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Preface

In recent years, we have seen rapid emergence of topological insulators and
superconductors. The field is an important advance of the well-developed band
theory in solids since its birth in the 1920s. The band theory or Fermi liquid
theory and Landau’s theory of spontaneously broken symmetry are two themes
for most collective phenomena in many-body systems, such as semiconductors
and superconductors. Discovery of the integer and fractional quantum Hall effects
in the 1980s opens a new window to explore the mystery of condensed matters:
topological order has to be introduced to characterize a large class of quantum
phenomena. Topological insulator is a triumph of topological order in condensed
matter physics.

The book grew out of a series of lectures I delivered in an international school
on “Topology in Quantum Matter” at Bangalore, India, in July 2011. The aim of
this book is to provide an introduction of a large family of topological insulators
and superconductors based on the solutions of the Dirac equation. I believe that
the Dirac equation is a key to the door of topological insulators. It is a line that
could thread all relevant topological phases from one to three dimensions and from
insulators to superconductors or superfluids. This idea actually defines the scope of
this book on topological insulators. For this reason, a lot of topics in topological
insulators are actually not covered in this book, for example, the interacting systems
and topological field theory. Also I have no ambition to review rapid developments
of the whole field and consequently no intention to introduce all topics in this
introductory book.

I would like to express my gratitude to my current and former group members,
and various parts of the manuscript benefited from the contributions of Rui-Lin Chu,
Huai-Ming Guo, Jian Li, Hai-Zhou Lu, Jie Lu, Hai-Feng Lv, Wen-Yu Shan, Rui Yu,
Yan-Yang Zhang, An Zhao, Yuan-Yuan Zhao, and Bin Zhou. Especially I would like
to thank Hai-Zhou Lu for critically reading the manuscript and replotting all figures.
I benefited from numerous discussions and collaborations with Qian Niu, Jainendra
K. Jain, Jun-Ren Shi, Zhong Fang, and Xin Wan on the relevant topics. I am grateful

v
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for the support and suggestions from Lu Yu while writing this book. Some of the
results in this book were obtained in my research projects funded by Research Grant
Council of Hong Kong.

Hong Kong, China Shun-Qing Shen
June 2012
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Chapter 1
Introduction

Abstract Discovery of topological insulators is a triumph of topological orders in
quantum matters. The confirmed topological phases include superfluid liquid 3He,
integer and fractional quantum Hall effect, and topological insulators.

Keywords Hall effect • Quantum Hall effect • Quantum spin Hall effect •
Topological insulator • Superfluids • Dirac equation

1.1 From the Hall Effect to Quantum Spin Hall Effect

In 1879, the American physicist Edwin H. Hall observed an effect that now bears
his name: he measured a voltage that arises from the deflected motion of charged
particles in solids under external electric field and magnetic field [1]. Consider
a two-dimensional sample subjected to a perpendicular magnetic field B. When
charged particles go through the sample, the particles deflect their motion due
to the Lorentz force and accumulate near the boundary. As a result the charge
accumulation at the boundary produces an electric field E. In equilibrium, the
Lorentz force on a moving charged particle becomes zero:

F D q.E C v � B/ D 0; (1.1)

where v is the velocity of the particle and q the charge of the particle. The voltage
difference between the two boundaries is VH D EW (W the width of the sample),
and the electric current through the sample is I D q�e�W (�e is the density of the
charge carriers). The ratio of the voltage to the electric current is known as the Hall
resistance:

RH D VH

I
D B

q�e
(1.2)
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which is linear in the magnetic fieldB . In practice, the Hall effect is used to measure
the sign of charge carriers q, that is, the particle-like or hole-like charge carrier,
and the density of charge carriers �e in solids. It can be also used to measure the
magnetic field.

In the following year after his discovery, Hall measured the Hall resistance in
ferromagnetic or even in paramagnetic metal in a magnetic field and observed
that the Hall resistance could have additional contribution other than the linear
term in magnetic field [2]. It could be proportional to the magnetization M in
a ferromagnetic metal, that is, the Hall effect persists even in the absence of a
magnetic field. An empirical relation is given by

RH D ROB CRAM; (1.3)

which has been applied to many materials over a broad range of external field. The
second term represents the contribution from the magnetization M . This part of
resistance cannot be simply understood as a result of the Lorentz force on a charged
particle. It has taken almost one century to explore its physical origin. The main
reason seems to be that this effect involves the topology of the band structure in
solids, which had been just formulated in the 1980s. In 1954, Karplus and Luttinger
[3] proposed a microscopic theory and found that electrons acquire an additional
group velocity when an external electric field is applied to a solid. The anomalous
velocity is perpendicular to the electric field and could make contribution to the Hall
conductance. Now the anomalous velocity is formulated to be related to the change
of phase of the Bloch wave function, when an electric field drives them to evolve in
the crystal momentum space, and to be dependent on the crystal Hamiltonian [4,5].

Generally speaking, the anomalous Hall effect can have either an extrinsic
origin due to disorder-related spin-dependent scattering of the charge carriers, or an
intrinsic origin due to spin-dependent band structure of conduction electrons, which
can be expressed in terms of the Berry phase in the momentum space [6]. This
effect originates from the coupling of electron’s orbital motion to its spin, which is
a relativistic quantum mechanical effect. A spin-orbit force or spin transverse force
can be used to understand the spin-dependent scattering by either the impurities or
band structure. When an electron moves in an external electric field, the electron
experiences a transverse force, which is proportional to spin current of electron,
instead of charge current as in the Lorentz force [7]. As a result, electrons with
spin-up will deflect to one direction, while electrons with spin-down to the opposite
direction. In a ferromagnetic metal, the magnetization will cause an imbalance in
the population between the electrons with spin-up and spin-down and consequently
lead to the anomalous Hall effect.

While the anomalous Hall resistance vanishes in the absence of an external mag-
netic field and magnetization in a paramagnetic metal, the spin-dependent deflected
motion of electrons in solids can still lead to an observable effect, that is, the spin
Hall effect. The spin version of the Hall effect was first proposed by the Russian
physicists Dyakonov and Perel in 1971 [8,9]. It consists of spin accumulation on the
lateral surfaces of a current-carrying sample, the signs of the spin orientations being
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opposite on two opposite boundaries. When the current direction is reversed, the
direction of spin orientation is also reversed. At the beginning, theorists predicted
that the spin accumulation is caused by the asymmetric scattering of electrons with
spin-up and spin-down in impurity potentials, which is named as the extrinsic spin
Hall effect [10]. In 2003, two independent groups demonstrated that the spin-orbit
coupling in the band structure of electrons can produce the transverse spin current
even without impurity scattering, which is dubbed as the intrinsic spin Hall effect
[11,12]. In the quantum Hall regime, the competition between the Zeeman splitting
and spin-orbit coupling leads to the resonant spin Hall effect, in which a small
current may induce a finite spin current and spin polarization [13]. The spin Hall
effect has been observed experimentally in GaAs and InGaAs thin film [14] and
spin light-emitted diode of p-n junction [15].

The discovery of the integer quantum Hall effect opens a new phase in the
study of the Hall effects. In 1980, von Klitzing, Dorda, and Pepper discovered
experimentally that in two-dimensional electron gas at semiconductor hetero-
junction subjected to a strong magnetic field, the longitudinal conductance becomes
zero while the quantum plateau of the Hall conductance appears at �e2=h [16]. The
prefactor is an integer (� D 1, 2, : : :), known as the filling factor. The quantum Hall
effect is a quantum mechanical version of the Hall effect in two dimensions. This
effect is very well understood now and can be simply explained in terms of single-
particle orbitals of an electron in a magnetic field [17]. It is known that the motion
of a charged particle in a uniform magnetic field is equivalent to that of a simple
harmonic oscillator in quantum mechanics, in which the energy levels are quantized
to be

�
nC 1

2

�„!c and !c D eB=m is the cyclotron frequency. The energy levels
are called the Landau levels and are highly degenerate. When one Landau level
is fully filled, the filling factor is � D 1, and the corresponding Hall conductance is
e2=h. Now it is realized that the integer � is actually a topological invariant and is
insensitive to the geometry of system and interaction of electrons [18].

To understand further, physicists like to use a semiclassical picture to explain the
quantization of the Hall conductance. For a charged particle in a uniform magnetic
field, the particle cycles around the magnetic flux rapidly because of the Lorentz

force. The radius of the cycle is given by the magnetic field Rn D
q

„
eB
.2nC 1/:

When the particle is close to the boundary, the particle bounces back from the rigid
boundary and skips along the boundary forward. As a result, it forms a conducting
channel along the boundary, which is called the edge state. The group velocity of
the particle in the bulk is much slower than the cyclotron velocity, and then the
particles in the bulk are intended to be pinned or localized by impurities or disorders.
However, the rapid-moving particles along the edge channel are not affected by the
impurities or disorders and form a perfect one-dimensional conducting channel with
a quantum conductance e2=h. Consider the Landau levels are discrete. Each Landau
level will generate one edge channel. Consequently, the number of the filled Landau
levels or the filling factor determines the quantized Hall conductance. Thus, the key
feature of the quantum Hall effect is that all electrons in the bulk are localized and
the electrons near the edges form a series of edge-conducting channels [19], which
is a characteristic of a topological phase.
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In 1982, Tsui, Stormer, and Gossard observed that in a sample with higher
mobility, the quantum plateau appears at the filling factor � as a rational fraction
(� D 1

3
; 2
3
; 1
5
; 2
5
, 3
5
; 12
5
; � � � / known as the fractional quantum Hall effect [20]. The

fractional quantum Hall effect relies fundamentally on electron–electron interac-
tions as well as the Landau quantization. Laughlin proposed that the � D 1=3 state
is a new type of many-body condensate, which can be described by the Laughlin
wave function [21]. The quasiparticles in the condensate carry fractional charge
e=3 because of strong Coulomb interaction. The observed Hall conductance plateau
is due to the localization of fractionally charged quasiparticles in the condensate,
and the fractional quantum Hall effect can be regarded as the integer quantum
Hall effect of these quasiparticles. In 1988, Jainendra K. Jain proposed that the
quasiparticles can be regarded as a combination of electron charge and quantum
magnetic flux, that is, composite fermions [22]. This picture is applicable to all the
quantum plateaus observed in the fractional quantum Hall effect. Now it is well
accepted that the fractional quantum Hall effect is a topological quantum phase of
composite fermions, which breaks time reversal symmetry.

In 1988 Haldane proposed that the integer quantum Hall effect could be realized
in a lattice system of spinless electrons in a periodic magnetic flux [23]. Though the
total magnetic flux is zero, electrons are driven to form a conducting edge channel
by the periodic magnetic flux. As there is no pure magnetic field, the quantum Hall
conductance originates from the band structure of electrons in the lattice instead of
the discrete Landau levels for those in a strong magnetic field. This is a version of
the quantized anomalous Hall effect in the absence of an external field or Landau
levels. Furthermore it was found that the role of periodic magnetic flux can be
replaced by the spin-orbit coupling. The quantized anomalous Hall effect can be
realized in a ferromagnetic insulator with strong spin-orbit coupling. The anomalous
Hall effect persists in an insulating regime. The anomalous Hall conductance can
be expressed in terms of the integral of the Berry curvature over the momentum
space or the Chern number for fully filled bands [24]. The Haldane model makes
it possible to have nonzero Chern number for an electron band without a magnetic
field. Though there have been extensive investigations on this topic [25–27], this
effect has not yet been observed.

The quantum spin Hall effect is a quantum version of the spin Hall effect or
a spin version of the quantum Hall effect and can be regarded as a combination
of two quantum anomalous Hall effects of spin-up and spin-down electrons with
opposite chirality. Overall it has no charge Hall conductance, but a nonzero spin Hall
conductance. In 2005, Kane and Mele generalized the Haldane model to a graphene
lattice of spin- 1

2
electrons with the spin-orbit coupling [28]. The strong spin-orbit

coupling is introduced to replace the periodic magnetic flux in the Haldane model.
This interaction looks like a spin-dependent magnetic field to electron spins. Differ-
ent electron spins experience opposite spin-orbit force, that is, spin transverse force
[7]. As a result, a bilayer spin-dependent Haldane model may be realized in a spin-
1
2

electron system with spin-orbit coupling, which exhibits the quantum spin Hall
effect. In the case there exist spin-dependent edge states around the boundary of the
system: electrons with different spins move in opposite directions and form a pair
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Fig. 1.1 Evolution from the ordinary Hall effect to the quantum spin Hall effect or two-
dimensional topological insulator. Here, B stands for a magnetic field, and M stands for
magnetization in a ferromagnet. The year means that the effect was discovered experimentally.
�H is the Hall conductance, and �S is the spin Hall conductance

of helical edge states. Time reversal symmetry is still preserved, and the edge states
are robust against impurities or disorders because the electron backscattering in the
two edge channels is prohibited due to the symmetry. However, it was found that the
spin-orbit coupling is very tiny in graphene. In 2006, Bernevig, Hughes, and Zhang
proposed that the quantum spin Hall effect can be realized in the CdTe/HgTe/CdTe
sandwiched quantum well [29]. HgTe is a material with an inverted band structure,
and CdTe has a normal band structure. Tuning the thickness of HgTe layer may
lead to the band inversion in the quantum well, which exhibits a topological phase
transition. This prediction was confirmed experimentally by König et al. in the
following year of the prediction [30]. The stability of quantum spin Hall effect
was studied by several groups [31–34]. Li et al. discovered that the disorder may
even generate the quantum spin Hall effect, and proposed a possible realization
of topological Anderson insulator, in which all bulk electrons are localized by
impurities, meanwhile a pair of conducting helical edge channels appear [35]. This
phase was studied numerically and analytically [36,37]. Strong Coulomb interaction
may also generate the quantum spin Hall effect in Mott insulators [38, 39].

The quantum spin Hall effect is also dubbed as two-dimensional topological
insulator. A flow chart from the ordinary Hall effect to the quantum spin Hall effect
or two-dimensional topological insulator is presented in Fig. 1.1.

1.2 Topological Insulators as Generalization of Quantum
Spin Hall Effect

There is no Hall effect in three dimensions. However, the generalization of the quan-
tum spin Hall effect to three dimensions is one of the milestones in the development
of topological insulators [40–43]. It is not a simple generalization of transverse
transport of electron charge or spin from two dimensions to three dimensions, or the
Hall effect. Instead it is the evolution of the bound states near the system boundary



6 1 Introduction

based on the intrinsic band structure: the one-dimensional helical edge states in
two-dimensional quantum spin Hall system could evolve into the two-dimensional
surface states surrounding the three-dimensional topological insulators. A topo-
logical insulator is a state of quantum matter that behaves as an insulator in its
interior while as a metal on its boundary. In the bulk of a topological insulator, the
electronic band structure resembles an ordinary insulator, with separated conduction
and valence bands. Near the boundary, the surface states exist within the bulk energy
gap and allow electron conduction. Electron spins in these states are locked to their
momenta. A topological insulator preserves time reversal symmetry. Due to the
Kramers degeneracy, at a given energy there always exists a pair of states that have
opposite spins and momenta, so the backscattering between these states is strongly
suppressed. These states are characterized by a topological index. Kane and Mele
proposed a Z2 index to classify the materials with time reversal invariance into
strong and weak topological insulators [44]. For a weak topological insulator, the re-
sultant surface states are not so stable to disorder or impurities, although its physics
is very similar to that in two-dimensional states. A strong topological insulator has
more subtle relation to the quantum spin Hall system. It is possible to classify the
conventional insulator and topological insulator by time reversal symmetry. The sur-
face states in a strong topological insulator are protected by time reversal symmetry.

Bi1�xSbx was the first candidate for three-dimensional topological insulator
predicted by Fu and Kane [45] and verified experimentally soon after the prediction
[46]. Zhang et al. [47] and Xia et al. [48] pointed out that Bi2Te3 and Bi2Se3
are topological insulators with a single Dirac cone of the surface states. Angle-
resolved photoemission spectroscopy (ARPES) data showed clearly the existence
of a single Dirac cone in Bi2Se3 [48] and Bi2Te3 [49]. Electrons in the surface
states possess a quantum spin texture, and electron momenta are coupled strongly
with electron spins. These may result in a lot of exotic magnetoelectric properties.
Qi et al. [50] proposed the unconventional magnetoelectric effect for the surface
states, in which electric and magnetic fields are coupled together and are governed
by the so-called “axion equation” instead of Maxwell’s equations. It is regarded
as one of the characteristic features of the topological insulators [51, 52]. Fu and
Kane proposed possible realization of Majorana fermions as a proximity effect of
s-wave superconductor and surface states of topological insulator [53]. Majorana
fermions are topologically protected from local sources of decoherence and will
be of potential application in universal quantum computation [54, 55]. Thus, the
topological insulators provide a new platform to explore novel and exotic quantum
particles in condensed matters.

Reduction of dimensionality to one dimension brings some new insights in one-
dimensional systems with topological properties. The boundary of one-dimensional
system is simply an end point. A one-dimensional topological insulator is an
insulator with two end states of zero energy. Study of the end states in one dimension
has dated back to the 1980s. The polyacetylene is a one-dimensional organic
material with the so-called A and B phases. It was realized that the domain walls
connecting the A and B phase induce rigid solitons with zero energy and are the
charge carriers for this organic conductor [56]. While the soliton and antisoliton
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are topological excitations in polyacetylene, the A and B phases are actually
topologically distinct for an open boundary condition: one phase possesses two end
states of zero energy, while the other does not, although both phases open an energy
gap due to the Peierls instability or dimerization of the lattice. We shall demonstrate
that this is actually the simplest topological insulator in one dimension.

1.3 Topological Phases in Superconductors and Superfluids

Liquid helium 3He has two different superfluid phases at low temperatures, the A
and B phases. The 3He atoms are fermions of charge neutral and can be described
by the conventional Fermi liquid theory just like electrons in metal. Osheroff, Lee,
and Richardson [57] studied the pressurization curve of a mixture of liquid and solid
3He and observed two reproducible anomalies, which indicate that the liquid phase
existing between 2:0 and 2.6 mK is the A phase and that below 2:0mK is the B
phase. The normal to A phase transition at TA � 2:6mK is of second order and A-B
phase transition at TB � 2mK is of first order. The theory of superconductivity for
electrons in spin-triplet states was first developed by Balian and Werthamer in 1963
[58]. They observed that all Cooper pairs are in the p-wave pairing (l D 1) and
spin-triplet states, which succeeds in explaining superfluidity in the B phase. The
pairing symmetry determines the topology of the band structure of quasiparticles.
The A phase has different topology from the B phase: the pairs form only in the
state of Sz D 1 and/or Sz D �1, that is, the so-called equal-spin pairing state or
Anderson-Brinkman-Morel state. This conclusion was first drawn from an analysis
of the spatial profile of nuclear magnetic resonance (NMR) experiment [59].

Physics we learned from the superfluid phase of liquid 3He has been widely
applied in various fields from particle physics and cosmology to condensed matter
physics [60]. In the spinless p-wave pairing superconductor, there exist weak and
strong pairing phases, which are characterized by different topological invariants.
The weak pairing phase is topologically nontrivial and may have chiral edge states
around the boundary of system, very similar to that in the quantum Hall effect [61].
After the discovery of the fractional quantum Hall effect, it is found that the weak
pairing state has a pairing wave function which is asymptotically the same as in
the Moore-Read quantum Hall state. Thus, the topological order was introduced
to characterize the superfluid phases. The topological aspects in these two phases
have been discussed in details in the book by Volovik [60]. Some concepts and
topological invariants can be applied explicitly to topological insulators in the
framework of a single-particle wave functions in the band theory. For example,
the band inversion could accompany a topological quantum phase transition as in
the quantum spin Hall effect.

Now we have realized that the Bogoliubov-de Gennes equation for superconduc-
tors and superfluids has very similar/identical mathematical structure as the Dirac
equation for topological insulators. Like the band gap in insulators, quasiparticles
in superconductors and superfluids may also have a nonzero gap. The symmetry
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classification of noninteracting Hamiltonian emerged in the context of random
matrix theory long before the discovery of topological insulators. Schnyder et al.
[62] systematically studied the topological phases in insulators and superconductors
and provided an exhaustive classification of topological insulators and superconduc-
tors for noninteracting systems of fermions. Bogoliubov-de Gennes equation has
particle-hole symmetry, and the Dirac equation has time reversal symmetry. Simi-
larity between particle-hole symmetry and time reversal symmetry makes it possible
to study the topological insulators and superconductors in a single framework.

Discovery of topological insulator stimulates to reexamine the properties of
spin-triplet superconductors which are potential candidates for topological su-
perconductors. Among several classes of spin-triplet superconductors, Sr2RuO4

is thought to be a p-wave pairing superconductor and similar to the A phase
in superfluid liquid 3He [63, 64]. Initial data in the measurement of tunneling
spectroscopy suggest possible existence of chiral edge states in Sr2RuO4 [65].
Cu-doped topological insulator CuxBi2Se3; which becomes superconducting below
Tc D 3:8K [66], is also suggested to be a topological superconductor [67].

1.4 Dirac Equation and Topological Insulators

The Dirac equation is a relativistic quantum mechanical one for elementary spin- 1
2

particle [68,69]. It enters the field of topological insulator in two aspects. First of all,
a large class of topological insulators possesses strong spin-orbit coupling, which
is a consequence of the Dirac equation in nonrelativistic limit [70]. It makes the
spin, the momentum, and the Coulomb interaction or external electric fields couple
together. As a result, it is possible that the band structures in some materials become
topologically nontrivial. This provides a physical origin to form a topological
insulator. The other aspect is that the effective Hamiltonians for the quantum
spin Hall effect and three-dimensional topological insulators have the identical
mathematical structure of the Dirac equation. In these effective models the equation
is employed to describe the coupling between electrons of the conduction and
valence bands in semiconductors, not the electrons and positrons in Dirac theory.
The positive and negative spectra are for the electrons and holes in semiconductors,
respectively, not those in the high-energy physics. The conventional Dirac equation
is time reversal invariant. For a system with time reversal symmetry, the effective
Hamiltonian to describe the electrons near the Fermi level can be derived from the
theory of invariants or the k �p theory. As a consequence of the k �p expansion of the
band structure, some effective continuous models have the identical mathematical
structure as the Dirac equation. The equation can be also obtained from the effective
model near the critical point of topological quantum phase transition.

Generally speaking, each topological insulator or superconductor is governed
by one Dirac equation. In this book we get started with the Dirac equation to
provide a simple but unified description for a large family of topological insulators
and superconductors. A series of solvable differential equations are presented to
demonstrate the existence of the end, edge, and surface states in topological matters.
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Fig. 1.2 The family of topological insulators and superconductors. TI stands for topological
insulator, SC for superconductor, IQHE/FQHE for the integer and fractional quantum Hall effect,
QAHE for quantum anomalous Hall effect, and QSHE for quantum spin Hall effect. The materials
are followed by the year of discovery. Edge states in Sr2RuO4 need to be confirmed further

1.5 Summary: The Confirmed Family Members

As a summary, we list the confirmed topological insulators and superconductors in
Fig. 1.2. There are three streams in the development of the field:

1. The Hall effect: the integer and fractional quantum Hall effects (1980, 1982),
the quantum anomalous Hall effect (predicted in 1988, not yet confirmed
experimentally), and the quantum spin Hall effect (2007)

2. Topological insulators: one-dimensional polyacetylene (1980s); two-dimensional
HgTe/CdTe quantum well (2007), InAs/GaSb quantum well (2011); and
three-dimensional Bi1�xSbx (2008), Bi2Te3 (2009), Bi2Se3 (2009), Bi2Te2Se
(2010),: : :.

3. The p-wave superconductor: superfluid A and B phases in liquid 3He (1972) and
equal-spin pairing (ESP) superconductor such as Sr2RuO4 (highly possible)

1.6 Further Reading

Introductory Materials:

• J.E. Moore, The birth of topological insulators. Nature (London) 464, 194 (2010)
• X.L. Qi, S.C. Zhang, The quantum spin Hall effect and topological insulators.

Phys. Today 63, 33 (2010)

Overview:

• M.Z. Hasan, C.L. Kane, Topological insulators. Rev. Mod. Phys. 82, 3045 (2010)
• X.L. Qi, S.C. Zhang, Topological insulators and superconductors. Rev. Mod.

Phys. 83, 1057 (2011)
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Chapter 2
Starting from the Dirac Equation

Abstract The Dirac equation is a key to the door of topological insulators and
superconductors. A quadratic correction to the equation makes it topologically
distinct. The solution of the bound states near the boundary reflects the topology
of the band structure of the system.

Keywords The modified Dirac equation • Solution of the bound states • End
state • Edge state • Surface state

2.1 Dirac Equation

In 1928, Paul A.M. Dirac wrote down an equation for a relativistic quantum
mechanical wave function, which describes an elementary spin- 1

2
particle [1, 2]:

H D cp � ˛ Cmc2ˇ (2.1)

where m is the rest mass of particle and c is the speed of light. ˛i and ˇ are known
as the Dirac matrices satisfying the relations

˛2i D ˇ2 D 1; (2.2a)

˛i˛j D �˛j ˛i ; (2.2b)

˛iˇ D �ˇ˛i : (2.2c)

Here ai and ˇ are not simple complex numbers. The anticommutation relation
means that they can obey a Clifford algebra and must be expressed in a matrix
form. In one- and two-dimensional spatial space, they are at least 2 � 2 matrices.
The Pauli matrices �i (i D x; y; z) satisfy all these relations:

f�i ; �j g D 2ıij ; (2.3)
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14 2 Starting from the Dirac Equation

where

�x D
�
0 1

1 0

�
; �y D

�
0 �i
i 0

�
; �z D

�
1 0

0 �1
�
: (2.4)

Thus, in one dimension, the two Dirac matrices ˛x and ˇ are any two of the three
Pauli matrices, for example,

˛x D �x; ˇ D �z: (2.5)

In two dimensions, the three Dirac matrices are the Pauli matrices:

˛x D �x; ˛y D �y; ˇ D �z: (2.6)

In three dimensions, we cannot find more than three 2 � 2 matrices satisfying
the anticommutation relations. Thus, the four Dirac matrices are at least four-
dimensional and can be expressed in terms of the Pauli matrices

˛i D
�
0 �i

�i 0

�
� �x ˝ �i ; (2.7a)

ˇ D
�
�0 0

0 ��0
�

� �z ˝ �0 (2.7b)

where �0 is a 2 � 2 identity matrix.
From this equation, the relativistic energy-momentum relation will be automati-

cally the solution of the equation

E2 D m2c4 C p2c2: (2.8)

In three dimensions, one has two solutions for positive energyEC and two solutions
for negative energy,E�:

E˙ D ˙
p
m2c4 C p2c2: (2.9)

This equation can be used to describe the motion of an electron with spin: the two
solutions of the positive energy correspond to two states of electron with spin-up
and spin-down, while the two solutions of the negative energy correspond to a
positron with spin-up and spin-down. The energy gap between these two particles is
2mc2(� 1:0MeV).

This equation demands the existence of antiparticle, that is, a particle with
negative energy or mass, and predates the discovery of positron, the antiparticle
of electron. It is one of the main achievements of modern theoretical physics. Dirac
proposed that the negative energy states are fully filled, in which the Pauli exclusion
principle prevents a particle transiting into such occupied states. The normal state of
the vacuum then consists of an infinite density of negative energy states. The state
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for a single electron means that all the states of negative energies are filled and only
one state of positive energy is filled. It is assumed that deviation from the norm
produced by employing one or more of the negative energy states can be observed.
The absence of a negative charged electron that has a negative mass and kinetic
energy would be then expected to manifest itself as a positively charged particle
which has an equal positive mass and positive energy. In this way, a “hole” or
positron can be formulated. Unlike the Schrödinger equation for a single particle,
the Dirac theory in principle is a many-body theory. This has been discussed in
many textbooks on quantum mechanics [2].

Under the transformation of mass m ! �m; it is found that the equation
remains invariant if we replace ˇ ! �ˇ;which satisfies all mutual anticommutation
relations for ˛i and ˇ in Eq. (2.2). This reflects the symmetry between the
positive and negative energy particles in the Dirac equation: there is no topological
distinction between particles with positive and negative masses.

2.2 Solutions of Bound States

2.2.1 Jackiw-Rebbi Solution in One Dimension

Possible relation between the Dirac equation and the topological insulator reveals
from a solution of the bound state at the interface between two regions of positive
and negative masses. We get started with

h.x/ D �iv„@x�x Cm.x/v2�z (2.10)

and

m.x/ D
� �m1 if x < 0

Cm2 otherwise
(2.11)

(and m1 and m2 > 0). We use an effective velocity v to replace the speed of light c
when the Dirac equation is applied to solids. The eigenvalue equation has the form

�
m.x/v2 �iv„@x
�iv„@x �m.x/v2

��
'1.x/

'2.x/

�
D E

�
'1.x/

'2.x/

�
: (2.12)

For either x < 0 or x > 0, the equation is a second-order ordinary differential
equation. We can solve the equation at x < 0 and x > 0 separately. The solution
of the wave function should be continuous at x D 0. In order to have a solution of
a bound state near the junction, we take the Dirichlet boundary condition that the
wave function must vanish at x D ˙1. For x > 0, we set the trial wave function

�
'1.x/

'2.x/

�
D
�
'C
1

'C
2

�
e��Cx: (2.13)
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Then the secular equation gives

det

�
m2v2 �E iv„�C
iv„�C �m2v2 � E

�
D 0: (2.14)

The solution to this equation is �C D ˙
q
m2
2v
4 �E2=v„.

The solutions � can be either real or purely imaginary. For m2
2v
4 < E2, the

solutions are purely imaginary, and the corresponding wave function spreads over
the whole space. They are the extended states or the bulk states which we are not
interested here. For m2

2v
4 > E2, the solutions are real, and we choose positive �C

to satisfy the boundary condition at x ! C1. The two components in the wave
function satisfy

'C
1 D � iv„�C

m2v2 � E
'C
2 : (2.15)

Similarly, for x < 0, we have

�
'1.x/

'2.x/

�
D
�
'�
1

'�
2

�
eC��x (2.16)

with �� D
q
m2
1v
4 � E2=v„, and

'�
1 D � iv„��

m1v2 C E
'�
2 : (2.17)

At x D 0, the continuity condition for the wave function requires

�
'C
1

'C
2

�
D
�
'�
1

'�
2

�
: (2.18)

From this equation, it follows that

�
q
m2
2v
4 � E2

m2v2 � E
D
q
m2
1v
4 � E2

�m1v2 � E
: (2.19)

Thus, there exists a solution of zero energy E D 0, and the corresponding wave
function is

‰.x/ D
r

v

„
m1m2

m1 Cm2

�
1

i

�
e�jm.x/vxj=„: (2.20)

The solution dominantly distributes near the interface or domain wall at x D 0

and decays exponentially away from the original point x D 0, as shown in
Fig. 2.1. The solution of m1 D m2 was first obtained by Jackiw and Rebbi
and is a mathematical basis for existence of topological excitations or solitons
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Fig. 2.1 The probability
density j‰.x/j2 of the
solution as a function of
position in Eq. (2.20)

in one-dimensional systems [3]. The spatial distribution of the wave function is
determined by the characteristic scales �1;2 D ��1˙ D „= jm1;2vj : The solution exists
even when m2 ! C1. In this case, ‰.x/ ! 0 for x > 0. However, we have to
point out that the wave function does not vanish at the interface, x D 0. If we regard
the vacuum as a system with an infinite positive mass, a system of a negative mass
with an open boundary condition possesses a bound state near the boundary. This
result leads to some popular pictures for the formation of the edge and surface states
in topological insulators.

Stability of the zero mode solution: we may find a general solution of zero energy
for a distribution of massm.x/ changing from negative to positive mass at two ends.
Consider the solution of E D 0 to Eq. (2.10). The eigenvalue equation is reduced to

��iv„@x�x Cm.x/v2�z
�
'.x/ D 0: (2.21)

Multiplying �x from the left-hand side, we have

@x'.x/ D �m.x/v„ �y'.x/: (2.22)

Thus, the wave function should be the eigenstate of �y ,

�y'�.x/ D �'�.x/ (2.23)

with

'˙ D 1p
2

�
1

˙i
�
'.x/:

The wave function has the form

'�.x/ / 1p
2

�
1

�i

�
exp

	
�
Z x

�
m.x0/v

„ dx0


: (2.24)

For x ! ˙1, '.x/ / exp Œ� jm.˙1/vxj =„� ; in which the sign � is determined
by the signs of m.˙1/. If m.C1/ and m.�1/ differ by a sign as a domain wall,
there always exists a zero-energy solution near a domain wall of the mass distribu-
tionm.x/. Therefore, this solution is quite robust against the mass distributionm.x/.
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2.2.2 Two Dimensions

In two dimensions (with pz D 0), we consider a system with an interface parallel
to the y-axis, with m.x/ D �m1 for x < 0 and m2 for x > 0. py D „ky is a
good quantum number. We have two solutions which the wave functions dominantly
distribute around the interface: one solution has the form

‰C.x; ky/ D
r

v

h

m1m2

m1 Cm2

0

B
B
@

1

0

0

i

1

C
C
A e�jm.x/vxj=„Cikyy (2.25)

with the dispersion 	k;C D v„ky , and the other has the form

‰�.x; ky/ D
r

v

h

m1m2

m1 Cm2

0

B
B
@

0

1

i

0

1

C
C
A e�jm.x/vxj=„Cikyy (2.26)

with the dispersion 	k;� D �v„ky . We can check these two solutions in this way.
The Dirac equation can be divided into two parts:

H D .m.x/v2ˇ C vpx˛x/C vpy˛y: (2.27)

From the one-dimensional solution, we have

.m.x/v2ˇ C vpx˛x/‰˙ D 0 (2.28)

and
vpy˛y‰˙ D ˙vpy‰˙: (2.29)

From the dispersions of the two states, the effective velocities of electrons in the
states are

v˙ D @	k;˙
„@k D ˙v: (2.30)

Therefore, each state carries a current along the interface, but electrons with dif-
ferent spins move in opposite directions. The current density decays exponentially
away from the interface. As the system has time reversal symmetry, the two states
are time reversal counterpart with each other, which constitute a pair of helical edge
(or bound) states at the interface. Furthermore, the Dirac equation of pz D 0 can be
reduced to two independent set of equations:

h.x/ D vpx�x ˙ vpy�y Cm.x/v2�z (2.31)
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for different spins. It becomes more clear why two bound states have opposite
velocities.

2.2.3 Three and Higher Dimensions

In three and higher dimensions, there always exist the bound states at the interface
of the system with positive and negative masses. While all other components of
the momentum among the interface are good quantum number, there always exists
the solution for zero momentum as in the one-dimensional case. We can use
the solutions as the basis to derive the solutions of nonzero momenta in higher
dimensions.

2.3 Why Not the Dirac Equation

From the Dirac equation, we have known that there exists a solution of bound states
at the interface between two media with positive and negative mass or energy gap.
These solutions are quite robust against the roughness of the interface or other
factors. If we assume the vacuum is an insulator with an infinite large and positive
mass or energy gap, then the system with a negative mass should have bound
states around the open boundary. This is very close to the definition of topological
insulators. However, because of the symmetry in the Dirac equation with positive
and negative masses, there is no topological distinction between these two systems
after a unitary transformation. We cannot justify which one is topologically trivial
or nontrivial simply from the sign of mass or energy gap. If we use the Dirac
equation to describe a topological insulating phase, we have to introduce or assign
an additional “vacuum” as a benchmark. Thus, we think this additional condition
is unnecessary since the existence of the bound state should have a physical and
intrinsic consequence of the band structure in topological insulators. Therefore, we
conclude that the Dirac equation in Eq. (2.1) itself may not be a “suitable” candidate
to describe the topology of quantum matters.

2.4 Quadratic Correction to the Dirac Equation

To explore possible description to the topological insulator, we introduce a quadratic
correction �Bp2 in the momentum p to the band gap or rest-mass term in the Dirac
equation [4]:

H D vp � ˛ C �
mv2 � Bp2

�
ˇ; (2.32)
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Fig. 2.2 Spin orientation in the momentum space. Left (mB < 0): the spins at p D 0 and p D
C1 are parallel, which is topologically trivial. Left bottom: spin orientation along the px-axis.
Right (mB > 0): the spins at p D 0 and p D C1 are antiparallel, which is topologically
nontrivial. Right bottom: spin orientation along the px-axis

where mv2 is the band gap of particle and m and v have dimensions of mass and
speed, respectively.B�1 also has the dimension of mass. The quadratic term breaks
the symmetry between the mass m and �m in the Dirac equation and makes this
equation topologically distinct from the original Dirac equation in Eq. (2.1).

To illustrate this, we plot the spin distribution of the ground state in the
momentum space, as shown in Fig. 2.2. At p D 0, the spin orientation is determined
by mv2ˇ or the sign of mass m, but for a large p, it is determined by �Bp2ˇ or
sign of B . If the dimensionless parameter mB > 0, when p increases along one
direction, say the x-direction, the spin will rotate from the z-direction to the x-
direction of p at p2c D mv2=B and then eventually to the opposite z-direction for
a larger p. This consists of two so-called “merons” in the momentum space, which
is named skymion. For mB < 0, when p increases, the spin will rotate from the
z-direction to the direction of p and then flips back to the original z-direction. The
feature whether the spin points to the same direction or not at p D 0 and C1
determines the equation topologically distinct in the cases ofmB > 0 andmB < 0.

2.5 Bound State Solutions of the Modified Dirac Equation

2.5.1 One Dimension: End States

Let us start with a one-dimensional case. In this case, the 4 � 4 Eq. (2.32) can be
decoupled into two independent sets of 2 � 2 equations:

h.x/ D vpx�x C �
mv2 � Bp2x

�
�z: (2.33)

For a semi-infinite chain with x � 0, we consider an open boundary condition
at x D 0. It is required that the wave function vanishes at the boundary, that is, the
Dirichlet boundary condition. Usually we may have a series of solutions of extended
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Fig. 2.3 Schematic of the
probability density j‰.x/j2 of
the end state solution as a
function of position in
Eq. (2.39)

states, which wave functions spread in the whole space. In this section we focus on
the solution of the bound state near the boundary. To find the solution of zero energy,
we have

�
vpx�x C �

mv2 � Bp2x
�
�z
�
'.x/ D 0: (2.34)

Multiplying �x from the left-hand side, one obtains

@x'.x/ D � 1

v„
�
mv2 CB„2@2x

�
�y'.x/: (2.35)

If '.x/ is an eigenfunction of �y , take '.x/ D 
��.x/ with �y
� D �
� (� D ˙1).
Then the differential equation is reduced to the second-order ordinary differential
equation:

@x�.x/ D � �

v„
�
mv2 C B„2@2x

�
�.x/: (2.36)

Taking the trial wave function �.x/ / e��x , one obtains the secular equation

B„2�2 � �v„�Cmv2 D 0: (2.37)

The two roots satisfy the relation �C C �� D �v=„B and �C�� D mv2=B„2. We
require that the wave function vanishes at x D 0 and x D C1:

'.x D 0/ D '.x D C1/ D 0: (2.38)

The two roots should be positive, and only one of 
� satisfies the boundary condition
for a bound state, � D sgn.B/ (without loss of generality, we assume that v is always
positive). In the condition ofmB > 0, there exists a solution of the bound state with
zero energy

'�.x/ D Cp
2

�
sgn.B/
i

�
.e�x=�C � e�x=��/ (2.39)

where ��1˙ D v
2jBj„

�
1˙ p

1 � 4mB
�

and C is the normalization constant. The

main feature of this solution is that the wave function distributes dominantly near
the boundary, and decays exponentially away from one end, as shown in Fig. 2.3.
The two parameters �� > �C and decide the spatial distribution of the wave
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function. These are two important length scales, which characterize the end states.
When B ! 0, �C ! jBj „=v and �� D „=mv, that is, �C approaches to zero,
and �� becomes a finite constant which is determined by the energy gap mv2. If
we relax the constraint of the vanishing wave function at the boundary, the solution
exists even if B D 0. In this way, we go back the conventional Dirac equation.
In this sense, the two equations reach at the same conclusion. When m ! 0,
�� D „=mv ! C1, and the state evolves into a bulk state. Thus, the end states
disappear and a topological quantum phase transition occurs at m D 0.

In the four-component form to Eq. (2.32), two degenerate solutions have the form

‰1 D Cp
2

0

B
B
@

sgn.B/
0

0

i

1

C
C
A .e

�x=�C � e�x=��/; (2.40)

‰2 D Cp
2

0

B
B
@

0

sgn.B/
i

0

1

C
C
A .e

�x=�C � e�x=��/: (2.41)

We shall see that these two solutions can be used to derive the effective Hamiltonian
for higher dimensional systems.

The role of this solution could not be underestimated in theory of topological
insulators. We shall see that all other solutions of the edge or surface states and
topological excitations can be closely related to this solution.

2.5.2 Two Dimensions: Helical Edge States

In two dimensions, the equation can be also decoupled into two independent
equations:

h˙ D vpx�x ˙ vpy�y C �
mv2 � Bp2� �z: (2.42)

These two equations break the “time” reversal symmetry under the transformation
of �i ! ��i and pi ! �pi , although the original four-component equation is time
reversal invariant.

We consider a semi-infinite plane with the boundary at x D 0. py D „ky is a
good quantum number. At ky D 0, the two-dimensional equation has the identical
form as the one-dimensional equation. The x-dependent part of the solution has
the identical form as that in one dimension. Thus, we use the two one-dimensional
solutions f‰1;‰2g in Eqs. (2.40) and (2.41) as the basis. The y-dependent part
�H2D D vpy˛y � Bp2yˇ is regarded as the perturbation to the one-dimensional
Hamiltonian. In this way, we have a one-dimensional effective model for the helical
edge states:
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Heff D .h‰1j ; h‰2j/�H2D

� j‰1i
j‰2i

�
D vpysgn.B/�z: (2.43)

The sign dependence ofB in the effective model also reflects the fact that the helical
edge states disappear if B D 0. The dispersion relations for the bound states at the
boundary are

	py;˙ D ˙vpy: (2.44)

Electrons have positive (Cv) and negative velocity (�v) in two different states,
respectively, and form a pair of helical edge states.

The exact solutions of the edge states to this two-dimensional equation have the
similar form of one-dimensional equation [5]:

‰1 D Cp
2

0

B
B
@

sgn.B/
0

0

i

1

C
C
A .e

�x=�C � e�x=��/eCipyy=„; (2.45a)

‰2 D Cp
2

0

B
B
@

0

sgn.B/
i

0

1

C
C
A .e

�x=�C � e�x=��/eCipyy=„; (2.45b)

with the dispersion relations 	py;˙ D ˙vpysgn.B/. The characteristic lengths
become py dependent,

��1˙ D v

2 jBj „
�
1˙

q
1 � 4mB C 4B2p2y=v2

�
: (2.46)

In two dimensions, the Chern number or Thouless-Kohmoto-Nightingale-Nijs
(TKNN) integer can be used to characterize whether the system is topologically
trivial or nontrivial [6]. For the two-band Hamiltonian in the form H D d.p/ � �;
the Chern number is expressed as

nc D � 1

4

Z
dp

d � .@pxd � @pyd/

d 3
(2.47)

where d2 D P
˛Dx;y;z d2˛ (see Appendix A.2). The integral runs over the first

Brillouin zone for a lattice system, in which the number nc is always an integer
(see Appendix A.1). In the continuous limit, the integral area becomes infinite; the
integral can be fractional. For Eq. (2.42), the Chern number has the form [7, 8]

n˙ D ˙.sgn.m/C sgn.B//=2: (2.48)
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which is related to the Hall conductance �˙ D n˙e2=h. When m and B have the
same sign, n˙ D ˙1, and the system is topologically nontrivial. But if m and B
have different signs, n˙ D 0. The topologically nontrivial condition is in agreement
with the existence condition of edge-state solution mB > 0. This reflects the bulk-
edge relation of the integer quantum Hall effect [9].

2.5.3 Three Dimensions: Surface States

In three dimensions, we consider a y � z plane at x D 0. We can derive an effective
model for the surface states by means of the one-dimensional solution of the bound
state. Since the momenta among the y� z plane are good quantum numbers, we use
their eigenvalues to replace the momentum operators, py and pz. Consider py- and
pz-dependent part as a perturbation to H1D.x/:

�H3D D vpy˛y C vpz˛z � B.p2y C p2z /ˇ: (2.49)

The solutions of the three-dimensional Dirac equation at py D pz D 0 are identical
to two one-dimensional solutions, j‰1i and j‰2i in Eqs. (2.40) and (2.41). For
py; pz ¤ 0, we use the solution

‰1 D Cp
2

0

BB
@

sgn.B/
0

0

i

1

CC
A .e

�x=�C � e�x=��/ei.pyyCpzz/=„; (2.50a)

‰2 D Cp
2

0

B
B
@

0

sgn.B/
i

0

1

C
C
A .e

�x=�C � e�x=��/ei.pyyCpzz/=„ (2.50b)

as the basis. A straightforward calculation as in the two-dimensional case gives

Heff D .h‰1j ; h‰2j/�H3D

� j‰1i
j‰2i

�
D vsgn.B/.p � �/x: (2.51)

Under a unitary transformation,

ˆ1 D 1p
2
.j‰1i � i j‰2i/; (2.52a)

ˆ2 D �ip
2
.j‰1i C i j‰2i/; (2.52b)
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Fig. 2.4 The Dirac cone of
the surface states in the
momentum space

one can have a gapless Dirac equation for the surface states

Heff D .hˆ1j ; hˆ2j/�H3D

� jˆ1i
jˆ2i

�

D vsgn.B/.py�y C pz�z/: (2.53)

The dispersion relations become 	p;˙ D ˙vp with p D
q
p2y C p2z . In this way we

have an effective model for a single Dirac cone of the surface states, as plotted in
Fig. 2.4. Note that �i in the Hamiltonian is not a real spin, which is determined by
two states at py D pz D 0. In some systems, j‰1i and j‰2i are almost polarized
along the z-direction of electron spin. In this sense the Pauli matrices in Eq. (2.51)
may be regarded approximately as a real spin.

