerant dynamics across idea space can be 
seen clearly. 
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7 Conclusions 
The model described in this paper embodies a general, complex systems ap-
proach to idea generation and cognitive response - albeit in a simplified way. 
Our results show that the model is capable of performing an intelligent search 
in idea space through its inherent dynamics , and can represent the convergent 
and divergent modes of thinking. 

A major motivations for the current model is to provide a better under-
standing of the cognitive, computational and neural processes underlying "brain-
storming", i.e., idea generation by individuals interacting in a group according 
to specific guidelines. Two mechanisms whereby groups may lead to improved 
idea generation are the priming of low-accessibility categories and the facilita-
tion of novel conceptual combinations. Both of these mechanisms are inherent 
in the framework described here, and our model will be used to explore these 
issues in a systematic fashion. 
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This is an introduction to complex-system engineering (cSE). cSE is going to become 
the second branch of system engineering. It is still in its formative stages. All of cSE's 
presently known ideas are briefly discussed. A familiarity with the first branch of 
system engineering, so called traditional system engineering (TSE), is assumed. 

MOTIVATION AND OVERVIEW 
TSE is not applicable to every problem. Its applicability is limited by the assumptions 
on which it rests. TSE's assumptions are essentially the assumptions of 
reductionism. Reductionism, in its essence, is the belief that any portion of reality -
including all of it - can be understood or comprehended by understanding the parts 
of that reality and composing a mental model of the greater reality exclusively from 
those parts. All of the parts of some portion of reality, and the relationships among 
those parts, can directly account for everything that can be known or conceptualized 
about the greater reality. The parts of such a whole can also be resolved into parts 
and understood in the same manner. This isn't true all of the time. 

To reject the universality of reductionism is to accept that there are properties that 
can only be associated with the whole of something - but not with its parts. Such 
properties are frequently termed emergent. In addition, when the relationships or 
interactions among the parts of a whole are considered, it is not always possible to 
find a way to consider them sequentially that is equivalent to their consideration in 
parallel. Even if system engineers are willing today to accept these non reductionist 
propositions, they do not know how to transfer that acceptance into the practice of 
their discipline. 

Much of the debate about reductionism versus its alternative, holism, is cast in 
terms of reality itself. This is a serious mistake. It overlooks the role that the human 
brain might play. It is the human brain that composes the mental models that are 
our only window on reality. The human brain is finite. The consequences of this 
simple fact are almost always overlooked. 

Accounting for the consequences of a finite human brain leads to multi scale 
analysis (MSA). Multi scale analysis is one of the key ideas in complex-system 



engineering. Validating the need for multi scale analysis is exceedingly difficult. This 
is because any conceptualization of reality (a mental model of that reality) can never 
be directly compared with reality itself. Validation must be indirect. 

The second major idea in complex-system engineering is evolution. Evolution is also 
inconsistent with reductionism. Most system engineers are unfamiliar with 
evolution. Most have heard of it - but they are not familiar with it in any depth, and 
not with the processes that account for it. And certainly system engineers do not 
know how to connect evolution to the engineering of systems. 

Evolution is frequently associated exclusively with biology. This is too restrictive. 
Evolution is much more widespread than that. Evolution is also context dependent. 
The processes that drive evolution vary as that context changes. However, whatever 
the processes might be in any specific context, they always express in some fashion 
what are termed the predicates of evolution. These will be identified, as well as 
what can be considered an explanation for evolution in any context. Both of these 
topics are important in complex-system engineering. 

Given multi scale analysis and evolution, there is one more key idea in complex-
system engineering. Because cSE is a branch of system engineering, it must have a 
set of methods. Engineering, including system engineering, is always about using a 
set of methods to establish an equivalence between a real world problem and a real 
world solution. The methods in cSE are termed the Regimen of complex-system 
engineering (Kuras, 2004). They are just listed here for now. Their context sensitive 
formulation and application depend upon multi scale analysis and evolution. 

THE REGIMEN OF COMPLEX-SYSTEM ENGINEERING 

1. Define Outcome Spaces. 

2. Selectively perturb self-
directed development. 

3. Characterize 
Continuously. 

4. Perturb the environment. 

5. Specify rewards and 
penalties for autonomous 
agents. 
6. Judge outcomes and 
allocate prizes, accounting 
for side effects. 
7. Formulate and apply 
stimulants for synergistic 
self-directed development. 
8. Formulate and apply 
safety regulations. 
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MULTI SCALE ANALYSIS 
In order to appreciate the limits of reductionism and how to get beyond them 
requires an examination of how engineers (in fact, all humans) think - about how 
they compose problems and solutions in their heads, or how they build mental 
models of the real world. This should quickly become a question about how the 
human brain works. This may seem a bit daunting to the average engineer. But it 
has to be addressed. How does the human brain form and manipulate 
conceptualizations of reality? And does this influence what an engineer thinks of as 
real problems and real solutions? Are there built-in characteristics of the human 
brain that prevent engineers from having a completely "transparent" window on 
reality? In other words, does the brain alter or transform or filter in some way what 
an engineer assumes to be reality as he or she builds and manipulates mental 
models of that reality? 

The answer is that the way that the human brain works does influence what is 
comprehended as reality. The window on reality that the brain provides is not a 
completely transparent one. The human comprehension of reality is not distortion 
free. What makes this very difficult to deal with is that it is not possible to 
comprehend anything without that influence being present. Nothing can be 
understood without conceptualizing it. And it is not possible to directly make 
"before and after" comparisons of the brain's influence on conceptualizations of 
reality. Nonetheless, the influence of the brain on what is conceptualized should not 
be ignored. Multi scale analysis explicitly acknowledges this influence. 

Human conceptualization is limited. This is because the human brain is finite. Its 
capabilities and capacity are both bounded. It is this limitation on capability and 
capacity that produces a less than transparent window on reality. Surprisingly, this 
characteristic has largely been ignored in the prior work on this issue. Maybe it is 
too obvious. But for now, here are some of the consequences. All of reality cannot 
be conceptualized at once. (We can't even conceptualize all that we think that we 
know at once.) And there is no way to ensure that combining partial 
conceptualizations of reality (either in their entireties or in some abstracted form) 
will yield a comprehensive conceptualization of the greater totality. 
Conceptualizations of reality, mental models, are a/ways partial- and limited to one 
"scale" at a time. The human brain can, however, change its scale of 
conceptualization altering what is included and omitted in mental models of reality. 

These are statements about how the human brain works and nothing more. For 
example, all of the properties and behaviors of all of the particulates of a cloud, and 
all of the properties and behaviors of the cloud as a whole cannot be conceptualized 
at the same time. It is not possible to conceptualize water and all of its properties 
while conceptualizing all of the individual atoms of Hydrogen and Oxygen that 
comprise the water. It is not possible to simultaneously conceptualize, say, the full 
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meanings of individual letters or words and the meanings of whole sentences and 
paragraphs. It is not possible to simultaneously conceptualize all of the individual 
bees of a beehive and the totality of that beehive. The human brain doesn't work 
that way. It generates separate mental models for these aspects of the same reality; 
and it can only toggle between these mental models. Conceptualizations or mental 
models are based on the brain's internally developed frames of reference. And the 
brain can and does employ different frames of reference as it forms mental models 
of different aspects of the same reality. 

Frames of reference do not refer just to the notions of space and time. They are the 
basis for every pattern that is a portion of every mental model of reality that the 
human brain generates: for example of color, of taste, of ownership, of authority, of 
matter or substance, of quality and quantity, and so on. And sometimes the frames 
of reference used in mental models of the same reality are not just different but 
incompatible as well. A change in the scale of conceptualization occurs when the 
brain shifts between incompatible frames of reference. 

The entire content of every conceptualization (of every mental model that the brain 
might form) is exactly and only a finite set of patterns; memories are basically stored 
versions of earlier conceptualizations; the capacity for storing patterns is also finite 
or limited; every current conceptualization depends on earlier conceptualizations 
(Le., draws on memory); and frames of reference are the deepest and most 
condensed forms of memory. These points elaborate what it means to say that the 
human brain is finite, and that it is limited or bounded in its capability to form and 
retain conceptualizations of reality. If these points were further elaborated, the 
consequences just outlined would follow. 

What is crucial here, however, is that mental models of reality, based on 
incompatible frames of reference, simply do not combine as suggested by 
reductionism. And any analysis, based solely on such premises, is going to be partial 
and even flawed. 

Multi scale analysis allows for, but does not rely exclusively on, reductionist 
techniques. It uses, in addition, statistical analysis to find and confirm relationships 
that span scales of conceptualization - that is, between mental models of the same 
reality that are based on incompatible frames of reference. Even at a single scale of 
conceptualization, multi scale analysis departs from an exclusively reductionist 
approach. That departure is regime analysis, which is based, at least, on Radial 
Category Theory and Reed network models. Regimes are non-disjoint and non-
hierarchical partitionings. Radial Category Theory came out of Linguistics, and 
Linguistics is a branch of Cognitive Science - which focuses on how we think and 
communicate. Reed networks are discussed briefly below. 
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In summary, multi scale analysis explicitly acknowledges that many of our mental 
models of reality cannot be combined or related to one another in a purely 
reductionist fashion. At present the only way to find or to explore cross scale 
relationships is with statistical analysis. Moreover, at anyone scale of 
conceptualization, reductionist analysis can be augmented with regime analysis. The 
presently known techniques applicable to regimes are based on Radial Category 
Theory and Reed networks. 

EVOLUTION 
Evolution is the next major idea. Evolution is a label for distinguishable differences in 
successive generations of a population. 

Evolution is a label for changes that are seen as gradual or progressive or cumulative 
but not repetitive (like the changing seasons or a pendulum), and that are not 
viewed as arbitrary or random. Further, evolutionary changes are not the direct 
consequence of an explicitly identifiable outside agent's intervention (such as a 
constantly applied force) - and so are frequently termed self-directed. Such changes 
are generally understood to apply to the substance and structure of things as well as 
to their behavior. Since this form of change is not seen as arbitrary, it may be due to 
some process or processes. Theories of evolution are attempts to identify and 
characterize these processes. Theories of biological evolution are the ones most 
frequently and explicitly examined. In fact, most people still associate evolution 
exclusively with biology. 

Evolution deals with self-directed changes in populations. What this means for a 
system engineer is that a system must be treated as a set of populations. Evolution 
unfolds at multiple scales of conceptualization. And it is always context dependent. 
Said another way, the evolution of a system - that is, self-directed changes in a set 
of populations - can never be wholly disconnected from the environment of those 
populations. Both the populations and their environment must be considered and 
analyzed if the system is to be engineered. It simply is not possible to disjointly 
partition an evolutionary system from its environment. 

Evolution is driven by a set of evolutionary predicates. Typically, five or fewer are 
identified. But this can be misleading. These predicates will always be expressed as 
context specific processes. These processes are continually generating outcomes (as 
modifications or changes in the populations of the system). The Regimen of cSE does 
not directly seek to produce such outcomes itself. Instead, the Regimen's methods 
operate on these processes. 
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These are the five commonly identified predicates of evolution. 

1. Member Addition: The size of a population increases (through reproduction, 
through recruiting, etc.). 
2. Similarity (Heredity): New members are similar to existing members. (In the 
specific case of reproductive increase, the characteristics of new members are 
directly derived from the characteristics of existing members.) 
3. Variation: The characteristics of new members are not uniform. 
4. Adaptation: Members of a population do not behave uniformly and behavior is 
not independent of other members and the environment. 
5. Selection: Members of a population are subject to attrition as a consequence of 
their characteristics and behavior. 

Generally, the rate of new member addition will be greater than the rate of member 
attrition. This is usually referred to, in biological contexts, as super fecundity. 
However, there can be temporary exceptions. 

There are actually more predicates, although they are frequently overlooked. Not all 
populations evolve. And not all finite populations evolve. The necessary and 
sufficient condition for this is identified below. The five predicates listed above are 
still necessary, however; but they are not sufficient by themselves. For example, if 
all members behave uniformly the population will not evolve. At the same time, if 
any of the other four predicates is not expressed in some way, a population will not 
evolve even if behavior is not uniform. But there is more. 

The persistence of a whole population must be much greater than that of any of its 
members. This is almost always overlooked as well. Roughly speaking, there are no 
immortal members in an evolving population. This is why it is foolish to take too 
literally the often repeated phrase that "survival of the fittest" is the essence of 
evolution. It's not. No member of an evolving population, no matter how fit it might 
be - even the fittest in a population - is going to survive indefinitely. If that were to 
happen, then the population itself would cease to evolve. But so called fitness is a 
useful measure in understanding evolution. It is a way to score the persistence of 
members and populations. And it can be quantified. In general, fitness is always less 
than 1. An informal definition of fitness is provided below. 

Members must also exhibit life cycles. A life cycle is the period of existence from 
inception to elimination through attrition. New members must mature before they 
are full members of an evolving population. The period of maturation may be 
extremely brief - and even confined to the moments of inception - but it is a 
necessary facet of evolution. Only mature members can participate in (contribute 
to) the addition of new members. The processes of maturation are usually distinct 
from those of evolution, even given specific populations. Maturation recapitulates 
prior evolution; but recapitulation should not be interpreted as simply repeating 
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prior evolution. The processes of maturation and of evolution do, however, share 
the same predicates. 

There is a necessary and sufficient condition for a system of finite populations to 
evolve. It is the accumulation of complexity by the system. If this isn't happening, 
then evolution isn't happening. Roughly speaking, if one system is more evolved 
than another, then one has accumulated more complexity than the other. This 
makes an understanding of complexity important in complex-system engineering. 
Informal definitions of complexity and fitness are provided below - and then used to 
make an important distinction. 

Price's equation is currently the best summary of evolution at a given scale of 
conceptualization. It is a useful statistical relationship. But it is still a very partial 
summary of evolution. Much work remains to be done in understanding evolution. 
That task is by no means complete. 

Price's equation is applicable to a single scale of conceptualization of an evolving 
system, but it is not expressed directly in terms of complexity. Instead, it is 
expressed in terms of individual characteristics or behaviors and their connection to 
fitness. In Price's equation, w represents fitness, and z a specific characteristic or 
behavior. 

Regardless, the complexity of a system can accumulate across multiple scales of 
human conceptualization. To understand how that might unfold, and in the absence 
of a better version of Price's equation, network models can be used. 

Finite populations can evolve. When they do, their capacity for accumulating 
complexity is not unbounded at anyone scale of conceptualization (since they are, 
after all, finite). Nonetheless, the capacity of a system to accumulate complexity is 
seemingly unbounded. Network models can help to understand this phenomenon. 

This can be done by associating members with nodes and the organizational and 
behavioral relationships among members with edges or links. The complexity of a 
population grows as membership increases and the relationships among members 
increase. There are three types of network models available to capture this. They 
differ primarily in terms of the characteristics of their edges. Basically edges can be 
one directional, two directional or without direction. Reed networks have edges that 
are non directional. Reed network models are not widely known or used. They are 
an important part of multi scale analysis. 

178 



As complexity accumulates in a system, there is a progression in the network types 
that should predominate in modeling the populations of a system: Sarnoff -7 
Metcalf -7 Reed -7 Sarnoff -7 ... This progression is tied to the incremental costs of 
adding additional nodes and edges. This cost is measured in the "energy" needed to 
accomplish the addition. The least costly alternatives available to the system to 
increase the amount of complexity that it accumulates will persist and eventually 
predominate. 

What is of special note here is the Reed -7 Sarnoff progression. The continued 
addition of members and relationships in the populations of a complex-system 
requires an additional scale of conceptualization in order for the added complexity 
to be humanly comprehended. In short, for a human being to understand what is 
happening, new frames of reference must be employed in the pertinent mental 
models. The frames of reference associated with Reed networking in this 
progression are not appropriate for the added complexity captured by an additional 
Sarnoff network model at a new scale of comprehension. The Reed network and the 
additional Sarnoff network use incompatible frames of reference. They cannot be 
simultaneously comprehended by a human being today. At a minimum the 
members of the relevant populations will seem to be different. 
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A Sarnoff network uses one-directional 
edges, represented here as arrows . 
These edges represent one way flows 
or relationships from source nodes to 
sink nodes. Each edge must connect 
exactly two nodes, but each node can 
be associated with multiple edges. The 

____ , __ " second example is that of a simple 
MctalflC!Mork Metcalf network. It is seen by many as 
a generalization of the Sarnoff network. There are no 
distinctions of node types now; they are all the same. As 
before, each edge connects exactly two nodes. But in 
this case, flows or relationships can be in one or both 
directions (from the first node to the second, vice versa, 
or both). Also as before, a single node can be associated 
with multiple edges. The third example is that of a 
simple Reed network, sometimes called a combinatoric 
network. All of the nodes in a Reed network are 

notionally the same as with Metcalf networks. In this case, dotted lines represent 
the individual edges. Individual edges are non directional and one edge can 
interconnect any number of nodes, not just two. As before, though, one node can 
be associated with any number of edges. It is well beyond the scope of this 
introduction to discuss how to use the various sorts of network models that are 
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available. But it is important to appreciate that they are all available - especially the 
Reed network model. 

In the interests of brevity, only an informal definition of complexity and fitness can 
be provided here. 

Complexity: the measure of a thing's (a system's) available changes that do not alter 
its identity. 
Fitness: the measure of a thing's complexity relative to that of the "complexity" of 
its environment. 

Maintaining "identity" is important in understanding both complexity and fitness. 
Identity is one of the Modalities of Conceptualization. These would be introduced in 
a discussion of a finite human brain and its implications for the formation of mental 
models or human conceptualization. These Modalities are the facets of how the 
human brain functions without positing physiological explanations for them - for 
example in terms of neurological networking or chemistry. That can, of course, be 
done. Roughly speaking, "identity" is the functionality of the brain that aggregates 
patterns giving them a cohesion relative to one another that is greater than with all 
other patterns in a conceptualization. 

The complexity of something is meaningful only as long as that something remains 
cohesive in the human conceptualization of it. This is its identity in a nutshell. 
Another way of saying th is is that it does not die, or disintegrate or collapse. 
Excessive change can do this, and when it does, the meaning of complexity is lost. 
Fitness is another measure. It is based on complexity; it scores how closely a 
system's complexity matches the potential changes in its environment without the 
system lOSing its identity. 

PULLING IT TOGETHER (PART 1) 
Using these definitions, a clear and powerful distinction between traditional system 
engineering and complex-system engineering can be made. Traditional system 
engineering is directed at decreasing the complexity and increasing the fitness of a 
system at a single scale of conceptualization. Complex-system engineering is 
directed at focusing and accelerating increases in the complexity of a system 
without a loss of fitness at multiple scales of conceptualization. Other distinctions 
are also possible. For example, TSE is applicable to problems that can be stabilized, 
while cSE should only be applied to problems that cannot be stabilized. 

And it is now possible to provide an initial definition of a complex-system. A 
complex-system is a system that evolves (self-directed increases of complexity and 
fitness) at multiple scales of conceptualization. Both this definition and the 
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distinctions between TSE and cSE deserve further discussion, but that is precluded 
here in the interests of brevity. 

A different name is needed for traditional system engineering now. The term 
traditional suggests orthodox - and so implies that any other approach is 
unorthodox. And for many unorthodox is very close to wrong, or at least to suspect. 
The two branches of system engineering should be distinguished according to the 
kinds of systems to which they are applicable. This is already the case for cSE. TSE 
should be relabeled reducible-system engineering or rSE. 

In order to engineer complex-systems it is best to treat them as populations. When 
doing so, it is important to be alert to the possibility that a whole population might 
have properties that cannot be associated with the members of the population. 
These are its so called emergent properties. However, other member properties (or 
relationships) might well be related to these emergent properties. This is something 
that only multi scale analysis will reveal, always with the understanding that 
statistical correlation is not causation. Also, a whole population at one scale is not 
always a member of another population at a "higher" scale. This is reductionist 
thinking. Although this might be true in some cases, it is wrong to assume that this is 
so in all cases. It's not. 

A system exhibits functionality, organization, and substance at one or more scales of 
conceptualization. Distinct and frequently incompatible frames of reference are 
necessary for each scale. These frames of reference are not simply those of as space 
and time, as was noted earlier. Frames of reference are necessary for every pattern 
that our brains assemble as the content of conceptualizations: like color, flavor, 
ownership, and authority, and not just space and time. 

Lastly, in treating a system as a set of populations at multiple scales, a distinction 
should be made between autonomic and autonomous members and populations. 
Primary attention should be focused on the autonomous ones. These are the 
"agents" that, if present, are most easily associated with the self directed 
development of the whole system. Individual human beings in a society are 
examples of autonomous agents. They are driving the evolution of society. A watch 
and a cell phone are examples of autonomic agents, as is an automobile. Watches 
and cell phones and automobiles are not driving the evolution of human society-
although they may be evolving themselves, as populations. 

Here are some examples of complex-systems. Brevity, however, precludes their 
discussion here. 

• The Internet; all of the software in the world. 
• English (natural languages, generally). 
• Ballistic Missile Defense System (not individual missiles, radars, etc.). 
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• Purpose built fleets of aircraft (not an individual aircraft). 
• A human city (not a building or a road). 
• The Human Immune System; the Health Care System. 
• The Internal Revenue Service (IRS). 
• Network Centric Enterprise Infrastructure. 
• Sensor swarms. 
• A corporation; the national economy; the world economy. 
• Religious congregations; a political faction. 

Complex-systems evolve. This can also be understood as learning. Whole 
populations have to learn, even if their members do not. Of course, members can 
learn too. So complex-system engineering can also be understood as focusing and 
accelerating the processes of learning. And many of the methods associated with 
encouraging learning can be transferred to cSE. Terms like "evolutionary 
engineering" also suggest a focus similar to that of cSE. 

REGIMEN OF cSE 
The Regimen of cSE is the set of methods that can be used to engineer a complex-
system. They were listed earlier; each of them is now discussed very briefly. 

The first two methods can be understood as umbrella methods. The other six 
methods can be understood as more specific elaborations of one or both of these. 

• Define OUTCOME SPACES at multiple scales of conceptualization and for 
multiple regimes. This means thinking globally but not always disjointly and 
in terms of large sets of acceptable possibilities, not in terms of a lattice or 
web or hierarchy of specifically required outcomes (properties or 
behaviors). 

• Selectively PERTURB SELF-DIRECTED DEVELOPMENT (organizational and 
behavioral) at specific scales and in specific regimes. This means 
intervening locally, without exercising control, and expecting side effects. 

Outcome Spaces in cSE may seem roughly similar to establishing requirements in rSE 
- except that Outcome Spaces are far more general and less persistent than are 
requirements specifications. And they need not be complete. They can even seem 
contradictory to some extent. Outcome Spaces broadly identify what are currently 
viewed as desirable properties, relationships, or interactions for the populations and 
population members of a complex-system. Perturbing self directed development in 
cSE may seem roughly similar to taking direct action to control development in rSE. 
Control is important in distinguishing the methods of cSE from those of rSE. Control 
[of a thing] is the realization of predictable and persistent consequences through 
actions [on a thing] that supersede or preempt any other actions [imposed on or 
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self-initiated by a thing]. cSE does not seek to control the development of a system; 
rSE does. 

• CHARACTERIZE CONTINUOUSLY. This means tracking the populations and 
population members of a complex-system, noting the changes in their 
properties, relationships, and interactions, as well as in appropriate 
measures such as complexity and fitness. 

A complex-system operates and develops, and therefore changes, continuously. It 
never shuts down or is "turned off." That is because a complex-system is one that is 
evolving. Roughly speaking, to "turn off" a complex-system, would mean to kill it. Its 
operation and development are self-directed. It is important to keep track of this 
evolution - especially after efforts are directed at influencing that evolution. 
Continuous characterization is also where multi scale analysis fits most naturally into 
the Regimen. The characterizations produced are made available not just to the 
system engineer but to the autonomous agents of the complex-system. 

The continuous characterization of a complex-system can be understood to 
correspond roughly, in rSE, to specifying in advance what a system is to do or to be 
(the requirements specifications of rSE) in that many of the same skills are needed. 
But the application of those skills is very different. For those familiar with 
architecting, continuous characterization is somewhat akin to developing "as is" 
architectures - except that the "as is" architectures must be continually updated. 
And attention to continuous characterization is far more important than that of any 
"to be" architecture in rSE - which might loosely be associated with a set of 
Outcome Spaces, except that Outcome Spaces are not persistent and should be 
updated as the system evolves. 

• Temporarily PERTURB ENVIRONMENTALS in order to influence the self-directed 
development of a system. 

An updated definition of a system is needed. That has been provided elsewhere 
(Kuras, 2006). For now, it is assumed that the distinction between a system and its 
environment is understood. One of the ways that the self-directed development of a 
system can be influenced is to perturb the system's environment. This perturbation 
can be localized and brief - or more sustained and pervasive. An example that is 
frequently used is that of watering a garden. This alters the environment of the 
garden (the garden is the complex-system in the example). But it leaves to the 
plants in the garden (some of the autonomous agents of the system) to interact with 
that temporarily modified environment as they see fit as part of their self-directed 
development. 

• Establish specific REWARDS AND PENALTIES for autonomous agents in order to 
influence their self-directed decision making and development. 
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• Judge cumulative and collective results, not just specific outcomes, in 
ALLOCATING PRIZES; account for side effects. 

These next two methods are most easily discussed together - but they are really 
separate. Rather than specifying what autonomous agents should be doing, the 
establishment of rewards and penalties alters the factors that autonomous agents 
might consider in making and carrying out their own decisions about what to do. 
NASA has begun to use this method in their effort to engineer a persistent return to 
the Moon and the human exploration of Mars. This contrasts with what they did 
earlier in the Apollo Project - an effort that eventually died. Rewards involve the 
establishment of prizes and the criteria to win them. Judging refers not just to 
assessing the fulfillment of these criteria, but to examining any side effects that 
accompany them, and then allocating the prizes accordingly. Of course, if 
autonomous agents do not recognize a persistent linkage between criteria, judging, 
and prizes, then the efficacy of these methods will be diluted or worse. 

• Formulate and apply STIMULANTS FOR SYNERGISTIC SELF-DIRECTED DEVELOPMENT. 

This next method involves techniques that will alter the number, or the frequency, 
or the intensity, or the persistence of interactions or relationships among the 
autonomous agents of a system - with little or no regard for the details of specific 
interactions or relationships. This method is very much like stirring the pot. The 
necessary ingredients are presumed to be in place. This method involves techniques 
that accelerate - or decelerate - the interactive processes of evolution. 

• Formulate and enforce SAFETY REGULATIONS. 

This last method explicitly recognizes that cSE focuses and accelerates what is 
otherwise a natural unfolding of development in a complex-system. This 
acceleration (or deceleration) can increase the likelihood or the severity of the 
natural risks to the system (collapse, disintegration, etc.). This method involves 
techniques that can detect and offset or neutralize such risks, both before and if 
they materialize. So called "leading indicators" are important in this regard. These 
are acknowledged statistical precursors of more serious situations in complex-
systems. Another way to think of this method is policing its autonomous agents. 

But all of the methods are still generalizations. For most engineers, until there are 
explicit examples, these methods will remain cryptic. Unfortunately, brevity 
precludes a discussion of any example of any of these methods in any sort of detail. 

As an illustration, just one of the ways that an engineer can formulate and apply 
stimulants that promote synergistic self-directed development in a complex-system 
that is also a social system is to facilitate the appearance or spread of markets. 
There are various sorts of markets: for example brokered markets and unregulated 
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markets. Each has its strengths and liabilities. Given a particular complex-system, a 
brokered market may seem to be the most advantageous or practical. So, how does 
one go about facilitating a brokered market in such a case? And given that such a 
market develops, what does one do then? Here are some of the issues. It is 
necessary to identify autonomous agents that might function as buyers and sellers-
and of course as a broker. It might even be necessary to create or inject an agent 
that will assume the role of broker. It will be necessary to characterize the goods or 
services that might be exchanged. It will be necessary to characterize the value 
propositions that will be used to mediate exchanges in the market. And it will be 
necessary to identify the impediments to such exchanges and how a broker can 
neutralize such impediments at a profit to itself without undermining the propensity 
for exchanges between buyers and sellers. Brokered markets succeed because they 
are win-win-win propositions. Complexity is being accumulated. Needless to say, 
answering these and other questions in any detail is context sensitive. This is well 
beyond the scope of this introduction. 

PULLING IT TOGETHER (PART 2) 
When TSE is not applicable, cSE will be. Since the system in question will be one that 
is evolving, the very first thing to be done is to characterize the system as a set of 
populations at multiple scales of conceptualization, and then how the predicates of 
evolution are being expressed in those populations. This includes the five classical 
predicates; but it should also include attention to the less familiar ones such as 
characterizing the life cycles of the members of critical populations. Beyond this, 
engineering estimates for the complexity and fitness of the populations and their 
members should be developed and maintained as the populations evolve. And 
Price's equation should be used in relating fitness to the properties and relations of 
the members of populations. 

