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Chapter 1

The Vortex

1.1 Brief History

The first notable works on fluid motions appeared in the early seventeenth century.

Descartes in his “Principia Philosophiae” (1644) considered that space was filled

with frictional vortices, so that the planets are carried along by the vortex motions.

Vortices had fascinated mankind for many centuries before Descartes. It was

considered that life had started in the water of the primeval vortex – in whirlwinds

and whirlpools.

The oldest description of a tidal vortex was given by Homer (eighth century BC).

The returning heroes of the Odyssey had to face the danger of the giant whirlpool

Charybde [1]. The Celts and Teutons also believed that life was created in this

whirlpool. The connection between cosmic whirl and the Maelstrom is described by

de Santillana [2].

Empedocles (492–432 BC) lived in Sicily and believed in four primary

substances – earth, water, air, and fire. He also distinguished attractive and repelling

“‘forces’ as ‘love’ and ‘strife’”, respectively. He demonstrated the centrifugal effect

by the retention of fluid within a rotating, liquid-filled ladle. He used this effect to

explain the position of the celestial bodies in the firmament.

Anaxagoras (500–428 BC) did not believe in the basic four elements but thought

of matter as a continuum. He extended the vortex concept to the total world process

[3]. With hindsight, today it would appear that this vortex concept of Anaxagoras

may be close to a universal truth. It is interesting to note that Plato and his disciple

Aristotle (384–322 BC) rejected the vortex theory of the micro- and macro-cosmos.

However, in his book “Meteorologica” and in the pseudo-Aristotelian scripts

“Problemata Mechanica” and “De Mundo”, vortices are described for their own

sake. The cause, occurrence, and motion of whirlwinds and tidal vortices are

considered.

In Roman times, meteorological vortices were described by Seneca (0–65 AD),

Pliny (23–79 AD), and Lucan (39–65 AD). In the Middle Ages, the early development

of a scientific terminology appeared [4, 5].

P. McCormack, Vortex, Molecular Spin and Nanovorticity: An Introduction,
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In the thirteenth century, Gerard of Brussels studied the kinematics of rotating

bodies – he conceptualized solid-body rotation (see his text – “Liber de motu”).

Nicole Oresme (circa 1325–1382) studied the commensurability of rotating celes-

tial bodies. He identified the return of a single body along a circular orbit from an

arbitrary point to the same point, as a circulation, whereas the return of several

bodies from an arbitrary initial state to exactly the same state (commensurable), or

to a similar state (incommensurable), is a revolution.

The Renaissance period saw the climax in the use of art to describe vortex

motions, and leading this effort was Leonardo da Vinci (1452–1515). He per-

ceived the vortex and the wave as the manifestation of power and motion, and

used spiral and wavy elements in his paintings. He pioneered the concept of

turbulent motion; identified the difference between the potential vortex and

solid-body rotation; and studied channel vortex flow and vortex formation in the

wake of obstacles [6].

1.1.1 Cartesian Vortex Theory (Sixteenth
and Seventeenth Centuries)

In this period, Kepler found that the planetary orbits are elliptic not circular. He

attributed this distortion to magnetic attraction and repulsion. He conceived of a

magnetic vortex caused by the rotation of the sun – the essence of Cartesian

vortex theory [7, 8]. The theory is based on the assumption that matter has

extension and is identified with space (it is a distributed system). The implication

was that there is no vacuum and bodies interact by direct contact. When a body

moves the surrounding fluid, particles are induced into motion around it. This is

valid for a continuum, but not for celestial bodies. The problem was resolved in

1687 by Newton in his “Principia” – he advocated that material bodies interact

over a distance by gravitational attraction. The success of Newtonian mechanics

in describing planetary motion overwhelmed all opposition. The eighteenth and

nineteenth centuries saw the birth and development of classical mechanics –

based upon Newton’s theory.

Hadley in 1735 published a theory of the general circulation of the atmosphere.

Although since rejected, his theory was the start of a long effort to develop a

satisfactory model of atmospheric motions [9]. The effort still goes on today with

the aid of high-speed computers. In 1749, Boscovitch published a comprehensive

analysis of tornadoes [10]. Kant in 1755 proposed that the sun and planets devel-

oped out of a rotating gaseous cloud.

The foundation of fluid mechanics is attributed to Euler [11]. He derived the

equations of motion for an inviscid fluid. He used a mathematical term that later

was identified as the “vorticity vector.” This led to the development of the equations

of motion for viscous fluids – known as the Navier–Stokes equations [12]. The

analytical treatment of vortex motion started with Herman von Helmholtz’s classic
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paper “On Integrals of the Hydrodynamic Equations Corresponding to Vortex

Motion” in 1858. Kelvin in 1869 demonstrated the necessity of Helmholtz’s

theorems for the existence of vortex motions and developed a circulation theorem

named after him. These works formed the basis for the modern vortex theory. They

also led to the extension of the vortex concept into other areas of physics.

Based on the argument that magnetic fields are rotatory, Maxwell in 1861 used

the vortex model in his electromagnetic theory. The equivalence of electric and

magnetic fields was inherent in this theory and was pointed out by Boltzmann in

1891.During the latter half of the nineteenth century, LordKelvin developed a theory

of the properties of atoms and molecules based on vortex rings [13–15]. However,

vortices in nature are unstable and decay and these propertieswere incompatiblewith

the atomic model. Although the attempt to interpret the structure of the physical

world in terms of a mechanical vortex model failed, the vortex concept and its

applications in classical mechanics, fluid, and aerodynamics, and now in the fields

of superfluid physics and superconductivity, have been very successful.

1.1.2 The Twentieth Century

The vortex theorems ofHelmholtz and LordKelvinwere further developed byCrocco

(1937), Ertel (1942), and Vazsonyi (1945) – see [16]. The Taylor–Proudman theorem

has made an important contribution to the analysis of rotating fluid systems [17].

Benard, von Karman, Taylor, and Gortler have identified various vortex

configurations, all connected with the development of flow instability. For example,

Taylor–Gortler vortices develop in curved flow (over a concave plate) and involve a

conversion from two-dimensional disturbances into a three-dimensional configuration

[18]. The onset of flow instability is the prelude to transition to turbulence and early

research on turbulence is identified with the work of Boussinesq, Taylor, Prandtl,

Heisenberg, and Reynolds [19, 20].

The dynamics of turbulent flow is based on the hypothesis that the Navier–Stokes

equations are valid for turbulent flow. But, themechanics, or structure, of turbulence
is a statisticalmechanics. Turbulent boundary layers are complicated by the fact that

their structure is neither homogeneous nor isotropic. Little progress has been made

to date on the theory of nonisotropic turbulence. Considerable progress has been

made, however, in the study of at least locally isotropic turbulence. This has been

facilitated by the use of computational fluid dynamics (CFD).

In 1941, a general theory of locally isotropic turbulence was formulated by

Kolmogorov which predicted a number of laws governing turbulent flow for large

Reynolds numbers. The fundamental physical concepts which form the basis of

Kolmogorov’s theory can be summarized as follows:

1. A turbulent flow at large Reynolds numbers is considered to be the result of

the superposing of disturbances (vortices or eddies) of all possible sizes. Only the

very largest of these vortices are due directly to the instability of the mean flow.
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2. Themotion of the large vortices is unstable and this produces smaller (secondary)

vortices: the latter produce third-order vortices and so on.

3. The motion of the smallest vortices is “laminar” and depends basically on the

molecular viscosity.

4. The motion of all but the largest vortices can be assumed to be homogeneous and

isotropic.

5. The motion of all vortices whose scales are much smaller than the local structure
of the flow must be subject to general statistical laws which do not depend on the

geometry of the flow or on the properties of the mean flow.

The establishment of these general statistical laws constitutes the theory of local

isotropic turbulence.

In aero- and hydro-dynamics, Lanchester made a unique contribution by

suggesting that a vortex acting as an aerofoil is the cause of lift.

The bound vortex theory of lift has been developed by many scientists, but of

special note are the names of Prandtl et al. [21]. Analytical design of airplanes,

propellers, and turbines rapidly followed.

In meteorology, theoretical weather prediction is based on Bjerknes circulation

theorem and Rossby’s solution of the vorticity transport equation. The fact that to

understand global atmospheric circulation it is essential to know the occurrence and

migration of cyclonic and anticyclonic air masses in mid-latitudes, which was

discovered by Jeffreys in 1926 [9]. The great contribution of Rotunno in the

1980s to tornado dynamics must also be noted [22]. In 1908, Benard related the

vortex concept to sound and this led to the theory of aerodynamic sound generation

based on vortical motion in an unsteady flow. Lighthill [23] and Powell [24] have

been pioneers in this area, and Sarpkaya [25] in the closely related area of vortex-

induced vibration of bodies.

In astronomy and astrophysical dynamics, the vortex phenomenon is common.

Hubble identified spiral nebulae as galaxies in the mid-1920s, and in 1943

Weizsacher developed a vortex theory for the generation of the planetary system.

In recent decades, studies of exotic stars have been made. Neutron stars with

enormously high angular velocities have been postulated and discovered, as well

as rotating black holes whose existence and characteristics require the general theory

of relativity and quantum mechanics [26]. Magnificent images of the atmospheric

vortex arrays from Jupiter have been transmitted back to Earth by Voyagers 1 and 2

[27, 28]. Many unsolved vortex problems remain, such as the motion of planetary

atmospheres and convection flows inside stars [29, 30].

With the development of ultra-fast computers with great storage capacity, the

ease of programming, and associated graphics capability, it has become possible to

solve numerically (even in real time) the basic equations of fluid motion for

nontrivial problems. The discipline of computational fluid dynamics (CFD) is

now recognized in its own right [31, 32]. For example, numerical solution of the

vorticity transport equation was the key to understanding unsteady flows [33].

Finite element, finite difference methods, and extensive meshes with moving
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frames of reference have facilitated the design of aerofoils, engine intakes, and

nacelles in turbulent hypersonic flow.

When the underlying discretization is of the vorticity field, rather than the

velocity field, the numerical method for approximating the solution of the incom-

pressible Euler form of the Navier–Stokes equations is known as the vortex method

[34, 35]. Leonard [36, 37] has studied a 3D version of the vortex-in-cell method and

computed 3D flows.

Advances in the fields of turbulence and unionized and ionized compressible and

incompressible flow – all necessitating a statistical mechanical approach – will

probably be “rate controlled” by advances in CFD techniques.

In the 1940s, it was found that the peculiar, or superfluid, properties of helium 2

(fountain effect, second sound, and frictionless flow) could be largely accounted

for on the basis of the phenomenological two-fluid theory of Tisza [38] and

Landau [39]. In 1954, London [40] proposed that below the so-called “l-point”
(a discontinuity in the specific heat versus temperature curve), helium is a quantum

fluid whose essential feature is the macroscopic occupation of a single quantum

state. Excitations in liquid helium were identified as phonons (similar to those in

solids) and rotons, which correspond to possible rotational modes of motion in the

liquid. It was Onsager in 1950 [41] who showed that there was a possible wave

function for the liquid, which would produce a motion analogous to classical vortex

motion, and suggested the possible existence of quantized vortices in helium 2.

Feynmann [42] in 1955 developed this conjecture into a theory which has been

successful in explaining many of the peculiar phenomena observed in the super-

fluid. Experimental and theoretical studies of the superfluid state continue today,

with the fascinating extension of the quantized vortex to the superconducting state

and the interaction with, and generation of, magnetic fields [43, 44]. Moreover, as

vortices are described by solutions of field equations, the topology of vortices is

now relevant to elementary particle physics [45].

Vortex physics is now well developed, from the microscopic, or atomic, world to

the astronomical world. The vortex concept spans an enormous size range from the

truly microscopic to the truly macroscopic (10�8–1018 cm – a scale factor of 1026!).

The significance of the fact that vortex physics spans this enormous range,

unchanged apart from the quantum restriction at the microscopic level, remains to

be elucidated.

1.2 Kinematics

1.2.1 Definition of a Vortex

A vortex is defined as the motion of fluid particles around a central spin axis.

The individual particle paths may be circular, or not – see Fig. 1.1. If the paths

are the same in every plane normal to the axis of rotation, one has a cylindrical
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Fig. 1.1

Fig. 1.2

Fig. 1.3
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vortex – see Fig. 1.2. Many natural vortices have pathlines that are not perpendicu-

lar to the axis of rotation, but are oblique to it. A particular case is the spiral vortex,

illustrated in Fig. 1.3. Rather being based on pathlines, the flow pattern at a point in
space may be used to define the vortex. This is the basis of the Cauchy and Stokes

definition [46]. They called the angular velocity of a fluid at a point in space

“vorticity” or spin. Thus, vortex motion involves a basic mode of rotation, along

with translational and deformational motion.

Other terms for vortex, such as eddy, circulation, spiral, whirl, and cyclone, are

used and differ only in their physical, geophysical, or engineering meaning.

All motion of a fluid within a finite space surrounded by a solid boundary must

result in rotation. This follows from the conservation ofmatter. Such rotationalmotion

is also possible in an infinite space, given that the fluid far from the source of the

motion is at rest. As mentioned earlier, the angular velocity about a point is spin.

Galaxies and virtually zero mass particles all spin. Spin is governed by the conserva-

tion of angular momentum – a fact that is fundamental to many analyses in physics. In

the atmosphere, in space, and in the ocean, if a specific volume of fluid that is rotating

is compacted, the rate of rotation must increase to conserve angular momentum.

It must be noted that the presence of vorticity, or spin, is basic to any vortex, but

one can have vorticity and no vortex, as in the shear flow illustrated in Fig. 1.4.

1.2.2 Vorticity and Circulation

Stokes (1845) showed for viscous fluids and vonHelmholtz for ideal fluids that the

motion of deformable bodies, such as fluids, can be broken down into a sum of a

translation, a rotation, and a strain. The strain may be further divided into a pure

linear strain and a pure shearing (angular) strain.

Fig. 1.4
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In fluid media, the parameter of prime interest is the rate of deformation, or

velocity of the fluid. In vector notation, the velocity at a point x is given by

v ¼ v0 þ ðr� r0Þxvþ ðr� r0Þ: (1.1)

The first term of (1.1), u0, v0, w0, is a translatory contribution or a displacement

rate.

The second term, which can be written indicially as

dvðqÞi ¼ � 1

2

� �
eijkrjok: (1.2)

is the antisymmetric contribution to the change in velocity and

2o1 ¼ @v2
@r2

� @v2
@r1

2o2 ¼ @v1
@r3

� @v3
@r1

2o3 ¼ @v2
@r1

� @v1
@r2

:

(1.3)

In rectangular Cartesian coordinates

o ¼ 1

2

� �
@w

@y
� @v

@z

� �
iþ @u

@z
� @w

@x

� �
jþ @v

@x
� @u

@y

� �
k

� �
: (1.4)

dv(q) is the velocity produced at position r relative to a point about which there is
rigid-body rotation with angular velocity o where

z ¼ 2o ¼ r� v: (1.5)

The vector z is called the local vorticity (or spin) of the fluid.

The third component of (1.1) involves the deformation, or strain, of the fluid,

both linear (extensional) and shear. The strain is described in terms of the strain rate

tensor T ¼ eij defined by the square array

T ¼
exx exy exz

eyx eyy eyz

ezx ezy ezz

¼

@u
@x

1
2

@u
@y þ @v

@x

� �
1
2

@u
@z þ @w

@x

� 	
1
2

@v
@x þ @u

@y

� �
@v
@y

1
2

@v
@z þ @w

@y

� �
1
2

@w
@x þ @u

@z

� 	
1
2

@w
@y þ @v

@z

� �
@w
@z

:

(1.6)
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The sum of the diagonal terms (extensional strain rates), or the trace of the

tensor, is the divergence of the velocity, or the fluid dilation y:

y ¼ e1 þ e2 þ e3 ¼ @u

@x
þ @v

@y
þ @w

@z
¼ r:v: (1.7)

Kelvin in 1869 introduced the concept of circulation. The circulation around any

closed curve (or circuit) in the fluid is defined by the integral

G ¼
Z
c

v:dl ¼
Z

vidli: (1.8)

Now

z ¼ r� o: (1.9)

z is a function of position in the fluid and represents, at each point, twice the

angular velocity of a fluid element. If zn is the component of vorticity normal to the

surface S bounded by the circuit C, then

G ¼
Z
s

zndS; (1.10)

and

zn ¼ n�(=� v) where n is the unit normal vector. The relation between the

circulation and vorticity is thus given by

G ¼
Z
s

ðn:zÞdS ¼ 2

Z
s

ðn:vÞdS; (1.11)

where n:v ¼ ð1=2ÞdG/dS
When the fluid flow is such that the fluid elements do not rotate (z ¼ 0), the

circulation will be zero for any closed circuit in the flow region.

It must be noted that while vorticity is a vector quantity and deals with the spin of

a fluid particle, circulation is a scalar quantity and deals with fluid rotation over a

finite area of fluid. The tornado phenomenon can be used to contrast these two

measures of rotation. Consider a tornado with no, or negligible, vertical velocity, a

core of radius a, and rotating at a constant angular velocity o. Within the core, the

velocity is given by

vc ¼ orðr<aÞ:

Outside the core, where r > a, we have a free vortex and vo ¼ k/r – see (1.12)

below – where k is the vortex strength.
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In (1.5) above, the components of vorticity are

zx ¼
@w

@y
� @v

@z
;

zy ¼
@u

@z
� @w

@x
;

zz ¼
@v

@x
� @u

@y
:

Outside of the core of the tornado, there is no vorticity and all these components

will be zero. By assuming continuity of velocity at r ¼ a, the vortex strength, k, can
be evaluated:

vc ¼ v0 at r ¼ a and oa ¼ k

a
;

therefore

k ¼ oa2:

Inside the core

z ¼ r� v ¼ r� ðv� rÞ:

Now

v ¼ 0iþ 0jþ ok;

r ¼ xiþ yjþ 0k;

;vxr ¼ �yiþ xj;

and

r� v ¼ 2o ¼ z:

The circulation within the core is given by

G ¼ $v:dl ¼ $2pvcrdy ¼ $2pðorÞrdy ¼ 2por2:

Thus, within the core the circulation is dependent on the value of r, increasing
with distance from the center of the vortex. Now, the circulation is equal to the

product of the vorticity and the area, and, as the vorticity is constant in the core,

10 1 The Vortex



the circulation is determined solely by the area (or the radius). The circulation can

be regarded as the product of the vorticity and the area, and so as z ¼ 2o, the
circulation outside the core is just

G ¼ 2poa2:

Since both a and o are constant, the circulation remains constant and indepen-

dent of the distance from the center of the vortex. The entire contribution to

circulation in the region of the free vortex originates in the core of the tornado.

1.2.3 Plane Circular Vortex

This vortex involves solid-body rotation, with the velocity of the fluid particles

increasing linearly with distance from the center of rotation – see Fig. 1.5. A uniform

translational motion can be superposed on the solid-body rotation and then the fluid

particles will travel along helical paths – see Fig. 1.6.

By contrast, consider a circular rod rotating in a fluid at constant angular velocity –

see Fig. 1.7. The fluid velocity is a maximum and equal to the angular velocity of

the rod at the rod’s surface (no-slip condition). With increasing distance from the

rod, the fluid velocity decreases linearly. Such a fluid is called a “potential vortex”

and has no vorticity except at the center of rotation. The potential vortex, in other

words, has zero vorticity outside of the core.

When the fluid velocity depends only on the distance from the center of rotation,

r, in cylindrical coordinates (ur, uy, uz) then observations (as first noted by Leonardo
da Vinci) show that

Vr ¼ constant, (1.12)

a

Distance from
the axis

b

Velocity

Fig. 1.5
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or

uy ¼ constant

r
:

The flow field defined by (1.12) is called the free vortex. The constant is called

the vortex strength. It must be noted that the velocity approaches infinity at r ¼ 0 –

a singularity exists in the flow field. This led to the necessity for the vortex core,

where solid-body rotation occurs and the velocity is zero at the center of rotation

(see Fig. 1.7). The free vortex is a good approximation to the velocity in a bathtub

vortex, a tornado, or a hurricane.

For solid-body rotation then, the flow equations are

V

r
¼ constant ¼ dy

dt
; (1.13)

where dy/dt is the angular rotation rate – see Fig. 1.8. This flow is called a forced
vortex and occurs in the steady flow of the fluid inside a cylinder rotating at a

constant rate. The frictional force from the rotating bottom slowly transmits through

the fluid till it rotates as a solid body.

In a similar way, one component of the Earth’s spin produces an effective rotation

of the Earth’s surface and this forces a vortex flow from the surface into the atmo-

sphere. The rotation is one revolution every 24 h at the poles and zero at the equator.

Fig. 1.6
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This is the source of the rotation of cyclones, hurricanes, and tornados. The

component of the Earth’s spin changes at the equator, and so the vortex rotation

is counterclockwise in the Northern Hemisphere and clockwise in the Southern

Hemisphere.

It is obvious that the term “vortex” can be associated with quite different

velocity distributions.

a b

Fig. 1.8

Distance from
the axis

Velocity

Fig. 1.7
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1.2.4 Rankine Vortex

The combination of the rotational core and surrounding irrotational (“spin-less”)

region is known as the Rankine combined vortex – the overall velocity distribution

is shown in Fig. 1.9. The effect of viscosity is to cause the vorticity to diffuse

outward and the core to increase in size. The discontinuity in the slope of the

velocity at r ¼ a is also smoothed out. While the diameter of the core of the vortex

can be determined exactly, the definition of the diameter of the vortex is arbitrary –

for example, it could be defined as the distance from the core center to the point at

which the velocity has decreased to, say, 10% of the maximum velocity.

If the radius of the vortex core reduces to a point, one gets a “vortex line” in

which the whole flow field is free of spin (or vorticity) except at the axis of rotation

where it is infinite, but the circulation remains finite. A bundle of vortex lines forms

a “vortex tube.”

Since there are no shear forces in solid-body rotation, no energy is required to

maintain the motion. In contrast, the rotating rod must continually provide energy

to the potential vortex to allow for the loss of energy by shearing of the fluid

particles. If solid-body rotation were to occur in a vacuum, once the rotation is

started no further input of energy is required to maintain it.

1.2.4.1 Pressure Distribution in the Combined Vortex

For a rectilinear vortex, the tangential velocity in the irrotational region outside the
core, and based on (1.8), is given by

qy ¼ G
2pr

; (1.14)

Velocity

Distance from
the axis

a b
Vorticity

Distance from
the axis

Fig. 1.9
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where qy ¼ (u2 + w2)1/2 and u,w are the x and y components of velocity, respectively,

G is the vortex strength, and r is the radial distance from the center of the core.

Using this in Bernouilli’s equation, one obtains

pþ r
2

� �
q2 þ rgh ¼ pþ rghþ r

2

� � G2

4p2r2

� �
¼ P; (1.15)

where P is Bernouilli’s constant.

Taking conditions far from the core as a reference (r ¼ 1) designated by the

subscript 0

ðpþ rghÞ � ðpþ rghÞ0 ¼ �ðr=8p2ÞG2

r2
: (1.16)

The pressure varies as the inverse radius squared.

In the rotational core, as vorticity exists, then the Bernouilli’s constant will vary

with r. The more basic Euler equation must now be resorted to. From the Euler

equations, the acceleration component normal to the streamlines is given by

an ¼ @q

@t
þ q2

n
¼ �ð1=rÞ@

@nðpþ rghÞ : (1.17)

For current streamlines (as in a vortex core), n ¼ r, and for steady flow,

therefore,

@ðpþ rghÞ
@r

¼ � rq2y
r

: (1.18)

Now

qy ¼ ðG=2paÞr
a

;

and so

@ðpþ rghÞ
@r

¼ rq2y
r

¼ rrG2

4p2a4
; (1.19)

where a is the radius of the core.

Integration of this equation gives the pressure relation

pþ rgh ¼ r
2

� � G2

4p2a2

� �
r

a

� �2

þ C: (1.20)
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The pressure rises as the square of the radius. The constant C is evaluated at

r ¼ a, so that

C ¼ ðpþ rghÞ0 �
rG2

4p2a2
:

Therefore,

ðpþ rghÞ � ðpþ rghÞ0 ¼
r
2

� � G2

4p2a2

� �
r

a

� �2

� 2

� �
: (1.21)

The pressure variation in the core of the combined, or Rankine, vortex, given by

(1.21) and the pressure variation in the surrounding irrotational region, is sketched

in Fig. 1.10.