The exact solutions of the surface states to this three-dimensional equation with
the boundary are

‰˙ D C‰0˙.e�x=�C � e�x=��/ expŒCi �pyy C pzz
�
=„� (2.54)

where

‰0C D

0

BB
B
B
@

cos �
2

sgn.B/

�i sin �
2

sgn.B/

sin �
2

i cos �
2

1

CC
C
C
A
; (2.55a)

‰0� D
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B
B
B
B
@

sin �
2

sgn.B/

i cos �
2
sgn.B/

� cos �
2

i sin �
2

1

C
C
C
C
A

(2.55b)
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with the dispersion relation 	p;˙ D ˙vpsgn.B/. tan � D py=pz. The penetration
depth becomes p dependent,

��1˙ D v

2 jBj „
�
1˙

p
1� 4mB C 4B2p2=„2

�
: (2.56)

2.5.4 Generalization to Higher-Dimensional Topological
Insulators

The solution can be generalized to higher-dimensional systems. We conclude
that there always exist d-dimensional boundary or surface states in the (d+1)-
dimensional modified Dirac equation when mB > 0.

2.6 Summary

From the solutions of the modified Dirac equation, we found that under the condition
of mB > 0;

• In one dimension, there exists bound state of zero energy near the ends.
• In two dimensions, there exists helical edge states near the edge.
• In three dimensions, there exists surface states near the surface.
• In higher dimensions, there always exists higher dimensional boundary state.

From the solutions of the bound states near the boundary and the calculation of
Z2 index, we conclude that the modified Dirac equation can provide a description of
a large class of topological insulators from one to higher dimensions.

2.7 Further Reading

• J.D. Bjorken, S.D. Drell, Relativistic Quantum Mechanics (MaGraw-Hill, New
York, 1964)

• P.A.M. Dirac, Principles of Quantum Mechanics, 4th edn. (Clarendon, Oxford,
1982)

• S.Q. Shen, W.Y. Shan, H.Z. Lu, Topological insulator and the Dirac equation.
SPIN 1, 33 (2011)
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Chapter 3
Minimal Lattice Model for Topological Insulator

Abstract A lattice model can be mapped into a continuous one near the critical
point of topological quantum phase transition. Topology of a lattice model remains
unchanged if no energy gap in the band structure closes and reopens.

Keywords The lattice model • Band gap • Parity • Time reversal invariant
momentum

3.1 Tight Binding Approximation

A tight binding model is extensively used to describe the band structure of electrons
in solids. A schematic in Fig. 3.1 depicts the formation of the tight binding lattice
from the point of view of atom physics. Consider an isolated atom, say the
hydrogen atom. In quantum mechanics, an electron rotates around the nuclei in
the Coulomb interaction and forms a series of discrete energy levels or orbits,
En D �e2=.8	0n2a0/ where a0 D 4	0„2=.mee

2/ is the Bohr radius and n is
an integer. The ground state energy is EnD1 D �13:6 eV, and the radius of the

orbit is a0 D 0:529 VA. The energy of the first excited state is EnD2 D �3:4 eV.
The energy difference between the two states is about �10:2 eV, which is very large
in a solid. Thus, it is a good approximation to consider only the ground state of
electron at low temperatures. When two atoms get closer, the orbits of two electrons
of different atoms may overlap in space. As a result, electron of one atom has a
probability to jump into the orbit of another atom. Since the electron is mainly
localized around the original nuclei, the probability of the electron tunneling from
one atom to another is still quite tiny. The picture can be generalized to a lattice
system consisting of atoms: the electrons move from one atom to another one and
form energy bands.

S.-Q. Shen, Topological Insulators: Dirac Equation in Condensed Matters,
Springer Series in Solid-State Sciences 174, DOI 10.1007/978-3-642-32858-9 3,
© Springer-Verlag Berlin Heidelberg 2012
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a

b

c

Fig. 3.1 A schematic which explains the tight binding approximation. (a) A single atom with
discrete orbits for electron. (b) When atoms get together to form a solid, the wave functions of
two orbits (black) of adjunct atoms overlap in space. (c) If the overlap of the orbits is small,
the electrons are still regarded to be almost localized around the original orbits but have a tiny
probability to tunnel to the adjunct orbits to form an energy band

In the second quantization, an effective model Hamiltonian is written as

H D
X

i;�D";#
	0c

�
i;� ci;� �

X

hi;j i;�D";#
tij c

�
i;� cj;� ; (3.1)

where the summation i runs over all the lattice sites and � D";# represents for
the electron spin-up and spin-down, respectively. c�i;� and ci;� are the creation
and annihilation operators of electron with spin � at site i , respectively, obeying
the anticommutation relation, c�i;� cj;� 0 C cj;� 0c

�
i;� D ı�� 0ıij . It is required that

ci;� j0i D 0. tij describes the hopping amplitude of electron jumping from site i
to site j .

For a ring of one-dimensional lattice with N lattice sites or a one-dimensional
lattice with a periodic boundary condition, we take ci;� D ciCN;� . For simplicity,
we just suppose the lattice is translationally invariant by taking tij D t for a pair of
nearest neighbor lattice sites. Performing the Fourier transformation,
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ci:� D 1p
Na

X

kn

eiknRi ckn;� ; (3.2a)

c
�
i:� D 1p

Na

X

kn

e�iknRi c�kn;� ; (3.2b)

and the periodic boundary condition gives eiknRi D eikn.RiCNa/ and kn D 2n=Na

(n D 0; 1; : : : ; N � 1). In this way, the Hamiltonian can be diagonalized

H D
X

kn

	.kn/c
�

kn;�
ckn;� (3.3)

with the dispersion 	.kn/ D 	0�2t cos kna. Notice that for K D 2=a, 	.knCK/ D
	.kn/: For a very large N , kna can be taken to be continuous from 0 to 2 , and K
is called the reciprocal lattice vector.

The approach can be generalized to two and three dimensions. The reciprocal
lattice vector can be defined for the purpose of the Fourier transformation from the
real space to the momentum space. In a three-dimensional lattice with the lattice
space a, b, and c, the reciprocal lattice vectors are given by

Ka D 2
b � c

a � .b � c/
; (3.4a)

Kb D 2
c � a

a � .b � c/
; (3.4b)

Kc D 2
a � b

a � .b � c/
; (3.4c)

and K˛ � R˛ D 2 for ˛ D a; b; c.

3.2 From Continuous to Lattice Model

Usually a continuous model is for low-energy physics in the long wavelength
limit. Topology of the band structure should reveal the properties of the whole
band structure in the Brillouin zone. In practice, people like to use a lattice model
instead of a continuous model to explore the topology of system. A continuous
model can be mapped into a lattice model in the tight binding approximation,
in which the Brillouin zone is finite. In a d-dimensional hypercubic lattice, one
replaces [1],
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ki ! 1

a
sin kia; (3.5a)

k2i ! 4

a2
sin2

kia

2
D 2

a2
.1 � coskia/; (3.5b)

which are equal only in the long wavelength limit, that is, kia ! 0 by using the
relation sin x � x for a small x. We use sin2 kia

2
or cos kia instead of sin2 kia

for k2i to avoid long-distance hopping in the effective Hamiltonian. In this way,
the hopping terms in the lattice model only exist between the nearest neighbor
sites.

Usually there exits the fermion doubling problem in the lattice model for
massless Dirac particles. The replacement of ki ! 1

a
sin kiawill cause an additional

zero point for 1
a

sin kia at kia D  besides at kia D 0. Thus, there exist four Dirac
cones in a square lattice at k D .0; 0/; (0; =a), (=a; 0) and (=a; =a), for a
gapless Dirac equation. A large B term removes the zero point at (=a; =a) as
4B
a2

sin2 kia
2

! Bk2. Thus, the lattice model is equivalent to the continuous model
only in the condition of a large B . Thus, for a finite B , the band gap may not open
at the � point in the lattice model because of the competition between the linear
term and the quadratic term of ki . This fact may lead to a topological transition
from a large B to a small B . Imura et al. [2] analyzed the two-dimensional case in
details and found that there exists a topological transition at a finite value ofB in two
dimensions. A similar transition will also exist in higher dimensions. Thus, it should
be careful when we study the continuous model in a tight binding approximation.
However, the topology of the band structure never changes if the energy gap in
the band structure does not close and reopen while the model parameters vary
continuously.

With this mapping, one obtains a lattice model for topological insulator

H D „v

a

X

iDx;y;z
sin kia˛i C

0

@mv2 � B 4„
2

a2

X

iDx;y;z
sin2

kia

2

1

Aˇ: (3.6)

The energy dispersions for this system are

Ek;˙ D ˙

vu
u
u
t„2v2

a2

X

iDx;y;z
sin2 kia C

0

@mv2 � 4B„2
a2

X

iDx;y;z
sin2

kia

2

1

A

2

: (3.7)

For mB < 0, there is always an energy gap between the two bands 2jmjv2. For
mB D 0 (B ¤ 0), the energy gap closes at the points kia D 0 as E0;C D E0;�.
For mB > 0, there exist several gapless points at mv2 D 4B„2=a2 (in one,
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two, and three dimensions), 8B„2=a2(in two and three dimensions), and 12B„2=a2
(in three dimensions). We shall show that these are the critical points for topo-
logically quantum phase transition. For simplicity, we take the lattice constant
a D „ D 1.

We can perform the Fourier transform to transfer the effective Hamiltonian from
the momentum space into the lattice space. In the tight binding approximation, the
model Hamiltonian on a hypercubic lattice has the form

H D
X

i;n;m

�c
�
i;nˇnmci;m � t

X

hi;j i;
c
�
j;nˇnmci;m

Ci t 0
X

i;a;n;m

h
c
�
iCa;n.˛a/nmci;m � c

�
i;n.˛a/nmciCa;m

i
: (3.8)

Here, hi; j i runs over the pairs of nearest neighbor sites. a D x; y; z and i C a

represents the lattice site Ri C Ra. n;m D 1; 2; : : : ;D, where D is the dimension
of the Dirac matrices. The relations of the model parameters are

t 0 D „v

2a
D v=2; � � 2dt D mv2; t D �B„2=a2 D �B: (3.9)

Denote .c�i;1; c
�
i;2; : : : ; c

�
i;D/ by c�i . In this way, the equation can be written in a

compact form

H D
X

i

�c
�
i ˇci � t

X

hi;j i;
c
�
j ˇci C i t 0

X

i;a

h
c
�
iCa˛aci � c

�
i ˛aciCa

i
: (3.10)

3.3 One-Dimensional Lattice Model

Consider a one-dimensional lattice model:

H D �

NX

jD1
c
�
j �zcj � t

N�1X

;jD1

�
c
�
jC1�zcj C c

�
j �zcjC1

�

Ci t 0
N�1X

jD1

�
c
�
jC1�xcj � c

�
j �xcjC1

�
; (3.11)

where c�j D .c
�

j;"; c
�

j;#/. To find the end state, we adopt the open boundary condition.

We choose
�
c
�
1 ; c

�
2; : : : ; c

�
N

�
as the basis. The Hamiltonian can be written in the form

of matrix,
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H D

0

B
B
B
B
BB
B
B
@

��z T 0 0 � � � 0

T � ��z T 0 � � � 0

0 T � ��z T � � � 0
:::

:::
: : :

: : :
: : :

:::

0 0 0 T � ��z T

0 0 0 0 T � ��z

1

C
C
C
C
CC
C
C
A

; (3.12)

where T D �t�z � i t 0�x . Since �x and �z are 2 � 2 matrices, the Hamiltonian is a
2N � 2N square matrix.

Here, we present a solution for N D C1, that is, a semi-infinite chain with
an end at j D 1. We take the eigenvector for H as ‰� D .‰

�
1;‰

�
2; : : : ; ‰

�
N /. The

eigenvalue equation of this problem becomes

��z‰j C T‰jC1 C TC‰j�1 D E‰j (3.13)

for j D 1; 2; : : : and ‰0 D 0. To solve this equation, we set a trial solution,

‰jC1 D �‰j D �jC1‰: (3.14)

Then Eq. (3.13) becomes

�
��z C �T C ��1T C�‰ D P‰ D E‰; (3.15)

where the operator P D ��z C �T C ��1TC � � � � with

�x D �i t 0.� � ��1/; (3.16a)

�y D 0; (3.16b)

�z D � � �t � t��1: (3.16c)

In general, the matrix P is non-Hermitian, and one may have two complex
eigenvalues for P . However,E must be real as the eigenvalue for a physical system.
Thus, P should meet one of the conditions:

1. All components of � are real.
2. All nonzero complex components combine to give E D 0.

The first condition is met when � D eik , which gives the solution of the bulk
band. These solutions are not what we are interested in here. The second condition
defines the so-called annihilator. In the present case, if �z D is�x (s D ˙1),

P D �x.�x C is�z/: (3.17)
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‰ D 1p
2
.1;�is/T satisfies P‰ D 0, which is also one of the eigenstates of �y with

the eigenvalue �s.
Increasing and decreasing operators are defined by �˙ D �x˙i�y;which satisfy

�C
�
1

0

�
D 0I �C

�
0

1

�
D 2

�
1

0

�
; (3.18a)

��
�
0

1

�
D 0I ��

�
1

0

�
D 2

�
0

1

�
: (3.18b)

To have a zero-energy mode of E D 0, one has

� � �t � t��1 D st 0.� � ��1/: (3.19)

This equation has two roots:

�˙.s/ D �

2.t C st 0/

"

1˙
r

1 � 4.t2 � t 02/
�2

#

: (3.20)

The solutions for the end state require j�˙j < 1 as ‰j ! 0 for a large j . Thus,

�C�� D t � st 0
t C st 0

< 1 (3.21)

which requires s Dsgn.t 0=t/.

Case I: �˙ are complex for

4.t2 � t 02/ > �2 (3.22)

and

ˇ
ˇ�2C

ˇ
ˇ D t � st 0

t C st 0
D
1 �

ˇ
ˇ
ˇ t

0

t

ˇ
ˇ
ˇ

1C ˇ
ˇ t 0
t

ˇ
ˇ : (3.23)

Case II: For

4.t2 � t 02/ < �2; (3.24)

we require

j�˙j2 D �2

4.t C st 0/2

"

2 � 4.t2 � t 02/
�2

˙ 2

r

1 � 4.t2 � t 02/
�2

#

< 1: (3.25)

It follows that

4.t2 � t 02/ < �2 < 4t2: (3.26)
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Thus, the boundary condition of ‰0 D 0 gives the solution

‰j D .�
j
C � �j�/‰; (3.27)

which does not vanish at the boundary at j D 1.

A special case: there are two exact solutions of this lattice model at � D 0 and
t D t 0: In this case, we have the solutions

‰L D

0

B
B
B
@

'1
0
:::

0

1

C
C
C
A
; ‰R D

0

B
B
B
@

0

0
:::

'N

1

C
C
C
A
; (3.28)

with

T �'1 D �t.�z � i�x/'1 D 0; (3.29a)

T 'N D �t.�z C i�x/'N D 0; (3.29b)

and

'1 D 1p
2

�
1

�i
�
; 'N D 1p

2

�
1

Ci
�
: (3.30)

These two solutions are located at two ends, and the energy eigenvalues are 0. As
the two solutions are degenerate, a linear combination of these two solutions is also
the solution for the lattice model.

3.4 Two-Dimensional Lattice Model

3.4.1 Integer Quantum Hall Effect

In two dimensions, the lattice model on a square lattice can be written as

H D d.k/ � � (3.31)

where

dx D A sin kxa; (3.32a)

dy D A sin kya; (3.32b)

dz D � � 4B sin2
kxa

2
� 4B sin2

kya

2
: (3.32c)
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One can regard this model as a quantum spin- 1
2

in an effective magnetic field, d.k/.
The dispersion relations are

Ek;˙ D ˙ jd.k/j : (3.33)

The zero points of the dispersion are determined by a set of equations

sin2 kxa D sin2 kxa D 0; (3.34a)

� D 4B sin2
kxa

2
C 4B sin2

kya

2
: (3.34b)

There are three solutions: (1) � D 0 with (kxa D 0, kya D 0); (2) � D 4B with
(kxa D 0, kya D ) or (kxa D  , kya D 0/; and (3) � D 8B with (kxa D  ,
kya D ). Thus, the energy gap closes and reopens near these points. We shall
see that topological quantum phase transition will occur at the points (1) � D 0,
(2)� D 4B; and (3) � D 8B .

To have a solution of edge state, we may take a geometry of ribbon. Along the x-
direction, we adopt the periodic boundary condition such that kx is a good quantum
number. Along the y-direction, we adopt an open boundary condition. Performing
the partial Fourier transformation only for the x-direction, the problem is reduced
to a one-dimensional one as kx is regarded as a variable.

H.kx/ D
NX

jD1
c
�

kx;j
hj;j .kx/ckx ;j

C
N�1X

jD1

h
c
�

kx ;j
hj;jC1.kx/ckx ;jC1 C c

�

kx;jC1hjC1;j .kx/ckx;j
i
; (3.35)

where

hj;j .kx/ D A sin kx�x C
�
� � 2B � 4B sin2

kxa

2

�
�z; (3.36a)

hj;jC1.kx/ D B�z � i

2
A�y; (3.36b)

hjC1;j .kx/ D h
�
j;jC1.kx/ D B�z C i

2
A�y: (3.36c)

The problem to find the solution of the edge state is reduced to one as in one
dimension for a specific kx . One can solve it following the method introduced in
the preceding section. This model can also be solved numerically.
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3.4.2 Quantum Spin Hall Effect

Combination of two 2 � 2 modified Dirac models can generate an effective model
for the quantum spin Hall effect. Under the time reversal‚ D i�yK ,

ki �! �ki ; �i �! ��i ; (3.37)

we have

‚d.�k/ � �‚�1 D �d.�k/ � �
D A�x sin kxa C A�y sin kya

��z

�
� � 4B sin2

kxa

2
� 4B sin2

kya

2

�
: (3.38)

We set d.k/ � � for “spin-up” sector and then �d.�k/ � � for “spin-down” sector. In
this way, we obtain an effective Hamiltonian in a 4 � 4 matrix:

HQSHE D
�

d.k/ � � 0

0 �d.�k/ � �
�

D A sin kxa�x ˝ s0 CA sin kya�y ˝ s0

C
�
� � 4B sin2

kxa

2
� 4B sin2

kya

2

�
�z ˝ sz; (3.39)

where s0 is a 2 � 2 identity matrix and sz is the Pauli matrix for spin index. More
terms can be introduced, such as the spin-orbit coupling which appears as an off-
diagonal term in the matrix to couple the spin-up and spin-down. In this way, Sz

is no longer conserved. However, the edge states may persist. This can be checked
numerically.

3.5 Three-Dimensional Lattice Model

The lattice model on a cubic lattice is

H D A
X

iDx;y;z
˛i sin kiaC ˇ

0

@� � 4B
X

iDx;y;z
sin2

kia

2

1

A : (3.40)

Its dispersions are
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Ek;˙ D ˙ jd.k/j

D ˙

vuu
u
tA2

X

iDx;y;z
sin2 kia C

0

@� � 4B
X

iDx;y;z
sin2

kia

2

1

A

2

: (3.41)

The zero points of the dispersion are determined by a set of equations

sin2 kxa D sin2 kya D sin2 kza D 0; (3.42a)

� D 4B sin2
kxa

2
C 4B sin2

kya

2
C 4B sin2

kza

2
: (3.42b)

There are three solutions at � D 0, � D 4B , � D 8B , and � D 12B . The
topological nontrivial regions are 0 < �=B < 4 and 8 < �=B < 12. Topological
quantum phase transition occurs at the points of � D 0 and �=B D 4, 8, and 12.

To find the solution of the surface states, we consider a semi-infinite x-y plane.
In this case, the kx and ky are still good quantum numbers. In this case, performing
the partial Fourier transformation for the x- and y-axis,

ckx;ky ;jz D 1
p
NxNy

X

jx;jy

cjx;jy ;jz expŒi.kxjx C kyjy/�; (3.43a)

cjx ;jy ;jz D 1
p
NxNy

X

kx;ky

ckx ;ky ;jz; expŒ�i.kxjx C kyjy/�; (3.43b)

we have a one-dimensional effective Hamiltonian along the z-axis

H.kx; ky/ D
X

i

c
�

kx;ky ;jz
	.kx; ky/ckx ;ky ;jz

C
X

i

c
�

kx;ky ;jzC1.i
A

2
˛z � 2Bˇ/ckx;ky ;jz C h:c:; (3.44)

where

	.kx; ky/ D .A sin kx˛x CA sin ky˛y/C
0

@� � 2B � 4B
X

iDx;y
sin2

kia

2

1

Aˇ:

(3.45)
Here, ckx;ky ;jz is a four-component spinor. One can find the surface state solution by
means of exact diagonalization.
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3.6 Parity at the Time Reversal Invariant Momenta

We have constructed a lattice model by mapping the continuous model onto a lattice
model. In the continuous model, the energy gap of the conduction and valence band
opens near k D 0. In the mapping, k is replaced by 1

a
sin ka. Since sin ka has

two zero points at ka D 0 and ka D ; this property may make the two models
topologically distinct. The topology of a system should be determined by the band
structure of the whole Brillouin zone, not simply by the asymptotic behavior near a
single point. In this section,we calculate the parity of the eigenstates at time reversal
invariant momenta, which may reveal whether the lattice model is topologically
trivial or nontrivial. We shall find that the parity of the eigenstates will change when
the energy gap between the two bands closes and reopens, which accompanies a
topological quantum phase transition. Readers can come back to this section after
reading Chap. 4.

The parity operation  changes a right-handed system into a left-handed system:

�x D �x; (3.46a)

�p D �p: (3.46b)

 is not only unitary but also Hermitian:

� D �1 D  (3.47)

and 2 D 1. Hence, its eigenvalue is either C1 or �1. For a system with a parity
symmetry, the energy eigenstates must be symmetric (C1) or antisymmetric (�1):

�.x/ D �.�x/ D ˙�.x/ (3.48)

if they are nondegenerate. In the Dirac equation, the full parity operator P needs to
be augmented with a unitary operator ˇ [3]:

P D ˇ; (3.49)

such that

P˛iP D �˛i ; PˇP D ˇ: (3.50)

In this way, the Dirac equation is invariant under parity P .

3.6.1 One-Dimensional Lattice Model

We begin with the one-dimensional lattice model,
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H D A sin kxa˛x C
�
� � 4B sin2

kxa

2

�
ˇ: (3.51)

The eigenvalues are doubly degenerate:

E˙ D ˙
s

A2 sin2 kxaC
�
� � 4B sin2

kxa

2

�2
: (3.52)

Suppose the Fermi energy is zero. Then two occupied states have the negative
energy and are time reversal partners with each other:

 1 D

0

BB
B
B
B
@

� A sin kxaq
2EC.ECC��4B sin2 kxa2 /

0

0
��4B sin2 kxa2 CECq

2EC.ECC��4B sin2 kxa2 /

1

CC
C
C
C
A

(3.53)

and
 2 D ‚ 1: (3.54)

where‚ is the time reversal operator. (See Appendix B.2).
The system is invariant under parity P since

PH.k/ D H.�k/P: (3.55)

Note that k is now a good quantum number, not an operator. From this relation, two
time reversal invariant momenta can be defined:

PH.�i / D H.�i /P: (3.56)

In one dimension, one is �1 D 0:

PH.�1 D 0/ D H.��1/P; (3.57)

and the other is �2 D 1
2
K D 

a
(K is the reciprocal lattice vector):

PH.�2/ D H.��2 CK/P: (3.58)

We calculate the eigenvalue of the parity of the state j 1i:

ıjkD�i D h 1jP j 1i D sgn

�
��C 4B sin2

�ia

2

�
: (3.59)

At the two time reversal invariant points, we have

ıjkaD0 D sgn.��/; (3.60a)

ıjkaD D sgn.��C 4B/: (3.60b)
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We notice that the parity changes sign at the points of � D 0 and � D 4B , where
the energy gap closes. The Z2 index � is determined by

.�1/� D ıjkaD0ıjkaD D sgn.�/sgn.� � 4B/: (3.61)

Thus, there are two distinct values of .�1/� , C1 or �1. Correspondingly, � D 0

or 1. Therefore, for 0 < �2 < 4�B , the Z2 index

� D 1 (3.62)

which shows that the system is topologically nontrivial.

3.6.2 Two-Dimensional Lattice Model

For a two-dimensional lattice model,

H D A
X

iDx;y
sin kia˛i C

0

@� � 4B
X

iDx;y
sin2

kia

2

1

Aˇ: (3.63)

The two energy eigenstates with the negative energy are

 1 D

0

B
B
B
B
BB
@

�A.sin kxa�i sinkya/q
2EC.ECC��4B.sin2 kxa2 Csin2

ky a

2 //

0

0

��4B.sin2 kxa2 Csin2
kya

2 /CECq
2EC.ECC��4B.sin2 kxa2 Csin2

ky a

2 //

1

C
C
C
C
CC
A

(3.64)

and

 2 D ‚ 1: (3.65)

The corresponding energy eigenvalue is

E� D �

vu
u
utA2

X

iDx;y
sin2 kia C

0

@� � 4B
X

iDx;y
sin2

kia

2

1

A

2

: (3.66)

The parity or the ı quantity at the time reversal invariant momenta is

ıjkD�i D h 1jP j 1i D sgn

0

@��C 4B
X

iDx;y
sin2

�ia

2

1

A : (3.67)
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In two dimensions, there are the four time reversal invariant momenta,�ia D .0; 0/,
�ia D .0; /, �ia D .; 0/, and �ia D .; /. At these points, the parity of the
state  1 is

ıj�i aD.0;0/ D �sgn.�/; (3.68a)

ıj�i aD.0;/ D sgn.��C 4B/; (3.68b)

ıj�i aD.;0/ D sgn.��C 4B/; (3.68c)

ıj�i aD.;/ D sgn.��C 8B/: (3.68d)

As a result,

.�1/� D sgn.�/ Œsgn.��C 4B/�2 sgn.� � 8B/: (3.69)

Therefore, we have a nontrivial index

� D 1 (3.70)

for 0 < �2 < 8�B .
However, it is noted that ıjkaD.0;/ D ıjkaD.;0/ discontinues at � D 4B .

Although the index is equal to 1 near the point, there exists a topological quantum
phase transition. Both phases are topologically nontrivial. Accompanying the
transition, the spin current around the boundary will change its sign.

3.6.3 Three-Dimensional Lattice Model

For a three-dimensional lattice model,

H D A
X

˛Dx;y;z
sin k˛a˛˛ C

 

� � 4B
X

˛Dx;y;z
sin2

k˛a

2

!

ˇ: (3.71)

The two energy eigenstates are

 1 D

0

B
B
B
B
BB
B
@

�A.sin kxa�i sinkya/q
2EC.ECC��4BP˛Dx;y;z sin2 k˛a2 /

A sinkzq
2EC.ECC��4BP˛Dx;y;z sin2 k˛a2 /

0
��4BP˛Dx;y;z sin2 k˛a2 CECq

2EC.ECC��4BP˛Dx;y;z sin2 k˛a2 /

1

C
C
C
C
CC
C
A

(3.72)

and

 2 D ‚ 1: (3.73)
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The corresponding negative energy is

E� D �
vu
u
tA2

X

˛Dx;y;z
sin2 k˛aC

 

� � 4B
X

˛Dx;y;z
sin2

k˛a

2

!2
: (3.74)

The parity at the time reversal invariant momenta is

ıjkD�i D h 1jP j 1i D sgn

 

��C
X

˛Dx;y;z
4B sin2

�˛a

2

!

: (3.75)

At the eight time reversal invariant points,

ıj�i aD.0;0;0/ D �sgn(�), (3.76a)

ıj�i aD.0;0;/ D ıj�i aD.0;;0/ D ıj�i aD.;0;0/ D sgn.��C 4B/; (3.76b)

ıj�i aD.0;;/ D ıj�i aD.;;0/ D ıj�i aD.;0;/ D sgn.��C 8B/; (3.76c)

ıj�i aD.;;/ D sgn.��C 12B/: (3.76d)

For kx D 0,

.�1/�1 D ıj�i aD.0;0;0/ıj�i aD.0;0;/ıj�i aD.0;;0/ıj�i aD.0;;/
D sgn.�/sgn.� � 8B/: (3.77)

For ky D 0;

.�1/�2 D ıj�i aD.0;0;0/ıj�i aD.0;0;/ıj�i aD.;0;0/ıj�i aD.;0;/
D sgn.�/sgn.� � 8B/: (3.78)

For kz D 0;

.�1/�3 D ıj�i aD.0;0;0/ıj�i aD.0;;0/ıj�i aD.;0;0/ıj�i aD.;;0/
D sgn.�/sgn.� � 8B/: (3.79)

For kxa D ;

.�1/�0
1 D ıj�i aD.;0;0/ıj�i aD.;0;/ıj�i aD.;;0/ıj�i aD.;;/

D sgn.� � 4B/sgn.� � 12B/: (3.80)
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The prime index �0 is determined by the product of parities at the eight time reversal
invariant points.

.�1/�0 D
Y

i

ıi D .�1/�1C�0
1

D sgn.�/sgn.� � 4B/sgn.� � 8B/sgn.� � 12B/: (3.81)

Thus, for B > 0;

.�0I �1; �2; �3/ D .0I 0; 0; 0/; for � < 0; (3.82)

.�0I �1; �2; �3/ D .1I 1; 1; 1/; for 0 < � < 4B; (3.83)

.�0I �1; �2; �3/ D .0I 1; 1; 1/; for 4B < � < 8B; (3.84)

.�0I �1; �2; �3/ D .1I 0; 0; 0/; for 8B < � < 12B; (3.85)

.�0I �1; �2; �3/ D .0I 0; 0; 0/; for � > 12B: (3.86)

The system is topologically nontrivial only if 0 < � < 4B and 8B < � < 12B .

3.7 Summary

In summary, a minimal lattice model for topological insulator is established in one,
two, and three dimensions. According to the parity of the eigenstates at the time
reversal invariant momenta, we conclude that (suppose B positive)

1. In one dimension, it is topologically nontrivial for 0 < � < 4B .
2. In two dimensions, it is topologically nontrivial for 0 < � < 4B and 4B < � <

8B .
3. In three dimensions, it is topologically nontrivial for 0 < � < 4B and 8B <

� < 12B .
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Chapter 4
Topological Invariants

Abstract There are two classes of topological invariants for topological insulators.
One is characterized by the elements of the group Z, which consists of all integers.
For example, the integer quantum Hall effect is characterized by an integer n, that
is, the filling factor of electrons. The other is by the elements of the group Z2,
which consists of 0 and 1 or 1 and �1. In a topological insulator with time reversal
symmetry, 0 and 1 represent the existence of odd and even numbers of the surface
states in three dimensions or the even and odd number pairs of helical edge states in
two dimensions, respectively.

Keywords Bloch theorem • Berry phase • Charge pump • Spin pump • Laugh-
lin argument • Chern number • The Z2 index

4.1 Bloch Theorem and Band Theory

A Bloch wave or a Bloch state, named after Felix Bloch, is the wave function of an
electron in a periodic potential. Let us consider a Hamiltonian H.r/ D H.r C R/ in
a periodic potential. Bloch’s theorem states that the eigenfunction for such a system
must be of the form

j n;k.r/i D eik�rjun;k.r/i; (4.1)

where un;k.r/ has the period of the crystal lattice R with un;k.r/ D un;k.r C R/.
un;k.r/ is the cell periodic eigenstate of H.k/ D e�ik�rH.r/eik�r,

H.k/jun;k.r/i D En;kjun;k.r/i. (4.2)

The corresponding energy eigenvalues satisfy, En.k/ D En.k C K/; periodic with
periodicity K of a reciprocal lattice vector. The energies associated with the index
n vary continuously with the wave vector k and form an energy band identified by

S.-Q. Shen, Topological Insulators: Dirac Equation in Condensed Matters,
Springer Series in Solid-State Sciences 174, DOI 10.1007/978-3-642-32858-9 4,
© Springer-Verlag Berlin Heidelberg 2012
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the band index n. The eigenvalues for given n are periodic in k; all distinct values
of En.k/ are located within the first Brillouin zone of the reciprocal lattice. See
Ref. [1].

According to the Pauli exclusion principle, each state can be occupied at most by
one electron. Electrons will fill lower energy states first and consequently form the
Fermi sea for a finite density of electrons. The highest energy of the occupied states
is called the Fermi level or Fermi energy. Near the Fermi level, if the band is partially
occupied, it is a metallic state. In this case, when an external field is applied to the
system, the field will force electrons to shift away from the equilibrium position and
gain a nonzero total momentum to form a flow of electric current. If the band is
fully filled, and there exists an energy gap between the filled or valence band and
the unfilled or conduction band, it is an insulating state. In this case, a weak external
field cannot force the electrons to move away from the occupied states to circulate
a flow of electric current. This is the picture for the band insulator. The size of the
energy gap serves as a dividing line between semiconductors and insulators. If the
energy gap is smaller than 4 eV (roughly), the electrons can be excited easily from
the valence band to conduction band at finite temperatures, although the fully filled
band does not contribute to electrical conductivity at absolute zero temperature.
Thus, a semiconductor has a smaller energy gap than an insulator.

4.2 Berry Phase

The choice of jun;ki in Eq. (4.2) is not unique. For example, there is always a U.1/,
that is, a phase uncertainty,

jun;ki ! eif .k/jun;ki; (4.3)

keeping Eq. (4.2) invariant. A definite set of phase choice in the Brillouin zone is
called a definite gauge [2]. For a time reversal invariant system, there always exists
a continuous gauge throughout the Brillouin zone. For a time reversal broken system
with nonzero Chern number, there is no such a gauge that continuous gauges have
to be defined in different patches of the Brillouin zone [2,3]. However, any physical
observable must be gauge independent.

Consider the system Hamiltonian that varies with time through a parameter R !
R.t/. We are interested in a cyclic evolution of the system from t D 0 to T such
that R.t D 0/ D R.t D T /. The parameter R.t/ changes very slowly along a
closed path C in the parameter space. To solve the problem, we first introduce an
instantaneous orthogonal basis from the instantaneous eigenstates of H.R.t// at
time t or each value of R.t/:

H.R.t// jun.R.t//i D "n.R.t// jun.R.t//i : (4.4)
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This equation does not completely determine the basis function of jun.R.t//i due
to the phase uncertainty. However, we can require that the functions are smooth and
single valued along the closed path. The equation also does not describe correctly
the time evolution of the quantum states. Instead the quantum state should be
governed by the time-dependent Schrödinger equation,

i„@t jˆ.t/i D H.R.t// jˆ.t/i : (4.5)

In the adiabatic approximation [4], the system will stay at one of the instantaneous
eigenstates (usually we choose the lowest energy state or the ground state) if the
instantaneous state is well separated with the others and the time evolution is very
slowly. In this case, this wave function can be related to jun.R.t//i:

jˆ.t/i D ei�c.t/ exp

	
� i„

Z t

0

dt 0"n.R.t 0//



jun.R.t//i (4.6)

and

@t �c.t/ D i hun.t/j @t jun.t/i : (4.7)

In the parameter space, the phase factor can be expressed as a path integral

�c D
Z

C

dR � An.R/; (4.8)

where An.R/ is a vector

An.R/ D i hun.R.t//j rR jun.R.t//i : (4.9)

This vector is called the Berry connection or the Berry vector potential. In addition
to the dynamic phase which is determined by integrating over "n.R.t 0//, the state
jˆ.t/i will acquire an additional phase �c during the adiabatic evolution.

Since An.R/ is gauge dependent, it becomes

An.R/ ! An.R/�rR
 (4.10)

if we make a gauge transformation

jun.R.t//i ! ei
.R/ jun.R.t//i : (4.11)

Thus, the phase �c will be changed by 
.R.t D T // � 
.R.t D 0// for the initial
and final points. For a cyclic evolution of the system along a closed path C with
R.0/ D R.T /, the single-valued condition of the wave function requires


.R.T // � 
.R.0// D 2m (4.12)
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with an integer m. Therefore, for a closed path C , �c is independent of the gauge
and now is known as the Berry phase:

�c D
I

C

dR � An.R/: (4.13)

By using the Stokes’ theorem, �c can be expressed as an area integral

�c D
Z

S

dS ��.R/; (4.14)

where the Berry curvature from the Berry connection is defined as

�n.R/ D rR � An.R/: (4.15)

Its components are

�n
��.R/ D @� .An/� � @� .An/�

D i
�˝
@�un.R/j@�un.R/

˛ � ˝
@�un.R/j@�un.R/

˛�
; (4.16)

where we denote @=@R� by @�. The Berry curvature� is analogous to the magnetic
field in electrodynamics. Using the completeness relation for the basis,

X

n

jun.R/i hun.R/j D 1 (4.17)

and the identity

hum.R/j rR jun.R/i D hum.R/j rRH.R/ jun.R/i
En �Em

(m ¤ n), the Berry curvature has an alternative expression

�n D Im
X

m¤n

hun.R/j rRH.R/ jum.R/i � hum.R/j rRH.R/ jun.R/i
.En �Em/2

:

Consider a two-level system as an example. The general Hamiltonian describing
a two-level problem has the form

H D 1

2

�
Z X � iY

X C iY �Z
�

D 1

2
R � �: (4.18)

The energy eigenvalues are E˙ D ˙R D ˙p
X2 C Y 2 CZ2 and the two levels

cross at the degeneracy point ofR D 0. The gradient of the Hamiltonian is 5RH D
1
2
�; and we find that the Berry curvature has its vector form
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� D 1

2

R
R2
: (4.19)

This curvature can be regarded as a field generated by a magnetic monopole at
the origin R D 0. Integrating the Berry curvature over a sphere containing the
monopole, we have

1

2

Z

S

dS�� D 1: (4.20)

The divergence of � has the property

rR �� D 2ı.R/: (4.21)

Thus, a point-like “magnetic monopole” is located at R D 0, which generates the
Berry curvature.

In the Bloch bands, the Berry curvature is defined as

�n.k/ D 5k � hun.k/j irk jun.k/i : (4.22)

Since the two points k and k C K in the Brillouin zone can be identified as the same
point, where K is the reciprocal lattice vector, a closed path can be realized when k
sweeps the whole Brillouin zone. In this case, the Berry phase across the Brillouin
zone becomes [5]

�c D
Z

BZ

dk � hun.k/j irk jun.k/i : (4.23)

4.3 Quantum Hall Conductance and Chern Number

The Hall conductance in a two-dimensional band insulator can be expressed in terms
of the Berry curvature:

�xy D e2

„
Z

BZ

dk
.2/2

�kx;ky D n
e2

h
; (4.24)

which is quantized for an integer n (including zero). Consider a crystal under the
perturbation of a weak electric field E. Usually the electrostatic potential �.r/
which produces an electric field E D � 5 � varies linearly in space and breaks
the translational symmetry. If the electric field enters the Hamiltonian through the
electrostatic potential �.r/, the wave vector is no longer a good quantum number
and the Bloch theorem fails to apply to the problem. To avoid this difficulty,
one can introduce a uniform vector potential A.t/ that changes in time such that
@tA.t/ D �E. The Hamiltonian is written as

H.t/ D 1

2m
.p C eA.t//2 C V.r/: (4.25)
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Here we take the elementary charge of electron �e (e > 0). Thus, in this way,
the lattice translational symmetry is preserved, and the momentum p is still a good
quantum number. In the momentum space, p D „q, we have

H.q; t/ D H
�

q C e

„A.t/
�
: (4.26)

Now we introduce the gauge-invariant crystal momentum

k D q C e

„A.t/: (4.27)

Since q is a good quantum number, that is, dq=dt D 0, it follows that

dk
dt

D � e„E: (4.28)

The velocity operator is defined by

v D dr
dt

D i

„ ŒH; r�: (4.29)

In the momentum space, it becomes

v.q/ D e�iq�r i
„ ŒH; r�e

iq�r D 1

„rqH.q; t/: (4.30)

The presence of A.t/ makes the problem time dependent. The wave function for
the quantum state  .t/ is governed by the time-dependent Schrödinger equation,

i„@t j .t/i D H.t/ j .t/i : (4.31)

Using the instantaneous eigenstates as the basis, we can expand the wave function
 .t/ in terms of the instantaneous eigenstates jun.t/i and eigenvaluesEn.t/:

j .t/i D
X

n

exp

�
1

i„
Z t

t0

dt 0En.t 0/
�
an.t/ jun.q; t/i : (4.32)

Then the Schrödinger equation is reduced to

dan.t/

dt
D �

X

m

am.t/ hun.t/j@tum.t/i exp

�
�i
Z t

t0

dt 0!mn.t 0/
�
: (4.33)

where !mn.t/ D .Em.t
0/ �En.t 0// =„. For our purpose, we consider an adiabatic

process that the vector parameter R.t/ varies with time very slowly, and
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hun.q; t/j@tun.q; t/i D @tR� hun.q;R/j 5R jun.q;R/i 	 1: (4.34)

In the limit of @tR D 0; we have

@tan D 0: (4.35)

If the system is initially in the eigenstate jun.q; t D 0/i, it will stay in that state
afterward. This is the quantum adiabatic theorem [4].

Now we consider the case that @tR ¤ 0 but still very small. Suppose the initial
state has an.0/ D 1 and am.0/ D 0 for all m ¤ n. We apply the time-dependent
perturbation theory to calculate the quantum correction to the states due to the
perturbation of the electric field. The zero-order perturbation gives that a.0/m D ım;n.
Thus, the first-order perturbation a.1/m is given by

da
.1/
m .t/

dt
D � hum.q; t/j@tun.q; t/i exp

�
�i
Z t

t0

dt 0!nm.t 0/
�
: (4.36)

For m D n, da
.1/
m .t/

dt
D 0. Thus, we have

a.1/n .t/ D 0: (4.37)

For m ¤ n,

a.1/m .t/ D �i„hum.q; t/j@tun.q; t/i
En � Em

exp

�
�i
Z t

t0

dt 0!nm.t 0/
�
: (4.38)

Thus, the wave function up to the first-order perturbation is given by

jun.t/i ! jun.q; t/i � i„
X

m¤n
jum.q; t/i hum.q; t/j@tun.q; t/i

En �Em : (4.39)

Using the velocity operator in Eq. (4.30), the average velocity in the state after the
perturbation becomes

vn.q/ D �i
X

m¤n

� hun.q; t/j rqH jum.q; t/i hum.q; t/j@tun.q; t/i
En �Em � h:c

�

C1

„rqEn.q/: (4.40)

Furthermore, using the identity

hun.q; t/j rqH jum.q; t/i D .En �Em/
˝rqun.q; t/jum.q; t/

˛
; (4.41)
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the expression can be simplified in a compact form:

vn.q/ D 1

„rqEn.q/ ��n
q;t ; (4.42)

where
�n

q;t D i
�˝rqunj@tun

˛ � ˝
@tunjrqun

˛�
: (4.43)

Thus, in the presence of an electric field, an electron can acquire an anomalous
transverse velocity proportional to the Berry curvature of the energy band [6, 7].

It follows from Eqs. (4.27) and (4.28) that

rq D rk; (4.44a)

@t D @tk�5k D � e„E � rk: (4.44b)

Thus, the velocity is reduced to

vn.q/ D 1

„rkEn.k/� e

„E ��n.k/ (4.45)

where

�n.k/ D rk � hun.k/j irk jun.k/i
D i hrkun.k/j � jrkun.k/i : (4.46)

Thus, the external field produces a transverse velocity in an adiabatic process. The
electric current in the presence of E is defined by

j D �e
X

n

Z
dk
.2/2

vn.k/f .k/; (4.47)

where f .k/ is the Fermi-Dirac distribution function. Suppose all bands below the
Fermi level are fully filled. The sum over the first term in the velocity in Eq. (4.45)
becomes zero, and the second term gives a Hall current

j˛ D �H	˛ˇEˇ (4.48)

with

�H D e2

h

1

2

X

n

Z

BZ

dk�n
kx;ky

: (4.49)

The integral runs over the first Brillouin zone, and
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�n
kx;ky

D �n
kxC;ky D �n

kx;kyC : (4.50)

Hence, the first Brillouin zone forms a closed torus. In this expression, we assume
that all bands are fully filled, and there exists an energy gap between the filled band
or valence band and the unfilled band or conduction band. The integral over a closed
torus gives an integer � (including zero),

�H D �
e2

h
: (4.51)

This result can also be derived from the Kubo formula explicitly (see Appendix A.1).

4.4 Electric Polarization in a Cyclic Adiabatic Evolution

Electric polarization P is the electric dipole momentum per volume in dielectric
media, which is one of the essential concepts in electrodynamics. It is an intensive
vector quantity that carries the meaning of the dipole moment per unit volume.
For example, in a ferroelectric material, the electric polarization can present
spontaneously. In the Maxwell’s equation for the displacement D,

r � D D ��.t/; (4.52)

where D D 	0E C P. Here E is the electric field, P is the polarization density, and
�.t/ is the charge density. Consider a solid in which there is no electric field. The
continuity equation @t� D �r � j leads to

r � .@tP � j/ D 0; (4.53)

where j is the macroscopic current density. In an adiabatic evolution of a system, up
to a divergence-free part, the change in the polarization density in a cyclic evolution
is given by

�P˛ D
Z T

0

dtj˛: (4.54)

This equation is the basis for the modern theory of polarization. In the early 1990s,
it was realized that the polarization difference has its topological meaning and is
actually related to the Berry phase [2, 8].

In an adiabatic process, it follows from Eq. (4.42) that

�P˛ D e
X

n

Z T

0

dt

Z

BZ

dq
.2/d

�n
q˛;t
; (4.55)
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which is determined by the Berry curvature�n
q˛;t

. The summation runs over all the
occupied bands. For a general purpose, we suppose that the adiabatic transformation
is parameterized by a scalar �.t/; it follows that [9]

�P˛ D e
X

n

Z �.T /

�.0/

d�

Z

BZ

dq
.2/d

�n
q˛;�
; (4.56)

where
�n
q˛;�

D @q˛An
� � @�An

q˛
: (4.57)

In the course of a cyclic evolution, �.T / and �.0/ will represent the same state.
Consider the periodicity of the q space. The q˛ � � plane forms a close torus.
It should be pointed out that the polarization is determined up to an uncertainty
quantum. Since the integral does not track the history of �, there is no information
on how many cycles � has gone through. For each cycle, an integer number � of
electrons are transported across the sample [2]:

�P˛ D e�a; (4.58)

where a is the lattice constant. Here the integer � appears as a topological invariant
for the adiabatic transport.

From the Bloch function, we can define the Wannier function associated with the
lattice vector:

jR; ni D 1

.2/d

Z
dke�ik�.R�r/ jun;ki : (4.59)

King-Smith and Vanderbilt [9] showed that the polarization can be defined by the
sum over all the bands of the center of charge of the Wannier state associated with
R D 0:

P D �e
X

n

hR D 0; nj r jR D 0; ni D � e

2

I
dk � A.k/; (4.60)

where A.k/ D i
X

n

hun;kj rk jun;ki. Here we have used the relation r D i5k.

