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Preface

This booklet is an essay at the interface of philosophy and complexity research,
trying to inspire the reader with new ideas and new conceptual developments in
cellular automata (CA). Although the text is introductory, it goes beyond the
presentation of nice pictures with pattern formations. Steven Wolfram declared
computer experiments with pattern formation by CA as a ‘‘new kind of science’’.
We claim that even in the future, quasi-empirical computer experiments are not
sufficient. CA must be considered complex dynamical systems in the strictly
mathematical sense, with corresponding equations and proofs. In short, we need
analytical models for CA, to find precise answers and predictions in the universe of
CA. In this sense, our booklet goes beyond Wolfram’s approach.

After a historical and philosophical introduction to the old question ‘‘Is the
universe a (cellular) automaton?’’ CA are defined as complex dynamical systems.
The geometrical representation of the eight CA-rules as a Boolean cube allows
precise definitions of a complexity index and universal symmetries. It can be
proved that the 256 one-dimensional CA are classified by local and global sym-
metry classes for CA. There is an exceptional symmetry group with universal
computability which we call the ‘‘holy grail’’ in the universe of CA. Although the
four automata of this group are completely deterministic, their long-term behavior
cannot be predicted in principle with respect to the undecidability of Turing’s
famous halting problem. Many analytical concepts of complexity research (such as
attractors, basins of attractors, time series, power spectra, and fractality) are
defined for CA. But there are also surprising phenomena in the CA-world (isles of
Eden) without analytical representation in dynamical systems.

Finally we ask whether CA can be considered models of the real world? We
introduce a test procedure to decide between an arrow of time or time reversibility
in the attractor dynamics of CA. Can we compare symmetries of the physical
universe with symmetries in the toy world of CA? What are the similarities and
differences? According to a famous hint by Richard Feynman, classical probabi-
listic and nondeterministic automata are not sufficient to simulate the quantum
universe. Therefore, quantum CA are a promising field for future research. CA can
also be considered models of complex networks in the life sciences and
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technology. We discuss applications in systems biology, brain research, and
robotics. Self-organization and the emergence of structure and patterns can be
made precise in the CA-context.

In the end it is not essential whether the universe is an automaton in some
metaphysical sense. In any case, CA are beautiful and fascinating examples of a
general tendency in modern research: The world is increasingly represented by
digitized models to handle the increasing complexity of research by high-speed
computers. The final philosophical question arises of whether the digitization of
the world has limitations.

Both authors want to thank the Institute for Advanced Study (IAS) at the
Technische Universität München (TUM), especially its director Patrick Dewilde,
for supporting and enabling our cooperation in Munich. Leon Chua would like to
thank the USA Guggenheim Foundation, the UK Leverhulme Trust Visiting
Professorship, and the AFOSR grant no. FA9550-10-1-0290 for their generous
supports. We also thank Christian Caron (Springer) and external referees for
helpful hints.

Munich and Berkeley, April 2011 Klaus Mainzer and Leon Chua
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Chapter 1
Introduction: Leibniz, Turing, Zuse,
and Beyond

According to Einstein, a scientific explanation should be as simple as possible, but
not too simple, for it to be realistic. It would be nice to understand the great
scientific problems of the universe (such as cosmic expansion, black holes, the
evolution of life, and brains) with just basic knowledge. The toy world of cellular
automata is an intuitive, but mathematically precise model that may be used to
illustrate fundamental problems of topical research. The philosopher and mathe-
matician Gottfried Wilhelm Leibniz (1646–1716), who constructed one of the first
mechanical calculating machines, considered, even then, the universe as an
automaton created by God as a divine engineer and mathematician. The theory of
cellular automata was independently initiated by several computer pioneers,
among them John von Neumann (1903–1957) and Konrad Zuse (1910–1995).

Does nature behave like a computer? Describing the universe by means of bits
and qubits (quantum bits) reveals new and surprising connections. Impulses in the
relay chains of his first computers led Konrad Zuse to think of light quanta and
pose the question: ‘‘What if, in principle, anything, no matter its size, can be
understood in terms of quantum particles?’’ Starting from Zuse’s visionary idea of
a ‘‘Calculating Space’’ (Zuse 1969), deep philosophical questions arise: Does
the universe calculate? Is there a program that controls the world? How can the
self-organization of complex structures be generated by simple rules?

Leibniz’ Vision of Divine Automata

Leibniz already had the idea of elementary automata representing the universe, and
which he called monads. In his view, they are simple systems changing their states
according to certain rules. The elementary automata constitute aggregations of
more or less complex systems, which are characterized by different correlations.
They constitute composite automata. Examples of these natural automata are cells,
organs, or organisms. Thus, for Leibniz, the complexity of the world is mirrored in
a monadic network of automata (Mainzer 1994). He was convinced that natural
automata surpass all kinds of technical automata in an infinite number of ways.

K. Mainzer and L. Chua, The Universe as Automaton, SpringerBriefs
in Complexity, DOI: 10.1007/978-3-642-23477-4_1, � The Author(s) 2012
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Leibniz was also the inventor of binary numbers. They are the simplest way to
represent numbers which, for Pythagorean philosophers, are the codes that
represent the world. Thus, Leibniz strongly believed that God created a digital
world of automata with states 0 and 1.

At the end of the seventeenth century, Leibniz’ vision of a digitized world of
automata was extraordinary. He also proclaimed a universal methodology of
formal procedures (mathesis universalis) to solve any problem by mechanical
calculations (algorithms). Actually, problems should be coded by symbols and
numbers as in algebra or Leibniz’ calculus, to implement them on mechanical
calculating machines. Leibniz distinguished two basic disciplines of his mathesis
universalis. An ars iudicandi should allow every scientific problem to be decided
by an appropriate arithmetic algorithm after its codification into numeric symbols.
An ars inveniendi should allow scientists to seek and enumerate possible solutions
of scientific problems. Leibniz’ mathesis universalis already seems to foreshadow
the famous Hilbert program at the beginning of the twentieth century, with
its demands for formalization and axiomatization of mathematical knowledge.
In accordance with his mathematical philosophy of rationality, Leibniz was deeply
convinced that there are universal algorithms able to decide all the problems in the
world by mechanical devices.

Leibniz’ historical calculation machine became the prototype of hand calcu-
lating machines. But each step of the calculation still had to be implemented by
hand. At the beginning of the nineteenth century, it was the English mathematician
Charles Babbage who constructed the first program-controlled calculation
machine (the Analytical Engine). His programming technology was inspired by the
beginning automation of looms with punch cards in the age of early industriali-
zation. His smart co-worker, Lady Ada Lovelace, daughter of the famous poet
Lord Byron, described Babbage’s Analytical Engine as suitable for ‘‘developing
and tabulating any function whatever… the engine [is] the material expression of
any indefinite function of any degree of generality and complexity’’ (Toole 1992).
She described its use for scientific computing, including trigonometric functions
and Bernoulli numbers. She also championed the idea that it could be applied to
produce music and graphics. Thus, for the first time, she articulated the idea of a
general-purpose computer.

General-purpose computers are capable of running different algorithms without
requiring any hardware modifications. This is possible because modern-day micro-
processors are based upon the von Neumann architecture. In this model, computer
programs and data are stored in the same main memory. This means that the contents
of memory may be treated as a machine instruction or data, depending on the context.

The Church–Turing Thesis

But how can we define computational procedures independently of any technical
standards for hardware? In 1936, Alan Turing introduced his famous logical-
mathematical concept of a machine, which was intuitively inspired by a typewriter at
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that time, but formally independent of any technical demands (Turing 1936/1937).
A Turing machine (TM) can carry out any effective procedure (algorithm) provided it
is correctly programmed. An effective procedure manipulates symbols by simple
instructions step by step.

Therefore, the program of a TM (a Turing program) models a machine that
mechanically operates on a tape. On this tape are symbols, which the machine can
read and write, one at a time, using a tape head. An operation is fully determined
by a finite set of elementary instructions such as ‘‘in state 23, if the symbol seen is
0, write a 1; if the symbol seen is 1, shift to the right, and change into state 12; in
state 12, if the symbol seen is 0, write a 1 and change to state 7;’’ etc. In general, a
TM consists of

(a) a potentially infinite tape, divided lengthwise into squares,
(b) a head that can read and write symbols on the tape and move the tape left and

right one (and only one) cell at a time,
(c) a finite table of instructions that, given the state the machine is currently in and

the symbol it is reading on the tape, tells the machine to do the following in
sequence: Either erase or write a symbol, and then move the tape, and then
assume the same or a new state as prescribed,

(d) a state register that stores the state of the Turing table, one of finitely many.
There is one special start state with which the state register is initialized.

If the symbols used by a TM are restricted to a stroke | and a blank H,
then a computable arithmetic function can be computed by a TM. Notice that
every natural number x can be represented by a sequence of x strokes (for instance
3 by |||), each stroke on a square of the Turing tape. The blank H is used to denote
that the square is empty (or the corresponding number is zero). In particular, a
blank is necessary to separate sequences of strokes representing numbers. Thus, a
TM computing a function f with arguments x1, …, xn starts with tape …H x1H…H

xnH… and stops with …H x1H…H xnHf(x1, …, xn)H… on the tape (Mainzer
2003).

From a logical point of view, a general purpose computer is a technical reali-
zation of a universal TM (UTM) which can simulate any kind of Turing program
(Herken 1995). A UTM takes as input the description of a TM (along with the
initial tape contents of the TM), and simulates the input on that TM. Thus, the
UTM can simulate the behavior of any individual TM. In modern terms, the UTM
is an interpreter program performing a step-by-step simulation of any TM.
Program and data are the same thing, because a program (Turing program) is
nothing more than a sequence of symbols that looks like any other data. When
input to a UTM, the program begins to compute. Obviously, Alan Turing’s work
on UTM anticipated the development of general-purpose computers. He described
the first such TM in his 1936 paper. Claude Shannon proved that two symbols were
sufficient, provided enough states were used (Shannon 1956). In 1962, Marvin
Minsky discovered a remarkable 7-state UTM that executes using a four symbol
alphabet, but it is rather complicated to describe (Minsky 1962).

The Church–Turing Thesis 3



In 1936, Alonzo Church and Alan Turing independently proposed models of
computation that they believed realized the notion of computation by a mecha-
nistic procedure. Church invented the lambda calculus to study notions of
computability while Turing used his TMs. Although both models appear very
different from one another, Turing later showed that they were equivalent in that
they each pick out the same set of mathematical functions (Turing 1937). There are
many other mathematically equivalent procedures for defining computable func-
tions. Recursive functions are defined by procedures for functional substitution and
iteration, beginning with some elementary functions (for instance, the successor
function n(x) = x + 1) which are obviously computable. All these definitions of
computability by TMs, lambda calculus, recursive functions, etc. can be proved to
be mathematically equivalent. Obviously, each of these precise concepts defines a
procedure which is intuitively effective.

Alonzo Church thus postulated his famous thesis that the informal intuitive
notion of an effective procedure is identical with one of these equivalent precise
concepts, such as that of a TM (Church 1936). With respect to the definition of a
UTM, the Church–Turing thesis can also be formulated in the following way:

The class of all intuitively computable mathematical functions coincides with the class of
all mathematical functions computable on a UTM.

Of course, this statement cannot be proved, because mathematically precise
concepts are being compared with an informal intuitive notion. Nevertheless, the
mathematical equivalence of several precise concepts of computability which are
intuitively effective, confirms the Church–Turing thesis. Consequently, we can
speak about computability, effectiveness, and computable functions without
referring to particular effective procedures (‘‘algorithms’’) such as TMs, recursive
functions, etc. According to the Church–Turing thesis, we may, in particular,
say that every computational procedure (algorithm) may be calculated by a TM.
So every recursive function, as a kind of machine program, may be calculated by a
general purpose computer.

Now we are able to define effective procedures of decision and enumerability,
which were already demanded by Leibniz’ program of a mathesis universalis.
The characteristic function fM of a subset M of natural numbers is defined as
fM(x) = 1 if x is an element of M, and as fM(x) = 0 otherwise. Thus, a set M is
defined as effectively decidable if its characteristic function saying whether or not a
number belongs to M is effectively computable (or recursive).

A set M is defined as effectively (recursively) enumerable if there exists an
effective (recursive) procedure f for generating its elements, one after another
(formally f(1) = x1, f(2) = x2, … for all elements x1, x2, … from M). It can easily
be proved that every recursive (decidable) set is recursively enumerable. But there
are recursively enumerable sets which are not decidable. These are the first hints
that there are limits to Leibniz’ original optimistic program, based on the belief in
universal decision procedures.

In his famous paper ‘‘On Computable Numbers, with an Application to the
Entscheidungsproblem’’, Turing reformulated Kurt Gödel’s 1931 (Feferman 1986)
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results on the limits of proof and computation, replacing Gödel’s universal
arithmetic-based formal language with the formal and simple devices of a TM
(Turing 1936/1937). He argued that a TM would be capable of performing
any conceivable mathematical computation if it were representable as an algo-
rithm. A fundamental insight was his proof that there was no solution to the
Entscheidungsproblem by first showing that the halting problem for TMs is
undecidable: it is not possible to decide, in general, algorithmically whether a
given TM will ever halt. While his proof was published subsequent to Alonzo
Church’s equivalent proof in respect to his lambda calculus, Turing was unaware
of Church’s work at the time.

From September 1936 to July 1938 he spent most of his time at the Institute for
Advanced Study in Princeton studying under Alonzo Church. In June 1938 he
obtained his Ph.D. from Princeton. His dissertation introduced the notion of
relative computing, where TMs are augmented with so-called oracles, allowing a
study of problems that cannot be solved by a TM (Turing 1939, Sect. 4). This
concept will be important for the final question of our book: Is the Universe a
computer?

There is another of Alan Turing’s concepts that is central to our book. From
1952 until his death in 1954, Turing worked on mathematical biology, specifically
morphogenesis. He published one paper on the subject called ‘‘The Chemical
Basis of Morphogenesis’’ in 1952, putting forth the Turing hypothesis of pattern
formation (Turing 1952). His central interest in the field was to understand
Fibonacci phyllotaxis, the existence of Fibonacci numbers in plant structures.
He used reaction–diffusion equations to model pattern formation. Later papers
went unpublished until 1992 when ‘‘Collected Works of A.M. Turing’’ was
published (Gandy et al. 1992–2001).

The Birth of Cellular Automata

Pattern formation was in the air of different research fields. In the 1940, Stanisław
Ulam, while working at the Los Alamos National Laboratory, studied the growth
of crystals, using a simple lattice network as his model. At the same time, John von
Neumann, Ulam’s colleague at Los Alamos, was working on the problem of self-
replicating systems. Von Neumann’s initial design was founded upon the notion of
one robot building another robot. But John von Neumann had to realize the great
technical difficulties of building a self-replicating robot. Ulam suggested that von
Neumann should develop his design as a mathematical abstraction, such as the one
Ulam used to study crystal growth. Ulam’s suggestion led to the first system
of cellular automata (Burks 1970). Like his lattice network of crystals, von
Neumann’s cellular automata are two-dimensional (Neumann 1966), with his
self-replicator implemented algorithmically. The result was a universal copier and
constructor working within a cellular automaton (CA) with a small neighborhood,
and with 29 states per cell. Von Neumann gave an existence proof that a particular
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pattern would make endless copies of itself within the given cellular universe.
This design is known as the tessellation model, and is called a von Neumann
universal constructor. Also in the 1940s, Norbert Wiener and Arturo Rosenblueth
developed a CA model of excitable media. Their specific motivation was the
mathematical description of impulse conduction in cardiac systems (Wiener et al.
1946).

In general, a CA can be imagined as a chessboard-like grid of cells changing
their states (indicated, for example, by different colors or numbers) with respect
to simple rules depending on the states of neighboring cells. In nature and tech-
nology, alternative cellular states may be realized, such as by spontaneously pro-
duced and annihilated elementary particles; switched-on and switched-off genes;
living and dead cells of organisms; firing and non-firing neurons of brains; or the
electrical switches of circuits. Their interaction leads to the emergence of complex
patterns that grow, die, and sometimes even reproduce themselves like cellular
organisms. They follow a local principle of cellular activity in a certain environment.

In the 1970s a two-state, two-dimensional CA named the Game of Life became
very widely known. Invented by John Conway and popularized by Martin Gardner
in a Scientific American article (Gardner 1970, 1971), its rules are as follows: If a
cell has two black neighbors, it stays the same. If it has three black neighbors, it
remains black if previously black, but changes to black if previously white. In all
other situations it becomes white. Despite its simplicity, which can be understood
by school-age boys and girls, the system achieves an impressive complexity of
behavior, fluctuating between apparent randomness and order. The expanding
complexity of new patterns reminds us of the Cambrian explosion of new
organisms undergoing Darwinian evolution. One of the most apparent features of
the Game of Life is the frequent occurrence of gliders, arrangements of cells that
essentially move themselves across the grid. It is possible to arrange the automaton
so that the gliders interact to perform computations. It was a breakthrough when it
was proved that the Game of Life is a UTM. This proof seemed to suggest that
biological evolution itself could be a universal CA.

The Zuse-Fredkin Thesis

In 1967, the German computer pioneer Konrad Zuse (1910–1995) suggested that
the entire universe could be computed on a computer in the kind of a CA.
Historically, it is remarkable that he also built the first programmable computers
(1935–1941) and devised the first higher-level programming language (1945).
In 1969, Konrad Zuse published his book Calculating Space, proposing that the
physical laws of the universe are discrete, and that the entire universe is the output
of a deterministic computation on a giant CA. This was the first book on what
today is called digital physics. ‘‘Calculating Space’’ is the title of MIT’s English
translation of the German book Rechnender Raum (literally: ‘‘space that is
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computing’’) (Zuse 1969). He focused on cellular automata as a possible substrate
of the computation.

In 1967 Zuse carefully remarked (p. 337) that at the moment there were no full
digital models of physics, but that did not prevent him from asking for the
consequences of a total discretization of all natural laws (Schmidhuber 1997).
For lack of a complete automata-theoretic description of the universe he tried to
study several simplified models. Similar to von Neumann’s approach, he consid-
ered neighboring cells that update their values based on surrounding cells,
implementing the spread and creation and annihilation of elementary particles.
He mentioned (p. 341) that the term ‘‘CA’’ had already been introduced in the
literature at that time and cited von Neumann’s 1966 book ‘‘Theory of Self-
reproducing Automata’’ (Neumann 1966). In Chap. 4, Konrad Zuse studied the
relation of cellular automata to relativity theory, information theory, probability
theory, and the concepts of determinism and causality. Concerning information, he
strongly believed that in the cosmos as a big computer and a closed system, the
information content cannot increase.

After Ulam’s and von Neumann’s concept of cellular automata, the idea of
digital physics seemed to be in the air during the 1960s. Independently of Zuse,
Edward Fredkin (born 1934), a US Air Force jet-fighter pilot, programmer (PDP-1
assembler), professor of physics and CEO of a diverse set of companies, also
suggested that the Universe itself is some kind of computational device, namely, a
highly parallel computational machine like a CA. Fredkin’s conjecture remained
unpublished until the appearance of John Conway’s ‘‘Game of Life’’ in 1969, and
subsequent popular publications by Martin Gardner on the Game of Life and
cellular automata in general. It was Gardner (1970, 1971) who first made popular
the ‘‘Universe as CA’’ idea in his February 1971 article in the Scientific American
series, which later appeared in book form. The first publication dedicated to
Fredkin’s thesis appeared only in 1988 in form of an interview given to Robert
Wright, which was later enlarged and published in a book (Wright 1989). In 1990
Fredkin himself wrote a paper on his thesis in the respected scientific journal
Physica (Fredkin 1990). Nevertheless, he also advocates a kind of digital phi-
losophy (see ‘‘Dr. Edward Fredkin’s Digital Philosophy site’’: http://
www.digitalphilosophy.org). Obviously, like Zuse, he is a digital practitioner
with philosophical visions. With respect to Zuse’s contribution, it is fair to use the
description ‘‘Zuse-Fredkin thesis’’, which proclaims:

The Universe is a cellular automaton.

Cellular automata may be proven to be equivalent to TMs. There are universal
cellular automata simulating all kinds of cellular automata. Obviously, the
Zuse-Fredkin thesis includes the Church–Turing thesis (Petrov 2003). If the
universe is a CA (in the sense of the Zuse-Fredkin thesis), then everything in
the universe is a computational process simulated by a universal CA. Humans with
their mathematical thoughts would be only special systems in the universe, and
realized by some kind of algorithms. Therefore, intuitively computable functions
(such as the mathematical thoughts of humans) can be simulated by a UTM, in the
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sense of the Church–Turing thesis. But, the reverse conclusion is more problem-
atic. This conclusion depends on the open questions that: (a) all processes in the
universe can actually be represented by mathematical laws and theories and, (b) all
mathematical laws and theories of the universe can be simulated by computational
algorithms in the sense of the Church–Turing thesis.

A New Kind of Science?

In 1983 Stephen Wolfram published the first of a series of papers systematically
investigating a very basic but essentially unknown class of cellular automata,
which he terms elementary cellular automata (Wolfram 1986). The unexpected
complexity of the pattern formation according to these simple rules led Wolfram to
suspect that complexity in nature may be caused by similar mechanisms (Wolfram
1994). In addition, during this period Wolfram speculated about the concepts of
intrinsic randomness and computational irreducibility. He suggested that a special
elementary CA (rule 110) might be universal. That was proved later by Wolfram’s
research assistant Matthew Cook in the 1990s.

In 2002 Wolfram published the 1280-page text book A New Kind of Science,
which extensively argues that the new discoveries about cellular automata
depend on computational experiments with high speed computers, not on
mathematical proofs (Wolfram 2002). Therefore, his book seemed to proclaim a
new kind of future methodology, namely experiments with computers instead of
‘‘traditional’’ mathematical equations. The computational experimental approach
would prevail over the classical analytical style of science. But the lack of
analytical explanation and confirmation was perhaps one essential point why
Wolfram’s book was not widely distributed in the physical sciences, although it
presented an impressive variety of pattern formations. From a methodological
point of view, it is true that modern science is mainly made possible by com-
putational data mining and computational modeling, because of the increasing
complexity of research fields. But that does not mean that we can abandon
mathematical explanations and confirmation by analytical proofs and the solution
of equations.

At this point, our book comes in. We also consider elementary (1-dimensional)
cellular automata (Chap. 2). We are also impressed by the complex variety of
pattern formation, with the emergence of sometimes surprising new structures. But
we do not only describe and classify cellular patterns qualitatively from a phe-
nomenological point of view. This would be Aristotelian science before Galileo,
systematizing and categorizing plants and animals with respect to their observable
common properties. To understand and explain the emergence of phenomena, we
must analyze the laws of pattern formation represented by mathematical equations.
The laws are confirmed in computer experiments. This kind of analytical meth-
odology is similar to mathematical physics, although the models are digital. A nice
example is the complexity index of cellular automata, which allows a precise
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classification of (1-dimensional) cellular automata (Chap. 3). In addition, the
equations reveal precise mathematical symmetries in the universe of cellular
automata (Chap. 4). Symmetries lead to equivalence classes, which mean an
immense reduction of research complexity. In these cases, we can restrict our
investigations to representative examples of equivalence classes. There is one
distinguished symmetry class of cellular automata with universal computability.
Wolfram’s CA 110 is only one of four examples. With respect to its universal
capacities and symmetries, this equivalence class is considered the holy grail in the
universe of (1-dimensional) cellular automata.

The fundamental question arises how far digital phenomena can be mapped on
to the continuous dynamics of complex systems. This is broadly possible (apart
from some aspects which are explicitly discussed in our book). Therefore, the
whole impact of the highly developed mathematical theory of complex dynamical
systems can be used to find precise and exact classifications and predictions in the
universe of cellular automata (Chap. 5). Remarkable results concern the problem
of reversible and irreversible time (time arrow) in the universe of cellular auto-
mata, which can be decided in a mathematically precise way (Chap. 6). In general,
cellular automata are a powerful instrument for modeling all aspects of complex
dynamics (Toffoli 1987; Hoekstra et al. 2010). Despite the simple local rules for
cellular activities, highly sophisticated mathematics allows the analysis of the
nonlinear dynamics of complex systems.