The pressure at the center of a water vortex can decrease to such an extent that

the dissolved gases in the water separate so that the water evaporates even at room

temperature. This results in gas or air cavities around the rotation axis – cavitation

occurs (a hollow core forms).

1.2.5 Curved Vortex Lines, Tubes, and Vortex Rings

In Cartesian coordinates, the three components of vorticity are

ox ¼ @w

@y
� @v

@z
oy ¼ @u

@z
� @w

@x
oz ¼ @v

@x
� @u

@y
; (1.22)

and

@ox

@x
¼ @2w

@y@x
� @2v

@z@x
; (1.23)

@oy

@y
¼ @2u

@z@y
� @2w

@x@y
; (1.24)

Fig. 1.10
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@oz

@z
¼ @2v

@x@z
� @2u

@y@z
: (1.25)

As the two components on the right-hand side of each of these equations are equal

=:v ¼ @ox

@x
þ @oy

@y
þ @oz

@z
¼ 0: (1.26)

Thus, vorticity components are related in the same way as the velocity components

in incompressible flow. Integrating (1.26) over a finite volume and applying the

divergence theorem: Z
V

r:odV ¼ 0;

and hence Z
S

v:ndS ¼ 0: (1.27)

where S is the surface bounding V and n is the outward normal to S. The vortex line
is defined as a line that is everywhere tangent to the local vorticity vector (cf. the

streamline). A vortex tube is the set of vortex lines passing through a simply

connected surface in space. Figure 1.11 sketches a vortex line and a vortex tube.

Obviously, v.n ¼ 0 on the surface S3 of the tube. Applying (1.27) to the tube, thenZ
S1

v:ndSþ
Z

S2

v:ndS ¼ 0: (1.28)

From the definition of circulation, the first integral in (1.28) is – G1 and the second is

G2 (the outward normals are in opposite directions), so that (1.28) becomes

G1 ¼ G2: (1.29)

Vortex line One vortex line

S3

S2

S1 Vortex tube

Fig. 1.11
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Thus, the circulation around a vortex tube is constant (Helmholtz vortex law I).

This law dictates that a vortex tube can never terminate in a fluid. Vortex tubes are

thus constrained to either forming loops within a fluid or terminating at a solid

boundary or fluid–fluid interface. Vortex lines which curve have a velocity compo-

nent perpendicular to the plane of curvature.

1.2.5.1 Biot–Savart Law

The fluid velocity induced by an arbitrary distribution of vorticity is

qV ¼ 1

4p

� �Z
V

r� zðx0; y0; z0Þ
r

� �
dV0

� 1

4p

� �Z
V

zðx0; y0; z0Þ � r

r3

h i
dV0;

(1.30)

and
R
V( )dV

0 is a volume integral (dV0 ¼ dx0 dy0 dz0) throughout the volume in which

the vorticity is distributed. The local induced velocity at a point P due to an element

zds is mutually perpendicular to r and z in the direction determined by the right-hand

rule by rotating z into r. The velocity at P is obtained by integrating around the

vortex filament. Thus, for the vorticity distributed over a closed curve, see Fig. 1.12.

qV ¼ 1

4p

� �Z
S

zðx0; y0; z0Þ � r

r3

� �
ds: (1.31)

This is called the Biot–Savart law and was deduced experimentally by Biot and

Savart in 1820 as the magnetic vector induced by a steady electric current flowing

in a closed conductor.

Under the conditions that,

r� qV ¼ v;

r� qV ¼ 0 dilation is zero everywhereð Þ;
w� n is zero at each point of the boundary;

qV ¼ �1

4p

� �Z
r� o
r3

h i
dV; (1.32)

(see [47], McCormack and Crane, p. 138).

ds

y r

Fig. 1.12
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This equation will determine the velocity field associated with the line singular-

ity formed by a vortex tube contracting on to a curve with the vortex strength

remaining constant and equal to (say) G. Now, if ds is an elemental vector length of

the line vortex lying in the volume dV, then

$dVz dV ¼ Gds;

where z is the local vorticity vector and

qV ¼ �G
4p

� �Z
r� dsðrÞ

r3
: (1.33)

The corresponding Biot–Savart law in electromagnetic theory for a steady

current passing around a closed conducting loop is

H ¼ I

Z
r� dsðrÞ=r3:

The field strength H is analogous to the fluid velocity and the current to the

vortex strength.

Consider the horseshoe vortex of circulation G, representing a wing of finite

span, with the bound vortex line A–B of length s, and two semi-infinite tip vortices

emanating from A and B (Fig. 1.13). The velocity fields at a point x, y, z (see [48] –
von Karman and Burgers) are

Bound vortex: (qx)B; (qy)B ¼ 0; (qz)B
Tip vortices: (qx)T ¼ 0; (qy)T; (qz)T and

qx ¼ ðqxÞB;
qy ¼ ðqyÞT;
qz ¼ ðqzÞB þ ðqzÞT;

(1.34)

where

ðqxÞB ¼ G
4 p

� �
z

x2þz2

� �
s=2� yð Þ

rðx;�y; zÞ
� �

þ ðs=2þ yÞ
rðx; y; zÞ

� �
 �
;

z
y

s/2

s/2
A

V
x

B

Fig. 1.13
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plus three similar expressions for the components (qy)T, (qz)B, and (qz)T respectively
and rðx; y; zÞ ¼ ðx2 þ ðs=2þ yÞ2 þ z2Þ1=2:

The horseshoe vortex is the simplest model for a wing of finite span. The

velocity field at the bound vortex position is particularly of interest. Here, where

x ¼ z ¼ 0, the bound vortex makes no contribution, and the trailing vortices

produce a vertical velocity (qz)T called “downwash”:

qz ¼ �G
4p

� �
1

ðs=2þ yÞ
� �

þ 1

ðs=2� yÞ
� �
 �

: (1.35)

If the circulation varies with y – the more general case – then the downwash at a

point y of a span section dy located at � is

dqz ¼ dGð�Þ
4pðy� �Þ ; (1.36)

and the downwash of a wing with span s is

qzðyÞ ¼ 1

4p

� �Z þs=2

�s=2

1

y� �

� �
dG
d�

� �
d�: (1.37)

It is worth noting at this point that lift L and circulation G are connected by the

Kutta–Joukowsky expression for a wing section dy:

dL ¼ rqGðyÞdy; (1.38)

where q is the induced velocity of the wing section.

The G distribution over the wing is a function of

(a) Wing geometry

(b) Angle of attack (angle between the chord and the incident fluid velocity vector)

The lifting-line model can be made more realistic by extending it to a nonzero

chord (Fig. 1.14a) or by the use of a “vortex lattice” method in which cells

consisting of vortex lines approximate the wing and the trailing vortices

(Fig. 1.14b). Finally, the interaction of the long vortex wakes behind airplanes

can be studied by a vortex tube model of the trailing vortices (see [48]) – Fig. 1.14c.

1.2.5.2 Vortex Rings

Vortex ring is the name given to a vortex tube which forms a closed loop.

Another curved vortex tube is the helical vortex. Figure 1.15 is a sketch of both

of these vortices. They induce a velocity parallel to the ring axis and the helix axis,

respectively, and travel through space at a constant speed. The vortex ring is the
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a b c

d e

Fig. 1.14

a

b

Fig. 1.15
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more commonly observed and will be dealt with here. Smoke rings are perhaps the

most frequently observed form and spectacular vortex rings are seen in explosions.

Also impressive is the vortex ring formed in water. The ring is formed by an

impulsive pressure applied to an orifice. By injecting a dye into the pressure

chamber, a colored vortex ring emerges from the orifice and can be easily seen

moving rapidly through the water chamber. It dissipates relatively slowly, as the

surrounding fluid is viscous, and so the forward velocity decreases and the vortex

eventually becomes unstable and breaks up.

Vortex rings can be rendered unstable by certain disturbances [46, 49] and others

will result in oscillation. The oscillation of an elliptic vortex ring is sketched in

Fig. 1.16. Oscillations, or pulsations, occur both in the plane of the ring and

perpendicular to it. The motion is a result of repeated “catch-up” as the part of

a

b

Fig. 1.16
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the ellipse with the greater curvature travels faster than the less curved part. In

moving faster, the curvature diminishes and that part slows down and is passed out

by the now more curved originally slower part. The cycle then repeats. This

observation prompted Thompson (1867) to put forward the theory of vortex ring

atoms, which described spectral lines in terms of the different modes of oscillation

of vortex rings. Even though the theory was later discarded, it led to a great deal of

analysis of vortex rings.

1.2.6 Translational Velocity of the Inviscid Vortex Ring

Consider a circular vortex filament, every element of which is rotating with angular

velocity, o, about the tangent to the circle of which the element forms a part.

Figure 1.17 is a sketch of the cylindrical coordinate system and notation to be used.

The z-axis passes through the center of the circle and is perpendicular to the plane of
the circle. When the flow pattern is identical in any of the planes passing through

the axis z, the flow system is axisymmetric and any point in the field is described by

the coordinates(r, z). The equation of the streamlines is then

R

roo

= v d l

Fig. 1.17
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rðwdr � udzÞ ¼ 0; (1.39)

where u is the axial component of fluid velocity and w is the radial component.

The equation of continuity is

dðruÞ
dr

þ rdw

dz
¼ 0: (1.40)

In terms of the Stokes stream function c then

w ¼ ð1=rÞdc
dr

; u ¼ �ð1=rÞdc
dz

: (1.41)

The vorticity is

2o ¼ @u

@z
� @w

@r
: (1.42)

Substituting for u and w from (1.32), one obtains an equation for c and o:

@2c
@z2

þ @2c
@r2

� 1

r

� �
@c
@r

þ 2ro ¼ 0: (1.43)

A circular vortex ring is supposed to comprise a large number of circular vortex

filaments. At all points in the core of the ring (1.43) holds, while at exterior points,

c satisfies the equation

@2c0

@z2
þ @2c0

@r2
� 1

r

� �
@c0

@r
¼ 0: (1.44)

Let c ¼ wr, and then (1.43) and (1.44) become

@2w
@z2

þ @2w
@r2

þ 1

r

� �
@w
@r

� w
r2

þ 2o ¼ 0; (1.45)

and

@2w0

@z2
þ @2w0

@r2
þ 1

r

� �
@w0

@r
� w0

r2
¼ 0: (1.46)

Now G ¼ pa2o and by using elliptic integrals, defining a modulus as

k ¼ 2 rr0ð Þ1=2

z2 þ ðr þ r0Þ2
h i1=2 ; (1.47)
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and k0 ¼ ð1� k2Þ1=2 ¼ a=2r0 at the surface of the ring, where r0 is the radius of the
ring and a is the core radius, the author has developed expressions for the radial and
axial velocities, u and w, respectively [47]:

u ¼ G
p

� �
2r0
a

� �
� 3a

4r0ðL� 3=2Þ

 �

z� z0

2r0a
: (1.48)

When z ¼ z0, then u ¼ 0 and the radius of the ring remains constant:

w ¼ �G
p

2r0
a

� �
� 3a

4r0

� �
L

3=2

� �
 �
2r0ðr � r0Þ � a2

4r20a
þ G
2pr0

ðL� 2Þ: (1.49)

To obtain the velocity of the ring through the surrounding fluid one must put

r ¼ r0 and then

w ¼ G
2pr0

ðL� 1Þ ¼ G
2pr0

� �
log

8r0
a

� �
� 1

� �
: (1.50)

Thus, the ring will move forward in the direction of the cyclic motion through its

aperture, with the constant velocity as given by (1.50). A simple calculation shows

that the velocity produced by the vortex at the center of the ring is

G
r0

¼ pa2o
r0

:

Hence, an isolated vortex ring in an unbounded ideal fluid will move without

change of size, in a direction perpendicular to its plane with a constant velocity.

1.2.7 Velocity of a Viscous Vortex Ring

In reality, vortex rings are viscous in nature. One can then define a Reynolds

number (Re) which indicates the importance of the fluid viscosity (n). Re can be

defined in several ways. In experimentation it is convenient to use parameters

which are easy to measure and so

Re¼WtD

n
; (1.51)

where D is the ring’s diameter. Another one is based on the impulse and has been

used in numerical simulation by Stananway et al. [51]:

Re ¼ ½pzðI=rÞ�
nt1=2

: (1.52)
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Real vortex rings do not translate with constant velocity as expected from

inviscid theory, but with a decaying velocity. Two useful asymptotic estimates

for the velocity of a viscous vortex ring have been derived. One applies to vortex

rings with thin cores (a/R ! 0) and is due to Saffman [50]. The other is due

to Stanaway et al. [51] and applies to any viscous vortex ring at large times

(t ! 1). By assuming a Gaussian vorticity distribution in the core, Saffman

derived an expression for the propagation speed (Wt) of a viscous vortex ring

with a thin core:

Wt ¼ ðGð0Þ=4pRÞflog 8R=ðp4ntÞ � 0:588þ Oðpðnt=R2Þlogðnt=R2ÞÞg: (1.53)

1.2.8 Hydrodynamic Impulse and Vortex Ring Generation

Consider the fluid motion produced by impulsive forces. These are forces which act

for very short times and so the acceleration terms ∂u/∂t, etc. are much larger than

the inertial terms u∂u/∂x, etc. The equations of motion for a perfect fluid now

become

@u

@t
¼ � 1

r

� �
@p

@x
þ fx

r
;

@v

@t
¼ � 1

r

� �
@p

@y
þ fy

r
;

@w

@t
¼ � 1

r

� �
@p

@z
þ fz

r
; (1.54)

where fx, fy, and fz are the components of the impulsive force.

With the equation of continuity, there are then four linear equations in the four

unknowns u, v, w, and p. The pressure can be eliminated from the equations by

cross-differentiation. Now, the x component of vorticity is

zx ¼ 2ox ¼ 2
@w

@y
� @v

@z

� �
;

with similar expressions for the y and z components, and after some manipulation

the following equation emerges

@zx
@t

¼ 1

r

� �
@fz
@y

� @fy
@z

� �
; (1.55)

and two similar equations in zy and zz [47].
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Now consider the space lying between the planes z ¼ 0 and z ¼ h, bounded by a
cylindrical surface of radius a, with its axis parallel to the z-axis (Fig. 1.18). Outside
this region the external forces are taken to be zero, and inside the region they are

directed in the negative direction. The force is constant across the region, but falls

rapidly to zero at the cylindrical surface.

As fz is the only force component acting in this case (1.55) reduce to

@zx
@t

¼ 1

r

� �
@fz
@y

;
@zy
@t

¼ � 1

r

� �
@fz
@x

;
@zz
@t

¼ 0: (1.56)

Since fz varies only near the cylindrical surface, it is only in this region that

vorticity is produced. If the motion starts from rest, and integrating (1.56) with

respect to time, then

zx ¼
1

r

� �
@Iz
@y

; zy ¼ � 1

r

� �
@Iz
@x

; zz ¼ 0; (1.57)

where Iz is the impulse (time integral) per unit volume of the force fz. It is seen that

the system of vortex lines generated in this way will consist of circles, with planes

parallel to the xy plane and axes along the z direction. If the height h is much smaller

than the circle radius R, then it is sufficient to combine these vortex lines into one

single circular vortex lying in the xy plane and of radius R.
Figure 1.19 shows the section of the vortex in the xz plane, with circulation of

fluid about it. The hatched region is that where fz falls to zero.
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The total strength G of the vortex is obtained by integrating zy over this region.
Therefore,

G ¼ $$dxdyzy ¼ � 1

r
$dz$dx

@Iz
@x

¼ 1

r
$Izdz: (1.58)

Since Iz is independent of z between the planes z ¼ 0 and z ¼ h,

G ¼ Izh

r
: (1.59)

When h is very small, Izh is the intensity per unit area of the impulse of the

external forces (or the impulse of the pressure):

;G ¼ I

r
: (1.60)

A continuous force can be regarded as a sequence of impulses – each generating

a vortex ring. These impulses move off from the region of formation with the fluid.

In the limit of an infinite number of pulses, the rings merge into a continuous sheet

of vorticity. This is illustrated in Fig. 1.20. The cylindrical surface becomes a vortex

sheet. As shown previously, the strength G of a vortex sheet is determined by the

difference of velocity on either side of the sheet and equals the circulation around a

strip of the sheet having unit length in the direction of the cylinder axis. In the case

in which the fluid is moving under a constant pressure P at a velocity V, the
circulation generated in unit time is VG and so

VG ¼ P

r
: (1.61)
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Vortex sheets are unstable and tend to roll up into a sequence of discrete vortices.

This phenomenon will be dealt with later.

1.2.9 The Spectral Range of Vortex Size

The enormous range of vortex size has already been alluded to. At one end of the

range, there are the quantized vortices in superfluid liquid helium. At the other end,

there are the enormous rotational galactic systems. They also vary in morphology;

rings, helices, spirals, swirls, etc. The following table [52] gives some idea of the

great variety and is ordered in sequence of size:

Quantized liquid helium 10�8 cm

Small turbulent eddy 0.1 cm

Insect generated 0.1–10 cm

Dust whirls and whirlpools 1–10 m

Volcanic vortex rings and waterspouts 100–1,000 m

Convection clouds, hurricanes, and gulf stream 100–2,000 km

Ocean and atmospheric circulations and earth interior convection cells 2,000–5,000 km

Planetary atmospheres, Saturn rings, and sunspots 5,000–105 km

Interior star rotations Varies with star size

Galaxies Order of light years

Vortices can form in any of the known fluid states of matter – air, water, gas,

plasma, and in molten solids. They can be generated by gradients in temperature,

density, through frictional, electrodynamic, and gravitational forces. As mentioned

earlier, in spite of this great variety in methods of generation, size, morphology,

angular velocity, and kind of medium, they have common characteristics and

structures. In approaching these aspects of the vortex phenomenon, it will be

V
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Fig. 1.20
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necessary to utilize analytical and computational mathematics, but only so far as

they can be used to deal with the physics of the vortex.

1.3 Forces (Lift, Drag, Thrust, and Torque)
on Moving Submerged Bodies Due
to Vortex Formation

The conservation laws and the constitutive equations form the two basic axioms of

fluid dynamics [16]. Conservation laws exist for all forms of matter, all forms of

energy, momentum, and angular momentum. The constitutive equations concern

the properties of matter, whether elastic, rigid, liquid, plastic, or a gas.

A body in a flowing fluid will experience two main forces on it which are

perpendicular to one another – the lift which is perpendicular to the flow direction

and the drag which is parallel to the flow. If not in space, there will also be the

gravitational force in a direction opposite to the lift – see Fig. 1.21.

If the resultant force on the body does not act through the center of gravity of the

body, there will be a torque on the body which will cause the body to rotate.

1.3.1 Aerodynamic Lift and Drag

In the nineteenth century, the challenge of solving the problem of flight – both

powered and unpowered (gliding) – received increasing attention [53, 54]. Consid-

ering a wing or airfoil in a flowing inviscid fluid, and using Bernoulli’s equation,

the pressure on the surface of the wing can be determined from the velocity

distribution adjacent to it. In inviscid flow, there is no boundary layer and integra-

tion of the pressure around the wing yielded the result that the wing experiences

neither drag nor lift! This contradicted all experience – in both gliding and observ-

ing birds. However, in 1894, an Englishman named Lanchester found the solution.
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He suggested that a vortex acting on the wing produced the lift. This is best

understood in terms of the Magnus effect, named after Heinrich Magnus

(1802–1870), a German physicist. Consider the ideal flow about a cylinder as

illustrated in Fig. 1.22a. There is no boundary or separation and symmetry of the

streamlines results in equal pressures fore and aft. The cylinder in ideal cross-flow

experiences no drag. But consider another ideal flow of concentric streamlines –

Fig. 1.22b. Superposing these two flows produces the streamlines shown in

Fig. 1.22c. Now asymmetry appears the flow – streamlines of (a) and (b) flow in

the same direction on top, and in opposite directions on the bottom of the cylinder.

Using Bernoulli’s theorem along with the conservation of volume in incompress-

ible flow shows that there is now low pressure at the top and high pressure below the

cylinder. A net lift force acts on the cylinder at right angles to the flow direction.

Lanchester’s hypothesis was later formulated in mathematical terms by the German

mathematician Wilhelm Kutta and the Russian scientist Nikolai Joukowsky, acting

independently.

They put forward the theory of lift in mathematical terms and quantified the

strength of the circulation about the wing (Fig. 1.23). One notes that the rear

stagnation point moves to the rear of the wing – the trailing edge as it is called.

Very large velocity differences can theoretically arise. It was Kutta who found a

way of correcting this unrealistic mathematical prediction. In order to have a finite

velocity at the trailing edge under some given flight conditions, the strength of the

vortex must be such as to ensure smooth flow at that location (see Fig. 1.24b). This

criterion for smooth flow is known as the Kutta condition.

Although lift is obtained with this model, there is no drag on the body.

Lanchester took care of this, and improved his theory, by assuming a wing of finite

length. At the ends of the wing, two vortices are formed as a result of the unequal

a b

c

Fig. 1.22
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pressures above and below the wing. It is these “tip vortices” at the ends which

produce drag. Together with the bound vortex they form what is called a “horseshoe

vortex.” As per Helmholtz’s first theorem, this vortex must be closed and the

“starting vortex,” which is formed when the plate, or wing, first moves, closes

the vortex ring – see Fig. 1.25. Independent of Lanchester, Prandtl later developed

the hypothesis of wing circulation and the tip vortex [55]. From these beginnings

and the development of boundary-layer theory, the prestigious Gottingen School

formed around Prandtl and was a key center in the development of aerodynamic

theory between World Wars 1 and 2.

The flat plate with a nonzero angle of attack1 does not produce the greatest lift.

In fact, the optimal shape of a wing profile is multi-factorial. Aircraft were

already highly developed by the time realistic mathematical theories of lift were

developed [56]. In fact, the achievement of accurate design of efficient wings has

had to await the opening of the new field of computational fluid dynamics.

1 Defined as the angle between the chord line and the flight direction.
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1.3.2 Analytical Derivation of Lift and Drag on a Cylinder

In terms of circulation and vortices it is possible, and instructive, to derive elegant

solutions to derive expressions for the lift and drag on a cylinder in an ideal fluid.

It is found that the combination of a uniform flow, a doublet and a vortex, can

represent the flow past a cylinder with circulation [48, p. 182]. The stream function

and velocity potential are, respectively,

c ¼ U1 r � R2

r2

� �
sinyþ G

2p

� �
ln r; (1.62)

f ¼ U1 r þ R2

r2

� �
cosy� G

2p

� �
ln r; (1.63)

where r, y are cylindrical coordinates with the origin at the center of the cylinder, R
is the cylinder radius, and G is the strength (circulation) of the vortex. The velocity

components are, therefore,

vy ¼ � @c
@r

¼ �U1 1þ R2

r2

� �
siny� G

2pr
; (1.64)
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vr ¼ 1

r

� �
@c
@y

¼ U1 1� R2

r2

� �
cosy: (1.65)

The radial velocity component, in fact, is not changed by the circulation. At the

surface of the cylinder (r ¼ R),

vy ¼ �2U1siny� G
2pR

: (1.66)

At the stagnation points, vy ¼ 0 and so

sinð�ySÞ ¼ G
4pU1

¼ sinðpþ ySÞ; (1.67)

where G/4pRU1 is less than or equal to zero.

When G¼4pRU1, the two stagnation points coincide at r¼R and y¼�p/2
(see Fig. 1.26). When G is greater than this, the stagnation points move away

from the cylinder surface. This can be shown as follows. The condition for a

stagnation point away from the cylinder is that both velocity components be zero.

This can only be satisfied if y ¼ 3p/2 (as G cannot be negative), and using this

value the values of r at which the stagnation points occur are given by

r ¼ G
4pU1

þ 1

2

� �
G

2pU1

� �2

� 4R2

" #1=2

: (1.68)
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Moreover, the points must lie along the negative y-axis (Fig. 1.27).
For smaller values of G the stagnation points lie on the cylinder, and the position

for any R, G, and U1 is obtained by solving (1.67) for yS (see Fig. 1.28).
At large distances from the cylinder, the velocity and the pressure p1 in the

approaching flow are uniform. The equation for the pressure pS at any point on the

surface of the cylinder is obtained from Bernoulli’s equation:

pS ¼ p1 þ 1

2

� �
rU2

1 � 1

2

� �
rU2

S: (1.69)
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From (1.65) the tangential velocity at the cylinder surface, which is US, is

ðvyÞS ¼ US ¼ �2U1siny� G=2pR:

Using this in (1.69), one obtains

pS ¼ p1 þ 1

2

� �
r U2

1 � 2U1sinyþ G
2pR

� �2
" #

: (1.70)

This pressure is normal to the cylinder surface and results in an elemental force

pSRdy on an elementary area Rdy per unit length of the cylinder. The total lift and

drag forces are, thus,

L ¼ $2p � pSRsinydy; (1.71)

D ¼ $2p � pSRcosydy: (1.72)

Because of the symmetry of the flow pattern about a vertical axis through the

cylinder center, the integral for D is zero, and so irrotational flow theory again

predicts zero drag in this case.