Multi scale analysis is applied as well- but not just once. This is done repeatedly as 
the system continues to evolve. In doing this it is important to be clear about 
characterizing the relevant scales of conceptualization involved, including as needed 
the associated frames of reference. Second, reductionist techniques can be applied 
at each individual scale of conceptualization. This includes analysis based on Sarnoff 
and Metcalf network models. But this might not always be feasible even if it is 
theoretically possible. Applying reductionism depends on completeness and detailed 
thoroughness. The effort required can be computationally prohibitive. And even if it 
is practical to apply reductionist methods, the significance may not be great. It is the 
autonomous agents in a complex-system that, if present, drive its development-
and reductionism seldom provides useful insights into their motivations. Third, it is 
also possible to analyze the single scale aspects of systems using regime analysis. 
Radial Category Theory and Reed networks will aid in this regard, as will 
straightforward statistical analysis. Fourth, in terms of cross scale analysis, the only 
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available techniques today are those of statistical analysis. This will reveal 
correlations and dependencies - but generally not causality. All of this will be 
important to the extent that the analysis informs the application of the Regimen of 
cSE. 

And, of course, the appropriate forms of the methods in the Regimen must be 
formulated and applied as the system evolves. 

Finally, it is always important to keep in mind that engineering a complex-system 
precludes direct control. It is the system itself that is in control, not the system 
engineer. The system engineer will be accountable, but he or she will not be in 
control. If it is initially difficult to understand what this might mean, then the 
example of a teacher and his or her student should be considered. It is the student 
who must learn. The teacher can only teach. But both will be held accountable. 

CONCLUSION 
Now, if it is desired to know more about cSE, or if there is an interest in applying 
what is already known, then call me. I might be able to help. If this is not 
appropriate, there are alternatives. It is possible, for example, to figure out how to 
do cSE on your own. A reading list (bibliography) is included to use in getting started. 
And, of course, this introduction is available as well. 
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agent-based market area 

model 
Zoltan Kuscsik, Denis Horvath 

Department of Theoretical Physics and Astrophysics, University of 
P.J. Safarik, Kosice, Slovak Republic 

One dimensional stylized model taking into account spatial activity of firms with 
uniformly distributed customers is proposed. The spatial selling area of each firm is 
defined by a short interval cut out from selling space (large interval). In this represen-
tation, the firm size is directly associated with the size of its selling interval. 

The recursive synchronous dynamics of economic evolution is discussed where the 
growth rate is proportional to the firm size incremented by the term including the 
overlap of the selling area with areas of competing firms. Other words, the overlap 
of selling areas inherently generate a negative feedback originated from the pattern of 
demand. Numerical simulations focused on the obtaining of the firm size distributions 
uncovered that the range of free parameters where the Pareto's law holds corresponds 
to the range for which the pair correlation between the nearest neighbor firms attains 
its minimum. 

1 Introduction 

The study of elemental interactions in social and economical systems has a great 
importance to understand the large-scale system properties. One of the universal 
large-scale properties exhibited by social systems in a robust way is the Pareto's 
law of wealth distribution and firm size [3, 6, 10]. Pareto's law is generally 
associated to the observation, that personal income of individuals, the size of 
companies are distributed by power-law. 

The formation of power-laws has generally complex origin. Among other 



approaches, highly sophisticated multi-agent models have been developed [2, 14, 
15] to explain the power-laws observed in various social systems. 

In this paper we propose agent-based model that emphasizes role of spatial 
location of firm within the limited market area. The model approximates the 
basic mechanisms of competency that simply follows from the spatial positions 
and selling activities of firms. 

An extensive economic literature exists that deals with the competitiveness as 
consequence of location. One dimensional model of spatial duopoly introduced 
by Hotelling [8] has assumed that consumers are continuously and uniformly 
distributed along a line segment. The model of firm distribution in a non-uniform 
environment has been developed by Lawrence [16]. It predicts firm density in an 
urban setting in which the population density decreases exponentially with the 
distance from the center. Erlenkotter [5] has considered uniformly distributed 
demand over the infinite plane. He has discussed various regular two-dimensional 
market shapes. An elegant and advanced multistore competitive model of two 
firms in a finite business area has been introduced by Dasci and Laporte [4]. This 
model has been investigated for one and two dimensional geographical markets. 
It assumes the costumers are dispersed through space in only one direction along 
some coordinate x E (0,1). In this regard it is useful to mention the functional 
expression for total revenue per firm 

11 Q(x)f(x)dx, (1) 

where f(x) is the probability density function of the customers multiplied by 
the probability Q(x) that customer at x patronizes product of given firm. 

As we have mentioned before, our present approach also pays attention to 
spatial aspects. The approach comes from ecologic-economic feedback concept 
of regulated factory emissions introduced by us recently [9]. The work points 
out an emergence of critical properties in a two dimensional system with spa-
tially distributed agents balancing the conflicting objectives. The model assumes 
that sources of diffusive emissions compete with the distributed sensorial agents. 
The analysis of the complex numerical data yield us to reductionist and purely 
geometric formulation that is related to coverage percolation problem. The 
geometric idea has been applied here to study the spatial distribution of the 
competitive firms reduced to basic geometric objects that cover market area. 
Our stylized spatial model is defined as it follows. 

2 Firm growth 
We assume that each firm acts as a seller agent of a product from the same sort 
of industry or it behaves as a provider of some service business. The spatial 
economic activity of the ith agent is defined by its position xit) E (0, L) and 
by its selling area (xi t) - r~t), x~t) + r~t)modL' where L is the constant size of 
one dimensional market space with periodic boundary conditions and rit) is the 
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selling radius of firm i. It should be noted that radius does not mean strictly 
the space of the physical activity of the seller but it can be understood as a 
radius up to which the customers are attracted. We have considered customers 
uniformly distributed along a straight line. Interestingly, such arrangement is 
typical for the restaurants distributed along a main road or highway [4]. 

We follow with definition of the measure of the spatial activity of the ith firm 

if i claims to sell at the position x 
(2) 

if x is not from the agent's selling area 

Generally, large selling area means more potential consumers covered by de-
livery of given product which results higher interest connected to higher profit. 
Without negative economic feedback, the continuous investment of the constant 
fraction of income yields to the exponential growth of the firm size and its sale. 
Several facts that yield the negative feedback between firm and its environment 
should be mentioned: (i) the transportation costs of products are convex func-
tions of distance [11]; (ii) the complexity of firm management grows with a firm 
size (iii) larger firms use more sophisticated and thus more expensive informa-
tion technologies; (iv) the presence of two or more competitive products in the 
same location affects the prices as well as the annual sales. 

Here we assume only a negative feedback that originates from the spatial 
overlap of selling areas. The overlap of ith firm area with the areas of the 
remaining (N - 1) firms is defined by 

(3) 

With this firm-firm interaction picture in mind, we suggested the dynamical 
rule of the firm growth 

(4) 

where a > 0 and f3 > 0 are constant parameters controlling the instantaneous 
growth. The term -f3n~t) can be interpreted as a negative feedback that reflects 
the competition. The selling area of firm i is expressed by 

(5) 

3 Firm establishment and bankruptcy 
In the stylized version of the model we study the firm is established at random 
position with a small random initial selling radius r~t) E (ra, rb), where ra is 
assumed to be the lower bound of profitability (smallest firm). Therefore, the 
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bankruptcy of a firm occurs when r~t) < ra. At the same time new firm (with the 
same index) is established at a new random position with some initially random 
size. This death-birth process is analogous to the so called extremal dynamics 
principle [1] applied to e.g. models of the wealth distribution [12] and stock 
markets [7]. 

4 Simulation and Numerical results 
The choice of parameters is chronic problem specially in models of the social-
economic systems. Although models of interacting agents give qualitative pre-
dictions that in many aspects resemble behavior of real-world systems, in the 
most cases, the quantitative analysis needs laborious tuning of parameters until 
the range is reached for which the phenomenon of interest takes place. Our sim-
ulations were performed with constant number of firms N = 500 for predefined 
market area L = 3 X 105 . The constant growth factor a = 0.01 and the initial 
range of the selling space constrained by radii r a = 2.0 and rb = 5.0 is chosen 
to invoke steps much smaller than L. 

To reach the stationary regime 105 the initial synchronous system updates 
were discarded. The information from subsequent 106 updates spent in sta-
tionary regime has been recorded. Their analysis has uncovered that firm-firm 
interaction controlled by (3 admits to establish market regimes that differ in 
size distributions. We observed that sufficiently large (3 leads to the market 
with lowered overlaps. On other hand, sufficiently small (3 supports formation 
of oligopoly that cover a dominant area of available market space. The impor-
tant for us power-law distributions are observable only for exceptional (3 (see 
fig 4). This finding opens a question: what regulatory real-world economic prin-
ciple controls the sustaining of the empirically relevant power-law regimes. The 
related question is the optimization of free parameters. For this purpose we ex-
amined several heuristic criteria. The most attractive seems to be an extremal 
entropy principle [13], but in that case one faces to the usual problem of the 
proper entropy definition. 

More pragmatic, however, less fundamental attempt comes from our analysis 
of firm-firm correlations. For this purpose the pair correlation function C of sizes 
of nearest neighboring firms (k) at positions x~t) :::; x~t) can be defined as 

(
.1. "",N (t) (t) _ (.1. "",N (t))2) 
N L..i=l r i r k N L..i=l r i 

C= 2 
.1. "",N ( (t))2 _ (.1. "",N (t)) 
N L..i=l r i N L..i=l r i t 

(6) 

Here ( .. . )t denotes temporal stationary average. The calculations for different 
(3 uncovered that minimum of correlation function corresponds to parameter (or 
narrow interval of parameters) for which nearly power-law distributions can be 
fitted quite well. This extremal principle reflects the possible importance of the 
measurements of the spatial correlations in social and economic systems. 
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Figure 1: Plot of the pair correlation function defined by Eq. 6 as a function of (3. 
The Pareto's law for the firm size belongs to (3 where C((3) attains its minimum. 
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Figure 2: a.) Plot of sizes of firms as a function their rank for (3 = 2.0. The fitted 
power-law index is close to unity. b.) The distribution of firm sizes. 
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5 Conclusions 
By focusing on the geometric representation of firms we proposed a stylized 
multi-agent model of firm growth. The competitive dynamics of firms under 
which the system reaches a steady state results a complex patterns of firm loca-
tions. Despite of its formal simplicity, the model supplemented by the principle 
of minimum firm-firm correlation is able to explain the origin of the Pareto's 
law. Further validating of model is planned that takes into account real-world 
data. Hoverer, this will need to take into account the non-uniform distribution 
of customers. The advanced model of this type is under development. 
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Chapter 19 

Complexity and the Social 
Sciences: Insights from 

complementary theoretical 
perspectives 

A. J. Masys 
University of Leicester, UK 

The application of complexity theory crosses many domains thereby reflecting the 
multidisciplinary perspective inherent within the concept. Within the social sciences, 
the advent of complexity theory has facilitated a re-examination of the concept of 
system, ' ... rejecting old assumptions about equilibrium in favour of the analysis of 
dynamic processes of systems far from equilibrium, and respecifying the relationship 
of a system to its environment ' (Walby, 2003). 

The term 'System accidents ' describes an aetiology that arises from the interactions 
among components (electromechanical, digital, and human) rather than the failure of 
individual components. Accidents involving complex socio-technical systems, such as 
that resident within the nuclear power industry, aerospace industry and military oper-
ations, reflect this aetiology characterized by its nonlinearity and inherent complexity. 
"Complex systems cannot be understood by studying parts in isolation. The very 
essence of the system lies in the interaction between parts and the overall behaviour 
that emerges from the interactions" (Ottino, 2003). The application of Actor Network 
Theory (ANT) facilitates an examination of complex socio-technical systems focusing 
on the interconnectedness of the heterogeneous elements characterized by the techno-
logical and non-technological (human, social, organizational) elements that comprise 
the problem space. This paper presents and argues for the integration of complexity 
theory as a complementary theoretical perspective to the field of sociology as a means of 
generating insights and increasing explanatory and conceptual depth of analysis. The 
integration of ANT and complexity theory in analyzing aviation accident aetiology is 
presented as an example. 



1 Introduction 
The victims and fallout associated with the tragic events of Bhopal, Three Mile 
Island, Chernobyl, Challenger Space Shuttle and more recently the Columbia 
Space Shuttle are constant reminders of the dangers associated with complex 
socio-technical systems. 

With the advent of complex coupled systems and the evolutionary introduc-
tion of new technology, the aetiology of accidents is changing. 'Since World War 
II, we are increasingly experiencing a new type of accident that arises in the 
interactions among components (electromechanical, digital, and human) rather 
than the failure of individual components. Perrow (1984) coined the term 'sys-
tem accident' to describe it' (Leveson, 2003). 

These failures manifest not as a result of some simple unforeseen cause, but 
'from highly complex human activity systems containing large numbers of inter-
connected subsystems and components' (Midgley, 2003:320). Bennett (2002:1) 
describes the aetiology of accidents involving complex socio-technical systems 
as: 

'Failure, whether human, technological or corporate, is a com-
plex phenomenon. It often arises out of unforeseeable interactions 
between system components or systems. The seeds of failure may 
have been sown years-decades, even before malfunction or collapse. 
Failure may originate in a complex interplay between social, eco-
nomic and political factors.' 

The technical perspective of accident aetiology is rooted within the probability of 
failure models associated with components of a system. This perspective traces 
the failure of a system to a chain of events within a system that linearly define 
the path towards an accident. 

The systems perspective challenges the hegemony of traditional accident cau-
sation models characterized by a paradigm of a 'chain of failures'. According to 
Leveson (2002) ' ... viewing accidents as chains of events may limit understanding 
and learning from the loss. Event chains developed to explain an accident usu-
ally concentrate on the proximate events immediately preceding the loss. But 
the foundation for an accident is often laid years before.' 

The body of knowledge within the social sciences regarding accident aetiology 
of complex socio-technical systems has increased over the last 20 years recogniz-
ing the social and technical dimensions of accidents. The anatomy of disasters 
and accidents involving socio-technical systems show an aetiology that reflects 
an inherent complexity that involves elements beyond the temporally and spa-
tially proximate thereby supporting a systemic view of disasters and accidents. 
The reductionist paradigm that focused on the parts of a system and how they 
functioned is replaced by a paradigm that embraces the complex. We now focus 
on the interrelationships and the interactions of the actors in an analysis of the 
behaviour and topology of the system. 

From a methodological standpoint, we must move beyond the view of the 
system as simply 'a whole equal to the sum of its parts' and consider the in-
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terrelations and causal effects, which are often complex and nonlinear thereby 
shedding light on the 'system effects' such as emergence, equifinality and mutlifi-
nality. Altmann and Koch (1998:183) remark that 'if the system is analyzed only 
in terms of its parts, as assumed in atomism and more generally in reductionism, 
the system-effects are lost without trace'. 

Sociology offers an interesting approach to looking at the socio-technical el-
ements of complex systems through the application of Actor Network Theory 
(ANT). The systems perspective of ANT looks at the inter-connectedness of the 
heterogeneous elements characterized by the technological and non-technological 
(human, social, organizational) elements. The network space of the actor net-
work provides the domain of analysis that presents the accident aetiology resi-
dent in a network of heterogeneous elements that shape and are shaped by the 
network space. 

Germane to this work, the socio-technical system is a topic of inquiry within 
sociology that combines the social and technical paradigms and examines the 
relationship between them. As described by Coakes (2003:2), 'Socio-technical 
thinking is holistic in its essence; it is not the dichotomy implied by the name; it 
is an intertwining of human, organizational, technical and other facets'. Senge 
argues that since the world exhibits qualities of wholeness, the relevance of sys-
temic thinking is captured within its paradigm of interdependency, complexity 
and wholeness (Flood, 1999). Although events can be considered to be discrete 
occurrences in time and space ' ... they are all interconnected. Events, then, can 
be understood only by contemplating the whole' (Flood, 1999:13). 

Through analysis of various aviation accidents and in particular cases of frat-
ricide (air-toground), the application of the ANT perspective and concepts from 
complexity theory revealed characteristics of the 'problem space' that helps us 
understand accident aetiology. The inherent complexity revealed through this 
perspective focuses on such characteristics as interrelations, inter connectivity 
and the dynamic nature of the relations that shape the 'social'. The comple-
mentary application of complexity theory as a framework helps us to under-
stand the complexity inherent within the 'social'. Complexity theory provides 
a new set of conceptual tools to help address the classic dilemmas of social sci-
ence, facilitating new ways of thinking of 'system' as well as challenging the 
reductionist perspective so resident in scientific enquiry (Walby, 2003). This is 
particularly germane to our sociological analysis of accident aetiology involving 
complex socio-technical systems. 

2 Complexity Thinking 
Complexity theory is an interdisciplinary field of research that has become recog-
nized as a new field of inquiry focusing on understanding the complexity inherent 
within the behaviour and nature of systems. 

As applied to the social sciences, complexity theory, complexity thinking pro-
vides a perspective of the 'social world' that reveals emergent properties, non-
linearity, consideration of the 'dynamic system', interactions, interrelations that 
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is transforming the traditional views of the social as reflected in ' ... Guastello 
(1995), Dooley (1997), Eoyang (1997), McKelvey (1997), Zimmerman et al. 
(1998), Anderson (1999), Poole et al. (2000)' (Dooleyet aI, 2003). 

Addressing issues that lie at the foundation of sociological theory, complexity 
theory facilitates' ... a re-conceptualization and re-thinking regarding the nature 
of systems reflecting dynamic inter-relationships between phenomenon. The new 
theorizations of system within complexity theory radically transform the concept 
making it applicable to the most dynamic and uneven of changing phenomena' 
(Walby, 2003:3). 

Important features that characterize complex systems and their behaviour 
include the ability to produce properties at the collective level that are not 
present when the components are considered individually as well as their sen-
sitivity to small perturbations. This dynamic behaviour of complex systems 
involves interactions at all scales. The complexity inherent within the system 
may result in changes in behaviour or topology that only become discernable at 
the macroscale, thereby making the analysis of accident aetiology problematic. 

The features of systems thinking and complexity theory that shape the 
methodological approach associated with this work stem from the conceptualiza-
tion that the general system is not simply an aggregation of objects but rather is 
a set of interrelated, interconnecting parts creating through their interaction new 
system properties, which do not exist in a loose collection of individual objects. 
The realization of this reification corrects many of the failures and mistakes of 
classical and modern science, 'especially in their attempts to understand and 
explain complex phenomena and processes' (Altmann and Koch, 1998:186). 

Germane to this work is the departure from linear models of accident cau-
sation to the acknowledgement of an inherent non-linearity of complex socio-
technical systems thereby recognizing the multiplicities whose causes and effects 
are always dependent on a variety of influences. 

Complexity theory thereby provides a framework that facilitates sociologi-
cal analysis focusing on systems recognizing qualities of nonlinear dynamic be-
haviour and emergence. 

3 Actor Network Theory 
As discussed in detail in Masys (2004, 2005), 'ANT ... is a relatively new, and 
still rapidly developing, direction in social theory that has emerged from post 
structuralism the writings of Foucault and Deleuze (and Guattari) in particu-
lar and sociological studies of science (e.g. laboratory studies) and technology 
with the writings of Serres, Latour and others such as CalIon and Law being 
particularly significant (Smith, 2003)'. 

'ANT was developed to analyse situations in which it is difficult to sepa-
rate human and non-humans, and in which the actors have variable forms and 
competencies' (CalIon 1999:183). 

Focusing on the socio-technical domain, ANT views the world as hetero-
geneous and thereby rejects the 'artificial' schism between the social and the 
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technical as illustrated in Latour (1993), CalIon (1986a, 1986b), Law (1987), 
Law and CalIon (1988). 

Latour (2005) refers to the 'social' as a trail of associations between hetero-
geneous elements' ... a type of connection between things that are not themselves 
social' . 

Recasting the social in terms of associations, relations, characterized by an 
inherent heterogeneity, and complex interconnectivity is a fundamental paradigm 
shift that challenges the traditional understanding of 'social' and in so doing 
facilitates insight into the world of complex socio-technical systems. 

Fundamental concepts of ANT are the conceptualization of the Actor and 
the Network. 

An actor-network, as cited in Aanestad and Hanseth (2000), 'is a heteroge-
neous network of human and nonhuman actors... where the relations between 
them are important, rather than their essential or inherent features (Latour, 
1987; CalIon, 1986, 1991).' 

The actor, whether technical or non-technical, is examined within the context 
of a heterogeneous network (Aanestad and Hanseth, 2000). 

The choice to use ANT as a theoretical framework for the analysis stems from 
its ability to analyze occasions offered by accidents and breakdowns whereby as 
Latour (2005:81) remarks' ... all of a sudden, completely silent intermediaries be-
come full-blown mediators; even objects, which a minute before appeared fully 
automatic, autonomous, and devoid of human agents, are now made of crowds 
of frantically moving humans with heavy equipment. Those who watched the 
Columbia shuttle instantly transformed form the most complicated human in-
strument ever assembled to a rain of debris falling over Texas will realize how 
quickly objects flip-flop their existence. Fortunately for ANT, the recent pro-
liferation of 'risky' objects has multiplied the occasions to hear, see, and feel 
what objects may be doing when they break other actors down.' ANT considers 
both social and technical determinism as flawed and thereby suggests a position 
that takes into consideration the socio-technical perspective such that neither 
the social nor technical are privileged. Hence ANT, as a theoretical perspective 
for this work provides a mechanism to examine accident aetiology from a sys-
tems viewpoint embracing a complexity paradigm. The properties associated 
with the ANT perspective allow one to approach the accident analysis without 
privileging either the social or technical elements recognizing the interconnectiv-
ity, nonlinearity and emergent behaviour that so characterizes accident aetiology 
and resides within complexity thinking. 

4 Discussion 

The ANT perspective that views the 'social' as an emergent characteristic of the 
network space complemented by the framework of complexity theory challenges 
the traditional cause and effect paradigm that is resident within the technical 
based approaches to accident aetiology. As an integrating element, complexity 
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theory provided not a methodology per se, but rather 'a conceptual framework, 
a way of thinking, and a way of seeing the world' (Mitleton-Kelly, 2004). 

A core feature of complexity theory is its fundamental re-thinking of the 
nature of systems, recognizing the simultaneously dynamic and systemic inter-
relationships and interconnectivity. Dekker (2005:31) points to the requirement 
for a systems perspective with regards to understanding accident aetiology. He 
asserts that: 

'Systems' thinking is about relationships and integration. It sees 
a socia-technical system not as a structure consisting of constituent 
departments, blunt ends and sharp ends, deficiencies and flaws, but 
as a complex web of dynamic, evolving relationships and transac-
tions .... Understanding the whole is quite different from understand-
ing an assembly of separate components. Instead of mechanical link-
ages between components (with a cause and an effect), it sees trans-
actionssimultaneous and mutually interdependent interactions. Such 
emergent properties are destroyed when the system is dissected and 
studied as a bunch of isolated components (a manager, department, 
regulator, manufacturer, operator). Emergent properties do not ex-
ist at lower levels; they cannot even be described meaningfully with 
languages appropriate for these lower levels'. 

Through the application of Complexity Theory we are introduced to non-linear 
processes such that small changes in inputs can have dramatic and unexpected 
effects on outputs. As articulated by Urry (2004): 

'This complex systems world is, according to Axelrod and Cohen, 
a world of avalanches, of founder effects, or self-restoring patterns, 
of apparently stable regimes that suddenly collapse, of punctuated 
equilibria, of 'butterfly effects', and of thresholds as systems suddenly 
tip from one state to another'. 

It is from this analysis (integrating ANT and Complexity Theory) that the 
hegemony of 'pilot error' is dispelled and replaced by an aetiology characterized 
by a 'de-centered causality'. The inherent complexity revealed through this 
perspective focuses on such characteristics as interrelations, interconnectivity 
and the dynamic nature of the relations that shape the 'social' as an emergent 
property. The actors within this network space do not preexist, rather they 
emerge as a result of an entangled interconnectivity, or as Barad (2007) argues 
as an 'intra-relating'. 

The analysis methodology of ANT, 'Following the actors', revealed the notion 
of a complex co-evolving ecosystem characterized by ' .. .intricate and multiple 
intertwined interactions and relationships. Connectivity and interdependence 
propagates the effects of actions, decisions and behaviours ... , but that propa-
gation or influence is not uniform as it depends on the degree of connectedness' 
(Mitleton-Kelly and Papaefthimiou, 2000). 
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Revealed in the analysis and as discussed in detail in Masys (2006), Fou-
cault's notion of disciplinary power helps to explain the inscription and transla-
tion processes within ANT as applied to socio-technical systems. The analysis of 
the inherent interconnectivity within complex socio-technical systems reaffirms 
Foucault's perspective that power is embodied in heterogeneous micro-practices 
and power is seen as enacted and discontinuous rather than stable and exer-
cised by a central actor (Thompson and McHugh, 1995) (cited in Rolland and 
Aanestad, 2003). As articulated by Yeung (2002), 

'Actors in these relational geometries are not static "things" fixed 
in time and space, but rather agencies whose relational practices 
unleash power inscribed in relational geometries and whose identities, 
subjectivities, and experiences are always (re)constituted by such 
practices. ' 

Further as articulated by Yeung (2002), 

' ... causal power can be ascribed to relational networks when their 
relational geometries generate an emergent effect such that the sum 
of these relations is much greater than that of individual actors. 
The geometrical configurations of these emergent network relations 
provide the central dynamic to drive networks and to produce spatial 
outcomes. Power is thus constituted collectively by network relations 
and its influence can only be realized in a relational sense through the 
exercise of its capacity to influence. Actors in relational geometries 
do not possess power per se. Through their practice, actors perform 
the role as the agents exercising that emergent power inscribed in 
relational geometries.' 

Combining ANT and complexity thinking with Foucault's conceptualization of 
power, highlights how the micro-practices 'constantly get configured and re-
configured as 'disciplinary technologies' (Aanestad and Hanseth, 2000), as re-
flected in design and organizational decisions. The 'hardwired politics' and 
power emerge as the 'deleted voices' that permeate the network space, the rela-
tions and the actors and shape decisionmaking and the accident aetiology. 

The network space 'worldview' captures the system perspective of aviation 
accident aetiology revealing the 'social' in terms of this 'hardwired politics'. 
The analysis revealed that the term pilot error is pejorative, a reflection of an 
event-based approach to accident causation that fails to capture the nonlinearity 
inherent within accident aetiology. A de-centered causality dispels the hegemony 
of 'pilot error', thereby facilitating an accident 'model' that is characterized as 
dynamic, nonlinear with emergent properties and embracing features resident 
within complexity theory. This entails a rethinking of some fundamental con-
cepts such as notions of causality, agency, power, space and time. As Barad 
(2007: 394) argues, ' .. .future moments don't follow present ones like beads on 
a string. Effect does not follow cause hand over fist ... causality is an entangled 
affair.' Deleuze's perspective of space-time as "folded, crumpled, and multi-
dimensional" (Deleuze,1995) is germane to the conceptualization of ANT. It is 

201 



this very nature of this space-time schema that "the coordinates of distance and 
proximity are transformed by a folding, refolding, and unfolding that eschews 
ideas such as linearity" (Smith, 2003). 

As Latour (1996:238) remarks ' ... the social as actor network is hybrid: it is 
a heterogenesis that consists of discursive, human, and material elements, which 
simultaneously coexist, and which cannot be separated from one another'. Com-
plexity theory, as a complementary theoretical perspective to sociology, increases 
the conceptual depth of analysis and understanding regarding accident aetiology 
involving complex socio-technical systems. 

5 Conclusion 
The application of systems theory facilitates a foundational perspective that 
guides the development of an accident aetiology model based on insights from 
ANT and complexity theory. Through an analysis facilitated by ANT, the hege-
mony of 'blamism' associated with 'pilot error' is replaced with a de-centered 
accident aetiology that is revealed within a network of heterogeneous elements. 
Hard-wired politics (reified as 'illusions of certainty') and power characterize the 
network space; thereby shaping the aetiology of the accidents and transcending 
the linearity associated with traditional understanding of accident aetiology. The 
contribution of complexity thinking to sociology and in particular to the study of 
complex socio-technical systems is reflected in our attention to the dynamic pro-
cesses, interconnectivity and relationality facilitating a rethinking regarding the 
concept of system. The application of complexity theory facilitates a paradigm 
shift complementing the perspective of ANT and systems theory. Together ANT 
and Complexity Theory provides a framework for thinking through larger im-
plications of theories detailing accident aetiology. It reworks our understanding 
of what happens in accidents. The results of this work are far reaching in terms 
of how we view sociotechnical systems and accident aetiology. 
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The modelling of livestock movements within Australia is of national importance 
for the purposes of the management and control of exotic disease spread, infrastructure 
development and the economic forecasting of livestock markets. In this paper an agent 
based model for the forecasting of livestock movements is presented. This models 
livestock movements from farm to farm through a saleyard. The decision of farmers to 
sell or buy cattle is often complex and involves many factors such as climate forecast, 
commodity prices, the type of farm enterprise, the number of animals available and 
associated off-shore effects. In this model the farm agent's intelligence is implemented 
using a fuzzy decision tree that utilises two of these factors. These two factors are 
the livestock price fetched at the last sale and the number of stock on the farm. On 
each iteration of the model farms choose either to buy, sell or abstain from the market 
thus creating an artificial supply and demand. The buyers and sellers then congregate 
at the saleyard where livestock are auctioned using a second price sealed bid. The 
price time series output by the model exhibits properties similar to those found in real 
livestock markets. 