In any case, the universe of elementary (1-dimensional) cellular automata is a
nice field for exercises in digital physics aiming to understand and illustrate
fundamental problems of the physical world through computational modeling.
Digital physics is an important field of research, even without the somewhat
metaphysical belief in the Zuse-Fredkin thesis. A typical example is the expla-
nation of emergence and self-organization of complex patterns with the dynamics
of cellular automata. Very simple rules of behavior can lead to highly complex
structures, which cannot be forecast in the long run. This is not only a hypothesis
on the basis of observations, but a mathematically precise proof in the case of
cellular automata with universal computability. With this background, it becomes
understandable that we need no intelligent design of complex structures, but only
very simple rules for local elements that generate global complex structures during
their evolution.

Complex Dynamical Systems

We strongly believe that twenty first century science is a science of complexity
(Chua 1998; Mainzer 2005, 2007a, b, 2009). The challenges of complexity
research are already mirrored in cellular automata. We therefore introduce some
basic concepts of complex dynamical systems, which are defined precisely later in
the context of cellular automata. A dynamical system is characterized by its ele-
ments and the time-dependent development of their states. A dynamical system is
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called complex if many (more than two) elements interact in causal feedback loops
generating unstable states, chaos or other kinds of attractors. The states may refer
to moving planets, molecules in a gas, gene expressions of proteins in cells,
excitation of neurons in a neural net, nutrition of populations in an ecological
system, or products in a market system. The dynamics of a system, i.e., the change
of a system’s states depending on time, is mathematically described by differential
equations. A conservative (Hamiltonian) system, such as an ideal pendulum, is
determined by the reversibility of the direction of time and the conservation of
energy. Dissipative systems, a real pendulum with friction, for example, are
irreversible.

In classical physics, the dynamics of a system is considered a continuous
process. But continuity is only a mathematical idealization. Actually, a scientist
has single observations or measurements at discrete points in time, which are
chosen to be equidistant or defined by other measurement devices. In discrete
processes, there are finite differences between the measured states and none of the
infinitely small differences (differentials) that are assumed in a continuous process.
Thus, discrete processes are mathematically described by difference equations.

Random events (such as Brownian motion in a fluid, mutation in evolution,
innovations in an economy) are represented by additional fluctuation terms.
Classical stochastic processes, for example, the billions of unknown molecular
states in a fluid, are defined by time-dependent differential equations with
distribution functions for probabilistic states. In quantum systems of elementary
particles, the dynamics of quantum states is defined by Schrödinger’s equation
with observables (such as position and momentum of a particle) depending on
Heisenberg’s uncertainty principle, which allows only probabilistic forecasts of
future states.

Historically, during the centuries of classical physics, the universe was con-
sidered a deterministic and conservative system. The astronomer and mathema-
tician Laplace, for example, assumed the total computability and predictability of
nature if all natural laws and initial states of celestial bodies were known. The
Laplacean spirit expressed the belief of philosophers in determinism and com-
putability of the world during the eighteenth and nineteenth centuries.

Laplace was right about linear and conservative dynamical systems. In general,
a linear relation means that the rate of change in a system is proportional to its
cause: Small changes cause small effects, while large changes cause large effects.
Changes of a dynamical system may be modeled in one dimension by changing
values of a time-dependent quantity along the time axis (time series). Mathe-
matically, linear equations are completely computable. This is the deeper reason
for Laplace’s philosophical assumption being right for linear and conservative
systems.

In systems theory, the complete information about a dynamical system at a
certain time is determined by its state at that time. If the state of a dynamical
system is determined by more than two quantities, a higher dimensional phase
space is needed to study the dynamics of the system. From a methodological point
of view, time series and phase spaces are important instruments for studying
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system dynamics. The state space of a system contains the complete information of
its past, present and future behavior.

At the end of the nineteenth century, Poincaré discovered that celestial
mechanics is not a completely computable clockwork, even if it is considered as a
deterministic and conservative system (Poincaré 1897). The mutual gravitational
interactions of more than two celestial bodies (the many-body-problem) may be
represented by causal feedback loops corresponding to nonlinear and non-inte-
grable equations with instabilities and irregularities. In a strictly dynamical sense,
the degree of complexity depends on the degree of nonlinearity of a dynamical
system. According to the Laplacean view, similar causes effectively determine
similar effects. Thus, in the phase space, trajectories that start close to each other
also remain close to each other during their evolution with time. Dynamical
systems with deterministic chaos exhibit an exponential dependence on initial
conditions for bounded orbits: The separation of trajectories with close initial
states increases exponentially.

Thus, tiny deviations in initial data lead to an exponential increase in compu-
tational efforts for future data, limiting long-term predictions, although, in prin-
ciple, the dynamics are uniquely determined. This is known as the ‘butterfly
effect’: Initial, small, and local causes soon lead to unpredictable, large, and global
effects. According to the famous KAM-Theorem of Kolmogorov (1954); Arnold
(1963), and Moser (1967), trajectories in the phase space of classical mechanics
are neither completely regular, nor completely irregular, but depend sensitively on
the chosen initial conditions (Arnold 1963; Kolmogorov 1954; Moser 1967).

Dynamical systems may be classified on the basis of the effects of the dynamics
on a region of the phase space (Alligood et al. 1996). A conservative system is
defined by the fact that, during evolution with time, the volume of a region remains
constant, although its shape may be transformed. In a dissipative system, dynamics
causes a contraction in volume.

An attractor is a region of a phase space into which all trajectories departing
from an adjacent region (the so-called basin of attraction), tend to converge. There
are different kinds of attractors. The simplest class of attractors contains fixed
points. In this case, all trajectories of adjacent regions converge to a point.
An example is a dissipative harmonic oscillator with friction: The oscillating
system is gradually slowed down by frictional forces and finally come to a rest at
an equilibrium point.

A second class contains periodic attractors with non-empty basins of attraction,
which are called limit cycles. In phase space, a limit-cycle is a closed trajectory
having the property that at least one other trajectory spirals into it either as time
approaches infinity or as time approaches negative infinity. In the case where all
the neighboring trajectories approach the limit cycle as time approaches infinity,
it is called a stable or attractive limit cycle (x-limit cycle). If, instead, all
neighboring trajectories approach it as time approaches negative infinity, it is an
unstable or non-attractive limit-cycle (a-limit cycle). Stable limit-cycles imply
self-sustained oscillations. Any small perturbation from the closed trajectory
would cause the system to return to the limit-cycle, making the system stick to the
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limit-cycle. An example of a stable limit cycle is a Van der Pol oscillator modeling
a simple vacuum-tube oscillator circuit. For a simple dynamical system with only
two degrees of freedom and continuous time, the only possible attractors are fixed
points or periodic limit cycles.

In continuous systems with a phase space of dimension n [ 2, more complex
attractors are possible. Dynamical systems with quasi-periodic limit cycles show a
time evolution which can be decomposed into different periodic parts without a
unique periodic regime. The corresponding time series consist of periodic parts of
oscillation without a common structure. Nevertheless, closely starting trajectories
remain close to each other during time evolution. The third class contains
dynamical systems with chaotic attractors which are non-periodic, with an
exponential dependence on initial conditions for bounded orbits. A famous
example is the chaotic attractor of a Lorenz system with some qualitative simi-
larity to the chaotic development of weather caused by local events, which cannot
be forecast in the long run (the butterfly effect).

Measurements are often contaminated by unwanted noise, which must be
separated from the signals of specific interest. In addition, to forecast the behavior
of a system, the development of its future states must be reconstructed in a cor-
responding phase space from a finite sequence of measurements. Thus, time-series
analysis is an immense challenge in different fields of research ranging from fields
such as climatic data in meteorology, ECG-signals in cardiology, and EEG-data in
brain research, to economic data in economics and finance (Abarbanel 1995; Small
2005). Beyond the patterns of dynamical attractors, randomness of data must be
classified by statistical distribution functions.

Typical phenomena found in our world, such as weather, climate, the economy
and daily life are much too complex for a simple deterministic description to exist.
Even if there is no doubt about the deterministic evolution of, the atmosphere, for
example, the current state, knowledge of which would be needed for a deter-
ministic prediction, contains too many variables to be measurable with sufficient
accuracy. Hence, our knowledge does not usually suffice for a deterministic model.
Instead, very often a stochastic approach is more appropriate. Ignoring the
unobservable details of a complex system, we accept a lack of knowledge.
Depending on the unobserved details, the observable part may evolve in different
ways. However, if we assume a given probability distribution for the unobserved
details, then the different evolutionary paths of the observables also emerge with
specific, associated probabilities. Thus, the lack of knowledge about the system
prevents us from deterministic predictions, but does allow us to assign probabil-
ities to the different possible future states. It is the task of a time series analysis to
extract the necessary information from past data.

Complex models contain nonlinear feedback, and the solutions to these are
usually obtained by numerical methods (Bungartz et al. 2009). Complex statistical
models are data driven and try to fit a given set of data using various distribution
functions. There are also hybrids, coupling dynamic and statistical aspects,
including deterministic and stochastic elements. Simulations are often based on
computer programs, connecting input and output in nonlinear ways. In this case,

12 1 Introduction: Leibniz, Turing, Zuse, and Beyond



models are calibrated by training the programs, in order to minimize the error
between the output and the given test data.

In the simplest case of statistical distribution functions, a Gaussian distribution
has exponential tails situated symmetrically to the far left and far right of the peak
value. Extreme events (such as disasters, pandemics, or floods) occur in the tails of
the probability distributions (Albeverio et al. 2006). Contrary to the Gaussian
distribution, probabilistic functions p(x) of heavy tails with extreme fluctuations
are mathematically characterized by power laws, e.g., p(x) * x-a with a[ 0.
Power laws possess scale invariance corresponding to the (at least statistical) self-
similarity of their time series of data. Mathematically, this property can be
expressed as pðbxÞ ¼ b�apðxÞ meaning that the change of variable x to bx results
in a scaling factor independent of x while the shape of distribution p is conserved.
So, power laws represent scale-free complex systems. The Gutenberg–Richter size
distribution of earthquakes is a typical example of natural sciences. Historically,
Pareto’s distribution law of wealth was the first power law in the social sciences,
with a fraction of people presumably several times wealthier than the mass pop-
ulation of a nation (Mainzer 2007a, b, 2008).

Beyond the Church–Turing Thesis?

Why should we restrict ourselves to cellular automata in modeling complex
dynamical systems? Are there any types of computation that cannot be done by a
TM, but that can be done using some other kind of physical or abstract machine?
These types of machine would realize so-called hyper-computation. These models
of computation are capable of solving problems (e.g., the halting problem) that
cannot be solved using TMs or cellular automata.

It is historically remarkable that Turing himself took the first steps beyond the
Church–Turing thesis. In his dissertation, he introduced the oracle TMs (Turing
1939). These are equipped with an oracle to answer questions, such as to the
halting problem. In general, their computational procedures depend on the appli-
cation of a function the algorithm of which is not known, or in other words, an
‘‘oracle’’. Thus, computing a function f by an oracle TM means that the compu-
tation of f is realized by a TM depending on a certain additional device (or
function) g the algorithm of which is not known. Therefore, f is also called
computable relative to a function (‘‘oracle’’) g. Turing’s concept of relative
computability does not violate the Church–Turing thesis, but enlarges it. There-
fore, one can consider a relative Church–Turing thesis (Mainzer 1973) which
could, of course, also be applied to oracle cellular automata.

The concept of relative computability is less speculative than it seems to be at a
first glance. Although, from a technical point of view, we have no idea how to
construct an ‘‘oracle’’, there are useful applications of modeling with relative
computability. For example, in all kinds of everyday scenarios we may decide
without full information of all the details. Then, our decision depends on unknown
‘‘oracles’’. In economy, Herbert S. Simon, Nobel prize winner for economics
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and one of the fathers of Artificial Intelligence, introduced the term ‘‘bounded
rationality’’ to describe these realistic situations. In mathematics, the existence of
functions depends on the axioms of mathematical theories. An important example
is the axiom of choice, which only guarantees the existence of a function, but not
an effective procedure to compute it. In this case, a mathematical proof is only
relatively computable. In general, mathematical proofs consist of computable
(constructive) and non-computable (non-constructive) parts. Thus, relative com-
putability is a useful concept to describe mathematical praxis.

What about situations when answers cannot be known in principle, for example,
in the case of a fair coin toss? A probabilistic TM is like a nondeterministic TM,
except that it chooses its next transition uniformly at random from the legal
choices (Wolfram 2002). Theoretically, a probabilistic TM can generate truly
random bits, a capability not possible on a conventional TM. From a physical point
of view, possible candidates of probabilistic TMs producing randomness are
quantum processes (for example, b-decay). Supporters of the Zuse-Fredkin thesis
would argue that nature only generates pseudo-random numbers and these could
be simulated on a deterministic TM.

But, Richard Feynman’s arguments should be taken seriously in that the
problem of simulating quantum physics with a computer based on classical physics
appears to be intractable, thereby suggesting that quantum computers may be
inherently more powerful than classical computers. It is historically remarkable
that he published his article ‘‘Simulating Physics with Computers’’ in 1982
(Feynman 1982), when Aspect’s experiments confirmed Bell’s inequalities
(Audretsch et al. 1996). Thus, there is a difference between classical probabilities
and quantum probabilities: Quantum systems cannot be simulated by classical
probabilistic TMs. In the meantime, quantum computing has been logically and
mathematically well developed.

In Chap. 7, we therefore introduce basic concepts of quantum physics, and
analyze the concept of (1-dimensional) quantum cellular automata that may be
proven to be equivalent to quantum circuits and quantum TMs. There is also a
universal quantum CA or quantum TM. In general, the Church–Turing thesis,
together with quantum and classical complexity theory, will be discussed in
relation to quantum physics.

In the age of computerization, digital models are applied in nearly all scientific
disciplines. After physics, we will consider modeling with cellular automata in the
life sciences (Chap. 8) and neurosciences (Chap. 9). Systems biology is a recent
addition to systems science, analyzing molecular and cellular systems of
increasing complexity (Mainzer 2010). Cellular automata deliver models of
complex networks of genes and proteins (for example), to analyze attractor
dynamics within cells. Cellular automata can also be considered as neural net-
works of firing and non-firing neurons, generating cell assemblies that are corre-
lated with mental or cognitive states. Thus, in the end, it is not essential whether
the universe is, or is not, an automaton in any metaphysical sense. It is impressive
how far the universe may be mapped by digital models that are made possible by
human technology’s high-speed computers. The concept of cellular automata
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historically initiated the development of digital models and is still a mirror of key
problems in our universe.
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Chapter 2
Simplicity in the Universe
of Cellular Automata

Because of their simplicity, rules of cellular automata can easily be understood. In
a very simple version, we consider two-state one-dimensional (1D) cellular
automata (CA) made of identical cells with a periodic boundary condition. In this
case, the object of study is a ring of coupled cells with L = I ? 1 cells, labeled
consecutively from i = 0 to i = I (Fig. 1a). Each cell i has two states ui 2 0; 1f g;
which are coded by the colors blue and red, respectively. A clock sets the pace in
discrete intervals by iterations or generations. The state utþ1

i of all i at time t ? 1
(i.e. the next generation) is determined by the states of its nearest neighbors
ut

i�1; ut
iþ1; and itself ut

i at time t (Fig. 1c), that is, by a Boolean function utþ1
i ¼

N ut
i�1; ut

i; ut
iþ1

� �
; in accordance with a prescribed Boolean truth table of 8 = 23

distinct 3-input patterns (Fig. 1d).

From Simple Local Rules to Global Complex Patterns

These eight 3-input patterns can nicely be mapped into the eight vertices of a toy
cube (Fig. 1b), henceforth called a Boolean cube (Chua et al. 2002). The output of
each prescribed 3-input pattern is mapped onto the corresponding colors (red for 1,
blue for 0) at the vertices of the Boolean cube (in Fig. 1d yet unspecified). Because
there are 28 = 256 distinct combinations of 8 bits, there are exactly 256 Boolean
cubes with distinct vertex color combinations. Thus we get a gallery of picturesque
toy cubes.

It is convenient to associate the 8-bit patterns of each Boolean function with a
decimal number N representing the corresponding 8-bit word, namely N ¼
b7 � 27 þ b6 � 26 þ b5 � 25 þ b4 � 24 þ b3 � 23 þ b2 � 22 þ b1 � 21 þ b0 � 20 with bi 2

0; 1f g: Notice that since bi ¼ 0 for each blue vertex in Fig. 1b, N is simply
obtained by adding the weights (indicated next to each pattern in Fig. 1b) asso-
ciated with all red vertices. For example, for the Boolean cube shown in Fig. 2b,

K. Mainzer and L. Chua, The Universe as Automaton, SpringerBriefs
in Complexity, DOI: 10.1007/978-3-642-23477-4_2, � The Author(s) 2012
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we have N ¼ 0 � 27 þ 1 � 26 þ 1 � 25 þ 0 � 24 þ 1 � 23 þ 1 � 22 þ 1 � 21 þ 0 � 20 ¼
26 þ 25 þ 23 þ 22þ 21 ¼ 110:

For the example of local rule 110, the ring and the colored vertices of the
Boolean cube are shown in Fig. 2a, b. Given any initial binary bit-configuration at

Fig. 2 Example of local rule 110

Fig. 1 Scheme of a two-state one-dimensional cellular automaton with local rule N
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time t = 0, the local rule N is used to update the state of each cell i at time t ? 1,
using the states of the three neighboring cells i – 1, i, and i ? 1, centered at
location i, respectively. The space–time pattern for the initial state is shown in
Fig. 2c for t ¼ 0; 1; 2; . . .; 11:

In principle, one can draw and paint the patterns of CA following these rules
step by step. Modern computers with high speed and capacity allow extensive
computer experiments to study pattern formations of these automata. Stephen
Wolfram discovered remarkable analogies with patterns in physics and biology
(Wolfram 2002). In the world of CA many phenomena of the physical world seem
to evolve. Some automata generate symmetric patterns reminding us of the col-
oring in sea shells, skins or feathers. Other automata reproduce rhythms like
oscillating waves. Some of these automata stop their development after a finite
number of steps, independent of their initial state, and remain in a constant color
state like a system reaching an equilibrium state for all future steps. Some auto-
mata develop complex patterns reminding us of the growth of corals or plants,
depending sensitively on tiny changes to the initial states. This phenomenon is
well-known as the butterfly-effect, when local events lead to global effects in
chaotic and unstable situations (such as weather and climate). Even these chaotic
patterns can be generated by CA.

One can try to classify these patterns with respect to their outward appearance
just as zoologists and botanists distinguish birds and plants in taxonomies. This
observational method is used by Wolfram for patterns experimentally generated by
computers. But sometimes outward features are misleading. The fundamental
question arises: Are there laws of complex pattern formation for CA like those in
nature? Can the development of complex patterns be predicted in a mathematically
rigorous way as in physics? We argue for a mathematically precise explanation of
the dynamics in CA. Therefore, they must also be characterized by complex
dynamical systems determined with differential equations like those in physics.
This is, of course, beyond the scope of elementary rules of toy worlds. But we
should keep this perspective in mind.

Cellular Automata as Dynamical Systems

For maximum generality, each cell i is assumed to be a dynamical system with an
intrinsic state xi, an output yi, and three inputs ui�1; ui; and uiþ1 where ui�1

denotes the input coming from the left neighboring cell i� 1; ui denotes the self
input of cell i, and i ? 1 denotes the input coming from the right neighboring cell
i ? 1 in the ring of Fig. 1a. Each cell evolves with its prescribed dynamics and its
own time scale. When coupled together, the system evolves consistently with its
own rule as well as the rule of interaction imposed by the coupling laws.

Each input is assumed to be a constant integer ui 2 �1; 1f g; and the output yi

converges to a constant either –1 or 1 from a zero initial condition xi(0) = 0.
Actually, it takes a finite amount of time for any dynamical system to converge to
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an attractor. But, for the purpose of idealized CA, each attractor is assumed to be
reached instantaneously. Under this assumption and with respect to the binary
input and output, our dynamical system can be defined by a nonlinear map which
is uniquely described by a truth table of three input variables ui�1; ui; uiþ1ð Þ: The
choice of {–1, 1} and not {0, 1} as binary signals is crucial, because the state xi

and output yi evolves in real time via a carefully designed scalar ordinary dif-
ferential equation. According to this differential equation, the output yi which is
defined via an output equation yi = y(xi) tends to either 1 or –1 after the solution xi

(with zero initial state xi(0) = 0), reaches a steady state. In this way, the attractors
of the dynamical system can be used to encode a binary truth table.

Aside from the cell’s intrinsic time scale (which is of no concern in CA), an
external clocking mechanism is introduced to reset the input ui of each cell i at the
end of each clock cycle by feeding back the steady state output yi 2 �1; 1f g; as
an updated input ui 2 �1; 1f g; for the next iteration. This mechanism corre-
sponds to the periodic boundary condition of the 1D cellular automaton in Fig. 1a.

Although CA are concerned only with the ring’s evolutions over discrete times,
any computer used to simulate CA is always a continuous time system with very
small but non-zero time scale. Computers use transistors as devices, and each CA
iteration involves the physical evolution of millions of transistors with its own
ui 2 �1; 1f g; intrinsic dynamics. These transistors evolve in accordance with a
large system of nonlinear differential equations governing the entire internal
computer circuit and return the desired output after converging to their attractors in
a non-zero amount of time.

These considerations lead us to the important result that, even in discrete
systems like CA, there are two different time scales involved. The first one applies
to the rule N while the second applies to the global patterns of evolution. To
understand the complex dynamics of global patterns, it is necessary to analyze
both time scales. By unfolding the truth tables of CA into an appropriate nonlinear
dynamical system, we can exploit the theory of nonlinear differential equations to
arrive at phenomena based on a precise mathematical theory, and not only on
empirical observations.

For this purpose, we substituted the binary symbol 0 by the real number –1, and
the input and output values 0 and 1 in the truth table of Fig. 1d by the real numbers
–1 and 1, respectively. An advantage of working with the numeric rather than the
symbolic truth table is the remarkable insights provided by the equivalent Boolean
cube representation. Here, the eight vertices of the cube (–1,–1,–1), (–1,–1,1),
(–1,1,–1), (–1,1,1), (1,–1,–1), (1,–1,1), (1,1,–1) and (1,1,1) are located exactly at
the coordinates ui�1; ui; uiþ1ð Þ of a coordinate system with the origin located at
the center of the cube. The vertex n ¼ 0; 1; 2; . . .; 7 corresponding to row n of the
truth table is coded blue if the output is –1, and red if the output is 1.

The choice of {–1, 1} instead of {0, 1} as binary signals is necessary, when the
truth table is mapped onto a dynamical system where the states evolve in real time
via an ordinary differential equation which is always based on the real number
system. Each cell i is coupled only to its left neighbor cell i – 1 and right neighbor
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cell i ? 1. As a dynamical system, each cell i has a state variable xi, an output
variable yi, and three constant binary inputs ui – 1, ui, and ui ? 1 (Fig. 3).

Thus, the dynamical system is determined by a

state equation : _xi ¼ f xi; ui�1; ui; uiþ1ð Þ
x 0ð Þ ¼ 0 initital conditionð Þ

output equation : yi ¼ y xið Þ:

Every CA can be mapped into a nonlinear dynamical system whose attractors
encode precisely the associated truth table N ¼ 0; 1; 2; 3; . . .; 255: Function
f models the time-dependent change of states and is defined by a scalar, ordinary
differential equation of the form

_x ¼ g xið Þ þ w ui�1; ui; uiþ1ð Þ with g xið Þ,�xi þ xi þ 1j j � xi � 1j j:

There are many possible choices of nonlinear basis functions for g(xi) and
w(ui–1, ui, ui+1). We have chosen the absolute value function |x| = x for positive
numbers x and |x| = –x for negative numbers x as a nonlinear basis function,
because the resulting equation can be expressed in an optimally compact form, and
it allows us to derive the solution of the state equation in an explicit form. The
scalar function w(ui–1, ui, ui+1) can be chosen to be a composite function w rð Þ of a
single variable r , b1ui�1 þ b2ui þ b3uiþ1 with w rð Þ , fz2 � j½z1 � jzo þ r �j jg:
This function is used to define the appropriate differential equation for generating
the truth table of all 256 Boolean cubes. Thus, each rule of a cellular automaton
corresponds to a particular set of six real numbers {zo, z1, z2; b1, b2, b3}, and two
integers �1: Only 8 bits are needed to uniquely specify the differential equation
associated with each rule N of a cellular automaton.