By substituting for pS from (1.70), the lift L per unit length can be determined:

L ¼ rU1G
p

� �
$2psin2ydy ¼ rU1G: (1.73)

This is known as the Kutta–Joukowski theorem. The lift is thus directly propor-

tional to

(a) The fluid density

(b) The stream velocity

(c) The circulation

By use of the mathematics of complex variables and conformal mapping, it is

possible to transform a two-dimensional irrotational flow about a circular cylinder

to a flow about various airfoil shapes. The lift force produced by circulation of fluid

about the cylinder can also be produced by rotation of the cylinder in a fluid stream.

This phenomenon was first observed by the German scientist Magnus in 1852. It is

usually referred to as the Magnus effect. A well-known consequence of the effect is

the curved trajectory of a spinning baseball.

1.3.3 Axial Thrust, Torque, and Helical Vortices

In a world where transportation is of supreme importance, axial thrust is the most

efficient force. Excluding the reactionary force involved in rocket propulsion, the
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most important devices for producing axial thrust are propellers, turbines, and water

screws. Vortex formation is again basic to their kinematics, with helical, hub, and

bound vortices, all playing a part.

For an airplane or ship propeller, the forward thrust is generally horizontally

directed, while for a helicopter the thrust is mainly vertical to counteract gravity.

For the sake of simplicity, the vortex system of the propeller can be represented by a

vortex array consisting of hub, bound, and helical vortices (Fig. 1.29).

The differential force acting at any radius r is, by the Kutta–Joukowsky equation
(1.73) applied locally at the bound vortex,

dF ¼ rUGðrÞ: (1.74)

This force is perpendicular to the resultant velocity U which includes the

induced velocities and the relative axial and tangential components �Uax and

�ro [57]. The thrust is generated by the net tangential velocity and the torque by

the net axial component.

The axial and tangential components are then

dFax ¼ rUGcosbi; (1.75)

dFt ¼ �rUGsinbi: (1.76)

The total thrust and torque for a Z-bladed propeller are derived by integrating,

summing, and changing sign on the force equations to define the thrust and torque

in accordance with current industrial practice.

This results in the following equations:

T ¼ rz
Z R

Rh

UGcosbi �
1

2

� �
cðrÞCD sinbiU

2

� �
dr; (1.77)

Q ¼ rz
Z R

Rh

UG sinbi þ
1

2

� �
cðrÞCDcosbiU

2

� �
dr; (1.78)
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where c(r) is the blade element of chord2, CD is the viscous drag coefficient, R is the

propeller radius, and Rh is the hub radius.

The full development of these equations and how they are used in the design and

analysis of propellers are given in [57]. It should be noted that the z value for the

propeller is as per ITTC notation and not to be confused with, although obviously

related to, the Z used as the argument in the Legendre polynomials which crop up in

propeller hydrodynamic analyses and always defined as

Z ¼ ðx� xjÞ2 þ r2 þ rj2

2rrj
: (1.79)

For a constant value of Z this defines a torus in which the locus of centers is given

by Rc ¼ Zr| and the radius is given by Rr ¼ r|√(Z2 � 1).

1.4 Some Other Kinds of Simple Vortices

1.4.1 Intake and Inlet Vortices

These vortices occur when an intake – usually indicating some kind of pipe opening –

or inlet – usually indicating an aircraft gas turbine engine – operates near the ground

at near-static conditions. Blanchette [58] has designed an experiment which

demonstrates the generation of a vortex stretching from a solid surface into a

pipe intake. One requires a fan to generate an airflow, a vacuum to suck air into

the intake, and a table. When there is no table nearby and the air being sucked into

the intake is not disturbed, an axisymmetric “sink flow” is produced at the

intake tube of the vacuum cleaner – see Fig. 1.30a. When the tabletop is placed

near the intake, the symmetry is destroyed and the axis of symmetry – the dashed

line in Fig. 1.30a – is now bent toward the table – see Fig. 1.30b. When the table is

removed and the fan’s air stream is arranged at an angle to the axis of symmetry, an

intake vortex is created with the axis of symmetry also being the rotation axis – see

Fig. 1.30c. When the table is again placed near the intake, the rotation axis bends

toward the table – Fig. 1.30d. The vortex can be visualized by replacing the table

with water surface. The low pressure at the vortex axis causes the free surface of the

water to bulge out, and the rising air entrains water droplets and creates a miniature

waterspout.

It has been proposed that the cause of the intake, or inlet, vortex is the stretching

of ambient vorticity and its amplification as it is drawn into the intake (or engine

inlet). However, because vortex lines cannot end in a fluid, two vortices must enter

the inlet, with equal and opposite circulation – see Fig. 1.31. Only one vortex is

2 The chord is defined as the distance from the leading edge to the trailing edge.
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observed in practice and so there must be another vortex kinematic mechanism at

work. By experiment and computation, it has been shown [59, 60] that ambient

vortex lines perpendicular to the primary flow and parallel to the ground plane

(these lines are horizontal in the case of an aircraft engine inlet) can evolve into a

pair of counter-rotating vortices, of approximate equal strength, on the inlet face.

However, for an ambient vorticity field consisting of vertical vortex lines, the

situation is different. The vortex lines as they are convected toward the inlet by

the primary flow evolve into a configuration in which the upper parts of the vortex

lines are spread out over the upper part of the inlet, while the lower parts concen-

trate about the stagnation streamline connected with the stagnation point on the

a
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ground plane. Figure 1.32 is based on particle track computations and shows the

concentration of vortex lines in the lower part of the inlet [61]. This concentration

delineates the region of increased circulation per unit area associated with the

observed inlet vortex.

Inlet vortex formation in irrotational flow: the mechanism for inlet vortex

formation described above involved stretching of ambient vertical vortex lines.

A second mechanism occurs when there is a cross-wind and occurs even when the

upstream velocity field is irrotational (no ambient vorticity). One vortex extends

from the ground plane to the lower part of the inlet. A second trailing vortex (larger
than the inlet) is observed to leave from the downstream side of the inlet lip, as

shown in Fig. 1.33 [60]. In the direction of the inlet the rotation of the inlet vortex is

clockwise, and that of the trailing vortex is clockwise when viewed from upstream.

The formation of the trailing vortex correlates with the variation of circulation

along the inlet. Several diameters downstream from the lip of the inlet the velocity

across the inlet will be close to the free stream velocity, U1. The circulation around

the contour C1 at this location – see Fig. 1.34 – will be much less than that

around the contour C2 at the inlet lip [61]. The difference in circulation around
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these two contours implies trailing vorticity between the two locations as indicated

in Fig. 1.34, and the circulation of the trailing vortex is approximately equal and

opposite to that of the inlet vortex.

The pressure field associated with the inlet vortex system results in an asymmet-

ric flow pattern around the front part of the inlet. The separation line extends from

the 12 o’clock position at a downstream location to a 4 o’clock position at the inlet

lip – see Fig. 1.35 [60]. The skew in the separation line is due to the increase in

circulation around the inlet as one moves toward the inlet lip. Vortex lines can leave

or enter the inlet surface viscous layers only along this separation line. Although

there is some analogy between the inlet vortex system and that of a finite wing, the

way in which the vortex lines enter or leave the inlet surface is basically different

from the situation for a finite wing.

1.4.2 Clearance Vortices (Tip Clearance Flows)

Tip clearance flows occur commonly in turbomachinery – for example, between the

rotor blades and the outer casing in compressors and turbines. The pressure
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difference across the blade results in a jet flow through the clearing, which rolls up

to form a clearance vortex. This is illustrated in Fig. 1.36.

The three-dimensional steady clearance flow can be approximated by a two-

dimensional unsteady process. The generation of the tip clearance flow can then be

regarded as a sequence of events in successive cross-flow planes perpendicular to

the blade camber [62]. This is illustrated in Fig. 1.37. A, B, C, and D are the cross-

flow planes, with location (a) at the leading edge and location (d) at the trailing

edge. As one moves through the planes (representing the blade passage), the vortex

sheet in the clearance region rolls up. Time, t, in the lower half of the figure, is

related to streamwise location, s, in the upper half by the relation, t ¼ s/V(s), where
V(s) is the velocity of the moving reference frame.

Similarity analysis: in developing a similarity variable, viscous effects and

compressibility may be neglected [65, p. 491]. Figure 1.38 shows the blade and

flow domain at an arbitrary location. A useful quantity is the centroid of the rolled-

up part of the vortex sheet. There are four physical variables which can characterize

this situation and from which a dimensionless variable can be constructed: tip

clearance t, pressure difference across the blade DP, density r, and time t. Nondi-
mensional time can be defined as

t� ¼ ðt=rÞpðDP=rÞ: (1.80)

Tip leakage flow
and clearance vortex

Suction
Side

Pressure side

Fig. 1.36

44 1 The Vortex



Two tip clearance flows will be similar if they have the same t* and some

parameters will be functions of t* only:

Vortex center coordinates : y�C ¼ yC
t
; z�C ¼ zC

t
;

Vortex circulation (non - dim:Þ : G� ¼ G=ðtpDP=rÞ;

b

a b
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Cross - flow velocity components : v� ¼ v=ðpDP=rÞ; w� ¼ w=ðpDP=rÞ:

The pressure difference across the blade does vary along the span, but experi-

mental data show that evaluation of the mean loading at mid-radius is accurate

enough. Equation (1.80) can therefore be written in terms of flow angles at the mean

radius using the commonly used expression for ideal pressure rise [64]:

t� ¼ ðx=tÞp½gðtanb1 � tanb2Þ=ccosbm�; (1.81)

where g is the blade spacing, c is the chord length, b1 and b2 are the inlet and outlet
angles, respectively, bm implies the mean velocity direction, and x is the axial

coordinate.

Velocity and vorticity fields for the two-dimensional flow can be computed

numerically [62] and are summarized in [63]. It is found that the generalized tip

vortex trajectory is nearly a straight line and can be represented by the equation

y�c ¼ 0:46t � : (1.82)

For further details, see [65, p. 494].

The radial motion of the tip clearance vortex can be explained by vortex

dynamics and although this is somewhat invalidated because of turbulent diffusion

near the wall, a useful approximation to some of the important flow features may be

obtained. The trailing vortex can be regarded as a number of elementary line

vortices moving in one another’s velocity fields. For the flow bounded by the

endwall plane, the flow is represented by a vortex system and its images so that

each elementary vortex is a half of a vortex pair. The Kelvin impulse of a vortex

pair is given by [65]

SPAN
yC

ZC

Tip Vortex

Casing

Fig. 1.38
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Pi ¼ rGidi; (1.83)

where Gi is the circulation of the vortex and di is the distance between the centers of
the vortex pair. The impulse of the N vortex pairs forming the trailing vortex is then

P ¼ SN
i¼1rGidi: (1.84)

Downstream of the blades, there is no force on the fluid and the total Kelvin

impulse is constant. Moreover, no vorticity is shed and the total circulation is also

conserved:

G ¼ Sn
i¼1Gi ¼ const: (1.85)

Combining (1.84) and (1.85) gives

Sn
i¼1Gidi

SN
i¼1Gi

¼ const: ¼ 2zC: (1.86)

This states that the radial position of the centroid of vorticity, zC, which is

effectively the center of the vortex core, stays at a fixed distance from the wall.

Experimental data and three-dimensional computations confirm this [62].

1.4.3 Multiple Point Vortices and Their Motion

When two or more vortices are generated simultaneously, they interact and undergo

characteristic motions. The case of two vortices will be considered and analyzed

first. Two nearby vortices interact so that their rotating axes migrate. The velocity

of the first vortex determines the velocity of the center of the second vortex, and the

velocity of the second vortex determines the motion of the first. The resulting

velocity is the superposition of velocities of the two vortices and so the vortex

system itself has a translational velocity.

The projection of the line vortex in a perpendicular plane is a point and the

streamlines are concentric circles about this point vortex. Denoting this plane as the

xy plane and with the line vortex intersecting the plane at the point (x, �), the
component velocities are

vx ¼ �G
2p

y� �

r2

h i
; vy ¼ �G

2p
x� x
r2

� �
; (1.87)

where r2 ¼ ðx� xÞ2 þ ðy� �Þ2:
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Due to the symmetry of the motion around a point (or line) vortex, the vortex

will not translate. Induced motion occurs when

(a) The vortex line is curved.

(b) Two (or more) straight line vortices are near one another.

Consider two parallel rectilinear vortex filaments. From (1.87) the complex

velocity can be constructed:

vx � ivy ¼ �G
2p

ðy� �Þ þ iðx� xÞ
r2


 �
¼ G

2pi
z � �z0�

ðz� z0Þðz � �z0�Þ
� �

; (1.88)

where z0 ¼ xþ i�; z� ¼ x� iy; z0� ¼ x� i�;

The complex velocity equals the derivative of the complex potential c with

respect to z:

vx � ivy ¼ dw

dz
; (1.89)

so that

c ¼ G
2pi

logðz� z0Þ: (1.90)

The fluid motion takes place in a plane perpendicular to the two parallel

filaments and this will be taken as the z plane. Suppose the vortex strengths are

G1 and G2, respectively. The complex potential for the pair is then

cðzÞ ¼ G1

2pi
log (z� z1Þ þ G2

2pi
log(z� z2Þ;

and the complex velocity is

vx � ivy ¼ dw

dz
¼ G1

2pi
1

z� z1
þ G2

2pi

� �
1

z� z2

� �
: (1.91)

Now, vx � ivy ¼ dz*/dt and so

dz�
dt

¼ G1

2pi
ðz� z1Þ þ G2

2pi
ðz� z2Þ: (1.92)

The vortex at the point z1 moves solely under the influence of the other vortex at

z2. The first vortex will move in a circle about the second one and the second in a

circle about the first. The intervortex distance remains constant during the motion.
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This motion will now be proved. To obtain the velocity of the first vortex, the first
term in (1.92) must be omitted and z replaced by z1. Then,

dz�1
dt

¼ G2

2pi
ðz1 � z2Þ: (1.93)

Similarly,

dz�2
dt

¼ G1

2pi
ðz2 � z1Þ: (1.94)

Separating these equations into real and imaginary parts and after some manip-

ulation [48, p. 210] it can be shown that

G1x1 þ G2x2
G1 þ G2

¼ constant, (1.94a)

G1y1 þ G2y2
G1 þ G2

¼ constant: (1.94b)

These are called “integrals of motion of the centroid” of the system of two

vortices and they give the values of xc and yc, respectively, the centroid of the two

vortices, which remains fixed at all times during the motion. The equation of the

circle traced out by the two vortices is given by [48, p. 212]

ðx1 � x2Þ2 þ ðy1 � y2Þ2 ¼ constant: (1.95)

Thus, the two vortices rotate about the centroid with constant distance between

them – which was to be proved.

When G1 ¼ �G2 (the vortices have equal and opposite rotation), the centroid

will lie at infinity since G1 + G2 ¼ 0. It will now be shown that these vortices will

move in translation with constant velocity, perpendicular to the straight line joining

them (Fig. 1.39). Suppose that initially the two vortices are on the Ox axis separated
by a distance R. From the equations of motion,

dz1�
dt

¼ dz2�
dt

¼ �G1

2pi
ðz1 � z2Þ;

z2 � �z1� ¼ constant ¼ R;

z2 � z1 ¼ 1

R
;

therefore,

dz1�
dt

¼ dz2�
dt

¼ G1

2piR
¼ � G1i

2pR
:
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Separating the real and imaginary parts, one obtains

v1x ¼ v2x ¼ 0; v1y ¼ v2y ¼ G1

2pR
: (1.96)

Thus, the two vortices move parallel to the Oy axis.
This case relates to the situation in which a vortex lies close to a wall. There is an

image vortex of equal but opposite rotation in the wall, and so the vortex will move

along the wall. If the vortex is in a corner, then there are three image vortices as

shown in Fig. 1.40. There are two negative vortices at the points (�x, y) and (x,�y)
and a positive vortex at the point (�x,�y). Since the vortex at P(x, y) cannot induce
any self-motion, its motion is due solely to that produced by the combined effect of

its images. Therefore,

dx

dt
¼ G

2py
� Gy
2pðx2 þ y2Þ ¼

Gx2

2pyðx2 þ y2Þ ; (1.97a)

dy

dt
¼ � G

2px
þ Gx
2pðx2 þ y2Þ ¼ � Gy2

2pxðx2 þ y2Þ : (1.97b)

Thus,

dx=dt

x3
þ dy=dt

y3
¼ 0 or

1

x2
þ 1

y2
¼ 1

a2
;

R

y

Z1 Z2

Z10 Z20O

Fig. 1.39
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where a is a constant.

Therefore, (x2 + y2)/x2y2 ¼ 1/a2 ¼ r2/x2y2, and so

r

xy
¼ 1

a
¼ r

r2cosysiny
;

and finally

rsin2y ¼ 2a: (1.98)

This is the equation of the curve described by the vortex. Moreover, since (xdy/
dt) � (ydx/dt) ¼ �(1/2)G, the vortex executes the curve that a particle would

describe if repelled from the origin with a force equal to 3G2/16p2r3.
An example of such a vortex system is the motion of two vortices behind an oar

or at the wing tips of an airplane – see Fig. 1.41. These vortices persist for several

minutes over the airfield after take-off and landing operations of large aircraft. They

cause downdrafts of several meters per second and can endanger small aircraft

which cross their paths. Figure 1.42 illustrates the motion of two point vortices with

the same direction of rotation and equal and unequal strengths – in both cases, the

vortices rotate about a center.

Vortex interaction on a large and spectacular scale occurs when two tropical

whirlwinds meet. As these atmospheric vortices are nearly always cyclonic, they

will have the same rotation and will rotate around one another, and form a major

component of tropical storms. This is commonly called the “Fujihara effect” and

has been observed [66]. More than two vortices: the motion of a straight chain of

point vortices, equally strong and rotating in the same direction – see Fig. 1.43.

O
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P

Fig. 1.40
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This chain approximates a “discontinuity line” across which there is a jump in

velocity. The line is an abstraction in which the vorticity would become infinite – it

does not exist. It is useful for illustrative purposes. A small deviation in the linear

array of point vortices would destroy the array and lead to instability. The chain

would then roll up into a collection of larger vortices [67]. The model is not realistic

as the roll-up process is a function of both the initial disturbance and the number of

vortices per wavelength of the disturbance. Moreover, viscosity is neglected. A

more realistic model is achieved if the vortex chain is replaced by a vortex band

comprising a multitude of point vortices (Fig. 1.44; [68]). The motion of two vortex

clusters, consisting of large numbers of point vortices, has also been simulated

Fig. 1.41

a b

Fig. 1.42
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using CFD [68]. When the two clusters are far enough from each other, they rotate

around one another just as the two point vortices do. However, in this case, the

circular areas deform and oscillations occur on the cluster surfaces (Fig. 1.45a). In

contrast, when the two vortices are very close, they merge (Fig. 1.45b). In between

these two cases a critical distance exists at which the vortex clusters alternately

approach one another and move apart. In this process, point vortices are exchanged

(Fig. 1.45c).

a

b

c

Fig. 1.43
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1.4.4 Quantum Vortices and the Hydrodynamics
of Superfluids

The understanding of liquid helium and its unusual physical properties is greatly

dependent on experimental and theoretical studies of vortices [39, 42, 69–73]. The
4He isotope was first liquefied in 1908. The liquid form is commonly designated as

helium I or II, with 4He II being the superfluid and superconducting form. For

example, He II can flow through extremely fine capillaries with apparently no

energy loss due to viscous friction – this property is lost when the speed of the

liquid exceeds a certain critical velocity [74, 75].

Two-fluid model of He II: the “super” or peculiar properties of He II can be

largely accounted for on the basis of phenomenological two-fluid theory [37, 38].

A most striking characteristic of liquid helium is that, as far as is known, it exists in

a liquid state down to the absolute zero temperature. This is due to two factors:

(a) The van der Waals forces in helium are weak.

(b) The zero-point energy, due to the light mass, is large.

The atoms in the liquid are relatively far apart and considerable pressure is

required (about 26 atm at 0 K) to force them into the solid state. Thus, the

characteristics of liquid helium are governed by quantum laws and it is called a

quantum liquid. The “l-point” is the temperature at which the specific heat versus

temperature undergoes a discontinuity. At temperatures above this point, helium is

designated as He I and below it as He II. London in 1954 [39] suggested that below

the l-point helium is a quantum fluid whose essential feature is the macroscopic

occupation of a single quantum state. This implies long-range order in He II and is

called Bose condensation. The “condensed” units are held together by exchange

forces and hence the whole condensate moves as a whole. In the ground state

|0 > a, the macroscopic number of particles n0 is in this state, with zero momen-

tum; they form the condensate. Landau [38] proposed a two-fluid model to explain

the phenomena occurring in He II. This model has been remarkably successful in

describing the thermal and hydrodynamic properties of helium II.

t=0 1.0 1.6 2.3

Fig. 1.44
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The basic assumptions of the two-fluid model are as follows:

1. He II consists of a kind of mixture of two components – a normal component and

a superfluid component. The density of the fluid, r, can thus be separated into a

normal density rn and a superfluid density rs:

r ¼ rn þ rs: (1.99)

Similarly, the fluid motion, characterized by its local velocity v, may be con-

sidered to be due to the combined motions of the fluid components, so that

J ¼ rv ¼ rnvn þ rsvs (1.100)

where vn and vs are the velocities of the normal and superfluid components,

respectively, and J is the mass current density.

2. It is assumed that the entropy of the superfluid component is zero (Sn ¼ 0), so

that the total entropy of the liquid is

rS ¼ rnSn

3. The superfluid component can move without friction as long as certain velocity

limits are not exceeded. The normal component has viscosity.

Quantized vortices: the assertion that superfluid motion is irrotational has

been verified experimentally. Both London and Landau arrived at the condition

that

r� vs ¼ 0:

It would follow then that if one rotates a cylindrical vessel full of He II, only the

normal component would be carried along by the rotation.

The superfluid component would remain at rest. The height of the meniscus

formed in a rotating bucket of He II would be smaller by a factor rn/r than the one

formed in a classical liquid. But observations by Osborne [76] in 1950 showed that

the free superfluid surface assumed the shape of a paraboloid, just as the classical

liquid does. On the basis of quantum mechanics Onsager [40] in 1950 showed that

there was a possible wave function for the liquid which would produce a motion

analogous to classical vortex motion. In fact, he suggested the possibility of

quantized vortices in He II. Feynman [77] in 1955 developed this conjecture into

a theory which has been successful in explaining many of the strange phenomena

observed in the superfluid. His argument was as follows.

Suppose the ground-state wavefunction for the superfluid at rest is c0. Feynman

postulated that the wave function, which represents the flowing liquid, has the form

cflow ¼ c0expiSiWðxjÞ: (1.101)
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Then,

vs ¼ h

2pm

� �
rW; (1.102)

where W is a function of position xj, W(xj) is its value at the jth atom, and m is the

mass of the helium atom. Equation (1.102) implies that

r� vs ¼ 0:

For a simply connected volume of fluid, the circulation around any curve C is

then zero:

Circulation ¼
Z
C

dv

dt

� �
� dl ¼

Z Z
A

ðr � vSÞ � ndA; (1.103)

where A is any surface spanning the curve. For a multiply connected region this is

not true, and

Z
C

v � dl ¼
Z
C

h

2pm

� �
rW � dl ¼ h

2pm

� �Z
C

dW: (1.104)

The circulation is equal to the change in W, the phase of the wave function, in

passing around the closed curve C. The superfluid-state wave function must be

single-valued, and so

Z
C

vs � dl ¼ nh

m
; (1.105)

where n ¼ 0, 1, 2, .....