1 Introduction 
The development of a national scale spatial simulation model for the modelling 
of livestock movements has been identified as a project of national importance 
by the Australian Department of Agriculture Fisheries and Forestry. Such a 
model would have applications in the development of policy and risk assessments 
surrounding exotic disease outbreaks, economic forecasting and infrastructure 
planning. 

In this work an agent based modelling (ABM) approach is utilised for this 
purpose. The ABM approach is grounded in complex systems science and can 
be used to model non-linear systems such as those found in social and biological 
systems. For example, ABM techniques have been used in the development of 
models for the study of financial markets [1, 2, 11]. 

To utilise an ABM approach requires the identification of the agent types 
that are participating within the complex system and the development of the 
intelligence within the agents. The development of the intelligence within the 
agents is a key factor in determining realistic outputs for the model and is an 
area of active research [12]. 

The modelling of livestock movements can be achieved through the modelling 
of livestock markets as it is the latter that drives the former. Livestock markets 
are complex systems influenced by many factors. For example, rainfall , livestock 
prices, interest rates and feed prices all affect the decision making of stakeholders 
within the system which in turn influences the market. 

For the purposes of this work the initial focus has been on beef cattle markets. 
Within the beef cattle sector the stakeholders are farmers, abattoirs, exporters, 
traders and feedlots. It is these stakeholders that are the agents within the 
model. However, in an effort to gauge the effectiveness of the ABM approach 
the model was simplified by considering only the farmer and saleyard agents. 
This simplification meant that only farm to farm movements through a saleyard 
were modelled. 

Using this simplification and by implementing simple intelligence with farmer 
agents and a saleyard auction, it is shown that the price time series generated 
by the model has the same statistical and chaotic properties as those found in 
actual cattle markets. 

This paper is divided into four sections. In §2 the livestock market is dis-
cussed and the models agents identified. In §3 the ABM that was implemented 
is described while in §4 results are presented. Conclusions and further work are 
given in §5. 

2 The Market 
A single trade between a buyer and a seller does not constitute a market. A 
market is created through a collection of trades between multiple buyers and 
sellers for a common commodity. The existence of a market is demonstrated 
through prices and trade volumes. The market operates under a number of 
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different sets of rules such as the rules of supply and demand and the rules of 
trading. 

Within cattle markets agents can buy or sell or as in the case of farmers 
take on the dual role of buyer and seller. The agents and their interactions are 
illustrated in Fig. 1. 

51 52 53 

Abattoir AbattOIr 

Figure 1: The daily trade cycle. 

Fig. 1 illustrates the daily trade cycle of the agents participating in the cattle 
market. Farmers are the primary producers of livestock and depending upon 
their enterprise type may breed or fatten cattle for the purposes of sale. Traders 
are opportunists within the market only buying livestock to sell again in the 
short term. Exporters buy livestock for the purposes of export while abattoirs 
buy livestock for the purposes of slaughter. Feedlots are a special instance of a 
farmer in that they buy cattle for fattening before selling them on to an abattoir 
or an exporter. The saleyard has also been identified as an agent as it is a place 
where buyers and sellers congregate for the purposes of trading livestock through 
an auction. 

Further, the daily trade cycle given in Fig. 1 is broken up into three stages, 
81, 82 and 83. 8tage 81 is made up of the agents that offer their cattle for 
sale while stage 82 is the group of agents, with the exception of saleyards, that 
would buy cattle. Again taking the example of farmers, they have the choice of 
selling directly to other agents such as other farmers and feedlots or offering their 
cattle for sale through a saleyard. It is the saleyard that necessitates the need for 
stage 83. 8tage 83 is made up of agents that purchase cattle through a saleyard. 
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Immediately evident is the magnification role, in terms of the distribution of 
animals, that saleyards have within cattle markets. 

3 The Agent Based Model 
To reduce the complexity of the cattle market an agent based model was imple-
mented that focused on farm to farm trades through a saleyard. This necessi-
tated the development of a farmer agent 's intelligence for decision making for 
the purposes of creating an artificial supply and demand. This decision making 
by farmers was centered around two questions: "Should I buy/sell cattle?" and 
if so, "How many cattle should I buy/sell?" . 

There are many factors that influence farmer decision making. Some of these 
factors are on farm cattle numbers, rainfall, commodity price, the region in which 
their farm resides, the types of animals that the farm produces and the type of 
farm enterprise. 

In the development of the model, two of these factors were implemented. 
These two factors were the on farm cattle numbers (stock on hand) s and the 
market price p. For example, when price is low and stock on hand is low then 
the farmers decision would be to buy and not to sell. Conversely, if the price p is 
high and the stock on hand s is high then the farmers decision would be to sell 
and not buy. These factors and their consequent decisions can be represented 
by way of a matrix as depicted in Fig. 2: 

Buy Sell 
prtce Price 

L A H A H 

L B M M 
L 0 M M 

'" '" a a 
0 M M M 0 " A " M M M 

~ if A 

<L " c. 

H M M 0 H M M S 

Figure 2: The sell/buy decision matrices. 

The entries in the two matrices represent the cases don't sell/buy (D), buy 
(B), sell (S) and maybe buy/sell (M). The columns/rows of the matrix depict 
the status of each of the two factors while the values of the factors can either be 
low (L), average (A) or high (H). 

These values low (L), average (A) or high (H) were represented by fuzzy vari-
ables. FUzzy variables were first introduced by Zadeh [13]. The fuzzy variables 
in the decision matrices shown in Fig. 2 low, average and high were defined as: 
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{
low = 0 ~ price::::: 0.9 

p, = average = price E ¢(1.0, 0.1) 
high = 1.1 ~ price::::: 2.0 

(1) 

Within equation 1 the function ¢ is a trapezoidal function centered at 1.0 
with endpoints at 0.9 and 1.1. 

For the purposes of modelling, a saleyard in South East Queensland was 
chosen. The farms that participated in the market were those farms whose 
closest selling centre was the chosen saleyard. The stock on hand s for a farm 
i was calculated using the ratio of actual stock on hand Si by average stock on 
hand Si . The value for the average stock on hand Si was derived from Ag-Stats 
census data [3]. Thus, as a farm i bought and sold stock the fuzzy value of the 
stock on hand p,f would change. 

Initially, the current price p at the saleyard was set to p = 1.0 which yielded 
a fuzzy value p,P = average. The saleyard's current price p then fluctuated as a 
result of an auction process. 

On each time step t farms were selected to buy and/or sell based on the 
outcome of applying the fuzzy decision matrices in Fig. 2. However, the decision 
matrices of Fig. 2 were modified to include a graded multiplication factor. The 
resulting matrices are given in Fig. 3. 

Buy S,II 

Price Price 

A H A H 

2.0 1.5 1.0 0.0 0.5 1.0 
U> l [ 
~ 1.5 1.0 0.5 0 0.5 A , 1.0 1.5 
" " A 
~ ~ a. 

H 1.0 0.5 0.0 H 1.0 1.5 2.0 

Figure 3: The multipliers for selection pressures of buying and selling. 

The multiplication factors were used to compute a selection pressure for each 
farm i for each of the cases of buying and selling. The selection pressure for a 
selling farm ,~ell was calculated by first calculating the probability that farm i 
would sell. This probability Pi (sell) was the expected number of selling farms 
divided by the total number of farms. The expected number of selling farms was 
determined through expert estimates gathered by the Australian Department of 
Fisheries and Forestry (DAFF) [4]. 

The multiplier for farm i to sell m~en was then applied to the probability of 
a farm selling Pi (sell) yielding: 

,rell = m~ell x Pi (sell) . 
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A random number ri where ri E [0,1) for farm i was then computed and 
applied to the function gh) where: 

( .) _ {particiPate if ri < 'Yfell 
g r, -

abstain otherwise 
(2) 

If farm i was found to be a selling farm participating in the market then the 
number of stock needed to be calculated for sending to market. This was the 
actual stock on hand O.lsrj where rj was a random number and rj E [0,1). 

The farms selection pressure for buying 'Y~uy was calculated in a similar 
manner and the decision made to buy using the same function g(ri). The 
number of stock to buy was also computed using the formula O.lsrj where rj is 
a random number and rj E [0,1). 

Having completed the decision making process for buying and selling, the 
farms participating in the market began to buy and sell at auction. The actual 
auction technique implemented was a second price sealed bid. That is each buyer 
made one bid on the current lot and the bid was secret. That is no bidder knew 
what other bidders had bid. The winning bidder was the bidder with the highest 
bid but they only paid the losing bidder's price. 

The second price sealed bid auction was used as it is weakly equivalent to 
an English auction [10]. In an English auction bidding for a good starts at low 
price and ascends until there is only one bidder left. The last bidder left then 
pays the price for the good that they bid. Further, in an English auction bids 
are public. In Australian saleyards a variant of the English auction is used. In 
this variant the price paid is calculated as follows. If the bids are progressing in 
1 cent increments per kilogram then the price paid is the highest bid less 80% 
of the bid increment. Likewise, if bidding is progressing in 0.5 cent increments 
per kilogram then the pice paid per kilogram is the highest bid less 80% of the 
bid increment. For example, if the highest price was 150 cents then the winning 
bidder would pay 149.2 cents. If the increment was half cent bids then the price 
would be 149.6 cents. 

Within the model, bidders bid on each lot until their required number of 
stock is purchased. After each round of bidding a market supply and demand 
factor was calculated. This modified the starting price of the bids for the lot. 
Actual bids were then modified by a choosing a random number from a Gaussian 
distribution centered at the "last lot price" with a variance of 0.005. 

4 Results 
A random output of the price time series from the model was taken. This time 
series was over a period of 1000 time steps. A time step could be considered a 
weekly sale. This time series was then tested for chaotic behaviour and com-
pared against known cattle market chaos analysis to show that the cattle market 
created by the model has similar properties to a real cattle market. 
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The first step in the analysis of the model time series was to denoise the 
original signal. The wavelet shrinkage method of Donoho [5] was applied for 
this purpose. A shrinking threshold of 0.1 was selected for the signal denoising. 
Fig. 4 shows both the original signal (time series) on the left and the denoised 
signal on the right. 

l_t-t 

Figure 4: Time series of the original signal (left) and the denoised signal (right). 

Fig. 5 shows the phase portraits for the time series of the original signal on 
the left and the denoised signal on the right. 

Figure 5: Phase portrait of the original signal (left) and the denoised signal (right). 

From Fig. 5 it is evident that there are some similarities in distribution 
and density of trajectories in both two-dimensional phase space reconstructions. 
However, the trajectories of the denoised signal are smoother and free of random 
fluctuations. It may be seen that trajectories are quite mixed, change direction 
very quickly and build a complicated pattern. Thus, an assumption was made 
about chaotic behaviour of the model data. All the figures were produced using 
a freely available software package "Visual Recurrence Analysis 4.9" developed 
for topological analysis and qualitative assessment of time series [9]. 

The self-similarity of the model signal was tested by calculating correlation 
dimension introduced by Grassberger and Procaccia [6]. This measure helps 
quantify fractal features of the attractors. The graph of correlation dimensions 
for the reconstructed attractors of the original and denoised signals for the range 
of embedding dimensions m = 1 - 17 and time delay T = 11 is shown in Fig. 6. 

From Fig. 6 (left) it can be seen that the curve for the original signal achieves 
its plateau at the value Do 2.54. The value of the correlation dimension calcu-
lated for the denoised signal shown in Fig. 6 (right) was Dd 1.96 which is lower 
due to the reduction in the noise as compared to the original signal. This con-
firms the assumption about chaotic behaviour of the model data as attractors 
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Figure 6: Correlation dimension for the original signal (left) and the denoised signal 
(right). 

with fractional dimensions are typical of chaotic systems. Similar values for 
the correlation dimension were obtained in an analysis of a real cattle market 
by Kohzadi and Boyd [8]. This indicates that the behaviour of the model has 
produced chaotic properties similar to that of actual saleyards. 

The fractal features of the model time series were also tested by the calcula-
tion of the Hurst exponent H [7]. It is known that a Hurst exponent of H = 1 
results for smooth time series while a Hurst exponent of H = 0.5 characterises 
noise and a Hurst exponent of 0.5 <= H <= 1 indicates a natural process. A 
Hurst exponent calculated for the denoised signal was found to have a value 
of H = 0.62 while the value of the Hurst exponent estimated for a real cattle 
market data was found to be a little lower at H = 0.51 [8]. 

To continue the analysis of the model time series a recurrence plot of the de-
noised signal was constructed. The recurrence plot indicated phase transitions 
and instationarities within the signal. Also, positive values of maximal Lyapunov 
exponents Ll = 0.3 and Ld = 0.6 calculated for the original and denoised sig-
nals respectively indicated the sensitive dependence on initial conditions. This 
suggests exponential divergence of nearby trajectories of the attractor and chaos. 

5 Conclusions and Further Work 
In this paper an agent based model has been put forward for the modelling 
of cattle movements. This model focussed on the movement of cattle from 
farm to farm through a saleyard. Using fuzzy decision tree for the decision 
making within the farm agents and an auction simulation it was shown that 
the model produced price time series that had characteristics similar to that of 
real saleyards. This has laid a strong foundation for further development of the 
model. It is envisaged that improving the agent decision making processes will 
be a key factor in improving the model outputs and is an area of active research. 
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We consider a variant of so called power-law random graph. A sequence of expected 
degrees corresponds to a power-law degree distribution with finite mean and infinite 
variance. In previous works the asymptotic picture with number of nodes limiting 
to infinity has been considered. It was found that an interesting structure appears. 
It has resemblance with such graphs like the Internet graph. Some simulations have 
shown that a finite sized variant has similar properties as well. Here we investigate 
this case in more analytical fashion, and, with help of some simple lower bounds for 
large valued expectations of relevant random variables, we can shed some light into this 
issue. A new term, 'communication range random graph' is introduced to emphasize 
that some further restrictions are needed to have a relevant random graph model for 
a reasonable sized communication network, like the Internet. In this case a pleasant 
model is obtained, giving the opportunity to understand such networks on an intuitive 
level. This would be beneficial in order to understand, say, how a particular routing 
works in such networks. 

1 Introduction 
Since the pioneering work by three Faloutsos brothers, [1] and some other groups 
like that of Barabasi's [4], around the millennium, so called power-law graphs, 
with degree sequence obeying power-law distribution with finite mean and in-
finite variance, have attracted high interest by several authors. This degree 
sequence is argued to reflect some fundamental aspects of some communication 
networks and some other natural and technological networks. It appears that 
this concept can be turned into a mathematical object in several ways, with 



provable properties, see for instance [14, 2, 7, 8, 9, 13]. However, for the sake 
of tractability, asymptotic regime with growing number of nodes, N -t 00, has 
been most popular. Some quite interesting results were obtained [11, 12]. For 
instance, it was found that a random graph variant of this model, where with 
a given degree sequence links are drawn as randomly as possible, produces a 
graph with some characteristic properties that has correspondence with such 
network as the Internet itself, at its autonomous systems level (AS-graph). A 
kind of 'soft-hierarchy' of large degree nodes is formed only due to combinatorial 
probabilities. It is convenient to categorize nodes with increasing degrees into 
'tiers' with nodes in certain subsequent intervals of degrees. It is sufficient to 
consider approximately log log N tiers. This can be done in a way that a node 
in a tier has at least one link to upper-laying next tier, with probability tending 
to 1, asymptotically. The hierarchical part of nodes was called the core. Thus 
very short (log log N) paths exist from the bottom to top of the core. It was 
also shown that even shorter paths are needed to find this core for almost any 
node in the same component. Thus, a log log N asymptotical upper bound for 
distance in the giant component was established. These results with extensions 
were obtained independently by Chung and others, [2, 7], using some refined 
methods of random graph theory. However, we found our more elementary ap-
proach with the concept of the core also very useful giving an intuitive insight. 
Refined variants of the theory can be found in works of van der Hofstad and 
others, [8], showing, among other issues, that the log log N upper bound is the 
best possible. 

However, it was apparent from the proofs, that convergence can be very slow, 
involving such functions like 1/ log log N with limit 0, that is approached only 
with 'unrealistically' large values of N, certainly unimaginable in the framework 
of communication networks. Some simulations indicated that in spite of this 
some reasonably sized graphs have properties that are similar to this asymptotic 
picture. That is why it is interesting to study this question in more details using 
an analytical approach. Here we do some first steps into this direction. 

It is also interesting, that the asymptotic model indicates interesting con-
sequences for such graphs robustness against targeted attacks against the top 
level nodes. Such graphs show good robustness against such failures, at least in 
the terms of the distance: the remaining tiers are able to maintain connectivity 
with the price of only an insignificant number of extra hops. However, here it 
is also important to know how valid these results are for reasonable graph sizes. 
Recently, possibilities of extending the basic model by 'redirecting' the links, 
have been discussed. Here it is possible that the asymptotic picture is 'non 
convergent', meaning that it tells nothing about the finite variant of the graph. 

2 Model definition and asymptotic results 
We consider a variant of power-law random graph, similar to one proposed by 
Chung and Lu [7], see also: [14, 13] . A natural number, N> 0, is the number 
of nodes in the graph. Nodes are labeled with natural numbers 1,2"" ,N. A 
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node with label i, 1 :::; i :::; N has 'capacity', .Ai = (Nji)Oi, with real number 
a, ~ < a < 1, which reflects the power-law degree sequence. For each possible 
unordered pair of nodes {i,j}, i,j E {l, 2"" ,N}, we associate the number of 
links between those nodes as a random variable Ei,j with Poisson distribution, 
with expected value (Ei,j) = .Ai.Ajj2:~l .Ai. All these random variables are 
considered as independent. In shorthand we write Ei,j ~ PO(.Ai.Ajj LN ), with 
LN == 2:~1 .Ai. Thus multiple links and self-loops are allowed. However, such 
artifacts are not too harmful, since the vast majority of these variables take 
values 0 or 1 in a large enough graph. The expected degree of node i, di , is 
thus di = (2:;-:1 Ei,j) = 2:f=l .Ai.Aj j 2:~l.Ai = .Ai, due to a basic property for 
the sum of independent Poisson distributed random variables. Thus .Ai has the 
meaning of expected degree of node i. 

Let us define the following sequence of functions: 

_1_ + c(N) 
T-1 T-2 
(T - 2)!3j-l (N) + c(N), j = 1,2"" 

(1) 

with T~l = a, c(N) = l(N)j log Nand l(·) is a very slowly diverging function 
as its argument grows to infinity. 

We define the 'upper layers' as 

Uo == {1}, Uj == {i : .Ai ~ N(3j(N)}, j = 1,2"" . 

Provided that l (.) fulfills: l (1) 1, l (N) j log log log N --+ 0 and 
l (N) j log log log log N --+ 00, we had the following result for the power-law graph 
described above: Let 

k* == k*(N) := r loglogN l' 
I-Iog(T - 2) 

where r'l, denotes the least integer greater than or equal to its argument. 
Then the hop-count distance between two randomly chosen vertices of the gi-
ant component, which exists asymptotically almost surely (a.a.s.), is less than 
2k*(N)(1+o(1)), a.a.s. We define the core, C, as the upper layer Uk" Later on 
this proposition was strengthened considerably, one such result being that this 
upper bound is tight [8]. However, such more detailed analysis is very involved 
and that is why we prefer to stay on the level of simple upper bounds, also in 
what follows. Roughly speaking, the idea of our proof of Theorem 2 is that the 
probability that a node i in any layer Uj has a link to the upper layer Uj - 1 

with probability tending to 1 as N --+ 00 (we write this as: Uj '3 i +-+ Uj - 1 --+ 1). 
Thus, it takes at most k* hops to travel from the lowest layer Uk to the top de-
gree node. Further, almost any node within the giant component has a path to 
some node in Uk', with a number of hops that is sub-linear with log log N. Thus, 
the upper bound follows. However, as we see in the next section, the convergence 
of probability to 1 can be very slow, say, Uj '3 i +-+ Uj - 1 ~ 1- logl~gN' c> 0, 
a convergence rate that is practically 'unobservable' in our framework. Thus 
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it is a relevant question whether this asymptotic picture tells anything about a 
graph with only a reasonably large number of nodes. Some simulations seem to 
indicate that the answer is positive, see e.g. [16, 12, 17]. However, we found that 
in order to find a corresponding above described layer structure in a finite model 
one must define function l (.) in some particular way, not prescribed by its asymp-
totic behavior only. In this paper our aim is to explain such circumstances and 
indicate a way how such finite sized random graphs can be analysed, and thus 
to make such random graph models more usable for modeling communication 
networks. 

3 Analysis of 'communication range' graphs 
It is easy to see that the cardinality of layer j > 0 is: 1 Uj 1= lNl-,Bj(N)/QJ 
lN1-(T-l),Bj(N) J, where, L·J is the largest integer smaller or equal to the argu-
ment. Thus we have a lower bound for the sum of capacities in a layer j > 0: 

V(Uj ) == L Ai 2: N,Bj(N) lN1-(T-l),Bj(N) J 2: N 1-(T-2),Bj(N) _N,Bj(N) == Vo(Uj ) 
iEUj 

and V (Uo) = NQ. For L N we have asymptotically linear scaling with N. Indeed, 
it is easy to see that LN 2: NQ JoN (I+x)-Qdx 2: l~Q(N -NQ) 2: l~QN, where 
C can be taken arbitrarily close to 1, provided that N is large enough. For 
instance, C = 9/10 is valid provided that N > 10 1":". However, notably these 
bounds are not uniform with Q. For Q, close to 1, we would have to choose a 
small value for c, for any reasonable N. This is a general trend here, since we 
must also fix the range of Q more precisely, not just stating that 1/2 < Q < 1, 
which was sufficient for the asymptotic analysis. This circumstance reflects the 
fact that the asymptotic regime is approached sensitively with respect to Q. 

Our hypothesis is that for communication networks with N in reasonable range 
of thousands of nodes or tens thousands of nodes, it is necessary to have Q in 
the lower half of the range (0,1) then the asymptotic range is reasonably close. 
Luckily, in the case of the Internet, this is a range of Q that has been observed. 
We call this range of Nand Q, the communication range. Similarly we have: 

v; (U·) > c·N1-(T-2){3j(N) o J - J 

with constants Cj, close to 1, provided Nand T are in the communication range. 
Within the same range, we can easily find a lower bound for the probability that 
a node in layer j has at least one link to layer j - 1: 

Uj (N):3 i f-7 Uj-1(N) = 1- exp(-AY(Uj-1)/LN) 

2: 1 - exp( - Cj - l e1(N)) == Pj. 
C 

(2) 

This relation also shows the delicacy of the communication range, where we can 
approximate Cj/c by 1 - otherwise we would need a number far from 1, giving 
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a big effect to the lower bound Po. Say, if a is close to 1, this ratio would be 
a big number resulting in a very low probability. Notably, Po is also sensitive 
to the choice of function l (. ). In the asymptotic sense these circumstances are 
irrelevant, since in any case Po --t 1 as N --t 00, if only leN) --t 00. 

We wish to show that in communication range, a particularly defined 'core' 
has a similar role as in the asymptotic graph. In particular, the log log N scaling 
of distance is roughly valid. We show that the lower bound of expected number of 
nodes that have a link to a core node that has a path through the core hierarchy 
up to the top is large enough and suggests that the log log N upper bound is 
valid within the communication range, for the vast majority of nodes. 

Assume fixed N and take a natural number x > O. The probability that a 
node in layer Ux , has a link to Ux - l is lower bounded by Px' The probability that 
the same node has a path to Ux - 2 , through Ux - l , is lower bounded by PxPx-I' 

And so forth, probability that the same node has a path to the top node 1, going 
through at most x layers, is lower bounded by PxPx-1 ... Pl. Denoting by ex the 
minimal ratio? in relation (2), in the corresponding range of j, and denoting 

(3) 

we find that the probability that a node in layer Ux has a path described above 
is lower bounded by P5. Note that, in asymptotic range, Po tends to 1 (very 
slowly), however, within our finite range this is an important parameter affecting 
the quality of bounds. 

Denote by U~ c Ux the nodes in layer Ux having a valid path with upmost 
x hops within the subsequent layers to the top node 1. As a result we have: 

I U~ I 2: Po I Ux I 
V(U~) 2: N(3xpo I Ux I . 

(4) 

Denote by Nx the nodes that are in U~ or have a link to a node in it. 
The probability that a node outside U~ has link to it is lower bounded by 
1 - exp( - Vi~~)) 2: ~ Vi~~). That is why, for the conditional expectation, we 
have: 

(I Nx III U~ I) 2: ~ Vi~~)· 
Therefore, according to (4), 

(5) 

The task is to maximise the bound (5), in a way that x is not too large. 
It appears that asymptotically we end up with the setting that is in line with 
Theorem 2. However, it is also possible to find a 'setting' of l(.) and x that 
corresponds to asymptotic-like behavior in the communication range. To get 
a qualitative picture, we make simplifications in relation (5), assuming all con-
stants, that are close to 1, equal to one. As a result we get an approximate lower 
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bound for (I N x I) ~ sex , l): 

(T_2)X+l T-2 
s(x,l)~Nl- T 1 (l-exp(-m)Ym- 3 - T , m=exp«3-r)l). (6) 

The maximum is found as solution of equations a8~~,I) = 0, a8~~,I) = 0, and by 
comparing values of the function in the closest integer arguments. Although the 
equations are not solvable in closed form, the first one yields the relation: 

os(x,l) log log N I (IOg(I/(I-exp(-m))) -':--'--"- = 0 {:} x = + og - 1 ax -log(r - 2) -log(r - 2) , (7) 

The first term is analogous to the one in Theorem 2, the next one depends on 
the choice of l through mel), which should be found from the second equation. 
However, we can see the asymptotical regime from these equations. Indeed, we 
see that the relevant factor of s, with respect to argument l, is asymptotically 
m- ;.:::; exp (ex~(~)) f'V m- ;.:::; exp (IOg(~o-'?~)~~(m))' where we took into account 
the equation (7). The second term suggests that m should be an increasing 
function, at least threefold logarithm, and l should be no slower than fourfold 
logarithm. The first term suggests that it should not be too fast, in this respect 
the lowest possible would be the best, and gives the maximum. However, as 
suggested by the Theorem 2, the leading term is indifferent with respect to this 
range. Indeed, if we make the corresponding substitution to (7), we see that the 
leading term is just k*. 

If we substitute these asymptotic estimates, as arguments to (6), we find 

sex, l) 0< N exp( -(r - 2)l(N)), (8) 

which is only slightly lower than N. Thus, the factor exp(-(r-2)l(N)) has the 
meaning of lower bound expected 'density' of neighbors of the core nodes, with 
valid paths to the top node. This density is almost constant, as a function of 
N, between 1/ log log log Nand 1/ log log N. In the communication range, one 
would guess that the best choice would be 1/ log log log N. Numerical calcula-
tions seems to support this, see Figure 1. Our next plot, in Figure 2, indicates 
that in this range the choice of this function has some effect. By taking for 
the x its optimal value x*, we see that the function s(x*, l), see 6, has a visible 
maximum. This numerics showed also that in a very wide range of N, from 100 
to lOlO, a rather constant fraction of nodes, in lower bound expectation, are 
neighbors of core with valid paths to the top. In our case with r = 2.5, this was 
around 20 percent. As a result, a random node is able to find a node in the core 
that has a path to its top, with a moderate sized search: approximately every 
fifth node is of this type. 

This kind of 'quasi-stationarity' or extremely low dependence on N should be 
good news, since it simplifies the usability of such models. For instance, sCx, l) 
and l can be taken as constant parameters hardly changing in any reasonable 
range. We also see that the height of the core is almost constant, and its major 
term is a function of type k* (N). One drawback is that we have only lower bound 
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Figure 1: Plot of functions, calculated in 
points N = 101c+l , k = 1,2,·· · ,9: x(N), 
log 1+-2) log log N, l(N), log log log N 
and og log log log N, listed from top to 
down. 

22500 

20000 

Figure 2: Plot of function s(x*, l) , with 
N = 105 and with fixed first argument 
with value x*, that it takes at maximum. 

type results and some unrigorous estimates were done. However, it is quite likely 
that a thorough analysis will not reveal any substantial new features, although 
it is mandatory to check it. It would be interesting to compare this approach 
with a 'conceptual model' of the Internet, called the 'Jellyfish' , [15]. 
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Many systems can be described in terms of networks of discrete elements and their 
various relationships to one another. A semantic network, or multi-relational network, 
is a directed labeled graph consisting of a heterogeneous set of entities connected by 
a heterogeneous set of relationships. Semantic networks serve as a promising general-
purpose modeling substrate for complex systems. Various standardized formats and 
tools are now available to support practical, large-scale semantic network models. First, 
the Resource Description Framework (RDF) offers a standardized semantic network 
data model that can be further formalized by ontology modeling languages such as 
RDF Schema (RDFS) and the Web Ontology Language (OWL). Second, the recent 
introduction of highly performant triple-stores (i.e. semantic network databases) al-
lows semantic network models on the order of 109 edges to be efficiently stored and 
manipulated. RDF and its related technologies are currently used extensively in the 
domains of computer science, digital library science, and the biological sciences. This 
article will provide an introduction to RDF /RDFS/OWL and an examination of its 
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suitability to model discrete element complex systems. 