It can be proven that once the parameters defining a particular rule N are
specified, then for any one of the eight inputs ui–1, ui, and ui+1 listed in the
corresponding truth table of N, the solution xi of the scalar differential equation
will either increase monotonically from the initial state xi = 0 towards a positive
equilibrium value xi nð Þ� 1; henceforth denoted by attractor Q+(n), or decrease
monotonically towards a negative equilibrium state xi nð Þ� � 1; henceforth
denoted by attractor Q–(n), when the input (ui-1, ui, ui+1) is chosen from the
coordinates of vertex n of the associated Boolean cube, or equivalently, from row
n of the corresponding truth table, for n = 0, 1, 2, …, 7 (Chua et al. 2002). Vertex
n is painted red whenever its equilibrium value xi nð Þ� 1; and blue whenever
xi nð Þ��1: The color of all eight vertices for the associated Boolean cube will

1iu −

iu

1iu +

state
ix

output
iy

input

Fig. 3 Cell as dynamical system with state variable xi, an output variable yi, and three constant
binary inputs ui–1, ui, and ui ? 1
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then be uniquely specified by the equilibrium solutions of the eight associated
differential equations.

In general, we can summarize: once the parameters associated with a particular
rule of a cellular automaton are specified, the corresponding truth table or Boolean
cube, will be uniquely generated by the scalar differential equation alone. If the
output equation of the dynamical system is yi ¼ y xið Þ, 1

2 xi þ 1j j � jxi � 1jð Þ; then
yi = +1 when xi C 1, and yi = –1 when xi B –1. The steady-state output at
equilibrium is given explicitly by the formula yi ¼ sgn f w rð Þf g for any function
w rð Þ , w ui�1; ui; uiþ1ð Þ with signum function sgn (x) = +1 for positive numbers
x, sgn (x) = –1 for negative numbers x and sgn (0) = 0. For the particular w rð Þ in
Fig. 4 the output (color) at equilibrium is given explicitly by the

attractor color code : yi ¼ sgnfz2 � j½z1 � jzo þ r �j jg:

Figure 4 contains four examples of dynamical systems and the rules they
encode, each one identified by its rule number N = 0, 1, 2, …, 255. The truth table
for each rule N is generated by the associated dynamical system defined in the
upper portion of each quadrant, and not from the truth table, thereby proving that
each dynamical system and the rule of the cellular automaton that it encodes are
one and the same. The truth table for each rule in Fig. 4 is cast in a format with

only 223 ¼ 256 distinct 1 9 3 neighborhood patterns. Each color picture consists
of 30 9 61 pixels, generated by a 1D cellular automaton with 61 cells and a
boundary condition with a specific rule N.

As an example, let us examine one of the rules fromFig. 4, rule 110, which will later on
be identified as the simplest universal Turing machine known to date. With its differential
equation, one can identify r ¼ b1ui�1 þ b2ui þ b3uiþ1 with b1 ¼ 1; b2 ¼ 2; and
b3 ¼ �3; and w rð Þ,fz2 � j½z1 � jzo þ r �j jg with z2 = –2, z1 = 0, and zo = –1.
Thus, the attractor color code is explicitly given by yi = sgn[–2 ? |ui–1 ? 2ui –
3ui ? 1 – 1)|].

Digital Dynamics with Difference Equations

The dynamics of dynamical systems are modeled with continuous differential
equations. For computing the dynamics for digital CA, a program must use a ‘‘do
loop’’ instruction which feeds back the output yt

i of each cell at iteration t back to
its inputs, to obtain the output ytþ1

i at the next iteration t ? 1. Using the super-
scripts t and t ? 1 as iteration number from one to the next generation, we can
express each rule N explicitly in the form of a nonlinear difference equation with

utþ1
i ¼ sgnfz2 þ c2 ½z1 þ c1j jðzo þ b1ut

i�1 þ b2ut
i þ b3ut

iþ1 �j jg;

where the eight parameters {zo, z1, z2; b1, b2, b3; c1, c2} are given for each rule.
Thus, the first main result of this chapter is that each of 256 1D CA that were
studied by Steven Wolfram experimentally can be generated from a single scalar
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nonlinear differential equation or a corresponding nonlinear difference equation
with at most eight parameters. These equation are also universal in the sense of a
universal Turing machine (UTM), because we will later on see that at least one
of the 256 rules (for example, rule 110) is capable of universal computation
(Chua et al. 2003). For rule 110 (Fig. 5), we get utþ1

i ¼ sgn ð�2þ jut
i�1 þ 2ut

i �

Fig. 4 Cellular automata with rules 2, 110, 150, 232 as dynamical systems. The initial condition
is x(0) = 0
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3ut
iþ1 � 1jÞ: This kind of difference equation can be understood with elementary

knowledge of basic mathematics, although it demonstrates important features of
nonlinear dynamics.
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Chapter 3
Complexity in the Universe
of Cellular Automata

The colored toy cubes contain all the information about the complex dynamics of
cellular automata. An important advantage of the Boolean cube representation is
that it allows us to define an index of complexity (Chua et al. 2002). Each one of
the 256 cubes is obviously characterized by different clusters of red or blues
vertices which can be separated by parallel planes. On the other hand, the sepa-
rating planes can be analytically defined in the coordinate system of the Boolean
cubes. Therefore, the complexity index of a cellular automaton with local rule N is
defined by the minimum number of parallel planes needed to separate the red
vertices of the corresponding Boolean cube N from the blue vertices. Figure 1
shows three examples of Boolean cubes for the three possible complexity indices
j = 1, 2, 3 with one, two and three separating parallel planes. There are 104 local
rules with complexity index j = 1. Similarly, there are 126 local rules with
complexity index j = 2, and only 26 local rules with complexity index j = 3.
This analytically defined complexity index is to be distinguished from Wolfram’s
complexity index based on phenomenological estimations of pattern formation.

Complexity Index of Cellular Automata

In the context of colored cubes of cellular automata, separability refers to the
number of cutting (parallel) planes separating the vertices into clusters of the same
color. For rule 110, for example, we can introduce two separating parallel planes in
the corresponding colored cube, and which are distinguished in Fig. 1b by two
different colors: The red vertices 2 and 6 lie above a yellow plane. The blue
vertices 0, 4, and 7 lie between the yellow and a light blue plane. The red vertices
3, 1, and 5 lie below the light blue plane. It is well-known that the cellular
automaton of rule 110 is one of the few types of the 256 automata which are
universal Turing machines. In the sense of Wolfram’s class 3 of computer
experiments, it produces very complex patterns (Wolfram 2002).

K. Mainzer and L. Chua, The Universe as Automaton, SpringerBriefs
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An example of an automaton which can only produce very simple patterns is
rule 232. There is only one separating plane cutting the corresponding Boolean
cube for separating colored points (Fig. 1a): Red vertices 3, 5, 6, and 7 lie above
a light blue plane. The blue vertices 0, 1, 2, and 4 lie below the light blue plane.
A colored Boolean cube with three parallel separating planes is shown in
Fig. 1c, representing the cellular automaton of rule 150: The blue vertex 6 lies
above a green plane. The red vertices 2, 4, and 7 lie between a yellow plane and
the green plane. The blue vertices 0, 3, and 5 lie between the yellow plane and a
light blue plane. The blue vertex 1 lies below the light blue plane. Obviously, it
is not possible to separate the 8 vertices into three colored clusters and at the
same time separate them by two parallel planes, no matter how the planes are
positioned.

A rule whose colored vertices can be separated by only one plane is said to be
linearly separable. An examination of the 256 Boolean cubes shows that 104
among them are linearly separable. The remaining 152 rules are not linearly
separable. Each rule can be separated by various numbers of parallel planes. In
general, there is a unique integer j, henceforth called the complexity index of
rule N, which characterizes the geometrical structure of the corresponding
Boolean cube, namely the minimum number of parallel planes that are necessary
to separate the colored vertices. All linearly separable rules have a complexity
index j = 1. An analysis of the remaining 152 linearly non-separable rules
shows that they have a complexity index of either 2 or 3. For example, rule 110
has a complexity index j = 2, whereas rule 150 has a complexity index j = 3.
No rule with complexity index j = 1 is capable for generating complex patterns,
even for random initial conditions. The emergence of complex phenomena
significantly depends on a minimum complexity of j = 2. In this sense, com-
plexity index 2 can be considered the threshold of complexity for 1-dimensional
cellular automata.
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Fig. 1 Examples of complexity index j = 1, 2, 3 with parallel planes that separate all vertices
having one color on one side from those having a different color on the other side, for rule 232
(a), rule 110 (b), and rule 150 (c)
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Analytical Geometry of Boolean Cubes

Our complexity index of cellular automata followed from the symmetries of their
Boolean cubes. The geometrical introduction of separating planes can easily be
understood as a complexity index for colored cubes. Contrary to Steven Wolfram’s
quasi-empirical index of patterns that are intuitively more-or-less complex, our
complexity index can be mathematically defined in analytical geometry. The
separating planes of a Boolean cube are determined by the nonlinear function
w ðui�l; ui; uiþlÞ of the corresponding state equation. Geometrically, it is inter-
preted as a scalar function w(r) of only one variable r , b1ui-1 ? b2ui ? b3ui+1,
representing an axis in the coordinate system (ui-1, ui, ui+1) with orientation b1, b2,
and b3 (Chua et al. 2002). Each colored vertex of a Boolean cube can be mapped
on the r-axis by a perpendicular projection. If we plot the curve of w(r) on the
r-axis, we observe that its zero-crossing points, ro with w(ro) = 0, separate the
colored points on the projection-axis into clusters of common color. Thus,
w(ui-1, ui, ui+1) is sometimes called the discriminant function. Each zero-crossing
point of w(r) defines a 2-dimensional plane r0 ¼ blui�l þ b2ui þ b3uiþl in the
3-dimensional coordinate system (ui-1, ui, ui+1), separating the colored vertices of
a Boolean cube into clusters of common color (Fig. 1).

If the colored vertices can be separated by only one plane, we called the
corresponding Boolean rule linearly separable. The reason is now obvious,
because in this case the associated discriminant function w(r) is a straight line. In
the cases of several separating planes, there are several zero-crossing points of the
separating curve associated with a nonlinear discriminant function w(r). Then, the
corresponding Boolean rule was called linearly non-separable. The projection
technique delivers a precise procedure for computing the complexity indices of
Boolean rules and their associated 1-dimensional cellular automata.

From Simple Building Blocks to Complex Compositions

Linearly separable local rules have a complexity index j = 1. In general, they are
the simplest building blocks of Boolean functions of any dimension. From an
engineering point of view, they are also the simplest ones to implement to a chip.
A technical advantage is that linearly separable rules are the fastest to execute on a
chip. They only need a few nanoseconds with silicon technology, and operate at
the speed of light with optical technology. The speed of the associated cellular
automata is independent of the size of the array.

All 152 linearly non-separable rules with three inputs can be decomposed in
terms of at most three linearly separable rules, and combined pixelwise via only
AND and OR logic operations. Figure 2 shows examples of decompositions for
rule 110 involving only one AND operation (a) and for rule 105 with one AND and
one OR operation (b). Rule 105 is thus one of the most complicated 1-dimensional
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cellular automata to implement on a chip. Concerning dynamic complexity, rule
105 has also the highest complexity index 3.

All 256 Boolean cubes can be classified into equivalence classes with identical
complexity index (Chua et al. 2004). The corresponding Boolean rules are called
equivalent iff there exists a transformation, mapping the one rule onto the other
one, and vice versa. In the case of a Red$Blue complementary transformation, the
colors of the corresponding vertices of corresponding Boolean cubes (Fig. 1) are
the complement of each other, i.e., corresponding red vertices become blue, and
vice versa. In the case of a Left–Right symmetrical transformation, the colors
between vertex 3 and 6, as well as between vertex 1 and 4 in one Boolean cube
(Fig. 1) are interchanged in order to get the other one. Obviously, rule 150
(Fig. 1c) is invariant under a Left–Right symmetrical transformation, because
vertex 1 and 4 have identical colors (red), as well as vertex 3 and 6 (blue).
All members belonging to the same global equivalence classes of Boolean rules
have an identical complexity index and show dynamic behavior, which can be pre-
dicted from one another. Thus, it is sufficient to study only one representative member
of each global equivalence class. In general, 38 independent linearly-separable rules
with complexity index j = 1 and 50 independent linearly non-separable rules
(41 examples with complexity index j = 2, and 9 examples with complexity index
j = 3) can be identified. It follows that the nonlinear dynamics and dynamic
complexity of the 256 Boolean functions with three binary inputs are completely
characterized by only 88 independent representatives.
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Fig. 2 Linearly non-separable rules decomposed in terms of linearly separable rules
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Obviously, index 2 is a threshold of complexity. No local rule with complexity
index j = 1 is capable of generating complex patterns. It is clear, therefore, that to
exhibit emergence and complex phenomena, a local rule must have a minimum
complexity index of j = 2. This analytically-based concept of complexity is
certainly consistent with the following empirically-based observations of Steven
Wolfram (Wolfram 2002): The examples in this and the previous chapter suggest
that if the rules for a particular system are sufficiently simple, then the system
will only ever exhibit purely repetitive behavior. If the rules are slightly more
complicated, then nesting will also often appear. But to get complexity in the
overall behavior of a system, one needs to go beyond some threshold in the
complexity of its underlying rules. In any case, it ultimately takes only simple local
rules to produce global patterns of great complexity.

Computational Complexity and Universal Computability

A motivation for the introduction of a complexity index is also computational
complexity. The class of cellular automata with complexity index j = 2 contains
examples with universal computation (e.g., N = 110), but the local rules with
complexity index j = 1 are not capable of universal computation. It follows that
j = 2 also represents a threshold of computational complexity.

Universal computation is a remarkable concept of computational complexity
which dates back to Alan Turing’s universal machine (Turing 1936/1937). Uni-
versal cellular automata are well-known since Conway’s Game of Life (Martin
1994; Rendell 2002). A universal Turing machine can, by definition, simulate any
Turing machine. According to the Church-Turing thesis, any algorithm or effective
procedure can be realized by a Turing machine. Now Turing’s famous Halting
problem comes in. Following his proof, there is no algorithm that can decide for an
arbitrary computer program and initial condition, whether or not it will stop in the
long run. (A computer program cannot stop if it must follow a closed loop.)
Consequently, for a system with universal computation (in the sense of a universal
Turing machine), we cannot predict if it will stop in the long run or not. Assume
that we were able to do that. Then, in the case of a universal Turing machine, we
could also decide whether any Turing machine (which can be simulated by the
universal machine) would stop or not. That is obviously a contradiction to Turing’s
result of the Halting problem. Thus, systems with universal computation are
unpredictable.

Unpredictability is obviously associated with a high degree of complexity. It is
extremely surprising that systems with simple rules of behavior like cellular
automata lead to complex dynamics which are no longer predictable. We will be
very curious to discover examples of these, in principle, unpredictable automata,
in nature.
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Chapter 4
Symmetry in the Universe of Cellular
Automata

A cursory inspection of the discrete time evolutions of the 256 local rules reveals
some similarity and partial symmetry among various evolved patterns. It reminds
us of more-or-less random observations in the natural sciences that demand the
unification of mathematical explanations with fundamental laws. The unifying
theory of physics is based on the assumption of fundamental mathematical
symmetries (Mainzer 1996, 2005). According to this view, the variety and
complexity of natural phenomena have evolved from just a few principles of
symmetry. They are the ‘‘Holy Grail’’ of the Universe which is sought by
prominent scientists and research groups all over the world. For the universe of
cellular automata, we found the fundamental symmetries in the gallery of
Boolean cubes (Chua et al. 2004). Thus, at least in the toy world of cellular
automata, the importance of symmetry laws can easily be imagined and
understood.

Local Equivalence of Cellular Automata

But even in the universe of cellular automata, the situation is sophisticated. The
Boolean cubes of many different pairs of local rules seem to be related by some
symmetry transformations, such as complementation of the vertex colors (exam-
ples being rules 145 and 110). Yet, their evolved patterns are so different that it is
impossible to relate them. How do we make sense of all these observations? In the
case of rule 145 and 110, the associated Boolean cubes are related by a ‘‘red $
blue vertex transformation’’. This is denoted as a local complementation operation
TC, because complementation is locally restricted. Intuitively, one might expect
that their respective evolved patterns must also be related by a global comple-
mentation operation. But upon comparing the two evolved patterns (Fig. 1), the
intuition turns out to be generally wrong. It is only true in a local sense with
respect to special iterations. For example, starting from the same initial pattern

K. Mainzer and L. Chua, The Universe as Automaton, SpringerBriefs
in Complexity, DOI: 10.1007/978-3-642-23477-4_4, � The Author(s) 2012
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(single red center pixel) in the first row, we find the output (first iteration) of rule
145 is in fact the complement of that of rule 110; namely, two blue pixels for 145
and two red pixels for 110 at corresponding locations to the left of center. All other
pixels at corresponding locations are also complements of each other.
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Fig. 1 The evolution of rules 110 and 145 only reveal a local complement relationship in the
first iteration, but 110 and 137 reveal global symmetrical relationship
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However, the next iteration (row 3) under rules 145 and 110 in Fig. 1 are not
complements of each other. The reason is that unlike the initial input ui

0, i = 0, 1, 2,
…, n, which is the same for both 145 and 110, the next input ui

1, i = 0, 1, 2, …, n (for
t = 1 in row 2), needed to find the next iteration (row 3) is different and there is no
reason for the outputs ui

2 (for t = 2) at corresponding locations to be the complement
of each other. In these cases, a pair of local rules is equivalent only in a local sense
with respect to ‘‘local in iteration time’’, and not local in the usual sense of a spatial
neighborhood.

In general, we define
Local Equivalence: Two local rules N and N0 are said to be locally equivalent

under a transformation T: N ? N0 iff the output ui
1 of N after one iteration of any

initial input pattern ui
0 can be found by applying the transformed input T(ui

0) to rule
N0 and then followed by applying the inverse transformation T21: N0 ? N to ui

1.

Global Equivalence of Cellular Automata

Global aspects can be observed in the evolved patterns for the rules 110, 137
(Fig. 1), 124, and 193 (Fig. 2). Despite the fact that the respective Boolean cubes
of these three rules do not seem to be related in an obvious way, their output
patterns are so precisely related that one could predict the evolved pattern over all
times t for each local rule 110, 124, 137, and 193. For example, the evolved output
pattern of rule 124 can be obtained by a reflection of that of 110 about the center
line, namely a bilateral transformation. The output of rule 193 can be obtained
by applying the complement of ui

0 (i.e. blue center pixels amidst a red background)
to rule 110 and then taking the complement of the evolved pattern from 110. The
output of rule 137 can be obtained by repeating the above algorithm for 193, and
then followed further by a reflection about the center line. It can be proved that
these algorithms remain valid for all initial input patterns. This result is most
remarkable because it allows us to predict the evolved patterns from arbitrary
initial configurations of three rules over all iterations, and not just for one iteration
as in the case of local equivalence.

In general, we define
Global Equivalence: Two local rules N and N0 are said to be globally equivalent

under a transformation T: N ? N0 iff the output ui
t of N can be found, for any t, by

applying the transformed input T(ui
0) to local rule N0 and then followed by

applying the inverse transformation T21 : N0 ? N to ui
1, for any t = 1, 2, … .

Obviously, the four rules 110, 124, 137, and 193 are globally equivalent in the
sense that the evolved patterns of any three members of this class can be trivially
predicted from the fourth, for all iterations. Therefore, these four rules have
identical nonlinear dynamics for all initial input patterns and therefore they rep-
resent only one generic rule, henceforth called a global equivalence class. This
global property is not only true for four rules, but also for all rules, thereby
allowing us to partition the 256 rules into only 88 global equivalence classes. It is
convenient to identify these equivalence classes with the symbol em

j , where j is the
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complexity index and m the class number. There are 38 cellular automata
belonging to the equivalence classes em

1 with complexity index j = 1 and m = 1,
2, …, 38. The equivalence classes em

2 with complexity index j = 2 are distin-
guished by m = 1, 2, …, 41. In addition, there are nine global equivalence classes
with complexity index j = 3. They are identified by em

3 with m = 1, 2, …, 9.
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Fig. 2 The evolutions of rules 110, 124, 193 reveal global symmetrical relationships
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This result is significant because it asserts that one only needs to study in depth
the dynamics and long-term behavior of 88 representative local rules. Moreover,
since 38 of these 88 dynamically distinct rules have complexity index j = 1, and
are therefore trivial, we are left with only 50 local rules (41 rules with j = 2 and 9
rules with j = 3) that justify further in-depth investigation.

Symmetry with Global Transformations

It can be proven that every local rule belongs to a global equivalence class
determined by certain global transformations. There are three global transforma-
tions, namely, global complementation T; left–right complementation Tw and

left–right transformation Ty which are distinguished as symmetry transformations
in the universe of cellular automata. The four rules 110, 124, 137, and 193 are
globally equivalent to each other in the sense that their long term dynamics
(as t ? ?) are mathematically identical with respect to the three global trans-

formations Ty; Tw and T.
The intuitive meaning of these symmetry transformations can easily be seen in

Fig. 3. In this picture, all four patterns of rules 110, 124, 137, and 193 have 60 rows
corresponding to iterations numbers t = 0, 1, 2, …, 59, and 61 columns, corre-
sponding to 61 cells (n = 60). All patterns have a random initial condition (t = 0),
or its reflection, complementation, or both. The two patterns 124 and 110 at the top

are generated by a left–right transformation Ty; and are related by a bilateral
reflection about an imaginary vertical line situated midway between the two pat-

terns. The two patterns 193 and 137 below are likewise related via Ty; and exhibit
the same bilateral reflection symmetry. The two vertically situated local rules 137
and 110, as well as 193 and 124 are related by a global complementation T:
The two diagonally-situated local rules 124 and 137, as well as 193 and 110 are
related by a left–right complementation Tw.

The geometrical definition of these symmetry transformations is easy to
understand and can even be imagined with the help of our toy cubes of cellular
automata. Mathematically, these transformations are defined by 3 9 3 matrices
Tu; Tu

w and Tu
�. Each of the three matrices transforms the three axes (ui-1, ui,

ui+1), drawn through the center of the Boolean cube into a transformed set of axes
(u0i�1; u0i; u0iþ1). These matrix representations also only need basic mathematics.