These singularity lines around which the circulation is not zero are analogous to

vortex lines in classical hydrodynamics.

Now, a classical vortex line placed at the origin has a velocity field given by

v ¼ G
2pr

� �
ey; (1.106)

where ey is a unit tangential vector, G is the vortex strength, and r is the distance

from the origin. The streamlines are concentric circles about the vortex line, and the

vorticity is zero everywhere except for the vortex line itself.

For a vortex line in He II then,

G ¼
Z
c

v � dl ¼ nh

m
: (1.107)
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So, it is possible to have states of motion in the superfluid that are vortex lines,

but with the constraint that the circulation about any of these lines must be an

integral multiple of h/m. The circulation must obey a quantization condition.

These quantized vortex lines explain how there can be nonzero circulation in a

singly connected vessel containing He II while there is zero vorticity throughout

nearly all the liquid. This can be demonstrated by analyzing the motion of a

superfluid in a rotating bucket. The velocity field per unit length of a vortex parallel

to the axis of rotation is

vs ¼ G
2p

� �
� 1

r
; G ¼ hn

m
: (1.108)

The kinetic energy per unit length is

Es ¼ rs
2

� �Z rb

ra

v2s 2pr dr ¼ rs
G2

4p

� �
ln

rb
ra

� �
; (1.109)

where ra is the vortex core radius and rb is a dimension external to the vortex. If the

total number of vortices per unit surface area is N, then rb is given by

pr2b ¼
1

N
: (1.110)

Using Stokes’ theorem on (1.105),

N ¼ curlvsj j
G

: (1.111)

If F is the free energy of the moving liquid, M the angular momentum, and

o0 the angular velocity of the vessel, then in the equilibrium state the quantity

F � Mo0 will have a minimum value. The kinetic energy of the motion is

rs
v2s
2

� �
þ rn

v2n
2

� �
:

Considering only the motion of the superfluid component, one can minimize the

quantity Es � Mso0. The normal component of the fluid will undergo rotation with a

velocity vn ¼o0r, just like a solid body.The energyof the superfluidmotion is given by

E ¼ 1

2

� �
rs$v

22prdr

þ rs
G
4p

� �
$ curl vj jln½G1=2=ðp1=2Þ curlvj j1=2raÞ�2prdr: (1.112)
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The second term is the energy of the vortices which is obtained by using

(1.108–1.111). Similarly, the angular momentum of the fluid is determined to be

M ¼ rs

Z
vr2prdr þ rs

G
2p

� �Z
2prdr (1.113)

Using a variational technique on the difference E � Mo0 (see [47], p. 448), the

following exact solutions are found:

v ¼ o0r; (1.114a)

v ¼ Constant

r
: (1.114b)

Equation (1.114a) implies solid-body rotation and (1.114b) implies irrotational

motion with curl v ¼ 0.

It is now assumed that solid-body rotation occurs in a region inside the radius Rc.

It can be shown [78] that R � Rc is given by

R� Rc ¼ 1

2

� �
G
o0

� �
lnrb
ra

� �1=2
: (1.115)

Thus, the region of irrotational motion is small but observable. So, when a

bucket of He II is rotated, the vortices formed cause solid-body rotation in nearly

the whole bucket. However, in a small region near the wall, there are no vortices

and the motion here is completely irrotational.

The same explanation will hold for the shape of the free liquid surface observed.

In 1961, Vinen [79] measured the circulation about a single vortex. He observed

that the average circulation of He II around a fine wire along the axis of a slowly

rotating cylindrical container was more stable at the value h/m than at any other

value. Hess and Fairbank [80] in 1966 showed that the angular momentum of the

equilibrium state of a slowly rotating superfluid equals the angular momentum of

the lowest free energy state allowed by the quantized vortex model.

It appears then that the quantized vortex concept is correct and accurately

describes the states which He II can assume when rotated.

1.4.4.1 Superconductivity

Superconductivity was first identified by Kamerlingh Onnes in 1911 [81], shortly

after he had liquefied helium. By the 1960s a satisfactory theoretical concept of

classic superconductors had been developed. The subject had to be revisited in 1986

when high-temperature superconductors were discovered by Bednorz and Muller

[82]. The primary characteristic of superconductivity is perfect conductivity.
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The electrical resistance of the material disappears completely within a small

temperature range at a critical temperature Tc.
The second is perfect diamagnetism, discovered by Meissner and Ochsenfeld in

1933 [83]. They found that a magnetic field is excluded from entering a supercon-

ductor. Also, that a field in an originally normal sample is expelled as it is cooled

through Tc. The Meissner effect, as it is called, implies that superconductivity will

be destroyed by a critical magnetic field Hc.

In 1935, the brothers F. London and H. London [84] proposed two equations to

describe the microscopic electric and magnetic fields:

E ¼ @

@tðLJsÞ ; (1.116)

h ¼ �ccurlðLJsÞ; (1.117)

where

L ¼ 4pl2

c2
¼ m

nse2
; (1.118)

is a phenomenological parameter.

ns is the number density of superconducting electrons and varies from zero at Tc to
a limiting value of the order of n, the density of conducting electrons, at T � Tc,

h is the magnetic flux density on a microscopic scale (B is used for macroscopic

values), and Js is the flux of electrons.

Equation (1.116) describes perfect conductivity since any electric field

accelerates the superconducting electrons rather than just maintaining their veloc-

ity against resistance (Ohm’s law).

Equation (1.117), when combined with the Maxwell equation curl h ¼ 4pJ/c,
gives

r2h ¼ h

l2
: (1.119)

This implies that a magnetic field is exponentially screened from the interior of a

material sample with penetration depth l – the Meissner effect. The parameter is

operationally defined as a penetration depth.

Ginzburg–Landau Theory: Ginsberg and Landau proposed a theory of supercon-

ductivity as early as 1950 [85] which focused entirely on the superconducting

electrons rather than on the excitations. They introduced a complex pseudowave-

function c as an order parameter within Landau’s general theory of phase

transitions. This c describes the superconducting electrons, and the local density

of superconducting electrons (as defined in the London equations) is

ns ¼ cðxÞj j2: (1.120)
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Using the variational principle, they developed a differential equation for c
which is analogous to the Schrodinger equation for a free particle, but which has a

nonlinear term. The equation for the supercurrent was

Js ¼ e � h
2pm�

� �
ðc � rc� crc�Þ � e�2

m � c
� �

cj j2A; (1.121)

and is the same as the usual quantum mechanical current expression for particles of

charge e* and mass m*.
With this approach, they were able to treat two features beyond the scope of the

London theory:

(a) Nonlinear effects of fields strong enough to change ns.
(b) The spatial variation of ns.

The GL theory introduced a characteristic length – the GL coherence length:

xðTÞ ¼ h

p
2m � aðTÞj j1=2; (1.122)

which gauges the distance over which c(r) can vary without significant energy

increase.

The ratio of the two characteristic lengths defines theGLparameter,k ¼ l
x (1.123)

Since l also diverges as (Tc � T)�1/2 near Tc, this dimensionless ratio is nearly

temperature independent.

Type II superconductivity: When l is greater than x, it is energetically favorable
for domain walls to form between the superconducting and normal regions. This is

called a type II superconductor. When a type II is in a magnetic field, the free

energy can be lowered by causing domains of normal material containing trapped

flux to form, with low energy boundaries created between the normal core and the

surrounding superconducting material. When the applied magnetic field is greater

than a value referred to as the lower critical field, Bc1, magnetic flux is able to

penetrate in quantized units, by forming cylindrically symmetric domains called

vortices. For applied fields a little above Bc1, the magnetic field inside a type II

superconductor is strong in the normal cores of the vortices, decreases with distance

from the cores, and becomes very small at large distances. For much higher

magnetic fields, the vortices overlap and the field inside the superconductor is

strong everywhere. When the applied field reaches a value called the upper critical

field Bc2, the material becomes normal.

1.4.4.2 Vortices

A magnetic field Bapp will penetrate a superconductor in the mixed state: Bc1 < Bapp

< Bc2. Penetration occurs in the form of vortex tubes which confine the flux ([42],

Chap. 2). The highest field is in the core which has a radius x. The core is surrounded
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by a region of larger radius lwithin which screening currents flowing around the core
and magnetic flux are present together.

So, the vortex has a core radius equal to the coherence length x and a

surrounding outer region with a radius equal to the penetration depth l. For the
high k limit, l 	 x (valid for the copper-oxide superconductors which have typical
k values around 100), the Helmholtz equations can be used (derived from the

London formalism) and an expression derived which gives the fraction of the

total flux of the vortex that is present in the core [86]:

Fcore ¼ F0

2k2
ln2kþ 1

2
� g

� �
: (1.124)

Since the magnetic field in the sample is confined to vortices, the total flux is

F0 times the number of vortices and the average internal field Bint is given by

Bint ¼ NAF0; (1.125)

where NA is the number of vortices per unit area. For fields much larger than Bc1 but

less than Bc2, the internal field is roughly proportional to the applied field and so the

density of vortices becomes approximately proportional to the applied field.

The subjects of quantum vortices in superfluids and superconductors will be

dealt with in much greater detail later.

1.5 Concluding Remarks

The question of whether vortices play a general role in nature has been considered

for many decades. The spiral has stood as a symbol of energy, life, and evolution for

centuries. In the biological world, many organs have spiral patterns, for example,

the cochlea of the ear [87]. Indeed, the spiral pattern occurs in DNA (in the form of

a double helix), the basic molecular building block of all living cells. Krafft [88] has

even postulated that life itself is a vortex phenomenon. This may be reaching too far.

But what is certain is that the study of the physics of vortices, over the wide size

spectrum in which they occur, is very important to our understanding of the physical

and biological worlds, and should be recognized as a subject in its own right.
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Chapter 2

Vorticity (Molecular Spin)

2.1 Introduction

The curl of the fluid velocity vector 7is known as the vorticity or, physically, the

angular velocity at a point in space (see [1, p. 68]). It has also been called

Rotationgeschwindigkeit by Helmholtz, rotation by Kelvin, molecular rotation by

Kelvin, and spin by Clifford.

While vorticity has an exact mathematical definition, its physical significance is

still unclear. It is possible, indeed, to find examples of nonrotating flows with

nonzero vorticity values. For example, in the shearing motion u ¼ y, v ¼ 0, and

w ¼ 0, where u, v, w are the x, y, z components, the particles move in straight lines,

but the vorticity or rotation is nonzero.

While circulation is a large-scale measure of rotation, indicative of such features

as the Hadley cell in atmospherics, vorticity is a measure of rotation that cannot be

seen (microscopic).

Vorticity is the building block of circulation, and the individual locations of

vorticity describe pure rotation. However, the sum of vorticity over an area (circu-

lation) is not typically descriptive of pure rotation.

Vorticity, as defined, permits the smooth development of the mathematical study

of fluid motion. Stresses within fluids depend on velocity gradients rather than on

velocities, and vorticity is a combination of velocity gradients. It must be noted that a

vorticity field is inherently a solenoidal field: if z represents the vorticity vector, then

div z ¼ 0; (2.1)

because the divergence of the curl is identically zero. Because the divergence of

vorticity is zero, the flux of vorticity out of any closed surface within the fluid is

zero. If the closed surface is a vorticity tube, analogous to a stream tube, then the

P. McCormack, Vortex, Molecular Spin and Nanovorticity: An Introduction,
SpringerBriefs in Physics, DOI 10.1007/978-1-4614-0257-2_2,
# Percival McCormack 2012
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vorticity tubes must either close upon themselves to form a ring or terminate on the

boundaries. It appears that the vorticity vector has many of the properties that

characterize the velocity vector of an incompressible fluid.

For a particle with zero vorticity, a scalar velocity can be defined such that

u ¼ r’: (2.2)

The continuity equation (fluid flow) then gives

r � u ¼ r � ðrfÞ ¼ r2f ¼ 0: (2.3)

Thus, f satisfies the Laplace equation.

If the fluid is assumed not to slip on a solid boundary, the relative velocity

between the immediately adjacent fluid and the boundary must be zero. If the

boundary is stationary, no vorticity tube can terminate on the boundary: so, at the

solid stationary wall, there can be no component of vorticity perpendicular to the

boundary. Similarly, there can be no component of vorticity parallel to a traction-

free boundary.

2.2 Generation of Vorticity

How does a flow that is initially irrotational develop vorticity? Truesdell [1]

discussed this problem at some length in connection with the Lagrange–Cauchy

velocity potential theorem. This theorem deals with the permanence of irrotational

motion – that is, a motion once irrotational stays that way. The extension of this

theorem to viscous incompressible fluids increases the complexity of the problem

greatly. Truesdell concluded that “in a motion of a homogenous viscous incom-

pressible fluid subject to a conservative extraneous force and starting from rest, if

there be a finite stationary boundary to which the liquid adheres without slipping,

there must be some particles whose vorticity is not an analytic function of time at

the initial instant.”

The measurement of vorticity is difficult but its presence in fluids is easily

detected by the determination of circulation, G, which is defined as the line integral
of the velocity field around any closed curve.

Kelvin’s theorem of circulation [2] leads to the following equation:

DG
Dt

¼
I

�rp

r
� dlþ

I
1

r
�r� ðmzÞ þ r 4

3

� �
mr � U

� �
� dlþ

I
F � dl: (2.4)

This shows that the rate of change of circulation within a closed curve l, always

made up of the same fluid particles, is governed by the torques produced by pressure

forces, body forces, and viscous forces. In (2.4), r is the fluid density, p is the fluid
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pressure, z is the vorticity vector, m is the dynamic viscosity, U is the velocity

vector, and F is the body force.

Irrotational body forces (conservative body forces with single-valued force

potential), present in many fluid dynamic problems, do not produce circulation.

Thus, the effects of the body force term can generally be omitted in the treatment of

vorticity generation.

Under barotropic conditions (p ¼ p(r only)), the density field is a function of the

pressure field alone and the pressure forces do not produce circulation. In an

inviscid incompressible fluid of uniform density and in an inviscid compressible,

provided the flow field is homentropic, internal sources of vorticity do not exist.

But, in a compressible, nonhomentropic fluid, pressure forces provide internal

sources of vorticity. When all the torque-producing sources are absent, the dynam-

ics of the fluid is governed by Helmholtz’s vortex theorems. It is appropriate to

recap these theorems at this point.

First theorem: this is general and valid for real flows. It states that the strength of

vorticity in a vorticity tube is the same in all cross sections. In addition, a vorticity

tube must be closed or must end at a boundary.

Second theorem: valid only for ideal flows of incompressible fluids. It states that

vorticity in such a flow can be neither generated nor destroyed, since during the

movement of vorticity, the fluid particles cannot leave the vorticity line on which

they are positioned.

If the vorticity sources due to pressure are absent, vorticity flux or circulation

cannot be created in the interior of the fluid [3]. In such cases, viscosity is generated

by viscous forces at a solid boundary or at a free surface.

2.3 Generation by Shock Waves

There are many sources of vorticity in fluid motions and Hadamard [4] was the first

to show that vortices are generated by shock waves and that the flow is no longer

irrotational after shock waves. This is shown by the Crocco–Vazsonyi equation [5]

for the steady flow of an inviscid fluid:

rH ¼ TrSþ U� z; (2.5)

whereH, T, and S are the total enthalpy, temperature, and entropy, respectively. The

vorticity vector, therefore, is dependent on the rates of change of entropy and

enthalpy normal to the streamlines. If all streamlines have the same H but different

S, there is production of vorticity. This is the situation downstream of a curved

shock wave because the entropy increase across a shock wave is determined by the

local angle of the shock. Even if the upstream flow is irrotational, the flow

downstream of a curved shock wave is rotational.
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2.4 Generation by Free Convective Flow and Buoyancy

This is an important source of vorticity in atmospheric and oceanographic flows.

In fact, a free convection flow is produced by buoyancy forces. Temperature

differences are introduced, for example, by boundaries maintained at different

temperatures and the resulting density differences induce the motion – cold fluids

tend to fall, while hot fluids tend to rise. The temperature changes cause variations

in the fluid properties – for example, in the density and viscosity. A general analysis

is extremely complex, and so some approximation is essential. The Boussinesq

approximation is commonly used. In this approximation, variations of all fluid

properties other than the density are ignored. Variations in density are considered

only insofar as they result in a gravitational force. The continuity equation in its

constant density form is

r � u ¼ 0: (2.6)

The Navier–Stokes equation is

r
Du

Dt
¼ �rpþ mruþ F; (2.7)

where F represents the body force term (such forces act on the volume of a fluid

particle) and is commonly the effect of gravity, so that F ¼ rg. The gravitational

acceleration is derivable from a potential and so g ¼ �∇’.
As density variations are important here, r ¼ r0 + Dr, and so

F ¼ �ðr
0
þ DrÞrf ¼ �rðr0fÞ þ Drg: (2.8)

Introducing, P ¼ p + r0f, then the Navier–Stokes equation becomes

r
Du

Dt
¼ �rPþ mr2uþ Drg: (2.9)

If it is assumed that all accelerations in the flow are small compared to jgj, then
the dependence of r on T can be linearized:

Dr ¼ �ar0DT; (2.10)

where a is the coefficient of expansion of the fluid. The Boussinesq dynamical

equation then is

Du

Dt
¼ �1

r

� �
rpþ nr2u� gaDT; (2.11)

where the normal r and p have been reverted to.
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An equation for the temperature is also required.

To be consistent with the Boussinesq approximation, it is postulated that the

fluid has a constant heat capacity per unit volume, rCΡ. rCΡDT/Dt is the rate of

heating per unit volume of a fluid particle. The heating is caused by transfer of heat

from nearby fluid particles by thermal conduction and can also be due to internal

heat generation. The corresponding terms in the thermal equation are analogous to

the viscous term and the body force term in the dynamical equation, respectively.

The conductive heat flux is

H ¼ �k grad T; (2.12)

where k is the thermal conductivity of the fluid. Thus,

rCP

DT

Dt
¼ �divHþ J; (2.13)

where J is the rate of internal heat generation per unit volume. Taking k to be a

constant, (2.13) can be modified to

@T

@t
þ u � rT ¼ kr2T þ J

rCP

; (2.14)

where k ¼ k/rCΡ is the thermal diffusivity.

Equations (2.6), (2.11), and (2.14) are the basic equations of convection in the

Boussinesq approximation.

The additional term in the dynamical equation, �gaDT, is known as the buoy-

ancy force. The two terms on the right-hand side of (2.14) are the conduction term

and heat generation term, respectively. u�∇T is known as the advection term

(transport of heat by the motion).

Equation (2.14) requires boundary conditions for the temperature field.

The most common type specifies the wall temperature, which is the temperature

of the fluid in contact with the wall.

It must be noted that thermal conduction plays an integral role in convection.

A wide range of fluid dynamical behavior is to be expected, depending on the

importance of the buoyancy force with respect to the other terms in (2.11). When

the buoyancy force is negligible, one has forced convection – when it is the only

cause of motion, there is free convection.

Free convective flows are normally rotational. Buoyancy forces directly gener-

ate vorticity. Applying the curl operation to (2.11):

Dz
Dt

¼ z � ruþ nr2zþ ag�rðDTÞ: (2.15)

This is just the vorticity equation, which will be dealt with in the next section,

with the addition of the buoyancy force.
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Horizontal components of the temperature gradient ∇(DT) contribute to the last
term; the vorticity so generated is also horizontal but perpendicular to the tempera-

ture gradient.

2.5 Generation by Baroclinic Effects

Kelvin’s theorem for a potential body force and inviscid flow has the simple form:

DG
Dt

¼ �
I

dp

r
: (2.16)

If the flow is baroclinic (with lines of constant r not parallel to lines of constant p),
the baroclinicity will be a source of vorticity.

Note: in general, a barotropic situation is one in which surfaces of constant

pressure and surfaces of constant density coincide; a baroclinic situation is one in

which they intersect.

The sea-breeze problem [6] illustrates the baroclinic generation of circulation.

A temperature difference between the air over the land and that over the sea

generates density differences between the land air mass and the sea air mass.

Thus, the flow isobars and the flow isopycnals are not coincident. For the typical

situation shown in Fig. 2.1, Green [7] has shown that for a 15�C land–sea tempera-

ture difference (r2 ¼ 1.22 kg/m3 and r1 ¼ 1.18 kg/m3) and for an elevation change

of 1 km (p0 � p1 ¼ 12 kPa), DG/Dt ¼ (p0 � p1)(1/r2 � 1/r1) ¼ �333 m2/s. The

mean tangential velocity is evaluated from G ¼ vmean � ðhþ LÞ and it is found that

dvmean

dt
� �333 ðm2=s2Þ

62;000 ðmÞ ¼ 20m/s/h:

Thus, this simple model predicts that in 1 h baroclinicity will induce a sea breeze

of 20 m/s (40 knots) from the sea to land at low elevation and vice versa at high

elevation. In atmospheric flows, then, baroclinicity can be an important generator of

vorticity.

Land Sea Land Sea

e increasing

p increasing
e1

p1

L = 30km

e2

h = 1km

Po

(a) Real situation

Fig. 2.1 Flow dynamics due to temperature differences between land and sea air masses
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2.6 The General Vorticity Equation

The first step is to use the momentum equation written in an inertial frame of

reference:

Du

Dt
¼ @u

@t
þ ðu � rÞu ¼ �rp

r
þr � T

r
þ g; (2.17)

where T is the stress tensor and g is the body force per unit mass.

Now, (u�∇)u ¼ ∇((1/2)u�u) � u � v and so (2.17) becomes

@u

@t
þr u � u

2

� �
� u� o ¼ �rp

r
þr � T

r
þ g: (2.18)

The curl of this equation, after some simplification, is

Do
Dt

¼ �oðr � uÞ þ ðo � rÞuþ 1

r2

� �
r�rp� 1

r2

� �
rr� ðr � TÞ

þ 1

r

� �
r� ðr � TÞ þ r � g: (2.19)

Using the momentum equation to eliminate ∇p, another form of the general

form of the vorticity equation is

Do
Dt

¼ �oðr � uÞ þ ðo � rÞuþ 1

r

� �
rr� g� Du

Dt

� �
þ 1

r

� �
r� ðr � TÞ þ r � g:

(2.20)

It must be noted here that the angular velocity vector v is being used synony-

mously with the vorticity vector symbol z used above. This can be confusing at

times.

The physical significance of the terms in (2.19) is very important. The left-hand

side is the time rate of change of the vorticity following a specific fluid element –

the convective transport of vorticity.

The first term on the right-hand side represents the reduction in vorticity due to

fluid expansion. Vorticity is enhanced by fluid compression and this will be

discussed in some more detail later. The next term represents a stretching of vortex

lines that intensifies the vorticity. By Kelvin’s theorem, the total circulation of the

vortex lines must be constant and so the axial stretching of vorticity lines increases

their vorticity. In terms of angular momentum, it is known that a thick solid rod

spinning about its axes on frictionless bearings spins faster when stretched in order

to preserve angular momentum – see Fig. 2.2. Tornados are highly stretched

vortices resulting in powerful winds and are a good example of such vorticity

intensification.
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The third term on the right-hand side is the “baroclinic torque” caused by the

noncollinearity of the density and pressure gradients. This will be discussed further

below. The fourth term is due to shear stress variations in a density gradient field

resulting in a torque. In engineering flows it is neglected, being much smaller than

the other terms; but it cannot be neglected in meteorological flows.

The fifth term represents the diffusion of vorticity due to viscosity and also will

be treated in more detail later.

In engineering, one typically deals with body forces, such as gravity, which are

potential, and so the last term on the right-hand side would be zero.

As defined previously, the vorticity, v, of a flow field with velocity distribution

u is

o ¼ r� u: (2.21)

Equations (2.19) and (2.20) and the continuity equation

Dr
Dt

þ rr � u ¼ 0; (2.22)

should be sufficient to determine the vorticity field everywhere. But (2.20) does not

contain the pressure field. The equation necessary to find p is generated by taking

the divergence of (2.18) above:

@ðr � uÞ
@t

þ 2ðu � rÞðr � uÞ þ r2 u � u
2

� �
� u � ðr2uÞ � o � o

¼ �1

r

� �
r2pþ 1

r

� �
r � ðr � TÞ þ ðr � T�rpÞ � r 1

r

� �
þr � g: (2.23)

1

2

 Solid rod rod rotating freely at 1

ba

2 1 after stretching

Fig. 2.2
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In the case of a constant density fluid (∇�u ¼ 0 by continuity) and constant

viscosity (then ∇�T ¼ m∇2u) this very complex equation reduces to

1

r

� �
r2p ¼ u � ðr2uÞ þ o � o�r2 u � u

2

� �
þr � g: (2.24)

Once the vorticity and velocity fields are determined using (2.20), the pressure

field is given by (2.24).