4.5 Thouless Charge Pump

In a cyclic adiabatic evolution of a one-dimensional insulator,

H.k; t C T / D H.k; t/; (4.61)

the charge pumped across the insulator is always an integer, which is defined as a
topological invariant, that is, the electric polarization
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�P D e

2

I
ŒA.k; T /� A.k; 0/� dk D nea: (4.62)

Here we present an example to illustrate the process of the charge pump. The Rice-
Mele model was introduced in the study of solitons in the polyenes in 1980s, and
later used to study ferroelectricity [10]:

H D Chst .t/
X

i

.�1/i c�i ci C 1

2

NX

iD1

�
t0 C ı.t/.�1/i� c�i ciC1 C h:c:; (4.63)

where

.ı.t/; hst .t// D
�
ı0 cos

2t

T
; h0 sin

2t

T

�
(4.64)

and N is an even number. This is a time-dependent model: ı.t/ denotes the
displacements of the i th and .i C 1/th electrons from their respective equilibrium
position in a staggered or dimerized form, and ˙hst .t/ are the staggered on-site
potentials. Both ı.t/ and hst .t/ are periodic functions of time t with a period T .

We consider a system with an even number 2N of lattice sites and take a periodic
boundary condition. Performing the Fourier transformation,

ak D 1p
N

X

j22n
cj e�ikj ; (4.65a)

bk D 1p
N

X

j22nC1
cj e�ikj ; (4.65b)

the Hamiltonian is reduced to

H D
X

k

.a
�

k; b
�

k/d.k; t/ � �
�
ak
bk

�
; (4.66)

where

dx.k; t/ D 1

2
.t0 C ı.t//C 1

2
.t0 � ı.t// cosk; (4.67a)

dy.k; t/ D �1
2
.t0 � ı.t// sin k; (4.67b)

dz.k; t/ D hst .t/: (4.67c)

The instantaneous dispersions of the two bands at time t are

"˙.k; t/ D ˙ jd.k; t/j (4.68)

D ˙
r

h20 sin2
2t

T
C ı20 cos2

2t

T
sin2

k

2
C t20 cos2

k

2
: (4.69)
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The degeneracy points are h0 D 0, or ı0 D 0, and t0 D 0. The energy gap between
two bands is �E D min.2 jt0j ; 2 jh0j ; 2 jı0j/. So the adiabatic condition requires
that T 
 ¯=min.2 jt0j ; 2 jh0j ; 2 jı0j/. If the low band is fully filled, the charge
pump in a cyclic adiabatic evolution is associated with the Chern number of the
ground state �P D ncea:

nc D
Z T

0

dt

Z

BZ

dk

2
�n
k;t ;

D � 1

4

Z
dk

Z T

0

dt
d.k; t/ � Œ@kd.k; t/ � @td.k; t/�

jd.k; t/j3
D �sgn.t0h0ı0/ (4.70)

because the k � t plane forms a closed torus due the periodicity of T . We find
that the Chern number is C1 or �1 once t0h0ı0 ¤ 0. A topological quantum phase
transition occurs at the points of h0 D 0, or ı0 D 0, t0 D 0, where the Chern number
changes its sign whenever any one of the parameters changes its sign.

The charge pumping can be understood based on the picture of the end states in
an open chain. The Rice-Mele model is reduced to the Su-Schrieffer-Heeger model
when ı.t/ ¤ 0 and hst .t/ D 0. The solution of the end state in this model can
be found in Sect. 5.1. At t D 0, .ı.t/; hst .t// D .Cı0; 0/. The hopping amplitudes
along the chain starting from site i D 1 are t0�ı0, t0Cı0; t0�ı0, t0Cı0; � � � :Assume
t0 > ı0 > 0: In this case, there exist two end states of zero energy at two ends of
the chain, respectively, which are degenerate at h0 D 0. At the half filling that one
particle occupies two sites averagely, we suppose that the right end state is occupied
and the left end state is empty. With increasing time t , the on-site energy hst .t/
lifts the end mode away from the zero energy to the valence band: one is pushed to
the positive band and the other to the negative band. At t D T=2, .ı.t/; hst .t// D
.�ı0; 0/. The hopping amplitudes become t0C ı0; t0� ı0, t0C ı0; t0� ı0; � � � . In this
case, the two end states disappear as they have already evolved into the bulk states.
When t continuously increases, the end states appear again. However, the occupied
end state becomes the left one, and the right end state becomes empty. At t D T ,
.ı.t/; hst .t// D .Cı0; 0/. The hopping amplitudes go back to the case of t D 0. The
Hamiltonian returns to the original one at t D 0. Although the energy eigenstates
remain unchanged, due to the double degeneracy of the ground state at half filling,
the electron configuration has changed: the electron in the right end state at t D 0

has been transferred to the left end state at t D T . In this way, one electron has
been pumped from the left to right side. The instantaneous spectra of the Rice-Mele
model in Eq. (4.63) are plotted in Fig. 4.1.

4.6 Fu-Kane Spin Pump

Fu and Kane proposed an electronic model with spin 1
2

for spin pump by generaliz-
ing the spinless Rice-Mele model [11]:
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Fig. 4.1 The instantaneous
energy spectra of the
Rice-Mele model. The solid
line stands for the end state
near the right end, while the
dashed line for the state at the
left side. It illustrates the
evolution of the end state
from the one side to the other.
Here we take ı0 D 0:2t0 and
h0 D 0:5t0

H D hst .t/
X

i;�D˙1
.�1/ic�i;�� z

�� 0ci;� 0 C 1

2

X

i;�D˙1

�
t0 C .�1/iı.t/� c�i;� ciC1;� C h:c:;

(4.71)
where

.ı.t/; hst .t// D
�
ı0 cos

2t

T
; h0 sin

2t

T

�
: (4.72)

A magnetic staggered field is introduced to replace the on-site potential. We choose
the eigenstates of �z as the basis, and set ��

k;" D .a
�

k;"; b
�

k;"/ and ��
k;# D .a

�

k;#; b
�

k;#/.
The model is diagonalized in block with spin-up and spin-down:

H D
X

k

.�
�

k;"; �
�

k;#/
�
dC � � 0

0 d� � �
��

�k;"
�k;#

�
; (4.73)

where

.d˙/x D 1

2
.t0 C ı.t//C 1

2
.t0 � ı.t// cosk; (4.74a)

.d˙/y D �1
2
.t0 � ı.t// sin k; (4.74b)

.d˙/z D ˙hst .t/: (4.74c)

Thus, electrons with spin-up and spin-down are decoupled. It is noted that .d˙/z
differ by a minus sign. The corresponding Berry curvatures for electrons with spin-
up and spin-down will also differ by a minus sign. As t increases from 0 to T , if an
electron with spin-up moves from left to right, there must be another electron with
spin-down moving from right to left:



60 4 Topological Invariants

�P" D Cea; (4.75a)

�P# D �ea: (4.75b)

As a result, there is no charge pump in a cyclic evolution. Instead electron spins
at the ends exchange since electrons with spin-up and spin-down move in opposite
directions simultaneously. When Sz is conserved, this idea can be used to describe
the quantized spin pump.

Electron spin does not obey a fundamental conservation law. The concept of spin
pump cannot be simply generalized to the case that Sz is non-conserved. However,
Fu and Kane [11] proposed that similar physics happens even when the spin degrees
of freedom are non-conserved. Consider the inclusion of an additional term for spin-
orbit coupling,

Vso D
X

i;�;� 0

ieso � ��� 0

�
c
�
i;���� 0ciC1;� 0 � c

�
iC1;���� 0ci;� 0

�
; (4.76)

into Eq. (4.71), where eso is an arbitrary vector characterizing the spin-orbit
interaction. In this way, the z-component spin � z is no longer a good quantum
number:

Vso D
X

i;�;� 0

ieso � ��� 0

h
.1 � eik/a�k;� bk;� 0 � .1 � e�ik/b�k;�ak;� 0

i
: (4.77)

In this case, there still exists an additional symmetry, that is, time reversal symmetry:
the Hamiltonian satisfies the following relation:

H.�t/ D ‚H.t/‚�1: (4.78)

For an adiabatic cyclic evolution, we have

H.t/ D H.t C T /: (4.79)

There exist two distinct points, t�1 D 0 and t�2 D T=2, at which the Hamiltonian is
time reversal invariant:

H.t�i / D ‚H.t�i /‚�1 (4.80)

(i D 1; 2). The existence of these two points plays a crucial role in the topological
classification of the pump cycle.

In general, in the absence of a conservation law, there will be no level crossing,
and the system will stay in the same state before and after cycling. In the case
of charge pump, the level crossing is protected by the charge conservation. Here
it is time reversal symmetry which protects the level crossing at t�1 or t�2 . At the
two points, there exists a Kramers degeneracy: the two states as time reversal
counterparts have the same energy. Fu and Kane proposed to introduce the concept
of time reversal polarization, which is quantized in the spin pump.
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4.7 Integer Quantum Hall Effect: Laughlin Argument

R.B. Laughlin showed the quantization of the Hall conductance as a consequence of
the gauge invariance and the existence of the mobility gap [12]. Consider a two-
dimensional electron gas, which is rolled as a cylinder along the y-direction as
shown in Fig. 4.2. A magnetic flux � is threading through the cylinder and varies
with time very slowly. Suppose the system has an energy gap and the Fermi energy
locates in the gap. According to the Faraday’s law, the varying magnetic field
induces an electric field Ey around the magnetic flux �. The Hall current density
Jx is given by

Jx D �xyEy; (4.81)

where the coefficient �xy is the Hall conductance. Then from the continuity
condition of charge, the chargeQ flowing through the cylinder is

dQ

dt
D �

I
dl � Jx D ��xy

I
dl �Ey: (4.82)

Using the Stokes’ theorem,

I
dl �Ey D

“
dS � r � Ey: (4.83)

Furthermore, it follows from the Faraday’s law, r � E D � @B
@t

, that

dQ

dt
D �xy

“
dS � @B

@t
D �xy

d�

dt
(4.84)

or
�Q D �xy��; (4.85)

where � D
“

dS � B is the magnetic flux. Taking the change of magnetic flux

as �� D �0 D h=e, the Hall conductance becomes �xy D e
h
�Q. Thus, the Hall

Fig. 4.2 A schematic of the setup for Laughlin’s gedanken experiment for the integer quantum
Hall effect. A changing flux through the cylindrical device generates an electric field Ey in the
y-direction, which induces a Hall current Jx in the surface along the x-direction. The change of
one quantum flux will transfer an integer of elementary charges from one side to the other side
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conductance is determined by the charge transfer �Q after changing the magnetic
flux by one magnetic flux quantum�� D �0.

What is the value of �Q? In the present geometry, the presence of the magnetic
flux in the cylinder will lead to a gauge transformation in the vector potential:

p C eA ! p C e.A C ıA/: (4.86)

We take ıA D „
e
r�. The wave function will be transformed as

‰.r/ ! ei�.r/‰.r/: (4.87)

For one quantum flux
I
ıA � dl D �0, one has �.r; � D �0/ � �.r; � D 0/ D 2 .

Thus, the eigenstates before and after the variation of one quantum flux are identical,
that is,

H.� D �0/ D H.� D 0/: (4.88)

However, for a many-body system, the occupancy of electrons may be different after
the variation of one quantum flux:

�Q D ne; (4.89)

where n is an integer and is determined by the topology of the band structure of the
system. Therefore, we conclude that

�xy D n
e2

h
: (4.90)

This can be regarded as a generalization of the adiabatic charge pump in a two-
dimensional system.

Fu-Kane argument is a spin version of Laughlin argument as a generalization
from the integer quantum Hall effect to the quantum spin Hall effect, just like a
generalization from charge pump to spin pump. For a quantum spin system, time
reversal symmetry will give a different topological invariant for the quantum spin
Hall system. Consider a setup of the same geometry as in the previous subsection
for the quantum Hall effect as shown in Fig. 4.2. A magnetic flux � threads a two-
dimensional cylinder, which will cause an extra change of the phase factor before
the physical states, ei2�=�0 . The magnetic flux plays the role of the edge crystal
momentum kx in the band theory. Increasing the magnetic flux with time t from � D
0 to �0 may form an adiabatic cyclic evolution. There exists a Kramers degeneracy
at � D 0 and �0=2:

H.0/ D ‚H.0/‚�1; (4.91a)

H.�0=2/ D ‚H.�0=2/‚
�1: (4.91b)

Thus, variation by half flux quantum will change electron parity number at two ends.
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4.8 Time Reversal Symmetry and the Z2 Index

Time reversal symmetry implies that ŒH.r/;‚� D 0, where the time reversal
operator ‚ D �i�yK and K is the complex conjugation. Note that in the band
theory, time reversal symmetry means that

H.�k/ D ‚H.k/‚�1; (4.92)

since the good quantum number k has already replaced the momentum operator
p D �i„r in the Hamiltonian, and the later changes a minus sign under time
reversal‚. In the Brillouin zone of a square lattice, there are 4 ( 8 for a cubic lattice
in three dimensions) time reversal invariant points satisfying ��i D �i C niG,
where G is a reciprocal lattice vector and ni D 0 or 1 [11, 13, 17]. At these points,
�i D niG=2:

H.�i / D ‚H.�i/‚
�1 (4.93)

always holds; therefore, the eigenstates are always at least doubly degenerate due
to the Kramers degeneracy. A pair of such energy bands E2n�1.k/ and E2n.k/
is called a Kramers pair, as illustrated in Fig. 4.3. These two bands (labeled as
.n; I / and .n; II /, respectively) are related to each other by time reversal operation
accompanying with a phase factor [11]. Their crossings at time reversal invariant
points are protected by time reversal symmetry. If a Kramers pair is isolated from
other pairs by finite gaps, a topological invariant associated with this pair can be
defined.

For simplicity, we consider a one-dimensional system and suppose that there
is no additional degeneracy other than those required by time reversal symmetry.
Therefore, the 2N eigenstates can be divided into N pairs that satisfy

ˇ
ˇuIn.�k/

˛ D �ei
k;n‚
ˇ
ˇuIIn .k/

˛
: (4.94)

Fig. 4.3 Schematic of band
structures En.k/ along the
direction of one reciprocal
vector. The Kramers pairs
cross at time reversal
invariant points k D 0; G1=2
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Then

‚
ˇ
ˇuIn.�k/

˛ D �‚ei
k;n‚
ˇ
ˇuIIn .k/

˛ D e�i
k;n ˇˇuIIn .k/
˛

(4.95)

as ‚2 D �1 for electrons with spin 1
2
. Thus, one has the relation

ˇ
ˇuIIn .�k/

˛ D ei
�k;n‚
ˇ
ˇuIn.k/

˛
: (4.96)

The partial polarization associated with one of the categories s D I and II can be
written as

P s D
Z

BZ

dk

2
Ask; (4.97)

with Ask D i
P

n husn.k/jrkjusn.k/i. It is invariant (up to a lattice translation) under
changes in the phases of

ˇ
ˇuIn.k/

˛
and

ˇ
ˇuIIn .k/

˛
: However, they appear to depend

on the arbitrary choice of the label I and II assigned to each band. To make this
invariance explicit for P s , we separate the integral into two parts:

P I D
Z 

0

dk

2
AIk C

Z 0

�
dk

2
AIk;

D
Z 

0

dk

2
AIk C

Z 

0

dk

2
AI�k: (4.98)

Using the time reversal constraint,

˝
‚uIIn .k/j@k j‚uIIn .k/

˛ D � ˝uIIn .k/j@kjuIIn .k/
˛
; (4.99)

we have

AI�k D AIIk �
X

n

@k
k;n: (4.100)

It then follows that

P I D
Z 

0

dk

2
Ak � 1

2

X

n

.
;n � 
0;n/; (4.101)

where Ak D AIk C AIIk . Introduce the U.2N/matrix

wmn.k/ D hum.�k/j‚ jun.k/i : (4.102)

Then only nonzero terms are

˝
uIn.�k/

ˇ̌
‚
ˇ̌
uIIn .k/

˛ D �e�i
k;n ; (4.103a)
˝
uIIn .�k/

ˇ
ˇ‚

ˇ
ˇuIn.k/

˛ D e�i
�k;n : (4.103b)
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The matrix w is a direct product of 2 � 2 matrices with �e�i
k;n and e�i
�k;n on the
off-diagonal. At k D 0 and  , w is antisymmetric. An antisymmetric matrix may be
characterized by a Pfaffian, whose square is equal to the determinant. Then we have

Pf Œw./�

Pf Œw.0/�
D exp

"

i
X

n

.
;n � 
0;n/

#

: (4.104)

Thus,

P I D 1

2

	Z 

0

dkAk C i ln
Pf Œw./�

Pf Œw.0/�



: (4.105)

A similar formula can be obtained for P II . It follows from the time reversal
symmetry that P II D P I modulo an integer, reflecting the Kramers pairing of the
Wannier states. The charge polarization for one Kramers pair of states is

P� D P I C P II ; (4.106)

and the time reversal polarization is defined as

P� D P I � P II

D 1

2

	Z 

0

dkAk �
Z 0

�
dkAk C 2i ln

Pf Œw./�

Pf Œw.0/�



: (4.107)

In terms of the matrix wnm, the formula can be written in a compact form:

P� D 1

2i

	Z 

0

dkTrŒw�rkw� � 2 ln
Pf Œw./�

Pf Œw.0/�



: (4.108)

In the matrix w, only nonzero elements are off-diagonal:

TrŒw�rkw� D Tr

	�
0 e�i
�k;n

�ei
k;n 0

�
rk

�
0 �e�i
k;n

ei
�k;n 0

�


D irk
�k;n � irk
k;n: (4.109)

Using the unitarity of w, we have

TrŒw�rkw� D TrŒrk ln w.k/� D rk ln detŒw.k/�: (4.110)

Thus, P� can be expressed as

P� D 1

2i

	
ln

det.w.//

det.w.0//
� 2 ln

Pf.w.//

Pf.w.0//



(4.111)
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or

.�1/P� D
p

det.w.0//

Pf.w.0//

p
det.w.//

Pf.w.//
: (4.112)

In general, for a cyclic process of H.t C T / D H.t/, it follows that

H.t�1 D 0/ D ‚H.0/‚�1; (4.113a)

H.t�1 D T=2/ D ‚H.T=2/‚�1: (4.113b)

The change of time reversal polarization is gauge invariant

� D ŒP� .T=2/� P�.0/�mod2: (4.114)

Consider the mapping between the time reversal invariant momenta �i and the
time invariant point of time t�i ; we conclude that the topological invariant can be
written as

.�1/� D
Y

i

p
det.w.�i //

Pf.w.�i //
: (4.115)

Since
det.w.�i // D ŒPf.w.�i //�

2 ; (4.116)

the right-hand side of Eq. (4.115) is always C1 or �1. Correspondingly � is only
an integer modulo 2, that is, 0 or 1. Thus, the time reversal polarization defines two
distinct polarization states, topologically trivial (� D 0) and nontrivial (� D 1). Fu
and Kane proposed that the value of � is related to the presence or the absence of a
Kramers degenerate states at the end of a finite system [11].

If an insulator has the additional inversion symmetry, there is a simplified
algorithm to calculate the Z2 invariant. Suppose that the Hamiltonian H has an
inversion symmetry,

H.�k/ D PH.k/P�1; (4.117)

where the parity operator is defined by

P jr; szi D P j�r; szi : (4.118)

Here r is the coordinate and sz is the spin which is unchanged by the parity P
because it is a pseudovector. An explicit consequence of the combination of time
reversal symmetry and inversion symmetry is the fact that the Berry curvature must
vanish:

F.k/ D rk � A.k/ D 0: (4.119)

It follows from the definition of the Berry curvature that it is odd under time reversal,
F.�k/ D �F.k/, and even under inversion, F.�k/ D F.k/. Considering the mth
pair of the occupied energy bands at time reversal invariant momentum�i , we define
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P ju2m;�i i D �2m.�i / ju2m;�i i where the parity eigenvalues �2m.�i / D C1 or �1.
The degenerate Kramers partners share the same eigenvalue �2m D �2m�1. In this
case, one has a simple formula to calculate ı [13]:

.�1/� D
Y

i

NY

mD1
�2m.�i /. (4.120)

In Sect. 3.6, we have already used this result to classify the topological phases in the
lattice model.

Note on Pfaffian: In mathematics, a skew-symmetric matrix is a square matrix A
whose transpose is its negative, A D �AT . The determinant of a skew-symmetric
matrix A can always be written as the square of a polynomial in the matrix entries,
which is called the Pfaffian of the matrix, denoted by Pf.A/, that is,

det.A/ D Pf.A/2: (4.121)

The term Pfaffian was introduced by [15] who named it after Johann Friedrich Pfaff.
The Pfaffian is nonvanishing only for 2n � 2n skew-symmetric matrices, in which
case it is a polynomial of degree n.

For example,

Pf

�
0 a

�a 0
�

D a; (4.122)

Pf

0

B
B
@

0 a b c

�a 0 d e

�b �d 0 f

�c �e �f 0

1

C
C
A D af � be C dc: (4.123)

4.9 Generalization to Two and Three Dimensions

Generalization of the Z2 invariant from two to three dimensions is a milestone in
the development of topological insulator. The topological invariant characterizing a
two-dimensional band structure may be constructed by rolling a two-dimensional
system into a cylinder as shown in Fig. 4.4a. Then the magnetic flux threading the
cylinder plays the role of the circumferential crystal momentum kx , with � D 0 and
� D �0=2 corresponding to two edge time reversal momenta kx D ƒ1 D 0 and
kx D ƒ2 D =a. The Z2 invariant characterizes the change of the time reversal
polarization in the Kramers degeneracy at the ends of the one-dimensional system
between kx D ƒ1 and kx D ƒ2. The change is related to the bulk band structure
for a two-dimensional system with the periodic boundary condition. For a square
lattice, there are four time reversal invariant momenta in the first Brillouin zone:

�nx;ny D
�nx
2

Gx;
ny

2
Gy

�
(4.124)



68 4 Topological Invariants

a

c

b

d

Fig. 4.4 (a) A two-dimensional cylinder threaded by magnetic flux ˆ. When the cylinder has a
circumference of a single lattice constant, ˆ plays the role of the edge crystal momentum kx in
band theory. (b) The time reversal invariant fluxes ˆ D 0 and h=2e correspond to edge time
reversal invariant momenta ƒ1 D 0 and ƒ2 D =a. ƒa are projections of pairs of the four
bulk time reversal momenta �iD.a�/ , which reside in the two-dimensional Brillouin zone indicated
by the shaded region. (c) In three dimensions, the generalized cylinder can be visualized as a
Corbino donut, with two fluxes, which correspond to the two components of the surface crystal
momentum. (d) The four time reversal invariant fluxes ˆ1, ˆ2 D 0; h=2e correspond to the four
two-dimensional surface momenta (Reprinted with permission from [13]. Copyright (2007) by the
APS)

with nx; ny D 0; 1. For an edge perpendicular to Gy , the one-dimensional edge time
reversal invariant momenta are kx D ƒ1 and kx D ƒ2;which satisfy �1;ny ��0;ny D
Gx

2
. Thus, the time reversal polarization can be expressed as x D ıx1ıx2, where

ıxi D
p

detŒw.�i;y/�

PfŒw.�i;y/�
D ˙1: (4.125)

However, x is not a gauge invariant. A k-dependent gauge transformation can
change the sign of any pair of ıi . If we roll the system into a cylinder along another
direction, we can calculate the time reversal polarization y D ıy1ıy2. The product
xy is gauge invariant:

.�1/� D
Y

nx;nyD0;1

p
detŒw.�nx;ny /�

PfŒw.�nx;ny /�
: (4.126)

This � can be equal to 0 or 1 and define a single Z2 invariant in two dimensions.
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The Z2 invariant for three-dimensional crystals can be reduced to the problems
in two dimensions [11, 14, 16]. The three-dimensional Brillouin zone can be rolled
into a donut along the x- and y-direction as illustrated in Fig. 4.4c. There are eight
time reversal invariant momenta for three-dimensional systems:

�iD.n1;n2;n3/ D
�n1
2

G1;
n2

2
G2;

n3

2
G3

�
(4.127)

with nj D 0; 1. They can be viewed as vertexes of a parallelepiped. For a fixed n1,
for example, n1 D 1, the point set

�n1
2

G1;
a2

2
G2;

a3

2
G3

�
(4.128)

for all a2; a3 2 Œ� 1
2
; 1
2
/ defines a two-dimensional Brillouin zone of a two-

dimensional system respecting time reversal symmetry, for which a Z2 invariant
can be calculated from the method for two-dimensional system, referred as �n1D1.
The other five invariants �n1D0, �n2D0;1, and �n3D0;1 can be defined in a similar way.
These six invariants are associated with six planes of the above parallelepiped. Since
they belong to the same three-dimensional crystal, only four of them are independent
due to the constraints [11, 14]

�n1D0 � �n1D1 D �n2D0 � �n2D1 D �n3D0 � �n3D1mod2: (4.129)

The four independent invariants can be chosen as, say, �0 D �n1D0�n1D1, �1 D
�n1D1, �2 D �n2D1, and �3 D �n3D1. The indices �0I .�1�2�3/ reflect the topology of
the surface states [13, 17]. �0 is given by

.�1/�0 D
Y

n1;n2;n3D0;1

p
detŒw.�n1;n2;n3/�

PfŒw.�n1;n2;n3/�
: (4.130)

If �0 D 1, then the system is a strong topological insulator, with an odd number
of Dirac cones on all surfaces of the crystal. If �0 D 0, then the crystal is a
weak topological insulator, with an even number (including 0) of Dirac cones
at the surfaces. The latter one is topologically equivalent to a two-dimensional
insulator and therefore is not robust against disorder. Let us take 0I .001/ as an
example [13]. The surface states corresponding to the two-dimensional Brillouin
zone spanned by G2 and G3 (with index �1 D 0) have two Dirac cones, and
the same for the surface states in the Brillouin zone spanned by G1 and G3,
with index �2 D 0. But there is no surface states in G2�G3 plane, with index
�3 D 1.
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4.10 Phase Diagram of Modified Dirac Equation

We come to study whether the modified Dirac equation is topologically trivial or
nontrivial or not. The general solution of the wave functions for an infinite system
or with the periodic boundary conditions can be expressed as

‰� D uv.p/ expŒi.p � r �Ep;� t/=„�; (4.131)

in which the momentum is a good quantum number. The dispersion relations of four
energy bands are

Ep;�.D1;2/ D �Ep;�.D3;4/ D
p

v2p2 C .mv2 � Bp2/2: (4.132)

The four-component spinors uv.p/ can be expressed as uv.p/ D Su�.p D 0/ with

S D
s

	p

2Ep;1

0

B
B
B
B
@

1 0 �pzv
	p

�p�v
	p

0 1 �pCv
	p

pzv
	p

pzv
	p

p�v
	p

1 0
pCv
	p

�pzv
	p

0 1

1

C
C
C
C
A
; (4.133)

where p˙ D px ˙ ipy , 	p D Ep;1 C �
mv2 � Bp2

�
, and u�.0/ is one of the four

eigenstates of ˇ.
The topological properties of the modified Dirac equation can be gained from

these solutions. The Dirac equation is invariant under time reversal symmetry and
can be classified according to the Z2 topological classification following Kane and
Mele [18]. In the representation for the Dirac matrices in Eq. (2.7a), the time reversal
operator here is defined as ‚ � �i˛x˛zK [19], where K is the complex conjugate
operator that forms the complex conjugation of any coefficient that multiplies a ket
or wave function (and stands on the right of K). Under the time reversal operation,
the modified Dirac equation remains invariant:

‚H.p/‚�1 D H.�p/ (4.134)

(p is a good quantum number of the momentum). Furthermore, we have the
relations that ‚u1.p/ D �iu2.�p/ and ‚u2.p/ D Ciu1.�p/, which satisfy the
relation of ‚2 D �1. Similarly, ‚u3.p/ D �iu4.�p/ and ‚u4.p/ D Ciu3.�p/.
Thus, the solutions of fu1.p/, u2.�p/g and fu3.p/, u4.�p/g are two degenerate
Kramers pairs of positive and negative energies, respectively. The matrix of overlap˚˝

u�.p/
ˇ
ˇ‚ ju�.p/i


has the form
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0
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B
B
B
@

0 i
mv2�Bp2
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i
pzv
Ep;1

�i mv2�Bp2
Ep;1

0 i
pzv
Ep;1

i
pCv
Ep;1
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�i pzv
Ep;1

0 i
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Ep;1

�i pzv
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Ep;1
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1
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C
C
C
C
A

(4.135)

which is antisymmetric,
˝
u�.p/

ˇ̌
‚ ju�.p/i D � hu�.p/j‚

ˇ̌
u�.p/

˛
. For the two

negative energy bands u3.p/ and u4.p/ which are fully occupied for an insulator,
the submatrix of overlap can be expressed in terms of a single number as 	��P.p/:

P.p/ D i
mv2 � Bp2

p
.mv2 � Bp2/2 C v2p2

; (4.136)

which is the Pfaffian for the 2�2matrix. According to Kane and Mele [18], the even
or odd number of the zeros in P.p/ defines the Z2 topological invariant. Here we
want to emphasize that the sign of a dimensionless parameter mB will determine
the Z2 invariant of the modified Dirac equation. Since P.p/ is always non-zero
for mB � 0 and there exists no zero in the Pfaffian, we conclude immediately
that the modified Dirac Hamiltonian for mB � 0 including the conventional Dirac
Hamiltonian (B D 0) is topologically trivial.

For mB > 0, the case is different. In this continuous model, the Brillouin zone
becomes infinite. At p D 0 and p D C1; P.0/ D isgn.m/ and P.C1/ D
�isgn.B/. In this case, P.p/ D 0 at p2 D mv2=B . p D 0 is always one
of the time reversal invariant momenta. As a result of an isotropic model in the
momentum space, we think all points of p D C1 shrink into one point if we
regard the continuous model as a limit of the lattice model by taking the lattice
space a ! 0 and the reciprocal lattice vector G D 2=a ! C1. In this sense,
as a limit of a square lattice, other three time reversal invariant momenta have
P.0;G=2/ D P.G=2; 0/ D P.G=2;G=2/ D P.C1/ which has an opposite
sign of P.0/ if mB > 0: Similarly for a cubic lattice, P.p/ of other seven time
reversal invariant momenta have opposite sign of P.0/. Following Fu, Kane, and
Mele [13, 17], we conclude that the modified Dirac Hamiltonian is topologically
nontrivial only if mB > 0.

In two dimensions, Z2 index can be determined by evaluating the winding
number of the phase of P.p/ around a loop, enclosing the half of the Brillouin
zone in the complex plane of p D px C ipy:

I D 1

2i

I

C

dp � rp logŒP.p/C iı�: (4.137)

Because the model is isotropic, the integral is then reduced to only the path along
px-axis, while the part of the half-circle integral vanishes for ı > 0 and jpj ! C1.
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Fig. 4.5 Phase diagram of
topological states of the
modified Dirac equation as a
function of two model
parameters m and B

Along the px-axis one of a pair of zeros in the ring is enclosed in contour C when
mB > 0, which gives a Z2 index � D 1. This defines the nontrivial quantum spin
Hall phase.

Volovik [20, 21] proposed that the Green’s function rather than the Hamiltonian
is more applicable to classify topological insulators. From the three-dimensional
Dirac equation, the Green’s function has the form

G.i!n;p/ D 1

i!n �H

D � i!n C vp � ˛ C .mv2 � Bp2/ˇ

!2n C h2.p/
; (4.138)

where h2.k/ D H2 D v2p2 C .mv2 �Bp2/2. The frequency !n D .2nC 1/=ˇ D
.2n C 1/kBT (kB is the Boltzmann constant and T is the temperature). The
topological invariant is defined as

QN D 1

242
	ijkTrŒK

Z

i!nD0
dpG@piG

�1G@pj G�1G@pkG�1�; (4.139)

where K D �y ˝ �0 is the symmetry-related operator. After tedious algebra, it is
found that

QN D sgn.m/C sgn.B/: (4.140)

When mB > 0, QN D ˙2, which defines the phase topologically nontrivial. If B is
set to be positive, there exists a quantum phase transition from topologically trivial
phase of m < 0 to a topologically nontrivial phase of � > 0. This is in a good
agreement with the result of Z2 index in the preceding section [22].

As a summary, we present the phase diagram according to the topological
invariants which is presented in Fig. 4.5.
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Chapter 5
Topological Phases in One Dimension

Abstract Polyacetylene was extensively studied in the 1980s. Reexamination of
Su-Schrieffer-Heeger model for polyacetylene shows that it is actually a one-
dimensional topological insulator. Topological phases also exist in other one-
dimensional systems.

Keywords One-dimensional topological insulator • Su-Schrieffer-Heeger
model • p-wave pairing superconductor • Ising model • Maxwell’s equation

5.1 Su-Schrieffer-Heeger Model for Polyacetylene

The simplest “two-band” model is the Su-Schrieffer-Heeger model for poly-
acetylene [1], which is an insulator with the chirality symmetry. Consider a
one-dimensional dimerized lattice,

H D
NX

nD1
.t C ıt/c

�
A;ncB;n C

N�1X

nD1
.t � ıt/c�A;nC1cB;n C h:c:; (5.1)

where c�A.B/;n and cA.B/;n are the creation and annihilation operators of electron on
A (orB) sublattice site .A.B/; n/, respectively. In this model, each unit cell consists
of two sites, A and B , and the hopping term connects the two different sublattice
sites. The hopping amplitude in the unit cell is tCıt and that between two unit cells
is t � ıt . There are two distinct phases named A and B phases which are plotted in
Fig. 5.1. These two phases were believed to be degenerate. The interface of these
two phases forms a domain wall, which may generate a soliton solution nearby. In
this section, we demonstrate that these two phases are topologically distinct in the
open boundary condition.

S.-Q. Shen, Topological Insulators: Dirac Equation in Condensed Matters,
Springer Series in Solid-State Sciences 174, DOI 10.1007/978-3-642-32858-9 5,
© Springer-Verlag Berlin Heidelberg 2012
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Fig. 5.1 Two distinct phases in Su-Schrieffer-Heeger model. The solid and dashed lines stand for
the long and short bonds of hopping, respectively. Note that the boundary conditions are distinct in
two phases

Performing the Fourier transformation,

ak D 1p
N

X

n

e�ik�nacA;n; (5.2a)

bk D 1p
N

X

n

e�ik�nacB;n; (5.2b)

where N is the number of the unit cells (the total number of lattice sites is 2N ), we
obtain

H D .tCıt/
X

k2.�;/

�
a
�

kbk C b
�

kak

�
C.t�ıt/

X

k

�
eika�kbk C e�ikb�kak

�
: (5.3)

Introducing the spinor

 k D
�
ak

bk

�
; (5.4)

we can write the Hamiltonian in a compact form

H D
X

k

 
�

k Œ..t C ıt/C .t � ıt/ cosk/�x C .t � ıt/ sin k�y� k: (5.5)

Under a transformation, �x ! �z; �y ! �x , and �z ! �y and k ! k C  , it is
reduced to

H D
X

k

 
�

k Œ�.t � ıt/ sin k�x C .2ıt C 2.t � ıt/ sin2
k

2
/�z� k: (5.6)

Thus, a one-dimensional dimerized lattice is equivalent to the Dirac lattice model as
we studied in Chap. 3.

In general, the dispersions of this two-band model are

E˙ D ˙
q
d2x C d2z ; (5.7)
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where dx D �.t � ıt/ sin k and dz D 2ıt C 2.t � ıt/ sin2 k
2

. The eigenstates for the
negative dispersion are

j'i D 1p
2

0

B
B
@

sgn.dx/
r
1 � dzp

d2xCd2z
�
r
1C dzp

d2xCd2z

1

C
C
A : (5.8)

They are fully filled for a half filling, that is, averagely one electron at every two
sites. An energy gap �E D 4ıt opens for ıt ¤ 0.

Thus, the Berry phase for this state is defined as

� D
Z C

�
dk h'j i@k j'i

D 1

2

Z C

�
dkŒi@k ln sgn.dx/�

 

1 � dzp
d2x C d2z

!

D 1

2

Z Cı

�ı
dkŒi@k ln sgn.dx/� .1 � sgn.ıt//

C1

2

Z Cı

�ı
dkŒi@k ln sgn.dx/� .1 � sgn.t C ıt//

D 1

2
 Œsgn.t C ıt/ � sgn.ıt/� (5.9)

with a modulus 2 . For ıt > 0, � D 0, but for ıt < 0, � D  . This is
consistent with the conclusion from the Dirac model. Alternatively, the winding
index is given by

.�1/� D sgn.ıt/sgn.t C ıt/ D sgn.1C t=ıt/: (5.10)

The change of the Berry phase or the winding number accompanies closing and
reopening of the energy gap between the two bands near ıt D 0. It can be regarded
that the energy gap changes from positive to negative as shown in Fig. 5.2. At ıt D
0, the spectrum is gapless and the two bands cross at k D 0. Near the point, using
sin x � x for a small x, one obtains

H D
X

k

 
�

k Œ�.t � ıt/k�x C
�
2ıt C 1

2
.t � ıt/k2

�
�z� k: (5.11)

This is the continuous model of the Dirac equation. Thus, we can define the energy
gap�E D 4ıt , not 4 jıt j : The sign change of ıt indicates an topological quantum
phase transition.
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Fig. 5.2 The energy dispersions of ıt > 0, ıt D 0, and ıt < 0. Closing and reopening of the
energy gap near ıt D 0 indicates occurrence of quantum phase transition

The existence of the end states in an open boundary condition is characteristic
of the topological phase when the Berry phase is  or the winding index � D 1.
It should be noted that the open boundary condition means that the chain is cut
between two unit cells, not between two sites within a unit cell. Assume that t > 0:
It is topologically nontrivial for ıt < 0; but trivial for ıt > 0. In other words, if the
end bond is a long bond, jt C ıt j < jt � ıt j, it is topologically nontrivial. Otherwise
it is topologically trivial.

A topological quantum transition occurs at ıt D 0. In the long wave approxima-
tion, we can make use of the solution in Sect. 2.5.1 when ıt < 0. In this case, there
exists a solution of zero energy near the end. The spatial distribution of the wave
function is mainly determined by the characteristic length

�� D 2 jBj „
v

.1 � p
1 � 4mB/�1 ! „

jmj v
D t � ıt

2 jıt j : (5.12)

It becomes divergent when ıt ! 0, which illustrates that the end state evolves into
a bulk one and the system becomes gapless. There is no end state when ıt > 0.
Therefore, the fact demonstrates a topological quantum phase near ıt D 0 [2].

We can also use numerical method to calculate the energy eigenstates and
eigenvalues by diagonalizing the Hamiltonian, which can be written in the form
of square matrix

H D

0

BB
B
B
B
BB
B
B
B
B
@

0 t C ıt 0 0 0 0 0

t C ıt 0 t � ıt 0 0 0 0

0 t � ıt 0 t C ıt 0 0 0

0 0 t C ıt 0 t � ıt 0 0

0 0 0 t � ıt 0
: : : 0

0 0 0 0
: : : 0 t C ıt

0 0 0 0 0 t C ıt 0

1

CC
C
C
C
CC
C
C
C
C
A

: (5.13)
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Fig. 5.3 The amplitudes of the wave function ‰i of the end states at the lattice site i for two
different ıt D �0:1t and �0:3t . The smaller value of jıt j corresponds to the wider distribution of
the wave function in space

One can find the existence of the zero-energy mode at the end while changing the
sign of ıt . The end state solutions at different ıt D �0:1t and �0:3t are plotted in
Fig. 5.3. It demonstrates that the wave function has a wider distribution in the space
for a small jıt j.

However, the most famous excitations in this model are soliton and antisoliton,
which are charge and spin carriers in polyacetylene [3]. They are the domain
walls of two distinct phases of  and 0. These solutions correspond to those of
the Dirac equation at the interface between two regions of positive and negative
masses in Chap. 2. The wave function of the in-gap bound state is distributed
around the domain walls. Considering the degeneracy of electron spins, there are
two bound states with different spins. The charge and spin states of the soliton
are followed from the solutions of domain wall along with the localized chemical-
bond representation. Totally there are four possible states according to the electron
number n in the two states: (a) two neutral spin- 1

2
solitons with Sz D ˙ 1

2
for

n D 1 and (b) two charge species S˙ for n D 0 and n D 2, in which the
total spin is zero and may be viewed as spinless “ions.” However, the solitons
can move freely unless they are pinned, in contrast to the chemical analogs. From
the point of view of topological insulator, these states are the end states at the
interface between one topologically trivial phase and one topologically nontrivial
phase.



80 5 Topological Phases in One Dimension

5.2 Ferromagnet with Spin-Orbit Coupling

In the Su-Schrieffer-Heeger model, the Hamiltonian is written as a 2 � 2 matrix in
the basis of A and B sublattices, .a�k; b

�

k/. A new type of topological phase in one
dimension can be obtained if we replace the basis by electrons with different spins,
.c
�

k;"; c
�

k;#/. For a ferromagnet with spin-orbit coupling, one yields

H D
X

k

.c
�

k;"; c
�

k;#/
	
� sin k�x C

�
M � 4B sin2

k

2

�
�z


�
ck;"
ck;#

�
; (5.14)

where c�k;� and ck;� are the creation and annihilation operators for electrons with
spin �.D";#/. Here � is the strength of spin-orbit coupling. In the absence of the
spin-orbit coupling, the two bands of electrons with spin-up and spin-down are well
separated. If the lower band is fully filled, the ground state is fully saturated with
a maximal spin and the system is an insulating ferromagnet. In the presence of the
spin-orbit coupling �, the Sz is no longer conserved. However, the filled band is
still ferromagnetic as the expectation value of Sz is still nonzero. We find that this
model has the identical mathematical structure as the Su-Schrieffer-Heeger model,
although the bases for the two models are different.

5.3 p-Wave Pairing Superconductor

The p-wave pairing spinless superconductor has two distinct phases, strong pairing
and weak pairing, which correspond to the topologically trivial and nontrivial phase,
respectively [4]. In the Bardeen-Cooper-Schrieffer theory for superconductivity, the
effective model for the superconductor can be written as

H D
X

k

�„2k2
2m

� �

�
c
�

kck C�kckc�k C h:c:; (5.15)

where � is the chemical potential to determine the number of electrons. Introducing
the spinor .c�k; c�k/, one obtains

H D
X

k

.c
�

k; c�k/
	
�k�x C 1

2

�„2k2
2m

� �
�
�z


 
ck

c
�

�k

!

: (5.16)

Here a constant 1
2

P
k.

„2k2
2m

� �/ is omitted. For a p-wave pairing superconductor,
the order parameter for the Cooper pairing satisfies �k D ���k . For a simplicity,
here we take�k D �0k. The Berry phase in the ground state is always  for � > 0
as m is assumed to be positive. In this system, if � D 0,
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H D 1

2

X

k

.c
�

k; c�k/
�„2k2
2m

� �

�
�z

 
ck

c
�

�k

!

D
X

k

�„2k2
2m

� �

�
c
�

kck � 1

2

X

k

�„2k2
2m

� �
�
; (5.17)

the two states with eigenvalues ˙ 1
2
.„2k2
2m

��/ actually correspond to one state. This
is because the basis in the term of spinors is redundant. This so-called particle-hole
symmetry persists even when� ¤ 0.

On a lattice, k and k2 can be replaced by sink and 4 sin2 k
2

. The effective model is

H D
X

k

.c
�

k; c�k/
	
�0 sin k�x C

�
t C 4t 0 sin2

k

2

�
�z


 
ck

c
�

�k

!

: (5.18)

The energy eigenvalues of the quasiparticles always appear in pairs,

E˙;k D ˙
s

�2
0 sin2 k C

�
t C 4t 0 sin2

k

2

�2
: (5.19)

Performing the Fourier transformation, one obtains a lattice model in the real space,
which is the one-dimensional Kitaev model for Majorana fermion.

When the system has an open boundary condition, for a topologically nontrivial
phase, there exists an energy zero mode near the boundary, which satisfies

��.E D 0/ D �.E D 0/: (5.20)

Thus, the creation operator of the zero mode is equal to its annihilation operator.
This particle is called Majarona fermion. Because of the particle-hole symmetry,
these two states are actually one state after the particle-hole transformation. Thus,
the ground states are doubly degenerate depending on whether the zero-energy
mode is occupied or not. Since the Cooper pairing term in the effective Hamiltonian
creates or annihilates the electrons in pairs, the number parity of electrons is always
conserved. The occupancy of the zero mode changes the number parity of the
system.

The p-wave pairing superconductor and the Su-Schrieffer-Heeger model are
connected through a partial particle-hole transformation [5]. Performing a particle-
hole transformation for electrons on the site B,

cB;n ! c
�
B;n

the Su-Schrieffer-Heeger model in Eq. (5.1) is transformed into

H D
NX

nD1
.t C ıt/c

�
A;nc

�
B;n C

N�1X

nD1
.t � ıt/c�A;nC1c

�
B;n C h:c:;
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which is one for the p-wave pairing superconductor on a lattice [6]. A solution for
the end states of the lattice model in terms of Majorana fermions can be found in
Sect. 10.2.2.

5.4 Ising Model in a Transverse Field

The one-dimensional Ising model is equivalent to a spinless p-wave pairing super-
conductor under the Jordan-Wigner transformation. The transverse Ising model is
defined as

H D J

N�1X

nD1
�x;n�x;nC1 C h

N�1X

nD1
�z;n (5.21)

where N is the number of lattice sites.
When jJ j >> jhj, the ground state is determined by the first term. It is

antiferromagnetic if J > 0, and ferromagnetic if J < 0. The magnetization is
along the x-direction, and the ground state is doubly degenerate. If jhj >> jJ j, the
ground state is ferromagnetic along the z-direction and is non-degenerate. Thus, the
change of the degeneracy of the ground state reveals a quantum phase transition at
J D h.