1 Introduction 
The figurehead of the Semantic Web initiative, Tim Berners-Lee, describes the 
Semantic Web as 

... an extension of the current web in which information is given 
well-defined meaning, better enabling computers and people to work 
in cooperation [2]. 

However, Berners-Lee's definition assumes an application space that is specific to 
the "web" and to the interaction between humans and machines. More generally, 
the Semantic Web is actually a conglomeration of standards and technologies 
that can be used in various disparate application spaces. The Semantic Web 
is simply a highly-distributed, standardized semantic network (Le. directed la-
beled network) data model and a set of tools to operate on that data model. 
With respect to the purpose of this article, the Semantic Web and its associated 
technologies can be leveraged to model and manipulate any system that can be 
represented as a heterogeneous set of discrete elements connected to one another 
by a set of heterogeneous relationships whether those elements are web pages, 
automata, cells, people, cities, etc. This article will introduce complexity science 
researchers to a collection of standards designed for modeling the heterogeneous 
relationships that compose systems and technologies that support large-scale 
data sets on the order to 109 edges. 

This article has the following outline. Section 2 presents a review of the 
Resource Description Framework (RDF). RDF is the standardized data model 
for representing a semantic network and is the foundational technology of the 
Semantic Web. Section 3 presents a review of both RDF Schema (RDFS) and the 
Web Ontology Language (OWL). RDFS and OWL are languages for abstractly 
defining the topological features of an RDF network and are analogous, in some 
ways, to the database schemas ofrelational databases (e.g. MySQL and Oracle). 
Section 4 presents a review of triple-store technology and its similarities and 
differences with the relational database. Finally, Section 5 presents the semantic 
network programming language Neno and the RDF virtual machine Fhat. 

2 The Resource Description Framework 
The Resource Description Framework (RDF) is a standardized data model for 
representing a semantic network [5]. RDF is not a syntax (Le. data format). 
There exist various RDF syntaxes and depending on the application space one 
syntax may be more appropriate than another. An RDF-based semantic net-
work is called an RDF network. An RDF network differs from the directed 
network of common knowledge because the edges in the network are qualified. 
For instance, in a directed network, an edge is represented as an ordered pair 
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(i,j). This relationship states that i is related to j by some unspecified type 
of relationship. Because edges are not qualified, all edges have a homogenous 
meaning in a directed network (e.g. a coauthorship network, a friendship net-
work, a transportation network). On the other hand, in an RDF network, edges 
are qualified such that a relationship is represented by an ordered triple (i, w, j). 
A triple can be interpreted as a statement composed of a subject, a predicate, 
and an object. The subject i is related to the object j by the predicate w. For 
instance, a scholarly network can be represented as an RDF network where an 
article cites an article, an author collaborates with an author, and an author is 
affiliated with an institution. Because edges are qualified, a heterogeneous set of 
elements can interact in multiple different ways within the same RDF network 
representation. It is the labeled edge that makes the Semantic Web and the se-
mantic network, in general, an appropriate data model for systems that require 
this level of description. 

In an RDF network, elements (Le. vertices, nodes) are called resources and 
resources are identified by Uniform Resource Identifiers (URI) [1]. The purpose 
of the URI is to provide a standardized, globally-unique naming convention for 
identifying any type of resource, where a "resource" can be anything (e.g. phys-
ical, virtual, conceptual, etc.). The URI allows every vertex and edge label 
in a semantic network to be uniquely identified such that RDF networks from 
disparate organizations can be unioned to form larger, and perhaps more com-
plete, models. The Semantic Web can span institutional boundaries to support 
a world-scale model. The generic syntax for a URI is 

<scheme name> : <hierarchical part> [ # <fragment> ] 

Examples of entities that can be denoted by a URI include: 

• a physical object (e.g. http://www .lanl. gOY /people#marko) 
• a physical component (e.g. http://www .lanl. gOY /people#markos_arm) 
• a virtual object (e.g. http://www .lanl. gov/index. html) 
• an abstract class (e.g. http://www.lanl.gov/people#Human). 

Even though each of the URIs presented above have an http schema name, 
only one is a Uniform Resource Locator (URL) [9] of popular knowledge: namely, 
http://www .lanl. gOY /index. html. The URL is a subclass of the URI. The 
URL is an address to a particular harvestable resource. While URIs can point 
to harvest able resources, in general, it is best to think of the URI as an address 
(i.e. pointer) to a particular concept. With respects to the previously presented 
URIs, Marko, his arm, and the class of humans are all concepts that are uniquely 
identified by some prescribed globally-unique URI. 

Along with URI resources, RDF supports the concept of a literal. Example 
literals include the integer 1, the string "marko", the float (or double) 1.034, 
the date 2007-11-30, etc. Refer to the XML Schema and Datatypes (XSD) 
specification for the complete classification of literals [3]. 
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If U is the set of all URIs and L is the set of all literals, then an RDF network 
(or the Semantic Web in general) can be formally defined as! 

G ~ (U x U x (U U L)). (1) 

To ease readability and creation, schema and hierarchies are usually prefixed 
(i.e. abbreviated). For example, in the following two triples, lanl is the prefix 
for http://www .lanl . gov /people#: 

<lanl:marko, lanl :worksWith, lanl:jhw> 
<lanl:marko, lanl:hasBodyPart, lanl:markos_arm> 

These triples are diagrammed in Figure 1. The union of all RDF triples is the 
Semantic Web. 

r--- lanl:hasBodyPart -{ lanl:markos_arm I 
lanl:worksWith -( lanl:jhw 

Figure 1: Two RDF triples as an RDF network. 

The benefit of RDF, and perhaps what is not generally appreciated, is that 
with RDF it is possible to represent anything in relation to anything by any 
type of qualified relationship. In many cases, this generality can lead to an 
uncontrolled soup of relationships; however, thanks to ontology languages such 
as RDFS and OWL, it is possible to formally constrain the topological features 
of an RDF network and thus, subsets of the larger Semantic Web. 

3 The RDF Schema and Web Ontology Lan-
guage 

The Resource Description Framework and Schema (RDFS) [4J and the Web 
Ontology Language (OWL) [6J are both RDF languages used to abstractly 
define resources in an RDF network. RDFS is simpler than OWL and is 
useful for creating class hierarchies and for specifying how instances of those 
classes can relate to one another. It provides three important constructs: 
rdfs:domain, rdfs:range, and rdfs:subClassOf 2 • While other constructs ex-
ist, these three tend to be the most frequently used when developing an RDFS 
ontology. Figure 2 provides an example of how these constructs are used. With 
RDFS (and OWL), there is a sharp distinction between the ontological- and 

1 Note that there also exists the concept of a blank node (i.e. anonymous node) . Blank 
nodes are important for creating n-ary relationships in RDF networks. Please refer to the 
official RDF specification for more information on the role of blank nodes. 

2 r dfs is a prefix for http : //wwv . w3. org/2000/01/rdf-schema# 
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lanl:Human J.-- rdfs:domain --{ lanl:worksFor }- rdfs:range 

+ rdfype ontology rdfype 

[ lanl:markO 1 la~~:::~:For ~ ( lanl::ANL 1 

Figure 2: The relationship between an instance and its ontology. 

instance-level of an RDF network. The ontological-level defines abstract classes 
(e.g. lanl: Human) and how they are related to one another. The instance-
level is tied to the ontological-level using the rdf: type predicate3 . For exam-
ple, any lanl:Human can be the rdfs:domain (subject) of a lanl:worksFor 
triple that has a lanl:Institution as its rdfs:range (object). Note that the 
lanl: Laboratory is an rdfs: subClassOf a lanl: Insti tution. According to 
the property of subsumption in RDFS reasoning, subclasses inherit their parent 
class restrictions. Thus, lanl: marko can have a lanl: worksFor relationship 
with lanl: LANL. Note that RDFS is not intended to constrain relationships, 
but instead to infer new relationships based on restrictions. For instance, if 
lanl : marko lanl: worksFor some other organization denoted X, it is inferred 
that that X is an rdf: type of lanl: Institution. While this is not intuitive 
for those familiar with constraint-based database schemas, such inferencing of 
new relationships is the norm in the RDFS and OWL world. 

Beyond the previously presented RDFS constructs, OWL has one pri-
mary construct that is used repeatedly: owl :Restriction4 . Example 
owl:Restrictions include, but are note limited to, owl:maxCardinality, 
owl:minCardinality, owl: cardinality, owl:hasValue, etc. With OWL, 
it is possible to state that a lanl: Human can work for no more than 1 
lanl: Insti tution. In such cases, the owl: maxCardinali ty restriction would 
be specified on the lanl: worksFor predicate. If there exist the triples 

<lanl:marko, lanl:worksFor, lanl:LANL> 
<lanl:marko, lanl:worksFor, lanl:LosAlamos>, 

an OWL reasoner would assume that lanl: LANL and lanl: LosAlamos are 
the same entity. This reasoning is due to the cardinality restriction on the 
lanl: worksFor predicate. 

There are two popular tools for creating RDFS and OWL ontologies: 

3 r df is a prefix for http://vww . w3. org/1999/02/22-rdf-syntax-ns# 
40wl is a prefix for http://wvw . w3.org/2002/07 /owl# 
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Protege5 (open source) and Top Braid Composer6 (proprietary). 

4 The Triple-Store 
There are many ways in which RDF networks are stored and distributed. In the 
simple situation, an RDF network is encoded in one of the many RDF syntaxes 
and made available through a web server (i.e. as a web document). In other 
situations, where RDF networks are large, a triple-store is used. A triple-store is 
to an RDF network what a relational database is to a data table. Other names for 
triple-stores include semantic repository, RDF store, graph store, RDF database. 
There are many different propriety and open-source triple-store providers. The 
most popular proprietary solutions include AllegroGraph 7 , Oracle RDF Spatial8 

and the OWLIM semantic repository9. The most popular open-source solution 
is Open SesamelO . 

The primary interface to a triple-store is SPARQL [7]. SPARQL is analogous 
to the relational database query language SQL. However, SPARQL is perhaps 
more similar to the query model employed by logic languages such as Prolog. 
The example query 

SELECT ?x 
WHERE { ?x <lanl:worksWith> <lanl:jhw> . } 

returns all resources that work with lanl: jhw. The variable ?x is a binding 
variable that must hold true for the duration for the query. A more complicated 
example is 

SELECT ?x ?y 
WHERE { 

?x <lanl:worksWith> ?y 
?x <rdf:type> <lanl:Human> 
?y <rdf:type> <lanl:Human> 
?y <lanl:worksFor> <lanl:LANL> 
?x <lanl:worksFor> <necsi:NECSI> . } 

The above query returns all collaborators such that one collaborator works for 
the Los Alamos National Laboratory (LANL) and the other collaborator works 
for the New England Complex Systems Institute (NECSI). An example return 
would be 

?x ?y 

lanl:marko necsi:carlos 
I lanl:jhw I necsi:carlos I 
I lanl:jbollen I necsi:carlos I 

5Protege available at: http://protege.stanford.edu/ 
6Top Braid Composer available at: http://www.topbraidcomposer.com/ 
7 AllegroGraph available at: http://www.franz.com/products/allegrograph/ 
80racle RDF Spatial available at: http://www.oracle.com/technology/tech/semantic_technolog; 
90WLIM available at: http://www.ontotext.com/owlim/ 

lOOpen Sesame available at: http://www.openrdf.org/ 
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The previous query would require a complex joining of tables in the re-
lational database model to yield the same information. Unlike the relational 
database index, the triple-store index is optimized for such semantic network 
queries (i.e. multi-relational queries). The triple-store a useful tool for storing, 
querying, and manipulating an RDF network. 

5 A Semantic Network Programming Language 
and an RDF Virtual Machine 

Neno/Fhat is a semantic network programming language and RDF virtual ma-
chine (RVM) specification [8]. Neno is an object-oriented language similar to 
C++ and Java. However, instead of Neno code compiling down to machine 
code or Java byte-code, Neno compiles to Fhat triple-code. An example Neno 
class is 

owl:Thing lanl:Human { 
lanl:lnstitution lanl:worksFor[O .. l]; 

xsd:nil lanl:quit(lanl:lnstitution x) { 

} 
} 

this.worksFor =- x; 

The above code defines the class lanl: Human. Any instance of lanl: Human 
can have either 0 or 1 lanl: worksFor relationships (i.e. owl: maxCardinali ty 
of 1). Furthermore, when the method lanl: quit is executed, it will de-
stroy any lanl : worksFor triple from that lanl: Human instance to the provided 
lanl : Institution x. 

Fhat is a virtual machine encoded in an RDF network and processes Fhat 
triple-code. This means that a Fhat's program counter, operand stack, variable 
frames, etc., are RDF sub-netwoks. Figure 3 denotes a Fhat processor (A) 
processing Neno triple-code (B) and other RDF data (C). 

Triple-Store 

i-A"-~--- -----::------""Ei] 
I to • 
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• I, • 
• I, • 
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:-~-~.: 
~ ........... --............................. -.. .. 

Figure 3: The Fhat RVM and Neno triple-code commingle with other RDF data. 

With Neno it is possible to represent both the system model and its algorith-
mic processes in a single RDF network. Furthermore with Fhat, it is possible 

228 



to include the virtual machine that executes those algorithms in the same sub-
strate. Given that the Semantic Web is a distributed data structure, where 
sub-networks of the larger Semantic Web RDF network exist in different triple-
stores or RDF documents around the world, it is possible to leverage Neno/Fhat 
to allow for distributed computing across these various data sets. If a particular 
model exists at domain X and a researcher located at domain Y needs to utilize 
that model for a computation, it is not necessary for the researcher at domain 
Y to download the data set from X. Instead, a Fhat processor and associated 
Neno code can move to domain X to utilize the data and return with results. 
In Neno/Fhat, the data doesn't move to the process, the process moves to the 
data. 

6 Conclusion 
This article presented a review of the standards and technologies associated with 
the Semantic Web that can be used for complex systems modeling. The World 
Wide Web provides a common, standardized substrate whereby researchers can 
easily publish and distribute documents (e.g. web pages, scholarly articles, etc.). 
Now with the Semantic Web, researchers can easily publish and distribute models 
and processes (e.g. data sets, algorithms, computing machines, etc.). 
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How do agents represent? 
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Representation is inherent to the concept of an agent, but its importance in complex 
systems has not yet been widely recognised. In this paper I introduce Peirce's theory 
of signs, which facilitates a definition of representation in general. In summary, repres-
entation means that for some agent, a model is used to stand in for another entity in a 
way that shapes the behaviour of the agent with respect to that entity. Representation 
in general is then related to the theories of representation that have developed within 
different disciplines. I compare theories of representation from metaphysics, military 
theory and systems theory. Additional complications arise in explaining the special 
case of mental representations, which is the focus of cognitive science. I consider the 
dominant theory of cognition - that the brain is a representational device - as well 
as the sceptical anti-representational response. Finally, I argue that representation 
distinguishes agents from non-representational objects: agents are objects capable of 
representation. 

1.1 Introduction 

Representation is an essential concept for understanding the behaviour of agents 
in a complex system. Consider traders in a stock exchange market as agents. 
If every agent has unmediated access to the value of a company (including its 
exact future profits discounted to present value), then the market cannot exist, 
since shareholders would only be willing to sell above this value, a price no 
rational buyer would payl. Only when partial information on value is allowed 

lOne might expect trades to be made exactly at the value of the stock. However, once a 
financial or time cost is included no rational buyer can exist. Why would an agent buy shares 
that never increase in real value and incur an exit fee? 



and different agents have access to different information is it possible to predict 
the formation of a market. In this case, each agent must construct a model 
representing the perceived value of a company. By communicating, agents can 
modify their models to take into account the representations other agents in their 
social network have constructed. Because there is a benefit in being connected 
to agents who are better at predicting future value, some agents may specialise 
in developing predictive models and charging other agents for access to their 
expectations (such as financial advisors). Markets would not exist if there were 
not differences between agents in their representations. Variety in representation 
allows the simultaneous existence of buyers and sellers, as well as the potential 
for a secondary market based on constructing representations and selling advice. 
Even though this is quite obvious, imperfect information, bounds on rationality, 
and consequently the need for constructing representations did not feature in 
the theories and models of classical economics. 

It turns out that an account of representation is just as important in un-
derstanding the role of the discipline of complex systems, as for understanding 
the behaviour of agents within a complex system. This is because the systems 
approach is a way of representing the world. When this is overlooked, systems 
applications may be blind to the limitations of the representations they employ. 
This discussion of representation is intended to be interpreted on two levels. On 
one level, when an analyst uses a complex systems approach, they invariably 
construct systems representations. On another level, when the system contains 
agents that also represent their environment, this must be accounted for in any 
model of the system. 

Section 1.2 makes the metaphysical assumptions of this paper explicit. Then 
in Section 1.3, Peirce's theory of signs is used as a basis for a theory of represent-
ation in general. When agents represent their environment, they may use either 
external or internal models. Section 1.4 surveys accounts of external representa-
tion across several disciplines, while Section 1.5 surveys internal representation, 
which has been discussed mostly in philosophy of mind and cognitive science. 
This paper concludes by defining 'agent' in Section 1.6, which demonstrates the 
strong link between agency and representation. 

1.2 Metaphysical Assumptions 
Before representation is discussed in detail, it is prudent to make the meta-
physical assumptions of this paper explicit. The metaphysical position I will 
adhere to is known as physicalism, the view that there are no kinds of things 
other than physical things. In particular, I assume that the relationship between 
macroscopic and microscopic phenomena is one of supervenience. The Stanford 
Encyclopedia of Philosophy offers the following definition: 

Definition 1 (Supervenience) A set of properties A supervenes upon another 
set B just in case no two things can differ with respect to A-properties without 
also differing with respect to their B-properties {40}. 
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Supervenience, along with physicalism, entails that in principle, all of the book-
keeping regarding forces can be accounted for in purely physical terms between 
arbitrarily small entities, when the set B is taken to be the properties of fun-
damental physics. This is because every time there is a change in a macro level 
property, there must be a corresponding change in the micro level properties. 
That the physcial forces fully account for the dynamics at the micro level tells 
us little about what physical predictions mean. Semantics is always relative to 
an agent's subjective experience of the world, a concept which does not feature 
in, and cannot be fully explained by, the elementary particles and fundamental 
forces of physics. First-person experience is just one example of an emergent 
property, the general reason why descriptions at other levels cannot be elimin-
ated. I will assume that forces in chemistry, biology, psychology and sociology 
do not add anything to the physical: that the laws of physics are conservative. 
This is consistent with Anderson's [3] twin assertions that all ordinary matter 
obeys simple electrodynamics and quantum theory, but that "the ability to re-
duce everything to simple fundamental laws does not imply that ability to start 
from those laws and reconstruct the universe". This assumption can be argued 
with, but it cannot be proved either way. I assume supervenience regarding 
the relationship between macro and micro phenomena because to do otherwise 
is to place some entities outside the domain of scientific explanation, and it is 
difficult to see what is achieved by doing so. Descartes' [21] non-physical mind 
that provided the basis for substance dualism in Meditations VI, and Bergson's 
[8] elan vital that animated the evolution and development of organisms, are 
examples of non-physical entities that have been postulated in science, and his-
tory suggests both acted as barriers to progress. Consequently, I only consider 
representations that supervene on the physical as meaningful. 

1.3 Representation in General 
Things don't mean: we construct meaning using representational 
systems - concepts and signs. 

Stuart Hall 

There are a number of reasons why unmediated interaction with the world 
can be undesirable. Some entities are distinctly unfriendly, others are inac-
cessible, and sometimes the process of interaction is too costly or time con-
suming. In order to understand anything about a solar flare on the surface of 
the Sun, mediated access, via the construction of models, is necessary to avoid 
the undesirable consequences of unmediated contact. A model acts as a rep-
resentation because it stands in for unmediated interaction with the system of 
interest. Other situations where representations stand in for unmediated in-
teraction include predicting properties of previously unrealised configurations; 
designing artifacts that do not exist; facilitating comparison of structural simil-
arities between apparently dissimilar phenomena; and generalising knowledge to 
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apply beyond a single entity at a single moment in time2 . As will be discussed 
in Section 1.5.1, the dominant theory of human cognition assumes that the mind 
is a representational device, and that the brain has representational content. 

In counterpoint to the important and varied roles of representation, there 
exists little formal work on representation in general. What are the necessary and 
sufficient conditions for representation to occur? What kinds of representations 
exist? One such general theory was proposed by Peirce, which he named the 
theory of signs or "semiotics". However, because much of his work was misplaced 
and posthumously edited non-chronologically into highly fragmented volumes, 
and since Peirce's unique and subtle philosophy requires explication before the 
finer points of his theory of signs can be appreciated, it remains under-utilised as 
a general theory ofrepresentation. Fortunately, Von Eckardt [63, p. 143-159J has 
performed considerable work to situate Peirce's theory of signs as a foundation 
for the more specialised debate on mental representation in cognitive science. 
I will draw heavily on Von Eckardt's interpretation of Peirce, since it is better 
oriented towards contemporary concerns in the theory of representation. Unlike 
Peirce or Von Eckardt, my interests apply to the field of complex systems, and 
so I will abuse the semiotic and cognitive science terminology by translating it 
into more general language. 

For Peirce, representation was an irreducible triadic relation between objects, 
signs and interpret ants. This implies that something is a sign only if it is a sign 
of an object with respect to an interpret ant [63, p. 145J. It also implies that 
the representation relation cannot be decomposed into diadic relations between 
entities, objects and signs. According to Peirce, representation can only be 
fully understood by considering the three components of the triadic relation 
simultaneously. 

In the triadic relation, the sign is a token that signifies the object. The 
more general term I will substitute for sign is model. Peirce's object is already 
quite general: it may be abstract or concrete, a singular object or a set of 
objects (a complex object). However, since objects do not in fact need to be 
objective (or concrete), I will use the more general term entity. The interpretant 
exists in the mind of the interpreter for whom the sign is a sign [63, p. 148J. 
Whereas Peirce and Von Eckardt limit their attention to human interpreters, I 
will generalise this to consider agents. The cost of this generalisation is that the 
precise nature of interpret ants cannot be specified in a way that applies to all 
agents. Consequently, I can only induce the existence of an interpretant by an 
observable effect on the agent's behaviour. The triadic relation between entity 
E, model M and interpretant I is illustrated in Figure 1.1. 

Von Eckardt [63, p. 158J summarises the value of Peirce's theory of signs for 
understanding representation in general as follows: 

1. Peirce's distinction between a representation and a representation bearer; 

2. His insistence that something can be a full-blown representation only if it 
is both grounded and interpreted; 

2This list paraphrases Kline [35, p. 19]. 
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Figure 1.1: Representation as a triadic relation between entity, model and inter-
pretant. 

3. His attempt to understand what makes a mental effect an interpret ant of 
some particular representation; 

4. His struggle with the problem of interpretation for mental representation; 

5. The idea that model and entity are related by two very different sets of 
relations-semantic relations (such as representing, signifying, referring to, 
and expressing) and the ground relations in virtue of which those semantic 
relations hold; 

6. His taxonomy of kinds of ground; and 

7. His apparent interest in ultimately understanding representation in a com-
pletely naturalistic way. 

Examining each of these points in turn, the first distinction leads Peirce to 
consider the character of a model itself. Von Eckardt uses the term "represent-
ation bearer" to refer to the properties of the model that belong to the model 
itself, and not to the entity it represents. In a similar vein, Kline [35] brings 
attention to the essential difference between a model and an entity by invoking 
what he calls Korzybski's Dictum, after Alfred Korzybski's [36] warning that 
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"the map is not the territory". It is important to remember that Korzybski's 
Dictum applies to all representations. It implies that a representation must be-
have differently to the entity in some contexts. Representations are not perfect 
substitutes, which means there always exist limits to their ability to stand in for 
the entity they represent. The other implication of this distinction is that it is 
both possible and useful to understand the properties of representation bearers 
as distinct from the properties of the entity they represent. 

The second item addresses the interpretation and grounds of a model. The 
reason that the interpret ant is a necessary component of the triadic relation is 
because a representation is more than just a logical similarity between two en-
tities. If a tree casts a shadow, it is not telling the time until an agent uses it to 
tell the time [1]. Or in the words of Dennett, "Nothing is intrinsically a repres-
entation of anything; something is a representation only for or to someone" [19, 
p. 101]. By shaping the agent's behaviour, I brings M into the appropriate re-
lation as a representation of E. That is, when an agent interprets (and therefore 
understands) the model, this grounds the model as a representation of E. 

The third item links interpretation with a change in behaviour. If I is in 
agent A, then the representation must be capable of shaping the behaviour of 
the agent through the presence of I. Peirce classified interpret ants as emotional 
(feelings), energetic (efforts) and logical (habit-changing) effects. According to 
Von Eckardt, logical effects, which modify the interpreter's disposition to behave, 
were considered the primary effect. 

The fourth item refers to the problem of infinite regress. While non-mental 
representation is relatively straightforward, issues arise when M is internal to the 
agent. The difficult question one faces is "what interprets a mental representa-
tion?" If mental representations are interpreted in the same way as non-mental 
representations, this gives rise to an infinite regress of thoughts interpreting 
thoughts [63, p. 282]. 

Separating semantic and ground relations, as noted in point five, allows one 
to account for how a semantic relation can come to exist. In order for a model M 
to produce an interpret ant I in an agent A, it is necessary for A to understand 
the representation, which requires A to have knowledge of what the ground is. 
The following example clarifies this account [63, p. 156]: 
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For example, suppose I see a photograph. To understand that pho-
tograph I must know (in some sense) that there are both a causal 
relation and a similarity relation between the photograph and its 
subject, and I must know (in some sense) the respects in which the 
photograph is a causal effect of and is similar to its subject. If I 
know all that, then I will be able to form a belief or a thought about 
the subject of the photograph (that is, who or what the photograph 
represents)-specifically, that there was such a subject and that this 
subject looked a certain way at the time the photograph was taken. 
In other words, by considering the photograph in conjunction with 
its ground I come to be in a relation to the object it represents. 



With respect to item six, according to Peirce, there exist three kinds of pure 
ground: iconic, indexical, and symbolic [63, p. 150]. Icons, such as diagrams 
and images, are models grounded by their intrinsic (first order) similarity to 
the entity they represent. An index, such as a weathervane, signifies an entity 
because of a causal or spatiotemporal connection between the index and the 
entity. Symbolic representations, such as words, are grounded by convention. 
Symbols act as models only because of the way they are consistently interpreted, 
which can then generate regular effects on the behaviour of the agent. 

In the final item, Von Eckardt interprets Peirce's theory of signs as natural-
istic, meaning closely connected to natural science. The naturalistic approach 
fits neatly with the metaphysical assumption of supervenience outlined in Sec-
tion 1.2. 

I will now propose a definition of representation that reflects Peirce's triadic 
relation. 

Definition 2 (Representation) A triadic relation between a model, entity 
and agent. The model substitutes for at least one entity, shaping the behaviour 
of at least one agent. 

The model stands in for an entity, and it always does so for an agent, thereby 
modifying the agent's predisposition to behave. In this definition, the inter-
pretant is implicit in the ability of the model to shape the behaviour of an 
agent. The model may refer to a class of entities, and may also be shared by 
multiple agents. However, at least one entity and one agent are necessary for a 
representation relation. 

1.4 External Representation 
According to Peirce 's triadic relation, the entity E is part of the world, the inter-
pretant I is in the agent, but the location of the model M is unspecified. For the 
case that M is external to the agent, the triadic relation is relatively straight-
forward, since the problem of infinite regress does not need to be addressed. 

Peirce's typology describes three 'pure' types of grounding relations, which is 
important for a theory of representation in general. However, in practice, models 
may incorporate some combination of iconic, indexical and symbolic grounds. 
The aim of this section is to provide concrete examples of external models, and 
then show how entities, external models and interpretants have been classified 
within disparate academic disciplines. 

1.4.1 Three kinds of external models 
Common models used in representation can be distinguished by implementation 
rather than pure type. Here, I will assume that a model is somehow simpler 
than the entity it represents. Although not necessarily true, in practice this is 
reasonable, since a 1 : 1 mapping in complete detail is in general completely 
useless (consider a life-sized map of the world, then consider trying to maintain 
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the accuracy of every detail). Even if the representation bearer is not itself 
simple, practical models must confer some benefit, such as ease of manipulation3 . 

Models have deliberate differences and may accentuate salient features, in order 
to retain only those aspects that are necessary to stand in for the entity. A 
caricature of a politician and a scale model of an aeroplane are examples of 
representations that can be understood and manipulated efficiently, which makes 
them useful substitutes for direct experience under certain conditions. 