2.7 Viscous Diffusion of Vorticity

Here, the flow of a Newtonian fluid of fixed density and viscosity with only

potential body forces will be considered.

Equation (2.19) reduces to

Do
Dt

¼ ðo � rÞuþ nr2o: (2.25)

This has the form of a convection–diffusion equation, similar to the equations of

thermal convection and substance diffusion. It explicitly implies the diffusion of

vorticity due to the action of viscosity.

The “Oseen” or “Lamb” vortex is a classic example of this diffusion phenome-

non. Oseen [8] has analyzed the case of a two-dimensional axisymmetric line

vortex in an initially inviscid, infinite fluid. From time t ¼ 0, the viscosity acts

and the resulting diffusion of vorticity is analyzed. To facilitate interpretation,

(2.25) is expanded as

@o
@t

þ ðu � rÞo ¼ ðo � rÞuþ nr2o: (2.26)

Following Truesdell’s terminology, the terms in this equation are given specific

physical identities. The term ∂v/∂t is called the diffusion of vorticity. u�gradv is

called the convection of vorticity. v�gradu is the convective rate of change of

vorticity, and Dv/Dt is the diffusive rate of change of vorticity. Finally, the term

n∇2v is called the dissipative rate of change of vorticity.

The Oseen vortex is two dimensional and so the third term is zero (v is normal to

the plane of ∇u). The second term is zero for similar reasons and so

@ozðr; tÞ
@t

¼ nr2ozðr; tÞ:
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This Poisson equation is readily solved and the solution is

ozðr; tÞ ¼ G0

4pnt

� �
exp

�r2

4nt

� �
: (2.27)

Figure 2.3a [7] shows the vorticity distribution for a circulationG0 ¼ 500m2/s and

kinematic viscosity n ¼ 3.5 � 10�5 m2/s2. These values are typical for the tip

vortex generated by a large aircraft at cruising altitudes.

Figure 2.3b shows the resulting tangential velocity, uy ¼ ðG0=2prÞ½1� exp

ð�r2=4ntÞ�. There are three features of Fig. 2.3 which should be specially noted:

1. The circulation distant from the centerline is time independent as per Kelvin’s

theorem.
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Fig. 2.3 (a) Vorticity distribution. (b) Resulting tangential velocity
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2. Distant from the vortex centerline the vorticity and velocity distributions are

unchanged. It takes considerable time for viscosity to alter the vorticity over

long distances.

3. Near the center of the vortex, where the velocity gradient is largest, the motion

becomes a solid-body rotation quickly. Viscosity always acts to bring to convert

vortex cores into solid-body rotation.

2.7.1 Viscous Diffusion at a Wall

Diffusion of vorticity is an exchange of momentum. Transport of vorticity can also

occur by convection with the property that vorticity is preserved on a particle path.

Thus, vorticity can be transferred to neighboring paths only by diffusion – that is, by

the effect of viscosity. Immediately at a wall, to which the fluid particles adhere,

vorticity can be transferred to the fluid only by diffusion. Boundary layers at

surfaces have large velocity gradients and result in large viscous forces. Vorticity

generation and diffusion at walls will be next considered.

Assuming constant density and constant Newtonian viscosity, and with some

manipulation, (2.17) may be written as

Du

Dt
¼ �rp

r
þ g� nr� o: (2.28)

For two-dimensional flow ðu ¼ uðx;yÞ; v ¼ vðx;yÞ;w ¼ 0Þ near a wall (v ¼ oz

only and u(wall, y ¼ 0) ¼ 0), and neglecting body forces, then the x-component of

the momentum equation at the wall is

v@u

@y
þ 1

r

� �
@p

@z
¼ �n@oz

@y
: (2.29)

There are two main implications of (2.29):

1. Lighthill [9] has identified the term n(∂oz/∂y) as the flux of vorticity away from
a surface, with positive fluxes representing the flux of positive vorticity and

negative fluxes representing the flux of vorticity of opposite sign [10]. Thus, only

solid surfaces with pressure gradients, and porous walls with fluid blowing out,

are sources of vorticity. In the Blasius boundary layer (formed by fluid flowing

over a thin flat plate), in fact, all the vorticity in the boundary layer is generated

in the small leading edge region where ∂p/∂x is negative (see Fig. 2.4). Vorticity
in other regions of the Blasius boundary layer is due to convection from the

leading edge.

2. Without a pressure gradient at the wall (∂p/∂x), or flow through it (v ¼ 0), then

(∂oz/∂y)y¼0 ¼ 0, which implies that vorticity generated at the wall has diffused

far into the flow(Fig. 2.4a). A porous wall with suction has v(y ¼ 0) < 0
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(Fig. 2.4b). Equation (2.29) then implies ∂oz/∂yy¼0 > 0. Thus, diffusion of wall

vorticity into the flow has been inhibited by the wall suction. Contrariwise,

blowing at a wall, or an adverse pressure gradient along a wall, will result in

vorticity transport away from the wall. Batchelor [3] has solved the problem of

suction at a wall quantitatively. Steady incompressible two-dimensional flow

over a flat plate with suction velocity V, with no pressure gradients or body

forces, must satisfy the following vorticity equation:

�Vdoz

dy
¼ nd2oz

dy2
: (2.30)

The solution that satisfies the no slip (u(y ¼ 0) ¼ 0) and freestream (u(y ! 1)

¼ U1) conditions is

oz ¼ �U1V

n

� �
e�Vy=n and u ¼ U1ð1� e�Vy=nÞ: (2.31)

This indicates that as the suction velocity increases, the thickness of the region

(of the order n/V) with vorticity decreases. In the example described above, the

convection of vorticity through the wall exactly compensates for diffusion into

the free stream, resulting in a streamwise invariant flow. If V ¼ 0, then a

streamwise invariant boundary-layer flow would only be possible with a favorable

pressure gradient.

A favorable pressure gradient will also inhibit vorticity diffusion into the free-

stream. Boundary-layer flow near a stagnation point has a highly favorable pressure

gradient and this problem has been solved numerically [11]. It was determined

wz

y
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Fig. 2.4
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that the boundary-layer thickness, d, in which v is significant, is proportional to

(n/U1)1/2, where U1 is the far field fluid velocity toward the stagnation point. The

“vorticity layer” thickness does not vary with distance away from the stagnation

point along the plate. Thus, the large favorable pressure gradient in effect halts the

diffusion of vorticity from the wall, in spite of producing a surface vorticity flux.

2.7.2 Subsequent Motion of Wall-Generated Vorticity

Kelvin’s theorem implies that the flow region away from viscous effects remains

irrotational for all time and may be computed by potential flow methods. Thus,

determination of the complete flowfield around an object will require knowing

the amount and motion of the wall-generated vorticity. As an approximate model of

a boundary layer, consider a one-dimensional flow over a surface – see Fig. 2.5.

Assuming that convection is the only mechanism for vorticity (valid at reasonably

high Reynolds numbers because convection is a much faster process than diffu-

sion), then the amount of vorticity convected past a fixed vertical line in time dt is

G ¼
Z 1

0

dt � uðyÞozðy)dy: (2.32)

For one-dimensional flow, oz(y) ¼ �du/dy and, therefore,

G ¼ �dt

Z 1

0

u
du

dy

� �
dy ¼ �dt

Z uð1Þ

uð0Þ
udu ¼ �dt

u2

2

� �
U1
0

�� ¼ �U1
U1
2

� �
dt: (2.33)

This result is important as it indicates how much circulation must be injected

into the flow at boundary-layer separation points. This is required for vortex method

computations.

WALL

y U 8

u (y)

Fig. 2.5 Wall-generated vorticity
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2.7.3 Vorticity Increase by Vortex Stretching

This has already been referred to as another consequence of Kelvin’s theorem.

Burgers’ vortex is an example of this phenomenon and will be analyzed next. For an

inviscid barotropic flow with only potential body forces, (2.19) reduces to

Do
Dt

¼ o � ru� oðr � uÞ: (2.34)

Using the continuity equation, r � u ¼ ð�1=rÞðDr=DtÞ and the product rule

D
o
r

� �
¼ 1

r

� �
Do
Dt

� �
� o

r2

� �
Dr
Dt

� �
:
Dðo=rÞ

Dt
¼ o

r

� �
� ru: (2.35)

Now, the length of an infinitesimal segment, l, of a fluid line [7, p. 12] is given by

Dl

Dt
¼ l � ru: (2.36)

From (2.35) and (2.36) it is seen that for an arbitrary flow field

l ¼ Co
r

; (2.37)

where C is a constant. See [3] for a more rigorous derivation.

Equation (2.37) shows that by stretching a segment of fluid with vorticity, so that l

increases, the vorticity magnitude of the segment will also increase. It is also obvious

that fluid compression (increase in r) will also lead to vorticity augmentation.

Burgers [12] has solved a problem (the Burger vortex) that clearly shows the

increase in vorticity by stretching. The vorticity equation in an incompressible,

Newtonian zero body force fluid is [see (2.26)]

Do
Dt

¼ ðo � rÞuþ nr2o: (2.38)

For an axisymmetric vortex, aligned along the z-axis and placed in a uniaxial

straining field along its length (see Fig. 2.6) uz ¼ 2Cz (where C is a constant), then

continuity demands the presence of a radial influx of fluid ur ¼ �Cr.

ur uz

u0

Fig. 2.6
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Equation (2.38) has a Lamb–Oseen vortex type of solution:

uz ¼ 2Cz

ur ¼ �Cr

uy ¼ G
2pr

� �
1� exp

�r2

4d2

� �� �
; ( 2.39)

where

d2 ¼ n
C

� �
þ d20 �

n
C

� �
expð�CtÞ: (2.40)

d may be defined as the vortex radius and d0 is then the initial vortex radius.

This velocity field has a vorticity distribution given by

oz ¼ G

pd2

� �
exp

�r2

4d2

� �
: (2.41)

The vorticity on the axis is given by ozðr ¼ 0Þ ¼ G=pd2.
From (2.40) d2 ! n/C as t increases (for C positive). If the vortex is being

compressed, C negative, d increases continuously. If d0 is greater than (n/C)1/2, the
asymptotic value of d, d will decrease with time. For this situation oz (r ¼ 0) will

rapidly increase with time. This is a good example of the increase in vorticity that

results from vortex stretching.

2.8 Hill’s Spherical Vortex [13, 14]

This is another good example in which stretching of vortex lines occurs. The

spherical vortex is a model of the internal flow in a gas bubble moving in a liquid.

The motion outside the bubble sets up an internal circulation. Figure 2.7 shows the

spherical vortex, with a cylindrical coordinate system moving with the bubble.

The vortex lines are circular loops around the z-axis. As the flow moves the

vortex lines to larger radial positions, the loops increase in length proportional to

the radius. As a result of the vortex-line stretching effect, the vorticity is propor-

tional to the radius (see [14] for the value of C as 5U/R2):

oy ¼ Cr ¼ 5U

R

� �
r

R
: (2.42)
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Consider the vorticity equation (2.38) as it applies to Hill’s vortex and recall that

Dv/Dt is the rate of change of particle vorticity, v�∇u is the rate of deforming of

vortex lines, and n∇2v is the net rate of viscous diffusion of v.

Only the y component has nonzero vorticity. The physical meaning of the terms

in (2.38) is then

Convection: Doy=Dt ¼ ur@oy=@r ¼ Cur
Stretching: ½o � ru� ¼ oyður=rÞ ¼ Cur
Diffusion: ½nr2o�y ¼ n@=@r½ð1=rÞ@=@rðroyÞ� ¼ 0

The vorticity balance then is between convection and stretching without any net

viscous diffusion. There is no net diffusion of vorticity and the increase in vorticity is

wholly due to vortex-line stretching. The vorticity is proportional to the circumfer-

ence of the loop and does not depend on the movement of the circular vortex lines.

2.9 Vorticity in Rotating Frames of Reference

Kelvin’s theorem for a potential force and inviscid flow is given in (2.16). This

equation and other results developed so far are valid only in an inertial frame of

reference. In studying atmospheric and oceanic flows, one deals with the noninertial,

rotating frame of the Earth. It is appropriate to reformulate (2.16) in such a rotating

frame.

Two additional forces occur in a rotating frame of reference (with rotational

velocity V) – the centrifugal force and the Coriolis force.

The centrifugal force, Fcen ¼ O� ðO� xÞ per unit mass, where x is the vector

displacement from the axis of rotation, generates no circulation because Fcen ¼

Fig. 2.7 Hill’s spherical vortex
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rð1=2O� xÞ2 is curl free. Coriolis forces, Fcor ¼ �2O� u per unit mass, are not

curl free and do generate circulation. This circulation can be calculated as follows.

An area of fluid A normal to the axis of rotation, in the rotating frame, has a

circulation (about an axis parallel to the rotation) in the stationary frame of

reference given by the rigid body rotation: G ¼ 2 Oj jA. If the area A has a normal

at an inclination p/2 � f to the axis of rotation (at the North Pole on Earth f ¼ p/2
and at the South Pole f ¼ �p/2), the area that determines the rotating frame

circulation is the projected area of A on the equatorial plane, Ae ¼ A sinf.
Thus, the circulation in a rotating frame of reference is given by

Grot ¼ 2 Oj jAsinf: (2.43)

This circulation is added to the circulation calculated relative to the rotating

frame of reference, Grel, to yield the circulation in the absolute frame of reference:

Gab ¼ Grot þ Grel ¼ 2 Oj jAsinfþ Grel: (2.44)

Substituting (2.44) into (2.16), one obtains Bjerknes [15] theorem:

DGrel

Dt
¼ �

Z
dp

r
� 2 Oj j dðAsinfÞ

dt
: (2.45)

Besides the baroclinic torque term discussed previously, there is a new source of

vorticity convection of fluid from high latitudes to low latitudes. Consider a part of

the atmosphere on the Earth at a latitude f1, about which there is no relative

circulation. Suppose the air is now brought barotropically to latitude f2 with no

change in area, then the mean vorticity of the air mass will alter as

ADo
Dt

¼ �2 Oj jAd sinf
dt

or o2 � o1 ¼ �2 Oj jðsinf2 � sinf1Þ: (2.46)

Counterclockwise fluid rotation (+v) is therefore enhanced in the Northern

Hemisphere as fluid moves south and the reverse occurs in the Southern Hemi-

sphere. Winds generated by this motion of the air equatorward across lines of

latitude are called “cyclonic” winds, and are associated with low-pressure regions

in the atmosphere. Coriolis force-generated circulation also plays an important part

in oceanographic currents and in turbomachinery.

2.10 Atmospheric Fluid Motion and Vorticity

Analogous to absolute circulation, there is the absolute vorticity – the sum of the

vorticity due to the rotation of the fluid itself (z) and that due to the Earth’s rotation
(f). f is known as the Coriolis parameter and varies only with latitude. Under the

conditions of nondivergent, frictionless flow, absolute vorticity is conserved and
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dðzþ f Þ
dt

¼ 0: (2.47)

For two-dimensional flow, in an atmosphere of uniform density, and conservation

of absolute vorticity, the vorticity equation becomes

d

dt
ðzþ f Þ ¼ �ðzþ f Þ @u

@x
þ @v

@y

� �
� @w

@x

� �
@v

@z

� �
� @w

@y

� �
@u

@z

� �� �

þ 1

r2

� �
@r

@x

� �
@p

@y

� �
� @r

@y

� �
@p

@x

� �� �
: (2.48)

The first term on the right-hand side arises because of the horizontal divergence.

If there is a positive horizontal divergence, air flows out of the region in question

and the vorticity will decrease. This is equivalent to the situation with a rotating

body whose angular velocity decreases when its moment of inertia increases

(angular momentum conservation). For synoptic scale (systems of 1,000 km or

more in horizontal dimension) motions, the last two terms are much smaller than

the others and to a first approximation

dh

dt
ðzþ f Þ ¼ �ðzþ f Þ @u

@x
þ @v

@y

� �
; (2.49)

where dh/dt denotes ∂/∂t + u∂/∂x + v∂/∂y.
Applying (2.49) to a constant density and temperature atmosphere using the

continuity equation for incompressible fluids, it becomes

dh

dt
ðzþ f Þ ¼ ðzþ f Þ @w

@z
: (2.50)

Because of the constant temperature, the geostrophic (small friction, small

curvature, and steady flow) wind is independent of the height z. The vorticity will

not vary with height either, because to a first approximation the vorticity is equal to

the vorticity of the geostrophic wind. Then, integrating (2.50) between levels z1 and
z2 where z2 � z1 ¼ h,

ð1=ðzþ f ÞÞdh
dtðzþ f Þ ¼ wðz2Þ � wðz1Þ

h
: (2.51)

Considering the fluid which at one instant is confined between the levels distance

h apart, then dh/dt ¼ w(z2) � w(z1) and (2.50) may be written as

dh

dtðzþ f=hÞ ¼ 0: (2.52)

This equation is a simplified statement of the conservation of potential vorticity.
It has important consequences for atmospheric flow. For example, consider
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adiabatic flow over a mountain barrier. As a column of air flows over the mountain,

its vertical extent is decreased and so z must also decrease. A westward-moving

wind will therefore move in the direction of the equator as it flows over the

mountain.

2.11 Dissipation Function, Vorticity Function,

and Curvature Function (Eddy or Vortex Motion)

Following Lamb [16], the rate of dissipation is defined as the energy expended in

deforming a small fluid element and is mathematically defined by the dissipation

function, F. For an incompressible fluid, in rectangular Cartesian coordinates,

F ¼ m 2
@u

@x

� �2

þ 2
@v

@y

� �2

þ 2
@w

@z

� �2

þ @w

@y
þ @v

@z

� �2

þ @u

@z
þ @w

@x

� �2

þ @v

@x
þ @u

@y

� �2
" #

:

(2.53)

A vorticity function, O, may be defined by taking the scalar product of the

vorticity vector with itself. This function is used as a measure of vorticity:

O ¼ o � o ¼ @w

@y
� @v

@z

� �2

þ @u

@w
� @w

@x

� �2

þ @v

@x
� @u

@y

� �2

; (2.54)

where v is the vorticity vector. It can be shown [17] that F and O are mathemati-

cally independent functions; that is, dissipation is independent of vorticity.

A function called the K-function has been proposed as a measure of vortex

motion [17]. It is not clear whether it is, indeed, a local measure of the physical

phenomenon known as an eddy or vortex motion. It has been shown that it is a

measure of curvature and that it does have significance in fluid dynamics.

Requirements laid down for the function were that

1. It is zero for any straight translational motion, but is nonzero for any motion with

rotation.

2. It is zero for an irrotational vortex, for rigid rotation, and for the Hagan–Poiseuille

flow in a straight conduit.

This arbitrarily defined function is expressed in rectangular Cartesian

coordinates as

K ¼ @w

@z

� �
@v

@y

� �
� @w

@y

� �
@v

@z

� �� �
þ @u

@x

� �
@w

@z

� �
� @u

@z

� �
@w

@x

� �� �

þ @v

@y

� �
@u

@x

� �
� @v

@x

� �
@u

@y

� �� �
: (2.55)
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It has been shown that the rate of dissipation is a linear combination of vorticity

and the K-function:

F ¼ m½O� 4K�: (2.56)

where m is the fluid viscosity.

This equation indicates that a flow for which K is zero (the curvature is zero) has

dissipation proportional to its vorticity. It also shows that a real fluid in motion

may be dissipating energy in spite of the absence of vorticity. More importantly, it

implies that if a flow has vorticity and has no dissipation, it must also have curvature.

Goertler [18–20] attached considerable significance to the curved flow condition

shown in Fig. 2.8. He concluded that the concavity of the wall stabilizes the flow

and convexity of the wall destabilizes the flow, and that the critical condition is that

the streamlines be concave in the direction of increasing velocity. When such a

condition exists, he predicted that longitudinal vortices would form [21]. By using

the x–y coordinate system shown in Fig. 2.8 and assuming ∂v/∂y is zero, it is seen
that the K-function is another way of expressing this condition.

Goertler in effect requires that the K-function be negative. If ∂u/∂y is zero, the
K-function is zero; if the streamlines are not curved, the K-function is zero. If

the streamlines are convex in the direction of increasing velocity gradient, the

K-function is positive. The K-function appears to provide a mathematical measure

of the Goertler criterion.

2.12 Generation of Vorticity in a Viscous Boundary Layer:

Precursor to Turbulence

A boundary flow will now be considered with the object of elucidating the way in

which the vorticity associated with a velocity gradient can be changed into distinct

vortices (eddies), as an initial step in the transition to turbulence. The steady two-

dimensional flow of an incompressible fluid over a cylinder, neglecting gravity, will

serve as the specific flow. A qualitative approach will be adopted. It will be initially

Direction
of flow

Fig. 2.8 Goertler vortices
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assumed that the Reynolds number, defined by Re ¼ rRU/m, where R is the

cylinder radius and U is the free stream velocity, is small. The no-slip condition

results in a boundary layer at the cylinder surface (Fig. 2.9). Flow outside this

boundary layer is effectively inviscid since velocity gradients vanish. If U is small,

so that velocity gradients within the boundary layer are small, the flow here is also

approximately inviscid.

Streamlines around the cylinder are compressed. Generally, they converge

between A and B and diverge between B and C. As the fluid is approximately

inviscid, the fluid pressure along a streamline decreases between A and B and

increases between B and C. The negative pressure gradient between A and B is

transformed to kinetic energy and the flow accelerates; with a positive pressure

gradient between B and C, the flow decelerates. A constant total pressure (static

plus dynamic) along the streamline is maintained. As Re increases, streamlines are

increasingly compressed and velocity gradients in the boundary layer become

larger. Viscous resistance to shear within the layer becomes significant. Energy is

+ +A
B

C

Fig.2.9 Vorticity in flow

over a cylinder

a

b

Fig. 2.10 Eddies shed from the cylinder
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thereby extracted from the as heat. As a consequence, the fluid in the boundary layer

arriving at B does not have sufficient kinetic energy to overcome the adverse

pressure gradient between B and C, so that fluid close to the cylinder stalls at

some point between B and C. The adverse pressure gradient at this point can induce
reverse flow close to the cylinder and provide the onset of concentrated vorticity in

the lee of the cylinder (Fig. 2.10). The inviscid part of the flow is displaced outward.

Thus, the flow is said to “separate” around the site of concentrated vorticity. The

shear associated with this separation increases the rotational motion of the fluid next

to the cylinder, and this region may become a distinct entity of rotating fluid – an

eddy. The eddy, through shear with the surrounding fluid, will further extract

energy from the main flow.

The eddies are shed from the cylinder and move downstream with the main flow.

Shedding occurs with a regular frequency at low-to-moderate Re values. Eddies

enlarge and then are shed alternately from either side of the cylinder. This pattern of

regularly spaced eddies moving downstream is referred to as a Von Karman vortex

street. This pattern of flow is a precursor to turbulence insofar that with further

increase in Re, shedding becomes irregular, the eddy wake becomes disorganized,

and a complex velocity field emerges.

2.13 Typical Vorticity Distributions

The first example will be the external flow over an airfoil (see [14]). It will be

assumed that the Reynolds number is large and the flow is two dimensional (so that

the vorticity vector is always perpendicular to the velocity) – see Fig. 2.11.

y

x

z

dp
dx

( )

(+)

dp
dx wz

wz

Wake

Fig. 2.11 Vorticity distribution in flow over an airflow
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A local coordinate system with y ¼ 0 on the surface of the airfoil and x in the

flow direction is chosen. Vorticity diffusion will be primarily normal to the wall. A,
the stagnation point so that the positive x-axis is on the upper surface. Curvature

will be ignored in this qualitative treatment. The stagnation point is a point of zero

shear and hence zero vorticity (Fx viscous ¼ m ∂u/∂y ¼ �moz, see [14], where F is

the shear stress). As the flow accelerates away from the stagnation point on the

upper surface, the shear stress becomes positive and the vorticity becomes negative.