For a lattice with even number lattice sites, under the Jordan-Wigner transforma-
tion [7],

�C
n D �x;n C i�y;n D 2 expŒ�i

n�1X

kD1
f
�

k fk�f
�
n ; (5.22a)

��
n D �x;n � i�y;n D 2 expŒCi

n�1X

kD1
f
�

k fk�f
�
n ; (5.22b)

�z;n D 2f �n fn � 1; (5.22c)

where f �
n and fn are the fermion operators and satisfy the anticommutation relation

of ff �
n ; fn0g D ın;n0 . In this way, the model is reduced into one for a p-wave pairing

superconductor or the Kitaev’s toy model for Majorana fermion,

H D J

N�1X

nD1
.f �
n � fn/

�
f
�
nC1 C fnC1

�
C h

NX

nD1
.2f �n fn � 1/: (5.23)

The ground state is doubly degenerate due to the existence of the end states when
J < h. However, it is noted that the Jordan-Wigner transformation is not a
local transformation. The ground states in the Ising model simply have different
polarizations along the x-direction, not the end states.
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5.5 One-Dimensional Maxwell’s Equations in Media

A one-dimensional plane electromagnetic wave of the frequency! in a nonconduct-
ing media can be described by the Maxwell’s equations [8],

@xEy D �i!�.x/Hz; (5.24a)

@xHz D �i!	.x/Ey: (5.24b)

Ey is the electric field, and Hz D 1
�0
Bz �Mz is the magnetic field. 	 is the electric

permittivity, and � is the magnetic permeability, which are a function of position.
To derive a Dirac-like equation for the electromagnetic wave, we introduce

dimensionless fields, e D Ey=E0 and h D Hz=H0 where E0 and H0 are
the field as units for the electric and magnetic fields, respectively, and can be
determined by the incident wave, that is, E0=H0 D 1=c	0 D c�0 in the vacuum.
Equation (5.24a and b) can be combined to write in the form of matrix,

� i�x@x

�
e

h

�
D
�

�k
2
. Q�C Q	/C k

2
. Q�� Q	/�z

��
e

h

�
; (5.25)

where k D !=c, Q	.x/ D 	.x/=	0, and Q� D �.x/=�0. The dimensionless
permittivity Q	.x/ and permeability Q�.x/ satisfy the relation Q	 Q� D n.x/ where
n.x/ is the index of refraction. In this way, we obtain a Dirac-like equation for
the electromagnetic wave

Œ�i�x@x Cm.x/�z C V.x/�

�
e

h

�
D E

�
e

h

�
: (5.26)

Here the mass distribution m.x/ D k
2
.Q	 � Q�/, and the potential V.x/ � E D

k
2
.Q	 C Q�/. This equation looks like the stationary Dirac equation with the eigen-

value E („ D c D 1).
In the metamaterial with subwavelength resonant unit cells, both 	 and � can be

tuned and even change their signs [9]. From this equation, it is possible to simulate
the topological phase by using the microwave experiment in metamaterials. For
example, design a sample with an interface with m.x/ > 0 if x > 0 and m.x/ < 0

if x < 0. It is required that E D V.x/ D 0. It follows from Eq. (5.26) that we
may have a solution which is distributed around the interface as that for a domain
wall as shown in Fig. 2.1. Furthermore, if we design a periodic structure for m.x/,
it is possible to have the solution for the end states as we plotted in Fig. 2.3. In
this way, the topological phase can be observed in quasi-one-dimensional periodic
metamaterial. This provides a platform to observe the topological excitations in one
dimension.
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5.6 Summary

Reexamination of Su-Schrieffer-Heeger model tells that polyacetylene actually has
two distinct topological phases. The domain wall of these two phases constitutes
the topological excitations or charge and spin carriers in the system. Also the Dirac
equation in different bases may be applied to describe topological phases in different
physical systems such as a dimerized lattice model, ferromagnet with spin-orbit
coupling, and superconductor.
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Chapter 6
Quantum Spin Hall Effect

Abstract A quantum spin Hall system possesses a pair of helical edge states. It
exhibits the quantum spin Hall effect, in which an electric current can induce a
transverse spin current or spin accumulation near the system boundary.

Keywords Two-dimensional topological insulator • Chern number • Quantum
Hall conductance • Quantum spin Hall effect • Helical edge states • Landauer-
Büttiker formalism • HgTe/CdTe quantum well

6.1 Two-Dimensional Dirac Model and the Chern Number

In two dimensions, the Chern number is associated with the quantum Hall conduc-
tance in the band insulators. Before we introduce the quantum spin Hall effect, we
first focus on the Chern number in two-dimensional Dirac equation in Eq. (2.42),
in which time reversal symmetry is broken. The Hamiltonian can be written in a
compact form,

H D d.p/ � �; (6.1)

where dx D vpx , dy D vpy , and dz D mv2�Bp2. Using the formula in Eq. (A.29),
the Chern number is given by

nc D �1
2
.sgn.m/C sgn.B// : (6.2)

From this formula, we have two topological nontrivial phases with n D ˙1 for
mB > 0 and topologically trivial phase with n D 0 for mB < 0. We also have two
marginal phases with n D ˙ 1

2
form D 0 or B D 0. The massive Dirac fermions of

B D 0 are a marginal phase. At the junction of two systems of a positive mass and a
negative mass, the topological invariant changes by ın D 1 or �1. Thus, there exists

S.-Q. Shen, Topological Insulators: Dirac Equation in Condensed Matters,
Springer Series in Solid-State Sciences 174, DOI 10.1007/978-3-642-32858-9 6,
© Springer-Verlag Berlin Heidelberg 2012
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a boundary state at the junction. For the gapless Dirac fermionsm D 0 and B ¤ 0,
the system is also marginal. The topological invariant also changes by ın D 1 at the
interface between positive and negative B:

In the lattice model in Eq. (3.31), using the formula for the Chern number in
Eq. (A.29), one obtains

nc D
�
1 if 0 < �=B < 4

�1 if 4 < �=B < 8
: (6.3)

The number is always an integer as the first Brillouin zone is finite for a lattice
model. There exist three transition points: the first transition point at �=B D 0 is
from nc D 0 to nc D 1; the second point at �=B D 4 is from nc D 1 to nc D �1;
and the third point at �=B D 8 is from nc D �1 to nc D 0. It is noted that the
transition at �=B D 4 is between two topological phases with nc D 1 and �1.

Nonzero Chern number indicates the quantum Hall conductance. Therefore
the two-dimensional Dirac equation is a good candidate to study the quantum
anomalous Hall effect in ferromagnetic insulator with spin-orbit coupling.

6.2 From Haldane Model to Kane-Mele Model

6.2.1 Haldane Model

In 1988, Haldane proposed a spinless fermion model for the integer quantum Hall
effect without Landau levels, in which two independent effective Hamiltonians in
the same form of two-dimensional Dirac equation were obtained [1]. He proposed
that the quantum Hall effect may result from the broken time reversal symmetry
without any net magnetic flux through the unit cell of a periodic two-dimensional
graphite or graphene model as depicted in Fig. 6.1. The lattice is bipartite with A
(black) and B (white) sublattice sites. A real hopping term t1 between the nearest
neighbor sites (solid line) and t2 between the next nearest neighbor sites (dashed
line) are considered. The on-site energy CM on A sites and �M on B sites are
included to break the inversion symmetry on A and B sublattices. Besides, he added

Fig. 6.1 The Haldane
honeycomb model. The white
and black dots represents the
two sublattice sites with
different on-site energy. The
areas a and b are threaded by
the magnetic flux �a and
�b D ��a , respectively. The
area c has no flux
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a periodic magnetic flux density B.r/ normal to the plane with the full symmetry
of the lattice and with the zero total flux through the unit cell, that is, the flux �a
in the region a and the flux �b in the region b have the relation �a D ��b: Since
the closed path of the nearest neighbor hops enclose complete unit cell, but the net
flux is zero, the hopping terms t1 are not affected, but the hopping terms t2 acquire
a phase � D 2.2�a C �b/=�0 where the flux quantum �0 D h=e. The hopping
direction is for which the amplitudes are t2 expŒi��.

To diagonalize the Hamiltonian, a two-component spinor
�
c
�

k;A; c
�

k;B

�
of Bloch

states constructed on the two sublattices is applied. Let .a1; a2; a3/ be the displace-
ments from a B site to its three adjacent A sites. In this representation, the model
Hamiltonian can be expressed as

H D 	.k/C d.k/ � � (6.4)

where

	.k/ D 2t2 cos�
X

iD1;2;3
cos.k � bi /; (6.5a)

dx.k/ D Ct1
X

iD1;2;3
cos.k � ai /; (6.5b)

dy.k/ D Ct1
X

iD1;2;3
sin.k � ai /; (6.5c)

dz.k/ D M � 2t2 sin �

 
X

iD1;2;3
sin.k � bi /

!

(6.5d)

with b1 D a2 � a3, b2 D a3 � a1, and b3 D a1 � a2: The Brillouin zone is a
hexagon rotated by =2 with respect to the Wigner-Seitz unit cell. At its six corners
.k � a1;k � a2;k � a3/ is a permutation of .0; 2=3; 4=3/. Two distinct corners k0˛
are defined such that k0˛ � bi D ˛ 2

3
with ˛ D ˙1. The energy spectra are easily

obtained by diagonalizing the 2 � 2 matrix. There are two bands, which only touch
if all three Pauli matrix terms have vanishing coefficients. This can only occur at
the zone corner k0˛ and only if M D ˛3

p
3t2 sin �. Assume jt2=t1j < 1=3, which

guarantees that the two bands never overlap and are separated by a finite gap unless
they touch. At the point K, .K � a1;K � a2;K � a3/ D .0; 2=3;�2=3/. Near the
point, we expand the Hamiltonian to the linear order in ık D k � K. As a result,

HC D v.ıkx�x � ıky�y/CmCv2�z (6.6)

where v D 3
2
t1a=„ and mCv2 D M � 3

p
3t2 sin �. At another point K0,

.K0 � a1;K0 � a2;K0 � a3/ D .0;�2=3;C2=3/;

H� D v.�ıkx�x � ıky�y/Cm�v2�z (6.7)
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where v D 3
2
t1a=„ and m�v2 D M C 3

p
3t2 sin �. The two Hamiltonians have

different chirality whenm˙ D 0.
To compareHC and H�, we make a transformation for � in H�;

.�x; �y; �z/ ! .��x; �y;��z/: (6.8)

Thus,H� can be written as

H� D v.ıkx�x � ıky�y/C Qm�v2�z (6.9)

with Qm� D �m� D �M � 3
p
3t2 sin�: Therefore, the effective models near the

two points have the form

H˛ D v.ıkx�x � ıky�y/C Qm˛v2�z (6.10)

where Qm˛ D ˛M � 3
p
3t2 sin �. Clearly, inclusion of M in the graphene lattice

opens opposite energy gaps M and �M at K and K0, respectively while the
magnetic flux opens the same energy gap at the two points. This demonstrates that
the on-site energy ˙M and magnetic flux play different roles in opening of energy
gap and generate different topological results.

The Chern number of the whole system is determined by

nc D 1

2
Œsgn. QmC/C sgn. Qm�/� : (6.11)

In the absence of magnetic flux, the Chern number is always zero as the gaps at K
and K0 have opposite signs, while it can be C1 or �1 possibly in the presence of
magnetic flux.

Of course, the topology of the system should be determined by the whole band
structure. In his pioneering paper, Haldane used the Streda formula to calculate the
Hall conductance [2],

�H D @�

@Bz

ˇ
ˇ
ˇ
ˇ
�

; (6.12)

the variation of density of charge carriers � with respect to the external field Bz

perpendicular to the plane for a fixed chemical potential �. For a full and complete
calculation, we can use the formula in Eq. (A.29) to calculate the Chern number,
which gives C1, 0 or �1. The Hall conductance is expressed in terms of the Chern
number �xy D nc

e2

h
, which depicts a phase diagram as in Fig. 6.2.

6.2.2 Kane-Mele Model

The Haldane model is for spinless fermions. One can generalize the Haldane model
to an electron system with spin, which becomes doubly degenerate if there is no
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Fig. 6.2 The phase diagram
of the Haldane model for
jt2=t1j < 1=3. The zero-field
quantum Hall effect phases
where �xy D nce

2=h occur if
jM=t2j < 3

p
3 jsin�j

coupling between electrons with spin-up and spin-down. The electrons in the edge
channel are chiral, that is, flowing around the boundary in the counterclockwise
for nc D 1 and in the clockwise for nc D �1, which is characteristic of quantum
Hall effect. This is a trivial generalization. In 2005, Kane and Mele [3] generalized
the Haldane model to the graphene lattice model of electrons with spin 1

2
. They

introduced the spin-orbit coupling between electron spin and momentum to replace
the periodic magnetic flux and predicted a new quantum phenomenon – the quantum
spin Hall effect. Simply speaking, the quantum spin Hall effect can be regarded as
the combination of two layers of the Haldane models for electrons with spin-up
and spin-down. In a system with time reversal symmetry, the electrons with spin-up
in the edge channel flow in one direction, while electrons with spin-down in the
edge channel flow in an opposite direction, I" D �I#. The net charge current in
two edge channels is zero, Ic � I" C I# D 0 as a net charge current breaks time
reversal symmetry. Instead, a pure spin current circulates around the boundary of
system, Is � „

2e
.I" � I#/. Unlike the quantum Hall effect in which the magnetic

field breaks time reversal symmetry, the spin-orbit coupling preserves time reversal
symmetry. The spin current itself does not break the symmetry since the momentum
p ! �p and spin � ! �� under the time reversal.

The Kane-Mele model for the quantum spin Hall effect is a graphene model with
the time reversal invariant spin-orbit coupling,

H D t
X

hi;j i
c
�
i cj C i�SO

X

hhi;j ii
�ij c

�
i szcj C i�R

X

hi;j i
c
�
i .s � dij /z cj C �v

X

i

�i c
�
i ci :

(6.13)

The first term is the nearest neighbor hopping term on a graphene lattice, where c�i D
.c
�

i;"; c
�

i;#/. The second term is a mirror symmetric spin-orbit interaction, which

involves spin-dependent second neighbor hopping. Here �ij D 2p
3
.di �dj /z D ˙1,

where di and dj are two unit vectors along the two bonds the electron traverses
going from site j to i . The Pauli matrices si describe the electron spin. The third
term is the nearest neighbor Rashba term, which explicitly violates the z ! �z
mirror symmetry. The last term is a staggered sublattice potential with �i D ˙1.
Inclusion of the Rashba term makes the system more complicated since sz is
no longer conserved and the electrons with spin-up and spin-down are coupled
together.
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Following the method in the Haldane model, a four-band Hamiltonian can always
be expressed in terms of the Dirac matrices

H.k/ D
5X

aD1
da.k/�

a C
5X

a<bD1
dab.k/�

ab: (6.14)

Here the five Dirac matrices

�a D .�x ˝ s0; �z ˝ s0; �y ˝ sx; �y ˝ sy; �y ˝ sz/ (6.15)

(a D 1; 2; 3; 4; 5) where the Pauli matrices �i represent the sublattice indices and

�ab D 1

2i
Œ�a; �b�: (6.16)

In this representation, the time reversal operator is ‚ D i.�0 ˝ sy ; /K . The five
Dirac matrices are even under time reversal,

‚�a‚�1 D �a; (6.17)

while the ten commutators are odd,

‚�ab‚�1 D ��ab: (6.18)

To have a time reversal invariant Hamiltonian, the coefficients should satisfy the
relations,

d˛.�k/ D d˛.k/I (6.19a)

dab.�k/ D �dab.k/: (6.19b)

Thus, the coefficients in the Kane-Mele model are

d1 D t

 

1C 2 cos
kx

2
cos

p
3ky

2

!

I (6.20a)

d2 D �vI (6.20b)

d3 D �R

 

1 � cos
kx

2
cos

p
3ky

2

!

I (6.20c)

d4 D �p
3�R sin

kx

2
sin

p
3ky

2
I (6.20d)

d12 D �2t cos
kx

2
sin

p
3ky

2
I (6.20e)
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d15 D �SO

 

2 sin kx � 4 sin
kx

2
cos

p
3ky

2

!

I (6.20f)

d23 D ��R cos
kx

2
sin

p
3ky

2
I (6.20g)

d24 D p
3�R sin

kx

2
cos

p
3ky

2
: (6.20h)

This equation gives four energy bands. When two lower energy bands are fully
occupied, the system becomes insulating if an energy gap exists between two upper
bands and two lower bands. As the whole system does not break the time reversal
symmetry, the Chern number is always zero. For �R D 0; the Hamiltonian is split
into two independent parts,

H D
X

sD";#
Hs (6.21)

where

Hs D t
X

hi;j i
c
�
i;scj;s C is�SO

X

hhi;j ii
�ij c

�
i;scj;s C �v

X

i

�i c
�
i;sci;s : (6.22)

In this case, there is an energy gap with magnitude
ˇ
ˇ
ˇ6

p
3�SO � 2�v

ˇ
ˇ
ˇ : For �v >

3
p
3�SO the gap is dominated by �v; while for �v < 3

p
3�SO the gap is dominated

by �SO. For each Hs , we can define a spin-dependent Chern number. For �v >

3
p
3�SO, the corresponding Chern number is zero for both H" and H#. However,

for �v < 3
p
3�SO the corresponding Chern number becomes nonzero,

ns D sgn.s�SO/: (6.23)

Although the total Chern number n D nC C n� D 0, their difference nC � n� D 2

or �2. Thus, for �v < 3
p
3�SO, it is a combination of two independent quantum

Hall phases with different chirality, that is, the quantum spin Hall system [4].
For �R ¤ 0, the electrons with spin-up and spin-down will mix together, and

we cannot separate the whole system into two independent parts as in the case of
�R D 0. In other words, we could not introduce a spin-dependent Chern number
to describe this new phase. Instead, Kane and Mele introduced Z2 invariant to
describe it.

For a strip sample, we adopt the periodic boundary condition in the x-direction
such that kx is a good quantum number. Exact diagonalization gives the energy
dispersion of the system as a function of kxa. It is found that there are two distinct
phases: (a) a pair of the bands connects the conduction and valence bands and (b)
no band connects the two bands as plotted in Fig. 6.3. Since the system is insulating
and there exists an energy gap in the bulk, the bands connecting the conduction and
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Fig. 6.3 Energy bands for a one-dimensional stripe with zigzag boundary condition. (a) Quantum
spin Hall phases with �v D 0:1t and (b) insulating phase with �v D 0:4t . In both cases, �SO D
0:06t and �R D 0:05t

valence bands must be the edge states, which could be confirmed numerically. Thus,
we conclude that in the topologically nontrivial phase, we have a pair of edge states
between the bulk band gap at each boundary.

6.3 Transport of Edge States

The helical edge states are characteristic of two-dimensional topological insulator. It
can be detected through the transport measurement in a mesoscopic device. Before
we discuss the transport properties of the edge states in the quantum spin Hall
system, we briefly introduce the Landauer-Büttiker formula for electron transport.

6.3.1 Landauer-Büttiker Formalism

Consider a one-dimensional conductor. Suppose the left side (the source) is filled
up to the energy level �s , slightly higher than that of the right-hand side (the drain)
�d . Then in the range between �s and �d , the conductor has been fully occupied
states poring from left to right. The current through the channel is defined as

I D �eveffıN (6.24)

where veff is the effective velocity of charge carriers along the channel near the Fermi
energy and ıN is the density of the charge carriers. Assume the voltage difference
between two leads is quite small. Then

ıN D D.Ef /.�s � �d/ (6.25)
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whereD.Ef / D @N=@EjEf is the density of states at the Fermi level andD.Ef / �
D.�s/ � D.�d /. In one dimension, the velocity veff is given by the variance of
dispersion with respect to the wave vector veff D @E.k/=„@k and the density of
states D.E/ D @k=2

@E
D 1

hveff
and �s � �d D �e.Vs � Vd /. As a result, the current

through the channel is given by

I D e2

h
.Vs � Vd /: (6.26)

The conductance is

G D I

Vs � Vd D e2

h
; (6.27)

which is quantized in an ideal one-dimensional conductor.
More generally, Landauer proposed that the conductance of a mesoscopic

conductor is given by [5, 6],

G D 2e2

h
MT; (6.28)

where M stands for number of the transverse modes in the conductor and T is the
averaged probability an electron injected from one end can transmit to the other.
The factor 2 comes from the spin degeneracy of electron. The conductance is then
independent of the system’s dimension in length or width. Assume a conductor
is connected to two electron reservoirs through ballistic leads. Then in the low
temperature limit, the current flow is caused by the electrons’ motion in the energy
window �1 � �2. So the current transmitted from the left lead into the right lead is

I D �2e
h
MT .�1 � �2/; (6.29)

and thus, the conductance is given by the linear response formulaG D I=ıV (�1 �
�2 D �eıV ), which is exactly the Landauer formula in Eq. (6.28).

It can be shown that the Landauer formula recovers the classic Ohm’s law in the
large conductor scale limit. For a wide conductor, its number of conducting mode is
proportional to the widthW : M / W . Assume the conductor is long, we can prove
that its transmission probability is given by

T .L/ D L0

LC L0
; (6.30)

where L0 is a characteristic length and L is the conductor’s length.
Büttiker developed an approach to systematically treat the voltage and current

probes in a multiple terminal device [7, 8], which has helped interpreting numerous
mesoscopic experimental results since the 1980s. The approach was to extend the
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two-terminal Landauer formula and to sum over all the probes. In a multiterminal
device, the current in the i th terminal is given by

Ii D � e
h

X

j¤i
ŒTj i�i � Tij�j �; (6.31)

where �i is the Fermi energy in the i th probe and is related to the voltage through
Vi D ��i=e and Tij can be seen as the product of the number of modes and the
transmission probability from the j th probe to the i th probe. The summation is over
all the probes apart from probe i . The above formula can be written in terms of the
interterminal transmission coefficient Tij as

Ii D e2

h

X

j¤i
ŒTj iVi � Tij Vj �: (6.32)

In the equilibrium condition, all the probes have equal voltage and zero current flow.
And thus, from the above equation we must have

X

j¤i
Tj i D

X

j¤i
Tij ; (6.33)

which enables us to rewrite the Büttiker formula in Eq. (6.32) in a more straight-
forward form:

Ii D e2

h

X

j¤i
Tij ŒVi � Vj �: (6.34)

The Büttiker formula in Eq. (6.34) enables us to write the multiterminal conduc-
tance and resistance in compact forms of matrices. For example, without knowing
the specific pattern of a three-terminal device, we know the current and voltage in
the terminals are related to a set of equations:

0

@
I1

I2
I3

1

A D e2

h

0

@
T12 C T13 �T12 �T13

�T21 T21 C T23 �T23
�T31 �T32 T31 C T32

1

A

0

@
V1

V2
V3

1

A : (6.35)

This matrix equation can be further simplified by the fact that total current flow is
conserved, that is, I1 C I2 C I3 D 0. Also we know from the Landauer formula as
well as the Büttiker formula that it is only the voltage difference between the probes
that determines the magnitude of the current. Thus, we can set an arbitrary probe
voltage to be 0. For instance, we can set V3 D 0, and this enables us to reduce the
matrix dimension by 1

�
I1
I2

�
D e2

h

�
T12 C T13 �T12

�T21 T21 C T23

��
V1
V2

�
: (6.36)
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The resistance is also in the matrix form, related to the conductance matrix
through

�
R11 R12

R21 R22

�
D h

e2

�
T12 C T13 �T12

�T21 T21 C T23

��1
: (6.37)

The above approach has become a standard technique in finding the conductance
and resistance in a multiterminal device.

6.3.2 Transport of Edge States

In the quantum spin Hall system, a pair of helical edge states consists two chiral
states of electrons with spin-up (� D") and spin-down (� D#). The transmission
coefficient of the chiral state with spin-up from one terminal to its neighbor terminal,
say, in the clockwise direction is T "

ij D 1; and the transmission coefficient from

one terminal to its neighbor terminal in the counterclockwise direction is T "
j i D 0:

Meanwhile, the transmission coefficient of the chiral state with spin-down from
one terminal to its neighbor terminal in the clockwise direction is T #

ij D 0;

and the transmission coefficient from one terminal to its neighbor terminal in the
counterclockwise direction is T #

j i D 1.
The charge current at the terminal i is defined as the summation of the currents

with spin-up and spin-down

I ci � I
"
i C I

#
i D e2

h

X

j¤i;�
.T �ij Vj � T �j iVi /: (6.38)

The spin current at the terminal i is defined as the difference of the currents with
spin-up and spin-down

I si � „=2
e

�
I

"
i � I#

i

�
D e

4

X

j¤i;�
�.T �ij Vj � T �j iVi / (6.39)

where we convert the unit of charge current into that of spin current: change the unit
of charge e into the unit of spin „=2 by the ratio „=2

e
.

Two-Terminal Measurement: As the edge states are helical, the transmission
coefficients T �12 D T �21 D 1 for electrons with both spin-up (� D") and spin-down
(� D#). Take V1 D V=2 and V2 D �V=2. The spin-dependent current flowing out
of the terminal 2 is

I
"
2 D I

#
2 D e2

h
.V1 � V2/: (6.40)
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Thus, the charge conductance is

G D G" CG# D 2
e2

h
(6.41)

since there are two conducting channels from the left to the right. This is equivalent
to a quantum Hall conductance for n D 2 in a setup with two terminals.

Four-Terminal Measurement: In this case, the transmission coefficients for
electron with spin-up T "

43 D T
"
32 D T

"
21 D T

"
14 D 1 and 0 otherwise, and the

transmission coefficients for electron with spin-down T #
12 D T

#
23 D T

#
34 D T

#
41 D 1

and 0 otherwise. From the Landauer-Büttiker formula, we have

0

B
B
B
@

I
"
1

I
"
2

I
"
3

I
"
4

1

C
C
C
A

D

0

B
B
@

�1 0 0 1

1 �1 0 0

0 1 �1 0

0 0 1 �1

1

C
C
A

0

B
B
@

V1

V2
V3
V4

1

C
C
A (6.42)

and

0

B
B
B
@

I
#
1

I
#
2

I
#
3

I
#
4

1

C
C
C
A

D

0

B
B
@

�1 1 0 0

0 �1 1 0

0 0 �1 1

1 0 0 �1

1

C
C
A

0

B
B
@

V1
V2
V3

V4

1

C
C
A : (6.43)

The total charge current is the sum of the currents with spin-up and spin-down,
Ii D I

"
i C I

#
i . Thus, the equation for the charge current

0

B
B
@

I1

I2
I3
I4

1

C
C
A D e2

h

0

B
B
@

�2 1 0 1

1 �2 1 0

0 1 �2 1

1 0 1 �2

1

C
C
A

0

B
B
@

V1

V2
V3
V4

1

C
C
A : (6.44)

The total spin current in each terminal is the difference of the currents with spin-up

and spin-down, I si D
�
I

"
i � I

#
i

�
� „=2

e
,

0

B
B
@

I s1
I s2
I s3
I s4

1

C
C
A D e

4

0

B
B
@

0 �1 0 1

1 0 �1 0

0 1 0 �1
�1 0 1 0

1

C
C
A

0

B
B
@

V1
V2

V3
V4

1

C
C
A : (6.45)

Set the voltages at the terminals 1 and 3 V=2 and �V=2 and 0 for terminals 2
and 4
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a b

Fig. 6.4 Schematic diagram showing (a) two-terminal and (b) four-terminal measurement geome-
tries. In (a), a charge current IC D .2e2=h/V flows into the right lead. In (b), a spin current
IS D e

4
V flows into the right lead

0

B
B
@

V1
V2
V3

V4

1

C
C
A D

0

B
B
@

V
2

0

�V
2

0

1

C
C
A : (6.46)

The currents at terminal 2 are

I
"
2 D e2

h
T

"
21V1 D C e2

2h
V; (6.47a)

I
#
2 D e2

h
T

#
23V3 D � e

2

2h
V: (6.47b)

As a result, the total current is

I c2 D I
"
2 C I

#
2 D 0: (6.48)

However,

I s2 D
�
I

"
2 � I

#
2

�
� „=2

e
D e

4
V: (6.49)

Thus, the spin Hall conductance is Gs D e
4
: However, it is noted that the Hall

conductance for each sector is

G" D I
"
2

V1 � V3 D e2

2h
(6.50)

as we have set the voltages at the four-terminals. In conclusion, the quantum spin
Hall effect can be measured through the charge transport in a mesoscopic system as
shown in Fig. 6.4 [3].

Strictly speaking, the spin-up and spin-down here mean two different conducting
channels of the edge states, not the real electron spin. Due to the spin-orbit coupling,
none of the spin components S˛ (˛ D x; y; z) is conserved. So the “real” spin Hall
conductance is not quantized.
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6.4 Stability of Edge States

Assume the impurity potential V is time reversal invariant. There does not exist
backscattering between the two helical edge states. The time reversal operator‚2 D
�1. Thus, we set

ˇ
ˇu�k;#

˛ D ‚
ˇ
ˇuk;"

˛
and

ˇ
ˇuk;"

˛ D �‚ ˇˇu�k;#
˛
. The operator ‚ is

anti-unitary and has the property,

h‚˛jV j‚ˇi D hˇjV j˛i : (6.51)

Using this relation, it is easy to conclude

˝
uk;"

ˇ
ˇV

ˇ
ˇu�k;#

˛ D 0: (6.52)

Li and Shi proposed a general argument for the robustness of the helical edge
state transport [9]. In essence, a two-dimensional quantum spin Hall insulator is
a conductor with an odd number of Kramers pairs of conducting channel. This is
different from the ordinary one-dimensional conductor which always has an even
number of Kramers pairs of conducting channel. In general, the transmission along
the conductor can be characterized by a 2N � 2N S matrix, which relates the
incoming ( in) and outcoming ( out) wave amplitudes,

 out D S in (6.53)

where

 in D .aC
1 ; a

C
2 ; � � � ; aC

N I b�
1 ; b

�
2 ; � � � ; b�

N /
T I (6.54a)

 out D .a�
1 ; a

�
2 ; � � � ; a�

N I bC
1 ; b

C
2 ; � � � ; bC

N /
T : (6.54b)

aC
i .b

C
i / and a�

i .b
�
i / denote the right-going and left-going wave amplitudes,

respectively. ai̇ and bi̇ with the same index i are related by the time reversal and
form a Kramers pair. N denotes the total number of Kramers pairs at each edge and
can be odd for the quantum spin Hall insulator or even for ordinary insulator. In this
notation, time reversal symmetry imposes the constraint on the S matrix

ST D �S: (6.55)

Moreover, the conservation of charge implies that the S matrix must be unitary:
S�S D 1.

Under these constraints, the polar decomposition of the S matrix reads as [10]

S D
�
UT 0

0 V T

��
† T

�T �†
��

U 0

0 V

�
(6.56)

where U and V are two N � N unitary matrix. For even N D 2n, † is a block
diagonal matrix
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† D
p
1 � T1i�y ˚

p
1 � T2i�y ˚ � � � ˚

p
1 � Tni�y (6.57)

and

T D diagŒ
p
T1�0;

p
T2�0; � � � ;

p
Tn�0�: (6.58)

For odd N D 2nC 1, † is a block diagonal matrix

† D
p
1 � T1i�y ˚

p
1 � T2i�y ˚ � � � ˚ 01�1 (6.59)

and

T D diagŒ
p
T1�0;

p
T2�0; � � � ; 1�: (6.60)

Ti denotes the transmission coefficient in the i th conducting channel. One imme-
diately sees that for odd N , there is at least one conducting channel that has the
perfect transmission Ti D 1, without being adversely affected by the disorder. This
is the reason behind the robustness of helical edge states in the quantum spin Hall
effect.

According to the Z2 classification for time reversal invariant insulating system,
there always exist an odd number of Kramers pairs of conducting edge states along
each edge of sample. However, in the geometry of a strip, there are two edges, and
the total number of Kramers pairs is still even in the system. The conductance is
not really quantized if the interaction or finite size effect makes the channels at two
edges couple together [11].

6.5 Realization of Quantum Spin Hall Effect in HgTe/CdTe
Quantum Well

In 2006 Bernevig, Hughes and Zhang [12] predicted that HgTe/CdTe quantum well
may have an inverted band structure and exhibit the quantum spin Hall effect. One
year later, König et al. [13] verified the theoretical prediction experimentally.

6.5.1 Band Structure of HgTe/CdTe Quantum Well

The band structures of HgTe and CdTe near the � point can be described very
well by the six-band bulk Kane model which incorporates the �6 and �8 bands
but neglects the split-off �7 band. CdTe has a so-called normal band structure, in
which the band �6 of s-wave electron .j D 1

2
/ has a higher energy and the band

�8 .j D 3
2
/ has a lower energy. However, HgTe has an inverted band structure as

shown in Fig. 6.5. In order to consider the coupling between the �6 and �8 bands,
we choose the six-band basis set [14, 15],
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Fig. 6.5 A schematic illustration of the normal band structure and inverted band structure. The left
is the normal band structure where the blue curve represents the light hole (LH) and heavy hole
(HH) of the �8 valence band, the right is the inverted band structure where the LH flips up and
becomes the conduction band, and the �6 appears below the HH band (Adapted from [15])
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u6 .r/ D
ˇ̌
ˇ
ˇ�8;�
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�
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D � 1p
2
.X � iY / # : (6.61f)

For the chosen basis set, the Hamiltonian for a three-dimensional system with [001]
growth direction takes the following form:

H D

0
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� 1p
2
Pk� 0 U C V �S� R 0q

2
3
Pkz � 1p
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Pk� �S�� U � V 0 R

1p
6
PkC

q
2
3
Pkz R� 0 U � V S

�
C

0 1p
2
PkC 0 R� SC U C V

1

C
C
CC
C
C
C
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C
A

(6.62)
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where

k2k D k2x C k2y; k˙ D kx ˙ iky; (6.63a)

T D Ec .z/C „2
2m0

h
.2F C 1/ k2k C kz .2F C 1/ kz

i
; (6.63b)

U D Ev .z/� „2
2m0

�
�1k

2
k C kz�1kz

�
; (6.63c)

V D � „2
2m0

�
�2k

2
k � 2kz�2kz

�
; (6.63d)

R D � „2
2m0

p
3

2

�
.�3 � �2/ k

2C � .�3 C �2/ k
2�
�
; (6.63e)

S˙ D � „2
2m0

p
3k˙ .�3kz C kz�3/ : (6.63f)

P D � „
m0

hsjpx jXi is the Kane matrix element between the s and p bands with
m0 the bare electron mass.

The quantum well growth direction is along z with Hg1�xCdxTe for z < �d=2,
HgTe for �d=2 < z < d=2 and Hg1�xCdxTe for z > d=2. As the quantum well
is confined along the z-direction, we make the substitution, kz D �i @

@z . Now the
problem reduces to solving, in the presence of continuous boundary conditions, the
Hamiltonian (6.62) in each of the three regions of the quantum well.

The basic idea to derive an effective Hamiltonian is to start with the Hamiltonian
at kx D ky D 0 and to find the solutions of the wave function of electrons in
the confined quantum well. Then using the solution of kx D ky D 0 as the basis,
one can derive an effective Hamiltonian for kx; ky ¤ 0 by means of the projected
perturbation method.

For kx D ky D 0;

H.kk D 0/ D

0

BB
B
B
B
BB
B
B
B
@

T 0 0

q
2
3
Pkz 0 0

0 T 0 0
q

2
3
Pkz 0

0 0 U C V 0 0 0q
2
3
Pkz 0 0 U � V 0 0

0

q
2
3
Pkz 0 0 U � V 0

0 0 0 0 0 U C V

1

CC
C
C
C
CC
C
C
C
A

; (6.64)

which is reduced to a block diagonalized matrix after rearranging the basis as
fu1; u4; u3; u2; u5; u6g. On the subsector of fu1; u4g for jz D 1

2
,

Heff D
0

@
T

q
2
3
Pkzq

2
3
Pkz U � V

1

A ; (6.65)
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which is a one-dimensional modified Dirac equation. Consider a quantum well
potential VQW.z/. The model coefficients are different for CdTe at jzj > d=2 and
HgTe at jzj < d=2. Solving this one-dimensional problem, one obtains a bound
state for the quantum well '1. Similarly, on the base fu3g of jz D 3

2
, one obtains

a solution for quantum well '2. Using these two states, one can have an effective
Hamiltonian near the point of k ¤ 0,

h.k/ D .h'1j ; h'2j/H.k/
� j'1i

j'2i
�
: (6.66)

(u2; u5; u6) gives other two states. In this way, Bernevig, Hughes, and Zhang derived
an effective model for a quantum well of HgTe/CdTe [12],

HBHZ D
�
h.k/ 0

0 h�.�k/
�

(6.67)

where h.k/ D 	.k/CA.kx�x C ky�y/C .M � Bk2/�z.
The model is actually equivalent to the modified two-dimensional Dirac model

as shown in Eq. (2.42) in addition of the kinetic term 	.k/,

h.k/ D 	.k/C hC; (6.68)

h�.�k/ D 	.k/C Uh�U�1; (6.69)

where the unitary transformation matrix U D �z. All the model parameters are
functions of the thickness of quantum well. The most striking property of this system
is that the mass or gap parameter M changes sign when the thickness d of the
quantum well is varied through a critical thickness dc (D 6:3 nm) associating with
the transition of electronic band structure from a normal to an “inverted” type [16].

If the inclusion of 	.k/ does not close the energy gap caused byM for a nonzero
B , the system should be insulating in the bulk. There exists a topological phase
transition from positive M to negative M . However, the sign of M alone cannot
determine whether the system is topologically trivial or nontrivial. From the formula
in Eq. (2.48), we know that the system is in a quantum spin Hall phase only for
MB > 0 and there exists a pair of helical edge states at the boundary of the system.

6.5.2 Exact Solution of Edge States

In this subsection, we present an exact solution of edge state for the Bernevig-
Hughes-Zhang model in Eq. (6.67), which was first solved in the paper by Zhou
et al. [11]. Here we consider a semi-infinite plane with an open boundary condition
at y D 0. In this case, kx is a good quantum number, and ky is replaced by using
the substitution ky D �i@y . The Hamiltonian is a block-diagonalized one,
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H �
kx;�i@y

� D
�
h"
�
kx;�i@y

�
0

0 h#
�
kx;�i@y

�
�
; (6.70)

where

h"
�
kx;�i@y

� D
0

@
M � BC

�
k2x � @2y

�
A.kx � @y/

A.kx C @y/ �M CB�
�
k2x � @2y

�

1

A (6.71)

and

h#
�
kx;�i@y

� D
0

@
M � BC

�
k2x � @2y

�
�A.kx C @y/

�A.kx � @y/ �M C B�
�
k2x � @2y

�

1

A : (6.72)

with B˙ D B ˙D. The upper h" and lower h# blocks describe the states of spin-
up (strictly speaking, it is the sector of jz D 1

2
and 3

2
) and spin-down (the sector of

jz D � 1
2

and � 3
2
), respectively.

The eigenvalue problem of the upper and lower blocks can be solved separately.
Here we focus on the solution for the upper block of this Hamiltonian,

h"‰" D E‰": (6.73)

We take the trial wave function

‰" D
�
c

d

�
e�y (6.74)

and substitute it into Eq. (6.73). Then the characteristic equation gives

det

�
M � BC

�
k2x � �2� � E A.kx � �/

A.kx C �/ �M C B�
�
k2x � �2

� �E
�

D 0: (6.75)

We obtain four real roots ˙�1 and ˙�2,

�21;2 D k2x C F ˙
s

F 2 � M2 � E2

BCB�
; (6.76)

where F D ŒA2 � 2 .MB C ED/�=.2BCB�/. To find an edge state solution, the
wave function must decay to zero when deviating far away from the boundary. We
adopt the Dirichlet boundary condition ‰" .kx; y D 0/ D ‰" .kx; y D C1/ D 0.
Thus, the solution has a general form:

‰" D
� Qc.kx/

Qd.kx/
�
.e��1y � e��2y/; (6.77)
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if �1 and �2 are positive or their real parts are positive. Substituting the solution into
Eq. (6.73), we obtain

Qc
Qd D A.kx C �1/

E �M C BCk2x � BC�21
D A .kx C �2/

E �M C BCk2x � BC�22
: (6.78)

Thus, it follows from this equation that

E D M � BC�1�2 � BC .�1 C �2/ kx � BCk2x: (6.79)

At kx D 0,

E D M � BC�1�2; (6.80a)

�1 D
q
F C

p
F 2 � .M2 � E2/=BCB�; (6.80b)

�2 D
q
F �

p
F 2 � .M2 � E2/=BCB�: (6.80c)

Thus, one obtains

E D B� � BC
B� CBC

M D �D
B
M; (6.81)

�1�2 D M � E

BC
D M

B
> 0; (6.82)

�1 C �2 D
s

A2

BCB�
> 0: (6.83)

Therefore, the existing conditions of the edge state solution are

A2

BCB�
> 0;

M

B
> 0: (6.84)

Near kx D 0, from the equations for �1, �2, and E , we calculate

dE

dkx

ˇ̌
ˇ
ˇ
kxD0

D �BC
d.�1�2/

dkx

ˇ̌
ˇ
ˇ
kxD0

� BC .�1 C �2/jkxD0

D sgn.B/A

r

1 � D2

B2
: (6.85)

It follows that the energy spectrum of the edge states near kx D 0 reads

E" .kx/ D �MD
B

C sgn.B/A

r

1 � D2

B2
kx CO.k2x/: (6.86)
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The effective velocity of this state is

v" D Csgn.B/A

r

1 � D2

B2
: (6.87)

Similarly, we may have the energy dispersion of the edge states for the lower
block h#

E# .kx/ D �MD
B

� sgn.B/A

r

1 � D2

B2
kx CO.k2x/ (6.88)

and the effective velocity

v# D �sgn.B/A

r

1 � D2

B2
: (6.89)

The results can also be obtained from the perturbation theory for a small kx . Thus,
the effective velocities in two edge states are opposite; one is positive and the other
is negative. These two edge states constitute a pair of helical edge states.

6.5.3 Experimental Measurement

The transition from the normal band to an inverted band structure coincides with the
topological quantum phase transition from a trivial insulator to a quantum spin Hall
insulator. The first experimental observation was made by a group in Wurzburg,
Germany, led by Laurens W. Molenkamp [13]. In order to cover the regime of
normal and inverted band structure, a series of HgTe samples with the quantum well
width from 4.5 to 12 nm were grown. Initial evidence for the quantum spin Hall
state was revealed when the Hall bar of dimension .L �W / D .20:0 � 13:3/�m2

with different thickness were studied. For a thinner sample with dQW < dc , the
sample shows an insulating behavior. But for a thicker sample with dQW > dc , a
finite value of resistance was measured as shown in Fig. 6.6, which is anticipated
as the theoretical prediction for the quantum spin Hall effect. The inset shows
the resistances at two different temperatures. Surprisingly, the resistance at lower
temperature is larger than one at higher temperature, which usually is characteristic
of an insulating phase rather than a conducting phase. We have to say that no
quantized conductance has been yet measured experimentally in quantum spin
Hall effect, although the measured conductance is close to the predicted value at
a specific temperature.

Further evidence for the helical edge state comes from the nonlocal transport
measurement, which is performed in a multiterminal setup. In conventional diffusive
electronics, bulk transport satisfies Ohm’s law. The resistance is proportional to the
length and inversely proportional to the cross-sectional area, implying the existence
of a local resistivity or conductivity tensor. However, the existence of the edge state
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Fig. 6.6 The longitudinal four-terminal resistance, R14;23, of various normal (d D 5:5 nm) (I) and
inverted (d D 7:3 nm) (II, III, and IV) quantum well structures as a function of the gate voltage
measured for B D 0T at T D 30mK. The device sizes are (20:0 � 13:3)�m2 for devices I and
II, (1:0 � 1:0)�m2 for device III, and (1:0 � 0:5)�m2 for device IV. The inset shows R14;23(Vg)
of two samples from the same wafer, having the same device size (III) at 30 mK (green) and 1.8 K
(black) on a linear scale (Adapted from [13]. Reprinted with permission from AAAS)

Fig. 6.7 An H-shaped
four-terminal device of the
quantum spin Hall system.
The spin-filtered edge
channels are indicated by
red/solid (spin-up) and
blue/dashed (spin-down)
arrowed lines

necessarily leads to nonlocal transport, which invalidates Ohm’s law. Such nonlocal
transport was first observed in the quantum Hall effect and is well described by the
quantum transport theory based on the Landauer-Büttiker formula.

In the device shown in Fig. 6.7, which is used in the nonlocal measurements to
prove the existence of helical edge states, two terminals act as current probes, and
the other two act as voltage probes. The nonlocal resistance is defined as

Rij;kl D Vk � Vl
Iij

: (6.90)



6.6 Quantum Hall Effect and Quantum Spin Hall Effect: A Case Study 107

We can set V4 D 0 and write down the Büttiker formula

0

@
I1
I2
I3

1

A D e2

h

0

@
2 �1 0

�1 2 �1
0 �1 2

1

A

0

@
V1
V2
V3

1

A : (6.91)

If the current is driven through the terminals 1 and 4, and the terminals 2 and 3 act
as voltage probes, we have I1 D �I4 and I2 D I3 D 0. Then we can solve this
equation and get

R14;14 D V1 � V4
I1

D h

e2
3

4
; (6.92)

R14;23 D V2 � V3
I1

D h

e2
1

4
; (6.93)

which are the predicted value if helical edge states truly exists in the system. These
predictions have been experimentally confirmed in HgTe/CdTe quantum well [17].

6.6 Quantum Hall Effect and Quantum Spin Hall Effect:
A Case Study

The difference between the quantum Hall effect and the quantum spin Hall effect
can be illustrated from the conductance of a three-probe conductor with one contact
playing the role of a voltage probe. At such a contact, the net charge current
vanishes. Electrons that leave the contact are replaced by the electrons from the
contact reservoir. In the quantum Hall effect sample with � D 2, two edge states
from the left source contact enter the voltage probe and two edge states leave the
voltage probe to the right drain contact. The potential of the probe is equal to that of
the source contact, and the voltage probe has no effect on the overall conductance.
However, in the quantum spin Hall effect sample, the situation is different. Here,
only one edge state is directed from the source contact to the voltage probe. Two
other edge states lead away from the probe – one to the source contact and one to the
sink contact. To maintain zero current, it is sufficient to tune the chemical potential
at the probe halfway between the potentials of the source and drain contacts. Now,
half the current is directed back to the source contact. The voltage probe reduces
the overall conductance by half a conductance quantum, that is, � D 3

2
e2

h
not 2 e

2

h
as

in the quantum Hall effect of � D 2 [18]. Such a probe maintains zero net charge
current into the contact. However, the spin current into the probe is nonzero and net
spin-up in the case depicted. Simultaneously, a spin current is induced into both the
source and drain electrodes.
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Quantum Hall effect (� D 2): In this setup of three-terminal geometry, using the
Landauer-Büttiker formula, the currents are

0

@
Ileft

Iprobe

Iright

1

A D 2
e2

h

0

@
�1 0 1

1 �1 0

0 1 �1

1

A

0

@
�left

�probe

�right

1

A : (6.94)

The probe potential is tuned such that the charge current at the voltage probe
vanishes:

Iprobe D 2
e2

h
.�left � �probe/ D 0: (6.95)

Then

Iright D 2
e2

h
.�probe � �right/

D 2
e2

h
.�left � �right/: (6.96)

The conductance is

GQHE D 2
e2

h
: (6.97)

Quantum spin Hall effect: Using the Landauer-Büttiker formula, the currents are

0

@
Ileft

Iprobe

Iright

1

A D e2

h

0

@
�2 1 1

1 �2 1

1 1 �2

1

A

0

@
�left

�probe

�right

1

A : (6.98)

The probe potential is tuned such that the charge current at the probe vanishes:

Iprobe D e2

h
.�left C �right � 2�probe/ D 0: (6.99)

Then

Iright D e2

h
.�left C �probe � 2�right/

D 3

2

e2

h
.�left � �right/: (6.100)

The charge conductance is

GQHE D 3

2

e2

h
: (6.101)

In the quantum spin Hall effect, the spin currents are
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Fig. 6.8 Difference between the quantum Hall effect and quantum spin Hall effect (right) in a
setup with three probes. Left: the quantum Hall effect for � D 2 with two chiral edge channels.
Right: the quantum spin Hall effect with a pair of helical edge channels

0
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@
I Sleft

I Sprobe

I Sright

1

C
A D e

4

0

@
0 �1 1

1 0 �1
�1 1 0

1

A

0

@
�left

�probe

�right

1

A : (6.102)

The spin current at the probe is

I Sprobe D e

4

�
�left � �right

� ¤ 0: (6.103)

Although the charge current vanishes at the probe, the spin current does not vanish.
The results are summarized in Fig. 6.8.