One special kind of representation is a mathematical model. For example, 
two contained gas particles can be modelled mathematically by two hard uni-
form spheres with no internal energy except velocity, in an enclosed continuous 
four dimensional space (including time). The dynamics of the model constrain 
its behaviour by conserving momentum and energy, which is transferred along 
the axis joining the spheres' centres of mass when they collide elastically. The 
spheres are reflected by collisions with the containing walls. In principle, the 
model, in conjunction with initial measurements of position and velocity, can 
be used to predict the outcome of measuring the position and velocity of the 
particles at any future time. The model is a representation when someone (or 
more generally an agent) uses the model to stand in for a system of interest. 
For example, the agent could deduce the value of variables associated with the 
particles in place of direct observations of the gas particles at future times. In 
Peirce's typology, mathematical models have symbolic grounds. A mathematical 
model can always be interpreted as manipulating symbols in a formal system 
according to syntactic rules4 . 

The gas particle dynamics can be represented in at least two other ways. 
Predictions could also be derived using a physical model, such as two balls on 
a billiard table. The billiard balls are analog representations, which are not 
arbitrary and abstract like symbols, but are in some way analogous to their 
subject. Formally, an analog model must exhibit systematic variation with its 
task domain [41]. This means the analog model does not have to represent every 
aspect of the entity in the same units - consider a sun dial, which represents 
the passage of time as the movement in space of a shadow. Animal testing of 
pharmaceuticals, architects' scale models and pictures are examples of analog 
representations, although note that the last two examples can also contain sym-
bolic content, which is usually of a secondary nature. Note that in some analog 
models, it is possible to view the model from multiple perspectives, while other 
analog models may fix the perspective in the process of representing an entity. 
Either way, an agent must use the analog model in place of real world measure-
ments in order to fulfil the representation relation. In Peirce's typology, analog 
models have iconic grounds. 

Another way the gas particles could be represented is using the English lan-

3 An example of a useful 1 : 1 mapping is the conversion between Polar and Cartesian 
coordinates, which is practical because performing this conversion can often improve the ease 
of manipulation. 

4For some areas of mathematics, the corresponding formal system may have an infinite 
number of axioms, rules or symbols, however these areas of pure mathematics are not practical 
for forming representations, and for my purposes can safely be ignored. 
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guage. For the task of predicting particle dynamics, language is quite limited. 
However, if the particles were at sufficiently low temperature that their move-
ment was frozen, an English description of their configuration could provide a 
useful representation for an agent. Language can be used to arrange words, 
which function as labels, to represent objects. Nouns are labels for entities 
or classes of entities, while the verb phrase of a predicate with two arguments 
(two nouns) refers to the relationship between the corresponding entities. La-
bels in isolation can act as signs, which constitute the most primitive form of 
representation, capable of standing in for only a single idea. Signs are form-
alised in semiology, whose contemporary form follows much more closely from 
the work of Saussure [54] than Peirce [29]. When a set of signs is organised 
into a language with syntactic rules for manipulation and intricate networks 
of relationships between components, its representational power is qualitatively 
increased, and is rich enough to be studied in the distinct but related fields of 
linguistics and structuralist philosophy. An important observation is that the 
structure of sign systems (languages) does not need to represent the structure of 
the world. The structure in language is based on the difference between terms, 
rather than a reflection of structure in the world. This decoupling both provides 
flexibility of expression within language, while at the same time necessarily lim-
iting its representational nature. Following Saussure, this constructionist view 
of language is the dominant view in structuralist and post-structuralist philo-
sophy. Note that while mathematics is also a language5 , and both mathematics 
and language have symbolic grounds, I consider formal systems separately from 
linguistic representations, because they can play significantly different roles in 
representation. 

Many disciplines have developed explanations of the way external models 
- mathematical, analog and linguistic - are used by agents to represent their 
world. The three disciplines I now consider are metaphysics, military theory 
and systems theory. The terminology and the scope of representations under 
consideration varies significantly. In spite of this, it is found that Peirce's triadic 
relation provides a common structure for explaining representation in each case, 
and also that the external models conform to the three kinds identified in this 
subsection. Further, the theory ofrepresentation in general reveals shortcomings 
in each of the disciplinary accounts. 

1.4.2 Representation in metaphysics 

Popper advocated an ontological pluralist doctrine from 1967, which is detailed 
in Objective Knowledge [49] and concisely summarised in [50]. According to 
Popper, there exists three worlds: 

• World 1 is the physical universe, including both living organisms and non-
organic matter. 

5This interpretation is made precise in formal language theory. 
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• World 2 is the world of individual psychology, of mental events, raw feels 
and thoughts . 

• World 3 is the world of abstract products of the human mind, including 
language, scientific theories, mathematics, paintings and symphonies. 

The use of 'world' is indicative of the ontological nature of Popper's distinction. 
He clearly views each world as consisting of different kinds of stuff, proposing 
"a view of the universe that recognizes at least three different but interacting 
sub-universes." [50, p. 143]. The nature of the interactions are causal, and the 
abstract world is always linked to the physical world via the human mind [50, 
p. 165]: 

If I am right that the physical world has been changed by the world 
3 products of the human mind, acting through the intervention of 
the human mind then this means that the worlds 1, 2, and 3, can 
interact and, therefore, that none of them is causally closed. 

Popper contrasts his three world hypothesis with ontological monism (material-
ism or physicalism) and ontological dualism (mind-body dualism) by saying that 
the monist only admits world 1, while the dualist only admits worlds 1 and 2. 
When Popper refers to say a symphony or a sculpture in world 3, this is separate 
from the world 1 instantiation of the entity. It is only the abstract ideal of the 
entity that exists in world 3. Thus, world 3 entities are types, which may have 
many corresponding real world tokens that are imperfect embodiments of their 
type. The key to Popper's defence of world 3 are the claims that a) abstract 
entities exist that are not embodied in world 1 or 2, such as the infinite members 
of the set of natural numbers Wi and b) abstract entities have a causal influence 
on world 1, such as Einstein's equation e = mc2 resulting in the development 
and use of an atomic bomb. 

The three world hypothesis is of interest to us, because it neatly separates 
the real world entities E that are being represented (world 1), mental interpret-
ations I of those entities (world 2), and external models M that are products 
of the human mind (world 3), in a way that is compatible6 with Peirce's triadic 
relation. However, Popper's cosmology directly contradicts our understanding 
of physics. In particular, conservation laws and symmetry imply that world 1 
is closed, and current theory requires only four fundamental forces (the strong 
and weak nuclear forces, electromagnetism and gravity) to explain every causal 
physical interaction. Popper claims that world 3 entities that cannot be em-
bodied in world 1 can nevertheless exert a causal influence on world 1, because 
they are apprehended by human minds in world 2, which then control causal 
events back in world 1. But then any physical explanation of a system that 
includes humans is causally incomplete. Even if one accounted for all of the 
interactions of the four fundamental forces, there would be a 'residual causality' 

6For both Peirce and Popper, M could be private or shared. However, there is a difference 
in emphasis: Peirce is mostly concerned with private use, whereas Popper concentrates on 
shared uses of M. 
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that remained unaccounted for. This is because abstract entities are not sub-
ject to the four fundamental forces, and yet if they have their claimed causal 
powers, their absence or presence will change the aggregate force acting on bits 
of world 1 matter. Consequently, one can ask whether it is conceivable that 
an experiment exists that could test for a residual causality leak from world l. 
This would require us to ascertain the presence or absence of an abstract entity, 
which would require a human mind, without affecting the physical state in the 
experiment. But in order to say whether the abstract entity was present, the 
memory would have to be stored in the brain, thus changing the physical state 
in the experiment (assuming supervenience). In fact, Popper's claim is meta-
physical, and unfalsifiable, in contrast to the ideal of scientific conjecture that he 
advocated. For our purposes, Popper's ontological distinction is stronger than 
is justified. The same argument applies to the similar, but less sophisticated 
distinction that Penrose [46] proposes between the physical, Platonic forms, and 
the human mind. 

1.4.3 Representation in military theory 
At the other extreme of the academic spectrum, one finds a position that as far 
as I can ascertain, is advocated only within the relatively isolated discipline of 
military theory. A central idea in Network Centric Warfare (NCW) [2] and the 
closely associated, but broader Effects Based Operations (EBO) [58] concepts, 
is that military actions occur in three domains: the physical, information and 
cognitive domains. They are based largely on "common sense" and are not 
rigorously defined. For example, Garstka [25] provides the circular definition: 
"The information domain is the domain where information lives." This definition 
is perpetuated in [2]. More sense can be made of Smith's [58, pp. 160-173] 
interpretation: 

The three domains provide a general framework for tracing what 
actually goes on in the stimulus and response process inside human 
minds and human organizations, and how physical actions in one do-
main get translated into psychological effects and then into a set of 
decisions in another domain. Understanding this process is import-
ant because with it, we can begin to comprehend how people and 
organizations perceive a stimulus or action and why they respond or 
react in the way they do and thus, how we might shape behavior. 

Smith then defines each domain . 

. . . the physical domain encompasses all the physical actions or stim-
uli that become the agents for the physical and psychological effects 
we seek to create. . .. the actions in the physical domain may be polit-
ical, economic, and/or military in nature, and all must be equally 
considered to be objects or events ... 
The information domain includes all sensors that monitor physical 
actions and collect data. It also includes all the means of collating or 
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contextualizing that data to create an information stream, and all the 
means of conveying, displaying, and disseminating that information. 
In essence, the information domain is the means by which a stimulus 
is recognized and conveyed to a human or to a human organization ... 
The cognitive domain is the locus of the functions of perceiving, 
making sense of a situation, assessing alternatives, and deciding on a 
course of action. This process relies partially on conscious reasoning, 
the domain of reason, and partially upon sub-conscious mental mod-
els, the domain of belief. Both reason and belief are pre-conditioned 
by culture, education, and experience. 

It is clear from these definitions that the physical domain contains the entities 
E that one needs to represent; the information domain is where external models 
M are displayed and disseminated; and the cognitive domain is where the models 
are made sense of - where the interpret ants I exist. In both Smith [58] and 
Alberts et al. [2], the relationship between the domains is seen to be a flow 
from the physical domain to the cognitive domain via the information domain. 
Alberts et al. [2, pp. 12-13] establish this flow, and then use it to motivate the 
central importance of information: 

With the exception of direct sensory observation, all of our inform-
ation about the world comes through and is affected by our interac-
tion with the information domain. And it is through the information 
domain that we communicate with others (telepathy would be an 
exception). Consequently, it is increasingly the information domain 
that must be protected and defended to enable a force to generate 
combat power in the face of offensive actions taken by an adversary. 
And, in the all important battle for Information Superiority, the in-
formation domain is ground zero. 

Disregarding the reference to telepathy and the sales speak, what is Alberts' 
claim? Direct sensation is claimed to be an exception to the usual flow of under-
standing from the physical world to the cognitive domain, via the information 
domain. This description, along with the accompanying diagram - reproduced 
in Figure 1.2, conjures up visions of the information domain as populated by 
automated sensors collecting, fusing and disseminating data unaided by human 
cognition and judgement. Smith is again more cautious, describing the cognit-
ive domain as the locus where data is interpreted and decisions are made, not 
the information network. However, he maintains the same connections from 
the physical domain to the information domain, and the information domain 
to the cognitive domain. This is most explicit in the layered diagrams Smith 
uses to depict the domains, with the physical domain layer at the bottom, the 
information domain layer in the middle, and the cognitive domain layer on top. 

Interestingly, the three domain model is derived7 from Fuller's [24] book The 
Foundations of the Science of War, in which Fuller described a trinity between 

7In [25], Garstka notes that "A key element of the model is a focus on three domains: the 
physical domain, the cognitive domain, and the information domain. This conceptual model 
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Figure 1.2: The three domains of warfare, after Alberts et al. [2]. 

the three spheres of man. Because they are both based on a triadic relation, the 
structure of Fuller's three sphere theory of warfare is structurally analogous to 
Peirce's theory of signs. However, in the modern day interpretation of Fuller, 
the triadic relation between the domains of warfare has been reduced to two 
dyadic relations: the physical-information and information-cognitive relations. 
This intended "refinement" of Fuller's conceptual model has only concealed the 
essential nature of representation as an irreducible triadic relation. 

1.4.4 Representation in systems theory 
In his book on multidisciplinary thinking, Kline [35, p. 16] notes three uses 
of the word 'system' within science, which are relevant to the role of external 
representations. So that they can be compared, he gives them three separate 
labels. The first conception, the most common use by scientists outside the 
systems community, is: 

Definition 3 (System (1» The object of study, what we want to discuss, 
define, analyse, think about, write about, and so forth. 

Kline refers to this understanding with the label 'system', which for example 
could refer to the solar system, a communicating vessel, an ecosystem, or an 

builds upon a construct proposed initially by J.F.C. Fuller in 1917, and refined in Measuring 
the Effects of Network-Centric Warfare." 
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operating system. In fact, according to Kline, a system can be anything, as 
long as there is a well defined boundary associated with the system. In this 
thesis, I use 'system of interest' to denote this meaning of system. In Peirce's 
triadic relation, the system of interest corresponds to the entity E. 

The second usage is defined as: 

Definition 4 (System (2)) A picture, equation, mental image, conceptual 
model, word description, etc., which represents the entity we want to discuss, 
analyse, think about, write about, etc. 

Kline coins the term 'sysrep' to mean representations of systems. Sysreps are 
"one of three basic types of representation: words, pictures and mathematics": 
that is, sysreps are models M. The types of representations Kline identifies 
correspond to the categories of language, analog and mathematical models I 
proposed in Section 1.4.1, except that pictures are only one of several possible 
analogs. According to Kline, the ideal aim of a sysrep is to perfectly mirror a 
system, where "[bJy 'perfect mirror' we mean not only that the sysrep will fully 
represent each and every characteristic of the system with total accuracy, but 
also that it will represent nothing more" [35, p. 18J. The common - but mis-
guided - conception of representation as a perfect mirror is critically examined 
in Section 1.5.2. 

The third usage is the most general conception, which is consistent with 
attempts to define the meaning of system within the systems community: 

Definition 5 (System (3)) An integrated entity of heterogeneous parts which 
acts in a coordinated way. 

Kline uses the label 'system' or 'systemic' for this conception, where a systemic 
property is an emergent property, which is a property of the whole but not a 
property of the components of the system. 

The final concept Kline invokes is a schemata, which denotes "all the ideas in 
a person's head which are used to represent and interact with the world" [35, p. 
31 J. Example schema include words, relational ideas, behavioural routines and 
medical diagnosis. Kline then answers the question: "What is the relation of a 
sysrep to schemata in the mind? A sysrep is a particular kind of schemata, a very 
special class of the totality of the schemata we construct in our minds." Kline 
defines non-mental representation as a special class and an extension of mental 
representation. This approach is problematic, because mental representation 
is actually more difficult to understand than external representation. It makes 
more sense to explain mental representation in terms of the more straightforward 
case of external representation, even if mental representation precedes external 
representation from a chronological view. 

In Kline's view, the relation between entities, models and their interpretants 
is as follows. Scientists view the world as being comprised of systems, which are 
interpreted using mental schemata. Schemata enable complex interactions with 
the world, but are formed using largely non-conscious mechanisms, and may be 
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fuzzy and unstructured. When we go to the trouble of making a schemata ex-
plicit and shared in a structured social environment, it becomes a sysrep (which 
must still be interpreted by people). The goal of forming sysreps is to mirror 
the system, so that ideally the behaviour of the sysrep and the system are 
identical. While Kline is right to distinguish between systems, system repres-
entations, and system interpretations, the details of how they interact are not 
consistent with Peirce's triadic relation. 

Burke [14] has formalised and refined the systems approach to understanding 
representation, in a clearly articulated conceptual model. He offers the following 
definitions for entity, system, system description and model [14, pp. 9-12]: 

Definition 6 (Entity) An entity is any object that has existence in the phys-
ical, conceptual or socio-cultural domains. 

Definition 7 (System (4» A system is an idealisation of an entity as a com-
plex whole. 

Definition 8 (System description) A system description is a representation 
of a system. 

Definition 9 (Model) A model is an idealisation and/or representation of an 
entity. 

Four implications follow from these definitions. Firstly, because systems are 
idealisations of entities, they are abstractions that have no physical existence 
[15]. Systems are not part of the furniture of the world, they only exist inside 
minds. Stated another way, a system is a way of looking at the world [64]. 
Secondly, an entity can be idealised as a system in multiple ways: there is no 
unique systems view for any entity. Thirdly, and most importantly for this dis-
cussion on representation, both systems and system descriptions are considered 
to be models by Burke. The difference is that external models (a system de-
scription) presuppose the existence of a corresponding idealisation (a system). 
This is equivalent to requiring that external models M require an interpretant 
I in order to represent an entity E. Therefore, Burke's system theoretic inter-
pretation is consistent with Peirce's triadic relation for external representation. 
Fourthly, Burke defines system descriptions to be derived from systems (ideal-
isations of entities), rather than directly from entities. This implies that the 
system description can only capture aspects of the entity that have already been 
captured in the system. Consequently, a system description can be interpreted 
as a system that has been further abstracted from the entity it represents. 

1.4.5 Summary of external representation 
I will conclude the discussion of external representation by comparing the distinc-
tions that have been identified above in different disciplines. The most notable 
commonality is that in each case, exactly three categories have been necessary to 
explain external representation, and furthermore these categories can be aligned 
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with the entities, models and interpretants of Peirce's triadic relation. Of course, 
this has more to do with the selective nature of my literature survey than uni-
formity of approach. Descartes' [21] dualism was unconcerned with external 
representations, while Rosen's [53] Modeling Relation between the formal sys-
tems of science and the natural systems they represent attempted to explain 
external representations without explicit reference to the human mind or inter-
pretants. Nevertheless, each of the approaches I have covered supposes that 
things are naturally considered as belonging either to the physical, the mental, 
or the social products of the mental. The physical world contains the entities 
that one would like to represent, external models are social products that can 
be shared, but they must be interpreted by someone or some agent to count as 
a representation. 

There is an important way in which the domains in military theory differ from 
the accounts of representation by Popper, Kline and Burke. Interactions between 
the physical domain and the cognitive domain are mediated by the information 
domain. In contrast, the other accounts explain external models as products 
of the human mind. Physical entities must be conceptualised before they can 
be externally represented. Because militaries functionally separate the collec-
tion of information from decision-making, the role of human conceptualisation in 
information collection that mediates between the physical and information col-
lection is easily ignored. But without human intervention and judgement there 
is only data, not representation or information, and automation can reduce but 
not eliminate human participation in constructing representations8 . In view of 
Peirce's triadic relation, each of the alternative accounts considered aspects of 
this relation, but none are as comprehensive as Peirce's theory of signs. 

External models have been variously held to be: abstract products of the hu-
man mind; information bearing artifacts; the socio-cultural environment; a spe-
cially precise subset of mental representation; a mirror that reflects part of the 
world; and a mental representation reduced by additional simplifying assump-
tions, which is explicit and shared. However, most of these assertions are not 
entirely accurate. Definitions, such as Kline's, that attempt to explain external 
representations with respect to mental representation are not enlightening, be-
cause the cause is more complicated than the effect. Peirce's typology of iconic, 
indexical and symbolic pure forms, and my categories of formal, analog and lin-
guistic models, provide a framework for understanding external representation, 
which is sufficiently general to account for representation across disparate dis-
ciplines. Within this framework, an external model is most accurately conceived 
of as a grounded representation bearer external to the agent who interprets the 
model. Less formally, an external model is an equation, analog or description 
that represents something for an agent and thereby modifies its behaviour. 

8This is a point that Polanyi [48, p. 20] makes well, and an example is the automation 
of the photo-finish for horse races, which still required human judgement in a case where one 
horse was fractionally in front, but the other extended further past the finish line due to a 
thick long thread of saliva coming from the horse 's mouth. It would seem that such semantic 
ambiguities cannot be satisfactorily resolved by syntactic processors. 
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1.5 Internal Representation 

Representation plays an important explanatory role in biology. From the per-
spective of a living agent, the world contains limited essential resources of energy 
and matter for survival and reproduction, as well as threats to survival such as 
predators and other harmful energy sources. It is easy to see that the abil-
ity to sense qualities of the immediate environment and to control locomotion 
with context sensitive behaviour confers a significant relative selective advantage. 
Bacteria that follow a chemical or light gradient can be viewed as performing 
very basic representation: chemical reactions triggered by the local environment 
stand for greater expected concentrations of non-local useful energy which cannot 
be directly detected. An agent that can sense distal features of its environment, 
using passive or active sensors to detect patterns of incoming energy such as 
light photons or sound waves, can secure an even greater selective advantage. 
Whereas proximal sensory information requires an agent to 'bump' into a threat 
before it can react to it, an agent that can sense a threat at a distance can avoid 
the threat entirely. 

However, distal information is noisy, incomplete and intermittent. Just be-
cause a predator becomes occluded by vegetation does not secure the safety of its 
prey. Current sensory input alone is inadequate for determining the best action 
in any context. By constructing an internal representation of its environment, an 
agent can continue to act appropriately in the absence of direct sensory stimuli. 

This story of representation in biology is inspired by the accounts of Dennett 
[20, pp. 177-182] and O'Brien and Opie [42], which suggest that representation is 
the problem that the brain is intended to solve. There is some empirical support 
for this conjecture in the form of the sea squirt Ciona intestinalis. The tadpole 
larva has a central nervous system of about 330 cells that controls locomotion. 
Once it attaches to a permanent object, it undergoes a metamorphosis that has 
been loosely described as eating its own brain (the cerebral ganglion is broken 
down and reused), since it no longer needs sensorimotor control, and therefore 
has no need to represent its environment. 

Given this story, one may ask how the brain represents. This question has 
generated the most sophisticated conversation about internal representations, 
and has been especially preoccupied with the human brain. The Representa-
tional Theory of Mind, or representationalism, dates back at least to Aristotle 
[47]. The proposed answers of contemporary cognitive science divide into three 
main camps. They are Good Old Fashioned Artificial Intelligence (GOFAI), also 
known as symbolic, classical, or conventional cognitive science; connectionism; 
and the dynamical systems hypothesis. 

When the representation is internal to the agent, one is faced with the ques-
tion of what interprets the model. If internal models are interpreted in the 
same way as external models, then this leads to infinite regress, because the 
interpret ant is also an internal model that requires its own interpretant, and so 
on. Von Eckardt [63, p. 283] describes two alternative resolutions to the infin-
ite regress problem Peirce considered, and relates these to analogous moves in 
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contemporary cognitive science. 
The first solution is to weaken the definition of interpret ant, to be a poten-

tial rather than an actual interpretant. The regress still consists of an infinite 
series of representations, but it is now easier to reconcile the associated inter-
pretants, because they do not need to actually exist. This solution is reiterated 
by Cummins in cognitive science. 

The second solution is "to find something that can function as an inter-
pretant but which is not, itself, also representational and therefore in need of 
interpretation" [63, p. 283]. Peirce suggests that the only candidate for this 
is a habit-change. Specifically, Von Eckardt argues it must be a modification 
in the tendency to act in ways dependent on the content of the representation. 
The habit-change does not need to affect external behaviour; changes to mental 
habits (processes that generate other internal representations) also count. How-
ever, in order to eventually curtail the regress, internal models must ultimately 
be interpreted by shaping the agent's external behaviour. A very similar solu-
tion is suggested by Dennett, which Von Eckardt claims is the widely endorsed 
solution in cognitive science. Further, Von Eckardt [63, p. 290-302] shows in 
detail how this solution can handle the regress problem. Briefly, this involves 
demonstrating that: 

• Interpretant I of model M is producible by M; and 

• I is related to both the agent A and M, such that by means of I the 
content of M can make a difference to the internal states or the external 
behaviour of A towards the entity E. 

Von Eckardt establishes this is the case for both conventional (symbolic) and 
connectionist machines. I will now provide a short introduction to GOFAI and 
connectionism, the two strongest advocates of representationalism. 

1.5.1 Representationalism 

How can a particular state or event in the brain represent one feature 
of the world rather than another? And whatever it is that makes 
some feature of the brain represent what it represents, how does it 
come to represent what it represents? 

Daniel Dennett 

These are the questions of representationalism, a position that assumes that 
the mind is a representational device, and that the brain has representational 
content. They are exceptionally difficult questions, because the mechanisms be-
hind brain functions such as learning, memory and computation in the brain are 
currently poorly understood. Consequently, the mechanisms underlying repres-
entation are equally opaque. Also, under almost any metric, the human brain 
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rates as the one of the most complex entities studied in science9 • For a deeper 
discussion of representationalism than I can afford here, see Cummins [17]. 

As is the case for most enduring themes of Western philosophy, the first re-
cords of representational theories of mind are found in the writings of Aristotle 
[4]. In Book III, part 4, Aristotle describes the part of the human soul that 
thinks and judges: vove; or the mind. According to Aristotle, the mind is "cap-
able of receiving the form of an object; that is, must be potentially identical 
in character with its object without being the object." This statement clearly 
demonstrates Aristotle's use of the distinction between a model and the en-
tity it represents. By form, Aristotle refers to the properties of the object, as 
opposed to its material substance. In Aristotle's metaphysics, the immaterial 
mind knows something when it takes on the form of that object, such that it 
represents the object in virtue of their similarity, in exactly the same way that 
a picture can represent a scene (Peirce's iconic grounds). "To the thinking soul 
images serve as if they were contents of perception ... That is why the soul never 
thinks without an image." Berkeley [9] and Hume [33, 34] both extended this 
Aristotelian conception to argue that all mental contents are images in the mind, 
and that they are representations in virtue of their resemblance to perception. 
The inherent weakness of basing mental content on similarity can be seen by 
probing the mechanisms that could imbue mental images with the same proper-
ties as the objects they represent. Images presented to an immaterial mind are 
not so much an explanation as a metaphor, where thinking is like putting on a 
theatre for the Eye of the Mind. 

In contrast, Hobbes [27, Chapter V] and Leibniz [37] advanced the idea that 
everything done by the mind is a computation. In this view, thought proceeded 
by symbolic manipulations analogous to the additions and subtractions of the 
new calculating devices - in modern parlance the mind was seen as an "automatic 
formal system" [26]. Notably, this reframed the question of representationalism 
to propose a mechanical and material explanation of mental processes. This 
provided a crucial step towards a science of cognition, because it opens up the 
possibility that certain features of cognition could be reproduced artificially. 

The link between computation and representation is important but subtle. 
Because of the universality of Turing's conceptual model of digital (symbolic) 
computation, it is a common assumption that all computation is equivalent to 
a Universal Turing Machine. However, as O'Brien and Opie [43] correctly point 
out, this does not account for analog computation. They propose a definition of 
computation in general, which is broad enough to capture both analog and digital 
computation, but still sufficiently constrained to differentiate computation from 
the vast majority of physical systems - intestines, microwave ovens, cups of tea, 
etc. - that are not involved in computation. 

[T]here are two distinctive features of computational processes (as 
opposed to causal processes in general). First, they are associated 
with representing vehicles of some kind. Second, and more import-

9See Bar-Yam [7] for estimates of the complexity of the brain compared with other systems. 

249 



antly, computational processes are shaped by the contents of the 
very representations they implicate. We thus arrive at the following 
characterisation: 

Computations are causal processes that implicate one or more rep-
resenting vehicles, such that their trajectory is shaped by the repres-
entational contents of those vehicles. 

This characterisation of computation makes explicit the link between compu-
tation and representation. Computations are those processes involving repres-
enting vehicles (models), such that the outcome of the process depends on the 
content of the model. Representation is inherent in computational processes, 
and computation is the mechanism that causally links the contents of models to 
changes in the behaviour of the agent that interprets the model. Representation 
and computation are a package deal: a commitment to a computational theory 
of mind entails a commitment to representationalism. 

Although conceived in the 17th century, it was not until the mid 20th century 
that the computational idea rose to prominence. The initial hype associated with 
the AI movement had a profound impact on 20th century cognitive science, such 
that computational theories of mind were predominantly based on algorithmic 
symbol manipulation. The Universal Thring Machine [61] provided a theoretical 
basis for universal symbol-based simulators of human intelligence, while expo-
nential increases in computing power dramatically expanded the application of 
computer algorithms towards focussed engineering tasks that had previously 
required the application of the human mind. 

Yet simulations that could be confused with intelligent humans have not 
materialised. AI researchers began to hit some fundamental walls: general in-
telligence appeared to require fast, situated, unencapsulated reasoning, where 
automated formal systems were slow, abstract, and only capable of manipulat-
ing the initial axioms they were given according to fixed rules. Coinciding with 
a growing dissatisfaction with the ability of the products of AI to live up to ex-
pectations, several alternatives have been advanced within cognitive science, and 
symbolic computational models of cognition began to be referred to as GOFAI. 

Connectionism, or Parallel Distributed Processing (see for example [39]), 
which is based on highly abstract networks of artificial neurons, presents an 
alternative paradigm for modelling cognition, which can be interpreted as per-
forming analog computation. Connectionist models are inspired by current un-
derstanding of the architecture of the brain, and are described by Dennett [20, 
p. 269] as blazing the first remotely plausible trails of unification between the 
mind sciences and the brain sciences. Different kinds of connectionist networks 
have been shown to have content addressable memory [30]; provide universal 
function approximation [31]; degrade gradually when damaged; and distribute 
representations across the set of connection weights, which decouples represent-
ations from individual symbols. Due to their parallel processing, connectionist 
networks are also very fast. The theoretical model of connectionism, an artifi-
cial neural network with real connection weights, has been proven to be capable 
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of hypercomputation [57] - that is, able to compute functions that Turing ma-
chines cannot. Of course, such machines are not practical, since real numbers 
in general require infinite information, and there are also a number of issues 
artificial neural network implementations suffer from. They are almost always 
simulated on a digital computer, which implies these instantiations are equival-
ent to Turing machines; they learn reliably only under supervision; and they 
are usually treated as black boxes, because their behaviour is not currently well 
understood. Of course, there are philosophical concerns as well. For example, 
Fodor and Pylyshyn [23] criticise connectionism because it cannot explain sys-
tematicity: the feature of human cognition whereby the ability to think one 
thought entails the ability to think of numerous logically related thoughts, such 
as its converse. 