Symmetry of Left–Right Transformation T�

We can easily imagine how Ty implements a mirror reflection of a Boolean
cube about a diagonal plane formed by the 4 vertices 0, 2, 5, 7 of the Boolean
cube (Fig. 4). Geometrically, the left–right transformation matrix Tu

� switches
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Fig. 3 Global equivalence of rules 110, 124, 137, and 193
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++

Fig. 4 Left–right transformation
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the two horizontal axes ui-1 and ui+1. This means that operating on a Boolean
cube N by Tu

� is equivalent to switching the two pairs of vertices 4 and 6 on
the left and 1 and 3 on the right in the Boolean cube N to obtain a transformed
Boolean cube N0 = Tu

�(N). An example of this simple transformation is
110 = Tu

�(124) for rule N = 124. In matrix notation, the transformation is
realized by

0 0 1
0 1 0
1 0 0

2

4

3

5
ui�1

u
uiþ1

2

4

3

5 ¼
uiþ1

ui

ui�1

2

4

3

5 with the transformed values

u0i�1 ¼ uiþ1

u0i ¼ ui

u0iþ1 ¼ ui�1

:

Since T
y
u

� �
-1 = T

y
u ; the transformation is its own inverse. Consequently, 124

= T
y
u (110). An examination of the corresponding Boolean cubes reveals that the

left–right transformation T
y
u is equivalent to a reflection of the Boolean cube about

the diagonal plane passing through vertices 0, 5, 7, and 2. This bilateral (mirror)
symmetry can easily be imagined. The corresponding global left–right transfor-

mation Ty (without the subscript u) is defined by augmenting T
y
u with the output

variable yi, which represents the color of the vertices as follows:

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

2

664

3

775

ui�1

ui

uiþ1

yi

2

664

3

775 ¼

uiþ1

ui

ui�1

yi

2

664

3

775 with the transformed values

u0i�1 ¼ uiþ1

u0i ¼ ui

u0iþ1 ¼ ui�1

yi ¼ yi

:

Symmetry of Global Complementation T

The reader can also easily imagine how T implements a point reflection of a
Boolean cube about the center of the cube, followed by complementing the color
of each vertex (Fig. 5). Geometrically, global complementation Tu means that
transforming a Boolean cube N by Tu is equivalent to switching the four pairs of
vertices {0, 7}, {1, 6}, {2, 5}, and {3, 4} located along the four imaginary diagonal
lines through the center of the Boolean cube. Why is the output pattern of rule 145
that was mentioned earlier (Fig. 1) not the complement of that of 110 when the
colors of the corresponding vertices of 145 and 110 are complements of each
other? Obviously, we must not only switch the diagonal vertex pairs, as above, but
must also follow this switch with the intermediate operation Tu by changing the
colors of the vertices to their complementary colors. It follows that the global
complementation T must be defined as follows:
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�1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

2

666664

3

777775

ui�1

ui

u

yi

2

666664

3

777775
¼

�ui�1

�ui

�uiþ1

�yi

2

666664

3

777775

with the transformed values

u0i�1 ¼ �ui�1

u0i ¼ �ui

u0iþ1 ¼ �uiþ1

y0i ¼ �yi

:

The complement operation in row 4 of T is equivalent to applying the local
red–blue complementation operator TC that was introduced before.

Symmetry of Left–Right Complementation TH

In geometrical interpretation, the left–right complementation Tu
w (Fig. 6) is

equivalent to the composition of two operations T
y
u and Tu. To obtain the global

left–right complementation Tw requires that we follow up the above composition

Tu
w =Tu � Tyu by a local complementation TC as follows:

Fig. 5 Global complementation
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u0i ¼ �ui
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y0i ¼ �yi

:

For example, applying the local complementation TC to 145 results in the
desired rule 110 (see Fig. 1). Again, it is ( Tw)-1= Tw.

Global Symmetry of Klein’s Vierergruppe V

The three global transformations Ty; Tw and T are generated from elements
of the classic noncyclic four-element Abelian group V , originally called the
‘‘Vierergruppe’’ by the German mathematician Felix Klein (Speiser 1956). The four

elements of V are constructed from the 3 9 3 matrices T0, Tu; Tu
w and T

y
u . The

symbol T0 denotes the identity, or unit matrix, of any dimension. The actual
transformations, however, that allow us to establish the long-term correlations
among members of each of the 88 global equivalence classes of all 256 cellular

automata are the 4 9 4 matrices T0, Ty; Tw and T. Figure 7 shows that they are
related by the group multiplication table of Klein’s Vierergruppe V . This is the only
abstract mathematical group which makes it possible to predict the long-term cor-
relations among all members of the four remarkable rules 110, 124, 137, and 193.

These results are global in the sense of asymptotic time behavior as t ? ?.
It proves that even though there are 256 distinct local rules of 1-dimensional
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cellular automata, there are only 88 distinct global behaviors, a fundamental result
predicted by the identification of 88 global equivalence classes em

j .

Local Symmetry Classes of Cellular Automata

How can local equivalence classes be distinguished in the universe of cellular
automata and what are they good for? Local equivalence refers to the color of
vertices in a Boolean cube of a cellular automaton. There are 23 distinct ways to
rotate the Boolean cube about some axis by a certain angle so that the rotated cube
coincides with the original cube, except for the color of their vertices.

Each rotation operation can be defined mathematically as a transformation of
the axes ui�1; ui; uiþ1ð Þ onto the rotated axes u0i�1; u

0
i; u
0
iþ1

� �
via a 3 9 3 matrix:

u0i�1
u0i

u0iþ1

2

4

3

5 ¼ Tk½ �
ui�1

ui

uiþ1

2

4

3

5; where k ¼ 1; 2; . . .; 23:

The transformation matrix Tk is given for each rotation operation S[ek,h], where
ek denotes the rotation axis, and where x, y, z codes for ui-1, ui, and ui+1. In Fig. 8,
the first three transformations illustrate the situation. The rotation axis is shown by
bold red arrows and labeled accordingly, including the rotation angle h.

All 24 rotation matrices T0, T1, …, T23 including the identity matrix T0, form a
24-element non-Abelian (non-commutative) group R with 13 subgroups (Hamer-
mesh 1962). The first subgroup generates the three rotation matrices T1 to T3, the
second subgroup generates the three rotation matrices T4 to T6, and the third
subgroup generates the three rotation matrices T7 to T9. The next six subgroups
generate the six rotation matrices T10 to T15. The last four subgroups generate the
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Fig. 8 Rotation matrices Tk for rotating a Boolean cube by h� around some axis, such that the
rotated cube is indistinguishable (except for the color of the vertices) from the original cube
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eight remaining rotation matrices T16 to T23. Every rotation matrix Tk, with k = 0,
1, 2, …, 23, can be generated by repeated compositions of only T1 and T4.

Although each of the 23 rotation matrices Tk maps a Boolean cube onto itself,
the rotated cube will be different in general from the unrotated cube, because the
color red or blue may not match at the corresponding vertices. However, there are
30 distinct subsets among the 256 Boolean cubes where the cubes belonging to
each subset have matched color vertices after rotating each cube by an appropriate
Tk. These 30 subsets of Boolean cubes can be identified by the symbol Sm

n , where
the subscript m denotes the number of red vertices of all Boolean cubes belonging
to map Sm

n . Just as a left-handed glove is different from a right-handed glove, not
all Boolean cubes with the same number m of red vertices can be rotated to match
each other. Each subset of m red vertices which do match would therefore con-
stitute a separate class. The superscript n of Sm

n therefore denotes the subset
number, henceforth called the chiral number, a generalization of the chemist’s
terminology, which was introduced for similar purposes in classifying molecules.

It is remarkable that all local rules belonging to the same subset Sm
n must have

the same complexity index j. Notice that the complexity index j is the minimum
number of parallel planes needed to separate the red vertices of Boolean
cube N from the blue vertices. There is a correlation of j with the minimum
number a of absolute-value functions required by the Boolean output equation. In
particular, the number a ? 1 is exactly equal to the minimum number of parallel
separating planes. Hence, all local rules with the complexity index j = 1 can be
generated from the following equation with an absolute-value function of a = 0:

j = 1 local rules:

utþ1
i ¼ sgn z0 þ b1ut

i�1 þ b2ut
i þ b3ut

iþ1

� �
:

There are 104 local rules with complexity index j = 1. They correspond to the
classes of all linearly-separable Boolean functions. Similarly, there are 126 local
rules with complexity index j = 2. They can be generated from the following
nonlinear equation with just an absolute-value function of a = 1:

j = 2 local rules:

utþ1
i ¼ sgn z1 þ c1 z0 þ b1ut

i�1 þ b2ut
i þ b3ut

iþ1

� ������ �
:

Only local rules with complexity index j = 3 require two absolute-value func-
tions, i.e., j = 2. Therefore, it follows from the definition of the complexity index
that all local rules belonging to the same subset Sm

n must have the same index j.

The Holy Grail of Symmetry and Computability

Because the local rule 110 has been proved to be capable of universal computa-
tion, it follows that all four local rules of the Vierergruppe V are universal Turing
machines. The fundamental importance of the universality result was being able to
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exploit the symmetry of the Boolean cubes to identify equivalence classes among
the 256 rules. The discovery of the Vierergruppe V and the rotation group R has
led to the major logical classifications of the 256 local rules into 88 global
equivalence classes em

j and 30 local equivalence classes Sm
j . The significance of the

88 global equivalence classes em
j is similar to the classification of computational

algorithms into various complexity classes, for example, the N- or NP-classes, in
the sense that any property that applies to one member of em

j applies to the other
members in the same global equivalence class.

The universality of the four rules 110, 124, 137, and 193 and their identical
long-term dynamic behaviors, with respect to the symmetry transformations of the
Vierergruppe V , are encapsulated in the commutative diagram shown in Fig. 9.
Thus, Klein’s Vierergruppe represents the fundamental symmetry law of the 256
two-state one-dimensional cellular automata. It is the ‘‘Holy Grail’’ of a unified
theory in the universe of these cellular automata, containing all information about
their nonlinear dynamics.
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Chapter 5
Attractors in the Universe of Cellular
Automata

One-dimensional cellular automata (CA) with L = I ? 1 cells are complex sys-
tems with nonlinear dynamics (Alligood et al. 1996; Mainzer 2009; Shilnikov et al.
2001) determined by one of the 256 local rules N. Their state spaces contain all
distinct states of cellular rows xt

0; . . .; xt
I�1; x

t
I

� �
at time step t (iteration or gener-

ation). An entire list of consecutive rows with no two rows identical and including
the initial configuration is called an orbit in the state space of a cellular automaton.
With that background, the well-known attractor dynamics of complex systems can
also be studied in the theory of CA (Chua et al. 2005a).

Transient Regime and Basin of Attractors

For finite length I, the dynamic pattern evolving from the initial state x 0ð Þ ¼
x0 ¼ x0

0; . . .; x0
I�1; x

0
I

� �
under any rule N must eventually repeat itself with a

minimum period. The set of repeated cellular rows can be considered a periodic
attractor which is characterized by its attractor period. The set of all initial states
that tend to that attractor is called the basin of attraction. The first consecutive
rows of the dynamic pattern from the initial state to the beginning of the periodic
attractor are sometimes called the transient regime. The entire dynamic pattern is
the orbit originating from the initial state.

In Fig. 1, attractor dynamics of CA are illustrated formally. The transient
duration of the transient regime is denoted by Td. The minimum period of repe-
tition in an attractor K is TK. The dynamic pattern evolving from the initial state
x(0) under any rule N is denoted by DN(x(0)). In Fig. 1a, the first dynamic pattern
D62(xa(0)) is shown for the initial configuration xa in row 0 with Td = 51 und
TK = 3. The transient regime originating from xa of the dynamic pattern
D62(xa(0)) consists of the first 51 rows. The period-3 orbit is clearly seen by the
alternating color of the background. For the dynamic pattern D62(xb(0)), the initial
configuration xb in row 0 of Fig. 1b gives rise to a longer transient duration

K. Mainzer and L. Chua, The Universe as Automaton, SpringerBriefs
in Complexity, DOI: 10.1007/978-3-642-23477-4_5, � The Author(s) 2012
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Td = 83. However, since xa and xb were chosen to belong to the basin of attraction
of K, the period TK of the periodic orbit in Fig. 1a, b must be the same, namely,
TK = 3.

There are rules such as 110 and their global equivalence classes, where TK may
tend to infinity as T !1 for I !1: In this case, instead of a transient regime,
we refer to the entire dynamic pattern DN(x(0)) as an orbit originating from x(0).
By definition the basin of attraction of an attractor K must contain at least one
element, not belonging to K. But there are some periodic orbits that have no basin
of attraction. They are said to be invariant.

Special configurations which have no predecessors with respect to rule N are
called ‘‘garden of Eden’’ (Moore 1962). The intuitive association with the bib-
lical garden of Eden is obvious. No garden of Eden can be a periodic orbit with
a period more than 1, otherwise any point on the orbit is a predecessor of its
next iterate. A truly unique species is an ‘‘isle of Eden’’: If the predecessor of a
configuration with respect to rule N is itself, the configuration is said to be an
‘‘isle of Eden’’. We can distinguish period-k isles of Eden depending on
k applications of rule N to generate itself. We will come back to these exotic
phenomena in the universe of CA that have no counterpart in the theory of
dynamical systems (Garay et al. 2008).

Fig. 1 Attractor with transient regime and transient duration of rule 62 originating from different
initial configurations xa and xb
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Characteristic Functions of Cellular Automata

Because each attractor of a cellular automaton is periodic (for finite I) with some
period TK, it is represented by consecutive bit strings x(0), x(1), x(2),…, x(TK),
as illustrated in Fig. 1. To apply the analytical tools of nonlinear dynamics,
the pattern formation of CA must be transcribed into an equivalent nonlinear time
series. In the following, we consider states in the state space of a cellular automaton
N in the vector notation of a Boolean string x!ð0Þ ¼ x0 0ð Þ; x1 0ð Þ; . . .;½
xI�1 0ð Þ; xI 0ð Þ� with xI 0ð Þ 2 0; 1f g Each Boolean string x! can be associated
uniquely with the binary expansion (in base 2) of a real number / ¼
0 : x0x1 � � � xI�1xI on the unit interval [0, 1]. The decimal equivalent of / is / ¼
PI

i¼0 2� iþ1ð Þxi: The bilateral image x 0ð Þ ¼ xI 0ð Þ; xI�1 0ð Þ; . . .; x1 0ð Þ; x0 0ð Þ½ � ¼
Ty x! 0ð Þ
� �

is called the backward Boolean string associated with the forward

Boolean string x! by the (I ? 1)-dimensional left–right transformation operator

Ty(see Chap. 4). Each backward Boolean string x maps into the real number

/y ¼ 0: xIxI�1. . .x1x0; where the decimal equivalent is given by /y ¼
PI

i¼0

2� iþ1ð Þþixi:

For a one-dimensional CA with I ? 1 cells, there are nR ¼ sI0 distinct Boolean
strings with I0 ¼ lþ 1: The state space R is the collection of all nR Boolean
strings. Each local rule N induces a global map TN : R! R; where each state
x 2 R is mapped into exactly one state TN xð Þ 2 R: Since each state x 2 R corre-
sponds to one, and only one, point / 2 0; 1½ �; it follows that the global map TN

induces an equivalent map vN from the set of all rational numbers R 0; 1½ � over the
unit interval [0, 1] into itself, namely vN : R 0; 1½ � ! R 0; 1½ �; called the CA
characteristic function of N. In the limit where I !1; the state space R coincides
with the collection of all infinite strings extending from �1 to þ1 and
lim
I!1
R 0; 1½ � ¼ 0; 1:½ � In this general case, the CA characteristic function is defined

at every point (or real number) / 2 0; 1½ �; including all irrational numbers
(Mainzer 1990).

Since the domain of the CA characteristic function vN (for finite I) consists of a
subset of rational numbers in the unit interval [0, 1], a computer program for
constructing the graph of the characteristic function vN can easily be written as
follows (cf. Fig. 2):

Step 1: Divide the unit interval [0, 1] into a finite number of uniformly-spaced
points, called a linear grid, of width D/ ¼ 0:005:
Step 2: For each grid point /j 2 0; 1½ �; identify the corresponding binary string
sj 2 R:
Step 3: Determine the image s0j 2 R of sj under rule N. In other words, find s0j ¼
TN sj

� �
via the truth table of N.

Step 4: Calculate the decimal /0equivalent of s0j:
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Step 5: Plot a vertical line through the abscissa /N ¼ /j with height equal to s0j:

Step 6: Repeat steps 1–5 over all 1=D/ð Þ þ 1 grid points. In Fig. 2, there are
(1/0.005) ? 1 = 201 grid points.

Sometimes, it is useful to plot the sth iterated value ss
j ¼ Ts

N sj

� �
¼ TN � TN �

� � � � TN sj

� �
of sj; instead of TN sj

� �
at each grid point /j 2 0; 1½ �: Such a function

is called a time�s CA characteristic function which is denoted with vs
N : The

introduced algorithm can be used to plot the graph of the time-1 CA characteristic
function v1

N of any rule N. The same algorithm can be used for plotting the graph
of the time�s CA characteristic function vs

N as well.
To visualize the complex patterns of Fig. 2, the vertical lines of v1

N are plotted
in alternating red and blue colors, referred to as red and blue-coordinates
/red and /blue: All members of the red group have a 0 as their rightmost bit. The
blue group then consists of binary strings with a 1 as their rightmost bit. Since the
rightmost (end) bit of each /blue 2 0; 1½ � is equal to a 1, it follows that the largest

value of /blue is greater than the largest value of /red by exactly 1=2Iþ1: Therefore,
the rightmost vertical line must be blue in color, and tends to / ¼ 1 as I !1
(For plotting purposes, the rightmost blue line is drawn through / ¼ 1:) The 201
red and blue lines shown in Fig. 2 represent only their approximate positions on [0,
1], because the resolution of their exact positions is determined by the value of I,
which is chosen to be 65 in Fig. 2. Thus, the state space R is coarse-grained and

Fig. 2 Time-1 characteristic functions v1
120; v

1
200; v

1
170; and v1

240

48 5 Attractors in the Universe of Cellular Automata



only contains 266 distinct 66-bit binary strings, each one representing a unique
rational number on [0, 1].

The graph of the characteristic function v1
128 of rule 128 in Fig. 2a is very

simple. No vertical line intersects the unit-slope main diagonal except at /128 ¼
0:000. . . and /128 ¼ 1:000. . . These two period-1 fixed points give rise to a
homogeneous pattern D128(0.000…) of blue color (value 0) and a homogeneous
pattern D128(1.000…) of red color (value 1). But these two orbits have different
kinds of dynamics. The orbit from D128(0.000…) is an attractor in the sense of
nonlinear dynamics, because it has a nonempty basin of attraction, which consists
of all points in the closed-open interval [0,1).

The graph of the characteristic function v1
200 of rule 200 in Fig. 2b has many

vertical lines terminating exactly on the main diagonal. They indicate many per-
iod-1 fixed points with many period-1 attractors.

The graph of the characteristic function v1
170 of rule 170 in Fig. 2c has no

period-1 fixed points except at /170 ¼ 0:000. . . and /170 ¼ 1:000. . .: The vertices
of all vertical lines fall on one of two parallel lines with slope 2. This is an example
of a so-called Bernoulli shift.

The graph of the characteristic function v1
240 of rule 240 in Fig. 2d also has no

period-1 fixed points except at /240 ¼ 0:000. . . and /240 ¼ 1:000. . .: All red
vertical lines terminate on the lower straight lines of slope = �, and all blue
vertical lines terminate on the upper parallel straight lines. The two piecewise-
linear functions v1

240 and v1
170 are the inverse of each other. v1

240 is also an example
of a Bernoulli-shift.

In general, each CA local rule N can exhibit many distinct attractors Ki. Each
attractor represents a distinct pattern and must be analyzed as a separate dynamical

system. The left–right transformation operator Ty allows us to study the lateral

symmetry of bilateral pairs N and Ny ¼ Ty Nð Þ for local rules. It is useful, there-
fore, to consider each attractor from two spatial directions, namely, a forward
(left ? right) direction and a backward (right ? left) direction. Each period-TK

attractor K, defined by a pattern of TK consecutive Boolean strings, can be mapped
onto a forward time series u ¼ /0;/1; . . .;/TK

� �
with /i 2 0; 1½ �; called a forward

orbit, and a backward time series uy ¼ /y0 ;/
y
1 ; . . .;/

y
TK

h i
with /yi 2 0; 1½ �; called

a backward orbit, with length TK for each time series.
The dynamics of an attractor can be illustrated and understood by plotting the

two attractor-induced time-s maps (Alligood et al. 1996), associated with the

forward time series u and the backward time series uy: For each rule N, the
forward time-s map qs : /n�s 7!/n is defined by the time-s characteristic func-

tion vs
N with qs /n�sð Þ ¼ vs

N /n�sð Þ; and the backward time-s map q
y
s : /yn�s 7!/yn

is defined by the time-s characteristic function vs
N with q

y
s /yn�s

� �
¼ vs

N /yn�s

� �
:
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Poincaré Return Maps of Cellular Automata

When s ¼ 1;the time-1 maps qs and qys (Alligood et al. 1996; Hirsch et al. 1974)
behave like Poincaré return maps (Poincaré 1897) in the theory of dynamical
systems. In Fig. 3, the three forward time-1 maps q1 200½ �; q1 51½ �; and q1 62½ � of
rules N = 200, 51, and 62 are illustrated as Poincaré return maps with a Poincaré
cross-section in the unit-square [0, 1] 9 [0, 1]. In Fig. 3a, only one period-1
attractor of rule 200 is labeled as point 1. All iterates from points inside the basin
of attraction map onto the fixed point 1. One can imagine a planet intersecting an
imaginary Poincaré cross-section once every revolution.

Figure 3b shows a period-2 orbit (isle of Eden) of local rule 51. The orbit of the
circulating planet intersects the Poincaré cross-section at two points with
q1 1ð Þ 7! 2 and q1 2ð Þ 7! 1: Figure 3c shows a period-3 attractor of local rule 62.
The circulating orbit intersects the Poincaré cross-section at three points with
q1 1ð Þ 7! 2; q1 2ð Þ 7! 3; and q1 3ð Þ 7! 1:

1

2

3

4
6

5

1

2

1

(a)

(b)

(c)

(d)

ρ1[62]

ρ1[170]
ρ1[51]

ρ1[200]

1

3

2

Fig. 3 Poincaré return map interpretation of three forward time-1 maps: a period-1 map q1[200],
b period-2 map q1[51], c period-3 map q1[62], d Bernoulli shift map q1[170]
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Figure 3d shows a Bernoulli-shift orbit (isle of Eden) of rule 170 (compare
Fig. 2c). The circulating orbit intersects the Poincaré cross-section at almost all
points on the two parallel lines with slope equal to 2 for the case I = ?. Only a
few iterates 1, 2, 3, 4, 5, 6 are shown. The orbit reminds us of a comet visiting
almost all points on the two parallel lines when I goes to infinity.

Lameray Diagrams of Cellular Automata

Cellular Automata rules of the same global equivalence class have identical
behaviors. In particular, they have the same transient regimes, the same attractors,
and the same invariant orbits, with respect to a bijective mapping. For example, let
us consider rules 62 and 118, belonging to the same global equivalence class e2

22:

They are related by a left–right transformation operator 118 ¼ Ty 62ð Þ: In Fig. 4,

Fig. 4 Cobweb diagram with the evolution of CA rules N = 62 and 118
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their forward and backward time-1 maps (a and c) and backward time-1 maps (b
and d) are illustrated in a so-called Lameray diagram (Shilnikov et al. 1998),
named after the French mathematician Lameray who used its intuitive value back
in the eighteenth century. It is also called a cobweb diagram (Alligood et al. 1996)
because it resembles the web spun by a spider.

A cobweb plot is a visual tool used in dynamical systems to investigate the
qualitative behavior of one-dimensional iterated functions. Using a cobweb plot, it
is possible to infer the long-term status of an initial condition under repeated
application of a map. For a given iterated function q1 N½ � : /n�1 7!/n of CA rule
N, the plot consists of a diagonal line with /n�1 ¼ /n and a curve representing
/n ¼ q1 N½ � /n�1ð Þ: To plot the behavior of a value /0; apply the following steps:

Step 1: Find the point on the function curve with an /n�1-coordinate of /0: This
has the coordinates /0; q1 N½ � /0ð Þð Þ:
Step 2: Draw a horizontal projection line from this point to the diagonal line. This
has the coordinates q1 N½ � /0ð Þ; q1 N½ � /0ð Þð Þ:
Step 3: Draw a vertical projection line from the point on the diagonal to the
function curve. This has the coordinates q1 N½ � /0ð Þ; q1 N½ � q1 N½ � /0ð Þðð Þ:
Step 4: Repeat from step 2 as required.