6.7 Coherent Oscillation Due to the Edge States

We study here the device shown in Fig. 6.9, which consists of a two-dimensional
strip of a topological insulator on which two quantum point contacts have been
patterned in series through gates (shaded regions in Fig. 6.9). The quantum point
contacts define a saddle-shaped confining potential, whose height can be controlled
by a gate voltage. An effective disk of area A D R2 (R is the radius of the disk)
is formed in the center. The Aharonov-Bohm effect in the device can be expected
intuitively because a topological insulator possesses a pair of independent gapless
edge states of different spins moving in opposite directions, each forming an ideal
one-dimensional loop around the disk. The two edge states are independent because
no backscattering is allowed at a given sample edge even in the presence of weak
time reversal invariant disorder. We note here that spin is not a good quantum
number in topological insulators because of spin-orbit coupling. In the absence of
a magnetic field, the actual edge states are eigenstates of the time reversal operator;
their characterization as spin-up and spin-down is not precisely correct, and the word
“spin” below is to be viewed more generally as the quantum number denoting the
two states of a Kramers doublet.
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Fig. 6.9 Schematic of the setup consisting of a disk connected to two reservoirs through two
quantum point contacts. Red (light gray) and blue (dark gray) lines indicate the chiral edge
channels of spin-up and spin-down electrons, with arrows indicating the direction of their motion
(Adapted from [20])

Suppose a weak magnetic field B? exists normal to the plane. Following
Ref. [19], we consider a spin-up (or spin-down) electron travelling from the left-
hand side in Fig. 6.9. At the left-hand side junction, it splits into two partial waves:
one is transmitted through the quantum point contact into the disk with amplitude
t , and the other is transmitted across the quantum point contact with an amplitude
r causing a backscattering. We denote the wave function amplitudes in the upper
and lower edges, right after the left-hand side junction, by u1 and d1, respectively.
The corresponding amplitudes in the vicinity of right-hand side junction are u2 D
u1 expŒi�=2� and d2 D d1 expŒ�i�=2�, where

� D 2
�

�0
C 2kReff; (6.104)

�0 D h=e is the magnetic flux quantum, � D R2effB? is the magnetic flux
threading the effective one-dimensional loop with an effective radius Reff, and
2kReff is the phase acquired by the wave function traveling along the loop. Since
the Fermi level of electrons in the edge states can be tuned by a gate voltage Vgate

and the dispersion relation for the edge states is linear in k; the phase can be tuned
by the gate voltage ı� D 2Reffık / ıVgate.

A partial wave goes through the right-hand side slit with an amplitude t 0 and
across the slit with an amplitude r 0. Using the theory of multi-scattering processes
[21], it follows that the total transmission for spin-up electron through the slit A and
B is given by

T ".B?/ D jt t 0j2
1C jrr 0j2 � 2 jrr 0j cos.� C �0/

: (6.105)

Here �0 D arg.rr 0/: For specificity, our numerical calculations below suppose
two symmetric quantum point contacts with jt j D jt 0j and jr j D jr 0j. Resonant
tunneling, that is, T ".B?/ D 1, occurs for cos.� C �0/ D 1.
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The transmission coefficient for a spin-down electron T #.B?/; which is the
time reversal counterpart of spin-up electron at �B? field, is given by T #.B?/ D
T ".�B?/. According to the Landauer-Büttiker formula [6, 22], the total conduc-
tance is

G.B/ D e2

h
ŒT ".B?/C T #.B?/�: (6.106)

This coherence oscillations in the conductance G as a function of the magnetic
flux � through the disk are therefore expected to be symmetric with respect to the
direction of the magnetic field.

6.8 Further Reading
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13. M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L.W. Molenkamp, X.L. Qi, S.C.

Zhang, Science 318, 766 (2007)
14. E.G. Novik, A. Pfeuffer-Jeschke, T. Jungwirth, V. Latussek, C.R. Becker, G. Landwehr, H.

Buhmann, L.W. Molenkamp, Phys. Rev. B 72, 035321 (2005)



112 6 Quantum Spin Hall Effect

15. Chu, R.L., W.Y. Shan, J.Lu, S.Q. Shen, Phys. Rev. B 83, 075110 (2011)
16. A. Pfeuffer-Jeschke, Ph.D. thesis, University of Wurzburg, 2000
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Chapter 7
Three-Dimensional Topological Insulators

Abstract Three-dimensional topological insulator is characterized by the sur-
rounding surface states, in which electrons are well described as two-dimensional
Dirac fermions. A series of materials have been discovered to be topological
insulators since theoretical predictions.

Keywords Three-dimensional topological insulator • Surface states • Dirac
cone • Surface quantum Hall effect • Topological insulator thin film

7.1 Family Members of Three-Dimensional Topological
Insulators

7.1.1 Weak Topological Insulators: PbxSn1�xTe

The first known inverted band material is SnTe, which was discovered more than
50 years ago [1]. The valence- and conduction-band edges in PbTe and SnTe occur
at the L points in the Brillouin zone. It was believed that the valence band of
PbTe is an LC

6 state and its conduction band is an L�
6 state while the valence

band of SbTe is an L�
6 state and its conduction band is an LC

6 state as shown
in Fig. 7.1. In a PbxSn1�xTe alloy sample, with increasing Sn composition, the
energy gap initially decreases as the LC

6 and L�
6 states approach each other, then

closes at an intermediate composition where the two states become degenerate,
and finally reopens, with the LC

6 state now forming the conduction band and the
L�
6 state forming the valence band [2]. The band structures of PbTe and SnTe

were calculated in the early 1960s [3, 4]. It was realized that the change in the
energy gap with composition for the PbxSn1�xTe alloy series can be understood
qualitatively in terms of the difference between the relativistic effect in Pb and Sn,

S.-Q. Shen, Topological Insulators: Dirac Equation in Condensed Matters,
Springer Series in Solid-State Sciences 174, DOI 10.1007/978-3-642-32858-9 7,
© Springer-Verlag Berlin Heidelberg 2012
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Fig. 7.1 Schmatic
representation of the valence
and conduction bands for
PbTe, for the composition at
which the energy gap is zero
and for SnTe

Fig. 7.2 Schematic
representation of band energy
evolution of Bi1�xSbx as a
function of x (Replotted
from [9])

and the relativistic correction is extremely important in determining the positions
of the energy bands. Nowadays, we call the relativistic correction as the spin-orbit
coupling in semiconductors.

The band inversion in PbxSn1�xTe occurs at four equivalent valleys. The number
of the surface states is even. Thus it is a trivial or weak topological insulator
according to the topological classification of time reversal symmetry [5].

7.1.2 Strong Topological Insulators: Bi1�xSbx

The first discovered strong topological insulator is bismuth antimony alloy
Bi1�xSbx [6,7]. Semiconducting Bi1�xSbx alloys have been studied experimentally
because of their thermoelectric properties, which make them desirable for
applications as thermocouple. The evolution of the band structure of the alloy
Bi1�xSbx as a function of Sb composition x has been well studied and is
summarized in Fig. 7.2 [8,9]. As the Sb concentration increases, two things happen.
First, the gap between the Ls and La bands decreases. At x D 4%, the band gap
closes and then reopens with the inverted ordering. Second, the top of the valence
band at T comes down in energy and crosses the bottom of the conduction band
at x D 7%. At this point, the indirect gap becomes positive, and the alloy is a
semiconductor. At x D 9%, the T valence band crosses the Ls valence band, and



7.1 Family Members of Three-Dimensional Topological Insulators 115

the alloy is a direct-gap semiconductor at the L points. As x increases further,
the gap increases and reaches its maximum value of about 30 meV at x D 18%.
At that point, the valence band H crosses the Ls valence band. For x > 22%,
the H band crosses the La conduction band, and the alloy is again a semimetal.
Since the inversion transition between the Ls and La bands occurs in the semimetal
phase adjacent to pure bismuth, it is clear that the semiconducting Bi1�xSbx alloy
inherits its topological class from pure antimony and is thus a strong topological
insulator [6].

Direct observation of Dirac gapless surface states in Bi1�xSbx was first reported
by a group led by Hasan [7]. High-momentum-resolution angle-resolved photoe-
mission spectroscopy performed with varying incident photon energy allows for
the measurement of electronic band dispersion along various momentum space
(k-space) trajectories in the three-dimensional bulk Brillouin zone. The surface
band-dispersion image along � � M direction shows five Fermi level crossings,
which indicates that these surface states are topologically nontrivial.

7.1.3 Topological Insulators with a Single Dirac Cone: Bi2Se3

and Bi2Te3

Soon after the discovery of Bi0:9Sb0:1, a new family of stoichiometric crystals,
Bi2Se3, Bi2Te3, and Sb2Te3, was identified as three-dimensional topological insu-
lators [10–12]. Among them, Bi2Se3 (bismuth selenide) is expected to be the most
promising one for applications. It has a large bulk band gap up to 0.3 eV, equivalent
to 3,000 K, much higher than room temperatures. Its band inversion happens at the
� point, leading to a simple band structure of the topological surface states with
only single Dirac cone. The high-resolution ARPES measurement shows clearly
the surface band dispersion on Bi2Se3 as shown in Fig. 7.3, which provides an
explicit and unanimous evidence of the surface states of topological insulators. It
also reveals a single ring around the N� point formed by the pure surface states and
the band structure of the Dirac cone. The single Dirac cone of the surface states is
now characteristic of topological insulator.

7.1.4 Strained HgTe

Three-dimensional HgTe is a semimetal which is charge neutral when the Fermi
level is at the touching point between the light-hole and heavy-hole �8 bands. A
unique property of the band structure of HgTe is the inversion of the �6 and �8
band ordering. The effective masses of light and heavy holes have opposite signs
(see Fig. 6.5). Appearance of the heavy-hole band between the light-hole and �6
bands makes the material metallic instead of insulating since there is no energy gap
in the band structure. Because of the band inversion, three-dimensional HgTe is
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Fig. 7.3 High-resolution ARPES data of surface electronic band dispersion on Bi2Se3(111)
measured with an incident photon energy of 22 eV near the � point along the N� � NM and N� � NK
momentum-space cuts (Reprinted by permission from Macmillan Publisher Ltd: Nature Physics
[10], copyright (2009))
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Fig. 7.4 (a) The surface local density of states of 3D HgTe without strain, bright line in the direct
gap between LH and HH bands indicates the first-type surface states, the bright regimes in valence
band indicate the second-type surface states. (b) An insulating band gap is opened, and the first-
and second-type surface states become connected. (c) The surface states when the �6 and the HH
band are inverted (Adapted from [14])

also expected to have Dirac-like surface states; however, the surface states always
mix with bulk states. Once the system opens an energy gap, it will evolve into a
topological insulator. Usually there are two ways to open an energy gap in the
band structure. One way is to fabricate a thin film or quantum well. The finite
size effect opens a gap, which is the origin of the quantum spin Hall effect in
two-dimensional HgTe/CdTe quantum wells. The other way is the strain effect.
The strained three-dimensional HgTe is expected to be a topological insulator (see
Fig. 7.4). The quantum Hall effect of the surface states in a strained bulk HgTe was
observed experimentally [13].
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Based on adiabatic continuity of their band structure to HgTe, a series of
chalcopyrite semiconductors are predicted to be topological insulators [15].

7.2 Electronic Model for Bi2Se3

Bi2Se3 and Bi2Te3 are three-dimensional topological insulators, which have robust
and simple surface states constituting a single Dirac cone at the � point [11]. Bi2Se3
and Bi2Te3 share the same rhombohedral crystal structure with the space group D5

3d

(R3̄m) with five atoms in one unit cell. We take Bi2Se3 as an example and show
its crystal structure in Fig. 7.5, which has layered structure with a triangle lattice
within one layer. It has a trigonal axis (threefold rotation symmetry), defined as
the z-axis, a binary axis (twofold rotation symmetry), defined as the x-axis, and a
bisectrix axis (in the reflection plane), defined as the y-axis. The material consists
of five-atom layers arranged along the z-direction, known as quintuple layers. Each
quintuple layer consists of five atoms with two equivalent Se atoms (denoted as
Se1 and Se10), two equivalent Bi atoms (denoted as Bi1 and Bi10), and a third Se
atom (denoted as Se2). The coupling is strong between two atomic layers within one
quintuple layer but much weaker, predominantly of the van der Waals type, between

Fig. 7.5 Top: Crystal structure of Bi2Se3 with three primitive vectors denoted as t1;2;3. The Se1
(Bi1) layer can be related to the Se10 (Bi10) layer by an inversion operation in which the Se2 atoms
have the role of inversion centers. Bottom: Schematic diagram of the pz orbitals of electrons, and
the band inversion of the pC

z orbitals of Bi and the p�
z orbitals of Se due to the spin-orbit coupling
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two quintuple layers. The primitive lattice vectors t1I2I3 and rhombohedral unit cells
are shown in Fig. 7.5. The Se2 site has the role of an inversion center, and under
an inversion operation, Bi1 is changed to Bi10 and Se1 is changed to Se10. The
existence of inversion symmetry enables us to construct eigenstates with definite
parity for this system.

To get a better understanding of the inversion of the band structure and the parity
exchange in Fig. 7.5, we start from the atomic energy levels and consider the effect
of crystal-field splitting and spin-orbit coupling on the energy eigenvalues at the �
point. The states near the Fermi surface mainly come from p orbitals of Bi (6s26p3)
and Se (4s24p4). The crystal field removes the degeneracy of the p orbitals, and
only the pz orbitals become relevant in the present problem. Furthermore, due to the
inversion symmetry of the crystal lattice, the pz orbitals of electrons from Bi and Se
atoms near the Fermi surface have opposite parity. The band gap between these two
orbitals is controlled by the spin-orbit coupling: increasing the spin-orbit coupling
may cause a band inversion as analyzed in [11].

The three-dimensional Dirac equation can be applied to describe a large family
of three-dimensional topological insulators. Bi2Te3, Bi2Se3, and Sb2Te3 have been
confirmed to be topological insulators with a single Dirac cone of surface states.
For example, in Bi2Te3, the electrons near the Fermi surfaces, mainly come from
the p orbitals of Bi and Te atoms. According to the point group symmetry of the
crystal lattice, pz orbital splits from px;y orbitals. Near the Fermi surface the energy
levels turn out to be the pz orbital,
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where ˙ stand for the parity of the corresponding states and ";# for the electron
spin. Four low-lying states at the � point can be used a basis to construct the low-
energy effective Hamiltonian [11]. In the basis of (
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), we keep the terms up to the quadratic order in p and obtain

H D 	.p/C
X

iDx;y;z
vipi˛i C

0

@M �
X

iDx;y;z
Bip

2
i

1

Aˇ (7.1)

with vx D vy D vÎ and vz D v? and Bx D By D BÎ and Bz D B?. The first term
	.p/ D C �DÎ.p

2
x C p2y/�D?p2z which breaks the particle-hole symmetry of the

system. The linear term in pi is determined by the change of parity of the different
basis. Anisotropy of the crystal reveals that BÎ ¤ B? and vÎ ¤ v?. It will modify
the effective velocity of the surface states.

This model can be understood as a result of k �p theory. Under the time reversal,
˛i ! �˛i and ˇ ! ˇ. Suppose the system is time reversal invariant. Expand
the Hamiltonian near p D 0. The zero-order term is Mˇ where M represents the
energy gap at the point, the first-order term is

P
iDx;y;z vipi˛i since pi ! �pi , and

the second-order term is
P

iDx;y;z Bip2i ˇ since p2i ! p2i under the time reversal.
	.p/ is the dispersion independent of inter-band coupling.
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7.3 Effective Model for Surface States

The effective Hamiltonian for the surface states can be derived from the electronic
model for the bulk. Consider an x-y plane at z D 0. px and py are good quantum
numbers, andpz is replaced by �i„@z in Eq. (7.1) To derive an effective Hamiltonian
for the surface states, we first find the solution of the surface states at px D py D 0

in Eq. (7.1),
H.z/ j‰i D E j‰i (7.2)

where

H.z/ D C CD?„2@2z � iv?„@z˛z C .M C B?„2@2z /ˇ: (7.3)

We have derived the effective model for surface states for the modified Dirac
equation in Chap. 2. Here the presence of 	.p/ makes the problem a little bit more
complicated to find the solution at px D py D 0. The term 	.p/ breaks the particle-
hole symmetry between the conduction band and valence band. If D2? > B2?, the
band gap closes and the system is no longer an insulator. To have a surface state
solution, we focus on the case of D2? < B2?. In this matrix equation, the first and
third rows are decoupled from the second and fourth rows. For this reason, we can
adopt two trial wave functions:
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B
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0

b1
0
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C
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A e

�z; j‰2i D

0
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0
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0
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1

C
C
A e

�z; (7.4)

respectively. The equation is reduced into two independent sets of equations:

�
M C BC�2 �iv?�

�iv?� �M C B��2
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b1

�
D E
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and
�
M C BC�2 Civ?�

Civ?� �M C B��2
��

a2

b2

�
D E

�
a2

b2

�
(7.6)

where B˙ D B? ˙ D?. These two equations are equivalent to those for the edge
states in the quantum spin Hall effect at kx D 0. We first focus on the solution of a1
and b1. To have a nontrivial solution, the characteristic equation is

det

�
M CBC�2 � E �iv?�

�iv?� �M C B��2 � E

�
D 0: (7.7)

From this equation, we find four roots for �: ˙�1 and ˙�2. We adopt the Dirichlet
boundary conditions, which require that the wave function for the surface states
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must vanish at z D 0 and z ! �1. For MB? > 0; we obtain
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which requires that

a1

b1
D iA�1

BC.�21 C M
B?
/

D iA�2

BC.�22 C M
B?
/
: (7.10)

The normalization of the wave function requires

ja1j2 C jb1j2 D
�
�1 C �2

2�1�2
� 2

�1 C �2

��1
: (7.11)

Similarly, we find the solution to j‰2i by setting a2 D �a1 and b2 D b1:
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@

0

�a1
0
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1

C
C
A
�
e�1z � e�2z

�
: (7.12)

The energy eigenvalue for both states is E D �D?M=B?.
To find the solution of px; py ¤ 0, we may use the projection and perturbation

method by utilizing the two solutions at px D py D 0 as the basis to project the
Hamiltonian. On the new basis, the effective Hamiltonian is projected out:

Heff D
� h‰1jH j‰1i h‰1jH j‰2i

h‰2jH j‰1i h‰2jH j‰2i
�
: (7.13)

In this way, we obtain an effective Hamiltonian in the x-y plane [16]

Heff D 	0.p/C veff.p � �/z (7.14)
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where veff Dsgn.B?/
q
1 �D2?=B2?vÎ. We note that the inclusion of 	.p/ will

revise the effective velocity of the surface states. A quadratic term appears up to
p2, 	0.p/ D E0 � Dk.p2x C p2y/. Note that the effective Hamiltonian is only valid
for a small p.

A key feature of this effective model is the lock-in relation between

the momentum and spin. In the polar coordinate, we set p D
q
p2x C p2y

and �p D arctanpy=px . The dispersions for the surface states are E˙.p/ D
	0.k/˙ veffp, and the corresponding energy states are

j‰˙i D 1p
2

�˙e�i�p
i

�
: (7.15)

The Berry phase, which is acquired by a state upon being transported around a loop
in the k space, can be evaluated exactly:

�˙ D
I
d�p h‰˙j i @

@�p
j‰˙i D : (7.16)

The Berry phase will play an essential role in transport properties of the surface
states, such as weak antilocalization. An ideal Dirac fermion gas is a super-metal,
in which none of the states can be localized by disorders or impurities.

Hexagonal Warping Effect [17]: Bi2Te3 has a rhombohedral crystal structure with
space group R3m̄. In the presence of a [111] surface, the crystal symmetry is reduced
to C3v, which consists of a threefold rotation C3 around the trigonal z-axis and a
mirror operation M: x ! �x where x is in � �K direction. Under the operations
of C3 and M, the momentum and spin transform as follows:

C3 W p˙ ! e˙i2=3p˙; �˙ ! e˙i2=3�˙; �z ! �z; (7.17a)

M W pC ! �p�; �x ! �x; �y;z ! ��y;z: (7.17b)

In addition, time reversal symmetry gives the constraint

H.p/ D ‚H.�p/‚�1: (7.18)

Keeping the higher-order term up to p3, the effective Hamiltonian for the surface
states has the form

Heff D 	0.p/C veff.px�y � py�x/C �

2
.p3C C p3�/�z: (7.19)

where 	0 D p2=2m�: The cubic term does not break time reversal symmetry.
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7.4 Physical Properties of Topological Insulators

7.4.1 Absence of Backscattering

The absence of backscattering in the topological surface states can be demonstrated
as following: a pair of the Kramers’ states jk;"i and j�k;#i are related by the time
reversal transformation, j�k;#i D ‚ jk;"i. Since the operator‚ is anti-unitary, it
is straightforward that

h�k;#jU jk;"i D � h�k;#j‚U‚ jk;"i
D � hk;"jU j�k;#i� D � h�k;#jU jk;"i ; (7.20)

where U is a time reversal invariant operator. Thus for a potential of a nonmagnetic
impurity V , h�k;#j V jk;"i D 0.

The absence of backscattering of the surface states was studied in the alloy
Bi1�xSbx [18] and in the single crystal Bi2Te3 [19]. Bi2Te3 has only a single Dirac
cone and therefore clearer picture. The constant energy contour at the Fermi energy
of the conduction band of Bi2Te3 is shown in Fig. 7.6. Due to strong warping effect
in Eq. (7.19), the constant energy contour of the surface band of Bi2Te3 is not a
perfect ring but looks like a hexagram. In the scanning tunneling microscopy (STM)
measurement on the surface of Bi2Te3, nonmagnetic Ag atom trimers are deposited,
which can scatter the surface states. The electron wave functions before and after
scattering will interfere with each other and form a standing wave pattern. The fast
Fourier transformation from the real-space standing wave pattern to the momentum
space can reveal the momentum difference before and after the scattering. On the
hexagram, the density of states is not uniform. At some momenta, the density of
states is relatively large, as depicted by the darker area on the hexagram in Fig. 7.6.
The scattering between these high-density momenta is more obvious than others.
The momentum difference between two momenta with totally opposite momenta,
that is, backscattering q D kf �ki D 2 NK. If the backscattering is present, there will

Fig. 7.6 The constant energy
contour of Heff in Eq. (7.19)
The dominant scattering wave
vectors connect two points in
�-K directions on constant
energy contour. ki and kf
denote the wave vectors of
incident and scattered states
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a b

Fig. 7.7 (a) The backscattering between two time-reversed scattering loops. (b) The exhibition of
weak localization and weak antilocalization in magnetoconductivity. The horizontal dashed line
marks the classical conductivity

be a high-value signal along q direction in the fast Fourier transformation spectra,
more specifically, along the NK direction of the surface Brillouin zone. However,
there are apparent gaps along the NK direction in the STM measurement [19]. This
provides a direct evidence of the absence of backscattering of Dirac fermions on the
surface of topological insulator.

7.4.2 Weak Antilocalization

The weak antilocalization is a characteristic feature in transport experiments that
demonstrates the presence of the Dirac fermions in topological insulators. It
appears as the low-field negative magnetoconductivity, that is, negative conductivity
change as a function of applied magnetic field [20–24]. A series of experimental
measurements were reported. So far, all the reported samples in the transport
experiments have low mobility and short mean free path, so the diffusion dominates
the electronic transport. Like many semiconductors, the phase coherence length in
topological insulators can be as long as several hundred nanometers to more than
1�m at low temperatures (below the liquid helium temperature). When the sample
size is comparable with the phase coherence length, the quantum interference
becomes an important correction to the diffusion transport. In materials without or
with ignorable spin-orbit coupling, the constructive quantum interference will en-
hance the backscattering between two time-reversed scattering loops (Fig. 7.7) and
suppress the resistivity. This suppression of resistivity by the quantum interference
leads to the weak localization. It can be destroyed by applying a magnetic field that
breaks the constructive quantum interference. On the other hand, it has been long
time since people had realized that strong spin-orbit scattering in some solids could
also make the quantum interference change from constructive to destructive. As a
result, the conductivity is enhanced and weak antilocalization happens.
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Besides the spin-orbit scattering, the energy band structure with spin-orbit
coupling can also lead to the weak antilocalization, and this case can be understood
in terms of the Berry phase argument. Due to the strong spin-orbit coupling, the
surface states of topological insulator have a two-component spinor wave function,
which describes a momentum-spin lock-in relation of the surface states. After an
electron circled around the Dirac point, its spin orientation was rotated by 2 , and
the wave function accumulates only a  Berry phase [25, 26]. The  Berry phase
changes the interference of the time-reversed scattering loops from constructive to
destructive. The destructive interference will give the conductivity an enhancement,
which can be destroyed by applying a magnetic field, leading to the negative
magnetoconductivity with the cusp.

7.4.3 Shubnikov-de Haas Oscillation

All of early in-plane transport measurements reveal the dominance of the three-
dimensional bulk conductivity [20, 21, 27]. One way to determine the dimension of
the carriers and to distinguish the two-dimensional surface states from the three-
dimensional bulk states is the Shubnikov-de Haas oscillation. In the presence of
a strong perpendicular magnetic field, an electron gas splits into discrete Landau
levels; the separation between the Landau levels increases with the increasing
magnetic field. As the magnetic field increases, the Landau levels cut through the
Fermi surface one by one. When the Fermi level is (not) aligned with a Landau level,
the resistivity drops (increases). As a result, the in-plane measurement will measure
an oscillating resistivity, known as the Shubnikov-de Haas oscillation. Because
Shubnikov-de Haas oscillation only responds to a perpendicular magnetic field, a
two-dimensional electron gas has no Shubnikov-de Haas oscillation for in-plane
magnetic fields, while a three-dimensional electron gas can have Shubnikov-de
Haas oscillation for magnetic field applied along any directions. This makes the
angle dependence of Shubnikov-de Haas oscillation a convenient tool to identify
the dimension of carriers. Shubnikov-de Haas oscillation revealed the coexistence
of three-dimensional bulk carriers with the two-dimensional surface states in the
transport for Bi1�xSbx [27, 28] and Bi2Se3 [29–31]. The Shubnikov-de Haas
oscillation measured in a Bi2Se3 crystal shows that the bulk states dominate
the transport, because it can be measured for arbitrary magnetic field direction.
Shubnikov-de Haas oscillation also revealed the Berry phase information. The
oscillating longitudinal resistivity �xx can be formulated as

�xx � cos

	
2

�
F

B
� �

�

; (7.21)

where F is the oscillation frequency and � is the phase of the oscillation. The Berry
phase can be found as [32] 2.� � 1

2
/. One has zero Berry phase for � D 1

2
and 
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Berry phase for � D 0. The Berry phase is about 0.4, giving another signature that
the bulk states dominate the transport of as-grown topological insulator Bi2Se3.

7.5 Surface Quantum Hall Effect

When the surface states are subjected to a Zeeman field, the massless Dirac fermions
gain a mass and open an energy gap,

H D v.p � �/z C��z D d � � (7.22)

with dx D �vpy , dy D vpx , and dz D �. From the Kubo formula, the Hall
conductance can be expressed as

�xy D e2

2„
Z
dkxdky

.2/2

.fk;C � fk;�/ d.k/ � @kxd.k/ � @kyd.k/

jd.k/j3 (7.23)

where fk;˙ D f1C expŒ.˙ jd.k/j � �/=kBT �g�1 (for details see Sect. A.2). When
the Fermi energy level is located in the gap, that is, � D 0; the Hall conductance is
half quantized at zero temperature:

�xy D � sgn.�/

2

e2

h
: (7.24)

It is noted that the Hall conductance is usually related to the Chern number, which
is always an integer if the Brillouin zone is finite as we prove in Sect. A.1. However,
here the integral range is infinite, which makes it possible that the conductance is
not an integer.

This is regarded as one of the key features of the surface states in topological
insulator. It has a lot of applications in the field of topological insulator. For example,
it plays a decisive role in the development of topological field theory [33].

Although we have a half quantized Hall conductance from the Kubo formula, it
is still not clear whether or not the half quantization of the Hall conductance can be
directly observed in transport measurement. In the integer quantum Hall system, the
current-carrying chiral edge states are responsible for the quantized conductance
measured in transport experiment [34, 35]. It is not immediately clear whether or
not the similar chiral edge state will form on the closed surface of a topological
insulator and how the quantized nature of the edge states can be reconciled with
the prediction of the half quantization of the Hall conductance [33, 36, 37]. To
get a definite answer to these questions, we investigate the multiterminal transport
properties of a three-dimensional topological insulator in the presence of a uniform
spin-splitting Zeeman field.

To illustrate the basic physics, we consider a three-dimensional topological
insulator of the cubic shape. A Zeeman field is applied along the z-direction, as
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Fig. 7.8 (a) Schematic of a three-dimensional topological insulator in a weak Zeeman field and
the formation of the chiral current on the top and bottom surface boundary. (b) A chiral edge state
around the domain wall between the two-dimensional Dirac fermions with the positive and negative
masses. (c) An edge mode is splitted into two halves separating by a metallic area (Adapted
from [42])

shown in Fig. 7.8a. Because the bulk of the system is insulating, it is effectively a
closed two-dimensional surface with six facets. The effective Hamiltonian of the
Dirac fermions for the surface states can be written as [16, 38]

Heff.k/ D v .k � �/ � n � gk�Bhk�k � g?�Bh? � �?; (7.25)

where n denotes the normal vector of the surface, � � f�x; �y; �zg are the Pauli
matrices, hk (�k) and h? (�?) are the Zeeman field (Pauli matrix) components
parallel and perpendicular to the normal vector, respectively, and gk and g? are
the corresponding spin g-factors. Note that the surface states have anisotropic spin
g-factors due to the strong spin-orbit coupling of the bulk band: gk is the same as
that of the bulk material, and g? is renormalized by bulk band parameters and is
usually strongly suppressed [16, 38]. Different facets of the surface have different
effective Hamiltonian respective to different normal vectors n. For the top and the
bottom facets, the effective Hamiltonian can be written as

Heff D ˙v.kx�y � ky�x/C�z�z; (7.26)

where C and � are for the top and bottom surfaces, respectively, and �z �
�gk�Bh. The spectrum will open a gap on these facets, and the Dirac fermions
gain a mass ˙�z. On the other hand, the effective Hamiltonian for the side facets
can be written as

Heff D vŒ.kx C�h/�z � kz�x�; (7.27)

where �h � g?�Bh. In this case, the Zeeman field simply shifts the Dirac point
from .kx D 0; ky D 0/ to .��h; 0/. When the Fermi level is located in the gap of
the top and bottom surface, the system becomes effectively two insulating domains
separated by a conducting belt with massless Dirac fermions.
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Fig. 7.9 Schematic
illustration of the
three-dimensional (3D)
device with two-dimensional
(2D) semi-infinite metallic
leads

A chiral edge state will form and is concentrated around the boundaries
between the insulating domains and the metallic belt as illustrated in Fig. (7.8)b, c.
Effectively, the chiral edge state is split into two halves, each of which is circulating
around the boundary of one of the domains and carrying one half of the conductance
quantum e2=h. Such a picture reconciles the apparent conflict between the half
quantization and the index theorem. After establishing the existence of the chiral
surface-edge states, we can calculate the Hall conductance numerically using the
Landauer-Büttiker formalism [39–41]. The setup of the device is illustrated in
Fig. 7.9; four identical two-dimensional metallic leads (� D 1; 2; 3; 4) are attached
to the top square surface of a semi-infinite three-dimensional topological insulator,
acting as the measurement electrodes. The Zeeman field is normal to the top surface,
and the Fermi level is located in the gap. The multiterminal conductance can be
deduced from the transmission coefficient Tpq from the terminal p to terminal q,

Tpq D TrŒ�pG
r�qG

a� (7.28)

where �p is determined by the self-energy at the terminal p [40]. The advanced and
retarded Green’s functions are given by

GR;A.E/ D 1

E �Hc �P4
pD1 …

R;A
p

; (7.29)

where E is the electron energy and Hc is the model Hamiltonian for three-
dimensional system. The retarded and advanced self-energy terms are introduced
for the semi-infinite lead p [41].

In this way, the transmission coefficients as a function of the thickness of the
sample can be calculated numerically. When the sample is thick enough, it was
found that the transmission coefficients between the two neighboring terminals p
and q have the relation [42]

Tpq � Tqp D 1

2
: (7.30)
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A straightforward way to measure the “half quantized” Hall conductance in the
four-terminal setup is to apply a voltage between the terminals 1 and 3 (V13) and
measure the current between the terminals 2 and 4 (I24). It is easy to show that
the cross conductance �24;13 � I24=V13 D .e2=2h/.T12 � T21/, yielding e2=4h
for the half quantization. The measurement using the usual six-terminal Hall bar
configuration could be more tricky due to the presence of the metallic side facets,
which give rise to the finite longitudinal conductance �L. In the limit of thick sample
with �L 
 e2=h, the Hall conductance �H approaches .4e2=h/.Tpq � Tqp/ (if we
assume Tpq � Tqp is the same between all neighboring leads), which yields 2e2=h
for the half quantization. It can be compared with the case of the quantum Hall effect
where �L vanishes when �H shows quantization [42].

7.6 Surface States in a Strong Magnetic Field

We come to study the surface states subjected to a uniform magnetic field. We first
consider a geometry of strip with width Ly and thicknessH , which are much larger
than the magnetic length lB and the spatial distribution � of the surface states.
Suppose the magnetic field B (alone the z-axis) is perpendicular to the slab. We
focus on the top plane. The periodic boundary condition is adopted along the x-axis
and the open boundary condition along the y-axis. In this way, the wave number kx
is still a good quantum number, and ky is substituted by �i@y . We take the Landau
gauge for the vector potential, Ax D �By and Ay D 0. In this way, the effective
model Eq. (7.22) in a B field can be expressed in

Heff D vF
�
.„kx � eBy/�y C i„@y�x

�C��z: (7.31)

To solve the problem, it is convenient to define

a.y0/ D i
lBp
2
Œ@y C l�2B .y � y0/� (7.32)

where the magnetic length lB D p„=eB and y0 D l2Bkx assuming eB > 0. The
defined operators a and a� satisfy the commutation relation,

Œa.y0/; a
�.y0/� D 1: (7.33)

For simplicity, we introduce a dimensionless parameters m0 D �p
2„vF =lB

. In this

way, we obtain a dimensionless Schrödinger equation:

�
m0 a

a� �m0

��
'1

'2

�
D E

vF
p
2e„B

�
'1

'2

�
: (7.34)
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The allowed values for y0 are separated by ıy0 D 2l2B=Lx for a periodic boundary
condition with length Lx and are limited within 0 < y0 < Ly . The solution is a
function of the good quantum number kx or y0 D l2Bkx . When y0 is far away from
two edges of y D 0 and y D L, the two components'1 and '2 will vanish at the two
boundaries. Let j0i the lowest energy state for simple harmonic oscillator such that
a.y0/ j0i D 0. jni D 1

.nŠ/1=2
.a�.y0//

n j0i is the eigenstates of N.y0/ D a�.y0/a.y0/

with eigenvalue n (an integer). In this case, the energy eigenstates in Eq. (7.34) are

jn; ˛i D
�

sin �n;˛ jn � 1i
cos �n;˛ jni

�
(7.35)

where tan �n;˛ D
p
n

˛
p
nCm20�m0

and ˛ D ˙1 [43]. The Landau energy is given by

En;˛ D ˛vF
q
2e„B �nCm2

0

�
; (7.36)

which are highly degenerate for different values of y0. The number of the allowed
values of y0;NL D Ly=ıy0 D 2LxLy=l

2
B; which is called the degeneracy of the

Landau levels.
It should be emphasized that the zero mode E0 D �vF

p
2e„B jm0j for n D 0

and the eigenstate is fully saturated, j0; 0i D
�
0

j0i
�

. The energy expressions yield

an energy gap �E D jEnD˙1j � E0 between the zero mode and the states of n D
˙1. For m0 D 0, the energy gap is about �E � 800K for Bi2Se3 at B D 10T,
which makes it possible that the quantum Hall effect can be measured even at room
temperature just as in single layer graphene [44].

Unlike the conventional two-dimensional electron gas where the Landau levels
are evenly spacedEn D „!c.nC 1

2
/ and the lowest Landau level of the conventional

two-dimensional electron gas has a nonzero energy „!c=2 (!c is the cyclotron
frequency), the Landau-level energies of massless Dirac fermions have a square-
root dependence on magnetic field B and the level index n, given by

En D sgn.n/vF
p
2eB„jnj; (7.37)

where the level index n D 0;˙1;˙2; : : :. Moreover, Dirac fermions can have zero
Landau-level index n D 0, even negative level indices n < 0. This square-root de-
pendence has been observed in the measurement of scanning tunneling spectroscopy
[45, 46]. Despite the observation of the Landau levels in the STM measurement, an
in-plane measurement with a Hall-bar setup still poses an experimental challenge,
so the quantum Hall conductance has not yet been observed for the surface states of
topological insulator.
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7.7 Topological Insulator Thin Film

Thin film of three-dimensional topological insulator may provide an alternative
way to realize the quantum spin Hall effect. It is an example to reduce a three-
dimensional topological insulator to two-dimensional topological insulator. The
surface states have spatial distribution, which can be characterized by a length scale
�s . When this length scale is comparable with the thickness of the thin film, the
wave functions of the two surface states from top and bottom surfaces will overlap
in space. Consequently, the two surface states open gaps. Thus the surface states of
the thin film can be described by a two-dimensional massive Dirac model [16, 38].

7.7.1 Effective Model for Thin Film

Consider an extra-thin film in the x-y plane such that kx and ky are good quantum
numbers, and the thickness of the thin film along z-direction is denoted as L. To
establish an effective model for an ultrathin film, we still start with the electronic
model in Eq. (7.1) and follow the approach to derive the effective model for the
surface states where only one surface is considered in Sect. 7.3. The boundary
condition in the present problem is different since two surfaces should be considered
simultaneously. If the thin film is so thick that the surface states at the top and bottom
layers are well separated, that is, L 
 ��1

1 ; �
�1
2 the characteristic scales of the

surface states defined in Eq. (7.9), the thin film consists of two independent massless
Dirac cones when the Fermi level is located in the bulk gap. However, if the thick-
ness L is comparable with ��1

1 and ��1
2 , the two surface states at the top and bottom

layers will be coupled together and open an energy gap at the Dirac point. Thus the
massless Dirac electrons gain a mass and evolve into massive Dirac electrons.

At kx D ky D 0, we have four roots for � in Eq. (7.7): ˙�1 and ˙�2 as
functions of energy E . Thus the final solution for the wave function should be a
linear superposition of these solutions, for example,

j‰1i D
4X

iD1
ci

0

B
B
@

ai
0

bi
0

1

C
C
A e

�i z: (7.38)

We take the Dirichlet boundary condition for the wave functions at z D ˙L=2,
that is, ‰.z D ˙L

2
/ D 0. Then we can obtain a set of transcendental equations to

determine the values of E , �1, and �2 as function of thickness L:

˛21�
2
2 C ˛22�

2
1

˛1˛2�1�2
D tanh�1L

2

tanh�2L
2

C tanh�2L
2

tanh�1L
2

; (7.39)
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note that where ˛1;2 D E � C �M � .D1 C B1/�
2
1;2. In Eq. (7.39), �˛ define the

behavior of the wave functions along z-axis and are functions of the energyE

�˛.E/ D
s

�F C .�1/˛�1pR
2.D2

1 � B2
1 /

; (7.40)

where for convenience we have defined F D A2? C 2D?.E � C/ � 2B?M and
R D F 2 �4.D2

? �B2
?/Œ.E �C/2�M2�. The equations in (7.39) and (7.40) can be

solved numerically, and give two energies at the � point, that is, EC andE�, which
define an energy gap

� � EC �E�: (7.41)

We can find two solutions of j‰1i: '1 for EC and 
1 for E� and other two
solutions for j‰2i: '2 for EC and 
2 for E�. For details, readers may refer to the
references [16, 38]. By using these four solutions as basis states and rearranging
their sequence following (note that each basis state is a four-component vector)�
'1; 
2; 
1; '2

�
; we can map the original Hamiltonian to the Hilbert space spanned

by these four states and reach a new low-energy effective Hamiltonian for the
ultrathin film,

Heff D
	
hC.k/ 0

0 h�.k/



(7.42)

in which

h�z.k/ D E0 �Dk2 � „vF .kx�y � ky�x/C �z

�
�

2
� Bk2

�
�z: (7.43)

Note that here the basis states of Pauli matrices stand for spin-up and spin-down
states of real spin. In Eq. (7.43), we have introduced a hyperbola index �z D ˙1
(or ˙). Unlike the momentum correspondence in graphene, it is the �z to ��z

correspondence in the present case. Therefore, the dispersions of h˙ are actually
doubly degenerate, which is secured by time reversal symmetry. Here, �z D ˙ are
used to distinguish the two degenerate hyperbolas, hC.k/ and h�.k/ describe two
sets of Dirac fermions, and each show a pair of conduction and valence bands with
the dispersions:

"˙.k/ D E0 �Dk2 ˙
s�

�

2
� Bk2

�2
C .„vF /2k2; (7.44)

where C and � correspond to the conduction and valence bands, respectively. The
eigenstates for "˙ are

u˙.k/ D 1

ku˙k

"�
�
2

� Bk2� �z ˙
q�

�
2

� Bk2
�2 C .„vF /2k2

�i„vF kC

#

(7.45)



132 7 Three-Dimensional Topological Insulators

a b c

d

e

f

g

Fig. 7.10 (a)–(c) Twofold degenerate (�z D ˙1) energy spectra of surface states for thicknesses
L D 20; 25; 32 Å (solid lines), and L ! C1 (dash lines). The gray area corresponds to the bulk
states. The parameters are M D 0:28 eV, A1 D 2:2 eVÅ, A2 D 4:1 eVÅ, B1 D 10 eVÅ2, B2 D
56:6 eVÅ2, C D �0:0068 eV, D1 D 1:3 eVÅ2, and D2 D 19:6 eVÅ2. (d)–(g) The calculated
parameters for the new effective model Heff as a function of thickness L (Adapted from [38])

with

ku˙k D

vu
uu
t

2

4
�
�

2
� Bk2

�
�z ˙

s�
�

2
� Bk2

�2
C .„vF /2k2

3

5

2

C .„vF /2k2:

(7.46)

The energy gap � and other model parameters are functions of thickness L
and can be calculated numerically. The numerical results of �, vF , D, and B are
presented in Fig. 7.10. It is noted that jDj must be less than jBj, otherwise the energy
gap will disappear, and all discussions in the following will not be valid. The �
terms play a role of mass term in 2C 1 Dirac equations.
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In the large L limit,

vF D Ak
„

s

1 � D2?
B2?

: (7.47)

The dispersion relation is given by

"c=v.k/ D ˙vF „k (7.48)

for small k. As a result, the energy gap closes at k D 0. The two massless Dirac
cones are located near the top and bottom surfaces, respectively, as expected in a
three-dimensional topological insulator.

In a small L limit,

vF D Ak
„ ; (7.49)

and

� D 2B?2

L2
: (7.50)

The ratio of the two velocities in the limits is

� D 1
r
1 � D2

?

B2
?

: (7.51)

It is noted that the velocity and energy gap for an ultrathin film are enhanced for a
thinner film.

7.7.2 Structural Inversion Asymmetry

Recent experiments [47, 48] revealed that the substrate on which the film is grown
influences dramatically electronic structure inside the film. Because the top surface
of the film is usually exposed to the vacuum and the bottom surface is attached to
a substrate, the inversion symmetry does not hold along z-direction, leading to the
Rashba-like energy spectra for the gapped surface states. In this case, an extra term
that describes the structure inversion asymmetry needs to be taken into account in
the effective model.

Without loss of generality, we add a potential energy V.z/ into the Hamiltonian.
Generally speaking, V.z/ can be expressed as V.z/ D Vs.z/ C Va.z/, in which
Vs.z/ D ŒV .z/C V.�z/�=2 D Vs.�z/ and Va.z/ D ŒV .z/ � V.�z/�=2 D �Va.�z/.
The symmetric term Vs could contribute to the mass term � in the effective model,
which may lead to an energy splitting of the Dirac cone at the � point. Here we
focus on the case of the antisymmetric term, V.z/ D Va.z/, which breaks the
top-bottom inversion symmetry in the Hamiltonian. A detailed analysis gives the
effective Hamiltonian for structure inversion asymmetry:
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V SIA
eff D

2

66
4

0 0 QV 0

0 0 0 QV �
QV � 0 0 0

0 QV 0 0

3

77
5 ; (7.52)

where

QV D
Z L=2

�L=2
d zh'1jVa.z/j
1i: (7.53)

When the term of structure inversion asymmetry is included, the Hamiltonian in
Eq. (7.42) with V SIA

eff Eq. (7.52) gives

E1;˙ D E0 �Dk2 ˙
s�

�

2
� Bk2

�2
C .j QV j C „vFk/2; (7.54a)

E2;˙ D E0 �Dk2 ˙
s�

�

2
� Bk2

�2
C .j QV j � „vFk/2; (7.54b)

where the extra index 1 (2) stands for the inner (outer) branches of the conduction
or valence bands. Consequently, both the conduction and valence bands show
Rashba-like splitting in the presence of structure inversion asymmetry. An intuitive
understanding of the energy spectra can be given with the help of Fig. 7.11. On the
left is for a thicker freestanding symmetric topological insulator film, and it has a
single gapless Dirac cone on each of its two surfaces, with the solid and dash lines
for the top and bottom surface, respectively. The two Dirac cones are degenerate.
The top of Fig. 7.11 indicates that the inter-surface coupling across an ultrathin film
will turn the Dirac cones into gapped Dirac hyperbolas. On the bottom of Fig. 7.11,
the structure inversion asymmetry lifts the Dirac cone at the top surface while lowers
the Dirac cone at the bottom surface. The potential difference at the top and bottom
surfaces removes the degeneracy of the Dirac cones. On the right of Fig. 7.11, the
coexistence of both the inter-surface coupling and structure inversion asymmetry
leads to two gapped Dirac hyperbolas which also split in k-direction.