In this region, the pressure drops and there is a flux of negative vorticity away from

the wall: msz ¼ �m@oz=@y ¼ @p=@x<0 where sz is the vorticity flux in the z
direction. The surface is a source of negative vorticity. Near the front of the airfoil,

the pressure reaches a minimum and then slowly increases as the trailing edge is

approached. In this region, ∂p/∂x is positive and the wall in effect absorbs negative
vorticity from the flow. The wall flux is positive–negative vorticity diffuses toward

the wall. The maximum vorticity now occurs within the flow, as the sign of ∂oz/∂y
is negative at the wall. The process continues until the trailing edge is reached.

On the underside of the airfoil, similar processes occur, but the x coordinate now
decreases in the flow direction and the signs of the events change. The pressure

gradient that accelerates the flow generates positive vorticity, while the decelerating

pressure gradient absorbs positive vorticity. At the trailing edge, the upper and

lower streams merge. There is a discontinuity at this point that is washed out as the

flow proceeds downstream. The negative vorticity from the upper surface and

the positive from the lower merge into the wake. These regions in merging destroy

the wake. Assuming vorticity has not diffused very far from the surface at the

trailing edge, one can show that the net vorticity across the wake is zero:

mean oz at trailing edge =

Z du

dl
ozdy ¼

Z du

dl

@u

@y
¼ ðuÞdudl ¼ 0:

It can also be shown that [14] the net flux of vorticity from the surface of the

airfoil is zero. However, there is a net vorticity within the flow. Integrating the

vorticity in the region outside the airfoil to a radius R and then letting R ! 1, it is

found that,
R
ozdA ¼G – a finite number equal to the circulation. The net nonzero

Fig. 2.12 Starting vortex
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vorticity is inserted into the flow during the transient process by which the flow is

established. In the transient process, the flow does not leave the trailing edge

smoothly and the “starting vortex” is formed. Figure 2.12 illustrates a starting

vortex formed by impulsively moving the airfoil.

The starting vortex contains the same net amount of vorticity as the airfoil but

with opposite sign. A circulation loop around the airfoil and including the starting

vortex has G ¼ 0.

The second example will be that of flow through a channel connecting two

reservoirs at different elevations – see Fig. 2.13. Consider that initially the fluid is at

rest as the exit from the channel is sealed off.

The pressure in the channel is uniform and high. If the seal is rapidly removed, a

pressure wave passes through the channel at the speed of sound – much higher than

fluid velocities. Instantaneously, a linear pressure gradient is set up in the channel.

The stationary fluid has o ¼ 0 and the pressure forces do not create vorticity. The

initial pressure gradient is constant and is required to accelerate the fluid. The

momentum equation is

r
@ux
@t

¼ � @p

@x
� m

@oz

@y
¼ � @p

@x
� msz: (2.57)

The viscous force has been expressed in this equation as a flux of vorticity. The

initial vorticity is zero, but there is a flux of vorticity at each wall:

� @p

@x
¼ msz 0j ; (2.58)

where sz ¼ ∂oz/∂y.
The final state will depend on the competing pressure and viscous effects.

p
t=0

t 0

t= 8
Fig. 2.13 Vorticity generation in channel flow
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Viscous timescale, tvis: this is the time taken for vorticity to diffuse

halfway across the channel of width d. The Rayleigh analogy will be used, so that

tvis ¼ (2d)2/(3.6uA) where n is the kinematic viscosity of the fluid (see [14], p. 347).

For d ¼ 10 cm and an airflow, tvis is about 60 s (kinematic viscosity ¼ 0.15 cm2/s).

For a viscous vegetable oil, n ¼ 1.1 cm2/s and tvis ¼ 7 s.

Suppose the flow is very fast, so that Re ! 1 with d/L finite. In this situation,

the vorticity flux term in (2.57) is zero except near the walls. Most fluid particles

traverse the channel so fast that vorticity diffusion has no effect on them.

Particles start with no vorticity in the upstream reservoir and traverse the channel

in irrotational flow. Vorticity is confined to a small region near each wall. After the

pressure gradient generates new vorticity it diffuses only a short distance from the

wall before convection moves it downstream and into the exit reservoir.

2.14 Vorticity in a Compressible Fluid

There are several unique features of vorticity in a compressible fluid. The first is

that a vortex may develop a vacuum in the core if the strength is enough to

centrifuge fluid away from the center of the vortex. Another is vorticity enhance-

ment by fluid compression, represented by the second term in the vorticity equation

(2.19), v(∇�u).
A third unique feature was revealed by Crocco’s work [22]. Starting with the

momentum equation (2.18) for an inviscid fluid without body forces,

@u

@t
þr u � u

2

� �
� u� o ¼ 1

r

� �
rp: (2.59)

Using the Gibbs equation [23] for the entropy, density and pressure may be

eliminated from this equation:

Tds ¼ dh� 1

r

� �
dp; (2.60)

where T is the temperature, h is the specific enthalpy, and s is the specific entropy.
Equation (2.60) can be written as

Trs ¼ rh� 1

r

� �
rp: (2.61)

Substituting (2.61) in (2.59) gives Crocco’s equation:

u� oþ Trs ¼ rh0 þ @u

@t
; (2.62)
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where h0 is the stagnation enthalpy, h0 ¼ h + 0.5u�u.
It has been shown that [24] for steady adiabatic flow of an inviscid without body

forces, h0 is constant along streamlines. The vector∇h0 is, therefore, perpendicular
to the streamlines, as is the vector u � v (first and third terms in (2.62)). The term

T∇s must therefore also be perpendicular to the streamlines. If it is further

stipulated that all fluids originate from a constant stagnation enthalpy region, so

that ∇h0 ¼ 0, then u � v and T∇s must be collinear vectors and (2.62) becomes

uj j oj j þ Tds

dn
¼ 0; (2.63)

where n is perpendicular to the streamlines, in the direction of u � v. This shows

that if s is constant, jvj must be zero. In other words, isentropic flows are irrota-
tional (for steady inviscid flows without body forces and with constant h0). Thus, if
such a specific flow is also isentropic, the well-developed theory of irrotational flow

may be used to determine the flow field. If the assumption of isentropicity cannot be

made, generally closed form solutions cannot be found and numerical methods

must be resorted to.

2.15 Vorticity and the Electromagnetic Analogy

There is a close analogy between [25] calculations involving vortices (in a nonvis-

cous fluid, or superfluid) and calculations involving current filaments in a magnetic

field.

This analogy is of particular importance in astrophysical hydrodynamics.

In electromagnetism (mks units),

r � B ¼ 0;

I
B � dl ¼ mI; WB ¼ B2

2m
; (2.64)

where B is the magnetic field intensity, dl is an element of a filament, I is the current
in the filament, m is the permeability of the surrounding medium, and WB is the

magnetic field energy density. Now the hydrodynamic equations for a vortex field

are as follows:

r � v ¼ 0;

I
v � dl ¼ G; W ¼ rv2

2
; (2.65)

where v is the velocity vector, G is the vortex strength(circulation), r is the fluid

density, and W is the velocity field energy density. Equations (2.64) and (2.65) are

equivalent with the substitutions:

B

m
! v; I ! G; m ! r: (2.66)

Recapping, the evolution equation for vorticity was
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@o
@t

¼ nr2oþr� ðv� oÞ; (2.67)

where v ¼ ∇ � v and n is the kinematic viscosity.

Note that ∇�v ¼ 0 analogous to the magnetic flux condition � ∇�B ¼ 0.

Batchelor has argued that magnetic fields can be generated by vortex-dominated

turbulence. There is then a “magnetic viscosity” �, analogous to the fluid viscosity,
leading to a newdimensionless number – themagnetic Reynolds number – defined by

ReM � Ul

�
:

As vorticity leads to dissipative processes, in the case of turbulence one would

expect that magnetic dissipation will be larger than the ohmic rate. This was first

discussed by Spitzer [26] in connection with the magnetic fields of stellar interiors.

It turns out that a frequently encountered field in astrophysical plasmas is the

force-free field. The solar corona is one such example. The magnetic helicity is

defined as

HM �
Z

B � AdV; (2.68)

where A is the vector potential, and B ¼ ∇ � A (cf. v ¼ ∇ � v). The magnetic

helicity is a very important entity in that it is minimal for a force-free field. Just like

vorticity, it can be used to determine the field.

The equation for the field evolution with magnetic viscosity is given by

@B

@t
¼ r� ðv� BÞ þ �r2B: (2.69)

For magnetic fields, the last term is the same as ��∇ � (∇ � B).

An equation for the vector potential A is obtained by removing the curl from this

equation:

@A

@t
¼ v� B�rF� �r� B: (2.70)

The scalar products of (2.69) with A and of (2.70) with B are taken, added, and

the remaining terms integrated over volume. This leads to an evolution equation for

the magnetic helicity:

@

@t

Z
A � Bdx ¼ ��

Z
ðr � AÞ � ðr � BÞdx

� �

Z
ðr � BÞ � Bdx ¼ �2�

4p
c

� �Z
J � Bdx; (2.71)
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where B ¼ ∇ � A and ∇ � B ¼ (4p/c)J.
This equation states that the evolution of magnetic helicity in a fluid is driven by

dissipation and that if B is parallel to J the magnetic field decays; otherwise, it

increases. Also, in a fluid with � ! 0, the magnetic field is a conserved quantity.

Just as in the case of vorticity in a fluid, the magnetic helicity serves as a topological

tool for understanding the dissipative mechanisms and the instabilities of the fluid.

Magnetic field lines tangle, merge, split, and eventually decay.

2.16 Quantization of Circulation and Vorticity

The description of a superfluid in terms of a single wave function, cj j exp(iS),
where S is the phase function, leads to the following superfluid current equations:

js ¼ h

2p

� �
cj j2rS ðHeII; superfluidÞ; (2.72)

Je ¼ eh

2pm

� �
cj j2rS� 2e2

m

� �
cj j2A: (2.73)

The mass current density js is used for He II and the electric current density Je for
the superconductor (valid for cubic superconductors only [27]).

Consider He II in an annular region between two concentric cylinders (a multiply

connected region), as depicted in Fig. 2.14.

The temperature is absolute zero, so that the He II is a pure superfluid.

To determine the flow pattern, consider the circulation

G ¼
I

vs � dl; (2.74)

r=n h
m

Fig. 2.14 Helium II between

two concentric cylinders
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where vs is the velocity of the superfluid and the integral is taken around any

contour wholly within the fluid. Equation (2.72) implies [27] and the superfluid

equation can be written as

vs ¼ h

2pm4

� �
rS; (2.75)

where m4 is the atomic mass of the 4He atom, and so it is possible to express the

circulation in terms of the wave function phase S:

G ¼ h

2pm4

� �I
rS � dl: (2.76)

For the circle 1 in Fig. 2.14, the circulation is:

G ¼ h

2pm4

� �
ðDSÞ1: (2.77)

Since the superfluid is single valued, a traverse around a closed contour must

leave it unaltered, so that the change in S can be only an integral multiple of 2p or

zero. From (2.77) it can be seen that the circulation (and hence the vorticity) is

quantized, with the values

G ¼ n
h

m4

� �
where n ¼ 0; 1; 2; (2.78)

h/m4 is known as the quantum of circulation and has the value 9.98 � 10�8 m2/s.

Vinen [28] was the first to experimentally demonstrate that circulation is quan-

tized in He II. The apparatus is sketched in Fig. 2.15 and consisted of a cylindrical

Fig. 2.15 Rotating drum with superfluid in it
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container with a fine conducting wire stretched along its axis. The He II filling the

container thus occupied a multiply connected region.

Whenfluid is encircling thewire and thewire is vibrating, theMagnus force induces

circular motion in the wire. The circulating fluid is dragged along with the wire

A solid cylinder, around which there is a fluid circulation, experiences a force –

the Magnus force – when it moves through the fluid (see Fig. 2.16).

Treating the superfluid as an ideal Euler fluid, the Magnus force on the wire in

Vinen’s experiment is given by

fM ¼ rsG� V; (2.79)

where V is the wire velocity relative to the superfluid outside the circulation and G
is the vector indicating the sense and strength of the circulation.

The wire was placed in a magnetic field and transverse vibrations excited by

passage of an AC electric current through it. When the surrounding liquid is not

rotating, the normal modes of the wire are two plane polarized waves at right angles

to each other and with the same frequency. When the superfluid circulates smoothly

around the wire, the latter is acted upon by the Magnus force, causing both planes of

vibration to process. The normal modes of the wire can now be viewed as circularly

polarized in opposite directions, with frequencies differing by Dn ¼ rsG/2pW
where W is the sum of the mass per unit length of the wire plus half the mass of

the fluid displaced by this length. The difference Dn appears as a beat frequency of

the voltage induced in the wire and this provided a direct method of measuring the

circulation G.

2.17 Quantized Vortices in He II

Rotation of the superfluid: when the two-fluid model of He II was first suggested, it

was believed that it would be difficult to set the superfluid fraction into rotation

because superfluid flow was characterized by the irrotationality condition introduced

by Landau [29]:

Lift Force

V

Fig. 2.16 The Magnus force

is the perpendicular lift force

on the wire when it and the

vortex are dragger at

velocity V
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r� vs ¼ 0: (2.80)

Consider He II contained in a cylindrical bucket and the contour 2 – see

Fig. 2.17.

By Stokes’ theorem, the circulation around the contour 2 can be written as an

integral over the surface A enclosed by the contour:

G ¼
I

2vs � dl ¼
Z

Aðr � vsÞ � dA: (2.81)

Combining (2.80) and (2.81),

G ¼
I

2vs � dl ¼ 0 (2.82)

Thus, the circulation for any contour in the continuous fluid is zero. If (2.82)

holds everywhere in the superfluid, rotation is not possible. But it only holds if vs
is zero at every point. This state of He II from which superfluid rotation is

completely absent is called the Landau state. The rotation of the superfluid can be

explained by assuming that it is threaded by parallel straight vortex lines – see

Fig. 2.17. It has been explained above how one can have a circulation around a

region from which the superfluid is excluded. Contours that enclose a solid obstacle

or a vortex core (cf. Contour 1 in Fig. 2.14) yield a quantized circulation:

G ¼
I

1vs � dl ¼
I

Aðr � vsÞ � dl ¼ nh

m4

: (2.83)

Note: the core of the vortex is defined by that region in which curl vs 6¼ 0.

Top viewSide view

Fig. 2.17 Array of quantized vortices in a rotating bucket. Some vortices are missing near the

outer edge
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The earliest suggestion that vorticity should play an important role in superfluid

hydrodynamics is credited to Onsager [30].

Vortex lines in rotating He II:

It can now be explained how, in Osborne’s [31] rotating bucket experiment,

the presence of a uniform array of vortex lines enables the superfluid to undergo

solid-body rotation. Suppose there are nv vortex lines per unit area of the bucket, all
with their cores parallel to the axis of rotation (Fig. 2.17) and each with the same

circulation G, represented by an axial vector of magnitude G pointing in the

direction consistent with the sense of rotation. The strength of the array is specified

by the vorticity ϖ, defined to be equal to the total circulation within unit area

ˆ ¼ nvG: (2.84)

From (2.81) it can be seen thatϖ can be identified with the average value of curl

vs. When curl vs is nonzero it indicates the presence of vortices. In the bucket the

total circulation enclosed by a contour of radius R centered on the axis is pnvR
2G.

For the superfluid to appear to rotate with uniform angular velocity O, the total

circulation must also be equal to 2pR(RO). Thus, the condition for the simulation of

solid-body rotation is that the vortex-line density is

nv ¼ 2O
G

: (2.85)

Alternatively, this can be used to determine the required vorticity,

ˆ ¼ r� vs ¼ 2O: (2.86)

Hall [32] has shown that the ground state of He II contains a regular array of

vortex lines all having the smallest possible circulation h/m4 and with a maximum

total number of lines. Viewed from a frame rotating with the container, the equilib-

rium vortex array is a triangular lattice. It can be shown [27, p. 186] that the critical

angular velocity for the formation of one vortex with minimum circulation is

Oc1 ¼ h

2pm4R2
0

� �
ln

R0

a0

� �
(2.87)

For a typical value of R0 of 1 cm, Oc1 � 10�3 rad/s. Thus, it is easy for vortex

lines to appear.

For sufficiently low angular velocities of the container (O 	 Oc1), the equilib-

rium state of the superfluid is the Landau state as described earlier. The Landau

state was observed by Hess and Fairbank [33] in an experiment in which liquid 4He

was cooled through the l point while inside a rotating cylinder made from a closed

capillary tube. Above Tl, the He I was in solid-body rotation. On starting from rest,

provided the cylinder was rotated slowly enough, it was found that the superfluid

formed in a state of zero angular momentum relative to the laboratory. Packard and
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Sanders [34] have developed a method of counting vortex lines that exploits the

trapping of electrons on vortex cores. This was used to demonstrate that a small

amount of vorticity could be detected for up to 30 min after the container was

brought to rest. This highlighted an important aspect of vorticity: the persistence of
vorticity.

A single electron self-trapped inside a cavity whose size is fixed by a balance

between the outward pressure due to the zero-point motion of the electron and the

inward pressure of the surrounding liquid is known as a negative ion, and can be

trapped on the cores of vortex lines. The positive ion, which can also be trapped on

vortex lines, is a “snowball” consisting of an a particle to which several neutral 4He
atoms are bound electrostatically. It has been shown that [35] the motion of ions in

He II can create quantized vortex rings, which become coupled to the ions. The

mechanism by which a bare ion nucleates a vortex ring in He II and then becomes

trapped on it is unknown. The solution of this problem will probably cast light on

the creation of vorticity on a microscopic scale. This knowledge is required in order

to understand the breakdown of superfluidity through the agency of vorticity.
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Chapter 3

The Nanoboundary Layer and Nanovortex Core

3.1 Introduction

In this chapter, nanoscalefluidflowregionswith intensevorticitywill be considered– (1)

the nanoboundary layer within 100 nm of a solid surface over which fluid is

flowing and (2) the nanovortex core within 100 nm of the vortex center. In such

regions, the kinetic theory of fluids must be used to predict the physical

properties of the fluid, and the fluid has intense vorticity, or molecular spin.

3.1.1 Importance of the Nanoscale

One nanometer is 10�9 m or 10 Å. It is 10,000 times smaller than the diameter of a

human hair. One cubic nanometer is approximately 20 times the volume of a single

atom. Figure 3.1 shows various size ranges for different nanoscale objects, starting

with small entities such as ions, atoms, and molecules. The size ranges of a number

of nanotechnology-related objects (such as quantum dot, nanotube, and single-

electron transistor diameters) are also shown in Fig. 3.1. It is obvious that

nanoscience, nanoengineering, and nanotechnology all deal with very small objects

and systems. Our ability to control and manipulate nanostructures and nanosystems

will make it possible to exploit the new physical, biological, and chemical

properties of systems that are intermediate in size between single atoms, molecules,

and bulk material. Some of the reasons why nanoscale has become so important are:

1. The quantum mechanical (wavelike) properties of electrons inside matter are

influenced by variations on the nanoscale.

2. Nanoscale components have very high surface to volume ratio, making them

ideal for use in composite materials, reacting systems, drug delivery, and

chemical energy storage.

3. Macroscopic systems made up of nanostructures can have much higher density

than those made up of microstructures. They can also be better conductors of

P. McCormack, Vortex, Molecular Spin and Nanovorticity: An Introduction,
SpringerBriefs in Physics, DOI 10.1007/978-1-4614-0257-2_3,
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heat and electricity. This can result in new electronic device concepts; smaller

and faster circuits; and greatly reduced power consumption and energy

dissipation.

The vortex core is a flow region characterized by streamline curvature and

uniform vorticity. It rotates as a rigid, or solid, body. It will be shown in this

paper, that to be self-consistent thermodynamically, the macroscopic rotation must

be accompanied by concomitant internal rotation of the molecules in the core fluid.

This is true for two-dimensional vortices (rectilinear) and three-dimensional vorti-

ces (ring). It will also be true for the helical vortices in the shear layer at fluid/wall

interfaces.

Solid-body rotation implies that although there is vorticity in the core, there is no

shear viscosity (or internal energy dissipation). The surrounding irrotational fluid

has no vorticity, but has shear viscosity. Through interaction with the boundary of

the core, energy dissipation occurs there.

This produces a region in which vorticity and dissipation are present. The layer

grows deeperwith time and the core size is correspondingly reduced.Thediscontinuity

  Ionic Range   |     Molecular Range  | Macromolecular Range | Micro Range          

       1nm      10 nm          100 nm                    1000 nm

| Nanotube | |        Virus    |        Bacteria |

|   Diameter  | |

|  Q-dots in Laser     |       |Red Blood Cell|  

      | GMR Layers|  

        | SET | 

            ·

<-ST Microscope->  <--    SE Microscope     -->      <- Optical Microscope->

            -

SET: Single Electron Transistor      GMR: Giant magnetoresistive 

Q-DOTS : Quantum dots                 SE: Scanning Electron 

ST: Scanning Tunneling. 

--------------------------------------------------------------------------------------------  

Fig. 3.1 Size ranges for nanoscale objects
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in the first derivative of the fluid velocity is thereby removed. At any point within a

volume V of a continuum, it can be shown that

eijkskj ¼ 0; (3.1)

where eijk is the permutation symbol and skj is an element of the stress tensor at that

point. This implies that the stress tensor is symmetrical, i.e., sij ¼ sji.
It is true, however, only in the absence of a “body couple” of order V (for example,

the couple exerted on a polarized dielectric medium by an external electric field).

The torque on a fluid element exerted by the surrounding fluid is proportional

to the antisymmetric part of the stress tensor and remains finite as the fluid element

is reduced to a point. To avoid the nonphysical situation of a finite force (or moment

thereof) acting on an element of infinitesimal inertia, one must conclude that the

antisymmetric part of the tensor vanishes identically. This limiting operation,

however, has no physical significance. The concept of a torque acting on a point

is meaningless. Thus, a continuum mechanics that excludes body couples cannot be

expected to determine the physical properties of the vortex core. It does predict that

a fluid flow, in which there is vorticity and no energy dissipation, must be curved.

Molecular kinetic theory (nanofluidics) and thermodynamics are not limited in

this way. It can be shown that the thermodynamic internal energy E, a good physical
variable, is a function of (among other parameters) the difference between the rate

of angular displacement of the molecule (y) and half the curl of the rate of positional
displacement (S):

E ¼ E y� 1

2

� �
r� S

� �
: (3.2)

Curl S corresponds to a uniform solid-body rotation of the system. In a diatomic

system (1/2) curl S corresponds to a uniform rotation of the molecular mass centers.

But E must be invariant under this transformation of coordinates. For a diatomic

medium, it is only when y � (1/2)∇ � S ¼ 0 that the rotation of the mass centers

is balanced out by a concomitant rotation of the molecular axes. It is only for a

motion of this kind that E is independent of ∇ � S. Thermodynamics requires,

then, that there must be a direct relation between macroscopic (local) fluid rotation

and molecular rotation (or spin).

It will be shown in this paper that the kinetic theory of a dilute gas (two particle

collisions only) of rotating molecules in a vortex core (with matching macroscopic,

or local, rotation) predicts a polarization of the internal molecular rotations about

the local rotation axis – a Barnett effect [1]. In such a spin-aligned system, or

nanosystem, changes in the physical properties of the fluid result. Electric polariza-

tion, coefficient of heat conduction, and optical properties of the fluid in the vortex

core will be considered.
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In 1971, the author [2] measured the flame speed in vortex rings formed from a

premixed composition of propane and air. The average flame speed was determined

to be 300 cm/s – about ten times the laminar flame for the mixture. This can be

explained by an enhanced coefficient of heat conduction in the vortex core, as will

be established here.

3.2 Kinetic Theory of the Vortex Core Gas

The gas in a vortex core then consists of rotating molecules (in the classical sense).

Waldman [3, 4] has derived a kinetic theory for a dilute gas (two particle collisions

only) of rotating molecules. In the presence of irreversible processes such as

diffusion or heat conduction, partial polarization (or alignment) of the molecular

axes can be shown to occur. By an extension of this theory, it can be shown that in

the presence of local rotation (macroscopic) polarization of the molecular rotational

axes occurs along the local rotation axis ([1]: Barnett polarization). A brief review

of Waldman’s theory will now be presented.

A dilute gas of molecules that can translate and rotate is considered. The

dynamic state of such a gas is described by the one-particle distribution function:

f ¼ f ðt; r; v;wÞ; (3.3)

where v is the translational velocity vector, w is the angular velocity of rotation

vector, r is the position vector, and t is the time.