In Fig. 4, the cobweb diagrams show the evolution of CA rules 62 and 118 from
any state of a period-3 attractor in forward time (a and c) and backward time
(b and d). In Fig. 4a, 1, 2, and 3 are the three points of the circulating orbit of
q1 62½ � : /n�1 7!/n: In Fig. 4b, 10, 20, and 30 are the three points of the circulating

orbit of qy1 62½ � : /yn�1 7!/yn : In Fig. 4c, a, b, and c are the three points of the
circulating orbit of q1 118½ � : /n�1 7!/n; and in Fig. 4d, a0, b0 and c0 are the three

points of the circulating orbit of qy1 118½ � : /yn�1 7!/yn :
The dynamics and long-term behavior of each attractor of a local rule N can

often be predicted from one or more of its time-s maps qs N½ �: Many rules have
attractors similar to those in Fig. 3. For forward time-1 maps qs N½ � and backward

time-1 maps q
y
s N½ �; distinct attractors can be identified by cobweb diagrams where

points of different colors belong to different attractors.

Power Spectrum of Cellular Automata

In Fig. 5, the forward time-1 map is also characterized by the power spectrum of
the associated forward time series u ¼ /0;/1; . . .;/TK

� �
with /i 2 0; 1½ �: In the

theory of dynamical systems, the power spectrum is a useful instrument in ana-
lyzing additional information that is not revealed from time-s maps. The cellular
automaton dynamics of CA calculated from the total of each step of the associated
time series, may be seen as a kind of signal and analyzed by its power spectrum.
In signal theory, the power spectrum found by the discrete Fourier transform of CA
dynamics shows the amount of energy over time and illustrates periodicities
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(Kaplan et al. 1995). It describes how the power of a signal or time series is
distributed with frequency. Thus, the power spectrum of all periodic-1 time-1
maps consists of one line only emerging at frequency f = 1 signifying the absence
of any other frequency components. The power spectrum of all period-2 time-1

Fig. 5 Forward time-1 maps and backward time-1 maps of some CA rules for attractor
K1 redð Þ;K2 blueð Þ; and K2 greenð Þ with corresponding power spectra
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maps consists of a line located at f = �. In Fig. 5, rule N = 2 with complexity
degree j = 1 shows the time-1 map (only in red) of just one attractor. In Fig. 5,
rule 25 with complexity degree j = 2 shows three time-1 maps (colored in red,
blue, and green) corresponding to three distinct types of attractors.

A careful analysis of the power spectra of all 256 rules reveals a remarkable
property of Klein’s symmetry group associated with the four globally-equivalent
rules 110, 124, 137, and 193. The ‘‘holy grail’’ in the universe of CA does not only
seem to be distinguished by universal computability, but also by a 1/f—power
frequency with a slope equal to approximately -1.5 (Schröder 1991). This
observation suggests that there might exist a fundamental relationship between
universal computation and the 1/f—power laws (Fig. 6). Actually the determina-
tion of their low-frequency spectra requires an immense amount of simulation
time. In general, in complex dynamical systems, power laws indicate a high degree
of complexity (Mainzer 2007a). In natural sciences and economics, they are cor-
related with extreme events such as tsunamis, financial crises, or technical
disasters (Albeverio et al. 2006). Thus, the CA of Klein’s symmetry group with
universal computability may be assumed to simulate complex processes in nature,
society, and technology. These insights are absolutely amazing with regard to the
simplicity of the local rules generating the complex global evolution of the CA
110, 124, 137, and 193.

Fig. 6 The power spectrum of the four globally equivalent rules 110, 124, 137, and 193 capable
of universal computation with 1/f power frequency
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Invertible Attractors

How can the long-term behavior of complex pattern formation be predicted? An
accurate analysis of certain rules leads to remarkable insights. The forward time-1
maps and backward time-1 maps in Fig. 5 reveal symmetries with respect to the
main diagonal in the left and right frames. Since the period TK of any attractor K is
the smallest integer where the orbit repeats itself, no two points in the domain of

the functions qs N½ � and qys N½ � can map to the same point. Therefore, both maps

qs N½ � and qys N½ � are bijective, and hence have a well-defined single-valued inverse

map, qs N½ �½ ��1 and qys N½ �
h i�1

; respectively. The forward time-s map qs N½ � :

0; 1½ � ! 0; 1½ � is said to be invertible over the interval 0; 1½ � iff qs N½ � ¼ qys N½ �
h i�1

:

In this case, the map is symmetrical with respect to the main diagonal. The

backward time-s map q
y
s N½ � : 0; 1½ � ! 0; 1½ � is said to be invertible over the

interval 0; 1½ � iff q
y
s N½ � ¼ qs N½ �½ ��1: In this case, the map is also symmetrical with

respect to the main diagonal (Chua et al. 2005a; Toffoli et al. 1990).
The sets of points in the left and right frames in Fig. 5 are called the graphs of

the time-1 maps q1 N½ � and qy1 N½ �: The left and right frames of rule 3 have only one
color (red). Thus, the corresponding cellular automaton has only one robust
attractor. (Robust attractor means roughly that there is a sufficiently large basin of
attraction for there to be a good chance that an arbitrarily chosen initial state will

converge to it.) Since the graph of q1 3½ � on the left and the graph of qy1 3½ � on the
right are reflections of each other about the main diagonal, the time-1 maps

q1 3½ � and q
y
1 3½ � are invertible. The two colors in the left and right frames of rule 11

correspond to two robust attractors. Since both graphs of the same color are mirror
images about the diagonal, both pairs of time-1 maps of 11 are invertible. In the
case of rule 110, the red color graphs on the left and right sides are not mirror
images of each other. Therefore, the forward time-1 map q1 110½ � and backward

time-1 map qy1 110½ � are not invertible.
The graphs of both forward and backward time-1 maps of all 256 CA rules

provide deep insights into the dynamics of CA. Because these graphs do not
depend on the initial state, they completely characterize the long-term behavior of
all rules, and allow one to predict their long-term development. Each CA rule can
have several attractors and invariant orbits. A CA rule N is either bilateral when

Ny ¼ Ty Nð Þ; or nonbilateral. It can be either invertible when its forward and
backward time-1 maps are symmetrical with respect to the main diagonal, or
noninvertible.

Finally, we list some results without further proofs (Chua et al. 2005a): There
are 45 invertible and 24 noninvertible period-1 rules. Each period-1 rule generally
has a continuum of period-1 attractors, clustered along the main diagonal. Among
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the period-1 rules, there are 12 rules which always tend to the homogeneous
attractor with state 0, and another 12 rules which always tend to the homogeneous
attractor with state 1, independent of the initial state (except for the isles of Eden
states, which we will consider later on). There are 17 invertible period-2 rules all
of which are bilateral. There are also eight noninvertible period-2 rules, all of
which are nonbilateral. Period-2 attractors are manifested by a symmetrical pair of
points lying on an imaginary line drawn perpendicular to the main diagonal. In
addition, there are four noninvertible period-3 rules. Thus, we have so far listed
45 ? 24 ? 17 ? 8 ? 4 = 98 rules, the long-term behavior of which can be
predicted with respect to the properties mentioned.

Bernoulli Shifts of Cellular Automata

In addition to the rules mentioned in the previous chapter, there are 108 rules
whose attractors can be precisely predicted by so-called Bernoulli shift maps,
which have already been introduced with rules 170 and 240 (Fig. 2c, d). The
evolution of each initial configuration of these 108 rules can be predicted by
shifting it either to the left, or to the right, by 1, 2, or 3 pixels, possibly followed by
a complementation, which means a change of color.

For example, consider the dynamic patterns Dn(x(0)) of the Bernoulli rules
N = 74 and 99 in Fig. 7a, b. Let st be any row on the attractor of these two

Fig. 7 Dynamic patterns of Bernoulli rules 74 (a) and 99 (b)
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patterns. Formally we choose t [ Td where Td denotes the transient duration of the
transient regime to the attractor. Obviously the evolution rule for CA 74 demands:
Shift string st to the left by one pixel to obtain the first iteration st+1. Repeating the
same procedure we obtain the same pattern shown in Fig. 7a. Similarly, the rule
for 99 demands: Shift string st to the right by one pixel to obtain the first iteration
st+1. Repeating the same procedure we obtain the periodic pattern with period
T = I ? 1 after the transient regime shown in the upper part of Fig. 7b, where the
high-lit area denotes the attractor regime.

In general, each Bernoulli shift is uniquely identified by three parameters
r; s; and b: r is a positive or negative integer. A positive r means ‘‘shift the bit
string by r bits to the left’’. A negative r means ‘‘shift the bit string by jrj bits to the
right’’. s is a positive integer, indicating the shifted bit string from the previous
operation is not the next bit string, but the bit string s rows below it. b is either a
positive or a negative number. A positive b requires no change. A negative b
requires taking the complement (i.e., change 0 to 1, and 1 to 0) of the shifted bit
string. Among the 108 Bernoulli rs-shift rules, there are 80 invertible rules, orga-
nized as members of 24 global equivalence classes ek

m with different Bernoulli-
attractors. There are 28 noninvertible Bernoulli rs-shift rules with Bernoulli
attractors.

Bernoulli shift rules reveal the hidden secrets of the corresponding
CA dynamics in their binary coding. For more details, let us consider the shifting
rule (r ¼ �1\0) of CA 240 with characteristic function v1

240 in Fig. 2d. The
first few digits of the decimal expansion of a binary bit string x!¼
x0; x1; . . .; xI�1; xI½ � with xi 2 0; 1f g is given by / ¼ 1

2 x0þ 1
4 x1 þ 1

8 x2 þ � � � þ
1
2I xI�1þ 1

2Iþ1 xI ¼ 0:5x0 þ 0:25x1 þ 0:125x2 þ � � � þ 1
2I xI�1 þ 1

2Iþ1 xI :

If the left-most bit is x0 ¼ 0; then /\0:5 and the lower straight line with slope
� in Fig. 2d will be selected. If the leftmost bit is x0 ¼ 1; then / [ 0:5 and the
upper branch in Fig. 2d will be selected. If the rightmost (end) bit is xt

I ¼ 1 at
time t, then the Bernoulli r1-shifting rule of CA 240 shifts the end bit 1 to the right.
Thereby, according to the periodic boundary condition in Fig. 1a of Chap. 2, it will
reappear as the first bit in the next iteration. Since the first bit in the next iteration
reads xtþ1

0 ¼ 1; we have /tþ1 [ 0:5 and the dynamics follow the upper branch of
v1

240: Conversely, if the end bit is xt
I ¼ 0; then the Bernoulli right shifting rule for

CA 240 shifts the bit 0 to make the first bit equal to xtþ1
0 ¼ 0 in the next iteration.

In this case, the dynamics follow the lower branch of v1
240:

The right shifting rule of CA 240 can be illustrated in a cobweb diagram
(Fig. 8) showing a succession of ten iteration points 1, 2, 3, …, 9, 10 undergoing
the r1-shifting evolution dynamics. The decimal coordinate /0 ¼
0:673768048097057. . . of point 1 is calculated from the following 66-bit string
(with I = 65 in Fig. 2) with the conversion formula that was introduced above:

101011000111110000010000000100111010101010100111010110010101110101
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The rightmost (end) bit of the above bit string is a 1. To obtain the next iteration
via the r1-shifting rule for N = 240, we simply shift the above bit string by one
pixel (since s ¼ 1) to the right (since r\0). Again, with respect to the periodic
boundary condition of Fig. 1a of Chap. 2, 1 is inserted at the leftmost (first)
position of the above right-shifted string to obtain the following 66-bit string

110101100011111000001000000010011101010101010011101011001010111010

with the decimal value /1 ¼ 0:836884024048529. . . : Leibniz would be delighted
that while the two decimal numbers /0 and /1 seem to be without any relation,
their binary codes reveal a trivial Bernoulli right shift of one pixel.

Bernoulli Shifts and Coin-Toss Experiments

In Fig. 8, the Bernoulli shift rule seems to converge to two parallel lines. But this
is only true for the limiting case I ? ?. For finite I, it is an illusion, caused by the
poor resolution of a printer or of our retina. Actually, there are tiny differences in
different parallel lines depending on the finite size of I. In Fig. 8, points 1 and 6
appear as a single point because they differ by only 0.003537. But the cobweb
diagram starting from 6 instead of 1 would evolve into an entirely different orbit.
This observation reveals the well-known extreme sensitivity of nonlinear dynam-
ics. In general, the Bernoulli-shift for I ? ? is as chaotic as a coin toss
(Nagashima et al. 1999). Its chaotic attractor has a Lyapunov exponent k ¼ b ¼
2 [ 1 (Devaney 1992). Intuitively, the Lyapunov exponent reflects the concept of

Fig. 8 Cobweb diagram of Bernoulli rule 240 with r1-shifting evolution dynamics
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weak causality. According to weak causality, in unstable and chaotic situations,
tiny and local causes can lead to large and global effects, contrary to strong
causality, when similar (tiny or large) causes lead to similar (tiny or large) effects.

Mathematically, the Lyapunov exponent of a dynamical system is a quantity
that characterizes the rate of separation of infinitesimally close trajectories. Two
trajectories in the phase space of the dynamical system with a certain initial
separation diverge according to a measure depending on an exponent k, called the
Lyapunov exponent. The rate of separation can be different for different orienta-
tions of the initial separation vector. Thus, there is a spectrum of Lyapunov
exponents, which is equal in number to the dimensionality of the phase space. The
largest (maximal) Lyapunov exponent determines a notion of predictability for a
dynamical system. A positive maximal Lyapunov exponent is usually taken as an
indication that the system is chaotic provided some other conditions are satisfied
(Kaplan et al. 1995; Mainzer 2007b).

For more details about coin-toss experiments and Bernoulli shifts let us consider
the inverse Bernoulli rule 170, which has identical dynamics to rule 240, as
I ? ?. There is a one-to-one correspondence between the iterations of the Ber-
noulli rule 170 and the outcome of an ideal coin-toss. In Fig. 2, the characteristic
function v1

170 : 0; 1½ � ! 0; 1½ � can be described analytically by v1
170 ¼ 2/170 mod 1

for all /170 2 0; 1½ �: Therefore, every point of the unit interval [0, 1] corresponds to
a semi-infinite binary bit string x0; x1; . . .; xI�1; xI½ � 7! 0 � x0x1 � � � xI�1xI where
I ? ?. Nearly all points in the interval (0, 1) (except those representing the
rational numbers) correspond to an irrational number, whose binary expansion can
be identified with a particular coin-toss experiment. The ensemble of all possible
ideal coin-toss experiments corresponds to the set of all points on [0, 1].
To illustrate any coin-toss experiment, we choose an arbitrary point from the unit
interval [0, 1]. Then, with the Bernoulli left-shifting rule r1 170½ �; we can read out
the first digit xtþn

0 from each iteration t ? n. The outcome of this binary output
string is also a member of the ideal coin-toss ensemble. In this sense, the Bernoulli
rule 170 and its inverse rule 240 are as chaotic as an ideal coin-toss, as I ? ?.

Fractality of Cellular Automata

So far we have completely characterized the long-term behavior of 108 ? 98 =

206 one-dimensional CA rules with three inputs. 108 CA can be predicted by
Bernoulli-shift rules. 98 CA are characterized as 45 invertible and 24 noninvertible
period-1 rules, 17 invertible period-2 rules all of which are bilateral, eight non-
invertible period-2 rules all of which are nonbilateral, and four nonbilateral
period-3 rules, which can be either invertible or noninvertible. The remaining 50
rules of the 256 CA rules consist of 18 noninvertible but bilateral (called ‘‘com-
plex’’ Bernoulli rules), and 32 noninvertible and nonbilateral rules (called ‘‘hyper’’
Bernoulli rules). These 50 remaining rules can be reduced to 18 global equivalence
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classes. It is sufficient to consider only one representative from each equivalence
class because of the similar dynamics of their elements. The qualitative long-term
dynamics of the 50 remaining rules can be studied with respect to further criteria
of attractor dynamics.

A well-known property of attractor dynamics is fractality. A careful exami-
nation of the characteristic functions v1

N reveal that nearly every graph of v1
N

exhibit a fractal geometry where self-similar two-dimensional substructures
manifest themselves, going to infinity, as the number of cells (I ? 1) ? ?. In this
case, subpatterns can be rescaled by appropriate horizontal and vertical scaling
factors so that it coincides with a part of the composite patterns. The graphs of the
characteristic functions v1

110 and v1
124 are plotted in Fig. 9. By rescaling the rect-

angle 1 by appropriate scaling factors, we obtain the corresponding subpattern 2.
They are identical. In Fig. 9a, subpattern 1 of v1

110 has the horizontal scaling = 23

Fig. 9 Fractal compositions of v1
110 and v1

124
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and vertical scaling = 22, subpattern 2 of v1
110 has the horizontal scaling = 26 and

vertical scaling = 25. In Fig. 9b, subpattern 1 of v1
124 has the horizontal

scaling = 23 and vertical scaling = 23, subpattern 2 of v1
124 has the horizontal

scaling = 26 and vertical scaling = 26. Continuing this process, we found the
graphs of v1

110 and v1
124 are composed of infinitely many scaled self-similar pat-

terns. Obviously, characteristic functions of this kind and the corresponding CA
can be analyzed and predicted using properties of fractal geometry.

The graphs of the characteristic function v1
170 and v1

240 (Fig. 2c, d) do not have
this kind of fractality. Their global dynamics are described by (mod 1) functions,
as explained above. There are characteristic functions for eight rules that do not
share the self-similarity of fractal geometry.

Gardens of Eden and Isles of Eden

At the beginning of this chapter, we mentioned the extraordinary phenomena of
‘‘gardens of Eden’’ and ‘‘isles of Eden’’. How can they be analytically defined by
characteristic functions v1

N? Gardens of Edens are configurations of a cellular
automaton with rule N which have no predecessors with respect to rule N. In more
precise words, an (I ? 1)-bit binary string x0; x1; . . .; xI�1; xI½ � is said to be a garden
of Eden of a CA rule N iff it does not have a predecessor under the corresponding

transformation TN. It follows that a garden of Eden /0 ¼
PI

i¼0 2� iþ1ð Þxi of N can
never occur as a point on an orbit of N arising from some initial bit-string con-
figuration whose decimal equivalent is different from /0: Thus, a garden of Eden
has no past, but only present and future (Moore 1962).

Any binary string x0; x1; . . .; xI�1; xI½ � 7!/0 ¼
PI

i¼0 2� iþ1ð Þxi which has no
preimage under v1

N is a garden of Eden of rule N. It follows that /0 2 0; 1½ � is a
garden of Eden of N if a /�1 2 0; 1½ � does not exist such that /0 ¼
v1

N /�1ð Þ; where /�1 6¼ /0: But this property is only a sufficient condition for /0

to be a garden of Eden. There are special points that violate this property, but
which are nevertheless gardens of Eden because they satisfy the definition. There
exist special period-1 points which have no predecessors in the sense that no orbits
from other initial bit-string configurations can converge to such points. According
to the definition, they are also gardens of Eden, but as period-1 points they have a
preimage under v1

N ; namely, themselves. They are called isles of Eden (Chua et al.
2005b). In a literary sense, they have no past (like gardens of Eden), but also no
future.

The concept of a period-1 isle of Eden can be generalized for time-n charac-
teristic functions vn

N : Since such special period-n points also have no predecessors
under the nth iterated map vn

N ; they are called period-n isles of Eden. In other

words, a bit string x0; x1; . . .; xI�1; xI½ � 7!/0 ¼
PI

i¼0 2� iþ1ð Þxi is said to be a
period-n isle of Eden of rule N iff its preimage under vn

N is itself. In short, /0 is a
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period-n isle of Eden of rule N iff v�n
N /0ð Þ ¼ /0: It follows that a bit string /0 is

a period-n isle of Eden of N iff /0 belongs to a period-n orbit with an empty basin
tree. Observe that since no bit strings from a ‘‘period-n’’ isle of Eden with n [ 1
qualifies as a garden of Eden, the two concepts of ‘‘Garden of Eden’’ and ‘‘Isle of
Eden’’ are different when the period n of an isle of Eden is greater than 1.

We will come back to these particular phenomena of CA later on. They can
only be found by careful computer search. From the analytical point of view in
dynamical systems, they are surprising phenomena, because they have no coun-
terpart in differential equations (Garay and Chua 2008).

Basin Trees of Attractors

To understand attractors, orbits, gardens of Eden, and isles of Eden more clearly, it
is convenient to illustrate the basins of attraction by so-called basin trees. For
example, we consider the cellular automaton with rule N = 62 which has the
above five ‘‘firing patterns’’ determining a red cell with 1 (Fig. 10). The other
three patterns are ‘‘non firing’’ determining a blue cell with state 0.

Under these rules, any bit string made of all zeros (blue bits) is a non firing
pattern of 62. It can also be proven analytically by calculation that the corre-
sponding number / ¼ 0 is a fixed point of the characteristic function v1

62 of CA 62.
We remember that the set of all string configurations converging to an attractor
K(62) of CA 62 is called the basin of attraction of K(62). A basin of attraction can
be illustrated in the form of a tree with nodes representing the string configurations
of the basin and with edges indicating their application with rule 62. The numbers
in the nodes represent the binary numbers of the corresponding string configura-
tion. Figure 11 shows the basin trees of the period-1 point / ¼ 0 of rule 62 for
I ? 1 = 3 and 4. The three or two pink bit strings, respectively, on the outer
periphery in Fig. 11a, b of these basin trees are gardens of Eden, because they
have no predecessors. The self loop at / ¼ 0 means the repetitions of a fixed point.

2

62

1

3

4

5

Fig. 10 Firing patterns of
rule 62
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Figure 12 shows two period-3 orbits as isles of Eden, because they have an
empty basin of attraction. None of these three-member triads has a predecessor
except themselves. Such period-3 isles of Eden can be represented by an isolated
single-loop state transition diagram.

Figure 13 shows the basin tree of a period-3 attractor with 6-bit strings. They
are sometimes very complex and can be found systematically by brute force
computer simulations.

There are also Bernoulli rs-shift attractors. In the case of r ¼ �1 and s ¼ 2;
the dynamics on the attractor consist of shifting each bit string on the attractor one
bit to the right every two iterations. Figure 14a shows the basin tree of a corre-
sponding example. Figure 14b shows a period-3 isle of Eden with an empty basin
of attraction. Note that none of the bit strings from this isle of Eden is a Garden of
Eden.

Although ‘‘isles of Eden’’ are non-robust orbits, almost all (in particular, 228
out of 256) rules harbor some isles of Eden, and some with very large periods. For
example, Wolfram’s celebrated ‘‘random-number generator’’ rule 30 has a 27-bit
period-3240 isle of Eden. Since this is the longest-period isle of Eden known to
date, the reader is encouraged to generate this rare ‘‘gem’’ by iterating the fol-
lowing 27-bit string 000000000000010010011101101 and verifying that it is
indeed an isle of Eden, with a period equal to 3240 (Chua et al. 2008, Fig. 9,

3 1(a) 1 : 62I

0

7
41

2

4 1(b) 1 4 : 62I

0

15
1050.250

0.125

0.875

0.500

0.000

0.3125 0.625

0.9375

0.000

Fig. 11 Basin trees of the period-1 attractor / ¼ 0 for I ? 1 = 3 (a) and I ? 3 = 4 (b)
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453 376
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Fig. 12 State transition diagrams of isles of Eden with nine-bit strings
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Fig. 13 Basin tree of a
period-3 attractor with six-bit
strings
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Fig. 14 Basin tree of a Bernoulli rs-shift attractor with basin tree (a) for I = 4, and an isle of
Eden (b) for I = 3. Both periodic orbits are Bernoulli with r = -1 and s = 2
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pp. 2526–2527). Since there is no basin of attraction for an isle of Eden, the reader
has to test all 227 distinct initial bit strings, with L = 27, to verify that the above bit
string is indeed an isle of Eden.
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Chapter 6
Time in the Universe of Cellular
Automata

An examination of Figs. 10, 11, 12, 13 and 14 at the end of the last chapter shows
that, except for period-k isle of Eden bit strings (Figs. 12, 14b), all attractors of the
cellular automaton 62 have a non-empty basin of attraction with several gardens of
Eden. Therefore, given any bit string on an attractor, it is impossible to retrace its
dynamics in backward time to find where it had originated in the transient regime.
Unlike in ordinary differential equations used in modeling dynamical systems, it is
impossible, for most rules of cellular automata, to retrace its past history on the
attractor. This observation leads us to exciting and deep insights in the concept of
time with respect to the universe of cellular automata and physics (Chua et al.
2006; Mainzer 2002; Sachs 1987).