The most recent alternative to both GOFAI and connectionism is the dy-
namical systems hypothesis [62]. However, advocates of the dynamical sys-
tems account are often explicitly critical of explanations involving representa-
tion, so a discussion of dynamical systems is deferred to Section 1.5.2 on anti-
representationalism. 

In summary, representational theories of mind have been proposed that are 
based on symbolic manipulation and analog covariance. GOFAI and connection-
ism agree that mental contents can stand in for, and stand in relation to real 
world objects. They also assume that psychological processes are computations 
that represent aspects of the external world. 

1.5.2 Anti-representationalism 
There is no harm in saying of good tools and good moves that they 
are also good representations, but nothing interesting is conveyed 
by this choice of idiom, and its employment should not tempt us to 
construct theories about how representation works. 

Richard Rorty 

Accounts of representation in cognitive science and artificial intelligence have 
been criticised as a basis for biological behaviour on a number of fronts. Brooks 
[12] summarises one key idea against representation in the physical grounding 
hypothesis: the world is its own best model, the trick is to sense it appropriately 
and often enough. The first part is true but uninteresting, because it is the trivial 
case where the representation relation degenerates into a diadic relation between 
A and E == M. The second part is important, because it emphasises the need 
for agent decisions to be grounded. However, the physical grounding hypothesis 
does not and can not dispose of representation entirely. Even if the world is used 
as its own model, the agent needs to interpret the meaning of its observations. 
Constructionist accounts of vision (see for example [45]) argue that the process 
of perception involves significant construction by the observer. In their critique 
of a simplistic but common conception of "pure vision" - essentially the idea that 
the visual system is a bottom-up hierarchy designed to fully mirror the visual 
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scene - Churchland et ai. [16] provide an alternative account that they label 
interactive vision. Some of the constructive characteristics of interactive vision 
are: visual fields are highly non-uniform; vision is exploratory and predictive; 
the motor system and the visual system are entangled; sensory processing is 
more like a recurrent network than a hierarchy; and vision cannot be neatly 
separated from other brain functions. Consequently, the process of sensing the 
world appropriately is in fact one of the major sources of representational activity 
in the brain [44]. Also, in Section 1.3 I gave a number of reasons why internal 
representations can be convenient, even if they are not perfect substitutes for 
unmediated access to the real world. 

Van Gelder [62] denies that cognition involves computation or representation, 
advancing an alternative dynamical systems hypothesis. In this account, rather 
than interpreting cognitive states as symbols, they are treated as quantifiable 
states of a nonlinear dynamical system. Van Gelder uses the Watt governor, 
depicted in Figure 1.3, to illustrate his thesis. The Watt governor is a mechanical 
device that maintains a constant speed for a flywheel despite fluctuations in both 
steam pressure from the boilers and the engine workload. The Watt governor was 
a pivotal invention during the industrial revolution that allowed the generation 
of reliable, smooth and uniform power. The Watt governor works because a 
spindle is geared into the flywheel such that the spindle rotates proportionally 
to the speed of the flywheel. The faster the spindle rotates, the more centrifugal 
force it generates, raising the spindle of the flywheel. Because the spindle is 
directly linked to the throttle valve, the faster the spindle rotates, the higher 
its arms rise, the more the valve is closed, restricting the flow of steam. As the 
speed of the flywheel decreases, so too does the spindle, the arms fall, opening 
the valve and increasing the flow of steam. Thus, a steady state for the speed of 
the flywheel exists and the Watt governor maintains the steady state by exerting 
negative feedback on any deviation from the steady state. 

Van Gelder compares this mechanical device, which he classifies as a dynam-
ical system, with a hypothetical computational device capable of performing 
the same function. The computational device would follow an algorithm that 
depends on representation. 

The very first thing it does is measure its environment (the engine) 
to obtain a symbolic representation of current engine speed. It then 
performs a series of operations on this and other representations, 
resulting in an output representation, a symbolic specification of the 
alteration to be made in the throttle valve; this representation then 
causes the valve adjusting mechanism to make the corresponding 
change [62, p. 350]. 

In contrast, the mechanical device is non-representational. Van Gelder gives four 
reasons: representation is not needed to fully account for the operation of the 
Watt governor; the obvious correlation between arm angle and engine speed is 
not representational because representation is more than mere correlation; the 
simple correlation only obtains in the steady state; and the arm angle cannot 
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Figure 1.3: The Watt centrifugal governor for controlling the speed of a steam engine, 
after [22) as reproduced in [62). 

represent engine speed because the two quantities are coupled. 
Of these, the first three reasons are not persuasive. Just because an explan-

ation of the Watt governor within some frameworks do not need the concept of 
representation does not imply that representation cannot be used to explain the 
same process. After all, none of the compound objects - such as spindles and 
throttles - are necessary concepts in the quantum mechanical wavefunction of a 
Watt governor. The second point does nothing to disprove representation occurs, 
it merely demands a higher standard of proof than demonstrating correlation, 
while the third point only notes that any correlation is not simple. 

The forth reason is the most interesting. Van Gelder observes that "the angle 
of the arms is at all times determining the amount of steam entering the pis-
ton, and hence at all times both determined by, and determining, each other's 
behaviour." Because of this circular causality, Van Gelder claims that repres-
entation is "the wrong sort of conceptual tool to apply" . When representation 
is thought of as a mirror, it does indeed seem wrong for the mirror to determine 
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any part of the mirrored entity, because there is an asymmetry in their rela-
tionship. However, under the conception of representation as a triadic relation, 
it is necessary for the model to change the behaviour of an agent, and possible 
for the agent to be acting upon the represented entity. Peirce's triadic relation 
does not preclude the formation of feedback loops, although it does provide an 
incomplete explanation for such tightly coupled variables as the arm angle and 
engine speed. 

The important criticisms of both Brooks and van Gelder are directed at the 
cognitive science community's early preoccupation with explicit symbolic repres-
entation. However, Section 1.3 demonstrates that representation in general can 
have iconic and indexical - not just symbolic - grounds. Brooks' situated robots 
do not do away with representation altogether - they actually encode significant 
amounts of their behaviour symbolically on finite state machines. Dynamical 
systems, as advocated by Van Gelder, can still function as representations with 
iconic grounds. The analog model in Section 1.4.1 is one such example. Rather 
than undermining representation, these critiques serve to highlight differences 
between formal systems and other possible bases for biological representation. 

Maturana and Varela's [38] ground-breaking second order cybernetics ap-
proach to the biological basis of cognition is also critical of representationalism, 
which they claim is inadequate for a scientific explanation. They use an analogy 
reminiscent of Searle's [55] Chinese room argument to claim that living systems 
do not represent [38, p. 136]: 

Imagine a person who has always lived in a submarine. He has never 
left it and has been trained how to handle it. Now, we are standing 
on the shore and see the submarine gracefully surfacing. We then 
get on the radio and tell the navigator inside: 'Congratulations! You 
avoided the reefs and surfaced beautifully. You really know how to 
handle a submarine.' The navigator in the submarine, however, is 
perplexed: 'What's this about reefs and surfacing? All I did was push 
some levers and turn knobs and make certain relationships between 
indicators as I operated the levers and knobs. It was all done in 
a prescribed sequence which I'm used to. I didn't do any special 
maneuver, and on top of that, you talk to me about a submarine. 
You must be kidding!' 

This analogy works by specifying an overly narrow system boundary. The ad-
equacy of the navigator in avoiding the reefs cannot be explained unless the 
boundary is expanded to include the process that generated the prescribed se-
quence of knob turns and lever pushes. Specifically, the person in this example 
only becomes a navigator once they have been trained. But then it is easy to 
see that the precise purpose of training the navigator in the sequence of actions 
is to stand in for observations of the reefs and the depth below sea level, and 
thereby modify the submarine's behaviour. 

A more serious threat to representationalism is anti-representationalism, 
which has been advocated by Davidson, and even more forcefully by Rorty [51]. 
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Anti-representationalism holds that any statement about the world is an insep-
arable cohabitation of subject and object, rather than correspondence between 
an object and a model. Rorty rejects the 'mirror' metaphor of knowledge, where 
knowledge is a reflection of the mind-external world. According to Rorty this 
metaphor, which we have already seen used explicitly by Kline above, is the 
central metaphor for representationalism. Rorty criticises what he calls the 
Aristotle-Locke analogy of knowledge to perception, 

... the original dominating metaphor as being that of having our 
beliefs determined by being brought face-to-face with the object of 
the belief (the geometrical figure which proves the theorem, for ex-
ample). The next stage is to think that to understand how to know 
better is to understand how to improve the activity of a quasi-visual 
faculty, the Mirror of Nature, and thus to think of knowledge as an 
assemblage of accurate representations. Then comes the idea that 
the way to have accurate representations is to find, within the Mir-
ror, a special privileged class of representations so compelling that 
their accuracy cannot be doubted. These privileged foundations will 
be the foundations of knowledge, and the discipline which directs us 
toward them-the theory of knowledge-will be the foundation of 
culture. The theory of knowledge will be the search for that which 
compels the mind to belief as soon as it is unveiled. Philosophy-as-
epistemology will be the search for the immutable structures within 
which knowledge, life, and culture must be contained--structures set 
by the privileged representations which it studies. The neo-Kantian 
consensus thus appears as the end-product of an original wish to 
substitute confrontation for conversation as the determinant of our 
belief [51, p. 163]. 

It should be noted that Rorty's attacks are not directly focussed on the 
cognitive science debate on mental contents, which the previous critiques have 
participated in. Rorty, who is trained in analytic philosophy, is more concerned 
with structuralist and linguistic attempts to ground knowledge as representation. 
For example, Rorty [52] cites Brandom's [11] characterisation of the representa-
tionalist school as saying that "the essential feature of language is its capacity to 
represent the way things are." Proponents of this school are taken to be Frege, 
Russell, Tarski and Carnap, who are contrasted with Dewey, Wittgenstein and 
Sellars, who view language as a set of social practises. However, it was noted 
in Section 1.4.1 that there is no necessity for language to be representational. 
Further, Rorty's target is much larger than just the philosophy of mind - he 
seeks to question the legitimacy of transcendental (Kantian) epistemology as 
distinct from psychology, and advocates that the only constraints on knowledge 
are essentially conversational in nature. Rorty rejects the very idea of a theory 
of knowledge, truth or rationality. 

Is it possible to salvage representationalism from these attacks? Rorty seeks 
an a priori defeat of representation, but there is an empirical component to the 
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question of whether minds represent. Languages are not reflections of reality, 
in the sense that they are not mirrors that can be polished to provide a True 
representation of the world. However, it does not immediately follow that formal 
systems, analogs or minds can not represent in any meaningful way. 

A stronger defence of representationalism can be made by carefully articu-
lating what work the representation relation needs to perform. From the per-
spective of an agent faced with a decision, consider two different processes for 
choosing between the alternatives. For concreteness, suppose the agent is a frog 
near the edge of a cliff choosing whether to jump forward to the left or right. 
One choice is safe but the other choice will result in certain death. Using the 
first process, suppose that the frog, like one of Brooks' situated robots, is able 
to make its decision by using the world "as its own best model". Brooks' idea of 
sensing the world often enough is similar to Van Gelder's claim that dynamical 
coupling and feedback can do the same job as representation, without requiring 
extensive planning or computation. In the case of the frog, it is a pretty simple 
and efficient process: both alternatives are sensed and the apparently less per-
ilous alternative is immediately acted upon. The process is memoryless lO , so it 
can be repeated every time the frog lands. It can work when several conditions 
are met: if the frog can sense at least as far as it leaps; if the sensory compar-
ison is reliable; and if the environment is sufficiently stationary while the frog is 
airborne. 

If the latter condition is violated, nothing can guarantee the safety of the 
frog if it continues to leap. However, by using an alternative representational 
process, the frog may stand a chance even when the first two conditions do 
not hold. Suppose that it is a dark and foggy night, so that the frog cannot 
reliably sense the relative merits of jumping left and right. Fortunately, the frog 
has taken this path many times before, and remembers the sequence of left and 
right jumps that have got it home safely in the past. Then recognition of the 
starting location and recollection of this sequence can substitute in the decision-
making process for sensing the alternatives at every step. The sequence can act 
as a model which when interpreted by the frog can stand in for the currently 
unreliable sensory information. In this process, representation must still be 
grounded by having previously sensed the alternatives using the first process. 
However, it can no longer be memoryless. By maintaining an internal model, 
the frog amplifies the applicability of sensory information beyond immediate 
local sense-response reflexes, to affect behaviour non-locally in space or time. 
Representation allows the agent to do more with less sensory information, to fill 
in gaps and to generalise new information. In other words, the real work that 
representation is doing is inference. 

Rorty is right to reject the metaphor of representation as a mirror, reflecting 
the nature of reality for Descartes' Eye of the Mind. But representation is not a 
mirror, its purpose is not to reflect but to infer. In this section, I have argued that 

101 should clarify that I mean memoryless in the mathematical (Markovian) sense: the 
probability of future states only depends on the current state. This is significantly more 
abstract and general than the meaning of memory in cognitive science. 
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perception is to some extent constructed, which involves representational activ-
ity. I have shown that representation can have non-symbolic grounds, meaning 
dynamical systems can be a basis for representation. I have examined Maturana 
and Varela's argument against representation, which relies on an overly narrow 
definition of system boundary. Finally, I have argued that Rorty's attack on 
representation is largely directed towards language as representational, and to 
representation as mirroring. These critiques have merit, but do not challenge 
the general theory of representation provided by Peirce's triadic relation as an 
explanation of internal representation. 

1.6 Agents 

So far I have not specified what I mean by an agent. However, the preceding 
discussion on representation offers a precise way of characterising agency. Be-
cause of the ubiquity of agents in complex systems, this section contains the 
most important implications of this chapter. 

As Peirce has argued, representations require an interpret ant , and therefore 
an agent to perform the interpretation. Thus, there is a sense in which rep-
resentations (and computations) are relative to a subject - that is, they are 
subjective [56, p. 92]. But there is an equally objective way that a subject plus 
a model either does, or does not, represent. By redrawing the system boundary 
to include the model's user, representation is an intrinsic feature of this system 
of interest. This is the importance of the triadic relation: because it is irredu-
cible, the system boundary must always extend to include the agent in order to 
understand representation. 

This is why, unless one can identify who is using the model and how it 
shapes their behaviour, the model cannot be considered to be a representation. 
Peirce, Von Eckardt, Popper, Smith, Kline and Burke all identify the 'who' 
with a human mind, which is more generally the case in the literature. I have 
generalised this to say that a model is always a model employed by an agent. 
An agent can be a person, but it can also be a group of people, an animal, 
a cell, a certain kind of robot or a certain kind of physical process (after all, 
each member of this list is a physical process). The ability to form and use 
representations appears to be the principle differencell between an object and 
an agent - it is the difference between kicking a rock and kicking a cat (not that 
either experiment is condoned, except as a thought experiment). 

More formally, if an entity's response to a stimulus is directly determined by 
its current state, and the current state does not include any models, then the 
entity is not an agent. If stimulus and response are indirectly related because 
they are mediated by representation, then the entity is an agent. 

11 For example, Aristotle [4] says "The soul of animals is characterized by two faculties, (a) 
the faculty of discrimination which is the work of thought and sense, and (b) the faculty of 
originating local movement." In my account, representations both encode distinctions and 
shape movement or behaviour. 
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Definition 10 (Agent) An entity that constructs and uses representations to 
shape its own goal-directed behaviour. 

More will be said about goal-directed behaviour below, but for now note that 
goal-directed behaviour does not imply that agents only have a single goal: it 
is merely intended to distinguish between directed and undirected behaviour. 
It seems there is a continuum, such that entities may have a degree of agency, 
depending on how indirect the relationship between stimulus and response is, 
and how sophisticated the representations can become, which is often called the 
plasticity of the representing medium. I am not overly concerned about the 
precise demarcation between agent and non-agent. The definition is more useful 
for comparative purposes, in order to investigate if the degree of agency has 
increased, and to say that a human has more agency than a cockroach, which 
has more agency than a virus, which has more agency than the robot Cog [13], 
which has more agency than a cyclone12 . 

The degree of autonomy of an agent refers to freedom of choice or variety, 
which is made precise by the notion of source coding in information theory. 
The degree of autonomy is evident in the sensitivity of changes in the beha-
viour of the agent to changes in its representations. For example, if an agent's 
model is replaced by any other model (such as its inverse) and yet this has no 
causal influence on the behaviour of the agent, then the model does not con-
tribute to the autonomy of the agent. If this holds for all models, then the 
agent is not autonomous. A model must shape behaviour to be a representa-
tion and provide the agent with autonomy. In contrast, if any arbitrary desired 
feasible state within the agent's environment can be achieved by changing only 
the agent's representations, which then realise the desired state by modifying 
the agent's behaviour, the agent has maximum autonomy. When autonomy is 
shared between two or more agents, this is the subject of game theory, and the 
degree of autonomy of a player is the number of available strategies13 , and any 
mixed strategy on this set constitutes a model. 

The autonomy of agents can lead to philosophical debate about free will 
and teleology. In view of Hume's compatibilism [33, 34], the autonomy of an 
agent does not imply the agent is necessarily nondeterministic - that with ex-
actly the same internal and external states, two distinct responses to the same 
stimulus are possible. Instead, a weaker condition holds, namely given different 
representations, an agent is capable of choosing different actions. To confuse the 
matter, often it is useful to explain the behaviour of a system as an autonomous 
agent, even when it is clearly not purposive. For example, Dawkins [18] describes 
genes as selfish molecules, as if they have minds, which is a form of teleonomic 

12Most people do not consider a cyclone to be an agent, even though it is a self-maintaining, 
non-equilibrium entity with unpredictable behaviour. The anti-cyclonic Great Red Spot on 
Jupiter is a structure with a diameter significantly greater than Earth, which has persisted 
since it was observed by Cassini in 1665. I believe the main reason cyclones are not considered 
agents is because it is not possible to sustain an interpretation of either goal-directed behaviour 
or representation for a cyclone and although unpredictable, they are not autonomous. 

13This game theoretic interpretation assumes the set of strategies is countable, where only 
strategies that affect the value of the game are counted. 
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explanation. For my purposes, I will always assume that agency entails a de-
gree of autonomy in Hume's sense, and also implies that the agent is capable of 
exhibiting goal-directed behaviour. 

The notion of goal-directed behaviour has been formalised by Sommer hoff 
[59], who observed that the essence of goal-directed activity is: 

that the occurrence of the goal-event G is invariant in respect of cer-
tain initial state variables (uo) despite the fact that G depends on ac-
tion factors and environment factors that are not invariant in respect 
of uo. The invariance of G being due to the fact that the transitional 
effects of changes in Uo mutually compensate, so to speak. 

Sommerhoff realised it was possible to treat goal-directedness as an objective 
property, independently of the subjective notion of purposiveness of interest to 
the psychologist. He established three necessary and sufficient criteria for goal-
directed behaviour. Firstly, for at least one variable a associated with the action, 
and one variable e associated with the environment, for at least one time tk, 

(1.1) 

This ensures that the action is capable of compensating for environmental vari-
ability. Secondly, a and e must be mutually orthogonal, meaning that the value 
of one of the variables does not determine the value of the other for the same 
instant. This allows the mechanism for goal-directed behaviour to realise Equa-
tion (1.1) for a range of initial conditions. And thirdly, there must be a set 
80 of initial environmental conditions (where 180 1 2: 2), such that each initial 
condition requires a unique action ak which satisfies Equation (1.1). This cri-
terion ensures that the goal could have been achieved from an ensemble of initial 
conditions, rather than only from the actual initial conditions. 180 1 provides a 
measure of the degree of goal-directed behaviour: the greater 180 1 is, the more 
environmental variety the agent can destroy and still achieve its goal. Thus, 
goal-directed behaviour is underpinned by Ashby's [5, 5] law of requisite variety. 

From a stimulus-response perspective, an agent can be thought of as sens-
ing stimuli and acting to produce an appropriate response. The function that 
maps from sensory inputs and models to output actions is its decision map. 
The sense, decide and act functions of agents are roughly analogous to detect-
ors, rules and effectors in Holland's [28] complex adaptive systems terminology; 
perceptual, cognitive and motor components in cognitive science; input (actu-
ating signal), control unit (dynamic element), and output (controlled variable) 
in control theory; state, policy and action in reinforcement learning [50]; stimu-
lus, organism and response in Hull's [32] version of behavioral psychology; state, 
mixed strategy and move in game theory; and observe, orient/decide and act 
(OODA) in Boyd's [10] decision cycle. 

The sense, decide, act trinity is a pervasive characterisation of agency that 
can be related back to Peirce's triadic relation. Without sensing, there is no 
way to ground representations. Without acting, representation cannot shape 
external behaviour. Without deciding, representations cannot be interpreted, 
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the agent cannot be autonomous, and its behaviour is not goal-directed. A 
necessary and sufficient condition for agency is the possession of sense, decide, 
and act functions. But this is exactly equivalent to requiring that an agent be 
able to construct and use representations to shape goal-directed behaviour. 

In summary, representation and agency have been co-defined. Representa-
tions always involve an agent, and agents always represent their environment. 
The triadic nature of the representation relation is the reason that these defini-
tions cannot be separated. Due to this intimate relationship, a theory of repres-
entation is essential to an understanding of the behaviour of agents in a complex 
system. 
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James Surowiecki in his book on the wisdom of crowds [1] writes about the decisions 
made based on the aggregation of information in groups. He argues that under certain 
circumstances the wisdom of crowds is often better than that of any single member in the 
group. These circumstances include diversity of opinion, independence, and 
decentralization. In this paper, we simulated the Prisoner's Dilemma problem as a complex 
adaptive system, which aIlowed us to define a "controIlable" crowd. Experiments show that 
in a crowd where the "membership" can be defined dynamicaIly and where members can 
communicate with each other and learn from each other, the wisdom-of-crowds approach 
shows advantage over the best performing members in the crowd. 

1. Introduction and Background 
This paper provides a new way of decision making - using the wisdom of crowds 

(collective wisdom) [1] to handle continuous decision making problems, especially in 
a complex and rapidly changing world. By simulating the Prisoner's Dilemma in a 
Complex Adaptive System (CAS), the key criteria that separate the wise crowd from 
the irrational one are investigated, and different aggregation strategies are suggested 
based on different environments. 

Decision making has been the subject of research from several perspectives. 
Generally speaking, decision making is the process of selecting one course of action 
from several alternative actions. It involves using what you know (or can learn) to get 
what you want [2]. Since most decisions are personal or individual, which makes it 
hard to avoid bias, many computer-based Decision Support Systems (DSS) are 



promoted to help people make decisions in complicated situations for either 
individual or business purpose. Although knowledge-based decision support systems 
have been widely used, managers sometimes feel disappointed with their 
performance because of I) the difficulties in collecting useful information in a 
specific field; 2) the cost of setting up and updating knowledge databases; 3) their 
inherent inadequacies in dealing with complex and rapidly changing environments; 
and 4) difficulties in determining the proper decision-making modeVstrategy for 
problems in social science or economics, which involve numerous human interactions 
and uncertain personal feelings. With these concerns in mind, a new way of making 
decisions - using the wisdom of crowds - is introduced, which helps individuals 
avoid the need for collecting information or setting up and updating knowledge 
databases, and makes it possible to handle social science or economics problems that 
involve numerous human interactions and uncertain personal feelings. 

In this paper, a simulation using the concept of a Complex Adaptive System is 
used to demonstrate the wisdom of crowds in the context of the Prisoner's Dilemma 
problem. 

2 Wisdom of Crowds 

2.1. Theories of Wisdom of Crowds 
A "crowd", in Surowiecki's book, is any group of people who can act collectively 

to make decisions and solve problems. The wisdom of crowds simply suggests that a 
collective can solve a problem better than most of the members in the group [1]. This 
idea appears to be appropriate for explaining behavior of financial markets as 
expressed by the Nobel-winning economist William Sharpe [3]. It may also be 
helpful to decision makers in understanding how to solve complex problems. For 
example, collective voting has already been successfully used by some search 
engines, including Google [4]. Even though there are many case studies and 
anecdotes which demonstrate the importance of collective wisdom, there are also 
many cases supporting the opposite conclusion, some of them cited in "Extraordinary 
Popular Delusions and the Madness of Crowds," by Charles MacKay [5]. 
Consequently, not all crowds (groups) are wise; consider, for example, mobs or 
crazed investors in a stock market bubble. Efforts have been made to understand why 
and how the wisdom of crowds can take effect. Surowiecki in his book reveals the 
necessary ingredients, the key criteria which separate wise crowds from irrational 
ones [1]: 

-Diversity of opinion -- Each person should have private information even if it's 
just an eccentric interpretation of the known facts. 
-Independence -- People's opinions aren't determined by the opinions of those 
around them. 
-Decentralization -- People are able to specialize and draw on local knowledge. 
-Aggregation -- Some mechanism exists for tuming private judgments into a 
collective decision. 
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2.2. Prisoner's Delimma 
Since first raised by Merrill Flood and Melvin Dresher in 1950's [6], a lot of 

research has been done on the Prisoner's Dilemma (PD) problem, especially after 
Robert Axelrod introduced the concept of the iterated prisoner's dilemma [7]. PD is a 
typical type of non-zero-sum game in game theory, based on a well-known 
expression of PD, the Canonical PD payoff matrix [17], which shows the non-zero 
net results for the players. 

Player B 

Player A Cooperate Defect 
Cooperate 3,3 0,5 
Defect 5,0 1,1 

Finding the strategy to gain the highest number of points is the ultimate problem 
for the Iterated Prisoner's Dilemma. Every year, the IPD tournament [8] is held to 
evaluate strategies from different competitors. Also, genetic algorithms have been 
widely used [9, 10] to discover the best strategy. Memory-based strategies and 
outcome-based strategies such as Tit-For-Tat [11] and Pavlov [11] are regarded as the 
highly effective ones [12-15]. 

Extending the "two-player" problem to the "many players" problem brings about 
the situation where hundreds of players (a crowd) play together. With no central 
control, players begin to play based on their own strategies. After each round, points 
are added up for each player. Consequently, a potentially "smart" crowd is formed -
the members of the crowd play "cooperate" or "defect" with each other, based on 
their own strategies. This decentralization of strategies is interpreted as a set of 
diverse opinions held by the crowd. Then, a simple polling of playing strategies 
serves as the aggregation method for understanding the vote/wisdom of the crowd. 

The crowd in the context of Prisoner's Dilemma satisfies the four key criteria for 
forming a smart crowd. 

a. Diversity and Decentralization 
In our Prisoner's Dilemma setting, each agent is given a memory and a strategy. 

The memory serves to record and accumulate knowledge, thus enabling the agent 
both to establish a history of games with each player and to accumulate local 
knowledge. Agent strategies help agents choose whether to cooperate or to defect on 
the next tum, based on the information in their memory. These strategies also 
introduce diversity in the game in two ways: generating varying solutions to the 
problem and drawing conclusions from the local knowledge. 

b. Independence 
Prisoner's Dilemma in our system (the Iterated Prisoner's Dilemma) allows for the 

possibility of agents communicating with each other and learning from each other. 
This, in effect, potentially violates the independence criterion of Surowiecki. This 
aspect is fundamentally different from the cases Surowiecki described in his book. 
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However, we also introduced a switch for independence in the system, which enables 
us to conduct experiments with both independence and learning-evolved 
environments. 

c. Aggregation 
A statistical or social science aggregation means combining outputs/solutions from 

different lower-level entities into summary indicators. In the Prisoner's Dilemma 
Problem, aggregation characterizes the group-level perormance by combining the 
individual member's contributions (or solutions), regardless of whether these 
contributions are duplicated, contradicted, or incomplete. The most commonly used 
methods for this type of aggregation are sampling, polling, and voting. 

2.3. Prisoner's Dilemma in CAS 
Complex Adaptive Systems represent a dynamic network of agents (which may 

represent cells, species, individuals, firms, nations, etc.) working in parallel, 
constantly acting and reacting to what other agents are doing [16,17]. 

We extend the two-player Prisoner's Dilemma game into a situation involving 
hundreds of players (crowd) playing against each other in a pairwise fashion. Agents 
play against each other repeatedly without a central control. It is natural to describe 
the Prisoner's Dilemma as a complex adaptive system in order to reveal spontaneous 
reactions among individual players, as well as the wisdom hidden inside the group as 
a whole. This allows for exploration of various aggregation strategies. 