7.7.3 Experimental Data of ARPES

The thickness-dependent band structure of molecular beam epitaxy grown ultrathin
film Bi2Se3 was investigated by angle-resolved photoemission spectroscopy by
several groups [47, 48]. The energy gap due to the interlayer coupling has been
observed experimentally in the surface states of ultrathin film Bi2Se3 below the
thickness of 6QL. The spectrum splitting caused by structure inversion asymmetry
was also confirmed. The observed experimental data can be fitted by the dispersion
in Eq. (7.54) very well (Fig. 7.12).
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Fig. 7.11 The evolution of
the doubly degenerate gapless
Dirac cones for the 2D
surface states, in the presence
of both inter-surface coupling
and structure inversion
asymmetry (SIA), into gapped
hyperbolas that also split in
the k-direction. The blue solid
and green dashed lines
correspond to the states
residing near the top and
bottom surfaces, respectively
(Adapted from [16])

a

f g h

b c d e

Fig. 7.12 ARPES spectra of Bi2Se3 thin film at room temperature. (a)–(e) ARPES spectra of 1,
2, 3, 4, 5, and 6 quintuple layer (QL) along � �K direction. (f)–(h) Energy distribution curves of
(c), (d), and (e). The pink dashed lines in (b) represent the fitted curves using formula in Eq. (7.44).
The blue and red dashed lines in (c)–(e) represent the fitted curves using formula in Eq. (7.54)
(Adapted from [47])

The gap of the surface states is caused by the spatial confinement of thin film,
which does not break time reversal symmetry. This is different from the gap opening
of the surface states in a Zeeman field or magnetic impurity doping.
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7.8 HgTe Thin Film

HgTe is a semimetal with an inverted band structure. Usually a strain will induce
an energy gap and force the HgTe to evolve into a topological insulator. However,
it is technically difficult to applying a strong strain on the sample to make a
semimetal insulating in experimental condition. The finite size effect provides a
practical way to open an energy gap in the bulk state when the dimensionality of the
sample is reduced from three dimensions to two dimensions as those in a quantum
well [14].

When the film is thin enough, the finite size caused band gap becomes obvious.
In this case, the finite confinement-induced sub-bands are far away from the low-
energy regime. We can then use the quantum well approximation hkzi D 0; hk2z i '
.=L/2. Using these relations in the Hamiltonian in Eq. (6.62) and choosing the
basis set in the sequence (j 1i, j 3i, j 5i, j 2i, j 6i, j 4i), we can obtain a two-
dimensional six-band Kane model:

H.k/ D
�
h.k/ 0

0 h�.�k/

�
; (7.55)

where

h.k/ D

0

B
@

h11 � 1p
2
PkC 1p

6
Pk�

� 1p
2
Pk� h22

p
3�Bk2�

1p
6
PkC

p
3�Bk2C h33

1

C
A (7.56)

with

h11 D Eg C B.2F C 1/.k2k C hk2z i/; (7.57)

h22 D �.�1 C �/Bk2k � .�1 � 2�/Bhk2z i; (7.58)

h33 D �.�1 � �/Bk2k � .�1 C 2�/Bhk2z i: (7.59)

The system keeps time reversal symmetry, and the representation of the symmetry
operation in the new set of basis is given by T D K � i�y ˝ I3�3, where K is
the complex conjugation operator, �y , and I denote the Pauli matrix and identity
matrix, respectively.

We can study the two blocks separately since they are time reversal counterparts
of each other. Here we focus on the upper block first. At kx D 0, the boundaries of
�6, light hole (LH), and heavy hole (HH) are at E D Eg C B.2F C 1/hk2z i, E D
�.�1 � 2�/Bhk2z i, and E D �.�1 C 2�/Bhk2z i, which are controllable by choosing
film thickness L. Down to L � 30 Å, �6 band flips up and exchanges position
with HH, the system is still nontrivial. Further down to L � 20 Å, �6 flips up and
exchanges with the conduction band. The band structure becomes trivial. Using the
tight binding approximation, we can transform h.k/ into a tight binding model on a
two-dimensional lattice. In Fig. 7.13, we show the local density of states on the edge
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c

d

a

b

Fig. 7.13 Local density of states at the edge of thin films at different thickness using the
Hamiltonian in Eq. (7.56) with 2D lattice model in the tight binding approximation. (a) L = 28A;
(b) L = 25A; (c) L = 20A; (d) L = 16A (Adapted from [14])

a semi-infinite film for h.k/. When L > 20 Å, the edge states are found connecting
the valence and conduction bands. After the system becomes trivial whenL < 20 Å,
the edge states do not cross the band gap anymore; instead they only attach to the
valence band. At the critical point L D 20 Å, the valence band and conduction
band touch and form a linear Dirac cone at the low-energy regime. This shows that
by controlling the film thickness, it is possible to obtain a single-valley Dirac cone
for each spin block without using the topological surface states [49]. Notice that in
Fig. 7.13, we can also see the edge states submerging in the valence bands.
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Chapter 8
Impurities and Defects in Topological Insulators

Abstract Impurities and defects in topological insulators can be regarded as a
boundary of the system. The bound states may be formed around these impurities
or defects for the same reason as the formation of the edge or surface states.

Keywords In-gap bound state • Topological defects • Wormhole effect • Witten
effect

Topological insulators are distinguished from conventional band insulators ac-
cording to the Z2 invariant classification of the band insulators that respect time
reversal symmetry. Variation of the Z2 invariants at their boundaries will lead to
the topologically protected edge or surface states with the gapless Dirac energy
spectrum. Impurities or defects are inevitably present in topological insulators. They
may change the geometry or topology of the systems and induce the bound states as
those near the boundary. Reminding that the boundary state is a manifestation of the
topological nature of bulk bands, one should start with the examination of the host
bulk to know how impurities or defects affect the electronic structure. It was known
that a single impurity or defect can induce bound states in many systems, such as in
the Yu-Shiba state in s-wave superconductor [1, 2] and in d -wave superconductors
[3]. In this chapter, we study that bound states around a single vacancy or defect in
the bulk energy gap of topological insulators.

8.1 One Dimension

When a ı potential V.x/ D V0ı.x/ is present in an infinite one-dimensional
topological insulator, the equation for the wave function reads

�
vpx�x C �

mv2 � Bp2x
�
�z C V0ı.x/

�
‰.x/ D E‰.x/; (8.1)
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where ‰.x/ is a two-component spinor. The continuity of the wave function at x D
0 requires

lim
	!0C

‰.	/ D ‰.�	/: (8.2)

In addition, the integral of Eq. (8.1) around the ı potential leads to

lim
	!0C

Œ @x‰jxD	 � @x‰jxD�	� D � V0

B„2 �z‰.0/; (8.3)

that is, the derivative of the wave function is not continuous at x D 0. To find a
bound state near x D 0, the electron wave function should vanish when x ! ˙1.

For x > 0,

‰.x > 0/ D cC
1 e

�x=�1 C cC
2 e

�x=�2 ; (8.4)

and for x < 0,

‰.x < 0/ D c�
1 e

Cx=�1 C c�
2 e

Cx=�2 ; (8.5)

with ��1
1;2 D jvj

2jBj„ .1˙ p
1 � 4mB/.

Substituting the wave function into Eqs. (8.2) and (8.3) at x D 0; one obtains two
transcendental equations for the bound state energy

vu
u
t
1 � 2mB C 2jmBj

s

1 � E2

m2v4
D V0

2„v

	 ˙mv2 � Ep
m2v4 � E2

� sgn.B/



; (8.6)

where up to two solutions can be found. When V0 D 0 and the ı potential vanishes,
there is no solution to equation which satisfies the boundary condition.

The formation of the bound states essentially has the same origin as the boundary
states in topological insulators (Fig. 8.1). Consider an infinite one-dimensional
topological insulator, in which the energy gap separates the positive and negative
spectra. If we cut the chain at one point, saying x D 0, then we produce two open
boundaries at the two sides of x > 0 and x < 0. There exists a pair of states (end
states) at the boundaries with the same energy

‰.˙/ D Cp
2

�˙sgn.B/
i

�
.e�x=�1 � e�x=�2/; (8.7)

with C D p
2.�1 C �2/=j�1 � �2j. “ ˙” indicates that the semi-infinite chain lies in

the region x > 0 or < 0. The energies of these states lie inside the bulk gap, and
are equal to 0. Now we paste the two ends again with some kind of “glue potential”;
it is possible that these end states can be trapped or mixed around the connecting
point and evolve into in-gap bound states. The shapes of the possibility density of
the wave function of our solutions for a ı�potential support this intuitive picture for
the formation of the in-gap bound states. An impurity locating at x D 0, unlike the
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a

b

Fig. 8.1 In-gap bound states in one-dimensional topological insulator. (a) The presence of end
states with zero energy at the open boundaries of a broken one-dimensional topological insulator.
(b) The zero-energy end states evolve into in-gap bound states when the two open boundaries are
connected by an impurity (Adapted from [4])

open boundary, allows tunneling between the two ends of the chain and will affect
the behavior of the wave function near the point of x D 0. For a ı�potential, the
bound states induced by it are always there regardless of its strength.

For comparison, consider an ordinary insulator of mB < 0: A pair of bound
states induced by a ı�potential is also possible when 0 < jV0j < 2„jvjp1 � 2mB,
but vanishes after jV0j exceeds 2„jvjp1 � 2mB, indicating the distinct origin from
those formB > 0.

8.2 Integral Equation for Bound State Energies

The bound states can be formally obtained by solving an integral equation. Although
in most cases the integral equation cannot be solved analytically, it does provide
rich information about the existence of bound states under some certain impurity
potentials in various dimensions. The modified Dirac equation with a potential V.r/
can be written as

ŒE �H0.r/�‰.r/ D V.r/‰.r/: (8.8)

The wave function ‰.r/ can be expanded by its Fourier transformation compo-
nents as

‰.r/ D
X

p0

up0eip
0 �r=„: (8.9)

Thus, one obtains

ŒE �H0.p/�up D
X

p0

Vpp0 up0 ; (8.10)
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where Vpp0 D R
drV.r/e�i.p�p

0
/�r=„. While this equation cannot be solved ana-

lytically in general, one can find the solution if Vpp0 is taken to be a factorizable
potential [5]

Vpp0 D V0�
�.p/�.p0/: (8.11)

In this case,

up D V0�
�.p/

E �H0.p/

X

p0

�.p0/up0 : (8.12)

Multiplying �.p/ in Eq. (8.12) and summarizing over p, it follows that

"
X

p

V0�
�.p/�.p/

E �H0.p/
� 1

#
X

p0

�.p0/up0 D 0: (8.13)

Thus, one obtains

det

"
X

p

V0�
�.p/�.p/

E �H0.p/
� 1

#

D 0: (8.14)

For a magnetic impurity, it will be more complicated.
More generally, if the system is isotropic and Vpp0 can be expanded into its partial

wave components

Vpp0 D
1X

lD0

lX

mD�l
V .jpj ; ˇˇp0ˇˇ/Y ml .�p/Y

�m
l .�p0/ (8.15)

with a factorizable V.jpj ; jp0j/ D �lwlp.w
l
p0/

� where Y ml .�p/ is the spherical
harmonic Bessel function, the solution can be determined.

8.2.1 ı�potential

For a delta potential V.r/ D V0ı.r/, Vpp0 � V0. A nontrivial solution requires

det

"
X

p

V0

E �H0.p/
� 1

#

D 0; (8.16)

or

det

	Z
ddp
.2„/d

V0

E �H0.p/
� 1



D 0; (8.17)

where d is the dimensionality.
For the one-dimensional case, the modified Dirac Hamiltonian can be easily

inverted. After some algebra, we have
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Z C1

0

dkx


ŒEA=B ˙ .mv2 � B„2k2x/�V0
E2
A=B � .mv2 � B„2k2x/2 � v2„2k2x

D 1; (8.18)

where EA and EB denote the energy solution for “C” and “�,” respectively. From
this equation we can recover the result in Sect. 8.1.

For the two-dimensional case, one can obtain a similar integral equation for the
two-dimensional bound state energies,

Z C1

0

kdk

2

ŒEA=B ˙ .mv2 � B„2k2/�V0
E2
A=B � .mv2 � B„2k2/2 � v2„2k2 D 1; (8.19)

where k2 D k2xCk2y . However, the integral in Eq. (8.19) will logarithmically diverge
when jkj ! C1. This means in two-dimensional, an impurity with ı-potential
cannot trap any bound states. Similarly in three dimensions, although the integration
equation is more complicated, divergence also exists in the k-integration, which
excludes the possibility of three-dimensional bound states under ı-potential.

Considering the Brillouin zone of lattice crystal is always finite, it is possible to
form bound states under ı�potential by introducing a reasonable cutoff of k.

8.3 Bound States in Two Dimensions

The formation of the in-gap bound states can be readily illustrated by reviewing the
edge states in two-dimensional topological insulators. As the Z2 index varies across
the boundary, the edge states arise in the gap with the gapless Dirac dispersion.
Unlike the quantum Hall effect in a magnetic field, spin-orbit coupling respects time
reversal symmetry, so the resulting edge states appear in pairs, of which one state
is the time reversal counterpart of the other, propagating in opposite directions and
with opposite spins (Fig. 8.2b). Now imagine that the system edge is bent into a hole
or punch a large hole in the system, the edge states will circulate around the hole as
the periodic boundary conditions along the propagating direction remain unchanged
(Fig. 8.2d). The dispersion of this edge state is proportional to

�
nC 1

2

�„=R (n„ is
for orbital angular momentum). While shrinking the radius of the hole, most of the
edge states will be expelled into the bulk bands as the energy separation between
the states becomes larger and larger for smaller R. It is found that at least two
degenerate pairs of the states will be trapped to form the bound states in the gap as
the hole shrinks into a point defect. This mechanism of the formation of the bound
states can be realized in topological insulator in all dimensions.

In two dimensions, the modified Dirac model can be reduced into two indepen-
dent 2 � 2 Hamiltonians

h˙ D .mv2 � Bp2/�z C v.px�x ˙ py�y/; (8.20)
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a b c

f e d

Fig. 8.2 Schematic description of the formation of vacancy-induced in-gap bound states in two-
dimensional topological insulators. (a) and (b) A pair of helical edge states traveling along the edge
of a two-dimensional topological insulator with the gapless Dirac dispersion. (c) and (d) When the
edge is bent into a hole, the helical edge states evolve to circulate around the hole. (e) and (f)
The circulating edge states may develop into bound states as the hole shrinks into a point or being
replaced by a vacancy (Adapted from [6])

with h� the time reversal counterpart of hC [7–9]. It is convenient to adopt the polar
coordinates .x; y/ D r.cos'; sin '/ in two dimensions. In the coordinate

p˙ D �i„e˙i�
�
@r ˙ i@�

r

�
; (8.21a)

p2 D �„2
�
@2r C 1

r
@r C 1

r2
@2�

�
: (8.21b)

Here these equations are solved under the Dirichlet boundary conditions
(Fig. 8.3a), that is, the center of the two-dimensional topological insulator is
punched with a hole of radius R; thus, the wave function is required to vanish
at r D R and r D C1. Due to the rotational symmetry of hC, it is found that the
z-component of the total angular momentum Jz D �i„@� C .„=2/�z satisfies

ŒhC; Jz� D 0 (8.22)

and provides a good quantum number. The wave function has a general form

'l.r; �/ D
�

fl.r/e
il�

gl .r/e
i.lC1/�

�
(8.23)
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a b

c d

Fig. 8.3 Two-dimensional in-gap bound states. (a) A two-dimensional topological insulator with
a hole of radiusR at the center. (b) and (c) Energies (E in units of the band gap�) of in-gap bound
states circulating around the hole as functions of the hole radius. mj is the quantum number for the
z-component of the total angular momentum of the circulating bound states. In (b), m=v=B=„ D
1; in (c), mv2 D �10meV, B„2 D �686meV�nm2 , and „v D 364:5meV�nm (Adopted from
Ref. [7]); in (d), mv2 D 0:126 eV, B„2 D 21:8 eVÅ2, „v D 2:94 eVÅ(Adopted from Ref. [11]).
� D 2mv2 for 0 < mB < 1=2, and � D .v2=jBj/p4mB � 1 for mB > 1=2. The gray areas
line mark the bulk bands (Adapted from [6])

with an integer l , satisfying that Jz'l.r; �/ D j„'l .r; �/ with j D l C 1
2
. Thus, the

equation is reduced that for the radial part of the wave function,

heff

�
fl .r/

gl .r/

�
D E

�
fl.r/

gl .r/

�
; (8.24)

where

heff D
 
mv2 C „2B.@2r C @r

r
� l2

r2
/ �i„v.@r C lC1

r
/

�i„v.@r � l
r
/ �mv2 � „2B.@2r C @r

r
� .lC1/2

r2
/

!

: (8.25)
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We take the trial wave function

fl .r/ D clKl.�r/; (8.26a)

gl .r/ D dlKlC1.�r/; (8.26b)

whereKn.x/ is the modified Bessel function of second kind. The secular equations
give four roots of �n (D ˙�1;˙�2) as functions of E:

�21;2 D v2

2B2„2

2

41 � 2mB ˙
s

1 � 4mB C 4B2E2

v4

3

5 : (8.27)

Using the Dirichlet boundary conditions at r D R and r D C1, we arrive at the
transcendental equation for the bound-state energies

�21 C mv2 � E

B„2
�1

KlC1.�1R/
Kl.�1R/

D
�22 C mv2 � E

B„2
�2

KlC1.�2R/
Kl.�2R/

: (8.28)

Since there are more than one value of �, the wave function should be the linear
combination of the modified Bessel functions, for example, fl.r/ D c1Kl.�1r/ C
c2Kl.�2r/. With the boundary condition at r D R, the wave function 'l.r; �/ for
hC turns out to have the form

2

6
66
6
6
4

Kl.�1R/

KlC1.�1R/
fl.r/e

il�

i
�21 C mv2 � E

B„2
.�1v=B„/ flC1.r/ei.lC1/�

3

7
77
7
7
5

(8.29)

with

fl .r/ D Kl.�1r/

Kl.�1R/
� Kl.�2r/

Kl.�2R/
: (8.30)

The solution for h� can be derived following the same procedure.
In Fig. 8.3c, d, we show the bound-state energies as functions of R for an ideal

case (Fig. 8.3b, mB D 1), for the HgTe quantum well (Fig. 8.3c, mB D 0:05),
and for a two-quintuple layer of Bi2Se3 thin film (Fig. 8.3d, mB D 0:32). For
a macroscopically large R, we found an approximated solution for the energy
spectrum of hC as E D �

l C 1
2

� „vsgn.B/=R. As the time reversal copy of hC,
h� has an approximated spectrum E D � �l C 1

2

�„vsgn.B/=R. They form a series
of paired helical edge states, in good agreement with the edge-state solutions in the
two-dimensional quantum spin Hall system [10] if we take k D �

l C 1
2

�
=R for a

large R. When shrinking R, the energy separation of these edge state �E D „v =R
increases with shrunk R, and the edge states with higher l will be pushed out of
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the energy gap gradually. However, we observe that for mB > 0, the state with
l D 0 always stay in the energy gap, and as R ! 0, their energies approach to
E D ˙.v2=2jBj/p4mB � 1 for mB > 1

2
or ˙mv2 for 0 < mB < 1

2
. When

comparing the details of Fig. 8.3c with d, we find that the two pairs of states for
l D 0 have quite different asymptotic behaviors in the spectrum when R decreases
to zero. This can be explained by noting the fact that there is no in-gap bound state
when mB < 0, suggesting mB D 0 is the critical point for the topological phase
transition. The bound state with smallermB is closer to the transition point and thus
tends to enter the bulk more easily.

The solutions verify the formation of the in-gap bound states as shown in Fig. 8.2.
Therefore, considering the symmetry between hC and h�, we conclude that in the
presence of vacancy or defect, there always exist at least two pairs of bound states
in the energy gap in the two-dimensional quantum spin Hall system.

8.4 Topological Defects

There are several types of topological defects, such as magnetic monopoles, vortex
line, or domain walls. In this book, we have already solved the problem of domain
wall with a kind of mass distribution in Sect. 2.2. The solution of zero energy is quite
robust against the distribution of domain wall. The solution has a lot of applications
in polymers. The charge and spin carriers in one-dimensional polyacetylene are
topological excitations generated by the domain wall. Here we present a solution
of zero-energy mode for a quantum vortex in the quantum Hall system and its
application to three-dimensional system.

8.4.1 Magnetic Flux and Zero-Energy Mode

When a magnetic flux is threading the hole, the energy levels of the in-gap bound
states can be continuously manipulated (Fig. 8.4). Consider a magnetic flux � that
threads through the hole of a radius R. We perform the Peierls substitution p !
p C eA in hC in Eq. (8.20) by taking the gauge A D .ˆ=2r/e� , which still keeps
mj a good quantum number. Therefore, the eigenfunctions of this new Hamiltonian
can be readily expressed as exp.�i��/'l .r; �/ after a gauge transformation, with
� D �=�0 and the flux quantum �0 D h=e. In this case, the allowed value for
the total angular momentum becomes j D l C 1

2
C �. The energies of in-gap

bound states vary with the radius of the hole and the magnetic flux. When � D 1
2

or � 1
2
, there always exists one solution of j D 0. In this case, the solution has a

general form of

'jD0.r; �/ D
 
f1
2
.r/e�i �2

g 1
2
.r/eCi �2

!

: (8.31)



150 8 Impurities and Defects in Topological Insulators

a b

Fig. 8.4 Effect of magnetic flux on in-gap bound states. Energies (E in units of the band gap �)
of in-gap bound states circulating around the hole as functions of (a) the hole radius R when half-
quantum flux � D 1=2 is applied and (b) the magnetic flux � (in unit of flux quantum ˆ0 D h=e)
for fixed radius R D 50 nm.mC (m�) is the quantum number for the z-component of the total an-
gular momentum jzC (jz�) of the circulating bound states.mj D mCC�. In (b), black (light gray)
lines belong to hC (h�) block. In (a) and (b), mv2 D �10meV, B„2 D �686meV�nm2 , and
„v D 364:5meV� nm (Adopted from Ref. [7]). � D 2mv2. The gray areas mark the bulk bands

Equivalently, we replace l in Eq. (8.25) by � 1
2
:

	
E C i„v.@r C 1

2r
/�x �

	
mv2 C „2B

�
@2r C @r

r
� 1

4r2

�

�z


�
f

g

�
D 0:

(8.32)
Under a transformation,  

f1
2
.r/

g 1
2
.r/

!

D 1p
r
�.r/; (8.33)

the equation for the radial part of the wave function is reduced into a one-
dimensional modified Dirac equation:

��i„v@r�x C �
mv2 C „2B@2r

�
�z
�
�.r/ D E�.r/: (8.34)

There exists one bound state solution with zero energy near the boundary as we
obtained in Sect. 2.5.1. As a result, it is found that

'jD0.r; �/ D C

"
e�i �2

isgn.B/eCi �2

# 
K1

2
.�1r/

K1
2
.�1R/

�
K1

2
.�2r/

K1
2
.�2R/

!

(8.35)
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with E D 0: The modified Bessel function K1=2.x/ D p

2x

e�x and C is a
normalized constant. Thus, when � D 1

2
or � 1

2
, there always exists a stable solution

of j D 0 with the energy eigenvalue exactly zero for an arbitrary R. Since the
energy eigenvalue is independent of the radius R, the half quantum flux here is also
called topological defect. The existence of the zero-energy mode is valid even for
an irregular hole which can be deformed continuously into a point-like defect.

8.4.2 Wormhole Effect

This solution can be generalized to three dimensions. Consider a topological
insulator with a cylindrical hole (say along z-direction) of radius R threaded by a
magnetic flux � D 1

2
. We take the periodic boundary condition along the z-direction.

Thus, kz is a good quantum number. The three-dimensional effective Hamiltonian
can be separated into two parts:

H3D.kz/ D H2D C V.kz/; (8.36)

where

H2D.x; y/ D vpx˛x C vpy˛y C
h
mv2 � B.p2x C p2y/

i
ˇ; (8.37)

V.kz/ D v„kz˛z � Bk2z ˇ: (8.38)

At kz D 0, V.kz D 0/ D 0. In this case, H3D are equivalent to two separated two-
dimensional Dirac equations in a hole threading a magnetic flux. Using the solutions
in the last paragraph for two-dimensional, one obtains two solutions of zero energy:

'1 D C

0

B
B
B
@

e�i �2
0

0

isgn.B/eCi �2

1

C
C
C
A

 
K1

2
.�1r/

K1
2
.�1R/

�
K1

2
.�2r/

K1
2
.�2R/

!

(8.39)

and

'2 D C

0

B
B
B
@

0

eCi �2
isgn.B/e�i �2

0

1

C
C
C
A

 
K1

2
.�1r/

K1
2
.�1R/

�
K1

2
.�2r/

K1
2
.�2R/

!

: (8.40)

The order of the base has been reorganized. Note the fact that the two separated
equations are counter-partners of time reversal, and the prefactors of � in '2 change
a sign. Using these two solutions as the basis, one obtains an effective Hamiltonian
for a nonzero kz:

Heff D sgn.B/v„kz�y: (8.41)
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Thus, there exists a pair of gapless helical electron states along the hole or magnetic
flux, which is independent of the radiusR. This is so-called “wormhole” effect [12].

Dislocations are line defects of the three-dimensional crystalline order, charac-
terized by a lattice vector B (the Burgers vector). This is rather like the quantized
vorticity of a superfluid vortex and must remain constant over its entire length.
Dislocations in three-dimensional crystal of topological insulator is equivalent to
a hole threading a magnetic flux � D 1

2
. Ran et al. found that each dislocation

induces a pair of one-dimensional modes bound to it, which propagate in opposite
directions and traverse the bulk band gap [13].

8.4.3 Witten Effect

The Witten effect is a fundamental property of the axion media [14]. The idea of
the axion was first introduced as a means to solve what is known as the strong
charge-parity problem in the physics of strong interaction. After the discovery of
topological insulator, Qi, Hughes and Zhang proposed that the electromagnetic
response in topological insulator is characterized by an axion term, �Laxion D
� e2

2h
B � E with � D  [15]. The Witten effect means that a unit magnetic monopole

�0 D h=e placed in a topological insulator will bind a fractional charge Q D
�e �nC 1

2

�
with n integer. This effect has been already used to identify whether a

system is topologically trivial or nontrivial by means of numerical calculation [16].
The axion term revises the Gauss’ law and Ampere’s law by adding extra source

terms

r � D D � � ˛

�0c
r� � B; (8.42a)

r � H D @tD C j C ˛

�0c
.r� � E C @t�B/ ; (8.42b)

where D D 	0ECP and H D 1
�0

B�M. The fine structure constant ˛ D e2=.2	0hc/.
Suppose there is a point-like magnetic monopole situated at the origin of the strength
�0. The static magnetic field is given by B D �0

r2
r or r � B D �0ı.r/. Suppose � D 0

initially and then increases to � D  . � is uniform in space, and there is no current
in vacuum. We take the divergence of revised Ampere’s law:

r � @tE D �˛c

@t �r � B: (8.43)

Thus, when � increases from 0 to  , integrating the equation yields

r � ŒE.� D / � E.� D 0/�D� 1

	0

e2

2h
r � B D � 1

	0

e

2
ı.r/: (8.44)

This demonstrates that a magnetic monopole �0 can bind an extra fractional charge
�e=2.
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To understand the Witten effect, we consider a sphere with radius R of an
isotropic topological insulator with a magnetic monopole 2q�0 situated at the origin:

H D v.p C eA/ � ˛ C �
mv2 � B.p C eA/2

�
ˇ:

D
�
mv2 � B…2 v… � �

v… � � �mv2 CB…2

�
; (8.45)

where… D p C eA and r � A D 2q�0
r2

r. It is well known that the magnetic field of
a magnetic monopole cannot be derived from a single expression of vector potential
valid everywhere. We can construct a pair of the vector potentials

AI D C2q�0

r

1 � cos �

sin �
O�; for � <  � " ; (8.46a)

AII D �2q�0
r

1C cos �

sin �
O�; for � > " ; (8.46b)

such that there are no singularity in the two potentials in the defined range. In the
overlapping region " < � <  � ", the two potentials are related by a gauge
transformation:

AI � AII D 4q�0

r sin �
O�: (8.47)

In the overlapping region, we can use either AI or AII , the corresponding wave
functions are related by a phase factor expŒi4q�. Thus, the single value condition
for the wave function for either AI or AII implies 2q D integer, which is the
quantization condition for a magnetic charge [17].

Following Kazama et al. [18], we can define

L D r �… � q„ r
r

(8.48)

which satisfies the commutation relation of the orbital angular momentum,
ŒL˛; Lˇ� D i„	˛ˇ�L� . Denote Yq;l;lz as the eigenfunction of L2 and Lz with
the eigenvalues l.l C 1/„2 and lz„ (lz D �l , �lz C 1, � � � , and l). The total angular
momentum J is defined as J D L C S where the spin S D 1

2
„� . The eigenstates of

J2 and Jz can be constructed by adding L and S:

�
.1/
j;jz

D

0

B
B
BB
B
B
@

s
j Cm

2j
Yq;lDj�1=2;jz�1=2

s
j �m
2j

Yq;lDj�1=2;jzC1=2

1

C
C
CC
C
C
A

(8.49a)
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�
.2/
j;jz

D

0

BB
B
B
B
B
@

�
s
j �mC 1

2j C 2
Yq;lDjC1=2;jz�1=2

s
j CmC 1

2j C 2
Yq;lDjC1=2;jzC1=2

1

CC
C
C
C
C
A

(8.49b)

which are for j D l C 1=2 and j D l � 1=2, respectively. The coefficients in the
expressions are the Clebsch-Gordan coefficients. For simplicity we here focus on
the zero-energy solution. We construct an ansatz for the trivial wave function for
j D jqj � 1

2
and l D j C 1

2
D jqj,

‰ D
 
F.r/�

.2/
j;jz

G.r/�
.2/
j;jz

!

: (8.50)

Substituting the trial wave function into the stationary equation of H in Eq. (8.45),
and using the relation

� �…�.2/j;jz
.�; �/ D �isgn.q/„.@r C r�1/�.2/j;jz

.�; �/; (8.51)

the equation for the radial part of the wave function is reduced to

	
�isgn.q/v„@r�x C

	
mv2 C B„2.@2r � jqj

r2
/



�z


�
rF.r/

rG.r/

�
D E

�
rF.r/

rG.r/

�
:

(8.52)

For our purpose, we consider a sphere of a large radius R enough by ignoring the
finite size effect between the surface states and the bound states near the center.

When r >> 1, jqj
r2

! 0. In this case, Eq. (8.52) is approximately reduced to the
one-dimensional Dirac equation,

��isgn.q/v„@r�x C �
mv2 C B„2@2r

�
�z
� � rF.r/
rG.r/

�
D E

�
rF.r/

rG.r/

�
(8.53)

as in Eqs. (2.33) and (8.34), in which there always exists an end state solution of
zero energy near r D R when mB > 0. The solution has the form

�
F.r/

G.r/

�
D C

r

�
e�1r

e�1R
� e�2r

e�2R

��
1

i�

�
(8.54)

with � D �sgn.qBv/, and �1;2 D ˇ̌
v

2B„
ˇ̌˙

q
v2

4B2„2 � mv2

B„2 . These solutions are valid
even for complex �1;2.
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Near the center of the sphere r D 0, we can find another solution:

�
F.r/

G.r/

�
D C 0 e���=2

p
�
Jp

jqjC1=4
�p

1 � �2=4�
��

1

�i�
�
; (8.55)

where � D p
m�v2=B„2r , � D 1=

p
mB, and J˛.x/ is the first Bessel function.

C and C 0 are the normalization constants. From the asymptotic behavior of the
first Bessel function, J˛.x/ ! xj˛j, it concludes that the solution is convergent at
� ! 0 when q ¤ 0. For �2 > 4, J˛.x/ is replaced by the modified Bessel function

KpjqjC1=4
�p

�2=4� 1�
�

.

Since the final result is independent of the eigenvalue jz, there are 2 jqj .D 2j C
1/-fold degeneracy of the zero-energy states as well as the double degeneracy of
the states near the center and the surface. For each jz, the double degeneracy of the
bound states can be lifted when the radiusR is finite, and the two states at the center
and the surface will be coupled to form two new states, in which one has a positive
energy and the other has a negative energy. The energy gap decays exponentially
in the radius R. In this case, each bound state is split into two halves: one half
is distributed around the surface of the system, while another one surrounds the
magnetic monopole. For a topological insulator, the system is half filled, and only
2 jqj zero-energy states are occupied, while all other negative energy states are filled.

However, the double degeneracy of the zero-energy bound states for q D 1=2

and a large R makes it possible that the bound state near the center is either fully
or partially occupied. The charge binding around the center is not determined.
Therefore, it deserves further studying whether the electromagnetic response in
topological insulator is really characterized by an axion term or not.

8.5 Disorder Effect to Transport

We come to discuss the effect of the in-gap bound states to the transport in
topological insulators. The wave function of the in-gap bound state is localized
around the vacancy or defect. Away from the center, the wave function decays
exponentially, that is, / e�r=� . The characteristic length � reflects the spatial
distribution of the wave function. When two vacancies are close within the distance
comparable with the characteristic length �, the overlapping of the wave functions in
space becomes possible. Consequently electrons in one bound state has possibility
to jump to another bound states.

For a single vacancy close to the boundary of the quantum spin Hall system, the
edge states will be scattered by the in-gap bound state of the vacancy. However, if
there is no other defects or disorders in the bulk, the electrons in the edge state will
not be further scattered away from the edge as what happens in the quantum Hall
effect [19], which also indicates the robustness of the edge states against the defects
or disorders. The situation will change if the concentration of vacancies is dense
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Fig. 8.5 Schematic of
melting of quantum spin Hall
effect due to the holes or
defects. The helical edge
states at different boundaries
can be scattered via the
in-gap bound states induced
by the holes or defects

enough. The bound states could form an “impurity band” in the gap of bulk bands.
When the wave functions of the bound states overlap in space as shown in Fig. 8.5,
it becomes possible that the electrons in the edge state on one side can be scattered
to the other side via a multiple scattering procedures. In this case, the backscattering
of electrons in two sides occurs, and the quantum transport of the edge states will
break down. Thus, there exists a critical point where the quantum percolation occurs
due to the in-gap bound states of vacancies.

This picture can be demonstrated explicitly by calculating the conductance in a
two-terminal setup of the quantum spin Hall system as a function of a concentration
of vacancies. We use the open boundary condition with two edges and the periodic
boundary condition or a cylinder without the edge states. In an open boundary
condition, the calculated conductance is quantized to be 2e2=h. While it is immune
to the low density of vacancies, the conductance decreases with the density of
vacancies quickly, and the quantum spin Hall effect is destroyed completely (see
Fig. 8.6a). In a cylinder or periodic boundary condition, the conductance is zero
in a pure quantum spin Hall state as there is no edge state in the geometry. A
nonzero conductance appears and increases with the concentration of vacancies,
and reaches at a maximal for a specific value of the concentration. Then it decreases
with increasing the concentration of vacancies (see Fig. 8.6b). Figure 8.6c–e shows
the density of states at different concentrations. A nonzero peak appears at E D 0

near the critical concentration, which demonstrates the occurrence of quantum
percolation and appearance of metallic phase. From the calculated conductance, it
reveals a quantum phase transition from a quantum spin Hall state (Z2: � D 1) to a
conventional insulator (Z2: � D 0).
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a c

d

e

b

Fig. 8.6 Quantum percolation of electrons through in-gap bound states induced by randomly
distributed vacancies or holes of size 1 � 1. The sample is W � L D 160 � 160 in size. (a)
and (b) show the transmission coefficients Ttr vs. the concentration of vacancies p under the open
boundary condition and periodic or closed boundary condition. (c)–(e) Are the density of states at
the concentration p1 D 5=160, pc D 9=160, and p2 D 15=160, respectively (Adapted from [20])

8.6 Further Reading

• Y. Ran, Y. Zhang, A. Vishwanath, One-dimensional topologically protected
modes in topological insulators with lattice dislocations. Nat. Phys. 5, 298 (2009)

• W.Y. Shan, J. Lu, H.Z. Lu, S.Q. Shen, Vacancy-induced in-gap bound states in
topological insulators. Phys. Rev. B 84, 035307 (2011)
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Chapter 9
Topological Superconductors and Superfluids

Abstract Superfluid phases in liquid 3He are the topological ones, which have the
edge or surface states just like topological insulators. Spin-triplet superconductors
are potential candidates of topological superconductors.

Keywords Helium three superfluid • p-wave pairing superconductor • Spin-
triplet superconductor • Edge states • Surface states

The study of topological phases in superconductors and superfluids had a long
history even before the birth of topological insulators. 3He-B and 3He-A phases
are topological superfluid liquids and can be characterized by topological invariants
[1]. A complex p C ip wave pairing superconductor is also known to possess two
topologically distinct phases [2]. Soon after the discovery of topological insulator,
it was realized that there is an explicit analogy between topological insulator and
superconductor because the particle-hole symmetry in the Bogoliubov-de Gennes
(BdG) Hamiltonian for quasiparticles in superconductors is analogous to the time
reversal symmetry in the Hamiltonian for a band insulator. The BdG Hamiltonians
for a pCip wave superconductor and 3He-B superfluids are identical to the modified
Dirac equation as we discussed for topological insulators, although the bases of
these equations are completely different.

Superconductivity is a quantum phenomenon that the resistivity in certain mate-
rials disappears below a characteristic temperature, which was discovered by H.K.
Onnes in 1911 in Leiden [3]. A superconductor is characterized by zero resistance,
Meissner effect or perfect diamagnetization, and magnetic flux quantization, though
some physical properties vary from material to material, such as the heat capacity,
the transition temperatures, and the critical fields. The existence of the universal
properties in superconductors implies that superconductivity is a quantum phase
having distinguishing properties which are largely independent of microscopic
details. The theory of superconductivity was formulated by Bardeen, Cooper, and

S.-Q. Shen, Topological Insulators: Dirac Equation in Condensed Matters,
Springer Series in Solid-State Sciences 174, DOI 10.1007/978-3-642-32858-9 9,
© Springer-Verlag Berlin Heidelberg 2012
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Schrieffer in 1957, and is called the BCS theory [4]. This theory has successfully
described a large class of superconducting materials, such as aluminum.

The basic idea of the BCS theory is that electrons in the metal form bound
pairs. Cooper pointed out that the ground state of a normal metal was unstable
at zero temperature if the interaction between electrons near the Fermi surface is
attractive. For an ideal metal, electrons at zero temperature form a Fermi sphere
in the momentum space, which has a sharp step in energy. If there exists a weak
attractive interaction between electrons near the Fermi surface, Cooper found that
two electrons with opposite spins and momenta can forget the mutual scattering
and form a bound state, which always has lower energy than that of two free
electrons. In some metals, the electron-phonon interaction can provide such kind
of attractive interaction near the Fermi surface. Most electrons in the Fermi sphere
do not form the bound states, but only those within the Debye energy. The bound
states of electrons pairs or Cooper pairs behave like bosons and can condensate
at low temperatures, that is, Bose-Einstein condensation. The condensation of the
Cooper pairs exhibits superconductivity, which requires a many-body description.

To explore topological phase in superconductor, we focus on the p-wave
superconductivity.

9.1 Complex (p C ip)-Wave Superconductor of Spinless
or Spin-Polarized Fermions

A complex p-wave spinless superconductor has two topologically distinct phases,
one is the strong pairing phase and the other is the weak pairing phase [1, 2].
The weak pairing phase is identical to the Moore-Read quantum Hall state [2].
The system can be described by the modified Dirac model. In the BCS theory, the
effective Hamiltonian for quasiparticles is

Heff D
X

k

	
�kc

�
kck C 1

2

�
��

kc�kck C�kc
�
kc
�
�k

�

: (9.1)

It is noted that the electrons of k and �k are coupled together to form a Cooper pair.
Though the number of electrons are not conserved in this effective Hamiltonian, the
number parity, that is, the even or odd number of electrons, is conserved. For a small
k; we take �k D k2

2m� � �, where m� is the effective mass and �� is a constant of
�kD0.

For the complex p-wave pairing, we take �k to be an eigenfunction of rotations
in k with angular momentum l . For l D C1; at small k it generically takes the form

�k D �.kx C iky/: (9.2)
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For l D �1, �k D �.kx � iky/: The states of �k D �.kx ˙ iky/ are degenerate.

Consider the anticommutation relation of fermions, c�kck D 1�ckc
�
k. We take  �k D

.c
�
k; c�k/, and then the effective Hamiltonian can be written in a compact form,

Heff D 1

2

X

k

 
�
kheff k (9.3)

by ignoring a constant. Here Heff has the identical form of the Dirac equation

heff D �
�
kx�x � ky�y

�C
�

k2

2m
� �

�
(9.4)

for�k D �.kx ˙ iky/:
The normalized ground state has the form

j�i D
Y

k

.uk C vkc
�
kc
�
�k/ j0i (9.5)

where j0i is the vacuum state and the product runs over the distinct pairs of k and
�k. The functions of uk and vk are complex and satisfy jukj2 C jvkj2 D 1. We
introduce the Bogoliubov transformation

 
˛k

˛
�
�k

!

D
�

uk �vk

�v��k u��k

� 
ck

c
�
�k

!

(9.6)

where
n
˛k; ˛

�

k0

o
D ık;k0 and ˛k j�i D 0. The resulting Hamiltonian becomes

Keff D 1

2

X

k

�
˛
�
k; ˛�k

��
"k 0

0 �"k

� 
˛k

˛
�
�k

!

D 1

2

X

k

�
"k˛

�
k˛k � "k˛�k˛

�
�k

�
: (9.7)

with "k D
q
�2k C j�kj2 > 0. The first term represents the particle excitation

with a positive energy and the second term the hole excitations with a negative
energy. Performing the particle-hole transformation, or making use of ˛�k˛

�
�k D

1 � ˛��k˛�k, we have

Keff D
X

k

1

2
"k

�
˛
�
k˛k � 1C ˛

�
�k˛�k

�

D
X

k

"k˛
�
k˛k �

X

k

1

2
"k (9.8)

as "k D "�k.
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From the eigenstate equation,

ŒKeff; ˛k� D "k˛k; (9.9)

one obtains
�
�k ���

k

��k ��k

��
uk

vk

�
D "k

�
uk

vk

�
: (9.10)

The solutions are

uk D
s
1

2

�
1C �k

"k

�
I (9.11a)

vk D � �k

j�kj

s
1

2

�
1 � �k

"k

�
: (9.11b)

Here we choose a gauge that uk is real and positive.
The Bogoliubov-de Gennes equation for uk and vk becomes

i„ @
@t

�
uk

vk

�
D Keff

�
uk

vk

�
(9.12a)

where

Keff D
�
�k ���

k

��k ��k

�
D ��.kx�x ˙ ky�y/C �k�z: (9.13)

In this way, the Bogoliubov-de Gennes equation has the exact form of two-
dimensional modified Dirac equation

Keff D �� �kx�x ˙ ky�y
�C

�
k2

2m
� �

�
�z: (9.14)

It is noted that this effective Hamiltonian is distinct from that for electrons.
If we treat the Bogoliubov-de Gennes equation as one Hamiltonian as that for

band insulator, we can introduce the topological invariant forKeff,

nc D ˙
	

sgn.�/C sgn

�
1

m

�

=2: (9.15)

Since we take the mass of the spinless particles m positive, we conclude that for a
positive �.> 0/ the Chern number is C1 (or �1) and for a negative � the Chern
number is 0. For � D 0, the Chern number is equal to one half, which is similar to
the case ofm ! C1 and a finite �. If the quadratic term in �k is neglected, we see
that the topological property will change completely.



9.1 Complex (p C ip)-Wave Superconductor of Spinless or Spin-Polarized Fermions 163

a b

Fig. 9.1 (a) Particle-hole spectrum and edge-state spectrum of a non-trivial Bogoliubov-de
Gennes equation for a weak pairing phase, or topologically nontrivial phase. (b) After the particle-
hole transformation, the hole spectrum is merged into the particle spectrum. The zero energy mode
is a Majorana fermion, �.E D 0/ D ��.E D 0/

In general, from the solution of uk and vk, we have three possibilities of behavior
at small k, "k � �k ! 0.

1. �k > 0, in which uk ! 1 and vk ! 0. The BCS state is close to the vacuum,
j�i ! j0i.

2. �k < 0, in which uk ! 0 and jvkj ! 1. j�i ! Q
k0 vkc

�
kc
�
�k j0i in which all the

states with negative energy are occupied by free fermions.
3. �k ! 0, in which both uk and vk are nonzero.

Usually for a positive �, the system is in the weak pairing phase, and for a
negative �, it is the strong pairing phase. Including the quadratic term in �k, we
conclude that the weak pairing phase for positive� is a typical topological insulator.
Read and Green [2] argued that a bound-state solution exists at a straight domain
wall parallel to the y-axis, with �.r/ D �.x/ small and positive for x > 0, and
negative for x < 0. There is only one solution for each ky , and so we have a chiral
Majorana fermions on the domain wall. From the two-dimensional solution, the
system in a weak pairing phase should have a topologically protected and chiral
edge state of Majorana fermions.

If we make the substitution in Keff: kx ! �i@x and ky ! �i@y , the
BdG equation in Eq. (9.12a) has the identical form of the two-dimensional Dirac
equation. When we find a solution for the edge state within the band gap, we
emphasize the solution for uk, and vk should satisfy the relation

ˇ
ˇu2k
ˇ
ˇ C ˇ

ˇv2k
ˇ
ˇ D 1.