Time Reversal Test of Cellular Automata

How can time reversibility of cellular automata be represented and tested? (Kari
1996; Morita 1989; Toffoli 1977). In Fig. 1, the top pattern shows the evolution
under rule 62 from an initial bit string of 63 bits 110110110 … 110110110 on a
period-3 isle of Eden, corresponding to the nine-bit isle of Eden shown in Fig. 12a
in Chap. 5. There is no transient in the evolution dynamics because the first three
rows of Fig. 1 are repeated periodically. Obviously, this is a period-3 orbit. In
addition, these three rows constitute an isle of Eden, because the subsequence 110
comes from the nine-bit period-3 isle of Eden in Fig. 12a. Now, we consider the

bilateral twin 118 ¼ Tyð62Þ of 62, where Ty is the left–right transformation. The

left–right transformation Ty is a member of the four-element Klein Vierergruppe,
the ‘‘holy grail’’ of symmetry in the universe of cellular automata. A fundamental

property of Ty is that any rule N and its bilateral twin Ty Nð Þ are globally
equivalent to each other, and hence have identical dynamic behavior.

K. Mainzer and L. Chua, The Universe as Automaton, SpringerBriefs
in Complexity, DOI: 10.1007/978-3-642-23477-4_6, � The Author(s) 2012
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The last row of the top pattern in Fig. 1 (identified as row 0) is chosen as initial
state of the bilateral twin 118 of cellular automaton 62. Iterating this bit string 19
times, we obtain the second pattern in Fig. 1. This 20-row pattern, identified on the
right margin from row 0, -1, -2, …, -19, is a mirror image of the last 20 rows of
the upper pattern, identified by the corresponding row numbers 0, 1, 2, …, 19.

We can rigorously verify that these two 20-row patterns are exact mirror images
in the following way: The last 20 rows of the upper pattern are reproduced in the
bottom of Fig. 1. Then, the 20-row pattern of the middle pattern is rotated about
row 0 by 180o. In the next step, the resulting flip pattern is superimposed at the
bottom in such a way that the two rows 0 of each pattern are aligned. An exam-
ination of the resulting time reversal comparison pattern in Fig. 1 shows no dif-
ference from the top pattern’s original 20-row pattern. Our choice of 20 was
completely arbitrary. In general, it is possible to apply the bilateral twin rule to any
point on an orbit, and successfully recover its past. This procedure is called time
reversal test.

Another period-3 isle of Eden of cellular automaton 62 is shown in Fig. 2. We
consider the upper pattern showing the evolution under rule 62 from the initial 63
bit string 0001011110000101111 … 000101111 on a period-3 isle of Eden

62

118

62

118

Row 69

Row 19

Row 0

Row 0

Row -19

Row 19

Row 0

-19

0

Fig. 1 An invariant set via
rule 62 satisfies the time
reversal test
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corresponding to the nine-bit isle of Eden in Fig. 12b. Just as in the last example,
rule 62 spawns a period-3 invariant set from this initial bit string, without any
transients. In a time reversal test, the last 20 rows of the top pattern in Fig. 2 are
chosen for setting up the time reversal comparison pattern. Applying rule 118 to
the last row 0 of the top pattern, we obtain the second pattern in Fig. 2. Copying
the last 20 rows of the top pattern to the bottom of Fig. 2 and superimposing the
flip pattern of the second 20-row pattern generated by rule 118, we find the results
do not coincide with each other. The deviations are indicated by white pixels. It
follows that this particular period-3 isle of Eden is not time-reversible in the sense
that the past evolution of the invariant set under rule 62 cannot be retrieved via its
bilateral twin rule 118.

Time Reversibility and Arrow of Time

Time reversal tests can be applied to all kinds of attractors and invariant orbits. Rule
62 has time-irreversible period-3 attractors that violate the time reversal test and
time-reversible Bernoulli shift attractors. The last example (Fig. 1) demonstrates

62

118

62

118

Row 69 

Row 19 

Row 14

Row 0

Row 0

Row -19

Row 19

Row 0

-1

0

Fig. 2 An invariant set via
rule 62 violates the time
reversal test
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that a time-reversible attractor need not be periodic, assuming I !1:There are 170
rules which are endowed with time-reversible attractors. Since the remaining 86
rules do not have robust time-reversible attractors, it is impossible to retrieve the past
of any bit string lying on their attractors. Inspired by the notion of the direction of
time from irreversible thermodynamics, each time-irreversible attractor may be
understood as an arrow of time of the dynamic evolution on the attractor (Chua 2006;
Mainzer 2002; Zeh 2007).

In general, an attractor K(N) or an invariant orbit K(N) of cellular automaton
N is said to be time-reversible iff any k consecutive bit strings x1

!; x2
!; . . .; xk

!
belonging to K(N) can be completely retrieved by applying the bilateral twin

automaton Ny ¼ Ty Nð Þ of automaton N to the last bit string xk
! for a total of

k iterations. It follows that the equations

xk�1
��! ¼ Ny xk

!� �

xk�2
��! ¼ Ny Ny xk

!� �� �

xk�3
��! ¼ Ny Ny Ny xk

!� �� �� �

..

.

x1
!¼ Ny Ny Ny. . . xk

!� �� �
. . .

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
k�2 times

are satisfied if, and only if, the time reversal test is satisfied. An attractor K(N) or
an invariant orbit K(N) is said to be time-irreversible iff K(N) is not time-
reversible. A cellular automaton with rule N is said to be reversible iff all
attractors K(N) or all invariant orbits K(N) of N are time-reversible. A cellular
automaton with rule N is said to be time-irreversible iff all robust attractors
K(N) of N are time-irreversible. An attractor is called robust iff it can be observed
by applying some random initial bit strings.

Time Reversibility and Invertibility

In Chap. 5 Fig. 5, each attractor was characterized by a forward time-1 return map

q1 N½ � on the left, and a backward time-1 return map qy1 N½ � on the right. By
definition, each return map must have an inverse. If the forward return map q1 N½ �
and the backward return map q

y
1 N½ � are symmetrical with respect to the main

diagonal in Fig. 5 with qs N½ � ¼ q
y
s N½ �

h i�1

; then these time-1 return maps were
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said to be invertible. Geometrically (e.g., in Fig. 5), the attractor representation on
the left, and its corresponding attractor representation on the right are mirror
images of each other with respect to a mirror placed along the main diagonal of
each return map. There are 146 rules of cellular automata with at least one
invertible attractor.

In general, it can be proved that an attractor K(N) or an invariant orbit K(N) of
cellular automata N is time-reversible if its associated forward (or backward) time-
1 return map is invertible. In short, invertibility implies time-reversibility, but not
vice versa. Thus, all 146 invertible cellular automata have time-reversible
attractors. In particular, all 80 invertible Bernoulli shift rules are time-reversible.
The other 28 Bernoulli shift rules (among 108) are time-irreversible. But, there are
24 non-invertible and non-bilateral period-1 rules which are nevertheless time-
reversible (Chua et al. 2006).

An important contribution of our analytical approach to cellular automata is that
the concepts of time-reversibility and invertibility are rigorously clarified in terms
of attractors of local rules. The analytical approach is beyond Wolfram’s remarks
on the time arrow (Wolfram 2002). The unsuccessful attempts to view time-
reversible cellular automata as an extension of time reversal theory from physics,
fail, in view of the ubiquitous presence of multiple attractors in cellular automata.
Because the same local rule, such as N = 62, is endowed with a time-reversible
period-3 isle of Eden and many time-irreversible period-3 isles of Eden, as well as
numerous period-3 attractors which are not time-reversible, any theory of time-
reversibility for cellular automata must be expressed in terms of attractors. Each
attractor of a local rule can be classified as either time-reversible or time-irre-
versible. The time-reversal test permits carrying out such tests efficiently on a
computer. The test can also be used to identify the end of the transient regime from
any initial bit string, for any local rule.

Philosophically speaking, cellular automata generate worlds with different
regions with arrows or symmetry of time. Each rule endowed with at least one
time-reversible attractor, or invariant orbit, is counted as a time-reversible rule,
although they are not strictly-time-reversible. Out of 256 types of cellular auto-
mata, there are 86 time-irreversible rules and 170 rules, which harbor time-
reversible attractors (symmetry of time). They include all 69 period-1 rules (29
are bilateral and invertible, 16 are nonbilateral and invertible and 24 are nonbi-
lateral and noninvertible), 17 period-2 rules (all are invertible and bilateral), and
84 Bernoulli rs-shift rules (all are invertible and nonbilateral) (Chua et al. 2006).
A fundamental characteristic of a time-reversible attractor K(N) of local rule N is
that the past of any orbit on K(N) can be uniquely retrieved by iterating its

bilateral twin rule Ny ¼ Ty Nð Þ in forward time. Conversely, the past of Nycan be
uniquely retrieved by iterating N in forward time. In this sense, the notion of past
and future time is entirely relative. For each time-reversible attractor K(N) of a

local rule N, its associated bilateral twin attractor Ky Nð Þ ¼ Ty K Nð Þð Þ can be
considered a kind of time machine.
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Random Walks, Time and Cellular Automata

To end this chapter, let us come back to the amazing connection between ran-
domness and cellular automata and the concept of time. In Chap. 5, we have already
discussed the relationship of Bernoulli rule 240 and its inverse rule 170 with ran-
domness in coin toss experiments. In orbit unfolding plots, the nonlinear dynamics of
a local rule N can be illustrated by a walk in the complex plane. In this case, each plot
is calculated from the unfolding formula znþ1 ¼ zn þ exp 2pi/nð Þ where zn is a

complex number, /n ¼
PI

k¼0 2� kþ1ð Þxn
k ; and xn

k is the kth component of the bit
string x!n ¼ xn

0 xn
1 xn

2 . . . xn
1

� 	
at the nth iteration under rule N. The orbit unfolding

plots in Fig. 3 are calculated with I = 1359 bit string and iterating over 1366 gen-
erations in the complex plane with Im znð Þ and Re znð Þ as coordinates. For illustra-
tion, a directed graph G Nð Þ is also given along with the bit-string laws for each K(N),
which is no more than a compact algorithm for generating bit strings belonging to
K(N). Directed graphs can represent complex networks in different fields of appli-
cation from electronic circuits to cellular networks (Boccaletti et al. 2006). Thus,
they connect models of cellular automata with complex networks.

The two unfolded plots of the time-reversible and invertible Bernoulli shift
rules 170 and 240 in Fig. 3 are reminiscent of random walks in probability theory.
Actually, the unfolding formula is nothing more than a version of an algorithm for
illustrating an ideal coin toss as a random walk (Feller 1950). This interpretation is
consistent with the result (mentioned in Chap. 5) that the Bernoulli map /nþ1 ¼
2/n mod 1 is a model of an ideal coin toss. There are two other rules that also
exhibit a random walk orbit unfolding plot, namely, rules 15 and 85. These two
rules are globally equivalent and time-reversible.

Each cellular automaton can be characterized by a variety of attractors as
forming different possible worlds with their own specific laws. Nevertheless, once
the laws governing the attractor bit strings of a rule N are given, it is trivial to
derive the laws governing the three other globally equivalent rules of left–right

transformation Ty Nð Þ; left–right complementation Tw(N), and global comple-
mentation T Nð Þ from Chap. 4. The laws governing the attractor bit strings and the

orbit unfolding plot for rule N and its bilateral twin rule Ny ¼ Ty Nð Þ are identical.
To obtain the corresponding results for rules N ¼ T Nð Þ and Nw = Tw(N), one
simply must only change 0 to 1, and vice versa, and rotate the orbit unfolding plot
by 180o about the abscissa Im znð Þ ¼ 0:
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Chapter 7
Matter in the Universe of Cellular
Automata

In the universe of cellular automata, one can identify many concrete concepts and
examples that mimic concepts and phenomena of matter in the classical, quantum,
and relativistic world of physics. Historically, quantum theory started with Bohr’s
atomic model of an atomic nucleus and discrete orbits of electrons, which remind
us of the planetary models of antiquity. In the world of cellular automata, the
discrete electron orbits around the nucleus are realized by isles of Eden (Fig. 12,
Fig. 14b in Chap. 5). But, Bohr’s model was only a rough approximation to the real
quantum world. Because of its simplicity and central symmetry, it is still used as
an illustration. Bohr’s symmetry is only an approximate model. But, the exact
symmetries of the quantum world lie deeper in the mathematical structure of
transformation groups.

Symmetries in the Universe of Physics

In geometry, figures or bodies are called symmetrical when they possess common
measures or proportions. Thus the Platonic bodies can be rotated and turned at will
without changing their regularity. Plato himself was deeply convinced that the
universe was constructed by the five regular bodies of Euclidean geometry. Today,
models of Platonic bodies belong to the toy world of basic geometry in schools.
The Boolean cube is the Platonic body in the universe of cellular automata. Mirror
and rotational symmetries in the toy world of cellular automata were derived from
the Boolean cube.

In general, similarity transformations leave the geometric form of a figure
unchanged, for example the proportional relationships of a circle, equilateral
triangle, rectangle, etc. are retained, although the absolute dimensions of these
figures can be enlarged or decreased. Therefore one can say that the form of a
figure is determined by the similarity transformations that leave it unchanged
(invariant).

K. Mainzer and L. Chua, The Universe as Automaton, SpringerBriefs
in Complexity, DOI: 10.1007/978-3-642-23477-4_7, � The Author(s) 2012
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In mathematics, a similarity transformation is an example of an automorphism.
In general, an automorphism is the mapping of a set (such as points, numbers, or
functions) onto itself that leaves unchanged the structure of this set (for example
the proportional relations in Euclidean space). Automorphisms can also be char-
acterized algebraically in this way: (1) Identity I that maps every element of a set
onto itself, is an automorphism. (2) For every automorphism T an inverse auto-
morphism T-1 can be given, with T �T-1= T-1 � T = I. (3) If S and T are auto-
morphisms, then so is the successive application S � T. A set of elements with a
composition that fulfills these three axioms is called a group. The symmetry of a
mathematical structure is determined by the group of those automorphisms that
leave it unchanged (invariant) (Mainzer 1996).

Symmetry transformations can be classified in two classes: continuous and
discrete transformations. By definition, a symmetry transformation is said to be
continuous if the set of parameters, which are necessary to describe the transfor-
mation, range over a continuous set of values. Examples of continuous transfor-
mations are translation in space, rotation around a given axis, and translation in
time. These symmetry transformations are global, because once the transformation
of a given point in space has been fixed, then the transformation at all other points
in space is also fixed. Basic principles of physics like the conservation of linear or
angular momentum, and conservation of energy result from the symmetry prop-
erties of the interactions under global continuous space and time transformations.
According to Emmy Noether’s theorem, a Lagrangian theory possesses N con-
served quantities, if the theory (i.e., the Lagrangian function) is invariant under an
N-parameter continuous transformation. Noether’s theorem is not only a corner-
stone of classical physics, but of quantum physics as well.

A discrete symmetry transformation is described by parameters ranging over a
discrete set of values. Examples are symmetry operations that leave a crystal
unaffected by reflections through planes, inversions with respect to a centre point,
and rotations around a given axis with angles 2p/n (where n = 2, 3, 4 or 6)
corresponding to the periodicity of the crystal lattice. There are three discrete
transformations in physical systems—the charge conjugation C, the parity trans-
formation P, and the time reversal T:

In a charge conjugation operation C: qa 7! � qa all charges qa change sign. For
example, in elementary particle physics, all the particles of a system are replaced
by their antiparticles.

The parity transformation P: r 7! � r corresponds to a space inversion relative
to a point. In a system of Cartesian coordinates, a point with coordinates (x, y,
z) transforms into (-x, -y, -z) under the parity operation. The position vector
r changes sign under a space inversion.

The time reversal operation T: t 7! � t corresponds to the inversion of the time
variable t. The laws of physics are invariant with respect to T. Symmetry of time
means that it is physically impossible to distinguish between forward and back-
ward motion in time.

In classical physics, physical systems are invariant with respect to each indi-
vidual transformation of this type, but, in general, that is not true in quantum field
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theory. Thus, in classical physics, it is trivial that systems are also invariant with
respect to the combination of parity, charge, and time-reversal transformations,
but, in general, not in quantum field theory. In the famous CPT-theorem, quantum
theory of fields requires the invariance of the fields and interactions under the
combined transformations of the three operations CPT. The CPT-theorem was
proved by Wolfgang Pauli in 1957. If one of the three symmetries is violated, then,
according to the CPT-theorem, one of the other two symmetries must also be
violated. For example, the violation of parity P requires that C or T be violated.
If the invariance under the combination of two transformations holds, then the
invariance under the third transformation must also hold. For example, the
invariance under CP implies the invariance under T and vice versa. The decay of
the elementary particles named kaons is the only known example of time violation
T which is enforced by a CP-violation. In addition, the CPT invariance implies that
the masses and the lifetime of a particle are identical to those of its antiparticle.
CPT invariance has been empirically confirmed to a very high precision.

Before 1956, it was assumed that parity was a fundamental symmetry of
physical processes. In 1956, Tsung Dao Lee and Chin Ning Yang examined the
question of whether processes driven by the weak interaction would distinguish
between left and right. Their famous experiments performed with the beta decay of
60Co, and the weak decays of pions and muons, pþ 7! lþ þ ml and lþ 7! eþ þ
me þ ml not only provided empirical support to the suggestions of Lee and Yang
but also showed that parity violation was an universal property of the weak
interaction (Doncel et al. 1987).

Symmetry concepts play a central role in physics. The invariance and covari-
ance properties of a system under specific symmetry transformations can either be
related to the conservation laws of physics or be capable of establishing the
structure of the fundamental interactions. This is the most essential aspect of
symmetry, because it concerns the basic principles of physics and the interactions
themselves, and not just the properties of a particular system. We will come back
to these aspects of physical symmetry with respect to automata in the last chapter.

Symmetries in the Universe of Automata

Understanding symmetries in physics needs a deep knowledge of physical funda-
mentals. How can the fundamental role of symmetries be illustrated in the toy world
of cellular automata? Obviously, there are analogies between discrete symmetries
and well-known transformations in the universe of cellular automata: The left–right

transform Ty in cellular automata is analogous to the parity operator P in physics, and
the global complementation T in cellular automata is analogous to the charge con-
jugation operator C in physics. Then, the left–right complementation Tw in cellular
automata is analogous to the simultaneous left–right and positive charge-negative
charge operator (CP mirror) in physics. In quantum field theory, the CP-mirror
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corresponds to the simultaneous left–right and particle-antiparticle operation of
elementary particles. In a rigorous sense, analogies with the quantum world need a
quantum version of cellular automata. We will discuss this approach in the last
section of this chapter. Therefore, the following analogies are only hypothetical. But
at least, at this stage, one gets a first glance of symmetries using simple tools in the toy
world of cellular automata, and which can be understood even by laymen. In this
sense, the forward and backward transformations Tn(N) and T–n(N) under rule N in
cellular automata are analogous to the time-reversal operation T in physics.

If you envisage the 256 rules N of cellular automata as matter, then their global
complements N ¼ T Nð Þ can be considered as antimatter. An example is 110 as the
antimatter of 137. There are 16 rules which are self-complements of each other
with N ¼ T Nð Þ: They can be considered the analog of a photon, which is its own

antiparticle. With N ¼ Ty Nð Þ; N ¼ T Nð Þ; and N ¼ Tw (N) for N = 105, we can
even find an analog of the symmetry rules of the photon (Fig. 1), in the sense that
these particles do not change under particle-antiparticle transformation C, left–
right transformation P, nor with the CP-mirror.

The pair annihilation and production of matter and antimatter in particle
physics can be mimicked by appropriate choice of initial states from time-
reversible rules (Chua et al. 2006). For example, rule 184 shows the collision of a
double-stream of red pixels (mimicking an electron track) on the right, with a
symmetrical double-stream of blue pixels (mimicking a positron track) on the left,
thereby annihilating each other, resulting in a checkerboard pattern (mimicking the
emission of gamma radiation) (Fig. 2a). By applying an excitation (simulated by
pixels enclosed with the green rectangle) to the otherwise checkerboard pattern
above it (mimicking the physical vacuum), by the associated bilateral twin rule

226 ¼ Ty 184ð Þ; we find the spontaneous generation of a double-stream of red
pixels on the right (mimicking an electron) and a symmetrical double stream of
blue pixels (mimicking a positron) on the left. The annihilation and pair-produc-
tion phenomenon in physics is decreed by quantum mechanics, but in cellular
automata, we can easily explain how they occur by examining the truth table of
local rule 184.

Fig. 1 Symmetric rules analogous to photons (rule 105)
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Fig. 2 Matter-antimatter pair annihilation by rule 184 (a) and matter–antimatter production by
rule 226 (b) with Feynman diagrams
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There is some similarity of the electron–positron annihilation and generation
process depicted by the corresponding Feynman diagrams (Feynman 1949). It is
amazing that only two adjacent red (or blue) pixels are needed to emulate an
electron or positron, respectively, to distinguish it from the checkerboard back-
ground (emulating the vacuum condensateh0jeþ e�j0i from quantum physics). If
we identify rules 184 and 226 as the same rule, via their global equivalence, then
one can even think of the positron as an electron traveling backwards in time. We
can also interpret the red stream and the blue stream as electron–electron scat-
tering. But, of course, these are only illustrations of the Feynman diagrams by
(classical) cellular automata. To model quantum processes, one needs quantum
cellular automata.

There are two additional Bernoulli rules that exhibit the same space–time diagram
as that of rule 184, namely rules 56 and 57. However, there is a subtle difference

between the Tw¼ T � Ty transformation (an element of the Vierergruppe V ) of
rule 56 and that of rules 184 and 57; namely, Tw 56ð Þ ¼ 185 6¼ 56; but
Tw 184ð Þ ¼ 184 and Tw 57ð Þ ¼ 57: In other words, whereas both rules 184 and

57 possess the Tw¼ T � Ty ¼ Ty � T symmetry, in contrast, rule 57 violates the T

symmetry. It follows that even though Ty 184ð Þ 6¼ 184;Ty 57ð Þ 6¼ 57;T 184ð Þ 6¼
184; and T 57ð Þ 6¼ 57; the pair-annihilation and pair-production process of both
rules 184 and 57 mimic the CP-symmetry property from quantum electrodynamics,

where the parity operator P is analogous to symmetry transformation Ty of Klein’s
Vierergruppe V , and the particle-antiparticle conjugation operator C is analogous
to the T symmetry. In contrast, rule 56 mimics the CP-violation phenomenon
observed in the kaon elementary particle.

Any physical law that remains unchanged after simultaneous inversion of
charge C, parity P, and time T, is said to exhibit CPT symmetry. In the world of
elementary particles, the physics of particles described in a right-handed coordi-
nate system is the same as the physics of antiparticles described in a left-handed
coordinate system. Rule 56 of cellular automata is the physical analog of CPT
symmetry. Rule 56 violates CP symmetry, but exhibits CPT symmetry. We know
Tw 56ð Þ ¼ 185 is not equal to 56. However, it is time-reversible for all bit strings
belonging to an attractor of 56. Hence, 56 exhibits CPT symmetry on its attractors
(Chua et al. 2006). As with CP violation, T violation occurs in certain weak
interactions, such as kaon decay.

Notice that the analogies of CPT-symmetry and CP violation are only meta-
phors or hypothetical analogies with cellular automata and are not models of
physics in a rigorous sense. They do not explain the spontaneous process of
symmetry breaking leading to the emergence of new particles and quantum forces
in quantum field theory (Mainzer 2005a, b). Nevertheless they illustrate that the
physical phenomena of symmetries and symmetry breaking are not strange, but
understandable even in the toy world of automata.
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Expansion in the Universe of Physics and Automata

At least as a metaphor, we can also imagine a contracting and expanding toy
universe of automata. Here, the singular point where the expansion begins is
analogous to the Big Bang event in cosmology. Rule 30 can mimic the Big Bang.
In addition, one can associate ‘‘isles of Eden’’ from cellular automata with the
frozen time, which is a well-known effect of black holes in cosmology. But the
analogies with physical time are actually more sophisticated. Time-reversible
attractors and time-reversible isles of Eden in cellular automata cannot simply be
viewed as an extension of time-reversibility in physics. The reason is the ubiq-
uitous presence of multiple attractors and isles of Eden in cellular automata.
Because a local rule, for example 62, is endowed with time-reversible period-3 isle
of Eden and many time-irreversible period-3 isles of Eden, as well as numerous
period-3 attractors that are not time-reversible, any meaningful theory of time-
reversibility for cellular automata must be couched in terms of attractors.