3. Experiment Results 

3.1. Implementation 
In order to design a CAS for Prisoner's Dilemma, first we need to create: 1) 

individual "player-agents" who can "cooperate" or "defect" when playing the game 
based on their own strategy; and 2) special "aggregator-agents" who use the wisdom 
of crowds by acting as aggregators of various groups within the crowd. Since agents 
play against each other repeatedly without the central control, we assign each agent a 
memory that is used to store information (knowledge) about previous "matches". The 
player-agents initially "receive" a strategy which they use to decide their actions 
based on the information they have, while the aggregator-agents are given the ability 
to make their decisions by consulting with their "advisory group," formed from the 
set of player-agents selected by each aggregator-agent. 

In the system each player-agent is described using a chromosome-like structure 
[18]: 

Agent Number Basic Strategy Limitation Reactionl Reaction2 

Where: 
• Agent Number is the number used to identify each player. 
• Basic Strategy is the number indicating the strategy an agent chooses to guide its behavior. 
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• Limitation is a number that modifies the Basic Strategy, as described below. Combined 
together, these two numbers define the judgment of the situation the agent is facing. 

• Reaction1 defines the behavior of the agent if the situation described by Basic Strategy + 
Limitation applies in the current case/match. 

• Reaction2 defines the behavior of the agent if the situation described by Basic Strategy + 
Limitation does not apply in the current case/match. 

Aggregator-agents represent special participants (competitors) in the game. On each turn, 
Aggregator-agents choose to cooperate or defect according to the opinions from their chosen 
People-agent group. An Aggregator-agent has no strategy which can give it guidance for 
cooperating or defecting; its only strategy is to decide which People-agent group it wants to 
listen to and the manner of aggregating the group's advice. 

Each Aggregator-agent is described using a chromosome-like structure: 

Agent Number 

Where: 

Selection Strategy 
Select 
Number 

• Agent Number is the number used to identify each Aggregator-agent. 

Aggregation 
Strategy 

• Selection Strategy is the number indicating the strategy used to select a People-agent 
group. 

• Select_Number is the number indicating how many People-agent are chosen to form the 
group; it can be any number from 1 to the maximum player-agent number. 

• Aggregation Strategy is the number indicating the strategy used for aggregating from the 
selected group. 

In the implementation, a set of basic and/or selection strategies is assigned 
randomly to each agent. If two agents meet, a match is initiated. Agents play with 
each other according to the strategy they selected and the information they have 
about each other. After each play, the points are added to the players and the agents 
move on to the next match. After running the simulation for T times all player-
agents are evaluated using the fitness function based on the overall points collected. 
During the simulation, poor performers are replaced by the best performer if that 
strategy is selected; otherwise, player-agents with higher scores are replaced. In 
addition, a lesser performer can opt to copy the whole or part of the better player's 
strategy. 

3.2. Experiment Results 
Experiment 1,' Player-agents' and Aggregator-agents' performance in both no-
learning crowds and evolutionary crowds 

Adding the learning ability to the player-agents enables them to learn 
individually to improve their decisions. Although this violates part of Surowiecki's 
criteria -independence - it is common and necessary in real life. Experiments show 
that by keeping enough diversity of opinion, the aggregate wisdom of the crowd can 
still perform better than most individual members, even better than the best 
individual. In this experiment, we focus on the agents' performance both with and 
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without the ability of crowds learn. 
Since the formation of crowds is important to the performance of agents in the 

Prisoner's Dilemma Problem, we run the experiments 10 times with different random 
seeds. During each round, 2S0 player-agents are placed in the game. After player-
agents have had a chance to play against each other and learn from each other for 
certain learning period, aggregator-agents with different strategies are introduced into 
the game. Aggrel, S, 9 .. , 2S0 represent the aggregator-agents with differing 
aggregation strategies. For example, an aggregator-agent whose strategy is to consult 
player-agents with the highest scores may choose to follow the advice of the group of 
player-agents having the current highest score, and we call it aggrel, likely a wise 
strategy for the aggregator-agents. Similarly, best--'people, median --'people, 
average--'people represent the player-agents. For example, best--'people represents one 
of the player-agent having sthe current highest score. 

In Figure 1, the charts show the performance of player-agents and aggregator-
agents, after certain duration of learning, using 10 different seeds (formations of 
crowds). 

By introducing the ability to learn, the performance of player-agents and 
Aggregator-agents show increased volatility in terms of scoring for different seeds 
(crowds). When no learning is introduced, the performance of player-agents and 
aggregator-agent is relatively stable, no matter which seed (formation of crowds) is 
used. Although the line for best-people is always on the top in Figures 1 and 2, it is 
interesting to notice that the lines for Aggre19 and Aggre29 are close to the one for 
best--'people, which suggests that the best way to make decisions using the wisdom of 
the crowd, in this situation, is to listen to the 10% best individuals in the crowd, so 
that the performance will be similar to the best individual in the crowds but only 
slightly lower. The Best individual's performance might change with each tick, but 
the performance of aggregators remains solid all the time. 

When we introduce a learning period more volatility occurs, and best-people 
agent is no longer the all-time winner. In Figure 1, which shows the situation after 
Learning was turned on for IS0,000 ticks, the aggregator-player performs better than 
the best--'people six times out of ten. This suggests that more than half the time, 
making a decision using the wisdom of the crowd is even better than the best 
individual in the crowds. 

Experiment2: Player-agents' and Aggregator-agents' performance varying in the 
size of crowds 

The size of crowds is another factor influencing agents' performance. In this 
experiment, we focus on the player-agents' and aggregator-agents' performance, 
while varying the size of the crowds. Two sets of experiments were run using 
different random seeds: 2S0 player-agents and SOO player-agents. 

In Figure 2, avg--'people_2S0 and best--'people_2S0 represent the average player-
agent and the player-agent with the current high score in a crowd of 2S0 player-
agents; aggre2S0 represents the aggregator-agent who chooses the strategy to listen to 
all 2S0 player-agents in the crowd; likewise for avg--.people _ SOO, best--'people _SOO 
and aggreSOO. 
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The charts in Figure 2 show that despite using various random seeds, the increased 
size of the crowd (which increases the diversity of opinion) results in a better 
performance for both player-agents and aggregator-agents. In addition, the 
aggregator-agent using the wisdom of the crowd approach performs better most of 
the time than the best player-agents in those crowds. 

Wisdom of Crowds{C) VS Best People-agent (S)VS Average People-agent (A) 

250 agents 6 

500 agents 6 
2 

3 
2 
1 

4. Lessons Learned and Future Work 
In the previous sections, we extended the concept of Wisdom of Crowds to a 

continuous decision making problem - The Prisoner's Dilemma. A simulation 
using the concept of Complex Adaptive Systems was built to demonstrate the 
concept of wisdom of crowds, while at the same time evaluating Surowiecki's four 
criteria for forming a smart crowd. However, it is hard to imagine a continuous 
decision-making example where members of the crowd are truly independent from 
each other in the real world. Therefore, by partially violating the independence 
criteria, we added the learning ability to the crowd. Our experiments show that 
this addition makes both individual players and the aggregate-players smarter, 
while still guaranteeing the diversity of opinion. Furthermore, these experiments 
show that in a crowd where the "membership" can be defined dynamically, and 
where members can communicate with each other and learn from each other, the 
wisdom-of-crowds approach is superior to the best performing members in the 
crowd. 

Our future work will help us to: 1) Characterize the structure of crowds more 
precisely way using elements such as size and density; 2) Identify the behavior of the 
crowds with different agent settings: heuristic, behavior pattern, social influence, and 
learning speed; and 3) Quantify and qualify the characteristics of aggregators. 
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A conceptual model for the design and evaluation of Holistic Security Ecosystems 
is introduced together with a proof of concept test bed for exploring the social, cog-
nitive, geographic and informational dynamics in the emergence of such large scale 
interdependent meta-organizations. The model is based on recent developments of the 
holonic paradigm of cross-organizational workflow coordination and decision making. 
Focused on the dynamic, on-the-fly creation of targeted, short-lived meta-organizations 
that work towards achieving a common goal (crisis resolution) the model guarantees 
optimal coordination and decision making at various levels of resolution across the 
holarchic levels of the organization. 
Keywords. Holonic Enterprise, Command and Control (C2), complex interdependent 
networks, Complex Adaptive Systems (CAS), network-enabled operations, Emergence 
of Robust Structure. 

1 Introduction 
The new security challenges of the 21st century are qualitatively different than 
in the past. Due to the complexity of such operations military forces find them-
selves collaborating with numerous other 'partner' organisations to achieve a 



common goal. This has imposed new demands on capacities and capabilities; and 
consequently requires new models to understand key issues and evaluate options. 
Successful modeling must consider human and organisational factors, which are 
currently not adequately addressed; certainly not at a meta-organisational level. 
The problems the military forces and their 'partners' encounter in operations are 
often messy, intractable, and dynamic; spilling across the problem-solving and 
management boundaries of single organisations or established cross-sector forms. 
The environment may often border on the chaotic and uncontrollable, but it may 
be possible to influence it in a predetermined direction if approached properly. 
This will require effective collaborative problem solving on the part of partnering 
organisations for which their" common goal" is more accurately a commonality 
of elements which bind them together in collective action. It is generally the 
intent of these partnering organisations to retain their autonomy while" joining 
forces" to achieve shared goals. The resulting tensions between autonomy and 
partnering lead to ambiguity and complexity in the meta-organisational (Le. the 
collective set of entity organisations and interrelationships) structure or form. 
These tensions must be reconciled in order to achieve both individual and shared 
objectives. Participants are pushed into activities that are beyond traditional 
areas of competence and they are stressed when encouraged simultaneously to 
build inter-organisational linkages and to protect organisational autonomy. In 
these instances, both cooperative and competitive behaviour will likely be ob-
served. The persistence of "coordination" as a problem in operations indicates 
a deeper issue than merely the need to "coordinate" tasks, which relates to 
the nature of the relationships amongst entities within a meta-organisation and 
whether or not the set of relationships and consequent meta-organisational form 
promotes or hinders collective decision-making. In recognition of this problem, 
theories on "robust networking" have been advanced but require not only shared 
information but shared understanding and intent as well. It is rarely argued any 
longer that technology drives social change; instead a more holistic approach is 
advocated in which "information technology" is comprised not only of physical 
artefacts but also the social relations around those artefacts. 

In this paper we propose a complex systems approach to the emergence 
of holonic organizational structure - as meta-organizational structure (system 
of systems) integrating various players (multi-level organizations, individuals, 
devices and the leT systems and communication networks linking them) while 
balancing autonomy and cooperation in the drive towards a common goal (crisis 
resolution) in emergency response-related military operations. 

2 On Emerging Robust Structure Through Ar-
chitecture and Protocols 

For a decentralized organization to function as an organization-and not just as 
a collection of disconnected elements - the components must interact within 
a shared environment, typically internal to the organization. The components 
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(a) Reconfigurable Holarchy with Dynamic 
Mediator 

(b) Emergency Response Holarchy 

Figure 1: Emerging Robust Holonic Structure 

can no longer simply report up their respective chains of command and expect 
insightful decisions to issue magically from the top. The components must in-
teract among themselves and find their own ways of collaborating through the 
environment. 

Command and Control (C2) is the military term for the structures and pro-
cesses though which an entity (i.e., an organization, a system, an organism, etc.) 
operates. Every entity (military, business, social, political, biological, hardware, 
software) has a C2 structure. Much of an entity's C2 structure is often recorded 
in its constitution, by-laws, policies and practices manuals, or design documen-
tation - if it has any of these. Virtually no entity has a complete statement of 
its C2 structure. A fundamental question to be faced by any discussion of C2 is: 
what are the requirements for which a C2 design is the answer. That is, what 
meta-behavioral properties or qualities do we want an organization/system to 
have? Among the list of possible requirements are the ability to choose actions 
which will further the system's interests, the ability to act effectively to perform 
a specific function (sometimes known as execution), the ability to respond to 
the unknown, the ability to act at the appropriate time scale depending on the 
situation, the ability to recover from injuries, etc. 

From a complex systems perspective, C2 can be built into the architectural 
requirements determining the components and their interactions through pro-
tocols encapsulating the policies and governance rules, which thus will shape 
the structure of such an organization. Governance refers to the creating of 
conditions for ordered rule and collective action [9J, and focuses on centrally 
controlling major societal functions to reduce chaos and preserve overall system 
optimal functionality with respect to all its participants. The C2 mechanism 
lays the foundation for emerging robust structure [10J in the timely deployment 
of dynamic, short-living organizational structures needed in emergency response 
military operations, Fig. 1 a. b. Robustness stems from system's ability to re-
configure its structure to accommodate various disturbances while maintaining 
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its functionality in a range of acceptable behaviors. This is achieved via a 'plug-
and-play' flexible architecture in which components can be easily interchanged 
to take over the functionality of broken ones [13]. 

[1] makes a strong argument regarding the role of architecture and protocols 
in the evolution of complex systems - in particular in the capacity to develop re-
silience through robust structure. Protocols define how diverse modules interact 
and architecture defines how sets of protocols are organized. The concepts of 
architecture and protocol is completely compatible with the challenge of devel-
oping new ways to organize human effort beyond the classic industrial control 
hierarchy. While we have tend to explore inter-organizational architectures for 
collaboration across a wide range of efforts, there have been far few efforts to 
explore the architectural design space within an organization. Our standard ar-
chitectural framework has been the control hierarchy and protocol is hierarchic 
authorizations. 

Doyle's deep analysis of biological and technological robustness concludes 
that selection acting at the protocol level could evolve and preserve shared ar-
chitecture, thus enabling interchangeable 'plug-and-play' of components, which 
in turn facilitates structural reconfiguration. This is in tune with our previous 
result [10] while deepening and fleshing out what makes auto-catalytic sets, the 
fundamental units of self-reproductible complex systems architecture [7]. The 
basic auto-catalytic set (holon) within the underlying architecture/protocol lays 
the foundation for emerging (robust) structure and preserving it during the dy-
namics of purposeful organizational deployment in the chaos of crisis [11]. 

Ecologies and economies framed by suitable architecture components are de-
fined by the workings of the protocol allowing integration of components parts. 
Mastering protocol and architectural design at the 'primal' autocatalytic set / 
holon is thus crucial in ensuring resilient deployment, given that it is the proto-
col that creates the dynamics of organizational boundary. Resilience of a social 
ecosystem is defined as the capacity of the system to absorb disturbances while 
maintaining its function, structure, identity and feedbacks [15]. Resilience de-
pends the capacity of the organization to re-organize over spatial and functional 
scale [4] via adaptive governance [2]. 

The participants in a military operation may be described as species within 
a social ecosystem [3] specialized to achieve both their own goals and those of 
the greater organization [4]. Such organizations are characterized by: 

• the participants' ability to negotiate between autonomy and cooperation 
in a drive (attractor) towards a common goal, 

• a coordinated workflow process that triggers the formation of high-level 
organizational structure (patterns of collaborative clusters) through low-
level interactions between participants, and 

• a capacity to organize over spatial and functional scale [15] to maintain 
resilience against attack. 
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3 Holistic Security Ecosystems (HSE) 

Figure 2: Holistic Security Ecosystem 

We build on the holonic enterprise and emergency response holarchy con-
cepts, Fig. 1 to define a holistic security ecosystem (HSE) as an emergent 
short-living meta-organization dynamically created in response to an emergency 
event by bringing together several otherwise stand-alone dispersed organizations 
[14]. The HSE is a meta-organization of interdependent specialized Risk, Sup-
port ad Infrastructure Holarchies, Fig. 2 working in synergy through a shared 
environment - most fundamentally a communication network - which adds one 
more dimension (C) to the Command and Control - making the operational 
coordination across an HSE a C3. C3 is facilitated by a shared environment, 
including common resources as well as implicit and explicit rules of behavior. 
Management of the interactions between these organizations has to undertake 
multifaceted challenges (cultural, professional, coopetition, trust in a new tem-
porary authority, etc) which require careful crafting of the basic architecture and 
protocol elements to enable resilient flexible functionality in an unpredictable dy-
namic environment. Such an organization is subject to either gradual or abrupt 
change. Gradual change is characterized by a steady progression in organiza-
tional change, whereas abrupt change is characterized by unpredictable actions 
and consequences [5]. In the case of an attack, periods of abrupt change increase 
in frequency, duration and magnitude. 

To increase the flexibility of military units approaches such as net-centricity 
have been proposed, which imply a significant decentralization of authority -
individual components of an organization are given as much autonomy as pos-
sible. Yet virtually all organizations remain hierarchical to some degree, thus 
the holonic heterarchical structure suits well the purpose of balancing autonomy 
of low-level holons with the authority of a chief executive / unity of command 
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encapsulated in the HSE via a dynamic mediator [13] Fig. 3 enabling authority 
to be dynamically allocated at various levels in the chain of command as well 
as within one level (in case c.g. the chief executive needs to be replaced). The 
executive (mediator) is given the authority and responsibility to use some as-
signed resource(s) - typically more than s/he can control on his or her own-to 
achieve some objective. 

One may look at an organization's operational structure as a reflection of 
its strategy for allocating resources. This opens the perspective of using market 
models to reconfigure the organizational structure via the harmonious flow of 
resource allocation tuned to respond optimally to the crisis at hand. Markets 
(and most innovative environments) allocate resources in a bottom-up fashion. 
It is primarily the autonomous agents that decide how resources will be dis-
tributed. They make that decision when they make their individual decisions 
about what to buy. Similarly, "power to the edge" implies that the power to 
allocate resources is vested primarily with the lowest level elements-those at the 
edge, away from the power centers. This approach opens the possibility of tuning 
the bottom-up emergence of robust structure via market models [8]. 
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Figure 3: Delegation of Command via Dynamic Mediator 

When tuning the resilience of HSEs via resource allocation it is important to 
realize that entities capable to acquire their own resources from sources outside of 
themselves (and from outside of any larger organization of which they are a com-
ponent) can be far more autonomous than entities that acquire their resources 
from higher levels within a hierarchical resource allocation framework. Thus, a 
niche for independence/autonomy in a holarchy can be created by outside sup-
pliers which will thus create a buffer accommodating eventual resource scarcity 
strains that may lead to cascading failures otherwise. Such external sources un-
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dertaking eventual unexpected loads in case of unexpected disturbances enforce 
organization's resilience. 

4 Modeling and Simulation Test bed 
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Figure 4: Adaptive Risk Management Testbed 

Among the major challenges facing the deployment of such dynamic interde-
pendent meta-organizations, we mention: How are decisions made about both 
allocating existing shared resources and investing in new shared resources? How 
to craft rules that govern both behavior and the use of shared resources? Once 
made, how are these rules enforced? How are they changed as circumstances 
change? To address these challenges we are working on the development of 
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a conceptual model for the emergence (dynamic creation) of HSE via collabo-
rative resource exchange among participants. This boils down to the modeling 
and analysis of interdependent network-enabled hybrid complex systems consist-
ing of organizations, departments, individuals, information and physical entities 
and the dynamics of their cascading effects under various conditions and strains. 
Simulations on the adaptive risk management (ARM) testbed available in our 
lab, Fig. 4 [12] enable an understanding of the dynamics of criticality occurrence 
within the Holistic Security Ecosystem for a wide range of operating scenarios. 

The conceptual model (B in fig. 4) encompasses two capacities: 

• The geographical capacity of the organization addresses which resources 
("partners") are located where at any given time. On our testbed the 
geographical placement of organizational partners is modeled through the 
Wireless Sensor Network (C in Fig. 4), where every sensor represents the 
location of a collaborative partner. 

• The intellectual capacity of the organization consists of the specialized 
skills available through different partners in the organization. An indi-
cation of responsiveness, focus area of employees etc. would be typical 
examples of intellectual capacities. 

The geographical intellectual capacities represent the organization and its part-
ners as a network, whose entities are processing by the modeling and simulation 
module (D in Fig. 4). 

The HSE Testbed (Fig. 5) is being used to run various configurations of 
HSE under various conditions and strains with various factors impacting the 
workflow coordination and decision-making throughout the meta-organization 
to enable understanding of the dynamics of criticality occurrence within the 
HSE under various operating conditions / scenarios of mission critical activities. 
Through simulations, existing social networks are "mapped" into the holonic 
model to investigate the strengths and resilience of various HSE configurations, 
thus determining their suitability to address various crisis models. This enables 
mapping of various HSE configurations to the crisis types for which the par-
ticular meta-organizational structure works best. Validation of resulted HSE 
configuration - crisis type mappings on 'in-vivo' simulation exercises for vari-
ous instantiations of scenarios (taking e.g. pandemic mitigation or Vancouver 
Olympics scenarios an various crisis possibilities within the particular scenarios) 
will provides essential feedback for the model improvement. 

5 Conclusions and Future Work 
We will extend the holonic model by integration of various aspects impacting 
the flow of decision-making and functionality of the meta-organization (profes-
sional decision-making, cultural impact, trust in such short-life mission-oriented 
organizations, etc.). Analysis and identification of the impact and interdepen-
dencies between various key factors in the extended model transcending cul-
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Figure 5: Holistic Security Ecosystem Simulation Testbed 

tural, professional, psychological, sociological etc. dimensions will be used to 
tune the resilience of the HSE by identifying eventual cascading effects with 
emphasis on the weakest points/links, to determine counteracting (strengthen-
ing) measures. This will result in a methodology of design for resilience of HSE 
laying the foundation of a template for harmonious inter-organisational opera-
tions coordination in highly dynamic, short-living mission-critical crisis relieving 
meta-organizations encompassing methods to optimise interactions and commu-
nication linkages among participants. 

Integrating the simulations results into a 'strategic thinking process' will 
enable a change of culture in the design and deployment of integrated HSE 
(with a-priori identified risks and potential cascading criticalities strengthened 
and an anticipatory ability of the impact of various dynamics of interdependent 
factors) which would lead to a seamless reorganization of the HSE in patterns 
of resilience under various strains and internal disturbances - that will enable 
it to keeping its operational flow unobstructed through the chaos of various 
crises. If taken to the next level - this could lead to an overall benchmarking 
of strategic thinking for self-transformation to help organizations adapt to the 
high dynamics of our world by considering interdependent factors while better 
focusing on relevant strength in overcoming limitations, [6J. 

We must ensure that today's solutions are not tomorrow's problems - and 
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key to this is our capacity of agile response directed by wise strategy. We hope 
that the proposed conceptual model and testbed will facilitate 'wise strategy' de-
ployment by crafting emergent robust structure in dynamic meta-organizations. 
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Watts' "Simple Model of Global Cascades on Random Networks" used percolation theory to 
derive conditions under which a small trigger causes a finite fraction of an infinite number of 
nodes to flip from "off' to "on" based on the states of their neighbors according to a simple 
threshold rule. The lower boundary of this region (at approximately Z = 1) was determined 
by the disintegration of the network while the upper boundary (at values of Z that depend on 
the threshold) was determined by the resistance of nodes to being flipped due to their many 
connections to stable nodes. Experiments on finite networks revealed a similar upper 
boundary, displaced upward from the theoretical boundary toward larger values of Z. In this 
paper we study cascades on finite networks in this upper boundary region via simulations. We 
distinguish two kinds of cascades: total network cascades (or TNCs) that essentially consume 
the entire finite network, and cascades corresponding to those predicted by percolation theory 
that consume only the initially struck vulnerable clusters and possibly a few others. We show 
that the experimental upper boundary found by Watts corresponds to TNCs. TNCs can start 
when, for example, as few as 2 vulnerable nodes in a network of 10000 nodes are flipped 
initially by a single seed and no cluster of vulnerable nodes larger than 21 exists. The 
mechanism by which these cascades start and grow near the upper boundary is not described 
by percolation theory because the nodes involved form a densely connected subnetwork that is 
not tree-like . Instead a different mechanism is involved in which a particular motif comprising 
patterns of linkages between vulnerable and stable nodes must be present in sufficient quantity 
to allow the cascade to hop from the initially struck clusters to others. While the c1uster-
hopping mechanism is necessary to start the cascade, the later emergence of a TNC requires 
the presence of relatively large clusters of vulnerable nodes. The shrinkage of the size of these 
largest clusters relative to network size is a major factor in the disappearance of TNCs as finite 
networks with the same Z get larger. TNCs are also enhanced if the network is artificially 
altered by degree-preserving rewiring to have positive degree correlation or increased 
clustering coefficient. Each enhances the likelihood ofTNCs by a different mechanism . Great 
variability is observed in nominally identical random networks with the same Z with respect to 
properties such as the amount and distribution of the cluster-hopping motif and the size of the 
largest vulnerable cluster. This means that metrics based on first moments of these or other 
characteristics are unlikely to reveal which networks are susceptible to TNCs. 

I. Introduction 

Watts [Watts] used percolation theory to model the ways rumors or other influences 
might propagate through populations based on a simple threshold rule: Each node is 
assigned a threshold 1> and an initial state 0 or "off." Ifa fraction 1> or more ofa 
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node's neighbors acquire state 1 or "on," then that node will flip from off to on. The 
thresho ld corresponds to a critical nodal degree K * such that K* = ll! ifJ J. Nodes 
with k s K * are termed "vulnerable" and will flip if one of their neighbors flips. 
Nodes with K* < k s 2K * are here called "first-order-stable" and will flip if two of 
their neighbors flip. Nodes with 2K* < k s 3K * are called second-order-stable 
and will flip of three if their neighbors flip, etc. Watts found exact solutions for 
infinite Poisson random graphs that define a region in Z - ifJ space (where Z is the 
network's average nodal degree) inside of which a finite fraction of an infinite 
network would flip from off to on if even one node (called the seed) were arbitrarily 
chosen and flipped from off to on. (Figure 1) He performed simulations on finite 
networks comprising 10000 nodes and found that these networks exhibited a similar 
region. The lower boundary of this region (at approximately Z = 1) was determined 
by the disintegration of the network while the upper boundary (at values of Z that 
depend on the threshold) was determined by the resistance of nodes to being flipped 
due to their many connections to stable nodes. 
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Figure 1. The Cascade Window [Watts). Black dots correspond to rare global 
cascades observed in random networks containing 10000 nodes. 

In this paper we examine the region in finite networks where infinite networks have 
their upper boundary and seek understand why global cascades (called total network 
cascades or TNCs in this paper) occur in what appears to be an infertile region. This 
is interesting for several reasons. First, percolation theory speaks only to the flipping 
of vulnerable nodes, so the flipping of stable nodes is accomplished, as Watts 
observes, by numbers of flipped vulnerable nodes surrounding stable nodes and 
flipping them. But this mechanism operates only when a cascade is mature, not when 
it is just starting. Second, the absolute size of the cascade is, in percolation theory, 
upper-bounded by the number of vulnerable nodes, but the entire network can be 
made to flip even when vulnerable nodes comprise a small fraction of the entire 
network and clusters of them are small. Third, much of the interesting commentary 
Watts gives pertains to the finite networks on which simulations were performed, not 
infinite networks. These facts and statements prompted the present study. 

II. Characteristics of Networks Near the Upper Boundary 

The networks being studied comprise two kinds of nodes, namely vulnerable and 
stable. Each kind appears in clusters of various sizes, depending on Z. When Z has 



a value in the middle of the region, most of the nodes are vulnerable and belong to 
one large cluster, while the stable nodes are dispersed in many smaller clusters. Near 
the upper boundary most of the nodes are stable and belong to one large cluster while 
it is the vulnerable nodes that are dispersed in many smaller clusters. A typical 
situation contrasting clustering in the middle of the cascade window and above the 
theoretical upper boundary is shown in Figure 2. 
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Figure 2. Clustering in Two Finite Networks with n = 4500 and K* = 8. Left: In 
the middle of the cascade window where network test4500q has z = 5.03. Right: 
Above the theoretical upper boundary where network test4500a has z = 11.525. 
TNCs occur, though rarely, in this network. 

Even above the theoretical boundary, there is no shortage of vulnerable nodes: when 
K* = 5 and z = 6.4, typically 37% of the nodes are vulnerable. When K* = 8 
and z = 11.6, typically 18% are vulnerable. In both cases, 90% of the stable nodes 
are first-order stable, meaning that they will flip if two neighbors flip. Thus cascades 
do not become rare because stable nodes are so highly linked that there is little 
chance of overcoming their threshold. 

One might wonder why it is then so hard to start cascades in this region. According 
to percolation theory, what is happening is that the vulnerable nodes are becoming 
isolated from each other so that clusters of them are becoming smaller as z increases 
for a given K *. Finite networks display analogous behavior. While the sizes of the 
average and largest vulnerable cluster increase as the size of the network increases for 
given Z and K *, the largest vulnerable cluster size scales approximately as nO.27 

when z = 11.5 and K* = 8 so that in an infinite network the size of the largest 
vulnerable cluster would be zero. 1,2 Typically, 45% or more of the vulnerable nodes 
are in clusters of size = 1, meaning that they are isolated from other vulnerable nodes. 

I The second moment of vulnerable cluster size may be taken as a proxy for the size of the 
largest cluster. This can be calculated in the random network case as H;; (1). This quantity 
diverges at the same value of Z as does the first moment, so the behavior of this quantity is no 
different than that of mean cluster size. 
2 The size of the largest vulnerable cluster is not an outlier. The largest one is followed by 
many that are almost as large. As discussed later in the paper, large vulnerable clusters are 
strong enablers ofTNCs. 
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Since large clusters of vulnerable nodes3 are rare or nonexistent in the region just 
above the theoretical upper boundary, and since percolation theory speaks only to the 
growth of cascades within these small vulnerable clusters, how do TNCs get started? 
The experiments described below were aimed at answering this question. 