For the vacuum, uk D 1 and vk D 0. The particle-hole spectra and the chiral edge
spectra are presented in Fig. 9.1.
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9.2 Spin-Triplet Pairing Superfluidity: 3He-A and 3He-B
Phases

Helium has two isotopes, 3He and 4He. 4He atoms are bosons. At low temperatures,
liquid 4He shows a phase transition to a superfluid state which is similar to the Bose-
Einstein condensation, although strong inter-particle interaction should be taken into
account. 3He atoms are fermions. Liquid 3He also shows a phase transition to a
superfluid state, which is similar to the superconducting transition in a metal [5].
Since 3He atoms are neutral, there is no Meissner effect, but atoms form pairing like
the Cooper pairs of electrons. Atoms also avoid the singlet pairing, as in metals,
and tend to pair in the form of spin triplet, in which the spins align parallel [6]. A
schematic of the phase diagram of 3He as a function of temperature and pressure is
presented in Fig. 9.2.

9.2.1 3He: Normal Liquid Phase

Before presenting the theory of superfluidity in 3He, we first briefly introduce a
“normal” liquid phase of 3He atoms. The 3He atoms are charge neutral. Unlike
the electrons in metals, these atoms are strongly interacting and highly correlated.
According to the Fermi liquid theory, the low-lying excitations of the strongly inter-
acting Fermi system can be described by a phenomenological model, in which the
free energy of the system can be expanded in terms of low-energy excitation ınp;�

F D F0 C
X

p;�

.	p � �/ınp;� C 1

2

X

p;� Ip0 ;� 0

fp;� Ip0 ;� 0ınp;� ınp0 ;� 0 C � � � : (9.16)

The parameters in this expression can be deduced from experiments such as specific
heat, compressibility, sound velocity, and spin susceptibility. Here the energy zero

Fig. 9.2 Phase diagram of
3He in the low millikelvin
temperature and pressure
region
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is defined as �� at p D 0 such that 	pD0 D 0 and 	p D p2

2m� with the effective
massm� D 3m, the three times of the bare mass of 3He atom. The spin dependence
of the effective interaction is written as

fp;� Ip0 ;� 0 D f
.s/

p;p0 C � � � 0f .t/

p;p0 : (9.17)

For details, the readers can refer to several excellent reviews of Fermi liquid theory
such as Pine and Nozieres [7] and Leggett [8].

9.2.2 3He-B Phase

Theory of superconductivity for electrons in a spin-triplet state was developed
by Balian and Werthamer [9], which succeeds in explaining superfluidity in
3He. In their theory, fermions form spin-triplet pairs (s D 1), and the weak
coupling between these pairs leads to condensate at low temperatures. The effective
Hamiltonian for the quasiparticles has the form

H D
X

k;�

.	k � �/c
�
k;� ck;� C 1

2

X

k;� Ik0 ;� 0;q

V.q/c�kCq;� c
�

k0�q;� 0ck0;� 0ck;� : (9.18)

The interaction potential describes the scattering process of the momentum change
of two vectors ki and kf D ki C q. It can be expanded in spherical harmonics, and
the first two terms are

V.q/ D V0 C V1ki � kf C � � � : (9.19)

The first term is a repulsive s-wave interaction, V0 > 0, and cannot cause the bound
states. The second term is for a p-wave interaction, V1ki �kf , which leads to p-wave
pairing. Thus, we only keep the second term for the theory of superfluidity. The
interaction terms contains four operators. In the BCS theory, the atoms tend to form
Cooper pairs, and the dominant interaction is reduced to the pair-pair interaction,
V.k�k0/c�k;� c

�

�k;� 0c�k0;� 0ck0 ;� . A mean-field approach is used to write the interaction
term as a two-operator term by introducing the order parameters for pairing,

Heff D
X

k;�

.	k � �/c�k;� ck;�

C1

2

X

k

�C1.k/c�k;"c
�

�k;" C��C1.k/c�k;"ck;"

C
X

k

�0.k/c
�

k;"c
�

�k;# C��
0 .k/c�k;#ck;"

C1

2

X

k

��1.k/c�k;#c
�

�k;# C���1.k/c�k;#ck;#; (9.20)
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where three types of pairing order parameters are introduced,

�C.k/ D
X

k0

V.k � k0/
˝
c�k0 ;"ck0 ;"

˛
(9.21a)

�0.k/ D
X

k0

V.k � k0/
˝
c�k0 ;"ck0 ;#

˛
(9.21b)

��.k/ D
X

k0

V.k � k0/
˝
c�k0 ;#ck0 ;#

˛
(9.21c)

and h� � � i represents the thermodynamic average.
For a p-wave pairing, the order parameter �m.k/ is an odd function of

momentum,�m.�k/ D ��m.k/. This condition can be derived from the definition

�C.�k/ D
X

k0

V.�k � k0/
˝
c�k0 ;"ck0 ;"

˛

D �
X

k0

V.�k � k0/
˝
ck0;"c�k0 ;"

˛ D ��C.k/; (9.22)

where the extra minus sign comes from the permutation of two operators in˝
c�k0 ;"ck0;"

˛
, when the interaction potential is even for a p-wave. Thus, order

parameters�m.k/ have the p-wave symmetry and are proportional to the spherical
harmonics, Y1;�m.�; '/,

�C1.k/ D �.�kx C iky/I (9.23a)

�0.k/ D �kzI (9.23b)

��1.k/ D �.kx C iky/: (9.23c)

In the lattice model, for example, on a cubic lattice, they are modified to fit the
lattice symmetry,

�C1.k/ D �.� sin kx C i sin ky/I (9.24a)

�0.k/ D � sin kzI (9.24b)

��1.k/ D �.sin kx C i sin ky/: (9.24c)

The pairing potential can be written in a compact form V C V �,

V D
X

k

.c
�

k;"; c
�

k;#/„.k/
 
c
�

�k;#
�c��k;"

!

; (9.25a)

V � D
X

k

.c�k;#;�ck;"/„�.k/

�
ck;"
ck;#

�
; (9.25b)
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where

„.k/ D
�
�0.k/ ��C1.k/
��1.k/ ��0.k/

�

D
�

�kz �.kx � iky/

�.kx C iky/ ��kz

�

D �.kx�x C ky�y C kz�z/: (9.26)

We introduce the basis

 
�
k D .c

�

k;"; c
�

k;#; c�k;#;�c�k;"/: (9.27)

The effective Hamiltonian has the form

H D 1

2

X

k

 
�
kHeff k (9.28)

where

Heff D �
�
kx˛x C ky˛y C kz˛z

�C �kˇ (9.29)

is identical to the modified Dirac equation.
Since this Hamiltonian is identical to the one for three-dimensional topological

insulator, there exists a solution of the surface states near the boundary of the
surface if it satisfies the condition for the topologically nontrivial phase. However,
the bases of the fermion operators are quite different. In 3He-B phase, we have
particle and hole excitations, while we have the conduction bands and valence
bands in topological insulator. Due to the particle-hole symmetry in the effective
Hamiltonian, the particle and hole excitations always appear in pairs with energy,
˙E , which are connected by a particle-hole transformation

�.E;k/ ! ��.�E;�k/: (9.30)

Therefore, in 3He-B phase, the surface state consists of only one half Dirac cone
with positive energy [10].

9.2.3 3He-A Phase: Equal Spin Pairing

When �0.k/ D 0, there exists a state with equal spin pairing. In this case, there is
no relation between the orbital momentum of�C1.k/ and��1.k/. Thus, the orbital
motions of spin-up and spin-down particles are arbitrary. We can write them as
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�C1 D �.kx C iky/I (9.31a)

��1 D �.k
0

x C ik
0

y/: (9.31b)

For the particles with spin up, the effective Hamiltonian is

H" D 1

2

X

k

.c
�

k;"; c�k;"/
�

�k �.kx C iky/

�.kx � iky/ ��k

� 
ck;"
c
�

�k;"

!

D 1

2

X

k

.c
�

k;"; c�k;"/
�
�kx�x ��ky�y C �k�z

�
 
ck;"
c
�

�k;"

!

(9.32)

where

�k D „2
2m

.k2x C k2y/ �
�
� � „2k2z

2m

�
: (9.33)

This is identical to the two-dimensional modified Dirac equation. For a layered

system, the term „2k2z
2m

may be suppressed. The spectrum of the quasiparticle is

"k D
q

j�j2 .k2x C k2y/C �2k : (9.34)

The new feature of this model is that the effective chemical potential becomes kz

dependent, �.kz/ D � � „2k2z
2m

. The Chern number for a specific kz is

nc.kz/ D

8
ˆ̂
ˆ̂̂
ˆ̂
<̂

ˆ̂̂
ˆ̂
ˆ̂
:̂

1 if
„2k2z
2m

< �

1

2
if

„2k2z
2m

D �

0 if
„2k2z
2m

> �

: (9.35)

At k2z D 2m�=„2, "k D j�1j kk C O.k2k/; which is linear in the momentum

for a small kk (k2k D k2x C k2y/. It is a marginal phase between two topologically

distinguishing phases. Thus, in 3He-A phase, there always exists a nodal point. Due
to the nonzero Chern number, there exist chiral edge states around the boundary of
system.

There are several possible choices in the state of equal spin pairing.
The Anderson-Brinkman-Morel state [11]:

�C1 D �˛.k/.kx C iky/; (9.36a)
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�0 D 0; (9.36b)

��1 D �˛.k/.kx C iky/; (9.36c)

where �˛.k/ is an even function of k. In this case, the two phases of spin-up and
spin-down particles are identical and possess the same Chern number if they are
topologically nontrivial.

The two-dimensional planar state:

�C1 D �˛.k/.kx C iky/; (9.37a)

�0 D 0; (9.37b)

��1 D �˛.k/.kx � iky/: (9.37c)

In this case, the two phases of spin-up and spin-down particles possess opposite
Chern numbers if they are topologically nontrivial.

The one-dimensional polar state:

�C1 D 0; (9.38a)

�0 D �˛.k/kz; (9.38b)

��1 D 0: (9.38c)

The effective Hamiltonian becomes

Heff D �˛.k/kz˛z C �.kk; kz/ˇ (9.39)

where �.kk; kz/ D „2
2m
k2z � .� � „2k2

k

2m
/: This equation can be deduced into two

degenerate one-dimensional Dirac equation as discussed in Chap. 2. There always

exist two crossing points at
„2k2

k

2m
D � and kz D 0.

9.3 Spin-Triplet Superconductor: Sr2RuO4

There are several classes of candidates of spin-triplet superconductors, such as
heavy fermion superconductor UPt3, organic superconductor (TMTSF)2X (X D
ClO4 and PF6), and ruthenate superconductors Sr2RuO4. In this section, we briefly
introduce the unconventional properties of Sr2RuO4, which is considered most
probably as a spin-triplet superconductor or even a topological superconductor,
comparable with the odd-parity, pseudo-spin-triplet superconductor UPt3.

Sr2RuO4 is an oxide superconductor that has the same layered structure as
high-Tc cuprates but has a low superconducting transition temperature of 1.5 K
[12]. The availability of high-quality single crystal and the relative simplicity of
its fully characterized Fermi surface promoted a large number of experimental as
well as theoretical studies. Rice and Sigrist [13] proposed the similarity between
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the superconductivity of Sr2RuO4 and the spin-triplet superfluidity of 3He soon
after the discovery of the ruthenate superconductivity, which leads to the first direct
experimental evidence of spin-triplet pairing in Sr2RuO4 by the measurement of
electron spin susceptibility with NMR.

At low temperatures, Sr2RuO4 maintains a tetragonal structure with the crystal
point group symmetry D4h. Neglecting the dispersion along the out-of-plane c
direction, possible spin-triplet states are limited to those for the two-dimensional
square lattice with C4v symmetry. One possible state in Sr2RuO4 is so-called chiral
pairing states, which possess two polarizations of relative orbital angular momentum
of pairing quasiparticles: left and right polarizations correspond to

�0 / sin kx ˙ i sin ky; (9.40)

respectively. They are the states with the orbital angular momentum Lz D C1 and
�1, and the Cooper pair spins lie in the plane, Sz D 0, while the total spin is S D 1.

The direct evidence of spin-triplet pairing in Sr2RuO4 is based on the electron
spin susceptibility measurement by the NMR Knight shift of both 17O and 99Ru
nuclei [14]. Combined with the observation of internal magnetic field by �SR,
it is believed that the superconducting state of Sr2RuO4 is a spin-triplet chiral
p-wave state, a two-dimensional analogue of the 3He-A phase. The odd parity of
the orbital part of the order parameter has been unambiguously demonstrated by
phase sensitive measurements.

In the sector of S D 1 and Sz D 0, the superconducting state with �0̇ D
�.sin kx ˙ i sin ky/ is similar to spinless p C ip wave superconductor. The Chern
number can be defined as we discussed in Sect. 9.1. The states with �C

0 D
�.sin kx C i sin ky/ and ��

0 D �.sin kx � i sin ky/ are degenerate, but may have
opposite Chern numbers due to the sign difference in �0̇ . According to the bulk-
edge correspondence, nonzero Chern number will lead to the emergence of the chiral
edge states around the system boundary, which breaks time reversal symmetry. The
superconducting states of �C

0 and ��
0 possess opposite propagating edge states,

respectively. The superconducting state in Sr2RuO4 has broken the time reversal
symmetry spontaneously, and one of the states of �0̇ will be selected to be the
ground state.

The existence of edge states has been studied in an experiment of quasi-particle
tunneling spectroscopy [15]. The measured conductance spectra have revealed the
evidence of the edge states. However, it is still under debate whether Sr2RuO4 is a
topological superconductor or not. We expect more and conclusive experiments to
settle down the issue in the near future [16].

9.4 Superconductivity in Doped Topological Insulators

Doped topological insulator CuxBi2Se3 exhibits the signature of superconductivity
at low temperatures [17, 18]. The undoped Bi2Se3 compound is a topological
insulator with a single Dirac cone of the surface states. Copper atoms can add
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holes or electrons in the Bi2Se3 lattice. It was found that about 10 % copper is
needed to bring about the superconductivity in bulk Bi2Se3, in which the transition
temperature of Tc is about 3.8 K, and was confirmed by the observation of the
Meissner effect. The temperature dependence of specific heat suggests a fully
gapped superconducting state. Experimental data even suggests the coexistence
of superconductivity and the surface states protected by time reversal symmetry.
However, superconductivity of doped topological insulator does not mean that the
superconducting phase is always topologically nontrivial.

For a time reversal invariant superconductor, the mean-field Hamiltonian in
Bogoliubov-de Gennes formalism preserves the additional particle-hole symmetry,
PH.k/P D �H.�k/ with P2 D 1. This particle-hole symmetry can define a Z2
invariant as that for time reversal symmetry. Based on the calculation of the Z2
invariant, Fu and Berg [19] and Sato [20] proposed that a time reversal-invariant
centrosymmetric superconductor is a topological superconductor if (1) it has odd-
parity pairing symmetry with a full superconducting gap and (2) its Fermi surface
encloses an odd number of time reversal invariant momenta �˛ (which satisfy
�˛ D ��˛ up to a reciprocal lattice vector) in the Brillouin zone.

It follows from the criteria that CuxBi2Se3 is thought to be one of the potential
candidates as a topological superconductor, which still needs more experiments to
confirm.

9.5 Further Reading

• J.R. Schrieffer, Theory of Superconductor (Persues books, 1964)
• A.J. Leggett, Nobel lecture: superfluid 3He: the early days as seen by a theorist.

Rev. Mod. Phys. 76, 909 (2004)
• N. Read, D. Green, Paired states of fermions in two dimensions with breaking of

parity and time reversal symmetries and the fractional quantum Hall effect. Phys.
Rev. B 61, 10267 (2000)

• G.E. Volovik, The Universe in a Helium Droplet (Clarendon, Oxford, 2003)
• Y. Maeno, S. Kittaka, T. Nomura, S. Yonezawa, K. Ishida, Evaluation of spin-

triplet superconductivity in Sr2RuO4. J. Phys. Soc. Jpn. 81, 011009 (2012)
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Chapter 10
Majorana Fermions in Topological Insulators

Abstract A Majorana fermion is a particle that is its own antiparticle. This type of
particles can appear as an end state in one-dimensional topological superconductor
or the bound state induced by a half-quantized vortex in two-dimensional topologi-
cal superconductors.

Keywords Majorana fermion • Kitaev model • Non-Abelian statistics • Quasi-
one-dimensional p-wave superconductor

In his interpretation of the Dirac equation, Dirac introduced the concept of antipar-
ticle for the negative energy solution. While the positive energy solution is used to
describe an electron with spin 1

2
, the negative energy solution is for an antiparticle

for electron, i.e., positron, which has a negative mass and positive elementary charge
[1]. Ettore Majorana found that the Dirac equation can be separated into a pair of real
wave equations, in which the fields are real and the particle and its antiparticle have
no distinction [2]. For massless and neutral particles, their own antiparticle might
be themselves. Neutrino and antineutrino are expected to be the same particles.
However, Majorana fermions as elementary particles have not yet been realized
in Nature [3]. Now it is highly possible to realize Majorana fermions in solids as
quasiparticles of collective behaviors of many-particle systems.

10.1 What Is the Majorana Fermion?

A Majorana fermion satisfies the rules

�
�
i D �i (10.1)

S.-Q. Shen, Topological Insulators: Dirac Equation in Condensed Matters,
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and
f�i ; ��j g D �i�

�
j C �

�
j �i D ıij : (10.2)

A fermion operator can be always written in terms of two Majorana fermions,

c
�
12 D 1p

2
.�1 C i�2/; (10.3a)

c12 D 1p
2
.�1 � i�2/; (10.3b)

with ��1 D �1 and ��2 D �2: Conversely,

�1 D 1p
2
.c
�
12 C c12/; (10.4a)

�2 D 1

i
p
2
.c
�
12 � c12/: (10.4b)

One �i changes the fermion number between even and odd, which is called the
fermion number parity. The fermion parity operator is

P D 1 � 2c�12c12 D 2i�1�2; (10.5)

which has an eigenvalue C1 if the state is empty, and �1 if the state is occupied.

10.2 Majorana Fermions in p-Wave Superconductors

10.2.1 Zero-Energy Mode Around a Quantum Vortex

The quantum flux in the p-wave superconductor can induce a bound state of zero
energy, which is a Majorana fermion. Consider a hole of a radiusR through which a
magnetic flux � threads. We require that the wave function vanishes at r D R. Due
to the existence of the magnetic flux, the wave function should satisfy the boundary
condition

 .� C 2/ D ei2�=�0 .�/ (10.6)

where the quantum flux �0 D h=e if we take a gauge that the vector potential is
absent in the Hamiltonian,

H .p � eA/ ! H.p/: (10.7)
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In the polar coordinate system, the Hamiltonian becomes

H D

0

B
B
@

� „2
2m

.@2r C 1

r
@r C 1

r2
@2� / � � �i�0e

�i� .@r � i

r
@� /

�i�0e
Ci� .@r C i

r
@� /

„2
2m

.@2r C 1

r
@r C 1

r2
@2� /C �

1

C
C
A : (10.8)

The wave function has the form

 D
 

f .r/ei��

g.r/ei.�C1/�

!

; (10.9)

where � D mC�=�0 andm is an integer. In this way, this two-dimensional problem
is reduced to a one-dimensional equation for the radial part of the wave function

0

B
B
@

� „2
2m

.@2r C @r

r
� �2

r2
/� � �i�0.@r C � C 1
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/

�i�0.@r � �

r
/

„2
2m

.@2r C @r

r
� .� C 1/2

r2
/C �

1

C
C
A

�
f

g

�
D E

�
f

g

�
:

(10.10)
The solution of the equation has the form

f D c1�K�.GCr/C c2�K�.G�r/; (10.11a)

g D d1�K�C1.GCr/C d2�K�C1.G�r/; (10.11b)

whereK�.x/ is the modified Bessel function of the second kind, and

G2˙ D F ˙
r

F 2 � 4m2

„4 .�
2 �E2/ (10.12)

where F D 2m2�2
0=„4 � 2m�=„2. With the boundary condition �.r D R/ D 0;

we have

G2C C 2m.E C �/=„2
GC

K�C1.GCR/
K�.GCR/

D G2� C 2m.E C �/=„2
G�

K�C1.G�R/
K�.G�R/

:

(10.13)

Solving the set of Eqs. (10.12) and (10.13), we may obtain the energy eigenvalues
of the bound states around the hole. It is known that the equation becomes
topologically nontrivial when � > 0. For � < 0, no bound state exists around
the hole. For � > 0, there exist a series of the bound states. For a half quantum
flux �=�0 D 1

2
, there always exists a zero-energy mode which is independent of the

radius of hole and robust against other interactions and even geometry of the hole
(Fig. 10.1).
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Fig. 10.1 The energy eigenvalues of the bound states as a function of radius R of the hole with
n D � C 1=2 D 0, ˙1, and ˙2. The parameters for numerical calculations: � D 1
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The robustness of the zero mode for a half-quantum vortex can be demonstrated
in the following way. When � D � 1

2
; Eq. (10.10) becomes

	
�i�0.@r C 1

2r
/�x �

	 „2
2m

�
@2r C @r

r
� 1

4r2

�
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�z


�
f

g

�
D E

�
f

g

�
:

(10.14)

Furthermore, take a substitution,

�
f .r/

g.r/

�
D 1p

r
'.r/; (10.15)

then the equation for the radial part of the wave function is reduced to

	
�i�0@r�x �

� „2
2m

@2r C �

�
�z



'.r/ D E'.r/ (10.16)

which is identical to a one-dimensional modified Dirac equation. Thus, a zero mode
may exist near r D R if � > 0.

In a geometry of a disk of a finite radius, the solution of zero energy is split into
two parts: one half is located around r D 0, the other half is distributed around the
boundary. Thus, in this case Majorana fermion is non-local.
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Ivanov [4] pointed out the equivalence between a half-quantum vortex for spinful
fermions and a single-quantum vortex for spinless fermions, and there exists a zero-
energy mode near a half-quantum vortex.

10.2.2 Majorana Fermions in Kitaev’s Toy Model

The Kitaev’s toy model is a one-dimensional chain of spinless p-wave supercon-
ductor [5],

H D ��
NX

xD1
c�xcx �

N�1X

xD1
.tc�xcxC1 C�ei�cxcxC1 C h:c:/ (10.17)

where �, t > 0, and�ei� denote the chemical potential, the tunneling strength, and
superconducting order parameters. Its BdG equation has the identical form of the
modified Dirac model on a one-dimensional lattice. In the special case, � D 0 and
t D �, the Hamiltonian is reduced to

H D �t
N�1X

xD1
.ei�=2cx C e�i�=2c�x/.ei�=2cxC1 � e�i�=2c�xC1/: (10.18)

We define

�B;x D 1p
2
.ei�=2cx C e�i�=2c�x/; (10.19a)

�A;x D 1

i
p
2
.ei�=2cx � e�i�=2c�x/ (10.19b)

which are Majorana fermions and obey

�A;x D �
�
A;x; (10.20a)

�B;x D �
�
B;x: (10.20b)

In this way,

H D �2it
N�1X

xD1
�B;x�A;xC1: (10.21)

Two Majorana fermions �B;x and �A;xC1 can combine to form a new fermion
operator dx D 1p

2
.�A;xC1 C i�B;x/, and i�B;x�A;xC1 D 1

2
�d�xdx . The Hamiltonian

becomes
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Fig. 10.2 Schematic of two end Majorana states in the Kitaev’s toy model

H D C2t
N�1X

xD1
d �xdx � .N � 1/t: (10.22)

However, while all pairs of (�B;x, �A;xC1) for x D 1; 2; : : : ; N � 1 form new
fermions, �A;1 and �B;N are absent from the Hamiltonian, i.e., Œ�A;1;H� D
Œ�B;N ;H� D 0. For t > 0; the lowest energy state is jgi, in which dx jgi D 0

for all x, and
H jgi D �.N � 1/t jgi : (10.23)

Since Œ�A;1;H� D Œ�B;N ;H� D 0, we can construct two degenerate states
�A;1 jgi and �B;N jgi, which are related to an ordinary zero-energy fermion d D
1p
2
.�A;1 C i�B;N /. Since the � operator changes the fermion parity one has

hgj d jgi D 0. �A;1 jgi and �B;N jgi have a relation

hgj �A;1�B;N jgi D
�
g

ˇ
ˇ
ˇ
ˇ
1 � 2d�d

2i

ˇ
ˇ
ˇ
ˇ g
�

D
( C i

2
for d�d D 1

� i
2

for d�d D 0
: (10.24)

It is determined by the number parity of jgi. Thus, these two states are not
independent. Therefore, the ground state of the Kitaev model are doubly degenerate,
i.e., jgi and d jgi, which have different parities: one is even and the other is odd.
The double degeneracy reveals that the Kitaev model is topologically nontrivial. The
solution is illustrated as in Fig. 10.2, which looks like the Affleck-Kohmoto-Lieb-
Tasaki state for a spin-one system.

As an example, we solve a two-site problem. The Hamiltonian is

H D �t.c�xcxC1 C c
�
xC1cx C cxcxC1 C c

�
xC1c

�
x/: (10.25)

We have two eigenstates with even parity

‰e;˙ D 1p
2
.1˙ c

�
xC1c

�
x/ j0i (10.26)

with the eigenvalues 	e;˙ D �t and two eigenstates with odd parity

‰o;˙ D 1p
2
.c�x ˙ c

�
xC1/ j0i (10.27)

with the eigenvalues 	e;˙ D �t .
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In the language of the Majorana fermion operators,

H D �2it�B;x�A;xC1 D C2td �x dx � t: (10.28)

This Hamiltonian commutes with �A;x and �B;xC1.

�A;x‰e;C D i

2
.c�x C c

�
xC1/ j0i ; (10.29)

�B;xC1‰e;C D 1

2
.c
�
xC1 C c�x/ j0i D �i�A;x‰e;C: (10.30)

Thus, these two states are identical up to a trivial phase factor.

10.2.3 Quasi-One-Dimensional Superconductor

The Kitaev model can be realized in a quasi-one-dimensional system. Recently,
Potter and Lee [6] generalized the results to a quasi-one-dimensional system. They
found that for a strip of two-dimensional p-wave superconductor when the width of
strip is narrow enough such that the edge states at the two sides overlap in space,
and open a finite energy gap as a result of finite size effect, the zero energy modes
may exist at the two ends of the strip. The Majorana fermions of zero modes are
quite robust against the disorder.

We consider a two-dimensional Kitaev model of spinless p-wave superconduc-
tors on a square lattice [7]:

H D
LX

jD1

nX

˛D1

h
��c�j;˛cj;˛ �

�
tc
�
j;˛cj;˛C1 C�cj;˛cj;˛C1

Ctc�j;˛cjC1;˛ C i�cj;˛cjC1;˛ C h:c:
�i
; (10.31)

where c�j;˛ creates an electron on site .j; ˛/, t (> 0) is the hopping amplitude, � is
the chemical potential, � (for simplicity we take � > 0) is the p-wave pairing
amplitude. Here we consider a strip geometry in which the number of lattice sites
is L along the x-axis direction and n along the y-axis direction (the sample width
direction). Thus, the total number of lattice sites is N D nL. First, one introduces a
periodic boundary condition along the x-axis direction, i.e., c�LC1;˛ D c

�
1;˛ , and uses

the Fourier transform of the operator c�j;˛:

c
�
j;˛ D 1p

L

X

q

c�˛ .q/ e
�iqj ; (10.32)
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where q D 2l=L.l D 0; 1; : : : ; L � 1/ is the wave vector along the x-axis, and
0 � q � 2 . In terms of the new creation and annihilation operators c�˛ .q/ and
c˛ .q/, the Hamiltonian (10.31) can be rewritten as

H D
X

q

nX

˛D1

˚� .�C 2t cos q/ c�˛ .q/ c˛ .q/

� �tc�˛ .q/ c˛C1 .q/C j�j c˛ .q/ c˛C1 .�q/
Ci j�j e�iqc˛ .q/ c˛ .�q/C h:c:

�
: (10.33)

Then, we define a set of the operators �2˛�1 .q/ and �2˛ .q/ as

�2˛�1 .q/ D i
�
c�˛ .�q/� c˛ .q/

�
; (10.34a)

�2˛ .q/ D c�˛ .�q/C c˛ .q/ ; (10.34b)

which satisfy the anticommutation relation
n
�
�
m .q/ ; �n .q

0/
o

D 2ımnıqq0 and

�
�
m .q/ D �m .�q/. In fact, �m .0/ is just a Majorana fermion operator due to
�
�
m .0/ D �m .0/. In the basis of the news operators �2˛�1 .q/ and �2˛ .q/, the

Hamiltonian (10.33) has the following form:

H D i
1

4

X

q

X

�;�

�� .�q/B�;� .q/ �� .q/ ; (10.35)

where the elements of the 2n � 2n matrix B .q/ are given as

B2˛;2˛ D �B2˛�1;2˛�1 D �2i j�j sin q; (10.36a)

B2˛;2˛�1 D �B2˛�1;2˛ D �� � 2t cos q; (10.36b)

B2˛;2˛C1 D �B2˛C1;2˛ D �t � j�j ; (10.36c)

B2˛�1;2˛C2 D �B2˛C2;2˛�1 D t � j�j ; (10.36d)

and all other elements are zero.
Here we will give the phase diagrams of the presence of Majorana end modes in

quasi-one-dimensional p-wave superconductors by using topological arguments by
Kitaev [5]. To this aim, we consider the 2n � 2n matrix B .q/ in the Hamiltonian
in Eq. (10.35). The matrix B is an antisymmetric matrix when q is equal to zero or
 , such that we can calculate the Pfaffians PfB .0/ and PfB ./. The topological
property of the system described by the Hamiltonian in Eq. (10.35) is characterized
by a Z2 topological index (Majorana number) M:

M D sgn ŒPfB .0/� sgn ŒPfB ./� D ˙1; (10.37)
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where C1 corresponds to topologically trivial phases and �1 to topologically
nontrivial states (i.e., the existence of zero-mode Majorana end states).

For the simplest case, there is only one lattice site along the y-axis direction (i.e.,
n D 1). This case is just the one-dimensional Kitaev model. Two 2�2 antisymmetric
matrices are

BnD1 .0=/ D
	

0 �˙ 2t

� .�˙ 2t/ 0



; (10.38)

and PfBnD1 .0=/ D �˙ 2t , where “C” and “�” correspond to the cases of q D 0

and  , respectively. The Majorana number for the case of the strict one-dimensional
limit is given:

MnD1 D sgn .�C 2t/ sgn .� � 2t/ I (10.39)

thus, we have the topologically nontrivial condition

2 jt j > j�j (10.40)

with .� ¤ 0/. The above Eq. (10.40) is just the result given by Kitaev [5], who
demonstrated for a long open chain (in the limit of L ! 1) there are zero-energy
Majorana end states localized near per boundary point under the condition (10.40).

For the case of n D 2, the lattice site numbers along the y-axis direction are two.
Two 4 � 4 antisymmetric matrices are

BnD2 .0=/ D

2

6
6
6
6
6
4

0 �˙ 2t 0 t � j�j
� .�˙ 2t/ 0 � .t C j�j/ 0

0 t C j�j 0 �˙ 2t

� .t � j�j/ 0 � .�˙ 2t/ 0

3

7
7
7
7
7
5
: (10.41)

The direct calculation yields the Pfaffians PfBnD2 .0=/:

PfBnD2 .0=/ D .�˙ 2t/2 C�2 � t2: (10.42)

For the larger lattice site numbers n (� 3), PfBn .0=/ can be also calculated
analytically, and we obtain a recursion relation:

PfBn .0=/ D a˙PfBn�1 .0=/C bPfBn�2 .0=/ ; (10.43)

where a˙ D � ˙ 2t and b D j�j2 � t2. We further solve Eq. (10.43) and give an
analytic formula for PfBn .0=/:

PfBn .0=/ D
�
rnC1
1 � rnC1

2

�

q
a2˙ C 4b

; (10.44)
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Fig. 10.3 Phase diagram for the quasi-1D p-wave superconductor model as a function of the
p-wave pairing amplitude and chemical potential for lattice site numbers n along the y-axis
direction. “N” denotes the topologically nontrivial region in the presence of zero-mode Majorana
end states, and “T” denotes the topologically trivial region without zero-mode states.When
j�j =t D 0:1, the solid (red) lines and dotted (blue) lines guide the values of �=t , corresponding
to the topologically nontrivial and trivial phases, respectively (Adapted from [7])

where

r1 D
a˙ C

q
a2˙ C 4b

2
; r2 D

a˙ �
q
a2˙ C 4b

2
: (10.45)

According to the Pfaffians PfBn .0=/, one can compute M as a function of
the physical parameters and then plot the phase diagram showing a sequence of
topological phase transition for different lattice site numbers n. Figure 10.3 plots the
phase diagram for the lattice site numbers n along the y-axis direction, respectively.
The phase diagrams of this tight binding model have the symmetry on positive and
negative � values; thus, here we only plot on negative � values because the other
part on positive� values is a mirror image. However, this � ! �� symmetry is not
generic to models with say, next-nearest-neighbor hopping or next-nearest-neighbor
pairing.

10.3 Majorana Fermions in Topological Insulators

Fu and Kane proposed that as a superconducting proximity effect, the interface
of the surface state of three-dimensional topological insulator and an s-wave
superconductor resembles a spinless px C ipy superconductor, but does not break
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time reversal symmetry [8]. The system supports Majorana bound states at vortices.
Suppose that an s-wave superconductor is deposited on the surface of topological
insulator. Because of the proximity effect, Cooper pairs can tunnel into the surface
states, which is described by the pairing potential V D �c

�

k;"c
�

�k;# C h:c: where

� D �0e
i� . In the Nambu notation, C�

k D f.c�k;"; c��k;#/; .c�k;#;�ck;"/g, the
surface states can then be described by

H D 1

2

X

k

C
�
kHeff.k/Ck; (10.46)

where
Heff D �iv�z� � r � �� z C�0.�x cos� � �y sin �/ (10.47)

where � are Pauli matrices that mix the c and c� blocks of C . The Hamiltonian has
time reversal symmetry,‚ D i�yK (K is the complex conjugate operator), and the
particle-hole symmetry,„ D �y�yK . The energy spectrum is

Ek D ˙
q
.˙vk � �/2 C�2

0: (10.48)

For � 
 �0, the low-energy spectrum resembles that of a spinless px C ipy
superconductor. Define dk D .ck" C ei�kck#/2 for k D k0.cos �k; sin �k/ and
vk0 � �. The projected Hamiltonian is then

Heff D
X

k

.vk � �/d�kdk C �0

2
.ei�kd

�
kd

�
�k C h:c/: (10.49)

This is identical to the one for p-wave pairing superconductor. Following the
approach in p-wave superconductor, a half-quantum vortex in this system leads to
a Majorana bound state.

10.4 Detection of Majorana Fermions

Consider two one-dimensional superconducting wires with Majorana end fermions
connected at x D 0 to form a Josephson’s junction. The effective Hamiltonian of
the junction can be written in terms of two Majorana fermions at the two ends:

Hjunction D 2i�.�/�B;L�A;R D �.�/
�
1 � 2d�0 d0

�
(10.50)

where �.�/ is the coupling strength and is a function of the phase difference
between the two superconductors, � D �R � �L. Suppose a gauge is chosen such
that �L ! �L C 2 and �R ! �R. In this gauge transformation, we have
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Fig. 10.4 (Top) Schematic of
Josephson’s junction of
Majorana fermions at two
superconductors with the
phase 0 and �; respectively.
(Bottom) The energies of two
states with different parity as
a function of the phase �

�B;L ! ��B;L; (10.51a)

�A;R ! �A;R: (10.51b)

As the Hamiltonian for superconductor is invariant under the gauge transformation,
we have a relation that �.�/ D ��.� C 2/. This condition shows that �.�/ is of
period 4 and crosses zero at � D ˙ .

Equation (10.50) shows that �.�/ and ��.�/ are the eigenvalues ofHjunction and
j0i and dC

0 j0i are the corresponding eigenstates. If the fermion parity is conserved
at the junction, this energy crossing is protected because j0i and dC

0 j0i have
different fermion parities, and there is no transition from one state to the other when
� equals  . Since the energy eigenvalues ˙�.�/ are periodic with 4 and there are
no transitions among the states with different fermion parity, the Josephson current,
which is given by

I˙ D ˙2e

h
@��.�/; (10.52)

is also 4 periodic. The observation of this 4 periodic Josephson current will be
an explicit evidence of Majorana fermions, and the sign of the current reveals the
fermion parity of the junction (Fig. 10.4).

There are a lot of other proposals to detect Majorana fermions, among which
tunneling spectroscopy is a direct method [11,12]. Resonant tunneling into mid-gap
state produces a conductance of 2e2=h, while the conductance vanishes without
this state. Very recently, it was reported that the bound, mid-gap states at zero bias
voltage were observed in electric measurements on indium antimonide nanowires
contacted with one normal (gold) and one superconducting electrode [13]. Several
other groups also reported their experimental data to support existence of the
Majorana fermions [14, 15].
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10.5 Sau-Lutchyn-Tewari-Das Sarma Model for Topological
Superconductor

Sau et al. [9] proposed an idea to create Majorana fermions in a ferromagnetic
insulator/semiconductor/s-wave superconductor hybrid system. They originally
proved the existence of Majorana fermions in the setup by solving the vortex
problem in the Bogoliubov-de Gennes equation. Alicea [10] found that the model
is connected to a spinless p C ip superconductor. Here, we prove that the system
is actually equivalent to two spinless p ˙ ip superconductors, among which one is
always topologically trivial and the other is possibly topologically nontrivial.

Consider first an isolated zinc-blende semiconductor quantum well grown along
the (100) direction in the presence of a perpendicular Zeeman field. Assume
the structural inversion asymmetry in the system, which generates Rashba spin-
orbit coupling. The system can be modeled as a two-dimensional electron gas
with Rashba spin-orbit coupling plus a perpendicular Zeeman field. The effective
Hamiltonian reads

H0 D
X

k;�;� 0

c
�
k;�

�
	.k/�0 C ˛.kx�y � ky�x/C VZ�z

�
�� 0 ck;� 0 ; (10.53)

where 	.k/ D k2

2m
��.� is the chemical potential and ˛.>0/ is the Rashba spin-orbit

coupling strength. Furthermore, consider the two-dimensional electron gas contact-
ing an s-wave superconductor. Due to the proximity effect of superconductivity, an
additional pairing potential is generated

V D
X

k

�
�c

�

k;"c
�

�k;# C h:c:
�
: (10.54)

Thus, the total Hamiltonian for the electrons in quantum well becomes

H D H0 C V: (10.55)

To illustrate its connection to spinless p-wave superconductors, we first introduce
a unitary transformation to diagonalizeH0,

�
ck;"
ck;#

�
D
�

cos �k
2

�e�i'k sin �k
2

ei'k sin �k
2

cos �k
2

��
ak;C
ak;�

�
: (10.56)

Consequently,H0 is transformed to

H0 D
X

k;�D˙
.	.k/C ��k/ a

�
k;�ak;� ; (10.57)
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where �k D
q
V 2
Z C ˛2k2. The parameters are determined by cos �k D VZ=�k,

sin �k D ˛k=�k, cos'k D �ky=k, and sin 'k D kx=k. After the transformation,
the pairing potential V can be divided into two parts:

V D V1 C V2; (10.58)

where
V1 D

X

k

�
�k;ca

�
k;Ca

�
�k;� C h:c:

�
; (10.59)

V2 D �1
2

X

k;�

�
�k;�a

�
k;�a

�
�k;� C h:c:

�
; (10.60)

�k;c D � cos �k, and�k;˙ D �e�i'k sin �k. Thus,Hc D H0CV1 is equivalent to a
s-wave superconductor with a “Zeeman” splitting,�k. We introduce the Bogoliubov
transformation to diagonalizeHc :

 
ak;C
a
�
�k;�

!

D
�

cos �k
2

� sin �k
2

sin �k
2

cos �k
2

� 
bk;C
b
�
�k;�

!

; (10.61)

where cos �k D 	.k/=
q
	.k/2 C�2

k;c and sin �k D �k;c=
q
	.k/2 C�2

k;c . As a

result,

Hc D
X

k;�D˙

�q
	.k/2 C�2

k;c C ��k

�
b
�
k;�bk;� (10.62)

up to a constant. Meanwhile, the pairing potential V2 has the form

V2 D �1
2

X

k;�

�
�k;�b

�
k;�b

�
�k;� C h:c:

�
: (10.63)

In the language of b�k;˙ and bk;˙, the pairing potential V2 consists of two pairing
potentials between the same types of the particles. The particles with � D C and
� D � are decoupled completely. Therefore, the total Hamiltonian is reduced to

H D
X

k;�D˙

"�q
	.k/2 C�2

k;c C ��k

�
b
�
k;�bk;� � 1

2

X

k;�

�
�k;�b

�
k;�b

�
�k;� C h:c:

�
#

:

(10.64)
The order parameters are

�k;� D � ˛�
q
V 2
Z C ˛2k2

�
ky C i�kx

�
; (10.65)
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which obey p ˙ ip symmetry. Thus, the effective model consists of two different
types of spinless

�
px ˙ ipy

�
-wave pairing superconductors. By introducing a

Nambu spinor,  �k;� D
�
b
�
k;� ; b�k;�

�
, the total Hamiltonian has the form

H D 1

2

X

k;�D˙
 
�
k;�

	
˛�

�k

�
ky�x � �kx�y

�C
�q

	.k/2 C�2
k;c C ��k

�
�z



 k;�

(10.66)
by ignoring a constant.

The equation can be reduced to two modified Dirac equations near k D 0. In
each type of the superconductor, the factor ˛�=VZ , which is equivalent to the
velocity in the modified Dirac equation, plays a role in coupling the two bands.
This fact illustrates that Rashba spin-orbit coupling, the pairing potential, and the
Zeeman field combine together to form three indispensable ingredients to realize a
topological superconductor. For the particles of � D C, the spectrum is

	C D

vu
ut ˛2�2

V 2
Z C ˛2k2

k2 C
 q

V 2
Z C ˛2k2 C

s

	.k/2 C V 2
Z�

2

V 2
Z C ˛2k2

!2

: (10.67)

The gap between the particle and hole bands is always positive and never close
if � ¤ 0. The Chern number (see Sect. A.2) is equal to zero. Thus, it is always
topologically trivial. For the particles of � D �, the spectrum is

	� D

vu
u
t ˛2�2k2

V 2
Z C ˛2k2

C
 q

V 2
Z C ˛2k2 �

s

	.k/2 C V 2
Z�

2

V 2
Z C ˛2k2

!2

: (10.68)

The gap can be closed only at k D 0 if � ¤ 0. Near the point, it follows from
(10.66) that the gap can be either positive or negative,

�C
GAP D

�
� �

q
	.k/2 C�2

k;c

�

kD0
D jVZ j �

p
�2 C�2: (10.69)

The sign of the gap itself does not determine the topology of the band structure.
However, the sign change demonstrates that a topological quantum phase transition
can occur near jVZ j D p

�2 C�2. The Chern number for the hole band of bk;� can
be calculated explicitly,

nc D 1

2

h
sgn

�p
�2 C�2 � jVZj

�
� 1

i
: (10.70)

Therefore, it is topologically nontrivial if
p
�2 C�2 < jVZj, while it is topologi-

cally trivial if
p
�2 C�2 > jVZj.
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10.6 Non-Abelian Statistics and Topological
Quantum Computing

If the overall phase of the superconducting gap shifts by �, it is equivalent to
rotating the creation and annihilation operators of electron by �=2: c ! ei�=2c

and c� ! e�i�=2c�: The solution for the Majorana fermion � D uc� C u�c !
ue�i�=2c� C u�ei�=2c. If the phase of the order parameter is changed by 2; the
Majorana fermion in the vortex changes its sign: � ! ��: Let us fix the initial
positions of vortices. Permutations of the vortices may form a braid group B2n,
which is generated by the elementary interchange Ti of neighboring vortices [4].

Under the action Ti :

�i ! �iC1; (10.71a)

�iC1 ! ��i ; (10.71b)

�j ! �j (10.71c)

for j ¤ i and j ¤ i C 1: This action obeys the commutation relations:

TiTj D TjTi ; for ji � j j > 1 ; (10.72a)

TiTj Ti D TjTiTj ; for ji � j j D 1 ; (10.72b)

which is for the braid group. The expression for this action is

�.Ti / D exp
�
2
�iC1�i

�
D exp

�
�i 
4
P
�

D cos


4
� iP sin



4
D 1p

2
.1C 2�iC1�i / (10.73)

whereP is the parity operator andP2 D P . Thus, the Majorana fermions associated
with a quantum vortex obey non-Abelian statistics.

In the case of four vortices, the four Majorana fermions combine into two
complex fermions c1 D 1p

2
.�1 C i�2/ and c2 D 1p

2
.�3 C i�4/: The ground state is

fourfold degenerated, and the three generators T1, T2, and T3 of the braid group are
represented by

�.T1/ D exp
�
2
�2�1

�
; (10.74a)

�.T2/ D exp
�
2
�3�2

�
; (10.74b)

�.T3/ D exp
�
2
�4�3

�
: (10.74c)
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One may write the operators in a matrix form in the basis fj0i, c�1 j0i, c�2 j0i,
c
�
1c
�
2 j0ig.

�.T1/ D exp
�
2
�2�1

�
D

0

B
B
@

e�i 4 0 0 0

0 eCi 4 0 0

0 0 e�i 4 0

0 0 0 eCi 4

1

C
C
A ; (10.75)

�.T2/ D exp
�
2
�3�2

�
D 1p

2

0

B
B
@

1 0 0 �i
0 1 �i 0
0 �i 1 0

�i 0 0 1

1

C
C
A ; (10.76)

�.T3/ D exp
�
2
�4�3

�
D

0

B
B
@

e�i 4 0 0 0

0 e�i 4 0 0

0 0 eCi 4 0

0 0 0 eCi 4

1

C
C
A : (10.77)

A quantum computation consists of three steps:

1. Create: if a pair of i; j of vortices is created, they will be in the ground state
ˇ
ˇ0ij

˛

with no extra quasiparticle excitations. Creating N pairs initialize the system.
2. Braid: adiabatically rearranging the vortices modifies the state and performs a

quantum computation.
3. Measure: bringing vortices i and j back together allows the quantum state

associated with each pair to be measured.
ˇ
ˇ0ij

˛
will be distinguished by the

presence or absence of extra fermionic quasiparticle associated with the pair.