A fundamental characteristic of a time-reversible attractor K(N) of rule N is that
the past of any orbit on K(N) can be uniquely retrieved by iterating its bilateral twin

rule Ny ¼ Ty Nð Þ; in forward time. Conversely, the past of Nycan be uniquely
retrieved by iterating N in forward time. In this sense, any attractor has its own time,
reminding us of Einstein’s relativity of time. It is even more intriguing to observe
that for each time-reversible attractor K(N) of a rule N, its associated bilateral twin

attractor Ky Nð Þ ¼ Ty K Nð Þð Þ is in fact a kind of time machine. This concept seems
to be science fiction, but does not violate the laws of physics. Again, the analogies
with physics are only hypothetical metaphors. But they underline that these con-
cepts are not strange, but understandable in the toy world of automata.

A remarkable phenomenon exhibited by the bilateral twin rules 184 and 226 ¼
Ty 184ð Þ is that their respective transient regimes are time-reversible, a property
which we have so far restricted to evolution on attractors. Indeed, the upper space–
time diagram in Fig. 2a ending at the middle horizontal line segment of the small
green rectangle, represents a transient regime of 184. Similarly, the lower space–
time diagram in Fig. 2b, beginning from the middle horizontal line segment of the
small green rectangle, also represents a transient regime of rule 226. The two
transient regimes of 184 and 226 can be considered time machines. In this
instance, the past of 184 is the future of 226 and vice versa, over the corresponding
duration of the transient regimes. It follows that the future and the past cannot be
defined absolutely, which again reminds us of Einstein’s theory of relativity (Chua
et al. 2006; Mainzer 2002).

The metaphors and analogies we have drawn from quantum field theory and
theory of relativity illustrate that in the universe of cellular automata, there are
examples of computational systems that exhibit similar phenomena, thereby dem-
onstrating that such phenomena are neither counter-intuitive nor strange, but
reducible to symmetry laws even outside physics. One of the most amazing aspects
of these analogies is the fact that very simple rules in a toy world of automata lead to
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high complexity which is not even always predictable in the long run. The hard core
of this insight is the global equivalence class of automata 110, 124, 137, and 193.

Quantum Matter and Quantum Information

From of physical point of view, the (1-dimensional) cellular automata we intro-
duced in the previous chapters are deterministic dynamical systems when viewed
against the background of classical physics. In 1982, Richard Feynman, Nobel prize
winner and one of the most influential physicists in the twentieth century, intro-
duced the notion of quantum computation. Feynman strongly argued that processes
of quantum physics cannot be simulated by computers based on classical physics.
Thus, for Feynman, phenomena of the quantum world such as elementary particles
could only be modeled by quantum versions of cellular automata (Feynman 1982).

Let us start with a reminder of crucial concepts in the quantum world
(Audretsch and Mainzer 1996). One of the fundamental differences from classical
physics is the different concept of states in quantum physics. Consider a weak light
source set up to shine at a pair of detectors. These detectors are sensitive enough
for them to emit a signal (‘click’) when an individual photon arrives. In this
experiment, light acts like particles. When the light becomes weaker, fewer, rather
than weaker, clicks are observed at the detector.

Assume that a half-silvered mirror is placed in the light beam. Then, quantum
physics predicts, and it is confirmed in experiments, that the photons will be
detected at one or the other site with equal probability. Classically, this observa-
tion is rather strange, for how does the photon decide which way to go? Certain
photons must be predisposed to reflect, while others are predisposed to pass
through the mirror. In quantum physics, the state of a photon passing the mirror is
considered a superposition of being simultaneously reflected and not reflected,
with both having equal probability. It can exist in the superposition state until it
reaches one of the detectors, when it is forced into one partial state or another, i.e.,
being reflected or not. This expresses one of the most important differences
between quantum and classical mechanics: The act of measurement in a quantum
system irreversibly changes the system state.

Entanglement is another quantum mechanical phenomenon that cannot be
explained by classical physics. In the famous EPR-Paradox (named after Einstein,
Podolsky, and Rosen), two separated objects can be correlated in an entangled
state. For example, two separated photons may be in an entangled state such that
measuring one of them also forces the result of the measurement of the other
photon. Classically, this seems to be strange because instantaneous communication
about the measurement between the two is needed, contrary to Einstein’s relativity
postulate that no information can be transmitted faster than the speed of light. In
1964, John Bell proved that correlation of the measurement of both entangled
photons is higher than classical statistical physics predicts (Bell 1964). Bell’s
prediction was experimentally confirmed by A. Aspect et al. in 1982. These results
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were strong arguments for Feynman’s demand that quantum probabilities cannot
be simulated by classical probabilistic computers, which would act like classical
nondeterministic Turing machines (Feynman 1982).

In a quantum computer, a superposition is used as the basic unit of information,
called a quantum bit (qubit). A bit in a classical computer stores a binary value,
either 1 or 0. A qubit is stored as a two-state quantum system such as, for example,
an electron that is either spin-up or spin-down, or a photon with either horizontal
or vertical polarization. In Dirac’s notation, qubits are represented as a ket, where
the values 1 and 0 are denoted as j1i or j0i: Until it is measured, the qubit is in a
superposition of 1 and 0 which is represented by a probability distribution over the
values. Although the probability distribution cannot be measured directly, it can
take part in computation (Bouwmeester et al. 2000; Mainzer 2007).

Mathematically, a qubit is a unit state vector in a 2-dimensional Hilbert space
with j1i and j0i as orthonormal basis vectors. For each qubit jxi; there exist two

complex numbers a and b such that jxi ¼ aj0i þ bj1i ¼ a
b

� �
with j0i ¼

1
0

� �
and j1i ¼ 0

1

� �
; and |a|2 + |b|2 = 1. Geometrically, a and b define the angle

that the qubit makes with the vertical axis, indicating the probability that the given
bit will be measured as 0 or 1.

Similar to a classical register, a register of 3 qubits can store 23 = 8 values. In a
quantum computer, these values are in a superposition, storing all 8 values at once,
with a joint probability distribution across the set of values. Thus, their computation
can be realized in one parallel procedure and does not need eight separate procedures.
When particular values are read out, the superposition breaks down and is forced into
one of the partial states with specific values. In addition, it turns out that physical
realizations of qubits are very sensitive to noise and perturbations in the environment.
One of the great technical challenges of quantum computers therefore is to shield a
superposition with respect to noise and perturbations by the environment.

The Universe of Quantum Cellular Automata

In the previously mentioned 1982 paper on ‘‘Simulating Physics with Computer’’,
Richard Feynman already mentioned quantum cellular automata as a possible
model for making a universal quantum computer. In 1985, David Deutsch defined
the concept of a universal quantum Turing machine and extended the Church-
Turing principle to a quantum Turing machine (Deutsch 1985). But it was John
Watrous who was one of the first to come up with a mathematical definition of
quantum cellular automata in 1995 (Watrous 1995, Horowitz 2008). From an
academic point of view, his definition is easy to understand. A classical 1-
dimensional cellular automaton is defined by a local deterministic transition rule
vi ¼ N ui�1; ui; uið Þ; in accordance with a prescribed Boolean truth table of 8 = 23
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distinct 3-input patterns ui�1; ui; uið Þ and corresponding output values vi after their
application. The idea of Watrous’ quantum concept is to replace the uniquely
determined value vi with vi 2 0; 1f g; by a quantum probabilistic distribution or
quantum amplitude jxi ¼ aj0i þ bj1i of states j0i and j1i; with complex numbers
a; b 2 C and |a|2 + |b|2 = 1.

The classical update rule N can be illustrated by a map
N : R|{z}

left

� R|{z}
old

� R|{z}
right

! R|{z}
new

(with R as the set of cell states), where we have

the old states of cells, their left and right neighbors, and the new states.
The quantum update rule Nq assigns quantum amplitudes to every possible

transition from old states and their two left and right neighbors to new states by a map
Nq : R|{z}

left

� R|{z}
old

� R|{z}
right

� R|{z}
new

! C|{z}
amplitude

with the set C of complex numbers.

Based on these local transition amplitudes, the global transition amplitudes
from any given configuration to any other configuration can be computed by
NQ u; vð Þ ¼ PiNq ui�1; ui; ui; við Þ: With these amplitudes, a single-time-step-evo-
lution operator T can be introduced in a Hilbert space with configurations as basic
elements, i.e., Tjui ¼

P
v NQ u; vð Þjvi:

In the quantum world, every quantum system must evolve according to some
unitary transformation. Without going into mathematical details, a unitary oper-
ator guarantees that squared amplitudes are preserved, and can be interpreted as
probabilities which sum to 1. Quantum cellular automata are called well-formed iff
they have transition rules Nq giving rise to unitary transformations T. There is a
polynomial-time algorithm to decide if a quantum cellular automaton is well-
formed or not. But the question of which quantum cellular automata are well-
formed is still rather difficult.

Therefore, Watrous suggested a class of quantum cellular automata for which
checking well-formedness is generally easier. These so-called partitioned quantum
cellular automata are at least as powerful as quantum cellular automata, but are not any
more powerful. They can simulate quantum Turing machines and vice versa. Quantum
Turing machines are analogous to probabilistic Turing machines, with the main dif-
ference being that the transition of configurations is not assigned to classical proba-
bilities, but to quantum amplitudes. But equivalence has only been proved between
quantum Turing machines and the restricted class of partitioned quantum cellular
automata. The question of whether non-partitioned quantum cellular automata are
more powerful than quantum Turing machines is still open (Van Dam 1996).

The research on quantum cellular automata opens new avenues to modern
physics. Lattice field theory studies lattice models of quantum field theory with a
spacetime that has been discretized onto a lattice (Giles and Thorn 1977). Although
most lattice field theories are not exactly solvable, they are interesting in digitized
physics because they can be simulated on computers. There are already relations
between lattice field theories and string bit models, as well as new concepts of
bosonic, fermionic, and supersymmetric quantum cellular automata (McGuigan
2003). We will come back to these aspects of digitized physics in the last chapter.
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Chapter 8
Life and Brain in the Universe
of Cellular Automata

Historically, in science and philosophy people believed in a sharp difference
between ‘‘dead’’ and ‘‘living’’ matter. Aristotle interpreted life as the power of self-
organization (entelechy) driving the growth of plants and animals to their final
form. A living system is able to reproduce itself and to move by itself, while a dead
system can only be copied and moved from outside. Life was explained by tele-
ology, i.e., by non-causal (‘‘vital’’) forces aiming at some goals in nature. In the
eighteenth century Kant showed that self-organization of living organisms cannot
be explained by a mechanical system of Newtonian physics. In a famous quotation
he said that the Newton for explaining a blade of grass was still lacking. Nowa-
days, children put the same question: How is it possible that complex organisms
such as plants, animals, and even humans emerge from the interactions of simple
elements such as atoms, molecules, or cells? The concept of cellular automata was
the first mathematical model to prove that self-reproduction and self-organization
of complex patterns from simple rules are universal features of dynamical systems.
Therefore, the belief in some preprogrammed intelligent design is unnecessary.

Self-Organization and Emergence in Cellular Automata

In the nineteenth century the second law of thermodynamics described the irre-
versible movement of closed systems toward a state of maximal entropy or dis-
order. The law is supported by our everyday experiences. For example, the flow of
heat in a closed room tends to average any local differences and ends in an
equilibrium state of temperature everywhere in the room. Spontaneous heating at a
localized point in a closed room was never observed. But how could one explain
the emergence of order in Darwinian evolution of life? Ludwig Boltzmann stressed
that living organisms are open dissipative systems exchanging matter, energy, and
information with their environment, and which do not violate the second law of
closed systems. But nevertheless in Boltzmann’s statistical interpretation,

K. Mainzer and L. Chua, The Universe as Automaton, SpringerBriefs
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the emergence of life could only be a contingent event, a local cosmic fluctuation
‘‘at the boundary of the universe’’.

In the framework of complex dynamical systems, the emergence of life is not
contingent, but necessary and lawful in the sense of self-organization (Creutz
1997; Haken and Mikhailov 1993; Mainzer 2007). Only the conditions for the
emergence of life in the universe (for instance on planet Earth) may be contingent.
In general, biology distinguishes ontogenesis (the growth of organisms) from
phylogenesis (the evolution of species). In either case we have open complex
systems, the development of which can be explained by the evolution of (mac-
roscopic) patterns caused by nonlinear (microscopic) interactions of molecules and
cells in phase transitions that are far from thermal equilibrium. It is well known
that Turing analyzed a mathematical model of cellular pattern formation (Turing
1952). Gerisch and Meinhardt et al. described the growth of an organism (e.g., a
slime mould) by dissipative nonlinear equations for the aggregation of cells
(Gerisch and Hess 1974). How can these processes be described by cellular
automata?

According to the second law of thermodynamics, closed systems tend to
average out any randomness inherent in the initial state and must tend to a ther-
modynamic equilibrium, completely oblivious of the distant initial state. Such
systems have an evanescent memory and therefore cannot exhibit any complexity.
Viewed in this context, rule 170 as well as all 108 Bernoulli rs shift rules are truly
remarkable, because they are endowed with an infinite memory in the sense that no
bit in the initial state that originates from an attractor, or isle of Eden, is ever
averaged out in its dynamic evolution, no matter how far it continues into the
future. This is true for all 108 Bernoulli rules, following from just one simple rule:
Copy your rjj th right neighbor if r[ 0, or left neighbor, if r\ 0, and comple-
ment it if b\ 0, every s iterations, to infinity.

With this simple recipe, one can, in principle, easily deliver random binary
strings residing on any given attractor of any one of the 108 Bernoulli rs-shift rules
by following the laws governing the attractor bit strings on the attractor. This
insight explains the seeming paradox of how rule 170 can be associated with a coin
toss experiment or random walk, as depicted in the orbit unfolding plot, when its
Bernoulli map /n+1 = 2/n mod 1 is deterministic and predictable. This paradox is
caused by the fallacious inference asserting that the Bernoulli coin toss interpre-
tation implies that rule 170 can be used as a practical random sequence generator.
But that is not true. The Bernoulli map merely asserts that if one applies a random
binary sequence x! 0ð Þ ¼ x0 0ð Þ; x1 0ð Þ; . . .; xi�1 0ð Þ; xi 0ð Þð Þ of binary values 0 and 1
to a cellular automaton with rule 170, the machine with this program will spit out
the same sequence as its output by shifting each pixel of x! 0ð Þ by one bit to its left.
However, although the output of rule 170 is indeed a random binary sequence, it is
not generated by rule 170. But rather it is given at the outset as its input.

Computer experiments with cellular automata generate an inexhaustible variety
of structures. Many of them remind us of structures emerging in nature by self-
organization. The Game of Life was one of the most widely-known cellular
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automata which evolves according to extremely simple local rules. Invented by
John Conway as an abstraction of real life, it has attracted world-wide interests
after Conway and his collaborators proved that not only is the Game of Life
capable of universal computation as a Turing machine, but that it is also capable of
self-replication, another essential condition for real life to be possible (Gardner
1970, 1971).

In its original version, the Game of Life is played on an infinite grid of cells,
like a checker board. Each cell can assume one of two states, alive (coded in red)
or dead (coded in blue). The game is initiated by assigning an initial state to each
cell on the checker board so that at t = 0, the board looks like mosaic of random
juxtaposition of red and blue tiles. The game evolves at discrete intervals, that are
usually referred to in the Game-of-Life literature as generations, as an abstraction
of real-life events where each species in one generation evolves from its parents in
the previous generation, or from its parent’s parents in their previous generations,
etc. From any given initial configuration of states at time t, each cell in the next
generation t ? 1 evolves in accordance with four simple local rules involving only
the state of each of its eight nearest neighbors in the plane. The four local rules
were as follow:

1. Birth. A cell that is dead at time t becomes alive at time t ? 1 only if exactly
three of its eight neighbors were alive at time t.

2. Death by overcrowding. A cell that is alive at time t and has more than three
living neighbors at time t will be dead at time t ? 1.

3. Death by exposure. A cell that is alive at time t and has less than two living
neighbors at time t will be dead by time t ? 1.

4. Survival. A cell that was alive at time t will remain alive at time t ? 1 if and
only if it had exactly two or three alive neighbors at time t.

The biological interpretation of these rules may be more or less arbitrary. But,
the principle of self-organizing global patterns with high computational com-
plexity from simple local rules is obviously universal and independent of bio-
chemical ingredients.

Systems Biology and Cellular Automata

The Game of Life was an abstract model to study the emergence of complex
structures from simple local rules in a toy world of cellular automata. Modern
systems biology studies the emergence of complex cellular structures with refer-
ence to lab experiments and measurement data (Alon 2006). The mathematical
models are complex networks and circuits with great similarity to the dynamics of
cellular automata (Mainzer 2010). Although systems biology uses mathematical
models like those of physics, there seem to be tremendous differences. Structures
spontaneously assemble, perform elaborate biochemical functions, and vanish
effortlessly when their work is done. How could this be?
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Systems biology, like the theory of cellular automata, believes that the bio-
logical components at every level of organization interact with each other and
thereby may lead to responses or properties that are not explainable by the study of
components in isolation. Their primary goal is to capture the emerging properties
and to understand how they arise, how they are implemented in the cell or
organism, and what consequences ensue if they are altered, be it physiologically,
pathologically, or for biotechnical purposes.

We yearn for simplifying principles, but biology is astoundingly complex.
Every biochemical interaction is exquisitely crafted, and cells contain networks of
many of such interactions. These networks are the result of billions of years of
evolution, which works by making random changes and selecting the organisms
that survive. Therefore, the structures found by evolution are dependent on his-
torical chance and are laden with biochemical detail that requires special
description in many respects.

Despite this complexity, scientists have attempted to find generalizable prin-
ciples of biology. Actually, general mathematical laws referring to biological
networks and circuits are confirmed by lab experiments and measurements.
In systems biology, a cell is considered a complex system of interacting proteins
(Mainzer 2010). Each protein is a kind of nanometer-size molecular machine that
carries out specific tasks. For example, the bacterium Escherichia coli is a cell
containing several million proteins of 4,000 different types. In response to
changing situations, cells generate appropriate proteins. When, for example, it is
damaged, the cell produces repair proteins. The cell thus monitors its environment
and calculates the extent to which each type of protein is needed.

This information-processing function, which determines the rate of production of
each protein, is realized by transcription networks. The environmental states of a cell
are represented by special proteins called transcription factors. They are designed to
switch rapidly between active and inactive states. Each active transcription factor
binds to the DNA to regulate the rate at which specific target genes are read. The
genes are ‘‘read’’ (transcribed) into mRNA, which is then translated into proteins,
which can act on the environment. Thus, the activities of the transcription factors in a
cell can be considered an internal representation of the environment.

Transcription factor proteins are themselves encoded by genes, which are
regulated by other transcription factors, which in turn may be regulated by yet
more transcription factors (Alon 2003). The set of interactions is called a tran-
scription network (Fig. 1). The transcription network describes all regulatory
transcription interactions in a cell. In the network, the nodes are genes, and edges
represent transcriptional regulation of one gene by the protein product of another
gene. A directed edge X ? Y means that the product of gene X is a transcription
factor protein that binds to the promoter of gene Y to control the rate at which gene
Y is transcribed.

The connection between complex networks in systems biology and cellular
automata is now explained, using the example of gene regulation networks. Gene
regulation networks can be mapped on the sequences of bit strings in cellular
automata. The local rule of a cellular automaton defines different local patterns
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which are followed by one of two binary cellular states (bits) (see Fig. 10 in
Chap. 5). These binary bit states are denoted by the colors red and blue. Local
patterns followed by a red state are called firing, those followed by a blue state are
called quenching. They generate a sequence of bit strings. If a local pattern of a
rule is applied in a sequence of bit strings, it is called active, or else inactive with
respect to that sequence.

In a gene regulatory system, an inactive firing local pattern can be identified
with an unexpressed gene for an excitatory protein molecule, and an inactive
‘‘quenching’’ local pattern can be identified with an unexpressed gene for an
inhibitory protein molecule. The transition between excitatory and inhibitory
protein molecules in a gene regulation network is represented by a sequence of
firing and quenching local patterns in a corresponding cellular automaton.

For example, for local rule 62 in Fig. 2b, there are eight possible local patterns
of three cells with the five ‘‘firing’’ patterns 1, 2, 3, 4, 5, and the two ‘‘quenching’’
patterns 0, 6, 7. For the period-3 isle of Eden K2(62) of local rule 62 in Fig. 2b, the
active firing patterns consist of 3 and 5, and the active quenching patterns consist
of just 6. The inactive firing patterns consist of 1, 2, and 4, and the inactive
quenching patterns consist of 0 and 7. Similarly, for the Bernoulli attractor K1(62)
in Fig. 2a, the active firing patterns consist of 1, 3, and 4, and the active quenching
patterns consist of 6 and 7. The inactive firing pattern consists of 2 and the inactive
quenching pattern consists of 0.

Fig. 1 A transcription network representing about 20% of the transcription interactions in the
bacterium E. coli
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Just as the dynamical mechanisms leading to a time-2 (right-left) attractor
K1(62) can be explained and predicted rigorously via the Bernoulli shift law, by
invoking only the active firing and quenching patterns of K1(62), so too can
attractors associated with gene regulatory networks be explained, and predicted, at
least at a conceptual level.

The different tools for cellular automata that are introduced in this booklet can
be used to analyze complex networks in systems biology. The transition between
excitatory and inhibitory states in gene regulatory networks is illustrated by the
pattern formation of bit strings in cellular automata. Directed graphs (c.f. Fig. 3 in
Chap. 6) can be used as generators (algorithm) of the bit strings in an attractor.
The basins of attraction (c.f. Fig. 11 in Chap. 5) can be represented by basin trees.
To get, at least, a glance at the complexity in cellular transcription networks with
cellular automata, let us consider a basin tree of the period-3 attractor K3(62)
(Fig. 3). For I ? 1 = 9 there are 18 Gardens of Eden (in pink color), each one
spawning a sub-basin of the period-3 attractor.

It is a challenge in systems biology to distinguish different patterns in networks. Out
of the many possible patterns that could appear in a network, only a few of them are
realized in nature. The different structures have particular information-processing
functions. The advantages of these functions may explain why the same network
structures are repeated by evolution several times in different systems. For example,
there are feed forward loops as well as recurring networks. Besides transcription
networks, we also distinguish developmental and transduction networks. Sensory
transcription networks are designed to rapidly respond to changes in the environment.
A developmental transcription network governs the developmental states of cells such
as, for example, how an egg develops into a multi-cellular organism. A signal trans-
duction network processes information using interactions between signaling proteins.

Unlike electronic circuits, computations performed by a biological circuit
depend on biochemical parameters with concentrations of proteins varying
from cell to cell, even if the cells are genetically identical (Kriete et al. 2006).
Therefore, systems biologists try to find biological circuits with robust designs
such that their essential functions are nearly independent of biological parameters.
Only robust networks open an avenue to programming cells in synthetic biology
for particular medical or technical purposes. These circuits can be mapped on
networks representing the dynamics of cellular automata. Systems biology is an
exciting application of complex networks that may be modeled by cellular
automata (Kayama 2010; Topa 2011).