III. Experiments 

In this study, simulations were performed on networks of various sizes from 2000 
nodes to 36000 nodes, following Watts' procedure [Watts bt a value of K * and a 
value of z were chosen such that z was larger than the theoretical value for that K * 
but at or near the boundary value found by Watts; a random network was generated 
having approximately that value of z; a single seed node was chosen at random and 
flipped from off to on. Subsequently, one of the following Scenarios occurred: 

1. The seed did not link to any vulnerable node and nothing happened. This occurred 
in most of the experiments. 

2. The seed linked to one or more vulnerable nodes; these nodes flipped, then the rest 
of the nodes in their clusters flipped (that is, their clusters percolated), then (or 
concurrently) occasionally vulnerable nodes in another cluster flipped, and then the 
cascade stopped after flipping at most a few dozen nodes. This event occurred often, 
perhaps once in 10 tries. 

3. As in 2, but the entire network flipped. This event was rare, occurring once in 
several hundred tries, and more rarely for larger networks having the same Z . 

Scenario 2 is completely predictable in infinite networks by percolation theory as 
applied by Watts. Its occurrence in finite networks obeys similar conditions, namely 
that some non-zero-size vulnerable clusters exist and that the seed link to one or more 
of them. The sizes of such cascades are distributed exponentially, as determined 
experimentally by Watts. The sizes of vulnerable clusters in finite networks are also 
distributed exponentially, determined experimentally here. This fact permits us to 
surmise that the exponentially distributed cascades whose sizes are plotted by Watts 
in his Figure 3 are Scenario 2 events. The upper limit of Z above which Scenario 2 
can no longer occur is that where the largest vulnerable clusters consist of a single 
node each. This value of Z is far higher than the theoretical value at the upper 
cascade boundary in infinite networks or the location of the black dots in Watts' 
Figure I . In fact, as determined experimentally for this paper, the upper limit for 
Scenario 3 in finite networks corresponds to the black dots. The one data point in 
Watts' Figure 3 corresponding to a cascade consuming 100% of the network then 
presumably is a Scenario 3 event. Note that the vulnerable clusters in finite networks 
near the theoretical upper boundary, while large enough to account for Scenario 2 
events, are too small to comprise TNCs, and the totality of vulnerable nodes is no 
more than 20% of the network when Z = 11 .5 and K* = 8. 

3 Note that we repeatedly refer to "large vulnerable clusters" or "relatively large vulnerable 
clusters" in this paper. In no case are such clusters larger than about I % of the size of the 
network, and usually they are smaller. But the size of the largest vulnerable cluster is 
important in determining whether a cascade, once launched, can become a TNC. 
4 Watts generated a new network for each of his experiments. In this paper we ran upwards of 
4000 experiments on each network. Statistically this should not make the results differ, and 
indeed the same experimental upper boundary was obtained. But our method makes it easier to 
inspect the structure of each experimental network and understand how its structure relates to 
its tendency to exhibit TNCs. 



These thoughts lead us to conclude that Scenarios 2 and 3 in finite networks are 
different phenomena near or above the theoretical upper boundary and have different 
enabling conditions. Indeed, while Scenario 2 requires only that the seed link to 
some vulnerable clusters, Scenario 3 requires that the flipping process "escape" the 
first vulnerable clusters linked to by the seed. This in turn requires that one or more 
stable nodes be flipped and that these flipped stable nodes also link to new vulnerable 
clusters not linked to by the seed so that these new vulnerable clusters will flip. The 
combined network of stable and vulnerable nodes that must be analyzed in order to 
understand this escape process is highly cross-linked. In fact, every stable node that 
flips is part of a closed loop, and the first few stable nodes that flip are part of closed 
loops that are quite short, containing perhaps as few as 5 nodes. But percolation 
theory as defined by Calloway et al and Watts works only on networks that are tree-
like. Thus we conclude that percolation theory as applied by these authors is not able 
to describe the process that results in TNCs near or above the theoretical upper 
boundary in finite networks (although an analytical explanation could be possible). 
The remainder of this paper is devoted to using numerical experiments to understand 
this escape process in finite networks of various sizes above the value of Z at which 
infinite networks display their upper boundary. No new explanation is necessary for 
what happens well inside the boundary because the vulnerable cluster is so large, as 
shown on the left in Figure 2. 

In each experiment, data were recorded on how many vulnerable clusters the network 
had, the degree of the seed, how big the largest vulnerable cluster was, which clusters 
of vulnerable nodes were participating in the cascade, which vulnerable clusters were 
linked to by the seed, how large each participating vulnerable cluster was, when each 
stable and vulnerable node flipped, when a new vulnerable cluster joined the cascade, 
and how many vulnerable and stable nodes flipped at each stage of the cascade. 
These experiments were performed for K* = 8, for which the experimental 
boundary occurs at Z ... 11.5, and K* = 5, for which the experimental boundary 
occurs at Z ... 6.5.5 Most of the numerical results discussed pertain to K* = 8 . 

IV. Characteristics of Experimental Results 

The experiments show several things. First, TNCs become rare at values of z that 
correspond to Watts' experiment\llly-determined upper boundary (the black dots in 
Figure 1). Cascades corresponding to Scenario 2 are not rare at these z values but 
instead become rare at much larger values. Second, TNCs can start when a seed links 
to only a few vulnerable nodes that lie in small clusters. Many, but not all, TNCs 
start when the seed links to more than two vulnerable clusters, a rare event. It is not 
necessary, nor is it often observed, that the seed link to a large or the largest 
vulnerable cluster. Instead, large clusters are often brought into the cascade at later 
steps. However, a TNC never starts if the seed links only to vulnerable nodes in 
clusters of size = I, meaning that about 45% of the vulnerable nodes are unable to 
launch TNCs. Furthermore, only rarely is the largest vulnerable cluster in a network 
able to start a TNC if the seed links only to it. Finally, TNCs do not proceed by 
flipping all or even very many of the vulnerable nodes first and then turning to the 
stable nodes. On the contrary, TNCs proceed by almost immediately starting to flip 
stable nodes. In fact, if this does not happen within the first few steps, a TNC does 
not occur. 

5 For networks with fewer nodes, successively slightly larger values of Z define the boundary. 
This is part of the size effect of using finite networks, discussed more later in the paper. 
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Two properties of the finite networks were observed to favor TNCs. One is the 
occurrence of some particular arrangements of vulnerable and stable nodes, called 
motifs below. The other is the presence of vulnerable clusters that are larger than 
occur on average in networks of that size and z. Without the motifs, TNCs cannot 
start. Without larger than average vulnerable clusters, TNCs are unlikely to survive 
beyond the starting stage enabled by the motifs. Each of these factors is in turn 
enhanced by smaller z, indicating that they are correlated. Furthermore, these factors 
differ greatly between different nominally identical networks (i.e., networks having 
the same size and Z). Also, as the networks increase in size, Z must be smaller in 
order for TNCs to occur at the same rate. Evidently, motifs become fewer and 
vulnerable clusters become relatively smaller as network size increases, and these 
effects must be compensated by decreasing z. The following sections provide detail 
on these findings. 

v. The Cluster Seed Motif 

In this section we discuss the first factor, two main patterns of node interconnections 
that enable TNCs to start and without which TNCs cannot start. Both of these 
provide the necessary conditions for flipping a first-order stable node: two flipped 
neighbors. 

Here is what is observed when a TNC begins: The seed links to and flips one or a 
few vulnerable nodes, usually in more than one cluster. Within the first few steps, a 
flipped pair of vulnerable nodes has a common first-order-stable neighbor;6 this 
neighbor flips. In a few of these instances, this neighbor has a vulnerable neighbor in 
another cluster. This vulnerable neighbor then flips, carrying the cascade to another 
group of vulnerable nodes, enabling the necessary cluster-hopping. This arrangement 
of nodes is here called a motif in the spirit of [Milo et al]. The first of two common 

ed or other 
motifs is illustrated in flipped nod 
Figure 3. The first 10 or 20 steps of a TNC typically proceed by repeated cluster-
hopping events enabled by these motifs. Only after this does the cascade proceed by 
stab Ie nodes flipping ~ach other. 

6 It is possible that this stable node is not first-order stable, but the likelihood of this event is 
about 0.1, so it is ignored here. 
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Figure 3. Illustrating the First Motif. Closed circles are vulnerable nodes while 
inverted triangles are stable nodes. (Left) Motin comprises a pair of vulnerable 
nodes a and b in the same or different clusters, their common first order stable 
neighbor c, and that neighbor's distinct vulnerable neighbor d in a different 
cluster from that or those of the original vulnerable pair. Note: If nodes a and b 
are in different clusters but by some means are both flipped, then the motif does 
not require these nodes to be connected. Such cases occur frequently but are not 
illustrated here. (Right) Example of motin in operation: The seed or another 
flipped node links to and flips vulnerable node b in Cluster 1. On the next step, 
vulnerable node a flips. This pair can then flip the first-order-stable node c, 
which in turn flips vulnerable node d in Cluster 2. In this way the cascade 
"hops" from Cluster 1 to Cluster 2. 

Another motif, a subset ofmotifl , is shown in Figure 4 and is called motif2. Some of 
the ways it has been observed to act are also shown. Rarely, other patterns enabling 
TNCs to launch are observed, but the ones in 

r 
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Motifl Cluster 1 

ed or other 
flipped node 

Figure 3 and Figure 4 are the most frequent. 

Cluster 3 

d 
a b 
Moti£2 

Seed 

Figure 4. Illustrating the Second Motif. Left: motif2. Center: A documented 
start of a TNC which depends on motif2. Cluster 1 has 4 nodes while cluster 2 
has 7. Only those involved in the TNC are shown. Right: Another documented 
start. Cluster 1 has one node while cluster 2 has 3. The TNC breaks out when 
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clusters 3 - 5 are struck. As in the case of motif!, it is not necessary that nodes a 
and b be connected as long as by some means they are both flipped. Also, as 
with motin, the node marked "seed" can be any flipped node. 

Note that the subnetworks involved in these motifs are not tree-like but instead 
contain short closed loops. 

To determine if these motifs act repeatably as the enabler of cluster-hopping at the 
start of TNCs, the histories of several TNCs were documented and studied in detail. 
An example is documented in Figure 5 and illustrated on the network in Figure 6. In 
Figure 5 we can see that the cascade begins in several of the smaller clusters. Stable 
nodes are flipped almost right away, and almost every time another stable node is 
flipped, another cluster joins the cascade on the next step. By the 12th step, when 
only 145 out of 552 vulnerable nodes have been flipped, 155 stable nodes have been 
flipped. In these experiments, as soon as the number of stable nodes flipped at one 
step exceeded the number of vulnerable nodes flipped at that step, a TNC always 
occurred. The hypothesized mechanisms are clearly visible: the cascade proceeds 
initially by recruiting more and more relatively small clusters (the largest in this 
network contains only 13 nodes) and stilI more stable nodes until the cascade can be 
carried by the stable nodes flipping each other. Typically less than a dozen steps are 
needed in this region of the space to establish propagation via stable nodes flipping 
each other. 

The early stages of this cascade through the network are documented in Figure 6. In 
this figure, only the local region around the first few participating nodes is shown, 
and only those links along which the cascade proceeds are shown. Since Z = 11.62, 
each node actually has many more links than are shown. Several instances of cluster-
hopping via these motifs can be seen. Other, more rare, patterns also are seen, such 
as the seed linking to a stable node that is flipped on the third step. 
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Figure 5. Documentation of a TNC. Here we see the statistics of the cascade, 
showing how many vulnerable and stable nodes flip at each step, the number of 
clusters involved, and the size of the largest cluster involved. The early stages of 
this cascade through the network are illustrated in Figure 6. 
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Figure 6. The First Seven Steps of the TNC Charted in Figure 5. Successive 
steps in the cascade are marked by nodes of increasing size. Vulnerable clusters 
are surrounded by ellipses. The seed is node 2365. Motifl is the means by 
which stable nodes 1443,2861,1172,2189,94, and 2692 carry the cascade to new 
vulnerable clusters. The smallest nodes (199, 1198, 1342,2427,2532,2678, and 
2839) are struck by the seed at step 1. Node 2678 plays no further role. At step 
2, vulnerable nodes 165,382, 1457, and 345 flip. On step 3, 2365 and 165 flip 
stable neighbor 139, while 165 and 345 flip stable node 2861, and 2532 and 1457 
flip stable neighbor 1443. On the next step, 139 carries the cascade to a new 
cluster, flipping 2605, while 2861 and 1443 do the same in two other new 
clusters. Node 1667 at the upper right, reached on step 7, is a member of a 
cluster of size 11. The largest cluster is reached on step 8. Many other flips can 
be seen that are not described verbally here. By the 6th step the cascade has a 
firm foothold and the motifs are no longer necessary to carry the cascade 
forward. 

To detennine the frequency of occurrence of the motifs illustrated in 
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Figure 3, random networks with n ranging from 2000 to 18000 were generated, all 
pairs of vulnerable nodes were examined, and instances of the motif were recorded. 
The results are in Figure 7. 
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Figure 7. Occurrence of Motifl for K* = 8. Similar results are obtained for 
motin. The actual upper boundary for finite networks with K* = 8 and 
n = 10000 is Z "" 11.5, but decreases as network size increases. 

Here we can see that the metric motifs/node (number of motifs divided by number of 
nodes in the network) takes a value near 1 when Z is near the observed value where 
TNCs are rare. As noted above, smaller z is needed for larger n. The metric takes a 
value near I when n = 10000, but the observed value of the metric has no 
particular meaning and is used only for comparison between networks with different 
K * to see if the pattern is repeatable. 

Normalizing the occurrence of motifs by the size of the network is reasonable. One 
might think that, since the right lucky pair of vulnerable nodes must be found in order 
to activate either motif, one should normalize by the number of possible pairs of 
vulnerable nodes. However, it is not necessary for the seed to link to the lucky pairs 
but only that it link to vulnerable clusters containing the lucky pairs. The number of 
vulnerable clusters scales approximately linearly with the size of the network, so 
network size is a reasonable choice for normalizing factor. 

We verified that absence ofmotif2 (and usually motif! as well) is sufficient to 
prevent a cascade from leaving the first vulnerable clusters linked to by the seed. An 
example is shown in Figure 8. 

It should be noted that associating the census of motifs with occurrence ofTNCs is 
fraught because a single set of nodes arranged in the required pattern will be counted 
more than once, depending on which of several available pairs of vulnerable nodes is 
chosen as the starting point. Since it cannot be predicted which, if any, of these pairs 
actualIy are in a position to aid cluster hopping in any particular instance, the census 
of motifs can at best be a statistical indicator of the ability of a network to exhibit 
TNCs. 



y'Mf "'1~ 

9:~."lW .. ,~ .. -j .,lt1O 
't'lDI2I I / 'W"n 
Y21'S1,"JAn..s /' 
9 XI3" 1 ..... 

.. • ....... ZMS I ........ . all 
'fa YlmI. lIIII 

ft',..",.· 
J • • ,Z 

.......",-,,4)51 • .., ...... 
, ... ~'.I 

'l'1CI8O ."Q ~ 

... tOt .. ~""'I' 
.,,2tl45 _ ,,2I!lOIO 

~""41) -.36J86 .. "'" 
Y~=Il.~"9!i 

Figure 8. No Motifs: No TNC. A Large Vulnerable Cluster with No 
Occurrences of Motifl or Motif2. Vulnerable nodes are closed circles while 
stable nodes are inverted triangles. All immediate neighbors of the 22 
vulnerable nodes in this cluster are shown. The seed hit one of these vulnerable 
nodes but no TNC occurred. 

TNes start when several vulnerable clusters are linked to by the seed and when these 
clusters are of above average size, indicating that recruiting motifs is difficult and 
requires many vulnerable nodes to be involved. Table 1 provides some data. 

Size of Average size Average number Average size of Average 
Network of first flipped of first flipped first fl ipped number of first 

clusters where clusters where clusters where flipped 
TNes occurred TNes occurred noTNes clusters where 

occurred no TNes 
occurred 

4500 5 3 2 1.5 
9000 9 3 3 1.5 
18000 15 3 2.5 1.5 

Table 1. Representative Statistics on Clusters Flipped by the Seed, Comparing 
TNC vs no TNC. Successful seeds link on average to twice as many vulnerable 
clusters as unsuccessful seeds do (compare column 3 to column 5), and those 
clusters are more than twice as big as those linked to by unsuccessful seeds 
(compare column 2 to column 4). The averages in the two right columns are 
essentially the network averages since TNCs occur less than 1 % of the time. The 
largest vulnerable clusters in these networks are about 2 to 3 times larger than 
the averages shown in columns 2 and 4 respectively. Variability in these statistics 
is high since only a few clusters are flipped by seeds near the upper boundary. 

TNes are more likely when the seed strikes clusters that collectively are rich in 
motif! and motif2 compared to clusters picked at random. Table 2 provides some 
representative data for 13 TNes. In contrast to these data, individual vulnerable 
clusters selected at random have few or no occurrences of either motif. Also, picking 
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pairs of vulnerable clusters at random produces more occurrences of these motifs in 
networks with more TNCs than in those with fewer, given the same number of 
attempts to start a TNC. Also observed but not shown is the fact that bigger 
vulnerable clusters do not necessarily have more of these motifs. 

Number of Number of Number of 
clusters linked motif! in these motif2 in these 
to seed clusters clusters 
4 14 9 
5 36 14 
4 13 8 
2 7 4 
2* 0 2 
2 7 4 
3 18 9 
2 2 4 
3 II 6 
1** 0 0 
2 5 2 
3 7 6 
5 36 14 

Table 2. Occurrence of Motifl and Motif2 in Vulnerable Clusters Linked to by 
the Seed in 13 TNCs in Network testlOOOOa, n = 10000, Z = 11.417. This network 
has 1986 vulnerable nodes in 1167 clusters, the biggest cluster having only 21 
nodes. *This TNC started via the middle mechanism in Figure 4. **This TNC 
started when the seed flipped a component containing a single node. This node 
and the seed linked to another stable node which then flipped. It flipped a 
vulnerable node in a larger cluster and the TNC proceeded from there via 
motifl. 

Table 2 indicates that successful TNCs usually begin when the seed links to several 
clusters. This happens rarely. Note that while most of the clusters that launched the 
TNCs in Table 2 are relatively rich in the motifs, this is not necessary. One motif 
will do the trick. But to sustain the cascade it helps to have several so that the 
cascade can jump successively to new clusters. It also helps if the network contains 
relatively large vulnerable clusters. 

VI. Size Effects 
As the networks get bigger it is increasingly difficult to start TNCs given the same 
nominal Z. Percolation theory says that this is because the size of the average 
vulnerable cluster is decreasing as a fraction of the network's size. Our experiments 
indicate that the size of the largest vulnerable cluster indeed falls as a fraction of 
network size given the same nominal Z. But additionally, the seed needs to find a 
lucky combination of several clusters that are rich in motifs, and as the network 
grows, these are scattered among a growing number of ill-equipped clusters. The 
average seed has Z links regardless of the size of the network and it hits on average 
about 0.15 Z vulnerable nodes (typically in different clusters) when Z = 11.5 so the 
search efficiency of seeds falls as network size grows. The importance of large 
vulnerable clusters is discussed again in the next Section . 



VII. Effects of Variability 
There is great variability in many of the statistics gathered during these experiments. 
For example, the size of the largest cluster in networks of the same size and 
practically same nominal z can vary by a factor of 2 in either direction from the 
mean. This strongly affects the rate at which TNCs occur, as illustrated in Table 3. In 
addition, as noted above, the census of motifs can only be regarded as indicative of 
TNCs and is also quite variab Ie within and between networks with the same z. The 
census of motifs and the size of the largest vulnerable cluster are both correlated with 
z. A regression analysis was thus deemed appropriate to seek an understanding of 
the relative influences of these factors. This analysis reveals that z and maxclust 
(the size of the biggest vulnerable cluster) can predict TNC 12000 (the frequency of 
TNCs in 2000 tries) with R2 = 0.718 and p < 0.03. A network with n = 9000, 
z = 11.59, and unusual (compared to Table 3) largest vulnerable cluster having 71 
nodes launched a relatively huge 188 TNCs in 2000 trials.7 Including the census of 
motifl in the regression produced similar results but with smaller R2 and p. 

name z maxclust TNC/2000 
test9000e 11.4793 17 10 

test9000d4 11.4938 36 6 
test9000a4 11.4938 36 12 

test9000d 11.4987 35 15 
test9000a6 11.5064 31 10 
test9000d5 11.5087 13 1 
test9000bn 11.5322 22 4 
test9000ak 11.5547 25 4 
test9000at 11.5596 32 6 
test9000aL 11.5711 21 1 

test9000bm 11.5767 11 0 

Table 3. Occurrence ofTNCs in 2000 Trials in Networks with 9000 Nodes and 
Similar Nominal Z and Different Size of Biggest Vulnerable Cluster 

The occurrence ofmotifl and motif2 also varies by a factor of2 for different 
networks having the same z, as can be observed in Figure 7. When clusters are 
sampled randomly in the same network, a wide range ofmotifl and motif2 can be 
found. These variations persist across networks even though the number of 
vulnerable nodes and vulnerable clusters each vary by much smaller percentage 
ranges. 

Thus the conditions that favor respectively launching and sustaining TNCs are 
unevenly distributed between nominally similar networks and within each network. 
One may conclude that characterizations of cascade phenomena based only on first 
moments will not capture all of the effects or predict accurately when TNCs will 
occur in finite networks or predict which apparently similar networks can exhibit 
them. 

VIII. Effects of Increasing z 

7 These are unique TNCs. OccasionaJly the same seed is used more than once. Such 
duplications are not counted. 
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As Z increases for fixed nand K *, first TNes disappear and then Scenario 2 
events disappear. As discussed above, TNes disappear because motif2s disappear. 
Also, vulnerable clusters decrease in size, and the variability of their sizes, observed 
to be a factor, also decreases (measured by their coefficient of variation). The 
decrease in size and size variability of vulnerable clusters also extinguishes Scenario 
2 events. For K* = 8, Scenario 2 events disappear for z = 17 where all but a 
handful of vulnerable nodes are isolated. At this point about 1.3% of the nodes are 
sti II vulnerable. 

IX. Experiments with Network Structure 

A random model is suitable for analysis but real networks have some structure that 
might make cascades easier to launch. Accordingly, we studied two sources of 
structure, the degree correlation and the clustering coefficient. 

Random networks with 3000 nodes were generated with various values of Z 
corresponding to the upper boundary value, and the location of the boundary was 
confinned using an appropriate value of (jJ. Once a statistical base was established at 
the boundary, the clustering coefficient or degree correlation of these networks were 
then raised by means of directed degree-preserving rewiringB [Maslov and Sneppen]. 

The rewired networks were then given randomly selected seeds in 100 trials and the 
occurrence ofTNes was noted. In both cases, the value of Z at which TNes 
occurred increased sharply as either r or C was increased, compared to rare 
occurrence in the base case. See Figure 9. Quite small increases in r or C were 
sufficient. The reason is not hard to find in the case of r. Only a slight increase in 
r dramatically increases the size of the largest vulnerable cluster: for K* = 8 and 
n = 3000, the size of the largest vulnerable cluster is 19 when r = 0, 90 when 
r = 0.1 and 275 when r = 0.2. The value when r = 0.2 corresponds to over half 
the vulnerable nodes at the value of Z = 11.5 that marks the original boundary when 
r=O. 

In the case of elevated c, no increase in the size of the largest vulnerable cluster, and 
no change in cluster size distribution, is observed. However, even a small clustering 
coefficient (c = 0.0987) generates enough triangles to enhance the ability ofTNes 
to start. 

8 A simple Matlab routine makes trial pairwise degree-preserving rewirings and accepts them if 
they yield a change in the target metric ( r or C) in the desired direction. The metric can be 
moved in either direction but while positive or negative values of r can be obtained, only 
positive values of C can be. The networks are no longer random but they retain the degree 
sequence of the base network for comparison purposes. 
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Figure 9. Diagram of Cascade Window (adapted from [Watts]) Showing effect of 
Elevated Degree Correlation. The dashed line window is given by theory. The 
solid circles represent simulations done by Watts using random networks with 
10000 nodes. The open circles represent simulations done for this paper using 
random networks with 3000 nodes. Small differences between solid circles and 
open circles marked" r = 0" are not considered significant. Other open circles 
are the result of experiments with networks having r > O. They represent 
combinations of Z and r at which barely one cascade attempt in 100 succeeds, a 
working definition ofthe location ofthe upper boundary ofthe cascade window. 

In both cases of enhanced structure, successful seeds are either of average nodal 
degree (enhanced c) or of smaller than average degree (enhanced r), whereas for no 
enhancement of structure, successful seeds are larger in degree than average. 

X. Conclusions 

We have studied the mechanism by which total network cascades (TNC), which 
consume an entire finite random network, can start in the region above the upper 
boundary derived by Watts for infinite networks. We distinguished TNCs from 
cascades that consume only the vulnerable clusters linked to by the seed (or possibly 
a few more) , which are analogous to the cascades in infinite networks predicted by 
percolation theory. TNCs can start in the absence oflarge clusters of vulnerable 
nodes. The mechanism is different from that predicted by percolation theory, which 
is silent on the fate of stable nodes and speaks only to the behavior of vulnerable 
nodes. The mechanism is shown to be related to the prevalence of particular motifs 
of vulnerable and stable nodes by which the cascade is enabled from its first step to 
hop from one usually small vulnerable cluster to another, while at the same time 
starting to recruit stable nodes. If these motifs are absent, no TNC will occur. Thus a 
dispersed and apparently weak set of vulnerable nodes can "cause" a cascade if they 
can use stable nodes as bridges to link themselves to each other. The presence of 
relatively large vulnerable clusters is necessary for TNCs to grow beyond the first 
few vulnerable clusters, and the fall in relative size of large vulnerable clusters as n 
rises for the same Z is the main size effect in reducing the likelihood ofTNCs in 
networks with nominally the same Z. 
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Watts noted that TNCs can start in networks that seem indistinguishable from their 
fellows and can start by a shock that also seems indistinguishable from others. He 
suggested that this happens because a percolating vulnerable cluster still exists, albeit 
difficult to find. Our data and experiments indicate that near the upper boundary in 
finite networks the vulnerable clusters are too small to account for what happens. 
Instead, the fact that some networks exhibit TNCs while other apparently identical 
ones (that is, having the same z) do not is due to the large variability in the enablers, 
namely the sizes of the largest vulnerable clusters and the uneven quantity and 
distribution of the motifs. To the extent that this is true, it will be necessary to use 
metrics based on higher moments than the first in order to identify these TNC-prone 
networks or locate their TNC-fertile regions. 

The above findings are summarized in Table 4. 

We also explored the effect of adding structure to the random network by increasing 
either the degree correlation or the clustering coefficient while preserving the degree 
sequence. Each modification makes TNCs easier to start. Increasing r even a little 
dramatically increases the size of the largest vulnerable cluster while increasing C a 
very modest amount adds many cross-links that make it much easier to flip stable 
nodes right at the beginning of the cascade. In each case, successful seeds are 
different in average degree from the base case, as are the respective mechanisms by 
which cascades carry forward after the seed acts. 

Findinl! Finite Network Infinite Network 
Scenario 2 Cascade mechanism Flipping the vulnerable Same as for finite 

clusters linked to by the network: this kind 
seed of cascade satisfies 

the conditions set 
by percolation 
theory 

Max value of z -17 (less than I % of -10.66 
(K* = 8) nodes are in clusters 

having more than one 
node) 

Reason for No vulnerable clusters Vulnerable cluster 
extinction as Z with more than one node size is finite 
increases 

Scenario 3 Cascade mechanism Cluster-hopping beyond No theory yet, no 
(TNC) the vulnerable clusters experiments 

linked to by the seed possible 
Max value of z Corresponds to black No theory yet, no 
(K* = 8) dots; Z-11.6 for n = experiments 

10000; falls as n possible 
increases 

Reason for Too few motif2, biggest No theory yet, no 
extinction as Z vulnerable cluster too experiments 
increases small, falling search possible 

efficiency of seed 

Table 4. Summary of Experimental Findings 



XI. Future Research 

Possible directions for future research can take two routes, depending on whether one 
views theoretical infinite networks as the canonical ones with explanatory power and 
finite networks as supporting or illustrative approximations of them, or (like the 
present paper) views finite (i.e., real) networks as the ones to study and the theory 
about infinite ones as a route to better understanding the behavior of finite networks. 
The former path suggests that additional attention to percolation theory may allow 
prediction of Scenario 3 events separately from Scenario 2 events in infinite networks 
as well as development of additional metrics for predicting when TNCs will occur in 
finite networks. The latter path suggests seeking to better understand the structural 
differences between real networks that do or do not exhibit TNCs, such as additional 
kinds of motifs or better identification, characterization, and counting of the motifs 
identified so far. In addition, either path could further study the deliberate insertion 
of non-random structure in order to better understand what enables or disables TNCs. 
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