The dynamics of the system (in the absence of an external force) is governed by a

Boltzmann transport equation of the type,

@f

@t
þ v � @f

@r
þ oðf Þ ¼ 0; (3.4)

where o(f) � �(∂f/∂t)coll is a linear collision operator.

If f0 is the precollisional function and f the postcollisional, then the operator can

be shown to have the following form:

wðf Þ ¼ nsR
2

Z
ðf � f 0Þv � kd2k; (3.5)

where ns is the concentration of molecules, R is the effective scattering radius, and k
is the unit vector lying along the line segment from the center of the scattering circle

to the exit point of the molecule. For small deviations from thermal equilibrium,

one can write

f ¼ f0ð1þ FÞ; (3.6)
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where f0 is the equilibrium distribution function. Defining the dimensionless

parameters,

V ¼ ½pðm=2kBT0Þ�v; (3.7a)

W ¼ ½pðY=2kBT0Þ�w; (3.7b)

where kB is Boltzmann’s constant, m is the molecular mass, andY is the molecular

moment of inertia about the rotation axis, then

F ¼ FðV;WÞ: (3.8)

As a basis set for V, W space, the eigensolutions for coupled harmonic

oscillators are taken. These form the Clebsch–Gordon series and have the form,

Fn
LMlðV;WÞ ¼ SmC(LlMm)Fn

lmðVÞFn
lmðWÞ: (3.9)

Depending on the values of N ¼ l + 2n and l, these are scalars, vectors or

pseudo-vectors, and Cartesian tensors or pseudo-tensors (parity (�1)l and (�1)l+1,

respectively). For example,

N ¼ 0, l ¼ 0 gives the scalar F(0) ¼ 1

N ¼ 1, l ¼ 1 gives the vector Fð1Þ
m ¼ ðp2ÞVm

gives the pseudo-vector Cð1Þ
m ¼ ðp3=w0ÞWm

where w0 ¼ pð3kBT0=YÞ
N ¼ 2, l ¼ 2 gives the tensor Fð1Þ

mn ¼ ½VmVn � ð1=3ÞV2dmn�
gives the pseudo-tensor Cð1Þ

mn ¼ ð1=w0ÞhhVmVnii

where h ih i implies the symmetric vanishing trace and m, n ¼ 1, 2, 3 correspond to

Cartesian components and are determined by the various products of the unit

vectors or tensors Fn
lmðVÞ and Fn

lmðWÞ.
The distribution function is expanded in terms of these scalars, vectors, and tensors:

f ¼ f ð1þ FÞ ¼ fo½1þ SkðFðkÞaðkÞ þ cðkÞbðkÞ þ aðkÞm FðkÞ
m þ b

ðkÞ
m C

ðkÞ
m þC

ðkÞ
mnb

ðkÞ
mn þ . . . . . .Þ�:

(3.10)

Multiplying this equation across by F(i), C(i), etc., integrating in v, w space and

using orthogonality relations for mean values of the tensor products, the coefficients

a(k), b(k), a
ðkÞ
m , . . ., etc. can be evaluated. These can be identified with well-known

physical parameters of the system. For example,

að1Þ ¼ n� n0
n

) variation of particle density, (3.11)
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bð1Þ ¼ ðp3nÞhv � wi=n0v0w0 ) longitudinal spin, (3.12)

að1Þm ¼ ðp3Þj=n0v0;

where j ¼ nhvi ) gas velocity� this is a polar vector, (3.13)

bð1Þ ¼ ðp3Þnhwi=n0w0 ) vector polarization� this is a pseudo - vector, (3.14)

hhað1Þii ¼ 3p
2

n

n0v02

� �
hvmvn � 1

3

� �
v2dmni ) friction tensor, (3.15)

hhað2Þii ¼
p
15

2

n

w0
2n0

� �
hhwmwnii ) tensor polarization: (3.16)

3.3 Effect of Local (Macroscopic) Rotation of the Gas

To account for this, a term must be added to the equation of motion for wh i, which
will give the Barnett effect for local thermal equilibrium. It will be found that the

correct antisymmetric part of the pressure tensor now appears in this equation. This

term must be added to the pressure tensor in the conservation equation for momen-

tum. No other changes are necessary in the system equations.

Consider the equilibrium distribution function f0o of a gas rotating as a rigid

body with angular velocity v,

f0o / exp� b
1

2

� �
mv2 � ðlþ IoÞ � o

� �
; (3.17)

where v is the particle velocity in the laboratory system, l ¼ r � mv is the orbital

angular momentum of a particle (r ¼ 0 is a point on the axis of local rotation), and

Iv is the internal angular momentum of the particle.

The distribution function is

f0o ¼ n0ðrÞ mb0
2p

� �
exp � 1

2

� �
b0½mðv� voÞ2 þ Iw � o�

� �
; (3.18)

where

n0ðrÞ ¼ Nexp½ð1=2Þb0mvoðrÞ2�R
d3r0exp½ð1=2Þb0mvoðr0Þ2�

; (3.19)
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and N is the total number of particles. Using this distribution function and carrying

out the integrations in v, w space, the following expression for the mean angular

velocity of the particles is obtained:

hwi0o ¼ w2
0b0Io ¼ 1

2

� �
w2
0b0r� hvi0o; (3.20)

where

2o � r� hvi0o:

One sees that the particles (or molecules) are aligned along the direction of the

axis of local (solid-body) rotation and that there is a unique relation between the

mean particle angular velocity and the local angular velocity.

This is a linear approximation and at this level of approximation there will be no

alignment of wmwn
� 	� 	

or higher spin tensors, as these would be at least quadratic

in v. Thus, only the transport equations for a(1) (proportional to the velocity) and

b(1) – the vector polarization or dipole density (proportional to the angular velocity)
– will have to be changed.

The transport equation for b(1) will be considered here.

In the (3.14) for b(1), the term oð11Þ
þ1 b

ð1Þ
m is the relaxation term for wh i. A Barnett

term must be subtracted from this. The term will be of the form

r� v or r� að1Þ ¼ emln
@a

ð1Þ
l

@xn

 !
:

For dimensional homogeneity, this must be multiplied by a constant (l0) with the
dimensions of length and the form which is chosen is

1

2

� �
l0emln

@a
ð1Þ
l

@xn

" #
:

It is easily shown that l0 is given by

l0 ¼ w0v0Ib0: (3.21)

The equation for b(1) becomes

@bð1Þm =@tþ ðv0=3Þ@bð1Þm =@xm � ðv0=p6Þemnl@að2Þ
l =@xn þ ðv0=3Þ@bð1Þmn =@xn

þ oð11Þ
þ1 ½bð1Þm � l0=2ð Þemnl@að1Þl =@xn� þ S3

k¼2o
ð1kÞ
þ1 bðkÞm ¼ 0: (3.22)
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This equation can be written in terms of the mean angular velocity, which

(omitting the sum term) is as follows:

n0I@hwmi=@tþ @Wmn=@xn þ n0o
ð11Þ
þ1 ½Ihwmi � ðml20=2Þemnl@hvli=@xn� ¼ 0: (3.23)

Wmn is the spin flux tensor and is given by

Wmn ¼ n0p
3

� �
Iw0v0

1

3

� �
bð1Þdmn � 1

6

� �
emnla

ð2Þ
l þ 1p

3

� �
bð1Þmn

� �

¼ n0I
1

3

� �
hv � widmn � 1

2

� �
hvmwn � vnwmi þ hhvmvnii

� �

¼ n0Ihwmvni: (3.24)

The complete pressure tensor may be written as

pmn ¼ nkTdmn þ fpmng þ ½pmn�; (3.25)

where the first term is the hydrostatic pressure, {pmn} is the antisymmetric part, and

[pmn] is the symmetric part.

Now

hhpmnii ¼
p
2

3

� �
v20mna

ð1Þ
mn ; (3.26)

where a
ð1Þ
mv is the shear friction tensor. But there is no shear in the vortex core and so

this is zero. Thus, there is no contribution to pmn from the symmetric part. Also, due

to the conservation of total angular momentum,

emnl
n0I@hwli

@t
þ @Wmn

@xn

� �
¼ 2hhpmnii ¼ pmn � pnm: (3.27)

Comparing with (3.23) one sees that

hhpmnii ¼ ð�1=2Þn0oð11Þ
þ1 ½emnlIhwli � ml20@hhvnii=@xm�; (3.28)

where

@hhvnii
@xm

¼ 1

2

� �
@hvni
@xm

� @hvmi
@xn

� �
: (3.29)

Thus, when the polarization equals the local Barnett polarization, pmn vanishes,
and there is no shear or bulk viscosity contribution to the pressure tensor. The only

pressure contribution is due to the hydrostatic effect. Steele [5] has also considered
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the dynamics of a system of rotating Brownian particles (nanoparticles). If xI is the
ith element of the diagonalized rotational friction tensor, he showed that

x2i ¼
2I

p

� �
@2V

@c2
i

 !
; (3.30)

where I is the moment of inertia of the particle about the relevant axis, V is the

potential energy of the particle, andcI is the orientational angle.

If a particle rotates about an axis of symmetry, thenV is independent of the angle of

orientation about this axis and the corresponding friction tensor component is zero.

Thus, in a gas of particles rotating about symmetry axes, which are aligned with one

another, therewill be no relaxation of the rotational angularmomenta of themolecules.

The relaxation coefficient for rotation will be zero (infinite relaxation time).

Finally, the work of Fetter [6] on rectilinear vortices has an interesting bearing

on the result obtained in (3.20), relating the local (macroscopic) rotation to the

molecular angular velocity. He considered the circular cross section of the vortex

core to be an assembly of “point” vortices (these are equivalent to the rotational

nanoparticles referred to previously) in a lattice array, with rotational axes lying

along the lattice axis direction. The array is specified by a set of two-dimensional

position vectors {ri}, and the total energy of the system is given by

E ¼ SiEi þ 1

2

� �
SijEij; (3.31)

where Ei is the energy of the ith point vortex and Eij is the interaction energy of the

ith and jth vortex.

The interaction term is shown to lead to a uniform rotation of the array about its

center. Transforming to a reference system rotating with angular velocity O, the
total energy is then given by

H ¼ E� OL; (3.32)

where L is the total angular momentum about the axis of rotation.

Fetter shows that the right-hand side of this equation is self-consistent only if the

array (or core) angular velocity is related to the point vortex strength as follows:

O ¼ 1

2

� �
nK; (3.33)

where the discrete array has been replaced by a smoothed vortex density n, and K is

the point vortex strength.

If the point vortices are considered as molecular particles of effective radius s
and angular velocity o, then

K ¼ 2ps2o; (3.34)
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and

O ¼ nps2o: (3.35)

This is completely analogous to the Barnett equation (3.20). The proportionality

constant in each case is dimensionless, and, in the above equation, represents the

total number of “molecular” vortices in the core cross section.

3.4 Transport and Optical Properties of the Core Gas

3.4.1 Heat Conduction

It has already been seen that the vortex core gas has zero shear and bulk viscosity.

Due to spin (or internal rotation) alignment, temperature differences can be

leveled out by a wave propagation process rather than by a diffusion mechanism.

It is, in effect, an internal convection mechanism and has been used to explain the

anomalously high heat conductivity of superfluid liquid helium [6]. The spin-aligned

gas can be regarded as a superfluid with respect to the normal state of the gas.

Conversion to the normal state occurs by addition of heat to the spin-aligned state.

Based on this two-fluid concept, a wave equation for the gas temperature can be

derived:

cp
T


 � @2T

@t2
� rs

rn

� �
s2 div grad T; (3.36)

where cp is the specific heat at constant pressure, rs is the superfluid density, rn is
the normal fluid density, and s is the entropy density. A similar equation holds for

the entropy density s.
The velocity of propagation of these thermal waves is given by

u2 ¼ ðrs=rnÞs2T=cp: (3.37)

Typical numerical values for the thermalwave velocity range around 5 � 103 cm/s.

For a steady state, London [7] derived the following expression connecting the

temperature gradient and the heat flux q:

L grad T ¼ �curl curl q; (3.38)

where

L ¼ ðrsÞ2T=�n; (3.39)

and �n is the coefficient of shear viscosity of the normal fluid.
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Equation (3.38) replaces the usual equation of heat conduction

k grad T ¼ �q:

For a capillary of radius R, it can be shown that the effective coefficient of heat

conduction is

k ffi LR2

8
: (3.40)

For a typical gas at atmospheric pressure and a value of R ¼ 0.1 mm, this yields

a value for the coefficient of heat conduction of

k ¼ 3� 10�2 cal/cm s�C:

This is about a 100 times larger than the normal value for k.
The high value for heat conduction in a vortex core is supported by the observa-

tion made by the author [22] that the flame speed in a vortex ring formed of

premixed combustible gases is about five times higher than that to be expected in

an irrotational gas at the same initial temperature and pressure. A 25-fold increase

in the effective coefficient of heat conduction would explain this.

3.4.2 Optical Properties

Alignment of molecular angular momenta results in a net electric polarization in the

vortex core fluid. It is the electric dipole moment induced by the incident electric

dipole moment, or the electric permeability of the gas, which plays a central role in

flow birefringence and the spectrum of depolarized Rayleigh scattering [8].

Let the electric dipole of a molecule be

u ¼ u0e; (3.41)

where

eðtÞ ¼ eð0Þsinortþ lxeð0Þcosort;

or is the rotational frequency, and l is the direction of the rotational angular

momentum vector.

The time average of this dipole moment is zero. But the field E of the incident

electromagnetic radiation changes this to a nonzero average. This induced dipole

moment (for a linear nonpolar molecule) can be written as

u ¼ hhaii � E; (3.42)
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where the polarizability tensor ah ih i is related to e as follows:

hhaii ¼ aparaeeþ aperpðhhdii � eeÞ: (3.43)

apara is the polarizability component parallel to the axis of symmetry and aperp is
the polarizability component perpendicular to the axis of symmetry.

The electric displacement vector is written as

D ¼ hheii � E; (3.44)

hheii ¼ ehhdii þ hheii; (3.45)

and

hheii ¼ �2pnðapara � aperpÞhhllii; (3.46)

is the anisotropic (symmetric, traceless) part of the electric permeability tensor

(3.48)

e ¼ 1þ 4

3

� �
pð2aperp þ aparaÞ; (3.47)

is the dielectric constant.

Classically,

hhllii ¼ a 2ð Þ
mn ðp2Þw2

0=3
� 


; (3.48)

where a
ð2Þ
mv is the polarization tensor.

The transport equation for ah ih i in the field-free, shear free, vortex core

simplifies to

@hhaii
@t

þ oThhaii ¼ 0; (3.49)

where oT � oð22Þ
þ2 is the relaxation coefficient for the tensor polarization.

It is this coefficient which determines the broadening of the depolarized Rayleigh

line.

Hess [9, 10] has shown that the spectrum of the depolarized Rayleigh line is

given by the Lorentzian:

SLðo kj Þ ¼ oT þ k2DT

fo2 þ ðk2DT þ oTÞ2gp
; (3.50)

where k is the wave vector and

DT ¼ kBT=m

oT
: (3.51)

112 3 The Nanoboundary Layer and Nanovortex Core



The relation between change in refractive index and the velocity gradient ∇u
has been derived by Hess to be

Dn ¼ 2pffiffiffiffiffi
15

p
� �

ðapara � aperpÞ o�T

oT

� �
�

kBT

� �
ru; (3.52)

where o�T � oð12Þ
2 is the relaxation coefficient for flow birefringence.

But in the vortex core, � � 0 and so the gas in the vortex core is not birefringent.

The gas in the vortex core has unique optical properties.

An experimental study of the spectrum of the depolarized Rayleigh scattered

light is necessary to substantiate these predictions. Moreover, it should be possible

to determine values of the relaxation coefficient oT and thus to gain information on

the intermolecular force potentials.

3.5 Electric (Barnett) Polarization in the Boundary Layer

The author in [11] reports a kinetic theory for a dilute gas of rotating molecules in a

vortex core. This predicted a polarization of the molecular rotations about the local

rotation axis – a Barnett effect.

In the shear, or boundary, layer the streamlines are helical (not circular) and

although a Barnett effect would be expected, there would be a nonzero shear and

bulk viscosity and the gas would be birefringent. In at least two recent publications

[12, 13], variable index of refraction fields has been observed in turbulent shear

layers and traced to the presence of large vortical structures (with nonzero helicity)

in the flow field.

Moreover, the author has made a very interesting observation on the interaction

of vortex rings formed in air, with an external electric field. The vortices would not

pass between the electrodes forming the field, but were deflected right or left,

depending on the field polarity. This is understandable as the vortex core is a dipole

which will interact with an electric field.

Vortex Electric Polarization: the vector polarization induced in the vortex core

[9, 10] is

p ¼ ðp3Þhoi
o0

¼ vortex induced dipole moment per unit volume, (3.53)

where oh i is the mean angular velocity of the fluid particles in the core and

hoi ¼ o2
0b0Io; (3.54)

where

o0 ¼ pð3kBT=IÞ:
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kB is Boltzmann’s constant, T is the fluid temperature, and I is the moment of

inertia of the vortex about the rotation axis:

b0 ¼
1

kBT
:

v is the local (solid-body) angular velocity

3.6 Electric Charge–Dipole Interaction

In a boundary layer, there are many adjacent helical vortex cores, each of which is a

dipole. These dipoles would interact with an external electric potential V, associated
with some charge Q. Depending on the direction of rotation in the vortex cores and

the polarity of the charge Q, this interacting force will be repulsive (pushing the

boundary layer off the surface and decreasing drag) or attractive (pulling the

boundary layer down on the surface and increasing drag).

For calculation purposes, Fig. 3.2 is a sketch of the interactive unit (charge–dipole).

The force acting between the charge and dipole is

F ¼ Qð1=4pe0Þ2p=d3; (3.55)

where e0 is the permittivity of free space ¼ 9 � 10�12 C2/N m2 and p is the dipole

moment.

As the vortices in the boundary layer are co-rotating, all the dipoles have the

same orientation.

The shear, or boundary, layer on a delta wing at Reynolds numbers such that

the flow remains laminar will be considered here, as experimental data are

available [14].

¨ s Æ

∑ o

+q          –q ¨ …………………………d>>s  ……………………Æ +Q

Dipole Charge

Force between Dipole and Charge: 

F = Q(1/4pe0)2p/d3

P is the dipole moment

Fig. 3.2 Electric charge–vortex dipole system

114 3 The Nanoboundary Layer and Nanovortex Core



The force acting on all the dipoles in a volume V is

Ftot ¼ Qð1=4pe0Þ2pV=d3; (3.56)

where p is the vortex-induced dipole moment per unit volume – see (3.53).

Now V ¼ AL, where A is the area of a region of the boundary layer and L is the

vortex width. Substituting for p in (3.55) gives

Ftot ¼ 6Q

p
I

kBT

� �
1

4pe0

� �
1

d3

� �
AL: (3.57)

Hence, the “electric”, or charge/dipole interaction, pressure on the boundary is

PQD ¼ Ftot=A ¼ 6Q½ðpI/kBTÞ�ð1=4pe0ÞL=d3: (3.58)

It is convenient to convert the electric charge in coulombs, Q, into the electric

potential, V in volts, and

V ¼ s
2pe0

; (3.59)

where s is the charge per unit area ¼ Q/A.
For V ¼ 100 V, for example, Q ¼ 7.1 � 10�8 coulombs.

3.6.1 Sample Calculation for the Boundary (Shear)
Layer on a Delta Wing

I is the moment of inertia of the vortex about the rotation axis ¼ m/r2, where m is

the mass of fluid in the cylindrical vortex and r is the radius of the cylinder.
Taking the vortex width as L ¼ 0.6 cm and the length of the vortex as 2 cm, then

I was calculated as I ¼ 4.95 � 10�12 kg m2.

A vorticity value of O ¼ 700 cm/s (Nelson and Visser) was used and a surface

area of 4 m2 ¼ A.
The proposed boundary-layer control device is an insulated metallic layer about

10 cm below the boundary layer (upper edge of the airfoil) at a voltage V (volts)

relative to “ground.” A value of 100 V was used for this exploratory calculation.

The numerical calculation for the pressure on the boundary layer yielded

PQD ¼ 1:16� 1011Q N/m2:

For V ¼ 100 V, Q ¼ 7.1 � 10�8

PQD ¼ 8:26� 103 N/m2:
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The maximum pressure for separation would be the dynamic pressure of the

flowing fluid,

Psep ¼ (1/2)rU2 where U is the free stream velocity. For U ¼ 300 m/s, for

example, Psep ¼ 2.7 � 104 N/m2.

The PQD pressure above is not quite enough to neutralize this. But, a voltage of

350 V would do so, and prevent separation under the “worst-case” scenario.

3.7 Concluding Remarks

Based on the kinetic theory for a dilute gas of rotating molecules developed by Hess

and Waldman, it has been shown that polarization of the molecular axes occurs.

Moreover, in the presence of local rotation (solid-body rotation), it has also been

shown that polarization of the molecular rotational axes occurs along the local

rotational axis – Barnett polarization.

The change in physical properties of the vortex core gas, which occurs as a result

of Barnett polarization, is significant, and those related to the transport and optical

properties of the gas have been dealt with. Such changes in the fluid physical

properties are typical of those found in materials (solids and fluids) at the nanoscale

level. There is a phase transition from the macroscopic fluid to the nanofluid.

Kinetic theory also predicts significant electric polarization P in the dielectric

fluid flowing over an airfoil, where P ¼ N p and p is the average dipole moment per

molecule. N is the number of molecules per unit volume.

The shear, or boundary, layer over a delta wing has been used as an example,

where the flow is in the form of longitudinal helical vortices. Each helical vortex is

a dipole and so the total dipole over any given area of the boundary layer can be

computed.

Published physical values for a typical co-rotating boundary layer (vortex

strength and vortex width) have been used.

The interactive force between this dipole assembly and an electrode charged to a

voltage V buried in the airfoil is computed to the first order. As the force acts over

an area, a pressure is determined. This can be an attractive pressure – pulling the

boundary down on the airfoil surface, increasing the drag, but delaying separation.

Alternatively, it can be repulsive, pushing the boundary layer off the airfoil surface,

decreasing the drag and also the lift, and causing the airfoil to “slip” through the

fluid. This condition has already been identified in the emerging area of fluid

dynamics known as nanofluidics.

The implications for hypersonic and ionized fluid dynamics, with electric dou-

ble-layer formation and the ensuing electrokinetics, are that alteration of hypersonic

re-entry characteristics becomes feasible.
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Chapter 4

Nanoduct Fluid Flow

4.1 Introduction

Nanoducts are unique in that fluid moving through them has intense vorticity, or

molecular spin. In such regions of fluid flow, the molecular theory of fluids must be

used to model the flow region and the physical properties of the fluid. Such

properties change significantly in the presence of intense vorticity. These topics

have been dealt with in Chap. 3 under the heading of the Nano-boundary Layer,

using Waldman’s kinetic theory for a fluid of rotating and translating molecules.

Expressions for the particle density, spin, and fluid velocity were derived (two

particle collisions only). Allowing for macroscopic rotation of the gas led to an

equation analogous to the Barnett equation. Expressions for the transport and

optical properties of the nanoduct fluid were also derived.

4.2 Kinetic Theory for Fluid Transport Parameters

Given that the sound speed in the gas is given by

us ¼
ffiffiffiffiffiffiffiffi
kRT

p
; (4.1)

where k ¼ cp/cv – the ratio of specific heats – R is the gas constant; only the

important dimensionless numbers will be dealt with here.

Mach number ¼ Ma ¼ u

us
: (4.2)

A flow with Ma less than 0.3 can be treated as incompressible.

P. McCormack, Vortex, Molecular Spin and Nanovorticity: An Introduction,
SpringerBriefs in Physics, DOI 10.1007/978-1-4614-0257-2_4,
# Percival McCormack 2012
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Reynolds number ¼ uL

n
; (4.3)

where L is the characteristic length scale of the flow, such as the channel diameter,

and n is the kinematic viscosity of a gas.

The ratio between the mean free length, l, and the characteristic length scale is

called the Knudsen number

Kn ¼ l
L
¼

ffiffiffiffiffi
kp

p
=2

� �
Ma

Re
: (4.4)

It can also be determined from the Mach number and the Reynolds number.

The Knudsen number is used to determine a suitable model to describe fluid flow

in nanofluids.