Brain Research and Cellular Automata

Our cellular automata approach also provides an intriguing bridge for research in
neural science on pattern formation and recognition. There are common concepts
in these areas, which can be mapped onto attractors of cellular automata, and vice
versa. For example, each attractor K(N) is hardwired to recognize only a small
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subset of local firing and quenching patterns. The excluded patterns are henceforth
called inactive local patterns. They too can include firing and quenching patterns
(Fig. 2). From a neural network perspective, an active firing local pattern can be
identified with an excitatory synapse and a quenching local pattern can be iden-
tified with an ‘‘inhibitory’’ synapse.
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Fig. 3 Basin tree of the period-3 attractor K3(62) with nine-bit strings
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A neural network approach which is quite similar to cellular automata (CA) is
the concept of cellular neural networks (CNN) (Chua 1998). The main idea behind
the CNN paradigm is the local activity principle which asserts that no complex
phenomena can arise in any homogeneous media without local activity. Obviously,
local activity is a fundamental property in micro-electronics, where, for example,
vacuum tubes and (later) transistors have been locally-active devices in the elec-
tronic circuits of radios, televisions, and computers. The demand for local activity
in neural networks was motivated by practical reasons of technology (Mainzer
2003). In 1985, John Hopfield theoretically suggested a neural network which, in
principle, could realize pattern recognition. But its globally connected architecture
was highly impractical to be realized technically in VLSI (very-large-scale-inte-
grated) micro-electronic circuits: The number of wires in a fully connected
Hopfield network grows exponentially with the size of the array. A CNN only
needs electrical interconnections in a prescribed sphere of influence.

In general, a CNN is a nonlinear analog circuit that processes signals in real
time. It is a multi-component system of regularly spaced identical (‘‘cloned’’) units,
called cells, which communicate with each other directly only through their nearest
neighbors. But the locality of direct connections also allows global information
processing to be obtained. Communications between non-directly (remote) con-
nected units are obtained by passing through other units. The idea that complex and
global phenomena can emerge from local activities in a network dates back to the
paradigm of cellular automata (CA). In this sense, the CNN paradigm is a higher
development of the CA paradigm taking account of the new conditions in infor-
mation processing and chip technology. Unlike conventional cellular automata,
CNN host processors accept and generate analog signals in continuous time, with
real numbers as interaction values. But actually, the discrete nature of CA is not
different, qualitatively, from continuous CNN. We can introduce continuous cel-
lular automata (CCA) as a generalization of CA in which each cell is not just black
or white, for example, but instead can have any of a continuous range of possible
levels of gray. A possible rule of a CCN may demand, for example, that the new
gray level of each cell should be the average of its own gray level and those of its
immediate neighbors. It turns out that in continuous cellular automata (CCA)
simple rules of interaction can generate patterns of increasing complexity, chaos,
and randomness, which are not essentially different to the behavior of discrete CA.
Thus, they are useful approximations of the dynamics of systems which are
determined by partial differential equations (PDE).

For the CNN paradigm, a neurobiological language delivers metaphorical
illustrations of concepts, which are nevertheless mathematically defined and
technically implemented. According to the dominant paradigms in life sciences
today, a biological language mediates visions of future connections between bio-
and computer technology. Mathematically, a CNN is defined by (1) a spatially
discrete set of continuous nonlinear dynamical systems (cells or neurons) where
information is processed into each cell via three independent variables (input,
threshold, and initial state) and (2) a coupling law relating the relevant variables of
each cell to all neighbor cells within a pre-described sphere of influence
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(Chua 1998; Mainzer 2007). A standard CNN architecture consists of an M 9

N rectangular array of cells C(i, j) with cartesian coordinates (i, j) with i = 1, 2, …,
M and j = 1, 2, …, N (Fig. 4a). Fig. 4b–c shows examples of cellular spheres of
influence as 3 9 3 and 5 9 5 neighborhoods. The dynamics of a cell’s state are
defined by a nonlinear differential equation (CNN state equation) with scalars for
state xij, output yij, input uij, and threshold zij, and coefficients, called synaptic
weights, modeling the intensity of synaptic connections of the cell C(i, j) with the
inputs (feedforward signals) from, and outputs (feedback signals) to, the neighbor
cells C(k, l). The CNN output equation connects the states of a cell with the outputs.

The majority of CNN applications use space-invariant standard CNNs with a
cellular neighborhood of 3 9 3 cells and no variation of synaptic weights and
cellular thresholds in the cellular space. A 3 9 3 sphere of influence at each node
of the grid contains nine cells with eight neighbor cells and the cell in its center.
In this case, the contributions of the output (feedback) and input (feedforward)
weights can be reduced to two fixed 3 9 3 matrices which are called feedback
(output) cloning template A, and feedforward (input) cloning template B. Thus,
each CNN is uniquely defined by the two cloning templates A, B, and a threshold
z, which consist of 3 9 3 ? 3 9 3 ? 1 = 19 real numbers. They can be ordered
as a string of 19 scalars with a uniform threshold, nine feedforward and nine
feedback synaptic weights. This string is called a CNN gene, because it completely
determines the dynamics of the CNN. Consequently, the universe of all CNN
genes is called the CNN genome. By analogy with the human genome project,
steady progress can be made by isolating and analyzing various classes of CNN
genes and their influences on CNN genomes.

A CNN program defined by a string of CNN genes is called a CNN chromo-
some. Every cellular automaton (CA) with binary states can be considered a CNN
chromosome. In particular, Conway’s Game-of-Life CA can be realized by a CNN
chromosome. Since the Game-of-Life CA is a universal Turing machine, the
corresponding Game-of-Life CNN is also a universal Turing machine. Thus, there
is a universal CNN machine (CNN UM) which can simulate any particular CNN.

Fig. 4 Standard CNN with array (a), 3 9 3 and 5 9 5 neighborhoods (b, c)
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Applied to visual computing, the triplet {A, B, z} and its 19 real numbers can be
considered as a CNN macro instruction on how to transform an input image into an
output image. Simple examples are subclasses of CNNs with practical relevance such
as the class C(A, B, z) of space-invariant CNNs with excitatory and inhibitory
synaptic weights, the zero-feedback (feedforward) class C(0, B, z) of CNNs without
cellular feedback, the zero-input (autonomous) class C(A, 0, z) of CNNs without
cellular input, and the uncoupled class C(A0, B, z) of CNNs without cellular cou-
pling. In A0 all weights are zero, except for the weight of the cell at the center of the
matrix. Their signal flow and system structure can be illustrated in diagrams that can
easily be applied to electronic circuits as well as to typical living neurons.

Cellular Neural Networks (CNN) are optimal candidates to simulate local
neural interactions of cells generating collective macro phenomena. A simple
autonomous CNN was designed by using a template with local activation and
lateral inhibition. It spontaneously generates a labyrinth pattern from random
initial conditions. In the next step, the retina-cortical map is applied to the resulting
stable pattern. Geometrically, a polar-coordinate point on the retina is mapped
from the Cartesian point on the cortex, producing the perceived vision of a spi-
raling tunnel pattern (Fig. 5). The advantage of a CNN model is obvious: it can
easily be programmed to a CNN Universal Machine (CNN-UM) chip which may
be implemented into the living brain in future applications of neurosurgery.

Cellular Neural Networks (CNN)—with information processing in nanoseconds
(with a standard design) and even at the speed of light (with optical technology)—

Fig. 5 CNN model for hallucinations
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seem to be optimal candidates for applications in neurobionics. Obviously, there
are surprising similarities between CNN architectures and, for example, the visual
pathway within the brain. An appropriate CNN approach is called the Bionic Eye
(Chua and Roska 2002) which means a formal framework of vision models,
combined and implemented on the CNN Universal Machine (CNN-UM). The
analysis starts with a model of the receptive field organization in the retina and the
visual pathway. Figure 6a shows a neuron with one axonal output with a branch to
several other neurons and several dendritic inputs. The small gaps denote the
synapses which are modeled by template elements. In Fig. 6b a neuron at the
center receives recurrent inputs (outputs from its neighbors). Thus, the receptive
field of a central neuron is modeled by a corresponding 3 9 3 A-template as its
local sphere of influence. In Fig. 6c a part of a two-layer neuron network is shown
with each layer as a one-dimensional representation of a two-dimensional grid.
The neuron in the center of layer 2 receives dendritic inputs from the neighbor-
hood in the input layer 1. The corresponding weights are modeled by a B-template.

Several neuroanatomic and neurophysiological models can be translated to
CNN cloning templates. Length tuning, for example, means that certain neurons in
the Lateral Geniculate Nucleus (LGN) and the visual cortex give a maximal
response to an optimally oriented bar of a certain length. The response decreases or
vanishes when the stimulus changes with an increase in the length of the bar.

Fig. 6 CNN model of neurobionics with a neuron (a), A-template (b), and B-template (c)
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A corresponding CNN model detects horizontal, vertical, and diagonal bars with
length not longer than three pixels. Another function in the visual cortex is ori-
entation selectivity, which can also be realized by an uncoupled CNN. Visual
illusions which have been studied in cognitive psychology such as the arrowhead
illusion can also be simulated by an uncoupled CNN. After introducing the
‘‘Lego’’ elements of the retina such as cells, synapses, and templates for receptive
field organization, a simplified multi-layer CNN model of the retina can be
designed and applied in neurobionics. In the end, the CNN-UM architecture allows
the implementation of many spatio-temporal neuromorphic models. The same
architecture of the universal machine can not only be used to mimic the retinas of
different animals, such as of a frog, tiger salamander, rabbit, or eagle, but they can
also be combined and optimized for technical applications. The combination of
biological and artificial chips is no longer a science-fiction-like dream of cyborgs,
but a technical reality, with inspiring prospects in the fields of robotics and
medicine (Mainzer 2010).

In epileptology, clinical applications of CNN chips have already been envisaged
(Tetzlaff 2002). The idea is to develop a miniaturized chip device for prediction
and prevention of epileptic seizures. Nonlinear time series analysis techniques
have been developed to characterize the typical EEG patterns of an epileptic
seizure and to recognize the phase transitions leading to the epileptic neural states.
These techniques mainly involve estimates of well-known criteria such as corre-
lation dimension, Kolmogrov-Sinai entropy, Lyapunov exponents, measures for
determinism, fractal similarity, etc. Implantable seizure prediction and prevention
devices are already in use with Parkinsonian patients. In the case of epileptic
processes, such a device would continuously monitor features extracted from the
EEG, compute the probability of an impending seizure, and be provided with
suitable prevention techniques. It should also possess both a high flexibility for
tuning to individual patient patterns, and a high efficiency to enable estimation of
these features in real-time. In addition, it should have a low energy consumption

Fig. 7 CNN-UM chip for epileptic seizure prediction and prevention
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and should be small enough to be implemented in a miniaturized, implantable
system. These requirements are optimally realized by Cellular Neural Networks
(CNNs) with their massive parallel computing power, analogic information pro-
cessing, and capacity for universal computation. Figure 7 shows a miniaturized
chip device for seizure prediction and prevention. EEG-data are recorded from
electrodes implanted near or within the epileptic area and fed to a time-series-
based analysis system. The system extracts features of an impending seizure by a
warning system (I) and supports an on-demand infusion of short-acting drugs to
prevent the seizure (II).

Brains of Memristors?

On the horizon for future chip technology is the vision of neuromorphic com-
puters, modeling the human brain with billions of neurons and synaptic connec-
tions. Brains are considered complex networks, with local cellular activities like
those in CNNs and CAs. A technical unit modeling a living neuron with synapses,
needs features for memory, digital circuitry, and a form of analog information
processing. A strong candidate fulfilling all these requirements is the memristor, a
new circuit element, which was suggested by one of the authors (Chua 1971),
40 years ago. Modern technology suggests that the memristor will bring a new
wave of innovation in electronics, packing more bits into smaller volumes, and
equipped with a kind of memory, preventing the loss of data.

The memristor device has generated immense interest among both device
researchers and the memory-chip industry alike (Strukov et al. 2008). This interest
was because of the high potential economic impact of the HP (Hewlett-Packard)
breakthrough. Since the titanium-dioxide HP memristor could be scaled down to
about 1 nm and is compatible with current IC technology, many industry experts
are predicting that nano memristor devices would eventually replace both flash
memories and DRAMS (Dynamic Random Access Memory). Indeed, a PC that
requires no boot time, and which remembers all the data it was processing prior to
disconnecting the power, could become a standard within a few years.

Memristor is an abbreviation for ‘‘memory resistor’’ und was predicted as the
fourth missing circuit element with respect to the basic equations of electric circuits
(Hayes 2011). These equations are defined for the four quantities voltage (v), current
(i), charge (q), and magnetic flux (u). Each equation determines a relationship
between two of these variables. Historically, the oldest relation is Ohm’s law v = RI,
meaning that voltage is proportional to current. The constant of proportionality is
given by the resistance R. If a current of I amperes flows through a resistance of
R ohms, then the voltage with respect to the resistance is v volts. Geometrically, the
graph of current versus voltage for a resistor is a straight line with slope R.

There are equations with different pairs of variables defining capacitors and
inductors. Current and voltage are considered in terms of charge and flux. Thus,
we get five equations with different pairings of the four variables v, I, q, and u. But
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four objects taken two at a time provide six possible combinations. The missing
equation connects charge q and magnetic flux u, thus determining the new ele-
ment, joining the resistor, the capacitor, and the inductor. Obviously, the memr-
istor was found by arguments of symmetry and completeness. This symmetry is
visualized in the diagram of Fig. 8.

The resistor, the capacitor, the inductor, and the memristor are all defined as
passive circuit elements, which must be distinguished from active devices, such as
transistors, which can amplify signals and inject power into circuits. Nevertheless,
the memristor has a characteristic ability, distinguishing it from the other passive
components: it is a nonlinear device. In a resistor, the relation between current and
voltage is a proportionality with a straight line of slope R. The memristor has a
graph in the form of a curve in the flux vs. charge plane, whose slope, called the
‘‘memristance’’, varies from one point to another (Chua 2011).

A transistor is a three-terminal device with three connections to a circuit. It acts
as a switch or amplifier, with a voltage applied to one terminal controlling a
current flowing between the other two terminals. A memristor has only two ter-
minals and cannot realize these functions. But memristors can be used to build
both memory and digital logic circuits. Metaphorically speaking, the memristor
has a built-in sense of history. A signal applied at one moment can affect another
signal that travels the same path later. The first signal exercises this control by
setting the internal state of the memristor to a high or low resistance.

Therefore, in a neuromorphic computer, memristors would not totally supplant
transistors, but would supplement them in memory functions and logic circuits.
Memristors could play the role of synapses. In biological neural networks, each
nerve cell communicates with other cells through thousands of synapses.
An important mechanism of learning occurs through adjustments to the strength of
the synaptic connections. In an artificial neural network, synapses must be small,
but effective structures. Memristors satisfy all the needed requirements. They

Fig. 8 Four basic circuit
elements
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change their resistance in response to the currents that flow through them. This
operation suggests a direct way of modeling the adjustment in the strength of
synapses.

There are two qualitively distinct kinds of memristors, namely locally passive
memristors and locally active memristors. The HP memristor is locally passive,
because it does not require a power supply, and is said to be non-volatile. The
potassium and sodium ion channels in the classic Hodgkin-Huxley nerve mem-
brane circuit model can be considered locally-active memristors, powered by a
sodium and a potassium pump, whose energy derives from ATP molecules.
In contrast, synapses are locally passive memristors capable of retaining their
synaptic efficacies over long periods of time without consuming any power.

Because our brains process information using only synapses and axons, it
follows that circuits made of both types of memristors should also be able to
emulate higher brain functions. The long-term potentiation (LTP) phenomenon
associated with long-term memory can also be emulated by a memristor. Many
associative memory phenomena, such as Pavlovian dog behavior, can be emulated
by a memristor circuit. If brains are made of memristors, then we can expect that
electronic circuits made of both locally passive and locally active memristors may
someday emulate human minds (Mullins 2009). The key to this fundamental
process is to uncover how local activity could lead to the emergence of complex
patterns from a mass of homogeneous brain tissues. Formally, the local activity
principle is realized in any cellular automaton. In neurons and memristors, the
local activity principle is not only a formal model, but biological and technical
reality.
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Chapter 9
Outlook: Is the Universe a Computer?

To answer this question, a deeper analysis of our cosmological models is neces-
sary. In general, principles of symmetry play a central role in physics. The
invariance and covariance properties of a system under specific symmetry
transformations can either be related to the conservation laws of physics or be
capable of establishing the structure of the fundamental physical interactions and
forces. This is the most essential aspect of symmetry because it concerns the basic
invariance principles of physics and the interactions themselves, and not just the
properties of geometric figures (Mainzer 1996).

With respect to quantum physics (Audretsch and Mainzer 1996), classical
deterministic models are only approximations. Therefore, classical deterministic
cellular automata are only approximate models of physical reality, which is
governed by the principles of quantum physics (‘t Hooft et al. 1992). Quantum
cellular automata (QCA) would be more adequate but, of course, not as easy to
understand as the toy world of classical cellular automata. In Chap. 7, we intro-
duced the basic principles for QCA. In principle, it is possible to transform the
concepts of quantum systems into QCA. For quantum cosmology, the concept of
QCA must even be extended to quantum field theory.

Quantum cosmology uses quantum field theory to suggest a unification theory
of physical forces represented by laws of symmetry. After the successful unifi-
cation of the electromagnetic and weak interactions, physicists are attempting to
realize the ‘‘big’’ unification of electromagnetic, weak and strong forces and, in a
last step, the ‘‘superunification’’ of all four forces. The symmetry of this last
unification would be the ‘‘holy grail’’ of modern cosmology and physics. There are
several superunification research strategies, such as supergravity and superstring
theories. Mathematically they are described by extensions of richer symmetry
(‘‘gauge’’) groups.1 On the other hand, the variety of elementary particles is
generated by spontaneous symmetry breaking. The concept of gauge symmetry

1 In quantum physics, all the properties of a system can be derived from the state or wave function
associated with that system. Formally, a phase transformation of the wave function w(x, t) can be
written as wðx; tÞ ! w0ðx; tÞ ¼ eiawðx; tÞwhere a is the parameter (or phase) of the transformation
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and symmetry breaking plays an immense role in cosmology. During cosmic
expansion and the decline in temperature, the initially unified supersymmetry of all
forces fractured into the subsymmetries of those forces with specific physical
interactions, and new elementary particles were generated at critical points in the
phase transitions, leading to more variety and complexity.

Thus, spontaneous breaking of gauge symmetries leads to the emergence of new
matter, patterns, and structure. It is obviously a fundamental principle in nature
(Frampton 2008; Mainzer 2005a). The Higgs mechanism is a well known candidate
for explaining spontaneous symmetry breaking and the emergence of massive par-
ticles (Goldstone 1961; Higgs 1964). Even the beginning of cosmic expansion (the
‘‘Big Bang’’) is assumed to be initiated by a kind of spontaneous symmetry breaking
with respect to an equilibrium state of the quantum vacuum (Hawking et al. 2008).

To link quantum cosmology with cellular automata, quantum field theory must
be discretized. Lattice field theory is the study of discretized lattice models of
quantum field theory (Giles and Thorn 1977). In this case, quantum field theory is
mapped onto a space–time that has been discretized onto a lattice. Although most
lattice field theories are not exactly solvable, they are extremely interesting because
they can be studied by simulation on a computer. The method is particularly
appealing for the quantization of a gauge theory. Lattice field theory keeps manifest
gauge invariance, but sacrifices manifest Poincaré invariance (McGuigan 2003).

Therefore, the methods of lattice field theories can be applied to the quanti-
zation of cellular automata. There is already quantization of cellular automata
referring to particular categories of elementary particles (bosons and fermions),
spins, strings, and supersymmetries. Bosons are particles that obey Bose–Einstein
statistics. When two bosons are interchanged, the wave function of the system is
unchanged. Fermions, on the other hand, obey Fermi–Dirac statistics. According
to Pauli’s exclusion principle, two fermions cannot occupy the same quantum state
as one another, leading to the typical rigid features of matter. Thus fermions are
sometimes said to be the constituents of matter (such as electrons and quarks),
while bosons are said to be the particles transmitting interactions (such as gauge
bosons and the Higgs boson) or radiation (e.g., the photon). All observed bosons
have integer spin, as opposed to fermions, which have half-integer spin.

Footnote 1 (continued)
(Mainzer 2005b). If a is constant, i.e., the same for all points in space–time, the equation
expresses the fact that once a phase convention has been made at a given point in space–time, the
same convention must be adopted at all other points. This is an example of a global
transformation applied to the field w(x, t). If a = a(x, t) is a function of space and time, then such
a transformation will not leave any equation of w(x, t) with space or time derivatives as invariant.
This is, in particular, true for the Schrödinger equation or any relativistic wave equation for a free
particle. To satisfy the invariance under a local phase transformation it is necessary to modify
the equations in some way, which will no longer describe a free particle. Such modifications
introduce additional terms, which describe the interaction of the particle with external fields and
thereby generate the dynamics. That is the gauge principle or principle of local symmetry,
according to which the interactions are determined by invariance under local symmetry (phase or
gauge) transformations (Frampton 2008).
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Cellular automata consist of a row of cells, the states of which can be updated
at the next time step according to a local rule and their neighbors. This procedure
can be generalized to higher dimensions by placing the cellular state on a higher
dimensional lattice. Reversible cellular automata are a subclass of cellular auto-
mata that exhibit physical behavior such as locality and microscopic reversibility.
Particular reversible QCA can be related to discretized bosonic and fermionic field
equations.

One of the most fascinating feature of classical automata is the emergence of
complex cellular patterns from very simple rules. QCA are also capable of sim-
ulating complex systems, but which emerge from nondeterministic or probabilistic
rules of interactions between nearest neighbors. As in the quantum world, there are
also strange quantum features which cannot be realized in the classical world of
automata. Remember that the garden of Eden configurations of classical cellular
automata cannot be reached by classical evolution of an update rule. In QCA, such
arrays of cells can be reached quantum mechanically through quantum tunnelling,
although selection rules forbidding certain transitions will still be possible
(McGuigan 2003).

Summing up all these insights, we are on the way to conceiving quantum
systems as QCA. In any case, the Zuse-Fredkin thesis must be revisited with
respect to quantum physics: Is the universe a quantum cellular automaton? The
answer to this question depends on the digitization of physics. The question ‘‘Is the
Universe a computer’’ leads to the question: How far is it possible to map the laws
of physics onto computational digital quantum physics? (Deutsch 1985). Digiti-
zation is not only exciting for answering philosophical questions of the universe.
Digitization is the key paradigm in modern research and technology. Nearly all
kinds of research and technical innovations depend on computational modeling.
The emerging complexity of nature and society cannot be handled without com-
puters with increasing computational power and storage.

To make this complex computational world more understandable, cellular
automata are an excellent instructional tool. This booklet has shown that many
basic principles of the expanding universe and the evolution of life and brain can
be illustrated with cellular automata. The emergence of new structures and patterns
depends on phase transitions of complex dynamical systems in the quantum,
molecular, cellular, organic, ecological, and societal worlds (Mainzer 2007).
Cellular automata are recognized as an intuitive modeling paradigm for complex
systems with many useful applications (Hoekstra et al. 2010). In cellular automata,
extremely simple local interactions of cells lead to the emergence of complex
global structures. This local principle of activity is also true in the world of
complex systems with elementary particles, atoms, molecules, cells, organs,
organisms, populations, and societies (Chua 1998). Although local interactions
generate a complex variety of phenomena in the universe, they can be mathe-
matically reduced to some fundamental laws of symmetry.

Symmetries play a key role in the physical world as well as in the universe of
automata. In the philosophy of science, they have been considered universal
principles of Platonic truth and beauty. The scientific search for symmetries
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reminds us of Parsifal’s quest for the Holy Grail. The legend of Parsifal was
written by the minnesinger Wolfram von Eschenbach (c. 1170–c. 1220). It may be
a random accord of names that a ‘‘Wolfram’’ also wrote a ‘‘New Kind of Science’’
for cellular automata. In the nineteenth century, Richard Wagner composed his
famous opera based on Wolfram’s legend of Parsifal. In Wagner’s interpretation,
it is the quest of the ‘‘poor fool’’ Parsifal, searching for the Holy Grail. The
question is still open whether the scientific search for a final symmetry or ‘‘world
formula’’ will also be a ‘‘foolish’’ quest.
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