Majorana fermions might provide the basic elements for a quantum computer.
This is the motivation behind the search of Majorana fermions in condensed matter
systems.

10.7 Further Reading

• A.Yu. Kitaev, Unpaired Majorana fermions in quantum wires. Physics-Uspekhi
44, 131 (2001)

• L. Fu, C.L. Kane, Superconducting proximity effect and Majorana fermions at
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• F. Wilczek, Majorana returns. Nat. Phys. 5, 614 (2009)
• J. Alicea, New directions in the pursuit of Majorana fermions in solid state

systems. arXiv: 1202.1293v1[cond-mat.supr-con]
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Chapter 11
Topological Anderson Insulator

Abstract Topological Anderson insulator is a distinct type of topological insulator,
which is induced by the disorders. Its key difference from the conventional
topological insulators is that its Fermi energy lies within a so-called mobility gap
instead of a “real” band gap. The robustness of the edge or surface states is protected
by the mobility gap.

Keywords Topological Anderson insulator • Quantized anomalous Hall effect •
Band gap • Mobility gap

11.1 Band Structure and Edge States

We start with a two-dimensional ferromagnetic metal with strong spin-orbit cou-
pling:

h.k/ D 	.k/C d.k/ � �; (11.1)

where d.k/ D .Akx; Aky; M � Bk2/ and 	.k/ D C � Dk2 with A, B , C ,
and D being sample-specific parameters. This is a modified Dirac equation plus
an additional term 	.k/, which breaks the symmetry between the conduction and
valence bands. In order to keep the band gap open, we require that B2 > D2. In this
case the Chern number for this model is given by

nc D �1
2
Œsgn.M/C sgn.B/� : (11.2)

For positive B , it tells that the sign change of M signifies a topological quantum
phase transition between a conventional insulating phase (M < 0 and nc D 0)
and a topological quantum phase (M > 0 and nc D 1). Nonzero Chern number
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indicates that the Hall conductance is quantized, �H D nce
2=h. Thus, the existence

of the additional term 	.k/ does not affect the Chern number once the band gap
keeps open.

In an infinite-length strip with open lateral boundary conditions, the solution of
the two-band model H‰ D E‰ is given by Zhou et al. [1]

‰.kx; y/ D .�Ce˛y C ��e�˛y C �Ceˇy C ��e�ˇy/; (11.3)

�˙ and �˙ are two-component kx-dependent coefficients and ˛, ˇ are determined
self-consistently by the following set of equations:

˛2 D k2x C F �
r

F 2 � M2 � E2

B2 �D2
; (11.4)

ˇ2 D k2x C F C
r

F 2 � M2 � E2

B2 �D2
; (11.5)

E2
˛ˇ

2 CE2
ˇ˛

2 � �E˛Eˇ˛ˇ D k2x.E˛ �Eˇ/2: (11.6)

Here, we have

F D A2 � 2.MB C ED/

2.B2 �D2/
; (11.7)

E˛ D E �M C .B CD/.k2x � ˛2/; (11.8)

Eˇ D E �M C .B CD/.k2x � ˇ2/; (11.9)

� D tanh ˛Ly
2

tanh ˇLy
2

C tanh ˇLy
2

tanh ˛Ly
2

; (11.10)

and Ly is the width of the strip. We take the Dirichlet boundary condition at y D
˙Ly=2:

‰

�
kx; y D ˙Ly

2

�
D 0: (11.11)

The solutions of this set of equations naturally contain both helical edge states (˛2 <
0) and bulk states (˛2 > 0), which are shown in Fig. 11.1 for three cases M < 0,
M D 0, and M > 0. The edge states (red lines in Fig. 11.1) are seen beyond the
bulk gap for all cases, up to an M -dependent maximum energy. When M < 0, the
edge states cross the bulk gap producing a quantum Hall effect. AtM D 0; the edge
states exist only in conjunction with the lower band, terminating at the Dirac point.
For M > 0; there are no edge states in the gap, producing a conventional insulator,
but the edge states may coexist with the valence band. Appearance of edge state is a
key feature of this model even for a normal band structure although these states mix
with the bulk states.



11.2 Quantized Anomalous Hall Effect 193

a b c

Fig. 11.1 Band structure of HgTe/CdTe quantum wells in a geometry of stripe with finite width.
(a) The “inverted” band structure case with M D �10meV. Edge states (red solid line) cross the
bulk band gap and merge into bulk states (gray area) at a maximum energy in the upper band. The
dashed line mark the boundary of bulk states. (b) The transition point between an inverted band
structure and a “normal” band structure with M D 0meV. (c) The normal band structure with
M D 2meV. In all figures, the strip width Ly is set to 100�m. The sample-specific parameters
are fixed to be A D 364:5meV nm, B D �686meV nm2, C D 0, and D D �512meV nm2

(Adapted from [2])

11.2 Quantized Anomalous Hall Effect

For numerical simulation, we take the tight binding approximation on a square
lattice, and the Hamiltonian has the form

d.k/ D
 

A sin kx; A sin ky; M � 4B sin2
k2x
2

� 4B sin2
k2y

2

!

(11.12)

for the periodic boundary condition. In the lattice space, after performing the Fourier
transformation, we have a lattice model as in Chap. 3.

The most surprising aspect revealed by numerical calculation is the appearance
of quantized anomalous conductance at a large disorder for situation when the clean
limit system is a metal without preexisting edge state. We study transport as a
function of disorder, with the Fermi energy varying through all regions of the band
structure. For this purpose, disorders are introduced through random on-site energy
with a uniform distribution within Œ�W=2;W=2�. The conductance of disordered
strips of width Ly and length Lx was calculated in a two-terminal setup using the
Landauer-Büttiker formalism [3, 4]. The conductance G as a function of disorder
strength W is plotted in Fig. 11.2. Furthermore, the conductance was scaled with
the width of the strip. Figure 11.2 shows the calculated conductance of a strip as a
function of its width Ly . In the region before the quantized anomalous conductance
plateau is reached, the scaled conductanceGLx=Ly , or conductivity, is independent
of width, as shown in the inset of Fig. 11.2, which implies bulk transport. Within
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Fig. 11.2 (Left): Width-dependence of the conductance in disordered strips with several values
of strip width Ly and a length Lx D 2,000 nm. In the inset, the conductance traces prior to the
quantum anomalous Hall phase (left-handside of the dashed line) are scaled with the width of
the strips as � D GLx=Ly . The formation of the edge states is indicated by the presence of
conductance quantization e2=h: In this figure, M D 2meV and the Fermi energy Ef D 20meV.

(Right): Three independent spin-resolved transmission coefficients, T "
21 , T "

31 , and T "
41 , are plotted

as functions of disorder strength W . Standard deviations of the transmission coefficients for 1,000
samples are shown as the error bars. In the shadowed range of disorder strength, all bulk states are
localized and only chiral edge states exist, which is schematically shown in the inset (for spin-up
component only). The width of leads is 500 nm and M D 1meV and Ef D 20meV (Adapted
from [2])
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the quantized plateau, absence of such scaling indicates a total suppression of the
bulk conduction, thus confirming presence of conducting edge states in an otherwise
localized system.

We further examine the picture of edge-state transport in a four-terminal cross-
bar setup by calculating the spin-resolved transmission coefficients Tpq between
each ordered pair of leads p and q (D 1; 2; 3; 4). Three independent coefficients,
T21, T31, and T41, are shown in Fig. 11.2 as functions of the disorder strength inside
the cross region. The shadowed area marks the appearance of quantized plateau,
where hT41i D 1, hT21i D hT31i D 0, and all transmission coefficients exhibit
vanishingly small fluctuations. From symmetry, it follows that hT41i D hT24i D
hT32i D hT13i ! 1; and all other coefficients are vanishing small. These facts
are easily understood from the presence of a chiral edge state. Two consequences
of this chiral edge state transport are a vanishing diagonal conductance Gxx D
.T21 � T12/e

2=h D 0 and a quantized Hall conductanceGxy D .T41 � T42/e2=h D
e2=h, analogous to Haldane’s model for the integer quantum Hall effect with parity
anomaly [5]. The quantized Hall conductance Gxy reveals that the topologically
invariant Chern number of this state is equal to one. Thus, this is a disorder-induced
quantum anomalous Hall effect.

A noncommutative Chern number can be defined in disordered system. Pro-
dan [6] did a series of calculation for the disordered system and found that the
Chern number takes a quantized value ˙1.

11.3 Topological Anderson Insulator

Now we are ready for topological Anderson insulator, which does not break the time
reversal symmetry. The effective Hamiltonian for a clean bulk HgTe/CdTe quantum
well is given by Bernevig et al. [7]

H.k/ D
�
h.k/ 0

0 h�.�k/
�
; (11.13)

where h.k/ has the identical form of the 2 � 2 Hamiltonian for two-dimensional
ferromagnet with spin-orbit coupling. This 4 � 4 model is a combination of h.k/
and h�.�k/ which is the time reversal counterpart of h.k/. The model is equivalent
to the two-dimensional modified Dirac model in Eq. (2.32) with an additional kinetic
energy term 	.k/. When h.k/ contributes a Hall conductance e2=h, its time reversal
counterpart h�.�k/ will also contribute a quantum Hall conductance, but with an
opposite sign, �e2=h. As a result, the total Hall conductance in this system is always
equal to zero. Both h.k/ and h�.�k/ produce a chiral edge state: electrons in one
edge state of h.k/ are moving in one direction, and electrons in another edge state
are moving in opposite direction. The electron spins in the two states are connected
by the time reversal operation and must be antiparallel. Therefore, this is a quantum
spin Hall effect in H.k/.



196 11 Topological Anderson Insulator

Fig. 11.3 Conductance of disordered strips of HgTe/CdTe quantum wells. The upper panels (a)–
(c) show results for an quantum well “inverted” with M D �10meV, and the lower panels
(d)–(f) for a “normal” quantum well with M D 1meV. (a) The conductance G as a function
of disorder strength W at three values of Fermi energy. The error bars show standard deviation
of the conductance for 1,000 samples. (b) Band structure calculated with the tight-binding model.
Its vertical scale (energy) is same as in (c) and the horizontal lines correspond to the values of
Fermi energy considered in (a). (c) Phase diagram showing the conductance G as a function of
both disorder strength W and Fermi energy Ef . The panels (d)–(f) are same as (a)–(c), but for
M > 0. The TAI phase regime is labeled. In all figures, the strip width Ly is set to 500 nm; the
length Lx is 5,000 nm in (a) and (d) and 2,000 nm in (c) and (f) (Adapted from [2])

The calculated behavior conforms to the qualitative expectation for certain
situations. For Fermi level in the lower band, for both M < 0 and M > 0, an
ordinary Anderson insulator results when the clean limit metal is disordered (green
lines in Fig. 11.3a, d). The conductance in this case decays to zero at disorder
strength around 100meV, which is about five times of the conventional hopping
energy between nearest neighboring sites t D �D=a2 � 20:5meV, and much
larger than the clean-limit bulk band gap Eg D 2jM j D 20meV. Here a D 5

nm is the lattice spacing of the tight binding model. The topological insulator (red
line in Fig. 11.3a) is robust and requires a strong disorder before it eventually yields
to a localized state. This is expected as a result of the absence of backscattering in a
topological insulator when time reversal symmetry is preserved [8].

The most surprising aspect revealed by our calculations is the appearance of
anomalous conductance plateaus at large disorder for situations when the clean limit
system is a metal without preexisting edge states. See, for example, the blue lines in
Fig. 11.3a (M < 0) and Fig. 11.3d (M > 0). The anomalous plateau is formed after
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the usual metal-insulator transition in such a system. The conductance fluctuations
(the error bar in Fig. 11.3a, d) are vanishingly small on the plateaus; at the same
time the Fano factor drops to nearly zero indicating the onset of dissipationless
transport in this system, even though the disorder strength in this scenario can be as
large as several 100 meV. This state is termed topological Anderson insulator. The
quantized conductance cannot be attributed to the relative robustness of edge states
against disorder, because it occurs for cases in which no edge states exist in the
clean limit. The irrelevance of the clean limit edge states to this physics is further
evidenced from the fact that no anomalous disorder-induced plateaus are seen for
the clean limit metal for which bulk and edge states coexist; those exhibit a direct
transition into an ordinary Anderson insulator.

The nature of topological Anderson insulator is further clarified by the phase
diagrams shown in Fig. 11.3c for M < 0 and in Fig. 11.3f for M > 0. For M < 0,
the quantized conductance region (green area) of the topological Anderson insulator
in the upper band is connected continuously with the quantized conductance area of
the topological insulator phase of the clean-limit. One cannot distinguish between
these two phases by the conductance value. When M > 0, however, the anomalous
conductance plateau occurs in the highlighted green island labeled TAI (topological
Anderson insulator), surrounded by an ordinary Anderson insulator. No plateau is
seen for energies in the gap, where a trivial insulator is expected. The topology of
the topological Anderson insulator and the absence of preexisting edge states in the
clean limit demonstrate that the topological Anderson insulator owes its existence
fundamentally to disorder.

The existence of topological Anderson insulator has been confirmed by several
independent groups. As a new type of topological insulator, topological Anderson
insulator exists even in three dimensions [9]. To confirm the genuine three-
dimensional nature of the topological Anderson insulator, Guo et al. probed for
the Witten effect in their three-dimensional model. According to Witten, a magnetic
monopole in a media could bind electric charge �e.nC 1

2
/ with an integer n. They

found that a half charge is bound to a monopole in three-dimensional topological
Anderson insulator by numerical calculation.

11.4 Effective Medium Theory for Topological Anderson
Insulator

Groth et al. [10] proposed an effective medium theory to explain the disorder-
induced transition from a conventional metal to a topological Anderson insulator.
Consider a scalar short-ranged potential for the disorder: V.r/ D V0

P
i ı.r � Ri /,

where V0 is the strength of disorder. The retarded Green’s function can be written as

GR.k;E;†R/ D .E � h.k/ �†R/�1: (11.14)
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Here the self-energy†R is defined by

.EF � h.k/ �†R/�1 D
�

1

EF � h.k/ � V.r/

�
(11.15)

with h� � � i the disorder average. The self-energy can be expanded in terms of the
Pauli matrices: †R D P

iD0;x;y;z †i�i . Thus, in the effective Hamiltonian, Heff D
h.k/C†R, the renormalized parameters are given by

QM D M C lim
k!0

Re†z; (11.16a)

QEF D EF � lim
k!0

Re†0: (11.16b)

The phase boundary of the topological Anderson insulator is at QM D 0, while
the Fermi level enters the negative band gap when QEF D � QM . In the Born
approximation, the self-energy is given by the integral equation

†R D 1

12

� a
2

�2
V 2
0

Z

BZ

dk
.2/2

GR.k;EF C i0C; †R/: (11.17)

where the integral runs over the first Brillouin zone (BZ).
An approximate solution can be derived in a closed form:

QM D M C V 2
0 a

2

48„2
B

B2 �D2
ln

ˇ
ˇ̌
ˇ
ˇ
B2 �D2

E2
F �M2

�
„
a

�2ˇˇ̌
ˇ
ˇ
; (11.18a)

QEF D EF C V 2
0 a

2

48„2
D

B2 �D2
ln

ˇ
ˇ
ˇ̌
ˇ
B2 �D2

E2
F �M2

�
„
a

�2ˇˇ
ˇ̌
ˇ
: (11.18b)

In the clean limit, ifM andB have different signs, sayB > 0 butM < 0, the system
is a conventional metal. The modification of ıM D QM � M is positive provided
B2 > D2 which is the condition for the gap opening between the conduction
and valence bands. This will change a negative M into a positive QM , leading to
a quantum phase transition.

This theory describes very well the transition from a metal into topological
Anderson insulator in a weak disorder, but fails to predict the transition from
topological Anderson insulator to Anderson insulator in an even stronger disorder.

11.5 Band Gap or Mobility Gap

The edge or surface states in topological Anderson insulator are expected to be
protected by the mobility gap instead of the band gap as in topological (band)
insulator. In this section, by doing statistics on the local density of states (DOS),
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a function of energy, it is possible to identify which states are localized and
which states are extended. The kernel polynomial method is a powerful method
for evaluating spectrum properties [11–13].

There are two distinct average DOS in a disordered calculation. The average DOS
is defined as the algebraic average of the local DOS,

�av D h�i .E/i I (11.19)

the typical DOS is defined as the geometric average of the local DOS,

�typ D expŒhln.�i .E//i�: (11.20)

When electron states are extended, the DOS distribution is almost uniform in the
space, and thus, there should be not much difference between the two definitions.
However, when electron states are localized, the DOS is high near some sites, but
almost vanishes on the others. Thus, we expect significant ratio between the two
types of DOS [14].

We can take a lattice sample of periodic boundary condition on both x- and y-
direction (i.e., a torus) and do the statistics of Eqs. (11.19) and (11.20). The upper
block of the Hamiltonian in Eq. (11.13) is used, and we takeA D B D 1; C D D D
0 such that the electron-hole symmetry is recovered.M D 0:2 such that the system
is initially a trivial band insulator. The result is plotted in Fig. 11.4 with increasing
disorder strength from Fig. 11.4a–e.

The mass renormalization phenomenon proposed by Groth et al. [10] is con-
firmed in the weak disorder regime, where initially a band gap in Fig. 11.4a is clearly
seen but is gradually closed in Fig. 11.4b as the disorder increases. As is seen from
the ratio �typ=�av, at the strong disorder regime, we can observe two extended states
at E D ˙1 in Fig. 11.4c, which indicates that the system is topologically nontrivial.
It is noted that no band gap opens again for a stronger disorder while the mobility
gap opens to separate the two extended states. As the disorder further increases,
these two extended states move toward each other and finally collide and disappear
in Fig. 11.4d. Finally, all the states become localized. This phenomenon can be
identified as the levitation and pair annihilation. Levitation and pair annihilation
is the hallmark of any extended states carrying topological numbers. Such states are
stable against disorder until those with opposite topological numbers collide with
each other and become trivial when disorder strength is increased. In the disorder-
induced nontrivial Hamiltonian h.k/, there exist the gapless edge states between the
two extended states, which is the origin of topological Anderson insulator.

11.6 Summary

Topological Anderson insulator is distinct from the conventional topological insu-
lator, or topological band insulator. We find that there exists a mobility gap instead
of the band gap in the system. From the point of view of time reversal symmetry,
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Fig. 11.4 Averaged DOS �av (blue line), typical DOS �typ (black line), and the ratio between
the two �typ=�av (red line) as a function of the Fermi level. From (a)–(e), the disorder strength
increases. (a) The band gap opens. (b) The band gap closes. (c) The mobility gap opens and the
band gap disappears. (d) Either the band gap or the mobility gap closes. (e) The averaged DOS
becomes flat in the strong disorder limit

both phases can be described by the Z2 index, and belong to the same topological
class. However, the disorder breaks the translational invariance. They are distinct if
electrons in the bulk are localized or not.
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4. M. Büttiker, IBM J. Res. Dev. 32, 317 (1988)
5. F.D.M. Haldane, Phys. Rev. Lett. 61, 2015 (1988)
6. E. Prodan, Phys. Rev. B 83, 195119 (2011)
7. B.A. Bernevig, T.L. Hughes, S.C. Zhang, Science 314, 1757 (2006)
8. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 146802 (2005)
9. H.M. Guo, G. Rosenberg, G. Refael, M. Franz, Phys. Rev. Lett. 105, 216601 (2010)

10. C.W. Groth, M. Wimmer, A.R. Akhmerov, J. Tworzydlo, C.W.J. Beenakker, Phys. Rev. Lett.
103, 196805 (2009)

11. A. Weiˇe, G. Wellein, A. Alvermann, H. Fehske, Rev. Mod. Phys. 78, 275 (2006)
12. L.W. Wang, Phys. Rev. B 49, 10154 (1994)
13. S. Sota, M. Itoh, J. Phys. Soc. Jpn. 76, 054004 (2007)
14. Y.Y. Zhang, R.L. Chu, F.C. Zhang, S.Q. Shen, Phys. Rev. B 85, 035107 (2012)



Chapter 12
Summary: Symmetry and Topological
Classification

Abstract For noninteracting electron systems, symmetry classification has already
exhausted all possible topological insulators and superconductors: each dimension
has five possible topological phases.

Keywords Topological classification • Symmetry class • Time reversal
symmetry • Particle-hole symmetry

12.1 Ten Symmetry Classes for Noninteracting Fermion
Systems

Following Altland and Zirnbauer [1, 2], all possible symmetry classes of random
matrix, which can be interpreted as Hamiltonian of some non-interacting fermionic
systems, can be systematically enumerated: there are ten symmetry classes in total.
All classes are sets of Hamiltonian with specific transformation properties under
some discrete symmetries.

Consider a general system of noninteracting fermions, which is described by a
second quantized Hamiltonian,

H D
X

A;B

 
�
AHA;B B; (12.1)

where �A and B are the creation and annihilation operators of fermions and satisfy
the relation n

 
�
A;  B

o
D ıA;B: (12.2)

The subscripts A and B can be collective indices. For example, for a system of
electrons on a lattice, they are A D .i; �/, which represent the electron with spin
� on the lattice site i . In this case, HA;B is a square matrix. The symmetries of the
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Table 12.1 Ten symmetry classes following the random matrix ensem-
bles [3]

Symmetry classes Discrete symmetry relation

A H D H�

AI 	c D C1I �c D C1
AII 	c D C1I �c D �1
C 	c D �1I �c D �1
D 	c D �1I �c D C1
AIII P 2 D 1

DI P 2 D 1I 	c D ˙1I �c D C1IPCPT D C

CII P 2 D 1I 	c D ˙1I �c D �1IPCPT D C

CI P 2 D 1I 	c D ˙1I �c D ˙1IPCPT D �C
DIII P 2 D 1I 	c D �1I �c D ˙1IPCPT D �C

Hamiltonian mean that the HamiltonianH is related to �H , its transpose HT , and
its complex conjugation H�, respectively. We demand that these transformations
are implemented by unitary transformation and that their actions on the Hamiltonian
square to one. Hence, we consider the following transformations:

P symmetry: H D �PHP�1 where PP� D P2 D 1

C symmetry: H D 	cCH
TC�1 where CC� D 1 and CT D �cC (	c D ˙1 and

�c D ˙1)
K symmetry: H D 	kKH

�K�1 where KK� D 1 and KT D �kK (	k D ˙1 and
�k D ˙1)

Type P symmetry is commonly referred to as chirality symmetry, C expresses
as the particle-hole symmetry, and K time reversal symmetry. For Hermitian
Hamiltonians, H D H� D .H�/T . Thus, HT D H�, and C and K are identical.
We shall only talk about C symmetry, where 	c D C1 will be interpreted as time
reversal symmetry and 	c D �1 will be referred to as particle-hole symmetry.

An ensemble of Hamiltonian without any constraint other than being Hermitian
is called the unitary symmetry class (A class). If the Hamiltonian possesses P
symmetry, it is called the chiral unitary classes (AIII class). For C symmetry, we
have four classes of 	c D ˙1 and �c D ˙1. If the Hamiltonian possesses both P
and C symmetries, then it automatically has another C -type symmetry C 0:

H D 	0
cC

0HC 0�1 (12.3)

where C 0 D PC and 	0
c D �	c . Since C 0 can be interpreted as a time reversal

symmetry if 	c D �1 or a particle-hole symmetry if 	c D C1, the classes with both
P and C symmetries thus automatically have chirality, time reversal, and particle-
hole symmetry. As a result, we have ten symmetry classes related to P and C
symmetries as listed in Table 12.1.

Alternatively, the system can also be classified according to time reversal
symmetry (TRS) ‚ and the particle-hole symmetry (PHS) ‡ [4]. TRS ‚ can be
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represented by an anti-unitary operator on a Hilbert space, which is written as
product of complex conjugate operatorK and unitary operator C , ‚ D KC ,

‚H‚�1 D H; (12.4)

or the system is invariant under time reversal symmetry if and only if the complex
conjugation of the Hamiltonian is equal to itself up to a unitary operator

‚ W C�H�
A;BC D CHA;B : (12.5)

Thus, for time reversal symmetry, the Hamiltonian can be (i) not time reversal
invariant, in which we take t D 0; (ii) time reversal invariant, but the square of
the time reversal operator is C1, ‚2 D 1, in which we take t D 1, for example,
a spinless or integer spin system; and (iii) time reversal invariant, but the square of
the time reversal operator is equal to �1, ‚2 D �1, in which we take t D �1.
For example, a half-odd-integer spin system. So totally it has three possible cases,
t D 0, C1, and �1.

Particle-hole symmetry (PHS) ‡ can be expressed in terms of H :

‡H‡�1 D �H; (12.6)

where ‡ D KV or the system is invariant under time reversal symmetry if and
only if the complex conjugation of the Hamiltonian is equal to a minus itself up to
a unitary operator V ,

‡ W V �H�
A;BV D �HA;B : (12.7)

Thus, for a particle-hole symmetry, the Hamiltonian can be (i) not particle-hole
invariant, in which we take v D 0; (ii) particle-hole invariant, but the square of the
particle-hole operator is C1,‡2 D 1, in which we take v D 1; and (iii) particle-hole
invariant, but the square of the particle-hole operator is equal to �1, ‡2 D �1, in
which we take v D �1. So totally it has three possible cases, v D 0, C1, and �1.

Thus, there are at least 3 � 3 possible ways for a Hamiltonian to respond to
time reversal and particle-hole operation. In addition, the product of TRS and PHS
gives SLS D TRS � PHS, often referred to as sublattice or chiral symmetry. The
assignment .TRS;PHS/ D .0; 0/ allows SLS to be either present (SLS D 1) or
absent (SLS D 0). Therefore, one obtains ten symmetry classes by combining time
reversal symmetry and particle-hole symmetry together.

12.2 Physical Systems and the Symmetry Classes

12.2.1 Standard (Wigner-Dyson) Classes

Class A: The Hamiltonian which possesses neither time reversal symmetry nor
the particle-hole symmetry belongs to the unitary symmetry class, that is, class
A. For example, a two-dimensional electron gas in an external magnetic field.
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Class AI: The Hamiltonian of integer spin or spinless particles which possesses
time reversal symmetry belongs to the orthogonal symmetry. In this case, ‚2 D
C1 and

HT D H: (12.8)

Class AII: The Hamiltonian of spin- 1
2

particles which possesses time reversal
symmetry belongs to the symplectic symmetry. In this case, ‚2 D �1. For
example, an electron system with spin-orbit coupling

i�yH
T .�i�y/ D H: (12.9)

12.2.2 Chiral Classes

Symmetry classes of Hamiltonian possessing a P-type symmetry are conventionally
called chiral symmetry. In complete analog with the standard (Wigner-Dyson)
classes, there are three types of chiral symmetries:

Class AIII: The ensemble of chiral Hamiltonian without any other constraint is
called chiral unitary class.

Class CII: The ensemble of chiral Hamiltonian with time reversal symmetry and
‚2 D �1 is called chiral symplectic class.

Class DI: The ensemble of chiral Hamiltonian with time reversal symmetry and
‚2 D C1 is called chiral orthogonal class.

12.2.3 Bogoliubov-de Gennes (BdG) Classes

We consider a general form of a Bogoliubov-de Gennes Hamiltonian,

H D 1

2
.c�; c/

�
„ �

��� �„T

��
c

c�

�
(12.10)

where „ D „� as required by the Hermiticity of the Hamiltonian H� D H and
� D ��T for Fermi statistics. c can be for either spinless fermions or spin- 1

2

electron c D .c"; c#/.
BdG Hamiltonian can be classified into four subclasses: C and CI are primarily

relevant to spin-singlet superconductor, while D and DIII are primarily relevant to
spin-triplet superconductor.

Class D: txH
T tx D �H such as p ˙ ip wave pairing superconductor

H D 1

2

X

k

.c
�

k; c�k/
�

	k � � �0.kx ˙ iky/

�0.kx � iky/ �	k C �

� 
ck

c
�

�k

!

: (12.11)
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Class DIII: txH
T tx D �H and isyHT .�isy/ D H such as superposition of

p C ip and p � ip wave pairing superconductor
Class C: ryH

T ry D �H such as d ˙ id wave pairing superconductor
Class CI: H� D H such as dx2�y2 or dxy wave pairing superconductor

Note that t˛ , s˛ , and �˛ are all the Pauli matrices.

12.3 Characterization in the Bulk

Following Schnyder et al. [4], we discuss the bulk characteristics of topological
insulator based on the spectral projection operator. In the presence of translational
invariance, the ground states of noninteracting fermion systems can be constructed
as a filled Fermi sea in the first Brillouin zone. From the eigenvalue equation in the
band theory,

H.k/ jun.k/i D En.k/ jun.k/i ; (12.12)

the projection operator onto the filled Bloch states at a fixed k is defined as

P.k/ D
X

n2filled

jun.k/i hun.k/j : (12.13)

Then it is convenient to define

Q.k/ D 2P.k/� 1 (12.14)

which satisfies the relation

Q2 D 1;Q� D Q (12.15)

and

TrQ D m � n (12.16)

where m is the number of the filled states and n is the number of empty states.
Depending on the symmetry class, additional condition may be imposed on Q.
Without any such further conditions, the projector takes values in the so-called
Grassmannian Gm;mCn.C /: the set of eigenvectors as a unitary matrix, a member
of U.mC n/. Once we consider a projection onto the filled Bloch states, we have a
gauge symmetry U.m/. Similarly we have U.n/ for empty Bloch states. Thus, each
projector is described by an element of the coset

U.mC n/= ŒU.m/ � U.n/� ' Gm;mCn.C / ' Gn;mCn.C /. (12.17)

Since

Q.k/ jun.k/i D
� C jun.k/i if n is filled,

� jun.k/i if n is empty,
(12.18)
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Table 12.2 Ten symmetry classes of single-particle Hamiltonian and possible
topologically nontrivial ground state characterized by Z and Z2 invariant. Z
represents the group of an integer, and Z2 represents the group of .0; 1/ or
.�1;C1/ (Adapted from [4])

TRS PHS SLS d D 1 2 3

Standard A (unitary) 0 0 0 – Z –
AI (orthogonal) C1 0 0 – – –
AII (symplectic) �1 0 0 – Z2 Z2

Chiral AIII (unitary) 0 0 1 Z – Z
BDI (orthogonal) C1 C1 1 Z – –
CII (symplectic) �1 �1 1 Z – Z2

BdG D 0 C1 0 Z2 Z –
C 0 �1 0 – Z –
DIII �1 C1 1 Z2 Z2 Z
CI C1 �1 1 – – Z

an element of Gm;mCn.C / can be written as

Q D UƒU �;ƒ D diag.1m;�1n/; (12.19)

and U 2 U.m C n/. Imposing additional symmetry will prohibit certain type of
maps from Brillouin zone to the space of projectors.

12.4 Five Types in Each Dimension

An element of the set of projectors within a given symmetry cannot be continuously
deformed into any others without closing the energy gap between two bands, which
is related to the homotopy group of the topological space of projectors. For example,
the two-dimensional homotopy group is 2 ŒGm;mCn.C /� D Z, implying that the
projectors are classified by an integer or the Chern number. Possible topologically
nontrivial phases with discrete symmetries are listed in Table 12.2.

12.5 Conclusion

Topological classification has exhausted all possible topological insulators and
superconductors. The topological phases exist from one dimension to three dimen-
sions and from insulators to superconductors. Some materials have been known for
a long time. The topological properties of some materials were only acknowledged
in recent years.
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As a conclusion of this book, we can say that

each topological insulator or superconductor is governed by one modified Dirac equation.

12.6 Further Reading
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cal insulators and superconductors in three spatial dimensions. Phys. Rev. B 78,
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• S. Ryu, A.P. Schnyder, A. Furusaki, A.W.W. Ludwig, Topological insulators and
superconductors: ten-fold way and dimensionality hierarchy. New J. Phys. 12,
065010 (2010)

• A. Kitaev, Periodic table for topological insulators and superconductors, in ed.
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Appendix A
Derivation of Two Formulae

A.1 Quantization of the Hall Conductance

In this section, we present a proof that the Hall conductance is quantized to be �e2=h
(� is an integer) in Eq. (4.51). For simplicity, we drop the band index first. From the
definition of the Berry curvature, the Hall conductance is expressed as

�xy D e2

h

1

2

Z 2

0

dkx

Z 2

0

dkyŒrk � A.kx; ky/�z; (A.1)

where the lattice constant is taken to be unit. Therefore, the conductance is
determined by the Berry curvature integrated over the reduced Brillouin zone.

To evaluate the surface integral, the Stokes’ theorem can be applied with the
condition that the surface is simply connected. To this end, we illustrate the
formation of the torus from a rectangle with the periodic boundary condition as
shown in Fig. A.1. In this way, the surface integral can be reduced to a line integral
around the first Brillouin zone,

�xy D e2

h

1

2

Z 2

0

dkx

Z 2

0

dky
�
@kxAy.kx; ky/ � @kyAx.kx; ky/

�

D e2

h

1

2

Z 2

0

dky
�
Ay.2; ky/� Ay.0; ky/

�

�e
2

h

1

2

Z 2

0

dkx ŒAx.kx; 2/ � Ax.kx; 0/� : (A.2)

Recalling that ju.kx; 0/i and ju.kx; 2/i actually represent the same physical state
due to the periodicity in the reciprocal vector space, which can only differ by a phase
factor, ju.kx; 2/i D expŒi�x.kx/�ju.kx; 0/i, one has
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Fig. A.1 The equivalence of
the first Brillouin zone and a
torus: (a) A rectangle of the
first Brillouin zone with
periodic boundary conditions
(b) the rectangle is rolled into
a tube along the ky direction.
(c) The tube is rolled into a
torus along the kx direction.
The four corners of the
rectangle are actually the one
point in the torus surface

Ax.kx; 2/ D hu.kx; 2/ji@kx ju.kx; 2/i
D �@kx �x.kx/C Ax.kx; 0/: (A.3)

Similarly, taking ju.2; ky/i D expŒi�y.ky/�ju.0; ky/i, one obtains

Ay.2; ky/ D �@ky �y.ky/C Ay.0; ky/: (A.4)

�x.kx/ and �y.ky/ are smooth functions. Using these two relations, the integral is
reduced to

�xy D e2

h

1

2

Z 2

0

dky
��@ky�y.ky/

�C e2

h

1

2

Z 2

0

dkx Œ@kx �x.kx/�

D e2

h

1

2

�
�y.0/� �y.2/C �x.2/ � �x.0/

�
: (A.5)

On the torus surface of the first Brillouin zone, the four wave states ju.0; 0/i,
ju.0; 2/i, ju.2; 0/i; and ju.2; 2/i actually represent the same states (see in
Fig. A.1). Using the phase matching relations of these states,

ei�x.0/ju.0; 2/i D ju.0; 0/i; (A.6a)

ei�x.2/ju.2; 2/i D ju.2; 0/i; (A.6b)
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ei�y.0/ju.2; 0/i D ju.0; 0/i; (A.6c)

ei�y.2/ju.2; 2/i D ju.0; 2/i; (A.6d)

one obtains

ju.0; 0/i D eiŒ�x .0/C�y.2/��x.2/��y.0/�ju.0; 0/i: (A.7)

The single valuedness of ju.0; 0/i requires that the exponent must be an integer
multiple of 2 , that is,

�x.0/C �y.2/ � �x.2/� �y.0/ D 2� (A.8)

with an integer � (including 0). Therefore, the Hall conductance must be quan-
tized when the band is fully filled. This integer � is called Thouless-Kohmoto-
Nightingale-Nijs (TKNN) number or the first Chern number, which characterizes
the topological structure of the Bloch states ju.kx; ky/i in the parameter space
(kx; ky ).

A.2 A Simple Formula for the Hall Conductance

A simple two-band model has a general form in terms of the Pauli matrices �˛ ,

H.k/ D 	.k/C
X

˛D1;2;3
d˛.k/�˛: (A.9)

The energy spectra of the model are

E˙.k/ D 	.k/˙ d.k/ (A.10)

with d.k/ D
qP

˛D1;2;3 jd˛.k/j2, and the corresponding eigenstates are

jk;Ci D
 

cos �
2

e�i�

sin �
2

!

; (A.11a)

jk;�i D
 

sin �
2

e�i�

� cos �
2

!

; (A.11b)

where � D arccos dz.k/
d.k/ and � D arctan dy.k/

dx.k/
.
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In electric conduction, the conductivity �˛ˇ is defined as

J˛.r; t/ D
X

ˇ

�˛ˇ.q; !/„ˇ expŒi.q � r � !t/�; (A.12)

where J˛.r; t/ is the electric current and „ˇ expŒi.q � r � !t/� is the electric field.
In the linear response theory, the Kubo formula for the Hall conductance gives

�xy.q; !/ D C i

!
…xy.q; !/ (A.13)

with the retarded correlation function of the current operator Jx.q; t/ and Jy.q; t 0/

…xy.q; !/ D � i

V

Z C1

�1
dt�.t � t 0/ei!.t�t 0/ h j ŒJx.q; t/; Jy.q; t 0/� j i ; (A.14)

where V is the volume of the system. The dc conductivity is obtained by taking the
limit q ! 0 and then ! ! 0,

�xy D lim
!!0

lim
q!0

�xy.q; !/. (A.15)

Usually the retarded correlation function can be calculated in the Matsubara
formalism

…M
xy.i!�/ D 1

V

1

ˇ

X

k;�0

Tr
˚
Jx.k/GŒk; i.!� C !�0/�Jy.k/GŒk; i!�0 �


(A.16)

with frequencies !� D 2�=ˇ and !�0 D .2�0 C 1/=ˇ (ˇ D kBT ). The
Matstubara-Green’s function is given by

G.k; i!�/ D Œi!� �H.k/��1

� PC
i!� � EC.k/

C P�
i!� � E�.k/

(A.17)

with

P˙ D 1

2

"

1˙
X

˛D1;2;3

d˛.k/�˛
d

#

: (A.18)

Using the frequency summation over i!�0 ,

1

ˇ

X

�0

1

i.!� C !�0/� En

1

i!�0 � Em
D fk;m � fk;n

i!� C Em.k/ � En.k/
; (A.19)
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where the Dirac-Fermi distribution function fk;n D 1=f1 C expŒˇ.En.k/ � �/�g,
one obtains

…M
xy.!�/ D 1

V

X

k;n;n0

hk;nj Jx.k/
ˇ̌
k;n0˛ ˝k;n0 ˇ̌ Jy.k/ jk;ni fk;n � fk;n0

i!� C En.k/ �En0.k/
:

(A.20)
Its analytical continuation to the retarded function is realized by replacing i!n !
„! C i	,

…M
xy.!�/ ! …R

xy.!/: (A.21)

Using l’Hôspital’s rule,

lim
!!0

Im.…R
xy.!//

!
D Im

 
d…R

xy.!/

d!

!

!D0
; (A.22)

and

lim
!!0

d

„d!
	

1

„! C i	 C En �En0



D � 1

.En � En0/.En �En0 C i	/
; (A.23)

the Kubo formula for the dc Hall conductivity can be written as

�xy D „
V

lim
	!0C

X

k;n¤n0

.fk;n � fk;n0/Im
�hk;nj Jx.k/ jk;n0i hk;n0jJy.k/ jk;ni�

.En.k/� En0.k//.En.k/ �En0.k/C i	/
:

(A.24)
From the model in Eq. (A.9), the current operator Ji .k/ D �evi .k/ is given by

Ji .k/ D � e„@kiH.k/ D � e„

 

@ki 	.k/C
X

˛D1;2;3
@ki d˛.k/�˛

!

: (A.25)

For n ¤ n0, one has

hk;nj Ji .k/
ˇ
ˇk;n0˛ D � e„

X

˛D1;2;3
@ki d˛.k/ hk;nj �˛

ˇ
ˇk;n0˛ : (A.26)

Furthermore,

Im
�hk;nj �˛ jk;�ni hk;�nj �ˇ jk;ni� D n	˛ˇ�

d� .k/
d.k/

: (A.27)

We limit our discussion in the case that two levels do not cross in the whole
momentum space such that 	 ! 0C can be taken before the integral of k. Thus,
the conductance can be expressed as
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�xy D 1

2�

e2

„
X

k

	˛ˇ�
Œ@kxd˛.k/�

�
@ky dˇ.k/

�
d�.k/

d 3.k/
.fk;C � fk;�/: (A.28)

If there exists an energy gap between the upper and lower bands, and the lower band
is fully filled, that is, Ek;� < � < Ek;C, then fk;C D 0 and fk;� D 1 at zero
temperature. The Hall conductance has the form

�xy D �e
2

h

1

4

Z
dkxdky

�
@kxd.k/�@kyd.k/

� �d.k/
d 3.k/

: (A.29)



Appendix B
Time Reversal Symmetry

Time reversal symmetry is the invariance of physical laws under time reversal
transformation. The terminology was first introduced by E. Wigner in 1932.

B.1 Classical Cases

Let us first look at the classical case: a motion of particle subjected to a certain force.
Its trajectory is given by the Newtonian equation of motion,

m
d2r
dt2

D �rV.r/: (B.1)

If r.t/ is the solution of the equation, then r.�t/ is also the solution of the equation.
In another words, when we make a transformation t ! �t , the Newtonian equation
of motion keeps unchanged. Of course we should notice the change of the boundary
condition or initial conditions for the problem.

Maxwell’s equations and the Lorentz force F D �e.E C v � B/ are invariant
under the time reversal provided that

v ! �v; j ! �j;� ! �; (B.2)

B ! �B;E ! E: (B.3)

Maxwell’s equations are

r � D D �;r � E C @B
@t

D 0; (B.4a)

r � B D 0;r � H � @D
@t

D I; (B.4b)
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where D D 	0E C P and H D B=�0 � M. Therefore, a magnetic field changes a
sign, and an electric field remains unchanged under time reversal.

In quantum mechanics, the Schrödinger equation is written as

i„@‰.x; t/
@t

D
�

� „2
2m

r2 C V

�
‰.x; t/; (B.5)

in which the Hamiltonian at the right-hand side is invariant under the time reversal.
If ‰.x; t/ is a solution of the equation, ‰.x;�t/ is not a solution of the equation
because of the first-order time derivative and the imaginary sign at the left-hand
side. However, ‰�.x;�t/ is a solution. One can check it by using the solution of
a free particle, ‰.x; t/ D cei.p�x�Et/=„: The ‰.x;�t/ D cei.p�xCEt/=„ is also a
solution of the Schrödinger equation. However, the momentum is still p, not �p.

Definition. The transformation �

j˛i ! j Q̨ i D � j˛i ; jˇi !
ˇ̌
ˇ Q̌E D � jˇi (B.6)

is said to be anti-unitary if
D Q̌j Q̨

E
D hˇj˛i� I (B.7a)

� .c1 j˛i C c2 jˇi/ D c�
1 � j˛i C c�

2 � jˇi : (B.7b)

In this case, the operator � is an anti-unitary operator. Usually an anti-unitary
operator can be written as

� D UK; (B.8)

where U is a unitary operator and K is the complex conjugation operator, which is
defined as

K' D '�K: (B.9)

Here ' can be either a function or an operator.

B.2 Time Reversal Operator ‚

Let us denote the time reversal operator by ‚. Consider

j˛i ! ‚ j˛i ; (B.10)

where ‚ j˛i is the time-reversed state. More appropriately, ‚ j˛i should be called
the motion-reversed state. For a momentum eigenstate jpi ; ‚ jpi should be j�pi
up to a possible phase factor.‚ is an anti-unitary operator. We can see this property
from the Schrödinger equation of a time reversal invariant system,
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i„ @
@t
‰.x; t/ D H‰.x; t/; (B.11)

provided that ‚i‚�1 D �i and ‚ @
@t
‚�1 D @

@.�t / : The transformed momentum
operator p, the position x; and the angular momentum J are

‚p‚�1 D �p; (B.12a)

‚x‚�1 D x; (B.12b)

‚J‚�1 D �J .D x � p/: (B.12c)

Note that for p D �i„ d
dx , ‚p‚�1 D �p.

From the spherical harmonic Y ml .�; �/; one has

Y ml .�; �/ ! �
Y ml .�; �/

�� D .�1/mY �m
l .�; �/: (B.13)

Therefore, the eigenstate jl; mi of the orbital angular momentum and its
z-component has the relation

‚ jl; mi D .�1/m jl;�mi : (B.14)

B.3 Time Reversal for a Spin-1
2

System

Under the time reversal, t ! �t . Applying the time reversal operation twice, can
we go back to the original states? Yes, but ‚2 is not always equal to 1. For a spin- 1

2

system,
‚�˛‚

�1 D ��˛; (B.15)

where ˛ D x; y; z. Note that

�y�x�y D ��x; (B.16a)

�y�y�y D C�y; (B.16b)

�y�z�y D ��z: (B.16c)

By convention, �y is taken to be purely imaginary as in Eq. (2.4), and �x and
�z are real. We have K�y D ��yK and K�x;z D �x;zK . Therefore, the time
reversal operator can be constructed by combining �y and the complex conjugation
operatorK ,

‚ D i�yK: (B.17)
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Its inverse matrix is

‚�1 D �‚ D �i�yK: (B.18)

One can check the relation

‚2 D �1: (B.19)

Consider the eigenstate jn;Ci of S � n with the eigenvalue C„=2;

jn;Ci D e�iSz˛=„e�iSyˇ=„ jCi ; (B.20a)

‚ jn;Ci D ‚e�iSz˛=„e�iSyˇ=„‚�1‚ jCi : (B.20b)

Because ‚S˛‚�1 D �S˛ and‚i‚�1 D �i;

‚ jn;Ci D e�iSz˛=„e�iSyˇ=„‚ jCi D e�iSz˛=„e�iSyˇ=„ j�i D jn;�i ; (B.21)

where‚ jCi D j�i with an eigenvalue � 1
2
: On the other hand,

jn;�i D e�iSz˛=„e�iSy .Cˇ/=„ jCi D e�iSz˛=„e�iSyˇ=„e�iSy=„ jCi : (B.22)

Noting that K acting on jCi gives jCi : We have

‚ D e�iSy=„K D i�yK: (B.23)

In general, for a system with an angular momentum operator of the eigenvalue j ,
the time reversal operator is

‚ D ie�iJyK; (B.24)

where Jy is the y-component of orbital angular momentum operator. The operator
satisfies the relation

‚2 D .�1/2j : (B.25)

Kramers Degeneracy: The energy states for odd number of electrons in a time
reversal invariant system has at least double degeneracy.

This theorem is determined by the fact that the total spin of odd number of
electrons is always half of odd number of „. The time reversal operator has always
the relation‚2 D �1.
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