For a smallKn value (Kn < 10�3), the fluid is treated as a continuumwith nonslip

boundary conditions. For Kn values between 10�3 and 10�1, the continuum model

with slip boundary conditions are applied. For Kn values between 10�1 and 10, the

flow is in the transition phase and can still be described using equations modified

from the continuum model. For Kn values above 10, molecular dynamics can be

used to describe the free molecular flow – see Fig. 4.1.
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Fig. 4.1 Flow regimes for gases and relationship between the Knudsen number, characteristic

length L, density n, and molecular distance.
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4.3 Molecular Dynamics and Monte Carlo Simulation

Molecular dynamics (MD) is a simulation method for the calculation of the motion

of many particles in a system.

The interaction between the molecules in a system is described by Newton’s second

law and the simplest model of a molecule is a hard sphere with massm. For two neutral
molecules, the interaction can be described by the Lennard–Jones potential [1]:

CijðrÞ ¼ 4e cij
r

s

� ��12

� dij
r

s

� ��6
� �

; (4.5)

where r is the intermolecular distance, cij, dij are interaction coefficients, and s is

the molecule diameter and is the characteristic length.

The interaction force between two molecules is

FijðrÞ ¼ � dcijðrÞ
dr

: (4.6)

The equation of motion is

d2rj

dt2
¼ 1

m

	 
 XN
j¼1;j 6¼1

Fij: (4.7)

The basic steps of molecular dynamics simulation are listed as follows:

1. Determining the initial conditions and geometrical parameters.

2. Determining the interaction forces.

3. Integrating the equation of motion (4.7) for the next position (state) of the

molecules.

4. Repeating over the required number of time steps.

The fluid model used in MD with Lennard–Jones interactions is called a “simple

fluid” or Lennard–Jones fluid. This model forms a cost-effective model for describ-

ing liquid flow in the nanochannel. The continuum model with Navier–Stokes

equations breaks down in a nanochannel below four molecular diameters, or

approximately 1 nm.

Molecular dynamics is a deterministic method and so computational expense is

very high. It is used with liquids. Problems with gases are solved by combining

statistical methods and the deterministic method of particle dynamics. This

approach is called DSMC, and instead of tracking the position of each single

molecule, many molecules form a particle. The simulation of the particles is

deterministic, while the interaction of the molecules in the particle is modeled

statistically. There are three substeps in each step of DSMC: indexing and cross-

referencing of the particles; modeling of particle motion; and simulation of

collisions and probing macroscopic properties.
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As in MD, the new position of the particle is determined by integrating the

equation of motion over a time step Dt. To maintain the same number of particles in

the simulation domain, particles exiting at one boundary should reenter at another

boundary.

The simulation domain is divided into cells. Only particles in the same cell can

collide and the cell size should be less than three times the mean free path. The

probability of collision is then calculated for every particle pair. The method selects

two arbitrary particles and calculates their relative velocity and if their relative

velocity is above a certain threshold the pair is selected as a collision pair. The

collision is then simulated and new velocities determined. The velocities of the

particles after the collision are calculated based on the conservation of impulses and

of kinetic energy. For the macroscopic properties, the average value over all

particles is calculated. The temperature is evaluated from the kinetic energy of

the particles. For evaluation of viscosity, see [2].

4.4 Diffusion in Nanochannels

In a nanochannel, the simplest mode of diffusive transport is Knudsen diffusion,

where the channel size is smaller than the mean free path (Kn > 1). The diffusion is

dominated by collision with the channel wall and not by collision with surrounding

molecules or collision with surrounding molecules as estimated by the

Stokes–Einstein theory.

For a liquid, the intermolecular distance is of the order of the molecular diame-

ter, and so Knudsen diffusion is not significant. Under standard conditions, the

mean free path of gas molecules is about 100 nm. Therefore, the diffusive transport

of a gas through a nanochannel is mainly determined by Knudsen diffusion. The

diffusion coefficient based on kinetic theory is

DKn ¼ Lup
3

; (4.8)

where L is the characteristic length, such as channel diameter, and up ¼
ffiffiffiffiffiffiffiffiffi
2RT

p
is

the most probable molecular velocity [2, p. 48]. The Knudsen diffusion coefficient

is therefore given by

DKn ¼ L
ffiffiffiffiffiffi
RT

p

3
; (4.9)

where R ¼ k/M is the gas constant, with M being the molecular weight.
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4.5 Electrokinetics in Nanochannels

Surface charge on a channel wall is a result of dissociation of nonelectric adsorption

of ions in the solution to the surface [3]. The surface charge can be positive or

negative, depending on the pHof the solution.At a particular pHvalue, the net charge

can be zero. For example, the surface charge of glass is zero at a pH value of about

two [4]. The amount of charge per unit area is called the surface charge density:

ss ¼
P
i
zie

A
; (4.10)

where zi is the valence of ion, i.e., the elementary charge, and A is the surface area.

In nanochannels, counterions accumulate on the surface charge and form the

Stern layer.

Outside this immobile layer, there is a thicker mobile layer – the Gouy–Chapman

layer. Under an electric field, the latter layer can move relative to the solid surface.

The immobile Stern layer and the mobile Gouy–Chapman layer form the electric

double layer (EDL). The interface between these two layers is called the shear layer.

These counterions extend into the channel through the Gouy–Chapman layer. Across

the EDL, co-ions are repelled. The thickness of the EDL, the Debye length, is

inversely proportional to the square of the bulk concentration – lD � 1=
ffiffiffiffiffi
n0i

p
– see

[3, p. 24]. Thus, if the EDL is small compared to the channel, both ion types are

transported through the channel, and the conductance is proportional to the ion

concentration.

In a nanochannel, the surface charge density should balance the charge density in

the solution:

ss ¼ �
Z 1

0

redx; (4.11)

where the charge density is

re ¼
�ee0d2c

dx2
: (4.12)

Using the Poisson–Boltzmann equation, the relation between the surface charge

density ss and the surface potential cs can be derived as [5]

ss ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ee0kT

X
i

n0i exp
�ziecs

kT

	 

� 1

	 
� �( )vuut : (4.13)

The simplified model for the conductance of a nanochannel for an electrolyte

such as KClðmKþ ¼ mCl� ¼ mI; z ¼ 1Þ for all concentration is [6]
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Geo ¼ 2WH

L

	 

minKCleþ

2W

L

	 

miss; (4.14)

where W, H, and L are the width, height, and length of the nanochannel,

respectively.

Figure 4.2 shows the relation between the conductance of a nanochannel and the

different parameters.

The change in width and length follows the rule of an ohmic conductor [the

conductance is proportional to the width and inversely proportional to the length

(Fig. 4.2a, b)].

4.6 Slip Flow in Nanoducts

Initially compressible (gas) flows will be dealt with. In the Knudsen number range

�0.01 � Kn � ¼ 0.1, the often-assumed no-slip boundary condition appears to

fail and a sublayer of the order of one mean free path, known as the Knudsen, starts

to become dominant between the bulk of the fluid and the wall surface. The flow in

the Knudsen layer cannot be analyzed with the Navier–Stokes equations and it

requires special solutions of the Boltzmann equation. However, for Kn � 0.1, the

Knudsen layer covers less than 10% of the channel height and this layer can be

W

a
log (G)

log (n)

log (G)

L

b

H

log (n)

log (n)

log (G)

c

log (G)

Fig. 4.2 Typical behavior of the conductance of a nanochannel; (a) dependency on channel width

N, (b) dependency on channel length, L (c) dependency on channel height H, and dependency on

conductance
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neglected by extrapolating the bulk gas flow toward the wall. This results in a finite

velocity slip value at the wall, and this flow regime is known as the slip flow regime.
In this slip flow regime, the flow is governed by the Navier–Stokes equations

modified by Maxwell’s velocity slip at the boundary.

In 1879, Maxwell used the kinetic theory of gases to identify the slip boundary

condition,

uxðx; yÞ ¼ 2� TMAC

TMAC

	 

}

@uxðx; yÞ
@y wj

� �
; (4.15)

where ℘ is the mean free path ~1/d2n, d is the effective molecular diameter, and n is
the molecule number density.

TMAC is the tangential momentum accommodation coefficient, frequently of

value one. Therefore, the fluid velocity at the solid surface is assumed to be

proportional to the shear rate at the surface, and the proportionality constant has

dimensions of length.

The slip length, Ls, is defined in terms of the accommodation coefficient and the

mean free path as

Ls ¼ 2� TMAC

TMAC

	 

}; (4.16)

and also can be defined [7] as the ratio of the slip length to the surface shear rate:

uxðx; 0Þ ¼ Ls
@uxðx; 0Þ

@y

� �
: (4.17)

In physical terms, the slip length is the distance inside the solid where the fluid

velocity extrapolates linearly to zero (Fig. 4.3).

Several theories for the generation of slip have been developed and these

include (1) surface roughness [4] and (2) nano-bubbles on the surface and applied

shear [5]. Shear is probably the most interesting. It has been shown [6] that at low

Fig. 4.3 Slip length, Ls, for
a simple shear flow along

a flat plate
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shear rates a linear boundary condition exists. After a critical value of the shear rate

g0C, Thompson and Troian [6] suggest that the relation between the slip length and

the shear rate is nonlinear where

Ls ¼ L0s 1� g0C
@uxðx; 0Þ

@y

� �	 

�1=2; (4.18)

with L0s and g
0
C being constants and being particular to the materials involved. In [5]

it is shown that for low and moderate shear rates, the slip length is not affected.

In [7] a nonlinear slip boundary condition

ux ðx; 0Þ ¼ Ls
@uxðx; 0Þ

@y

	 
n� �
; (4.19)

is used to solve for velocity and for various slip lengths, using a reduced form of the

boundary layer equations. Results for n ¼ 1/2, corresponding to a convergent

channel, and n > 1/2, corresponding to flow past a wedge, are determined. The

case of n ¼ 1 is invalid from the arguments in [7] since the solution for one of the

constants of integration would not exist for n ¼ 1.

4.7 Water Flow in Nanochannels

Water has many unique properties and has many nanofluidic applications and so its

behavior in nanochannels will be dealt with.

A water molecule has two hydrogen atoms and one oxygen atom – see Fig. 4.4.

The hydrogen atoms are linked to the oxygen via two bonds with a length of 0.970 Å
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each. The two bonds form an angle of 106�. Thus, the water molecule acts as an

electric dipole, where the oxygen site appears negatively charged and the hydrogen

site positively. The symmetry axis of thewatermolecule is the dipole axis. The dipole

moment of a water molecule in the liquid state at 300 K has been determined

experimentally as 1.95 � 0.2 Debye (1 Debye ¼ 3.336 � 10�30 cm) – [8].

The main problem for MD simulation involving water is the accurate description

of the interaction potential between molecules. For example, there are 40 different

models for the simulation of water. In addition to the Lennard–Jones potential,

electrostatic interactions of the dipole are considered for simulating the interaction

between the molecules. Each model is optimized to fit a critical parameter, but

cannot be applied in general.

A key issue of research on water in the nanoscale is the nature of the hydrogen

bond (HB) network. The strength of about 21 kJ/mol of a hydrogen bond is between

that of a covalent chemical bond (~420 kJ/mol) and that of the weak van der Waals

interaction (~1.25 kJ/mol). Energy and geometric conditions are used to determine

the formation of an HB. The energy condition is based on the interaction energy.

If the interaction energy between two molecules is below a threshold energy (about

�10 kJ/mol), an HB can be formed. The geometric condition is based on the

distance and angle between the bonds of the atoms (see Fig. 4.4). If the distance

between two oxygen atoms (the first coordination shell) and the angle between the

O–O and O–H bonds (30�) are less than a certain threshold, an HB can be formed.

As HBs determine the properties of bulk water, the influence of nanochannels on

HB determines the type of the transport. A highly oriented HB has been reported

(see [9]) inside a carbon nanotube. An HB is much more stable inside the channel.

The average lifetime of an HB inside a carbon nanotube is 5.6 ps, while it is 1.0 ps

in bulk water [9]. At a critical channel diameter of 8.6 Å, water molecules are

immobilized in the nanotube as a stable HB network [10]. This so-called water wire

allows protons to move from one molecule to another resulting in the selective

proton-conducting properties of the nanotube. The transport of the “water wire” in a

nanotube is as follows (see [11]). A water molecule enters the channel with the

hydrogen atom first. Water fills the channel in a chain form with the same orienta-

tion of water molecules. Depending on the interaction with the channel, the chain

can be broken, resulting in a burst of molecule transport.

Molecular dynamics (MD) is suitable for studying transport phenomena in

subnanometer channels such as the carbon nanotube. It has been found [12] with

MD simulation that inside a CNT with a diameter of 0.8 nm, the number of

hydrogen bonds of water decreases with respect to bulk water in larger channels.

Water molecules align in a one-dimensional line and can move quicker through the

CNT. In contrast to larger channel flows, water transport through subnanometer

channels is semi-frictionless and nearly independent of the channel length. MD

simulation can be combined with the continuum approach to avoid the very large

computational expense. For example, the near-wall region can be simulated with

MD, while the bulk area is solved with the continuum model. The method is

suitable for a relatively large nanochannel of about 10–100 nm. This concept has

been applied [13] to Couette and Poiseuille flow where the near-wall region should
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be at least 12 molecular diameters in size. The continuum and MD domains should

overlap by at least ten molecular diameters.

It is appropriate at this stage to summarize the disciplines related to nanofluidics

and related scientific subjects (see Fig. 4.5).

4.8 Molecular Spin in Nanoduct Fluid Flow

In nanofluidic devices, very small volumes of fluid are transported around andmixed

in nanosized channels and chambers, and the flow frequently driven by pumping and

mixing mechanisms which generate nonzero mean oscillatory flows [14].
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Nanofluidic flows are characterized bymany distinct features such as large surface

to volume and low Reynolds number [15]. On these small scales, it is doubtful

whether the Navier–Stokes description is valid.

It has been shown [16] using molecular dynamics simulations of a Poiseuille flow

that the classical Navier–Stokes theory is satisfactory for systems with a characteris-

tic length scale down to 7–8 atomic diameters. Data from molecular dynamics

simulations have compared well with the solution to the Navier–Stokes equation of

nano-confined fluids in oscillatory flow with frequencies up to 102 GHz [17].

But the Navier–Stokes theory ignores several microscopic degrees, assuming

that they have no effect on the translational fluid motion. However, it is well

known that for molecular fluids the translational momentum couples to the

intrinsic angular momentum via an exchange between the fluid vorticity and the

molecular angular velocity [18]. Hansen et al. [19] have derived the extended

Navier–Stokes equations (including the effect of molecular spin) for isotropic and

dense fluids.

4.8.1 Extended Navier–Stokes Equations

These include the coupling between the translational velocity field u and the spin

angular momentum per unit mass s:

Dr
Dt

¼ �rðr � uÞ; (4.20)

rDu
Dt

¼ �rpþ ð�n þ
�o
3
� �rÞrðr � uÞ þ ð�o þ �rÞr2uþ 2�r ðr � OÞ; (4.21)

rDs
Dt

¼ 2�rðrxu� 2OÞ þ ðzn þ
zo
3
� zrÞrðr � OÞ þ ðzþ zrÞr2O; (4.22)

where r is the mass density, p is the pressure, and V is the spin angular velocity.

The transport coefficients �n, �o, and �r are the bulk, shear, and rotational

viscosities, respectively, and zn, zo, and zr the equivalent vortex spin viscosities.

Note that the total angular momentum is the sum of the orbital angular momentum

and the spin angular momentum.

For a dense-enough incompressible fluid, these equations can be approximated to

rDu
Dt

¼ �rpþ ð�0 þ �rÞr2uþ 2�rðr � OÞ: (4.23)

rDs
Dt

¼ 2�rðr � u� 2OÞ: (4.24)
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In a fluid where the divergence of the velocity and angular velocity fields are

zero, it can be shown [19] that

r2O ¼ 1

2

	 

r2o: (4.25)

where v is the vorticity and is decoupled from the angular velocity.

In general, the contribution to the total dissipation from the translational motion

is always positive and orders of magnitude greater than that from the spin. Hence,

the total dissipation is only slightly affected by the molecular spin.

4.9 Nanoscale Forces

These are exerted by walls on particles or solvent molecules or on nearby walls, or

by the particles and molecules on each other. These forces govern the behavior of

the molecules or particles in nanostructures. They give rise to equilibrium phenom-

ena, such as differences in ionic distribution, or to kinetic phenomena such as

(macroscopic) viscosity. Figure 4.6 is a schematic of a number of forces acting in

the nanoscale, for the case of interaction between a spherical particle representing

an AFM tip and a flat surface [20]. It is seen that the spatial extension of the forces is

maximum for the electrostatic forces and minimum for the van der Waals forces.

Electrostatic forces act as far as the electrical double layer extends – typically from

1 to 100 nm, depending on the electrolyte concentration and are repulsive or

attractive – while van der Waals predominate at distances less than 2 nm and are

always attractive.

A very useful tool in the study of nanoscale forces is the surface forces apparatus

(SFA) – see [21]. It also allows salvation forces to be observed and quantified –

these forces provide attachment of layers of solvent molecules to the surface. Also,

hydration forces can be observed, occurring when ionic surface sites or ions in the

liquid resist dehydration [22]. In biology and medicine, joint lubrication is an

important area of research and hydration forces are involved [23].

A strong force is the capillary force and SFA is a useful tool here also [24].

So far, only forces that are normal to the surface of the SFA, important in static

conditions, have been considered. However, shear forces on the nanoscale have also

been shown to be different from the macroscopic domain. For simple Newtonian

liquids, friction is seen to increase from the macroscopic value when the separation

between two surfaces becomes less than about ten molecular layers. A change in

film properties from liquid to solid-like behavior is often seen, occurring, for

example, for alkanes but not for alcohols [25]. The shape of the molecule appears

to determine this. Symmetric-shaped molecules order themselves in neat layers

and turn into a quasi-solid, but asymmetrical ones remain in a disordered liquid

state [26]. Note that for the experiments mentioned, atomically smooth surfaces are

used, in contrast to most experiments where surfaces will be rough.
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Surface roughness is one of the reasons for the hysteresis, often observed in

approach/separation processes such as wetting/dewetting, adhesion/decohesion,

and advance/receding of the contact angle [27]. Another important issue in

nanofluidics is that, sometimes, the liquid is observed to slip past the surface

decreasing the fluid resistance [28]. As dealt with earlier in this chapter, when

this occurs the commonly used boundary condition is no longer valid and a so-

called slip length has to be introduced.

Atomic force microscopy (AFM) has become the best method for measuring

surface, because it enables measurements to be made quickly and with high spatial

resolution [20]. It has, however, a lower sensitivity than SFA (see review by

Froberg et al. [29]).

Forces of lesser importance on the nanoscale are the gravitational and inertial

forces.
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4.10 Theoretical Analyses

The forces between the individual atoms ultimately determine the behavior of any

system. The best model will be the one which accounts for all the individual atomic

interactions. Available computational power limits the system size to about 10 nm;

however, above this size systems can often be described using continuum theory,

which statistically averages the single interactions. For the behavior of a liquid

confined in a space below ten molecular diameters, where molecular layers start

being quantized, deviations from the predictions of classical continuum theory have

been observed. Molecular dynamics (MD) simulations are appropriate for such

systems [30]. Between 10- and 100-nm-sized channels, the lattice Boltzmann

equation has been very useful for the descriptions with complicated geometry and

composition [31].

4.11 Overview of Phenomena Occurring at the Nanoscale

4.11.1 Surface-Energy-Related Phenomena

At nanometer dimensions, the surface to volume ratio increases and surface-related

phenomena become increasingly dominant. For example, during two-phase flow in

nanochannels, the generation of capillarity-induced negative pressure is observed

[32]. This is impossible in gases, but liquids and solids can be put under tension –

they can exist at negative pressures [33]. Such pressures have been observed in

devices where the thin channel roofs were deformed by the negative pressure in a

capillary liquid plug. Figure 4.7 shows the tongue-like shape of the meniscus

Fig. 4.7 Optical micrograph

of a water plug (dark color)
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observed in 100-nm-high nanochannels due to the bending of the 8.30-nm-thick and

10-mm-wide silicon nitride-capping layer under the influence of the negative liquid

pressure. The pressure has been calculated at a value of �17 bar [34].

Earlier it has been mentioned that slip flow can occur at the (sub) nanometer

scale. Slip can occur both at atomically flat surfaces, e.g., at high shear rates [35],

and at hydrophobic rough surfaces where air pockets can remain [28] or a very thin

vapor layer can adhere [36]. MD simulations of the movement of single water files

through (6,6) carbon nanotubes indicate that slip also can occur at this scale because

the water molecules interact more strongly with each other than with the walls [37].

The flow resistance in these simulations was independent of nanotube length between

1 and 4.5 nm.

4.11.2 Shear-Related Phenomena

Strong shearing, as mentioned earlier, can cause cavitation, either at the liquid/solid

interface or in the liquid itself. Shear forces can also extend polymer and DNA

molecules [38]. Long DNA can easily be broken and proteins denatured [39].

4.11.3 Electric Double-Layer-Related Phenomena

These occur on double-layer overlap on nanochannels or nanoslits. They are observed

when studying nanochannels, nanopores, membranes, sol gels, and soils. Due to the

large surface to volume ratio, the contribution of the surface conductivity (the

conductivity through the electrical double layer) becomes larger at the nanoscale

[40, 41].

When double-layer overlap occurs, the streaming potential will decrease and the

pore conductivity will increase [42]. Moreover, co-ions will be excluded from the

channel, or membrane; counterions are enriched and a Donnan equilibrium will be

established between the channel solution and its connected reservoirs [42]. When

double-layer overlap occurs in sols and gels, they swell due to the osmotic pressure

resulting from the high concentration of counterions. This effect also contributes to

the mechanical strength of cartilage [43]. Hydrostatic pressure will, therefore, be

built up in nanochannels on double-layer overlap.

In the kidney, the negatively charged albumin is prevented from passing from

the blood to the primary urine by the basal membrane. Co-ion exclusion by the

negatively charged membrane contributes to this effect [44]. Similarly, the wall

charge on nanotubes influences the transport of proteins with different charges [45].

Semipermeability has also been demonstrated in nanochannels using fluorescent

molecules [46]. In semipermeable membranes with smaller pores, the effect is used

for desalination [47].
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4.11.4 Entropy-Related Phenomena

A system can be driven in a certain direction by an entropy increase. On the

nanoscale, several phenomena have been shown to relate to entropy changes.

Flexible molecules, such as DNA, have many more possible coiled states than

elongated ones. Entropy, therefore, drives them to a coiled state [48]. Hence, DNA

molecules will tend to stay in larger cavities instead of smaller ones, to maximize

entropic gain [49].This will affect DNA separation in gels and in nanomachined

entropic traps [50]. It will also drive DNA out of small cavities if it gets caught.

DNA can be stretched by confinement in 2-D nanochannels if the diameter of the

channel is less than the persistence length, which is about 50 nm [51].

4.11.5 Molecular-Structure-Related Phenomena

Amajor challenge for nanofluidics is to harness interactions on the single molecular

scale. This is used in pharmacology where drugs are designed to fit in a certain

receptor cavity. The drugs then have their effect on the human body by a massively

parallel action in many cells.

Aquaporins conduct water molecules but not protons, which probably results

from the intricate electrical and spatial properties of the channel, concerning

interactions of single water molecules with the amino acids forming the walls [52].

Water conductance through a single aquaporin is about 109 molecules per second,

and one could imagine a structure with many channels in parallel, conducting water

but not protons. Manufacture of functional nanopores is still in its infancy.

4.12 The Field of Nanofluidics

This is often defined as the application and study of fluid flow around and inside

nanoscale objects. It has its origins in many disciplines, and the phenomena

encountered involve many areas in physics, chemistry, and biology.

Separation science is one area that has already been, and will be more so in the

near future, greatly impacted. There are two basic reasons for this: first, the domain

has been reached where the analyte size matches the device features and, second,

absolutely regular features can now be made, which repetitively perform exactly

the same operation on the particles to be separated.

A second area of nanofluidic applications is the study of the fundamental

properties of liquids and molecules in, for example, fluid mechanics and biophysics.

Will it be possible to apply massively parallel nanofluidic systems for computa-

tional purposes? Will it be possible to make structures that write DNA and read it?

Due to the nanotech tools developed recently, it is now possible to control liquid

flow and molecular behavior at the nanoscale.
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The new area of nanofluidics has already produced exciting results and more are

expected.
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